Gradle User Guide

Version 4.3.1

Copyright © 2007-2017 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

|. ABOUT GRADLE

1. Introduction
2. Overview

1. WORKING WITH EXISTING BUILDS

3. Installing Gradle

4. Using the Gradle Command-Line
5. The Gradle Console

6. The Gradle Wrapper

7. The Gradle Daemon

8. Dependency Management Basics
9. Introduction to multi-project builds
10. Continuous build

11. Composite builds

12. The Build Environment

13. Troubleshooting

14. Embedding Gradle using the Tooling API
15. Build Cache

1. WRITING GRADLE BUILD SCRIPTS

16. Build Script Basics

17. Build Init Plugin

18. Writing Build Scripts

19. More about Tasks

20. Working With Files

21. Using Ant from Gradle
22. The Build Lifecycle

23. Wrapper Plugin

24. Logging

25. Dependency Management
26. Multi-project Builds

27. Gradle Plugins

28. Standard Gradle plugins
29. The Project Report Plugin
30. The Build Dashboard Plugin
31. Comparing Builds

32. Publishing artifacts

33. The Maven Plugin

34. The Signing Plugin

35. lvy Publishing (new)

36. Maven Publishing (new)
37. The Distribution Plugin
38. The Announce Plugin

39. The Build Announcements Plugin

V. EXTENDING THE BUILD

40. Writing Custom Task Classes

41. Writing Custom Plugins

42. The Java Gradle Plugin Development Plugin
43. Organizing Build Logic

44, Initialization Scripts

45, The Gradle TestKit

V. BUILDING JVM PROJECTS

46. Java Quickstart

47. The Java Plugin

48. The Java Library Plugin
49. Web Application Quickstart
50. The War Plugin

51. The Ear Plugin

52. The Jetty Plugin

53. The Application Plugin
54. The Java Library Distribution Plugin
55. Groovy Quickstart

56. The Groovy Plugin

57. The Scala Plugin

58. The ANTLR Plugin

59. The Checkstyle Plugin
60. The CodeNarc Plugin
61. The FindBugs Plugin
62. The JDepend Plugin

63. The PMD Plugin

64. The JaCoCo Plugin

65. The OSGi Plugin

66. The Eclipse Plugins

67. The IDEA Plugin

VI. THE SOFTWARE MODEL

68. Rule based model configuration

69. Software model concepts

70. Implementing model rulesin a plugin
71. Building Java Libraries

72. Building Play applications

73. Building native software

74. Extending the software model

VIl. APPENDIX

A. Gradle Samples

B. Potential Traps

C. The Feature Lifecycle
D. Gradle Command Line
E. Documentation licenses

List of Examples

4.1. Executing multiple tasks

4.2. Excluding tasks

4.3. Abbreviated task name

4.4. Abbreviated camel case task name

4.5. Selecting the project using abuild file
4.6. Selecting the project using project directory
4.7. Forcing tasksto run

4.8. Obtaining information about projects
4.9. Providing a description for a project
4.10. Obtaining information about tasks
4.11. Changing the content of the task report

4.12. Obtaining more information about tasks

4.13. Obtaining detailed help for tasks

4.14. Obtaining information about dependencies

4.15. Filtering dependency report by configuration

4.16. Getting the insight into a particular dependency
4.17. Information about properties

6.1. Running the Wrapper task

6.2. Wrapper task

6.3. Wrapper generated files

6.4. Specifying the HTTP Basic Authentication credentials using system properties
6.5. Specifying the HTTP Basic Authentication credentialsin di st ri but i onUr |
6.6. Configuring SHA-256 checksum verification

8.1. Declaring dependencies

8.2. Definition of an external dependency

8.3. Shortcut definition of an external dependency

8.4. Usage of Maven central repository

8.5. Usage of JCenter repository

8.6. Usage of aremote Maven repository

8.7. Usage of aremote Ivy directory

8.8. Usage of alocal Ivy directory

8.9. Publishing to an lvy repository

8.10. Publishing to a Maven repository

9.1. Listing the projectsin abuild

11.1. Dependencies of my-app

11.2. Declaring a command-line composite

11.3. Declaring a separate composite

11.4. Depending on task from included build

11.5. Build that does not declare group attribute

11.6. Declaring the substitutions for an included build
11.7. Depending on a single task from an included build
11.8. Depending on atasks with path in all included builds
12.1. Setting properties with a gradle.propertiesfile

12.2. Configuring an HTTP proxy

12.3. Configuring an HTTPS proxy

14.1. Using the tooling API

15.1. Pull from HttpBuildCache

15.2. Allow untrusted SSL certificate for HttpBuildCache
15.3. Recommended setup for Cl push use case

15.4. Consistent setup for buildSrc and main build

15.5. Configure built-in build caches

15.6. Init script to configure the build cache

16.1. Your first build script

16.2. Execution of abuild script

16.3. A task definition shortcut

16.4. Using Groovy in Gradle'stasks

16.5. Using Groovy in Gradle's tasks

16.6. Declaration of task that depends on other task

16.7. Lazy dependsOn - the other task does not exist (yet)

16.8. Dynamic creation of atask

16.9. Accessing atask via API - adding a dependency
16.10. Accessing atask via APl - adding behaviour
16.11. Accessing task as a property of the build script
16.12. Adding extra properties to a task

16.13. Using AntBuilder to execute ant.loadfile target
16.14. Using methods to organize your build logic
16.15. Defining a default task

16.16. Different outcomes of build depending on chosen tasks
18.1. Accessing property of the Project object

18.2. Using local variables

18.3. Using extra properties

18.4. Configuring arbitrary objects

18.5. Configuring arbitrary objects using a script
18.6. Groovy JDK methods

18.7. Property accessors

18.8. Method call without parentheses

18.9. List and map literals

18.10. Closure as method parameter

18.11. Closure delegates

19.1. Defining tasks

19.2. Defining tasks - using strings for task names
19.3. Defining tasks with alternative syntax

19.4. Accessing tasks as properties

19.5. Accessing tasks viatasks collection

19.6. Accessing tasks by path

19.7. Creating a copy task

19.8. Configuring atask - various ways

19.9. Configuring atask - with closure

19.10. Defining atask with closure

19.11. Adding dependency on task from another project
19.12. Adding dependency using task object

19.13. Adding dependency using closure

19.14. Adding a'must run after' task ordering

19.15. Adding a'should run after' task ordering
19.16. Task ordering does not imply task execution
19.17. A 'should run after' task ordering isignored if it introduces an ordering cycle
19.18. Adding a description to a task

19.19. Overwriting atask

19.20. Skipping atask using a predicate

19.21. Skipping tasks with StopExecutionException
19.22. Enabling and disabling tasks

19.23. Custom task class

19.24. Ad-hoc task

19.25. Ad-hoc task declaring a destroyable

19.26. Using runtime API with custom task type
19.27. Using skipWhenEmpty() viathe runtime AP
19.28. Inferred task dependency viatask outputs

19.29. Inferred task dependency via atask argument

19.30. Declaring a method to add task inputs

19.31. Declaring a method to add a task as an input

19.32. Failed attempt at setting up an inferred task dependency
19.33. Setting up an inferred task dependency between output dir and input files
19.34. Setting up an inferred task dependency with files()

19.35. Setting up an inferred task dependency with builtBy()
19.36. Ignoring up-to-date checks

19.37. Runtime classpath normalization

19.38. Task rule

19.39. Dependency on rule based tasks

19.40. Adding atask finalizer

19.41. Task finalizer for afailing task

20.1. Locating files

20.2. Creating afile collection

20.3. Using afile collection

20.4. Implementing afile collection

20.5. Creating afiletree

20.6. Using afile tree

20.7. Using an archive as afile tree

20.8. Specifying a set of files

20.9. Copying files using the copy task

20.10. Specifying copy task source files and destination directory
20.11. Selecting the files to copy

20.12. Copying files using the copy() method without up-to-date check
20.13. Copying files using the copy() method with up-to-date check
20.14. Renaming files as they are copied

20.15. Filtering files as they are copied

20.16. Nested copy specs

20.17. Using the Sync task to copy dependencies

20.18. Creating a ZIP archive

20.19. Creation of ZIP archive

20.20. Configuration of archive task - custom archive name
20.21. Configuration of archive task - appendix & classifier
20.22. Activating reproducible archives

21.1. Using an Ant task

21.2. Passing nested text to an Ant task

21.3. Passing nested elements to an Ant task

21.4. Using an Ant type

21.5. Using a custom Ant task

21.6. Declaring the classpath for a custom Ant task

21.7. Using a custom Ant task and dependency management together
21.8. Importing an Ant build

21.9. Task that depends on Ant target

21.10. Adding behaviour to an Ant target

21.11. Ant target that depends on Gradle task

21.12. Renaming imported Ant targets

21.13. Setting an Ant property

21.14. Getting an Ant property

21.15. Setting an Ant reference

21.16. Getting an Ant reference

21.17. Fine tuning Ant logging

22.1. Single project build

22.2. Hierarchical layout

22.3. Flat layout

22.4. Modification of elements of the project tree
22.5. Adding of test task to each project which has certain property set
22.6. Notifications

22.7. Setting of certain property to al tasks

22.8. Logging of start and end of each task execution
24.1. Using stdout to write log messages

24.2. Writing your own log messages

24.3. Using SLF4J to write log messages

24.4. Configuring standard output capture

24.5. Configuring standard output capture for atask
24.6. Customizing what Gradle logs

25.1. Definition of a configuration

25.2. Accessing a configuration

25.3. Configuration of a configuration

25.4. Module dependencies

25.5. Artifact only notation

25.6. Dependency with classifier

25.7. Iterating over a configuration

25.8. Client module dependencies - transitive dependencies
25.9. Project dependencies

25.10. File dependencies

25.11. Generated file dependencies

25.12. Gradle API dependencies

25.13. Gradle's Groovy dependencies

25.14. Excluding transitive dependencies

25.15. Optional attributes of dependencies

25.16. Collections and arrays of dependencies
25.17. Dependency configurations

25.18. Dependency configurations for project
25.19. Configuration.copy

25.20. Accessing declared dependencies

25.21. Configuration.files

25.22. Configuration.files with spec

25.23. Configuration.copy

25.24. Configuration.copy vs. Configuration.files
25.25. Adding central Maven repository

25.26. Adding Bintray's JCenter Maven repository
25.27. Using Bintrays's JCenter with HTTP

25.28. Adding Google Maven repository

25.29. Adding the local Maven cache as arepository
25.30. Adding custom Maven repository

25.31. Adding additional Maven repositories for JAR files
25.32. Accessing password protected Maven repository

25.33. Flat repository resolver

25.34. lvy repository

25.35. Ivy repository with named layout

25.36. lvy repository with pattern layout

25.37. lvy repository with multiple custom patterns

25.38. Ivy repository with Maven compatible layout

25.39. lvy repository

25.40. Declaring aMaven and vy repository

25.41. Providing credentialsto a Maven and | vy repository
25.42. Declaring a S3 backed Maven and Ivy repository

25.43. Declaring a S3 backed Maven and |vy repository using |AM
25.44. Declaring a Google Cloud Storage backed Maven and Ivy repository using default application credentials
25.45. Configure repository to use only digest authentication
25.46. Configure repository to use preemptive authentication
25.47. Accessing arepository

25.48. Configuration of arepository

25.49. Definition of a custom repository

25.50. Forcing consistent version for agroup of libraries

25.51. Using a custom versioning scheme

25.52. Blacklisting a version with a replacement

25.53. Changing dependency group and/or name at the resolution
25.54. Substituting a module with a project

25.55. Substituting a project with amodule

25.56. Conditionally substituting a dependency

25.57. Specifying default dependencies on a configuration
25.58. Enabling dynamic resolve mode

25.59. 'Latest' version selector

25.60. Custom status scheme

25.61. Custom status scheme by module

25.62. lvy component metadata rule

25.63. Rule source component metadatarule

25.64. Component selection rule

25.65. Component selection rule with modul e target

25.66. Component selection rule with metadata

25.67. Component selection rule using a rule source object
25.68. Declaring modul e replacement

25.69. Dynamic version cache control

25.70. Changing modul e cache control

26.1. Multi-project tree - water & bluewhale projects

26.2. Build script of water (parent) project

26.3. Multi-project tree - water, bluewhale & krill projects
26.4. Water project build script

26.5. Defining common behavior of all projects and subprojects
26.6. Defining specific behaviour for particular project

26.7. Defining specific behaviour for project krill

26.8. Adding custom behaviour to some projects (filtered by project name)

26.9. Adding custom behaviour to some projects (filtered by project properties)
26.10. Running build from subproject

26.11. Evaluation and execution of projects

26.12. Evaluation and execution of projects

26.13. Running tasks by their absolute path

26.14. Dependencies and execution order

26.15. Dependencies and execution order

26.16. Dependencies and execution order

26.17. Declaring dependencies

26.18. Declaring dependencies

26.19. Cross project task dependencies

26.20. Configuration time dependencies

26.21. Configuration time dependencies - evaluationDependsOn
26.22. Configuration time dependencies

26.23. Dependencies - real life example - crossproject configuration
26.24. Project lib dependencies

26.25. Project lib dependencies

26.26. Fine grained control over dependencies
26.27. Build and Test Single Project

26.28. Partial Build and Test Single Project

26.29. Build and Test Depended On Projects

26.30. Build and Test Dependent Projects

27.1. Applying ascript plugin

27.2. Applying acore plugin

27.3. Applying a community plugin

27.4. Applying plugins only on certain subprojects.
27.5. Using plugins from custom plugin repositories.
27.6. Plugin resolution strategy.

27.7. Complete Plugin Publishing Sample

27.8. Applying abinary plugin

27.9. Applying abinary plugin by type

27.10. Applying a plugin with the buildscript block
30.1. Using the Build Dashboard plugin

32.1. Defining an artifact using an archive task

32.2. Defining an artifact using afile

32.3. Customizing an artifact

32.4. Map syntax for defining an artifact using afile
32.5. Configuration of the upload task

33.1. Using the Maven plugin

33.2. Creating a standalone pom.

33.3. Upload of file to remote Maven repository
33.4. Upload of file via SSH

33.5. Customization of pom

33.6. Builder style customization of pom

33.7. Modifying auto-generated content

33.8. Customization of Maven installer

33.9. Generation of multiple poms

33.10. Accessing a mapping configuration

34.1. Using the Signing plugin

34.2. Signing a configuration

34.3. Signing a configuration output

34.4. Signing atask

34.5. Signing atask output

34.6. Conditional signing

34.7. Signing a POM for deployment

35.1. Applying the “ivy-publish” plugin

35.2. Publishing a Java module to Ivy

35.3. Publishing additional artifact to vy

35.4. customizing the publication identity

35.5. Customizing the module descriptor file

35.6. Publishing multiple modules from a single project
35.7. Declaring repositories to publish to

35.8. Choosing a particular publication to publish

35.9. Publishing all publications viathe “publish” lifecycle task
35.10. Generating the Ivy module descriptor file

35.11. Publishing a Java module

35.12. Example generated ivy.xml

36.1. Applying the 'maven-publish’ plugin

36.2. Adding a MavenPublication for a Java component
36.3. Adding additional artifact to a MavenPublication
36.4. customizing the publication identity

36.5. Modifying the POM file

36.6. Publishing multiple modules from a single project
36.7. Declaring repositories to publish to

36.8. Publishing a project to a Maven repository

36.9. Publish a project to the Maven local repository
36.10. Generate a POM file without publishing

37.1. Using the distribution plugin

37.2. Adding extra distributions

37.3. Configuring the main distribution

37.4. publish main distribution

38.1. Using the announce plugin

38.2. Configure the announce plugin

38.3. Using the announce plugin

39.1. Using the build announcements plugin

39.2. Using the build announcements plugin from an init script
40.1. Defining a custom task

40.2. A hello world task

40.3. A customizable hello world task

40.4. A build for a custom task

40.5. A custom task

40.6. Using a custom task in another project

40.7. Testing a custom task

40.8. Defining an incremental task action

40.9. Running the incremental task for the first time
40.10. Running the incremental task with unchanged inputs

40.11. Running the incremental task with updated input files

40.12. Running the incremental task with an input file removed

40.13. Running the incremental task with an output file removed

40.14. Running the incremental task with an input property changed
40.15. Creating a unit of work implementation

40.16. Submitting a unit of work for execution

40.17. Waiting for asynchronous work to complete

40.18. Submitting an item of work to run in aworker daesmon

41.1. A custom plugin

41.2. A custom plugin extension

41.3. A custom plugin with configuration closure

41.4. Evauating file properties lazily

41.5. Mapping extension properties to task properties

41.6. A build for acustom plugin

41.7. Wiring for a custom plugin

41.8. Using a custom plugin in another project

41.9. Applying a community plugin with the plugins DSL

41.10. Testing a custom plugin

41.11. Using the Java Gradle Plugin Development plugin

41.12. Nested DSL elements

41.13. Managing a collection of objects

42.1. Using the Java Gradle Plugin Development plugin

42.2. Using the gradiePlugin {} block.

43.1. Using inherited properties and methods

43.2. Using injected properties and methods

43.3. Configuring the project using an external build script

43.4. Custom buildSrc build script

43.5. Adding subprojects to the root buildSrc project

43.6. Running another build from a build

43.7. Declaring external dependencies for the build script

43.8. A build script with external dependencies

43.9. Ant optional dependencies

44.1. Using init script to perform extra configuration before projects are evaluated
44.2. Declaring external dependencies for an init script

44.3. An init script with external dependencies

44.4. Using pluginsin init scripts

45.1. Declaring the TestKit dependency

45.2. Declaring the JUnit dependency

45.3. Using GradleRunner with JUnit

45.4. Using GradleRunner with Spock

45.5. Making the code under test classpath available to the tests

45.6. Injecting the code under test classes into test builds

45.7. Injecting the code under test classes into test builds for Gradle versions prior to 2.8
45.8. Using the Java Gradle Development plugin for generating the plugin metadata
45.9. Automatically injecting the code under test classes into test builds
45.10. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin
45.11. Specifying a Gradle version for test execution

45.12. Testing cacheable tasks

46.1.
46.2.

Using the Javaplugin
Building a Java project

46.3. Adding Maven repository
46.4. Adding dependencies

46.5.

Customization of MANIFEST.MF

46.6. Adding atest system property

46.7.
46.8.

Publishing the JAR file
Eclipse plugin

46.9. Java example - complete build file

46.10. Multi-project build - hierarchical layout

46.11. Multi-project build - settings.gradlefile

46.12. Multi-project build - common configuration

46.13. Multi-project build - dependencies between projects
46.14. Multi-project build - distribution file

47.1.
47.2.

Using the Java plugin
Custom Java source layout

47.3. Accessing a source set

47.4.
47.5.
47.6.
47.7.

Configuring the source directories of a source set
Defining a source set

Defining source set dependencies

Compiling a source set

47.8. Assembling a JAR for a source set

47.9.

Generating the Javadoc for a source set

47.10. Running tests in a source set

47.11. Declaring annotation processors

47.12. Filtering testsin the build script

47.13. JUnit Categories

47.14. Grouping TestNG tests

47.15. Preserving order of TestNG tests

47.16. Grouping TestNG tests by instances
47.17. Creating a unit test report for subprojects
47.18. Customization of MANIFEST.MF
47.19. Creating a manifest object.

47.20. Separate MANIFEST.MF for a particular archive
47.21. Configure Java 6 build

48.1.
48.2.
48.3.
48.4.
48.5.

Using the Java Library plugin

Declaring APl and implementation dependencies
Making the difference between API and implementation
Declaring APl and implementation dependencies
Configuring the Groovy plugin to work with Java Library

49.1. War plugin

49.2.
50.1.
50.2.
51.1.
51.2.
53.1.
53.2.

Running web application with Gretty plugin
Using the War plugin

Customization of war plugin

Using the Ear plugin

Customization of ear plugin

Using the application plugin

Configure the application main class

53.3.
53.4.
53.5.
54.1.
54.2.
54.3.
55.1.
55.2.
55.3.
56.1.
56.2.
56.3.
56.4.
56.5.
56.6.
56.7.
57.1.
57.2.
57.3.
57.4.
57.5.
57.6.
57.7.
57.8.
57.9.

Configure default VM settings

Include output from other tasks in the application distribution
Automatically creating files for distribution

Using the Javalibrary distribution plugin

Configure the distribution name

Include filesin the distribution

Groovy plugin

Dependency on Groovy

Groovy example - complete build file

Using the Groovy plugin

Custom Groovy source layout

Configuration of Groovy dependency

Configuration of Groovy test dependency

Configuration of bundled Groovy dependency
Configuration of Groovy file dependency

Configure Java 6 build for Groovy

Using the Scala plugin

Custom Scala source layout

Declaring a Scala dependency for production code
Declaring a Scala dependency for test code

Declaring a version of the Zinc compiler to use

Forcing ascalalibrary dependency for al configurations
Forcing a scala-library dependency for the zinc configuration
Adjusting memory settings

Forcing al code to be compiled

57.10. Configure Java 6 build for Scala
57.11. Explicitly specify atarget IntelliJ IDEA version

58.1.
58.2.
58.3.
59.1.
59.2.
59.3.
60.1.
61.1.
61.2.
62.1.
63.1.
64.1.
64.2.
64.3.
64.4.
64.5.
64.6.
64.7.
65.1.
65.2.
66.1.

Using the ANTLR plugin

Declare ANTLR version

setting custom max heap size and extra arguments for ANTLR
Using the Checkstyle plugin

Using the config_loc property

Customizing the HTML report

Using the CodeNarc plugin

Using the FindBugs plugin

Customizing the HTML report

Using the JDepend plugin

Using the PMD plugin

Applying the JaCoCo plugin

Configuring JaCoCo plugin settings

Configuring test task

Configuring violation rules

Configuring test task

Using application plugin to generate code coverage data
Coverage reports generated by applicationCodeCoverageReport
Using the OSGi plugin

Configuration of OSGi MANIFEST.MF file

Using the Eclipse plugin

66.2. Using the Eclipse WTP plugin

66.3. Partial Overwrite for Classpath

66.4. Partial Overwrite for Project

66.5. Export Dependencies

66.6. Customizing the XML

67.1. Using the IDEA plugin

67.2. Partial Rewrite for Module

67.3. Partial Rewrite for Project

67.4. Export Dependencies

67.5. Customizing the XML

68.1. applying arule source plugin

68.2. amodel creation rule

68.3. amodel mutation rule

68.4. creating atask

68.5. amanaged type

68.6. a String property

68.7. aFile property

68.8. aLong property

68.9. a boolean property

68.10. an int property

68.11. a managed property

68.12. an enumeration type property

68.13. amanaged set

68.14. strongly modelling sources sets

68.15. a DSL example applying aruleto every element in a scope
68.16. DSL configuration rule

68.17. Configuration run when required

68.18. Configuration not run when not required

68.19. DSL creation rule

68.20. DSL creation rule without initialization

68.21. Initialization before configuration

68.22. Nested DSL creation rule

68.23. Nested DSL configuration rule

68.24. DSL configuration rule for each element in amap

68.25. Nested DSL property configuration

68.26. a DSL example showing type conversions

68.27. aDSL rule using inputs

68.28. model task output

71.1. Using the Java software plugins

71.2. Creating ajavalibrary

71.3. Configuring a source set

71.4. Creating a new source set

71.5. The components report

71.6. Declaring a dependency onto alibrary

71.7. Declaring a dependency onto a project with an explicit library
71.8. Declaring a dependency onto a project with an implicit library
71.9. Declaring a dependency onto alibrary published to a Maven repository
71.10. Declaring a modul e dependency using shorthand notation

71.11. Configuring repositories for dependency resolution

71.12. Specifying api packages

71.13. Specifying api dependencies

71.14. Main sources

71.15. Client component

71.16. Broken client component

71.17. Recompiling the client

71.18. Declaring target platforms

71.19. Declaring binary specific sources

71.20. Declaring target platforms

71.21. Using the JUnit plugin

71.22. Executing the test suite

71.23. Executing the test suite

71.24. Declaring a component under test

71.25. Declaring local Javainstallations

72.1. Using the Play plugin

72.2. The components report

72.3. Selecting a version of the Play Framework

72.4. Adding dependencies to a Play application

72.5. Adding extra source setsto a Play application

72.6. Configuring Scala compiler options

72.7. Configuring routes style

72.8. Configuring a custom asset pipeline

72.9. Configuring dependencies on Play subprojects

72.10. Add extrafiles to a Play application distribution

72.11. Applying both the Play and IDEA plugins

73.1. Defining alibrary component

73.2. Defining executable components

73.3. Sample build

73.4. Dependent components report

73.5. Dependent components report

73.6. Report of components that depends on the operators component
73.7. Report of components that depends on the operators component, including test suites
73.8. Assemble components that depends on the passing/static binary of the operators component
73.9. Build components that depends on the passing/static binary of the operators component
73.10. Adding a custom check task

73.11. Running checks for a given binary

73.12. The components report

73.13. The 'cpp' plugin

73.14. C++ source set

73.15. The'c' plugin

73.16. C source set

73.17. The 'assembler’ plugin

73.18. The 'objective-c' plugin

73.19. The 'objective-cpp’ plugin

73.20. Settings that apply to all binaries

73.21. Settings that apply to all shared libraries

73.22. Settings that apply to all binaries produced for the 'main’ executable component

73.23. Settings that apply only to shared libraries produced for the 'main’ library component
73.24. The ‘windows-resources' plugin

73.25. Configuring the location of Windows resource sources
73.26. Building aresource-only dll

73.27. Providing alibrary dependency to the source set
73.28. Providing alibrary dependency to the binary
73.29. Declaring project dependencies

73.30. Creating a precompiled header file

73.31. Including a precompiled header file in a source file
73.32. Configuring a precompiled header

73.33. Defining build types

73.34. Configuring debug binaries

73.35. Defining platforms

73.36. Defining flavors

73.37. Targeting a component at particular platforms
73.38. Building all possible variants

73.39. Defining tool chains

73.40. Reconfigure tool arguments

73.41. Defining target platforms

73.42. Registering CUnit tests

73.43. Running CUnit tests

73.44. Registering GoogleTest tests

74.1. an example of using a custom software model
74.2. Declare a custom component

74.3. Register a custom component

74.4. Declare a custom binary

74.5. Register a custom binary

74.6. Declare a custom source set

74.7. Register a custom source set

74.8. Generates documentation binaries

74.9. Generates tasks for text source sets

74.10. Register a custom source set

74.11. an example of using a custom software model
74.12. components report

74.13. public type and internal view declaration

74.14. type registration

74.15. public and internal data mutation

74.16. example build script and model report output
B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Part |. About Gradle

1

| ntroduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build
technology in the Java (VM) world. Gradle provides:

* A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks ala Maven. But we never lock you in!

* Very powerful support for multi-project builds.

* Very powerful dependency management (based on Apache Ivy).

® Full support for your existing Maven or Ivy repository infrastructure.

® Support for transitive dependency management without the need for remote repositories or pom xim
andi vy. xm files.

® Ant tasks and builds asfirst class citizens.

® Groovy build scripts.

® A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the guides are waiting, have
fun:)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren’t
documented as completely as they need to be. Some of the content presented won’t be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 18 of 654

https://guides.gradle.org
http://www.gradle.org/contribute

Overview

2.1. Features

Hereisalist of some of Gradle s features.

Declarative builds and build-by-convention
At the heart of Gradle lies arich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structureyour build
The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don’'t be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle alows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up
to huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art
incremental build function, this is also true for tackling the performance pain many large enterprise
builds suffer from.

Multi-project builds
Gradle's support for multi-project build is outstanding. Project dependencies are first class citizens. We
alow you to model the project relationships in a multi-project build as they really are for your problem
domain. Gradle follows your layout not vice versa.

Page 19 of 654

Gradle provides partia builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. Y ou can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds thisis a big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and lvy
repositories to jars or directories on the local file system.

Gradleisthefirst build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at
runtime. You can depend on them from Gradle, you can enhance them from Gradle, you can even
declare dependencies on Gradle tasks in your build.xml. The same integration is provided for properties,
paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xmi into a Gradle script.
Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend
to write tests that make sure that the produced artifacts are similar. That way migration is as less
disruptive and as reliable as possible. This is following the best-practices for refactoring by applying
baby steps.

Groovy

Gradle' s build scripts are written in Groovy, not XML. But unlike other approaches thisis not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as arigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy resultsin
an enjoyable and productive experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed.
Thisis useful for example for some continuous integration servers. It is also useful for an open source
project to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is
a zero administration approach for the client machines. It also enforces the usage of a particular Gradle
version thus minimizing support issues.

Free and open source
Gradleis an open source project, and is licensed under the ASL.

Page 20 of 654

http://www.gradle.org/license

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer liesin
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build
should be as transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think thisis a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful asiit
could be.l!] Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java' s as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java devel opers with Python or Ruby knowledge or the desire to learn them, the above arguments don’t
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn’'t have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML,
Javaand Lisp. It'sfunny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

Page 21 of 654

http://www.defmacro.org/ramblings/lisp.html

Part I1. Working with
existing builds

3

Installing Gradle

3.1. Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 7 or higher (to check, usej ava -ver si on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy installation isignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

3.2. Download

Y ou can download one of the Gradle distributions from the Gradle web site.

3.3. Unpacking

The Gradle distribution comes packaged as a ZIP. The full distribution contains:

® The Gradle binaries.

® Theuser guide (HTML and PDF).

* TheDSL reference guide.

® The APl documentation (Javadoc).

® Extensive samples, including the examples referenced in the user guide, along with some complete and
more complex builds you can use as a starting point for your own build.

® The binary sources. This is for reference only. If you want to build Gradle you need to download the
source distribution or checkout the sources from the source repository. See the Gradle web site for
details.

3.4. Environment variables

For running Gradle, firstly add the environment variable GRADLE _HOME. This should point to the unpacked
files from the Gradle website. Next add GRADLE_HQOVE/ bi n to your PATH environment variable. Usualy,
thisis sufficient to run Gradle.

Page 23 of 654

http://www.gradle.org/downloads
http://www.gradle.org/development

3.5. Running and testing your installation

You run Gradle viathe gr adl e command. To check if Gradleis properly installed just type gr adl e -v.
The output shows the Gradle version and also the local environment configuration (Groovy, VM version,
OS, etc.). The displayed Gradle version should match the distribution you have downl oaded.

3.6. VM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS
or JAVA_OPTS, or both. JAVA_OPTS is by convention an environment variable shared by many Java
applications. A typical use case would be to set the HTTP proxy in JAVA_ OPTS and the memory optionsin
GRADLE_OPTS. Those variables can also be set at the beginning of the gr adl e or gr adl ewscript.

Note that it’s not currently possible to set VM options for Gradle on the command line.

Page 24 of 654

A

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the gr adl e
command, which you have already seen in action in previous chapters.

4.1. Executing multiple tasks

You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For
example, the command gr adl e conpi |l e test will execute the conpi | e and t est tasks. Gradle
will execute the tasks in the order that they are listed on the command-line, and will also execute the
dependencies for each task. Each task is executed once only, regardless of how it came to be included in the
build: whether it was specified on the command-line, or as a dependency of another task, or both. Let’s ook
at an example.

Below four tasks are defined. Both di st andt est depend on the conpi | e task. Running gr adl e di st te:
for this build script resultsin the conpi | e task being executed only once.

Figure4.1. Task dependencies

compile compileTest dist
test

Page 25 of 654

Example 4.1. Executing multiple tasks
buil d. gradl e

task conpile {
doLast {
println 'conpiling source
}
}

task conpi |l eTest (dependsOn: conpile) {
doLast {
println 'conpiling unit tests'

}
}

task test(dependsOn: [conpile, conpileTest]) {
doLast {
println 'running unit tests'

}
}

task di st (dependsOn: [conpile, test]) {
doLast {
println 'building the distribution'

}

Output of gr adl e di st test

> gradle dist test

:conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

bui |l ding the distribution

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

Each task is executed only once, sogr adl e test test isexactlythesameasgradl e test.

4.2. Excluding tasks

Y ou can exclude a task from being executed using the - x command-line option and providing the name of
the task to exclude. Let’ stry this with the sample build file above.

Page 26 of 654

Example 4.2. Excluding tasks
Output of gradl e di st -x test

> gradle dist -x test

:conpile
conpi ling source
1 di st

buil ding the distribution

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

You can see from the output of this example, that the t est task is not executed, even though it is a
dependency of thedi st task. You will aso noticethat thet est task’s dependencies, such asconpi | eTest
are not executed either. Those dependencies of t est that are required by another task, such as conpi | e,
are still executed.

4.3. Continuing the build when afailure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possiblein asingle build execution, you can usethe - - cont i nue option.

When executed with - - cont i nue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If atask fails, any subseguent tasks that were depending on it will not be executed, asit is not safe to do so.
For example, tests will not run if there is a compilation failure in the code under test; because the test task
will depend on the compilation task (either directly or indirectly).

4.4. Task name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task. Y ou only
need to provide enough of the task name to uniquely identify the task. For example, in the sample build
above, you can execute task di st by running gr adl e d:

Page 27 of 654

Example 4.3. Abbreviated task name

Output of gr adl e di

> gradl e di

:conpile

conpi li ng source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

buil ding the distribution

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

Y ou can a'so abbreviate each word in a camel case task name. For example, you can execute task conpi | eTest
by running gr adl e conpTest orevengradl e cT
Example 4.4. Abbreviated camel casetask name

Output of gradl e cT

> gradle cT
:conpile

conpi | i ng source
:conpi |l eTest

conmpi ling unit tests

BUI LD SUCCESSFUL i n Os
2 actionable tasks: 2 executed

Y ou can also use these abbreviations with the - x command-line option.

4.5. Selecting which build to execute

When you run the gr adl e command, it looks for a build file in the current directory. You can use the - b
option to select another build file. If you use - b option then setti ngs. gradl e file is not used.
Example:

Example 4.5. Selecting the project using a build file

subdi r/ myproj ect. gradl e

task hello {
doLast {

println "using build file '$buildFile.name' in '$buildFile. parentFile.nd

}

Output of gradl e -q -b subdir/nyproject.gradle hello

> gradle -q -b subdir/nmyproject.gradle hello
using build file "myproject.gradle' in 'subdir'.

Page 28 of 654

Alternatively, you can use the - p option to specify the project directory to use. For multi-project builds you
should use - p option instead of - b option.

Example 4.6. Selecting the project using project directory
Output of gradl e -gq -p subdir hello

> gradle -q -p subdir hello
using build file "build.gradle' in "subdir'.

4.6. Forcing tasks to execute

Many tasks, particularly those provided by Gradle itself, support incremental builds. Such tasks can
determine whether they need to run or not based on whether their inputs or outputs have changed since the
last time they ran. You can easily identify tasks that take part in incremental build when Gradle displays the
text UP- TO- DATE next to their name during a build run.

Y ou may on occasion want to force Gradle to run all the tasks, ignoring any up-to-date checks. If that’s the
case, simply use the - - r er un-t asks option. Here's the output when running a task both without and
with- - rerun-t asks:

Example4.7. Forcing taskstorun
Output of gr adl e dol t

> gradl e dolt
:dolt UP-TO DATE

Output of gradl e --rerun-tasks dolt

> gradle --rerun-tasks dolt
s dol t

Note that thiswill force all required tasks to execute, not just the ones you specify on the command line. It's
alittle like running acl ean, but without the build’ s generated output being del eted.

4.7. Obtaining information about your build

Gradle provides severa built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks to your
project which will generate these reports.

4.7.1. Listing projects

Running gr adl e proj ects gives you alist of the sub-projects of the selected project, displayed in a
hierarchy. Here is an example:

Page 29 of 654

Example 4.8. Obtaining information about projects
Output of gradl e -q projects

> gradle -q projects

Root project 'projectReports'
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Wb application inplenentation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. Y ou can provide a description for a project by
setting thedescri pt i on property:

Example 4.9. Providing a description for a project

bui | d. gradl e

description = ' The shared APl for the application'

4.7.2. Listing tasks

Running gr adl e t asks givesyou alist of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 30 of 654

Example 4.10. Obtaining information about tasks
Output of gr adl e -qg tasks

> gradle -q tasks

Al'l tasks runnable fromroot project

Default tasks: dists

Bui |l d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Bui |l d Setup tasks
init - Initializes a new Gradle build.
wrapper - Cenerates Gradle wapper files.

Hel p tasks

bui | dEnvi ronment - Displays all buildscript dependencies declared in root project 'p
conponents - Displays the conponents produced by root project 'projectReports'. [inc
dependenci es - Displays all dependencies declared in root project 'projectReports'.

dependencyl nsight - Displays the insight into a specific dependency in root project

dependent Conponents - Displays the dependent conponents of conmponents in root projec
help - Displays a hel p nessage.

nodel - Displays the configuration nodel of root project 'projectReports'. [incubati
projects - Displays the sub-projects of root project 'projectReports'.

properties - Displays the properties of root project 'projectReports'.

tasks - Displays the tasks runnable fromroot project 'projectReports’ (sone of the

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group, so-called visible
tasks. You can do this by setting the gr oup property for the task. You can also set the descri pti on
property, to provide a description to be included in the report.

Example 4.11. Changing the content of the task report
bui |l d. gradl e

dists {
description = 'Builds the distribution'

group = 'build'

You can obtain more information in the task listing using the - - al | option. With this option, the task
report lists all tasks in the project, including tasks which have not been assigned to a task group, so-called
hidden tasks. Hereis an example:

Page 31 of 654

Example 4.12. Obtaining mor e information about tasks

Output of gradl e -qg tasks --all

Page 32 of 654

> gradle -q tasks --all

Al'l tasks runnable fromroot project

Default tasks: dists

Bui | d tasks

clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: cl ean - Deletes the build directory (build)
dists - Builds the distribution

api:libs - Builds the JAR

webapp: libs - Builds the JAR

Bui |l d Setup tasks
init - Initializes a new Gradle build.
wrapper - Cenerates Gradle wapper files.

Hel p tasks

bui | dEnvi ronment - Displays all buildscript dependencies declared in root project 'p
api : bui | dEnvironnment - Displays all buildscript dependencies declared in project ':a
webapp: bui | dEnvi ronment - Displays all buildscript dependenci es declared in project
conponents - Displays the conponents produced by root project 'projectReports'. [inc
api : conponents - Displays the conmponents produced by project ':api'. [incubating]
webapp: conponents - Displays the conponents produced by project ':webapp'. [incubati
dependenci es - Displays all dependencies declared in root project 'projectReports'.
api : dependenci es - Displays all dependencies declared in project ':api'.

webapp: dependenci es - Displays all dependencies declared in project ':webapp'.
dependencyl nsight - Displays the insight into a specific dependency in root project
api : dependencyl nsight - Displays the insight into a specific dependency in project
webapp: dependencyl nsight - Displays the insight into a specific dependency in projec
dependent Conponents - Di splays the dependent conponents of components in root projec
api : dependent Conponents - Di splays the dependent conponents of conponents in project
webapp: dependent Conponents - Displays the dependent conponents of conponents in proj
hel p - Displays a hel p nessage.

api :help - Displays a hel p nessage.

webapp: hel p - Di splays a hel p nessage.

nodel - Displays the configuration nodel of root project 'projectReports'. [incubati
api : nodel - Displays the configuration nodel of project ':api'. [incubating]

webapp: nodel - Displays the configuration nodel of project ':webapp'. [incubating]
projects - Displays the sub-projects of root project 'projectReports'.

api :projects - Displays the sub-projects of project ':api'.

webapp: proj ects - Displays the sub-projects of project ':webapp'.

properties - Displays the properties of root project 'projectReports'.

api :properties - Displays the properties of project ':api'.

webapp: properties - Displays the properties of project ':webapp'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (sone of the
api :tasks - Displays the tasks runnable fromproject ':api'.

webapp: tasks - Displays the tasks runnable from project ':webapp'.

O her tasks

api :conpile - Conpiles the source files
webapp: conpile - Conpiles the source files
docs - Builds the documentation

Page 33 of 654

4.7.3. Show task usage details

Running gradl e hel p --task someTask gives you detailed information about a specific task or
multiple tasks matching the given task name in your multi-project build. Below is an example of this
detailed information:

Example 4.13. Obtaining detailed help for tasks

Output of gradl e -q help --task libs

> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
capi:libs
:webapp: i bs

Type
Task (org.gradle. api. Task)

Description
Buil ds the JAR

G oup
buil d

This information includes the full task path, the task type, possible command line options and the
description of the given task.

4.7.4. Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that configuration
are shown in atree. Below is an example of this report:

Page 34 of 654

Example 4.14. Obtaining infor mation about dependencies
Output of gr adl e - g dependenci es api : dependenci es webapp: dependenci es

> gradl e -q dependenci es api: dependenci es webapp: dependenci es

Project :api - The shared APl for the application

conpil e
\--- org.codehaus. groovy: groovy-all:2.4.10

t est Conpil e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

Proj ect :webapp - The Wb application inplenentation

conpile

+--- project :api

| \--- org.codehaus. groovy: groovy-all:2.4.10
\--- comons-io: commons-io: 1.2

t est Conpi l e

No dependenci es

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.
Thisis achieved with the optional - - conf i gur at i on parameter:
Example 4.15. Filtering dependency report by configuration

Output of gr adl e -qg api : dependenci es --configuration testConpile
> gradle -q api:dependencies --configuration testConpile

Project :api - The shared APl for the application

t est Conpi | e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

4.7.5. Listing project buildscript dependencies

Running gr adl e bui | dEnvi r onment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualises the dependencies of the software being built.

Page 35 of 654

4.7.6. Getting the insight into a particular dependency

Running gr adl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input. Below is an example of this report:

Example 4.16. Getting the insight into a particular dependency
Output of gr adl e -g webapp: dependencyl nsi ght --dependency groovy --configuratior

> gradl e -q webapp: dependencyl nsi ght --dependency groovy --configuration conpile
or g. codehaus. groovy: groovy-all:2.4.10
\--- project :api

\--- compile

This task is extremely useful for investigating the dependency resolution, finding out where certain
dependencies are coming from and why certain versions are selected. For more information please see the
Dependencyl nsi ght Report Task classin the APl documentation.

The built-in dependencylnsight task is a part of the 'Help' tasks group. The task needs to be configured with
the dependency and the configuration. The report looks for the dependencies that match the specified
dependency spec in the specified configuration. If Java related plugins are applied, the dependencylnsight
task is pre-configured with the ‘compile’ configuration because typicaly it's the compile dependencies we
are interested in. You should specify the dependency you are interested in via the command line
'--dependency’ option. If you don’t like the defaults you may select the configuration via the '--configuration'
option. For more information see the Dependencyl nsi ght Report Task class in the API
documentation.

4.7.7. Listing project properties

Running gr adl e properti es givesyou alist of the properties of the selected project. Thisis a snippet
from the output:

Example 4.17. Infor mation about properties
Output of gradl e -q api: properties
> gradle -q api:properties

Project :api - The shared APl for the application

al | projects: [project ':api']

ant: org.gradle.api.internal.project.DefaultAntBuil der @2345

ant Bui | der Factory: org.gradle.api.internal.project. DefaultAntBuilderFactory@?2345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decorated@?
asDynami cObj ect: Dynami cObj ect for project ':api

baseC assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoader Scope
bui l dDi r: /hone/user/ gradl e/ sanpl es/ usergui de/tutorial/projectReports/api/build
bui Il dFi | e: /home/ user/ gradl e/ sanpl es/ usergui de/tutorial /projectReports/api/build.gra

Page 36 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

4.7.8. Profiling a build

The - - prof il e command line option will record some useful timing information while your build is
running and write a report to the bui | d/ r epor t s/ profi | e directory. The report will be named using
the time when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times
for configuration and task execution are sorted with the most expensive operations first. The task execution
results also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui | dSr ¢/ bui
directory.

Profiled with tasks: -xtest build

Summary Configuration Task E
Total Build Time 2:01.164 | |: 2.804 | |:docs
Startup 0.313| | :docs 0576 :docs:userguideSingleHtm]
Settings and BuildSrc 4078 | |:core 0.203 :docs:userguidePdf
Loading Projects 0074 | |:announce (0.084 :docs:checkstyle Api
Configuring Projects 3208 | [mi 0.036 :docs:userguideStyleSheets
Total Task Execution 1:52.671 | |:openApi 0.035 :docs:groovydoc
:maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
‘wrapper 0.022 :docs:usergnideFragmentS:
:eclipse 0.021 :docs:distDocs
:idea 0.021 :docs:samplesDocs
:plugins 0.020 :docs:userguide X html
Jlauncher 0.020 :docs:userguideHuml
:antr 0.017 :docs:userguideDocbook
:0sgi 0.014 :docs:remoteUserguideDox
jetty 0.014 :docs:samplesDochook
:scala 0.012 :docs:docs
:docs:userguide
core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain

N N s, s ot IRt mGRER R sV

4.8. Dry Run

Sometimes you are interested in which tasks are executed in which order for a given set of tasks specified on
the command line, but you don't want the tasks to be executed. You can use the - moption for this. For
example, if yourun“gradl e -m cl ean conpil e”, you'll see al the tasks that would be executed as
part of the cl ean and conpi | e tasks. This is complementary to the t asks task, which shows you the
tasks which are available for execution.

Page 37 of 654

4.9. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line. Y ou can
find out more about the gr adl e command in Appendix D, Gradle Command Line.

Page 38 of 654

5

The Gradle Console

5.1. Overview

Nearly every Gradle user will experience the command-line interface at some point. Gradl€' s console output
is optimized for rendering performance and usability, showing only relevant information and providing

visually appealing feedback.

Figure5.1. The Gradle command-linein action

[] D ewendelin@rydia: ~/srcftesting/gradle

)y ./gradlew :core:compileTestGroovyl

5.2. Command-line feedback

Gradle displays information while the build is running so you can concentrate on the most important items
of interest. Each of the sections of Gradl€e's console output help answer specific questions.

¢ |sthere anything | should know about my build right now e.g. tests have failed and emitted warnings?
* When will my build finish?

® What is Gradle doing right now?

® Arethere other interesting outcomes e.g. tasks that have been skipped or were up-to-date?

Page 39 of 654

5.2.1. Build output

Output from build script log messages, tasks, forked processes, test output and compile warnings is
displayed above the build progress bar.

Figure5.2. Build output portion of the Gradle command-line

[] [] fgradlew :core:compileTestGroovy

} _.J/gradlew :core:compileTestGroovy
Parallel execution is an incubating feature.

> Configure project :
Using a single directory for all classes from a source set. This behavicur has been d
eprecated and is scheduled to be removed in Gradle 5.8

at jmh_bt759mTaBhvwigl@zer84adz4.run(/Users/ewendelin/src/testing/gradle/grad
le/jmh.gradle:28)

A e e e > 1% EXECUTING [3s]
> tbaseServices:compilelava

> :toolingApi:processResources

> :docs:dslMetaData

> tresourcesHttp:processResources
|

Starting with Gradle 4.0, the volume of command-line console output has been reduced. The start and end of
each task is not displayed anymore or the outcome of the task (e.g. UP- TO- DATE). The task’s nameis only
displayed if some output is emitted during task execution. Gradle also groups output originating from a
specific context together, e.g. all warnings from a compilation task, test execution or forked processes.
Grouped output is especially useful for parallel task execution, as it prevents interleaved messages that do
not clearly indicate their origin (see Section 26.8, “Parallel project execution”).

Grouped console output and reduced console output only occurs with interactive and rich console
command-lines. Continuous integration servers and builds using - - consol e=pl ai n will see
console output similar to pre-Gradle 4.0. You can also set this option via or g. gr adl e. consol e
property, see Section 12.1, “Configuring the build environment via gradle.properties’.

The following console output shows grouped output for the configuration phase and thetask : conpi | eJava

Page 40 of 654

> Configure project ':library'
Configuring project version for project ':library’

> Configure project ':consuner'
Configuring project version for project ':consuner'

> Task :conpil eJava
Note: Some input files use unchecked or unsafe operations.
Note: Reconpile with -Xint:unchecked for details.

Gradle does not wait until a unit of work is fully completed before displaying its output. Gradle flushes
output to the console after a short amount of time to ensure that relevant information is made available as
soon as possible. When building in parallel, the output of long running tasks can be broken up by other
tasks. Each block of console output will clearly indicate which task it belongs to.

> Task :conpil eJava
Note: Some input files use unchecked or unsafe operations.
Note: Reconpile with -Xint:unchecked for details.

> Task :generateCode
Generating JAXB cl assed from XSD fil es.

> Task :conpil eJava
Note: Sone input files use or override a deprecated API.
Note: Reconpile with -Xint:deprecation for details.

5.2.2. Build progress bar

The build progress bar gives you a very fast way of knowing if the build will be finished soon. As the build
performs work, the progress bar will fill from left to right. At any given time, the build progress bar aso
renders the current phase of the build lifecycle (see Section 22.1, “Build phases’) and the overall time spent
during the build.

Figure5.3. Build progress bar portion of the Gradle command-line

[] [] fgradlew :core:compileTestGroovy

} ./gradlew :core:compileTestGroovy
Parallel execution is an incubating feature.

> Configure project :
Using a single directory for all classes from a source set. This behavicur has been d
eprecated and is scheduled to be removed in Gradle 5.8

at jmh_bt759mTaBhvwigl@zer84adz4.run(/Users/ewendelin/src/testing/gradle/grad
le/jmh.gradle:28)

TDOLE
:platformdvm:compilelava
:launcher:compilelava

(<====== ——————— > 68% EXECUTING [55])
-
>
>
> :platformNative:compilelava

|

Page 41 of 654

The following examples shows the progress bar during the initialization, configuration and execution phase
of the build lifecycle:

e > 0% | NI TI ALI ZI NG [2s]
== > 25% CONFI GURI NG [45]
<=——====—=—==_.._..- > 64% EXECUTI NG [175]

5.2.3. Work in-progress display

Gradle provides a fined-grained view of the actual work being performed directly underneath the The build progre
. Each line represents a thread or process that can perform work in parallel—resolving dependencies,
executing atask and running tests. If an available worker is not being used then it is marked with | DLE. The
number of available workers defaults to the number of processors on the machine executing the build.

Figure5.4. Work in-progress portion of the Gradle command-line

[] [] fgradlew :core:compileTestGroovy

)} ./gradlew :core:compileTestGroovy
Parallel execution is an 1incubating feature.

> Configure project :
Using a single directory for all classes from a source set. This behavicur has been d
eprecated and is scheduled to be removed in Gradle 5.0

at jmh_bt759mTaBhvwigl@zer84adz4.run(/Users/ewendelin/src/testing/gradle/grad
le/jmh.gradle:28)

=========== ECUTING [6s]
:maven:compileJava
IDLE
tidePlay:compilelava
IDLE

vV OV vV

Parallel test execution is only displayed for JVM-based tests supported by Gradle core e.g. JUnit and
TestNG. Future versions of Gradle might support other testing tools and frameworks.

The following portion of the console output shows the work in-progress display with 8 concurrent workers:

<==========---> 77% EXECUTI NG [10s]

:codeQual i ty: cl asspat hMani fest > Resol ve dependenci es :codeQuality:runtimed asspat
:ivy:classpat hMani fest > Resol ve dependencies :ivy:runtineC asspath

| DLE

cantlr:classpat hMani fest > Resol ve dependencies :antlr:runtineC asspath

:scal a: conpi | eJava > Resol ve dependenci es :scal a: conpi |l ed asspath
cbuildlnit:classpathMani fest > Resol ve dependencies :buildlnit:runtinmed asspath
:jacoco: cl asspat hivani f est > Resol ve dependenci es :jacoco: runtinmeC asspath

I DLE

V VV VYV YV VYV

Page 42 of 654

5.2.4. Build result

At the end of the build, Gradle will display the result of the build (successful or failed) and the number of
tasks that performed work and avoided work. The build result also displays the overall elapsed time it took

to execute the build. The number of tasks that performed work provides an indication of how out-of-date or
busy the build was.

Figure5.5. Build progress bar portion of the Gradle command-line

=)) Jgradlew :core:compileTestGroovy

} ./gradlew :core:compileTestGroovy
Parallel execution is an 1incubating feature.

> Configure project :
Using a single directory for all classes from a source set. This behaviour has been d
eprecated and is scheduled to be removed in Gradle 5.0

at jmh_bt759mTaBhvwigl@zer84adz4.run(/Users/ewendelin/src/testing/gradle/grad
le/jmh.gradle:28)

BUILD SUCCESSFUL 1in 8s
259 actionable tasks: 7 executed, 252 up-to-date

The following build result represents a successful build and the amount of tasksincluding their statuses:

BUI LD SUCCESSFUL in 2m 10s
411 actionable tasks: 381 executed, 30 up-to-date

"Actionable" tasks are tasks with at least one action. Lifecycle tasks like bui | d (also called aggregation
tasks) do not declare any actions and are therefore not actionable.

5.3. Look & fedl in non-interactive environments

By default, Gradle tries to enable rich console output by detecting the type of console the build is running
from. This enables color and additional console output formatting. Non-interactive environments fall back to
using plain console output. The plain output format does not support grouping of output. Tasks and
outcomes are always printed to be consistent with Gradle 3.x versions.

Gradle builds executed from an IDE (e.g. Buildship and IntelliJ) or Continuous Integration products
(e.g. Jenkins and TeamCity) use plain console output by default.

The following output demonstrates the use of a plain console:

Page 43 of 654

:conpi | eJava

Note: Some input files use unchecked or unsafe operations.
Note: Reconpile with -Xlint:unchecked for details.
. processResour ces

:cl asses

vjar

:assenbl e

:conpi | eTest Java NO SOURCE

: processTest Resour ces NO SOURCE

:testC asses UP- TO DATE

rtest NO SOURCE

: check UP-TO DATE

tbuild

BU LD SUCCESSFUL in 6s
11 actionable tasks: 6 executed, 5 up-to-date

Page 44 of 654

6

The Gradle Wrapper

Most tools require installation on your computer before you can use them. If the installation is easy, you
may think that’s fine. But it can be an unnecessary burden on the users of the build. Equally importantly,
will the user install the right version of the tool for the build? What if they’re building an old version of the
software?

The Gradle Wrapper (henceforth referred to as the “Wrapper”) solves both these problems and is the
preferred way of starting a Gradle build.

6.1. Executing a build with the Wrapper

If a Gradle project has set up the Wrapper (and we recommend all projects do so), you can execute the build
using one of the following commands from the root of the project:

® . /gradl ew <t ask> (on Unix-like platforms such as Linux and Mac OS X)
® gradl ew <t ask> (on Windows using the gradlew.bat batch file)

Each Wrapper istied to a specific version of Gradle, so when you first run one of the commands above for a
given Gradle version, it will download the corresponding Gradle distribution and use it to execute the build.

Not only does this mean that you don’t have to manually install
Gradle yourself, but you are also sure to use the version of

Gradle that the build is designed for. This makes your historical IDEs

builds more reliable. Just use the appropriate syntax from above When importing a Gradle
whenever you see a command line starting with gr adl e ...in project via its wrapper, your
the user guide, on Stack Overflow, in articles or wherever. IDE may ask to use the Gradle

‘all' distribution. This is
For completeness sake, and to ensure you don’t delete any perfectly fine and helps the IDE

important files, here are the files and directories in a Gradle provide code completion for the
project that make up the Wrapper: build files.

® gradl ew(Unix Shell script)

® gradl ew. bat (Windows batch file)

® gradl e/ w apper/ gradl e-w apper . jar (Wrapper JAR)

® gradl e/ wapper/ gradl e-w apper . properti es (Wrapper properties)

If you're wondering where the Gradle distributions are stored, you'll find them in your user home directory
under SUSER_HOVE/ . gr adl e/ wr apper/ di st s.

Page 45 of 654

6.2. Adding the Wrapper to a project

The Wrapper is something you should check into version control. By distributing the Wrapper with your
project, anyone can work with it without needing to install Gradle beforehand. Even better, users of the
build are guaranteed to use the version of Gradle that the build was designed to work with. Of course, thisis
also great for continuous integration servers (i.e. servers that regularly build your project) as it requires no
configuration on the server.

You install the Wrapper into your project by running the wr apper task. (This task is always available,
even if you don’t add it to your build). To specify a Gradle version use - - gr adl e- ver si on on the
command-line. By default, the Wrapper will use a bi n distribution. Thisis the smallest Gradle distribution.
Some tools, like Android Studio and Intellij IDEA, provide additional context information when used with
theal | distribution. You may select a different Gradle distribution type by using - - di st ri buti on-type

. You can aso set the URL to download Gradle from directly via - - gr adl e-di stri buti on-url . If

no version or distribution URL is specified, the Wrapper will be configured to use the gradle version the wr apper
task is executed with. So if you run the wr apper task with Gradle 2.4, then the Wrapper configuration will
default to version 2.4.

Example 6.1. Running the Wrapper task
Output of gr adl e wr apper --gradl e-version 2.0

> gradl e wapper --gradle-version 2.0
S wr apper

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

The Wrapper can be further customized by adding and configuring a W apper task in your build script, and
then executing it.

Example 6.2. Wrapper task

bui | d. gradl e

task wrapper(type: Wapper) {
gradl eVersion = '2.0'

}

After such an execution you find the following new or updated files in your project directory (in case the
default configuration of the Wrapper task is used).

Example 6.3. Wrapper generated files

Build layout

si npl e/
gr adl ew
gr adl ew. bat

gr adl e/ wr apper/
gr adl e-wr apper.j ar
gr adl e- wr apper . properties

Page 46 of 654

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

All of these files should be submitted to your version control system. This only needs to be done once. After
these files have been added to the project, the project should then be built with the added gr adl ew
command. The gr adl ewcommand can be used exactly the same way asthe gr adl e command.

If you want to switch to a new version of Gradle you don’t need to rerun the wr apper task. It is good
enough to change the respective entry in the gr adl e- wr apper . properti es file but if you want to
take advantage of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper
files.

6.3. Configuration

If you run Gradle with gr adl ew, the Wrapper checks if a Gradle distribution for the Wrapper is available.
If so, it delegates to the gr adl e command of this distribution with all the arguments passed originally to
the gr adl ewcommand. If it didn’'t find a Gradle distribution, it will download it first.

When you configure the W apper task, you can specify the Gradle version you wish to use. The gr adl ew
command will download the appropriate distribution from the Gradle repository. Alternatively, you can
specify the download URL of the Gradle distribution. The gr adl ew command will use this URL to
download the distribution. If you specified neither a Gradle version nor download URL, the gr adl ew
command will download whichever version of Gradle was used to generate the Wrapper files.

For the details on how to configure the Wrapper, seethe W apper classin the APl documentation.

If you don’t want any download to happen when your project is built via gr adl ew, simply add the Gradle
distribution zip to your version control at the location specified by your Wrapper configuration. A relative
URL is supported - you can specify adistribution file relative to the location of gr adl e- wr apper . properti «
file.

If you build viathe Wrapper, any existing Gradle distribution installed on the machine isignored.

0.4. Authenticated Gradle distribution download

The Gradle W apper can download Gradle distributions from
servers using HTTP Basic Authentication. This enables you to
host the Gradle distribution on a private protected server. You

Security Warning

can specify a username and password in two different ways HTTP Basic Authentication
depending on your use case: as system properties or directly should only be used with HTTPS
embedded in the di stri buti onUrl . Credentias in system URLs and not plain HTTP ones.

properties take precedence over the ones embedded in di st ri but i onWyith Basic Authentication, the

user credentials are sent in clear

text.
Using system properties can be doneinthe. gr adl e/ gr adl e. properties

file in the user's home directory, or by other means, see
Section 12.1, “Configuring the build environment via
gradle.properties’.

Page 47 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Example 6.4. Specifying the HT TP Basic Authentication credentials using system properties
gradl e. properties.

syst enPr op. gr adl e. wr apper User =user nane

syst enPr op. gr adl e. w apper Passwor d=passwor d

Embedding credentialsinthedi st ri buti onUr| inthegr adl e/ w apper/ gr adl e- w apper . propert
file also works. Please note that this file is to be committed into your source control system. Shared
credentialsembedded in di st ri buti onUr | should only be used in a controlled environment.

Example 6.5. Specifying the HTTP Basic Authentication credentialsin di st ri buti onUr |

gr adl e-wr apper. properties.

di stributionUrl=https://usernane: passwor d@onehost / pat h/t o/ gradl e-di stri buti on. 2

This can be used in conjunction with a proxy, authenticated or not. See Section 12.3, “Accessing the web via
aproxy” for more information on how to configure the W apper to use aproxy.

6.5. Verfication of downloaded Gradle
distributions

The Gradle Wrapper alows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature, download the . sha256 file associated with the Gradle distribution you want to
verify.

6.5.1. Downloading the SHA-256 file

Y ou can download the . sha256 file by clicking on one of the sha256 links on whichever page you used
to download your distribution:

* https.//gradle.org/install

® https://gradle.org/releases

® https://gradle.org/release-candidate
® https://gradle.org/nightly

The format of thefileisasingle line of text that isthe SHA-256 hash of the corresponding zip file.

Add the downloaded hash sum to the gr adl e- wr apper . properti es usingthedi stri buti onSha256St
property.

Page 48 of 654

https://gradle.org/install
https://gradle.org/releases
https://gradle.org/release-candidate
https://gradle.org/nightly

Example 6.6. Configuring SHA-256 checksum verification

gr adl e- wr apper . properties.

di stri buti onSha256Sum=371cb9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b8234

6.6. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution of the gr adl ew *NIX
command. Subversion preserves this file permission. We are not sure how other version control systems deal
with this. What should always work isto execute“sh gr adl ew’.

Page 49 of 654

v

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under the
direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As aresult, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle
builds with the Daemon is no different than without. Simply configure whether you want to use it or not -
everything elseis handled transparently by Gradle.

7.1. Why the Gradle Daemon is important for
performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of VM startup for every
build, but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - profi | e to get a sense of how much impact the Gradle
Daemon can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’'t have to do anything to
benefit fromit.

If you run CI builds in ephemeral environments (such as containers) that do not reuse any processes, use of
the Daemon will slightly decrease performance (due to caching additional information) for no benefit, and
may be disabled.

7.2. Running Daemon Status

To get alist of running Gradle Daemons and their statuses use the - - st at us command.

Sample output:

Page 50 of 654

PI D VERSI ON STATUS
28411 3.0 I DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for al versions of
Gradle.

7.3. Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. There are several waysto
disable the Daemon, but the most common one is to add the line

org. gradl e. daenon=f al se

to the file «<USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home
directory. That'stypically one of the following, depending on your platform:

® C: \ Users\ <usernane> (WindowsVista& 7+)
® /[User s/ <user nane> (Mac OS X)
® /[hone/ <user nane> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in Section 7.5, “FAQ” further down. That section also contains more detailed
information on how the Daemon works.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost, regardless of
the version of Gradle a particular build uses.

Continuous
integration

7.4. Stopping an existing
Daemon

Since Gradle 3.0, we enable

As mentioned, the Daemon is a background process. You
needn’t worry about a build up of Gradle processes on your
machine, though. Every Daemon monitors its memory usage
compared to total system memory and will stop itself if idle
when available system memory is low. If you want to explicitly
stop running Daemon processes for any reason, just use the
command gr adl e --stop.

This will terminate all Daemon processes that were started with
the same version of Gradle used to execute the command. If you
have the Java Development Kit (JDK) installed, you can easily
verify that a Daemon has stopped by running the j ps

Daemon by default and
recommend using it for both
developers machines and
Continuous Integration servers.
However, if you suspect that
Daemon makes your CI builds
unstable, you can disable it to
use a fresh runtime for each
build since the runtime is

completely isolated from any
previous builds.

Page 51 of 654

command. You'll see any running Daemons listed with the
name G- adl eDaenon.

7.5. FAQ

7.5.1. How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

* Via environment variables. add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS

environment variable
* Viapropertiesfile: add or g. gr adl e. daenon=f al se tothe «<GRADLE_USER HOVE»/ gr adl e. pr ope

file

Note, «GRADLE_USER HOME» defaults to «USER_HOVE»/ . gr adl e, where «USER_HOVE» is

the home directory of the current user. This location can be configured viathe - g and - - gr adl e- user - hor
command line switches, aswell as by the GRADLE_USER HOVE environment variable and or g. gr adl e. us
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. pr operti es file

On Windows, this command will disable the Daemon for the current user:

(i f not exist "9QUSERPROFI LEY . gradl e" mkdir "9JSERPROFI LEY . gradle") && (echo. >> "9

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the
current user:

nkdir -p ~/.gradl e & echo "org.gradl e. daenon=fal se" >> ~/.gradl e/ gradl e. properties

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daenon option.

The - - daenpn and - - no- daenmon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

Page 52 of 654

7.5.2. Why is there more than one Daemon process on my machine?

There are severa reasons why Gradle will create a new Daemon, instead of using one that is aready
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don’t have to
worry about cleaning them up manually.

idle
Anidle Daemonis onethat is not currently executing a build or doing other useful work.

compatible
A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another exampleisthe set of VM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory alocation (e.g. - Xnx1024m),
default text encoding, default locale, etc of arunning VM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Chapter 12, The Build Environment for details on how to specify and control the build environment.

The following VM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s VM has for this property, the Daemon is not
compatible.

¢ file.encoding

® user.language

® user.country

® user.variant

® javaio.tmpdir

® javax.net.ssl.keyStore

® javax.net.ssl.keyStorePassword
® javax.net.sdl.keyStoreType

® javax.net.sdl.trustStore

® javax.net.ssl.trustStorePassword
® javax.net.sd.trustStoreType

® com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

® The maximum heap size (i.e. the -Xmx VM argument)
® The minimum heap size (i.e. the -Xms JVM argument)

Page 53 of 654

® The boot classpath (i.e. the -Xbootclasspath argument)
® The"“assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versionsis a common reason for having more than one running Daemon process.

7.5.3. How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB
of heap. It will use the VM’ s default minimum heap size. 1GB is more than enough for most builds. Larger
builds with hundreds of subprojects, lots of configuration, and source code may require, or perform better,
with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Chapter 12, The Build Environment for details.

7.5.4. How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to

stop a Daemon process before this, you can either kill the process via your operating system or runthe gr adl e -
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same
Gradle version used to run the command, terminate themselves.

7.5.5. What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted. A
Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do
not release resources correctly. Thisis a particularly poignant problem when using Microsoft Windows as it
islessforgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when aleak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the org. gradl e. daenon. perfor mance. enabl e-noni t ori ng system
property to false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no- dae
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

Page 54 of 654

7.6. Tools& IDEs

The Gradle Tooling API (see Chapter 14, Embedding Gradle using the Tooling API), that is used by IDES
and other tools to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are
executing Gradle builds from within you're IDE you are using the Gradle Daemon and do not need to enable
it for your environment.

7.7. How does the Gradle Daemon make builds
faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed
to once for each build. Thisin itself is asignificant performance optimization, but that’ s not where it stops.

A significant part of the story for modern VM performance is runtime code optimization. For example,
HotSpot (the VM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for incremental
building.

Page 55 of 654

8

Dependency M anagement Basics

This chapter introduces some of the basics of dependency management in Gradle.

8.1. What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the
dependencies of the project. Secondly, Gradle needs to build and upload the things that your project
produces. We call these outgoing files the publications of the project. Let’s look at these two piecesin more
detail:

Most projects are not completely self-contained. They need files built by other projects in order to be
compiled or tested and so on. For example, in order to use Hibernate in my project, | need to include some
Hibernate jars in the classpath when | compile my source. To run my tests, | might also need to include
some additional jarsin the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle alows you to tell it what the
dependencies of your project are, so that it can take care of finding these dependencies, and making them
available in your build. The dependencies might need to be downloaded from a remote Maven or lvy
repository, or located in a local directory, or may need to be built by another project in the same
multi-project build. We call this process dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names’ of your
dependencies, and other layers determine where to get those dependencies from. You can get similar
behavior from Ant by adding Apache lvy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core
requires several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for
your project, it also needs to find these dependencies and make them available. We call these transitive

dependencies.

The main purpose of most projectsis to build some files that are to be used outside the project. For example,
if your project produces a Java library, you need to build a jar, and maybe a source jar and some
documentation, and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for
you. You declare the publications of your project, and Gradle take care of building them and publishing
them somewhere. Exactly what “publishing” means depends on what you want to do. You might want to

Page 56 of 654

copy thefilesto alocal directory, or upload them to aremote Maven or lvy repository. Or you might use the
filesin another project in the same multi-project build. We call this process publication.

8.2. Declaring your dependencies

Let’slook at some dependency declarations. Here' s a basic build script:

Example 8.1. Declaring dependencies

bui | d. gradl e

apply plugin: 'java'

repositories {
mavenCentral ()

}

dependenci es {
conpi l e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fing
testConpile group: 'junit', nane: 'junit', version: '4.+

What' s going on here? This build script says a few things about the project. Firstly, it states that Hibernate
core 3.6.7.Final is required to compile the project’s production source. By implication, Hibernate core and
its dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project’ s tests. It also tells Gradle to look in the Maven central repository for any dependencies
that are required. The following sections go into the details.

8.3. Dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a
Configuration:

Declaring Dependencies
The plugin uses configurations to make it easy for build authors to declare what other subprojects or
external artifacts are needed for various purposes during the execution of tasks defined by the plugin.

Resolving Dependencies
The plugin uses configurations to find (and possibly download) inputs to the tasks it defines.

Exposing Artifactsfor Consumption
The plugin uses configurations to define what artifacts it generates for other projects to consume.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined by the
Java Library Plugin. Y ou can find more detailsin Section 48.4, “The Java Library plugin configurations”.

implementation
The dependencies required to compile the production source of the project, but which are not part of the
api exposed by the project. This configuration is an example of a configuration used for Declaring
Dependencies.

Page 57 of 654

runtimeClasspath
The dependencies required by the production classes at runtime. By default, this includes the
dependencies declared in the api, i npl enent ati on, and runti neOnl y configurations. This
configuration is an example of a configuration used for Resolving Dependencies, and as such, users
should never declare dependencies directly inther unt i meCl asspat h configuration.

apiElements
The dependencies which are part of this project’s externally consumable API as well as the classes
which are defined in this project which should be consumable by other projects. This configuration is an
example of Exposing Artifacts for Consumption.

Various plugins add further standard configurations. Y ou can also define your own custom configurations to
use in your build. Please see Section 25.3, “Dependency configurations’ for the details of defining and
customizing dependency configurations.

8.4. Externa dependencies

There are various types of dependencies that you can declare. One such type is an external dependency.
This is a dependency on some files built outside the current build, and stored in a repository of some kind,
such as Maven central, or a corporate Maven or lvy repository, or adirectory in thelocal file system.

To define an external dependency, you add it to a dependency configuration:

Example 8.2. Definition of an external dependency
bui |l d. gradl e

dependenci es {
conpil e group: 'org.hibernate', nane: 'hibernate-core', version: '3.6.7.Fing

}

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which
kind of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencieslookslike” gr oup: name: ver si on”.

Example 8.3. Shortcut definition of an external dependency
bui |l d. gradl e

dependenci es {
conpi |l e ' org. hi bernat e: hi bernate-core: 3. 6. 7. Fi nal

}

To find out more about defining and working with dependencies, have a look at Section 25.4, “How to
declare your dependencies’.

Page 58 of 654

8.5. Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A
repository isrealy just a collection of files, organized by gr oup, name and ver si on. Gradle understands
several different repository formats, such as Maven and lvy, and several different ways of accessing the
repository, such as using the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use
external dependencies. One option is use the Maven central repository:

Example 8.4. Usage of Maven central repository

bui |l d. gradl e

repositories {

mavenCentral ()

}

Or Bintray’s JCenter:

Example 8.5. Usage of JCenter repository
bui | d. gradl e

repositories {
jcenter()

}

Or any other remote Maven repository:

Example 8.6. Usage of a remote Maven repository
bui |l d. gradl e

repositories {
maven {
url "http://repo. nyconpany. conl maven2"

}

Or aremote Ivy repository:

Example 8.7. Usage of aremote lvy directory
bui |l d. gradl e
repositories {

ivy {
url "http://repo. nyconpany. coni repo"

}

Page 59 of 654

Y ou can also have repositories on the local file system. Thisworks for both Maven and Ivy repositories.

Example 8.8. Usage of alocal Ivy directory
bui |l d. gradl e
repositories {

ivy {
/1 URL can refer to a local directory

url "../local -repo"

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have alook at Section 25.6, “Repositories’.

8.6. Publishing artifacts

Dependency configurations are also used to publish files.[2l We call these files publication artifacts, or

usualy just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don’t need to do
anything special to tell Gradle what needs to be published. However, you do need to tell Gradle where to
publish the artifacts. You do this by attaching repositories to the upl oadAr chi ves task. Here's an
example of publishing to aremote Ivy repository:

Example 8.9. Publishing to an Ivy repository
bui |l d. gradl e

upl oadAr chi ves {
repositories {
vy {
credentials {
user nane "usernane"
password " pw'

}

url "http://repo. myconpany. conf

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generateand upload ani vy. xm aswell.

You can also publish to Maven repositories. The syntax is slightly different.[3 Note that you also need to
apply the Maven plugin in order to publish to a Maven repository. when thisisin place, Gradle will generate
and upload apom xm .

Page 60 of 654

Example 8.10. Publishing to a Maven repository
buil d. gradl e
apply plugin: 'nmaven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")

To find out more about publication, have alook at Chapter 32, Publishing artifacts.

8.7. Where to next?

For all the details of dependency resolution, see Chapter 25, Dependency Management, and for artifact
publication see Chapter 32, Publishing artifacts.

If you are interested in the DSL elements mentioned here, have a look at
Proj ect.configurations{},Project.repositories{} andProject.dependenci es{}.

Otherwise, continue on to some guides.

[2] Wethink thisis confusing, and we are gradually teasing apart the two concepts in the Gradle DSL.

[3] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 61 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://guides.gradle.org

9

| ntroduction to multi-project builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you
typically want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

9.1. Structure of a multi-project build

Such builds comein all shapes and sizes, but they do have some common characteristics:

* Asettings. gradl efileintheroot or mast er directory of the project

®* Abuil d. gradl e fileintheroot or mast er directory

® Child directories that have their own *. gr adl e build files (some multi-project builds may omit child
project build scripts)

Thesettings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’t have to read this file smply to learn what the project structureis as you can run the command gr adl e pr ¢
. Here' s the output from using that command on the Java multiproject build in the Gradle samples:

Example 9.1. Listing the projectsin a build

Output of gr adl e -q projects

> gradle -q projects

Root project 'nultiproject’

+--- Project ':api’

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services

Page 62 of 654

project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it findsthe set ti ngs. gr adl e as the name of the root
project. This usually doesn’t cause problems since all developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that’s not necessarily the case. In the above example,
the services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gr adl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to al the child projects. It can also be used
to configure individual subprojects when it is preferable to have al the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects

will name the build files after the subproject names, such as api . gr adl e and ser vi ces. gr adl e from

the previous example. Such an approach helpsalot in IDEs because it’s tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic ishandled by the set t i ngs
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the
child project directoriesto find the fileswith the . gr adl e suffix.

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

9.2. Executing a multi-project build

From a user’s perspective, multi-project builds are still collections of tasks you can run. The difference is
that you may want to control which project’s tasks get executed. Y ou have two options here:

® Changeto the directory corresponding to the subproject you' re interested in and just execute gr adl e <t ask
asnormal.

® Useagqualified task name from any directory, although thisis usually done from the root. For example: gr adl
will build the webservice subproject and any subprojectsit depends on.

The first approach is similar to the single-project use case, but Gradle works dlightly differently in the case
of a multi-project build. The command gr adl e t est will execute the t est task in any subprojects,
relative to the current working directory, that have that task. So if you run the command from the root
project directory, you'll runt est in api, shared, services:shared and services.webservice. If you run the
command from the services project directory, you'll only execute the task in services:shared and
services.webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These are

Page 63 of 654

paths just like directory paths, but use ‘" instead of /" or ‘\'. If the path begins with a‘:’, then the path is
resolved relative to the root project. In other words, the leading ‘' represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
thet asks task, eg. gradl e : servi ces: webservi ce: tasks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how thisis configured, you can read about writing multi-project builds later in the user guide.

There' s one last thing to note. When you’ re using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun. ./ ../ gradl ew bui | d.

That's al you really need to know about multi-project builds as a build user. Y ou can now identify whether
a build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 64 of 654

10

Continuous build

Continuous build is an incubating feature. This means that it is incomplete and not yet at regular
Gradle production quality. This also means that this Gradle User Guide chapter is awork in progress.

Typicaly, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.
Gradle will determine the actual set of tasks that need to be executed to satisfy the request, execute them all,
and then stop doing work until the next request. A continuous build differs in that Gradle will keep
satisfying the initial build request (until instructed to stop) by executing the build when it is detected that the
result of the previous build is now out of date. For example, if your build compiles Java source files to Java
class files, a continuous build would automatically initiate a compile when the source files change.
Continuous build is useful for many scenarios.

10.1. How do | start and stop a continuous build?

A continuous build can be started by supplying either the - - cont i nuous or -t switchesto Gradle, along

with thelist of tasks, switches and arguments that define the work to do. For example, gr adl e buil d --cont
. This will have the same effect as running gr adl e bui | d, but instead of Gradle exiting when done, it

will wait for changes to the build inputs. When a change occurs, gr adl e bui | d will be automatically
executed again and the process repeats.

If Gradleis attached to an interactive input source, such as aterminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D).
If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | | command or similar). If the build is being executed via the Tooling
AP, the build can be cancelled using the Tooling API’ s cancellation mechanism.

10.2. What will cause a subsequent build?

At thistime, only changes to task inputs are noticed. Gradle will
start watching for changes just before the task starts to execute.
No other changes will initiate a build. For example, changes to
build scripts and build logic will not initiate build. Likewise,
changes to files that are read during the configuration of the

Task fileinputs

Task implementations declare
their file system inputs by
annotating their properties with
| nput Fi | es and other similar

Page 65 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/InputFiles.html

build, not the execution, will not initiate a build. In order to annotations. Please see
incorporate such changes, the continuous build must be restarted Section 19.10, “Up-to-date
manually. checks (AKA Incremental

Build)” for more information.
Consider a typical build using the Java plugin, using the

conventional filesystem layout. The following diagram
visualizes the task graph for gr adl e bui | d:

Figure 10.1. Java plugin task graph

compileTestJava

processTestResources P

compileJava
processResources

classes

test

uploadArchives
assemble L‘-

clean

The following key tasks of the graph use filesin the corresponding directories as inputs:

compileJava
src/ main/java

processResour ces
src/ mai n/ resour ces

compileTestJava
src/test/java

processT estResour ces
src/test/resources

Assuming that the initial build is successful (i.e. the bui | d task and its dependencies complete without
error), changes to filesin, or the addition/remove of files from, the locations listed above will initiate a new
build. If achange is made to a Java sourcefilein sr ¢/ mai n/ j ava, the build will fire and all tasks will be
scheduled. Gradle's incremental build support ensures that only the tasks that are actually affected by the
change are executed.

If the change to the main Java source causes compilation to fail, subsequent changesto the test sourcein sr c/ t e
will not initiate a new build. As the test source depends on the main source, there is no point building until

the main source has changed, potentialy fixing the compilation error. After each build, only the inputs of

the tasks that actually executed will be monitored for changes.

Continuous build isin no way coupled to compilation. It works for all types of tasks. For example, the pr ocessF
task copies and processes the files from sr ¢/ mai n/ r esour ces for inclusion in the built JAR. Assuch, a
change to any filein this directory will also initiate a build.

Page 66 of 654

10.3. Limitations and quirks

There are several issuesto be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle rel eases.

10.3.1. Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn't unique to continuous build. A task that
modifiesits own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters abuild cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a

task that has that file as an input. In some cases, it may be obvious (e.g., a Javafileis compiled with conpi | eJa

). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

10.3.2. Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific options,
which means that:

® OnMac OS X, Gradlewill pall for file changes every 10 seconds instead of every 2 seconds.
® On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause
continuous build to no longer work on very large projects.

10.3.3. Performance and stability

The JDK file watching facility relies on inefficient file system polling on Mac OS X (see: JDK-7133447).
This can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on Mac OS X (see: JDK-8079620).
This will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit
continuous build and start again.

On Linux, OpendDK’ s implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

10.3.4. Changes to symbolic links

® Creating or removing symbolic link to fileswill initiate a build.

* Modifying the target of a symbolic link will not cause arebuild.

® Creating or removing symbolic linksto directories will not cause rebuilds.

® Creating new filesin thetarget directory of a symbolic link will not cause arebuild.
¢ Deleting the target directory will not cause arebuild.

Page 67 of 654

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

10.3.5. Changesto build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 68 of 654

11

Composite builds

Composite build is an incubating feature. While useful for many use cases, there are bugs to be
discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

11.1. What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to
a Gradle multi-project build, except that instead of including single pr oj ect s, complete bui | ds are
included.

Composite builds alow you to:

* combine builds that are usually developed independently, for instance when trying out a bug fix in a
library that your application uses

® decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build".
Included builds do not share any configuration with the composite build, or the other included builds. Each
included build is configured and executed in isolation.

Included builds interact with other builds via dependency substitution. If any build in the
composite has a dependency that can be satisfied by the included build, then that dependency will be
replaced by a project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.
However for more flexibility, it is possible to explicitly declare these substitutions if the default ones
determined by Gradle are not correct for the composite. See Section 11.4, “Declaring the dependencies
substituted by an included build”.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task dependencies
on the composite build or on other included builds. See Section 11.5, “Depending on tasks in an included
build”.

Page 69 of 654

11.2. Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed
separately can be combined into a composite build. For these examples, the my- ut i | s multi-project build
produces 2 different java libraries (nunber-utils and string-utils), and the my-app build
produces an executable using functions from those libraries.

The ny-app build does not have direct dependencies on my-utils. Instead, it declares binary
dependencies on the libraries produced by ny- uti | s.
Example 11.1. Dependencies of my-app

ny-app/ bui | d. gradl e
apply plugin: 'java
apply plugin: "application
apply plugin: 'idea'

group “"org.sanple"
version "1.0"

mai nCl assNane = "org. sanpl e. myapp. Mai n"

dependenci es {
conpi l e "org. sanpl e: nunber-utils:1.0"
conpile "org.sanple:string-utils:1.0"

}

repositories {
jcenter ()

}

Note: The code for this example can be found at sanpl es/ conposi t eBui | ds/ basi ¢ in the
‘-all’ distribution of Gradle.

11.2.1. Defining a composite build via- - i ncl ude-bui | d

The - - i ncl ude- bui | d command-line argument turns the executed build into a composite, substituting
dependencies from the included build into the executed build.

Page 70 of 654

Example 11.2. Declaring a command-line composite
Output of gradl e --include-build ../my-utils run

> gradle --include-build ../ny-utils run
:processResour ces NO SOURCE
my-utils:string-utils:conpileJava
my-utils:string-utils: processResources NO SOURCE
my-utils:string-utils:classes
my-utils:string-utils:jar
my-utils:nunber-utils:conpilelava
sny-utils:nunmber-utils: processResources NO SOURCE
my-utils:nunmber-utils:classes
my-utils:nunber-utils:jar

:conpi | eJava

:cl asses

irun

The answer is 42

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

11.2.2. Defining a composite build viaset t i ngs. gradl e

I's possible to make the above arrangement persistent, by using
Settings.includeBuil d(java. | ang. Obj ect) todeclaretheincluded buildinthesetti ngs. gr adl
file. The setti ngs. gradl e file can be used to add subprojects and included builds at the same time.
Included builds are added by location. See the examples below for more details.

11.2.3. Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less
useful as a standalone build. One way to avoid this is to define a separate composite build, whose only
purpose is to combine otherwise separate builds.
Example 11.3. Declaring a separ ate composite

settings.gradle

r oot Proj ect . nane=" adhoc'

includeBuild '../ny-app'
includeBuild . ./my-utils'

In this scenario, the 'main' build that is executed is the composite, and it doesn’t define any useful tasks to
execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build must define a
delegating task.

Page 71 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

Example 11.4. Depending on task from included build
buil d. gradl e

task run {
dependsOn gradl e. i ncl udedBui I d(' my-app').task(' :run")

}

More details tasks that depend on included build tasks below.

11.2.4. Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.
Every included build:

®* must haveasettings. gradl e file

* must not itself be a composite build.

®* must not havear oot Pr oj ect . nane the same as another included build.

* must not havear oot Pr oj ect . nane the same as atop-level project of the composite build.

®* must not havear oot Pr oj ect . nane the same as the composite build r oot Pr oj ect . nane.

11.3. Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build. Tasks can
be executed, tests can be run, and builds can be imported into the IDE.

11.3.1. Executing tasks

Tasks from the composite build can be executed from the command line, or from you IDE. Executing a task
will result in direct task dependencies being executed, as well as those tasks required to build dependency
artifacts from included builds.

There is not (yet) any means to directly execute a task from an included build via the command line.
Included build tasks are automatically executed in order to generate required dependency artifacts, or
the including build can declare a dependency on atask from an included build.

11.3.2. Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the idea or eclipse
plugin to your build, it is possible to generate a single IDEA or Eclipse project that permits all builds in the
composite to be devel oped together.

In addition to these Gradle plugins, recent versions of IntelliJ IDEA and Eclipse Buildship support direct
import of acomposite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed together.

Page 72 of 654

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

For every included build, each sub-project is included as an IDEA Module or Eclipse Project. Source
dependencies are configured, providing cross-build navigation and refactoring.

11.4. Declaring the dependencies substituted by
an included build

By default, Gradle will configure each included build in order to determine the dependenciesit can provide.
The agorithm for doing thisis very simple: Gradle will inspect the group and name for the projects in the
included build, and substitute project dependencies for any external dependency matching ${ pr oj ect . gr oup}

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not
correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an
included build. Take for example a single-project build 'unpublished’, that produces a java utility library but
does not declare a value for the group attribute:

Example 11.5. Build that does not declare group attribute

bui |l d. gradl e
apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for proj ect. gr oup, and 'unpublished'
being the root project name). Clearly this isn't going to be very useful in a composite build. To use the
unpublished library unmodified in a composite build, the composing build can explicitly declare the
substitutions that it provides:

Example 11.6. Declaring the substitutions for an included build
settings.gradle
root Proj ect. nane = '

i ncludeBuil d('../anonynmous-|ibrary"') {
dependencySubstitution {
substitute nodul e(' org. sanpl e: nunber-utils'") with project(':")

}

With this configuration, the "my-app" composite build will substitute any dependency on or g. sanpl e: nunber
with a dependency on the root project of "unpublished".

11.4.1. Cases where included build substitutions must be declared

Many builds that use the upl oadAr chi ves task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared substitutions
arerequired:

* Whenthe ar chi vesBaseNane property is used to set the name of the published artifact.

Page 73 of 654

® When aconfiguration other than def aul t is published: this usually means atask other than upl oadAr chi \
isused.

* Whenthe MavenPom addFi | t er () isused to publish artifacts that don’t match the project name.

®* When the maven- publ i sh or i vy- publ i sh plugins are used for publishing, and the publication
coordinates don’t match ${ pr oj ect . gr oup}: ${ pr oj ect . nane}.

11.4.2. Cases where composite build substitutions won’'t work

Some builds won't function correctly when included in a composite, even when dependency substitutions
are explicitly declared. This limitation is due to the fact that a project dependency that is substituted will
aways point to the def aul t configuration of the target project. Any time that the artifacts and
dependencies specified for the default configuration of a project don’t match what is actually published to a
repository, then the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

® When aconfiguration other than def aul t is published.
* Whenthemaven- publ i sh ori vy- publ i sh pluginsare used.
* Whenthe POMor i vy. xm fileistweaked as part of publication.

Builds using these features function incorrectly when included in a composite build. We plan to improve this
in the future.

11.5. Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite
build is able to declare task dependencies on its included builds. The included builds are accessed using
Gradl e. get I ncl udedBui | ds() or Gradl e. i ncl udedBui | d(java.l ang. String), and a
task referenceis obtained viathe | ncl udedBui | d. t ask(j ava. | ang. St ri ng) method.

Using these APIs, it is possible to declare a dependency on atask in a particular included build, or tasks with
acertain path in all or some of the included builds.

Example 11.7. Depending on a single task from an included build

bui |l d. gradl e

task run {
dependsOn gradl e. i ncl udedBui | d(' my-app').task("':run")

}

Example 11.8. Depending on a tasks with path in all included builds

bui |l d. gradl e

task publishDeps {
dependsOn gradl e. i ncl udedBui | ds*. t ask(' : upl oadAr chi ves')

}

Page 74 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

11.6. Current limitations and future plans for
composite builds

We think composite builds are pretty useful already. However, there are some things that don’t yet work the
way we'd like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

* No support for included builds that have publications that don’t mirror the project default configuration.
See Section 11.4.2, “ Cases where composite build substitutions won’t work” .

* Native builds are not supported. (Binary dependencies are not yet supported for native builds).

® Substituting plugins only works with the bui | dscri pt block but not with the pl ugi ns block.

Improvements we have planned for upcoming releases include:

® Better detection of dependency substitution, for build that publish with custom coordinates, builds that
produce multiple components, etc. Thiswill reduce the cases where dependency substitution needs to be
explicitly declared for an included build.

® The ability to target a task or tasks in an included build directly from the command line. We are
currently exploring syntax options for alowing this functionality, which will remove many cases where
adelegating task is required in the composite.

® Making theimplicit bui | dSr ¢ project an included build.

® Supporting composite-of-composite builds.

Page 75 of 654

12

The Build Environment

12.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute
your build. While it's possible to configure these in your local environment via GRADLE_OPTS or
JAVA_OPTS, certain settings like VM memory settings, Java home, daemon on/off can be more useful if

they can be versioned with the project in your VCS so that the entire team can work with a consistent
environment. Setting up a consistent environment for your build is as simple as placing these settings into a gr adl
file. The configuration is applied in following order (if an option is configured in multiple locations the last
onewins):

* fromgradl e. properti es inproject build dir.
® fromgradl e. propertiesingradl e user hone.
* from system properties, e.g. when - Dsone. pr operty isset on the command line.

When setting these properties you should keep in mind that Gradle requires a Java JDK or JRE of version 7
or higher to run.

The following properties can be used to configure the Gradle build environment:

org. gradl e. daenon
When set to t r ue the Gradle daemon is used to run the build. Since Gradle 3.0, daemon is enabled by
default and is recommended for running Gradle.

org. gradl e.java. hone
Specifies the Java home for the Gradle build process. The value can be set to either ajdk orjre
location, however, depending on what your build does, j dk is safer. A reasonable default is used if the
setting is unspecified.

org.gradle.jvmargs
Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking
memory settings. At the moment the default settings are pretty generous with regards to memory.

org. gradl e. confi gur eondermand
Enables new incubating mode that makes Gradle selective when configuring projects. Only relevant
projects are configured which results in faster builds for large multi-projects. See the section called
“Configuration on demand”.

Page 76 of 654

org. gradl e. parall el
When configured, Gradle will run in incubating parallel mode.

org. gradl e. wor ker s. max
When configured, Gradle will use a maximum of the given number of workers. See - - nax- wor ker s
for details.

org. gradl e. | oggi ng. | evel
When set to quiet, warn, lifecycle, info, or debug, Gradle will use thislog level. The values are not case
sensitive. See Section 24.1, “Choosing alog level”.

org. gradl e. debug
When set to true, Gradle will run the build with remote debugging enabled, listening on port 5005. Note
that thisisthe equivalent of adding - agent | i b: j dwp=t ransport =dt _socket, server =y, suspen
to the VM command line and will suspend the virtual machine until a debugger is attached.

org. gradl e. daenon. performance. enabl e-nmoni tori ng
When set to false, Gradle will not monitor the memory usage of running daemons. See Section 7.5.5,
“What can go wrong with Daemon?’.

org. gradl e. cachi ng
When set to true, Gradle will try to reuse outputs from previous builds. See Section 15.1, “Overview”.

org. gradl e. consol e
When set to plain, auto or rich, Gradle will use different type of console. See Section 5.2.1, “Build
output”.

12.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new
JVM for the build process. This means that Gradle must launch a separate VM process to execute the build
after parsing the various gr adl e. properti es files. When running with the daemon, a VM with the
correct parameters is started once and reused for each daemon build execution. When Gradle is executed
without the daemon, then anew JVM must be launched for every build execution, unless the JVM launched
by the Gradle start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which iswhy if you are setting
either or g. gradl e. j ava. hore or or g. gr adl e. j vimar gs we highly recommend that you use the
Gradle Daemon. See Chapter 7, The Gradle Daemon for more details.

12.2. Gradle properties and system properties

Gradle offers a variety of ways to add properties to your build. With the - D command line option you can
pass a system property to the VM which runs Gradle. The - D option of the gr adl e command has the
same effect as the - D option of thej ava command.

Y ou can also add properties to your project objects using propertiesfiles. You can placeagr adl e. properti e
file in the Gradle user home directory (defined by the “GRADLE_USER HOVE” environment variable,

Page 77 of 654

which if not set defaults to USER_HOME/ . gr adl e) or in your project directory. For multi-project builds

you can placegr adl e. properti es filesin any subproject directory. The propertiessetinagr adl e. pr ope!
file can be accessed via the project object. The properties file in the user’s home directory has precedence

over property filesin the project directories.

You can also add properties directly to your project object viathe - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment
variables. This feature is very useful when you don’t have admin rights to a continuous integration server
and you need to set property values that should not be easily visible, typically for security reasons. In that
situation, you can’t use the - P option, and you can’t change the system-level configuration files. The correct
strategy is to change the configuration of your continuous integration build job, adding an environment
variable setting that matches an expected pattern. Thiswon’t be visible to normal users on the wstem.[“]

If the environment variable name looks like ORG_GRADLE PRQIECT pr op=soneval ue, then Gradle
will set a pr op property on your project object, with the value of soneval ue. Gradle also supports this
for system properties, but with a different naming pattern, which lookslike or g. gr adl e. pr oj ect. prop

You can also set system propertiesin the gr adl e. properti es file. If aproperty namein such afile has
the prefix “syst enProp. ”, like “syst enPr op. pr opNane”, then the property and its value will be set
as a system property, without the prefix. In a multi project build, “syst enPr op. ” properties set in any
project except the root will be ignored. That is, only the root project’s gr adl e. properti es filewill be
checked for properties that begin with the “syst enPr op. " prefix.

Example 12.1. Setting propertieswith a gradle.propertiesfile

gradl e. properties

gr adl ePr operti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi tt enBySysProp

envPr oj ect Prop=shoul dBeOver Wi tt enByEnvProp
syst enPr op. syst enFsyst enVal ue

bui |l d. gradl e

task printProps {
doLast {
printl n commandLi nePr oj ect Prop
println gradl ePropertiesProp
println systenProjectProp

println envProject Prop
println System properties['systen]

Output of gr adl e - g - PcommandLi nePr oj ect Prop=commandLi nePr oj ect PropVal ue -Dorg. ¢

> gradl e -q -PcommandLi nePr oj ect Prop=conmandLi nePr oj ect PropVal ue - Dor g. gradl e. proj ec
commandLi nePr oj ect PropVal ue

gradl ePropertiesVal ue

syst enPr opertyVal ue

envPropertyVal ue

syst enVal ue

Page 78 of 654

12.2.1. Checking for project properties

Y ou can access a project property in your build script simply by using its name as you would use a variable.

If this property does not exist, an exception will be thrown and the build will fail. If your build script relies
on optional properties the user might set, perhapsin agr adl e. properti es file, you need to check for
existence before you access them. Y ou can do this by using the method hasPr opert y(' propertyNane')
whichreturnst r ue or f al se.

12.3. Accessing the web via a proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard
JVM system properties. These properties can be set directly in the build script; for example, setting the
HTTP proxy host would be donewith Syst em set Property(' http. proxyHost', 'ww. sonehost.
. Alternatively, the properties can be specified in a gradle.properties file, either in the build's root directory

or in the Gradle home directory.

Example 12.2. Configuring an HTTP proxy

gradl e. properties

syst enProp. htt p. pr oxyHost =www. sonehost . org
syst enProp. htt p. pr oxyPort =8080

syst enProp. htt p. proxyUser =userid
syst enPr op. htt p. pr oxyPasswor d=passwor d
syst enPr op. htt p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.

Example 12.3. Configuring an HTTPS proxy
gradl e. properties

syst enProp. htt ps. pr oxyHost =ww. sonehost . or g
syst enPr op. htt ps. pr oxyPort =8080

syst enProp. https. proxyUser =userid
syst enPr op. htt ps. pr oxyPasswor d=passwor d
syst enPr op. htt ps. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

We could not find a good overview for al possible proxy settings. One place to look are the constantsin a
file from the Ant project. Here'salink to the repository. The other is a Networking Properties page from the
JDK dacs. If anyone knows of a better overview, please et us know viathe mailing list.

12.3.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as
the username and password. There are 2 ways that you can provide the domain for authenticating to a
NTLM proxy:

® Setthehtt p. proxyUser system property to avaluelike donmai n/ user nane.
® Provide the authentication domain viathe ht t p. aut h. nt | m domai n system property.

Page 79 of 654

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD
http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

[4] Jenkins, Teamcity, or Bamboo are some Cl servers which offer this functionality.

Page 80 of 654

13

Troubleshooting

This chapter is currently awork in progress.

When using Gradle (or any software package), you can run into problems. Y ou may not understand how to
use a particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your
problems.

13.1. Working through problems

If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New
versions of Gradle are released frequently with bug fixes and new features. The problem you are having may
have been fixed in anew release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line
switch - - no- daenon). More information about troubleshooting the daemon process is located in
Chapter 7, The Gradle Daemon.

13.2. Getting help

The place to go for help with Gradle is http://forums.gradle.org. The Gradle Forums is the place where you
can report problems and ask questions of the Gradle developers and other community members.

If something’s not working for you, posting a question or problem report to the forums is the fastest way to
get help. It's also the place to post improvement suggestions or new ideas. The devel opment team frequently
posts news items and announces releases via the forum, making it a great way to stay up to date with the
latest Gradle developments.

Page 81 of 654

http://forums.gradle.org

14

Embedding Gradle using the Tooling API

14.1. Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into
your own software. This API allows you to execute and monitor builds and to query Gradle about the details
of abuild. The main audience for this APl isIDE, Cl server, other Ul authors; however, the APl is open for
anyone who needs to embed Gradle in their application.

* Gradle TestKit usesthe Tooling API for functional testing of your Gradle plugins.
® Eclipse Buildship usesthe Tooling API for importing your Gradle project and running tasks.
® IntelliJIDEA usesthe Tooling API for importing your Gradle project and running tasks.

14.2. Tooling APl Features

A fundamental characteristic of the Tooling API isthat it operatesin aversion independent way. This means
that you can use the same API to work with builds that use different versions of Gradle, including versions
that are newer or older than the version of the Tooling API that you are using. The Tooling APl is Gradle
wrapper aware and, by default, uses the same Gradle version as that used by the wrapper-powered build.

Some features that the Tooling API provides:

® Query the details of a build, including the project hierarchy and the project dependencies, external
dependencies (including source and Javadoc jars), source directories and tasks of each project.

® Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages shown
in the 'status bar' when you run on the command line).

® Execute a specific test class or test method.

® Receive interesting events as a build executes, such as project configuration, task execution or test
execution.

® Cancel abuild that is running.

® Combine multiple separate Gradle builds into a single composite build.

® The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

® The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved
library, and makes no assumptions about your classloader structure or logging configuration. This makes
the API easy to embed in your application.

Page 82 of 654

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

14.3. Tooling API and the Gradle Build Daemon

The Tooling APl always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it
model building requests or task executing requests will be executed in the same long-living process.
Chapter 7, The Gradle Daemon contains more details about the daemon, specifically information on
situations when new daemons are forked.

14.4. Quickstart

Asthe Tooling API is an interface for devel opers, the Javadoc is the main documentation for it. We provide
several samples that live in sanpl es/ t ool i ngApi in your Gradle distribution. These samples specify
all of the required dependencies for the Tooling APl with examples for querying information from Gradle
builds and executing tasks from the Tooling API.

To usethe Tooling API, add the following repository and dependency declarations to your build script:

Example 14.1. Using the tooling API
buil d. gradl e

repositories {
maven { url 'https://repo.gradle.org/gradle/libs-rel eases' }

}

dependenci es {

conpi l e "org. gradl e: gradl e-tool ing-api:${tool i ngApi Versi on}"
/'l The tooling APl need an SLF4J inpl ementation available at runtine, replad
runtime 'org.slf4j:slf4j-sinple:1.7.10

The main entry point to the Tooling API isthe G- adl eConnect or . You can navigate from there to find
code samples and explore the available Tooling API models. You can use
Gr adl eConnect or. connect () to create a Proj ect Connecti on. A Proj ect Connecti on
connects to a single Gradle project. Using the connection you can execute tasks, tests and retrieve models
relative to this project.

14.5. Gradle version and Java version
compatibility

14.5.1. Provider side

The current version of Tooling APl supports running builds using Gradle versions 1.2 and later. However,
support for running builds with Gradle versions older than 2.6 is deprecated and will be removed in Tooling
APl version 5.0.

Page 83 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/tooling/GradleConnector.html#connect()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/tooling/GradleConnector.html#connect()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/tooling/ProjectConnection.html

14.5.2. Consumer side

The current version of Gradle supports running builds via Tooling APl versions 2.0 and later. However,
support for running builds via Tooling APl versions older than 3.0 is deprecated and will be removed in
Gradle 5.0.

You should note that not all features of the Tooling APl are available for all versions of Gradle. For
example, build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the
documentation for each class and method for more details.

14.6. Javaversion

The Tooling API requires Java 8 or later. Java 7 is currently still supported but will be removed in Gradle
5.0. The Gradle version used by builds may have additional Java version requirements.

Page 84 of 654

15

Build Cache

The build cache feature is ready to be used for Java, Groovy and Scala projects. Work continues to
make it available in more areas.

The build cache feature described here is different from the Android plugin build cache.

15.1. Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by other
builds. The build cache works by storing (locally or remotely) build outputs and allowing builds to fetch
these outputs from the cache when it is determined that inputs have not changed, avoiding the expensive
work of regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching leverages the
same intelligence as up-to-date checks that Gradle uses to avoid work when a previous local build has
already produced a set of task outputs. But instead of being limited to the previous build in the same
workspace, task output caching allows Gradle to reuse task outputs from any earlier build in any location on
the local machine. When using a shared build cache for task output caching this even works across
developer machines and build agents.

Apart from task output caching, we expect other features to use the build cache in the future.

A complete guide is available about using the build cache. It covers the different scenarios caching
can improve, and detailed discussions of the different caveats you need to be aware of when enabling
caching for abuild.

15.2. Enable the Build Cache

By default, the build cache is not enabled. Y ou can enable the build cache in a couple of ways:

Run with - - bui | d- cache on the command-line

Page 85 of 654

http://tools.android.com/tech-docs/build-cache
https://guides.gradle.org/using-build-cache/

Gradle will use the build cache for this build only.

Put or g. gradl e. cachi ng=t rue inyour gradl e. properties
Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled with - - no- bui |

When the build cache is enabled, it will store build outputs in the Gradle user home. For configuring this
directory or different kinds of build caches see Section 15.4, “Configure the Build Cache”.

15.3. Task Output Caching

Beyond incremental builds described in Section 19.10, “Up-to-date checks (AKA Incremental Build)”,
Gradle can save time by reusing outputs from previous executions of atask by matching inputs to the task.
Task outputs can be reused between builds on one computer or even between builds running on different
computers viaa build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration agents
should pull cache entries from the remote build cache. We expect that developers will not be allowed to
populate the remote build cache, and all continuous integration builds populate the build cache after running
thecl ean task.

For your build to play well with task output caching it must work well with the incremental build feature.
For example, when running your build twice in a row all tasks with outputs should be UP- TO- DATE. Y ou
cannot expect faster builds or correct builds when enabling task output caching when this prerequisite is not
met.

Task output caching is automatically enabled when you enable the build cache, see Section 15.2, “Enable
the Build Cache”.

15.3.1. What doesi it look like

Let us start with a project using the Java plugin which has afew Java source files. We run the build the first
time.

$> gradl e --build-cache conpil eJava

Buil d cache is an incubating feature.

Using |l ocal directory build cache for the root build (location = /hone/user/.gradle/
:conpi | eJava

: processResour ces

1 cl asses

vjar

:assenbl e

BU LD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the same as
without the build cache. Let’s clean and run the build again.

Page 86 of 654

$> gradl e clean
:cl ean

BU LD SUCCESSFUL

$> gradle --build-cache assenbl e
Buil d cache is an incubating feature.

Using local directory build cache for the root build (location = /hone/user/.gradle/

:conpi | eJava FROM CACHE
. processResour ces

:cl asses

vjar

:assenbl e

BU LD SUCCESSFUL

Now we see that, instead of executing the : conpi | eJava task, the outputs of the task have been loaded
from the build cache. The other tasks have not been loaded from the build cache since they are not
cacheable. Thisisdueto: cl asses and : assenbl e being lifecycle tasks and : pr ocessResour ces
and : j ar being Copy-like tasks which are not cacheable since it is generally faster to execute them.

15.3.2. Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that uniquely
defines the task’ s outputs based on its inputs. That build cache key is used to request previous outputs from
a build cache or push new outputs to the build cache. If the previous build is already populated by someone
else, e.g. your continuous integration server or other devel opers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for atask in the same way that they do for up-to-date check:

® Thetask type and its classpath

® The names of the output properties

® The names and values of properties annotated as described in the section called “ Custom task types”
® The names and values of properties added by the DSL via Taskl nput s

® The classpath of the Gradle distribution, buildSrc and plugins

® The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the @acheabl eTask annotation. Note that @Cacheabl

is not inherited by subclasses. Custom task types are not cacheable by default.

Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:

® Javatoolchain: JavaConpi | e, Javadoc

® Groovy toolchain: Gr oovyConpi | e, G oovydoc
¢ Scalatoolchain: Scal aConpi | e, Scal aDoc

® Testing: Test

Page 87 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html

® Code quality tasks: Checkst yl e, CodeNar c, Fi ndBugs, JDepend, Pnd
® Jacoco: JacocoMer ge, JacocoReport
® Other tasks: Val i dat eTaskProperties,WiteProperties

Caching native compilation

Itisalso possible to enable caching for the native toolchain. This can be done by setting the system property or g.
tot r ue. Caching isthen enabled for CConpi | e and CppConpi | e.

Caching native tasks is experimental. Some inputs to the compilation tasks are not tracked yet, which
can cause false cache hits:

® The compiler type and version, thus object files produced by different compilers will be treated as
identical.

® System headers, thus object files produced with different versions of system libraries will be
treated asidentical.

Non-cacheable tasks

All other tasks are currently not cacheable, but this may change in the future for other languages (Kotlin) or
domains (native, Android, Play). Some tasks, like Copy or Jar, usualy do not make sense to make
cacheable because Gradle is only copying files from one location to another. It also doesn’t make sense to
make tasks cacheable that do not produce outputs or have no task actions.

15.3.3. Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that the results
from one build can be safely re-used somewhere el se.

Missing task inputs can cause incorrect cache hits, where different results are treated asidentical because the
same cache key is used by both executions. Missing task outputs can cause build failures if Gradle does not
completely capture all outputs for a given task. Wrongly declared task inputs can lead to cache misses
especially when containing volatile data or absolute paths. (See Section 19.10.1, “Task inputs and outputs”
on what should be declared as inputs and outputs.)

The task path is not an input to the build cache key. This means that tasks with different task paths
can re-use each other’s outputs as long as Gradle determines that executing them yields the same
result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for example using
TestKit) to check that atask produces the same outputs for identical inputs and captures all output files for
the task. We suggest adding tests to ensure that the task inputs are relocatable, i.e. that the task can be loaded
from the cache into a different build directory (see @at hSensi ti ve).

In order to handle volatile inputs for your tasks consider configuring input normalization.

Page 88 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.WriteProperties.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.c.tasks.CCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.cpp.tasks.CppCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/PathSensitive.html

15.3.4. Known issues with task output caching

The task output caching feature has known issues that may impact the correctness of your build when using
the build cache, and there are some caveats to keep in mind which may reduce the number of cache hits you
get between machines. These issueswill be corrected as this feature becomes stable.

Note that task output caching relies on incremental build. Problems that affect incremental builds can also
affect task output caching even if the affected tasks are not cacheable. Most issues only cause problems if
your build cache is populated by non-clean builds or if caching has been enabled for unsupported tasks. For
acurrent list of open problems with incremental builds see these Github issues.

When reporting issues with the build cache, please check if your issue is a known issue or related to a

known issue.

Correctness issues

These issues may affect the correctness of your build when using the build cache. Please consider these

issues carefully.

Table 15.1. Correctness issues

Description

Tracking the
Java vendor
implementation

I mpact

Gradle currently tracks
the major version of Java
that is wused for
compilation and test
execution. If your build
uses several Java
implementations (I1BM,
OpendDK, Oracle, etc)
that are the same mgjor
version, Gradle will treat
them all as equivalent
and re-use outputs from
any implementation.

Workaround

Only enable caching for builds that all use the same
Java implementation or manually add the Java vendor
as an input to compilation and test execution tasks by
using the runtime api for adding task inputs.

Page 89 of 654

https://github.com/gradle/gradle/issues?utf8=%E2%9C%93&q=is%3Aopen%20label%3Aa%3Abug%20label%3Ain%3Aincremental-build%20
https://github.com/gradle/gradle/issues/new?labels=in:build-cache

Tracking the
Javaversion

Environment
variables are
not tracked as
inputs.

Changes in
Gradle's file
encoding that
affect the build
Sscript

Javadoc
ignores custom
command-line
options

Gradle currently tracks
the major version of Java
(6 vs 7 vs 8) that is used
for compilation and test
execution. If your build
expects to use severa
minor releases
(1.8.0_102 vs 1.8.0_25),
Gradle will treat al of
these as equivalent and
re-use outputs from any
minor version. In our
bytecode
produced by each major
version is functionaly
equivalent.

Manually add the full Java version as an input to

for adding task inputs.

experience,

For tasks that fork Declare environment variables as inputs to the task
processes (like Test), w i t h

Taskl nput s. property(java.lang. Stri ng,
java.l ang. bj ect).

Gradle does not track
any of the environment
variables visible to the
process. This can allow
undeclared inputs to
affect the outputs of the
task.

Gradle can produce
different task output
based on the file
encoding used by the
JVM. Gradle will use a
default file encoding
based on the operating
systemif fil e. encodi ng
is not explicitly set.

Set the UTF-8 file encoding on all tasks which allow
setting the encoding. Use UTF-8 file encoding
everywhere by setting fi |l e. encodi ng to UTF- 8
for the Gradle VM.

Gradle's Javadoc task You can add your custom options as input properties
does not take into or disablecaching of Javadoc.

account any changes to

custom command-line

options.

Page 90 of 654

compilation and test execution tasks by using the runtime api

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property(java.lang.String, java.lang.Object)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property(java.lang.String, java.lang.Object)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property(java.lang.String, java.lang.Object)

Caveats

These issues may affect the number of cache hits you get between machines.

Table 15.2. Caveats

Description

Overlapping
outputs
between tasks

Line endings
in build
scripts files.

Absolute
paths in
command-line
arguments
and system
properties.

I mpact

If two or more tasks
share an output directory
or files, Gradle will
disable caching for these
tasks when it detects an
overlap.

Gradle calculates the
build cache key based on
the MD5 hash of the
build script contents. If
the line endings are
different
developers and the CI
servers, Gradle will
calculate different build
cache keys even when
all other inputs to a task
are the same.

between

Gradle provides ways of
specifying the path
sensitivity for individua

Workaround

Use separate output directories for each task.

Check if your VCS will change source file line endings
and configure it to have a consistent line ending across
al platforms.

If possible, relative paths (via
Project.rel ativePat h(java.l ang. Obj ect)

). Further tooling will be provided later.

use

task properties (see @at hSensi ti ve

); however, it is common
to need to pass absolute
paths to tools or to tests
via system properties or
command line
arguments. These kinds
of inputs will cause
cache misses because not
every developer or CI
server uses an identical
absolute path to the root
of abuild. Taskslike Test
include system
properties and JVM
arguments as inputs to
the build cache key.

Page 91 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:relativePath(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:relativePath(java.lang.Object)

Using
JaCoCo
disables
caching of the
Test task.
Adding new
actions to
cacheable
tasks in a
build file
makes that
task sensitive
to unrelated
changes to the
build file.
Modifying
inputs or
outputs
during task
execution.

Order of input
files affects
outputs.

The JaCoCo agent relies
on appending to a shared
output file that may be
left over from a different
test execution. If Gradle
allowed Test tasks to be
cacheable with the
JaCoCo plugin, it could
not guarantee the same
results each time.

Actions added by a
plugin (from buildSrc or
externally) do not have
this problem because
their classloader is
restricted to the classpath
of the plugin.

It's possible to modify a
task’s inputs or outputs
during execution in ways
that change the output of
a task. This breaks
incremental builds and
can cause problems with
the build cache.

Some tools are sensitive
to the order of its inputs
and will produce dlightly
different output. Gradle
will usually provide the
order of files from the
filesystem, which will be
different across
operating systems.

None.

Avoid adding actions to cacheable tasksin abuild file.

Use a configure task to finalize configuration for agiven
task. A configure task configures another task as part of

its execution.

Provide a stable order for tools affected by order.

Page 92 of 654

ANTLR3 When generating Java If you cannot upgrade to ANLTR4 use a custom

produces source code with template or remove thetimestamp inadolLast action.
output with a ANTLR3 and the
timestamp. Chapter 58, The ANTLR

Plugin, the generated
sources contain a
timestamp that reduces
how often Java
compilation will be
cached. ANTLR2 and
ANTLR4 are not
affected.

15.4. Configure the Build Cache

Y ou can configure the build cache by using the
Settings. bui | dCache(org. gradl e. api . Acti on) blockinsetti ngs. gradl e.

Gradle supports al ocal and ar enot e build cache that can be configured separately. When both build
caches are enabled, Gradle tries to load build outputs from the local build cache first, and then tries the
remote build cache if no build outputs are found. If outputs are found in the remote cache, they are aso
stored in the local cache, so next time they will be found locally. Gradle pushes build outputs to any build
cachethat is enabled and has Bui | dCache. i sPush() settotrue.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

Thelocal build cacheis pre-configured to beaDi r ect or yBui | dCache and enabled by default. The Di r ect ¢
will periodically clean-up the local cache directory to keep it under a configurable target size. The remote
build cache can be configured by specifying the type of build cache to connect to (

Bui | dCacheConfi gurati on. renote(java. |l ang. O ass)).

Gradle supports connecting to a remote build cache backend viaHTTP. This can be configured in set t i ngs. gr
. For more details on what the protocol looks like see Ht t pBui | dCache. Note that by using the following
configuration the local build cache will be used for storing build outputs while the local and the remote build
cache will be used for retrieving build outputs.

Example 15.1. Pull from HttpBuildCache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = 'https://exanpl e.com 8123/ cache/"’

}

Page 93 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush()
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.http.HttpBuildCache.html

You may encounter problems with an untrusted SSL certificate when you try to use a build cache
backend with an HTTPS URL. The ideal solution is for someone to add avalid SSL certificate to the
build cache backend, but we recognize that you may not be able to do that. In that case, set
Ht t pBui | dCache. i sAl | owmUnt rust edServer () totrue:

Example 15.2. Allow untrusted SSL certificate for HttpBuildCache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = '"https://exanple.com 8123/ cache/"

al | owUnt rust edServer = true

Thisis a convenient workaround, but you shouldn’t use it as along-term solution.

The recommended use case for the build cache is that your continuous integration server populates the
remote build cache with clean builds while developers pull from the remote build cache and push to alocal
build cache. The configuration would then look as follows.

Example 15.3. Recommended setup for CI push use case

settings. gradle

ext.isC Server = System getenv().containskey("Cl")

bui | dCache {
| ocal {
enabl ed = !isC Server

}

renmot e(Ht t pBui | dCache) {
url = '"https://exanpl e.com 8123/ cache/"'
push = i sC Server

If you use abui | dSr c directory, you should make sure that it uses the same build cache configuration as
the main build. This can be achieved by applying the same script to bui | dSr ¢/ setti ngs. gradl e andset t
as shown in the following example.

Page 94 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer

Example 15.4. Consistent setup for buildSrc and main build

settings.gradle

apply from new File(settingsDir, 'gradle/buildCacheSettings.gradle')

buil dSrc/settings. gradle

apply from new File(settingsDir, '../gradle/buildCacheSettings.gradle')

gradl e/ bui | dCacheSettings. gradl e

ext.isCi Server = System getenv().containsKey("Cl")

bui | dCache {
| ocal {
enabl ed = !isC Server
}
renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/"’
push = i sG Server

You can configure the directory the Di r ect or yBui | dCache uses to store the build outputs and the
credentials the Ht t pBui | dCache uses to access the build cache server as shown in the following
example.

Example 15.5. Configure built-in build caches
settings.gradle

bui | dCache {
| ocal (DirectoryBuil dCache) {
directory = new File(rootDir, 'build-cache")
}
remot e(Ht t pBui | dCache) {
url = "http://exanpl e.com 8123/ cache/"’

credentials {
usernane = 'buil d-cache-user'
password ' some- conpl i cat ed- passwor d'

It isalso possible to configure the build cache from an init script, which can be used from the command line,
added to your Gradle user home or be a part of your custom Gradle distribution.

Page 95 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.caching.http.HttpBuildCache.html

Example 15.6. Init script to configure the build cache

init.gradle

gradl e. settingsEval uated { settings ->
settings. buil dCache {
/1 vvv Your custom configuration goes here
renot e(Ht t pBui | dCache) {

url = "https://exanpl e.com 8123/ cache/"’

}

[~~N Your custom configuration goes here

15.5. How to set up an HTTP build cache

backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise for
centralized management. The cache node can also be used without a Gradle Enterprise installation with

restricted functionality.

15.6. Implement your own Build Cache

Using adifferent build cache backend to store build outputs (which is not covered by the built-in support for
connecting to an HTTP backend) requires implementing your own logic for connecting to your custom build

cache backend. To this end, custom build cache

types can be

registered via

Bui | dCacheConfi guration. regi st erBui |l dCacheServi ce(java.l ang. d ass,
j ava. | ang. C ass) . For an example of what this could look like see the Gradle Hazelcast plugin.

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache backend.

Page 96 of 654

https://hub.docker.com/r/gradle/build-cache-node/
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService(java.lang.Class, java.lang.Class)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService(java.lang.Class, java.lang.Class)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService(java.lang.Class, java.lang.Class)
https://github.com/gradle/gradle-hazelcast-plugin
https://gradle.com/build-cache

Part II1. Writing Gradle
build scripts

16

Build Script Basics

16.1. Projects and tasks

Everything in Gradle sits on top of two basic concepts. projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that
you are doing with Gradle. For example, a project might represent a library JAR or a web application. It
might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your
application to staging or production environments. Don’t worry if this seems alittle vague for now. Gradle's
build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archivesto arepository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

16.2. Hello world

You run aGradle build using the gr adl e command. The gr adl e command looks for afilecalled bui | d. gr at
in the current directory.[5] Wecall thisbui | d. gr adl e file a build script, although strictly speaking itisa
build configuration script, as we will seelater. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example 16.1. Your first build script
bui | d. gradl e

task hello {
doLast {
println 'Hello world!

}

In acommand-line shell, move to the containing directory and execute the build script with gradl e -q hel | o

Page 98 of 654

Example 16.2. Execution of a build script

Output of gradl e -q hello What does - q do?
> gradle -q hello Most of the examples in this
Hel o worl d! user guide are run with the - q

command-line option. This
suppresses Gradle’'s log
messages, so that only the
output of the tasks is shown.
This keeps the example output
in this user guide alittle clearer.
You don't need to use this
option if you don’t want to. See
Chapter 24, Logging for more
details about the command-line
options which affect Gradle's
output.

What's going on here? This build script defines a single task,

caled hel | 0, and adds an action toit. Whenyourun gr adl e hel | o
, Gradle executes the hel | o task, which in turn executes the
action you've provided. The action is simply a closure
containing some Groovy code to execute.

If you think this looks similar to Ant’s targets, you would be

right. Gradle tasks are the equivalent to Ant targets, but as you

will see, they are much more powerful. We have used a different
terminology than Ant as we think the word task is more
expressive than the word target. Unfortunately this introduces a
terminology clash with Ant, as Ant calls its commands, such asj avac
or copy, tasks. So when we talk about tasks, we always mean
Gradle tasks, which are the equivalent to Ant’s targets. If we talk about Ant tasks (Ant commands), we
explicitly say Ant task.

16.3. A shortcut task definition

This functionality is deprecated and will be removed in Gradle 5.0 without replacement. Use the
methods Task. doFirst(org.gradle. api.Action) and

Task. doLast (org. gradl e. api . Acti on) to define an action instead, as demonstrated by the
rest of the examplesin this chapter.

Thereis ashorthand way to define atask like our hel | o task above, which is more concise.

Example 16.3. A task definition shortcut
bui |l d. gradl e

task hello << {
println 'Hello world!

}

Again, this defines atask called hel | o with asingle closure to execute. The << operator is simply an alias
for doLast .

16.4. Build scripts are code

Gradle s build scripts give you the full power of Groovy. As an appetizer, have alook at this:

Page 99 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

Example 16.4. Using Groovy in Gradle'stasks

bui | d. gradl e

task upper {
doLast {
String soneString =

println "Original:

println "Upper case:

Output of gr adl e -qg upper
> gradl e -q upper

Original: my_nAnE
Upper case: MY_NAME

or

"'mY_nAntE'
' + someString

' + someString.toUpper Case()

Example 16.5. Using Groovy in Gradle'stasks

bui | d. gradl e

task count {
doLast {

4.tinmes { print "$it

}

Output of gr adl e -qg count

> gradle -qg count
0123

16.5. Task dependencies

Asyou probably have guessed, you can declare tasks that depend on other tasks.

Page 100 of 654

Example 16.6. Declaration of task that dependson other task
buil d. gradl e

task hello {
doLast {
println 'Hello world!

}

}

task intro(dependsOn: hello) {
doLast {
println "I'm G adl e"

}

Outputof gradle -q intro

> gradle -q intro
Hel I o world!
I'"'m G adle

To add a dependency, the corresponding task does not need to exist.

Example 16.7. Lazy dependsOn - the other task does not exist (yet)
bui |l d. gradl e

task taskX(dependsOn: 'taskY') {
doLast {
println 'taskX
}
}

task taskY {
doLast {
println 'taskY

}

Output of gradl e -qg taskX
> gradle -q taskX

taskY
taskX

The dependency of t askX to t askY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 19.5, “Adding dependencies
to atask”.

Please notice that you can’t use shortcut notation (see Section 16.8, “ Shortcut notations”) when referring to
atask that is not yet defined.

16.6. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it
to dynamically create tasks.

Page 101 of 654

Example 16.8. Dynamic creation of atask
buil d. gradl e

4.tinmes { counter ->
task "task$counter" {
doLast {

println "I'mtask nunber $counter”

Output of gradl e -qg taskl

> gradle -q taskl
I'"'mtask nunmber 1

16.7. Manipulating existing tasks

Once tasks are created they can be accessed viaan API. For instance, you could use this to dynamically add
dependencies to atask, at runtime. Ant doesn't allow anything like this.

Example 16.9. Accessing atask via API - adding a dependency
bui |l d. gradl e

4.tinmes { counter ->
task "task$counter" {
doLast {
println "I'mtask nunber $counter"
}
}

}
t ask0. dependsOn task2, task3

Output of gradl e -q task0
> gradle -q taskO
I'"'mtask nunber 2

I'"'mtask nunber 3
I'mtask nunber O

Or you can add behavior to an existing task.

Page 102 of 654

Example 16.10. Accessing a task via API - adding behaviour
buil d. gradl e

task hello {
doLast {
println 'Hello Earth'
}

}
hel | 0. doFirst {

println 'Hello Venus'

}

hel | 0. doLast {
println 'Hello Mars'
}
hell o {
doLast {
println 'Hello Jupiter'

}

Outputof gradl e -q hello

> gradle -q hello
Hel | o Venus

Hell o Earth

Hell o Mars

Hel l o Jupiter

The callsdoFi r st and doLast can be executed multiple times. They add an action to the beginning or
the end of the task’s actions list. When the task executes, the actions in the action list are executed in order.

16.8. Shortcut notations

There is a convenient notation for accessing an existing task. Each task is available as a property of the build

script:

Example 16.11. Accessing task as a property of the build script

bui |l d. gradl e

task hello {
doLast {
println 'Hello world!"
}

}
hel | 0. doLast {

println "G eetings fromthe $hell o. nane task."

}

Output of gradl e -q hell o

> gradle -q hello
Hel | o worl d!
Greetings fromthe hello task.

Page 103 of 654

This enables very readable code, especially when using the tasks provided by the plugins, like the conpi | e
task.

16.9. Extratask properties

Y ou can add your own properties to atask. To add a property named my Pr operty, set ext . nyProperty
to aninitial value. From that point on, the property can be read and set like a predefined task property.
Example 16.12. Adding extra propertiesto a task

bui |l d. gradl e

task nyTask {
ext. myProperty = "nyVal ue"
}

task printTaskProperties {

doLast {
println nmyTask. myProperty
}

Output of gr adl e -qg print TaskProperties

> gradle -q printTaskProperties
nmyVal ue

Extraproperties aren’'t limited to tasks. Y ou can read more about them in Section 18.4.2, “Extra properties’.

16.10. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from abui | d. xm file. From the example below, you
can learn how to execute Ant tasks and how to access Ant properties:

Page 104 of 654

Example 16.13. Using AntBuilder to execute ant.loadfile tar get

bui | d. gradl e

task loadfile {
doLast {
def files = file('../antLoadfil|leResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant .l oadfile(srcFile: file, property: file.nane)

printlin " *** $file. name ***"
println "${ant.properties[file.nanme]}"

Output of gradl e -qg | oadfile

> gradle -q loadfile

*** agile.mani festo.txt ***

I ndividual s and interactions over processes and tools
Wor ki ng software over conprehensive docunentation

Custoner col | aboration over contract negotiation

Respondi ng to change over followi ng a plan

*** gradl e. mani festo. txt ***

Make the inpossible possible, nake the possible easy and nake the easy el egant.
(inspired by Mdshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 21, Using
Ant from Gradle.

16.11. Using methods

Gradle scales in how you can organize your build logic. Thefirst level of organizing your build logic for the
example above, is extracting a method.

Page 105 of 654

Example 16.14. Using methods to or ganize your build logic
buil d. gradl e

task checksum {
doLast {
fileList('../antLoadfil|leResources').each { File file ->
ant.checksun(file: file, property: "cs $file.nane")
println "$file. name Checksum ${ant.properties["cs_$file.name"]}"

task loadfile {
doLast {
fileList('../antlLoadfi|eResources').each { File file ->
ant.loadfile(srcFile: file, property: file.nane)
printin "I'mfond of $file.nane"

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()

}

Output of gradl e -qg | oadfile
> gradle -q loadfile

I'"'mfond of agile.manifesto.txt
I"'mfond of gradle. manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
awhole chapter to this. See Chapter 43, Organizing Build Logic.

16.12. Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 106 of 654

Example 16.15. Defining a default task
buil d. gradl e

def aul t Tasks 'clean', 'run'

task clean {
doLast {
println 'Default C eaning!'
}
}

task run {
doLast {

println 'Default Running!'

}
}

task other {
doLast {
println "I'mnot a default task!"

}

Output of gradl e -¢

> gradle -q
Def aul t d eani ng!
Def aul t Runni ng!

Thisis equivalent to running gr adl e cl ean run. Inamulti-project build every subproject can have its
own specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent
project are used (if defined).

16.13. Configure by DAG

As we later describe in full detail (see Chapter 22, The Build Lifecycle), Gradle has a configuration phase
and an execution phase. After the configuration phase, Gradle knows all tasks that should be executed.
Gradle offers you a hook to make use of this information. A use-case for this would be to check if the
release task is among the tasks to be executed. Depending on this, you can assign different values to some
variables.

In the following example, execution of the di st ri buti on and r el ease tasks resultsin different value
of thever si on variable.

Page 107 of 654

Example 16.16. Different outcomes of build depending on chosen tasks
buil d. gradl e

task distribution {
doLast {

println "We build the zip with versi on=3$versi on"

}
}

task rel ease(dependsOn: 'distribution') {
doLast {
println 'W rel ease now
}
}

gradl e. t askGr aph. whenReady {taskG aph ->
i f (taskG aph. hasTask(rel ease)) ({
version = '1.0'
} else {
version = ' 1. 0- SNAPSHOT'

}

Output of gradl e -qg di stribution

> gradle -q distribution
We build the zip with version=1. 0- SNAPSHOT

Output of gradl e -qg rel ease

> gradle -q rel ease
We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This
works even when the release task is not the primary task (i.e., the task passed to the gr adl e command).

16.14. Where to next?

In this chapter, we have had afirst look at tasks. But thisis not the end of the story for tasks. If you want to

jump into more of the details, have alook at Chapter 19, More about Tasks.

Otherwise, continue on to the tutorials in Chapter 46, Java Quickstart and Chapter 8, Dependency

Management Basics.

[5] There are command line switches to change this behavior. See Appendix D, Gradle Command Line)

Page 108 of 654

17

Build I'nit Plugin

The Build Init plugin is currently incubating. Please be aware that the DSL and other configuration
may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see Section 27.3, “Using
plugins’). The Build Init plugin is an automatically applied plugin, which means you do not need to apply it
explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the
Gradle build. Thereis no need to create a“stub” bui | d. gr adl e filein order to apply the plugin.

It also leverages the wr apper task from the Wrapper plugin (see Chapter 23, Wrapper Plugin), which
means that the Gradle Wrapper will also be installed into the project.

17.1. Tasks

The plugin adds the following tasks to the project:

Table 17.1. Build Init plugin - tasks

Task name Dependson Type Description
init wWr apper InitBuild GeneratesaGradle project.
wr apper - W apper Generates Gradle wrapper files.

17.2. What to set up

The i ni t supports different build setup types. The type is specified by supplying a - - t ype argument
value. For example, to create a Javalibrary project simply execute: gradl e init --type java-library

If a--type parameter is not supplied, Gradle will attempt to infer the type from the environment. For

Page 109 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

example, it will infer atype value of “ponft if it findsapom xm to convert to a Gradle build.
If the type could not be inferred, the type “basi c” will be used.

All build setup types include the setup of the Gradle Wrapper.

17.3. Build init types

As this plugin is currently incubating, only a few build init types are currently supported. More types
will be added in future Gradle releases.

17.3.1. “poni (Maven conversion)

The“poni type can be used to convert an Apache Maven build to a Gradle build. This works by converting
the POM to one or more Gradle files. It is only able to be used if thereis avalid “pom xm ” file in the
directory that thei ni t task isinvoked in or, if invoked viathe “-p” command line option, in the specified
project directory. This“pont type will be automatically inferred if such afile exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed
by Gradle community members.

The conversion process has the following features:

® Uses effective POM and effective settings (support for POM inheritance, dependency management,
properties)

® Supports both single module and multimodul e projects

® Supports custom module names (that differ from directory names)

® Generates general metadata - id, description and version

* Applies maven, java and war plugins (as needed)

® Supports packaging war projects asjarsif needed

® Generates dependencies (both external and inter-modul€)

® Generates download repositories (inc. local Maven repository)

® Adjusts Java compiler settings

® Supports packaging of sources and tests

® Supports TestNG runner

® Generates globa exclusions from Maven enforcer plugin settings

17.3.2.“j ava- appl i cati on”

The“j ava- appl i cati on” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“appl i cati on” plugin to produce a command-line application implemented using Java
® Usesthe®j cent er ” dependency repository
® UsesJUnit for testing

Page 110 of 654

https://github.com/jbaruch/maven2gradle
http://junit.org

* Hasdirectoriesin the conventional locations for source code
¢ Contains asample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - - t est - f r anewor k argument value. To use
adifferent test framework, execute one of the following commands:

® gradle init --type java-application --test-framework spock: Uses Spock for
testing instead of JUnit

® gradle init --type java-application --test-franmework testng: Uses TestNG
for testing instead of JUnit

17.3.3.“java-li brary”

The“j ava-1i brary” buildinit typeisnot inferable. It must be explicitly specified.
It has the following features:

® Usesthe“j ava” plugin to produce alibrary Jar

® Usesthe“j cent er ” dependency repository

® Uses JUnit for testing

® Hasdirectoriesin the conventional locations for source code

® Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - - t est - f r anmewor k argument value. To use
adifferent test framework, execute one of the following commands:

® gradle init --type java-library --test-franework spock: Uses Spock for testing
instead of JUnit

® gradle init --type java-library --test-framework testng: Uses TestNG for
testing instead of JUnit

17.34.“scal a-l i brary”

The“scal a- | i brary” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“scal a” plugin to produce alibrary Jar

® Usesthe®j cent er ” dependency repository

® UsesScala2.10

® Uses ScalaTest for testing

* Hasdirectoriesin the conventional locations for source code

¢ Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

® Usesthe Zinc Scala compiler by default

17.3.5.“groovy-1li brary”

The“groovy-1i brary” buildinit typeis not inferable. It must be explicitly specified.

Page 111 of 654

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org

It has the following features:

® Usesthe“gr oovy” plugin to produce alibrary Jar

® Usesthe®j cent er ” dependency repository

® UsesGroovy 2.X

® Uses Spock testing framework for testing

® Hasdirectoriesin the conventional locations for source code

® Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

17.3.6. “gr oovy- appl i cati on”

The“groovy-appl i cati on” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“groovy” plugin

® Usesthe“appl i cati on” plugin to produce a command-line application implemented using Groovy

® Usesthe“j cent er ” dependency repository

® UsesGroovy 2.X

® Uses Spock testing framework for testing

® Hasdirectoriesin the conventional locations for source code

® Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

17.3.7. “basic”

The“basi c¢” build init typeisuseful for creating afresh new Gradle project. It creates asample bui | d. gr adl ¢
file, with comments and links to help get started.

Thistype is used when no type was explicitly specified, and no type could be inferred.

Page 112 of 654

http://spockframework.org
http://spockframework.org

18

Writing Build Scripts
This chapter looks at some of the details of writing abuild script.

18.1. The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element.[®] Gradle assumes that each build scri pt is encoded
using UTF-8.

18.2. The Project API

In the tutorial in Chapter 46, Java Quickstart we used, for example, the appl y() method. Where does this
method come from? We said earlier that the build script defines a project in Gradle. For each project in the
build, Gradle creates an object of type Pr oj ect and associates this Pr oj ect object with the build script.
Asthe build script executes, it configuresthis Pr oj ect object:

®* Any method you call in your build script which is not
defined in the build script, is delegated to the Pr oj ect

Getting help writing

bject. : :
e . o build scripts
® Any property you access in your build script, which is not
defined in the build script, is delegated to the Pr oj ect Don't forget that your build
object. script is simply Groovy code

that drives the Gradle API. And

Let’stry this out and try to accessthe name property of the Pr oj ect the pr oj ect interface is your

object. starting point for accessing
everything in the Gradle API.
So, if you're wondering what
'tags' are available in your build
script, you can start with the
documentation for the Pr oj ect
interface.

Page 113 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html

Example 18.1. Accessing property of the Project object
buil d. gradl e

println name

println project.nane

Output of gr adl e -g check

> gradle -q check
pr oj ect Api
pr oj ect Api

Both pri nt | n statements print out the same property. The first uses auto-delegation to the Pr oj ect
object, for properties not defined in the build script. The other statement uses the pr oj ect property
available to any build script, which returns the associated Pr oj ect object. Only if you define a property or
amethod which has the same name as a member of the Pr oj ect object, would you need to use the pr oj ect

property.

18.2.1. Standard project properties

The Pr oj ect object provides some standard properties, which are available in your build script. The
following table lists afew of the commonly used ones.

Table 18.1. Project Properties

Name Type Default Value

proj ect Pr oj ect ThePr oj ect instance

name String The name of the project directory.

pat h String The absolute path of the project.
description String A description for the project.
projectDir File The directory containing the build script.
bui | dDi r File projectDir/build

group hj ect unspecified

version bj ect unspecified

ant Ant Bui | der An Ant Bui | der instance

Page 114 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/AntBuilder.html

18.3. The Script API

When Gradle executes a script, it compiles the script into a class which implements Scr i pt . This means
that all of the properties and methods declared by the Scr i pt interface are available in your script.

18.4. Declaring variables

There are two kinds of variables that can be declared in abuild script; local variables and extra properties.

18.4.1. Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are afeature of the underlying Groovy language.

Example 18.2. Using local variables

bui | d. gradl e

def dest = "dest"

task copy(type: Copy) {

from "source"
into dest

18.4.2. Extra properties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is
not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning
object’'sext property. Alternatively, an ext block can be used to add multiple properties at once.

Page 115 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Script.html

Example 18.3. Using extra properties

bui | d. gradl e
apply plugin: "java"

ext {
springVersion = "3.1. 0. RELEASE"
emai | Notification = "buil d@mster.org"

}

sourceSets.all { ext.purpose = null }

sourceSets {
mai n {
pur pose = "production”
}
test {
purpose = "test"
}
pl ugin {
pur pose = "production”
}
}

task printProperties {
doLast {
println springVersion
println enmail Notification
sourceSets. matching { it.purpose == "production” }.each { printlnit.na

Output of gradl e -qg printProperties

> gradle -q printProperties
3. 1. 0. RELEASE

bui | d@master. org

mai n

pl ugin

In this example, an ext block adds two extra properties to the pr oj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose tonul | (nul | isapermissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be
accessed from anywhere their owning object can be accessed, giving them a wider scope than local
variables. Extra properties on aproject are visible from its subprojects.

For further details on extra properties and their API, see the Ext r aPr oper t i esExt ensi on classin the
API documentation.

Page 116 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

18.5. Configuring arbitrary objects

Y ou can configure arbitrary objects in the following very readable way.

Example 18.4. Configuring arbitrary objects
bui |l d. gradl e

task configure {
doLast {
def pos = configure(new java.text.FieldPosition(10)) {
begi nl ndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos. endl ndex

Output of gradl e -g configure
> gradle -q configure

1
5

18.6. Configuring arbitrary objects using an
external script

Y ou can also configure arbitrary objects using an external script.

Page 117 of 654

Example 18.5. Configuring arbitrary objects using a script

bui | d. gradl e

task configure {
doLast {
def pos = new java.text.Fiel dPosition(10)

/1 Apply the script

apply from 'other.gradle', to: pos
println pos. begi nl ndex
println pos. endl ndex

ot her. gradl e

/] Set properties.

begi nl ndex = 1
endl ndex = 5

Output of gradl e -g configure
> gradle -q configure

1
5

18.7. Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write your build
script, and in particular, when you start to write custom plugins and tasks.

18.7.1. Groovy JDK
Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:
Example 18.6. Groovy JDK methods
bui |l d. gradl e

/'l lterable gets an each() nethod

configurations.runtine.each { File f -> printlin f }

Have alook at http://groovy-lang.org/gdk.html for more details.

18.7.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Page 118 of 654

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

Example 18.7. Property accessors

bui | d. gradl e

/'l Using a getter nethod
println project. buildDir
println getProject().getBuildDir()

/1 Using a setter method
project.buildDir = '"target'
getProject().setBuildDir('target"’)

18.7.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Example 18.8. Method call without parentheses
bui |l d. gradl e

test.systenProperty 'sone.prop', 'value'
test.systenProperty(' sone. prop', 'value')

18.7.4. List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

For instance, the “appl y” method (where you typicaly apply plugins) actually takes a map parameter.

(IR}

However, when you have alinelike “appl y plugi n:'java'”, you aren't actually using a map literal,
you're actually using “named parameters’, which have amost exactly the same syntax as a map literal
(without the wrapping brackets). That named parameter list gets converted to a map when the method is

called, but it doesn’t start out as a map.
Example 18.9. List and map literals

buil d. gradl e

I/ List literal
test.includes = ['org/gradle/api/**", '"org/gradle/internal/**"']

Li st<String> list = new ArrayLi st<String>()
l'ist.add(' org/gradle/api/**")

list.add(' org/gradle/internal/**")
test.includes = |ist

/1l Map literal.
Map<String, String> map = [keyl:'valuel', key2: 'value2']

/'l Groovy will coerce named argunents
// into a single map argunent

apply plugin: 'java'

Page 119 of 654

18.7.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. Y ou can find out more about closures here. When the last
parameter of amethod is a closure, you can place the closure after the method call:

Example 18.10. Closur e as method parameter

bui |l d. gradl e

repositories {
println "in a cl osure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

18.7.6. Closure delegate

Each closure has adel egat e abject, which Groovy uses to look up variable and method references which
are not local variables or parameters of the closure. Gradle uses thisfor configuration closures, where the del egz
object is set to the object to be configured.

Example 18.11. Closur e delegates
buil d. gradl e

dependenci es {
assert del egate == proj ect. dependenci es
testConmpile("junit:junit:4.12")

del egate.testConpile('junit:junit:4.12")

18.8. Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle
scripts. This means that instead of usingt hr ow new or g. gr adl e. api . t asks. St opExecut i onExcept
you canjust typet hr ow new St opExecuti onExcepti on() instead.

Listed below are the imports added to each script:

Gradledefault imports.

Unresol ved directive in <stdin> - include::../../../buil d/generated-resources/

[6] Any language element except for statement labels.

Page 120 of 654

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

19

More about Tasks

In the introductory tutorial (Chapter 16, Build Script Basics) you learned how to create simple tasks. You
also learned how to add additional behavior to these tasks later on, and you learned how to create
dependencies between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further.
Gradle supports enhanced tasks, which are tasks that have their own properties and methods. Thisis really
different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or
built into Gradle.

19.1. Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console Ul and via the
Tooling API (see Chapter 14, Embedding Gradle using the Tooling API). These |abels are based on if atask
has actions to execute, if it should execute those actions, if it did execute those actions and if those actions
made any changes.

Page 121 of 654

Table 19.1. Details about task outcomes

Outcome Description of Situationsthat have this outcome
label outcome

(no label) Task executed its ® Used whenever a task has actions and Gradle has
or EXECUTED actions. determined they should be executed as part of a build.
® Used whenever a task has no actions and some
dependencies, and any of the dependencies are executed.
See also Section 19.13, “Lifecycle tasks’.

UP- TO- DATE Task’s outputs did ® Used when atask has outputs and inputs and they have
not change. not changed. See Section 19.10, “Up-to-date checks
(AKA Incremental Build)”.
¢ Used when atask has actions, but the task tells Gradle it
did not change its outputs.
® Used when atask has no actions and some dependencies,
but all of the dependencies are up-to-date, skipped or
from cache. See also Section 19.13, “Lifecycletasks’.
® Used when atask has no actions and no dependencies.

FROM CACHE Task’s outputs ® Used when a task has outputs restored from the build

could be found cache. See Chapter 15, Build Cache.
from a previous
execution.
SKI PPED Task did not ® Used when a task has been explicitly excluded from the
execute its actions. command-line. See Section 4.2, “Excluding tasks’.

® Used when atask has an onl ylI f predicate return false.
See Section 19.9.1, “Using a predicate”.

NO- SOURCE Task did not need ¢ Used when atask has inputs and outputs, but no sources.
to execute its For example, source files are .java files for
actions. JavaConpi | e.

19.2. Defining tasks

We have already seen how to define tasks using a keyword style in Chapter 16, Build Script Basics. There
are afew variations on this style, which you may need to use in certain situations. For example, the keyword
style does not work in expressions.

Page 122 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 19.1. Defining tasks
buil d. gradl e

task(hell o) {
doLast {
println "hello"

}

}

task(copy, type: Copy) {
from(file(' srcDir'))
into(buildDir)

You can aso use strings for the task names:

Example 19.2. Defining tasks - using strings for task names
buil d. gradl e

task('hello") {
doLast {
println "hello"
}
}

task(' copy', type: Copy) {
from(file('srcDir"))
into(buildDr)

Thereis an aternative syntax for defining tasks, which you may prefer to use:

Example 19.3. Defining tasks with alter native syntax
buil d. gradl e

tasks.create(nane: 'hello') {
doLast {
println "hello"
}
}

t asks. create(nane: 'copy', type: Copy) {
from(file(' srchDir'))
into(buildDr)

Here we add tasksto thet asks collection. Have alook at TaskCont ai ner for more variations of thecr eat e
method.

Page 123 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskContainer.html

19.3. Locating tasks

Y ou often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a
property of the project, using the task name as the property name:

Example 19.4. Accessing tasks as properties

bui |l d. gradl e

task hello

println hello. nane
println project. hello.nane

Tasks are also available through the t asks collection.

Example 19.5. Accessing tasks via tasks collection
bui |l d. gradl e

task hello

println tasks. hell o. name
println tasks['hello'].nanme

Y ou can access tasks from any project using the task’s path using the t asks. get ByPat h() method. You
can call the get ByPat h() method with atask name, or arelative path, or an absolute path.

Example 19.6. Accessing tasks by path

bui | d. gradl e

project (' :projectA) {
task hello

}

task hello

println tasks.getByPath(' hello'). path

println tasks.getByPath(':hello').path

println tasks. getByPath(' projectA hello').path
println tasks.getByPath(':projectA hello').path

Output of gradl e -q hello

> gradle -q hello
chello

“hello

:projectA hello
:projectA hello

Have alook at TaskCont ai ner for more options for locating tasks.

Page 124 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskContainer.html

19.4. Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To create a Copy task for your build, you
can declare in your build script:
Example 19.7. Creating a copy task

bui | d. gradl e

task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “nyCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You'll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 19.8. Configuring atask - various ways

buil d. gradl e

Copy nyCopy = task(nyCopy, type: Copy)
nyCopy. from ' resour ces’

nyCopy.into 'target’
nyCopy.include(" **/*. txt"', "**/*. xm"', "**/* properties')

Thisis similar to the way we would configure objects in Java. Y ou have to repeat the context (ny Copy) in
the configuration statement every time. Thisis aredundancy and not very nice to read.

There is another way of configuring atask. It also preserves the context and it is arguably the most readable.
Itisusually our favorite.

Example 19.9. Configuring atask - with closure

bui |l d. gradl e
task myCopy(type: Copy)

my Copy {
from' resources'

into 'target’
include(" **/*. txt"', "**/*. xm"', "**/* properties')

Thisworks for any task. Line 3 of the example isjust a shortcut for thet asks. get ByNane() method. It
is important to note that if you pass a closure to the get ByNane() method, this closure is applied to
configure the task, not when the task executes.

Y ou can a'so use a configuration closure when you define a task.

Page 125 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html

Example 19.10. Defining a task with closure

buil d. gradl e

task copy(type: Copy) {
from' resources'

into 'target’
include(" **/*.txt", "**/*. xm', "**/* properties')

19.5. Adding dependenciesto

Don't forget about

atask the build phases
There are several ways you can define the dependencies of a A task has both configuration
task. In Section 16.5, “Task dependencies’ you were introduced and actions. When using the doLast
to defining dependencies using task names. Task names can , you are simply using a shortcut
refer to tasks in the same project as the task, or to tasks in other to define an action. Code
projects. To refer to a task in another project, you prefix the defined in the configuration
name of the task with the path of the project it belongs to. The section of your task will get
following is an example which adds a dependency from pr oj ect A: t ask&cuted during the
toproj ect B: t askY: configuration phase of the build

regardless of what task was
Example 19.11. Adding dependency on task from another project tgrgeted. See Chapter 22, The

bui | d. gradl e Build Lifecycle for more details
about the build lifecycle.

project (' projectA) {
task taskX(dependsOn: ':projectB:taskY') {
doLast {
println 'taskX

project (' projectB) {
task taskY {
doLast {
println 'taskY

Output of gradl e -qg taskX

> gradle -q taskX
taskY
taskX

Instead of using atask name, you can define a dependency using a Task object, as shown in this example:

Page 126 of 654

Example 19.12. Adding dependency using task object
buil d. gradl e

task taskX {
doLast {
println 'taskX
}
}

task taskY {
doLast {
println 'taskY

}

}

t askX. dependsOn taskY

Output of gradl e -qg taskX

> gradle -q taskX
taskyY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is
passed the task whose dependencies are being calculated. The closure should return a single Task or
collection of Task objects, which are then treated as dependencies of the task. The following example adds
adependency from t ask X to all the tasks in the project whose name startswith | i b:

Page 127 of 654

Example 19.13. Adding dependency using closure

bui | d. gradl e

task taskX {
doLast {
println 'taskX

}
}

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}

task libl {
doLast {
println "|ibl
}
}

task lib2 {
doLast {
println '[ib2
}
}

task not ALi b {
doLast {
println 'not ALi b’

}

Output of gradl e -qg taskX
> gradle -q taskX
libl
lib2
taskX

For more information about task dependencies, seethe Task API.

19.6. Ordering tasks

Task ordering is an incubating feature. Please be aware that this feature may change in later Gradle
versions.

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between atask ordering and atask dependency is
that an ordering rule does not influence which tasks will be executed, only the order in which they will be
executed.

Task ordering can be useful in a number of scenarios:

Page 128 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html

* Enforce sequential ordering of tasks: e.g. 'build’ never runs before 'clean'.

® Run build validations early in the build: e.g. validate | have the correct credentials before starting the
work for arelease build.

* Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests
should run before integration tests.

® A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the
outputs of all executed test tasks.

There are two ordering rules available: “ must run after” and “ should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. This is expressed ast askB. nust RunAf t er (t askA) .
The “should run after” ordering ruleis similar but less strict as it will be ignored in two situations. Firstly if
using that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of
a task have been satisfied apart from the “should run after” task, then this task will be run regardless of
whether its “should run after” dependencies have been run or not. Y ou should use “should run after” where
the ordering is helpful but not strictly required.

With these rules present it is still possible to execute t ask A without t askB and vice-versa.

Example 19.14. Adding a 'must run after' task ordering
buil d. gradl e

task taskX {
doLast {
println 'taskX
}

}
task taskY {

doLast {
println 'taskY

}

}
taskY. must RunAfter taskX

Output of gradl e -qg taskY taskX
> gradle -q taskY taskX

taskX
t askY

Page 129 of 654

Example 19.15. Adding a 'should run after' task ordering
buil d. gradl e

task taskX {
doLast {
println 'taskX
}

}
task taskY {

doLast {
println 'taskY

}

}
t askY. shoul dRunAfter taskX

Output of gr adl e -g taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute t ask'Y without causing t ask X to run:

Example 19.16. Task ordering does not imply task execution
Output of gradl e -qg taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter (java.l ang. Object[]) and

Task. shoul dRunAfter(java.l ang. Obj ect[]) methods. These methods accept atask instance, a
task name or any other input accepted by Task. dependsOn(j ava. | ang. Gbj ect[]).

Note that “B. must RunAfter (A)” or “B. shoul dRunAfter (A)” does not imply any execution
dependency between the tasks:

® |t is possible to execute tasks A and B independently. The ordering rule only has an effect when both
tasks are scheduled for execution.
®* Whenrunwith - - conti nue, itispossible for B to execute in the event that A fails.

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Page 130 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 19.17. A 'should run after' task orderingisignored if it introducesan ordering cycle

bui | d. gradl e

task taskX {
doLast {
println 'taskX

}

}
task taskY {

doLast {
println 'taskY
}

}
task taskz {

doLast {
println 'taskZ
}

}
t askX. dependsOn t askY

t askY. dependsOn t askZ
t askZ. shoul dRunAfter taskX

Output of gradl e -qg taskX

> gradle -q taskX
taskz
taskY
taskX

19.7. Adding a description to atask

Y ou can add a description to your task. This description is displayed when executing gr adl e t asks.

Example 19.18. Adding a description to a task

bui | d. gradl e

task copy(type: Copy) {

description ' Copies the resource directory to the target

from'resources'
into 'target’

include(' **/*. txt"', "**/* xm",

directory.'

"*x[* properties')

19.8. Replacing tasks

Sometimes you want to replace atask. For example, if you want to exchange atask added by the Java plugin

with a custom task of a different type. Y ou can achieve this with:

Page 131 of 654

Example 19.19. Overwriting a task
buil d. gradl e

task copy(type: Copy)

task copy(overwite: true) ({
doLast {
printin('l amthe new one."')

}

Output of gr adl e -q copy

> gradle -q copy
| amthe new one

This will replace a task of type Copy with the task you’ve defined, because it uses the same name. When
you define the new task, you have to set the over wri t e property to true. Otherwise Gradle throws an
exception, saying that atask with that name already exists.

19.9. Skipping tasks

Gradle offers multiple ways to skip the execution of atask.

19.9.1. Using a predicate

You can use the onl ylI f () method to attach a predicate to atask. The task’s actions are only executed if
the predicate evaluates to true. Y ou implement the predicate as a closure. The closure is passed the task as a
parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Example 19.20. Skipping a task using a predicate

bui |l d. gradl e

task hello {
doLast {
println 'hello world'

}

}

hel l o.onlylf { !project. hasProperty('skipHello") }

Output of gr adl e hel | o - Pski pHel | o

> gradle hello -PskipHello
> hell o SKI PPED

BUI LD SUCCESSFUL in Os

Page 132 of 654

19.9.2. Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcepti on. If this exception is thrown by an action, the further execution of this
action as well as the execution of any following action of this task is skipped. The build continues with
executing the next task.

Example 19.21. Skipping tasks with StopExecutionException
bui |l d. gradl e

task conpile {
doLast {
println "W are doing the conpile.'
}
}

conpi | e. doFi rst {
/'l Here you would put arbitrary conditions in real life.

/] But this is used in an integration test so we want defined behavi or.
if (true) { throw new StopExecutionException() }

}
task nmyTask(dependsOn: 'conpile') {
doLast {
println 'I amnot affected

}

Output of gr adl e -g myTask

> gradle -q nyTask
| am not affected

Thisfeature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution
of the built-in actions of such a task.l”]

19.9.3. Enabling and disabling tasks

Every task has an enabl ed flag which defaultsto t r ue. Setting it to f al se prevents the execution of any
of thetask’s actions. A disabled task will be labelled SKIPPED.

Page 133 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 19.22. Enabling and disabling tasks

bui | d. gradl e

task di sabl eMe {
doLast {
println 'This should not be printed if the task is disabl ed.

}
}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e di sabl eMe
: di sabl eMe SKI PPED

BUI LD SUCCESSFUL in Os

19.10. Up-to-date checks (AKA Incrementd
Build)

An important part of any build tool is the ability to avoid doing work that has already been done. Consider
the process of compilation. Once your source files have been compiled, there should be no need to
recompile them unless something has changed that affects the output, such as the modification of a source
file or the removal of an output file. And compilation can take a significant amount of time, so skipping the
step when it’s not needed saves alot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have amost
certainly already seen it in action: it's active nearly every time the UP- TO- DATE text appears next to the
name of atask when you run abuild. Task outcomes are described in Section 19.1, “Task outcomes”.

How does incremental build work? And what does it take to make use of it in your own tasks? Let’s take a
look.

19.10.1. Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the compilation
example from earlier, we can see that the source files are the inputs and, in the case of Java, the generated
class files are the outputs. Other inputs might include things like whether debug information should be
included.

Page 134 of 654

Figure 19.1. Example task inputsand outputs

Green: inputs

Blue: outputs
Target JDK
version \
Source JavaCompile —————P Class files
files I task

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from the
previous figure. Different bytecode is generated depending on the content of the source files and the
minimum version of the Java runtime you want to run the code on. That makes them task inputs. But

whether compilation has 500MB or 600M B of maximum memory available, determined by the menor y Maxi nur

property, has no impact on what bytecode gets generated. In Gradle terminology, menor yMaxi nuntSi ze
isjust an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed since the
last build. If they haven't, Gradle can consider the task up to date and therefore skip executing its actions.
Also note that incremental build won't work unless atask has at least one task output, although tasks usually
have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are inputs and
which are outputs. If atask property affects the output, be sure to register it as an input, otherwise the task
will be considered up to date when it's not. Conversely, don't register properties as inputs if they don’t
affect the output, otherwise the task will potentially execute when it doesn’t need to. Also be careful of
non-deterministic tasks that may generate different output for exactly the same inputs: these should not be
configured for incremental build as the up-to-date checks won't work.

Let’s now look at how you can register task properties as inputs and outputs.

Custom task types

If you're implementing a custom task as a class, then it takes just two steps to make it work with incremental
build:

1. Create typed properties (via getter methods) for each of your task inputs and outputs

2. Add the appropriate annotation to each of those properties

Annotations must be placed on getters or on Groovy properties. Annotations placed on setters, or on a

Page 135 of 654

Javafield without a corresponding annotated getter are ignored.

Gradle supports three main categories of inputs and outputs:

® Simplevalues
Things like strings and numbers. More generally, a simple value can have any type that implements Ser i al i

* Filesystem types
These consist of the standard Fi | e class but also derivatives of Gradle's Fi | eCol | ecti on type and
anything else that can be passed to either the Proj ect. fil e(j ava. | ang. Obj ect) method - for
singlefile/directory properties- or the Pr oj ect . fi |l es(j ava. | ang. Obj ect[]) method.

® Nested values
Custom types that don’t conform to the other two categories but have their own properties that are inputs
or outputs. In effect, the task inputs or outputs are nested inside these custom types.

As an example, imagine you have a task that processes templates of varying types, such as FreeMarker,
Velocity, Moustache, etc. It takes template source files and combines them with some model data to
generate populated versions of the template files.

Thistask will have three inputs and one output:

* Template source files

* Mode data

* Template engine

® Where the output files are written

When you' re writing a custom task class, it's easy to register properties as inputs or outputs via annotations.
To demonstrate, here is a skeleton task implementation with some suitable inputs and outputs, along with
their annotations:

Example 19.23. Custom task class

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl ates. j ava

Page 136 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

package org. exanpl e;

i nport java.io.File;

i nport java.util.Hashap;

i mport org.gradle.api.*;
inport org.gradle.api.file.*;
i nport org.gradl e.api.tasks. *;

public class ProcessTenpl ates extends Defaul t Task {
private Tenpl at eEngi neType t enpl at eEngi ne;
private FileCollection sourceFiles;
private Tenpl ateData tenpl at eDat a;
private File outputDir;

@ nput
publ i ¢ Tenpl at eEngi neType get Tenpl at eEngi ne() {
return this.tenpl at eEngi ne;

}

@nput Fi | es
public FileCollection getSourceFiles() {
return this.sourceFiles;

}

@\Nest ed
public Tenpl at eData get Tenpl ateDat a() {
return this.tenpl atebData;

}

@ut put Di rectory
public File getQutputDir() { return this.outputDir; }

[l + setter nethods for the above - assune we’ve defined them
@askAction

public void processTenpl ates() {
Il

}

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ Tenpl at eDat a. j ava

Page 137 of 654

package org. exanpl e;

i nport java.util.HashMap;
i nport java.util.Mp;
i mport org.gradl e.api.tasks.|nput;

public class Tenpl ateData {
private String namne;
private Map<String, String> vari abl es;

public Tenpl ateData(String name, Map<String, String> variables) {
thi s. name = nane;
this.variabl es = new HashMap<>(vari abl es);

}

@ nput
public String getName() { return this.name; }

@ nput
public Map<String, String> getVariables() {
return this.variabl es;

}

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
: processTenpl at es

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
: processTenpl at es UP- TO- DATE

BU LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There' s plenty to talk about in this example, so let’s work through each of the input and output propertiesin
turn:

® tenpl at eEngi ne
Represents which engine to use when processing the source templates, e.g. FreeMarker, Velocity, etc.
You could implement this as a string, but in this case we have gone for a custom enum as it provides
greater type information and safety. Since enums implement Ser i al i zabl e automatically, we can
treat this as asimple value and use the @ nput annotation, just aswe would witha St r i ng property.

® sourceFiles
The source templates that the task will be processing. Single files and collections of files need their own
special annotations. In this case, we're dealing with a collection of input files and so we usethe @ nput Fi | e
annotation. You'll see more file-oriented annotations in atable later.

® tenpl at eDat a
For this example, we're using a custom class to represent the model data. However, it does not

Page 138 of 654

implement Seri al i zabl e, so we can’t use the @ nput annotation. That's not a problem as the

properties within Tenpl at eDat a - a string and a hash map with serializable type parameters - are
seridizable and can be annotated with @ nput . We use @\est ed ont enpl at eDat a to let Gradle
know that thisis avalue with nested input properties.

® outputDir

The directory where the generated files go. As with input files, there are several annotations for output
files and directories. A property representing a single directory requires @ut put Di rect ory. You'll

|learn about the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template engine,
model data or generated files have changed since the previous time Gradle executed the task. Thiswill often
save a significant amount of time. Y ou can learn how Gradle detects changes | ater.

This example is particularly interesting because it works with collections of source files. What happens if
only one source file changes? Does the task process al the source files again or just the modified one? That
depends on the task implementation. If the latter, then the task itself is incremental, but that’s a different
feature to the one we' re discussing here. Gradle does help task implementers with this viaits incremental task inpt

feature.

Now that you have seen some of the input and output annotations in practice, let’s take a look at all the
annotations available to you and when you should use them. The table below lists the available annotations
and the corresponding property type you can use with each one.

Table 19.2. Incremental build property type annotations

Annotation

@ nput

@nputFile

@nputDirectory

@nputFiles

Expected property type

Any serializable type

File*

Fil e*

| terabl e<Fil e>*

Description

A simple input value

A singleinput file (not directory)

A singleinput directory (not file)

An iterable of input files and directories

Page 139 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Input.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/InputFile.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/InputDirectory.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/InputFiles.html

@ asspath It erabl e<Fi | e>* An iterable of input files and directories that
represent a Java classpath. This allows the
task to ignore irrelevant changes to the
property, such as different names for the
same files. It is similar to annotating the
property @at hSensi ti ve(RELATI VE)
but it will ignore the names of JAR files
directly added to the classpath, and it will
consider changes in the order of the filesas a
change in the classpath. Gradle will inspect
the contents of jar files on the classpath and
ignore changes that do not affect the
semantics of the classpath (such as file dates
and entry order). See also the section called
“Using the classpath annotations’.

The @l asspat h annotation was
introduced in Gradle 3.2. To stay
compatible with earlier Gradle
versions, classpath properties should
also be annotated with @ nput Fi | es

Page 140 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Classpath.html

@conpi | eC asspath

@ut putFile

@ut put Di rectory

| terabl e<Fil e>*

File*

Fil e*

An iterable of input files and directories that
represent a Java compile classpath. This
allows the task to ignore irrelevant changes
that do not affect the API of the classes in
classpath. See also the section called “Using
the classpath annotations’.

The following kinds of changes to the
classpath will be ignored:

® Changes to the path of jar or top level
directories.

® Changes to timestamps and the order of
entriesin Jars.

¢ Changes to resources and Jar manifests,
including adding or removing resources.

® Changes to private class elements, such
as private fields, methods and inner
classes.

® Changes to code, such as method bodies,
static initializers and field initializers
(except for constants).

® Changes to debug information, for
example when a change to a comment
affects the line numbers in class debug
information.

® Changes to directories, including
directory entriesin Jars.

The @Conpi | eCl asspat h
annotation was introduced in Gradle
3.4. To stay compatible with Gradle
3.3 and 3.2, compile -classpath
properties should also be annotated
with @Cl asspat h. For compatibility
with Gradle versions before 3.2 the
property should also be annotated with @ nput Fi

A single output file (not directory)

A single output directory (not file)

Page 141 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/CompileClasspath.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/OutputFile.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/OutputDirectory.html

@ut put Fi |l es Map<String, File> An iterable of output files (no directories).
** or| t erabl e<Fi | e> Thetask outputs can only be cached if a Map
* is provided.

@utputDirectories Mp<String, File> An iterable of output directories (no files).
**or|terabl e<Fi | e> Thetask outputs can only be cached if a Map

* is provided.
@pest r oys Fil eorlterabl e<Fi| exSpecifies one or more files that are removed
* by thistask. Note that atask can define either

inputs/outputs or destroyables, but not both.

@ocal State Fil eorlterabl e<Fi| exSpecifies one or more files that represent the local sta
* . These files are removed when the task is
loaded from cache.

@\est ed Any custom type A custom type that may not implement Seri al i zal
but does have at least one field or property
marked with one of the annotations in this
table. It could even be another @\est ed.

@consol e Any type Indicates that the property is neither an input
nor an output. It simply affects the console
output of the task in some way, such as
increasing or decreasing the verbosity of the
task.

@ nt er nal Any type Indicates that the property is used internally
but is neither an input nor an output.

Infact, Fi | e can be any type accepted by Proj ect . fil e(j ava. | ang. Obj ect) andlterabl e<Fi |
can be any type accepted by Proj ect. fil es(java. |l ang. Obj ect[]) . Thisincludes instances

of Cal | abl e, such as closures, alowing for lazy evaluation of the property values. Be aware that the
typesFi | eCol | ectionandFi | eTree arel t er abl e<Fi | e>s.

**

Similar to the above, Fi | e can be any type accepted by Proj ect. fil e(j ava. | ang. Obj ect).
The Map itself can bewrapped in Cal | abl es, such as closures.

Page 142 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/OutputFiles.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/OutputDirectories.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Destroys.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/LocalState.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Table 19.3. Additional annotations used to further qualifying property type annotations

Annotation Description

@5ki pWwhenEnpty Used with @ nput Fi | es or @ nput Di r ect ory to tell Gradle to skip the
task if the corresponding files or directory are empty, along with al other input
files declared with this annotation. Tasks that have been skipped due to all of
their input files that were declared with this annotation being empty will result in
adistinct “no source” outcome. For example, NO- SOURCE will be emitted in the
console output.

@Dpt i onal Used with any of the property type annotations listed in the Opt i onal API
documentation. This annotation disables validation checks on the corresponding
property. See the section on validation for more details.

@at hSensi tive Usedwithany input file property to tell Gradle to only consider the given part of
the file paths as important. For example, if a property is annotated with @at hSensi t i
, then moving the files around without changing their contents will not make the
task out-of-date.

Annotations are inherited from all parent types including implemented interfaces. Property type annotations
override any other property type annotation declared in a parent type. Thisway an @ nput Fi | e property
can beturned into an @ nput Di r ect or y property in achild task type.

Annotations on a property declared in a type override similar annotations declared by the superclass and in
any implemented interfaces. Superclass annotations take precedence over annotations declared in
implemented interfaces.

The Consol e and | nt er nal annotations in the table are special cases as they don’'t declare either task
inputs or task outputs. So why use them? It’ s so that you can take advantage of the Java Gradle Plugin Developme
to help you develop and publish your own plugins. This plugin checks whether any properties of your
custom task classes lack an incremental build annotation. This protects you from forgetting to add an
appropriate annotation during development.

Using the classpath annotations

Besides @ nput Fi | es, for IVM-related tasks Gradle understands the concept of classpath inputs. Both
runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with @ nput Fi | es, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and jar files on
the classpath itself are ignored. Timestamps and the order of class files and resources inside jar files on a
classpath are ignored, too, thus recreating a jar file with different file dates will not make the task out of
date.

Runtime classpaths are marked with @ asspat h, and they offer further customization via classpath normalizati

Page 143 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Classpath.html

Input properties annotated with @Conpi | eCl asspat h are considered Java compile classpaths.
Additionally to the aforementioned general classpath rules, compile classpaths ignore changes to everything
but class files. Gradle uses the same class analysis described in Section 47.13, “Compile avoidance” to
further filter changes that don’t affect the class' ABIs. This means that changes which only touch the
implementation of classes do not make the task out of date.

Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental build, but
you don’'t always have that option. That's why Gradle also provides an alternative APl that can be used with
any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for scenarios
just like that. It can also be used for ad-hoc tasks, as you'll see next.

Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on every Gradle
task:

® Task. get | nputs() of typeTaskl nput s
* Task. get Qut put s() of type TaskQut put s
® Task. get Dest royabl es() of type TaskDest r oyabl es

These objects have methods that allow you to specify files, directories and values which constitute the task’s
inputs and outputs. In fact, the runtime APl has almost feature parity with the annotations. All it lacks is
validation of whether declared files are actually files and declared directories are directories. Nor will it
create output directoriesif they don’t exist. But that’ s it.

Let’s take the template processing example from before and see how it would look as an ad-hoc task that
uses the runtime API:

Page 144 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/CompileClasspath.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskDestroyables.html

Example 19.24. Ad-hoc task

bui | d. gradl e

task processTenpl at esAdHoc {
i nputs. property("engine", Tenpl at eEngi neType. FREEMARKER)
inputs.files(fileTree("src/tenplates"))
i nputs. property("tenpl ateDat a. nane"”, "docs")
i nputs. property("tenpl ateData. vari abl es", [year: 2013])
out put s. di r (" $bui | dDi r/ genCut put 2")

doLast {
/'l Process the tenpl ates here

}

Output of gr adl e processTenpl at esAdHoc

> gradl e processTenpl at esAdHoc
: processTenpl at esAdHoc

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for this as
it's a non-trivial implementation that has several configuration options. In this case, there are no task
properties to store the root source folder, the location of the output directory or any of the other settings.
That's deliberate to highlight the fact that the runtime API doesn’t require the task to have any state. In
terms of incremental build, the above ad-hoc task will behave the same as the custom task class.

All theinput and output definitions are done through the methods oni nput s and out put s, suchasproperty
,files(),anddir (). Gradle performs up-to-date checks on the argument values to determine whether

the task needs to run again or not. Each method corresponds to one of the incremental build annotations, for
examplei nput s. property() mapsto @ nput and out puts. di r () mapsto @ut put Di rect ory

. The only differenceisthat thefil e(),files(),dir() anddirs() methodsdon't validate the type

of file object at the given path (file or directory), unlike the annotations.

Thefilesthat atask removes can be specified through dest r oyabl es. regi ster ().

Example 19.25. Ad-hoc task declaring a destroyable
buil d. gradl e

task renmoveTempDir {
destroyabl es.register("$projectDir/tnpDir")
doLast {

del ete("$projectDir/tnpDir")

}

One notable difference between the runtime APl and the annotations is the lack of a method that
corresponds directly to @Nest ed. That's why the example uses two property() declarations for the

Page 145 of 654

template data, one for each Tenpl at eDat a property. You should utilize the same technique when using

the runtime API with nested values. Any given task can either declare destroyables or inputs/outputs, but
cannot declare both.

Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task class that
lacks the requisite annotations. For example, imagine that the Pr ocessTenpl at es task is provided by a
plugin and that it's missing the incremental build annotations. In order to make up for that deficiency, you
can use the runtime API:

Example 19.26. Using runtime API with custom task type

bui |l d. gradl e

task processTenpl atesRunti ne(type: ProcessTenpl at esNoAnnot ati ons) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEVARKER
sourceFiles = fileTree("src/tenpl ates")
tenpl ateData = new Tenpl ateData("test", [year: 2014])
outputDir = file("$buil dDi r/genCut put 3")

i nputs. property("engi ne", tenpl at eEngi ne)

inputs.fil es(sourceFil es)

i nputs. property("tenpl ateDat a. nane"”, tenpl at eDat a. nane)

i nputs. property("tenpl ateDat a. vari abl es”, tenpl ateDat a. vari abl es)
outputs.dir(outputDir)

Output of gr adl e processTenpl at esRunti me

> gradl e processTenpl at esRunti e
:processTenpl at esRunti me

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at esRunti me

> gradl e processTenpl at esRunti ne
: processTenpl at esRunti me UP- TO DATE

BU LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

As you can see, we can both configure the tasks properties and use those properties as arguments to the
incremental build runtime API. Using the runtime API likethisisalittlelikeusing doLast () and doFi r st ()
to attach extra actions to a task, except in this case we're attaching information about inputs and outputs.
Note that if the task type is already using the incremental build annotations, the runtime API will add inputs
and outputs rather than replace them.

Fine-grained configuration

The runtime APl methods only allow you to declare your inputs and outputs in themselves. However, the
file-oriented ones return a builder - of type Taskl nput Fi | ePr opert yBui | der - that lets you provide
additional information about those inputs and outputs.

Page 146 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

You can learn about all the options provided by the builder in its API documentation, but we'll show you a
simple example here to give you an idea of what you can do.

Let's say we don’t want to run the pr ocessTenpl at es task if there are no source files, regardless of
whether it's a clean build or not. After all, if there are no source files, there’ s nothing for the task to do. The
builder alows usto configure this like so:

Example 19.27. Using skipWhenEmpty() via the runtime API
bui |l d. gradl e

task processTenpl at esRunti neConf (type: ProcessTenpl at esNoAnnot ati ons) {
I/
sourceFiles = fileTree("src/tenplates”) {
include "**/* fnf

}

inputs.fil es(sourceFiles). skipWenEmpty()
[/

Output of gr adl e cl ean processTenpl at esRunt i meConf

> gradl e cl ean processTenpl at esRunti meConf
: processTenpl at esRunt i meConf NO SOURCE

BUI LD SUCCESSFUL in 0Os
1 actionable task: 1 up-to-date

The Taskl nput s. fil es() method returns a builder that has a ski pWhenEnpt y() method. Invoking
this method is equivalent to annotating to the property with @ki pWhenEnpt y.

Prior to Gradle 3.0, you had to use the Taskl nput s. source() and Taskl nputs. sourcebDir ()
methods to get the same behavior as with ski pWhenEnpt y() . These methods are now deprecated and
should not be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which API you
should be using. Our recommendation is to use the annotations wherever possible, and it’s sometimes worth
creating a custom task class just so that you can make use of them. The runtime API is more for situationsin
which you can’'t use the annotations.

Important beneficial side effects

Once you declare atask’s formal inputs and outputs, Gradle can then infer things about those properties. For
example, if an input of one task is set to the output of another, that means the first task depends on the
second, right? Gradle knows this and can act upon it.

WE'll look at this feature next and also some other features that come from Gradle knowing things about
inputs and outputs.

Page 147 of 654

Inferred task dependencies

Consider an archive task that packages the output of the pr ocessTenpl at es task. A build author will

see that the archive task obviously requires pr ocessTenpl at es to run first and so may add an explicit depen
. However, if you define the archive task like so:

Example 19.28. Inferred task dependency via task outputs

bui |l d. gradl e

t ask packageFiles(type: Zip) {
from processTenpl at es. out put s

}

Output of gr adl e cl ean packageFil es

> gradl e cl ean packageFil es
i processTenpl at es
: packageFi | es

BUI LD SUCCESSFUL in Os
3 actionabl e tasks: 2 executed, 1 up-to-date

Gradle will automatically make packageFi | es depend on pr ocessTenpl at es. It can do this because
it's aware that one of the inputs of packageFiles requires the output of the processTemplates task. We call
this an inferred task dependency.

The above example can also be written as

Example 19.29. Inferred task dependency via atask argument
bui |l d. gradl e

t ask packageFil es2(type: Zip) {
from processTenpl at es

}

Output of gr adl e cl ean packageFil es2
> gradl e cl ean packageFil es2
: processTenpl at es

: packageFi | es2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Thisis because the f r on{) method can accept a task object as an argument. Behind the scenes, f r om()
uses the proj ect.fil es() method to wrap the argument, which in turn exposes the task’s formal
outputs as afile collection. In other words, it’'s a special casel

Input and output validation
The incrementa build annotations provide enough information for Gradle to perform some basic validation

on the annotated properties. In particular, it does the following for each property before the task executes:

Page 148 of 654

® @nput Fil e - verifies that the property has a value and that the path corresponds to a file (not a
directory) that exists.

* @nputDirectory -sameasfor @ nput Fi | e, except the path must correspond to a directory.

® @ut put Directory - verifies that the path doesn’'t match a file and also creates the directory if it
doesn’t already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to inputs and
outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may validly
not exist. That's why Gradle provides the @)pt i onal annotation: you use it to tell Gradle that a particular
input is optional and therefore the build should not fail if the corresponding file or directory doesn't exist.

Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what files atask
depends on, it can automatically run atask again if any of its inputs change. By activating continuous build
when you run Gradle - through the - - cont i nuous or -t options - you will put Gradle into a state in
which it continually checks for changes and executes the requested tasks when it encounters such changes.

Y ou can find out more about this feature in Chapter 10, Continuous build.

Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make decisions
about how to run tasks when the "--parallel” option is used. For instance, Gradle will inspect the outputs of
tasks when selecting the next task to run and will avoid concurrent execution of tasks that write to the same
output directory. Similarly, Gradle will use the information about what files a task destroys (e.g. specified
by the Dest r oys annotation) and avoid running a task that removes a set of files while another task is
running that consumes or creates those same files (and vice versa). It can also determine that a task that
creates a set of files has aready run and that a task that consumes those files has yet to run and will avoid
running a task that removes those files in between. By providing task input and output information in this
way, Gradle can infer creation/consumption/destruction relationships between tasks and can ensure that task
execution does not violate those relationships.

19.10.2. How does it work?

Before atask is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the
paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task
completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files
and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If
the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and
skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for the next
time the task is executed.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions, or its
dependencies change between executions, Gradle considers the task as out-of-date.

Page 149 of 654

Gradle understands if afile property (e.g. one holding a Java classpath) is order-sensitive. When comparing
the snapshot of such a property, even a change in the order of the files will result in the task becoming
out-of-date.

Note that if atask has an output directory specified, any files added to that directory since the last time it
was executed are ignored and will NOT cause the task to be out of date. Thisis so unrelated tasks may share
an output directory without interfering with each other. If this is not the behaviour you want for some
reason, consider using TaskQut put s. upToDat eWhen(gr oovy. | ang. Cl osur)

Theinputs for the task are also used to calculate the build cache key used to load task outputs when enabled.
For more details see Section 15.3, “Task Output Caching”.

19.10.3. Advanced techniques

Everything you' ve seen so far in this section will cover most of the use cases you'll encounter, but there are
some scenarios that need special treatment. We'll present afew of those next with the appropriate solutions.

Adding your own cached input/output methods

Have you ever wondered how thef r om() method of the Copy task works? It's not annotated with @ nput Fi | «
and yet any files passed to it are treated as formal inputs of the task. What' s happening?

The implementation is quite simple and you can use the same technique for your own tasks to improve their
APIs. Write your methods so that they add files directly to the appropriate annotated property. As an
example, here’s how to add a sources() method to the custom ProcessTenpl at es class we
introduced earlier:

Page 150 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Example 19.30. Declaring a method to add task inputs

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

public class ProcessTenpl ates extends Defaul t Task {
Il
private FileCollection sourceFiles = getProject().files();

@ski pwhenEnpt y

@nput Fi | es

@rat hSensi ti ve(Pat hSensi ti vity. NONE)

public FileCollection getSourceFiles() {
return this.sourceFiles;

}

public void sources(FileCollection sourceFiles) {
this.sourceFiles = this.sourceFiles.plus(sourceFiles);

}

Il

bui | d. gradl e

task processTenpl ates(type: ProcessTenpl ates) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
tenpl ateData = new Tenpl ateData("test”, [year: 2012])
outputDir = file("$buildD r/genCutput")

sources fileTree("src/tenpl ates")

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
:processTenpl at es

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

In other words, as long as you add values and files to formal task inputs and outputs during the configuration
phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can usethe pr oj ect . fi
method like so:

Page 151 of 654

Example 19.31. Declaring a method to add a task asan input

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

Il
public void sources(Task inputTask) {
this.sourceFiles = this.sourceFiles.plus(getProject().files(inputTask));

bui | d. gradl e

task copyTenpl ates(type: Copy) ({
into "$buildDir/tnp"
from"src/tenpl at es"

}

task processTenpl ates2(type: ProcessTenpl ates) {
Il
sources copyTenpl at es

Output of gr adl e processTenpl at es2

> gradl e processTenpl at es2
:copyTenpl at es
: processTenpl at es2

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

This technique can make your custom task easier to use and result in cleaner build files. As an added benefit,
our use of getProject().files() means that our custom method can set up an inferred task
dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs, like this
example, consider using the built-in Sour ceTask. It will save you having to implement some of the
plumbing that we put into Pr ocessTenpl at es.

Linking an @ut put Di rect ory toan @ nput Fi | es

When you want to link the output of one task to the input of another, the types often match and a simple
property assignment will provide that link. For example, aFi | e output property can be assignedtoaFi | e
input.

Unfortunately, this approach breaks down when you want the files in a task’s @ut put Di r ect ory (of
type Fi | e) to become the source for another task’s @ nput Fi | es property (of typeFi | eCol | ecti on
). Since the two have different types, property assignment won’'t work.

As an exampl e, imagine you want to use the output of a Java compilation task - viathe desti nati onDi r
property - as the input of a custom task that instruments a set of files containing Java bytecode. This custom
task, which we'll call | nstrunent , hasacl assFi | es property annotated with @ nput Fi | es. You
might initially try to configure the task like so:

Page 152 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.SourceTask.html

Example 19.32. Failed attempt at setting up an inferred task dependency
buil d. gradl e
apply plugin: "java"

task badl nstrument Cl asses(type: Instrument) {

classFiles = fil eTree(conpil eJava. desti nati onbDir)
destinationDir = file("$buildDir/instrunmented")

Output of gr adl e cl ean badl nstrument C asses

> gradl e cl ean badl nstrunent C asses
:cl ean UP- TO- DATE
: badl nstrument d asses NO SOURCE

BU LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’'s nothing obviously wrong with this code, but you can see from the console output that the
compilation task is missing. In this case you would need to add an explicit task dependency between i nst r unen
and conpi | eJava viadependsOn. Theuse of fil eTree() means that Gradle can't infer the task
dependency itself.

One solutionisto usethe TaskQut put s. fi | es property, as demonstrated by the following example:
Example 19.33. Setting up an inferred task dependency between output dir and input files

bui | d. gradl e

task instrunentd asses(type: Instrunment) ({
cl assFiles = conpil eJava. outputs.files

destinationDir = file("$buildDir/instrunmented")

Output of gr adl e cl ean i nstrument Cl asses

> gradl e cl ean instrunmentC asses
:cl ean UP- TO DATE

:conpi | eJava

sinstrunent d asses

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Alternatively, you can get Gradle to access the appropriate property itself by using the proj ect . fi l es()
method in place of proj ect.fil eTree():

Page 153 of 654

Example 19.34. Setting up an inferred task dependency with files()
buil d. gradl e

task instrunmentd asses2(type: Instrunment) {
classFiles = fil es(conpil eJava)

destinationDir = file("$buildDir/instrunmented")

Output of gr adl e cl ean i nstrunment Cl asses2

> gradl e clean instrumentd asses2
:cl ean UP- TO DATE

:conpi | eJava

sinstrunent d asses2

BUI LD SUCCESSFUL in Os
3 actionabl e tasks: 2 executed, 1 up-to-date

Remember that f i | es() can take tasks as arguments, whereasf i | eTr ee() cannot.

The downside of this approach isthat al file outputs of the source task become the input files of the target - i nst |
in this case. That's fine aslong as the source task only has a single file-based output, like the JavaConpi | e
task. But if you have to link just one output property among several, then you need to explicitly tell Gradle
which task generates the input files using the bui | t By method:

Example 19.35. Setting up an inferred task dependency with builtBy()

bui | d. gradl e

task instrunmentd assesBuil tBy(type: Instrunment) ({
classFiles = fil eTree(conpil eJava. destinationDir) {
bui | t By conpi |l eJava

}

destinationDir = file("$buildDir/instrunmented")

Output of gr adl e cl ean i nstrument C assesBui | t By

> gradl e cl ean instrunentd assesBuil t By
:clean UP-TO DATE

:conpi | eJava

rinstrunent Cl assesBui |l t By

BUI LD SUCCESSFUL in Os
3 actionabl e tasks: 2 executed, 1 up-to-date

You can of course just add an explicit task dependency via dependsOn, but the above approach provides
more semantic meaning, explaining why conpi | eJava hasto run beforehand.

Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task output is
something else entirely? Perhaps it’s an update to a web service or a database table. Gradle has no way of
knowing how to check whether the task is up to date in such cases.

Page 154 of 654

That's where the upToDat eWhen() method on TaskQut put s comesin. This takes a predicate function
that is used to determine whether a task is up to date or not. One use case is to disable up-to-date checks
completely for atask, like so:

Example 19.36. Ignoring up-to-date checks

bui |l d. gradl e

task al waysl nstrument Cl asses(type: Instrunment) {
classFiles = files(conpil eJava)

destinationDir = file("$buildDir/instrunmented")
out put s. upToDat eWhen { fal se }

Output of gr adl e cl ean al waysl nstrunent C asses

> gradl e clean al waysl nstrunent C asses
:conpi | eJava
:al waysl nstrument C asses

BU LD SUCCESSFUL in Os
3 actionabl e tasks: 2 executed, 1 up-to-date

Output of gr adl e al waysl nstrument Cl asses

> gradl e al waysl nstrument Cl asses
:conpi | eJava UP- TO DATE
:al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
2 actionable tasks: 1 executed, 1 up-to-date

The{ fal se } closure ensures that copyResour ces will always perform the copy, irrespective of
whether there is no change in the inputs or outputs.

Y ou can of course put more complex logic into the closure. Y ou could check whether a particular record in a
database table exists or has changed for example. Just be aware that up-to-date checks should save you time.
Don't add checks that cost as much or more time than the standard execution of the task. In fact, if atask
ends up running frequently anyway, because it's rarely up to date, then it may not be worth having an
up-to-date check at all. Remember that your checks will always run if the task isin the execution task graph.

One common mistake is to use upToDat eWhen() instead of Task. onl yI f (). If you want to skip a
task on the basis of some condition unrelated to the task inputs and outputs, then you should use onl yI f ()
. For example, in cases where you want to skip atask when a particular property is set or not set.

Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties have the
same value. In order to do so, Gradle first normalizes both inputs and then compares the result. For example,
for a compile classpath, Gradle extracts the ABI signature from the classes on the classpath and then
compares signatures between the last Gradle run and the current Gradle run as described in Section 47.13,
“Compile avoidance’.

Page 155 of 654

It is possible to customize Gradle's built-in strategy for runtime classpath normalization. All inputs
annotated with @ asspat h are considered to be runtime classpaths.

Let'ssay you want to add afilebui | d-i nf o. properti es toal your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the Cl job that
published the artifact. This file is only for auditing purposes, and has no effect on the outcome of running
tests. Nonetheless, this file is part of the runtime classpath for the t est task and changes on every build
invocation. Therefore, the t est would be never up-to-date or pulled from the build cache. In order to
benefit from incremental builds again, you are able tell Gradle to ignore this file on the runtime classpath at
the project level by using Pr oj ect . normal i zati on(org. gradl e. api . Action):

Example 19.37. Runtime classpath normalization

bui | d. gradl e

normal i zati on {
runti neCl asspath {

ignore 'build-info.properties'

}

The effect of this configuration would be that changes to bui | d- i nf o. pr operti es would be ignored
for up-to-date checks and build cache key calculations. Note that this will not change the runtime behavior
of thet est task - i.e. any test is till ableto load bui | d-i nf 0. properti es and the runtime classpath
is gtill the same as before.

19.10.4. Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older versions of
Gradle need to be removed to ensure that the newest version of the tasks are starting from a known clean
state.

Automatic clean-up of stale output directories has only been implemented for the output of source sets
(JavalGroovy/Scala compilation).

19.11. Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Page 156 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

Example 19.38. Task rule

bui | d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskNanme ->
i f (taskNane.startsWth("ping")) {
task(taskName) {
doLast {

println "Pinging: " + (taskNanme - 'ping')

Output of gradl e -q pi ngServer1l

> gradle -qg pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. Y ou can also create dependsOn relations
on rule based tasks:

Example 19.39. Dependency on rule based tasks
bui |l d. gradl e

t asks. addRul e("Pattern: ping<ID>") { String taskName ->
if (taskNane.startsWth("ping")) {
task(taskNanme) {
doLast {
println "Pinging: " + (taskNanme - 'ping')
}

task groupPing {
dependsOn pi ngServerl, pingServer2

}

Output of gr adl e -qg groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl
Pi ngi ng: Server2

If yourun“gradl e -q tasks” youwon't find atask named “pi ngSer ver 1” or “pi ngSer ver 2",
but this script is executing logic based on the request to run those tasks.

Page 157 of 654

19.12. Finalizer tasks

Finalizers tasks are an incubating feature (see Section C.1.2, “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 19.40. Adding a task finalizer
bui |l d. gradl e

task taskX {
doLast {
println 'taskX
}

}
task taskY {

doLast {
println 'taskY

}
}

taskX. finalizedBy taskY

Output of gradl e -qg taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Page 158 of 654

Example 19.41. Task finalizer for afailing task
buil d. gradl e

task taskX {
doLast {
println 'taskX
t hr ow new Runti meExcepti on()
}

}
task taskY {

doLast {
println 'taskY

}

}

taskX. finalizedBy taskY

Output of gradl e -q taskX

> gradle -q taskX
taskX
taskY

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for example if it
is considered up to date or if a dependent task falls.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up regardless
of the build failing or succeeding. An example of such aresource is aweb container that is started before an
integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the Task. fi nal i zedBy(j ava. | ang. Cbj ect[]) method. This
method accepts a task instance, a task name, or any other input accepted by
Task. dependsOn(j ava. |l ang. Ohject[]).

19.13. Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typicaly do not have any task actions.
Lifecycle tasks can represent several concepts:

* awork-flow step (e.g., run all checkswith check)
* abuildable thing (e.g., create a debug 32-bit executable for native components with debug32Mai nExecut a

)

® aconvenience task to execute many of the same logical tasks (e.g., run al compilation tasks with conpi | eAl

)

Many Gradle plug-ins define their own lifecycle tasks to make it convenient to do specific things. When
developing your own plugins, you should consider using your own lifecycle tasks or hooking into some of
the tasks already provided by Gradle. See the Java plugin Section 47.3, “Tasks’ for an example.

Unless a lifecycle task has actions, its outcome is determined by its dependencies. If any of the task’s
dependencies are executed, the lifecycle task will be considered executed. If all of the task’s dependencies

Page 159 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

are up-to-date, skipped or from cache, the lifecycle task will be considered up-to-date.

19.14. Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target
and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle combines these notions
into a single entity. Simple Gradle tasks are like Ant’s targets, but enhanced Gradle tasks also include
aspects of Ant tasks. All of Gradle's tasks share a common APl and you can create dependencies between
them. These tasks are much easier to configure than an Ant task. They make full use of the type system, and
are more expressive and easier to maintain.

[7] You might be wondering why there is neither an import for the St opExecut i onExcept i on nor do
we access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your
script (see Section 18.8, “Default imports”).

Page 160 of 654

20

Working With Files

Most builds work with files. Gradle adds some concepts and APIsto help you achieve this.

20.1. Locating files

You can locate afile relative to the project directory using the Proj ect . fi |l e(j ava. | ang. Obj ect)
method.

Example 20.1. L ocating files

bui | d. gradl e

/1 Using a relative path
File configFile = file('src/config.xm")

/1 Using an absol ute path
configFile = file(configFile.absol utePath)

/'l Using a File object with a relative path
configFile = file(new File('src/config.xm"))

/'l Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get('src', 'config.xm"))

/'l Using an absolute java.nio.file.Path object
configFile = fil e(Paths. get(System getProperty(' user.hone')).resol ve(' gl obal -cor

You can pass any object tothef i | e() method, and it will attempt to convert the value to an absolute Fi | e
object. Usually, you would passita St ri ng, Fi | e or Pat h instance. If this path is an absolute path, it is
used to construct a Fi | e instance. Otherwise, a Fi | e instance is constructed by prepending the project
directory path to the supplied path. Thef i | e() method also understands URLs, suchasfi | e: / sone/ pat h.»

Using this method is a useful way to convert some user provided value into an absolute Fi | e. It is
preferableto using new Fi | e(sonePat h) ,asfi | e() awaysevauatesthe supplied path relative to the
project directory, which is fixed, rather than the current working directory, which can change depending on
how the user runs Gradle.

Page 161 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

20.2. File collections

A file collection issimply aset of files. It isrepresented by the Fi | eCol | ect i on interface. Many objects
in the Gradle API implement this interface. For example, dependency configurationsimplement Fi | eCol | ect i

One way to obtain a FileCollection instance is to use the
Project.files(java.lang. Object[]) method. You can pass this method any number of objects,
which are then converted into aset of Fi | e objects. Thefi | es() method accepts any type of object asits
parameters. These are evaluated relative to the project directory, as per the fi | e() method, described in
Section 20.1, “Locating files’. You can also pass collections, iterables, maps and arrays to the fi | es()
method. These are flattened and the contents converted to Fi | e instances.

Example 20.2. Creating a file collection

bui | d. gradl e

FileCol l ection collection = files('src/filel.txt",
new File('src/file2.txt"),

["src/file3.txt", "src/filed.txt'],
Paths.get ('src', '"file5.txt"))

A file collection isiterable, and can be converted to a number of other types using the as operator. You can
also add 2 file collections together using the + operator, or subtract one file collection from another using
the - operator. Here are some examples of what you can do with afile collection.

Example 20.3. Using a file collection
buil d. gradl e

/[l lterate over the files in the collection
collection.each { File file ->
printin file.nanme

}

/'l Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = col |l ection. asPath
File file = collection.singleFile
File file2 = collection as File

/1 Add and subtract collections
def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

You can also pass the fil es() method a closure or a Cal | abl e instance. This is caled when the
contents of the collection are queried, and its return value is converted to a set of Fi | e instances. The return
value can be an object of any of the types supported by the fi | es() method. This is a simple way to

Page 162 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

‘implement' the Fi | eCol | ect i on interface.

Example 20.4. Implementing a file collection
bui |l d. gradl e

task list {
doLast {
File srcDr

/Il Create a file collection using a closure
collection = files { srcDir.listFiles() }

srcDir = file('src')
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { println it }

srcDir = file(' src2")
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { println it }

Output of gradl e -qg Ii st

> gradle -q list
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl
src2/dir2

Some other types of thingsyou can passtofil es():

Fil eCol | ection
These are flattened and the contents included in the file collection.

Task
The output files of the task are included in the file collection.

TaskQut put s
The output files of the TaskOutputs are included in the file collection.

It isimportant to note that the content of afile collection is evaluated lazily, when it is needed. This means

you can, for example, create a Fi | eCol | ect i on that represents files which will be created in the future
by, say, some task.

Page 163 of 654

20.3. Filetrees

A filetree isacollection of files arranged in a hierarchy. For example, afile tree might represent a directory
tree or the contents of a ZIP file. It is represented by the Fi | eTr ee interface. The Fi | eTr ee interface
extends Fi | eCol | ecti on, so you can treat a file tree exactly the same way as you would a file
collection. Severa objectsin Gradle implement the Fi | eTr ee interface, such as source sets.

One way to obtain a Fi | eTr ee instance is to use the Proj ect.fil eTree(java. util.Map)
method. ThiscreatesaFi | eTr ee defined with abase directory, and optionally some Ant-style include and
exclude patterns.

Example 20.5. Creating afiletree

bui | d. gradl e

/Il Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/nmin')

// Add include and exclude patterns to the tree
tree.include '**/* java
tree. exclude ' **/ Abstract*'

/!l Create a tree using path
tree = fileTree('src').include(' **/*.java')

/Il Create a tree using closure
tree = fileTree('src') {
include '**/* java

}

eate a tree using a nap

= fileTree(dir: 'src', include: '"**/* java')

= fileTree(dir: '"src', includes: ['"**/*. java', "**/*.xnml"'])
fileTree(dir: '"src', include: '**/* java', exclude: "**/*test*/**")

You use afile tree in the same way you use afile collection. Y ou can also visit the contents of the tree, and
select a sub-tree using Ant-style patterns:

Page 164 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Example 20.6. Using afiletree
buil d. gradl e

/[l lterate over the contents of a tree
tree.each {File file ->
println file

}

/Il Filter a tree
FileTree filtered = tree. matchi ng {
i nclude 'org/gradle/api/**'

}

/] Add trees together
FileTree sum= tree + fileTree(dir: 'src/test')

/'l Visit the elements of the tree
tree.visit {elenent ->
println "$el enent.rel ati vePath => $el enent.file"

}

By default, the Fi | eTr ee instancefi | eTr ee() returnswill apply some Ant-style default exclude
patterns for convenience. For the complete default exclusion list, see Default Excludes.

20.4. Using the contents of an archive as afile
tree

You can use the contents of an archive, such as a ZIP or TAR file, as afile tree. You do this using the
Project.zipTree(java.lang. Object) and Project.tarTree(java.lang. Object)
methods. These methods return a Fi | eTr ee instance which you can use like any other file tree or file
collection. For example, you can use it to expand the archive by copying the contents, or to merge some

archivesinto another.
Example 20.7. Using an archiveas afiletree
bui |l d. gradl e

/Il Create a ZIP file tree using path
FileTree zip = zi pTree(' soneFile.zip")

/Il Create a TAR file tree using path
FileTree tar = tarTree(' soneFile.tar")

//tar tree attenpts to guess the conpression based on the file extension
/I however if you nust specify the conpression explicitly you can:
Fil eTree sonmeTar = tarTree(resources.gzi p(' soneTar.ext'))

Page 165 of 654

http://ant.apache.org/manual/dirtasks.html#defaultexcludes
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

20.5. Specifying a set of input files

Many objects in Gradle have properties which accept a set of input files. For example, the JavaConpi | e
task has a sour ce property, which defines the source files to compile. You can set the value of this
property using any of the types supported by the files() method, which was shown above. This means you

can set the property using, for example, a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a
closure. Here are some examples:

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this
method accepts any of the types supported by the files() method.

Page 166 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 20.8. Specifying a set of files
bui | d. gradl e
task conpil e(type: JavaConpil e)

/Il Use a File object to specify the source directory
conpil e {
source = file('src/main/java')

}

/]l Use a String path to specify the source directory

conpile {
source = 'src/nmain/java'

}

/]l Use a collection to specify nultiple source directories

conpile {
source = ['src/main/java', '../shared/java']

}

/Il Use a FileCollection (or FileTree in this case) to specify the source files
conpile {
sour ce fileTree(dir: '"src/main/java').matching { include 'org/gradle/api/

}

/'l Using a closure to specify the source files.
conpil e {
source = {
/'l Use the contents of each zip file in the src dir
file('src').listFiles().findAll {it.name.endsWth('.zip')}.collect { zi(

bui |l d. gradl e
conpile {
/'l Add sonme source directories use String paths

source 'src/main/java', 'src/main/groovy'

/1 Add a source directory using a File object

source file('../shared/java')

/] Add some source directories using a closure
source { file('src/test/").listFiles() }

20.6. Copying files

You can use the Copy task to copy files. The copy task is very flexible, and alows you to, for example,
filter the contents of the files as they are copied, and map to the file names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to copy the
files to. You may also specify how to transform the files as they are copied. You do al this using a copy
spec. A copy spec is represented by the Copy Spec interface. The Copy task implements this interface.

Page 167 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/CopySpec.html

Y ou specify the source files using the CopySpec. fron{j ava. | ang. Obj ect[]) method. To specify
the destination directory, use the Copy Spec. i nt o(j ava. | ang. Qbj ect) method.

Example 20.9. Copying files using the copy task
bui |l d. gradl e

task copyTask(type: Copy) {
from' src/ mai n/ webapp'

into 'buil d/ expl odedWar'

Thefrom() method accepts any of the arguments that the files() method does. When an argument resolves
to a directory, everything under that directory (but not the directory itself) is recursively copied into the
destination directory. When an argument resolves to afile, that file is copied into the destination directory.
When an argument resolves to a non-existing file, that argument is ignored. If the argument is a task, the
output files (i.e. the files the task creates) of the task are copied and the task is automatically added as a
dependency of the Copy task. Thei nt o() accepts any of the arguments that the file() method does. Here
is another example:

Example 20.10. Specifying copy task sour ce files and destination directory
bui |l d. gradl e

t ask anot her CopyTask(type: Copy) {
/| Copy everything under src/main/webapp
from' src/nai n/ webapp'
/1 Copy a single file
from ' src/stagi ng/index. htm'
/'l Copy the output of a task
from copyTask
/| Copy the output of a task using Task outputs explicitly.
from copyTaskW t hPat t er ns. out put s
/1l Copy the contents of a Zip file
from zi pTree(' src/ mai n/ assets. zip')
/| Determne the destination directory |ater
into { getDestDir() }

Y ou can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 20.11. Selecting the files to copy
bui | d. gradl e

task copyTaskWthPatterns(type: Copy) {
from' src/nai n/ webapp'
into 'buil d/ expl odedWar'
include "**/* htm"'

include '**/*. |sp'
exclude { details -> details.file.nane.endsWth('.htnml') &&
details.file.text.contains(' staging') }

You can also use the Pr oj ect . copy(org. gradl e. api . Acti on) method to copy files. It works the

Page 168 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

same way as the task with some major limitations though. First, the copy() is not incremental (see
Section 19.10, " Up-to-date checks (AKA Incremental Build)”).

Example 20.12. Copying files using the copy() method without up-to-date check

bui | d. gradl e

task copyMet hod {
doLast {
copy {
from ' src/ mai n/ webapp
into 'buil d/ expl odedWar'

include "**/* htm"
include '**/*. |sp'

Secondly, the copy () method cannot honor task dependencies when atask is used as a copy source (i.e. as
an argument to f r onm()) because it's a method and not a task. As such, if you are using the copy()

method as part of atask action, you must explicitly declare all inputs and outputs in order to get the correct
behavior.

Example 20.13. Copying files using the copy() method with up-to-date check
bui |l d. gradl e

task copyMet hodW t hExpl i ci t Dependenci es{
/'l up-to-date check for inputs, plus add copyTask as dependency
i nputs.files copyTask
outputs.dir 'sonme-dir' // up-to-date check for outputs
doLast {

copy {

/| Copy the output of copyTask
from copyTask
into 'sone-dir'

It is preferable to use the Copy task wherever possible, as it supports incremental building and task
dependency inference without any extra effort on your part. The copy() method can be used to copy files
as part of atask’s implementation. That is, the copy method is intended to be used by custom tasks (see
Chapter 40, Writing Custom Task Classes) that need to copy files as part of their function. In such a
scenario, the custom task should sufficiently declare the inputs/outputs relevant to the copy action.

Page 169 of 654

20.6.1. Renaming files

Example 20.14. Renaming files asthey are copied

bui |l d. gradl e

task rename(type: Copy) {
from ' src/ main/ webapp'
into 'buil d/ expl odedWar'
/'l Use a closure to map the file nane
rename { String fil eName ->

fil eNanme.repl ace(' -staging-', '")
}
/'l Use a regul ar expression to map the file nane
rename ' (.+)-staging-(.+)", '$1$2'
renane(/ (.+)-staging-(.+)/, '$1$2")

20.6.2. Filtering files

Example 20.15. Filtering files as they ar e copied
bui |l d. gradl e

i nport org.apache.tools.ant.filters.FixCrLfFilter
i nport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from ' src/ main/ webapp'
into 'buil d/ expl odedWar'
/'l Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)
/'l Use sone of the filters provided by Ant
filter(FixCrLfFilter)

filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])
/'l Use a closure to filter each |ine
filter { String line ->

"[$line]"

}

/1l Use a closure to renove |ines
filter { String line ->
line.startsWth('-") ? null : line

}

filteringCharset ="

When you use the Repl aceTokens class with the “filter” operation, the result is a template engine that
replaces tokens of the form “ @tokenName@” (the Apache Ant-style token) with a set of given values. The
“expand” operation does the same thing except it treats the source files as Groovy templates in which tokens
take the form “ ${ tokenName} . Be aware that you may need to escape parts of your source files when using
this option, for exampleif it containsliteral “$” or “<%" strings.

It's agood practice to specify the charset when reading and writing the file, usingthefi | t er i ngChar set

Page 170 of 654

http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

property. If not specified, the VM default charset is used, which might not match with the actual charset of
the files to filter, and might be different from one machine to another.

20.6.3. Using the Copy Spec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns,
copy actions, name mappings and filters.

Example 20.16. Nested copy specs
bui |l d. gradl e

t ask nestedSpecs(type: Copy) {
into 'buil d/ expl odedWar'
excl ude ' **/*st agi ng*'
from('src/dist') {

include '**/* html'

}
into('libs") {
from configurations. runtine

}

20.7. Using the Sy nc task

The Sync task extends the Copy task. When it executes, it copies the source files into the destination
directory, and then removes any files from the destination directory which it did not copy. This can be useful
for doing things such as installing your application, creating an exploded copy of your archives, or
maintaining a copy of the project’ s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the bui | d/ I i bs
directory.

Example 20.17. Using the Sync task to copy dependencies

bui | d. gradl e

task |ibs(type: Sync) {
from configurations. runtine

into "$buildDir/libs"

20.8. Creating archives

A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to
your project. Archives are created using the various archive tasks: Zi p, Tar, Jar, War , and Ear . They all
work the same way, so let’slook at how you create a ZIPfile.

Page 171 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ear.Ear.html

Example 20.18. Creating a ZI P archive

bui | d. gradl e

apply plugin: 'java'

task zip(type: Zip) {
from'src/dist'

into('libs") {
from configurations. runtine

}

The archive tasks al work exactly the same way as the Copy
task, and implement the same Copy Spec interface. Aswith the

Why are you using

Copy task, you specify the input files using the fron() the Java p| ugi n?

method, and can optionally specify where they end up in the

archive using the i nt o() method. You can filter the contents The Java plugin adds a number
of file, rename files, and al the other things you can do with a of default values for the archive
copy Spec. tasks. You can use the archive
tasks without using the Java
20.8.1. Archive nami ng plugin, if you like. You will
need to provide values for some

The format of pr oj ect Name- ver si on. type is used for additional properties.

generated archive file names. For example:

Example 20.19. Creation of ZIP archive
bui |l d. gradl e
apply plugin: 'java'

version = 1.0

task nyZip(type: Zip) {
from' sonedir'’

}

println nmyZip. archi veNane
println rel ativePath(nyZi p. destinationDir)
println relativePat h(nmyZi p. archi vePat h)

Output of gradl e -qgq nyZip

> gradle -q nyZip

zi pProject-1.0.zip

bui | d/ di stributions

bui | d/ di stributions/zipProject-1.0.zip

Thisadds a Zi p archive task with the name nyZi p which produces ZIP file zi pPr oj ect - 1. 0. zi p. It
is important to distinguish between the name of the archive task and the name of the archive generated by
the archive task. The default name for archives can be changed with the ar chi vesBaseNane project
property. The name of the archive can also be changed at any time later on.

Page 172 of 654

There are anumber of properties which you can set on an archive task. These are listed below in Table 20.1,
“Archive tasks - naming properties’. Y ou can, for example, change the name of the archive:

Example 20.20. Configuration of archivetask - custom archive name

bui |l d. gradl e

apply plugin: 'java'
version = 1.0

task nmyZip(type: Zip) {
from' sonedir'
baseNane = ' cust onNane'

}

println myZip. archi veNane

Outputof gradl e -q nyZip

> gradle -q nmyZip
cust omName- 1. 0. zi p

Y ou can further customize the archive names:

Example 20.21. Configuration of archivetask - appendix & classifier

bui | d. gradl e

apply plugin: 'java'
ar chi vesBaseName = 'gradl e
version = 1.0

task nmyZip(type: Zip) {
appendi x = 'w apper"’
classifier = "src'
from'sonedir'

}

println myZip. archi veNane

Outputof gradl e -q nyZip

> gradle -q nmyZip
gradl e-wr apper-1.0-src. zip

Table 20.1. Archivetasks - naming properties

Property name Type Default value Description

Page 173 of 654

ar chi veNane String baseNane- appendi x- versi on- cl assi fi efThext &asé on
file name of
If any of these propertiesis empty thetrailing- is th e
not added to the name. generated
archive

archi vePat h File destinationDir/ archi veNane The
absolute
path of the
generated
archive.

destinationDir File Depends on the archive type. JARsand WARsgo T he
into project.buildDir/libraries.ZIPs directory to
and TARsgointo proj ect . bui | dDi r / di st ri byene@testhe
archiveinto

baseNane String proj ect. nane The base
name
portion of
the archive
file name.

appendi x String null The
appendix
portion of
the archive
file name.

version String project.version The version
portion of
the archive
file name.

classifier String null The
classifier
portion of
the archive
file name,

ext ensi on String Depends on the archive type, and for TAR files, T he
the compression typeaswell: zi p,j ar,war ,t ar extension of
,tgzortbhz2. the archive
file name.

Page 174 of 654

20.8.2. Sharing content between multiple archives

You can use the Pr oj ect . copySpec(org. gradl e. api . Acti on) method to share content between
archives.

20.8.3. Reproducible archives

Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. Y ou want to
be sure that building an artifact from source code produces the same result, byte for byte, no matter when
and whereit isbuilt. Thisis necessary for projects like reproducible-builds.org.

Reproducing the same archive byte for byte poses some challenges since the order of the filesin an archive
isinfluenced by the underlying filesystem. Each time a zip, tar, jar, war or ear is built from source, the order
of the files inside the archive may change. Files that only have a different timestamp also causes archives to
be dightly different between builds. All Abst ract Archi veTask (e.g. Jar, Zip) tasks shipped with
Gradle include incubating support producing reproducible archives.

For example, to make a Zi p task reproducible you need to set Zi p. i sRepr oduci bl eFi | eOrder () to
trueandZip.isPreserveFil eTi nest anps() tof al se. Inorder to make all archive tasksin your
build reproducible, consider adding the following configuration to your build file:

Example 20.22. Activating reproducible ar chives

bui |l d. gradl e

tasks. wi t hType(Abst ract Ar chi veTask) {
preserveFil eTi mest anps = fal se

repr oduci bl eFi |l eOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is described
in Chapter 32, Publishing artifacts

20.9. Propertiesfiles

Properties files are used in many places during Java development. Gradle makes it easy to create properties
filesasanormal part of the build. You can usethe Wi t ePr operti es task to create propertiesfiles.

The Wit eProperti es task also fixes a well-known problem with Properti es. st ore() that can
reduce the usefulness of incremental builds (see Section 19.10, “Up-to-date checks (AKA Incremental
Build)"). The standard Java way to write a properties file produces a unique file every time, even when the
same properties and values are used, because it includes a timestamp in the comments. Gradle sW i t ePr opert
task generates exactly the same output byte-for-byte if none of the properties have changed. Thisis achieved

by afew tweaks to how a propertiesfile is generated:

® no timestamp comment is added to the output

Page 175 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.WriteProperties.html

* theline separator is system independent, but can be configured explicitly (it defaultsto' \ n')
® the properties are sorted alphabetically

Page 176 of 654

21

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can useindividual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task
scripting tool.

Ant can be divided into two layers. Thefirst layer isthe Ant language. It provides the syntax for the bui | d. xm
file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything
except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d. xni
directly into a Gradle project. Y ou can then use the targets of your Ant build asif they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer
Gradle provides integration ssimply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
Your build script may contain statements like: " ant cl ean conpi | e". execut e() .[8]

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example,
you could start by importing your existing Ant build. Then you could move your dependency declarations
from the Ant script to your build file. Finally, you could move your tasks across to your build file, or replace
them with some of Gradle's plugins. This process can be done in parts over time, and you can have a
working Gradle build during the entire process.

21.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. Thisis areference to an Ant Bui | der
instance. This Ant Bui | der isused to access Ant tasks, types and properties from your build script. There
isavery simple mapping from Ant’sbui | d. xm format to Groovy, which is explained below.

Y ou execute an Ant task by calling a method on the Ant Bui | der instance. Y ou use the task name as the
method name. For example, you execute the Ant echo task by calling the ant . echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo
task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 177 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/AntBuilder.html

Example 21.1. Using an Ant task
buil d. gradl e

task hello {
doLast {
String greeting = "hello from Ant'

ant . echo(nessage: greeting)

Output of gr adl e hel | o

> gradle hello
chello
[ant:echo] hello from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Y ou pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we
pass the message for the echo task as nested text:

Example 21.2. Passing nested text to an Ant task

bui |l d. gradl e

task hello {
doLast {
ant . echo(' hello from Ant")

}

Output of gr adl e hel | o
> gradle hello
thello
[ant:echo] hello from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Y ou pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as
tasks, by calling a method with the same name as the element we want to define.

Page 178 of 654

Example 21.3. Passing nested elementsto an Ant task

bui | d. gradl e

task zip {
doLast {
ant. zi p(destfile: "archive.zip') {
fileset(dir: "src') {
i ncl ude(nane: ' **.xm")

excl ude(name: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 21.4. Using an Ant type
bui |l d. gradl e

task list {
doLast {
def path = ant.path {
fileset(dir: "libs', includes: '"*.jar")

}

path.list().each {
printin it

More information about Ant Bui | der can be found in'Groovy in Action’' 8.4 or at the Groovy Wiki

21.1.1. Using custom Ant tasksin your build

To make custom tasks available in your build, you can usethet askdef (usualy easier) or t ypedef Ant
task, just as you would in abui | d. xml file. You can then refer to the custom Ant task as you would a
built-in Ant task.

Page 179 of 654

http://groovy-lang.org/scripting-ant.html

Example 21.5. Using a custom Ant task
buil d. gradl e

task check {
doLast {
ant . t askdef (resource: 'checkstyl etask. properties') {
cl asspat h {
fileset(dir: "libs', includes: '"*.jar")

}

}

ant . checkstyl e(config: 'checkstyle.xm") {
fileset(dir: "src')

Y ou can use Gradle€' s dependency management to assemble the classpath to use for the custom tasks. To do
this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. Thisis described in more detail in Section 25.4, “How to declare your dependencies’.

Example 21.6. Declaring the classpath for a custom Ant task
bui |l d. gradl e

configurations {
prmd
}

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5'

}

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 21.7. Using a custom Ant task and dependency management together
bui |l d. gradl e

task check {
doLast {
ant . t askdef (nanme: ' pnd',
cl assname: ' net.sourceforge. pnd. ant . PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(shortFil enanmes: 'true',
fail onrul eviol ation: 'true',

rulesetfiles: file('pnd-rules.xm").toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: "src')

Page 180 of 654

21.2. Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When
you import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and
execute the Ant targetsin exactly the same way as Gradle tasks.

Example 21.8. Importing an Ant build

bui |l d. gradl e

ant.inportBuild 'build xm"®

buil d. xn

<pr oj ect >
<target name="hello0">
<echo>Hel | o, from Ant </ echo>

</target>
</ pr oj ect >

Output of gr adl e hel | o
> gradle hello
chello
[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Y ou can add atask which depends on an Ant target:

Example 21.9. Task that dependson Ant target
buil d. gradl e

ant.inportBuild 'build xn"’

task intro(dependsOn: hello) {
doLast {

println "Hello, from G adl e

}

Output of gradl e intro

> gradle intro

chello

[ant:echo] Hello, from Ant
intro

Hell o, from Gradle

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

Page 181 of 654

Or, you can add behaviour to an Ant target:

Example 21.10. Adding behaviour to an Ant target
bui |l d. gradl e

ant . inportBuild 'build. xm"

hell o {
doLast {
println 'Hello, from G adle'

}

Output of gradl e hel | o

> gradle hello

‘hello

[ant:echo] Hello, from Ant
Hel l o, from G adle

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

It isalso possible for an Ant target to depend on a Gradle task:

Example 21.11. Ant target that depends on Gradle task

bui |l d. gradl e

ant.inportBuild 'build xm"®

task intro {
doLast {
println 'Hello, from G adl e

}

bui I d. xml

<pr oj ect >
<target name="hel | 0" depends="intro">
<echo>Hel | o, from Ant </ echo>

</target >
</ proj ect >

Output of gradl e hel | o

> gradle hello

intro

Hell o, from G adle

chello

[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision

Page 182 of 654

with existing Gradle tasks. To do this, use the Ant Bui | der . i nport Bui | d(j ava. | ang. Obj ect,
org. gradl e. api . Transf or mer) method.

Example 21.12. Renaming imported Ant targets

bui |l d. gradl e

ant . i nportBuild(' build.xm ") { antTargetNane ->

"a-' + ant Tar get Nane

}

buil d. xn

<pr oj ect >
<target nanme="hello0">
<echo>Hel | o, from Ant </ echo>

</target >
</ pr oj ect >

Output of gradl e a-hell o
> gradle a-hello

ra-hello
[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note that while the second argument to this method should be a Tr ansf or mer , when programming in
Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy's
support for automatically coercing closures to single-abstract-method types.

21.3. Ant properties and references

There are severa ways to set an Ant property, so that the property can be used by Ant tasks. You can set the
property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you
can change. You can also usethe Ant pr oper t y task. Below are some examples of how to do this.
Example 21.13. Setting an Ant property

bui |l d. gradl e

.buildDir = buildDir
.properties.buildDir = buildDir

.properties['buildDir'] = buildDr
.property(name: 'buildDir', |ocation: buildDir)

bui I d. xml

<echo>bui | dDir = ${bui | dDi r}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also

Page 183 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

available as aMap. Below are some examples.

Example 21.14. Getting an Ant property
bui | d. xnl

<property nane="ant Prop" value="a property defined in an Ant build"/>

bui | d. gradl e

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp’

There are several waysto set an Ant reference:

Example 21.15. Setting an Ant reference
buil d. gradl e

ant.path(id: 'classpath', location: '"libs")
ant . references. cl asspath = ant. path(location: 'libs")
ant.references[' classpath’'] = ant.path(location: 'libs")

bui I d. xml

<pat h refid="cl asspath"/>

There are several waysto get an Ant reference:

Example 21.16. Getting an Ant reference
bui | d. xm

<pat h id="antPath" |ocation="11bs"/>

bui |l d. gradl e

println ant.references. ant Pat h

println ant.references[' antPath']

21.4. Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the
Gradle output. By default, these are mapped as follows:

Page 184 of 654

Table 21.1. Ant message priority mapping

Ant Message Priority GradleLog L evel

VERBOSE DEBUG
DEBUG DEBUG
INFO I NFO
WARN WARN
ERROR ERROR

21.4.1. Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LI FECYCLE log level, which is the default
for Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages from
Gradle, a build would have to be run with the log level set to | NFQ, potentially logging much more output
than is desired.

Conversely, if an Ant task logs messages at too high of alevel, to suppress those messages would require the
build to be run at a higher log level, such as QUI ET. However, this could result in other, desirable output
being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message
priority to Gradle log level. Thisis done by setting the priority that should map to the default Gradle LI FECYCLE
log level using the Ant Bui | der . set Li f ecycl eLogLevel (j ava. | ang. Stri ng) method. When
thisvalueis set, any Ant message logged at the configured priority or above will be logged at least at LI FECYCLE
. Any Ant message logged below this priority will be logged at most at | NFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed at the LI FEC
log level.

Page 185 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel(java.lang.String)

Example 21.17. Fine tuning Ant logging

bui | d. gradl e

ant.lifecycl eLogLevel = "I NFO'

task hello {
doLast {
ant.echo(level: "info", message: "hello frominfo priority!")

}

Output of gr adl e hel | o

> gradle hello

thello

[ant:echo] hello frominfo priority!

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

On the other hand, if thel i f ecycl eLogLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the | NFOlevel and
would be suppressed by default.

21.5. APl

The Ant integration is provided by Ant Bui | der .

[8] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have
alook in'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 186 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/AntBuilder.html

22

TheBuild Lifecycle

We said earlier that the core of Gradle is alanguage for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks are
executed in the order of their dependencies, and that each task is executed only once. These tasks form a
Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Y our build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

22.1. Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and createsa Pr oj ect instance for each of these projects.

Configuration
During this phase the project objects are configured. The build scripts of all projects which are part of
the build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on
demand. In this mode, Gradle configures only relevant projects (see the section called “ Configuration on
demand”).

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gr adl e command and the
current directory. Gradle then executes each of the selected tasks.

22.2. Settingsfile

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for thisfileisset ti ngs. gr adl e. Later in this chapter we explain
how Gradle |ooks for a settings file.

The settings file is executed during the initialization phase. A multiproject build must haveaset ti ngs. gr adl ¢
file in the root project of the multiproject hierarchy. It is required because the settings file defines which

Page 187 of 654

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html

projects are taking part in the multi-project build (see Chapter 26, Multi-project Builds). For a single-project
build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to
your build script classpath (see Chapter 43, Organizing Build Logic). Let’s first do some introspection with
asingle project build:

Example 22.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.

bui |l d. gradl e

println 'This is executed during the configuration phase.'

task configured {
println 'This is al so executed during the configuration phase.

}

task test {
doLast {
println 'This is executed during the execution phase.'

}

}

task testBoth {
doFi rst {
println 'This is executed first during the execution phase.'
}
doLast {
println 'This is executed |ast during the execution phase.

}

println 'This is executed during the configuration phase as well .’

Output of gr adl e test testBoth

> gradle test testBoth

This is executed during the initialization phase.

This is executed during the configuration phase.

This is also executed during the configuration phase
This is executed during the configuration phase as well.
‘test

This is executed during the execution phase.

:testBoth

This is executed first during the execution phase.

This is executed |last during the execution phase.

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Sett i ngs
classin the API documentation for more information.

Page 188 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html

22.3. Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
Y ou have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project buildsin the chapter dedicated to this topic (see Chapter 26, Multi-project Builds).

22.3.1. Project locations

Multi-project builds are always represented by atree with a single root. Each element in the tree represents a
project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the setti ngs. gradl e file. By default it is
assumed that the location of the settings file is also the location of the root project. But you can redefine the
location of the root project in the settings file.

22.3.2. Building the tree
In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

Hierarchical layouts

Example 22.2. Hierar chical layout

settings.gradle

include 'projectl', 'project2:child , 'project3:childl'

The i ncl ude method takes project paths as arguments. The project path is assumed to be equal to the
relative physical file system path. For example, a path 'services:api' is mapped by default to a folder
'services/api’ (relative from the project root). Y ou only need to specify the leaves of the tree. This means that
the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services, 'services:hotels' and
'services:hotels:api'. More examples of how to work with the project path can be found in the DSL
documentation of Set t i ngs. i ncl ude(j ava.lang. String[]).

Flat layouts

Example 22.3. Flat layout

settings.gradle

i ncl udeFl at ' project3', 'project4

The i ncl udeFl at method takes directory names as an argument. These directories need to exist as
siblings of the root project directory. The location of these directories are considered as child projects of the
root project in the multi-project tree.

Page 189 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

22.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can
modify these descriptors in the settings file at any time. To access a descriptor you can do:

Using this descriptor you can change the name, project directory and build file of a project.

Example 22.4. M odification of elements of the project tree

settings.gradle

println rootProject.nanme

println project(':projectA). nane

settings.gradle

root Proj ect.name = 'nain'

project (' :projectA).projectDir = new File(settingsDir, '../ny-project-a')
project (' :projectA). buildFileName = 'projectA gradle'

Look at the Pr oj ect Descri pt or classinthe APl documentation for more information.

22.4. Initidization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from
adirectory with a settings file, things are easy. But Gradle also allows you to execute the build from within

any subproject taking part in the build.l9 If you execute Gradle from within a project withno set ti ngs. gr adl
file, Gradle looksfor aset ti ngs. gr adl e filein the following way:

® |tlooksin adirectory called mast er which hasthe same nesting level as the current dir.

® |f not found yet, it searches parent directories.

¢ |f not found yet, the build is executed as a single project build.

® |[fasettings. gradl e fileisfound, Gradle checks if the current project is part of the multiproject
hierarchy defined in the found set t i ngs. gr adl e file. If not, the build is executed as a single project
build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its
dependent projects are built, but Gradle needs to create the build configuration for the whole multiproject
build (see Chapter 26, Multi-project Builds). Y ou can use the - u command line option to tell Gradle not to
look in the parent hierarchy for aset ti ngs. gr adl e file. The current project is then aways built as a
single project build. If the current project contains a setti ngs. gradl e file, the - u option has no
meaning. Such abuild is always executed as:

® asingle project build, if theset t i ngs. gr adl e file does not define a multiproject hierarchy
* amultiproject build, if theset t i ngs. gr adl e file does define a multiproject hierarchy.

The automatic search for aset ti ngs. gradl e file only works for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described

Page 190 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

above (“mast er”). Gradle supports arbitrary physical layouts for a multiproject build, but for such
arbitrary layouts you need to execute the build from the directory where the settings file is located. For
information on how to run partial builds from the root see Section 26.4, “Running tasks by their absolute
path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are
the projects specified in the Settings object (plus the root project). Each project object has by default a name
equal to the name of its top level directory, and every project except the root project has a parent project.
Any project may have child projects.

22.5. Configuration and execution of asingle
project build

For asingle project build, the workflow of the after initialization phases are pretty ssmple. The build script
is executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project buildsis discussed in Chapter 26, Multi-project Builds.

22.6. Responding to the lifecycle in the build
script
Your build script can receive notifications as the build progresses through its lifecycle. These notifications
generally take two forms: You can either implement a particular listener interface, or you can provide a

closure to execute when the notification is fired. The examples below use closures. For details on how to use
the listener interfaces, refer to the APl documentation.

22.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once al the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds at est task to each project which has a hasTest s property value of
true.

Page 191 of 654

Example 22.5. Adding of test task to each project which has certain property set

bui | d. gradl e

al | projects {
afterEvaluate { project ->
if (project.hasTests) {
println "Adding test task to $project”
project.task('test') {
doLast {

println "Running tests for $project"

}

proj ectA gradle

hasTests = true

Output of gradl e -qg test

> gradle -q test
Addi ng test task to project ':projectA
Running tests for project ':projectA

This example uses method Pr oj ect . af t er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect notification is received regardless of
whether the project evaluates successfully or fails with an exception.

Example 22.6. Notifications

bui |l d. gradl e

gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uati on of $project FAILED'
} else {

println "Eval uati on of $project succeeded"

}

Output of gradl e -qg test
> gradle -q test
Eval uation of root project 'buil dProjectEval uateEvents' succeeded

Eval uation of project ':projectA succeeded
Eval uation of project ':projectB FAILED

You can aso add aPr oj ect Eval uati onLi st ener tothe Gr adl e to receive these events.

Page 192 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.invocation.Gradle.html

22.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example setsthe sr cDi r property of each task asit is created.

Example 22.7. Setting of certain property to all tasks

bui | d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/main/java

}

task a

println "source dir is $a.srcDr"

Outputof gradle -q a

> gradle -q a
source dir is src/main/java

Youcan asoadd an Act i on toaTaskCont ai ner to receive these events.

22.6.3. Task execution graph ready

Y ou can receive a notification immediately after the task execution graph has been populated. We have seen
this already in Section 16.13, “ Configure by DAG”.

You can also add a TaskExecut i onG aphLi st ener tothe TaskExecut i onG aph to receive these
events.

22.6.4. Task execution

Y ou can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task
notification is received regardless of whether the task completes successfully or fails with an exception.

Page 193 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Example 22.8. Logging of start and end of each task execution
buil d. gradl e

task ok

t ask broken(dependsOn: ok) ({
doLast {
t hr ow new Runti neException(' broken")
}
}

gradl e. t askGr aph. bef oreTask { Task task ->
println "executing $task ..."

}

gradl e.taskGraph. after Task { Task task, TaskState state ->
if (state.failure) {
println "FAl LED'

}
el se {
println "done"

}

Output of gradl e - g broken

> gradle -q broken
executing task ':ok'
done

executing task ':broken'
FAI LED

YoucanasouseaTaskExecut i onLi st ener tothe TaskExecut i onG aph to receive these events.

[9] Gradle supports partial multiproject builds (see Chapter 26, Multi-project Builds).

Page 194 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

23

Wrapper Plugin

The wrapper plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The Gradle wrapper plugin alows the generation of Gradle wrapper files by adding a W apper task, that
generates al files needed to run the build using the Gradle Wrapper. Details about the Gradle Wrapper can
be found in Chapter 6, The Gradle Wrapper.

23.1. Usage

Without modifying the bui | d. gr adl e file, the wrapper plugin can be auto-applied to the root project of
the current build by running “gr adl e wr apper ” from the command line. This applies the plugin if no
task named wr apper isaready defined in the build.

23.2. Tasks

The wrapper plugin adds the following tasks to the project:

Table23.1. Wrapper plugin - tasks

Task name Dependson Type Description

wr apper - W apper Generates Gradle wrapper files.

Page 195 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

24

L ogging

Thelog isthe main 'Ul' of abuild tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 24.1, “Log levels’. There are two Gradle-specific log levels, in
addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the
default, and is used to report build progress.

Table24.1. Log levels

Leve

ERROR

QUIET

WARNING

LIFECYCLE

INFO

DEBUG

Used for

Error messages

Important information messages

Warning messages

Progress information messages

Information messages

Debug messages

The rich components of the console (build status and work in progress area) are displayed regardless
of thelog level used. Before Gradle 4.0 those rich components were only displayed at log level LI FECYCLE

or below.

24.1. Choosing alog leve

Y ou can use the command line switches shown in Table 24.2, “Log level command-line options’ to choose
different log levels. You can also configure the log level using gradle.properties, see Section 12.1,
“Configuring the build environment via gradle.properties’. In Table 24.3, “Stacktrace command-line

options” you find the command line switches which affect stacktrace logging.

Page 196 of 654

Table 24.2. Log level command-line options

Option OutputsLog Levels

no logging options LIFECY CLE and higher
-qor--quiet QUIET and higher
-wor--warn WARN and higher

-i or--info INFO and higher

-dor--debug DEBUG and higher (that is, all log messages)

Table 24.3. Stacktrace command-line options
Option Meaning

No stacktrace options No stacktraces are printed to the console in case of a build error (e.g. a
compile error). Only in case of internal exceptions will stacktraces be
printed. If the DEBUG log level is chosen, truncated stacktraces are always
printed.

-sor--stacktrace Truncated stacktraces are printed. We recommend this over full
stacktraces. Groovy full stacktraces are extremely verbose (Due to the
underlying dynamic invocation mechanisms. Yet they usually do not
contain relevant information for what has gone wrong in your code.) This
option renders stacktraces for deprecation warnings.

-Sor--full-stacktrackhe full stacktraces are printed out. This option renders stacktraces for
deprecation warnings.

24.2. Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects
anything written to standard output to its logging system at the QUI ET log level.

Example 24.1. Using stdout to write log messages

bui | d. gradl e

println ' A nessage which is | ogged at QU ET | evel"'

Gradle also provides al ogger property to a build script, which is an instance of Logger . This interface
extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is an example of
how thisis used in the build script:

Page 197 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/logging/Logger.html

Example 24.2. Writing your own log messages

bui | d. gradl e

.quiet('An info | og nessage which is always | ogged.")
.error('An error |og nessage.')
.warn(' A warni ng | og nessage.")

.lifecycle("Alifecycle info | og nessage.')
.info('An info | og nmessage.")

. debug("' A debug | og nessage.')

.trace(' A trace | og nessage."')

Y ou can also hook into Gradl€' s logging system from within other classes used in the build (classes from the
bui | dSr ¢ directory for example). Simply use an SLF4J logger. Y ou can use this logger the same way as
you use the provided logger in the build script.

Example 24.3. Using SL F4J to write log messages

bui |l d. gradl e

i mport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = Logger Factory. get Logger (' sone-| ogger')
sl f4j Logger.info(' An info | og nmessage | ogged using SLF4j')

24.3. Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging
output into the Gradle logging system. Thereis a 1:1 mapping from the Ant/lvy log levels to the Gradle log
levels, except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the
default Gradle log level will not show any Ant/lvy output unlessit isan error or awarning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects
standard output to the QUI ET log level and standard error to the ERROR level. This behavior is
configurable. The project object provides a Loggi ngManager , which allows you to change the log levels
that standard out or error are redirected to when your build script is evaluated.

Example 24.4. Configuring standar d output capture

bui | d. gradl e

| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO

println ' A nmessage which is | ogged at | NFO | evel"'

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Page 198 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/logging/LoggingManager.html

Example 24.5. Configuring standard output capturefor atask
buil d. gradl e

task loglnfo {
| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO
doFi rst {

println ' A task nessage which is | ogged at | NFO | evel '

}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradle' s logging system.

24.4. Changing what Gradle logs

Y ou can replace much of Gradle'slogging Ul with your own. You might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. Y ou replace
the logging using the Gr adl e. uselLogger (j ava. | ang. Obj ect) method. Thisis accessible from a
build script, or an init script, or viathe embedding API. Note that this completely disables Gradle's default
output. Below is an example init script which changes how task execution and build completion islogged.

Page 199 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Example 24.6. Customizing what Gradle logs
init.gradle

uselLogger (new Cust onEvent Logger ())

cl ass CustonkEvent Logger extends Buil dAdapter inplenments TaskExecuti onLi stener {

public voi d beforeExecute(Task task) {
println "[$task. nane] "

}

public void afterExecute(Task task, TaskState state) {
println()
}

public void buil dFi ni shed(Buil dResult result) {
println '"build conpleted
if (result.failure !'= null) {
result.failure.printStackTrace()

Outputof gradle -1 init.gradle build
> gradle -1 init.gradle build
[conpi | e]

conpi | i ng source

[test Conpil €]
conpiling test source

[test]
running unit tests

[bui | d]

build conpl eted
3 actionable tasks: 3 executed

Y our logger can implement any of the listener interfaces listed below. When you register alogger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.
Y ou can find out more about the listener interfaces in Section 22.6, “Responding to the lifecycle in the build
script”.

® Buil dLi st ener

® Proj ect Eval uati onLi st ener
®* TaskExecuti onG aphLi st ener
®* TaskExecuti onLi st ener

® TaskActi onLi st ener

Page 200 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/execution/TaskActionListener.html

25

Dependency M anagement

25.1. Introduction

Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering
first-class dependency management that is both easy to understand and compatible with a wide variety of
approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn
that Gradle is fully compatible with both approaches in addition to being flexible enough to support
fully-customized approaches.

Here are the mgjor highlights of Gradl€e’s support for dependency management:

¢ Transitive dependency management: Gradle gives you full control of your project’ s dependency tree.

® Support for non-managed dependencies: If your dependencies are smply files in version control or a
shared drive, Gradle provides powerful functionality to support this.

* Support for custom dependency definitions.: Gradle's Module Dependencies give you the ability to
describe the dependency hierarchy in the build script.

* A fully customizable approach to Dependency Resolution: Gradle provides you with the ability to
customize resolution rules making dependency substitution easy.

¢ Full Compatibility with Maven and lvy: If you have defined dependencies in a Maven POM or an lvy
file, Gradle provides seamless integration with a range of popular build tools.

* |ntegration with existing dependency management infrastructure: Gradle is compatible with both Maven
and lvy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all
repository formats.

With hundreds of thousands of interdependent open source components each with a range of versions and
incompatibilities, dependency management has a habit of causing problems as builds grow in complexity.
When a build’s dependency tree becomes unwieldy, your build tool shouldn’t force you to adopt a single,
inflexible approach to dependency management. A proper build system has to be designed to be flexible,
and Gradle can handle any situation.

Page 201 of 654

25.1.1. Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to
another. If you are migrating from atool like Ant or Maven to Gradle, you may be faced with some difficult
situations. For example, one common pattern is an Ant project with version-less jar files stored in the
filesystem. Other build systems require a wholesale replacement of this approach before migrating. With
Gradle, you can adapt your new build to any existing source of dependencies or dependency metadata. This
makes incremental migration to Gradle much easier than the aternative. On most large projects, build
migrations and any change to development processis incremental because most organizations can’t afford to
stop everything and migrate to a build tool’ s idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse
.Classpath file as master data for dependency management, it is very easy to write a Gradle plugin to use this
datain Gradle. For migration purposes this is a common technique with Gradle. (But, once you've migrated,
it might be a good idea to move away from a .classpath file and use Gradle’'s dependency management
features directly.)

25.1.2. Dependency management and Java

It isironic that in alanguage known for itsrich library of open source components that Java has no concept
of libraries or versions. In Java, there is no standard way to tell the VM that you are using version 3.0.5 of
Hibernate, and there is no standard way to say that f oo- 1. 0. j ar depends on bar - 2. 0. j ar. This has
led to external solutions often based on build tools. The most popular ones at the moment are Maven and
Ivy. While Maven provides a complete build system, Ivy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular
jar. Both also use repositories where the actual jars are placed together with their descriptor files, and both
offer resolution for conflicting jar versions in one form or the other. Both have emerged as standards for
solving dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency
management. Gradle has replaced this direct dependency on Ivy with a native Gradle dependency resolution
engine which supports a range of approaches to dependency resolution including both POM and lvy
descriptor files.

25.2. Dependency Management Best Practices

While Gradle has strong opinions on dependency management, the tool gives you a choice between two
options: follow recommended best practices or support any kind of pattern you can think of. This section
outlines the Gradle project’ s recommended best practices for managing dependencies.

No matter what the language, proper dependency management is important for every project. From a
complex enterprise application written in Java depending on hundreds of open source libraries to the
simplest Clojure application depending on a handful of libraries, approaches to dependency management
vary widely and can depend on the target technology, the method of application deployment, and the nature
of the project. Projects bundled as reusable libraries may have different requirements than enterprise
applications integrated into much larger systems of software and infrastructure. Despite this wide variation
of requirements, the Gradle project recommends that all projects follow this set of core rules:

Page 202 of 654

25.2.1. Put the Version in the Filename (Version the jar)

The version of alibrary must be part of the filename. While the version of ajar is usually in the Manifest
file itisn't readily apparent when you are inspecting a project. If someone asks you to look at a collection of
20 jar files, which would you prefer? A collection of fileswith nameslike cormons- beanutil s-1. 3. ar
or a collection of files with names like spri ng. j ar ? If dependencies have file names with version
numbers you can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might
be a project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of
Hibernate on her machine to fix a critical security bug but forgets to notify othersin the team of this change.
She may address the security bug successfully, but she also may have introduced subtle bugs into a codebase
that was using a now-deprecated feature from Hibernate. Weeks later there is an exception on the integration
machine which can’'t be reproduced on anyone’ s machine. Multiple developers then spend days on this issue
only finally realising that the error would have been easy to uncover if they knew that Hibernate had been
upgraded from 2.5t0 3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This
practice also reduces the potential for error.

25.2.2. Manage transitive dependencies

Transitive dependency management is a technique that enables your project to depend on libraries which, in
turn, depend on other libraries. This recursive pattern of transitive dependencies results in a tree of
dependencies including your project’ s first-level dependencies, second-level dependencies, and so on. If you
don’'t model your dependencies as a hierarchical tree of first-level and second-level dependenciesit is very
easy to quickly lose control over an assembled mess of unstructured dependencies. Consider the Gradle
project itself, while Gradle only has afew direct, first-level dependencies, when Gradle is compiled it needs
more than one hundred dependencies on the classpath. On a far larger scale, Enterprise projects using
Spring, Hibernate, and other libraries, alongside hundreds or thousands of internal projects, can result in
very large dependency trees.

When these large dependency trees need to change, you'll often have to solve some dependency version
conflicts. Say one open source library needs one version of a logging library and a another uses an
alternative version. Gradle and other build tools al have the ability to resolve conflicts, but what
differentiates Gradleis the control it gives you over transitive dependencies and conflict resolution.

While you could try to manage this problem manually, you will quickly find that this approach doesn’t
scale. If you want to get rid of afirst level dependency you really can't be sure which other jars you should
remove. A dependency of afirst level dependency might also be afirst level dependency itself, or it might
be a transitive dependency of yet another first level dependency. If you try to manage transitive
dependencies yourself, the end of the story is that your build becomes brittle: no one dares to change your
dependencies because the risk of breaking the build is too high. The project classpath becomes a complete
mess, and, if a classpath problem arises, hell on earth invites you for aride.

NOTE: In one project, we found a mystery LDAP related jar in the classpath. No code referenced this
jar and there was no connection to the project. No one could figure out what the jar was for, until it
was removed from the build and the application suffered massive performance problems whenever it

Page 203 of 654

attempted to authenticate to LDAP. This mystery jar was a necessary transitive, fourth-level
dependency that was easy to miss because no one had bothered to use managed transitive
dependencies.

Gradle offers you different ways to express first-level and transitive dependencies. With Gradle you can mix
and match approaches; for example, you could store your jars in an SCM without XML descriptor files and
still use transitive dependency management.

25.2.3. Resolve version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you
don't use transitive dependency management, version conflicts are undetected and the often accidental order
of the classpath will determine what version of a dependency will win. On a large project with many
developers changing dependencies, successful builds will be few and far between as the order of
dependencies may directly affect whether a build succeeds or fails (or whether a bug appears or disappears
in production).

If you haven't had to deal with the curse of conflicting versions of jars on a classpath, here is a small
anecdote of the fun that awaits you. In a large project with 30 submodules, adding a dependency to a
subproject changed the order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build
continued to work, developers were starting to notice all sorts of surprising (and surprisingly awful) bugsin
production. Worse yet, this unintentional downgrade of Spring introduced several security vulnerabilities
into the system, which now required afull security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You
might also want to learn where conflicting versions are used and consolidate on a particular version of a
dependency across your organization. With a good conflict reporting tool like Gradle, that information can
be used to communicate with the entire organization and standardize on a single version. If you think
version conflicts don’t happen to you, think again. It is very common for different first-level dependencies
to rely on arange of different overlapping versions for other dependencies, and the VM doesn't yet offer an
easy way to have different versions of the same jar in the classpath (see Section 25.1.2, “Dependency
management and Java’).

Gradle offers the following conflict resolution strategies:

®* Newest: The newest version of the dependency is used. Thisis Gradl€' s default strategy, and is often an
appropriate choice aslong as versions are backwards-compatible.

® Fail: A version conflict results in a build failure. This strategy requires al version conflicts to be
resolved explicitly in the build script. See Resol uti onStrat egy for details on how to explicitly
choose a particular version.

While the strategies introduced above are usualy enough to solve most conflicts, Gradle provides more
fine-grained mechanisms to resolve version conflicts:

® Configuring afirst level dependency as forced. This approach is useful if the dependency in conflict is
aready afirst level dependency. See examplesin DependencyHandl er .

® Configuring any dependency (transitive or not) as forced. This approach is useful if the dependency in
conflict is a transitive dependency. It also can be used to force versions of first level dependencies. See

Page 204 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

examplesin Resol uti onStr at egy

¢ Configuring dependency resolution to prefer modules that are part of your build (transitive or not). This
approach is useful if your build contains custom forks of modules (as part of Chapter 26, Multi-project
Builds or asinclude in Chapter 11, Composite builds). See examplesin Resol uti onStr at egy.

* Dependency resolve rules are an incubating feature introduced in Gradle 1.4 which give you fine-grained
control over the version selected for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such
reports are another feature of dependency management.

25.2.4. Use Dynamic Versions and Changing Modules

There are many situations when you want to use the latest version of a particular dependency, or the latest in
arange of versions. This can be a requirement during development, or you may be developing a library that
is designed to work with a range of dependency versions. You can easily depend on these constantly
changing dependencies by using a dynamic version. A dynamic version can be either aversion range (e.g. 2. +
) or it can be a placeholder for the latest version available (e.g. | at est . i nt egrati on).

Alternatively, sometimes the module you request can change over time, even for the same version. An
example of this type of changing module is a Maven SNAPSHOT module, which always points at the latest
artifact published. In other words, a standard Maven snapshot is a module that never stands still so to speak,
itisa*“changing module”.

The main difference between a dynamic version and a changing module is that when you resolve a dynamic
version, you'll get the real, static version as the module name. When you resolve a changing module, the
artifacts are named using the version you requested, but the underlying artifacts may change over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the
default cache modes using command line options. You can change the cache expiry times in your build
using the resolution strategy (see Section 25.9.3, “Fine-tuned control over dependency caching”).

25.3. Dependency configurations

In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other
properties, and they can extend each other. Many Gradle plugins add pre-defined configurations to your
project. The Java plugin, for example, adds some configurations to represent the various classpaths it needs.
see Section 47.5, “Dependency management” for details. Of course you can add custom configurations on
top of that. There are many use cases for custom configurations. This is very handy for example for adding
dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be shipped
with your distribution).

A project’s configurations are managed by a confi gur ati ons object. The closure you pass to the
configurations object is applied against its API. To learn more about this APl have a look at
Confi gur ati onCont ai ner .

To define a configuration:

Page 205 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Example 25.1. Definition of a configuration

bui | d. gradl e

configurations {

conpil e
}

To access a configuration;

Example 25.2. Accessing a configuration
bui |l d. gradl e

println configurations. conpile. name
println configurations['conpile'].name

To configure a configuration:

Example 25.3. Configuration of a configuration
bui |l d. gradl e

configurations {
conpil e {
description = 'conpile classpath’
transitive = true
}
runtime {
ext endsFrom conpi |l e

}

}

configurations. conpile {
description = 'conpile classpath’

}

25.4. How to declare your dependencies

There are several different types of dependencies that you can declare:

Page 206 of 654

Table 25.1. Dependency types

Type
External module dependency

Project dependency

File dependency

Client module dependency

Gradle API dependency

Local Groovy dependency

Description

A dependency on an external module in some repository.

A dependency on another project in the same build.

A dependency on aset of files on the local filesystem.

A dependency on an external module, where the artifacts are located in
some repository but the module meta-data is specified by the local
build. Y ou use this kind of dependency when you want to override the
meta-data for the module.

A dependency on the API of the current Gradle version. Y ou use this
kind of dependency when you are developing custom Gradle plugins
and task types.

A dependency on the Groovy version used by the current Gradle
version. You use this kind of dependency when you are developing
custom Gradle plugins and task types.

25.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external

repository.

Example 25.4. M odule dependencies

bui | d. gradl e

dependenci es {
runti me group:

‘org. springframework',

name: 'spring-core', version: '2. 5

runtime 'org.springfranmework: spring-core:2.5",
' org. springframework: spring-aop: 2. 5'

runti me(
[group:
[group:
)

‘org.springfranmework',
'org. springframework',

ver si on:
ver si on:

nane:
nane:

'spring-core',
'spring-aop',

'2.5'1],
'2.5']

runti me(' org. hi bernate: hi bernate: 3.0.5") {
transitive = true

}
runti me group:
runti me(group:

'org. hi bernate',
‘org. hi bernate',

ver si on:
ver si on:

namne:
nane:

' hi bernate',

0.
" hi bernate', 0.

8L
CH

transitive = true

}

See the DependencyHandl er class in the APl documentation for more examples and a complete

reference.

Page 207 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Gradle provides different notations for module dependencies. There is a string notation and a map notation.
A module dependency has an APl which allows further configuration. Have a look at
Ext er nal Modul eDependency to learn al about the API. This APl provides properties and
configuration methods. Via the string notation you can define a subset of the properties. With the map
notation you can define all properties. To have access to the complete API, either with the map or with the
string notation, you can assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a module descriptor file (pom xm ori vy. xm)in

the repositories. If such a module descriptor file exists, it is parsed and the artifacts of thismodule (e.g. hi ber nat
) as well as its dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle
looks for afile called hi ber nat e- 3. 0. 5. j ar to retrieve. In Maven, a module can have one and only

one artifact. In Gradle and vy, a module can have multiple artifacts. Each artifact can have a different set of
dependencies.

Depending on modules with multiple artifacts

As mentioned earlier, a Maven module has only one artifact. Hence, when your project depends on a Maven
module, it's obvious what its artifact is. With Gradle or lvy, the case is different. lvy’s dependency
descriptor (i vy. xm) can declare multiple artifacts. For more information, see the lvy referencefor i vy. xm

. In Gradle, when you declare a dependency on an Ivy module, you actually declare a dependency on the def aul |
configuration of that module. So the actual set of artifacts (typically jars) you depend on is the set of
artifacts that are associated with the def aul t configuration of that module. Here are some situations where

this matters:

* The def aul t configuration of a module contains undesired artifacts. Rather than depending on the
whole configuration, a dependency on just the desired artifacts is declared.

* The desired artifact belongs to a configuration other than def aul t . That configuration is explicitly
named as part of the dependency declaration.

There are other situations where it is necessary to fine-tune dependency declarations. Please see the
DependencyHandl er class in the APl documentation for examples and a complete reference for
declaring dependencies.

Artifact only notation

Assaid above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of
the module. But sometimes, even if the repository contains module descriptors, you want to download only
the artifact jar, without the dependencies.[1% And sometimes you want to download a zip from a repository,
that does not have module descriptors. Gradle provides an artifact only notation for those use cases - simply
prefix the extension that you want to be downloaded with' @ sign:

Example 25.5. Artifact only notation

bui |l d. gradl e

dependenci es {
runtime "org.groovy:groovy:2.2.0@ar"

runtine group: 'org.groovy', nane: 'groovy', version: '2.

Page 208 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

An artifact only notation creates a module dependency which downloads only the artifact file with the
specified extension. Existing modul e descriptors are ignored.
Classifiers

The Maven dependency management has the notion of classifiers.!!X] Gradle supports this. To retrieve
classified dependencies from a Maven repository you can write:

Example 25.6. Dependency with classifier

bui | d. gradl e

conpile "org.gradle.test.classifiers:service:1.0:jdkl5@ar"

ot her Conf group: 'org.gradle.test.classifiers', name: 'service', version: '1.0",

As can be seen in thefirst line above, classifiers can be used together with the artifact only notation.
It is easy to iterate over the dependency artifacts of a configuration:

Example 25.7. Iterating over a configuration
bui |l d. gradl e

task listJars {
doLast {

configurations.conpile.each { File file -> println file.nane }

}

Outputof gradle -q listJars

> gradle -q listJars

hi bernate-core-3.6.7.Final.jar
antlr-2.7.6.jar

commons-col | ections-3.1.jar

domdj-1.6.1.jar

hi ber nat e- commons-annotati ons-3.2.0.Final.jar
hi bernate-jpa-2.0-api-1.0.1. Final.jar
jta-1.1.jar

slfdj-api-1.6.1.jar

25.4.2. Client module dependencies

Client module dependencies alow you to declare transitive dependencies directly in the build script. They
are areplacement for a module descriptor in an external repository.

Page 209 of 654

Example 25.8. Client module dependencies - transitive dependencies
buil d. gradl e

dependenci es {
runti me nodul e("org. codehaus. groovy: groovy: 2. 4. 10") {
dependency(" comons-cli: commons-cli:1.0") {
transitive = fal se

}

nodul e(group: 'org.apache.ant', name: "ant', version: '1.9.6") {
dependenci es "org. apache. ant: ant-1launcher:1.9.6@ar",
"org. apache.ant:ant-junit:1.9.6"

This declares a dependency on Groovy. Groovy itself has dependencies. But Gradle does not look for an
XML descriptor to figure them out but gets the information from the build file. The dependencies of a client
module can be normal module dependencies or artifact dependencies or another client module. Also look at
the API documentation for the Cl i ent Mbdul e class.

In the current release client modules have one limitation. Let’s say your project is a library and you want
this library to be uploaded to your company’s Maven or lvy repository. Gradle uploads the jars of your
project to the company repository together with the XML descriptor file of the dependencies. If you use
client modules the dependency declaration in the XML descriptor file is not correct. We will improve thisin
afuture release of Gradle.

25.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the
same multi-project build. For the latter you can declare Project Dependencies.

Example 25.9. Project dependencies

buil d. gradl e

dependenci es {

conpil e project(':shared")
}

For more information see the APl documentation for Pr oj ect Dependency.

Multi-project builds are discussed in Chapter 26, Multi-project Builds.

25.4.4. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a
repository. This can be useful if you cannot, or do not want to, place certain files in arepository. Or if you
do not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a file collection as a dependency:

Page 210 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Example 25.10. File dependencies

bui | d. gradl e

dependenci es {
runtime files('libs/a.jar', 'libs/b.jar")

runtime fileTree(dir: "libs', include: '"*.jar")

File dependencies are not included in the published dependency descriptor for your project. However, file
dependencies are included in transitive project dependencies within the same build. This means they cannot
be used outside the current build, but they can be used with the same build.

Y ou can declare which tasks produce the files for a file dependency. Y ou might do this when, for example,
the files are generated by the build.

Example 25.11. Generated file dependencies
bui |l d. gradl e

dependenci es {
conmpile files("$buildDir/classes") {
builtBy 'conpil e’
}
}

task compile {
doLast {
println 'conpiling classes
}
}

task |ist(dependsOn: configurations.conpile) {
doLast {
println "classpath = ${configurations.conpile.collect { File file -> fi

}

Output of gradl e -qg |i st
> gradle -q list

conpi | i ng cl asses
cl asspath = [cl asses]

25.4.5. Gradle API Dependency

You can declare a dependency on the APl of the current version of Gradle by using the
DependencyHandl er. gr adl eApi () method. Thisis useful when you are developing custom Gradle
tasks or plugins.

Page 211 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()

Example 25.12. Gradle API dependencies
buil d. gradl e

dependenci es {
conpi | e gradl eApi ()

}

25.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandl er. | ocal G- oovy() method. This is useful when you are developing custom
Gradle tasks or pluginsin Groovy.

Example 25.13. Gradle's Groovy dependencies

bui | d. gradl e

dependenci es {

conpi | e | ocal Groovy()

}

25.4.7. Excluding transitive dependencies

Y ou can exclude a transitive dependency either by configuration or by dependency:

Example 25.14. Excluding transitive dependencies
bui |l d. gradl e

configurations {
conpi | e. excl ude nodul e: ' conmons'
al |l *. excl ude group: 'org.gradle.test.excludes', nodule: 'reports’

}

dependenci es {
conpi l e("org. gradl e.test.excludes:api:1.0") {
excl ude nodul e: ' shared’

}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered
for all dependencies when resolving this configuration or any inheriting configuration. If you want to
exclude a transitive dependency from all your configurations you can use the Groovy spread-dot operator to
express this in a concise way, as shown in the example. When defining an exclude, you can specify either
only the organization or only the module name or both. Also look at the APl documentation of the
Dependency and Conf i gur ati on classes.

Not every transitive dependency can be excluded - some transitive dependencies might be essential for
correct runtime behavior of the application. Generally, one can exclude transitive dependencies that are
either not required by runtime or that are guaranteed to be available on the target environment/platform.

Page 212 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.Configuration.html

Should you exclude per-dependency or per-configuration? It turns out that in the majority of cases you want
to use the per-configuration exclusion. Here are some typical reasons why one might want to exclude a
transitive dependency. Bear in mind that for some of these use cases there are better solutions than
exclusions!

® The dependency is undesired due to licensing reasons.

® The dependency is not available in any remote repositories.

® The dependency is not needed for runtime.

® The dependency has a version that conflicts with a desired version. For that use case please refer to
Section 25.2.3, “Resolve version conflicts’ and the documentation on Resol uti onSt r at egy for a
potentially better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This
way the dependency declaration is more explicit. It is also more accurate because a per-dependency exclude
rule does not guarantee the given transitive dependency does not show up in the configuration. For example,
some other dependency, which does not have any exclude rules, might pull in that unwanted transitive
dependency.

Other examples of dependency exclusions can be found in the reference for the Modul eDependency or
DependencyHandl er classes.

25.4.8. Optional attributes

All attributes for a dependency are optional, except the name. Which attributes are required for actually
finding dependencies in the repository will depend on the repository type. See Section 25.6, “Repositories”’.
For example, if you work with Maven repositories, you need to define the group, name and version. If you
work with filesystem repositories you might only need the name or the name and the version.

Example 25.15. Optional attributes of dependencies

bui | d. gradl e

dependenci es {
runtime ":junit:4.12", ":testng"

runti me nane: 'testng'

Y ou can aso assign collections or arrays of dependency notations to a configuration:

Example 25.16. Collections and arrays of dependencies

buil d. gradl e

Li st groovy = ["org. codehaus. groovy: groovy-all:2.4.10@ ar",
"conmons-cli:commons-cli: 1. 0@ar",
"org.apache.ant:ant:1.9.6@ar"]

Li st hi bernate = ['org. hi bernate: hi bernate: 3.0.5@ar",

' sonegroup: soneorg: 1. 0@ar ']

dependenci es {
runtinme groovy, hibernate

}

Page 213 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

25.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different
configurations). If you don't specify anything explicitly, Gradle uses the default configuration of the
dependency. For dependencies from a Maven repository, the default configuration is the only possibility
anyway. If you work with Ivy repositories and want to declare a non-default configuration for your
dependency you have to use the map notation and declare:

Example 25.17. Dependency configurations

bui |l d. gradl e

dependenci es {
runti me group: 'org.sonmegroup', name: 'sonedependency', version: '1.

}

To do the same for project dependencies you need to declare:

Example 25.18. Dependency configurationsfor project
bui |l d. gradl e

dependenci es {

conpile project(path: ':api', configuration: 'spi')

}

25.4.10. Dependency reports

You can generate dependency reports from the command line (see Section 4.7.4, “Listing project
dependencies’). With the help of the Project report plugin (see Chapter 29, The Project Report Plugin) such
areport can be created by your build.

Since Gradle 1.2 there is also a new programmatic API to access the resolved dependency information. The
dependency reports (see the previous paragraph) are using this APl under the covers. The API lets you walk
the resolved dependency graph and provides information about the dependencies. In future releases the API
will grow to provide more information about the resolution result. For more information about the API
please refer to the Javadocs on Resol vabl eDependenci es. get Resol uti onResul t () . Potentia
usages of the Resol uti onResul t API:

® Creation of advanced dependency reports tailored to your use case.
® Enabling the build logic to make decisions based on the content of the dependency graph.

25.5. Working with dependencies

For the examples below we have the following dependencies setup:

Page 214 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

Example 25.19. Configur ation.copy
buil d. gradl e

configurations {
sealife
alllife

}

dependenci es {
sealife "sea.mammal s: orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife configurations.sealife
alllife "air.birds: al batross: 1. 0"

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

Y ou can use the configuration to access the declared dependencies or a subset of those:

Example 25.20. Accessing declared dependencies
bui |l d. gradl e

t ask dependenci es {
doLast {
configurations.alllife.dependenci es.each { dep -> println dep. nane }
println()
configurations.alllife.all Dependenci es. each { dep -> println dep. nane }

println()
configurations.alllife.all Dependencies.findAll { dep -> dep.nane != "or
.each { dep -> println dep.name }

Output of gr adl e - g dependenci es

> gradl e -q dependenci es
al batross

al batross
orca
shar k
tuna

al bat ross

shark
tuna

Thedependenci es task returns only the dependencies belonging explicitly to the configuration. The al | Depe
task includes the dependencies from extended configurations.

Page 215 of 654

To get the library files of the configuration dependencies you can do:

Example 25.21. Configuration.files

bui |l d. gradl e

task allFiles {
doLast {
configurations.sealife.files.each { file ->
printin file.nanme

Outputof gradle -q all Files

> gradle -q all Files
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar

seal -2.0.jar
herring-1.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Example 25.22. Configuration.fileswith spec

bui |l d. gradl e

task files {
doLast {
configurations.sealife.files { dep -> dep.nane == "orca' }.each { file -

println file.nanme

Outputof gradle -q files

> gradle -q files
orca-1.0.jar
seal -2.0.jar

The Confi guration. fil es method always retrieves al artifacts of the whole configuration. It then
filters the retrieved files by specified dependencies. As you can see in the example, transitive dependencies
are included.

You can aso copy a configuration. Y ou can optionally specify that only a subset of dependencies from the
original configuration should be copied. The copying methods come in two flavors. The copy method
copies only the dependencies belonging explicitly to the configuration. The copyRecur si ve method
copies all the dependencies, including the dependencies from extended configurations.

Page 216 of 654

Example 25.23. Configur ation.copy

bui | d. gradl e

task copy {
doLast {
configurations.alllife.copyRecursive { dep -> dep.nanme != "orca' }
. al | Dependenci es. each { dep -> println dep. nanme }

println()
configurations.alllife.copy().all Dependenci es
.each { dep -> println dep. nane }

Output of gradl e -q copy

> gradle -q copy
al batross

shar k

tuna

al bat ross

It is important to note that the returned files of the copied configuration are often but not always the same
than the returned files of the dependency subset of the original configuration. In case of version conflicts
between dependencies of the subset and dependencies not belonging to the subset the resolve result might be
different.

Example 25.24. Configuration.copy vs. Configuration.files

buil d. gradl e

task copyVsFiles {
doLast {
configurations.sealife.copyRecursive { dep -> dep.nane == 'orca' }
.each { file -> println file.name }

println()
configurations.sealife.files { dep -> dep.nane == 'orca' }
.each { file -> println file.nane }

Output of gr adl e -g copyVsFil es

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal -2.0.jar

In the example above, or ca has adependency on seal - 1. 0 whereas shar k has adependency onseal -2. 0
. The origina configuration has therefore a version conflict which is resolved to the newer seal - 2. 0
version. Thef i | es method therefore returns seal - 2. 0 as atransitive dependency of or ca. The copied
configuration only has or ca as a dependency and therefore there is no version conflict and seal - 1. 0 is
returned as a transitive dependency.

Page 217 of 654

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies
will cause an exception. Y ou can always copy a resolved configuration. The copied configuration is in the
unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the API documentation: Conf i gur ati on.

25.6. Repositories

Gradle repository management, based on Apache lvy, givesyou alot of freedom regarding repository layout
and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured
repositories.

Y ou may configure any number of repositories, each of which is treated independently by Gradle. If Gradle
finds a module descriptor in a particular repository, it will attempt to download al of the artifacts for that
module from the same repository. Although module meta-data and module artifacts must be located in the
same repository, it is possible to compose a single repository of multiple URLS, giving multiple locations to
search for meta-data files and jar files.

There are several different types of repositories you can declare:

Table 25.2. Repository types

Type Description

Maven central repository A pre-configured repository that looks for dependenciesin Maven Central.

Maven JCenter repository A pre-configured repository that looks for dependencies in Bintray’s
JCenter.

Maven Google repository A pre-configured repository that looks for dependencies in Google's
Maven repository.

Maven local repository A pre-configured repository that looks for dependencies in the local
Maven repository.

Maven repository A Maven repository. Can be located on the local filesystem or at some
remote location.

Ivy repository An lvy repository. Can be located on the local filesystem or at some
remote |ocation.

Flat directory repository A simple repository on the local filesystem. Does not support any
meta-data formats.

Page 218 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.Configuration.html

25.6.1. Maven central repository
To add the central Maven 2 repository (https://repol.maven.org/maven2) simply add this to your build
script:
Example 25.25. Adding central Maven repository
bui |l d. gradl e

repositories {
mavenCentral ()

}

Now Gradle will look for your dependenciesin this repository.

25.6.2. Maven JCenter repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts
published directly to Bintray.

To add the JCenter Maven repository (https://jcenter.bintray.com) simply add this to your build script:

Example 25.26. Adding Bintray's JCenter Maven repository

bui |l d. gradl e

repositories {

jcenter ()

}

Now Gradle will look for your dependencies in the JCenter repository. jcenter() uses HTTPS to connect to
the repository. If you want to use HTTP you can configurej cent er () :
Example 25.27. Using Bintrays's JCenter with HTTP
bui | d. gradl e
repositories {

jcenter {
url "http://jcenter.bintray.com "

}

25.6.3. Maven Google repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage examples
please the [relevant documentation](
https://devel oper.android.com/studi o/buil d/dependenci es.html#google-maven).

To add the Google Maven repository (https://dl.google.com/dl/android/maven2/) simply add this to your
build script:

Page 219 of 654

https://repo1.maven.org/maven2
http://bintray.com
https://jcenter.bintray.com
https://developer.android.com/studio/build/dependencies.html#google-maven
https://dl.google.com/dl/android/maven2/

Example 25.28. Adding Google M aven repository
buil d. gradl e

repositories {
googl e()

}

25.6.4. Local Maven repository

To usethe local Maven cache as arepository you can do:

Example 25.29. Adding the local Maven cache asa repository
bui |l d. gradl e

repositories {
mavenLocal ()

}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If alocal repository
locationisdefinedinaset ti ngs. xm , thislocation will beused. Theset ti ngs. xm in USER_HOVE/ . n2
takes precedence over the settings. xm in M2_HOVE/ conf. If no settings. xm is available,
Gradle uses the default location USER_HOVE/ . n2/ r eposi t ory.

25.6.5. Maven repositories

For adding a custom Maven repository you can do:

Example 25.30. Adding custom Maven repository
bui |l d. gradl e

repositories {
maven {
url "http://repo. nyconpany. conl maven2"

}

Sometimes a repository will have the POMs published to one location, and the JARS and other artifacts
published at another location. To define such arepository, you can do:

Page 220 of 654

Example 25.31. Adding additional Maven repositoriesfor JAR files

bui | d. gradl e

repositories {
maven {
/'l Look for POV and artifacts, such as JARs, here
url "http://repo2. nyconpany. conl naven2"

/1l Look for artifacts here if not found at the above | ocation
artifactUls "http://repo. nyconpany. conijars"
artifactUls "http://repo. myconpany. com j ars2"

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact
URLs are used to look for JARs.

Accessing password protected Maven repositories

To access a Maven repository which uses basic authentication, you specify the username and password to
use when you define the repository:

Example 25.32. Accessing password protected Maven repository
bui |l d. gradl e

repositories {
maven {
credential s {
user nane ‘user'’
password ' password'

}

url "http://repo. nyconpany. conl maven2"

It is advisable to keep your username and password in gr adl e. properti es rather than directly in the
build file.

25.6.6. Flat directory repository

If you want to use a (flat) filesystem directory as arepository, ssimply type:

Example 25.33. Flat repository resolver
bui |l d. gradl e

repositories {
flatDir {
dirs 'lib'
}
flatDir {
dirs 'libl, '"lib2

}

Page 221 of 654

This adds repositories which look into one or more directories for finding dependencies. Note that this type
of repository does not support any meta-data formats like lvy XML or Maven POM files. Instead, Gradle
will dynamically generate a module descriptor (without any dependency information) based on the presence
of artifacts. However, as Gradle prefers to use modules whose descriptor has been created from rea
meta-data rather than being generated, flat directory repositories cannot be used to override artifacts with
real meta-data from other repositories. So, for example, if Gradlefindsonly j nxri-1. 2. 1.jar inaflat
directory repository, but j mxri - 1. 2. 1. pomin another repository that supports meta-data, it will use the
second repository to provide the module. For the use case of overriding remote artifacts with local ones
consider using an Ivy or Maven repository instead whose URL points to alocal directory. If you only work
with flat directory repositories you don't need to set all attributes of a dependency. See Section 25.4.8,
“Optional attributes’.

25.6.7. lvy repositories

Defining an Ivy repository with a standard layout

Example 25.34. | vy repository

bui | d. gradl e

repositories {
ivy {

url "http://repo. myconpany. coni repo"

}

Defining a named layout for an vy repository

Y ou can specify that your repository conformsto the vy or Maven default layout by using a named layout.

Example 25.35. I vy repository with named layout
bui |l d. gradl e
repositories {

ivy {
url "http://repo. myconpany. conirepo"

| ayout "nmaven"

Valid named layout values are ' gr adl e' (the default), ' maven', 'ivy' and ' pattern'. See
I vyArtifact Repository.layout(java.lang.String, groovy.|ang.C osure) in the
APl documentation for details of these named layouts.

Defining custom pattern layout for an Ivy repository

To define an lvy repository with a non-standard layout, you can define a 'pattern’ layout for the repository:

Page 222 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

Example 25.36. | vy repository with pattern layout

bui | d. gradl e

repositories {
vy {
url "http://repo. nyconpany. coni repo"
| ayout "pattern”, {

artifact "[nodule]/[revision]/[type]/[artifact].[ext]"

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can define
separate patterns to use to locate the Ivy files and artifacts:

Eachartifact ori vy specified for arepository adds an additional pattern to use. The patterns are used
in the order that they are defined.

Example 25.37. vy repository with multiple custom patterns
bui |l d. gradl e

repositories {
vy {
url "http://repo. nyconpany. conl repo"
| ayout "pattern”, {
artifact "3rd-party-artifacts/[organisation]/[nodule]/[revision]/[ar
artifact "conpany-artifacts/[organisation]/[nmodule]/[revision]/[arti
ivy "ivy-files/[organisation]/[nodule]/[revision]/ivy.xm"

Optionally, a repository with pattern layout can have its 'organisation’ part laid out in Maven style, with
forward slashes replacing dots as separators. For example, the organisation ny. conpany would then be
represented as my/ conpany.
Example 25.38. vy repository with Maven compatible layout
bui |l d. gradl e
repositories {
vy {

url "http://repo. nyconpany. coni r epo"
| ayout "pattern”, {

artifact "[organisation]/[nmodule]/[revision]/[artifact]-[revision].][
n2conpati ble = true

Page 223 of 654

Accessing password protected Ivy repositories

To access an vy repository which uses basic authentication, you specify the username and password to use
when you define the repository:

Example 25.39. I vy repository
bui |l d. gradl e

repositories {
ivy {
url "http://repo. nyconpany. coni
credential s {
user nane ‘user'

password ' password'

25.6.8. Supported repository transport protocols

Maven and lvy repositories support the use of various transport protocols. At the moment the following
protocols are supported:

Table 25.3. Repository transport protocols

Type Credential types

file none
http username/password

https username/password

sftp username/password
s3 access key/secret key/session token or Environment variables
gcs default application credentials sourced from well known files, Environment variables etc.

To define arepository use the r eposi t or i es configuration block. Within the r eposi t or i es closure,
aMaven repository is declared with maven. An vy repository is declared with i vy. The transport protocol
is part of the URL definition for a repository. The following build script demonstrates how to create a
HTTP-based Maven and Ivy repository:

Page 224 of 654

https://developers.google.com/identity/protocols/application-default-credentials

Example 25.40. Declaring a Maven and | vy repository
buil d. gradl e

repositories {
maven {
url "http://repo. nyconpany. conl maven2"

}

ivy {
url "http://repo. nyconpany. coni repo"

}

If authentication is required for a repository, the relevant credentials can be provided. The following
exampl e shows how to provide username/password-based authentication for SFTP repositories:

Example 25.41. Providing credentialsto a Maven and |vy repository
buil d. gradl e

repositories {
maven {
url "sftp://repo. nyconpany. com 22/ naven2"
credentials {
user nane 'user'
password ' password’

}

ivy {
url "sftp://repo. myconpany.com 22/ repo"
credentials {
user nane 'user'
password ' password'

When using an AWS S3 backed repository you need to authenticate using AwsCr edent i al s, providing
access-key and a private-key. The following example shows how to declare a S3 backed repository and
providing AWS credentials:

Page 225 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.credentials.AwsCredentials.html

Example 25.42. Declaring a S3 backed Maven and | vy repository
buil d. gradl e

repositories {
maven {

url "s3://nmyConpanyBucket/ maven2"

credenti al s(AwsCredential s) {
accessKey "soneKey"
secret Key "sonmeSecret"
/'l optional
sessi onToken "soneSTSToken"

}

vy {
url "s3://myConpanyBucket /i vyrepo"
credenti al s(AwsCredential s) {
accessKey "soneKey"
secret Key "soneSecret"
/'l optional
sessi onToken "sonmeSTSToken"

You can aso delegate all credentials to the AWS sdk by using the AwsimAuthentication. The following
example shows how:

Example 25.43. Declaring a S3 backed Maven and Ivy repository using |AM
buil d. gradl e

repositories {
maven {
url "s3://nmyConpanyBucket / maven2"
aut henti cation {
aws| n{ Aws| mAut henti cation) // load fromEC2 role or env var

}
}

ivy {
url "s3://nyConmpanyBucket/ivyrepo"
aut henti cation {
aws| m(Aws| mAut hent i cati on)

When using a Google Cloud Storage backed repository default application credentials will be used with no
further configuration required:

Page 226 of 654

Example 25.44. Declaring a Google Cloud Storage backed Maven and | vy repository using default applicati

bui | d. gradl e

repositories {
maven {
url "gcs:// nmyConpanyBucket / maven2"

}

ivy {
url "gcs:// nmyConpanyBucket /i vyrepo"
}

S3 configuration properties

The following system properties can be used to configure the interactions with s3 repositories:

Table 25.4. S3 Configuration Properties

Property Description

org.gradle.s3.endpoint Used to override the AWS S3 endpoint when using a non AWS, S3
API compatible, storage service.

org.gradle.s3.maxErrorRetry Specifies the maximum number of times to retry arequest in the event
that the S3 server responds with a HTTP 5xx status code. When not
specified adefault value of 3 isused.

S3 URL formats

S3 URL’sare 'virtual-hosted-style' and must be in the following format s3: / / <bucket Name>[. <r egi onSpe
e.g.s3:// myBucket. s3. eu-central - 1. anazonaws. com maven/r el ease

* nyBucket isthe AWS S3 bucket name.
® s3.eu-central - 1. amazonaws. comisthe optional region specific endpoint.
* /maven/rel ease isthe AWS S3 key (unique identifier for an object within a bucket)

S3 proxy settings

A proxy for S3 can be configured using the following system properties:

® https. proxyHost

® https. proxyPort

® https. proxyUser

® https. proxyPassword
® http. nonProxyHosts

If the 'org.gradie.s3.endpoint’ property has been specified with a http (not https) URI the following system
proxy settings can be used:

Page 227 of 654

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

® http. proxyHost
® http. proxyPort
® http. proxyUser
® http. proxyPassword
® http. nonProxyHosts

AWS S3 V4 Signatures (AWSA-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS's signature version 4. It is recommended to specify S3 URL’s containing the region
specific endpoint when using buckets that require V4 signatures. e.g. s3: / / sonmebucket . s3. eu-central -

NOTE: When a region-specific endpoint is not specified for buckets requiring V4 Signatures, Gradle
will use the default AWS region (us-east-1) and the following warning will appear on the console:

Attempting to re-send the request to with AWS V4 authentication. To avoid this warning in the
future, please use region-specific endpoint to access buckets located in regions that require V4
signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures means:

® 3 round-trips to AW5, as opposed to one, for every file upload and downl
® Depending on |location - increased network | atencies and sl ower buil ds.
® | ncreased |ikelihood of transm ssion failures.

Google Cloud Storage configuration properties

The following system properties can be used to configure the interactions with Google Cloud Storage
repositories:

Table 25.5. Google Cloud Storage Configuration Properties

Property Description

org.gradle.gcs.endpoint Used to override the Google Cloud Storage endpoint when using a
non-Google Cloud Platform, Google Cloud Storage APl compatible,
storage service.

org.gradle.gcs.servicePath Used to override the Google Cloud Storage root service path which the

Google Cloud Storage client builds requests from, defaultsto / .

Google Cloud Storage URL formats

Google Cloud Storage URL'’ s are 'virtual-hosted-style' and must be in the following format gcs: / / <bucket Nai

e.g.gcs: // myBucket/ maven/r el ease

Page 228 of 654

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

* nyBucket isthe Google Cloud Storage bucket name.
* /maven/ r el ease isthe Google Cloud Storage key (unique identifier for an object within a bucket)

Configuring HT TP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication schemes
are available. By default, Gradle will attempt to use all schemes that are supported by the Apache HttpClient
library, documented here. In some cases, it may be preferable to explicitly specify which authentication
schemes should be used when exchanging credentials with a remote server. When explicitly declared, only
those schemes are used when authenticating to a remote repository. The following example show how to
configure arepository to use only digest authentication:

Example 25.45. Configure repository to use only digest authentication

bui |l d. gradl e

repositories {
maven {
url 'https://repo. nyconpany. conf maven2'
credentials {
user nane ' user’
password ' password'

}

aut henti cation {
di gest (Di gest Aut henti cati on)

Currently supported authentication schemes are:

Table 25.6. Authentication schemes

Type Description

Basi cAut henti cati on Basic access authentication over HTTP. When using this scheme,
credentials are sent preemptively.

Di gest Aut henti cati on Digest access authentication over HTTP.

Using preemptive authentication

Gradle's default behavior is to only submit credentials when a server responds with an authentication
challenge in the form of aHTTP 401 response. In some cases, the server will respond with a different code
(ex. for repositories hosted on GitHub a 404 is returned) causing dependency resolution to fail. To get
around this behavior, credentials may be sent to the server preemptively. To enable preemptive
authentication simply configure your repository to explicitly usethe Basi cAut hent i cat i on scheme:

Page 229 of 654

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.authentication.http.BasicAuthentication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.authentication.http.DigestAuthentication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.authentication.http.BasicAuthentication.html

Example 25.46. Configurerepository to use preemptive authentication

bui | d. gradl e

repositories {
maven {
url '"https://repo. nyconpany. conl naven2'
credential s {
user nane 'user'
password ' password

}

aut henti cation {
basi c(Basi cAut henti cati on)

25.6.9. Working with repositories

To access arepository:

Example 25.47. Accessing arepository
buil d. gradl e

println repositories.|ocal Repository. name
println repositories['|ocal Repository']. nane

To configure arepository:

Example 25.48. Configuration of arepository
bui |l d. gradl e

repositories {
flatDir {
nane '| ocal Repository

}
}
repositories {
| ocal Repository {
dirs "Iib'
}
}

repositories.| ocal Repository {
dirs "lib

}

25.6.10. More about vy resolvers

Gradleis extremely flexible regarding repositories:

® There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh,
sftp ...)

Page 230 of 654

® The protocol sftp currently only supports username/password-based authentication.
¢ Each repository can have its own layout.

Let's say, you declare a dependency onthej uni t:j unit: 3. 8. 2 library. Now how does Gradle find it
in the repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven,
where this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here
are some examples:[12

/1 Maven2 layout (if a repository is marked as Maven2 conpati bl e, the organization (
soner oot/ [organi sation]/[nodul e]/[revision]/[nodul e]-[revision].[ext]

/1 Typical layout for an Ivy repository (the organization is not split into subfolde
soner oot/ [organi sation]/[rmodul e]/[revision]/[type]s/[artifact].[ext]

/1 Sinmple layout (the organization is not used, no nested folders.)
soneroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Example 25.49. Definition of a custom repository

buil d. gradl e

repositories {
ivy {
ivyPattern "$projectDir/repo/[organisation]/[nmodul e]-ivy-[revision].xm"

artifactPattern "$projectDir/repo/[organi sation]/[nodul e]-[revision](-[d

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found here. With Gradle
you just don't configure them via XML but directly viatheir API.

25.7. How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below is abrief outline of how this process works.

® Given arequired dependency, Gradle first attempts to resolve the module for that dependency. Each
repository is inspected in order, searching first for a module descriptor file (POM or Ivy file) that
indicates the presence of that module. If no module descriptor is found, Gradle will search for the
presence of the primary module artifact file indicating that the module exists in the repository.
® |f the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the newest
available static version (like 1. 2) in the repository. For Maven repositories, thisis done using the maven-

file, while for Ivy repositories thisis done by directory listing.
® |f the module descriptor is a POM file that has a parent POM declared, Gradle will recursively
attempt to resolve each of the parent modules for the POM.
® Once each repository has been inspected for the module, Gradle will choose the 'best’ oneto use. Thisis
done using the following criteria
® For adynamic version, a'higher' static version is preferred over a'lower’ version.

Page 231 of 654

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

® Modules declared by a module descriptor file (Ivy or POM file) are preferred over modules that have
an artifact file only.

® Modulesfrom earlier repositories are preferred over modulesin later repositories.

* When the dependency is declared by a static version and a module descriptor file is found in a
repository, there is no need to continue searching later repositories and the remainder of the process
is short-circuited.

® All of the artifacts for the module are then requested from the same repository that was chosen in the
process above.

25.8. Fine-tuning the dependency resolution
process

In most cases, Gradle's default dependency management will resolve the dependencies that you want in
your build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your
build receives exactly the right dependencies.

There are anumber of ways that you can influence how Gradle resolves dependencies.

25.8.1. Forcing a particular module version

Forcing a module version tells Gradle to always use a specific version for given dependency (transitive or
not), overriding any version specified in a published module descriptor. This can be very useful when
tackling version conflicts - for more information see Section 25.2.3, “Resolve version conflicts’.

Force versions can also be used to deal with rogue metadata of transitive dependencies. If a transitive
dependency has poor quality metadata that leads to problems at dependency resolution time, you can force
Gradle to use a newer, fixed version of this dependency. For an example, see the Resol uti onSt r at egy
class in the APl documentation. Note that ‘dependency resolve rules (outlined below) provide a more
powerful mechanism for replacing a broken module dependency. See the section called “Blacklisting a
particular version with a replacement”.

25.8.2. Preferring modules that are part of the build

Preferring project modules tells Gradle to use the version of a module that is part of the build itself (as part
of Chapter 26, Multi-project Builds or as includes in Chapter 11, Composite builds). This alows the easy
inclusion of an individual fork (e.g. containing a bugfix) of a module - for more information see
Section 25.2.3, “Resolve version conflicts’.

25.8.3. Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. This feature is incubating,
but currently offers the ability to change the group, name and/or version of a requested dependency,
allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and
can be used to implement all sorts of advanced patterns in dependency management. Some of these patterns

Page 232 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

are outlined below. For more information and code samples see the Resol ut i onSt r at egy classin the
APl documentation.

Modelling releasable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested
and published together. These libraries form a 'rel easable unit', designed and intended to be used as a whole.
It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

®* nodul e- adependsonr el easabl e-unit:part-one:1.0
® nodul e- b dependsonr el easabl e-unit:part-two: 1.1

A build depending on both nodul e- a and nodul e- b will obtain different versions of libraries within the
releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine areleasable
unit defined by all libraries that have 'org.gradie’ group. We can force al of these libraries to use a consistent
version:

Example 25.50. Forcing consistent version for a group of libraries

bui | d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == '"org.gradle') {

details.useVersion '1.4'

Implement a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is
maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

® In the build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: ' def aul t ' .

® The 'default’ version is resolved to a specific version via a dependency resolve rule, which looks up the
version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across al builds
within the organisation.

Page 233 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Example 25.51. Using a custom versioning scheme

bui | d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested.group,
det ai | s. useVersi on versi on

def findDefaultVersionlnCatal og(String group, String nane) {
/I some custom | ogic that resol ves the default version into a specific versid
"1.0"

Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing areplacement version. This can be useful if a certain dependency version is broken and should not
be used, where a dependency resolve rule causes this version to be replaced with a known good version. One
example of a broken module is one that declares a dependency on a library that cannot be found in any of
the public repositories, but there are many other reasons why a particular module version is unwanted and a
different version is preferred.

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preferenceto 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that thisis different from aforced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy
would still select version 1. 3 if this version was also pulled transitively.

Example 25.52. Blacklisting a version with a replacement
buil d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && detail s.requested. nane
I/ prefer different version which contains sone necessary fixes

details.useVersion '1.2.1'

Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examples include using ' gr oovy' in place of ' groovy-all', or using ' | og4j - over-sl f4j'
instead of ' | og4j ' . Starting with Gradle 1.5 you can make these substitutions using dependency resolve
rules:

Page 234 of 654

Example 25.53. Changing dependency group and/or name at the resolution
buil d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.nane == 'groovy-all"') {
/I prefer 'groovy' over 'groovy-all’
detail s. useTarget group: details.requested. group, nane: 'groovy', vd

}

if (details.requested. name == 'lo0g4]"') ({
/I prefer 'log4j-over-slf4j' over 'log4j', with fixed version
detail s. useTarget "org.slf4j:1og4j-over-slf4j:1.7.10"

25.8.4. Dependency Substitution Rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of
dependency resolve rules can be implemented with dependency substitution rules. They allow project and
module dependencies to be transparently substituted with specified replacements. Unlike dependency
resolve rules, dependency substitution rules allow project and module dependencies to be substituted
interchangeably.

NOTE: Adding a dependency substitution rule to a configuration changes the timing of when that
configuration is resolved. Instead of being resolved on first use, the configuration is instead resolved

when the task graph is being constructed. This can have unexpected consequences if the configuration
is being further modified during task execution, or if the configuration relies on modules that are
published during execution of another task.

To explain:

® A Confi guration can be declared as an input to any Task, and that configuration can include
project dependencies when it is resolved.

® |f a project dependency is an input to a Task (via a configuration), then tasks to build the project
artifacts must be added to the task dependencies.

® |norder to determine the project dependencies that are inputs to a task, Gradle needs to resolve the
Conf i gur ati on inputs.

¢ Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to
perform this resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency
will never transitively reference a project dependency. This makes it easy to determine the full set of
project dependencies for a configuration through simple graph traversal. With this functionality,
Gradle can no longer make this assumption, and must perform afull resolve in order to determine the
project dependencies.

Page 235 of 654

Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one
that is downloaded from an external repository. This could be useful for testing alocal, patched version of a
dependency.

The module to be replaced can be declared with or without a version specified.

Example 25.54. Substituting a module with a project
bui |l d. gradl e

configurations.all {
resol utionStrategy. dependencySubstitution {
substitute nodul e("org.utils:api") with project(":api")

substitute nodul e("org.utils:util:2.5") with project(":util")

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).
Dependency substitution rules take care of replacing the module dependency with the project dependency
and wiring up any task dependencies, but do not implicitly include the project in the build.

Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project
build. This can be useful to speed up development with a large multi-project build, by allowing a subset of
the project dependencies to be downloaded from a repository rather than being built.

The module to be used as a replacement must be declared with a version specified.

Example 25.55. Substituting a project with a module
bui |l d. gradl e

configurations.all {
resol utionStrategy. dependencySubstitution {
substitute project(":api”) with nmodul e("org.utils:api:1.3")

}

When a project dependency has been replaced with a module dependency, that project is still included in the
overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to
build the resolve the depending Conf i gur ati on.

Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a
multi-project build. This can be useful for developing a local, patched version of an external dependency or
for building a subset of the modules within alarge multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the

Page 236 of 654

group "org.example", but only if alocal project matching the dependency name can be located.

Example 25.56. Conditionally substituting a dependency

bui |l d. gradl e

configurations.all {
resol utionStrat egy. dependencySubstitution.all { DependencySubstitution depe
i f (dependency.requested i nstanceof Mdul eConponent Sel ect or &% dependend
def targetProject = findProject(": ${dependency. r equest ed. nodul e} ")
if (targetProject !'= null) {

dependency. useTar get target Proj ect

Note that a project that is substituted must be included in the multi-project build (via settings.gradie).
Dependency substitution rules take care of replacing the module dependency with the project dependency,
but do not implicitly include the project in the build.

25.8.5. Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set
for the configuration. A primary use case of this functionality is for developing plugins that make use of
versioned tools that the user might override. By specifying default dependencies, the plugin can use a
default version of the tool only if the user has not specified a particular version to use.

Example 25.57. Specifying default dependencies on a configuration

bui | d. gradl e

configurations {
pl ugi nTool {
def aul t Dependenci es { dependenci es ->

dependenci es. add(t hi s. proj ect. dependenci es. create("org. gradl e: my-uti

25.8.6. Enabling Ivy dynamic resolve mode

Gradle's Ivy repository implementations support the equivaent to Ivy’s dynamic resolve mode. Normally,
Gradle will use ther ev attribute for each dependency definition included inani vy. xm file. In dynamic
resolve mode, Gradle will instead prefer the r evConst r ai nt attribute over the r ev attribute for a given
dependency definition. If ther evConst r ai nt attribute is not present, ther ev attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A
couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle's vy
repositories. It is not available for Maven repositories, or custom lvy DependencyResol ver
implementations.

Page 237 of 654

Example 25.58. Enabling dynamic resolve mode
buil d. gradl e

/'l Can enabl e dynam c resol ve node when you define the repository
repositories {
vy {
url "http://repo. nyconpany. coni repo"
resol ve. dynam cMode = true

}

/'l Can use a rule instead to enable (or disable) dynam c resolve node for all rd
repositories.wthType(lvyArtifactRepository) ({
resol ve. dynamnm cMbde = true

}

25.8.7. Component metadata rules

Each module (also called component) has metadata associated with it, such as its group, name, version,
dependencies, and so on. This metadata typically originates in the module's descriptor. Metadata rules allow
certain parts of a module’ s metadata to be manipulated from within the build script. They take effect after a
modul€’ s descriptor has been downloaded, but before it has been selected among all candidate versions. This
makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module’s status scheme. This concept, also
known from lvy, models the different levels of maturity that a module transitions through over time. The
default status scheme, ordered from least to most mature status, isi nt egr ati on, mi | est one, r el ease
. Apart from a status scheme, a module also has a (current) status, which must be one of the values in its
status scheme. If not specified in the (Ivy) descriptor, the status defaultsto i nt egr at i on for Ivy modules
and Maven snapshot modules, and r el ease for Maven modules that aren’t snapshots.

A modul€e's status and status scheme are taken into consideration when a | at est version selector is
resolved. Specifically, | at est . soneSt at us will resolve to the highest module version that has status sone St
or a more mature status. For example, with the default status scheme in place, | at est . i nt egrati on

will select the highest module version regardless of its status (because i nt egr at i on is the least mature
status), whereas | at est . r el ease will select the highest module version with status r el ease. Hereis
what thislooks like in code:

Page 238 of 654

Example 25.59. 'L atest' version selector
buil d. gradl e

dependenci es {
configl "org.sanple:client:latest.integration"
config2 "org.sanple:client: | atest.rel ease"

}

task listConfigs {
doLast {
configurations.configl.each { println it.name }
println()
configurations.config2.each { println it.nanme }

Output of gradl e -qg |istConfigs

> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates | at est selectors based on a custom status scheme declared in a
component metadata rule that appliesto all modules:

Example 25.60. Custom status scheme
bui |l d. gradl e

dependenci es {
config3 "org.sanple:api:latest.silver”
conponents {
all { Conponent Met adat aDetails details ->
if (details.id.group == "org.sanple" &% details.id.name == "api") {
detail s. statusScheme = ["bronze", "silver", "gold", "platinun]

Component metadata rules can be applied to a specified module. Modules must be specified in the form of
"group:module”.

Example 25.61. Custom status scheme by module

bui | d. gradl e

dependenci es {
config4 "org.sanple:lib:|atest. prod"
conponents {
wi t hModul e(" org. sanple: i b") { Conponent Met adat aDetails details ->

details.statusSchene = ["int", "rc", "prod"]

Page 239 of 654

Gradle can also create component metadata rules utilizing 1vy-specific metadata for modules resolved from
an lvy repository. Values from the vy descriptor are made available via the | vyModul eDescri pt or
interface.

Example 25.62. | vy component metadatarule

bui | d. gradl e

dependenci es {
config6 "org.sanple:lib:latest.rc"
conponents {
wi t hModul e("org. sanpl e: i b") { Conponent Met adataDetails details, |vyMd
if (ivyModul e.branch == "testing') {

details.status = "rc"

Note that any rule that declares specific arguments must always include a
Conponent Met adat aDet ai | s argument as the first argument. The second Ivy metadata argument is
optional.

Component metadata rules can also be defined using a rule source object. A rule source object is any object
that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:

® must return void.
* must have Conponent Met adat aDet ai | s asthe first argument.
® may have an additional parameter of type| vyModul eDescri pt or.

Example 25.63. Rule sour ce component metadata rule
bui |l d. gradl e

dependenci es {
config5 "org. sanpl e: api : | at est. gol d"
conponents {
wi t hModul e(' org. sanpl e: api ', new Custontt at usRul e())
}
}

cl ass CustonttatusRul e {

@t at e
voi d set St at usSchene(Conponent Met adat aDetails details) {
detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]

}

Page 240 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

25.8.8. Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple
versions are available that match a version selector. Rules are applied against every available version and
allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that
does not satisfy conditions set by the rule. Examples include:

® For adynamic version like '1.+' certain versions may be explicitly rejected from selection
* For astatic version like '1.4' an instance may be rejected based on extra component metadata such as the
Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the Conponent Sel ecti onRul es object. Each rule configured will be called
with a Conponent Sel ect i on object as an argument which contains information about the candidate
version being considered. Calling Conponent Sel ecti on. rej ect(java.l ang. String) causes
the given candidate version to be explicitly rejected, in which case the candidate will not be considered for
the selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic
version to choose the next best candidate.

Example 25.64. Component selection rule
buil d. gradl e

configurations {
rejectConfig {
resol utionStrategy {
conponent Sel ecti on {

/'l Accept the highest version matching the requested version thg

all { Conponent Sel ecti on sel ection ->
if (selection.candidate.group == 'org.sanple' && sel ection.d
sel ection.reject("version 1.5 is broken for 'org.sanple:

}

dependenci es {
rejectConfig "org.sanple:api:1.+"

}

Note that version selection is applied starting with the highest version first. The version selected will be the
first version found that all component selection rules accept. A version is considered accepted no rule
explicitly rejectsit.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
"group:module”.

Page 241 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 25.65. Component selection rule with module tar get

bui | d. gradl e

configurations {
target Config {
resol utionStrategy {
conponent Sel ecti on {
wi t hModul e("org. sanpl e: api ") { Conponent Sel ecti on sel ection ->
if (selection.candidate.version == "1.5") {
selection.reject("version 1.5 is broken for 'org.sanple:

}

Component selection rules can also consider component metadata when selecting a version. Possible
metadata arguments that can be considered are Conponent Met adat a and | vyModul eDescr i pt or.

Example 25.66. Component selection rule with metadata
buil d. gradl e

configurations {
net adat aRul esConfi g {
resol utionStrategy {
conponent Sel ecti on {

/'l Reject any versions with a status of 'experinental’
all { Component Sel ecti on sel ection, Conponent Met adata net adata -
if (selection.candidate.group == 'org.sanple' && netadata. st
sel ection.reject("don't use experimental candidates fror

}
}

/'l Accept the highest version with either a "rel ease" branch or
wi t hMbdul e(' org. sanpl e: api ') { Conponent Sel ection sel ection, Iv
if (descriptor.branch != "rel ease" && metadata.status != 'mi
selection.reject("' org.sanple:api' mnmust have testing br

}

Note that a Conponent Sel ect i on argument is always required as the first parameter when declaring a
component selection rule with additional Ivy metadata parameters, but the metadata parameters can be
declared in any order.

Lastly, component selection rules can also be defined using a rule source object. A rule source object is any
object that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:

® must return void.

Page 242 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ComponentSelection.html

* must have Conponent Sel ect i on asthefirst argument.
* may have additional parameters of type Conponent Met adat a and/or | vyModul eDescri pt or.

Example 25.67. Component selection rule using a rule sour ce object

bui |l d. gradl e

cl ass Rej ect Test Branch {
@t at e
voi d eval uat eRul e(Conponent Sel ecti on sel ecti on, |vyMdul eDescriptor ivy) {
if (ivy.branch == "test") {
sel ection.reject("reject test branch")

configurations {
rul eSour ceConfig {
resol utionStrategy {
conmponent Sel ecti on {
all new Rej ect Test Branch()

25.8.9. Module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A
good example when a new library replaced a legacy one is the "google-collections’ -> "guava' migration.
The team that created google-collections decided to change the module name from
"com.google.collections:google-collections” into "com.google.guava:guava'. Thisis alegal scenario in the
industry: teams need to be able to change the names of products they maintain, including the module
coordinates. Renaming of the modul e coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let’s consider the "google-collections’ -> "guava' scenario. It
may happen that both libraries are pulled into the same dependency graph. For example, "our" project
depends on guava but some of our dependencies pull in a legacy version of google-collections. This can
cause runtime errors, for example during test or application execution. Gradle does not automatically resolve
the google-collections VS guava conflict because it is not considered as a"version conflict”. It's because the
module coordinates for both libraries are completely different and conflict resolution is activated when
"group" and "name" coordinates are the same but there are different versions available in the dependency
graph (for more info, please refer to the section on conflict resolution). Traditional remedies to this problem
are

® Declare exclusion rule to avoid pulling in "google-collections’ to graph. It is probably the most popular
approach.

* Avoid dependenciesthat pull in legacy libraries.

® Upgrade the dependency version if the new version no longer pullsin alegacy library.

* Downgrade to "google-collections". It's not recommended, just mentioned for compl eteness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve
the google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is

Page 243 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

possible to declare that certain module was replaced by other. This enables organisations to include the
information about module replacement in the corporate plugin suite and resolve the problem holistically for
all Gradle-powered projectsin the enterprise.

Example 25.68. Declaring module replacement

bui | d. gradl e

dependenci es {
nodul es {
nmodul e(" com googl e. col | ecti ons: googl e-col | ecti ons") {

repl acedBy(" com googl e. guava: guava")

For more examples and detailed API, please refer to the DSL reference for
Conponent Met adat aHandl er .

What happens when we declare that "google-collections' are replaced by "guava'? Gradle can use this
information for conflict resolution. Gradle will consider every version of "guava' newer/better than any
version of "google-collections'. Also, Gradle will ensure that only guava jar is present in the classpath /
resolved file list. Please note that if only "google-collections' appears in the dependency graph (e.g. no
"guava') Gradle will not eagerly replace it with "guava'. Module replacement is an information that Gradle
uses for resolving conflicts. If there is no conflict (e.g. only "google-collections’ or only "guava' in the
graph) the replacement information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is
possible to declare that multiple modules are replaced by a single module.

25.9. The dependency cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the
number of remote requests made in dependency resolution, while striving to guarantee that the results of
dependency resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

* A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded
meta-data like POM files and lvy files. The storage path for a downloaded artifact includes the SHA1
checksum, meaning that 2 artifacts with the same name but different content can easily be cached.

® A binary store of resolved module meta-data, including the results of resolving dynamic versions,
module descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very powerful
things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult
to debug behavior that has been a challenge with many build tools. This new behavior isimplemented in a
bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

Page 244 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

25.9.1. Key features of the Gradle dependency cache

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache.
The information stored in the metadata cache includes:

® The result of resolving adynamic version (e.g. 1. +) to aconcrete version (e.g. 1. 2).

®* The resolved module metadata for a particular module, including module artifacts and module
dependencies.

® Theresolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

® The absence of a particular module or artifact in a particular repository, eliminating repeated attempts to
access aresource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well
as atimestamp that can be used for cache expiry.

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its
URL, type and layout. If amodule or artifact has not been previously resolved from this repository, Gradle
will attempt to resolve the module against the repository. This will always involve a remote lookup on the
repository, however in many cases no download will be required (see the section called “Artifact reuse”,
below).

Dependency resolution will fail if the required artifacts are not available in any repository specified by the
build, even if the local cache has a copy of this artifact which was retrieved from a different repository.
Repository independence allows builds to be isolated from each other in an advanced way that no build tool
has done before. Thisis akey feature to create builds that are reliable and reproducible in any environment.

Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not
downloaded if an artifact already exists with the same id and checksum. If the checksum cannot be retrieved
from the remote server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse
artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle
will usethis artifact if it can be verified to match the checksum declared by the remote server.

Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact
identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact
which is republished without changing it’s identifier. By caching artifacts based on their SHA1 checksum,
Gradle is able to maintain multiple versions of the same artifact. This means that when resolving against one
repository Gradle will never overwrite the cached artifact file from a different repository. This is done
without requiring a separate artifact file store per repository.

Page 245 of 654

Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple Gradle
processes concurrently. The lock is held whenever the binary meta-data store is being read or written, but is
released for slow operations such as downloading remote artifacts.

25.9.2. Command line options to override caching

Offline

The - - of f | i ne command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never attempt to

access the network to perform dependency resolution. If required modules are not present in the dependency
cache, build execution will fail.

Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured
repositories. Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was
published incorrectly. To refresh all dependencies in the dependency cache, usethe - - r ef r esh- dependenci ¢
option on the command line.

The - -refresh- dependenci es option tells Gradle to ignore all cached entries for resolved modules
and artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions
recal culated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the
previously downloaded artifacts are valid before downloading again. This is done by comparing published
SHA1 valuesin the repository with the SHA1 values for existing downloaded artifacts.

25.9.3. Fine-tuned control over dependency caching

Y ou can fine-tune certain aspects of caching using the Resol ut i onSt r at egy for a configuration.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for adynamic version, use:

Example 25.69. Dynamic version cache control

bui | d. gradl e

configurations.all {
resol uti onStrat egy. cacheDynam cVer si onsFor 10, 'm nutes'

}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:

Page 246 of 654

Example 25.70. Changing module cache control
buil d. gradl e

configurations.all {

resol utionStrat egy. cacheChangi nghdul esFor 4, 'hours'

}

For more details, take alook at the APl documentation for Resol ut i onSt r at egy.

25.10. Strategies for transitive dependency
management

Many projects rely on the Maven Central repository. Thisis not without problems.

® The Maven Central repository can be down or can be slow to respond.

* The POM files of many popular projects specify dependencies or other configuration that are just plain
wrong (for instance, the POM file of the “conmons- ht t pcl i ent - 3. 0" module declares JUnit as a
runtime dependency).

® For many projects there is not one right set of dependencies (as more or less imposed by the POM
format).

If your project relies on the Maven Central repository you are likely to need an additional custom repository,
because:

® Y ou might need dependencies that are not uploaded to Maven Central yet.

® Youwant to deal properly with invalid metadatain a Maven Central POM file.

® You don't want to expose people to the downtimes or slow response of Maven Central, if they just want
to build your project.

It is not a big deal to set-up a custom repository,[13] but it can be tedious to keep it up to date. For a new
version, you always have to create the new XML descriptor and the directories. Y our custom repository is
another infrastructure element which might have downtimes and needs to be updated. To enable historical
builds, you need to keep all the past libraries, not to mention a backup of these. It is another layer of
indirection. Another source of information you have to lookup. All thisis not really a big deal but in its sum
it has an impact. Repository managers like Artifactory or Nexus make this easier, but most open source
projects don’'t usually have a host for those products. This is changing with new services like Bintray that let
developers host and distribute their release binaries using a self-service repository platform. Bintray also
supports sharing approved artifacts though the JCenter public repository to provide a single resolution
address for al popular OSS Java artifacts (see Section 25.6.2, “Maven JCenter repository™).

This is a common reason why many projects prefer to store their libraries in their version control system.
This approach is fully supported by Gradle. The libraries can be stored in aflat directory without any XML
module descriptor files. Yet Gradle offers complete transitive dependency management. Y ou can use either
client module dependencies to express the dependency relations, or artifact dependenciesin case afirst level
dependency has no transitive dependencies. People can check out such a project from your source code
control system and have everything necessary to build it.

Page 247 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://repo1.maven.org/maven2
http://bintray.com
http://jcenter.bintray.com

If you are working with a distributed version control system like Git you probably don’t want to use the
version control system to store libraries as people check out the whole history. But even here the flexibility
of Gradle can make your life easier. For example, you can use a shared flat directory without XML
descriptors and yet you can have full transitive dependency management, as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the POM file and
maintaining custom XML descriptors, then Client Modules offer an alternative. However, you can still use a
Maven2 repo or your custom repository as a repository for jars only and still enjoy transitive dependency
management. Or you can only provide client modules for POMs with bad metadata. For the jars and the
correct POMs you still use the remote repository.

25.10.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies without XML descriptor files. You can do this
with Gradle, but we don’t recommend it. We mention it for the sake of completeness and comparison with
other build tools.

The trick is to use only artifact dependencies and group them in lists. This will directly express your first
level dependencies and your transitive dependencies (see Section 25.4.8, “Optional attributes’). The
problem with thisis that Gradle dependency management will see this as specifying al dependencies as first
level dependencies. The dependency reports won't show your real dependency graph and the conpi | e task
uses all dependencies, not just the first level dependencies. All in al, your build is less maintainable and
reliable than it could be when using client modules, and you don’t gain anything.

[10] Gradle supports partial multiproject builds (see Chapter 26, Multi-project Builds).
[11] http://books.sonatype.com/mvnref-book/reference/pom-rel ationshi ps-sect-project-rel ationships.html

[12] At http://ant.apache.org/ivy/history/latest-milestone/concept.ntml you can learn more about ivy
patterns.

[13] If you want to shield your project from the downtimes of Maven Central things get more complicated.
Y ou probably want to set-up a repository proxy for this. In an enterprise environment this is rather common.
For an open source project it looks like overkill.

Page 248 of 654

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

26

Multi-project Builds

The powerful support for multi-project builds is one of Gradle’s unique selling points. This topic is aso the
most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

26.1. Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don't have to be Java projects. Our first examples are about marine life.

26.1.1. Configuration and execution

Section 22.1, “Build phases’ describes the phases of every Gradle build. Let’s zoom into the configuration
and execution phases of a multi-project build. Configuration here means executing the bui | d. gr adl e file
of a project, which implies e.g. downloading all plugins that were declared using ‘appl y pl ugi n’. By
default, the configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of multi-project build are configured first. The reason
every project needs to be configured is to support the flexibility of accessing and changing any part of the
Gradle project model.

Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every
project is configured before the execution phase. Y et, this approach may not be the most efficient in a very
large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The
configuration time of huge multi-project builds may become noticeable. Scalability is an important
requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode
isintroduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.
it only executes the bui | d. gr adl e file of projects that are participating in the build. This way, the
configuration time of alarge multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is

Page 249 of 654

incubating so not every build is guaranteed to work correctly. The feature should work very well for
multi-project builds that have decoupled projects (Section 26.9, “Decoupled Projects’). In “configuration on
demand” mode, projects are configured as follows:

® The root project is aways configured. This way the typical common configuration is supported
(alprojects or subprojects script blocks).

® The project in the directory where the build is executed is also configured, but only when Gradle is
executed without any tasks. This way the default tasks behave correctly when projects are configured on
demand.

® The standard project dependencies are supported and makes relevant projects configured. If project A
has a compile dependency on project B then building A causes configuration of both projects.

® Thetask dependencies declared viatask path are supported and cause relevant projects to be configured.
Example: someTask.dependsOn(":someOtherProject:someOther Task™)

® A task requested viatask path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Section 12.1,
“Configuring the build environment via gradle.properties’. To configure on demand just for a given build
please see Appendix D, Gradle Command Line.

26.1.2. Defining common behavior
Let's look at some examples with the following project tree. Thisis a multi-project build with aroot project
named wat er and a subproject named bl uewhal e.
Example 26.1. M ulti-project tree - water & bluewhale projects
Build layout

wat er /
bui | d. gradl e

settings. gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/first Exang
inthe‘-al’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewnhal e'

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously
for asingle project build, a project without a build script doesn’t make much sense. For multiproject builds
the situation is different. Let’slook at the build script for the wat er project and execute it:

Page 250 of 654

Example 26.2. Build script of water (parent) project
buil d. gradl e

Closure cl = { task -> println "I'm $task. proj ect.nane" }
task(' hello"). doLast (cl)

project (' :bluewhale") {
task(' hell o). doLast (cl)

}

Output of gradl e -q hell o

> gradle -q hello
I'' m wat er
1" m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect () , which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project
configuration. Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It isinconvenient to add the task explicitly
for every project. We can do better. Let’ sfirst add another project called kri | | to our multi-project build.
Example 26.3. Multi-project tree - water, bluewhale & krill projects

Build layout

wat er /
bui | d. gradl e

settings. gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/addKrill/v
inthe *-all’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewhale', "krill'

Now we rewrite the wat er build script and boil it down to asingleline.

Page 251 of 654

Example 26.4. Water project build script
buil d. gradl e

al | projects {
task hello {
doLast { task ->

println "I'm $t ask. proj ect. nane"

Output of gradl e -q hell o

> gradle -q hello
I'''mwat er

1" m bl uewhal e
I"mkrill

Is this coal or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.
You could also do aniteration viaal | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring
multiproject builds.

Another possibility for sharing configuration is to use a common external script. See Section 43.3,
“Configuring the project using an externa build script” for more information.

26.2. Subproject configuration

The Project API aso provides a property for accessing the subprojects only.

Page 252 of 654

26.2.1. Defining common behavior

Example 26.5. Defining common behavior of all projects and subprojects
bui |l d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $task. proj ect. nane"
}
}
}

subproj ects {
hell o {
doLast {
println "- | depend on water"

Output of gradl e -q hello

> gradle -q hello
1" mwat er

1" m bl uewhal e

- | depend on water
I"mkrill

- | depend on water

Y ou may notice that there are two code snippets referencing the “hel | 0” task. The first one, which uses the
“t ask” keyword, constructs the task and provides it’s base configuration. The second piece doesn’t use the
“t ask” keyword, as it is further configuring the existing “hel | 0” task. You may only construct a task
oncein aproject, but you may add any number of code blocks providing additional configuration.

26.2.2. Adding specific behavior

Y ou can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don't have to do it this way. We could add project specific behavior for the bl uewhal e project like
this:

Page 253 of 654

Example 26.6. Defining specific behaviour for particular project

bui | d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"

}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"

}
}
}

project (' :bluewhale').hello {
doLast {
println "- I"'mthe largest aninmal that has ever lived on this planet."

}

Output of gradl e -q hello

> gradle -q hello

I'''mwat er

1" m bl uewhal e

- | depend on water

- I"'mthe largest aninmal that has ever lived on this planet.
I"'mkrill

- | depend on water

Aswe have said, we usually prefer to put project specific behavior into the build script of this project. Let’s
refactor and also add some project specific behavior tothekri | | project.

Example 26.7. Defining specific behaviour for project krill

Page 254 of 654

Build layout

wat er/
bui | d. gradl e
settings. gradle
bl uewhal e/

bui | d. gradl e
krill/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ spreadSpec
inthe*-all’ distribution of Gradle.

settings.gradle

i nclude ' bl uewhale', 'krill'

bl uewhal e/ bui | d. gradl e

hel | 0. doLast {
println "- I'mthe |largest animal that has ever lived on this planet."

}

krill/build.gradle

hel | 0. doLast {
println "- The wei ght of nmy species in summer is twi ce as heavy as all human

}

bui | d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"
}
}
}

subproj ects {
hell o {
doLast {
println "- | depend on water"

Output of gradl e -q hello

> gradle -q hello

I'"'m wat er

I'''m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

I"mkrill

- | depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs

Page 255 of 654

26.2.3. Project filtering

To show more of the power of configuration injection, let’s add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 256 of 654

Filtering by name

Page 257 of 654

Example 26.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

wat er /
bui |l d. gradl e
settings. gradle
bl uewhal e/

bui | d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ addTr opi c¢
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude 'bluewhale', "krill', 'tropical Fish

bui | d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}

}
configure(subprojects.findAll {it.nanme != "tropical Fish'}) {
hell o {
doLast {
println '- | love to spend tinme in the arctic waters.

Output of gradl e -q hell o

> gradle -q hello

1" mwat er

1" m bl uewhal e

| depend on water

- | love to spend tine in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"'mkrill

- | depend on water

- | love to spend tine in the arctic waters.

- The weight of ny species in sumrer is twice as heavy as all human beings
I"'mtropical Fi sh

I depend on water

Page 258 of 654

Theconfi gur e() method takes alist as an argument and applies the configuration to the projectsin this
list.

Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See
Section 18.4.2, “Extra properties’ for more information on extra properties.)

Example 26.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

wat er /
bui | d. gradl e
settings. gradle
bl uewhal e/

bui |l d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropi cal W
inthe‘-al’ distribution of Gradle.

settings.gradle

i nclude ' bluewhale', "krill', 'tropical Fish'

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hel | 0. doLast {
println "- I'mthe |largest aninmal that has ever lived on this planet."

}

krill/build.gradle

ext.arctic = true
hel | 0. doLast {
println "- The weight of my species in sumer is twice as heavy as all humar

}

tropi cal Fi sh/ bui |l d. gradl e

ext.arctic = fal se

bui |l d. gradl e

Page 259 of 654

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"

}
}
}
subproj ects {
hell o {

doLast {println "- | depend on water"}
afterEvaluate { Project project ->
if (project.arctic) { doLast {
println '- | love to spend tinme in the arctic waters.

Outputof gradl e -q hello

> gradle -q hello

I'"'mwat er

1" m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
- | love to spend tine in the arctic waters.

I"mkrill

- | depend on water

- The weight of ny species in summer is twice as heavy as all human beings
| love to spend tinme in the arctic waters.
I"'mtropical Fi sh

- | depend on water

In the build file of the wat er project weuse an af t er Eval uat e notification. This means that the closure
we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property ar cti c
is set in those build scripts, we have to do it this way. You will find more on this topic in Section 26.6,
“Dependencies - Which dependencies?’

26.3. Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | o
tasks of the different projects were executed. Let’s switch to the bl uewhal e dir and see what happens if
we execute Gradle from there.

Example 26.10. Running build from subpr oj ect

Output of gradl e -q hello

\%

gradle -q hello
"'m bl uewhal e

I depend on water

I"'mthe largest animal that has ever lived on this planet.
I love to spend tinme in the arctic waters.

Page 260 of 654

The basic rule behind Gradle’'s behavior is simple. Gradle looks down the hierarchy, starting with the
current dir, for tasks with the name hel | o and executes them. One thing is very important to note. Gradle
always evaluates every project of the multi-project build and creates all existing task objects. Then,
according to the task name arguments and the current dir, Gradle filters the tasks which should be executed.
Because of Gradle's cross project configuration every project has to be evaluated before any task gets
executed. We will have a closer look at this in the next section. Let’s now have our last marine example.
Let'sadd atask to bl uewhal e andkri || .

Example 26.11. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hell o {
doLast {
println "- I"'mthe |argest aninmal that has ever lived on this planet."

}
}

task di stanceTol ceberg {
doLast {
println '20 nautical mles’

}

krill/build.gradle

ext.arctic = true
hel l o {
doLast {
println "- The weight of my species in sumer is twice as heavy as all
}
}

task di stanceTol ceberg {
doLast {
println '5 nautical mles'

}

Output of gradl e -qg di stanceTol ceberg

> gradle -q distanceTol ceberg
20 nautical mles
5 nautical niles

Here' s the output without the - q option:

Page 261 of 654

Example 26.12. Evaluation and execution of projects
Output of gr adl e di st anceTol ceberg

> gradl e di stanceTol ceberg

. bl uewhal e: di st anceTol ceberg
20 nautical mles
ckrill:distanceTol ceberg

5 nautical mles

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have atask with the
name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is. Execute
all tasks down the hierarchy which have this name. Only complain if thereis no such task!

26.4. Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build
from there. All matching task names of the project hierarchy starting with the current dir are executed. But
Gradle also offers to execute tasks by their absolute path (see also Section 26.5, “Project and task paths’):

Example 26.13. Running tasks by their absolute path

Outputof gradle -q :hello :krill:hello hello
> gradle -q :hello :krill:hello hello
I'"'mwat er
I"'mkril

| depend on water
- The weight of ny species in sumer is twice as heavy as all human beings.
I love to spend tinme in the arctic waters.
I'"mtropical Fi sh
| depend on water

Thebuild is executed fromthet r opi cal Fi sh project. We executethe hel | o tasks of thewat er , thekri | |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

26.5. Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of atask is simply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a
project you can address atask of the same project just by its name. Thisis interpreted as arelative path.

Page 262 of 654

26.6. Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. The following sections illustrate the differences between these two types
of dependencies.

Page 263 of 654

26.6.1. Execution dependencies

Dependencies and execution order

Example 26.14. Dependencies and execution order

Build layout

nessages/
bui | d. gradl e
settings. gradle

consuner/

bui | d. gradl e
pr oducer/

bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dependenci
inthe‘-al’ distribution of Gradle.

bui |l d. gradl e

ext . producer Message = nul

settings.gradle

i ncl ude 'consuner', 'producer’

consuner/ bui l d. gradl e

task action {
doLast {
println("Consum ng nmessage: ${root Project.producer Message}")

}

producer/ buil d. gradl e

task action {
doLast {
println "Produci ng nessage: "

root Proj ect. producer Message = ' Watch the order of execution.

Output of gradl e -qg action

> gradle -q action
Consum ng nmessage: nul |
Pr oduci ng nessage:

This didn’t quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric
order. Therefore, Gradle will execute “: consuner : acti on” before“: producer: acti on”. Let'stry
to solve this with a hack and rename the producer project to “aPr oducer ”.

Page 264 of 654

Example 26.15. Dependencies and execution or der

Build layout

nessages/
bui |l d. gradl e
settings. gradle

aPr oducer/

bui | d. gradl e
consuner/

bui | d. gradl e

bui |l d. gradl e

ext . producer Message = nul

settings.gradle

i ncl ude ' consuner', 'aProducer'

aProducer/buil d. gradl e

task action {
doLast {
println "Produci ng nessage: "
root Proj ect. producer Message = ' Watch the order of execution.

consumner/ bui l d. gradl e

task action {
doLast {
println("Consum ng nmessage: ${root Project.producer Message}")

}

Output of gradl e -qg action
> gradle -q action

Pr oduci ng nessage:
Consum ng nmessage: Watch the order of execution

We can show where this hack doesn’t work if we now switch to the consuner dir and execute the build.

Example 26.16. Dependencies and execution or der
Output of gradl e -qg action

> gradle -q action
Consum ng nmessage: nul |

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In the
last example only one “act i on” task was down the hierarchy and therefore it was the only task that was
executed. We need something better than this hack.

Page 265 of 654

Declaring dependencies

Example 26.17. Declaring dependencies

Build layout

nessages/
bui | d. gradl e
settings. gradle
consuner/

bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/ dependenci
inthe*-all’ distribution of Gradle.

bui |l d. gradl e

ext . producer Message = nul

settings.gradle

i ncl ude 'consuner', 'producer'

consumner/ bui | d. gradl e

task action(dependsOn: ":producer:action") {
doLast {
println("Consum ng nessage: ${root Project.producer Message}")

}

producer/ buil d. gradl e

task action {
doLast {
println "Produci ng nessage:"

root Proj ect. producer Message = ' Watch the order of execution.

Output of gradl e -qg action
> gradle -q action

Pr oduci ng nessage:
Consumi ng nmessage: Watch the order of execution

Running this from the consumner directory gives:

Example 26.18. Declaring dependencies
Output of gradl e -qg action

> gradle -q action
Produci ng nmessage:
Consumi ng nessage: Watch the order of execution

Page 266 of 654

This is now working better because we have declared that the “act i on” task in the “consuner ” project
has an execution dependency onthe“act i on” task inthe “pr oducer ” project.

The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's
change the naming of our tasks and execute the build.

Example 26.19. Cross project task dependencies

consuner/bui |l d. gradl e

task consunme(dependsOn: ':producer: produce') {
doLast {
println("Consuni ng nessage: ${rootProject.producer Message}")

}

producer/ buil d. gradl e

task produce {
doLast {
println "Produci ng nessage:"

root Proj ect. producer Message = ' Watch the order of execution.

Output of gradl e -g consune
> gradle -q consune

Pr oduci ng nessage:
Consumi ng nessage: Watch the order of execution

26.6.2. Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter Java land. We add a
property to the “pr oducer ” project and create a configuration time dependency from “consuner ” to “pr oduc

Page 267 of 654

Example 26.20. Configuration time dependencies

consumner/ bui l d. gradl e

def nessage = root Project. producer Message

task consune {
doLast {
println("Consunm ng nessage: " + nmessage)

}

producer/ buil d. gradl e

root Proj ect. producer Message = 'Watch the order of evaluation.'

Output of gr adl e -g consune

> gradle -q consune
Consum ng nessage: null

The default evaluation order of projectsis alphanumeric (for the same nesting level). Therefore the“consurmer
" project is evaluated before the “pr oducer ” project and the “pr oducer Message” valueis set after it
isread by the“consumer ” project. Gradle offers a solution for this.

Example 26.21. Configuration time dependencies - evaluationDependsOn

consuner/bui |l d. gradl e

eval uat i onDependsOn(' : producer ')

def nessage = root Project. producer Message

task consune {
doLast {
println("Consunm ng nessage: " + nmessage)

}

Output of gr adl e -g consune

> gradle -q consune
Consumi ng nessage: Watch the order of eval uation.

The use of the “eval uati onDependsOn” command results in the evaluation of the “pr oducer”
project before the “consuner” project is evaluated. This example is a bit contrived to show the
mechanism. In this case there would be an easier solution by reading the key property at execution time.

Page 268 of 654

Example 26.22. Configuration time dependencies
consumner/ bui l d. gradl e

task consune {
doLast {

println("Consuni ng nessage: ${rootProject.producer Message}")

}

Output of gradl e -g consune

> gradle -q consume
Consumi ng nessage: Watch the order of eval uation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies
are between projects whereas execution dependencies are aways resolved to task dependencies. Also note
that all projects are always configured, even when you start the build from a subproject. The default
configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the“eval uat i onDependsOnChi | dren()
" method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common
use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).
If you declare with dependsOn an execution dependency between different projects, the default behavior
of this method is to also create a configuration dependency between the two projects. Therefore it is likely
that you don’t have to define configuration dependencies explicitly.

26.6.3. Redl life examples

Gradle’'s multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications.[14]
For the example we use only one build script and do cross project configuration.

Page 269 of 654

Example 26.23. Dependencies - real life example - crossproject configuration

Build layout

webDi st/
settings.gradle
bui | d. gradl e
dat e/
src/ mai n/j aval/

or g/ gr adl e/ sanpl e/
Dat eServl et . j ava
hel | o/
src/ mai n/j aval/
or g/ gr adl e/ sanpl e/
Hel | oServl et.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dependenci
inthe ‘-all’ distribution of Gradle.

settings. gradle

i ncl ude 'date', 'hello'

bui |l d. gradl e

al | projects {
apply plugin: 'java'
group = 'org.gradle.sanple
version = '1. 0

}

subproj ects {
apply plugin: "war'
repositories {
mavenCentral ()
}
dependenci es {
conpil e "javax. servl et:servlet-api:2.5"
}
}

task expl odedDi st (type: Copy) {
into "$buil dDir/ expl odedDi st ™"
subproj ects {
fromtasks. withType(\War)

}

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration
dependency on webDi st , as all the build logic for the webapp projects is injected by webDi st . The
execution dependency isin the other direction, aswebDi st depends on the build artifacts of dat e and hel | o
. There is even a third dependency. webDi st has a configuration dependency on dat e and hel | o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore
we have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system

Page 270 of 654

does not support these patterns, you either can't solve your problem or you need to do ugly hacks which are
hard to maintain and massively impair your productivity as a build master.

26.7. Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also
the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project
builds. As aready mentioned in Section 25.4.3, “Project dependencies’, Gradle offers project lib
dependencies for this.

Example 26.24. Project lib dependencies
Build layout

j aval
settings. gradle
bui | d. gradl e
api /
src/ mai n/j aval
or g/ gradl e/ sanpl e/
api /
Person. j ava
api | mpl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j aval/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/j aval
or g/ gr adl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenci
inthe ‘-all’ distribution of Gradle.

We have the projects “shar ed”, “api ” and “per sonSer vi ce”. The“per sonSer vi ce” project hasa
lib dependency on the other two projects. The “api ” project has a lib dependency on the “shar ed”
project. “ser vi ces” is also a project, but we use it just as a container. It has no build script and gets
nothing injected by another build script. We use the : separator to define a project path. Consult the DSL
documentation of Settings.include(java.lang.String[]) for more information about
defining project paths.

Page 271 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Example 26.25. Project lib dependencies
settings.gradle

i ncl ude ' shar ed'

'servi ces: personService

"api ',

bui | d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanple'
version = '1. 0
repositories {
mavenCentral ()
}
dependenci es {
testConpile "junit:junit:4.12"
}
}

project (' :api') {
dependenci es {
conpil e project(':shared")
}
}

proj ect (' :services: personService') {
dependenci es {
conpil e project(':shared"),

project (' :api

}

)

All the build logic isin the “bui | d. gr adl e” file of the root project.[15] A “lib” dependency is a special
form of an execution dependency. It causes the other project to be built first and adds the jar with the classes
of the other project to the classpath. It also adds the dependencies of the other project to the classpath. So
you can enter the “api ” directory and trigger a“gr adl e conpi | e”. First the “shar ed” project is built
and then the “api ” project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers thisto you:

Page 272 of 654

Example 26.26. Fine grained control over dependencies
buil d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanpl e’
version = '1.0

}

project(':api') {
configurations {
sp
}
dependenci es {
conpil e project(':shared")
}
task spiJar(type: Jar) {
baseNane = 'api - spi
from sour ceSet s. mai n. out put
i ncl ude(' org/ gradl e/ sanpl e/ api /**")
}
artifacts {
spi spiJar
}
}

proj ect (' :services: personService') {
dependenci es {
conpil e project(':shared")
conpile project(path: ':api', configuration: 'spi")
testConpile "junit:junit:4. 12", project(':api')

The Java plugin adds per default ajar to your project libraries which contains al the classes. In this example
we create an additional library containing only the interfaces of the “api ” project. We assign this library to
anew dependency configuration. For the person service we declare that the project should be compiled only
against the “api ” interfaces but tested with all classes from “api ”.

26.7.1. Disabling the build of dependency projects

Sometimes you don’t want depended on projects to be built when doing a partial build. To disable the build
of the depended on projects you can run Gradle with the - a option.

26.8. Parallel project execution

With more and more CPU cores available on developer desktops and Cl servers, it isimportant that Gradle
isableto fully utilise these processing resources. More specifically, parallel execution attempts to:

* Reduce total build time for a multi-project build where execution is 10 bound or otherwise does not
consume all available CPU resources.
* Provide faster feedback for execution of small projects without awaiting completion of other projects.

Page 273 of 654

Although Gradle already offers parallel test execution via Test . set MaxPar al | el Forks(i nt) the
feature described in this section is parallel execution at a project level. Parallel execution is an incubating
feature. Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
parallel (see aso: Section 26.9, “Decoupled Projects’). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

® the section called “Configuration on demand”.

® Configuration of projectsin parallel.

® Re-use of configuration for unchanged projects.

® Project-level up-to-date checks.

® Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use the
command line argument (Appendix D, Gradle Command Line) or configure your build environment (
Section 12.1, “Configuring the build environment via gradle.properties’). Unless you provide a specific
number of parallel threads, Gradle attempts to choose the right number based on available CPU cores. Every
paralel worker exclusively owns a given project while executing a task. Task dependencies are fully
supported and parallel workers will start executing upstream tasks first. Bear in mind that the alphabetical
ordering of decoupled tasks, as can be seen during sequential execution, is not guaranteed in parallel mode.
In other words, in parallel mode tasks will run as soon as their dependencies complete and a task worker is
available to run them, which may be earlier than they would start during a sequentia build. Y ou should
make sure that task dependencies and task inputs/outputs are declared correctly to avoid ordering issues.

26.9. Decoupled Projects

Gradle alows any project to access any other project during both the configuration and execution phases.
While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that
Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly
building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built
artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model. Decoupled
projects may only interact in terms of declared dependencies: project dependencies (Section 25.4.3, “ Project
dependencies’) and/or task dependencies (Section 16.5, “Task dependencies’). Any other form of project
interaction (i.e. by modifying another project object or by reading a value from another project object)
causes the projects to be coupled. The consequence of coupling during the configuration phase is that if
gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in severa
ways. The consequence of coupling during execution phase is that if gradle is invoked with the parallel
option, one project task runs too late to influence a task of a project building in parallel. Gradle does not
attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (Section 26.1, “Cross
project configuration”). It may not be immediately apparent, but using key Gradle featureslikethe al | pr oj ect ¢
and subpr oj ect s keywords automatically cause your projects to be coupled. This is because these
keywords are used in a bui | d. gr adl e file, which defines a project. Often this is a “root project” that

Page 274 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks(int)

does nothing more than define common configuration, but as far as Gradle is concerned this root project is
till a fully-fledged project, and by using al | pr oj ect s that project is effectively coupled to all other
projects. Coupling of the root project to subprojects does not impact ‘configuration on demand', but using the
al | proj ect s andsubpr oj ect s inany subproject’sbui | d. gr adl e filewill have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subpr 0j
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will also introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

* Avoid a subproject’s bui | d. gr adl e referencing other subprojects; preferring cross configuration
from the root project.
* Avoid changing the configuration of other projects at execution time.

26.10. Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of asingle project. In multi-project builds you may often want to do all of these
tasks across arange of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 26.25, “Project lib dependencies’. In this example, the”: ser vi ces: per sonservi ce
" project depends on both the“: api ” and “: shar ed” projects. The“: api ” project also depends onthe“: shar
" project.

Assume you are working on a single project, the“: api ” project. You have been making changes, but have
not built the entire project since performing a clean. You want to build any necessary supporting jars, but
only perform code quality and unit tests on the project you have changed. The bui | d task does this.

Page 275 of 654

Example 26.27. Build and Test Single Proj ect

Output of gr adl e : api : build

> gradle :api:build
:shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

:api: conpi |l eJava

:api : processResour ces
capi:cl asses

rapi:jar

:api:assenbl e
;api:conpi |l eTest Java
:api: processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

BU LD SUCCESSFUL in Os

9 actionable tasks: 9 executed

While you are working in atypical development cycle repeatedly building and testing changesto the “: api

" project (knowing that you are only changing files in this one project), you may not want to even suffer the
expense of building “: shar ed: conpi | e” to see what has changed in the “: shar ed” project. Adding
the “- a" option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to

re-build the depended on projects.

Example 26.28. Partial Build and Test Single Project

Output of gradl e -a :api:build

> gradle -a :api:build
;api: conpil eJava

s api: processResources

1 api: cl asses

capi:jar

;api:assenbl e
rapi:conpil eTest Java

1 api: processTest Resour ces
;api:testC asses

;api:test
rapi: check
rapi:build

BUI LD SUCCESSFUL in Os

6 actionable tasks: 6 executed

If you have just gotten the latest version of source from your version control system which included changes
in other projectsthat “: api ” depends on, you might want to not only build all the projects you depend on,
but test them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies

of the testRuntime configuration.

Page 276 of 654

Example 26.29. Build and Test Depended On Projects
Output of gr adl e : api : bui | dNeeded

> gradl e :api:buil dNeeded
:shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

:api: conpi |l eJava

:api : processResour ces
capi:cl asses

rapi:jar

:api:assenbl e
;api:conpi |l eTest Java
:api: processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

:shared: assenbl e
:shared: conpi | eTest Java

: shar ed: processTest Resour ces
:shared: test Cl asses

:shared: test

: shar ed: check

:shared: build

: shar ed: bui | dNeeded

:api : bui | dNeeded

BUI LD SUCCESSFUL in Os
12 actionabl e tasks: 12 executed

You al'so might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api ” project, you also need to test all projects
that depend on the “: api ” project. The bui | dDependent s task aso tests all the projects that have a

project lib dependency (in the testRuntime configuration) on the specified project.

Page 277 of 654

Example 26.30. Build and Test Dependent Projects

Output of gr adl e : api : bui | dDependent s

> gradl e :api: buil dDependent s

:shared: conpi | eJava

: shar ed: processResour ces

:shared: cl asses
:shared:jar

:api: conpi |l eJava

:api : processResour ces
capi:cl asses

rapi:jar
:api:assenbl e
;api:conpi |l eTest Java

;api: processTest Resour ces

;api:testd asses

rapi:test
:api : check
;api:build

:services: personService
1 services: personService
:services: personService
:services: personService
:services: personService
1 services: personService
:services: personService
:services: personService
:services: personService
:services: personService
:services: personService
:services: personService

:api : bui | dDependent s

BUI LD SUCCESSFUL in Os
17 actionable tasks: 17

conpi | eJava
processResour ces
cl asses

jar

assenbl e
conpi | eTest Java
processTest Resour ces
test C asses

t est

check

bui | d

bui | dDependent s

execut ed

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on al the children. So you can just run “gr adl e bui | d” to

build and test all projects.

26.11. Multi Project and buildSrc

Section 43.4, “Build sourcesin the bui | dSr ¢ project” tells us that we can place build logic to be compiled
and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | dSr ¢
directory which must be located in the root directory.

26.12. Property and method inheritance

Properties and methods declared in a project are inherited to al its subprojects. This is an aternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In afuture edition of this user guide we might write more about this.

Page 278 of 654

Method inheritance might be interesting to use as Gradle's Configuration Injection does not support
methods yet (but will in afuture release).

You might be wondering why we have implemented a feature we obviously don’t like that much. One
reason isthat it is offered by other tools and we want to have the check mark in a feature comparison :). And
we like to offer our users a choice.

26.13. Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for

this chapter is that multi-project builds with Gradle are usually not difficult. There are five elements you

need to remember: al | pr oj ect s, subpr oj ect s, eval uati onDependsOn, eval uati onDependsOnC
and project lib dependencies.m] With those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory
Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[14] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
each index you are accessing. That was one reason why we have created a distribution of webapps. The
Resin servlet container allows us, to let such a distribution point to a base installation of the servlet
container.

[15] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the
build script of the respective projects.

[16] So we are well in the range of the 7 plus 2 Rule :)

Page 279 of 654

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

27

Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like
the ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | e),
domain objects (e.g. Sour ceSet), conventions (e.g. Java source is located at sr ¢/ mai n/ j ava) as well
as extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

27.1. What plugins do

Applying aplugin to a project allows the plugin to extend the project’ s capabilities. It can do things such as:

* Extend the Gradle model (e.g. add new DSL elements that can be configured)
® Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)
* Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

® Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
* Allows ahigher degree of modularization, enhancing comprehensibility and organization
® Encapsulatesimperative logic and allows build scripts to be as declarative as possible

27.2. Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and
accessed from aremote location. Binary plugins are classes that implement the Pl ugi n interface and adopt
a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within
the project hierarchy or externally in aplugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes
more valuable, it's migrated to a binary plugin that can be easily tested and shared between multiple projects
or organizations.

Page 280 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html

27.3. Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needsto resolve
the plugin, and then it needs to apply the plugin to the target, usually a Pr oj ect .

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it
the script classpath. Once a plugin is resolved, its APl can be used in a build script. Script plugins are
self-resolving in that they are resolved from the specific file path or URL provided when applying them.
Core binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin’s Pl ugi n. appl y(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin multiple
times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current
project. Since this is such a common use case, it's recommended that build authors use the plugins DSL to
both resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and
should be used by most users.

27.4. Seript plugins

Example 27.1. Applying a script plugin
bui | d. gradl e

apply from 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a
remote location. Filesystem locations are relative to the project directory, while remote script locations are
specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

27.5. Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core
Gradle plugins are special in that they provide short names, such as' j ava' for the core JavaPl ugi n.
All other binary plugins must use the fully qualified form of the plugin id (e.g. com gi t hub. f 0o. bar),
although some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id
depends on whether you are using the plugins DSL or the buildscript block.

27.5.1. Locations of binary plugins

A pluginissimply any class that implementsthe Pl ugi n interface. Gradle provides the core plugins (e.g. JavaP
) as part of its distribution which means they are automatically resolved. However, non-core binary plugins
need to be resolved before they can be applied. This can be achieved in a number of ways:

® Including the plugin from the plugin portal or a custom repository using the plugins DSL (see

Page 281 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html

Section 27.5.2, “ Applying plugins with the plugins DSL").

¢ Including the plugin from an external jar defined as a buildscript dependency (see the section called
“Applying plugins with the buildscript block™).

* Defining the plugin as a source file under the buildSrc directory in the project (see Section 43.4, “Build
sourcesinthe bui | dSr ¢ project”).

® Defining the plugin as an inline class declaration inside a build script.

For more on defining your own plugins, see Chapter 41, Writing Custom Plugins.
27.5.2. Applying plugins with the plugins DSL

The plugins DSL is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with
the Gradle plugin portal to provide easy access to both core and community plugins. The plugins DSL block
configures an instance of Pl ugi nDependenci esSpec.

To apply acore plugin, the short name can be used:

Example 27.2. Applying a core plugin
bui | d. gradl e

pl ugi ns {

id'java'

}

To apply acommunity plugin from the portal, the fully qualified plugin id must be used:

Example 27.3. Applying a community plugin

bui |l d. gradl e

pl ugi ns {
id 'comjfrog.bintray' version '0.4.1'

}

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is
processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This
allows Gradle to do smart things such as:

¢ Optimize the loading and reuse of plugin classes.
* Allow different plugins to use different versions of dependencies.
® Provide editors detailed information about the potential properties and values in the buildscript for

Page 282 of 654

http://plugins.gradle.org
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

editing assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing
therest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism
is till being developed and some are inherent to the new approach.

Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any time).

Theformis:

pl ugi ns {
id «plugin id» version «plugin version» [apply «fal se»]

}

Where «pl ugi n versi on» and «pl ugi n i d» must be constant, literal, strings and the appl y
statement with abool ean can be used to disable the default behavior of applying the plugin immediately
(e.g. you want to apply it only in subpr oj ect s). No other statements are allowed; their presence will
cause a compilation error.

The pl ugi ns {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project’s build script. It cannot be used in script
plugins, the settings.gradle file or init scripts.

FEuture versions of Gradle will remove thisrestriction.

If the restrictions of the new syntax are prohibitive, the recommended approach isto apply plugins using the build:

Applying plugins to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the subprojects in
your build, but not to the r oot or mast er project. The default behavior of the pl ugi ns {} block isto
immediately r esol ve and appl y the plugins. But, you can use the appl y f al se syntax to tell Gradle
not to apply the plugin to the current project and then use appl y pl ugi n: «plugi n versi on» in
thesubpr oj ect s block:

Page 283 of 654

Example 27.4. Applying plugins only on certain subprojects.

settings.gradle

i ncl ude ' hel | oA
i ncl ude ' hel | oB'

i ncl ude ' goodbyeC

bui |l d. gradl e

pl ugi ns {
id "org.gradl e.sanple. hello" version "1.0.0" apply false
id "org.gradl e. sanpl e. goodbye" version "1.0.0" apply false

}

subproj ects { subproject ->
i f (subproject.nane.startsWth("hello")) {
apply plugin: 'org.gradle.sanple.hello
}
i f (subproject.nane.startsWth("goodbye")) ({
apply plugin: 'org.gradle. sanpl e. goodbye

}

If you thenrun gr adl e hel | o you'll seethat only the helloA and helloB subprojects had the hello plugin
applied.

gr adl e/ subproj ect s/ docs/ src/ sanpl es/ pl ugi ns/ nul ti project $> gradle hello
Paral | el execution is an incubating feature.

:hell oA hello

chell oB: hello

Hel | o!

Hel I o!

BU LD SUCCEEDED

Plugin Management

The pl ugi nManagenent {} DSL is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

Custom Plugin Repositories

By default, the pl ugi ns {} DSL resolves plugins from the public Gradle Plugin Portal. Many build
authors would also like to resolve plugins from private Maven or lvy repositories because the plugins
contain proprietary implementation details, or just to have more control over what plugins are available to
their builds.

To specify custom plugin repositories, usether eposi t ori es {} block inside pl ugi nManagenent {}
intheset ti ngs. gradl e file

Page 284 of 654

https://plugins.gradle.org

Example 27.5. Using plugins from custom plugin repositories.
settings.gradle

pl ugi nManagenent {
repositories {
maven {
url 'maven-repo’

}

gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'

Thistells Gradle to first look in the Maven repository at maven- r epo when resolving plugins and then to
check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don't want the
Gradle Plugin Portal to be searched, omit the gr adl ePl ugi nPort al () line. Finally, the Ivy repository
ativy-repo will be checked.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in pl ugi ns {} blocks, e.g. changing
the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resol uti onStrategy {} inside the pl ugi nManagenent {}
block:

Example 27.6. Plugin resolution strategy.
settings.gradle

pl ugi nManagenent {
resol utionStrategy {
eachPl ugi n {
i f (requested.id. namespace == 'org.gradle.sanple') {
useMbdul e(' org. gradl e. sanpl e: sanpl e- pl ugi ns: 1. 0. 0")
}
}
}
repositories {
maven {
url ' maven-repo’

}
gr adl ePl ugi nPortal ()

ivy {
url "ivy-repo'

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in default
mapping from plugin ID to Maven/lvy coordinates.

Page 285 of 654

The pl ugi nManagenent {} block may only appear in the set t i ngs. gr adl e file, and must be the
first block in the file. Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in
addition to the artifacts which actually implement the plugin. For more information on publishing plugins to
custom repositories read Chapter 42, The Java Gradle Plugin Development Plugin.

See Pl ugi nManagenent Spec for complete documentation for using the pl ugi nManagerent {}
block.

Plugin Marker Artifacts

Since the pl ugi ns {} DSL block only allows for declaring plugins by their globally unique plugini d
and ver si on properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact. To do so, Gradle will look for a Plugin Marker Artifact with the coordinates pl ugi n. i d: pl ugi n. i d.

. This marker needs to have a dependency on the actual plugin implementation. Publishing these markersis
automated by the java-gradle-plugin.

For example, the following complete sample from the sanpl e- pl ugi ns project shows how to publishaor g. ¢
plugin and a or g. gr adl e. sanpl e. goodbye plugin to both an Ivy and Maven repository using the
combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish plugin.

Example 27.7. Complete Plugin Publishing Sample

bui | d. gradl e

pl ugi ns {
id 'java-gradle-plugin'
id ' maven- publ i sh’
id"'ivy-publish'

}

group 'org.gradle.sanpl e
version '1.0.0

gradl ePl ugi n {
pl ugi ns {
hell o {
id = "org.gradl e. sanpl e. hel | 0"
i mpl ement ati onC ass = "org. gradl e. sanpl e. hel | 0. Hel | oPl ugi n"

}
goodbye {
id = "org.gradl e. sanpl e. goodbye"
i mpl ement ati ond ass = "org. gradl e. sanpl e. goodbye. GoodbyePl ugi n"

publ i shi ng {
repositories {
maven {
url "../consum ng/ maven-repo"
}
ivy {
url "../consum ng/ivy-repo"

Page 286 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugin.management.PluginManagementSpec.html

Running gr adl e publ i sh inthe sample directory causes the following repo layouts to exist:

7/~ ./maven-repo

groupld org.gradle.sample.hello groupld org.gradle.s
artifactld org.gradie.sample.hello.gradle plugin artifactld sample-ph
version 1.0.0 7 version 1.0.0
groupld org.gradle. sample.goodbye sarnpl !
artifactld org.gradle.sample.goodbye.gradle.plugin
version 1.0.0

_ g

/ [fivy-repo
org org.gradle sample. hello org org.gradle.samp
madule org.gradle. sample. hello.gradle.plugin module sample-pluc
rev 1.0.0 ~ rev 1.0.0

org org.gradle. sample.goodbye
module org.gradle.sample.goodbye.gradle.plugin
rev 1.0.0

\ 4

27.5.3. Legacy Plugin Application

sampl

With the introduction of the plugins DSL, users should have little reason to use the legacy method of
applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions
in how it currently works.

Applying Binary Plugins
Example 27.8. Applying a binary plugin
buil d. gradl e

apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘j ava’ to apply the
JavaPl ugi n.

Rather than using aplugin id, plugins can also be applied by ssimply specifying the class of the plugin:

Example 27.9. Applying a binary plugin by type
bui |l d. gradl e

apply plugin: JavaPl ugi n

Page 287 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/plugins/JavaPlugin.html

The JavaPIl ugi n symbal in the above sample refers to the JavaPl ugi n. This class does not strictly
need to be imported as the or g. gr adl e. api . pl ugi ns package is automatically imported in all build
scripts (see Section 18.8, “Default imports”). Furthermore, it is not necessary to append . cl ass to identify
aclassliteral in Groovy asitisin Java

Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin
to the build script classpath and then applying the plugin. External jars can be added to the build script
classpath using the bui | dscri pt {} block as described in Section 43.6, “External dependencies for the
build script”.

Example 27.10. Applying a plugin with the buildscript block
bui |l d. gradl e

bui |l dscript {
repositories {
jcenter ()

}

dependenci es {

cl asspath "com jfrog. bintray.gradl e: gradl e-bi ntray-pl ugi n:0.4.1"

}
}

apply plugin: "com]jfrog.bintray"

27.6. Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of
capabilities. The Gradle plugin portal provides an interface for searching and exploring community plugins.

27.7. More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Chapter 41, Writing Custom Plugins.

Page 288 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://plugins.gradle.org

28

Standard Gradle plugins

There are anumber of pluginsincluded in the Gradle distribution. These are listed below.

28.1. Language plugins

These plugins add support for various languages which can be compiled for and executed in the VM.

Table 28.1. Language plugins

Plugin
Id

j ava

gr oovy

scal a

antlr

Automatically Works
applies with

j ava- base -

j ava, groovy- base

j ava, scal a- base

j ava -

Description

Adds Java compilation, testing and bundling capabilities to
aproject. It serves as the basis for many of the other Gradle
plugins. See also Chapter 46, Java Quickstart.

Adds support for building Groovy projects. See also
Chapter 55, Groovy Quickstart.

Adds support for building Scala projects.

Adds support for generating parsers using Antlr.

28.2. Incubating language plugins

These plugins add support for various languages.

Page 289 of 654

http://www.antlr.org/

Table 28.2. Language plugins

Plugin Id Automatically Works Description
applies with

assenbl er - - Adds native assembly language capabilities
to a project.

c - - Adds C source compilation capabilities to a
project.

cpp - - Adds C++ source compilation capabilities
to aproject.

obj ective-c - - Adds Objective-C source compilation

capabilities to a project.

obj ective-cpp Adds Objective-C++ source compilation

capabilities to a project.

W ndows-r esour ces Adds support for including Windows

resources in native binaries.

28.3. Integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 290 of 654

Table 28.3. Integration plugins

Plugin Id Automatically Works Description
applies with
application java,distribution Adds tasks for running and bundling a Java project

as a command-line application.

ear - j ava Adds support for building J2EE applications.
nmaven - java, Adds support for publishing artifacts to Maven
war repositories.
osgi j ava- base j ava Adds support for building OSGi bundles.
war j ava - Adds support for assembling web application
WAR files. See al'so Chapter 49, Web Application
Quickstart.

28.4. Incubating integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 291 of 654

Table 28.4. Incubating integration plugins

Plugin Id Automatically Works Description
applies with

di stribution - - Adds support for building
ZIP and TAR distributions.

java-library-distribution java,distribution Adds support for building
ZIP and TAR distributions
for aJavalibrary.

i vy-publish - java, This plugin provides a new
war DSL to support publishing

artifacts to lvy repositories,

which improves on the

existing DSL.
maven- publ i sh - java, This plugin provides a new
war DSL to support publishing

artifacts to Maven
repositories, which improves
on the existing DSL.

28.5. Software development plugins

These plugins provide help with your software development process.

Table 28.5. Softwar e development plugins

Plugin Id Automatically Works Description
applies with

announce - - Publish messages to your
favourite platforms, such as
Twitter or Growl.

bui | d- announcenent s announce - Sends local announcements to
your desktop about interesting
eventsin the build lifecycle.

checkstyl e j ava- base - Performs quality checks on your
project’s Java source files using
Checkstyle and generates reports
from these checks.

Page 292 of 654

http://checkstyle.sourceforge.net/index.html

codenarc groovy- base - Performs quality checks on your
project’'s Groovy source files
using CodeNarc and generates
reports from these checks.

eclipse - j ava,gr ooBenerates files that are used by
,scala Eclipse IDE, thus making it
possible to import the project into
Eclipse. See also Chapter 46,
Java Quickstart.

eclipse-wp - ear,war Does the same as the eclipse
plugin plus generates eclipse
WTP (Web Tools Platform)
configuration files. After
importing to eclipse your war/ear
projects should be configured to
work with WTP. See also
Chapter 46, Java Quickstart.

fi ndbugs j ava- base - Performs quality checks on your
project’s Java source files using
FindBugs and generates reports
from these checks.

i dea - j ava Generates files that are used by
Intellij IDEA IDE, thus making it
possible to import the project into
IDEA.

j depend j ava- base - Performs quality checks on your
project’s source files using
JDepend and generates reports
from these checks.

pmd j ava- base - Performs quality checks on your
project’s Java source files using
PMD and generates reports from

these checks.

proj ect-report reporting-base - Generates reports containing
useful information about your
Gradle build.

Page 293 of 654

http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

si gni ng base - Adds the ability to digitally sign
built files and artifacts.

28.6. Incubating software development plugins

These plugins provide help with your software development process.

Table 28.6. Softwar e development plugins

Plugin Id Automatically Works Description

applies with
bui | d- dashboar d reporting-base - Generates build dashboard report.
build-init wrapper - Adds support for initializing a new

Gradle build. Handles converting a
Maven build to a Gradle build.

cuni t - - Adds support for running CUnit tests.

j acoco reporting-base java Provides integration with the JaCoCo
code coverage library for Java

vi sual - st udi o - native Adds integration with Visual Studio.
language
plugins

wr apper - - Adds a W apper task for generating

Gradle wrapper files.

java-gradl e-plugin java Assists with development of Gradle
plugins by providing standard plugin
build configuration and validation.

28.7. Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are
available for you to use in your build files, and are listed here for completeness. However, be aware that
they are not yet considered part of Gradle's public API. As such, these plugins are not documented in the
user guide. Y ou might refer to their APl documentation to learn more about them.

Page 294 of 654

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Table 28.7. Base plugins

Plugin Id Description
base Adds the standard lifecycle tasks and configures reasonable defaults for the archive
tasks:

¢ adds build ConfigurationName tasks. Those tasks assemble the artifacts
belonging to the specified configuration.

® adds upload ConfigurationName tasks. Those tasks assemble and upload the
artifacts belonging to the specified configuration.

® configures reasonable default values for all archive tasks (e.g. tasks that inherit
from Abst ract Ar chi veTask). For example, the archive tasks are tasks of
types: Jar, Tar , Zi p. Specifically, dest i nati onDi r, baseNane andver si on
properties of the archive tasks are preconfigured with defaults. This is extremely
useful because it drives consistency across projects; the consistency regarding
naming conventions of archives and their location after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.
groovy-base Adds the Groovy source sets concept to the project.
scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

28.8. Third party plugins

You can find alist of external plugins at the Gradle Plugins site.

Page 295 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

29

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. These tasks generate the same content that you get by executing the t asks, depen
, and properties tasks from the command line (see Section 4.7, “Obtaining information about your
build™). In contrast to the command line reports, the report plugin generates the reports into afile. Thereis

also an aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional onesin future releases of Gradle.

29.1. Usage

To use the Project report plugin, include the following in your build script:

29.2. Tasks

The project report plugin defines the following tasks:

Page 296 of 654

Table 29.1. Project report plugin - tasks

Task name Dependson Type Dex

dependencyReport - DependencyReport Task Gen
the
depe
repo

ht m DependencyReport - Ht m DependencyReport Task Gen

depe
an
depe
insii
repo
the
or a
proje

propertyReport - PropertyReport Task Gen
the

prog
repo

t askReport - TaskReport Task Gen

the
task

pr oj ect Report dependencyReport, proper Tg&eport Gen
,taskReport, ht ml DependencyReport al
repo

29.3. Project layout

The project report plugin does not require any particular project layout.

29.4. Dependency management

The project report plugin does not define any dependency configurations.

Page 297 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html

29.5. Convention properties

The project report defines the following convention properties:

Table 29.2. Project report plugin - convention properties

Property name Type Default value Description

reportsDi r Name String reports The name of
the directory
to generate
reports into,
relative to the
build
directory.

reportsDir Fi | e (read-only) bui | dDi r / report sDi r NanelThe directory
to generate
reportsinto.

proj ects Set <Proj ect> A one element set with the The projects
project the plugin was applied to generate
to. the reports

for.

proj ect ReportDirName String pr oj ect The name of
the directory
to generate
the project
report into,
relative to the
reports
directory.

proj ect ReportDir Fil e (read-only) reportsDir/ project Reporfia dixectery
to generate
the project
report into.

These convention properties are provided by a convention object of type
Pr oj ect Report sPl ugi nConventi on.

Page 298 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

30

The Build Dashboard Plugin

The build dashboard plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point
of accessto all of the reports generated by a build.

30.1. Usage

To use the Build Dashboard plugin, include the following in your build script:

Example 30.1. Using the Build Dashboard plugin

bui |l d. gradl e
apply plugin: 'buil d-dashboard'

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for
all tasks that implement the Repor t i ng interface from all projects in the build. It istypicaly only applied
to the root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks
that are independently being executed as part of the build run. To generate the build dashboard, simply
include this task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will
generate adashboard for al of the reporting tasks that are dependents of the bui | d task.

30.2. Tasks

The Build Dashboard plugin adds the following task to the project:

Page 299 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.reporting.Reporting.html

Table 30.1. Build Dashboard plugin - tasks

Task name Depends Type Description
on
bui | dDashboard - Gener at eBui | dDashboar d Generates build dashboard
report.

30.3. Project layout

The Build Dashboard plugin does not require any particular project layout.

30.4. Dependency management

The Build Dashboard plugin does not define any dependency configurations.

30.5. Configuration

Y ou can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 300 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.reporting.ReportingExtension.html

31

Comparing Builds

Build comparison support is an incubating feature. This means that it is incomplete and not yet at
regular Gradle production quality. This also means that this Gradle User Guide chapter is awork in
progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds.
There are several reasons why you may want to compare the outcomes of two builds. You may want to
compare:

® A build with anewer version of Gradle than it’s currently using (i.e. upgrading the Gradle version).

* A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something
else (i.e. migrating to Gradle).

® The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,
migration to Gradle or build change by understanding the differences in the outcomes. The comparison
process produces a HTML report outlining which outcomes were found to be identical and identifying the
differences between non-identical outcomes.

31.1. Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”
In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process’ that produces observable “outcomes’. At least one of the builds in a comparison will be a
Gradle build.

“Build Outcome”
Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“ Sour ce Build”
The build that comparisons are being made against, typically the build in its “current” state. In other
words, the left hand side of the comparison.

Page 301 of 654

“Target Build”
The build that is being compared to the source build, typicaly the “proposed” build. In other words, the
right hand side of the comparison.

“Host Build”
The Gradle build that executes the comparison process. It may be the same project as either the “target”
or “source” build or may be a completely separate project. It does not need to be the same Gradle
version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”
Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome’
A build outcome is uncompared if alogical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”
A build outcome that cannot be understood by the host build. This can occur when the source or target
build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.
Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent
to an unknown build outcome in the other build, but no meaningful comparison of what the build
outcome actualy is can be performed. Using the latest Gradle version for the host build will avoid
encountering unknown build outcomes.

31.2. Current Capabilities

Asthisisan incubating feature, alimited set of the eventual functionality has been implemented at thistime.

31.2.1. Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2. If the host
build is run with version 3. 0 or newer, source and target builds must be at least version 1. 2. If the host
build is run with a version older than 2. 0, source and target builds must be older than version 3. 0. So if
you for example want to compare a build under version 1. 1 with a build under version 3. 0, you have to
execute the host build witha 2. x version.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

31.2.2. Supported build outcomes

Only support for comparing build outcomes that are zi p archivesis supported at thistime. Thisincludesj ar
,war and ear archives.

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

Page 302 of 654

31.3. Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle
builds. The plugin adds a Conpar eG adl eBui | ds task named “conpar eGr adl eBui | ds” to the
project. The configuration of this task specifies what is to be compared. By default, it is configured to
compare the current build with itself using the current Gradle version by executing the tasks: “cl ean assenbl ¢

apply plugin: 'conpare-gradl e-builds’

Thistask can be configured to change what is compared.

conpar eG adl eBui | ds {

sour ceBui | d {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}

targetBuild {
projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle
versions.

31.3.1. Trying Gradle upgrades
Y ou can use the build comparison functionality to very quickly try anew Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e
of the root project.

apply plugin: 'conpare-gradl e-builds'

conpar eG adl eBui | ds {
target Bui | d. gradl eVersi on = "«gradl e versi on»"

}

Then simply execute the conpar eG adl eBui | ds task. You will see the console output of the “source’
and “target” builds asthey are executing.

31.3.2. The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML
report providing insight into the comparison will be given. If al compared outcomes are found to be
identical, and there are no uncompared outcomes, and there are no unknown build outcomes, the task will
succeed.

Page 303 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

Y ou can configure the task to not fail on compared outcome differences by setting thei gnor eFai | ur es

property to true.

conpar eG adl eBui | ds {

i gnoreFailures = true

}

31.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives configuration.
Take alook at Chapter 32, Publishing artifacts for more information on how to configure and add artifacts.

The archive must also have been produced by a Zi p, Jar, War , Ear task. Future versions of Gradle will
support increased flexibility in this area.

Page 304 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ear.Ear.html

32

Publishing artifacts

This chapter describes the original publishing mechanism available in Gradle 1.0: in Gradle 1.3 a
new mechanism for publishing was introduced. While this new mechanism is incubating and not yet
complete, it introduces some new concepts and features that do (and will) make Gradle publishing
even more powerful.

Y ou can read about the new publishing pluginsin Chapter 35, Ivy Publishing (new) and Chapter 36,
Maven Publishing (new). Please try them out and give us feedback.

32.1. Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them
(e.g. upload them). We define the artifacts of the projects as the files the project provides to the outside
world. This might be alibrary or a ZIP distribution or any other file. A project can publish as many artifacts
asit wants.

32.2. Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the sametime.

For each configuration in your project, Gradle provides the tasks upl oad Conf i gur ati onNanme and bui | dG
171 Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

Table 47.5, “Java plugin - dependency configurations’ shows the configurations added by the Java plugin.
Two of the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the
standard configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to
this configuration. We will talk more about the r unt i me configuration in Section 32.5, “More about
project libraries’. As with dependencies, you can declare as many custom configurations as you like and
assign artifacts to them.

Page 305 of 654

32.3. Declaring artifacts

32.3.1. Archivetask artifacts

Y ou can use an archive task to define an artifact:

Example 32.1. Defining an artifact using an ar chive task
bui |l d. gradl e
task myJar(type: Jar)

artifacts {
archi ves nyJar

}

It is important to note that the custom archives you are creating as part of your build are not automatically
assigned to any configuration. Y ou have to explicitly do this assignment.

32.3.2. File artifacts

Y ou can aso use afile to define an artifact:

Example 32.2. Defining an artifact using afile
bui |l d. gradl e

def soneFile = file(' build/ sonefile.txt")

artifacts {

ar chi ves soneFil e

}

Gradle will figure out the properties of the artifact based on the name of the file. Y ou can customize these
properties:

Example 32.3. Customizing an artifact

bui |l d. gradl e

task nyTask(type: MTaskType) ({
destFile = file(' build/sonmefile.txt")

}

artifacts {

archi ves(nyTask. destFile) {
name 'ny-artifact’
type 'text’
bui I t By myTask

Page 306 of 654

There is a map-based syntax for defining an artifact using a file. The map must include afi | e entry that
definesthe file. The map may include other artifact properties:

Example 32.4. Map syntax for defining an artifact using afile

bui | d. gradl e

task generate(type: MTaskType) {
destFile = file(' build/ sonmefile.txt")

}

artifacts {
archives file: generate.destFile, name: 'ny-artifact', type: 'text', builtB

}

32.4. Publishing artifacts

We have said that there is a specific upload task for each configuration. Before you can do an upload, you
have to configure the upload task and define where to publish the artifacts to. The repositories you have
defined (as described in Section 25.6, “Repositories’) are not automatically used for uploading. In fact,
some of those repositories only allow downloading artifacts, not uploading. Here is an example of how you
can configure the upload task of a configuration:

Example 32.5. Configuration of the upload task
bui |l d. gradl e
repositories {
flatDir {

nane "fil eRepo”
dirs "repo”

}
upl oadAr chi ves {

repositories {
add project.repositories.fil eRepo

ivy {
credentials {
user nane "username"
password " pw'

}

url "http://repo. nyconpany. cont'

As you can see, you can either use a reference to an existing repository or create a new repository. As
described in Section 25.6.10, “More about Ivy resolvers’, you can use al the Ivy resolvers suitable for the
purpose of uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading
each file. By default, Gradle will upload to the pattern defined by the ur | parameter, combined with the

Page 307 of 654

optional | ayout parameter. If nour | parameter is supplied, then Gradle will usethefirst defined arti f act Pe
for uploading, or the first defined i vyPat t er n for uploading Ivy files, if thisis set.

Uploading to a Maven repository is described in Section 33.6, “Interacting with Maven repositories’.

32.5. More about project libraries

If your project is supposed to be used as alibrary, you need to define what are the artifacts of thislibrary and
what are the dependencies of these artifacts. The Java plugin adds a r unt i ne configuration for this
purpose, with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact
you want to publish. Of course thisis fully customizable. Y ou can add your own custom configuration or let
the existing configurations extend from other configurations. Y ou might have a different group of artifacts
which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur ati on property to declare this. If
thisis not specified, the def aul t configuration is used (see Section 25.4.9, “ Dependency configurations”).
Using your project as a library can either happen from within a multi-project build or by retrieving your
project from arepository. In the latter case, ani vy. xm descriptor in the repository is supposed to contain
all the necessary information. If you work with Maven repositories you don’'t have the flexibility as
described above. For how to publish to a Maven repository, see the section Section 33.6, “Interacting with
Maven repositories’.

[17] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the
Javaplugin.

Page 308 of 654

33

The Maven Plugin

This chapter isawork in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

33.1. Usage

To use the Maven plugin, include the following in your build script:

Example 33.1. Using the Maven plugin

bui |l d. gradl e

apply plugin: 'nmaven'

33.2. Tasks

The Maven plugin defines the following tasks:

Table 33.1. Maven plugin - tasks

Task Depends Type Description

name on

i nstall All tasks Upl oad Installs the associated artifacts to the local Maven cache,
that build including Maven metadata generation. By default the install
the task is associated with the ar chi ves configuration. This
associated configuration has by default only the default jar as an element.
archives. To learn more about installing to the local repository, see:

Section 33.6.3, “Ingtalling to the local repository”

33.3. Dependency management

The Maven plugin does not define any dependency configurations.

Page 309 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Upload.html

33.4. Convention properties

The Maven plugin defines the following convention properties:

Table 33.2. Maven plugin - properties

Property name Type Default value Descr

mavenPonDi r File ${ proj ect.buil dDir}/ pohtse (
wher
genel
POM
writte

conf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a Instru
for |
Grac
config
to
SCOpE
the
calle
“Depl
mapp

These properties are provided by a MavenPl ugi nConvent i on convention object.

33.5. Convention methods

The maven plugin provides a factory method for creating a POM. Thisis useful if you need a POM without
the context of uploading to a Maven repo.

Page 310 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Example 33.2. Creating a standalone pom.
buil d. gradl e

task writeNewPom {
doLast {
pom {
project {
i ncepti onYear ' 2008’
i censes {
license {

nane ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE-2. 0. t xt'
di stribution 'repo’

}

}
}.witeTo("$buil dDi r/ newpom xmi ")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see MavenPom See also: MavenPl ugi nConventi on

33.6. Interacting with Maven repositories

33.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's
deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don’'t have a POM. Fortunately Gradle can
generate this POM for you using the dependency information it has.

33.6.2. Deploying to a Maven repository
Let’s assume your project produces just the default jar file. Now you want to deploy this jar file to aremote
Maven repository.
Example 33.3. Upload of fileto remote Maven repository
bui | d. gradl e
apply plugin: 'maven'
upl oadAr chi ves {

repositories {
mavenDepl oyer {

repository(url: "file://local host/tnp/ my/Repo/")

Page 311 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the
POM to the specified repository.

There is more work to do if you need support for protocols other than f i | e. In this case the native Maven
code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you
plan to use. The available protocols and the corresponding libraries are listed in Table 33.3, “Protocol jars
for Maven deployment” (those libraries have transitive dependencies which have transitive dependenci es).[
18] For example, to use the ssh protocol you can do:

Example 33.4. Upload of file via SSH

buil d. gradl e

configurations {
depl oyer Jars

}

repositories {
mavenCentral ()

}

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 2. 2"

}

upl oadAr chi ves {
reposi tori es. mavenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. nyconpany.conirel eases") {
aut henti cati on(user Nanme: "ne", password: "nyPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to the
bean elements. To add bean elements to its parent, you use a closure. In the example above repository and
authentication are such bean elements. Table 33.4, “Configuration elements of the MavenDeployer” lists
the available bean elements and a link to the Javadoc of the corresponding class. In the Javadoc you can see
the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t or y element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Page 312 of 654

Table 33.3. Protocol jarsfor Maven deployment

Protocol Library
http org.apache.maven.wagon:wagon-http:2.2
ssh org.apache.maven.wagon:wagon-ssh: 2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external :2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2
webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
file -

Table 33.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDepl oyer

repository org.apache.maven.artifact.ant. RemoteRepository
authentication org.apache.maven.artifact.ant. Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
snapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

33.6.3. Installing to the local repository

The Maven plugin addsan i nst al | task to your project. This task depends on all the archives task of the ar chi
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository isredefined inaMaven set ti ngs. xmi , thisis considered by this task.

33.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl d
,artifactld,versionandpackagi ng elements used for the POM default to the values shown in the
table below. The dependency elements are created from the project’ s dependency declarations.

Page 313 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

Table 33.5. Default Valuesfor Maven POM generation

Maven Default Value

Element

groupld project.group

artifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or
archiveTask.baseName.

version project.version

packaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves andj ar). ar chi veTask. baseNane defaultsto pr oj ect . ar
which in turn defaultsto pr oj ect . nane.

When you set the “ar chi veTask. baseNane” property to a value other than the default, you'll
also have to set upl oadTask. r eposi t ori es. mavenDepl oyer. pom artifactld to the
same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from
generated POMs for other projects in the same build.

Generated POMs can be found in <bui | dDi r >/ pons. They can be further customized via the
MavenPom API. For example, you might want the artifact deployed to the Maven repository to have a
different version or name than the artifact generated by Gradle. To customize these you can do:

Example 33.5. Customization of pom
bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ my/Repo/")
pom version = '1. 0Maven'

pomartifactld = ' myMavenNang'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any
element listed in the Maven POM reference can be added.

Page 314 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

Example 33.6. Builder style customization of pom
buil d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ my/Repo/")
pom proj ect {
i censes {
license {

nane ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE-2. 0. t xt'
di stribution 'repo’

Note: groupl d, artifactld, versi on, and packagi ng should always be set directly on the pom
object.

Example 33.7. M odifying auto-generated content

bui |l d. gradl e

def installer = install.repositories. mavenlnstaller
def depl oyer = upl oadArchives. repositories. mavenDepl oyer

[instal | er, depl oyer]*. pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3' && dep.artifactld =="
}

If you have more than one artifact to publish, things work a little bit differently. See the section called
“Multiple artifacts per project”.

To customize the settings for the Maven installer (see Section 33.6.3, “Installing to the local repository”),
you can do:

Example 33.8. Customization of Maven installer

bui |l d. gradl e

instal |l {
repositories. mavenl nstal | er {
pom version = '1. OMaven'

pomartifactld = ' nyNane'

Page 315 of 654

Multiple artifacts per project

Maven can only deal with one artifact per project. Thisis reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The MavenDepl oyer and the Maveninstaller both provide an API
for this:

Example 33.9. Generation of multiple poms
bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
addFilter('api') {artifact, file ->
artifact.nane == ' api

}

addFilter('service') {artifact, file ->
artifact.name == 'service'

}

pon(' api').version = 'nySpeci al MavenVer si on'

Y ou need to declare afilter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about this have alook at Ponti | t er Cont ai ner and its associated classes.

Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. You can also assign a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn
more. To access the mapping configuration you can say:

Example 33.10. Accessing a mapping configuration
bui |l d. gradl e
t ask mappi ngs {

doLast {
println conf2ScopeMappi ngs. nappi ngs

}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to

Page 316 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[18] It is planned for afuture rel ease to provide out-of-the-box support for this

Page 317 of 654

34

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then
be used to prove who built the artifact the signature is attached to as well as other information such as when
the signature was generated.

The signing plugin currently only provides support for generating OpenPGP signatures (which is the
signature format required for publication to the Maven Central Repository).

34.1. Usage

To use the Signing plugin, include the following in your build script:

Example 34.1. Using the Signing plugin

bui | d. gradl e

apply plugin: 'signing

34.2. Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using
the GnuPG tools can be found in the GhuPG HOWTOs). Y ou need to provide the signing plugin with your
key information, which means three things:

® Thepublic key ID (an 8 character hexadecimal string).
* The absolute path to the secret key ring file containing your private key.
® The passphrase used to protect your private key.

These items must be supplied as the values of propertiessi gni ng. keyl d, si gni ng. secr et KeyRi ngFi | €
, and si gni ng. passwor d respectively. Given the personal and private nature of these values, a good
practice is to store them in the user gr adl e. properti es file (described in Section 12.2, “Gradle
properties and system properties’).

si gni ng. keyl d=24875D73

si gni ng. passwor d=secr et
si gni ng. secr et KeyRi ngFi | e=/ User s/ ne/ . gnupg/ secri ng. gpg

If specifying this information (especialy si gni ng. passwor d) in the user gr adl e. properti es file

Page 318 of 654

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

isnot feasible for your environment, you can source the information however you need to and set the project
properties manually.

i mport org.gradl e. pl ugins. si gning. Sign

gradl e. t askG aph. whenReady { taskG aph ->
if (taskGaph.all Tasks.any { it instanceof Sign }) {
/1 Use Java 6's console to read fromthe console (no good for
/1 a Cl environnent)
Consol e consol e = Syst em consol e()
console.printf "\n\nW have to sign sone things in this build." +
"\ n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key 1d: ")
def file = consol e.readLi ne("PGP Secret Key Ring File (absolute path):
def password = consol e. readPassword(" PGP Private Key Password: ")

al | projects { ext."signing.keyld" =id }
al | projects { ext."signing.secretKeyRi ngFile" = f
al | projects { ext."signing. password® = password }

ile}

consol e. printf "\ nThanks.\n\n"

Note that the presence of anull value for any these three properties will cause an exception.

34.2.1. Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they’ re bound to a master key pair. One
feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key
management easier. A practical case study of how subkeys can be leveraged in software development can be
read on the Debian wiki.

The signing plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID asthe valuein the si gni |
property.

34.3. Specifying what to sign

Aswell as configuring how things are to be signed (i.e. the signatory configuration), you must also specify
what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or
configurations that should be signed.

34.3.1. Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin configures ajar to
build and this jar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify
that all of the artifacts of this configuration should be signed.

Page 319 of 654

https://wiki.debian.org/Subkeys

Example 34.2. Signing a configuration

bui | d. gradl e

signi ng {

si gn configurations. archives

}

Thiswill create atask (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Example 34.3. Signing a configuration output
Output of gr adl e si gnArchi ves

> gradl e signArchives
:conpi | eJava

: processResour ces

1 cl asses

djar

:si gnArchi ves

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

34.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can
directly sign the task that produces the artifact to sign.

Example 34.4. Signing a task

bui |l d. gradl e

task stuffzZip (type: Zip) {
baseNane = "stuff"
from"src/stuff"

}

signi ng {
sign stuffZp

}

This will create a task (of type Si gn) in your project named “si gnSt uf f Zi p”, that will build the input
task’s archive (if needed) and then sign it. The signature file will be placed alongside the artifact being
signed.

Page 320 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.signing.Sign.html

Example 34.5. Signing a task output
Output of gr adl e si gnStuffZip

> gradle signStuffZp
cstuffzip
:signStuffzZip

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

For atask to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar, Zi p,
Jar , War and Ear tasks.

34.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not
wish to sign artifacts for non-release versions. To achieve this, you can specify that signing is only required
under certain conditions.

Example 34.6. Conditional signing

bui |l d. gradl e

version = '1.0- SNAPSHOT'
ext.i sRel easeVersi on = lversion. endsWt h(" SNAPSHOT")

si gni ng {
required { isRel easeVersion && gradl e.taskG aph. hasTask("upl oadArchi ves") }
sign configurations. archives

In this example, we only want to require signing if we are building a release version and we are going to
publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must
set the signing.required property to a closure to defer the evaluation. See
Si gni ngExt ensi on. set Requi red(j ava. | ang. Cbj ect) for more information.

34.4. Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically
added to the si gnat ur es and ar chi ves dependency configurations. This means that if you want to
upload your signatures to your distribution repository along with the artifacts you simply execute the upl oadAr c
task as normal.

Page 321 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ear.Ear.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)

34.5. Signing POM files

Signing the generated POM file generated by the Maven Publishing plugin is currently not supported.
Future versions of Gradle might add this functionality.

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published
POM file.. The signing plugin adds a signing.signPom) (see:

Si gni ngExt ensi on. si gnPon(or g. gradl e. api . artifacts. maven. MavenDepl oynent,
groovy. | ang. Cl osur e)) method that can be used in the bef or eDepl oynment () block in your
upload task configuration.

Example 34.7. Signing a POM for deployment
bui |l d. gradl e
upl oadAr chi ves {

repositories {
mavenDepl oyer {

bef or eDepl oynent { MavenDepl oynent depl oynent -> signi ng. si gnPon{ def

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. ho
credentials for signing) then the si gnPon{) method will silently do nothing.

Page 322 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

35

vy Publishing (new)

This chapter describes the new incubating Ivy publishing support provided by the “i vy- publ i sh”
plugin. Eventually this new publishing support will replace publishing viathe Upl oad task.

If you are looking for documentation on the original Ivy publishing support using the Upl oad task
please see Chapter 32, Publishing artifacts.

This chapter describes how to publish build artifacts in the Apache Ivy format, usually to a repository for
consumption by other builds or projects. What is published is one or more artifacts created by the build, and
an lvy module descriptor (normally i vy. xml) that describes the artifacts and the dependencies of the
artifacts, if any.

A published Ivy module can be consumed by Gradle (see Chapter 25, Dependency Management) and other
tools that understand the Ivy format.

35.1. The“i vy- publ i sh” Plugin
The ability to publish in the Ivy format is provided by the“i vy- publ i sh” plugin.

The “publ i shi ng” plugin creates an extension on the project named “publ i shi ng” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “i vy- publ i sh” plugin works with | vyPubl i cati on publications and
I vyArtifact Repository repositories.

Example 35.1. Applying the “ivy-publish” plugin
bui |l d. gradl e

apply plugin: "ivy-publish'

Applyingthe“i vy- publ i sh” plugin does the following:

* Appliesthe“publ i shi ng” plugin

* Establishes a rule to automatically create a Gener at el vyDescri ptor task for each
I vyPubl i cat i on added (see Section 35.2, “Publications”).

® Establishes arule to automatically create a Publ i shTol vyReposi t ory task for the combination of

Page 323 of 654

http://ant.apache.org/ivy/
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

each |vyPublication added (see Section 35.2, “Publications’), with each
I vyArtifact Repository added (see Section 35.3, “Repositories’).

35.2. Publications

If you are not familiar with project artifacts and configurations, you should read Chapter 32,
Publishing artifacts, which introduces these concepts. This chapter also describes “publishing
artifacts” using a different mechanism than what is described in this chapter. The publishing
functionality described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. AIl of the publications of a project are defined in the
Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a unique name
within the project.

For the “i vy- publ i sh” plugin to have any effect, an | vyPubl i cat i on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details
included in the associated Ivy module descriptor file. A publication can be configured by adding
components, customizing artifacts, and by modifying the generated module descriptor file directly.

35.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to an Ivy repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 35.1. Software Components

Name Provided By Artifacts Dependencies
java JavaPlugin Generated jar file Dependencies from 'runtime' configuration
web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is
added by the Java Pl ugi n.

Example 35.2. Publishing a Java moduleto vy

bui | d. gradl e

publications {
i vyJava(l vyPublication) {

from conponents. j ava

}

Page 324 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/component/SoftwareComponent.html

35.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied asraw files, or asinstances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the nane, ext ensi on, t ype, cl assi fi er and conf
values to use for publication. Note that each artifacts must have a unique name/classifier/extension
combination.

Configure custom artifacts as follows:

Example 35.3. Publishing additional artifact to Ivy
bui |l d. gradl e

task sourceldar(type: Jar) {
from sourceSets. mai n.java
classifier "source"

}
publ i shing {
publications {
i vy(lvyPublication) {

from conponents. j ava

artifact(sourcedar) ({
type "source"
conf "conpile"

Seethe |l vyPubl i cati on classin the APl documentation for more detailed information on how artifacts
can be customized.

35.2.3. Identity values for the published project

The generated vy module descriptor file contains an <i nf 0> element that identifies the module. The
default identity values are derived from the following:

® organi sation-Project.getGoup()
®* nodul e - Proj ect. get Nane()

® revision-Project.getVersion()

® status-Project.getStatus()

® branch - (not set)

Overriding the default identity valuesis easy: simply specify the or gani sat i on, nodul e orr evi si on
attributes when configuring the | vyPubl i cat i on. The st at us and br anch attributes can be set via
the descri pt or property (see | vyModul eDescri pt or Spec). Thedescri pt or property can aso
be used to add additional custom elements as children of the <i nf 0> element.

Page 325 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Example 35.4. customizing the publication identity

bui | d. gradl e

publ i shing {
publications {
i vy(lvyPublication) {
organi sation 'org.gradl e. sanpl e’
nmodul e ' proj ect 1- sanpl €'
revision '1.1'
descriptor.status = 'ni | estone'

descriptor.branch = 'testing'
descriptor.extralnfo 'http://nmy. nanespace', 'nyEl enment', 'Sonme val ud

from conmponent s. j ava

Gradle will handle any valid Unicode character for organisation,
module and revision (as well as artifact name, extension and
classifier). The only values that are explicitly prohibited are ‘\ ’,
‘/’ and any ISO control character. The supplied values are
validated early during publication.

Certain repositories are not able
to handle all supported
characters. For example, the "'
character cannot be used as an
identifier when publishing to a
35.2.4. Modifying the generated module filesystem-backed repository on
descriptor Windows.

At times, the module descriptor file generated from the project
information will need to be tweaked before publishing. The“i vy- publ i sh
" plugin provides a hook to allow such modification.

Example 35.5. Customizing the module descriptor file

bui |l d. gradl e

publications {
i vyCust om(| vyPubl i cati on) {
descriptor.w thXxm {
asNode() . i nfo[0] . appendNode("' description',

"A denonstration of ivy descriptor custd

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

See |vyMbdul eDescri ptor Spec. wit hXm (org. gradl e. api.Action) in the AP
documentation for more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it
is also possible to modify the descriptor in such away that it is no longer a valid Ivy module descriptor, so

Page 326 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

care must be taken when using this feature.

The identifier (organisation, module, revision) of the published module is an exception; these values cannot
be modified in the descriptor using the wi t hXM. hook.

35.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate
Gradle subproject. An example is publishing a separate APl and implementation jar for your library. With
Gradlethisissimple:

Example 35.6. Publishing multiple modules from a single proj ect
bui |l d. gradl e

task api Jar(type: Jar) {
baseNane "publ i shing-api"
from sour ceSet s. mai n. out put
exclude " **/inpl/**'

}

publ i shing {
publications {

i mpl (I vyPublication) {
organi sation 'org.gradl e.sanpl e.inpl
nodul e ' proj ect 2-i npl
revision '2.3

from conponents. j ava

}

api (1 vyPublication) {
organi sation 'org.gradle.sanpl e
nmodul e ' proj ect 2- api
revision '2'

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

35.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Page 327 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Example 35.7. Declaring repositoriesto publish to

bui | d. gradl e

repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo

url "$buil dDir/repo”

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for
dependencies (Reposi t or yHandl er). However, in the context of Ivy publication only the repositories
created by thei vy () methods can be used as publication destinations. Y ou cannot publishan | vyPubl i cati o
to aMaven repository for example.

35.4. Performing a publish

The “i vy- publ i sh” plugin automatically creates a Publ i shTol vyReposi tory task for each
I vyPubl i cationandl vyArtifact Repository combinationinthe publ i shi ng. publi cati ons
and publ i shi ng. reposi t ori es containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Repository”,
whichis“publ i shl vyJavaPubl i cati onTol vyReposi t ory” for thisexample. Thistask is of type
Publ i shTol vyRepository.

Page 328 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 35.8. Choosing a particular publication to publish

bui | d. gradl e

apply plugin: 'java
apply plugin: "ivy-publish

group = 'org.gradle.sanpl e’
version = '1.0

publ i shing {
publ i cations {
i vyJava(l vyPublication) {
from conponents. j ava
}
}
repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "$buil dDir/repo”

Output of gr adl e publ i shl vyJavaPubl i cati onTol vyRepository

> gradl e publishlvyJavaPublicationTol vyRepository
s gener at eDescri ptorFi | eForlvyJavaPublication
:conpi | eJava NO SOURCE

: processResour ces NO SOURCE

:cl asses UP- TO DATE

tjar

: publ i shl vyJavaPubl i cati onTol vyReposi tory

BUI LD SUCCESSFUL in Os
3 actionable tasks: 3 executed

35.4.1. The“publ i sh” lifecycle task

The “publ i sh” plugin (that the “i vy- publ i sh” plugin implicitly applies) adds a lifecycle task that can
be used to publish al publicationsto al applicable repositories named “publ i sh”.

In more concrete terms, executing this task will execute all Publ i shTol vyReposi t ory tasks in the
project. Thisisusually the most convenient way to perform a publish.

Page 329 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 35.9. Publishing all publicationsviathe“publish” lifecycle task
Output of gr adl e publ i sh

> gradl e publish

1 gener at eDescri ptor Fi | eFor |l vyJavaPubl i cation
:conpi | eJava NO SOURCE

: processResour ces NO SOURCE

:cl asses UP- TO DATE

vjar

: publ i shl vyJavaPubl i cati onTol vyRepository

s publish

BUI LD SUCCESSFUL in Os
3 actionable tasks: 3 executed

35.5. Generating the vy module descriptor file
without publishing
At timesit is useful to generate the Ivy module descriptor file (normally i vy. xm) without publishing your

module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very
easy to do.

The “i vy- publ i sh” plugin creates one Gener at el vyDescri pt or task for each registered

I vyPubl i cati on, named “gener at eDescri pt or Fi | eFor « PUBNAME»Publ i cati on”, which

will be“gener at eDescri pt or Fi | eFor | vyJavaPubl i cati on” for the previous example of the*i vyJe
" publication.

Y ou can specify where the generated Ivy file will be located by setting the dest i nat i on property on the
generated task. By default thisfileiswrittento “bui | d/ publ i cati ons/ «PUBNAME»/ i vy. xm ”.

Example 35.10. Generating the Ivy module descriptor file

bui |l d. gradl e

nodel {
t asks. gener at eDescri pt or Fi | eFor | vyCust onPubl i cati on {
destination = file("$buil dDir/generated-ivy.xm")

}

Output of gr adl e gener at eDescri pt or Fi | eFor | vyCust onPubl i cati on

> gradl e generateDescriptorFil eForlvyCustonPublication
: gener at eDescriptorFi | eForl vyCust onPublication

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

The“i vy- publ i sh” plugin leverages some experimental support for late plugin configuration, and
the Gener at el vyDescri pt or task will not be constructed until the publishing extension is

Page 330 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

configured. The simplest way to ensure that the publishing plugin is configured when you attempt to
access the Gener at el vyDescri pt or task is to place the access inside a model block, as the
exampl e above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shTol vyReposi t ory. These tasks should be referenced from within anodel block.

35.6. Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the
project description for each project.

Page 331 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 35.11. Publishing a Java module
buil d. gradl e

subproj ects {
apply plugin: 'java
apply plugin: "ivy-publish'

version = '1. 0
group = 'org.gradle.sanpl e’

repositories {
mavenCentral ()

}

task sourceldar(type: Jar) {
from sourceSets. mai n.java
classifier "source"

}

project (":projectl") {
description = "The first project”

dependenci es {
conpile "junit:junit:4.12', project(':project2')
}
}

project (":project2") {
description = "The second project"

dependenci es {
conpi |l e ' commons-col | ecti ons: commons-col | ections: 3.2.2
}
}

subproj ects {
publ i shing {
repositories {
vy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "${rootProject.buildDir}/repo"
}
}

publications {
i vy(lvyPublication) {

from conmponents. j ava

artifact(sourcedar) {
type "source"
conf "conpile"

}

descriptor.w thXm {
asNode().info[0] . appendNode(' description', description)

}

Theresult isthat the following artifacts will be published for each project:

Page 332 of 654

® The lvy module descriptor file: “i vy- 1. 0. xm ”.
® Theprimary “jar” artifact for the Java component: “pr oj ect 1-1. 0. j ar”.
* Thesource“jar” artifact that has been explicitly configured: “pr oj ect 1- 1. O- source. jar”.

When pr oj ect 1 is published, the module descriptor (i.e. the i vy. xm file) that is produced will ook
like:

Example 35.12. Example generated ivy.xml

out put -i vy. xn Note that «PUBLI CATI ON- TI ME- STA
in this example Ivy module
descriptor will be the timestamp

<?xm version="1.0" encodi ng="UTF- 8" ?>
<i vy- nodul e version="2.0">
<i nf o organi sation="org. gradl e. sanpl e" nodul e=" prsJEE;ARal=/s i3IS e dhe] (o] AL
<descri pti on>The first project</description> generated.
</i nf o>
<confi gurati ons>
<conf name="conpile" visibility="public"/>
<conf name="default" visibility="public" extends="conpile,runtine"/>
<conf nanme="runtine" visibility="public"/>
</ confi gurations>
<publ i cati ons>
<artifact name="projectl” type="jar" ext="jar" conf="conpile"/>

<artifact nanme="projectl" type="source" ext="jar" conf="conpile" mclassifisg
</ publ i cati ons>
<dependenci es>
<dependency org="junit" name="junit" rev="4.12" conf="conpile-> default"/
<dependency org="org. gradl e. sanpl e" nane="project2" rev="1.0" conf="conpil e-
</ dependenci es>
</ivy-nodul e>

35.7. Future features

The*“i vy- publ i sh” plugin functionality as described above isincomplete, as the feature is still incubating
. In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

® Convenient customization of module attributes (modul e, or gani sat i on etc.)
® Convenient customization of dependencies reported in nodul e descri ptor.
® Multiple discrete publications per project

Page 333 of 654

36

Maven Publishing (new)

This chapter describes the new incubating Maven publishing support provided by the “maven- publ i sh
" plugin. Eventually this new publishing support will replace publishing viathe Upl oad task.

Note: Signing the generated POM file generated by this plugin is currently not supported. Future
versions of Gradle might add this functionality. Please use the Maven plugin for the purpose of
publishing your artifacts to Maven Central.

If you are looking for documentation on the original Maven publishing support using the Upl oad
task please see Chapter 32, Publishing artifacts.

This chapter describes how to publish build artifacts to an Apache Maven Repository. A module published
to a Maven repository can be consumed by Maven, Gradle (see Chapter 25, Dependency Management) and
other tools that understand the Maven repository format.

36.1. The“maven- publ i sh” Plugin

The ability to publish in the Maven format is provided by the “naven- publ i sh” plugin.

The “publ i shi ng” plugin creates an extension on the project named “publ i shi ng” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “maven- publ i sh” plugin works with MavenPubl i cat i on publications and
MavenArti f act Reposi t ory repositories.

Example 36.1. Applying the 'maven-publish’ plugin
bui | d. gradl e

apply plugin: 'nmaven-publish’

Applying the “maven- publ i sh” plugin does the following:

* Appliesthe“publ i shi ng” plugin

® Establishes a rule to automatically create a Gener ateMavenPom task for each
MavenPubl i cat i on added (see Section 36.2, “Publications’).

* Establishes aruleto automatically create a Publ i shToMavenReposi t ory task for the combination

Page 334 of 654

http://maven.apache.org/
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

of each MavenPublication added (see Section 36.2, “Publications’), with each
MavenArti f act Reposi t ory added (see Section 36.3, “ Repositories’).

® Establishes a rule to automatically create a Publi shToMavenLocal task for each
MavenPubl i cat i on added (seeSection 36.2, “Publications”).

36.2. Publications

If you are not familiar with project artifacts and configurations, you should read the Chapter 32,

Publishing artifacts that introduces these concepts. This chapter also describes “publishing artifacts’
using a different mechanism than what is described in this chapter. The publishing functionality
described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the
Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a unique name
within the project.

For the “maven- publ i sh” plugin to have any effect, a MavenPubl i cat i on must be added to the set
of publications. This publication determines which artifacts are actually published as well as the details
included in the associated POM file. A publication can be configured by adding components, customizing
artifacts, and by modifying the generated POM file directly.

36.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a Sof t war eConponent
to publish. The components presently available for publication are:

Table 36.1. Software Components

Name Provided By Artifacts Dependencies
java Chapter 47, The Java Generatedjarfile Dependencies from ‘runtime’
Plugin configuration

web Chapter 50, The War Generated war No dependencies
Plugin file

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is
added by the Java Pl ugi n.

Page 335 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/component/SoftwareComponent.html

Example 36.2. Adding a MavenPublication for a Java component

bui | d. gradl e

publ i shing {
publications {
mavenJava(MavenPubl i cation) {

from conponents. j ava

36.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied asraw files, or asinstances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the ext ensi on and cl assi fi er vaues to use for
publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts
must have a unique classifier/extension combination.

Configure custom artifacts as follows:

Example 36.3. Adding additional artifact to a MavenPublication
bui |l d. gradl e

task sourceldar(type: Jar) {
from sourceSets. mai n. al | Java

}

publ i shing {
publications {
mavenJava(MavenPubl i cati on) {

from conmponents. j ava

artifact sourcedar {
classifier "sources”

See the MavenPubl i cat i on class in the APl documentation for more information about how artifacts
can be customized.

36.2.3. Identity valuesin the generated POM

The attributes of the generated POM file will contain identity values derived from the following project
properties:

® groupld-Project.getGoup()
e artifactld-Project.getName()

Page 336 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name

® version-Project.getVersion()

Overriding the default identity values is easy: simply specify the gr oupl d, arti fact!d or versi on
attributes when configuring the MavenPubl i cat i on.

Example 36.4. customizing the publication identity
buil d. gradl e

publ i shing {
publications {
maven(MavenPubl i cati on) {
groupld 'org.gradle. sanpl e
artifactld 'projectl-sanple'
version '1.1'

from conponents. j ava

Maven restricts 'groupld' and ‘'artifactld' to a limited character
set ([A-Za-z0-9 \\-.]+) and Gradle enforces this
restriction. For 'version' (as well as artifact 'extension' and
‘classifier’), Gradle will handle any valid Unicode character.

Certain repositories will not be
able to handle all supported
characters. For example, the "'
character cannot be used as an
identifier when publishing to a
filesystem-backed repository on
Windows.

The only Unicode values that are explicitly prohibited are ‘\ ’, */
" and any 1SO control character. Supplied values are validated
early in publication.

36.2.4. Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “maven- publ i sh” plugin
provides a hook to allow such modification.

Example 36.5. Modifying the POM file

bui | d. gradl e

publ i cations {
mavenCust om(MavenPubl i cati on) {
pom wi t hXm {
asNode() . appendNode("' description',

" A denpbnstration of maven POM custoni zation')

In this example we are adding a 'description’ element for the generated POM. With this hook, you can
modify any aspect of the POM. For example, you could replace the version range for a dependency with the
actual version used to produce the build.

See MavenPom wi t hXm (org. gradl e. api . Action) in the APl documentation for more

Page 337 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)

information.

It is possible to modify virtually any aspect of the created POM. This meansthat it is aso possible to modify
the POM in such a way that it is no longer a valid Maven POM, so care must be taken when using this
feature.

The identifier (groupld, artifactld, version) of the published module is an exception; these values cannot be
modified in the POM using the wi t hXM_ hook.

36.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate
Gradle subproject. An example is publishing a separate APl and implementation jar for your library. With
Gradlethisissimple:

Example 36.6. Publishing multiple modules from a single proj ect

bui | d. gradl e

task api Jar(type: Jar) {
baseNane "publ i shing-api”
from sour ceSet s. mai n. out put
exclude " **/inpl/**'

}

publ i shi ng {
publ i cations {
i mpl (MavenPubl i cation) {
groupld 'org.gradl e.sanpl e.inpl"’
artifactld 'project2-inpl'
version '2.3

from conponents. j ava

}

api (MavenPubl i cati on) {
groupld 'org.gradle. sanpl €'
artifactld 'project2-api’
version ' 2

artifact apiJar

If aproject defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

36.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Page 338 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Example 36.7. Declaring repositoriesto publish to

bui | d. gradl e

publ i shing {
repositories {
maven {
/1l change to point to your repo, e.g. http://nmy.org/repo

url "$buil dDir/repo”

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to
consume dependencies from, Reposi t or yHandl er . However, in the context of Maven publication only
MavenArti f act Reposi t ory repositories can be used for publication.

36.4. Performing a publish

The “maven- publ i sh” plugin automatically creates a Publ i shToMavenReposi t ory task for each
MavenPubl i cati on and MavenArti f act Reposi t ory combinationinthe publ i shi ng. publicatio
and publ i shi ng. reposi t ori es containers respectively.

The created task isnamed “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Reposi t ory”.

Page 339 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Example 36.8. Publishing a project to a Maven repository

bui | d. gradl e

apply plugin: 'java
apply plugin: 'maven-publish'

group = 'org.gradle.sanpl e’
version = '1. 0

publ i shing {
publ i cations {
mavenJava(MavenPubl i cati on) {
from conponents. j ava
}
}

}
publ i shing {
repositories {
maven {
/'l change to point to your repo, e.g. http://ny.org/repo
url "$buil dDir/repo"

Output of gr adl e publ i sh

> gradl e publish

: gener at ePonfi | eFor MavenJavaPubl i cati on
:conpi | eJava

: processResour ces NO SOURCE

1 cl asses

djar

: publ i shMavenJavaPubl i cati onToMavenReposi tory
s publish

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

In this example, a task named “publ i shMavenJavaPubl i cati onToMavenRepository” is
created, which is of type Publ i shToMavenReposi t ory. Thistask iswired into the publ i sh lifecycle
task. Executing “gr adl e publ i sh” builds the POM file and all of the artifacts to be published, and
transfers them to the repository.

36.5. Publishing to Maven Local

For integration with alocal Maven installation, it is sometimes useful to publish the module into the local

.m2 repository. In Maven parlance, this is referred to as 'installing' the module. The “rmaven- publ i sh”
plugin makes this easy to do by automatically creating a Publ i shToMavenLocal task for each
MavenPubl i cati oninthepubl i shi ng. publ i cati ons container. Each of these tasksis wired into
thepubl i shToMavenLocal lifecycletask. You do not need to have mavenLocal inyour publ i shing.re
section.

Page 340 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.MavenPublication.html

The created task isnamed “publ i sh« PUBNAME»Publ i cati onToMavenLocal .

Example 36.9. Publish a project to the Maven local repository
Output of gr adl e publ i shToMavenLocal

> gradl e publishToMavenLocal

: gener at ePonti | eFor MavenJavaPubl i cati on
:conpi | eJava

. processResour ces NO SOURCE

:cl asses

tjar

: publ i shMavenJavaPubl i cati onToMavenLocal
: publ i shToMavenLocal

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

The resulting task in this example is named “publ i shMavenJavaPubl i cati onToMavenLocal ".
Thistask iswired into the publ i shToMavenLocal lifecycletask. Executing “gr adl e publ i shToMavenL
" builds the POM file and all of the artifacts to be published, and “installs’ them into the local Maven
repository.

36.6. Generating the POM file without publishing

At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM
generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type Gener at eMavenPom and it is given a name based on the
name of the publication: “gener at ePonfi | eFor « PUBNAME»Publ i cati on”. So in the example
below, where the publication is named “nmavenCust onf, the task will be named “gener at ePonti | eFor Mav

Example 36.10. Generate a POM file without publishing

bui |l d. gradl e

nodel {
t asks. gener at ePonti | eFor MavenCust onPubl i cati on {
destination = file("$buil dDir/generated-pom xm ")

}

Output of gr adl e gener at ePonti | eFor MavenCust onPubl i cati on

> gradl e gener at ePonFi | eFor MavenCust onPubl i cati on
: gener at ePontFi | eFor MavenCust onPubl i cati on

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

All details of the publishing model are still considered in POM generation, including conponent s, custom
artifacts, and any modifications made viapom wi t hXmi .

Page 341 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html

The “maven- publ i sh” plugin leverages some experimental support for late plugin configuration,
and any Gener at eMavenPom tasks will not be constructed until the publishing extension is
configured. The simplest way to ensure that the publishing plugin is configured when you attempt to
access the Gener at eMavenPomtask is to place the access inside a nodel block, as the example
above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shToMavenReposi t or y. These tasks should be referenced from within anodel block.

Page 342 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

37

The Distribution Plugin

The distribution plugin is currently incubating. Please be aware that the DSL and other configuration
may change in later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution
archives typically contain the executable application and other supporting files, such as documentation.

37.1. Usage

To use the distribution plugin, include the following in your build script:

Example 37.1. Using the distribution plugin

bui |l d. gradl e
apply plugin: "distribution'

The plugin adds an extension named “di st ri buti ons” of type Di stri buti onCont ai ner to the
project. It also creates a single distribution in the distributions container extension named “mai n”. If your
build only produces one distribution you only need to configure this distribution (or use the defaults).

Youcanrun“gradl e di st Zi p” to package the main distribution asa ZIP, or “gr adl e di st Tar” to
create a TAR file. To build both types of archives just run gr adl e assenbl eDi st . The files will be
created at “$bui | dDi r / di stri buti ons/ $proj ect. name- $proj ect. versi on. «ext»”.

Youcanrun“gradl e install Di st” toassemble the uncompressed distributioninto “$bui | dDi r /i nst a

37.2. Tasks

The Distribution plugin adds the following tasks to the project:

Page 343 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.distribution.DistributionContainer.html

Table 37.1. Distribution plugin - tasks

Task name

distzZip

di st Tar

assenbl eDi st

instal | D st

Dependson

Type
Zip

Tar

di st Tar, di st Zipask

Description

Creates a ZI P archive of the distribution contents

Creates a TAR archive of the distribution contents

Creates ZIP and TAR archives with the distribution
contents

Assembl es the distribution content and installs it on
the current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:

Table 37.2. Multipledistributions - tasks

Task name

${di stribution.nane}DistZp

${di stribution. nane} D st Tar

Dependson Type Description

- Zip Creates a
ZIP archive
of the
distribution
contents

- Tar Creates a
TAR
archive of
the
distribution
contents

assenbl e${di stribution. nane. capital i $gd)3Diisbuti on. nane} Di stasdt Assembles

,${distribution.name}DistzZip all
distribution
archives

instal |l ${di stribution.nane.capitalize()}D st Sync Assembles

the
distribution
content and
instalsit on
the current
machine

Page 344 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Sync.html

Example 37.2. Adding extra distributions
buil d. gradl e
apply plugin: "distribution'

version = '1.2
di stributions {
custom {}

}

Thiswill add following tasks to the project:

® customDistZip

® customDistTar

® assembleCustomDist
¢ installCustomDist

Given that the project nameis“mypr oj ect” and version “1. 2", running “gr adl e cust onDi st Zi p”
will produce aZIP file named “nypr oj ect - cust om 1. 2. zi p”.

Running “gr adl e i nstal | Cust onDi st ” will install the distribution contentsinto “ $bui | dDi r /i nst al |

37.3. Distribution contents

All of thefilesinthe“src/ $di stri buti on. name/ di st ” directory will automatically be included in
the distribution. Y ou can add additional files by configuring the Di st ri but i on object that is part of the
container.

Page 345 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/distribution/Distribution.html

Example 37.3. Configuring the main distribution

bui | d. gradl e

apply plugin: "distribution'

di stributions {
mai n {
baseNane = ' soneNaneg'
contents {
from{ 'src/readme' }

apply plugin:"' maven’

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sonme/repo")

In the example above, the content of the “sr c/ readne” directory will be included in the distribution
(adlong with thefilesinthe“sr ¢/ mai n/ di st ” directory which are added by default).

The “baseNane” property has also been changed. This will cause the distribution archives to be created
with adifferent name.

37.4. Publishing distributions

The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the maven
plugin applied the distribution zip file will be published when running uploadArchives if no other default
artifact is configured

Example 37.4. publish main distribution

bui |l d. gradl e

apply plugin:"' maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://sone/repo")

Page 346 of 654

38

The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following
notification systems are supported:

* Twitter

* notify-send (Ubuntu)
® Snarl (Windows)

® Growl (Mac OS X)

38.1. Usage

To use the announce plugin, apply it to your build script:

Example 38.1. Using the announce plugin

buil d. gradl e

apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are
available):

Example 38.2. Configure the announce plugin

bui |l d. gradl e

announce {
user nane "nyld
password " myPasswor d'

}

Finally, send announcements with the announce method:

Page 347 of 654

http://twitter.com
http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 38.3. Using the announce plugin
buil d. gradl e

task hell oWorl d {
doLast {
println "Hello, world!"

}

}

hel | oWor | d. doLast {
announce. announce("hel | oVorl d conpleted! ", "twitter")
announce. announce("hel | oWorl d conpleted!", "local")

The announce method takes two String arguments: The message to be sent, and the notification service to
be used. The following table lists supported notification services and their configuration properties.

Table 38.1. Announce Plugin Notification Services

Notification ~ Operating Configuration Further Information
Service System Properties
twitter Any username,
password
snarl Windows
growl Mac OS X
notify-send Ubuntu Requires the notify-send package to be installed.
Usesudo apt-get install libnotify-bin
toingtal it.
local Windows, Automatically chooses between snarl, growl, and
Mac OS X, notify-send depending on the current operating
Ubuntu system.

38.2. Configuration

See the AnnouncePl ugi nExt ensi on classin the APl documentation.

Page 348 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

39

The Build Announcements Plugin

The build announcements plugin is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

The build announcements plugin uses the announce plugin to send local announcements on important events
in the build.

39.1. Usage

To use the build announcements plugin, include the following in your build script:

Example 39.1. Using the build announcements plugin

bui | d. gradl e

apply plugin: 'build-announcenents'

That's it. If you want to tweak where the announcements go, you can configure the announce plugin to
change the local announcer.

Y ou can aso apply the plugin from an init script:

Example 39.2. Using the build announcements plugin from an init script
init.gradle

root Proj ect {

apply plugin: 'build-announcenents'

}

Page 349 of 654

Part 1V. Extending the build

40

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an action
closure. We have seen these in Chapter 16, Build Script Basics. For this type of task, the action closure
determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build
script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides
some properties which you can use to configure the behaviour. We have seen these in Chapter 19, More
about Tasks. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don’'t need to implement
the task behaviour as you do with simple tasks. Y ou simply declare the task and configure the task using its
properties. In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly
across different builds.

The behaviour and properties of an enhanced task is defined by the task’s class. When you declare an
enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in
pretty much any language you like, provided it ends up compiled to bytecode. In our examples, we are going
to use Groovy as the implementation language. Groovy, Java or Kotlin are all good choices as the language
to use to implement a task class, as the Gradle API has been designed to work well with these languages. In
general, a task implemented using Java or Kotlin, which are statically typed, will perform better than the
same task implemented using Groovy.

40.1. Packaging atask class

There are several places where you can put the source for the task class.

Build script
You can include the task class directly in the build script. This has the benefit that the task class is
automatically compiled and included in the classpath of the build script without you having to do
anything. However, the task classis not visible outside the build script, and so you cannot reuse the task
class outside the build script it is defined in.

bui | dSr ¢ project
Y ou can put the source for thetask classin the r oot Proj ect Di r / bui | dSr ¢/ src/ mai n/ gr oovy
directory. Gradle will take care of compiling and testing the task class and making it available on the
classpath of the build script. The task classis visible to every build script used by the build. However, it
is not visible outside the build, and so you cannot reuse the task class outside the build it is defined in.

Page 351 of 654

Using the bui | dSr ¢ project approach separates the task declaration - that is, what the task should do -
from the task implementation - that is, how the task doesiit.

See Chapter 43, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone proj ect
Y ou can create a separate project for your task class. This project produces and publishes a JAR which
you can then use in multiple builds and share with others. Generally, this JAR might include some
custom plugins, or bundle several related task classesinto a single library. Or some combination of the
two.

In our examples, we will start with the task classin the build script, to keep things simple. Then we will look
at creating a standal one project.

40.2. Writing asimple task class

To implement a custom task class, you extend Def aul t Task.

Example 40.1. Defining a custom task

buil d. gradl e

cl ass GreetingTask extends Defaul t Task {

}

Thistask doesn’t do anything useful, so let’s add some behaviour. To do so, we add a method to the task and
mark it with the TaskAct i on annotation. Gradle will call the method when the task executes. You don’t
have to use a method to define the behaviour for the task. Y ou could, for instance, call doFi r st () or doLast (|
with aclosurein the task constructor to add behaviour.

Example 40.2. A hello world task
bui |l d. gradl e

cl ass GreetingTask extends Defaul t Task {
@askActi on
def greet() {
println "hello from G eeti ngTask'

}

}

/'l Create a task using the task type
task hello(type: G eetingTask)

Output of gradl e -q hello

> gradle -q hello
hell o from GreetingTask

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a
task, you can set the properties or call methods on the task object. Here we add a gr eet i ng property, and

Page 352 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskAction.html

set the value when we declare the gr eet i ng task.

Example 40.3. A customizable hello world task
bui |l d. gradl e

cl ass GreetingTask extends Defaul t Task {
String greeting = 'hello from G eeti ngTask'

@askActi on
def greet() {
println greeting

}

}

/1 Use the default greeting
task hell o(type: G eetingTask)

/] Custom ze the greeting
task greeting(type: G eetingTask) {
greeting = 'greetings from G eeti ngTask'

}

Output of gradl e -g hell o greeting
> gradle -q hello greeting

hell o from GreetingTask
greetings from GreetingTask

40.3. A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others. This
project is simply a Groovy project that produces a JAR containing the task class. Here is a simple build
script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 40.4. A build for a custom task
bui |l d. gradl e
apply plugin: 'groovy'

dependenci es {

conpi | e gradl eApi ()
conpi | e | ocal G oovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the *-al’
distribution of Gradle.

We just follow the convention for where the source for the task class should go.

Page 353 of 654

Example 40.5. A custom task
src/ mai n/ groovy/ or g/ gradl e/ G eeti ngTask. groovy

package org.gradle

i mport org.gradl e. api . Def aul t Task
i mport org.gradl e.api.tasks. TaskActi on

cl ass GreetingTask extends Defaul t Task {

String greeting = 'hello from G eeti ngTask'

@askActi on
def greet() {
println greeting

}

40.3.1. Using your task class in another project

To use atask classin abuild script, you need to add the class to the build script’s classpath. To do this, you
useabui l dscript { } block, asdescribed in Section 43.6, “External dependencies for the build script”
. The following example shows how you might do this when the JAR containing the task class has been
published to alocal repository:

Example 40.6. Using a custom task in another project
bui |l d. gradl e

bui I dscript {
repositories {
maven {
url wuri('../repo")
}
}
dependenci es {
cl asspath group: 'org.gradle', name: 'custonPlugin',
version: ' 1.0- SNAPSHOT'

}

task greeting(type: org.gradle. G eetingTask) ({
greeting = ' howdy!"’

}

40.3.2. Writing tests for your task class

You can use the Pr oj ect Bui | der class to create Pr 0j ect instances to use when you test your task
class.

Page 354 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html

Example 40.7. Testing a custom task
src/test/groovy/org/gradl e/ GeetingTaskTest. groovy

cl ass GreetingTaskTest {
@est
public void canAddTaskToProject() {
Proj ect project = ProjectBuilder.builder().build()

def task = project.task('greeting' , type: G eetingTask)
assert True(task instanceof G eetingTask)

40.4. Incremental tasks

Incremental tasks are an incubating feature.

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),
discussions within the Gradle community have produced superior ideas for exposing the information
about changes to task implementors to what is described below. As such, the API for this feature will
almost certainly change in upcoming releases. However, please do experiment with the current
implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see Appendix C, The
Feature Lifecycle), exists for this purpose of ensuring high quality final implementations through
incorporation of early user feedback.

With Gradle, it's very simple to implement atask that is skipped when all of itsinputs and outputs are up to
date (see Section 19.10, “Up-to-date checks (AKA Incremental Build)”). However, there are times when
only afew input files have changed since the last execution, and you'd like to avoid reprocessing all of the
unchanged inputs. This can be particularly useful for a transformer task, that converts input files to output
filesonal:1 basis.

If you'd like to optimise your build so that only out-of-date inputs are processed, you can do so with an
incremental task.

40.4.1. Implementing an incremental task

For atask to process inputs incrementally, that task must contain an incremental task action. Thisis a task
action method that contains a single | ncr enent al Taskl nput s parameter, which indicates to Gradle
that the action will process the changed inputs only.

The incremental task action may supply an
I ncr enent al Taskl nput s. out Of Dat e(or g. gradl e. api . Acti on) action for processing any
input file that is out-of-date, and a

I ncr enent al Taskl nput s. renoved(org. gradl e. api . Acti on) action that executes for any
input file that has been removed since the previous execution.

Page 355 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Example 40.8. Defining an incremental task action
buil d. gradl e

cl ass I ncrenent al Rever seTask extends Defaul t Task {
@nputDirectory
def File inputDir

@ut put Di rectory
def File outputDir

@ nput
def inputProperty

@askActi on
voi d execut e(l ncrenent al Taskl nputs i nputs) {
println inputs.increnental ? ' CHANGED i nputs consi dered out of date'
"ALL inputs considered out of date'
if (!inputs.increnental)
project.delete(outputDir.listFiles())

i nputs. out Of Date { change ->
println "out of date: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFile.text = change.file.text.reverse()

}

i nputs. renmoved { change ->
println "renoved: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFil e. del ete()

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ i ncr ement al Task
inthe‘-al’ distribution of Gradle.

If for some reason the task is not run incremental, e.g. by running with - - r er un-t asks, only the
outOf Date action is executed, even if there were deleted input files. You should consider handling this case
at the beginning, asis donein the example above.

For a simple transformer task like this, the task action simply needs to generate output files for any
out-of-date inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

Page 356 of 654

40.4.2. Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context
since that execution are to input files, then Gradle is able to determine which input files need to be

reprocessed by the task. In this case, the
I ncr enent al Taskl nput s. out O Dat e(or g. gradl e. api . Acti on) action will be executed for
any input file that was added or modified, and the

I ncr enent al Taskl nput s. renoved(or g. gradl e. api . Action) action will be executed for
any removed input file.

However, there are many cases where Gradle is unable to determine which input files need to be
reprocessed. Examplesinclude:

® Thereisno history available from a previous execution.

® You are building with a different version of Gradle. Currently, Gradle does not use task history from a
different version.

®* AnupToDat eWhen criteria added to the task returnsf al se.

* Aninput property has changed since the previous execution.

® One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider all of the input files to be out Of Date. The

I ncr enent al Taskl nput s. out O Dat e(or g. gradl e. api . Acti on) action will be executed for
every input file, and the | ncrement al Taskl nputs. renpved(org. gradl e. api . Acti on)
action will not be executed at all.

You can check if Gradle was able to determine the incremental changes to input files with
I ncrenent al Taskl nputs.islncrenental ().

40.4.3. An incremental task in action

Given the incremental task implementation above, we can explore the various change scenarios by example.
Note that the various mutation tasks (‘updatel nputs, ‘removelnput’, etc) are only present for demonstration
purposes. these would not normally be part of your build script.

First, consider the | ncr enment al Rever seTask executed against a set of inputs for the first time. In this
case, al inputswill be considered “out of date”:

Page 357 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

Example 40.9. Running the incremental task for thefirst time

bui | d. gradl e

task increnental Reverse(type: Increnental ReverseTask) {
inputDir = file('inputs")
outputDir = file("$buildDir/outputs")

i nput Property = project.properties['tasklnputProperty'] ?: 'original

Build layout

i ncr enent al Task/
bui | d. gradl e
i nput s/

1. txt
2.t xt
3. txt

Output of gradl e -q i ncrenent al Rever se

> gradle -q incremental Reverse
ALL inputs considered out of date
out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are
reported to the task action:

Example 40.10. Running the incremental task with unchanged inputs
Output of gradl e -qg i ncrenent al Rever se

> gradle -q incremental Reverse

When an input fileis modified in some way or anew input file is added, then re-executing the task resultsin
those files being reported to
I ncr enent al Taskl nput s. out Of Dat e(org. gradl e. api . Action):

Example 40.11. Running the incremental task with updated input files

bui | d. gradl e

task updatel nputs() {
doLast {
file('inputs/1.txt').text ' Changed content for existing file 1.'

file('inputs/4.txt').text ‘Content for new file 4.°

Output of gr adl e - g updat el nputs i ncrenent al Rever se

> gradl e -q updatel nputs increnmental Reverse
CHANGED i nputs consi dered out of date

out of date: 1.txt

out of date: 4.txt

Page 358 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)

When an existing input file is removed, then re-executing the task results in that file being reported to
I ncr enent al Taskl nput s. renpoved(org. gradl e. api . Action):

Example 40.12. Running the incremental task with an input fileremoved

bui |l d. gradl e

task removel nput () {
doLast {
file('inputs/3.txt').delete()

}

Output of gradl e -qg renovel nput increnental Reverse

> gradle -q renovel nput increnental Reverse
CHANGED i nput s consi dered out of date
renoved: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of
date. In this case, all input files are reported to the
I ncr enent al Taskl nput s. out Of Dat e(org. gradl e. api . Acti on) action, and no input files
arereported tothe | ncr enent al Taskl nput s. renoved(org. gradl e. api . Acti on) action:

Example 40.13. Running the incremental task with an output fileremoved

bui | d. gradl e

task renmoveCQut put () {
doLast {
file("$buildDir/outputs/1.txt").delete()

}

Output of gradl e -g renpveQut put i ncrenent al Reverse

> gradl e -q renmpveCut put increnental Reverse
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

When atask input property is modified, Gradle is unable to determine how this property impacted the task
outputs, so al input files are assumed to be out of date. So similar to the changed output file example, all
input files are reported to the

I ncr enent al Taskl nput s. out Of Dat e(org. gradl e. api . Acti on) action, and no input files
arereported tothe | ncr enent al Taskl nput s. renoved(or g. gradl e. api . Acti on) action:

Page 359 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Example 40.14. Running the incremental task with an input property changed
Output of gr adl e -q - Pt askl nput Property=changed i ncrenent al Rever se

> gradl e -q -Ptaskl nput Property=changed i ncrenent al Reverse
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

40.4.4. Storing incremental state for cached tasks

Using Gradle's | ncr enent al Taskl nput s is not the only way to create tasks that only works on
changes since the last execution. Tools like the Kotlin compiler provide incrementality as a built-in feature.
The way this is typically implemented is that the tool stores some analysis data about the state of the
previous execution in some file. If such state files are relocatable, then they can be declared as outputs of the
task. This way when the task’ s results are loaded from cache, the next execution can already use the analysis
data loaded from cache, too.

However, if the state files are non-relocatable, then they can’'t be shared via the build cache. Indeed, when

the task is loaded from cache, any such state files must be cleaned up to prevent stale state to confuse the

tool during the next execution. Gradle can ensure such stale files are removed if they are declared viat ask. | oce
or aproperty is marked with the @.ocal St at e annotation.

40.5. The Worker AP

The Worker API is an incubating feature.

As can be seen from the discussion of incremental tasks, the work that a task performs can be viewed as
discrete units (i.e. a subset of inputs that are transformed to a certain subset of outputs). Many times, these
units of work are highly independent of each other, meaning they can be performed in any order and simply
aggregated together to form the overall action of the task. In a single threaded execution, these units of work
would execute in sequence, however if we have multiple processors, it would be desirable to perform
independent units of work concurrently. By doing so, we can fully utilize the available resources at build
time and complete the activity of the task faster.

The Worker API provides a mechanism for doing exactly this. It alows for safe, concurrent execution of
multiple items of work during a task action. But the benefits of the Worker APl are not confined to
paralelizing the work of atask. You can also configure a desired level of isolation such that work can be
executed in an isolated classloader or even in an isolated process. Furthermore, the benefits extend beyond
even the execution of a single task. Using the Worker API, Gradle can begin to execute tasks in parallel by
default. In other words, once a task has submitted its work to be executed asynchronously, and has exited the
task action, Gradle can then begin the execution of other independent tasks in parallel, even if those tasks
arein the same project.

Page 360 of 654

40.5.1. Using the Worker AP

In order to submit work to the Worker API, two things must be provided: an implementation of the unit of
work, and a configuration for the unit of work. The implementation is simply a classthat extendsj ava. | ang. R
. This class should have a constructor that is annotated with j avax. i nj ect. | nj ect and accepts
parameters that configure the class for a single unit of work. When a unit of work is submitted to the

Wor ker Execut or , an instance of this class will be created and the parameters configured for the unit of
work will be passed to the constructor.

Example 40.15. Creating a unit of work implementation

bui |l d. gradl e

i nport org.gradl e. workers. Wor ker Execut or
i mport javax.inject.|nject

/1 The inplenentation of a single unit of work
cl ass ReverseFile inplenments Runnable {

File fil eToReverse

File destinationFile

@ nj ect

public ReverseFile(File fil eToReverse, File destinationFile) {
this.fileToReverse = fil eToReverse
this.destinationFile = destinationFile

}

@verride
public void run() {
destinationFile.text = fil eToReverse.text.reverse()

}

The configuration of the worker is represented by aWor ker Conf i gur at i on andis set by configuring an
instance of this object at the time of submission. However, in order to submit the unit of work, it is
necessary to first acquire the Wor ker Execut or . To do this, a constructor should be provided that is
annotated with j avax. i nj ect . | nj ect and acceptsaWor ker Execut or parameter. Gradle will inject
the instance of Wr ker Execut or at runtime when the task is created.

Page 361 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html

Example 40.16. Submitting a unit of work for execution
buil d. gradl e

cl ass ReverseFil es extends SourceTask {
final Worker Execut or wor ker Execut or

@ut put Di rectory
File outputDir

[/l The Wborker Executor will be injected by Gadle at runtine
@ nj ect
publ i c ReverseFi| es(Wr ker Execut or wor ker Execut or) {

t hi s. wor ker Execut or = wor ker Execut or

}

@askAct i on
voi d reverseFiles() {
/'l Create and submit a unit of work for each file
source.files.each { file ->
wor ker Execut or. subm t (ReverseFil e. cl ass) { Wrker Configuration confi
/'l Use the mininmum |l evel of isolation
config.isol ati onMbde = |sol ati onMode. NONE

/'l Constructor paraneters for the unit of work inplenentation
config.parans file, project.file("${outputDir}/${file.nane}")

Note that one element of the Wor ker Conf i gur at i on isthe par ans property. These are the parameters
passed to the constructor of the unit of work implementation for each item of work submitted. Any
parameters provided to the unit of work must bej ava. i o. Seri al i zabl e.

Once all of the work for atask action has been submitted, it is safe to exit the task action. The work will be
executed asynchronously and in parallel (up to the setting of max- wor ker s). Of course, any tasks that are
dependent on this task (and any subsequent task actions of this task) will not begin executing until al of the
asynchronous work completes. However, other independent tasks that have no relationship to this task can
begin executing immediately.

If any failures occur while executing the asynchronous work, the task will fail and a
Wor ker Execut i onExcept i on will be thrown detailing the failure for each failed work item. This will
be treated like any failure during task execution and will prevent any dependent tasks from executing.

In some cases, however, it might be desirable to wait for work to complete before exiting the task action.
Thisis possible using the Wor ker Execut or . awai t () method. Asin the case of allowing the work to
complete asynchronously, any failures that occur while executing an item of work will be surfaced as a
Wor ker Execut i onExcept i on thrown from the Wor ker Execut or . awai t () method.

Note that Gradle will only begin running other independent tasks in parallel when atask has exited a
task action and returned control of execution to Gradle. When Wor ker Execut or . awai t () is
used, execution does not leave the task action. This means that Gradle will not allow other tasks to

Page 362 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html#await()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html#await()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerExecutor.html#await()

begin executing and will wait for the task action to complete before doing so.

Example 40.17. Waiting for asynchronouswork to complete
bui |l d. gradl e

/'l Create and submit a unit of work for each file
source.files.each { file ->
wor ker Execut or . submi t (ReverseFile.class) { config ->
config.isol ati onMbde = I|sol ati onMode. NONE
/'l Constructor paraneters for the unit of work inplenentation
config.parans file, project.file("${outputDir}/${file.name}")

}

/1 Wait for all asynchronous work to conplete before continuing
wor ker Execut or. awai t ()
| ogger.lifecycle("Created ${outputDir.listFiles().size()} reversed files in ${pr

40.5.2. Isolation Modes

Gradle provides three isolation modes that can be configured on a unit of work and are specified using the
| sol ati onMode enum:

| solationM ode.NONE
This states that the work should be run in a thread with a minimum of isolation. For instance, it will
share the same classloader that the task is loaded from. Thisis the fastest level of isolation.

I solationM ode.CLASSL. OADER
This states that the work should be run in a thread with an isolated classloader. The classloader will have
the classpath from the classloader that the unit of work implementation class was loaded from as well as
any additional classpath entries added through
Wor ker Confi guration. cl asspath(java.lang.lterable).

I solationM ode.PROCESS
This states that the work should be run with a maximum level of isolation by executing the work in a
separate process. The classloader of the process will use the classpath from the classloader that the unit
of work was loaded from as well as any additional classpath entries added through
Wor ker Confi gur ati on. cl asspat h(j ava. | ang. I t er abl e) . Furthermore, the process will
be a Worker Daemon which will stay alive and can be reused for future work items that may have the
same requirements. This process can be configured with different settings than the Gradle VM using
Wor ker Configuration. forkQOptions(org. gradl e. api.Action).

40.5.3. Worker Daemons

When using | sol ati onMbde. PROCESS, gradle will start along-lived Worker Daemon process that can
be reused for future work items.

Page 363 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath(java.lang.Iterable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath(java.lang.Iterable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath(java.lang.Iterable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath(java.lang.Iterable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions(org.gradle.api.Action)

Example 40.18. Submitting an item of work torun in aworker daemon
buil d. gradl e

wor ker Execut or. subm t (ReverseFi |l e. cl ass) { Wrker Configuration config ->
/1l Run this work in an isolated process
config.isol ati onMbde = | sol ati onMode. PROCESS

/1l Configure the options for the forked process
config.forkOptions { JavaForkOpti ons options ->
opti ons. maxHeapSi ze = "512m'
opti ons. systenProperty "org.gradl e. sanpl e. showFi | eSi ze", "true"

}

/'l Constructor paraneters for the unit of work inplenentation
config.parans file, project.file("${outputDir}/${file.name}")

When a unit of work for a Worker Daemon is submitted, Gradle will first ook to see if a compatible, idle
daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as busy. If not, it
will start a new daemon. When evaluating compatibility, Gradle looks at a number of criteria, al of which
can be controlled through Wor ker Conf i gur ati on. f or kOpti ons(org. gradl e. api . Action).

executable
A daemon is considered compatible only if it uses the same java executable.

classpath
A daemon is considered compatible if its classpath contains all of the classpath entries requested. Note

that a daemon is considered compatibleif it has more classpath entriesin addition to those requested.

heap settings
A daemon is considered compatible if it has at least the same heap size settings as regquested. In other
words, a daemon that has higher heap settings than requested would be considered compatible.

jvm arguments
A daemon is considered compatible if it has set al of the jym arguments requested. Note that a daemon
is considered compatible if it has additional jvm arguments beyond those requested (except for
arguments treated specially such as heap settings, assertions, debug, etc).

system properties
A daemon is considered compatible if it has set all of the system properties requested with the same
values. Note that a daemon is considered compatible if it has additional system properties beyond those
requested.

environment variables
A daemon is considered compatible if it has set all of the environment variables requested with the same
values. Note that a daemon is considered compatible if it has more environment variables in addition to
those requested.

bootstrap classpath
A daemon is considered compatible if it contains al of the bootstrap classpath entries requested. Note
that a daemon is considered compatible if it has more bootstrap classpath entries in addition to those

Page 364 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions(org.gradle.api.Action)

requested.

debug
A daemon is considered compatible only if debug is set to the same value as requested (true or false).

enable assertions
A daemon is considered compatible only if enable assertions is set to the same value as requested (true
or false).

default character encoding
A daemon is considered compatible only if the default character encoding is set to the same value as
requested.

Worker daemons will remain running until either the build daemon that started them is stopped, or system
memory becomes scarce. When available system memory is low, Gradle will begin stopping worker
daemons in an attempt to minimize memory consumption.

40.6. Re-using logic between task classes

There are different ways to re-use logic between task classes. The easiest case is when you can extract the
logic you want to share in a separate method or class and then use the extracted piece of code in your tasks.
For example, the Copy task re-uses the logic of the Pr oj ect . copy(org. gradl e. api . Acti on)

method. Another option is to add a task dependency on the task which outputs you want to re-use. Other
options include using task rules or the worker API.

Page 365 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

41

WTriting Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different
projects and builds. Gradle allows you to implement your own plugins, so you can reuse your build logic,
and shareit with others.

You can implement a Gradle plugin in any language you like, provided the implementation ends up
compiled as bytecode. In our examples, we are going to use Groovy as the implementation language.
Groovy, Javaor Kotlin are all good choices as the language to use to implement a plugin, as the Gradle API
has been designed to work well with these languages. In general, a plugin implemented using Java or Kotlin,
which are statically typed, will perform better than the same plugin implemented using Groovy.

41.1. Packaging a plugin
There are several places where you can put the source for the plugin.

Build script
Y ou can include the source for the plugin directly in the build script. This has the benefit that the plugin
is automatically compiled and included in the classpath of the build script without you having to do
anything. However, the plugin is not visible outside the build script, and so you cannot reuse the plugin
outside the build script it is defined in.

bui | dSr c project
You can put the source for the plugin in the r oot Proj ect Di r / bui | dSrc/ src/ mai n/ gr oovy
directory. Gradle will take care of compiling and testing the plugin and making it available on the
classpath of the build script. The plugin is visible to every build script used by the build. However, it is
not visible outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See Chapter 43, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone proj ect
Y ou can create a separate project for your plugin. This project produces and publishes a JAR which you
can then use in multiple builds and share with others. Generally, this JAR might include some plugins,
or bundle several related task classes into asingle library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at
creating a standalone project.

Page 366 of 654

41.2. Writing asimple plugin

To create a Gradle plugin, you need to write a class that implements the Pl ugi n interface. When the plugin

is applied to a project, Gradle creates an instance of the plugin class and calls the instance's

Pl ugi n. appl y(T) method. The project object is passed as a parameter, which the plugin can use to
configure the project however it needs to. The following sample contains a greeting plugin, which addsa hel | o
task to the project.

Example 41.1. A custom plugin
bui | d. gradl e

cl ass GreetingPlugin inplenments Plugi n<Project> {
voi d appl y(Project project) {
project.task(' hello") {
doLast {
println 'Hello fromthe GeetingPlugin'

}

/1 Apply the plugin
apply plugin: G eetingPlugin

Outputof gradl e -q hello

> gradle -q hello
Hello fromthe GeetingPlugin

One thing to note is that a new instance of a plugin is created for each project it is applied to. Also note that
the Pl ugi n classisageneric type. This example hasit receiving the Pr oj ect type asatype parameter. A
plugin can instead receive a parameter of type Set ti ngs, in which case the plugin can be applied in a
settings script, or a parameter of type Gr adl e, in which case the plugin can be applied in an initialization
script.

41.3. Making the plugin configurable

Most plugins need to obtain some configuration from the build script. One method for doing thisis to use
extension objects. The Gradle Pr oj ect has an associated Ext ensi onCont ai ner object that contains
all the settings and properties for the plugins that have been applied to the project. You can provide
configuration for your plugin by adding an extension object to this container. An extension object is simply
a Java Bean compliant class. Groovy is a good language choice to implement an extension object because
plain old Groovy objects contain all the getter and setter methods that a Java Bean requires. Java and Kotlin
are other good choices.

Let’s add a simple extension object to the project. Herewe add agr eet i ng extension object to the project,
which allows you to configure the greeting.

Page 367 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Example 41.2. A custom plugin extension
buil d. gradl e

cl ass GreetingPl ugi nExt ensi on {
String message = 'Hello from G eetingPl ugi n'

}

cl ass GreetingPlugin inplenments Plugi n<Project> {
voi d appl y(Project project) {
/] Add the 'greeting' extension object
def extension = project.extensions.create(' greeting' , GeetingPlugi nExtd
/1l Add a task that uses configuration fromthe extension object
proj ect.task(' hello") {
doLast {
println extension. message

}

apply plugin: GeetingPlugin

/] Configure the extension
greeting. nessage = 'H from G adl e

Output of gradl e -q hello

> gradle -q hello
H from Gadle

Inthisexample, Gr eet i ngPl ugi nExt ensi on isaplain old Groovy object with a property called nessage
. The extension object is added to the plugin list with the name gr eet i ng. This object then becomes
available as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a
configuration closure block for each extension object, so you can group settings together. The following
exampl e shows you how this works.

Page 368 of 654

Example 41.3. A custom plugin with configuration closure
buil d. gradl e

cl ass GreetingPl ugi nExt ensi on {
String nmessage
String greeter

}

class GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
def extension = project.extensions.create(' greeting' , GeetingPlugi nExtd
proj ect.task(' hello") {
doLast {
println "${extensi on. nessage} from ${extension.greeter}”

}

apply plugin: GeetingPlugin

/'l Configure the extension using a DSL bl ock
greeting {

nessage = 'H '

greeter

Output of gradl e -q hell o

> gradle -q hello
H fromGadle

In this example, several settings can be grouped together within the gr eet i ng closure. The name of the
closure block in the build script (gr eet i ng) needs to match the extension object name. Then, when the
closure is executed, the fields on the extension object will be mapped to the variables within the closure
based on the standard Groovy closure delegate feature.

41.4. Working with files in custom tasks and
plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input
configuration for file locations. To do this, you can leverage the
Project.file(java.lang. Obj ect) method to resolve valuesto files as |ate as possible.

Page 369 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 41.4. Evaluating file propertieslazily
buil d. gradl e

cl ass GreetingToFil eTask extends Defaul t Task {
def destination

File getDestination() {
project.file(destination)

}

@askActi on

def greet() {
def file = getDestination()
file.parentFile.nkdirs()
file.wite 'Hellol'

}

task greet (type: GeetingToFil eTask) {
destination = { project.greetingFile }

}

task sayG eeting(dependsOn: greet) {
doLast {
println file(greetingFile).text

}
}

ext.greetingFile = "$buildDir/hello.txt"

Output of gradl e -gq sayG eeting

> gradle -q sayGeeting
Hel | o!

In this example, we configure the gr eet task desti nati on property as a closure, which is evaluated
withthe Proj ect . fil e(j ava. | ang. Obj ect) method to turn the return value of the closureintoaFi | e
object at the last minute. You will notice that in the example above we specify the greetingFil e
property value after we have configured to use it for the task. This kind of lazy evaluation is a key benefit of
accepting any value when setting a file property, then resolving that value when reading the property.

41.5. Mapping extension properties to task
properties

Capturing user input from the build script through an extension and mapping it to input/output properties of
acustom task is considered a best practice. The end user only interacts with the exposed DSL defined by the
extension. The imperative logic is hidden in the plugin implementation.

The extension declaration in the build script as well as the mapping between extension properties and
custom task properties occurs during Gradle's configuration phase of the build lifecycle. To avoid
evaluation order issues, the actual value of a mapped property has to be resolved during the execution phase.
For more information please see Section 22.1, “Build phases’. Gradle’s APl offers the mutable type

Page 370 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Property.html

Property for representing a property that should be lazily evaluated e.g. during execution time. The
method Pr operty. set (T) providesthevalue, Provi der. get () returnsthe value upon request.

The following demonstrates the usage of the type for mapping an extension property to atask property:

Example 41.5. Mapping extension propertiesto task properties
bui |l d. gradl e

cl ass GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
def extension = project.extensions.create(' greeting', GeetingPluginExtd
project.tasks.create(' hell o', Geeting) {
nessage = extension. message
out put Fil es = extension.outputFiles

cl ass GreetingPl ugi nExt ensi on {
final Property<String> nessage
final Configurabl eFileCollection outputFiles

G eet i ngPl ugi nExt ensi on(Proj ect project) {
nmessage = project.objects. property(String)
nessage. set (' Hel l o from G eeti ngPl ugi n')
outputFiles = project.files()

}

voi d setQutputFiles(FileCollection outputFiles) {
thi s. out put Fil es. set Fron{out put Fi | es)
}
}

cl ass Greeting extends DefaultTask {
final Property<String> nessage = project.objects. property(String)
final Configurabl eFileCollection outputFiles = project.files()

voi d setQutputFiles(FileCollection outputFiles) {
t hi s. out put Fi |l es. set Fron{ out put Fi | es)

}

@askActi on
voi d printMessage() {
out put Fi | es. each {
| ogger.quiet "Witing message 'H from Gadle' to file"
it.text = nessage. get()

apply plugin: GeetingPlugin

greeting {
message = 'H from G adl e
outputFiles = files('a.txt', "b.txt")

Page 371 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Property.html#set(T)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Provider.html#get()

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ mapExt ensi onPr ope
inthe‘-al’ distribution of Gradle.

Output of gradl e -q hell o

> gradle -q hello
Witing nmessage 'H from Gadle' to file
Witing nessage 'H from Gadle' to file

The example above uses instances of Pr ovi der and Pr oper t y. The main difference between these two
interfaces is attributed to mutability. A Provi der is immutable and can be created with the method
Proj ect. provider(java.util.concurrent. Call able). Property extends the interface
Provi der, represents a mutable value and can be created with the method
Proj ect. property(java.l ang. C ass) . Please note that the provider types are not intended for
implementation by build script or plugin authors.

The Pr oj ect does not provide a specific method signature for creating a provider by passinginagr oovy. |
as parameter. When writing a plugin implementation with Groovy, you can use the method signature
acceptingaj ava. util.concurrent. Cal | abl e parameter. Groovy’s Closure to type coercion

will take of the rest.

41.6. A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others. This
project is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build
script for the project. It applies the Groovy plugin, and adds the Gradle APl as a compile-time dependency.
Example 41.6. A build for a custom plugin

bui | d. gradl e

apply plugin: 'groovy'

dependenci es {

conpi | e gradl eApi ()
conpi | e | ocal Groovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the *-al’
distribution of Gradle.

So how does Gradle find the PI ugi n implementation? The answer is you need to provide a properties file
inthejar's META- | NF/ gr adl e- pl ugi ns directory that matches theid of your plugin.

Page 372 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Project.html#provider(java.util.concurrent.Callable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Project.html#provider(java.util.concurrent.Callable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:property(java.lang.Class)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:property(java.lang.Class)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html
http://docs.groovy-lang.org/next/html/documentation/core-semantics.html#_assigning_a_closure_to_a_sam_type
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html

Example 41.7. Wiring for a custom plugin

src/ mai n/ resour ces/ META- | NF/ gr adl e- pl ugi ns/ org. sanpl es. greeting. properties

i mpl enent ati on-cl ass=or g. gradl e. Geeti ngPl ugi n

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the i npl e
property identifiesthe Pl ugi n implementation class.

41.6.1. Creating apluginid

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps
to avoid collisions and provides away to group plugins with similar ownership.

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you
or your organization) and the name of the plugin it provides. For example if you had a Github account
named “foo” and your plugin was named “bar”, a suitable plugin id might be com gi t hub. f 0o. bar .
Similarly, if the plugin was developed at the baz organization, the plugin id might be or g. baz. bar .

Plugin ids should conform to the following:

® May contain any aphanumeric character, '.", and '-".

® Must contain at least one".' character separating the namespace from the name of the plugin.
® Conventionally use alowercase reverse domain name convention for the namespace.

¢ Conventionally use only lowercase charactersin the name.

® org. gradl e andcom gr adl ewar e namespaces may not be used.

® Cannot start or end with a".' character.

® Cannot contain consecutive'.' characters (i.e. '..").

Although there are conventional similarities between plugin ids and package names, package names are
generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add
“gradle” as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would
be superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a
good plugin id.

41.6.2. Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any
other code artifact. See the ivy and maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it
to the Gradle plugin portal. This site provides the ability to search for and gather information about plugins
contributed by the Gradle community. See the instructions here on how to make your plugin available on
thissite.

Page 373 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html
http://plugins.gradle.org
http://plugins.gradle.org/docs/submit

41.6.3. Using your plugin in another project

To useapluginin abuild script, you need to add the plugin classes to the build script’s classpath. To do this,
you use a “bui | dscript { }” block, as described in the section called “Applying plugins with the
buildscript block”. The following example shows how you might do this when the JAR containing the
plugin has been published to alocal repository:

Example 41.8. Using a custom plugin in another project
bui |l d. gradl e

bui |l dscript {
repositories {
maven {
url wuri('../repo")

}

}

dependenci es {
cl asspath group: 'org.gradle', nane: 'custonPl ugin',
version: '1.0- SNAPSHOT'
}

}
apply plugin: 'org.sanples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see
Section 27.5.2, “ Applying plugins with the plugins DSL") to apply the plugin:
Example 41.9. Applying a community plugin with the plugins DSL

bui |l d. gradl e

pl ugi ns {
id 'comjfrog.bintray' version '0.4.1
}

41.6.4. Writing tests for your plugin

You can use the Pr oj ect Bui | der classto create Pr oj ect instances to use when you test your plugin
implementation.

Example 41.10. Testing a custom plugin
src/test/groovy/org/ gradl e/ Greeti ngPl ugi nTest . gr oovy

cl ass GreetingPl ugi nTest {
@est
public void greeterPlugi nAddsG eeti ngTaskToProj ect () {
Proj ect project = ProjectBuilder.builder().build()
proj ect. pl ugi nManager . apply 'org. sanpl es. greeti ng'

assert True(proj ect.tasks. hell o i nstanceof G eetingTask)

Page 374 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html

41.6.5. Using the Java Gradle Plugin development plugin

You can use the incubating Java Gradle Plugin development plugin to eliminate some of the boilerplate
declarations in your build script and provide some basic validations of plugin metadata. This plugin will
automatically apply the Java plugin, add the gr adl eApi () dependency to the compile configuration, and
perform plugin metadata validations as part of the j ar task execution.

Example 41.11. Using the Java Gradle Plugin Development plugin
bui |l d. gradl e

pl ugi ns {

id 'java-gradl e-plugin'

}

When publishing plugins to custom plugin repositories using the ivy or maven publish plugins, the Java Gradle Pl
will also generate plugin marker artifacts named based on the plugin id which depend on the plugin's
implementation artifact.

41.7. Providing a configuration DSL for the
plugin

As we saw above, you can use an extension object to provide configuration for your plugin. Using an
extension object also extends the Gradle DSL to add a project property and DSL block for the plugin. An
extension object is simply aregular object, and so you can provide DSL elements nested inside this block by
adding properties and methods to the extension object.

Gradle provides several conveniencesto help create awell-behaved DSL for your plugin.

41.7.1. Nested DSL elements

When Gradle creates atask or extension object, Gradle decorates the implementation class to mix in DSL
support. To create a nested DSL element you can use the Cbj ect Fact or y type to create objects that are
similarly decorated. These decorated objects can then be made visible to the DSL through properties and
methods of the plugin’s extension:

Page 375 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/model/ObjectFactory.html

Example 41.12. Nested DSL elements
buil d. gradl e

cl ass Person {
String nane

}

cl ass GreetingPl ugi nExt ensi on {
String nmessage
final Person greeter

@ avax.inject.|nject

G eet i ngPl ugi nExt ensi on(Obj ect Fact ory obj ect Factory) ({
/|l Create a Person instance
greeter = objectFactory. new nst ance(Person)

}

voi d greeter(Action<? super Person> action) ({
action. execute(greeter)
}
}

class GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
/'l Create the extension, passing in an ObjectFactory for it to use
def extension = project.extensions.create(' greeting' , GeetingPlugi nExtd
project.task(' hello") {
doLast {
println "${extension. nessage} from ${extension. greeter.nane}"

}

apply plugin: GeetingPlugin

greeting {
nmessage = 'Hi'
greeter {
name = ' G adl e’

}

Outputof gradl e -q hello

> gradle -q hello
H fromGadle

In this example, the plugin passes the project’s Obj ect Fact ory to the extension object through its
constructor. The constructor uses this to create a nested object and makes this object available to the DSL
through the gr eet er property.

41.7.2. Configuring a collection of objects

Gradle provides some utility classes for maintaining collections of objects, intended to work well with the
GradleDSL.

Page 376 of 654

Example 41.13. Managing a collection of objects
buil d. gradl e

cl ass Book {
final String nane
File sourceFile

Book(String nane) {
t hi s. name = nane
}
}

cl ass Docunent ati onPl ugi n i npl enents Pl ugi n<Proj ect > {
voi d appl y(Project project) {
/'l Create a container of Book instances
def books = project.container(Book)
books. al | {
sourceFile = project.file("src/docs/ $nane")
}
/1 Add the container as an extension object
proj ect . ext ensi ons. books = books

}
apply plugin: DocunentationPl ugin

/] Configure the container
books {
qui ckStart {
sourceFile = file('src/docs/quick-start')

}
user Gui de {

}
devel oper Gui de {

}

}

task books {
doLast {
books. each { book ->
println "$book. nane -> $book. sourceFil e"

Output of gr adl e - g books

> gradl e -qgq books

devel oper Gui de -> / hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ug
qui ckStart -> /home/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi nW t
user Gui de -> /hone/ user/gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi nWt h

The Project.container(java.lang. Cl ass) methods create instances of
NanedDonmai nObj ect Cont ai ner, that have many useful methods for managing and configuring the
objects. In order to use a type with any of the proj ect. cont ai ner methods, it MUST expose a
property named “nane” asthe unique, and constant, name for the object. The pr oj ect . cont ai ner (C ass)

Page 377 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.NamedDomainObjectContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.NamedDomainObjectContainer.html

variant of the container method creates new instances by attempting to invoke the constructor of the class
that takes a single string argument, which is the desired name of the object. See the above link for pr oj ect . con
method variants that allow custom instantiation strategies.

Page 378 of 654

42

The Java Gradle Plugin Development
Plugin

The Java Gradle plugin development plugin is currently incubating. Please be aware that the DSL and
other configuration may changein later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It
automatically applies the Java plugin, adds the gr adl eApi () dependency to the compile configuration
and performs validation of plugin metadataduring j ar task execution.

The plugin aso integrates with TestKit, a library that aids in writing and executing functional tests for
plugin code. It automatically adds the gr adl eTest Ki t () dependency to the test compile configuration
and generates a plugin classpath manifest file consumed by a Gr adl eRunner instance if found. Please
refer to Section 45.3.2, “ Automatic injection with the Java Gradle Plugin Development plugin” for more on
its usage, configuration options and samples.

42.1. Usage

To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example 42.1. Using the Java Gradle Plugin Development plugin

bui |l d. gradl e

pl ugi ns {
id'java-gradl e-pl ugin'

}

Applying the plugin automatically applies the Java plugin and adds the gr adl eApi () dependency to the
compile configuration. It also adds some validations to the build.

The following validations are performed:

® Thereisaplugin descriptor defined for the plugin.

® The plugin descriptor containsan i npl enent at i on- cl ass property.

®* Thei npl enent at i on- cl ass property references avalid classfilein the jar.

® Each property getter or the corresponding field must be annotated with a property annotation like @ nput Fi |

Page 379 of 654

and @out put Di r ect ory. Properties that don’t participate in up-to-date checks should be annotated
with @ nt er nal .

Any failed validations will result in awarning message.
For each plugin you are developing, add an entry to the gr adl ePl ugi n {} script block:

Example 42.2. Using the gradlePlugin {} block.
bui |l d. gradl e

gradl ePl ugi n {
pl ugi ns {
si npl ePl ugi n {
id = 'org.gradl e.sanpl e. si npl e- pl ugi n'

i npl ement ati onCl ass = 'org. gradl e. sanpl e. Si npl ePl ugi n'

Thegr adl ePl ugi n {} block definesthe plugins being built by the project including thei d and i npl enent :
of the plugin. From this data about the plugins being devel oped, Gradle can automatically:

® Generate the plugin descriptor inthe j ar file's META- | NF directory.
® Configure the Maven or lvy publishing plugins to publish a Plugin Marker Artifact for each plugin.

Page 380 of 654

43

Organizing Build Logic

Gradle offers avariety of ways to organize your build logic. First of al you can put your build logic directly
in the action closure of atask. If a couple of tasks share the same logic you can extract this logic into a
method. If multiple projects of a multi-project build share some logic you can define this method in the
parent project. If the build logic gets too complex for being properly modeled by methods then you likely
should implement your logic with classes to encapsulate your Iogic.[19] Gradle makes this very easy. Just
drop your classes in a certain directory and Gradle automatically compiles them and puts them in the
classpath of your build script.

Here isa summary of the ways you can organise your build logic:

®* POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The
build script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to
organize code.

® |nherited properties and methods. In a multi-project build, sub-projects inherit the properties and
methods of their parent project.

® Configuration injection. In a multi-project build, a project (usually the root project) can inject properties
and methods into another project.

® buil dSrc project. Drop the source for your build classes into a certain directory and Gradle
automatically compiles them and includes them in the classpath of your build script.

¢ Shared scripts. Define common configuration in an external build, and apply the script to multiple
projects, possibly across different builds.

¢ Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

® Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects.
The plugin must be in the classpath of your build script. You can achieve this either by using bui | d sour ce
or by adding an external library that contains the plugin.

® Execute an external build. Execute another Gradle build from the current build.

* External libraries. Use external libraries directly in your build file.

43.1. Inherited properties and methods

Any method or property defined in a project build script is also visible to al the sub-projects. You can use
this to define common configurations, and to extract build logic into methods which can be reused by the
sub-projects.

Page 381 of 654

Example 43.1. Using inherited properties and methods

bui | d. gradl e

/| Define an extra property
ext.srcDirNane = 'src/java'

/1 Define a nethod
def getSrcDir(project) {
return project.file(srcD rNane)

}

child/build.gradle

task show {
doLast {
/'l Use inherited property
println "srcDirNane: ' + srcDirName

/'l Use inherited method
File srcDir = getSrcDir(project)
println "srcDir: ' + rootProject.relativePath(srcDir)

Output of gr adl e -g show

> gradle -gq show
srcDirNane: src/java
srcDir: child/src/java

43.2. Injected configuration

Y ou can use the configuration injection technique discussed in Section 26.1, “Cross project configuration”
and Section 26.2, “ Subproject configuration” to inject properties and methods into various projects. Thisis
generally a better option than inheritance, for a number of reasons; The injection is explicit in the build
script, You can inject different logic into different projects, And you can inject any kind of configuration
such as repositories, plug-ins, tasks, and so on. The following sample shows how this works.

Page 382 of 654

Example 43.2. Using injected properties and methods
buil d. gradl e
subproj ects {

/| Define a new property
ext.srcDirName = 'src/java'

/'l Define a nethod using a closure as the nmethod body
ext.srcDir = { file(srcDi rName) }

/| Define a task
task show {
doLast {
println 'project: ' + project.path

println 'srcDirNane: * + srcDirName
File srcDir = srcDir()
println "srcDir: ' + rootProject.relativePath(srcDir)

/'l 1nject special case configuration into a particul ar project
project (' :child2") {
ext.srcDirName = "$srcDirName/ | egacy”

}

chil dl/buil d. gradle

/1l Use injected property and nethod. Here, we override the injected val ue

srcDirName = 'java'
def dir = srcDir()

Output of gr adl e -gq show

> gradle -gq show

project: :childl

srcDi r Nane: java

srcDir: childl/java

project: :child2

srcDi r Nane: src/javal/l egacy
srcDir: child2/src/javall egacy

43.3. Configuring the project using an external

build script

You can configure the current project using an external build script. All of the Gradle build language is

available in the external script. Y ou can even apply other scripts from the external script.

Build scripts can be local files or remotely accessible files downloaded viaa URL.

Remote files will be cached and made available when Gradle runs offline. On each build, Gradle will check
if the remote file has changed and will only download the build script file again if it has changed. URL s that

contain query strings will not be cached.

Page 383 of 654

Example 43.3. Configuring the project using an external build script

bui | d. gradl e

apply from 'other.gradle

ot her. gradl e

println "configuring $project"”
task hello {
doLast {

println "hello from other script'

}

Output of gradl e -q hello

> gradle -q hello
configuring root project 'configureProjectUsingScript’
hell o from other script

43.4. Build sourcesin the bui | dSr ¢ project

When you run Gradle, it checks for the existence of a directory called bui | dSrc. Gradle then
automatically compiles and tests this code and puts it in the classpath of your build script. You don’t need to
provide any further instruction. This can be agood place to add your custom tasks and plugins.

For multi-project builds there can be only one bui | dSr ¢ directory, which has to be in the root project
directory.

Listed below is the default build script that Gradle appliesto the bui | dSr ¢ project:

Default buildSrc build script.

apply plugin: 'groovy'
dependenci es {

conpi | e gradl eApi ()
conpi | e | ocal G oovy()

This means that you can just put your build source code in this directory and stick to the layout convention
for aJava/Groovy project (see Table 47.4, “ Java plugin - default project layout™).

If you need more flexibility, you can provide your own bui | d. gr adl e. Gradle applies the default build
script regardless of whether there is one specified. This means you only need to declare the extra things you
need. Below is an example. Notice that this example does not need to declare a dependency on the Gradle
AP, asthisis done by the default build script:

Page 384 of 654

Example 43.4. Custom buildSrc build script

bui |l dSrc/ buil d. gradl e

repositories {
mavenCent ral ()

}

dependenci es {
testConpile "junit:junit:4. 12
}

The bui | dSrc project can be a multi-project build, just like any other regular multi-project build.
However, all of the projects that should be on the classpath of the actual build must be runti me
dependencies of the root project in bui | dSr c. You can do this by adding this to the configuration of each
project you wish to export:

Example 43.5. Adding subprojectsto theroot buildSrc project
bui | dSrc/ buil d. gradl e

r oot Proj ect . dependenci es {

runti me project(path)

}

Note: The code for this example can be found at sanpl es/ nul ti Proj ect Bui | dSr c inthe‘-al’
distribution of Gradle.

43.5. Running another Gradle build from a build

You can use the Gr adl eBui | d task. You can use either of thedi r or bui | dFi | e properties to specify
which build to execute, and the t asks property to specify which tasks to execute.

Page 385 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.GradleBuild.html

Example 43.6. Running another build from a build

bui | d. gradl e

task build(type: GadleBuild) {
buil dFil e = 'other.gradl e’

tasks = ["hello"]

ot her.gradl e

task hello {
doLast {

println "hello fromthe other build."

}

Output of gradl e -qg build

> gradle -q build
hello fromthe other build

43.6. External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script’s classpath in the build
script itself. You do thisusing the bui | dscri pt () method, passing in a closure which declares the build
script classpath.

Example 43.7. Declaring external dependenciesfor the build script
bui |l d. gradl e
bui |l dscript {
repositories {

mavenCentral ()

}

dependenci es {
cl asspath group: 'commons-codec’, name: 'commons-codec', version: '1.2

}

The closure passed to the bui | dscri pt () method configuresaScr i pt Handl er instance. You declare
the build script classpath by adding dependencies to the cl asspat h configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
described in Section 25.4, “How to declare your dependencies’, except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would any
other classes on the classpath. The following example adds to the previous example, and uses classes from
the build script classpath.

Page 386 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 43.8. A build script with external dependencies
buil d. gradl e

i nport org.apache. commons. codec. bi nary. Base64

bui I dscript {
repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'commons-codec’, name: 'conmmobns-codec', version: '1.2

}
}

task encode {
doLast {
def byte[] encodedString = new Base64().encode(' hello world\n'.getBytes(
println new String(encodedString)

Output of gradl e -q encode

> gradle -q encode
aGVsbG8gd29ybGXK

For multi-project builds, the dependencies declared with a project’s bui | dscri pt () method are
available to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult Chapter 27, Gradle Plugins for more
information on Gradle plugins.

Every project automatically has a buil dEnvironnent task of type
Bui | dEnvi r onnment Report Task that can be invoked to report on the resolution of the build script
dependencies.

43.7. Ant optional dependencies

For reasons we don't fully understand yet, external dependencies are not picked up by Ant’s optional tasks.
But you can easily do it in another way.[20)

Page 387 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

Example 43.9. Ant optional dependencies

bui | d. gradl e

configurations {
f t pAnt Task

}

dependenci es {
ft pAnt Task(" or g. apache. ant : ant - conmons-net: 1. 9. 6") {
nodul e(" conmons- net : commons-net: 1. 4. 1") {
dependencies "oro:oro:2.0.8:jar"

task ftp {
doLast {
ant {

t askdef (name: 'ftp',
cl assname: 'org.apache.tool s. ant.taskdefs. optional . net. FTP',
cl asspat h: confi gurations. ftpAnt Task. asPat h)

ftp(server: "ftp.apache.org", userid: "anonynous", password: "ne@ryd

fileset(dir: "htdocs/ manual ")

This is also a good example for the usage of client modules. The POM file in Maven Central for the
ant-commons-net task does not provide the right information for this use case.

43.8. SuUmmary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your
domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to
maintain code base. It is our experience that even very complex custom build logic is rarely shared between
different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle
spares you this unnecessary overhead and indirection.

[19] Which might range from a single class to something very complex.

[20] In fact, we think thisis a better solution. Only if your buildscript and Ant’s optional task need the same
library would you have to define it twice. In such a case it would be nice if Ant’'s optional task would
automatically pick up the classpath defined in the“gr adl e. set ti ngs” file.

Page 388 of 654

44

Initialization Scripts

Gradle provides a powerful mechanism to alow customizing the build based on the current environment.
This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “i ni t " task provided by the “bui | d-i ni t” incubating
plugin (see Chapter 17, Build Init Plugin).

44.1. Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scriptsin Gradle. These scripts, however, are run
before the build starts. Here are several possible uses:

® Set up enterprise-wide configuration, such as where to find custom plugins.

® Set up properties based on the current environment, such as a developer’s machine vs. a continuous
integration server.

* Supply personal information about the user that is required by the build, such as repository or database
authentication credentials.

* Define machine specific details, such as where JDKs are installed.

® Register build listeners. External tools that wish to listen to Gradle events might find this useful.

® Register build loggers. Y ou might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the bui | dSr ¢ project (see
Section 43.4, “Build sourcesin the bui | dSr ¢ project” for details of this feature).

44.2. Using an init script
There are several waysto use an init script:

® Specify afile on the command line. The command line optionis-1 or--init-scri pt followed by
the path to the script. The command line option can appear more than once, each time adding another
init script.

* Putafilecaledi nit.gradl einthe USER HOVE/ . gr adl e/ directory.

* Put afilethat endswith . gr adl e inthe USER_HOVE/ . gradl e/ i ni t. d/ directory.

* Put a file that ends with . gradl e in the GRADLE_HOME/ i ni t. d/ directory, in the Gradle
distribution. This alows you to package up a custom Gradle distribution containing some custom build
logic and plugins. You can combine this with the Gradle wrapper as a way to make custom logic
available to all buildsin your enterprise.

Page 389 of 654

If more than one init script is found they will all be executed, in the order specified above. Scriptsin agiven
directory are executed in alphabetical order. This alows, for example, atool to specify an init script on the
command line and the user to put one in their home directory for defining the environment and both scripts
will run when Gradle is executed.

44.3. Writing an init script

Similar to a Gradle build script, an init script is a Groovy script. Each init script has a Gr adl e instance
associated with it. Any property reference and method call in the init script will delegate to this Gr adl e
instance.

Each init script also implementsthe Scr i pt interface.

44.3.1. Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring
projects in a multi-project build. The following sample shows how to perform extra configuration from an
init script before the projects are evaluated. This sample uses this feature to configure an extra repository to
be used only for certain environments.

Example 44.1. Using init script to perform extra configuration before projects are evaluated
bui |l d. gradl e

repositories {
mavenCentral ()

}

task showRepos {

doLast {
println "All repos:"
println repositories.collect { it.nane }

init.gradle

al | projects {
repositories {
mavenLocal ()

}

Outputof gradl e --init-script init.gradle -g showRepos
> gradle --init-script init.gradle -g showRepos

Al'l repos:
[MavenLocal , MavenRepo]

Page 390 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Script.html

44.4. External dependencies for the init script

In Section 43.6, “External dependencies for the build script” it was explained how to add external
dependenciesto a build script. Init scripts can also declare dependencies. You do thiswith thei ni t scri pt ()
method, passing in a closure which declares the init script classpath.

Example 44.2. Declaring exter nal dependenciesfor an init script
init.gradle
initscript {

repositories {
mavenCent ral ()

}

dependenci es {
cl asspath group: 'org.apache.conmons', nane: 'commons-nmath', version:

}

The closure passed to the i ni t scri pt () method configuresa Scri pt Handl er instance. You declare
theinit script classpath by adding dependencies to the cl asspat h configuration. Thisis the same way you
declare, for example, the Java compilation classpath. Y ou can use any of the dependency types described in
Section 25.4, “How to declare your dependencies’, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would any other
classes on the classpath. The following example adds to the previous example, and uses classes from the init
script classpath.

Example 44.3. An init script with external dependencies
init.gradle
i nport org.apache. commons. mat h. fracti on. Fracti on

initscript {
repositories {
mavenCentral ()
}
dependenci es {
cl asspath group: 'org.apache.conmons', nane: 'commons-nmath', version:

}
}

println Fraction. ONE_FI FTH. nul ti pl y(2)

Outputof gradl e --init-script init.gradle -g doNothing

> gradle --init-script init.gradle -q doNothing
2/ 5

Page 391 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

44.5. Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Example 44.4. Using pluginsin init scripts

init.gradle

apply plugin: EnterpriseRepositoryPl ugin

cl ass EnterpriseRepositoryPlugin inplenents Plugi n<G adl e> {

private static String ENTERPRI SE_ REPCSI TORY_URL = "https://repo.gradle.org/q

voi d apply(Gadle gradle) {
/] ONLY USE ENTERPRI SE REPO FOR DEPENDENCI ES
gradl e. al | proj ects{ project ->
project.repositories {

/'l Renove all repositories not pointing to the enterprise reposi
all { ArtifactRepository repo ->
if (!'(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRI SE_REPCSI TORY_URL) ({
project.logger.lifecycle "Repository ${repo.url} renpved
renove repo

}

// add the enterprise repository
maven {
name " STANDARD ENTERPRI SE REPO'
url ENTERPRI SE_REPOSI TORY_URL

bui |l d. gradl e

reposi tories{
mavenCentral ()

}

task showRepositories {
doLast {

repositories.each {
println "repository: ${it.nane} ('${it.url}"')"

Outputof gradle -g -1 init.gradl e showRepositories

> gradle -q -1 init.gradle showRepositories
repository: STANDARD ENTERPRI SE REPO (' https://repo.gradle.org/gradle/repo')

Page 392 of 654

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance's
Pl ugi n. appl y(T) method. The gr adl e object is passed as a parameter, which can be used to

configure all aspects of abuild. Of course, the applied plugin can be resolved as an external dependency as
described in Section 44.4, “External dependencies for theinit script”

Page 393 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html#apply(T)

45

The Gradle TestK it

The Gradle TestKit is currently incubating. Please be aware that its APl and other characteristics may
changein later Gradle versions.

The Gradle TestKit (ak.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At thistime, it is focused on functional testing. That is, testing build logic by exercising it as part
of a programmatically executed build. Over time, the TestKit will likely expand to facilitate other kinds of
tests.

45.1. Usage

To use the TestKit, include the following in your plugin’s build:

Example 45.1. Declaring the TestKit dependency
buil d. gradl e

dependenci es {
test Conpi |l e gradl eTestKit()

}

Thegradl eTest Ki t () encompasses the classes of the TestKit, as well as the Gradle Tooling API client.
It does not include a version of JUnit, TestNG, or any other test execution framework. Such a dependency
must be explicitly declared.

Example 45.2. Declaring the JUnit dependency

bui | d. gradl e

dependenci es {
testConpile "junit:junit:4. 12

}

45.2. Functional testing with the Gradle runner

The Gr adl eRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the “logic under

Page 394 of 654

http://junit.org
http://testng.org
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html

test”. The build can then be executed, potentially in a variety of ways (e.g. different combinations of tasks
and arguments). The correctness of the logic can then be verified by asserting the following, potentially in
combination:

® The build’s output;
® Thebuild’'slogging (i.e. console output);
® The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
Gradl eRunner. buil d() or G adl eRunner. bui |l dAndFai |l () methods depending on the
anticipated outcome.

The following demonstrates the usage of Gradle runner in a Java JUnit test:

Page 395 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#build()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#build()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail()

Example 45.3. Using GradleRunner with JUnit

Bui | dLogi cFuncti onal Test . j ava

i nport org.gradle.testkit.runner. Buil dResul t;
inport org.gradle.testkit.runner.G adl eRunner;
i mport org.junit.Before;

i mport org.junit.Rule;

i nport org.junit. Test;

i nmport org.junit.rules. TenporaryFol der;

i mport java.io.BufferedWiter;
inport java.io.File;

inport java.io.FileWiter;

i mport java.io.| CException;

i mport java.util.Collections;

inport static org.junit.Assert.assertEqual s;
import static org.junit.Assert.assertTrue;

i nport static org.gradle.testkit.runner. TaskQutcone. *;

public class Buil dLogi cFuncti onal Test {
@rul e public final TenporaryFol der testProjectDir = new TenporaryFol der();
private File buil dFile;

@ef ore
public void setup() throws | COException {
buil dFile = testProjectDir.newrile("build. gradle");

}

@rest
public void testHell oWwrl dTask() throws | CException {

String buil dFil eContent = "task helloWrld {" +
doLast {" +

println "Hello world!"" +
P+

B

witeFile(buildFile, buildFileContent);

Bui | dResult result = Gradl eRunner. create()
.withProjectDir(testProjectDir.getRoot())
W t hArgurment s(" hel | oWor | d")
Lbuild();

assert True(result.getQutput().contains("Hello world!"));
assert Equal s(resul t.task(": hel | oWorl d"). get Qut cone(), SUCCESS);

}

private void witeFile(File destination, String content) throws |OException
Buf feredWiter output = null;
try {
out put = new BufferedWiter(new FileWiter(destination));
output.write(content);
} finally {
if (output !'= null) {
out put . cl ose();

Page 396 of 654

Any test execution framework can be used.

As Gradle build scripts are written in the Groovy programming language, and as many plugins are
implemented in Groovy, it is often a productive choice to write Gradle functional tests in Groovy.
Furthermore, it is recommended to use the (Groovy based) Spock test execution framework asit offers many
compelling features over the use of JUnit.

The following demonstrates the usage of Gradle runner in a Groovy Spock test:

Example 45.4. Using GradleRunner with Spock
Bui | dLogi cFuncti onal Test. gr oovy

i nport org.gradle.testkit.runner.G adl eRunner

i mport static org.gradle.testkit.runner. TaskQutcomne. *
i mport org.junit.Rule

i nport org.junit.rul es. TenporaryFol der

i nport spock. | ang. Speci fi cati on

cl ass Buil dLogi cFuncti onal Test extends Specification {
@rul e final TenporaryFol der testProjectDir = new TenporaryFol der ()
File buildFile

def setup() {
buildFile = testProjectDir.newri |l e(' build.gradle")

}

def "hello world task prints hello world"() {
gi ven:
buildFile << """
task hell oWorl d {
doLast {
println "Hello world!

}

when:

def result = G adl eRunner. create()
.withProjectDir(testProjectDir.root)
. Wi t hArgument s(' hel | oWor | d")
. bui I'd()

t hen:
resul t.out put.contains('Hello world!")
result.task(": hell oWorl d"). out cone == SUCCESS

It is a common practice to implement any custom build logic (like plugins and task types) that is more
complex in nature as external classes in a standalone project. The main driver behind this approach is bundle
the compiled code into a JAR file, publish it to a binary repository and reuse it across various projects.

Page 397 of 654

https://code.google.com/p/spock/

45.3. Getting the plugin-under-test into the test
build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, the test build does
not share the same classpath or classloaders as the test process and the code under test is not implicitly
available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test into the test bui

For earlier versions of Gradle (before 2.13), it is possible to manually make the code under test available via
some extra configuration. The following example demonstrates having the build generate a file containing
the implementation classpath of the code under test, and making it available at test runtime.

Example 45.5. Making the code under test classpath availableto the tests

bui |l d. gradl e

/[l Wite the plugin's classpath to a file to share with the tests
task created asspat hMani fest {
def outputDir = file("$buildDir/$nane")

inputs.files sourceSets.main.runtineC asspath
outputs.dir outputDr

doLast {
out put Di r. nkdi rs()
file("$outputDir/plugin-classpath.txt").text = sourceSets. main.runtinmed

}

/1l Add the classpath file to the test runtinme classpath
dependenci es {
testRuntime fil es(createC asspat hivani f est)

}

Note: The code for this example can be found at sanpl es/ t est Ki t/ gr adl eRunner/ manual C assg
inthe ‘-all’ distribution of Gradle.

The tests can then read this value, and inject the classpath into the test build by using the method
G adl eRunner . wi t hPl ugi nCl asspat h(j ava. | ang. I terabl e). This classpath is then
available to use to locate plugins in a test build via the plugins DSL (seeChapter 27, Gradle Plugins).
Applying plugins with the plugins DSL requires the definition of a plugin identifier. The following is an
example (in Groovy) of doing this from within a Spock Framework set up() method, which is analogous
to aJUnit @ef or e method.

Page 398 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)

Example 45.6. Injecting the code under test classesinto test builds
src/test/groovy/org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy
Li st<Fi | e> pl ugi nC asspath

def setup() {
buil dFile = testProjectDir.newFile(' build.gradle")

def pl ugi nCl asspat hResource = get C ass(). cl assLoader. fi ndResour ce("pl ugi n-cl
i f (plugind asspat hResource == null) {
throw new ||| egal St at eExcepti on("Did not find plugin classpath resource

}

pl ugi nCl asspat h = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)

"hello world task prints hello world"() {
gi ven:
buildFile << """
pl ugi ns {
id 'org.gradle.sanple. helloworld'

}

when:

def result = G adl eRunner.create()
.withProjectDir(testProjectDir.root)
. W t hArgument s(' hel | oWor | d")
.wi t hPl ugi nCl asspat h(pl ugi nC asspat h)
. bui I'd()

t hen:
resul t.output.contains('Hello world!")
result.task(": hell oWorl d"). outcone == SUCCESS

Note: The code for this example can be found at sanpl es/ t est Ki t/ gr adl eRunner/ manual C assg
inthe ‘-all’ distribution of Gradle.

This approach works well when executing the functional tests as part of the Gradle build. When executing
the functional tests from an IDE, there are extra considerations. Namely, the classpath manifest file points to
the class files etc. generated by Gradle and not the IDE. This means that after making a change to the source
of the code under test, the source must be recompiled by Gradle. Similarly, if the effective classpath of the
code under test changes, the manifest must be regenerated. In either case, executing the t est Cl asses
task of the build will ensure that things are up to date.

45.3.1. Working with Gradle versions prior to 2.8

The Gradl eRunner. w t hPl ugi nCl asspat h(j ava. | ang. It erabl e€) method will not work
when executing the build with a Gradle version earlier than 2.8 (see: Section 45.5, “The Gradle version used
to test”), as thisfeatureis not supported on such Gradle versions.

Instead, the code must be injected via the build script itself. The following sample demonstrates how this

Page 399 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)

can be done.

Example 45.7. Injecting the code under test classesinto test buildsfor Gradle versionsprior to 2.8
src/test/groovy/org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. gr oovy
Li st <Fi | e> pl ugi nCl asspat h

def setup() {
buildFile = testProjectDir.newrile(' build. gradle")

def pl ugi nCl asspat hResource = get Cl ass(). cl assLoader. fi ndResour ce(" pl ugi n-cl
i f (plugi nC asspat hResource == null) {
throw new I || egal St at eException("Did not find plugin classpath resource,

}

pl ugi nd asspat h = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)

"hello world task prints hello world with pre Gadle 2.8"() {

gi ven:

def classpathString = pl ugi nCl asspath
.collect { it.absolutePath.replace('\\', "\\\\") } // escape backsl asheg
.collect { ""®it"" }
.join(", ")

buildFile << """
bui | dscript {
dependenci es {
cl asspath files($classpathString)
}
}

apply plugin: "org.gradl e. sanpl e. hel | owor | d"

when:

def result = G adl eRunner.create()
.withProjectDir(testProjectDir.root)
. W t hArgument s(" hel | oVWor | d")
.w thG adl eVersion("2.7")
. bui I'd()

t hen:
result.output.contains('Hello world!")
resul t.task(": hell oWorl d"). outcome == SUCCESS

Note: The code for this example can be found at sanpl es/ t est Ki t/ gr adl eRunner/ manual C assg
inthe*-all’ distribution of Gradle.

Page 400 of 654

45.3.2. Automatic injection with the Java Gradle Plugin Devel opment

plugin
The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins.
Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit. When applied to a
project, the plugin automatically adds the gr adl eTest Kit () dependency to the test compile
configuration. Furthermore, it automatically generates the classpath for the code under test and injectsit via
Gr adl eRunner . wi t hPl ugi nCl asspat h() for any G adl eRunner instance created by the user.
It's important to note that the mechanism currently only worksif the plugin under test is applied using the plugins
. If the target Gradle version is prior to 2.8, automatic plugin classpath injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the classpath:

® Source set containing code under test: sour ceSet s. mai n
® Source set used for injecting the plugin classpath: sour ceSet s. t est

Any of these conventions can be reconfigured with the help of the class
G adl ePl ugi nDevel opnent Ext ensi on.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath by using
the standard conventions applied by the Java Gradle Plugin Development plugin.

Example 45.8. Using the Java Gradle Development plugin for generating the plugin metadata
buil d. gradl e

apply plugin: 'groovy'
apply plugin: 'java-gradle-plugin

dependenci es {

t est Conpi | e(' or g. spockf ranewor k: spock-core: 1. 0-groovy-2.4") {
excl ude nodul e: 'groovy-all'’

}

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut omati cCl ¢
inthe‘-al’ distribution of Gradle.

Page 401 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

Example 45.9. Automatically injecting the code under test classesinto test builds
src/test/groovy/org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy

def "hello world task prints hello world"() {
gi ven:
buildFile << """
pl ugi ns {
id"'org.gradle.sanple. helloworld'

}

when:

def result = G adl eRunner.create()
.withProjectDir(testProjectDir.root)
W t hArgunment s(' hel | oVr | d")
.wi t hPl ugi nCl asspat h()
. buil d()

t hen:
resul t.out put.contains('Hello world!")
resul t.task(": hell oWorl d"). outcome == SUCCESS

Note: The code for this example can be found at sanpl es/ t est Ki t / gr adl eRunner/ aut omatijcCl ¢
inthe ‘-all’ distribution of Gradle.

The following build script demonstrates how to reconfigure the conventions provided by the Java Gradle
Plugin Development plugin for a project that uses a custom Test source set.

Page 402 of 654

Example 45.10. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

bui | d. gradl e

apply plugin: 'groovy'
apply plugin: 'java-gradl e-plugin

sourceSets {
functional Test {
groovy {
srchDir file('src/functional Test/groovy')
}
resources {
srcDir file('src/functional Test/resources')
}
conpi | eCl asspath += sourceSets. mai n. out put + configurations.testRuntine
runti med asspath += output + conpil ed asspath

}

task functional Test(type: Test) {
test Cl assesDirs = sourceSets. functional Test. out put.classesDirs
cl asspath = sourceSets. functional Test.runti med asspath

}

check. dependsOn functi onal Test

gradl ePl ugi n {
t est Sour ceSet s sourceSets. functi onal Test

}

dependenci es {
functi onal Test Conpi | e(' or g. spockf ramewor k: spock-core: 1. 0- groovy-2.4") {
excl ude nodul e: ' groovy-all'

}

Note: The code for this example can be found at sanpl es/ t est Ki t/ gr adl eRunner/ aut onati cCl ¢
inthe ‘-all’ distribution of Gradle.

45.4. Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working directory"

in adirectory inside the JVM’s temp directory (i.e. the location specified by thej ava. i o. t npdi r system
property, typically / t np). Any configuration in the default Gradle user home directory (e.g. ~/ . gr adl e/ gr adl
) is not used for test execution. The TestKit does not expose a mechanism for fine grained control of
environment variables etc. Future versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

Page 403 of 654

45.5. The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not depend
on al of Gradle' simplementation.

By default, the runner will attempt to find a Gradle distribution based on where the Gr adl eRunner class
was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as is the case
when using thegr adl eTest Ki t () dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing thet est task of a plugin
project), the same distribution used to execute the tests will be used by the runner. When using the runner as
part of tests being executed by an IDE, the same distribution of Gradle that was used when importing the
project will be used. This means that the plugin will effectively be tested with the same version of Gradle
that it is being built with.

Alternatively, adifferent and specific version of Gradle to use can be specified by the any of the following Gr adl
methods:

¢ Gradl eRunner.withG adl eVersi on(java. |l ang. String)
® Gradl eRunner.wi thGradl el nstall ation(java.io.File)
® Gradl eRunner.withGradl eDi stribution(java.net.URl)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Page 404 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion(java.lang.String)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation(java.io.File)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution(java.net.URI)

Example 45.11. Specifying a Gradle version for test execution

Bui | dLogi cFuncti onal Test. gr oovy

i nport org.gradle.testkit.runner. G adl eRunner

inport static org.gradle.testkit.runner. TaskQutcone. *
i mport org.junit.Rule

i mport org.junit.rul es. TenporaryFol der

i nport spock. | ang. Speci fication

i nport spock. | ang. Unr ol

cl ass Buil dLogi cFuncti onal Test extends Specification {
@rul e final TenporaryFol der testProjectDir = new TenporaryFol der ()
File buildFile

def setup() {
buildFile = testProjectDir.newri |l e(' build.gradle")

}
@nr ol

def "can execute hello world task with G adl e version #gradl eVersion"() {
gi ven:
buildFile << """
task hell oWorl d {
doLast {
| ogger.quiet 'Hello world!

}

when:

def result = G adl eRunner.create()
.wi t hGradl eVer si on(gradl eVer si on)
.withProjectDir(testProjectDir.root)
.w t hArgurment s(' hel | oWor |l d")
.buil d()

t hen:
result.output.contains('Hello world!")
result.task(": hell oWorl d"). out cone == SUCCESS

wher e
gradl eVersion << ['2.6', '2.7']

45.5.1. Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some runner
features are not supported on earlier versions. In such cases, the runner will throw an exception when
attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Page 405 of 654

Table 45.1. Gradle version compatibility

Feature

<link>Inspecting executed
tasks</link>

Plugin classpath injection

Inspecting build output in debug mode

Automatic plugin classpath injection

Minimum
Version

2.5

2.8

2.9

2.13

Description

Inspecting the executed tasks, using Bui | dResul
similar methods.

Injecting the code under
Gradl eRunner . wi t hPl ugi nCl asspat h(j ava

Inspecting the build's text output when run in
Bui | dResul t. get Qut put () .

Injecting the code under test autc
Gradl eRunner . wi t hPl ugi nCl asspat h() b
Gradle Plugin Development plugin.

45.6. Debugging build logic

The runner uses the Tooling API to execute builds. An implication of thisis that the builds are executed in a
separate process (i.e. not the same process executing the tests). Therefore, executing your tests in debug
mode does not allow you to debug your build logic as you may expect. Any breakpoints set in your IDE will
be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

® Setting“org. gradl e. testkit. debug” system property tot r ue for the VM using the Gr adl eRunne
(i.e. not the build being executed with the runner);
® Cadlingthe G adl eRunner . wi t hDebug(bool ean) method.

The system property approach can be used when it is desirable to enable debugging support without making
an adhoc change to the runner configuration. Most IDEs offer the capability to set VM system properties
for test execution, and such afeature can be used to set this system property.

45.7. Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the - - bui | d- cache argument to G- adl eRunner
or use one of the other methods described in Section 15.2, “Enable the Build Cache”. You can then check
for the task outcome TaskCQut cone. FROM CACHE when your plugin’s custom task is cached. This
outcomeisonly valid for Gradle 3.5 and newer.

Page 406 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug(boolean)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/GradleRunner.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE

Example 45.12. Testing cacheable tasks
Bui | dLogi cFuncti onal Test. gr oovy

def "cacheabl eTask is | oaded from cache"() ({
gi ven:
buildFile << """
pl ugi ns {
id"'org.gradle.sanple. helloworld'

}

when:

def result = runner()
.wi t hArgument s(' --buil d-cache', 'cacheabl eTask")
. bui I'd()

t hen:
result.task(":cacheabl eTask") . out cone == SUCCESS

when:
new File(testProjectDir.root, 'build).deleteDir()
result = runner ()
. W t hAr gurent s(
. bui I'd()

--bui | d-cache', 'cacheabl eTask")

t hen:
result.task(": cacheabl eTask"). out cone == FROM CACHE

Page 407 of 654

Part V. Building JVM
pr o] ects

46

Java Quickstart

46.1. The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to
implement in your build script. Out-of-the-box, however, it doesn’t build anything unless you add code to
your build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run
some unit tests, and create a JAR file containing your classes. It would be nice if you didn’t have to code all
this up for every project. Luckily, you don't have to. Gradle solves this problem through the use of plugins.
A plugin is an extension to Gradle which configures your project in some way, typically by adding some
pre-configured tasks which together do something useful. Gradle ships with a number of plugins, and you
can easily write your own and share them with others. One such plugin is the Java plugin. This plugin adds
some tasks to your project which will compile and unit test your Java source code, and bundle it into aJJAR
file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of
the project, such as where the Java source files are located. If you follow the convention in your project, you
generally don’'t need to do much in your build script to get a useful build. Gradle allows you to customize
your project if you don’t want to or cannot follow the convention in some way. In fact, because support for
Java projects is implemented as a plugin, you don't have to use the plugin at al to build a Java project, if
you don’'t want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and
multi-project builds in later chapters. In this chapter we want to give you an initia idea of how to use the
Java plugin to build a Java project.

46.2. A basic Java project

Let'slook at asimple example. To use the Java plugin, add the following to your build file:

Page 409 of 654

Example 46.1. Using the Java plugin

bui | d. gradl e

apply plugin: 'java

Note: The code for this example can be found at sanpl es/j ava/ qui ckstart in the ‘-al’
distribution of Gradle.

Thisis all you need to define a Java project. This will apply the Java plugin to your project, which adds a
number of tasks to your project.

Gradle expects to find your production source code under sr ¢/ mai n/ j ava

and y9ur test source code_under src/test/ J_ava. _In addltlo_n, What tasks are

any files under sr c/ mai n/ r esour ces will be included in available?

the JAR file as resources, and any filesunder src/ t est/ resour ces

will beincluded in the classpath used to run the tests. All output You can use gradl e tasks

files are created under the bui | d directory, with the JAR file to list the tasks of aproject. This

endingupinthebui | d/ | i bs directory. will let you see the tasks that the
Java plugin has added to your

46.2.1. Building the project project.

The Java plugin adds quite a few tasks to your project. However,

there are only a handful of tasks that you will need to use to

build the project. The most commonly used task is the bui | d task, which does a full build of the project.
When you run gr adl e bui | d, Gradle will compile and test your code, and create a JAR file containing
your main classes and resources:

Example 46.2. Building a Java proj ect
Output of gr adl e bui | d

> gradle build
:conpi | eJava

: processResour ces
:cl asses

tjar

:assenbl e
:conpi | eTest Java
: processTest Resour ces
:testC asses
1test

: check

cbuild

BUI LD SUCCESSFUL in Os
6 actionable tasks: 6 executed

Some other useful tasks are:

clean

Page 410 of 654

Deletesthe bui | d directory, removing all built files.

assemble
Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.
For example, if you use the War plugin, this task will also build the WAR file for your project.

check

Compiles and tests your code. Other plugins add more checksto thistask. For example, if you use the checks

plugin, this task will also run Checkstyle against your source code.

46.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR filesin
the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, arelocated in a
repository. A repository can be used for fetching the dependencies of a project, or for publishing the
artifacts of aproject, or both. For this example, we will use the public Maven repository:

Example 46.3. Adding Maven repository

bui | d. gradl e

repositories {

mavenCentral ()

}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time
dependency on commons collections, and that our test classes have a compile-time dependency on junit:
Example 46.4. Adding dependencies

bui | d. gradl e

dependenci es {
conpi |l e group: 'comons-col | ections', name: 'comons-col |l ections', version:

testConpile group: 'junit', nane: 'junit', version: '4.+

Y ou can find out more in Chapter 8, Dependency Management Basics.

46.2.3. Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are
usually sufficient to get started. It’s easy to change these values if they don’t suit. Let’s look at this for our
sample. Here we will specify the version number for our Java project, along with the Java version our source
iswritten in. We also add some attributes to the JAR manifest.

Page 411 of 654

Example 46.5. Customization of MANIFEST.MF

bui | d. gradl e

sourceConpatibility
version = '1. 0
jar {

mani f est {

attributes 'Inplenentation-Title': 'Gadl e Quickstart',
"1 npl enent ati on-Version': version

The tasks which the Java plugin adds are regular tasks, exactly
the same as if they were declared in the build file. This means

What properties are

you can use any of the mechanisms shown in earlier chapters to .)

. . available”
customize these tasks. For example, you can set the properties of
a task, add behaviour to a task, change the dependencies of a Youcanusegradl e properties
task, or replace atask entirely. In our sample, we will configure to list the properties of a project.
thet est task, which is of type Test , to add a system property This will allow you to see the
when the tests are executed: properties added by the Java

plugin, and their default values.
Example 46.6. Adding a test system property

buil d. gradl e

test {
systenProperties 'property': 'val ue'

}

46.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish
the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will
publish to alocal directory. Y ou can aso publish to aremote location, or multiple locations.

Example 46.7. Publishing the JAR file
bui | d. gradl e
upl oadAr chi ves {

repositories {
flatDir {

dirs 'repos'

To publish the JAR file, run gr adl e upl oadAr chi ves.

Page 412 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html

46.2.5. Creating an Eclipse project

To create the Eclipse-specific descriptor files, like . pr oj ect , you need to add another plugin to your build

file:

Example 46.8. Eclipse plugin
bui |l d. gradl e

apply plugin: 'eclipse'

Now execute gr adl e ecl i pse command to generate Eclipse project files. More information about the ecl i p:

task can be found in Chapter 66, The Eclipse Plugins.

46.2.6. SUmmary

Here' s the complete build file for our sample:

Example 46.9. Java example - complete build file

bui | d. gradl e

apply plugin: 'java'
apply plugin: '"eclipse'

sourceConpatibility = 1.7
version = '1.0
jar {

mani f est {

attributes 'Inplenentation-Title':
"| npl enent ati on- Versi on':

}

repositories {
mavenCent ral ()

}

dependenci es {
conpi |l e group: 'comons-col | ections',

nane:

"G adle Quickstart',
ver si on

testConpile group: 'junit', nane: 'junit', version: '4.+'

}

test {
systenProperties 'property': 'val ue'

}

upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos’

' commons-col | ections',

ver si on:

Page 413 of 654

46.3. Multi-project Javabuild

Now let’slook at atypical multi-project build. Below is the layout for the project:

Example 46.10. Multi-project build - hierarchical layout

Build layout

mul ti proj ect/
api /

servi ces/ webservi ce/
shar ed/
servi ces/ shar ed/

Note: The code for this example can be found at sanpl es/j ava/ nul ti proj ect in the ‘-al’
distribution of Gradle.

Here we have four projects. Project api produces a JAR file which is shipped to the client to provide them
aJavaclient for your XML webservice. Project webser vi ce isawebapp which returns XML. Project shar ed
contains code used both by api and webser vi ce. Project ser vi ces/ shar ed has code that depends

on the shar ed project.

46.3.1. Defining a multi-project build

To define a multi-project build, you need to create a seftingsfile. The settings file lives in the root directory
of the source tree, and specifies which projects to include in the build. It must be called set t i ngs. gr adl e
. For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 46.11. Multi-project build - settings.gradlefile

settings.gradle

i ncl ude "shared", "api", "services:webservice", "services:shared"

Y ou can find out more about the settings file in Chapter 26, Multi-project Builds.

46.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to al projects. In our sample,
we will define this common configuration in the root project, using a technique called configuration
injection. Here, the root project is like a container and the subpr oj ect s method iterates over the
elements of this container - the projects in this instance - and injects the specified configuration. This way
we can easily define the manifest content for all archives, and some common dependencies:

Page 414 of 654

Example 46.12. M ulti-project build - common configuration
buil d. gradl e
subproj ects {
apply plugin: 'java
apply plugin: '"eclipse-wp'

repositories {
mavenCentral ()

}

dependenci es {
testConpile "junit:junit:4. 12
}

version = '1.0'

jar {
mani fest. attri butes provider: 'gradle

}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration
properties we have seen in the previous section are available in each subproject. So, you can compile, test,
and JAR al the projects by running gr adl e bui | d from the root project directory.

Also note that these plugins are only applied within the subpr oj ect s section, not at the root level, so the
root build will not expect to find Java source files in the root project, only in the subprojects.

46.3.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one
project is used to compile another project. In the api build file we will add a dependency on the shar ed
project. Due to this dependency, Gradle will ensure that project shar ed always gets built before project api

Example 46.13. Multi-project build - dependencies between projects
api/buil d.gradle

dependenci es {
conpile project(':shared")

}

See Section 26.7.1, “Disabling the build of dependency projects’ for how to disable this functionality.

46.3.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Page 415 of 654

Example 46.14. M ulti-project build - distribution file

api/build. gradle

task dist(type: Zip) {
dependsOn spi Jar
from'src/dist
into('libs") {
from spi Jar. ar chi vePat h
from configurations. runtine

}

artifacts {
ar chi ves di st

}

46.4. Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java based
project. This chapter is not exhaustive, and there are many other things you can do with Java projects in
Gradle. Y ou can find out more about the Java plugin in Chapter 47, The Java Plugin, and you can find more
sample Java projectsin the sanpl es/ j ava directory in the Gradle distribution.

Otherwise, continue on to Chapter 8, Dependency Management Basics.

Page 416 of 654

47

The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as
the basis for many of the other Gradle plugins.

47.1. Usage

To use the Java plugin, include the following in your build script:

Example 47.1. Using the Java plugin

bui | d. gradl e

apply plugin: 'java'

47.2. Source sets

The Java plugin introduces the concept of a source set. A source set is simply a group of source files which
are compiled and executed together. These source files may include Java source files and resource files.
Other plugins add the ability to include Groovy and Scala source files in a source set. A source set has an
associated compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For
example, you might use a source set to define an integration test suite, or you might use separate source sets
to define the APl and implementation classes of your project.

The Java plugin defines two standard source sets, called nmai n and t est . The mai n source set contains
your production source code, which is compiled and assembled into a JAR file. The t est source set
contains your test source code, which is compiled and executed using JUnit or TestNG. These can be unit
tests, integration tests, acceptance tests, or any combination that is useful to you.

47.3. Tasks

The Java plugin adds a number of tasks to your project, as shown below.

Table47.1. Java plugin - tasks

Task name Depends on Type Description

Page 417 of 654

conpi |l eJava

processResour ces

cl asses

conpi | eTest Java

processTest Resour ces

t est Cl asses

jar

All tasks which produce the
compile classpath. This
includes the j ar task for
project dependencies
included in the conpile
configuration.

Theconpi | eJava task and
the processResources
task. Some plugins add
additional compilation tasks.

conpil e, plus all tasks
which produce the test
compile classpath.

conpi | eTest Java task

and pr ocessTest Resour ces

task. Some plugins add
additional test compilation
tasks.

conpil e

JavaConpil e

Copy

Task

JavaConpi |l e

Copy

Task

Jar

Compiles
production Java
source files
using javac.

Copies
production
resources into
the production
resources
directory.

Assembles the
production
classes and
resources
directories.

Compiles test
Java
files
javac.

source
using

Copies test
resources into
the test
resources
directory.

Assembles the
test classes and
resources
directories.

Assembles the
JAR file

Page 418 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Jar.html

j avadoc

t est

upl oadAr chi ves

cl ean

cl eanTaskNanme

conpile

compi l e, conpi | eTest,
plus all tasks which produce
the test runtime classpath.

The tasks which produce the
artifacts in the ar chi ves
configuration, including j ar .

Javadoc

Test

Upl oad

Del et e

Del et e

Generates API
documentation
for the
production Java
source, using
Javadoc

Runs the unit
tests using
JUnit or
TestNG.

Uploads

artifactsin thear chi v
configuration,
including the

JAR file.

Deletes the
project build
directory.

Deletes files
created by
specified task. cl eanJ
will delete the

JAR file created

by the jar

task, and cl eanTest
will delete the

test results
created by thet est
task.

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Page 419 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html

Table 47.2. Java plugin - sour ce set tasks

Task name Dependson Type Description

conpi | e Sour cABdaskawdnich produce the source set’s compile JavaConpil e Compiles
classpath. the given
source set’s
Java source
files using
javac.

process Sour ceSet Resour ces Copy Copies the
given
source set’s
resources
into the
resources
directory.

sour ceSet Cl aBl¥esonpi | eSour ceSet Java task and the pr oc@asiSour ceSet Refsssambkes

task. Some plugins add additional compilation the given

tasks for the source set. source set’s
classes and
resources
directories.

The Java plugin also adds a number of tasks which form alifecycle for the project:

Page 420 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html

Table 47.3. Java plugin - lifecycle tasks

Task name

assenbl e

check

bui | d

bui | dNeeded

bui | dDependent s

bui | dConf i gNane

upl oadConf i gNane

Dependson

All archive tasks in the project,
including j ar. Some plugins
add additional archive tasks to
the project.

All verification tasks in the
project, including t est . Some
plugins add additional
verification tasks to the project.

check andassenbl e

build and buil dNeeded
tasks in all project lib

dependencies of thet est Runt i me

configuration.

bui | d and bui | dDependent s

tasks in al projects with a
project lib dependency on this
project in a testRuntine
configuration.

The tasks which produce the
artifacts in configuration

ConfigName.

The tasks which uploads the
artifacts in configuration

ConfigName.

Type
Task

Task

Task

Task

Task

Task

Upl oad

The following diagram shows the relationships between these tasks.

Description

Assembles al the archives
in the project.

Performs all verification
tasksin the project.

Performs a full build of the
project.

Performs a full build of the
project and all projects it
depends on.

Performs a full build of the
project and all projects
which depend on it.

Assembles the artifacts in
the specified configuration.
The task is added by the
Base plugin which is
implicitly applied by the
Javaplugin.

Assembles and uploads the
artifacts in the specified
configuration. The task is
added by the Base plugin
which is implicitly applied
by the Java plugin.

Page 421 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Upload.html

Figure47.1. Java plugin - tasks

classes

compileTestlava
lestClasses
processTestResources P

a
processResources

uploadArchives

assemble

clean

47.4. Project layout

The Java plugin assumes the project layout shown below. None of these directories need to exist or have
anything in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 47.4. Java plugin - default project layout

Directory Meaning

src/ mai n/j ava Production Java source

src/ mai n/ resour ces Production resources
src/test/java Test Java source
src/test/resources Test resources

src/ sourceSet /java Java source for the given source set
src/ sourceSet / resources Resources for the given source set

47.4.1. Changing the project layout

Y ou configure the project layout by configuring the appropriate source set. Thisis discussed in more detail
in the following sections. Here is a brief example which changes the main Java and resource source
directories.

Page 422 of 654

Example 47.2. Custom Java sour ce layout
buil d. gradl e

sourceSets {
mai n {
java {
srcDirs ['src/java']

}

resources {
srcDirs ['src/resources']

47.5. Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns
those configurationsto tasks such asconpi | eJava andt est .

Page 423 of 654

Table 47.5. Java plugin - dependency configurations

Name Extends Used by tasks

compile - -

compileOnly - -

compileClasspath compile, compileJava
compileOnly

runtime compile -

testCompile compile -

testCompileOnly - -

testCompileClasspath testCompile, compileTestJava
testCompileOnly

testRuntime runtime, test
testCompile

archives - uploadArchives

default runtime -

Figure 47.2. Java plugin - dependency configurations

—T oS- archives
-

_—addsdar”

uploadarchives task

\

jartask i
TTadds jan
\

default

o)
testCompile

testRuntime

Meaning

Compile time dependencies

Compile time only dependencies,
not used at runtime

Compile classpath, used when

compiling source

Runtime dependencies

Additional
compiling tests

dependencies for

Additional dependencies only for
compiling tests, not used at runtime

Test compile classpath, used when
compiling test sources

Additional dependencies for running
testsonly

Artifacts (e.g. jars) produced by this
project

The default configuration used by a
project dependency on this project.
Contains the artifacts and
dependencies required by this
project at runtime.

compilzOnly <] —‘ compileClasspath

used by

A 4

compileJava task

Page 424 of 654

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Table 47.6. Java plugin - sour ce set dependency configurations

Name Extends Used by Meaning
tasks

sourceSet Conpile - - Compile time dependencies for
the given source set

sour ceSet Comnpi | eOnl-y - Compile time only
dependencies for the given
source set, not used at runtime

sour ceSet Conpi | eCl asmpatdSet Conpi |l e conpi | e Sour céSapilaclasspath, used when
, sour ceSet Conpi |l eOnly compiling source

sourceSet Runtine sourceSet Conpile - Runtime dependencies for the
given source set

47.6. Convention properties

The Java plugin adds a number of convention properties to the project, shown below. Y ou can use these
properties in your build script as though they were properties of the project object.

Table47.7. Java plugin - directory properties

Property name Type Default value Description
report sDi r Nane String reports The name of the
directory to

generate reports
into, relative to

the build
directory.
reportsDir File bui | dDi r / report sDi r Nang he directory to
(read-only) generate reports
into.

Page 425 of 654

t est Resul t sDi r Name

test ResultshDir

t est Report Di r Nane

test ReportDir

| i bsDi r Nane

li bsDir

di st sDi r Nane

distsDir

String test-results The name of the
directory to
generate test
result .xml files
into, relative to
the build
directory.

File bui | dDi r / t est Resul t sDi Mkengirectory to

(read-only) generate test
result .xml files
into.

String tests The name of the
directory to
generate the test
report into,
relative to the
reports directory.

File reportsDir/"testReport OiheNairectory to

(read-only) generate the test
report into.

String libs The name of the
directory to
generate libraries
into, relative to
the build
directory.

File buildDir/1ibsDirName The directory to

(read-only) generate libraries
into.

String di stributions The name of the
directory to
generate
distributions into,
relative to the
build directory.

File bui | dDi r/ di st sDi r Name The directory to

(read-only) generate

distributions into.

Page 426 of 654

docsDi r Nanme

docsDi r

dependencyCacheDi r Namre

String

File
(read-only)

String

docs

bui | dDi r / docsDi r Nane

dependency- cache

The name of the
directory to
generate
documentation
into, relative to
the build
directory.

The directory to
generate
documentation
into.

The name of the
directory to use to
cache source
dependency
information,
relative to the
build directory.

Page 427 of 654

Table 47.8. Java plugin - other properties

Property name Type Default value Description
sour ceSet s Sour ceSet Cont ai ner Not null Contains the
(read-only) project’s
source sets.
sourceConpatibility JavaVersion.Canaso version of the current VM Java version
set using a String or a inuse compatibility
Number,eg.' 1.5 orl1.5 to use when
compiling
Java source.
target Conpatibility JavaVersion.Canalso sourceConpatibility Java version
set using a String or to generate
Number,eg.' 1.5" orl1.5 classesfor.
ar chi vesBaseNane String pr oj ect Nane The
basename to
use for
archives,
such as JAR
or ZIPfiles.
mani f est Mani f est an empty manifest The manifest
to include in
al JARfiles.

These properties are provided by convention objects of type JavaPl ugi nConventi on, and
BasePl ugi nConventi on.

47.7. Working with source sets

You can access the source sets of a project using the sour ceSet s property. This is a container for the
project’s source sets, of type Sour ceSet Cont ai ner . Thereisalso asourceSets { } script block,
which you can pass a closure to configure the source set container. The source set container works pretty
much the same way as other containers, such ast asks.

Page 428 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/SourceSetContainer.html

Example 47.3. Accessing a sour ce set

bui | d. gradl e

/] Various ways to access the main source set
println sourceSets. nain. out put.cl assesDirs
println sourceSets[' nain'].output.classesDirs
sourceSets {

println main. out put.classesDirs

}

sourceSets {
mai n {
println output.classesDirs
}
}

/[l lterate over the source sets
sourceSets. al | {
println name

}

To configure an existing source set, you simply use one of the above access methods to set the properties of
the source set. The properties are described below. Here is an example which configures the main Java and
resources directories:

Example 47.4. Configuring the sour ce directories of a sour ce set
bui |l d. gradl e

sourceSets {
mai n {
java {
srcDirs ["src/java']

}

resources {
srcDirs ['src/resources']

47.7.1. Source set properties

The following table lists some of the important properties of a source set. Y ou can find more details in the
API documentation for Sour ceSet .

Table 47.9. Java plugin - sour ce set properties

Property name Type Default value Description

nane Stri ng (read-only) Not null The name of
the source
set, used to
identify it.

Page 429 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.SourceSet.html

out put

out put.cl assesDirs

out put . resourcesbDir

conpi | eCl asspath

runti med asspath

Sour ceSet Qut put
(read-only)

Fil eCol | ection

File

Fil eCol | ection

Fil eCol | ection

Not null

Not null

The output
files of the
source Set,
containing
its compiled
classes and
resources.

The
directories to
generate the
classes of
this source
set into.

bui | dDi r / r esour ces/Tnaree

conpi | eSour ceSet

configuration.

directory to
generate the
resources of
this source
set into.

The
classpath to
use when
compiling
the source
files of this
source set.

out put +runti meSourtdSet

configuration.

classpath to
use when
executing
the classes of
this source
Set.

Page 430 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html

j ava

java.srcDirs

java.outputDir

Sour ceDi r ect or ySet
(read-only)

Set<File> Can set
using anything described
in Section 20.5,
“Specifying a set of input
files.

File. Can set using
anything described in
Section 20.1, “Locating
files'.

The Java
source files
of this
source set.
Contains
only .java
filesfound in
the Java
source
directories,
and excludes
all other
files.

[proj ect Di r/ src/ narfdej espaice

directories
containing
the Java
source files
of this
source set.

bui | dDi r / cl asses/ j dAva/esour ceSet N

directory to
generate
compiled
Java sources
into.

Page 431 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.file.SourceDirectorySet.html

resources Sour ceDi r ect or ySet Not null The
(read-only) resources of

this source
set. Contains
only
resources,
and excludes
any .java
filesfound in
the resource
source
directories.
Other
plugins, such
as the
Groovy
plugin,
exclude
additional
types of files
from this
collection.

resources.srchirs Set<File> Can set [projectDir/src/ nafder esoueces]
using anything described directories
in Section 20.5, containing
“Specifying a set of input the resources
files”. of this
source set.

al | Java SourceDirectorySet java All .java
(read-only) files of this
source set.
Some
plugins, such
as the
Groovy
plugin, add
additional
Java source
files to this
collection.

Page 432 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.file.SourceDirectorySet.html

al | Sour ce SourceDirectorySet resources + java All source
(read-only) files of this
source set.
This include
all resource
files and all
Java source
files. Some
plugins, such
as the
Groovy
plugin, add
additional
source files
to this
collection.

47.7.2. Defining new source sets

To define anew source set, you simply referenceitinthe sour ceSet s { } block. Here'san example:

Example 47.5. Defining a sour ce set

bui | d. gradl e

sourceSets {

i nt Test

}

When you define a new source set, the Java plugin adds some dependency configurations for the source set,
as shown in Table 47.6, “Java plugin - source set dependency configurations’. You can use these
configurations to define the compile and runtime dependencies of the source set.

Example 47.6. Defining sour ce set dependencies

bui | d. gradl e

sourceSets {
i nt Test

}

dependenci es {
intTestConpile "junit:junit:4. 12"
intTestRuntime 'org.ow2.asmasmall:4.0'

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in

Page 433 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.file.SourceDirectorySet.html

Table 47.2, “Java plugin - source set tasks’. For example, for a source set called i nt Test , compiling the
classes for this source set isdone by running gr adl e i nt Test G asses.

Example 47.7. Compiling a sour ce set

Output of gr adl e i nt Test d asses

> gradl e intTestd asses
:conpi | el nt Test Java

: processl nt Test Resour ces
1intTestC asses

BUI LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

47.7.3. Some source set examples

Adding a JAR containing the classes of a source set:

Example 47.8. Assembling a JAR for a sour ce set

bui |l d. gradl e

task intTestJar(type: Jar) {

from sourceSets. int Test. out put

}

Generating Javadoc for a source set:

Example 47.9. Generating the Javadoc for a sour ce set
buil d. gradl e

task intTestJavadoc(type: Javadoc) {
source sourceSets.intTest.allJava

}

Adding atest suiteto run the tests in a source set:

Example 47.10. Running testsin a sour ce set
bui |l d. gradl e

task intTest(type: Test) {
test Cl assesDirs = sourceSets.intTest.output.classesDirs

cl asspath = sourceSets.intTest.runtineC asspath

Page 434 of 654

47.8. Javadoc

Thej avadoc task is an instance of Javadoc. It supports the core Javadoc options and the options of the
standard doclet described in the reference documentation of the Javadoc executable. For a complete list of
supported Javadoc options consult the APl documentation of the following classes:
Cor eJavadocOpt i ons and St andar dJavadocDocl et Opt i ons.

Table 47.10. Java plugin - Javadoc properties

Task Property Type Default Value
cl asspath Fil eCol | ection sour ceSet s. mai n. out put +sourceSets. mai
source Fil eTree. Can set using sourceSets. main. all Java

anything described in
Section 20.5, “ Specifying a

set of input files’.
destinationDir File docsDir/j avadoc
title String The name and version of the project

47.9. Clean

Thecl ean task isaninstance of Del et e. It simply removes the directory denoted by its di r property.

Table 47.11. Java plugin - Clean properties

Task Property Type Default Value
dir File bui | dDi r

47.10. Resources

The Java plugin uses the Copy task for resource handling. It adds an instance for each source set in the
project. Y ou can find out more about the copy task in Section 20.6, “ Copying files’.

Page 435 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html

Table47.12. Java plugin - ProcessResour ces properties

Task Property Type Default Value

srcDirs bj ect . Can set using anything described sour ceSet . r esour ces
in Section 20.5, “Specifying a set of input
files'.

destinationDr Fi | e. Can set using anything described in sourceSet . out put. resource
Section 20.1, “Locating files’.

47.11. CompileJava

The Java plugin adds a JavaConpi | e instance for each source set in the project. Some of the most
common configuration options are shown below.

Table 47.13. Java plugin - Compile properties

Task Property Type Default Value
cl asspath Fil eColl ection sourceSet . conpi | ed ass
source Fi | eTr ee. Can set using anything described in sour ceSet . j ava

Section 20.5, “ Specifying a set of input files”.

destinationDir File. sour ceSet . j ava. out putC

By default, the Java compiler runs in the Gradle process. Setting opti ons. fork to true causes
compilation to occur in a separate process. In the case of the Ant javac task, this means that a new process
will be forked for each compile task, which can slow down compilation. Conversely, Gradle's direct
compiler integration (see above) will reuse the same compiler process as much as possible. In both cases, all
fork options specified with opt i ons. f or kOpt i ons will be honored.

47.12. Incremental Java compilation

Starting with Gradle 2.1, it is possible to compile Java incrementally. See the JavaConpi | e task for
information on how to enableit.

Main goals for incremental compilations are:

* Avoid wasting time compiling source classes that don’t have to be compiled. This means faster builds,
especially when a change to a source class or ajar does not incur recompilation of many source classes

that depend on the changed input.
® Change as few output classes as possible. Classes that don’t need to be recompiled remain unchanged in

Page 436 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

the output directory. An example scenario when thisis realy useful is using JRebel - the fewer output
classes are changed the quicker the VM can use refreshed classes.

Theincremental compilation at a high level:

® The detection of the correct set of stale classes is reliable at some expense of speed. The algorithm uses
bytecode analysis and deals gracefully with compiler optimizations (inlining of non-private constants),
transitive class dependencies, etc. Example: When a class with a public constant changes, we eagerly
compile classes that use the same constants to avoid problems with constants inlined by the compiler.

® To make incremental compilation fast, we cache class analysis results and jar snapshots. The initia
incremental compilation can be slower due to the cold caches.

47.12.1. Known issues

® |f a compile task fails due to a compile error, it will do a full compilation again the next time it is
invoked.

® Because of type erasure, the incremental compiler is not able to recognize when atype isonly used in a
type parameter, and never actually used in the code. For example, imagine that you have the following
code: Li st <? extends A> |ist = Lists.newArrayList(); butthat no member of Aisin
practice used in the code, then changes to A will not trigger recompilation of the class. In practice, this
should very rarely be an issue.

47.13. Compile avoidance

If a dependent project has changed in an ABI-compatible way (only its private APl has changed), then Java
compilation tasks will be up-to-date. This means that if project A depends on project B and aclassin B is
changed in an ABI-compatible way (typically, changing only the body of a method), then Gradle won't
recompile A.

Some of the types of changes that do not affect the public API and are ignored:

® Changing a method body

® Changing acomment

® Adding, removing or changing private methods, fields, or inner classes
® Adding, removing or changing aresource

® Changing the name of jars or directoriesin the classpath

® Renaming a parameter

Compile-avoidance is deactivated if annotation processors are found on the compile classpath, because for
annotation processors the implementation details matter. To better separate these concerns, it's
recommended to declare annotation processors separately: the Conpi | eOpt i ons for the JavaConpi | e
task type define a annot ati onPr ocessor Pat h property that can be used to declare annotation
processors. It's recommended to use a distinct configuration for annotation processors:

Page 437 of 654

https://en.wikipedia.org/wiki/Application_binary_interface
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 47.11. Declaring annotation processor s
buil d. gradl e

configurations {
apt

}

dependenci es {
/| The dagger conpiler and its transitive dependencies will only be found o
apt ' com googl e. dagger : dagger-conpiler: 2.8

// And we still need the Dagger annotations on the conpile classpath itself
i mpl enent ati on ' com googl e. dagger : dagger: 2. 8

}

conpi | eJava {
opti ons. annot ati onProcessor Path = confi gurati ons. apt

}

47.14. Test

The t est task is an instance of Test . It automatically detects and executes all unit tests in the t est
source set. It also generates a report once test execution is complete. JUnit and TestNG are both supported.
Have alook at Test for the complete API.

47.14.1. Test execution

Tests are executed in a separate VM, isolated from the main build process. The Test task’s APl allows
you some control over how this happens.

There are a number of properties which control how the test process is launched. This includes things such
as system properties, VM arguments, and the Java executable to use.

You can specify whether or not to execute your tests in parallel. Gradle provides parallel test execution by
running multiple test processes concurrently. Each test process executes only a single test at atime, so you
generally don’'t need to do anything special to your tests to take advantage of this. The maxPar al | el For ks
property specifies the maximum number of test processes to run at any given time. The default is 1, that is,
do not execute the testsin parallel.

The test process setsthe or g. gr adl e. t est . wor ker system property to a unique identifier for that test
process, which you can use, for example, in files names or other resource identifiers.

Y ou can specify that test processes should be restarted after it has executed a certain number of test classes.
This can be a useful aternative to giving your test process a very large heap. The f or kEvery property
specifies the maximum number of test classes to execute in a test process. The default is to execute an
unlimited number of testsin each test process.

Thetask hasani gnor eFai | ur es property to control the behavior when testsfail. The Test task aways
executes every test that it detects. It stops the build afterwards if i gnor eFai | ur es isfalse and there are
failing tests. The default value of i gnor eFai | ur es isfase.

Page 438 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html

Thet est Loggi ng property alows you to configure which test events are going to be logged and at which
detail level. By default, a concise message will be logged for every failed test. See
Test Loggi ngCont ai ner for how to tune test logging to your preferences.

47.14.2. Debugging

Thetest task providesa Test . get Debug() property that can be set to launch to make the VM wait for a
debugger to attach to port 5005 before proceeding with test execution.

This can also be enabled at invocation time viathe - - debug- j vmtask option (since Gradle 1.12).

47.14.3. Test filtering

Starting with Gradle 1.10, it is possible to include only specific tests, based on the test name pattern.
Filtering is a different mechanism than test class inclusion / exclusion that will be described in the next few
paragraphs (- Dt est . si ngl e, t est . i ncl ude and friends). The latter is based on files, e.g. the physical
location of the test implementation class. File-level test selection does not support many interesting
scenarios that are possible with test-level filtering. Some of them Gradle handles now and some will be
satisfied in future releases:

* Filtering at the level of specific test methods; executing a single test method

® Filtering based on custom annotations (future)

* Filtering based on test hierarchy; executing all tests that extend a certain base class (future)

* Filtering based on some custom runtime rule, e.g. particular value of a system property or some static
state (future)

Test filtering feature has following characteristic:

* Fully qualified class name or fully qualified method name is supported, e.g. “org.gradle.SomeTest”,
“org.gradle.SomeT est.someM ethod”

® Wildcard *' is supported for matching any characters

® Command line option “--tests” is provided to conveniently extend the test filter for an individual Gradle
execution. This is especially useful for the classic 'single test method execution' use case. When the
command line option is used, the inclusions declared in the build script are still honored. That is, the
command line filters are always applied on top of the filter definition in the build script. It is possible to
supply multiple “--tests” options and tests matching any of those patterns will be included.

® Gradletriesto filter the tests given the limitations of the test framework API. Some advanced, synthetic
tests may not be fully compatible with filtering. However, the vast mgjority of tests and use cases should
be handled neatly.

® Test filtering supersedes the file-based test selection. The latter may be completely replaced in future.
We will grow the test filtering APl and add more kinds of filters.

Page 439 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

Example 47.12. Filtering testsin the build script
buil d. gradl e

test {
filter {
/linclude specific nethod in any of the tests
i ncl udeTest sMat chi ng " * U Check"

/linclude all tests from package

i ncl udeTest sMat ching "org.gradle.internal .*"

//include all integration tests
i ncl udeTest svat ching "*I ntegTest"

For more details and examples please seethe Test Fi | t er reference.
Some exampl es of using the command line option:

® gradle test --tests org.gradl e. SoneTest. soneSpeci fi cFeature
® gradle test --tests *SoneTest. sonmeSpeci fi cFeature

® gradle test --tests *SonmeSpecificTest

® gradle test --tests *SoneSpecificTestSuite

® gradle test --tests all.in.specific.package*

® gradle test --tests *IntegTest

® gradle test --tests *IntegTest*ui*

® gradle test --tests "com exanple. MyTest Suite”

® gradle test --tests "com exanpl e. Paraneteri zedTest"

® gradle test --tests "*ParaneterizedTest.foo*"

® gradle test --tests "*ParaneterizedTest.*[2]"

® gradl e soneTest Task --tests *Ui Test soneQt her Test Task --tests *WebTest*

47.14.4. Single test execution via System Properties

This mechanism has been superseded by "Test Filtering', described above.

Setting a system property of taskName.single = testNamePattern will only execute tests that match the
specified testNamePattern. The taskName can be a full multi-project path like “:subl:sub2:test” or just the
task name. The testNamePattern will be used to form an include pattern of “**/testNamePattern*.class’. If
no tests with this pattern can be found, an exception is thrown. This is to shield you from false security. If
tests of more than one subproject are executed, the pattern is applied to each subproject. An exception is
thrown if no tests can be found for a particular subproject. In such a case you can use the path notation of the
pattern, so that the pattern is applied only to the test task of a specific subproject. Alternatively you can
specify the fully qualified task name to be executed. Y ou can also specify multiple patterns. Examples:

® gradle -Dtest. single=Thi sUni quel yNanedTest test
® gradle -Dtest.single=al/b/ test

Page 440 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/testing/TestFilter.html

® gradle -DintegTest.single=*IntegrationTest integTest
® gradle -D:proj 1l:test.singl e=Custoner build
® gradle -D:proj 1l:integTest. singl e=c/d/

47.14.5. Test detection

The Test task detects which classes are test classes by inspecting the compiled test classes. By default it
scans al . cl ass files. You can set custom includes / excludes, only those classes will be scanned.
Depending on the test framework used (JUnit / TestNG) the test class detection uses different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the
classis considered to be a JUnit test class:

® Classor asuper class extends Test Case or G oovyTest Case
® Classor asuper classis annotated with @runW t h
¢ Class or asuper class contain a method annotated with @est

When using TestNG, we scan for methods annotated with @est .

Note that abstract classes are not executed. Gradle also scans up the inheritance tree into jar files on the test
classpath.

If you don’t want to use test class detection, you can disable it by setting scanFor Test O asses to fase.

This will make the test task only use includes/ excludes to find test classes. If scanFor Test O asses is
false and no include / exclude patterns are specified, the defaultsare“**/ * Test s. cl ass”,“**/ *Test . cl as
"and“**/ Abstract *. cl ass” for include and exclude, respectively.

47.14.6. Test grouping

JUnit and TestNG allows sophisticated groupings of test methods.

For grouping JUnit test classes and methods JUnit 4.8 introduces the concept of categories.[2l] The t est
task allows the specification of the JUnit categories you want to include and exclude.

Example 47.13. JUnit Categories

bui |l d. gradl e

test {
useJUnit {
i ncl udeCat egori es 'org.gradle.junit.CategoryA

excl udeCat egories 'org.gradle.junit.CategoryB

The TestNG framework has a quite similar concept. In TestNG you can specify different test groups[22] The
test groups that should be included or excluded from the test execution can be configured in the test task.

Page 441 of 654

Example 47.14. Grouping TestNG tests
buil d. gradl e

test {
useTest NG {
excl udeGroups 'integrationTests'

i ncl udeG oups 'unitTests'

47.14.7. Test execution order in TestNG

TestNG alows explicit control of the execution order of tests.

The preser veOr der property controls whether tests are executed in deterministic order. Preserving the
order guarantees that the complete test (including @ef or e XXX and @A\f t er XXX) is run in a test thread
before the next test is run. While preserving the order of tests is the default behavior when directly working
with t est ng. xnl files, the TestNG AP, that is used for running tests programmatically, as well as
Gradle's TestNG integration execute tests in unpredictable order by default.[23] Preservi ng the order of tests
was introduced with TestNG version 5.14.5. Setting the pr eser veOr der property tot r ue for an older
TestNG version will cause the build to fail.

Example 47.15. Preserving order of TestNG tests

bui | d. gradl e

test {
useTest NG {
preserveOrder true

}

The gr oupByl nst ance property controls whether tests should be grouped by instances. Grouping by
instances will result in resolving test method dependencies for each instance instead of running the
dependees of all instances before running the dependants. The default behavior is not to group tests by
instances.[?4] Grouping tests by instances was introduced with TestNG version 6.1. Setting the gr oupBYy| nst an
property tot r ue for an older TestNG version will cause the build to fail.

Example 47.16. Grouping TestNG tests by instances

bui |l d. gradl e

test {
useTest NG {
gr oupByl nst ances true

}

47.14.8. Test reporting

The Test task generates the following results by default.

Page 442 of 654

http://testng.org/javadocs/org/testng/TestNG.html

® AnHTML test report.

® Theresultsin an XML format that is compatible with the Ant JUnit report task. This format is supported
by many other tools, such as Cl servers.

® Resultsin an efficient binary format. The task generates the other results from these binary results.

There is aso a stand-alone Test Report task type which can generate the HTML test report from the
binary results generated by one or more Test task instances. To use thistask type, you need to defineadest i ne
and the test results to include in the report. Here is a sample which generates a combined report for the unit

tests from subprojects:

Example 47.17. Creating a unit test report for subprojects
buil d. gradl e

subproj ects {
apply plugin: 'java'

/'l Disable the test report for the individual test task
test {
reports. htm .enabl ed = fal se
}
}

task testReport(type: TestReport) ({
destinationDir = file("$buildDir/reports/all Tests")
/1 Include the results fromthe “test task in all subprojects
report On subproj ects*.test

You should note that the Test Report type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by multiple
test tasks, then the test report will include executions of that class, but it can be hard to distinguish individual
executions of that class and their output.

TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed multiple
times with different inputs. Gradle includes the parameter values in its reporting of the test method
execution.

Given a parameterized test method named aTest Met hod that takes two parameters, it will be reported
with the name: aTest Met hod(t oStri ngVal ueX Paraml, toStringVal ueO Paran®). This
makes identifying the parameter values for a particular iteration easy.

Page 443 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.TestReport.html
http://testng.org/doc/documentation-main.html#parameters

47.14.9. Convention values

Table47.14. Java plugin - test properties

Task Property Type Default Value

testClassesDirs File sourceSets. test.output.classesDirs
cl asspath FileCollection sourceSets.test.runtinmed asspath
testResultsDir File testResul tsDir

test ReportDir File test ReportDir

47.15. Jar

The j ar task creates a JAR file containing the class files and resources of the project. The JAR file is
declared as an artifact in the ar chi ves dependency configuration. This means that the JAR is available in
the classpath of a dependent project. If you upload your project into a repository, this JAR is declared as part
of the dependency descriptor. You can learn more about how to work with archives in Section 20.8,
“Creating archives’ and artifact configurationsin Chapter 32, Publishing artifacts.

47.15.1. Manifest

Each jar or war object hasamani f est property with a separate instance of Mani f est . When the archive
is generated, a corresponding MANI FEST. M- file is written into the archive.
Example 47.18. Customization of MANIFEST.MF
buil d. gradl e
jar {

mani f est {
attributes("Inplenentation-Title": "G adle",

"1 npl enent ati on- Versi on": version)

You can create stand-alone instances of a Mani f est . You can use that for example, to share manifest
information between jars.

Page 444 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/java/archives/Manifest.html

Example 47.19. Creating a manifest object.
buil d. gradl e

ext . shar edMvani fest = manifest {
attributes("Inplementation-Title": "G adle",
"1 npl enent ati on- Ver si on": version)

}

task fooJdar(type: Jar) {
mani fest = project. mani fest {
from shar edMani f est

}

You can merge other manifests into any Mani f est object. The other manifests might be either described
by afile path or, like in the example above, by areference to another Mani f est object.

Manifests are merged in the order they are declared by the f r om statement. If the base manifest and the
merged manifest both define values for the same key, the merged manifest wins by default. Y ou can fully
customize the merge behavior by adding eachEntry actions in which you have access to a

Mani f est Mer geDet ai | s instance for each entry of the resulting manifest. The merge is not
immediately triggered by the from statement. It is done lazily, either when generating the jar, or by calingwri t e
oref fectiveMani f est

You can easily write a manifest to disk.

Example 47.20. Separate MANIFEST.MF for a particular archive
bui |l d. gradl e

task barJar(type: Jar) {
mani fest {
attributes keyl: 'val uel
from sharedMani fest, 'src/config/ basemanifest.txt’
from('src/config/javabasenani fest.txt',
"src/config/libbasemani fest.txt') {
eachEntry { details ->
if (details.baseValue != details.nergeVal ue) {
det ai | s. val ue = baseVal ue
}
if (details.key == "foo') {
det ai | s. excl ude()

}

bui | d. gradl e

jar.mani fest.witeTo("$buil dDir/ mymanifest.nf")

Page 445 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

47.16. Uploading

How to upload your archives is described in Chapter 32, Publishing artifacts.

47.17. Compiling and testing for Java 6 or Javar

Gradle can only run on Java version 7 or higher. However, support for running Gradle on Java 7 has been
deprecated and is scheduled to be removed in Gradle 5.0. There are two reasons for deprecating support for
Java 7

® Java7 reached end of life. Therefore, Oracle ceased public availability of security fixes and upgrades for
Java 7 as of April 2015.

® Once support for Java 7 has ceased (likely with Gradle 5.0), Gradle’'s implementation can start to use
Java 8 APIs optimized for performance and usability.

Gradle still supports compiling, testing, generating Javadoc and executing applications for Java 6 and Java
7. Java 5 is not supported.

To use Java 6 or Java 7, the following tasks need to be configured:

* JavaConpi | e task to fork and use the correct Java home
® Javadoc task to usethe correct j avadoc executable
* Test andtheJavaExec task to use the correct j ava executable.

The following sample shows how the bui | d. gr adl e needsto be adjusted. In order to be able to make the
build machine-independent, the location of the old Java home and target version should be configured in GRADLE.
[2%] i the user’s home di rectory on each developer machine, as shown in the example.

Page 446 of 654

http://www.oracle.com/technetwork/java/javase/eol-135779.html

Example 47.21. Configure Java 6 build

gradl e. properties

in $HOVE/ . gradl e/ gradl e. properties
j avaHone=/ Li brary/ Java/ JavaVi r t ual Machi nes/ 1. 7. 0. j dk/ Cont ent s/ Hone

t ar get JavaVer si on=1. 7

bui |l d. gradl e

assert hasProperty('javaHone'): "Set the property 'javaHone' in your your gradleé
assert hasProperty('targetJavaVersion'): "Set the property 'targetJavaVersion' i

sourceConpati bility = targetJavaVersion

def javaExecutabl esPath = new Fil e(j avaHone, 'bin")
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPath, execNane)
assert executable.exists(): "There is no ${execNane} executable in ${]j avaExd
execut abl e
}
tasks. wi t hType(Abstract Conpi l e) {
options.with {
fork = true
forkOptions. javaHonme = fil e(javaHone)
}

}
tasks. wi t hType(Javadoc) {

execut abl e = j avaExecut abl es. j avadoc
}
tasks. wi t hType(Test) {

execut abl e = j avaExecut abl es. j ava

}
tasks. wi t hType(JavaExec) {

execut abl e = javaExecut abl es. j ava

}

[21] The JUnit wiki contains a detailed description on how to work with JUnit categories:
https://github.com/junit-team/junit/wiki/Categories.

[22] The TestNG documentation contains more details about test groups:
http://testng.org/doc/documentati on-main.html#test-groups.

[23] The TestNG documentation contains more details about test ordering when working with t est ng. xmi
files: http://testng.org/doc/documentation-main.html#testng-xml.

[24] The TestNG documentation contains more details about grouping tests by instances:
http://testng.org/doc/documentati on-main.html#dependenci es-with-annotations.

[25] For more detailson gr adl e. properti es see Section 12.1, “Configuring the build environment via
gradle.properties’

Page 447 of 654

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#dependencies-with-annotations

43

TheJava Library Plugin

The Java Library plugin expands the capabilities of the Java plugin by providing specific knowledge about
Javalibraries. In particular, a Java library exposes an API to consumers (i.e., other projects using the Java or
the Java Library plugin). All the source sets, tasks and configurations exposed by the Java plugin are
implicitly available when using this plugin.

48.1. Usage

To usethe Java Library plugin, include the following in your build script:

Example 48.1. Using the Java Library plugin
bui |l d. gradl e

apply plugin: "java-library’

48.2. APl and implementation separation

The key difference between the standard Java plugin and the Java Library plugin is that the latter introduces
the concept of an APl exposed to consumers. A library is a Java component meant to be consumed by other
components. It's a very common use case in multi-project builds, but also as soon as you have external
dependencies.

The plugin exposes two configurations that can be used to declare dependencies: api andi npl ermrent at i on
. The api configuration should be used to declare dependencies which are exported by the library API,
whereasthei npl enment at i on configuration should be used to declare dependencies which areinternal to
the component.

Example 48.2. Declaring API and implementation dependencies

bui | d. gradl e

dependenci es {
api ' commons-httpclient: commons-httpclient: 3.1

i mpl ement ati on ' org. apache. cormons: cormons- | ang3: 3. 5

Dependencies appearing in the api configurations will be transitively exposed to consumers of the library,
and as such will appear on the compile classpath of consumers. Dependencies found inthe i npl enent ati on

Page 448 of 654

configuration will, on the other hand, not be exposed to consumers, and therefore not leak into the
consumers compile classpath. This comes with several benefits:

® dependencies do not leak into the compile classpath of consumers anymore, so you will never
accidentally depend on atransitive dependency

® faster compilation thanks to reduced classpath size

* |ess recompilations when implementation dependencies change: consumers would not need to be
recompiled

¢ cleaner publishing: when used in conjunction with the new maven- publ i sh plugin, Java libraries
produce POM files that distinguish exactly between what is required to compile against the library and
what is required to use the library at runtime (in other words, don’t mix what is needed to compile the
library itself and what is needed to compile against the library).

The conpi | e configuration still exists but should not be used as it will not offer the guarantees that
theapi andi npl enment at i on configurations provide.

48.3. Recognizing API and implementation
dependencies

This section will help you spot APl and Implementation dependencies in your code using simple rules of
thumb. Basically, an APl dependency is atype that is exposed in the library binary interface, often referred
to ABI (Application Binary Interface). Thisincludes, but is not limited to:

® typesused in super classes or interfaces

® types used in public method parameters, including generic parameter types (where public is something
that isvisible to compilers. |.e., public, protected and package private membersin the Java world)

® typesusedin publicfields

® public annotation types

In opposition, any type that is used in the following list is irrelevant to the ABI, and therefore should be
declared asi npl enent at i on dependency:

® typesexclusively used in method bodies

® typesexclusively used in private members

* typesexclusively foundininterna classes (future versions of Gradle will let you declare which packages
belong to the public API)

In the following sample, we can make the difference between an APl dependency and an implementation
dependency:

Page 449 of 654

Example 48.3. Making the difference between API and implementation
src/ main/javalorg/gradl e/ H t pdient Wapper.java

/'l The follow ng types can appear anywhere in the code
/1 but say nothing about APl or inplenentation usage

i mport org.apache. commons. httpclient.*;

i mport org.apache. commons. httpclient. met hods. *;

i nport org.apache. commons. | ang3. excepti on. Excepti onlUtil s;
i nport java.io.| OException;

i mport java.i o. Unsupport edEncodi ngExcepti on;

public class HttpdientWapper {

private final HtpClient client; // private nmenber: inplenentation details

/I HtpOient is used as a paraneter of a public nethod

/'l so "leaks" into the public APl of this conponent

public HtpCientWapper(HtpCient client) {
this.client = client;

}

/'l public methods bel ongs to your API
public byte[] doRawGet (String url) {
Get Met hod net hod = new Get Met hod(url);
try {
int statusCode = doGet (et hod);
return nethod. get ResponseBody() ;

} catch (Exception e) {
ExceptionUtils.rethrow(e); // this dependency is internal only

} finally {
net hod. r el easeConnecti on();
}

return null;

}

/'l GetMethod is used in a private nethod, so doesn't belong to the API
private int doGet(GetMethod nethod) throws Exception {
int statusCode = client.execut eMet hod(met hod) ;
if (statusCode != HttpStatus. SC OK) {
Systemerr.println("Mthod failed: " + method. get StatusLine());

}

return statusCode;

We can see that our class imports third party classes, but imports alone won't tell us if a dependency is an
API or implementation dependency. For this, we need to look at the methods. The public constructor of Ht t pdl i
usesHt t pd i ent asaparameter, so it exposed to consumers and therefore belongsto the API.

On the other hand, the Except i onUt i | s type, coming from the conmons- | ang library, isonly used in
amethod body, so it's an implementation dependency.

Therefore, we can deduce that conmons- ht t pcl i ent isan APl dependency, whereas conmons- | ang
is an implementation dependency, which directly trandates into the build file:

Page 450 of 654

Example 48.4. Declaring APl and implementation dependencies
buil d. gradl e

dependenci es {
api ' commons-httpclient: commons-httpclient: 3.1

i mpl erent ati on ' org. apache. conmons: conmons- | ang3: 3. 5'

As a guideline, you should prefer the i npl enent at i on configuration first: leakage of implementation
types to consumers would then directly lead to a compile error of consumers, which would be solved either
by removing the type from the public API, or promoting the dependency as an API dependency instead.

48.4. The Java Library plugin configurations

The following graph describes the main configurations setup when the Java Library pluginisin use.

apiElements(C) compileOnly(C, R)

compileClasspath(R) runtimeEler

® The configurationsin green are the ones a user should use to declare dependencies

® The configurationsin pink are the ones used when a component compiles, or runs against the library
® The configurationsin blue are internal to the component, for its own use

® The configurationsin white are configurations inherited from the Java plugin

And the next graph describes the test configurations setup:

Page 451 of 654

testCompileOnly(C, R)

testCompileClasspath(R)

The compile, testCompile, runtime and testRuntime configurations inherited from the Java plugin are
till available but are deprecated. Y ou should avoid using them, as they are only kept for backwards
compatibility.

Therole of each configuration is described in the following tables:

Page 452 of 654

Table48.1. Java Library plugin - configurations used to declar e dependencies

Configuration
name

api

implementation

compileOnly

runtimeOnly

testlmplementation

testCompileOnly

testRuntimeOnly

Role

Declaring API
dependencies

Declaring
implementation
dependencies

Declaring
compile only
dependencies

Declaring
runtime
dependencies

Test
dependencies

Declaring test
compile only
dependencies

Declaring test
runtime
dependencies

Can be
consumed

no

no

yes

no

no

yes

no

Can be
resolved

no

no

yes

no

no

yes

no

Description

This is where you should declare
dependencies which are
transitively exported to
consumers, for compile.

This is where you should declare
dependencies which are purely
internal and not meant to be
exposed to consumers.

This is where you should declare
dependencies which are only
required at compile time, but
should not leak into the runtime.
This typically includes
dependencies which are shaded
when found at runtime.

This is where you should declare
dependencies which are only
required at runtime, and not at
compile time.

This is where you should declare
dependencies which are used to
compile tests.

This is where you should declare
dependencies which are only
required at test compile time, but
should not leak into the runtime.
This typically
dependencies which are shaded
when found at runtime.

includes

This is where you should declare
dependencies which are only
required at test runtime, and not
at test compile time.

Page 453 of 654

Table 48.2. Java Library plugin - configurations used by consumers

Configuration Role

name

apiElements For

yes

compiling
against
this
library

runtimeElements For

yes

executing
this
library

Can be
consumed

no

no

Can be
resolved

Description

This configuration is meant to be used by
consumers, to retrieve all the elements
necessary to compile against this library.
Unlike the def aul t configuration, this
doesn't leak implementation or runtime
dependencies.

This configuration is meant to be used by
consumers, to retrieve all the elements
necessary to run against thislibrary.

Table 48.3. Java Library plugin - configurationsused by thelibrary itself

Configuration name

compileClasspath

runtimeClasspath

testCompileClasspath

testRuntimeClasspath

Role

For
compiling
thislibrary

For
executing
thislibrary

For

compiling
the tests of
thislibrary

For
executing
tests of
thislibrary

Can be
consumed

no

no

no

no

Can be Description

resolved

yes This configuration contains the
compile classpath of this library,
and is therefore used when
invoking the java compiler to
compileit.

yes This configuration contains the
runtime classpath of thislibrary

yes This configuration contains the test
compile classpath of thislibrary.

yes This configuration contains the test

runtime classpath of thislibrary

Page 454 of 654

48.5. Known issues

48.5.1. Compatibility with other plugins

At the moment the Java Library plugin is only wired to behave correctly with the j ava plugin. Other
plugins, such as the Groovy plugin, may not behave correctly. In particular, if the Groovy plugin isused in
addition to the j ava- | i brary plugin, then consumers may not get the Groovy classes when they
consume the library. To workaround this, you need to explicitly wire the Groovy compile dependency, like
this:

Example 48.5. Configuring the Groovy plugin to work with Java Library

a/build.gradle

configurations {
api El enents {
out goi ng. vari ants. get ByName(' cl asses').artifact(
file: conpil eG oovy.destinationDir,

type: ArtifactTypeDefinition.JVM CLASS_ DI RECTCRY,
bui | t By: conpil eG oovy)

48.5.2. Increased memory usage for consumers

When a project uses the Java Library plugin, consumers will use the output classes directory of this project
directly on their compile classpath, instead of the jar file if the project uses the Java plugin. An indirect
consequence is that up-to-date checking will require more memory, because Gradle will snapshot individual
classfilesinstead of asinglejar. This may lead to increased memory consumption for large projects.

Page 455 of 654

49

Web Application Quickstart

This chapter isawork in progress.

This chapter introduces the Gradle support for web applications. Gradle recommends two plugins for web
application development: the War plugin and the Gretty plugin. The War plugin extends the Java plugin to
build a WAR file for your project. The Gretty plugin alows you to deploy your web application to an
embedded Jetty web container.

49.1. Building aWAR file

To build aWAR file, you apply the War plugin to your project:

Example 49.1. War plugin

bui |l d. gradl e

apply plugin: "war'

Note: The code for this example can be found at sanpl es/ webAppl i cati on/ qui ckstart in
the“-al’ distribution of Gradle.

This also applies the Java plugin to your project. Running gr adl e bui | d will compile, test and WAR
your project. Gradle will look for the source files to include in the WAR filein sr ¢/ mai n/ webapp. Your
compiled classes and their runtime dependencies are also included in the WAR file, in the VEB- | NF/ cl asses
and VEB- | NF/ | i b directories, respectively.

: Groovy web
49.2. Running your web ool s
application o
You can combine multiple
To run your web application, you apply the Gretty plugin to plugins in a single project, so
your project: you can use the War and

Groovy plugins together to
build a Groovy based web
application. The appropriate

Page 456 of 654

https://plugins.gradle.org/plugin/org.akhikhl.gretty

Example 49.2. Running web application with Gretty plugin Groovy libraries will be added

bui | d. gradl e to the WAR file for you.

bui | dscript {
repositories {
jcenter ()

}

dependenci es {
cl asspath 'org. akhi khl .gretty:gretty:1.4.2'

}

}
apply plugin: "org.akhi khl.gretty'

This aso applies the War plugin to your project. Running gr adl e appRun will run your web application
in an embedded servlet container. Running gr adl e appRunWar will build the WAR file, and then run it
in an embedded web container.

49.3. Summary

Y ou can find out more about the War plugin in Chapter 50, The War Plugin. Y ou can find more sample Java
projectsin the sanpl es/ webAppl i cat i on directory in the Gradle distribution.

Page 457 of 654

50

TheWar Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It
disables the default JAR archive generation of the Java plugin and adds a default WAR archive task.

50.1. Usage

To use the War plugin, include the following in your build script:

Example 50.1. Using the War plugin

bui | d. gradl e

apply plugin: "war'

50.2. Tasks

The War plugin adds the following tasks to the project.

Table50.1. War plugin - tasks

Task name Dependson Type Description

war conpil e War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table50.2. War plugin - additional task dependencies

Task name Depends on

assemble war

Figure50.1. War plugin - tasks

classes]4—[war H

assemble

Page 458 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.War.html

50.3. Project layout

Table50.3. War plugin - project layout

Directory M eaning

src/ mai n/ webapp Web application sources

50.4. Dependency management

The War plugin adds two dependency configurations named pr ovi dedConpi | e and pr ovi dedRunt i me

. Those two configurations have the same scope as the respective conpi | e and r unt i me configurations,
except that they are not added to the WAR archive. It is important to note that those pr ovi ded
configurations work transitively. Let’s say you add conmons- ht t pcl i ent: commons-httpclient: 3.0
to any of the provided configurations. This dependency has a dependency on conmons- codec. Because
thisisa“provided” configuration, this means that neither of these dependencies will be added to your WAR,

even if the conmons- codec library is an explicit dependency of your conpi | e configuration. If you
don’t want this transitive behavior, simply declare your pr ovi ded dependencieslike cormons- ht t pcli ent:

50.5. Convention properties

Table50.4. War plugin - directory properties

Property name Type Default value Description

webAppDirNanme String src/ mai n/ webapp The name of the web application
source directory, relative to the project
directory.

webAppDi r File proj ect Di r / webAppDiheMetpeapplication source directory.
(read-only)

These properties are provided by aWar Pl ugi nConvent i on convention object.

50.6. War

The default behavior of the War task is to copy the content of src/ mai n/ webapp to the root of the
archive. Your webapp directory may of course contain a WEB- | NF sub-directory, which may contain aweb. xm
file. Your compiled classes are compiled to WEB- | NF/ cl asses. All the dependencies of ther unt i me [

28] configuration are copied to WEB- | NF/ | i b.

TheWar classinthe APl documentation has additional useful information.

Page 459 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.WarPluginConvention.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.War.html

50.7. Customizing

Here is an example with the most important customization options:

Example 50.2. Customization of war plugin
bui |l d. gradl e

configurations {
nor eLi bs

}

repositories {
flatDir { dirs "lib" }
jcenter()

}

dependenci es {
conpi | e modul e(": conpile:1.0") {
dependency ":conpile-transitive-1.0@ar"
dependency ": provi dedConpile-transitive:1. 0@ar"
}
provi dedConpi |l e "j avax. servl et: servl et -api: 2. 5"
provi dedConpi | e nodul e(": provi dedConpi |l e: 1. 0") {

dependency ": provi dedConpile-transitive: 1. 0@ar"

}

runtime ":runtine:1.0"

provi dedRuntine ":provi dedRuntine: 1. 0@ ar"
testConpile "junit:junit:4. 12"

noreLi bs ": ot herLi b: 1. 0"

{

from'src/rootContent' // adds a file-set to the root of the archive

webl nf { from'src/additional Wbinf' } // adds a file-set to the WEB-INF dir
classpath fileTree(' additionalLibs') // adds a file-set to the WEB-INF/Iib d
cl asspath configurations. noreLibs // adds a configuration to the WEB-I|NF/ i
webXm = file('src/someWeb.xm ") // copies a file to VEB-I|NF/ web. xni

Of course one can configure the different file-sets with a closure to define excludes and includes.

[26] Ther unt i me configuration extends the conpi | e configuration.

Page 460 of 654

51

The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task.
It doesn’t require the Java plugin, but for projects that also use the Java plugin it disables the default JAR
archive generation.

51.1. Usage

To use the Ear plugin, include the following in your build script:

Example51.1. Using the Ear plugin

buil d. gradl e

apply plugin: 'ear’

51.2. Tasks

The Ear plugin adds the following tasks to the project.

Table51.1. Ear plugin - tasks

Task Depends on Type Description

name

ear conpi | e (only if the Java plugin is also Ear Assembles the application EAR
applied) file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table51.2. Ear plugin - additional task dependencies

Task name Depends on

assemble ear

Page 461 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ear.Ear.html

51.3. Project layout

Table51.3. Ear plugin - project layout
Directory Meaning

src/ mai n/ application Earresources, such asaMETA-INF directory

51.4. Dependency management

The Ear plugin adds two dependency configurations: depl oy and ear | i b. All dependenciesin the depl oy
configuration are placed in the root of the EAR archive, and are not transitive. All dependenciesintheear| i b
configuration are placed in the 'lib' directory in the EAR archive and are transitive.

51.5. Convention properties

Table51.4. Ear plugin - directory properties

Property name Type Default value Descriptic
appDi r Nare String src/ main/ application Thename
directory,
directory.
[i bDi r Name String [ib The name
the genera

depl oynent Descri ptor org. gradl e. pl ugi ns. ear . AlesploymentrdeBerptosmitint Dddetnilasa i
sensible defaults named appl | ¢ alesaiptorr

. If thisfile

then the e

be used

configurati

will beign

These properties are provided by a Ear Pl ugi nConvent i on convention object.

Page 462 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ear.EarPluginConvention.html

51.6. Ear

The default behavior of the Ear task isto copy the content of sr ¢/ mai n/ appl i cat i on to theroot of the
archive. If your appl i cat i on directory doesn’t contain a META- | NF/ appl i cat i on. xm deployment
descriptor then one will be generated for you.

The Ear classin the APl documentation has additional useful information.

51.7. Customizing

Here is an example with the most important customization options:

Example 51.2. Customization of ear plugin

bui |l d. gradl e

apply plugin: "ear'
apply plugin: 'java'

repositories { mavenCentral () }

dependenci es {
/1 The follow ng dependencies will be the ear nodul es and
/Il will be placed in the ear root
depl oy project(path: ':war', configuration: 'archives")

/'l The follow ng dependencies will becone ear |libs and w |l
/'l be placed in a dir configured via the IibDi rNanme property
earlib group: 'log4]', name: 'log4]', version: '1.2. 15", ext: 'jar'

{

appDi rName 'src/ main/app' [/ use application nmetadata found in this folder
/] put dependent libraries into APP-INF/lib inside the generated EAR
i bDi r Name ' APP-| NF/|i b’
depl oynent Descriptor { // customentries for application.xmn:
fileName = "application.xm" // same as the default val ue
version = "6" // same as the default val ue
appl i cati onNane = "custonear"”
initializelnOder = true
di spl ayNanme = "Custom Ear" // defaults to project.nane
/] defaults to project.description if not set
description = "My custom zed EAR for the G adl e docunentation"
libraryDirectory = "APP-INF/lib" // not needed, above |ibDirNanme settir
nmodul e("my.jar", "java") // won't deploy as ny.jar isn't depl oy dependg
webModul e("nmy.war", "/") [/ won't deploy as my.war isn't depl oy dependd
securityRol e "adm n"
securityRol e "superadn n"
withXm { provider -> // add a custom node to the XM
provi der. asNode() . appendNode(" dat a- source”, "ny/datal/source")

Page 463 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ear.Ear.html

Y ou can aso use customization options that the Ear task provides, such asf r omand et al nf .

51.8. Using custom descriptor file

You may already have appropriate settings in a appl i cat i on. xm file and want to use that instead of
configuring the ear . depl oyment Descri pt or section of the build script. To accommodate that goal,
placethe VETA- | NF/ appl i cati on. xm intheright place inside your source folders (see the appDi r Narre

property). The file contents will be used and the explicit configuration in the ear . depl oynent Descri pt or
will beignored.

Page 464 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ear.Ear.html

52

The Jetty Plugin

This plugin has been removed as of Gradle 4.0. We recommend using the Gretty plugin instead.

Page 465 of 654

https://github.com/akhikhl/gretty

53

The Application Plugin

The Application plugin facilitates creating an executable VM application. It makes it easy to start the
application locally during development, and to package the application as a TAR and/or ZIP including
operating system specific start scripts.

Applying the Application plugin aso implicitly applies the Java plugin. The mai n source set is effectively
the “application”.

Applying the Application plugin also implicitly applies the Distribution plugin. A mai n distribution is
created that packages up the application, including code dependencies and generated start scripts.

53.1. Usage

To use the application plugin, include the following in your build script:

Example 53.1. Using the application plugin

bui |l d. gradl e
apply plugin: "application'

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry point) of the
application.

Example 53.2. Configure the application main class

bui |l d. gradl e

mai nCl assNane = "org. gradl e. sanpl e. Mai n"

You can run the application by executing the r un task (type: JavaExec). This will compile the main
source set, and launch anew JVM with its classes (along with al runtime dependencies) as the classpath and
using the specified main class. Y ou can launch the application in debug mode with gr adl e run --debug-jv
(see JavaExec. set Debug(bool ean)).

If your application requires a specific set of VM settings or system properties, you can configure the appl i cat i
property. These VM arguments are applied to the r un task and also considered in the generated start
scripts of your distribution.

Page 466 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug(boolean)

Example 53.3. Configure default JVM settings

bui | d. gradl e

appl i cati onDefaul t JvmArgs = ["-Dgreeting. | anguage=en"]

53.1.1. The distribution

A distribution of the application can be created, by way of the Distribution plugin (which is automatically
applied). A mai n distribution is created with the following content:

Table53.1. Distribution content

Location Content

(root dir) src/ di st

lib All runtime dependencies and main source set classfiles.

bin Start scripts (generated by cr eat eSt art Scri pt s task).

Static files to be added to the distribution can be simply added to sr ¢/ di st . More advanced customization
can be done by configuring the Copy Spec exposed by the main distribution.

Example 53.4. Include output from other tasksin the application distribution
bui |l d. gradl e

task createDocs {
def docs = file("$buil dDir/docs")
out puts.dir docs
doLast {
docs. nkdi rs()
new Fi | e(docs, "readne.txt").wite("Read ne!")

}

di stributions {
mai n {
contents {
from(creat eDocs) {
into "docs"

By specifying that the distribution should include the task’s output files (see Section 19.10.1, “Task inputs
and outputs’), Gradle knows that the task that produces the files must be invoked before the distribution can
be assembled and will take care of thisfor you.

Page 467 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/CopySpec.html

Example 53.5. Automatically creating filesfor distribution
Output of gradl e di stZip

> gradle distzip

:creat eDocs

:conpi | eJava

: processResour ces NO- SOURCE
1 cl asses

vjar

:startScripts

cdistZip

BUI LD SUCCESSFUL in Os
5 actionable tasks: 5 executed

Youcanrungradl e i nstall D st to create animage of the applicationin bui | d/ i nstal | / proj ect Na
.Youcanrungradl e di st Zi p tocreate aZIP containing the distribution, gr adl e di st Tar to create
an application TAR or gr adl e assenbl e to build both.

53.1.2. Customizing start script generation

The application plugin can generate Unix (suitable for Linux, Mac OS X etc.) and Windows start scripts out
of the box. The start scripts launch a VM with the specified settings defined as part of the original build and
runtime environment (e.g. JAVA_OPTS env var). The default script templates are based on the same scripts
used to launch Gradleitself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of
CreateStart Scri pts for more details and customization examples.

53.2. Tasks

The Application plugin adds the following tasks to the project.

Page 468 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html

Table53.2. Application plugin - tasks

Task name Dependson Type Description

run cl asses JavaExec Starts the application.

startScripts jar CreateStartScripts Creates OS specific scripts to
run the project as a JVM
application.

i nstal |l Di st jar,startScriptSync Installs the application into a
specified directory.

distzZip jar,startScriptap Creates a full distribution

ZIP archive including
runtime libraries and OS
specific scripts.

di st Tar jar,start Scri pt¥ar Creates a full distribution
TAR archive including
runtime libraries and OS
specific scripts.

53.3. Convention properties

The application plugin adds some properties to the project, which you can use to configure its behaviour.
Seethe Pr oj ect classinthe APl documentation.

Page 469 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html

54

TheJava Library Distribution Plugin

The Java library distribution plugin is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library. The
distribution contains the JAR file for the library and its dependencies.

54.1. Usage

To use the Javalibrary distribution plugin, include the following in your build script:

Example 54.1. Using the Java library distribution plugin

bui | d. gradl e

apply plugin: 'java-library-distribution'

To define the name for the distribution you have to set the baseNane property as shown below:

Example 54.2. Configure the distribution name
bui |l d. gradl e
di stributions {

mai n{
baseNane = ' ny- nane'

}

The plugin builds a distribution for your library. The distribution will package up the runtime dependencies
of thelibrary. All filesstored in sr ¢/ nai n/ di st will be added to the root of the archive distribution. Y ou
canrun“gr adl e di st Zi p” to create a ZIP file containing the distribution.

54.2. Tasks

The Javalibrary distribution plugin adds the following tasks to the project.

Page 470 of 654

Table54.1. Java library distribution plugin - tasks

Task Depends Type Description

name on

distzZip jar Zip Creates a full distribution ZIP archive including runtime
libraries.

54.3. Including other resources in the distribution

All of the files from the sr c/ di st directory are copied. To include any static files in the distribution,
simply arrangetheminthe src/ di st directory, or add them to the content of the distribution.

Example 54.3. Includefilesin the distribution

bui | d. gradl e

di stributions {
mai n {
baseNane = ' nmy- nang'
contents {

from{ 'src/dist' }

Page 471 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html

55

Groovy Quickstart

To build a Groovy project, you use the Groovy plugin. This plugin extends the Java plugin to add Groovy
compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or
a mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have
already seen in Chapter 46, Java Quickstart.

55.1. A basic Groovy project

Let’slook at an example. To use the Groovy plugin, add the following to your build file:

Example 55.1. Groovy plugin

bui | d. gradl e

apply plugin: 'groovy'

Note: The code for this example can be found at sanpl es/ gr oovy/ qui ckstart in the ‘-al’
distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin
extends the conpi | e task to look for sourcefilesin directory sr ¢/ mai n/ gr oovy, and the conpi | eTest
task to look for test source filesin directory src/ t est/ gr oovy. The compile tasks use joint compilation
for these directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the
Groovy libraries. You do this by adding a dependency to the gr oovy configuration. The conpi |l e
configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling
Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Example 55.2. Dependency on Groovy

bui |l d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpi |l e ' org. codehaus. groovy: groovy-al | : 2. 4. 10"

}

Page 472 of 654

Here is our complete build file:

Example 55.3. Groovy example - complete build file
bui |l d. gradl e

apply plugin: "eclipse'
apply plugin: 'groovy'

repositories {
mavenCent ral ()

}

dependenci es {
conpi | e ' org. codehaus. groovy: groovy-all:2.4.10'
testConpile "junit:junit:4.12'

Running gr adl e bui | d will compile, test and JAR your project.

55.2. Summary

This chapter describes a very simple Groovy project. Usualy, a real project will require more than this.
Because a Groovy project is a Java project, whatever you can do with a Java project, you can also do with a
Groovy project.

Y ou can find out more about the Groovy plugin in Chapter 56, The Groovy Plugin, and you can find more
sample Groovy projectsin the sanpl es/ gr oovy directory in the Gradle distribution.

Page 473 of 654

56

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy
code, mixed Groovy and Java code, and even pure Java code (although we don’t necessarily recommend to
use it for the latter). The plugin supports joint compilation, which allows you to freely mix and match
Groovy and Java code, with dependencies in both directions. For example, a Groovy class can extend a Java
class that in turn extends a Groovy class. This makes it possible to use the best language for the job, and to
rewrite any classin the other language if needed.

56.1. Usage

To use the Groovy plugin, include the following in your build script:

Example 56.1. Using the Groovy plugin

bui | d. gradl e

apply plugin: 'groovy'

56.2. Tasks

The Groovy plugin adds the following tasks to the project.

Page 474 of 654

Table 56.1. Groovy plugin - tasks

Task name Dependson Type Description

conpi | eG oovy conpi | eJava GroovyConpil e Compiles production
Groovy source files.

conpi | eTest G oovy conpileTestJava G oovyConpile Compiles test Groovy
sourcefiles.

conpi | eSour ceSet G omonpi | eSour ceSet J&waovyConpil e Compiles the given
source set’'s Groovy

source files.

gr oovydoc - G oovydoc Generates API
documentation for the
production Groovy
sourcefiles.

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 56.2. Groovy plugin - additional task dependencies

Task name Dependson
cl asses conpi | eGr oovy
test Cl asses conpi | eTest G oovy

sourceSet Cl asses comnpi | eSour ceSet G oovy

Figure 56.1. Groovy plugin - tasks

{ processResources
compileGroovy

processTestResources

CompileTestGroovy I'

testClasses

classes

compileTestJava

56.3. Project layout

The Groovy plugin assumes the project layout shown in Table 56.3, “Groovy plugin - project layout”. All
the Groovy source directories can contain Groovy and Java code. The Java source directories may only
contain Java source code.[27] None of these directories need to exist or have anything in them; the Groovy
plugin will simply compile whatever it finds.

Page 475 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Table 56.3. Groovy plugin - project layout

Directory Meaning

src/ mai n/java Production Java source

src/ mai n/ resour ces Production resources

src/ mai n/ gr oovy Production Groovy sources. May also contain Java sources for joint
compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/ groovy Test Groovy sources. May aso contain Java sources for joint
compilation.

src/ sourceSet /j ava Java source for the given source set

src/ sour ceSet / r esour ces Resources for the given source set

src/ sour ceSet / groovy Groovy sources for the given source set. May aso contain Java
sources for joint compilation.

56.3.1. Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production
and test sources.

Example 56.2. Custom Groovy sour ce layout
bui |l d. gradl e

sourceSets {
mai n {
groovy {
srcDirs ["src/groovy']

}

}

test {

groovy {
srcDirs ["test/groovy']

Page 476 of 654

56.4. Dependency management

Because Gradle's build language is based on Groovy, and parts of Gradle are implemented in Groovy,
Gradle already ships with a Groovy library. Nevertheless, Groovy projects need to explicitly declare a
Groovy dependency. This dependency will then be used on compile and runtime class paths. It will also be
used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the conpil e
configuration:

Example 56.3. Configuration of Groovy dependency

bui | d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpi |l e ' org. codehaus. groovy: groovy-all:2.4.10

}

If Groovy is only used for test code, the Groovy dependency should be added to the t est Conpi | e
configuration:

Example 56.4. Configuration of Groovy test dependency

bui | d. gradl e

dependenci es {

t est Conpi | e ' or g. codehaus. groovy: groovy-all:2.4.10

}

To use the Groovy library that ships with Gradle, declare a | ocal G- oovy() dependency. Note that
different Gradle versions ship with different Groovy versions; as such, using | ocal G oovy() isless safe
then declaring aregular Groovy dependency.

Example 56.5. Configuration of bundled Groovy dependency

buil d. gradl e

dependenci es {
conpi | e | ocal G oovy()

}

The Groovy library doesn’t necessarily have to come from a remote repository. It could also come from a
local | i b directory, perhaps checked in to source control:

Page 477 of 654

Example 56.6. Configuration of Groovy file dependency
buil d. gradl e
repositories {
flatDir { dirs "lib" }
}
dependenci es {

conpi | e modul e(' or g. codehaus. groovy: groovy: 2. 4.10') {
dependency(' org. ow2. asmasmal | : 5. 0. 3")

dependency('antlr:antlr:2.7.7")
dependency(' commons-cli:commons-cli:1.2")
nodul e(' org. apache. ant:ant:1.9.4") {
dependenci es(' org. apache. ant:ant-junit:1.9.4@ar"',
' org. apache. ant: ant - | auncher: 1. 9. 4")

The “nmodul e” reference may be new to you. See Chapter 25, Dependency Management for more
information about this and other information about dependency management.

56.5. Automatic configuration of groovyClasspath

The Gr oovyConpi | e and Gr oovydoc tasks consume Groovy code in two ways: on their cl asspat h,
and on their gr oovyd asspat h. The former is used to locate classes referenced by the source code, and
will typically contain the Groovy library along with other libraries. The latter is used to load and execute the
Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its
dependencies.

Unless atask’s gr oovyC asspat h is configured explicitly, the Groovy (base) plugin will try to infer it
from thetask’scl asspat h. Thisis done asfollows:

® |[fagroovy-all (-indy) Jarisfoundoncl asspat h, that jar will be added to gr oovyCl asspat h

® [fagroovy(-indy) jarisfoundoncl asspat h, and the project has at least one repository declared,
acorresponding gr oovy(- i ndy) repository dependency will be added to gr oovyCl asspat h.

® Otherwise, execution of the task will fail with a message saying that gr oovyd asspat h could not be
inferred.

Notethat the“- i ndy” variation of each jar refersto the version with i nvokedynami ¢ support.

56.6. Convention properties

The Groovy plugin does not add any convention properties to the project.

Page 478 of 654

56.7. Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. You can use
these propertiesin your build script as though they were properties of the source set object.

Table 56.4. Groovy plugin - source set properties

Property name Type Default value Description
gr oovy Sour ceDi r ect or ySet Not null The Groovy source files of
(read-only) this source set. Containsall . gr oov'

and . j ava filesfound in the
Groovy source directories,
and excludes al other types
of files.

groovy.srcDirs Set<File> Can set [projectDir/sFhg nasoerap oaligdctories

using anything described containing the Groovy
in Section 20.5, source files of this source
“Specifying a set of input set. May aso contain Java
files'. source files for joint
compilation.
al | G oovy Fi | eTr ee (read-only) Not null All Groovy source files of

this source set. Contains only
the . groovy files found in
the Groovy source
directories.

These properties are provided by a convention object of type Gr oovy Sour ceSet .
The Groovy plugin aso modifies some source set properties:

Table 56.5. Groovy plugin - source set properties

Property name Change

al | Java Addsall . j ava filesfound in the Groovy source directories.

al | Source Adds all source files found in the Groovy source directories.

Page 479 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.GroovySourceSet.html

56.8. GroovyCompile

The Groovy plugin adds a Gr oovy Conpi | e task for each source set in the project. The task type extends
the JavaConpi | e task (see Section 47.11, “CompileJava’). The Gr oovyConpi | e task supports most
configuration options of the official Groovy compiler.

Table 56.6. Groovy plugin - GroovyCompile properties

Task Property Type Default Value
cl asspath Fil eCol |l ection sourceSet . conpi | ed asspat h
source Fi | eTree. Can set using anything sourceSet . gr oovy

described in Section 20.5, “ Specifying
aset of input files”.

destinationDir File. sourceSet . groovy. outputDir

groovyCl asspath FileCollection gr oovy configuration if
non-empty; Groovy library found
on cl asspat h otherwise

56.9. Compiling and testing for Java 6 or Java 7

The Groovy compiler will always be executed with the same version of Java that was used to start Gradle.
You should set sour ceConpatibility andtarget Conpatibility tol.6 orl.7.If youaso
have Java sources, you can follow the same steps as for the Java plugin to ensure the correct Java compiler
isused.

Page 480 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileCollection.html

Example 56.7. Configure Java 6 build for Groovy

gradl e. properties

in $HOVE/ . gradl e/ gradl e. properties

j avabHome=/ Li br ary/ Java/ JavaVi r t ual Machi nes/ 1. 6. 0. j dk/ Cont ent s/ Honme

bui | d. gradl e

sourceConpatibility
target Conpati bility

assert hasProperty('java6Hone') : "Set the property 'java6Hone' in your your gr
def javaExecutabl esPath = new Fil e(j avabHone, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPat h, execNane)
assert executable.exists() : "There is no ${execNane} executable in ${javaFE;
execut abl e
}
t asks. wi t hType(Abstract Conpi |l e) {
options.with {
fork = true
forkOptions. javaHone = fil e(j ava6Hone)

}

}
tasks. w t hType(Javadoc) {

execut abl e = j avaExecut abl es. j avadoc

}
tasks. w t hType(Test) {

execut abl e = j avaExecut abl es. j ava

}
tasks. wi t hType(JavaExec) {

execut abl e = j avaExecut abl es. j ava

}

[27] We are using the same conventions as introduced by Russel Winder's Gant tool (https://gant.github.io/).

Page 481 of 654

https://gant.github.io/

S5/

The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code,
mixed Scala and Java code, and even pure Java code (although we don’t necessarily recommend to use it for
the latter). The plugin supports joint compilation, which allows you to freely mix and match Scala and Java
code, with dependencies in both directions. For example, a Scala class can extend a Java class that in turn
extends a Scala class. This makes it possible to use the best language for the job, and to rewrite any classin
the other language if needed.

5/7.1. Usage

To use the Scala plugin, include the following in your build script:

Example 57.1. Using the Scala plugin

bui |l d. gradl e

apply plugin: 'scala'

57.2. Tasks

The Scala plugin adds the following tasks to the project.

Page 482 of 654

Table57.1. Scala plugin - tasks

Task name Dependson Type Description
conpi | eScal a conpi | eJava Scal aConpil e Compiles production Scala
sourcefiles.

conpi | eTest Scal a conpi | eTest Java Scal aConpi |l e Compiles test Scala source
files.

conpi | eSour ceSet Scalaapi | e Sour ceSet J&ical aConpi | e Compiles the given source
set’s Scala source files.

scal adoc - Scal aDoc Generates API
documentation for the
production Scala source
files.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Table 57.2. Scala plugin - additional task dependencies

Task name Dependson
cl asses conpi | eScal a
t est Cl asses conpi | eTest Scal a

sourceSet Cl asses conpi | eSour ceSet Scal a

Figure57.1. Scala plugin - tasks

compileJava [processResources
compileScala

scaladoc

processTestResources

compileTestScala I '

testClasses

classes

compileTestJava

57.3. Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can contain Scala
and Java code. The Java source directories may only contain Java source code. None of these directories
need to exist or have anything in them; the Scala plugin will simply compile whatever it finds.

Page 483 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Table 57.3. Scala plugin - project layout

Directory Meaning

src/ mai n/java Production Java source

src/ mai n/ resour ces Production resources

src/ mai n/ scal a Production Scala sources. May also contain Java sources for joint
compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/scal a Test Scala sources. May also contain Java sources for joint
compilation.

src/ sourceSet /j ava Java source for the given source set

src/ sour ceSet / r esour ces Resources for the given source set

src/ sourceSet / scal a Scala sources for the given source set. May also contain Java sources

for joint compilation.

57.3.1. Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and

test sources.

Example 57.2. Custom Scala sour ce layout
bui |l d. gradl e

sourceSets {
mai n {
scal a {
srcDirs ["src/scala']

}

}

test {
scal a {
srcDirs ['test/scal a']

Page 484 of 654

57.4. Dependency management

Scala projects need to declare a scal a- | i brary dependency. This dependency will then be used on
compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc toal,
respectively.[28]

If Scalais used for production code, the scal a- | i br ary dependency should be added to the comnpi | e
configuration:

Example 57.3. Declaring a Scala dependency for production code

bui |l d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpile 'org.scal a-lang: scala-library:2.11.8
test Conpil e 'org.scal atest:scal atest_2.11:3.0.0'
testConpile 'junit:junit:4.12

If Scalaisonly used for test code, thescal a- | i br ary dependency should be added to thet est Conpi | e
configuration:

Example 57.4. Declaring a Scala dependency for test code

bui |l d. gradl e

dependenci es {
test Conmpil e "org. scal a-l ang: scal a-library: 2. 11. 1"

}

57.5. Automatic configuration of scalaClasspath

The Scal aConpi | e and Scal aDoc tasks consume Scala code in two ways: on their cl asspat h, and
on their scal aCl asspat h. The former is used to locate classes referenced by the source code, and will
typically contain scal a- | i brary aong with other libraries. The latter is used to load and execute the
Scala compiler and Scaladoc tool, respectively, and should only contain the scal a- conpi | er library and
its dependencies.

Unlessatask’sscal aCl asspat h is configured explicitly, the Scala (base) plugin will try to infer it from
thetask’scl asspat h. Thisisdone asfollows:

® |fascal a-1ibrary jarisfoundoncl asspat h, and the project has at least one repository declared,
acorresponding scal a- conpi | er repository dependency will be added to scal aCl asspat h.

® Otherwise, execution of the task will fail with a message saying that scal aCl asspat h could not be
inferred.

Page 485 of 654

57.6. Configuring the Zinc compiler

The Scala plugin uses a configuration named zi nc to resolve the Zinc compiler and its dependencies.
Gradle will provide a default version of Zinc, but if you need to use a particular Zinc version, you can add
an explicit dependency like“ com t ypesaf e. zi nc: zi nc: 0. 3. 6” tothezi nc configuration. Gradle
supports version 0.3.0 of Zinc and above; however, due to a regression in the Zinc compiler, versions 0.3.2
through 0.3.5.2 cannot be used.

Example 57.5. Declaring a version of the Zinc compiler to use
bui |l d. gradl e

dependenci es {
zinc 'comtypesafe.zinc:zinc:0.3.9'

}

It is important to take care when declaring your scal a- | i br ary dependency. The Zinc compiler
itself needs a compatible version of scal a-|i brary that may be different from the version
required by your application. Gradle takes care of adding a compatible version of scal a-1i brary
for you, but over-broad dependency resolution rules could force an incompatible version to be used
instead.

For example, using confi gurati ons. al | to force a particular version of scal a-1i brary
would also override the version used by the Zinc compiler:

Example 57.6. Forcing a scala-library dependency for all configurations

bui |l d. gradl e

configurations.all {
resol utionStrategy.force "org.scal a-l ang: scala-library: 2. 11. 7"

}

The best way to avoid this problem is to be more selective when configuring the scal a- 1 i brary
dependency (such as not using a confi gurati on. al | rule or using a conditional to prevent the
rule from being applied to the zi nc configuration). Sometimes this rule may come from a plugin or
other code that you do not have control over. In such a case, you can force a correct version of the
library on the zi nc configuration only:

Example 57.7. Forcing a scala-library dependency for the zinc configuration

buil d. gradl e

configurations. zinc {
resol utionStrategy.force "org.scal a-1ang: scal a-1ibrary: 2. 10. 5"

}

Y ou can diagnose problems with the version of the Zinc compiler selected by running dependencylnsight
for the zi nc configuration.

Page 486 of 654

https://github.com/typesafehub/zinc

57.7. Convention properties

The Scala plugin does not add any convention properties to the project.

57.8. Source set properties

The Scala plugin adds the following convention properties to each source set in the project. You can use
these properties in your build script as though they were properties of the source set object.

Table 57.4. Scala plugin - sour ce set properties

Property name Type Default value Description
scal a Sour ceDi r ect or ySet Not null The Scala source files of this
(read-only) source set. Containsall . scal a

and . j ava files found in the
Scala source directories, and
excludes all other types of
files.

scala.srcDirs Set<File> Can set [projectDir/sTFhe naseurseal airectories

using anything described containing the Scala source
in Section 20.5, files of this source set. May
“Specifying a set of input also contain Java source files
files'. for joint compilation.

al | Scal a Fi | eTr ee (read-only) Not null All Scala source files of this

source set. Contains only the . scal a
files found in the Scala source
directories.

These convention properties are provided by a convention object of type Scal aSour ceSet .
The Scala plugin also modifies some source set properties:

Table 57.5. Scala plugin - sour ce set properties

Property name Change

al | Java Addsal . j ava filesfound in the Scala source directories.

al | Source Adds all sourcefiles found in the Scala source directories.

Page 487 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.ScalaSourceSet.html

57.9. Compiling in external process

Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the VM. To adjust memory settings,
configurethe scal aConpi | eOpt i ons. f or kOpt i ons property as needed:

Example 57.8. Adjusting memory settings

bui | d. gradl e

tasks. wi t hType(Scal aConpi |l e) {
confi gure(scal aConpi | eOpti ons. forkOpti ons) {
menor yMaxi munsi ze = ' 1¢g'

jvmArgs = [' - XX MaxPer nSi ze=512m]

57.10. Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and classes
affected by these changes, incremental compilation can significantly reduce Scala compilation time. It is
particularly effective when frequently compiling small code increments, as is often done at development
time.

The Scala plugin defaults to incremental compilation by integrating with Zinc, a standalone version of sht's
incremental Scala compiler. If you want to disable the incremental compilation, set f orce = true in
your build file:

Example 57.9. Forcing all code to be compiled

bui |l d. gradl e

tasks. wi t hType(Scal aConpi |l) {
scal aConpi | eOptions.with {
force = true

}

Note: Thiswill only cause all classes to be recompiled if at least one input source file has changed. If there
are no changes to the source files, the conpi | eScal a task will still be considered UP- TO- DATE as usual.

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all Java and
Scalacode under sr ¢/ mai n/ scal a will participate in joint compilation. Even Java code will be compiled
incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are
stored in the file designated by scal aConpi | eOpti ons. i ncrenent al Opti ons. anal ysi sFil e
(which has a sensible default). In amulti-project build, analysis files are passed on to downstream Scal aConpi |

Page 488 of 654

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt

tasks to enable incremental compilation across project boundaries. For Scal aConpi | e tasks added by the
Scala plugin, no configuration is necessary to make this work. For other Scal aComnpi | e tasks that you
might add, the property scal aConpi | eOpti ons. i ncrenent al Opti ons. publ i shedCode needs
to be configured to point to the classes folder or Jar archive by which the code is passed on to compile class
paths of downstream Scal aConpi | e tasks. Note that if publi shedCode is not set correctly,
downstream tasks may not recompile code affected by upstream changes, leading to incorrect compilation
results.

Note that Zinc's Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle's own
compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. Thisis expected
to yield another significant speedup for Scala compilation.

57.11. Compiling and testing for Java 6 or Java 7

The Scala compiler ignores Gradle'st ar get Conpati bi | ity and sour ceConpati bility settings.
In Scala 2.11, the Scala compiler always compiles to Java 6 compatible bytecode. In Scala 2.12, the Scala
compiler always compiles to Java 8 compatible bytecode. If you also have Java sources, you can follow the
same steps as for the Java plugin to ensure the correct Java compiler is used.

Example 57.10. Configure Java 6 build for Scala

gradl e. properties

in $HOWE . gradl e/ gradl e. properties

j avabHome=/ Li br ary/ Java/ JavaVi r t ual Machi nes/ 1. 6. 0. j dk/ Cont ent s/ Hone

bui | d. gradl e
sourceConpatibility = 1.6

assert hasProperty('java6Hone') : "Set the property 'java6Hone' in your your gr{
def javaExecutabl esPath = new Fil e(j avabHonme, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPath, execNane)
assert executable.exists() : "There is no ${execNanme} executable in ${] avaEj
execut abl e

}

t asks. wi t hType(Abstract Conpi |l e) {
options.with {
fork = true

forkOptions.javaHone = fil e(j ava6Hone)

}

}
tasks. wi t hType(Test) {

execut abl e = j avaExecut abl es. j ava
}
tasks. wi t hType(JavaExec) {
execut abl e = j avaExecut abl es. j ava
}
tasks. w t hType(Javadoc) {
execut abl e = j avaExecut abl es. j avadoc

}

Page 489 of 654

57.12. Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project
work with Scala IDE out of the box. Specificaly, the plugin adds a Scala nature and dependency container.

57.13. IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work
with IDEA out of the box. Specifically, the plugin adds a Scala SDK (IntelliJ IDEA 14+) and a Scala
compiler library that matches the Scala version on the project’s class path. The Scala plugin is backwards
compatible with earlier versions of IntelliJ IDEA and it is possible to add a Scala facet instead of the default
Scala SDK by configuring t ar get Ver si on on| deaModel .

Example 57.11. Explicitly specify a target IntelliJ IDEA version

bui | d. gradl e

i dea {
target Version = "13"

}

[28] See Section 57.5, “ Automatic configuration of scalaClasspath”.

Page 490 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html

58

The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsersusing ANTLR.

The ANTLR plugin supports ANTLR version 2, 3 and 4.

58.1. Usage

To usethe ANTLR plugin, include the following in your build script:

Example 58.1. Using the ANTLR plugin

bui | d. gradl e

apply plugin: "antlr'

58.2. Tasks

The ANTLR plugin adds a number of tasks to your project, as shown below.

Table58.1. ANTLR plugin - tasks

Task name Depends Type

on
gener at eG anmar Sour ce - Ant | r Task
gener at eTest G ammar Sour ce - Ant | r Task
gener at e Sour ceSet G amrar Sour-ce Ant | r Task

Description

Generates the source files for all
production ANTLR grammars.

Generates the source files for all
test ANTLR grammars.

Generates the source files for all
ANTLR grammars for the given
source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

Page 491 of 654

http://www.antlr.org/
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Table58.2. ANTLR plugin - additional task dependencies

Task name Dependson
conpi | eJava gener at eG ammar Sour ce
conpi | eTest Java gener at eTest G anmmar Sour ce

conpi | eSour ceSet Java gener at eSour ceSet Gr anmar Sour ce

58.3. Project layout
Table58.3. ANTLR plugin - project layout

Directory M eaning

src/ main/antlr Production ANTLR grammar files. If the ANTLR grammar is organized in
packages, the structure in the antlr folder should reflect the package structure.
This ensures that the generated sources end up in the correct target subfolder.

src/test/antlr Test ANTLR grammar files.

src/ sour ceSet / antANTLR grammar files for the given source set.

58.4. Dependency management

The ANTLR plugin adds an ant | r dependency configuration which provides the ANTLR implementation
to use. The following example shows how to use ANTLR version 3.

Example 58.2. Declare ANTLR version

bui | d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3
/'l antlr "org.antlr:antlr4:4.5" // use ANTLR version 4

If no dependency is declared, antlr:antlr:2.7.7 will be used as the default. To use a different
ANTLR version add the appropriate dependency to the ant | r dependency configuration as above.

Page 492 of 654

58.5. Convention properties

The ANTLR plugin does not add any convention properties.

58.6. Source set properties

The ANTLR plugin adds the following properties to each source set in the project.

Table58.4. ANTLR plugin - source set properties

Property name

antlr

antlr.srcDirs

Type

Sour ceDi r ect or ySet
(read-only)

Set<File> Can set
using anything described
in Section 20.5,
“Specifying a set of input
files'.

Default value Description

Not null The ANTLR grammar files of
this source set. Containsall . g
or .g4 files found in the
ANTLR source directories,
and excludes all other types of
files.

[proj ect Di r / sFle¢ naseuraet | rdirectories
containing the ANTLR
grammar files of this source
Set.

58.7. Controlling the ANTLR generator process

The ANTLR tool is executed in a forked process. This allows fine grained control over memory settings for
the ANTLR process. To set the heap size of a ANTLR process, the maxHeapSi ze property of

Ant | r Task can be used. To pass additional command-line arguments, append to the ar gunent s
property of Ant | r Task.

Example 58.3. setting custom max heap size and extra argumentsfor ANTLR

bui |l d. gradl e

gener at eG ammar Sour ce {

maxHeapSi ze
argunents += ["-visitor",

" 64nt

"-| ong- nessages"]

Page 493 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

59

The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project’s Java source files using Checkstyle and
generates reports from these checks.

59.1. Usage

To use the Checkstyle plugin, include the following in your build script:

Example 59.1. Using the Checkstyle plugin

bui |l d. gradl e

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Checkstyle will run with the same Java version used to run Gradle.

59.2. Tasks

The Checkstyle plugin adds the following tasks to the project:

Table 59.1. Checkstyle plugin - tasks

Task name Dependson Type Description

checkstyl eMain cl asses Checkstyl e Runs Checkstyle against the production
Java sourcefiles.

checkstyl eTest test O asses Checkstyle Runs Checkstyle against the test Java
sourcefiles.

checkst yl eSour ceSedur ceSet O assaweckstyl e Runs Checkstyle against the given
source set’ s Java source files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

Page 494 of 654

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Table 59.2. Checkstyle plugin - additional task dependencies

Task name Dependson

check All Checkstyletasks, including checkst yl eMai n and checkst yl eTest .

59.3. Project layout

By default, the Checkstyle plugin expects the following project layout, but this can be changed:

Table 59.3. Checkstyle plugin - project layout

File Meaning
confi g/ checkstyl e Other Checkstyle configuration files (e.g., suppr essi ons
)

confi g/ checkstyl e/ checkstyl e. xm Checkstyle configuration file

59.4. Dependency management

The Checkstyle plugin adds the following dependency configurations:

Table 59.4. Checkstyle plugin - dependency configurations

Name Meaning

checkstyl e TheCheckstylelibrariesto use

59.5. Configuration

Seethe Checkst yl eExt ensi on classin the API documentation.

59.5.1. Built-in variables

The Checkstyle plugin definesa conf i g_| oc property that can be used in Checkstyle configuration files
to define paths to other configuration files like suppr essi ons. xm .

Example 59.2. Using the config_loc property

confi g/ checkstyl e/ checkstyl e. xm

<nodul e name="SuppressionFilter">

<property nane="file" value="${config_l oc}/suppressions.xm"/>
</ nodul e>

Page 495 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html

59.6. Customizing the HTML report

The HTML report generated by the Checkst yl e task can be customized using a XSLT stylesheet, for
example to highlight specific errors or change its appearance:

Example 59.3. Customizing the HTML report

bui | d. gradl e

t asks. wi t hType(Checkstyl e) {
reports {
xm . enabl ed fal se
ht i . enabl ed true

ht m . styl esheet resources.text.fronFile(' config/xsl/checkstyle-custom xg

View a sample Checkstyle stylesheet.

Page 496 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://github.com/checkstyle/contribution/tree/master/xsl

60

The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project’s Groovy source files using CodeNarc and
generates reports from these checks.

60.1. Usage

To use the CodeNarc plugin, include the following in your build script:

Example 60.1. Using the CodeNar ¢ plugin

bui |l d. gradl e

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks when used with the Groovy Plugil
. You can execute the checks by running gr adl e check.

60.2. Tasks

The CodeNarc plugin adds the following tasks to the project:

Table 60.1. CodeNar c plugin - tasks

Task name Depends Type Description
on
codenar cMai n - CodeNarc Runs CodeNarc against the production Groovy
sourcefiles.
codenar cTest - CodeNarc Runs CodeNarc against the test Groovy source
files.
codenar c Sour ceSet CodeNarc Runs CodeNarc against the given source set’s

Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

Page 497 of 654

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Table 60.2. CodeNar ¢ plugin - additional task dependencies

Task name Dependson

check All CodeNarc tasks, including codenar cMai n and codenar cTest .

60.3. Project layout

The CodeNarc plugin expects the following project layout:

Table 60.3. CodeNar ¢ plugin - project layout

File Meaning

confi g/ codenar c/ codenar c. xm CodeNarc configuration file

60.4. Dependency management

The CodeNarc plugin adds the following dependency configurations:

Table 60.4. CodeNar ¢ plugin - dependency configurations

Name Meaning

codenarc The CodeNarc libraries to use

60.5. Configuration

See the CodeNar cExt ensi on classin the APl documentation.

Page 498 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

ol

The FindBugs Plugin

The FindBugs plugin performs quality checks on your project’s Java source files using FindBugs and
generates reports from these checks.

61.1. Usage

To use the FindBugs plugin, include the following in your build script:

Example 61.1. Using the FindBugs plugin

bui |l d. gradl e
apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Findbugs will run with the same Java version used to run Gradle.

61.2. Tasks

The FindBugs plugin adds the following tasks to the project:

Table 61.1. FindBugs plugin - tasks

Task name Depends on Type Description
fi ndbugsMai n cl asses Fi ndBugs Runs FindBugs against the production Java
sourcefiles.

fi ndbugsTest test Cl asses Fi ndBugs Runs FindBugs against the test Java source
files.

fi ndbugs Sour ceSatour ceSet Cl assd¢$ ndBugs Runs FindBugs against the given source
set’s Java source files.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

Page 499 of 654

http://findbugs.sourceforge.net
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.FindBugs.html

Table 61.2. FindBugs plugin - additional task dependencies

Task name Dependson
check All FindBugs tasks, including f i ndbugsMai n andf i ndbugsTest .

61.3. Dependency management

The FindBugs plugin adds the following dependency configurations:

Table 61.3. FindBugs plugin - dependency configurations

Name Meaning

findbugs The FindBugs libraries to use

61.4. Configuration

See the Fi ndBugsExt ensi on classin the APl documentation.

61.5. Customizing the HTML report

The HTML report generated by the Fi ndBugs task can be customized using a XSLT styleshest, for
example to highlight specific errors or change its appearance:

Example 61.2. Customizing the HTML report

bui |l d. gradl e

t asks. wi t hType(Fi ndBugs) {
reports {

xm . enabl ed fal se

ht ml . enabl ed true

ht m . styl esheet resources.text.fronFile(' config/xsl/findbugs-custom xsl

View a sample FindBugs stylesheet.

Page 500 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
https://github.com/findbugsproject/findbugs/tree/master/findbugs/src/xsl

62

The JDepend Plugin

The JDepend plugin performs quality checks on your project’s source files using JDepend and generates
reports from these checks.

62.1. Usage

To use the IDepend plugin, include the following in your build script:

Example 62.1. Using the JDepend plugin

bui |l d. gradl e
apply plugin: 'jdepend'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that JDepend will run with the same Java version used to run Gradle.

62.2. Tasks

The JDepend plugin adds the following tasks to the project:

Table 62.1. JDepend plugin - tasks

Task name Dependson Type Description

j dependMai n cl asses JDepend Runs JDepend against the production Java
source files.

j dependTest test O asses JDepend Runs JDepend against the test Java source
files.

j depend Sour ceSesour ceSet Cl assedDepend Runs JDepend against the given source set’s
Java sourcefiles.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

Page 501 of 654

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.JDepend.html

Table 62.2. JDepend plugin - additional task dependencies

Task name Dependson

check All JDepend tasks, including j dependMai n and j dependTest .

62.3. Dependency management

The JDepend plugin adds the following dependency configurations:

Table 62.3. JDepend plugin - dependency configurations

Name M eaning

j depend The JDepend libraries to use

62.4. Configuration

See the JDependExt ensi on classin the APl documentation.

Page 502 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.JDependExtension.html

63

The PMD Plugin

The PMD plugin performs quality checks on your project’s Java source files using PMD and generates
reports from these checks.

63.1. Usage

To use the PMD plugin, include the following in your build script:

Example 63.1. Using the PM D plugin

bui | d. gradl e
apply plugin: 'pnd

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Findbugs will run with the same Java version used to run Gradle.

63.2. Tasks

The PMD plugin adds the following tasks to the project:

Table 63.1. PMD plugin - tasks

Task name Depends Type Description
on
prmdMai n - Prd Runs PMD against the production Java source files.
prdTest - Prd Runs PMD against the test Java sourcefiles.
pndSour ceSet - Prd Runs PMD against the given source set’s Java source
files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Page 503 of 654

http://pmd.sourceforge.net
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.Pmd.html

Table 63.2. PMD plugin - additional task dependencies

Task name Dependson

check All PMD tasks, including pndMai n and pndTest .

63.3. Dependency management

The PMD plugin adds the following dependency configurations:

Table63.3. PMD plugin - dependency configurations

Name Meaning

pmd The PMD libraries to use

63.4. Configuration

See the PnrdExt ensi on classin the APl documentation.

Page 504 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.quality.PmdExtension.html

64

The JaCoCo Plugin

The JaCoCo plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code viaintegration with JaCoCo.

64.1. Getting Started

To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.

Example 64.1. Applying the JaCoCo plugin
bui | d. gradl e

apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named j acocoTest Report is created that
depends on the t est task. The report is available at $bui | dDi r / reports/jacoco/test. By
default, aHTML report is generated.

64.2. Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named j acoco of type JacocoPl ugi nExt ensi on, which
allows configuring defaults for JaCoCo usage in your build.
Example 64.2. Configuring JaCoCo plugin settings

bui |l d. gradl e

jacoco {
tool Version = "0.7.9"

reportsDir = file("$buil dDir/customlacocoReportDir")

Page 505 of 654

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Table 64.1. Gradle defaultsfor JaCoCo properties

Property Gradledefault

reportsDir ~ $bui | dDi r / reports/jacoco

64.3. JaCoCo Report configuration

The JacocoReport task can be used to generate code coverage reportsin different formats. It implements
the standard Gradle type Reporting and exposes a report container of type
JacocoReport sCont ai ner.

Example 64.3. Configuring test task

bui |l d. gradl e

j acocoTest Report {
reports {
xm . enabl ed fal se
csv. enabl ed fal se

htm . destination file("${buildDir}/jacocoHtnm ")

._EJ 36 gqic%::;rart
:1 quickstart.
=W quickstart
quickstart
Element Missed Instructions» Cov.- Missed Branches+ Cov.- Missed = Cxty~ Missed - Lin
i org.gradle 100% n/a 0 5 0
Total Oof17 100% 0QOof0 n/a 0 5 1]

64.4. Enforcing code coverage metrics

This feature requires the use of JaCoCo version 0.6.3 or higher.

The JacocoCover ageVeri fi cati on task can be used to verify if code coverage metrics are met
based on configured rules. Its API exposes the method

Page 506 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules(org.gradle.api.Action)

JacocoCoverageVerification.viol ati onRul es(org. gradl e. api.Action) which is
used as main entry point for configuring rules. Invoking any of those methods returns an instance of
JacocoVi ol at i onRul esCont ai ner providing extensive configuration options. The build failsif any
of the configured rules are not met. JaCoCo only reports the first violated rule.

Code coverage requirements can be specified for a project as awhole, for individual files, and for particular
JaCoCo-specific types of coverage, e.g., lines covered or branches covered. The following example
describes the syntax.

Example 64.4. Configuring violation rules
buil d. gradl e

j acocoTest Cover ageVerification {
vi ol ati onRul es {
rule {
limt {
m nimum= 0.5
}
}

rule {
enabl ed = fal se

el ement ' CLASS
includes = ['org.gradle. *']

limt {
counter = 'LINE
val ue = ' TOTALCOUNT"
maxi mum = 0. 3

Note: The code for this example can be found at sanpl es/ t esti ng/j acoco/ qui ckstart in
the*-all’ distribution of Gradle.

TheJacocoCover ageVeri fi cati on task isnot atask dependency of the check task provided by the
Java plugin. There is a good reason for it. The task is currently not incremental as it doesn't declare any

outputs. Any violation of the declared rules would automatically result in afailed build when executing the check

task. This behavior might not be desirable for all users. Future versions of Gradle might change the
behavior.

64.5. JaCoCo specific task configuration

The JaCoCo plugin adds a JacocoTaskExt ensi on extension to all tasks of type Test . This extension
allows the configuration of the JaCoCo specific properties of the test task.

Page 507 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules(org.gradle.api.Action)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html

Example 64.5. Configuring test task
buil d. gradl e

test {
jacoco {
append = fal se

destinationFile = file("$buildDir/jacoco/jacocoTest.exec")
classDumpDir = file("$buil dDir/jacoco/cl asspat hdunps")

Table 64.2. Default values of the JaCoCo Task extension

Property Gradle default
enabled true

destPath $bui I dDir/j acoco
append true

includes 1

excludes [l

excludeClassl oaders 1

includeNoL ocationClasses

sessionld

dumpOnExit

output

address

port

classDumpPath

jmx

false

aut o- gener at ed

true

Qut put . FI LE

fal se

While all tasks of type Test are automatically enhanced to provide coverage information when the j ava
plugin has been applied, any task that implements JavaFor kOpt i ons can be enhanced by the JaCoCo

Page 508 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/process/JavaForkOptions.html

plugin. That is, any task that forks Java processes can be used to generate coverage information.
For example you can configure your build to generate code coverage using the appl i cat i on plugin.

Example 64.6. Using application plugin to gener ate code cover age data
buil d. gradl e

apply plugin: "application”
apply plugin: "jacoco"

mai nCl assName = "org. gradl e. MyMai n"

jacoco {

appl yTo run
}

task applicati onCodeCover ageReport (type: JacocoReport){
executionData run
sourceSet s sourceSets. main

Note: The code for this example can be found at sanpl es/t esti ng/j acoco/ applicationin
the*-all’ distribution of Gradle.

Example 64.7. Coveragereports generated by applicationCodeCover ageReport
Build layout

appl i cation/
bui | d/
j acoco/

run. exec
reports/jacoco/ appl i cati onCodeCover ageReport/ htm /
i ndex. ht ni

64.6. Tasks

For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Page 509 of 654

Table 64.3. JaCoCo plugin - tasks

Task name Depends Type
on
j acocoTest Report - JacocoReport
j acocoTest CoverageVerification - JacocoCoverageVerification
64.7. Dependency management
The JaCoCo plugin adds the following dependency configurations:
Table 64.4. JaCoCo plugin - dependency configurations
Name Meaning
j acocoAnt The JaCoCo Ant library used for running the JacocoReport, JacocoMer ge

and JacocoCover ageVeri fi cati on tasks.

j acocoAgent The JaCoCo agent library used for instrumenting the code under test.

Descrif

Genere
code
covera
report
the
task.

Verifie
code

covera
metric
based

specifi
rules fc
test tas

Page 510 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html

65

The OSGI Plugin

The OSGi plugin provides a factory method to create an Osgi Mani f est object. Osgi Mani f est
extends Mani f est . To learn more about generic manifest handling, see Section 47.15.1, “Manifest”. If the
Javapluginsis applied, the OSGi plugin replaces the manifest object of the default jar with an Gsgi Mani f est
object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of the BND tool. A separate plugin implementation is maintained
by the BND authors that has more advanced features.

65.1. Usage

To usethe OSGi plugin, include the following in your build script:

Example 65.1. Using the OSGi plugin

bui |l d. gradl e

65.2. Implicitly applied plugins

Applies the Java base plugin.

65.3. Tasks

The OSGi plugin adds the following tasks to the project:

Table65.1. OSGi plugin - tasks

Task name Depends Type Description
on

osgi Cl asses classes Sync Copies al classes from the main source set to a single
directory that is processed by BND.

Page 511 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/java/archives/Manifest.html
http://bnd.bndtools.org/
https://github.com/bndtools/bnd/blob/master/biz.aQute.bnd.gradle/README.md
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Sync.html

65.4. Convention object

The OSGi plugin adds the following convention object: Gsgi Pl ugi nConventi on

65.4.1. Convention properties

The OSGi plugin does hot add any convention properties to the project.

65.4.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the APl documentation of the
convention object.

Table 65.2. OSGi methods

Method Return Type Description

osgiManifest() Osgi Mani f est Returns an OsgiManifest object.

osgiManifest(Closure Gsgi Mani f est Returns an OsgiManifest object configured by the
cl) closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they
expose. Based on this the Import-Package and the Export-Package values of the OSGi Manifest are
calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to specify
version information for the Import-Package value. Beside the explicit properties of the Osgi Mani f est
object you can add instructions.

Example 65.2. Configuration of OSGi MANIFEST.MF file
bui |l d. gradl e

jar {
mani fest { // the manifest of the default jar is of type Osgi Manif est
name = 'overwittenSpeci al Gsgi Nane'
instruction 'Private-Package',
'org. myconp. packagel',
' org. myconp. package?2'
instruction 'Bundl e-Vendor', ' MyConpany'
instruction 'Bundl e-Description', 'Platforn2: Metrics 2 Measures Franmewd
instruction 'Bundl e-DocURL', 'http://ww. myconpany.coni

}

}
task fooJdar(type: Jar) {

mani f est = osgi Mani fest {
instruction 'Bundl e-Vendor', ' MyConpany'

}

The first argument of the instruction call is the key of the property. The other arguments form the value. To
learn more about the available instructions have alook at the BND tool.

Page 512 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Bnd/Bnd

66

The Eclipse Plugins

The Eclipse plugins generate files that are used by the Eclipse IDE, thus making it possible to import the
project into Eclipse(Fi | e - I nport ..- Exi sting Projects into Wrkspace).

The ecl i pse-wt p is automatically applied whenever the ecl i pse plugin is applied to a War or Ear
project. For utility projects (i.e. Java projects used by other web projects), you need to apply theecl i pse-wt p
plugin explicitly.

What exactly the ecl i pse plugin generates depends on which other plugins are used:

Table 66.1. Eclipse plugin behavior
Plugin Description

None Generates minimal . pr oj ect file.

Java Adds Java configurationto . pr oj ect . Generates. cl asspat h and DT settingsfile.
Groovy Adds Groovy configurationto . pr oj ect file.

Scala Adds Scalasupportto . proj ect and. cl asspat h files.

War Adds web application support to . pr oj ect file.

Ear Adds ear application support to . pr oj ect file.

Theecl i pse-w p plugin generates all WTP settings files and enhances the . pr oj ect file. If aJavaor War
isapplied, . cl asspat h will be extended to get a proper packaging structure for this utility library or web
application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and
removing content from the generated files.

66.1. Usage

To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:

Page 513 of 654

http://eclipse.org

Example 66.1. Using the Eclipse plugin

bui | d. gradl e

apply plugin: 'eclipse'

Example 66.2. Using the Eclipse WTP plugin

buil d. gradl e

apply plugin: '"eclipse-wp'

Note: Internally, the ecl i pse-wt p plugin also applies the ecl i pse plugin so you don’t need to apply
both.

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use arethe ecl i pse
and cl eanEcl i pse tasks.

66.2. Tasks

The Eclipse plugins add the tasks shown below to a project.

Page 514 of 654

Table 66.2. Eclipse plugin - tasks

Task name Dependson Type Description
eclipse al Eclipse Task Generates al Eclips
configuration
file
generation
tasks
cl eanEcl i pse al Eclipse Delete Removes all Eclips
configuration
file clean
tasks
cl eanEcl i psePr oj ect - Del ete Removesthe. pro
cl eanEcl i pseC asspath - Del ete Removesthe. cl a
cl eanEcl i pseJdt - Del ete Removesthe. set
file.
ecl i pseProj ect - Gener at eEcl i pseProj ect Generatesthe. pr ¢
ecl i pseC asspat h - Gener at eEcl i pseC asspath Generatesthe. cl ¢
ecl i pseJdt - Gener at eEcl i pseJdt Generatesthe . set
file.

Table 66.3. Eclipse WTP plugin - additional tasks

Task name Depends Type Description
on

cl eanEcl i pseW pConponent - Del ete Removesthe.

cl eanEcl i pseW pFacet - Del ete Removesthe.
file.

ecl i pseW pConponent - Gener at eEcl i pseW pConponent Generates the .

ecl i pseW pFacet - Gener at eEcl i pseW pFacet Generatesthe .
file.

Page 515 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html

66.3. Configuration

Table 66.4. Configuration of the Eclipse plugins

M odel Reference name Description

Ecl i pseMbdel eclipse Top level element that enables
configuration of the Eclipse plugin
inaDSL-friendly fashion.

Ecl i psePr oj ect ecl i pse. proj ect Allows configuring project
information

Ecl i psed asspat h eclipse.classpath Allows configuring classpath
information.

Ecl i pseJdt eclipse.jdt Allows configuring jdt information

(sourceftarget Java compatibility).

Ecl i pseW pConponent ecl i pse. w p. conponent Allows configuring wtp component
information only if ecl i pse-wt p
plugin was applied.

Ecl i pseW pFacet eclipse. w p. facet Allows configuring wtp facet
information only if ecl i pse-wt p
plugin was applied.

66.4. Customizing the generated files

The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL for
configuring model objects that model the Eclipse view of the project. These model objects are then merged
with the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide
lower level hooks for working with domain objects representing the file content before and after merging
with the model configuration. They also provide a very low level hook for working directly with the raw
XML for adjustment before it is persisted, for fine tuning and configuration that the Eclipse and Eclipse
WTP plugins do not model.

66.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

Page 516 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation
task, like “gradl e cl eanEcli pse eclipse” (in that order). If you want to make this the default
behavior, add “t asks. ecl i pse. dependsOn(cl eanEcl i pse)” to your build script. This makes it
unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be
done for the“. cl asspat h” filewith “gr adl e cl eanEcl i psed asspath ecli pseCd asspath

66.4.2. Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle.
The generation lifecycleis as follows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist
2. Thebef or eMer ged hook is executed with adomain object representing the existing file

3. The existing content is merged with the configuration inferred from the Gradle build or defined
explicitly in the eclipse DSL

4. The whenMer ged hook is executed with a domain object representing contents of the file to be
persisted

5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted
6. Thefina XML is persisted
The following table lists the domain object used for each of the Eclipse model types:

Table 66.5. Advanced configuration hooks

Model beforeMerged { arg ->} whenMerged { arg ->} with
argument type argument type argun

Ecl i pseProj ect Pr oj ect Pr oj ect Xm P

Ecl i psed asspath Cl asspath O asspath Xm P

Ecl i pseJdt Jdt Jdt -

Ecl i pseW pConponent W pConponent W pConponent Xm P

Ecl i pseW pFacet W pFacet W pFacet Xm P

Page 517 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/XmlProvider.html

Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes made directly
in the IDE. Alternatively, the bef or eMer ged hook makes it possible to overwrite just certain parts of the
existing content. The following example removes all existing dependencies from the Cl asspat h domain
object:

Example 66.3. Partial Overwrite for Classpath

bui |l d. gradl e

eclipse.classpath.file {
bef oreMerged { cl asspath ->
cl asspath.entries.renoveAll { entry -> entry.kind == "lib" || entry. ki ng

}

The resulting . cl asspat h file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency entries, thisis
also the default behavior.) Other sections of the . cl asspat h file will be either left as-is or merged. The
same could be done for the naturesin the . pr oj ect file:

Example 66.4. Partial Overwritefor Project

buil d. gradl e

eclipse.project.file.beforeMerged { project ->
proj ect. natures. cl ear ()

}

Modifying the fully populated domain objects

ThewhenMer ged hook alows to manipulate the fully populated domain objects. Often thisis the preferred
way to customize Eclipse files. Here is how you would export all the dependencies of an Eclipse project:
Example 66.5. Export Dependencies

buil d. gradl e

eclipse.classpath.file {
whenMerged { cl asspath ->
classpath.entries.findAll { entry -> entry.kind == "|ib" }*.exported = f

}

Modifying the XML representation

The wi t hXm hook allows to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy’s XML support makes up for alot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections
not modeled by the domain objects.

Page 518 of 654

Example 66.6. Customizing the XML
buil d. gradl e
apply plugin: 'eclipse-wp'

eclipse.wp.facet.file.withXm { provider ->
provi der.asNode().fixed.find { it.@acet == "jst.java’" }.@acet = 'jst2.]av

}

Page 519 of 654

6/

The IDEA Plugin

The IDEA plugin generates files that are used by IntelliJ IDEA, thus making it possible to open the project
from IDEA (Fil e - Open Proj ect). Both external dependencies (including associated source and
Javadoc files) and project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 67.1. IDEA plugin behavior
Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace file if the
project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of
hooks for adding and removing content from the generated files.

6/.1. Usage

To use the IDEA plugin, include thisin your build script:

Example 67.1. Using the IDEA plugin

bui | d. gradl e

apply plugin: 'idea

The IDEA plugin adds a number of tasksto your project. The main tasks that you will use arethei dea and cl ea
tasks.

67.2. Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the cl ean task does not depend on
the cl eanl deaWbr kspace task. Thisis because the workspace typically contains a lot of user specific
temporary dataand it is not desirable to manipulate it outside IDEA.

Page 520 of 654

http://www.jetbrains.com/idea/

Table 67.2. IDEA plugin - Tasks

Task name

i dea

cl eanl dea

cl eanl deaPr oj ect

cl eanl deaModul e

cl eanl deaWr kspace

i deaPr oj ect

i deaModul e

i deaWr kspace

Dependson

Type

i deaPr oj ect ,i deaMbdul e

,i deaWbr kspace

cl eanl deaPr oj ect
,cl eanl deaMbdul e

Del et e

Del et e

Del et e

Del et e

CGener at el deaPr oj ect

Cener at el deaMbdul e

CGener at el deaWwr kspace

Description

Generates al
IDEA
configuration
files

Removes all
IDEA
configuration
files

Removes the
IDEA
project file

Removes the
IDEA
modulefile

Removes the
IDEA
workspace
file

Generates
the .ipr
file. This
task is only
added to the
root project.

Generates
the .im
file

Generates
the .iws
file. This
task is only
added to the
root project.

Page 521 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

67.3. Configuration

Table 67.3. Configuration of theidea plugin

Model Reference name

| deaMbdel i dea

| deaPr oj ect i dea. proj ect

| deaMbdul e i dea. nodul e

| deaWor kspace i dea. wor kspace

Description

Top level element that enables configuration of the idea
pluginin aDSL-friendly fashion

Allows configuring project information

Allows configuring module information

Allows configuring the workspace XML

67.4. Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file
can effectively only be manipulated via the wi t hXml hook because its corresponding domain object is

essentially empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

67.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation
task, like“gr adl e cl eanl dea i dea” (inthat order). If you want to make this the default behavior, add
“t asks. i dea. dependsOn(cl eanl dea) ” to your build script. This makes it unnecessary to execute

the clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be
doneforthe“. i m " filewith“gr adl e cl eanl deaMbdul e i deavbdul e”.

67.4.2. Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The

generation lifecycleis asfollows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist

2. Thebef or eMer ged hook is executed with adomain object representing the existing file

Page 522 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

3. The existing content is merged with the configuration inferred from the Gradle build or defined
explicitly in the eclipse DSL

4. The whenMer ged hook is executed with a domain object representing contents of the file to be
persisted

5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted
6. Thefinal XML is persisted The following table lists the domain object used for each of the model types:

Table 67.4. |dea plugin hooks

Model beforeMerged { arg } whenMerged { arg } withXm { arg
argument type argument type argument type

| deaPr oj ect Pr oj ect Pr oj ect Xm Provi der

| deaModul e Modul e Modul e Xm Provi der

| deaWor kspace Wbr kspace Wor kspace Xm Provi der

Partial rewrite of existing content

A complete rewrite causes all existing content to be discarded, thereby losing any changes made directly in
the IDE. The bef or eMer ged hook makes it possible to overwrite just certain parts of the existing content.
The following example removes all existing dependencies from the Modul e domain object:

Example 67.2. Partial Rewritefor Module

bui |l d. gradl e

i dea. modul e.im {
bef oreMerged { nodule ->

nodul e. dependenci es. cl ear ()

}

The resulting module file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency entries, thisis
also the default behavior.) Other sections of the module file will be either left as-is or merged. The same
could be done for the module paths in the project file:

Example 67.3. Partial Rewrite for Project
bui |l d. gradl e
i dea. proj ect.ipr {

bef oreMerged { project ->
proj ect . nodul ePat hs. cl ear ()

}

Page 523 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/XmlProvider.html

Modifying the fully populated domain objects

The whenMer ged hook allows you to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export al the dependencies of an IDEA
module:

Example 67.4. Export Dependencies

buil d. gradl e

i dea. nodul e.im {
whenMerged { nodule ->
nodul e. dependenci es*. exported = true

}

Modifying the XML representation

Thewi t hXm hook allows you to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy’s XML support makes up for alot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections
not modeled by the domain objects.

Example 67.5. Customizing the XM L
buil d. gradl e
i dea. proj ect.ipr {

wi thXm { provider ->
provi der . node. conponent

.find { it. @ane == 'VcsDirectoryMppi ngs' }
. mappi ng. @cs = 'Gt'

6/.5. Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable
pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths
with this path variable. you can configure this path variable viathe “i dea. pat hVar i abl es” property,
so that it can do a proper merge without creating duplicates.

Page 524 of 654

Part VI. The Software mode

68

Rule based model configuration

Support for rule based configuration is currently incubating. Please be aware that the DSL, APIs and
other configuration may changein later Gradle versions.

Rule based model configuration enables configuration logic to itself have dependencies on other elements of
configuration, and to make use of the resolved states of those other elements of configuration while
performing its own configuration.

68.1. Background

Rule based model configuration facilitates easier domain modelling: communicating intent (i.e. the what)
over mechanics (i.e. the how). Domain modelling is a core tenet of Gradle and provides Gradle with several
advantages over prior generation build tools such as Apache Ant that focus on the execution model. It
allows humans to understand builds at alevel that is meaningful to them.

As well as helping humans, a strong domain model also helps the dutiful machines. Plugins can more
effectively collaborate around a strong domain model (e.g. plugins can say something about Java
applications, such as providing conventions). Very importantly, by having a model of the what instead of
the how Gradle can make intelligent choices on just how to do the how.

Gradle’s support for building native software and Play Framework applications already uses this
configuration model. Gradle also includes some initial support for building Java libraries using this
configuration model.

68.2. Motivations for change

Domain modelling in Gradle isn't new. The Java plugin’s Sour ceSet concept is an example of domain
modelling, asisthe modelling of Nat i veBi nar y in the native plugin suite.

A distinguishing characteristic of Gradle compared to other build tools that also embrace modelling is that
Gradle's model is open and collaborative. Gradle is fundamentally a tool for modelling software
construction and then realizing the model, via tasks such as compilation etc. Different domain plugins (e.g.
Java, C++, Android) provide models that other plugins can collaborate with and build upon.

While Gradle has long employed sophisticated techniques when it comes to realizing the model (i.e. what
we know as building code), the next generation of Gradle builds will employ some of the same techniquesto

Page 526 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinary.html

creation of the model itself. By defining build tasks as effectively a graph of dependent functions with
explicit inputs and outputs, Gradle is able to order, cache, parallelize and apply other optimizations to the
work. Using a“graph of tasks’ for the production of software is along established idea, and necessary given
the complexity of software production. The task graph effectively defines the rules of execution that Gradle
must follow. The term “Rule based model configuration” refers to applying the same concepts to building
the model that builds the task graph.

Another key motivation is performance and scale. Aspects of the current approach that Gradle takes to
modelling the build reduce parallelism opportunities and limit scalability. The software model is being
designed with the requirements of modern software delivery in mind, where immediate responsiveness is
critical for projectslarge and small.

68.3. Basic Concepts
68.3.1. The “model space”

The term “model space’ is used to refer to the forma model, which can be read and modified by rules.

A counterpart to the model space is the “project space”, which should be familiar to readers. The “project
space” isagraph of objects (e.g pr oj ect . reposi tori es, proj ect.tasks etc.) having aPr oj ect
asitsroot. A build script is effectively adding and configuring objects of this graph. For the most part, the
“project space” is opaque to Gradle. It is an arbitrary graph of objects that Gradle only partially understands.

Each project also has its own model space, which is distinct from the project space. A key characteristic of
the “model space” is that Gradle knows much more about it (which is knowledge that can be put to good
use). The objects in the model space are “managed”, to a greater extent than objects in the project space. The
origin, structure, state, collaborators and relationships of objects in the model space are first class constructs.
This is effectively the characteristic that functionally distinguishes the model space from the project space:
the objects of the model space are defined in ways that Gradle can understand them intimately, as opposed
to an object that is the result of running relatively opagque code. A “rule” is effectively a building block of
this definition.

The model space will eventually replace the project space, becoming the only “ space”.

68.3.2. Rules

The model space is defined by “rules’. A ruleisjust afunction (in the abstract sense) that either produces a
model element, or acts upon a model element. Every rule has a single subject and zero or more inputs. Only
the subject can be changed by arule, while the inputs are effectively immutable.

Gradle guarantees that all inputs are fully “realized” before the rule executes. The process of “realizing” a
model element is effectively executing al the rules for which it is the subject, transitioning it to its final
state. There is a strong analogy here to Gradle's task graph and task execution model. Just as tasks depend
on each other and Gradle ensures that dependencies are satisfied before executing a task, rules effectively
depend on each other (i.e. arule depends on all rules whose subject is one of the inputs) and Gradle ensures
that all dependencies are satisfied before executing the rule.

Model elements are very often defined in terms of other model elements. For example, a compile task’s

Page 527 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html

configuration can be defined in terms of the configuration of the source set that it is compiling. In this
scenario, the compile task would be the subject of a rule and the source set an input. Such a rule could
configure the task subject based on the source set input without concern for how it was configured, who it
was configured by or when the configuration was specified.

There are several waysto declare rules, and in several forms.

68.4. Rule sources

One way to define rulesis viaa Rul eSour ce subclass. If an object extends RuleSource and contains any
methods annotated by ‘@Mutate’, then each such method defines a rule. For each such method, the first
argument is the subject, and zero or more subsequent arguments may follow and are inputs of the rule.

Example 68.1. applying a rule sour ce plugin

bui |l d. gradl e
@managed

interface Person {
voi d setFirstNane(String nane)
String getFirstNane()

voi d set Last Nane(String name)
String getLast Nane()
}

cl ass PersonRul es extends Rul eSource {
@bdel void person(Person p) {}

//Create a rule that nodifies a Person and takes no other inputs
@ut ate voi d setFirst Name(Person p) {
p.firstNanme = "John"

}

//Create a rule that nodifies a Mdel Map<Task> and takes as input a Person
@ut ate voi d createHel | oTask(Model Map<Task> tasks, Person p) {
tasks.create("hello") {
doLast {
println "Hello $p.firstName $p. | ast Nane!"

apply plugin: PersonRul es

Output of gr adl e hel | o
> gradle hello
chello
Hel 1l o John Smith!

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Each of the different methods of the rule source are discrete, independent rules. Their order, or the fact that

Page 528 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html

they belong to the same class, do not affect their behavior.

Example 68.2. amodel creation rule

bui |l d. gradl e

@mbdel void person(Person p) {}

Thisrule declares that there isamodel element at path " per son" (defined by the method name), of type Per soi
. Thisis the form of the Model type rule for Managed types. Here, the person object is the rule subject.

The method could potentially have a body, that mutated the person instance. It could also potentially have
more parameters, which would be the rule inputs.

Example 68.3. a model mutation rule

bui | d. gradl e

//Create a rule that nodifies a Person and takes no other inputs
@Mtate voi d set First Name(Person p) {

p.firstName = "John"
}

This Mut at e rule mutates the person object. The first parameter to the method is the subject. Here, a
by-type reference is used as no Pat h annotation is present on the parameter. It could also potentially have
more parameters, that would be the rule inputs.

Example 68.4. creating a task

bui | d. gradl e

/Il Create a rule that nodifies a Mddel Map<Task> and takes as input a Person
@Mt ate voi d createHel | oTask(Mbdel Map<Task> tasks, Person p) ({
tasks.create("hello") {
doLast {

println "Hello $p.firstNanme $p. | ast Nane!"

This Mut at e rule effectively adds atask, by mutating the tasks collection. The subject hereisthe "t asks"
node, which is available as a Mbdel Map of Task. The only input is our person element. As the person is
being used as an input here, it will have been realised before executing this rule. That is, the task container
effectively depends on the person element. If there are other configuration rules for the person element,
potentially specified in abuild script or other plugin, they will also be guaranteed to have been executed.

AsPer son isaManaged typein this example, any attempt to modify the person parameter in this method
would result in an exception being thrown. Managed objects enforce immutability at the appropriate point in
their lifecycle.

Rule source plugins can be packaged and distributed in the same manner as other types of plugins (see
Chapter 41, Writing Custom Plugins). They also may be applied in the same manner (to project objects) as
Pl ugi n implementations (i.e. viaPr oj ect . appl y(j ava. util . Map)).

Page 529 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Model.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Path.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)

Please see the documentation for Rul eSour ce for more information on constraints on how rule sources
must be implemented and for more types of rules.

68.5. Advanced Concepts

68.5.1. Model paths

A model path identifies the location of an element relative to the root of its model space. A common
representation is a period-delimited set of names. For example, the model path "t asks" isthe path to the
element that is the task container. Assuming a task whose nameis hel | o, the path "t asks. hel | 0" is
the path to this task.

68.5.2. Managed model elements

Currently, any kind of Java object can be part of the model space. However, there is a difference between
“managed” and “unmanaged” objects.

A “managed” object is transparent and enforces immutability once realized. Being transparent means that its
structure is understood by the rule infrastructure and as such each of its properties are also individual
elementsin the model space.

An “unmanaged” object is opague to the model space and does not enforce immutability. Over time, more
mechanisms will be available for defining managed model elements culminating in all model elements being
managed in some way.

Managed models can be defined by attaching the @/anaged annotation to an interface:

Example 68.5. a managed type

bui |l d. gradl e
@managed

interface Person {
voi d setFirstNane(String nane)
String getFirstNane()

voi d setLast Name(String nane)
String getLast Nane()

By defining a getter/setter pair, you are effectively declaring a managed property. A managed property is a
property for which Gradle will enforce semantics such as immutability when a node of the model is not the
subject of a rule. Therefore, this example declares properties named firstName and |astName on the
managed type Person. These properties will only be writable when the view is mutable, that is to say when
the Person isthe subject of a Rul e (see below the explanation for rules).

Managed properties can be of any scalar type. In addition, properties can also be of any type which is itself
managed:

Property type Nullable Example

Page 530 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html

String Yes

File Yes

I nt eger,Bool ean Yes
, Byt e, Short, Fl oat
,Long, Doubl e

i nt,bool ean,byte No
,short,float,l ong
,doubl e

Another managed Only if read/write

type.

Example 68.6. a String property
bui I d. gradl e

voi d setFirstNane(String nane)

String getFirstNane()

Example 68.7. a File property

build.gradle

voi d set HomeDi rectory(File honeDir)

Fil e get HoneDirectory()

Example 68.8. a Long property
build. gradl e

voi d setld(Long id)

Long getld()

Example 68.9. a boolean property

bui I d. gradl e

voi d set Enpl oyed(bool ean i sEnpl oyed)

bool ean i sEnpl oyed()

Example 68.10. an int property

build. gradl e

voi d set Age(int age)

i nt get Age()

Example 68.11. a managed property
build. gradl e

voi d set Mot her (Person not her)

Per son get Mot her ()

Page 531 of 654

An enumeration Yes Example 68.12. an enumer ation type property
type. bui | d. gradl e

voi d setMarital Status(Marital Status stat

Marital Status getMarital Status()

A ManagedSet. A Only if read/write
managed set supports

the creation of new

named model

elements, but not

their removal.

A Set or List of Onlyif read/write

scalar types. All Example 68.13. a managed set

classic operations on bui I d. gradl e
collections are N t chi | d

E] <Person> ge | ren
supported: add, ° &

remove, clear... buil d.gradl e

voi d set User G oups(Li st<String> groups)

Li st<Stri ng> get User G oups()

If the type of a property isitself a managed type, it is possible to declare only a getter, in which case you are
declaring a read-only property. A read-only property will be instantiated by Gradle, and cannot be replaced
with another object of the same type (for example calling a setter). However, the properties of that property
can potentially be changed, if, and only if, the property is the subject of a rule. If it’s not the case, the
property is immutable, like any classic read/write managed property, and properties of the property cannot
be changed at all.

Managed types can be defined out of interfaces or abstract classes and are usually defined in plugins, which
are written either in Java or Groovy. Please see the Managed annotation for more information on creating
managed model objects.

68.5.3. Model element types

There are particular types (language types) supported by the model space and can be generalised as follows:

Page 532 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Managed.html

Table 68.1. Type definitions

Type
Scalar

Scalar Collection

Managed type

Managed collection

Definition
A scalar type is one of the following:

* aprimitivetype (e.g. i nt) or itsboxed type (e.g | nt eger)
® aBi gl nt eger or Bi gDeci nal

® aString

* aFile

® an enumeration type

A javauutil.List or java.util.Set containing one of the scalar types

Any classwhich is avalid managed model (i.e.annotated with @Managed)

A Model Map or Model Set

There are various contexts in which these types can be used:

Table 68.2. M odel type support

Context

Creating top level
model elements

Properties of
managed model
elements

Supported types

* Any managed type

®* Functi onal Sour ceSet (when the LanguageBasePl ugi n plugin
has been applied)

® Subtypes of LanguageSour ceSet which have been registered via
Conponent Type

The properties (attributes) of a managed model elements may be one or more
of the following:

* A managed type

* A typewhich is annotated with @Unnmanaged

® A Scalar Collection

* A Managed collection containing managed types

* A Managed collection containing Funct i onal Sour ceSet 's (when the
LanguageBasePl ugi n plugin has been applied)

® Subtypes of LanguageSour ceSet which have been registered via
Conponent Type

68.5.4. Language source sets

Funct i onal Sour ceSet s and subtypes of LanguageSour ceSet (which have been registered via
Conponent Type) can be added to the model space viarules or viathe model DSL.

Page 533 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Unmanaged.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html

Example 68.14. strongly modelling sour ces sets

bui | d. gradl e

apply plugin: "java-lang'

/] Creating LanguageSourceSets via rul es
cl ass LanguageSour ceSet Rul es ext ends Rul eSource {
@/mbde
voi d nySour ceSet (JavaSour ceSet javaSource) {
j avaSour ce. source.srcDir("src/ main/ ny")
}

}
apply plugin: LanguageSour ceSet Rul es

/| Creating LanguageSourceSets via the nodel DSL
nodel {
anot her (JavaSour ceSet) {
source {
srcDir "src/ main/another"

}
}

/' Usi ng Functi onal SourceSet s
@managed
i nterface SourceBundl e {
Funct i onal Sour ceSet get FreeSour ces()
Funct i onal Sour ceSet get Pai dSour ces()
}
nodel {
sour ceBundl e(Sour ceBundl e) {
freeSources. create("nmain", JavaSourceSet)
freeSources. create("resources", JvmResourceSet)
pai dSour ces. create("nai n", JavaSourceSet)
pai dSour ces. create("resources", JvnResourceSet)

Note: The code for this example can be found at sanpl es/ nodel Rul es/ | anguage- support
inthe ‘-al’ distribution of Gradle.

Output of gr adl e hel p

> gradle help
“help

68.5.5. References, binding and scopes

As previously mentioned, a rule has a subject and zero or more inputs. The rule’s subject and inputs are
declared as “references’ and are “bound” to model elements before execution by Gradle. Each rule must
effectively forward declare the subject and inputs as references. Precisely how this is done depends on the
form of the rule. For example, the rules provided by a Rul eSour ce declare references as method
parameters.

Page 534 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html

A reference is either “by-path” or “by-type”.

A “by-type” reference identifies a particular model element by its type. For example, a reference to the
TaskCont ai ner effectively identifies the "t asks" element in the project model space. The model
space is not exhaustively searched for candidates for by-type binding; rather, a rule is given a scope
(discussed later) that determines the search space for a by-type binding.

A “by-path” reference identifies a particular model element by its path in model space. By-path references
are always relative to the rule scope; there is currently no way to path “out” of the scope. All by-path
references also have an associated type, but this does not influence what the reference binds to. The element
identified by the path must however by type compatible with the reference, or a fatal “binding failure” will
occur.

Binding scope

Rules are bound within a “scope”, which determines how references bind. Most rules are bound at the
project scope (i.e. the root of the model graph for the project). However, rules can be scoped to a node
within the graph. The Mbdel Map. named(j ava. |l ang. String, java.lang.d ass) method is
an example of amechanism for applying scoped rules. Rules declared in the build script using the nodel {}
block, or viaa Rul eSour ce applied as a plugin use the root of the model space as the scope. This can be
considered the default scope.

By-path references are aways relative to the rule scope. When the scope is the root, this effectively allows
binding to any element in the graph. When it is not, then only the children of the scope can be referenced
using "by-path" notation.

When binding by-type references, the following elements are considered:

® The scope element itself.
® Theimmediate children of the scope element.
* Theimmediate children of the model space (i.e. project space) root.

For the common case, where the rule is effectively scoped to the root, only the immediate children of the
root need to be considered.
Binding to all elementsin a scope matching type

Mutating or validating all elements of a given type in some scope is a common use-case. To accommodate
this, rules can be applied viathe @ach annotation.

In the example below, a @ef aul t s ruleis applied to each Fi | el t emin the model setting a default file
size of "1024". Another rule applies a Rul eSour ce to every Di r ect or yl t emthat makes sure al file
sizes are positive and divisible by "16".

Page 535 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelMap.html#named(java.lang.String, java.lang.Class)
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html

Example 68.15. a DSL example applying aruleto every element in a scope
buil d. gradl e

@mnaged interface |tem extends Naned {}
@mnaged interface Fileltemextends Item {
voi d setSize(int size)
int getSize()
}
@mnaged interface Directoryltemextends |tem {
Model Map<It em> get Chi | dren()

}

cl ass Pl ugi nRul es extends Rul eSource {
@ef aults void setDefaul tFil eSize(@ach Fileltemfile) {
file.size = 1024

}

@rul es voi d appl yVal i dat eRul es(Val i dat eRul es rul es, @ach Directoryltemdire

}
apply plugin: PluginRul es

abstract class ValidateRul es extends Rul eSource {
@/al i dat e
voi d val i dat eSi zel sPosi ti ve(Model Map<Fileltenr files) {
files.each { file ->
assert file.size > 0
}
}

@/al i dat e
voi d val i dat eSi zeDi vi si bl eBySi xt een(Model Map<Fil elten> files) {
files.each { file ->
assert file.size %16 ==

}
}

nodel {
root (Directoryltem {
children {
dir(Directoryltenm {
children {
filel(Fileltem
file2(Fileltem) { size = 2048 }
}

}
file3(Fileltem

Note: The code for this example can be found at sanpl es/ nodel Rul es/ r ul eSour cePl ugi nEach
inthe ‘-all’ distribution of Gradle.

Page 536 of 654

68.6. The model DSL

In addition to using a RuleSource, it is also possible to declare a model and rules directly in a build script
using the “model DSL".

The general form of the model DSL is:

The model DSL makes heavy
nodel { use of various Groovy DSL
} features. Please have a read of
Section 18.7, “Some Groovy
basics’ for an introduction to
these Groovy features.

«rul e-definitions»

All rules are nested inside a nodel block. There may be any
number of rule definitions inside each nodel block, and there
may be any number of nodel blocksin abuild script. You can
also useanodel block inbuild scriptsthat are applied usingappl y from $uri

There are currently 2 kinds of rule that you can define using the model DSL: configuration rules, and
creation rules.

68.6.1. Configuration rules

You can define a rule that configures a particular model element. A configuration rule has the following
form:

nodel {
«model - pat h-t o- subj ect » {

«configuration code»

}

Continuing with the example so far of the model element " per son" of type Per son being present, the
following DSL snippet adds a configuration rule for the person that setsits | ast Name property.

Example 68.16. DSL configuration rule

bui | d. gradl e

nodel {
person {
| ast Name = "Smith"

}

A configuration rule specifies a path to the subject that should be configured and a closure containing the
code to run when the subject is configured. The closure is executed with the subject passed as the closure
delegate. Exactly what code you can provide in the closure depends on the type of the subject. This is
discussed below.

Page 537 of 654

Y ou should note that the configuration code is not executed immediately but is instead executed only when
the subject is required. This is an important behaviour of model rules and alows Gradle to configure only
those elements that are required for the build, which helps reduce build time. For example, let’'s run a task
that uses the "person” object:

Example 68.17. Configuration run when required

bui | d. gradl e

nodel {
person {
println "configuring person”

| ast Name = "Sm t h"

Output of gr adl e showPer son

> gradl e showPer son
configuring person
: showPer son

Hel 1 o John Smith!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Y ou can see that before the task is run, the "person” element is configured by running the rule closure. Now
let’srun atask that does not require the "person” element:

Example 68.18. Configuration not run when not required

Output of gr adl e sonet hi ngEl se
> gradl e sonet hi ngEl se
: sonet hi ngEl se
Not using person

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

In thisinstance, you can see that the "person™ element is not configured at all.

68.6.2. Creation rules

Itis also possible to create model elements at the root level. The general form of acreation ruleis:

nodel {
«el emrent - name»(«el ement -t ype») {
«initialization code»

}

The following model rule createsthe ™ per son" element:

Page 538 of 654

Example 68.19. DSL creation rule
buil d. gradl e

nodel {
per son(Person) {
firstName = "John"

}

A creation rule definition specifies the path of the element to create, plus its public type, represented as a
Javainterface or class. Only certain types of model elements can be created.

A creation rule may also provide a closure containing the initialization code to run when the element is
created. The closure is executed with the element passed as the closure delegate. Exactly what code you can
provide in the closure depends on the type of the subject. Thisis discussed below.

Theinitiaization closureis optional and can be omitted, for example:

Example 68.20. DSL creation rule without initialization
bui |l d. gradl e

nodel {
barry(Person)

}

Y ou should note that the initialization code is not executed immediately but is instead executed only when
the element is required. The initialization code is executed before any configuration rules are run. For
example:

Page 539 of 654

Example 68.21. I nitialization before configuration
buil d. gradl e

nodel {
person {
println "configuring person”
println "last nane is $l ast Nane, should be Snythe"
| ast Name = " Snyt he"

}

per son(Person) {
println "creating person®
firstName = "John"
| ast Name = "Smith"

Output of gr adl e showPer son

> gradl e showPer son

creating person

configuring person

last name is Smth, should be Snythe
: showPer son

Hel I o John Snyt he!

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Notice that the creation rule appears in the build script after the configuration rule, but its code runs before
the code of the configuration rule. Gradle collects up all the rules for a particular subject before running any
of them, then runs the rules in the appropriate order.

68.6.3. Model rule closures

Most DSL rules take a closure containing some code to run to configure the subject. The code you can usein
this closure depends on the type of the subject of therule.

In general, arule closure may contain arbitrary code, mixed with

some type specific DSL syntax. Y ou can use the model report to

) determine the type of a
Model |\/B.p<T> SUbJeCt particular model element.

A Model Map isbasically amap of model elements, indexed by
some name. When aMbdel Map is used as the subject of a DSL
rule, the rule closure can use any of the methods defined on the Model Map interface.

A rule closure with Mbdel Map as a subject can also include nested creation or configuration rules. These
behave in asimilar way to the creation and configuration rules that appear directly under the nodel block.

Here is an example of anested creation rule:

Page 540 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelMap.html

Example 68.22. Nested DSL creation rule

bui | d. gradl e

nodel {
peopl e {
j ohn(Person) {
firstName = "John"

As before, a nested creation rule defines a name and public type for the element, and optionally, a closure
containing code to use to initialize the element. The code is run only when the element is required in the
build.

Here is an example of a nested configuration rule:

Example 68.23. Nested DSL configuration rule
bui |l d. gradl e
nodel {

peopl e {
john {

| ast Name = "Sm t h"

As before, a nested configuration rule defines the name of the element to configure and a closure containing
code to use to configure the element. The code is run only when the element is required in the build.

Model Map introduces several other kinds of rules. For example, you can define arule that targets each of
the elements in the map. The code in the rule closure is executed once for each element in the map, when
that element isrequired. Let’srun atask that requires all of the children of the "people” element:

Page 541 of 654

Example 68.24. DSL configuration rulefor each element in a map
buil d. gradl e

nodel {
peopl e {
j ohn(Person) {
println "creating $it"
firstName = "John"
| ast Name = "Smith"

}
all {
println "configuring $it"

}
barry(Person) {

println "creating $it"
firstName = "Barry"
| ast Name = "Barry"

Output of gradl e |i st Peopl e

> gradle |istPeople

creating Person 'people.barry'
configuring Person 'people.barry
creating Person 'people.john
configuring Person 'people.john'
1 1istPeople

Hell o Barry Barry!

Hel 1l o John Smith!

BUl LD SUCCESSFUL in Os
1 actionable task: 1 executed

Any method on Model Map that acceptsan Act i on asitslast parameter can also be used to define a nested
rule.

@hanaged type subject
When a managed type is used as the subject of a DSL rule, the rule closure can use any of the methods
defined on the managed type interface.

A rule closure can also configure the properties of the element using nested closures. For example:

Example 68.25. Nested DSL property configuration
bui |l d. gradl e

nodel {
person {
address {
city = "Mel bourne"

Page 542 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Action.html

Currently, the nested closures do not define rules and are executed immediately. Please be aware that
this behaviour will change in afuture Gradle release.

All other subjects
For all other types, the rule closure can use any of the methods defined by the type. There is no special DSL
defined for these elements.

68.6.4. Automatic type coercion

Scalar properties in managed types can be assigned Char Sequence values (e.g. Stri ng, GStri ng,
etc.) and they will be converted to the actual property type for you. Thisworks for al scalar types including
“File's, which will be resolved relative to the current project.

Example 68.26. a DSL example showing type conversions

bui |l d. gradl e

Page 543 of 654

enum Tenper at ure {
TOO_HOT,
TOO_COLD,
JUST_RI GHT

}

@managed
interface Item {
voi d set Name(String n); String get Name()

void setQuantity(int g); int getQuantity()
void setPrice(float p); float getPrice()

voi d set Tenper at ure(Tenperature t)
Tenper at ure get Tenper at ur e()

void setDataFile(File f); File getDataFile()
}

class ItenRul es extends Rul eSource {

@nbdel

void itenmltemitem {
def data = itemdataFile.text.trin()
def (name, quantity, price, tenp) = data.split(',")
item nane = nane
itemquantity = quantity
itemprice = price
itemtenperature = tenp

}

@efaults
voi d setDefaults(ltemitem {
itemdataFile = 'data.csv'

}

@/t at e
voi d creat eDat aTask(Model Map<Task> tasks, Itemitem {
tasks. create(' showbata') {
doLast {
println """

Item' $item nane'

qguantity: $item quantity

price: $itemprice

tenperature: $itemtenperature""”

}

apply plugin: ItenRul es

nodel {
item {
price = "${price * (quantity <10 ? 2 : 0.5)}"
}

Page 544 of 654

Note: The code for this example can be found at sanpl es/ nodel Rul es/ nodel Dsl Coer ci on
inthe‘-al’ distribution of Gradle.

In the above example, an | t emis created and isinitialized in set Def aul t s() by providing the path to
the data file. In the i t em() method the resolved Fi | e is parsed to extract and set the data. In the DSL
block at the end, the price is adjusted based on the quantity; if there are fewer than 10 remaining the priceis
doubled, otherwiseit is reduced by 50%. The GSt r i ng expressionisavalid value sinceit resolvesto af | oat
valuein string form.

Finally, incr eat eDat aTask() we add the showDat a task to display all of the configured values.

68.6.5. Declaring input dependencies

Rules declared in the DSL may depend on other model elements through the use of a special syntax, which
is of the form:

$. «pat h-t o- nodel - el ement »

Paths are a period separated list of identifiers. To directly depend on the fi r st Name of the person, the
following could be used:

$. person. firstNanme

Example 68.27. aDSL rule using inputs
buil d. gradl e

nodel {
tasks {
hel | o(Task) {
def p = $. person
doLast {

println "Hello $p.firstName $p. | ast Nane!"

Note: The code for this example can be found at sanpl es/ nodel Rul es/ nodel Dsl in the ‘-al’
distribution of Gradle.

In the above snippet, the $. per son construct is an input reference. The construct returns the value of the
model element at the specified path, asits default type (i.e. the type advertised by the Model Report). It may
appear anywhere in the rule that an expression may normally appear. It is not limited to the right hand side
of variable assignments.

The input element is guaranteed to be fully configured before the rule executes. That is, all of the rules that

Page 545 of 654

mutate the element are guaranteed to have been previously executed, leaving the target element in its final,
immutable, state.

Most model elements enforce immutability when being used as inputs. Any attempt to mutate such an
element will result in a runtime error. However, some legacy type objects do not currently implement such
checks. Regardless, it isaways invalid to attempt to mutate an input to arule.

Using Mbdel Map<T> asan input

When you use a Mbdel Map asinput, each item in the map is made available as a property.

68.7. The model report

The built-in Model Report task displays ahierarchical view of the elementsin the model space. Each item
prefixed with a + on the model report is a model element and the visual nesting of these elements correlates
to the model path (e.g. t asks. hel p). The model report displays the following details about each model
element:

Table 68.3. Model report - model element details

Detail Description

Type Thisisthe underlying type of the model element and istypically afully qualified class name.
Vaue I's conditionally displayed on the report when a model element can be represented as a string.

Creator Every model element has a creator. A creator signifies the origin of the model element (i.e.
what created the model element).

Rules Is a listing of the rules, excluding the creator rule, which are executed for a given model
element. The order in which the rules are displayed reflects the order in which they are
executed.

Example 68.28. model task output
Output of gr adl e nodel

> gradl e nodel
: model

+ person
| Type: Per son
| Creator: Per sonRul es#per son(Per son)
| Rules:

person { ... } @build.gradle line 59, colum 3
Per sonRul es#set Fi r st Name(Per son)

Page 546 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.reporting.model.ModelReport.html

age

| Type:
| Val ue:

| Creator:

children
| Type:

| Creator:

enpl oyed

| Type:
| Val ue:

| Creator:

f at her

| Type:
| Val ue:

| Creator:

firstNanme

| Type:
| Val ue:

| Creator:

hormeDi rectory

| Type:
| Val ue:

| Creator:

| Type:
| Val ue:

| Creator:

| ast Nane

| Type:
| Val ue:

| Creator:

marital Status
| Type:

| Creator:

not her

| Type:
| Val ue:

| Creator:

user G oups

| Type:
| Val ue:

| Creator:
+ tasks

| Type:
| Creator:
| Rules:

Per sonRul es#cr eat eHel | oTask(Mbdel Map<Task>,
+ bui | dEnvi r onment

| Type:
Val ue:

|
| Creator:
I

Rul es:

int
0
Per sonRul es#per son(Per son)

or g. gr adl e. nodel . Model Set <Per son>
Per sonRul es#per son(Per son)

bool ean
fal se
Per sonRul es#per son(Per son)

Per son
nul |
Per sonRul es#per son(Per son)

java.lang. String
John
Per sonRul es#per son(Per son)

java.io.File
nul |
Per sonRul es#per son(Per son)

j ava. |l ang. Long
nul |
Per sonRul es#per son(Per son)

java.lang. String
Smth
Per sonRul es#per son(Per son)

Marit al St at us
Per sonRul es#per son(Per son)

Per son
nul |
Per sonRul es#per son(Per son)

java.util.List<java.lang. String>
nul |
Per sonRul es#per son(Per son)

org. gradl e. nodel . Model Map<or g. gr adl e. api . Task>
Proj ect.<init>. tasks()

Per son)
org. gradl e. api . t asks. di agnost i cs. Bui | dEnvi r onnent Report Task

task ': buil dEnvironment'
t asks. addPl acehol der Acti on(bui | dEnvi ronnent)

copyToTaskCont ai ner

+ conponents

| Type:
Val ue:

I
| Creator:
|

Rul es:

org. gradl e. api . reporting. conponents. Conponent Report
task ':conponents’
t asks. addPl acehol der Acti on(conponent s)

copyToTaskCont ai ner

+ dependenci es

| Type:

org. gradl e. api . t asks. di agnost i cs. DependencyReport Task

Page 547 of 654

| Val ue: task ':dependencies'
| Creator: t asks. addPl acehol der Acti on(dependenci es)
| Rul es:
copyToTaskCont ai ner
dependencyl nsi ght

| Type: org. gradl e. api . t asks. di agnosti cs. Dependencyl nsi ght Repor t Task
| Val ue: task ':dependencyl nsi ght'

| Creator: t asks. addPl acehol der Acti on(dependencyl nsi ght)

| Rul es:

Hel pTasksPl ugi n. Rul es#addDef aul t Dependenci esReport Confi gur ati on(Depend
copyToTaskCont ai ner
dependent Conponent s

| Type: org. gradl e. api . reporting. dependent s. Dependent Conponent sRepor
| Val ue: task ':dependent Conponents'
| Creator: t asks. addPl acehol der Acti on(dependent Conponent s)
| Rules:
copyToTaskCont ai ner
hel I o
| Type: org. gradl e. api . Task
| Val ue: task ':hello'
| Creator: Per sonRul es#cr eat eHel | oTask(Mbdel Map<Task>, Person) > creat
| Rules:
copyToTaskCont ai ner
hel p
| Type: org. gradl e.configuration. Hel p
| Val ue: task ':help'
| Creator: t asks. addPl acehol der Acti on(hel p)
| Rules:
copyToTaskCont ai ner
init
| Type: org.gradle.buildinit.tasks.InitBuild
| Val ue: task '":init’
| Creator: t asks. addPl acehol der Acti on(init)
| Rules:
copyToTaskCont ai ner
nodel
| Type: org. gradl e. api . reporting. nodel . Mbdel Report
| Val ue: task ':nodel’
| Creator: t asks. addPl acehol der Acti on(nodel)
| Rules:
copyToTaskCont ai ner
projects
| Type: org. gradl e. api . t asks. di agnosti cs. Proj ect Report Task
| Val ue: task ':projects'
| Creator: t asks. addPl acehol der Acti on(proj ects)
| Rules:
copyToTaskCont ai ner
properties
| Type: org. gradl e. api . t asks. di agnosti cs. Propert yReport Task
| Val ue: task ':properties'
| Creator: t asks. addPl acehol der Acti on(properties)
| Rules:
copyToTaskCont ai ner
t asks
| Type: org. gradl e. api . t asks. di agnosti cs. TaskReport Task
| Val ue: task ':tasks'
| Creator: t asks. addPl acehol der Acti on(t asks)
| Rules:
copyToTaskCont ai ner
wr apper
| Type: org. gradl e. api . t asks. wr apper . W apper

Page 548 of 654

| Val ue: task ':wrapper'
| Creator: t asks. addPl acehol der Acti on(wr apper)

Page 549 of 654

| Rul es:
copyToTaskCont ai ner

68.8. Limitations and future direction

Rule based model configuration is the future of Gradle. This area is fledgling, but under very active
development. Early experiments have demonstrated that this approach is more efficient, able to provide
richer diagnostics and authoring assistance and is more extensible. However, there are currently many
limitations.

The magjority of the development to date has been focused on proving the efficacy of the approach, and
building the internal rule execution engine and model graph mechanics. The user facing aspects (e.g the
DSL, rule source classes) are yet to be optimized for conciseness and general usability. Likewise, many
necessary configuration patterns and constructs are not yet able to be expressed viathe API.

In conjunction with the addition of better syntax, a richer toolkit of configuration constructs and generally
more expressive power, more tooling will be added that will enable build engineers and users alike to
comprehend, modify and extend builds in new ways.

Due to the inherent nature of the rule based approach, it is more efficient at constructing the build model
than today’s Gradle. However, in the future Gradle will also leverage the parallelism that this approach
enables both at configuration and execution time. Moreover, due to increased transparency of the model
Gradle will be able to further reduce build times by caching and pre-computing the build model. Beyond
improved general build performance, this will greatly improve the experience when using Gradle from tools
such as IDEs.

Asthis area of Gradleis under active development, it will be changing rapidly. Please be sure to consult the
documentation of Gradle corresponding to the version you are using and to watch for changes announced in
the release notes for future versions.

Page 550 of 654

69

Software model concepts

Support for the software model is currently incubating. Please be aware that the DSL, APIs and other
configuration may change in later Gradle versions.

The software model describes how a piece of software is built and how the components of the software
relate to each other. The software model is organized around some key concepts:

* A component is a general concept that represents some logical piece of software. Examples of
components are a command-line application, a web application or a library. A component is often
composed of other components. Most Gradle builds will produce at least one component.

® A library is a reusable component that is linked into or combined into some other component. In the
Java ecosystem, a library is often built as a Jar file, and then later bundled into an application of some
kind. In the native ecosystem, alibrary may be built as a shared library or static library, or both.

® A source set represents a logical group of source files. Most components are built from source sets of
various languages. Some source sets contain source that is written by hand, and some source sets may
contain source that is generated from something else.

* A binary represents some output that is built for a component. A component may produce multiple
different output binaries. For example, for a C++ library, both a shared library and a static library binary
may be produced. Each binary is initially configured to be built from the component sources, but
additional source sets can be added to specific binary variants.

® A variant represents some mutually exclusive binary of a component. A library, for example, might
target Java 7 and Java 8, effectively producing two distinct binaries: a Java 7 Jar and a Java 8 Jar. These
are different variants of thelibrary.

* The API of alibrary represents the artifacts and dependencies that are required to compile against that
library. The API typically consists of abinary together with a set of dependencies.

Page 551 of 654

70

| mplementing model rulesin a plugin

A plugin can define rules by extending Rul eSour ce and adding methods that define the rules. The plugin

class can either extend Rul eSour ce directly or can implement Pl ugi n and include a nested
Rul eSour ce subclass.

Refer to the API docsfor Rul eSour ce for more details.

70.1. Applying additional rules

A rule method annotated with Rul es can apply aRul eSour ce to atarget model element.

Page 552 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/Rules.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/model/RuleSource.html

/1

Building Java Libraries

Support for building Java libraries using the software model is currently incubating. Please be aware
that the DSL, APIs and other configuration may changein later Gradle versions.

The Java software plugins are intended to replace the Java plugin, and leverage the Gradle software model
to achieve the best performance, improved expressiveness and support for variant-aware dependency
management.

7/1.1. Features

The Java software plugins provide:

® Support for building Java libraries and other components that run on the VM.

® Support for several source languages.

® Support for building different variants of the same software, for different Java versions, or for any
purpose.

® Build time definition and enforcement of Javalibrary API.

® Compile avoidance.

* Dependency management between Java software components.

71.2. Java Software Modedl

The Java software plugins provide a software model that describes Java based software and how it should be
built. This Java software model extends the base Gradle software model, to add support for building VM
libraries. A JVM library isakind of library that is built for and runs on the VM. It may be built from Java
source, or from various other languages. All VM libraries provide an APl of some kind.

71.3. Usage

To use the Java software plugins, include the following in your build script:

Page 553 of 654

Example 71.1. Using the Java softwar e plugins

bui | d. gradl e

pl ugi ns {
id'jvmconponent'

id'java-lang

71.4. Creating alibrary

A library is created by declaring aJvrLi br ar y Spec under the conponent s element of the nodel :

Example 71.2. Creating ajava library
bui |l d. gradl e

nmodel {
conponents {
mai n(Jvnli br ar ySpec)

}

Output of gr adl e bui I d

> gradle build

:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
:creat eMai nJar

: mai nApi Jar

:mai nJar

:assenbl e

: check UP- TO DATE

tbuild

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

This example creates a library named mai n, which will implicitly createaJavaSour ceSet named j ava
. The conventions of the legacy Java plugin are observed, where Java sources are expected to be found in sr ¢/ ma
, While resources are expected to be found in sr ¢/ mai n/ r esour ces.

71.5. Source Sets

Source sets represent logical groupings of source filesin alibrary. A library can define multiple source sets
and all sources will be compiled and included in the resulting binaries. When a library is added to a build,
the following source sets are added by default.

Page 554 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/JavaSourceSet.html

Table 71.1. Java plugin - default sour ce sets

SourceSet Type Directory

java JavaSour ceSet src/${ library.name} /java

resources JvnResour ceSet src/${ library.name} /resources

Itis possible to configure an existing source set through the sour ces container:

Example 71.3. Configuring a sour ce set

bui |l d. gradl e

conponents {
mai n {
sources {
java {

/'l configure the "java" source set

It isalso possible to create an additional source set, using the JavaSour ceSet type:

Example 71.4. Creating a new sour ce set
buil d. gradl e
conponents {
mai n {
sources {
nmy Sour ceSet (JavaSour ceSet) {

/] configure the "mySourceSet" source set

71.6. Tasks

By default, when the plugins above are applied, no new tasks are added to the build. However, when
libraries are defined, conventional tasks are added which build and package each binary of the library.

For each binary of a library, a single lifecycle task is created which executes all tasks associated with
building the binary. To build all binaries, the standard bui | d lifecycle task can be used.

Page 555 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/JavaSourceSet.html

Table 71.2. Java plugin - lifecycle tasks

Component Type Binary Type Lifecycle Task

Jvnii brarySpec JvnBi narySpec ${library.name} ${ binary.name}

For each source set added to alibrary, tasks are added to compile or process the source files for each binary.

Table 71.3. Java plugin - sour ce set tasks

Source Set Type Task name Type

JavaSour ceSet compile${ library.name} ${ binary.name} ${ library.name} ${ sourceset.name} Pl

atfi

JvnResour ceSet process¥{ library.name} ${ binary.name} H{ library.name} ${ sourceset.name} Proce:

For each binary in alibrary, a packaging task is added to create the jar for that binary.

Table 71.4. Java plugin - packaging tasks

Binary Type Task name Depends on Type

JvnBi narySpec create¥{library.name} ${binary.name} a | | Jar
Pl at f or mJavaConpi | e
and ProcessResour ces
tasks associated with the
binary

71.7. Finding out more about your project

Gradle provides a report that you can run from the command-line that shows details about the components
and binaries that your project produces. To use this report, just run gr adl e conponent s. Below is an
example of running this report for one of the sample projects:

Desc

Pack
the
com
clase
proc
resot
thek

Page 556 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JvmBinarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JvmBinarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.jvm.tasks.Jar.html

Example 71.5. The componentsreport
Output of gr adl e comnponent s

> gradl e conmponents
: conponent s

Source sets
Java source 'nmain:java'
srcDir: src/main/java
Java source ' main: mySourceSet"'
srcDir: src/ main/ mySourceSet
JVM resources 'nain:resources'
srcDir: src/main/resources

Bi nari es
Jar 'main:jar'

buil d using task: :mainJar
target platform java7
tool chain: JDK 7 (1.7)
classes dir: build/classes/nain/jar
resources dir: build/resources/main/jar
APl Jar file: build/jars/main/jar/api/main.jar
Jar file: build/jars/main/jar/main.jar

Note: currently not all plugins register their conmponents, so sone conponents may nha

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

71.8. Dependencies

A component in the Java software model can declare dependencies on other Javalibraries. If component mai n
dependson library ut i | , this meansthat the API of uti | isreguired when compiling the sources of mai n
, and the runtime of uti | is required when running or testing mai n. The terms 'API' and 'runtime’ are

examples of usages of aJavalibrary.

71.8.1. Library usage

The'API" usage of a Javalibrary consists of:

* Artifact(s): the Jar file(s) containing the public classes of that library
® Dependencies: the set of other libraries that are required to compile against that library

When library mai n is compiled with a dependency on ut i | , the 'API' dependencies of 'util’ are resolved
transitively, resulting in the complete set of libraries required to compile. For each of these libraries
(including 'util"), the 'API" artifacts will be included in the compile classpath.

Page 557 of 654

Similarly, the 'runtime’ usage of a Java library consists of artifacts and dependencies. When a Java
component is tested or bundled into an application, the runtime usage of any runtime dependencies will be
resolved transitively into the set of libraries required at runtime. The runtime artifacts of these libraries will

then be included in the testing or runtime classpath.

71.8.2. Dependency types

Two types of Javalibrary dependencies can be declared:

* Dependencieson alibrary defined in alocal Gradle project
® Dependencieson alibrary published to a Maven repository

Dependencies onto libraries published to an vy repository are not yet supported.

71.8.3. Declaring dependencies

Dependencies may be declared for a specific JavaSour ceSet , for an entire JvnLi br ar ySpec or as
part of the JvmApi Spec of a component:

Page 558 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JvmApiSpec.html

Example 71.6. Declaring a dependency onto alibrary
buil d. gradl e

nodel {
conponents {
server (Jvnli brarySpec) ({
sour ces {
java {
dependenci es {
library 'core

}

}

core(Jvnli brarySpec) {
dependenci es {
library 'conmons'
}
}

conmmons(Jvnli brarySpec) {
api {
dependenci es {
l'ibrary 'collections

}

}

col I ecti ons(Jvnli br ar ySpec)

Output of gr adl e serverJar

> gradl e serverJar

:conpil eCol | ecti onsJar Col | ecti onsJava
:col | ectionsApi Jar

: conpi | eCommonsJar CormonsJava
: commnsApi Jar

:conpi | eCor eJar CoreJava

: processCor eJar Cor eResour ces
:cor eApi Jar

:conpi | eServer Jar Server Java
:createServerJar
:server Api Jar

:serverJar

BUI LD SUCCESSFUL in Os
10 actionable tasks: 10 executed

Dependencies declared for a source set will only be used for compiling that particular source set.
Dependencies declared for a component will be used when compiling all source sets for the component.

Dependencies declared for the component api are used for compiling all source sets for the component, and
are also exported as part of the component’s API. See Enforcing APl boundaries at compile time for more
details.

Page 559 of 654

The previous example declares a dependency for the j ava source set of the ser ver library ontothe cor e
library of the same project. However, it is possible to create a dependency on alibrary in a different project
aswell:

Example 71.7. Declaring a dependency onto a project with an explicit library

buil d. gradl e

client(Jvnli brarySpec) {
sour ces {
java {
dependenci es {

project ':util' library 'main'

Output of gr adl e cli ent Jar

> gradle clientJar
cutil:conpil eMai nJar Mai nJava
cutil: mai nApi Jar
:conpiledientJardientJava

cclientApiJar
:createdientJar
:clientJar

BUI LD SUCCESSFUL in Os
5 actionable tasks: 5 executed

When the target project definesasinglelibrary, thel i br ar y selector can be omitted altogether:

Example 71.8. Declaring a dependency onto a project with an implicit library
bui |l d. gradl e

dependenci es {
project ':util’

}

Dependencies onto libraries published to Maven repositories can be declared vianodul e i dentifiers
consisting of agr oup nane, anodul e nane plusan optional ver si on sel ector:

Page 560 of 654

Example 71.9. Declaring a dependency onto a library published to a Maven repository

bui | d. gradl e

verifier(Jvnli brarySpec) {
dependenci es {
nodul e ' asni group 'org.ow2.asnl version '5.0.4

nodul e ' asm anal ysi s' group 'org.ow2. asni

Output of gr adl e verifierJar

> gradl e verifierJar

:conpi l eVerifierJarVerifierJava
:createVerifierJar
cverifierApiJar

cverifierJar

BUI LD SUCCESSFUL in Os
3 actionable tasks: 3 executed

A shorthand notation for module identifiers can also be used:

Example 71.10. Declaring a module dependency using shorthand notation

bui | d. gradl e

dependenci es {
nmodul e ' org. ow2. asm asm 5. 0. 4'

nmodul e ' org. ow2. asm asm anal ysi s'

Module dependencies will be resolved against the configured repositories as usual:

Example 71.11. Configuring repositoriesfor dependency resolution
bui | d. gradl e

repositories {
mavenCentral ()

}

The DependencySpecCont ai ner class provides a complete reference of the dependencies DSL.

71.9. Defining aLibrary API

Every library has an API, which consists of artifacts and dependencies that are required to compile against
the library. The library may be explicitly declared for a component, or may be implied based on other
component metadata.

By default, all publ i ¢ types of alibrary are considered to be part of its API. In many cases this is not
ideal; alibrary will contain many public types that intended for internal use within that library. By explicitly

Page 561 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/DependencySpecContainer.html

declaring an APl for a Java library, Gradle can provide compile-time encapsulation of these
internal-but-public types. The types to include in a library APl are declared at the package level. Packages
containing API types are considered to be exported.

By default, dependencies of a library are not considered to be part of its API. By explicitly declaring a
dependency as part of the library API, this dependency will then be made available to consumers when
compiling. Dependencies declared this way are considered to be exported, and are known as 'API
dependencies.

JDK 9 will introduce Jigsaw, the reference implementation of the Java Module System. Jigsaw will
provide both compile-time and run-time enforcement of APl encapsulation.

Gradle anticipates the arrival of JDK 9 and the Java Module System with an approach to specifying
and enforcing APl encapsulation at compile-time. This allows Gradle users to leverage the many
benefits of strong encapsulation, and prepare their software projects for migration to JDK 9.

71.9.1. Some terminology

® An API isaset of classes, interfaces, methods that are exposed to a consumer.

® An API specification is the specification of classes, interfaces or methods that belong to an API, together
with the set of dependenciesthat are part of the API. It can be found in various forms, like nodul e- i nf o. j
in Jigsaw, or the api { ...} block that Gradle defines as part of those stories. Usually, we can
simplify thisto alist of packages, called exported packages.

* A runtime jar consists of API classes and non-API classes used at execution time. There can be
multiple runtime jars depending on combinations of the variant dimensions: target platform, hardware
infrastructure, target application server, ...

® API classes are classes of a variant which match the API specification

® Non-API classes are classes of a variant which do not match the API specification.

* A stubbed API class is an API class for which its implementation and non public members have been
removed. It is meant to be used when a consumer is going to be compiled against an API .

®* An API jar is a collection of API classes. There can be multiple APl jars depending on the
combinations of variant dimensions.

* A stubbed API jar is a collection of stubbed API classes. There can be multiple stubbed API jars
depending on the combinations of variant dimensions.

* An ABI (application binary interface) correspondsto the public signature of an API, that is to say the set
of stubbed API classes that it exposes (and their API visible members).

We avoid the use of the term implementation because it istoo vague: both API classes and Non-API classes
can have an implementation. For example, an API class can be an interface, but also a concrete class.
Implementation is an overloaded term in the Java ecosystem, and often refers to a class implementing an
interface. This is not the case here: a concrete class can be member of an API, but to compile against an
AP, you don’t need the implementation of the class: al you need is the signatures.

Page 562 of 654

71.9.2. Specifying API classes
Example 71.12. Specifying api packages
bui |l d. gradl e

nodel {
conponents {
mai n(Jvnli brarySpec) {
api {
exports 'org.gradle

exports 'org.gradle.utils'

71.9.3. Specifying API dependencies
Example 71.13. Specifying api dependencies
bui |l d. gradl e
commons(JvnLi brarySpec) {

api {
dependenci es {

library 'collections'

71.9.4. Compile avoidance

When you define an API for your library, Gradle enforces the usage of that APl at compile-time. This comes
with 3 direct consequences:

® Trying to use anon-API classin a dependency will now result in a compilation error.

® Changing the implementation of an APl class will not result in recompilation of consumers if the ABI
doesn’'t change (that is to say, all public methods have the same signature but not necessarily the same
body).

® Changing the implementation of a non-API class will not result in recompilation of consumers. This
means that changes to non-API classes will not trigger recompilation of downstream dependencies,
because the ABI of the component doesn’t change.

Given a main component that exportsor g. gr adl e, or g. gradl e. uti | s and defines those classes:

Page 563 of 654

Example 71.14. Main sour ces
src/ mai n/ javal/ org/ gradl e/ Person. j ava

package org. gradl e;

public class Person {
private final String name;

public Person(String nanme) {

t hi s. nane = nane;

}

public String get Nanme() {
return nane;

}

src/ mai n/javal/ org/ gradl e/i nternal /Personlnternal.java
package org.gradle.internal;
i nport org.gradl e. Person;
public class Personl nternal extends Person {
public Personlnternal (String nanme) {

super (nane) ;

}

src/main/java/org/gradle/utils/StringUils.java

package org.gradle.utils;

public abstract class StringUtils {

}

Compiling acomponent client that declares a dependency onto main will succeed:

Page 564 of 654

Example 71.15. Client component

bui | d. gradl e

nodel {
conponents {
client(Jvnli brarySpec) {
sour ces {
java {
dependenci es {

library 'nmain'

}

src/client/javal/org/gradle/Cient.java
package org. gradl e;

public class dient {
private Person person;

public void set Person(Person p) { this.person = p; }
public Person getPerson() { return person; }

Output of gr adl e : clientJar

> gradle :clientJar

:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
: mai nApi Jar
:conpiledientJardientJava
cclientApiJar
:createdientJar

:clientJar

BUI LD SUCCESSFUL in Os
6 actionable tasks: 6 executed

But trying to compile a component brokenclient that declares a dependency onto main but uses an non-API
class of main will result in acompile-time error:

Page 565 of 654

Example 71.16. Broken client component

src/ brokenclient/java/org/gradle/Cient.java
package org. gradl e;
i mport org.gradl e.internal.Personlnternal;

public class dient {
private Personlnternal person;

public void setPerson(Personlnternal p) { this.person = p; }
publ i c Personlnternal getPerson() { return person; }

Output of gr adl e : brokencl i ent Jar

> gradl e : brokenclientJar

: conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces

: mai nApi Jar

:conpi | eBrokencl i ent Jar Brokencl i ent Java FAI LED
4 actionable tasks: 4 executed

On the other hand, if Person.java in client is updated and its APl hasn't changed, client will not be
recompiled. Thisisin particular important for incremental builds of large projects, where we can avoid the
compilation of dependenciesin chain, and then dramatically reduce build duration:

Page 566 of 654

Example 71.17. Recompiling the client
src/ mai n/ javal/ org/ gradl e/ Person. j ava

package org. gradl e;

public class Person {
private final String name;

public Person(String nanme) {
/'l we updated the body if this nmethod
/1 but the signature doesn't change
/'l so we will not reconpile conponents
/1 that depend on this class
t hi s. name = name. t oUpper Case() ;

}

public String get Nanme() {
return nane;

}

Output of gradl e : clientJar

> gradle :clientJar

:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces UP- TO DATE
: mai nApi Jar

:conpileCientJardientJava UP- TO DATE
:clientApi Jar UP- TO DATE
:createdientJar UP-TO DATE

:clientJar UP-TO DATE

BUl LD SUCCESSFUL in Os
6 actionable tasks: 2 executed, 4 up-to-date

Page 567 of 654

71.10. Platform aware dependency management

71.10.1. Specifying the target platform

The software model extracts the target platform as a core concept. In the Java world, this means that a
library can be built, or resolved, against a specific version of Java. For example, if you compile alibrary for
Java 5, we know that such a library can be consumed by a library built for Java 6, but the opposite is not

true. Gradle lets you define which platforms alibrary targets, and will take care of:

® generating abinary for each target platform (eg, aJavas jar aswell asaJava6 jar)

® resolving dependencies against a matching platform

Thet ar get Pl at f or mDSL defines which platforms alibrary should be built against:

Example 71.18. Declaring tar get platforms

core/ build.gradle

node

{

conponents {

mai n(Jvnli brarySpec) {
targetPlatform'java5b

targetPlatform'java6

Output of gradl e : core: build

> gradle :core:build

. core:
. core:
. core:
.core:
. core:
. core:
. core:
.core:
. core:
. core:
. core:
. core:
. core:
. core:

BUI LD
9 act

conpi | eMai nJava5Jar Mai nJava
processMai nJava5Jar Mai nResour ces
cr eat eMai nJavabJar

mai nJavaS5Api Jar

mai nJavabJar

conpi | eMai nJava6Jar Mai nJava
conpi | eMai nJava6Jar Mai nJava6Jar Java
processMai nJava6Jar Mai nResour ces
cr eat eMai nJava6Jar

mai nJava6Api Jar

mai nJava6Jar

assenbl e

check UP-TO DATE

build

SUCCESSFUL in Os
onabl e tasks: 9 executed

When building the application, Gradle generates two binaries: j ava5Mai nJar and j ava6Mai nJar
corresponding to the target versions of Java. These artifacts will participate in dependency resolution as
described here.

Page 568 of 654

71.10.2. Binary specific source sets

For each JvrLi br ar ySpec it is possible to define additional source sets for each binary. A common use
case for this is having specific dependencies for each variant and source sets that conform to those
dependencies. The example below configuresaj ava6 source set onthemai n. j ava6Jar binary:

Example 71.19. Declaring binary specific sour ces

core/ build.gradle

mai n {
bi nari es. j ava6Jar {
sources {
j ava(JavaSour ceSet) {

source.srcDir 'src/nain/java6'

Output of gr adl e cl ean : core: mai nJava6Jar

> gradl e clean :core: minJava6Jar

:core: clean UP-TO DATE

:server: cl ean UP- TO DATE

1 core: conpi |l eMai nJava6Jar Mai nJava

:core: conpi | eMai nJava6Jar Mai nJava6Jar Java
:core: processMai nJavaéJar Mai nResour ces
:core: creat eMai nJava6Jar

:core: mai nJava6Api Jar

1 core: mai nJava6Jar

BUI LD SUCCESSFUL in Os
7 actionable tasks: 5 executed, 2 up-to-date

71.10.3. Dependency resolution

When alibrary targets multiple versions of Java and depends on another library, Gradle will make its best
effort to resolve the dependency to the most appropriate version of the dependency library. In practice, this
means that Gradle chooses the highest compatible version:

® for abinary B built for Javan

¢ for adependency binary D built for Javam

* Discompatible with B if nx=n

* for multiple compatible binariesD(j ava 5), D(java 6), ..D(java n), choosethe compatible
D binary with the highest Java version

Page 569 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html

Example 71.20. Declaring tar get platforms
server/build. gradl e

nodel {
conponents {
mai n(Jvnli brarySpec) {

targetPlatform'javab
targetPlatform'java6

sources {

java {
dependenci es {

project ':core' library 'nmain'

}

Output of gr adl e cl ean :server:build

> gradle clean :server:build
:core:clean UP-TO DATE

:server:cl ean UP- TO DATE

1 core: conpi | eMai nJavabJar Mai nJava
:core: processMai nJava5Jar Mai nResour ces
:core: mai nJava5Api Jar

:server: conpi | eMai nJavabJar Mai nJava
:server: creat eMai nJava5Jar
:server: mai nJava5Api Jar
:server: mai nJavabJar

:core: conpil eMai nJava6Jar Mai nJava
:core: conpi | eMai nJava6Jar Mai nJava6Jar Java
:core: processMai nJava6Jar Mai nResour ces
:core: mai nJava6Api Jar

:server: conpi | eMai nJava6Jar Mai nJava
:server: creat eMai nJava6Jar
:server: mai nJava6Api Jar
:server: mai nJava6éJar

:server:assenbl e

:server: check UP-TO DATE

:server:build

BUI LD SUCCESSFUL in Os
15 actionabl e tasks: 13 executed, 2 up-to-date

In the example above, Gradle automatically chooses the Java 6 variant of the dependency for the Java 6
variant of the ser ver component, and chooses the Java 5 version of the dependency for the Java 5 variant
of theser ver component.

71.11. Custom variant resolution

The Java plugin, in addition to the target platform resolution, supports resolution of custom variants. Custom
variants can be defined on custom binary types, as long as they extend Jar Bi nar y Spec. Users interested
in testing this incubating feature can check out the documentation of the Var i ant annotation.

Page 570 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/JarBinarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/Variant.html

Page 571 of 654

71.12. Testing Javalibraries

71.12.1. Standalone JUnit test suites

The Java software model supports defining standalone JUnit test suites as components of the model.
Standalone test suite are components that are self contained, in the sense that there is no component under
test: everything being tested must belong to the test suite sources.

A test suiteis declared by creating a component of type JUni t Test Sui t eSpec, which is available when
you apply thej uni t -t est - sui t e plugin:

Example 71.21. Using the JUnit plugin

bui | d. gradl e

pl ugi ns {
id'jvmconponent'
id'java-lang'

id 'junit-test-suite'

}

nodel {
testSuites {
test (JUnit Test Sui t eSpec) {
jUnitVersion '4.12'

In the example above, t est isthe name of our test suite. By convention, Gradle will create two source sets

for the test suite, based on the name of the component: one for Java sources, and the other for resources: src/ t es

and src/test/resources. If the component was named i nt egTest , then sources and resources
would have been found respectively insrc/ i nt egTest/j avaandsrc/i ntegTest/resources.

Once the component is created, the test suite can be executed running the <<t est sui t e nanme>>Bi naryTe:

task:

Page 572 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/jvm/test/JUnitTestSuiteSpec.html

Example 71.22. Executing the test suite
src/test/javalorg/ gradl e/ MyTest. java

package org. gradl e;

i mport org.junit. Test;

i nport static org.junit.Assert.*;

public class MyTest {

@est
public void myTest Met hod() {
assert Equal s(4, "test".length());

}

Output of gr adl e t est Bi naryTest

> gradl e testBinaryTest

:conpi | eTest Bi naryTest Java

: processTest Bi nar yTest Resour ces
:testBi naryTest

BUI LD SUCCESSFUL in Os
3 actionable tasks: 3 executed

It is possible to configure source setsin asimilar way as libraries.
A test suite being a component can also declare dependencies onto other components.
A test suite can also contain resources, in which caseit is possible to configure the resource processing task:

Example 71.23. Executing the test suite
bui |l d. gradl e

nodel {
t asks. processTest Bi naryTest Resour ces {
/1 uncomrent |ines
filter { String line ->

line.replaceAll ("<!-- (.+?)

71.12.2. Testing VM libraries with JUnit

It islikely that you will want to test another VM component. The Java software model supports it exactly
like standalone test suites, by just declaring an additional component under test:

Page 573 of 654

Example 71.24. Declaring a component under test
buil d. gradl e

nodel {
conponents {
mai n(Jvnli br ar ySpec)
}
testSuites {
test (JUni t Test Sui t eSpec) {

jUnitVersion '4.12
testing $.conponents. main

Output of gr adl e t est Mai nJar Bi nar yTest

> gradl e testMinJarBi naryTest
:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
:conpi | eTest Mai nJar Bi naryTest Java
:test Mai nJar Bi nar yTest

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

Note that the syntax to choose the component under test isareference ($.). You can select any JvnConponent ¢
as the component under test. It’s also worth noting that when you declare a component under test, atest suite
is created for each binary of the component under test (for example, if the component under test has a Java 7

and Java 8 version, 2 different test suite binaries would be automatically created).

71.13. Declaring Javatoolchains

You can declare the list of local VM installations using the j aval nst al | at i ons model block. Gradle
will use this information to locate your JVMs and probe their versions. Please note that this information is
not yet used by Gradle to select the appropriate JDK or JRE when compiling your Java sources, or when
executing Java applications. A local Java installation can be declared using the Local Java type,

independently of the fact they are a JDK or a JRE:

Page 574 of 654

Example 71.25. Declaring local Java installations
buil d. gradl e

nodel {
javal nstal l ations {
openJdk6(Local Java) {
path '/usr/lib/jvnjdkl.6.0-and64'

}
oracl eJre7(Local Java) {
path '/usr/lib/jvmjrel. 7.0

}
i bmldk8(Local Java) {

path '/usr/lib/jvnjdkl. 8.0

Page 575 of 654

[

Building Play applications

Support for building Play applicationsis currently incubating. Please be aware that the DSL, APIs and
other configuration may changein later Gradle versions.

Play is amodern web application framework. The Play plugin adds support for building, testing and running
Play applications with Gradle.

The Play plugin makes use of the Gradle software model.

72.1. Usage

To use the Play plugin, include the following in your build script to apply the pl ay plugin and add the
Typesafe repositories:

Example 72.1. Using the Play plugin

bui | d. gradl e

pl ugi ns {
id'play
}

repositories {
jcenter ()
maven {
nane "typesafe-maven-rel ease"

url "https://repo.typesafe.conltypesafe/ maven-rel eases"

}

ivy {
nanme "typesafe-ivy-rel ease”
url "https://repo.typesafe.conitypesafel/ivy-rel eases"
[ayout "ivy"

Note that defining the Typesafe repositories is necessary. In future versions of Gradle, this will be replaced
with amore convenient syntax.

Page 576 of 654

https://www.playframework.com/

72.2. Limitations

The Play plugin currently has afew limitations.

® Gradle does not yet support aggregate reverse routes introduced in Play 2.4.x.

* A given project may only define a single Play application. This means that a single project cannot build
more than one Play application. However, a multi-project build can have many projects that each define
their own Play application.

* Play applications can only target a single “platform” (combination of Play, Scala and Java version) at a
time. This meansthat it is currently not possible to define multiple variants of a Play application that, for
example, produce jars for both Scala 2.10 and 2.11. This limitation may be lifted in future Gradle
Versions.

® Support for generating IDE configurations for Play applicationsis limited to IDEA.

72.3. Software Model

The Play plugin uses a software model to describe a Play application and how to build it. The Play software
model extends the base Gradle software model to add support for building Play applications. A Play
application is represented by a Pl ayAppl i cati onSpec component type. The plugin automatically
creates a single Pl ayAppl i cati onBi narySpec instance when it is applied. Additional Play
components cannot be added to a project.

Figure 72.1. Play plugin - softwar e model

PlayApplicationSpec

Target Platform I I 5 I Scala Source Set
binaries

SOUrCEes

. ' - I Java Source Set

[PlayApplicationBinarys pec] 5 I Resources Source Set
Compiled Assets

Compiled Source \ _

Target Platform JavaScript Source Set

72.3.1. The Play application component

A Play application component describes the application to be built and consists of several configuration
elements. One type of element that describes the application are the source sets that define where the
application controller, route, template and model class source files should be found. These source sets are
logical groupings of files of a particular type and a default source set for each typeis created when the pl ay

plugin is applied.

Page 577 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PlayApplicationBinarySpec.html

Table 72.1. Default Play sour ce sets

Sour ce Set Type Directory Filters

java JavaSour ceSet app **[* java
scala Scal aLanguageSour ceSet app **[* scala
routes Rout esSour ceSet conf routes, *.routes
twirlTemplates Twi r| Sour ceSet app **[* scala*
javaScript JavaScri pt Sour ceSet applassets **/* s

These source sets can be configured or additional source sets can be added to the Play component. See Configuring
for further information.

Another element of configuring a Play application is the platform. To build a Play application, Gradle needs
to understand which versions of Play, Scala and Javato use. The Play component specifies this requirement
asaPl ayPl at f or m If these values are not configured, a default version of Play, Scala and Java will be
used. See Targeting a certain version of Play for information on configuring the Play platform.

Note that only a single platform can be specified for a given Play component. This means that only a single
version of Play, Scala and Java can be used to build a Play component. In other words, a Play component
can only produce one set of outputs, and those outputs will be built using the versions specified by the
platform configured on the component.

72.3.2. The Play application binary

A Play application component is compiled and packaged to produce a set of outputs which are represented
by a Pl ayAppl i cati onBi nar ySpec. The Play binary specifies the jar files produced by building the
component as well as providing elements by which additional content can be added to those jar files. It also
exposes the tasks involved in building the component and creating the binary.

See Configuring Play for examples of configuring the Play binary.

72.4. Project Layout

The Play plugin follows the typical Play application layout. You can configure source sets to include
additional directories or change the defaults.

Page 578 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/scala/ScalaLanguageSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.routes.RoutesSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.javascript.JavaScriptSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PlayApplicationBinarySpec.html

app
assets
javascripts
controllers
nodel s
Vi ews
buil d. gradl e
conf
public
i mages
javascripts
styl esheets
t est

72.5. Tasks

Appl i cation source code.

Assets that require conpilation.
JavaScript source code to be minified.

Application controller source code.
Appl i cation business source code.
Application U tenplates.

Your project's build script.

Mai n application configuration file and routes files.

Public assets.
Application imge files.
Typi cally JavaScri pt source code.
Typically CSS source code.

Test source code.

The Play plugin hooks into the normal Gradle lifecycle tasks such asassenbl e, check and bui | d, but it
also adds several additional tasks which form the lifecycle of a Play project:

Table 72.2. Play plugin - lifecycle tasks

Task name Dependson Type Description
pl ayBi nary All compiletasks for source sets added tothe Task Performs a build of just
Play application. the Play application.
di st creat ePl ayBi naryZi pDi st, cr eat ePl ayBiglar y PessBinbtes the Play
distribution.
st age st agePl ayBi naryDi st Task Stages the Play
distribution.

The plugin a so provides tasks for running, testing and packaging your Play application:

Table 72.3. Play plugin - running and testing tasks

Task name

runPl ayBi nary

test Pl ayBi nary

Dependson Type Description

pl ayBi nary to build Play PlayRun Runs the Play application for loc
application. development. See how thisworksw
pl ayBi nary to build Play Test Runs JUnit/TestNG tests for the M

application and conpi | ePl ayBi naryTests application.

For the different types of sourcesin a Play application, the plugin adds the following compilation tasks:

Page 579 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.testing.Test.html

Table 72.4. Play plugin - source set tasks

Task name

conpi | ePl ayBi naryScal a

conpi | ePl ayBi naryPl ayTwi r| Tenpl at es

conpi | ePl ayBi nar yPl ayRout es

m ni f yPl ayBi naryJavaScri pt

Sour ce Type
Type

Scala and Pl at f or n5cal aConpi | e
Java

Twirl Twi rl Compi |l e
templates

Play Rout esConpi | e
Route

files

JavaScript JavaScri pt M nify
files

Descrif

Compil
Scala
Java st
definec
the

applical

Compil
Twirl
templa
with
Twirl
compil
Gradle
support
of
built-i
Twirl
templa
format
(HTMI
XML,
and
JavaSct
Twirl
templa
need
match
pattern

Compil
routes
into
sources

Minifie
JavaSci
files wi
Googl:
Closur
compile

Page 580 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.TwirlCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.JavaScriptMinify.html

72.6. Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the
components and binaries that your project produces. To use this report, just run gr adl e conponent s.
Below is an example of running this report for one of the sample projects:

Example 72.2. The componentsreport
Output of gr adl e conponent s

> gradl e conponents
: conponent s

Source sets

Java source 'play:java'
srcDir: app
includes: **/*_ java

JavaScript source 'play:javaScript'
srcDir: app/assets
includes: **/*.js

JVM resources 'play:resources'
srchir: conf

Rout es source 'play:routes'
srcDir: conf
includes: routes, *.routes

Scal a source 'play:scal a'
srcDir: app
includes: **/* scal a

Twirl tenplate source 'play:twrl Tenpl at es’
srcDir: app
i ncludes: **/*. scala.*

Bi nari es

Pl ay Application Jar 'play:binary’
buil d using task: :playBinary
target platform Play Platform (Play 2.3.10, Scala: 2.11, Java: Java SE 8)
t ool chain: Default Play Tool chain
cl asses dir: build/playBinary/cl asses
resources dir: build/playBinary/resources
JAR file: build/playBinary/lib/basic.jar

Note: currently not all plugins register their conponents, so sone conponents nmay ng

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 581 of 654

72.7. Running a Play application

The runPl ayBi nary task starts the Play application under development. During development it is
beneficial to execute this task as a continuous build. Continuous build is a generic feature that supports
automatically re-running a build when inputs change. The r unPl ayBi nary task is “continuous build
aware” in that it behaves differently when run as part of a continuous build.

When not run as part of a continuous build, the r unPl ayBi nary task will block the build. That is, the
task will not complete as long as the application is running. When running as part of a continuous build, the
task will start the application if not running and otherwise propagate any changes to the code of the
application to the running instance. This is useful for quickly iterating on your Play application with an
edit->rebuild->refresh cycle. Changes to your application will not take affect until the end of the overall
build.

To enable continuous build, run Gradlewith -t runPl ayBi nary or - - cont i nuous runPl ayBi nary

Users of Play used to such a workflow with Play’s default build system should note that compile errors are
handled differently. If a build failure occurs during a continuous build, the Play application will not be
reloaded. Instead, you will be presented with an exception message. The exception message will only
contain the overall cause of the build failure. More detailed information will only be available from the
console.

72.8. Configuring a Play application

72.8.1. Targeting a certain version of Play

By default, Gradle uses Play 2.3.10, Scala 2.11 and the version of Java used to start the build. A Play
application can select a different version by specifying a target
Pl ayAppl i cati onSpec. pl at forn(j ava. | ang. Qbj ect) onthe Play application component.

Example 72.3. Selecting a version of the Play Framewor k

bui |l d. gradl e

nmodel {
conponents {

play {

platformplay: '2.3.6", scala: '2. 10

72.8.2. Adding dependencies

You can add compile, test and runtime dependencies to a Play application through Confi gurati on
created by the Play plugin.

Page 582 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.artifacts.Configuration.html

If you are coming from SBT, the Play SBT plugin provides short names for common dependencies. For
instance, if your project has a dependency on ws, you will need to add a dependency to com t ypesaf e. pl ay:
where 2. 11 isyour Scalaversionand 2. 3. 9 isyour Play framework version.

Other dependencies that have short names, such asj acksons may actually be multiple dependencies. For
those dependencies, you will need to work out the dependency coordinates from a dependency report.

® pl ay isused for compile time dependencies.

® pl ayTest isusedfor test compile time dependencies.
* pl ayRun isused for run time dependencies.

Example 72.4. Adding dependenciesto a Play application
bui | d. gradl e

dependenci es {
pl ay "commons-| ang: conmons- | ang: 2. 6"

}

72.8.3. Configuring the default source sets

Y ou can further configure the default source sets to do things like add new directories, add filters, etc.

72.8.4. Adding extra source sets

If your Play application has additional sources that exist in non-standard directories, you can add extra
source sets that Gradle will automatically add to the appropriate compile tasks.

Page 583 of 654

Example 72.5. Adding extra sour ce setsto a Play application
buil d. gradl e

nodel {
conponents {
play {
sour ces {
java {
source.srcDir "additional/java"

}
javaScri pt {

source {

srcDir "additional/javascript"

exclude "**/old *.]s"

bui | d. gradl e

nodel {
conponents {
play {
sour ces {

extraJava(JavaSour ceSet) {
source.srchDir "extraljava"

}

extraTwi rl (Twirl SourceSet) {
source.srchir "extra/twrl"

}

ext raRout es(Rout esSour ceSet) {
source.srchDir "extralroutes"

}

72.8.5. Configuring compiler options

If your Play application requires additional Scala compiler flags, you can add these arguments directly to the

Scala compiler task.

Page 584 of 654

Example 72.6. Configuring Scala compiler options

buil d. gradl e

nodel {
conponents {
play {
bi naries.all {
tasks. wi t hType(Pl at f or nScal aConpi |) {
scal aConpi | eOpti ons. addi ti onal Paraneters = ["-feature",

}

72.8.6. Configuring routes style

The injected router is only supported in Play Framework 2.4 or better.

If your Play application’s router uses dependency injection to access your controllers, you'll need to
configure your application to not use the default static router. Under the covers, the Play pluginisusing the | nj e
instead of the default St at i cRout esGener at or to generate the router classes.

Example 72.7. Configuring routes style

bui |l d. gradl e

nodel {
conponents {

play {

i nj ect edRout esGenerator = true

72.8.7. Configuring Twirl templates

A custom Twirl template format can be configured independently for each Twirl source set. See the
Twi r | Sour ceSet for an example.

72.8.8. Injecting a custom asset pipeline

Gradle Play support comes with a simplistic asset processing pipeline that minifies JavaScript assets.
However, many organizations have their own custom pipeline for processing assets. Y ou can easily hook the
results of your pipeline into the Play binary by utilizing the Publ i cAsset s property on the binary.

Page 585 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PublicAssets.html

Example 72.8. Configuring a custom asset pipeline
buil d. gradl e

nodel {
conponents {
play {
binaries.all { binary ->

t asks. creat e("addCopyri ght ToPl ay${ bi nary. nane. capitali ze()} Asset
source "raw assets"
copyrightFile = project.file(' copyright.txt")
destinationDir = project.file("${buildD r}/play${binary.nang

/'l Hook this task into the binary
bi nary. assets. addAsset Dir destinationDir
bi nary. assets. bui |l t By copyri ght Task

cl ass AddCopyri ghts extends SourceTask {
@nputFile
File copyrightFile

@ut put Di rectory
File destinationDr

@askActi on
voi d generateAssets() {
String copyright = copyrightFile.text
get Source().files.each { File file ->
File outputFile = new Fil e(destinationDir, file.nane)
outputFile.text = "${copyright}\n${file.text}"

72.9. Multi-project Play applications

Play applications can be built in multi-project builds as well. Simply apply the pl ay plugin in the
appropriate subprojects and create any project dependencies on the pl ay configuration.

Example 72.9. Configuring dependencies on Play subprojects
bui |l d. gradl e
dependenci es {

play project(":admin")
pl ay project(":user")

play project(":util")

Seethepl ay/ nul ti proj ect sample provided in the Gradle distribution for aworking example.

Page 586 of 654

72.10. Packaging a Play application for
distribution

Gradle provides the capability to package your Play application so that it can easily be distributed and run in
atarget environment. The distribution package (zip file) contains the Play binary jars, all dependencies, and
generated scripts that set up the classpath and run the application in a Play-specific Netty container.

The distribution can be created by running the di st lifecycle task and places the distribution in the $bui | dDi r/
directory. Alternatively, one can validate the contents by running the st age lifecycle task which copies the
filesto the $bui | dDi r/ st age directory using the layout of the distribution package.

Table 72.5. Play distribution tasks

Page 587 of 654

http://netty.io

Task name Dependson Type

createPl ayBi naryStart Scripts - CreateStart Scr
st agePl ayBi naryDi st pl ayBi nary, creat ePl ayBi narySt arC&gyi pt s

creat ePl ayBi nar yZi pDi st Zip

creat ePl ayBi naryTar Di st Tar

st age st agePl ayBi naryDi st Task

di st creat ePl ayBi naryZi pDi st, cr eat ePTayBi nar yTar Di

Page 588 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.Task.html

72.10.1. Adding additional filesto your Play application distribution

Y ou can add additional files to the distribution package usingthe Di st ri buti on API.

Example 72.10. Add extrafilesto a Play application distribution

bui | d. gradl e

nodel {
di stributions {
pl ayBi nary {
contents {
f r om(" READVE. md")

from("scripts") {

into "bin"

72.11. Building a Play application with an IDE

If you want to generate | DE metadata configuration for your Play project, you need to apply the appropriate
IDE plugin. Gradle supports generating | DE metadata for IDEA only for Play projects at thistime.

To generate IDEA’ s metadata, apply thei dea plugin along with the pl ay plugin.

Example 72.11. Applying both the Play and IDEA plugins

bui | d. gradl e

pl ugi ns {
id'play'

id'idea

Source code generated by routes and Twirl templates cannot be generated by IDEA directly, so changes
made to those files will not affect compilation until the next Gradle build. Y ou can run the Play application
with Gradle in continuous build to automatically rebuild and reload the application whenever something
changes.

72.12. Resources

For additional information about developing Play applications:

* Play typesinthe Gradle DSL Guide:
* Pl ayApplicati onBi narySpec
* Pl ayApplicationSpec
* PlayPlatform
® Jvn(Cl asses

Page 589 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/distribution/Distribution.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PlayApplicationBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.JvmClasses.html

® PublicAssets
®* Pl ayDi stributionCont ai ner
® JavaScriptMnify
* Pl ayRun
® Rout esConpil e
® Twirl Conpile
® Play Framework Documentation.

Page 590 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.PublicAssets.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.distribution.PlayDistributionContainer.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.JavaScriptMinify.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.play.tasks.TwirlCompile.html
https://www.playframework.com/documentation

/3

Building native softwar e

Support for building native software is currently incubating. Please be aware that the DSL, APIs and
other configuration may changein later Gradle versions.

The native software plugins add support for building native software components, such as executables or
shared libraries, from code written in C++, C and other languages. While many excellent build tools exist
for this space of software development, Gradle offers devel opersits trademark power and flexibility together
with dependency management practices more traditionally found in the VM devel opment space.

The native software plugins make use of the Gradle software model.

73.1. Features

The native software plugins provide:

® Support for building native libraries and applications on Windows, Linux, OS X and other platforms.

® Support for several source languages.

® Support for building different variants of the same software, for different architectures, operating
systems, or for any purpose.

® Incrementa parallel compilation, precompiled headers.

* Dependency management between native software components.

® Unit test execution.

® Generate Visual studio solution and project files.

® Deep integration with various tool chain, including discovery of installed tool chains.

73.2. Supported languages

The following source languages are currently supported:

e C

® C++

® Objective-C

® Objective-C++

* Assembly

® \Windows resources

Page 591 of 654

73.3. Tool chain support

Gradle offers the ability to execute the same build using different tool chains. When you build a native
binary, Gradle will attempt to locate a tool chain installed on your machine that can build the binary. You
can fine tune exactly how this works, see Section 73.18, “Tool chains’ for details.

The following tool chains are supported:

Operating System Tool Chain Notes
Linux GCC
Linux Clang
Mac OS X XCode Uses the Clang tool chain
bundled with X Code.
Windows Visual C++ Windows XP and later, Visual

C++ 2010/2012/2013/2015.

Windows GCC with Cygwin 32 Windows XP and later.

Windows GCC with MinGW Windows XP and later.
Mingw-w64 is currently not
supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested
continuously:

Operating System Tool Chain Notes
Mac OS X GCC from Macports
Mac OS X Clang from Macports
Windows GCC with Cygwin64 Windows XP and later.
UNIX-like GCC
UNIX-like Clang

Page 592 of 654

http://gcc.gnu.org/
http://clang.llvm.org
http://www.microsoft.com/visualstudio/en-us
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://clang.llvm.org

73.4. Tool chan installation

Note that if you are using GCC then you currently need to install support for C++, even if you are not
building from C++ source. Thisrestriction will be removed in afuture Gradle version.

To build native software, you will need to have a compatible tool chain installed:

73.4.1. Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover the
Visua Studio installations and select the latest version. There is no need to mess around with environment
variables or batch scripts. Thisworks fine from a Cygwin shell or the Windows command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

73.4.2. OS X

To build on OS X, you should install XCode. The native plugins will discover the XCode installation using
the system PATH.

The native plugins also work with GCC and Clang bundled with Macports. To use one of the Macports tool
chains, you will need to make the tool chain the default using the port sel ect command and add
Macports to the system PATH.

73.4.3. Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover GCC or
Clang using the system PATH.

73.5. Native software modedl

The native software model builds on the base Gradle software model.

To build native software using Gradle, your project should define one or more native components. Each
component represents either an executable or a library that Gradle should build. A project can define any
number of components. Gradle does not define any components by default.

For each component, Gradle defines a source set for each language that the component can be built from. A
source set is essentially just a set of source directories containing source files. For example, when you apply
the ¢ plugin and define a library called hel | owor | d, Gradle will define, by default, a source set
containing the C source filesin the src/ hel | owor | d/ ¢ directory. It will use these source files to build
thehel | owor | d library. Thisis described in more detail below.

For each component, Gradle defines one or more hinaries as output. To build a binary, Gradle will take the
source files defined for the component, compile them as appropriate for the source language, and link the

Page 593 of 654

result into a binary file. For an executable component, Gradle can produce executable binary files. For a
library component, Gradle can produce both static and shared library binary files. For example, when you
define alibrary called hel | owor | d and build on Linux, Gradle will, by default, produce | i bhel | owor | d. sa
and | i bhel | owor | d. a binaries.

In many cases, more than one binary can be produced for a component. These binaries may vary based on
the tool chain used to build, the compiler/linker flags supplied, the dependencies provided, or additional
source files provided. Each native binary produced for a component is referred to as a variant. Binary
variants are discussed in detail below.

73.6. Parallel Compilation

Gradle uses the single build worker pool to concurrently compile and link native components, by default. No
special configuration is required to enable concurrent building.

By default, the worker pool size is determined by the number of available processors on the build machine
(as reported to the build JVM). To explicitly set the number of workers use the - - max- wor ker s
command-line option or or g. gr adl e. wor ker s. max system property. There is generally no need to
change this setting from its default.

The build worker pool is shared across all build tasks. This means that when using parallel project execution
, the maximum number of concurrent individual compilation operations does not increase. For example, if
the build machine has 4 processing cores and 10 projects are compiling in parallel, Gradle will only use 4
total workers, not 40.

73.7. Building alibrary

To build either a static or shared native library, you define a library component in the conponent s
container. The following sample defines alibrary called hel | o:

Example 73.1. Defining a library component

bui |l d. gradl e

nodel {
conponents {
hel | o(Nat i veLi br ar ySpec)

}

A library component is represented using Nat i veLi br ar ySpec. Each library component can produce at
least one shared library binary (Shar edLi br ar yBi nar ySpec) and at least one static library binary (
Stati cLi braryBi nar ySpec).

Page 594 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

73.8. Building an executable

To build a native executable, you define an executable component in the conponent s container. The
following sample defines an executable called nai n:

Example 73.2. Defining executable components
bui |l d. gradl e

nodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
sour ces {

c.lib library: "hello"

An executable component is represented using Nat i veExecut abl eSpec. Each executable component
can produce at least one executable binary (Nat i veExecut abl eBi nar ySpec).

For each component defined, Gradle adds a Funct i onal Sour ceSet with the same name. Each of these
functional source sets will contain alanguage-specific source set for each of the languages supported by the
project.

73.9. Assembling or building dependents

Sometimes, you may need to assemble (compile and link) or build (compile, link and test) a component or
binary and its dependents (things that depend upon the component or binary). The native software model
provides tasks that enable this capability. First, the dependent components report gives insight about the
relationships between each component. Second, the build and assemble dependents tasks allow you to
assembl e or build a component and its dependents in one step.

In the following example, the build file defines OpenSSL asadependency of | i bUti | andli bUtil asa
dependency of Li nuxApp and W ndows App. Test suites are treated similarly. Dependents can be thought
of as reverse dependencies.

Page 595 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html

Figure 73.1. Dependent Components Example

Gradle Component OpenSSL [CUnit]

£\

Non-buildable component

Prebuilt Library [libUtil

I\

LinuxApp libUtilTest

[Windﬂws App]

By following the dependencies backwards, you can see Li nuxApp and W ndowsApp are
dependents of 1 i bUt i | . Whenli bUti | ischanged, Gradle will need to recompile or relink Li nuxApp
and W ndows App.

When you assemble dependents of a component, the component and all of its dependents are compiled and
linked, including any test suite binaries. Gradle's up-to-date checks are used to only compile or link if
something has changed. For instance, if you have changed source files in a way that do not affect the
headers of your project, Gradle will be able to skip compilation for dependent components and only need to
re-link with the new library. Tests are not run when assembling a component.

When you build dependents of a component, the component and all of its dependent binaries are compiled,
linked and checked. Checking components means running any check task including executing any test
suites, so tests are run when building a component.

In the following sections, we will demonstrate the usage of the assenbl eDependent s*, bui | dDependent
and dependent Conponent s tasks with a sample build that contains a CUnit test suite. The build script
for the sampleis the following:

Page 596 of 654

Example 73.3. Sample build

bui | d. gradl e

apply plugin: "c"
apply plugin: '"cunit-test-suite

nodel {
flavors {
passi ng
failing
}
platfornms {
x86 {
architecture "x86"

}
}
conponents {
oper at or s(Nat i veLi brarySpec) {
target Pl atf orm " x86"

}

}

testSuites {
oper at or sTest (CUni t Test Sui t eSpec) {
testing $.conponents. operators

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ cunit in the
‘-al’ distribution of Gradle.

73.9.1. Dependent components report

Gradle provides a report that you can run from the command-line that shows a graph of components in your
project and components that depend upon them. The following is an example of running gr adl e dependent C
on the sample project:

Page 597 of 654

Example 73.4. Dependent components report
Output of gr adl e dependent Conponent s

> gradl e dependent Conponents
: dependent Conponent s

operators - Components that depend on native library 'operators'

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
+--- operators: passi ngSharedLi brary
\--- operators:passingStaticLibrary

Sone test suites were not shown, use --test-suites or --all to show them

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

See Dependent Conponent sReport APl documentation for more details.

By default, non-buildable binaries and test suites are hidden from the report. The dependent Conponent s
task provides options that allow you to see all dependents by using the - - al | option:

Example 73.5. Dependent componentsreport

Output of gr adl e dependent Conponents --all

> gradl e dependent Conponents --all
: dependent Conponent s

operators - Conponents that depend on native library 'operators'

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
| \--- operatorsTest:failingCUnitExe (t)
+--- operators: passi ngSharedLi brary
\--- operators:passingStaticLibrary
\--- operatorsTest: passi ngCUnitExe (t)

operatorsTest - Conponents that depend on Cunit test suite 'operatorsTest'
+--- operatorsTest:failingCunitExe (t)

\--- operatorsTest: passi ngCunitExe (t)

(t) - Test suite binary

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 598 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.api.reporting.dependents.DependentComponentsReport.html

Here is the corresponding report for the oper at or s component, showing dependents of all its binaries:

Example 73.6. Report of componentsthat depends on the oper ators component
Output of gr adl e dependent Conponents --conponent operators

> gradl e dependent Conponents --comnmponent operators
: dependent Conponent s

operators - Conponents that depend on native library 'operators'

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
+--- operators: passi ngShar edLi brary
\--- operators:passingStaticLibrary

Sone test suites were not shown, use --test-suites or --all to show them

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Here is the corresponding report for the oper at or s component, showing dependents of al its binaries,
including test suites:

Example 73.7. Report of components that depends on the operators component, including test suites
Output of gr adl e dependent Conponents --test-suites --conponent operators

> gradl e dependent Conponents --test-suites --conponent operators
: dependent Conponent s

operators - Conponents that depend on native library 'operators'

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
| \--- operatorsTest:failingCunitExe (t)
+--- operators: passi ngSharedLi brary
\--- operators:passingStaticLibrary
\--- operatorsTest: passi ngCUnitExe (t)

(t) - Test suite binary

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

73.9.2. Assembling dependents

For each Nat i veBi nar ySpec, Gradle will create atask named assenbl eDependent s${ conponent . na
that assembles (compile and link) the binary and all of its dependent binaries.

For each Nat i veConponent Spec, Gradle will create atask named assenbl eDependent s ${ conponent

Page 599 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeComponentSpec.html

that assembles all the binaries of the component and all of their dependent binaries.

For example, to assemble the dependents of the "passing” flavor of the "static" library binary of the
"operators' component, you would run the assenbl eDependent sOper at or sPassi ngSt ati cLi brary
task:

Example 73.8. Assemble componentsthat depends on the passing/static binary of the operators component
Output of gr adl e assenbl eDependent sOper at or sPassi ngSt ati cLi brary --max-workers=1

> gradl e assenbl eDependent sOper at or sPassi ngStati cLi brary --nmax-workers=1
: dependQOper at or sTest Passi ngCUni t ExeOper at or sC

:conpi | eOper at or sTest Passi ngCUni t ExeOper at orsC

:oper at or sTest CUni t Launcher

: dependOper at or sTest Passi ngCUni t ExeOper at or sTest C

:conpi | eOper at or sTest Passi ngCUni t ExeOper at or sTest C

: dependQper at or sTest Passi ngCUni t ExeOper at or sTest Cuni t Launcher
:conpi | eQper at or sTest Passi ngCUni t ExeOper at or sTest Cuni t Launcher
1 1i nkQper at or sTest Passi ngCUni t Exe

: oper at or sTest Passi ngCUni t Exe

: assenbl eDependent sOper at or sTest Passi ngCUni t Exe

: dependQper at or sPassi ngSt ati cLi braryQperat orsC

:conpi | eQper at or sPassi ngSt ati cLi braryQperatorsC

:creat eOperat orsPassi ngStaticLibrary

:oper at or sPassi ngSt ati cLi brary

:assenbl eDependent sOper at or sPassi ngSt ati cLi brary

BUI LD SUCCESSFUL in Os
11 actionable tasks: 11 executed

In the output above, the targeted binary gets assembled as well as the test suite binary that depends on it.

You can also assemble all of the dependents of a component (i.e. of al its binaries/variants) using the
corresponding component task, e.g. assenbl eDependent sQper at or s. This is useful if you have
many combinations of build types, flavors and platforms and want to assemble all of them.

73.9.3. Building dependents

For each Nat i veBi nar ySpec, Gradle will create atask named bui | dDependent s ${ conponent . nane}
that builds (compile, link and check) the binary and all of its dependent binaries.

For each Nat i veConponent Spec, Gradle will create atask named bui | dDependent s${ conponent . na
that builds all the binaries of the component and all of their dependent binaries.

For example, to build the dependents of the "passing” flavor of the "static" library binary of the "operators®
component, you would run the bui | dDependent sOper at or sPassi ngSt ati cLi brary task:

Page 600 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeComponentSpec.html

Example 73.9. Build components that depends on the passing/static binary of the operators component
Output of gr adl e bui | dDependent sOper at or sPassi ngSt ati cLi brary --max-wor kers=1

> gradl e buil dDependent sOper at or sPassi ngStati cLi brary --nmax-workers=1
: dependQper at or sTest Passi ngCUni t ExeOper at or sC

:conpi | eQper at or sTest Passi ngCUni t ExeOper at or sC

:oper at orsTest CUni t Launcher

: dependQper at or sTest Passi ngCUni t ExeOper at or sTest C

:conpi | eQper at or sTest Passi ngCUni t ExeQper at or sTest C

: dependOper at or sTest Passi ngCUni t ExeOper at or sTest Cuni t Launcher
:conpi | eQper at or sTest Passi ngCUni t ExeOper at or sTest Cuni t Launcher
111 nkQOper at or sTest Passi ngCUni t Exe

: oper at or sTest Passi ngCUni t Exe

;instal | Qperat or sTest Passi ngCUni t Exe

:runQper at or sTest Passi ngCUni t Exe

: checkOper at or sTest Passi ngCUni t Exe

: bui | dDependent sOper at or sTest Passi ngCUni t Exe

: dependOper at or sPassi ngSt ati cLi braryOperat orsC

:conpi | eQper at or sPassi ngSt ati cLi braryQperat orsC

:creat eQperat orsPassi ngStaticLi brary

:oper at or sPassi ngSt ati cLi brary

- bui | dDependent sQper at or sPassi ngSt ati cLi brary

BUI LD SUCCESSFUL in Os
13 actionabl e tasks: 13 executed

In the output above, the targeted binary as well as the test suite binary that depends on it are built and the
test suite has run.

You can also build all of the dependents of a component (i.e. of all its binaries/variants) using the
corresponding component task, e.g. bui | dDependent sQper at or s.

73.10. Tasks

For each Nat i veBi nar ySpec that can be produced by a build, a single lifecycle task is constructed that
can be used to create that binary, together with a set of other tasks that do the actual work of compiling,
linking or assembling the binary.

Component Type Native Binary Type Lifecycle task L ocati

Nat i veExecut abl eSpec Nati veExecut abl eBi narySpec ${conponent . nane} Exesupe
Nat i veLi br arySpec Shar edLi br ar yBi narySpec ${ conponent . nane} Shasgplt

Nat i veLi br arySpec St ati cLi braryBi narySpec ${ conponent . nane} St a${ pt

73.10.1. Check tasks

For each Nat i veBi nar ySpec that can be produced by abuild, asingle check task is constructed that can
be used to assemble and check that binary.

Page 601 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html

Component Type Native Binary Type Check task

Nat i veExecut abl eSpec Nat i veExecut abl eBi narySpec check${conponent . nane} E
Nat i veLi brarySpec Shar edLi br ar yBi nar ySpec check${conmponent . nane} Sl

Nat i veLi brarySpec St ati cLi braryBi narySpec check${conponent . nane} Si

Thebuilt-in check task depends on all the check tasks for binariesin the project. Without either CUnit or Google
plugins, the binary check task only depends on the lifecycle task that assembles the binary, see
Section 73.10, “Tasks'.

When the CUnit or GoogleTest plugins are applied, the task that executes the test suites for a component are
automatically wired to the appropriate check task.

Y ou can aso add custom check tasks as follows:

Example 73.10. Adding a custom check task

bui |l d. gradl e

apply plugin: "cpp"
/1 You don't need to apply the plugin below if you' re already using CUnit or Cod
apply plugin: TestingMdel BasePl ugi n

task nyCust ontCheck {
doLast {
println 'Executing ny custom check'
}
}

nodel {
conponents {
hel | o(Nati velLi brarySpec) ({
bi naries.all {
/'l Register our custom check task to all binaries of this conpor
checkedBy $.tasks. nyCust ontCheck

Note: The code for this example can be found at sanpl es/ nat i ve- bi nari es/ cust om check
inthe ‘-al’ distribution of Gradle.

Now, running check or any of the check tasks for the hel | o binarieswill run the custom check task:

Page 602 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Example 73.11. Running checksfor a given binary
Output of gr adl e checkHel | oShar edLi brary

> gradl e checkHel | oShar edLi brary
1 myCust omCheck

Executing ny custom check

: checkHel | oShar edLi brary

BUl LD SUCCESSFUL in Os
1 actionable task: 1 executed

73.10.2. Working with shared libraries

For each executable binary produced, the cpp plugin provides an i nst al | ${ bi nary. nane} task,
which creates a development install of the executable, along with the shared libraries it requires. This allows
you to run the executable without needing to install the shared librariesin their final locations.

73.11. Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the
components and binaries that your project produces. To use this report, just run gr adl e conponent s.
Below is an example of running this report for one of the sample projects:

Page 603 of 654

Example 73.12. The componentsreport
Output of gr adl e comnponent s

> gradl e conmponents
: conponent s

Source sets
C++ source 'hello:cpp'
srcDir: src/hellolcpp

Bi nari es
Shared library 'hello:sharedLibrary'
buil d using task: :helloSharedLibrary
build type: build type 'debug’
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang' (d ang)
shared library file: build/libs/hello/shared/libhello.dylib
Static library '"hello:staticLibrary’
build using task: :helloStaticLibrary
build type: build type 'debug’
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang' (Cd ang)
static library file: build/libs/hello/static/libhello.a

Nat i ve executable 'main’

Source sets
C++ source ' main: cpp'
srcDir: src/main/cpp

Bi nari es

Execut abl e ' nai n: execut abl e
buil d using task: :nmainExecutable
install using task: :install Mai nExecutable
build type: build type 'debug’
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang' (d ang)
executable file: build/ exel/ main/min

Note: currently not all plugins register their conmponents, so sone conponents may nha

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 604 of 654

73.12. Language support

Presently, Gradle supports building native software from any combination of source languages listed below.
A native binary project will contain one or more named Funct i onal Sour ceSet instances (eg 'main’,
'test’, etc), each of which can contain LanguageSour ceSet s containing source files, one for each
language.

e C

o C++

® Objective-C

® Objective-C++

® Assembly

® Windows resources

73.12.1. C++ sources

C++ language support is provided by means of the' cpp' plugin.

Example 73.13. The'cpp’ plugin

bui | d. gradl e
apply plugin: 'cpp'

C++ sources to be included in a native binary are provided via a CppSour ceSet , which defines a set of
C++ source files and optionally a set of exported header files (for a library). By default, for any named
component the CppSour ceSet contains. cpp sourcefilesinsr c/ ${ nanme}/ cpp, and header filesinsrc/ $

While the cpp plugin defines these default locations for each CppSour ceSet |, it is possible to extend or
override these defaults to allow for a different project layout.

Example 73.14. C++ sour ce set

bui |l d. gradl e

sources {
cpp {
source {
srcDir "src/source"

include "**/* cpp"

For alibrary named 'main’, header filesin sr ¢/ mai n/ header s are considered the “public” or “exported”
headers. Header files that should not be exported should be placed inside the sr ¢/ mai n/ cpp directory
(though be aware that such header files should always be referenced in a manner relative to the file
including them).

Page 605 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.cpp.CppSourceSet.html

73.12.2. C sources

C language support is provided by means of the' ¢' plugin.

Example 73.15. The'c' plugin

bui | d. gradl e

apply plugin: 'c'

C sources to be included in a native binary are provided via a CSour ceSet , which defines a set of C
source files and optionally a set of exported header files (for a library). By default, for any named

component the CSour ceSet contains. ¢ sourcefilesinsrc/ ${ nane}/ c, and header filesin sr c/ ${ nane}.

While the ¢ plugin defines these default locations for each CSour ceSet , it is possible to extend or
override these defaults to allow for a different project layout.

Example 73.16. C sour ce set
bui |l d. gradl e

sour ces {
c {
source {
srcDir "src/source"
include "**/* ¢c"

}

export edHeaders {
srcDir "src/include"

For alibrary named 'main’, header filesin sr ¢/ mai n/ header s are considered the “public” or “exported”
headers. Header files that should not be exported should be placed inside the sr ¢/ mai n/ ¢ directory
(though be aware that such header files should always be referenced in a manner relative to the file
including them).

73.12.3. Assembler sources

Assembly language support is provided by means of the' assenbl er' plugin.

Example 73.17. The 'assembler’ plugin

bui | d. gradl e

apply plugin: "assenbler’

Assembler sources to be included in a native binary are provided via a Assenbl er Sour ceSet , which
defines a set of Assembler source files. By default, for any named component the Assenbl er Sour ceSet
contains. s sourcefilesunder src/ ${ nane}/ asm

Page 606 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.assembler.AssemblerSourceSet.html

73.12.4. Objective-C sources
Objective-C language support is provided by means of the' obj ecti ve-c' plugin.

Example 73.18. The 'objective-c' plugin

bui |l d. gradl e

apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided viaa Obj ect i veCSour ceSet , which
defines a set of Objective-C source files. By default, for any named component the
bj ect i veCSour ceSet contains. msource filesunder sr ¢/ ${ nane}/ obj ecti veC.

73.12.5. Objective-C++ sources
Objective-C++ language support is provided by means of the' obj ecti ve- cpp' plugin.

Example 73.19. The'objective-cpp’ plugin

bui | d. gradl e

apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided viaa Obj ect i veCppSour ceSet ,
which defines a set of Objective-C++ source files. By default, for any named component the
Obj ect i veCppSour ceSet contains. mmsource files under sr ¢/ ${ nane}/ obj ecti veCpp.

73.13. Configuring the compiler, assembler and
linker

Each binary to be produced is associated with a set of compiler and linker settings, which include
command-line arguments as well as macro definitions. These settings can be applied to all binaries, an
individual binary, or selectively to a group of binaries based on some criteria.

Page 607 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html

Example 73.20. Settings that apply to all binaries

bui | d. gradl e

nodel {
bi nari es {
all {
/'l Define a preprocessor nmacro for every binary
cppConpi | er. defi ne " NDEBUG'

/| Define tool chai n-specific conpiler and |inker options
if (toolChain in CGecc) {
cppConpi l er.args "-2", "-fno-access-control”
linker.args "-Xlinker", "-S"
}
if (tool Chain in Visual Cpp) ({
cppConpi ler.args "/Z "
I'i nker.args "/ DEBUG'

Each binary is associated with a particular Nat i veTool Chai n, allowing settings to be targeted based on
thisvalue.

It is easy to apply settingsto all binaries of a particular type:

Example 73.21. Settingsthat apply to all shared libraries
bui |l d. gradl e

/'l For any shared library binaries built with Visual Ct++,
/] define the DLL_EXPORT nmacro
nodel {
bi nari es {
wi t hType(Shar edLi br ar yBi nar ySpec) {
if (tool Chain in Visual Cpp) {

cConmpiler.args "/zi "
cConpi |l er. define "DLL_EXPORT"

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular execut abl e
orl i brary component:

Page 608 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Example 73.22. Settingsthat apply to all binaries produced for the 'main' executable component
buil d. gradl e

nodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
target Pl atf orm " x86"
bi naries.all ({
if (tool Chain in Visual Cpp) {
sources {
pl at f or mMsn(Assenbl er Sour ceSet) {
source.srchDir "src/main/asm.i 386_nasni

}

}

assenbler.args "/ Zi "

} else {
sources {
pl at f or mMsn(Assenbl er Sour ceSet) {
source.srchDir "src/min/asmi 386 gcc"

}
}

assenbl er.args "

The example above will apply the supplied configuration to all execut abl e binaries built.

Similarly, settings can be specified to target binaries for a component that are of a particular type: eg all
shared libraries for the main library component.

Example 73.23. Settingsthat apply only to shared libraries produced for the 'main’ library component
bui |l d. gradl e

nodel {
conmponent s {
mai n(Nat i veLi brarySpec) {
bi nari es. w t hType(Shar edLi br ar yBi narySpec) {
/'l Define a preprocessor macro that only applies to shared |ibrag

cppConpi | er. define "DLL_EXPORT"

73.14. Windows Resources

When using the Vi sual Cpp tool chain, Gradle is able to compile Window Resource (r ¢) files and link
them into a native binary. This functionality is provided by the' wi ndows- r esour ces' plugin.

Page 609 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Example 73.24. The 'windows-resour ces plugin

bui | d. gradl e

apply plugin: '"w ndows-resources'

Windows resources to be included in a native binary are provided viaa W ndowsResour ceSet , which
defines a set of Windows Resource source files. By default, for any named component the
W ndowsResour ceSet contains. r ¢ sourcefilesunder src/ ${ nanme}/rc.

As with other source types, you can configure the location of the windows resources that should be included
in the binary.

Example 73.25. Configuring the location of Windows resour ce sour ces
bui | d-resource-only-dll.gradle

sources {
rc {
source {
srcDirs "src/hello/rc"
}
export edHeaders {
srcDirs "src/ hell o/ headers"

You are able to construct a resource-only library by providing Windows Resource sources with no other
language sources, and configure the linker as appropriate:

Example 73.26. Building a resour ce-only dll
buil d-resource-only-dll.gradle

nodel {
conponents {
hel | oRes(Nati veLi brarySpec) {
bi naries.all ({
rcConpil er.args "/v"
i nker.args "/noentry", "/machi ne: x86"
}
sources {
rc {
source {
srcDirs "src/hello/rc"
}
export edHeaders {
srcDirs "src/ hell o/ headers"

}

Page 610 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.rc.WindowsResourceSet.html

The example above also demonstrates the mechanism of passing extra command-line arguments to the
resource compiler. Ther cConpi | er extensionisof type Pr epr ocessi ngTool .

73.15. Library Dependencies

Dependencies for native components are binary libraries that export header files. The header files are used
during compilation, with the compiled binary dependency being used during linking and execution. Header
files should be organized into subdirectories to prevent clashes of commonly named headers. For instance, if
your yl i b project has al oggi ng. h header, it will make it less likely the wrong header is used if you
includeitas" nyl i b/ 1 oggi ng. h" instead of " | oggi ng. h".

73.15.1. Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the same project.
A common example is a native executable component that uses functions provided by a separate native
library component.

Such alibrary dependency can be added to a source set associated with the execut abl e component:

Example 73.27. Providing a library dependency to the sour ce set
buil d. gradl e

sources {

cpp {
lib library: "hello"

}

Alternatively, a library dependency can be provided directly to the Nat i veExecut abl eBi nar ySpec
for theexecut abl e.

Page 611 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.PreprocessingTool.html

Example 73.28. Providing a library dependency to the binary
buil d. gradl e

nodel {
conponents {
hel | o(Nati veLi brarySpec) ({
sour ces {
c {

source {
srcDir "src/source"
include "**/*. c"

}

export edHeaders {
srcDir "src/include"

}

}
}

mai n(Nat i veExecut abl eSpec) {
sources {
cpp {
source {
srcDir "src/source"
i nclude "**/*. cpp"

}
}

bi naries.all ({
/| Each executabl e bi nary produced uses the 'hello' static librd
lib library: "hello', |linkage: 'static'

73.15.2. Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Page 612 of 654

Example 73.29. Declaring project dependencies
buil d. gradl e

project(":1ib") {
apply plugin: "cpp"
nodel {
conponents {
mai n(Nat i veLi br ar ySpec)
}

/'l For any shared library binaries built with Visual C++
/1 define the DLL_EXPORT nacro
bi nari es {
wi t hType(Shar edLi br ar yBi nar ySpec) {
if (tool Chain in Visual Cpp) ({
cppConpi | er. define "DLL EXPORT"

}

project(":exe") {
apply plugin: "cpp"

nodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
sources {
cpp {
lib project: ":lib", library: 'nmain'

}

73.16. Precompiled Headers

Precompiled headers are a performance optimization that reduces the cost of compiling widely used headers
multiple times. This feature precompiles a header such that the compiled object file can be reused when
compiling each source file rather than recompiling the header each time. This support is available for C,
C++, Objective-C, and Objective-C++ builds.

To configure a precompiled header, first a header file needs to be defined that includes al of the headers that
should be precompiled. It must be specified as the first included header in every source file where the
precompiled header should be used. It is assumed that this header file, and any headers it contains, make use
of header guards so that they can be included in an idempotent manner. If header guards are not used in a
header file, it is possible the header could be compiled more than once and could potentially lead to a broken
build.

Page 613 of 654

Example 73.30. Creating a precompiled header file

src/ hel | o/ header s/ pch. h

#i f ndef PCH_H
#defi ne PCH_H

#i ncl ude <i ostreanr
#i ncl ude "hell o. h"
#endi f

Example 73.31. Including a precompiled header filein a sourcefile
src/ hel | o/ cpp/ hel | 0. cpp

#i ncl ude "pch. h"

void LIB FUNC Greeter::hello () {
std::cout << "Hello world!" << std::endl;

}

Precompiled headers are specified on a source set. Only one precompiled header file can be specified on a
given source set and will be applied to all source filesthat declareit as the first include. If a source files does
not include this header file as the first header, the file will be compiled in the normal manner (without
making use of the precompiled header object file). The string provided should be the same as that which is
used in the "#include" directivein the sourcefiles.

Example 73.32. Configuring a precompiled header
bui |l d. gradl e

nodel {
conponents {
hel | o(Nati velLi brarySpec) ({
sources {

cpp {
pr eConpi | edHeader "pch. h"

}

A precompiled header must be included in the same way for al files that use it. Usually, this means the
header file should exist in the source set "headers" directory or in a directory included on the compiler
include path.

73.17. Native Binary Variants

For each executable or library defined, Gradle is able to build a number of different native binary variants.
Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries, and binaries
produced with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on build type, platform, and flavor. For each of these

Page 614 of 654

'variant dimensions, it is possible to specify a set of available values as well as target each component at
one, some or al of these. For example, a plugin may define a range of support platforms, but you may
choose to only target Windows-x86 for a particular component.

73.17.1. Build types

A bui |l d type determines various non-functional aspects of a binary, such as whether debug information
is included, or what optimisation level the binary is compiled with. Typical build types are 'debug’ and
'release, but a project isfreeto define any set of build types.

Example 73.33. Defining build types

bui | d. gradl e

nodel {
bui | dTypes {
debug

rel ease

If no build types are defined in a project, then a single, default build type called 'debug’ is added.
For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example 73.34. Configuring debug binaries
bui |l d. gradl e

nodel {
bi nari es {
all {
if (toolChain in Gcc && buil dType == buil dTypes. debug) {
cppConpi l er.args "-g"
}
if (tool Chain in Visual Copp && buil dType == buil dTypes. debug) {

cppConpi l er.args '/ Zi
cppConpi | er. defi ne ' DEBUG
I'i nker.args '/ DEBUG

At this stage, it is completely up to the build script to configure the relevant compiler/linker flags for
each build type. Future versions of Gradle will automatically include the appropriate debug flags for
any 'debug' build type, and may be aware of various levels of optimisation aswell.

Page 615 of 654

73.17.2. Platform

An executable or library can be built to run on different operating systems and cpu architectures, with a
variant being produced for each platform. Gradle defines each OS/architecture combination as a
Nat i vePl at f or m and a project may define any number of platforms. If no platforms are defined in a
project, then asingle, default platform "current' is added.

Presently, a Pl at f or mconsists of a defined operating system and architecture. As we continue to
develop the native binary support in Gradle, the concept of Platform will be extended to include
things like C-runtime version, Windows SDK, ABI, etc. Sophisticated builds may use the extensibility
of Gradle to apply additional attributes to each platform, which can then be queried to specify
particular includes, preprocessor macros or compiler arguments for a native binary.

Example 73.35. Defining platforms
bui |l d. gradl e

nodel {
platforms {
x86 {
architecture "x86"
}
x64 {
architecture "x86 64"

}
itani um {
architecture "ia-64"

For a given variant, Gradle will attempt to find a Nat i veTool Chai n that is able to build for the target
platform. Available tool chains are searched in the order defined. See the tool chains section below for more
details.

73.17.3. Flavor

Each component can have a set of named f | avor s, and a separate binary variant can be produced for each
flavor. Whilethe bui | d type andt arget pl at f or mvariant dimensions have a defined meaning in
Gradle, each project is free to define any number of flavors and apply meaning to them in any way.

An example of component flavors might differentiate between 'demo’, 'paid' and 'enterprise’ editions of the
component, where the same set of sources is used to produce binaries with different functions.

Page 616 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Example 73.36. Defining flavors
buil d. gradl e

nodel {
flavors {
engl i sh
french

}
conponents {
hel | o(Nati veLi brarySpec) ({
bi naries.all {

if (flavor == flavors. french) {
cppConpi | er. defi ne " FRENCH'
}

In the example above, alibrary is defined with a 'english' and 'french’ flavor. When compiling the ‘french’
variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default’ is used.

73.17.4. Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every
combination of bui | dType and f | avor defined for the project. It is possible to override this on a
per-component basis, by specifying the set of t ar get Bui | dTypes and/or t ar get Fl avors. By
default, Gradle will build for the default platform, see above, unless specified explicitly on a per-component
basis by specifying aset of t ar get Pl at f or ns.

Example 73.37. Targeting a component at particular platforms
bui |l d. gradl e

nodel {
conponents {

hel | o(Nati velLi brarySpec) {
target Pl atform " x86"
target Pl atf orm " x64"

}

mai n(Nat i veExecut abl eSpec) {
target Pl atform " x86"

target Pl atf orm " x64"
sour ces {
cpp.lib library: "hello', linkage: 'static'

Here you can see that the
Tar get edNat i veConponent . target Pl atform(j ava. |l ang. String) method is used to

Page 617 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)

specify aplatform that the Nat i veExecut abl eSpec named mai n should be built for.

A similar mechanism exists for selecting
Tar get edNat i veConponent . t arget Bui | dTypes(j ava.l ang. String[]) and
Tar get edNat i veConponent . t ar get Fl avor s(j ava.lang. String[]) .

73.17.5. Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a
Nat i veBi nar ySpec model element is created for every possible combination of these. However, in
many cases it is not possible to build a particular variant, perhaps because no tool chain is available to build
for a particular platform.

If a binary variant cannot be built for any reason, then the Nat i veBi nar ySpec associated with that
variant will not be bui | dabl e. It is possible to use this property to create a task to generate all possible
variants on a particular machine.

Example 73.38. Building all possible variants

buil d. gradl e

nodel {
tasks {
bui | dAI | Execut abl es(Task) {
dependsOn $. binaries.findAl |l { it.buildable }

73.18. Tool chains

A single build may utilize different tool chains to build variants for different platforms. To this end, the core
'native-binary' plugins will attempt to locate and make available supported tool chains. However, the set of
tool chains for a project may also be explicitly defined, allowing additional cross-compilersto be configured
aswell as allowing the install directories to be specified.

73.18.1. Defining tool chains

The supported tool chain types are:

* Ccc
* C ang
* Vi sual Cpp

Page 618 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.toolchain.Clang.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Example 73.39. Defining tool chains
buil d. gradl e

nodel {
t ool Chai ns {
vi sual Cpp(Vi sual Cpp) {
/] Specify the installDir if Visual Studio cannot be | ocated
/1 installDir "C:/Apps/Mcrosoft Visual Studio 10.0"

}
gce(Gee) {

/1 Unconment to use a GCC install that is not in the PATH
/1 path "/usr/bin/gcc"

}
cl ang(d ang)

Each tool chain implementation allows for a certain degree of configuration (see the API documentation for
more details).

73.18.2. Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given variant,
Gradle will attempt to locate a Nat i veTool Chai n that is able to build for the target platform. Available
tool chains are searched in the order defined.

When a platform does not define an architecture or operating system, the default target of the tool
chain is assumed. So if a platform does not define avalue for oper at i ngSyst em Gradle will find
the first available tool chain that can build for the specified ar chi t ect ur e.

The core Gradle tool chains are able to target the following architectures out of the box. In each case, the
tool chain will target the current operating system. See the next section for information on cross-compiling
for other operating systems.

Tool Chain Architectures
GCC x86, x86_64
Clang x86, x86_64
Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64'. For GCC
running on Windows via Cygwin, platforms ‘windows/x86' and ‘windows/x86_64" are supported. (The
Cygwin POSIX runtimeis not yet modelled as part of the platform, but will be in the future.)

If no target platforms are defined for a project, then al binaries are built to target a default platform named

Page 619 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

‘current’. This default platform does not specify any ar chi t ect ure or oper ati ngSyst em value,
hence using the default values of the first available tool chain.

Gradle provides a hook that allows the build author to control the exact set of arguments passed to a tool
chain executable. This enables the build author to work around any limitations in Gradle, or assumptions
that Gradle makes. The arguments hook should be seen as a 'last-resort' mechanism, with preference given to
truly modelling the underlying domain.

Example 73.40. Reconfigure tool arguments
bui |l d. gradl e

nodel {
t ool Chai ns {
vi sual Cpp(Vi sual Cpp) {

eachPl at f orm {

cppConpi | er. wi t hArgunents { args ->
args << "-DFRENCH'

}

}

}
cl ang(C ang) {

eachPl at f or m {
cConpi | er. w t hArguments { args ->
Col | ections. repl aceAl |l (args, "CUSTOM', "-DFRENCH")
}
| i nker.w t hArgunments { args ->
args. renove " CUSTOM'
}
staticLi bArchi ver.w t hArgunents { args ->
args. renmove " CUSTOM'

}

73.18.3. Cross-compiling with GCC

Cross-compiling is possible with the Gcc and Cl ang tool chains, by adding support for additional target
platforms. This is done by specifying a target platform for a toolchain. For each target platform a custom
configuration can be specified.

Page 620 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.toolchain.Clang.html

Example 73.41. Defining tar get platforms
buil d. gradl e

nodel {
t ool Chai ns {
gee(CGee) |
target ("arm'){

cppConpi | er. wi t hArgunents { args ->
args << "-nB2"

}

| i nker.w t hArguments { args ->
args << "-nB2"

}

}
target ("sparc")

}
}

platforms {
arm {
architecture "arnf
}
sparc {
architecture "sparc"
}
}

conponents {
mai n(Nat i veExecut abl eSpec) {
targetPlatform "arn
target Pl atform "sparc"

73.19. Visual Studio IDE integration

Gradle has the ability to generate Visual Studio project and solution files for the native components defined
in your build. This ability is added by the vi sual - st udi o plugin. For a multi-project build, al projects
with native components should have this plugin applied.

When the vi sual - st udi o plugin is applied, a task name ${ conponent . nane} Vi sual St udi o is
created for each defined component. This task will generate a Visual Studio Solution file for the named
component. This solution will include a Visual Studio Project for that component, as well as linking to
project files for each depended-on binary.

The content of the generated visual studio files can be modified via API hooks, provided by the vi sual St udi o
extension. Take a look at the 'visual-studio’ sample, or see

Vi sual St udi oExt ensi on. get Proj ects() and

Vi sual St udi oExt ensi on. get Sol uti ons() inthe APl documentation for more details.

Page 621 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions

73.20. CUnit support

The Gradle cuni t plugin provides support for compiling and executing CUnit tests in your native-binary
project. For each Nat i veExecut abl eSpec and Nati velLi br arySpec defined in your project,
Gradle will create amatching CUni t Test Sui t eSpec component, named ${ conponent . nane} Test

73.20.1. CUnit sources

Gradle will create a CSour ceSet named 'cunit' for each CUni t Test Sui t eSpec component in the
project. This source set should contain the cunit test files for the component under test. Source files can be
located in the conventional location (sr c/ ${ conmponent . nane} Test/ cuni t) or can be configured
like any other source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit launcher
sources. Gradle will expect and call a function with the signature voi d gradl e_cunit _regi ster ()
that you can use to configure the actual CUnit suites and tests to execute.

Due to this mechanism, your CUnit sources may not contain a mai n method since this will clash with
the method provided by Gradle.

73.20.2. Building CUnit executables

A CUni t Test Sui t eSpec component has an associated Nati veExecut abl eSpec or
Nat i veLi br ar ySpec component. For each Nat i veBi nar ySpec configured for the main component,
a matching CUni t Test Sui t eBi nar ySpec will be configured on the test suite component. These test
suite binaries can be configured in asimilar way to any other binary instance:

Page 622 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html

Example 73.42. Registering CUnit tests

suite_operators.c

#i ncl ude <Cuni t/Basi c. h>
#i ncl ude "gradl e _cunit_register.h"
#i ncl ude "test_operators. h"

int suite_init(void) {
return O;

}

int suite_clean(void) {
return O;

}

void gradle_cunit_register() {
CU pSuite pSuiteMath = CU add_suite("operator tests", suite_init, suite_cled
CU add_test (pSuiteMath, "test plus", test_plus);
CU add_t est (pSuiteMath, "test_m nus", test_m nus);

bui | d. gradl e

nodel {
bi nari es {
wi t hType(CUni t Test Sui t eBi narySpec) {
lib library: "cunit", |linkage: "static"

if (flavor == flavors.failing) {
cConpi | er. define "PLUS BROKEN'

Both the CUnit sources provided by your project and the generated launcher require the core CUnit
headers and libraries. Presently, this library dependency must be provided by your project for each
CUni t Test Sui t eBi nar ySpec.

73.20.3. Running CUnit tests

For each CUni t Test Sui t eBi nar ySpec, Gradle will create atask to execute this binary, which will run
al of the registered CUnit tests. Test results will be found in the ${buil d.dir}/test-results
directory.

Example 73.43. Running CUnit tests

bui | d. gradl e

Page 623 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html

apply plugin: "c"
apply plugin: '"cunit-test-suite

nmodel {
flavors {
passi ng
failing
}
platforms {
x86 {
architecture "x86"

}
}
repositories {
| i bs(PrebuiltLibraries) {
cunit {
headers.srcDir "libs/cunit/2.1-2/include"
bi nari es. w thType(StaticLi braryBi nary) {
staticlLibraryFile =
file("libs/cunit/2.1-2/1ib/" +
findCUni t Li bFor Pl at forn{target Pl atforn))

}
}

conponent s {
oper at or s(Nat i veLi brarySpec) {
target Pl atform " x86"

}

}

testSuites {
oper at or sTest (CUni t Test Sui t eSpec) {
testing $.conponents. operators

}
}
}

nodel {
bi nari es {
wi t hType(CUni t Test Sui t eBi narySpec) {
lib library: "cunit", linkage: "static"

if (flavor == flavors.failing) {
cConpi | er. define "PLUS BROKEN'

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ cunit in the
‘-al’ distribution of Gradle.

Output of gradl e -g runQper at or sTest Fai | i ngCUni t Exe

Page 624 of 654

> gradl e -q runQperatorsTest Fai | i ngCUni t Exe

There were test failures:
1. /hone/user/gradl e/ sanpl es/ nati ve-binaries/cunit/src/operatorsTest/c/test_plus.c
2. /hone/user/ gradl e/ sanpl es/ nati ve-bi nari es/cunit/src/operatorsTest/c/test_plus.c

The current support for CUnit is quite rudimentary. Plans for future integration include:

* Allow teststo be declared with Javadoc-style annotations.

® Improved HTML reporting, similar to that available for JUnit.
Resl-time feedback for test execution.

® Support for additional test frameworks.

73.21. GoogleTest support

The Gradle googl e-t est plugin provides support for compiling and executing GoogleTest tests in your
native-binary project. For each Nat i veExecut abl eSpec and Nat i veLi br ar ySpec defined in your
project, Gradle will create amatching Googl eTest Test Sui t eSpec component, named ${ conponent . nai

73.21.1. GoogleTest sources

Gradle will create a CppSour ceSet named 'cpp' for each Googl eTest Test Sui t eSpec component in
the project. This source set should contain the GoogleTest test files for the component under test. Source
files can be located in the conventional location (src/ ${ conponent . nane} Test/ cpp) or can be
configured like any other source set.

73.21.2. Building GoogleTest executables

A Googl eTest Test Sui t eSpec component has an associated Nati veExecut abl eSpec or
Nat i veLi br ar ySpec component. For each Nat i veBi nar ySpec configured for the main component,
a matching Googl eTest Test Sui t eBi nar ySpec will be configured on the test suite component.
These test suite binaries can be configured in a similar way to any other binary instance:

Page 625 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html

Example 73.44. Registering GoogleT est tests
buil d. gradl e

nodel {
bi nari es {
wi t hType(Googl eTest Test Sui t eBi nar ySpec) {
lib library: "googleTest", l|inkage: "static"

if (flavor == flavors.failing) {
cppConpi | er. defi ne "PLUS BROKEN'

}

if (targetPl atform operatingSystem | inux) {
cppConpi l er.args ' -pthread'
| i nker.args ' -pthread

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ googl e-t est
inthe ‘-all’ distribution of Gradle.

The GoogleTest sources provided by your project require the core GoogleTest headers and libraries.
Presently, this library dependency must be provided by your project for each
Googl eTest Test Sui t eBi nar ySpec.

73.21.3. Running GoogleTest tests

For each Googl eTest Test Sui t eBi nar ySpec, Gradle will create a task to execute this binary, which
will run all of the registered GoogleTest tests. Test resultswill befoundinthe ${buil d. dir}/test-resul t
directory.

The current support for GoogleTest is quite rudimentary. Plans for future integration include:

® |mproved HTML reporting, similar to that available for JUnit.
¢ Real-time feedback for test execution.
® Support for additional test frameworks.

Page 626 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html

4

Extending the software model

Support for the software model is currently incubating. Please be aware that the DSL, APIs and other
configuration may changein later Gradle versions.

One of the strengths of Gradle has always been its extensibility, and its adaptability to new domains. The
software model takes this extensibility to a new level, enabling the deep modeling of specific domains via
richly typed DSLs. The following chapter describes how the model and the corresponding DSLs can be
extended to support domains like Java, Play Framework or native software devel opment. Before reading this
you should be familiar with the Gradle software model rule based configuration and concepts.

The following build script is an example of using a custom software model for building Markdown based
documentation:

Example 74.1. an example of using a custom software model

bui |l d. gradl e

i nport sanpl e. docunent ati on. Docunent at i onConponent
i nport sanpl e. docunent at i on. Text Sour ceSet
i mport sanpl e. mar kdown. Mar kdownSour ceSet

appl y pl ugi n: sanpl e. docunent ati on. Docunent ati onPl ugi n
apply pl ugin: sanpl e. mar kdown. Mar kdownPl ugi n

nodel {
conponents {
docs(Docunent at i onConponent) {
sour ces {
r ef er ence(Text Sour ceSet)
user gui de(Mar kdownSour ceSet) {
gener at el ndex = true
smart Quotes = true

Note: The code for this example can be found at sanpl es/ cust omvbdel / | anguageType/ in
the“-all’ distribution of Gradle.

Page 627 of 654

Therest of this chapter is dedicated to explaining what is going on behind this build script.

74.1. Concepts

A custom software model type has a public type, a base interface and internal views. Multiple such types
then collaborate to define a custom software model.

74.1.1. Public type and base interfaces

Extended types declare a public type that extends a base interface:

® Components extend the Conponent Spec base interface
® Binaries extend the Bi nar ySpec base interface
® Source sets extend the LanguageSour ceSet base interface

The public type is exposed to build logic.

74.1.2. Internal views

Adding internal views to your model type, you can make some data visible to build logic via a public type,
while hiding the rest of the data behind the internal view types. Thisis covered in a dedicated section below.

74.1.3. Components all the way down

Components are composed of other components. A source set is just a special kind of component
representing sources. It might be that the sources are provided, or generated. Similarly, some components
are composed of different binaries, which are built by tasks. All buildable components are built by tasks. In
the software model, you will write rules to generate both binaries from components and tasks from binaries.

74.2. Components

To declare a custom component type one must extend Conponent Spec, or one of the following,
depending on the use case:

® Sour ceConponent Spec represents a component which has sources

® Vari ant Conponent Spec represents a component which generates different binaries based on
context (target platforms, build flavors, ...). Such a component generally produces multiple binaries.

® Cener al Conponent Spec is a convenient base interface for components that are built from sources
and variant-aware. Thisisthe typical case for alot of software components, and therefore it should be in
most of the cases the base type to be extended.

The core software model includes more types that can be used as base for extension. For example:
Li brarySpec and Applicati onSpec can also be extended in this manner. Theses are no-op
extensions of Gener al Conponent Spec used to describe a software model better by distinguishing
libraries and applications components. Test Sui t eSpec should be used for all components that describe a
test suite.

Page 628 of 654

http://www.gradle.org/docs/4.3.1/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/SourceComponentSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.platform.base.VariantComponentSpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/GeneralComponentSpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ApplicationSpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/testing/base/TestSuiteSpec.html

Example 74.2. Declar e a custom component

Docunent at i onConponent . gr oovy

@managed

i nterface Docunent ati onConponent extends Ceneral Conponent Spec {}

Types extending Conponent Spec are registered via arule annotated with Conponent Type:

Example 74.3. Register a custom component
Docunent at i onPl ugi n. gr oovy

cl ass Document ati onPl ugi n ext ends Rul eSource {

@onponent Type
voi d regi st er Conponent (TypeBui | der <Docunent at i onConponent > bui | der) {}

74.3. Binaries

To declare a custom binary type one must extend Bi nar ySpec.

Example 74.4. Declare a custom binary

Docunent ati onBi nary. gr oovy

@managed

i nterface DocunentationBi nary extends BinarySpec {
File getQutputDir()
void setQutputDir(File outputbDir)

Types extending Bi har ySpec areregistered viaarule annotated with Conponent Type:

Example 74.5. Register a custom binary
Docunent ati onPl ugi n. gr oovy

cl ass Docunent ati onPl ugi n ext ends Rul eSource {
@Conponent Type

voi d regi sterBinary(TypeBui |l der <Docunent ati onBi nary> bui |l der) {}

74.4. Source sets

To declare a custom source set type one must extend LanguageSour ceSet .

Page 629 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/dsl/org.gradle.language.base.LanguageSourceSet.html

Example 74.6. Declare a custom sour ce set

Mar kdownSour ceSet . gr oovy

@managed

i nterface MarkdownSour ceSet extends LanguageSourceSet {
bool ean i sGener at el ndex()
voi d set Gener at el ndex(bool ean gener at el ndex)

bool ean i sSmart Quot es()
voi d set Smart Quot es(bool ean smart Quot es)

Types extending LanguageSour ceSet areregistered viaarule annotated with Conponent Type:

Example 74.7. Register a custom sour ce set
Mar kdownPl ugi n. gr oovy

cl ass Mar kdownPl ugi n ext ends Rul eSource {
@Conponent Type

voi d regi st er Mar kdownLanguage(TypeBui | der <Mar kdownSour ceSet > bui | der) {}

Setting the language name is mandatory.

74.5. Putting it all together

74.5.1. Generating binaries from components

Binaries generation from components is done via rules annotated with Conponent Bi nari es. Thisrule
generates a Documnrent at i onBi nary named expl oded for each Docurent at i onConponent and
setsitsout put Di r property:

Example 74.8. Generates documentation binaries

Docunent ati onPl ugi n. gr oovy

cl ass Docunent ati onPl ugi n ext ends Rul eSource {
@Conponent Bi nari es
voi d gener at eDocBi nari es(Mbdel Map<Docunent at i onBi nary> bi nari es, Vari ant Con
bi nari es. creat e("expl oded") { binary ->

outputDir = new Fil e(buildDir, "${conponent.nane}/${binary. nane}")

74.5.2. Generating tasks from binaries

Tasks generation from binaries is done via rules annotated with Bi nar yTasks. Thisrule generates a Copy
task for each Text Sour ceSet of each Docunent at i onBi nary:

Page 630 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/ComponentBinaries.html
http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/platform/base/BinaryTasks.html

Example 74.9. Generatestasksfor text source sets

Docunent ati onPl ugi n. gr oovy

cl ass Docunent ati onPl ugi n ext ends Rul eSource {
@i nar yTasks
voi d gener at eText Tasks(Mbdel Map<Task> tasks, final DocunentationBi nary bi nar
bi nary. i nputs. w t hType(Text SourceSet) { text SourceSet ->
def taskName = binary.tasks.taskNane("conpile", textSourceSet. nane)
def outputDir = new File(binary.outputDir, textSourceSet.nane)

t asks. creat e(t askNane, Copy) {
from t ext Sour ceSet . sour ce
destinationDir = outputDir

Thisrule generates a Mar kdownConpi | eTask task for each Mar kdownSour ceSet of each Docunent at i

Example 74.10. Register a custom sour ce set
Mar kdownPl ugi n. gr oovy

cl ass Mar kdownPl ugi n ext ends Rul eSource {
@i nar yTasks
voi d processhar kdownDocunent at i on(Model Map<Task> t asks, final Docunentati onH
bi nary. i nputs.w t hType(Mar kdownSour ceSet) { mar kdownSourceSet ->
def taskName = binary.tasks.taskNane("conpile", markdownSourceSet. ng
def outputDir = new Fil e(bi nary. out putDi r, markdownSour ceSet . nane)
t asks. creat e(t askNane, Mar kdownHt ml Conpile) { conpil eTask ->

conpi | eTask. source = mar kdownSour ceSet . sour ce

conpi | eTask. destinationDir = outputDir

conpi | eTask. smart Quot es = mar kdownSour ceSet . smar t Quot es
conpi | eTask. gener at el ndex = mar kdownSour ceSet . gener at el ndex

See the sample source for more on the Mar kdownConpi | eTask task.

74.5.3. Using your custom model

This build script demonstrate usage of the custom model defined in the sections above:

Page 631 of 654

Example 74.11. an example of using a custom softwar e model
buil d. gradl e

i nport sanpl e. docunent ati on. Docunent at i onConponent
i nport sanpl e. docunent ati on. Text Sour ceSet
i mport sanpl e. mar kdown. Mar kdownSour ceSet

apply pl ugi n: sanpl e. docunent ati on. Docunent ati onPl ugi n
apply pl ugin: sanpl e. mar kdown. Mar kdownPl ugi n

nodel {
conponents {
docs(Docunent ati onConponent) {
sour ces {
r ef er ence(Text Sour ceSet)
user gui de(Mar kdownSour ceSet) {
gener at el ndex = true
smart Quotes = true

Note: The code for this example can be found at sanpl es/ cust omvbdel / | anguageType/ in

the ‘-all’ distribution of Gradle.

And in the components reports for such a build script we can see our model types properly registered:

Example 74.12. componentsreport
Output of gradl e -gq conponents

> gradle -q conponents

Docunent at i onConponent ' docs'

Source sets
Mar kdown sour ce 'docs: usergui de'
srcDir: src/docs/ userguide
Text source 'docs:reference’
srcDir: src/docs/reference

Bi nari es
Docunent ati onBi nary ' docs: expl oded'
buil d using task: :docsExpl oded

Note: currently not all plugins register their conponents,

SO sonme conponents may nao

Page 632 of 654

74.6. About internal views

Internal views can be added to an already registered type or to a new custom type. In other words, using
internal views, you can attach extra properties to already registered components, binaries and source sets
types like JvnLi br ar ySpec, Jar Bi nar ySpec or JavaSour ceSet and to the custom types you
write.

Let’'s start with a simple component public type and itsinternal view declarations:

Example 74.13. public type and inter nal view declaration
bui |l d. gradl e

@mnaged i nterface MyConponent extends Conponent Spec {
String getPublicData()
voi d setPublicData(String data)

}

@mnaged i nterface MyConponent|nternal extends MyConponent {
String getlnternal Dat a()
voi d setlnternal Data(String internal)

The typeregistration is as follows:

Example 74.14. typeregistration
bui | d. gradl e

cl ass MyPl ugi n ext ends Rul eSource {
@Conponent Type
voi d regi st er MyConponent (TypeBui | der <MyConponent > bui | der) {
bui | der . i nt er nal Vi em(MyConponent | nt er nal)
}

The i nt er nal Vi em(t ype) method of the type builder can be called several times. This is how you
would add several internal viewsto atype.

Now, let’s mutate both public and internal data using some rule:

Example 74.15. public and internal data mutation
bui |l d. gradl e

cl ass MyPl ugi n extends Rul eSource {
@t at e
voi d mut at eMyConponent s(Mbdel Map<MyConponent | nt er nal > conponents) {
conponents. all { conponent ->

conponent . publicData = "Sone PUBLIC data"
conponent.internal Data = "Sone | NTERNAL dat a"

Page 633 of 654

Our i nt er nal Dat a property should not be exposed to build logic. Let’s check this using the nodel task
on the following build file:

Example 74.16. example build script and model report output

bui |l d. gradl e

apply plugin: M/Plugin
nodel {
conponents {

ny (MyConponent)

}

Output of gr adl e - g nodel
> gradl e -q nodel

+ conponent s

| Type: org. gradl e. pl atf orm base. Conponent SpecCont ai ner
| Creator: Conponent BasePl ugi n. Pl ugi nRul es#conponent s(Conponent SpecCont ai n
| Rules:
components { ... } @build.gradle line 42, colum 5
MyPl ugi n#mut at eMyConponent s(Mbdel Map<MyConponent | nt er nal >)
+ny
| Type: MyConponent
| Creator: conponents { ... } @build.gradle line 42, colum 5 > creat
| Rul es:
My Pl ugi n#mut at eMyConponent s(Mbdel Map<MyConponent I nternal >) > all ()
+ publicDat a
| Type: java.lang. String
| Val ue: Sone PUBLI C dat a
| Creator: conponents { ... } @build.gradle line 42, colum 5 > ¢
+ tasks
| Type: org. gradl e. nodel . Mbdel Map<or g. gr adl e. api . Task>
| Creator: Project.<init> tasks()
+ assenbl e
| Type: org. gradl e. api . Def aul t Task
| Val ue: task ':assenbl e’
| Creator: t asks. addPl acehol der Acti on(assenbl e)
| Rules:
copyToTaskCont ai ner
+ build
| Type: org. gradl e. api . Def aul t Task
| Val ue: task ':build
| Creator: t asks. addPl acehol der Acti on(bui | d)
| Rules:
copyToTaskCont ai ner
+ bui | dEnvi r onnment
| Type: org. gradl e. api . tasks. di agnosti cs. Bui | dEnvi ronment Report Task
| Val ue: task ':buil dEnvironment’
| Creator: t asks. addPl acehol der Acti on(bui | dEnvi r onnment)
| Rules:
copyToTaskCont ai ner
+ check

| Type: org. gradl e. api . Def aul t Task

Page 634 of 654

| Val ue: task ':check
| Creator: t asks. addPl acehol der Acti on(check)
| Rul es:
copyToTaskCont ai ner
cl ean
| Type: org. gradl e. api .t asks. Del ete
| Val ue: task ':clean
| Creator: t asks. addPl acehol der Acti on(cl ean)
| Rul es:
copyToTaskCont ai ner
conponent s
| Type: org. gradl e. api . reporting. conponent s. Conponent Report
| Val ue: task ':conponents’
| Creator: t asks. addPl acehol der Acti on(conponent s)
| Rul es:

copyToTaskCont ai ner
dependenci es

| Type: org. gradl e. api . t asks. di agnost i cs. DependencyReport Task
| Val ue: task ':dependencies'

| Creator: t asks. addPl acehol der Acti on(dependenci es)

| Rul es:

copyToTaskCont ai ner
dependencyl nsi ght

| Type: org. gradl e. api . t asks. di agnosti cs. Dependencyl nsi ght Report Task
| Val ue: task ':dependencyl nsi ght'

| Creator: t asks. addPl acehol der Acti on(dependencyl nsi ght)

| Rul es:

Hel pTasksPl ugi n. Rul es#addDef aul t Dependenci esReport Conf i gur ati on(Depend
copyToTaskCont ai ner
dependent Conponent s

| Type: org. gradl e. api . reporting. dependent s. Dependent Conponent sRepor
| Val ue: task ':dependent Conponents
| Creator: t asks. addPl acehol der Acti on(dependent Conponent s)
| Rules:
copyToTaskCont ai ner
hel p
| Type: org. gradl e.configuration. Hel p
| Val ue: task ':help'
| Creator: t asks. addPl acehol der Acti on(hel p)
| Rules:
copyToTaskCont ai ner
init
| Type: org.gradle.buildinit.tasks.InitBuild
| Val ue: task ":init'
| Creator: t asks. addPl acehol der Acti on(init)
| Rules:
copyToTaskCont ai ner
nodel
| Type: org. gradl e. api . reporting. nodel . Mbdel Report
| Val ue: task ': nodel
| Creator: t asks. addPl acehol der Acti on(nodel)
| Rules:
copyToTaskCont ai ner
projects
| Type: org. gradl e. api . t asks. di agnosti cs. Proj ect Report Task
| Val ue: task ':projects'
| Creator: t asks. addPl acehol der Acti on(proj ect s)
| Rules:
copyToTaskCont ai ner
properties
| Type: org. gradl e. api . t asks. di agnosti cs. Propert yReport Task

Page 635 of 654

| Val ue: task ':properties’

| Creator: t asks. addPl acehol der Acti on(properti es)
| Rul es:
copyToTaskCont ai ner
+ tasks
| Type: org. gradl e. api . t asks. di agnosti cs. TaskReport Task
| Val ue: task ':tasks'
| Creator: t asks. addPl acehol der Acti on(t asks)
| Rul es:
copyToTaskCont ai ner
+ wr apper
| Type: org. gradl e. api . t asks. wr apper . W apper
| Val ue: task ':wapper’
| Creator: t asks. addPl acehol der Acti on(wr apper)

Page 636 of 654

| Rul es:
copyToTaskCont ai ner

We can seein thisreport that publ i cDat a ispresent and that i nt er nal Dat a isnot.

Page 637 of 654

Part VII. Appendix

A

Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can
find these samplesin the GRADLE_HOVE/ sanpl es directory of the distribution.

Table A.1. Samplesincluded in thedistribution

Sample

announce

application

bui | dCache/ bui |l d-src

bui | dCache/ confi gure-built-in-caches

bui | dCache/ devel oper-ci -setup

bui | dCache/ htt p- bui | d- cache

bui | dDashboard

codeQual ity

cust onBui | dLanguage

Description

A project which uses the announce plugin

A project which uses the application plugin

Configure the build cache consistently for bui | dSr c

and the main build

Configuration options for the build cache

Recommended cache configuration:
Developer push to alocal build cache and pull
from local and remote build cache, continuous
integration server pushes to and pulls from the
remote cache.

Use aremote HTTP build cache

A project which uses the build-dashboard
plugin

A project which uses the various code quality
plugins.

This sample demonstrates how to add some
custom elements to the build DSL. It also
demonstrates the use of custom plug-ins to
organize build logic.

Page 639 of 654

custonDi stri bution

cust onPl ugi n

ear/ ear Cust om zed/ ear

ear/ ear Wt hWar

groovy/ crossConpil ati on

groovy/ cust om zedLayout

groovy/ ni xedJavaAndG oovy

groovy/ nul ti project

groovy/ qui ckstart

java-library/multiproject

java-library/quickstart

j aval base

javal crossConpil ati on

j aval cust oni zedLayout

javal/ nul tiproject

j aval/ qui ckstart

This sample demonstrates how to create a
custom Gradle distribution and use it with the
Gradle wrapper.

A set of projects that show how to implement,
test, publish and use a custom plugin and task.

Web application ear project with customized
contents

Web application ear project

A project doing cross compilation for a
Groovy Project to Java 6

Groovy project with a custom source layout

Project containing a mix of Java and Groovy
source

Build made up of multiple Groovy projects.
Also demonstrates how to exclude certain
source files, and the use of a custom Groovy
AST transformation.

Groovy quickstart sample

Java Library multiproject

Java Library quickstart project

Java base project

A project doing cross compilation to Java 6

Java project with a custom source layout

This sample demonstrates how an application
can be composed using multiple Java projects.

Java quickstart project

Page 640 of 654

java/wi thlntegrationTests This sample demonstrates how to use a source
set to add an integration test suite to a Java
project.

j avaG adl ePl ugi n This example demonstrates the use of the java
gradle plugin development plugin. By
applying the plugin, the java plugin is
automatically applied as well as the
gradleApi() dependency. Furthermore,
validations are performed against the plugin
metadata during jar execution.

maven/ ponener ati on Demonstrates how to deploy and install to a
Maven repository. Also demonstrates how to
deploy a javadoc JAR along with the main
JAR, how to customize the contents of the
generated POM, and how to deploy snapshots
and releases to different repositories.

maven/ qui ckst art Demonstrates how to deploy and install
artifacts to aMaven repository.

osgi A project which builds an OSGi bundle

pl ugi ns A set of projects that show how to implement,
test, publish and use a custom plugins with the
latest technology.

scal a/ crossConpi | ati on A project doing cross compilation for a Scala
project to Java 6

scal a/ cust omi zedLayout Scala project with a custom source layout

scal a/ force Scala quickstart project

scal a/ mM xedJavaAndScal a A project containing a mix of Java and Scala
source.

scal a/ qui ckstart Scala quickstart project

scal a/ zi nc Scala project using the Zinc based Scala
compiler.

Page 641 of 654

testing/test Report Generates an HTML test report that includes
the test results from all subprojects.

t ool i ngApi / cust onvodel A sample of how a plugin can expose its own
custom tooling model to tooling API clients.

t ool i ngApi / ecli pse An application that uses the tooling API to
build the Eclipse model for a project.

t ool i ngApi /i dea An application that uses the tooling API to
extract information needed by IntelliJIDEA.

t ool i ngApi / nodel An application that uses the tooling API to
build the model for a Gradle build.

t ool i ngApi / runBui | d An application that uses the tooling API to run
a Gradle task.

user gui de/ di stri bution A project which uses the distribution plugin

user gui de/ javaLi braryDi stri bution A project which uses the Java library

distribution plugin

webAppl i cati on/ cust om zed Web application with customized WAR
contents.
webAppl i cati on/ qui ckstart Web application quickstart project

A.l. Samplecust onBui | dLanguage

This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use
of custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second
represents a product module. Each product includes one or more product modules, and each product module
may be included in multiple products. That is, there is a many-to-many relationship between these products
and product modules. For each product, the build produces a ZIP containing the runtime classpath for each
product module included in the product. The ZIP a so contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basi cEdi ti on/ bui |
). Notice that the build script usesthe pr oduct { } element. Thisisacustom element.

Page 642 of 654

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2
custom plug-insfound in bui | dSr ¢/ sr ¢/ mai n/ gr oovy.

A.2. Samplecust onDi stri buti on

This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.
This sample contains the following projects:

® Thepl ugi n directory contains the project that implements a custom plugin, and bundles the plugin into
acustom Gradle distribution.
®* Theconsuner directory contains the project that uses the custom distribution.

A.3. Samplecust onPl ugi n

A set of projects that show how to implement, test, publish and use a custom plugin and task.
This sample contains the following projects:

® Thepl ugi n directory contains the project that implements and publishes the plugin.
®* Theconsuner directory containsthe project that uses the plugin.

A.4. Samplej ava/ mul ti proj ect

This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP
which includes an APl JAR, which a 3rd party application would compile against, and a client runtime.
Then, thereis a server WAR which provides aweb service.

A.5. Samplepl ugi ns

A set of projects that show how to implement, test, publish and use a custom plugins with the latest
technology.

This sample contains the following projects:

® The bui | dscri pt directory contains a project that uses the old bui | dscri pt syntax for using
plugins.

® Thedsl| directory containsthe aproject that usesthe new pl ugi ns syntax for using plugins.

®* The publ i shi ng directory contains a complete example of the modern publishing plugins working
with the java-gradle-plugin to produce two plugins shipped in the same jar and being published to both
an ivy and maven repository.

®* The consuni ng directory contains an example of resolving plugins from custom repositories instead
the Gradle Plugin Portal.

Page 643 of 654

B

Potential Traps

B.1. Groovy script variables

For Gradle usersit isimportant to understand how Groovy deals with script variables. Groovy has two types
of script variables. One with alocal scope and one with a script-wide scope.

Page 644 of 654

Example B.1. Variables scope: local and script wide
scope. gr oovy

String | ocal Scopel = "I ocal Scopel
def | ocal Scope2 = '| ocal Scope?2
scri pt Scope = 'scri pt Scope

println | ocal Scopel
println | ocal Scope2
println scriptScope

closure = {
println | ocal Scopel
println | ocal Scope2
println scriptScope

met hod() {

try {
| ocal Scopel

} catch (M ssingPropertyException e) {
println 'l ocal ScopelNot Avai | abl e'

}
try {
| ocal Scope2

} catch(M ssingPropertyException e) {
println 'l ocal Scope2Not Avai | abl e’
}

println scriptScope

}

closure.call ()
nmet hod()

Output of gr adl e

> gradle

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal ScopelNot Avai |l abl e
| ocal Scope2Not Avai | abl e
scri pt Scope

Variables which are declared with atype modifier are visible within closures but not visible within methods.
Thisis aheavily discussed behavior in the Groovy community.[29

B.2. Configuration and execution phase

It isimportant to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 22,
The Build Lifecycle).

Page 645 of 654

Example B.2. Distinct configuration and execution phase
buil d. gradl e

def classesDir = file('build/classes")
cl assesDir. nkdi rs()
task clean(type: Delete) {
delete ' build’
}
task conpil e(dependsOn: 'clean') {
doLast {
if (!classesDir.isDirectory()) {
println ' The class directory does not exist. | can not operate
/| do sonet hi ng

}

/| do sonet hi ng

Output of gradl e -g conpile

> gradle -q compile
The class directory does not exist. | can not operate

As the creation of the directory happens during the configuration phase, the cl ean task removes the
directory during the execution phase.

[29] One of those discussions can be found here:
http://groovy.329449.n5.nabbl e.com/scri pt-scoping-question-td355887.html

Page 646 of 654

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

C

The Feature L ifecycle

Gradle is under constant development and improvement. New versions are delivered on a regular and
frequent basis (approximately every 6 weeks). Continuous improvement combined with frequent delivery
allows new features to be made available to users early and for invaluable real world feedback to be
incorporated into the development process. Getting new functionality into the hands of users regularly is a
core value of the Gradle platform. At the same time, APl and feature stability is taken very seriously and is
also considered a core value of the Gradle platform. This is something that is engineered into the
development process by design choices and automated testing, and is formalised by Section C.2,
“Backwards Compatibility Policy”.

The Gradle feature lifecycle has been designed to meet these goals. It also servesto clearly communicate to
users of Gradle what the state of a feature is. The term feature typically means an APl or DSL method or
property in this context, but it is not restricted to this definition. Command line arguments and modes of
execution (e.g. the Build Daemon) are two examples of other kinds of features.

C.1. States

Features can be in one of 4 states:

® |nternal
® [ncubating
Public
® Deprecated

C.1.1. Internd

Internal features are not designed for public use and are only intended to be used by Gradle itself. They can
change in any way at any point in time without any notice. Therefore, we recommend avoiding the use of
such features. Internal features are not documented. If it appears in this User Guide, the DSL Reference or
the API Reference documentation then the feature is not internal.

Internal features may evolve into public features.

C.1.2. Incubating

Features are introduced in the incubating state to allow real world feedback to be incorporated into the
feature before it is made public and locked down to provide backwards compatibility. It also gives users
who are willing to accept potential future changes early access to the feature so they can put it into use
immediately.

Page 647 of 654

A feature in an incubating state may change in future Gradle versions until it is no longer incubating.
Changes to incubating features for a Gradle release will be highlighted in the release notes for that release.
Theincubation period for new features varies depending on the scope, complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all methods/properties/classes that
are incubating are annotated with | ncubat i ng, which is aso used to specially mark them in the DSL and
API references. If an incubating feature is discussed in this User Guide, it will be explicitly said to bein the
incubating state.

C.1.3. Public

The default state for a non-internal feature is public. Anything that is documented in the User Guide, DSL
Reference or API references that is not explicitly said to be incubating or deprecated is considered public.
Features are said to be promoted from an incubating state to public. The release notes for each release
indicate which previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation. All public
features are subject to the backwards compatibility policy.

C.1.4. Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such features
will eventually be removed from Gradle after being deprecated. A deprecated feature will never be
changed, until it isfinally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, all methods/properties/classes that are
deprecated are annotated with “@ ava. | ang. Depr ecat ed” which is reflected in the DSL and API
references. In most cases, there is a replacement for the deprecated element, and this will be described in the
documentation. Using a deprecated feature will also result in aruntime warning in Gradle' s output.

Use of deprecated features should be avoided. The release notes for each release indicate any features that
are being deprecated by the release.

C.2. Backwards Compatibility Policy

Gradle provides backwards compatibility across major versions (e.g. 1. X, 2. X, etc.). Once a public feature
is introduced or promoted in a Gradle release it will remain indefinitely or until it is deprecated. Once
deprecated, it may be removed in the next major release. Deprecated features may be supported across major
releases, but thisis not guaranteed.

Page 648 of 654

http://www.gradle.org/docs/4.3.1/javadoc/org/gradle/api/Incubating.html

D

Gradle Command Line

Thegr adl e command has the following usage:
gradle [option...] [task...]

The command-line options available for the gr adl e command are listed below:

-?,-h,--help
Shows a help message.

-a,--no-rebuild
Do not rebuild project dependencies.

--all
Shows additional detail in the task listing. See Section 4.7.2, “Listing tasks’.

-b,--build-file
Specifies the build file. See Section 4.5, “ Selecting which build to execute”.

--bui I d-cache (i ncubati ng)
Enables the Gradle build cache. Gradle will try to reuse outputs from previous builds.

--no- bui |l d-cache (i ncubating)
Disables the Gradle build cache.

-c,--settings-file
Specifies the settingsfile.

--consol e
Specifies which type of console output to generate.

Set to pl ai n to generate plain text only. This option disables all color and other rich output in the
console output.

Set to aut o (the default) to enable color and other rich output in the console output when the build
processis attached to a console, or to generate plain text only when not attached to a console.

Setto ri ch to enable color and other rich output in the console output, regardless of whether the build
process is not attached to a console. When not attached to a console, the build output will use ANSI
control characters to generate the rich output.

Page 649 of 654

Set to ver bose to enable color and other rich output like the r i ch, but output more detailed message
(task name, output, etc.)

--conti nue
Continues task execution after atask failure.

--configure-on-dermand (i ncubating)
Only relevant projects are configured in this build run. This means faster builds for large multi-projects.
See the section called “ Configuration on demand”.

--no-confi gure-on-denmand (i ncubati ng)
Disables configuration on demand.

-D,--system prop
Sets a system property of the VM, for example - Dy pr op=nyval ue. See Section 12.2, “Gradle
properties and system properties’.

-d,--debug
Log in debug mode (includes normal stacktrace). See Chapter 24, Logging.

-g,--gradl e-user - hone
Specifies the Gradle user home directory. The default is the . gr adl e directory in the user’'s home
directory.

--include-build
Run the build as a composite, including the specified build. See Chapter 11, Composite builds.

-l,--init-script
Specifies an initialization script. See Chapter 44, Initialization Scripts.

-i,--info
Set log level to info. See Chapter 24, Logging.

-m--dry-run
Runs the build with all task actions disabled. See Section 4.8, “Dry Run”.

--offline

Specifies that the build should operate without accessing network resources. See Section 25.9.2,
“Command line options to override caching”.

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=mnyval ue. See Section 12.2,
“Gradle properties and system properties’.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory. See Section 4.5, “ Selecting which

build to execute”.

--parall el (incubating)

Page 650 of 654

Build projects in parallel. Gradle will attempt to determine the optimal number of executor threads to
use. This option should only be used with decoupled projects (see Section 26.9, “Decoupled Projects’).
For limitations of this option please see Section 26.8, “Parallel project execution”.

--no-parallel (incubating)
Disables parallel execution to build projects.

- -max-wor kers (i ncubating)
Sets the maximum number of workers that Gradle may use. For example - - max- wor ker s=3. The
default is the number of processors.

--profile
Profiles build execution time and generates areport in the bui | dDi r / r epor t s/ profi | e directory.
See Section 4.7.8, “Profiling abuild”.

--project-cache-dir
Specifies the project-specific cache directory. Default valueis. gr adl e inthe root project directory.

-q,--quiet
Log errorsonly. See Chapter 24, Logging.

--reconpil e-scri pts (deprecated)
Forces scripts to be recompiled, bypassing caching. This option has been deprecated and is scheduled to
be removed Gradle 5.0. Y ou should avoid using it.

--refresh-dependenci es
Refresh the state of dependencies. See Section 25.9.2, “Command line optionsto override caching”.

--rerun-tasks
Specifies that any task optimization isignored.

-S,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See Chapter 24, Logging.

-s,--stacktrace
Print out the stacktrace also for user exceptions (e.g. compile error). See Chapter 24, Logging.

--scan (incubating)
Creates a build scan. Gradle will auto-apply the build scan plugin with a compatible version. For more
information about build scans, please visit https://gradle.com/build-scans.

--no-scan (incubating)
Disables the creation of a build scan. For more information about build scans, please visit
https://gradle.com/build-scans.

-t,--continuous (incubating)
Enables continuous building - Gradle will automatically re-run when changes are detected.

-u,--no-search-upward

Page 651 of 654

https://gradle.com/build-scans
https://gradle.com/build-scans

Don't search in parent directoriesfor aset t i ngs. gr adl e file.

-V,--Vversion
Prints version info.

-W, - -warn
Set log level to warn. See Chapter 24, Logging

- X, --excl ude-task
Specifies atask to be excluded from execution. See Section 4.2, “Excluding tasks’.

The above information is printed to the console when you execute gr adl e - h.

D.1. Daemon command-line options

The Chapter 7, The Gradle Daemon contains more information about the daemon. For example it includes
information how to turn on the daemon by default so that you can avoid using - - daenon al thetime.

- - daenon
Uses the Gradle daemon to run the build. Starts the daemon if not running or existing daemon busy.
Chapter 7, The Gradle Daemon contains more detailed information when new daemon processes are
started.

- - no- daenon
Does not use the Gradle daemon to run the build.

--foreground
Starts the Gradle daemon in the foreground. Useful for debugging or troubleshooting because you can
easily monitor the build execution.

- - no- daenon
Do not use the Gradle daemon to run the build. Useful occasionally if you have configured Gradle to
aways run with the daemon by default.

--status
List running and recently stopped Gradle daemons. Only displays daemons of the same Gradle version.

--stop
Stops the Gradle daemon if it is running. You can only stop daemons that were started with the Gradle
version you use when running - - st op.

D.2. System properties

The following system properties are available for the gr adl e command. Note that command-line options
take precedence over system properties.

gradl e. user. hone

Page 652 of 654

Specifies the Gradle user home directory.

The Section 12.1, “Configuring the build environment via gradle.properties’ contains specific information
about Gradle configuration available via system properties.

D.3. Environment variables

The following environment variables are available for the gr adl e command. Note that command-line
options and system properties take precedence over environment variables.

GRADLE_OPTS
Specifies command-line arguments to use to start the VM. This can be useful for setting the system
properties to use for running Gradle. For example you could set GRADLE_OPTS="- Dor g. gr adl e. daenp
to use the Gradle daemon without needing to use the - - daenon option every time you run Gradle.
Section 12.1, “Configuring the build environment via gradle.properties’ contains more information
about ways of configuring the daemon without using environmental variables, e.g. in more maintainable
and explicit way.

GRADLE_USER HOVE
Specifies the Gradle user home directory (which defaultsto “USER _HOME/ . gr adl e” if not set).

JAVA_HOVE
Specifies the JDK installation directory to use.

Page 653 of 654

E

Documentation licenses

E.1. Gradle Documentation

Copyright © 2007-2016 Gradle, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do
not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

E.2. Header link icon

Copyright © 2011-2013 Visual Editor team.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

The Software is provided "asis", without warranty of any kind, express or implied, including but not limited
to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of
contract, tort or otherwise, arising from, out of or in connection with the Software or the use or other
dealingsin the Software.

Page 654 of 654

https://commons.wikimedia.org/wiki/File:VisualEditor_-_Icon_-_Link.svg

