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Introduction

This document is the Reference Manual of version 8.7.0 of the COQ proof assistant. A companion
volume, the CoQ Tutorial, is provided for the beginners. It is advised to read the Tutorial first. A
book [14] on practical uses of the COQ system was published in 2004 and is a good support for both the
beginner and the advanced user.

The CoQ system is designed to develop mathematical proofs, and especially to write formal specifi-
cations, programs and to verify that programs are correct with respect to their specification. It provides a
specification language named GALLINA. Terms of GALLINA can represent programs as well as proper-
ties of these programs and proofs of these properties. Using the so-called Curry-Howard isomorphism,
programs, properties and proofs are formalized in the same language called Calculus of Inductive Con-
structions, that is a A-calculus with a rich type system. All logical judgments in COQ are typing judg-
ments. The very heart of the Coq system is the type-checking algorithm that checks the correctness of
proofs, in other words that checks that a program complies to its specification. COQ also provides an
interactive proof assistant to build proofs using specific programs called tactics.

All services of the COQ proof assistant are accessible by interpretation of a command language
called the vernacular.

CoQ has an interactive mode in which commands are interpreted as the user types them in from the
keyboard and a compiled mode where commands are processed from a file.

* The interactive mode may be used as a debugging mode in which the user can develop his theories
and proofs step by step, backtracking if needed and so on. The interactive mode is run with
the cogt op command from the operating system (which we shall assume to be some variety of
UNIX in the rest of this document).

* The compiled mode acts as a proof checker taking a file containing a whole development in order
to ensure its correctness. Moreover, COQ’s compiler provides an output file containing a compact
representation of its input. The compiled mode is run with the cogc command from the operating
system.

These two modes are documented in Chapter 14.

Other modes of interaction with COQ are possible: through an emacs shell window, an emacs generic
user-interface for proof assistant (PROOF GENERAL [ 1]) or through a customized interface (PCoq [138]).
These facilities are not documented here. There is also a COQ Integrated Development Environment
described in Chapter 16.

How to read this book

This is a Reference Manual, not a User Manual, so it is not made for a continuous reading. However, it
has some structure that is explained below.
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Introduction

The first part describes the specification language, Gallina. Chapters 1 and 2 describe the concrete
syntax as well as the meaning of programs, theorems and proofs in the Calculus of Inductive
Constructions. Chapter 3 describes the standard library of C0Q. Chapter 4 is a mathematical
description of the formalism. Chapter 5 describes the module system.

The second part describes the proof engine. It is divided in five chapters. Chapter 6 presents
all commands (we call them vernacular commands) that are not directly related to interactive
proving: requests to the environment, complete or partial evaluation, loading and compiling files.
How to start and stop proofs, do multiple proofs in parallel is explained in Chapter 7. In Chapter 8,
all commands that realize one or more steps of the proof are presented: we call them tactics. The
language to combine these tactics into complex proof strategies is given in Chapter 9. Examples
of tactics are described in Chapter 10.

The third part describes how to extend the syntax of C0Q. It corresponds to the Chapter 12.

In the fourth part more practical tools are documented. First in Chapter 14, the usage of cogc
(batch mode) and cogt op (interactive mode) with their options is described. Then, in Chapter 15,
various utilities that come with the COQ distribution are presented. Finally, Chapter 16 describes
the CoQ integrated development environment.

The fifth part documents a number of advanced features, including coercions, canonical structures,
typeclasses, program extraction, and specialized solvers and tactics. See the table of contents for
a complete list.

At the end of the document, after the global index, the user can find specific indexes for tactics,

vernacular commands, and error messages.

List of additional documentation

This manual does not contain all the documentation the user may need about COQ. Various informations
can be found in the following documents:

Tutorial A companion volume to this reference manual, the COQ Tutorial, is aimed at gently introduc-

ing new users to developing proofs in COQ without assuming prior knowledge of type theory. In a
second step, the user can read also the tutorial on recursive types (document RecTutorial.ps).

Installation A text file INSTALL that comes with the sources explains how to install COQ.

The CoQ standard library A commented version of sources of the COQ standard library (includ-

ing only the specifications, the proofs are removed) is given in the additional document
Library.ps.
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CoQ is a proof assistant for higher-order logic, allowing the development of computer programs consis-
tent with their formal specification. It is the result of about ten years of research of the Coq project. We
shall briefly survey here three main aspects: the logical language in which we write our axiomatizations
and specifications, the proof assistant which allows the development of verified mathematical proofs,
and the program extractor which synthesizes computer programs obeying their formal specifications,
written as logical assertions in the language.

The logical language used by C0OQ is a variety of type theory, called the Calculus of Inductive Con-
structions. Without going back to Leibniz and Boole, we can date the creation of what is now called
mathematical logic to the work of Frege and Peano at the turn of the century. The discovery of anti-
nomies in the free use of predicates or comprehension principles prompted Russell to restrict predicate
calculus with a stratification of types. This effort culminated with Principia Mathematica, the first sys-
tematic attempt at a formal foundation of mathematics. A simplification of this system along the lines of
simply typed A-calculus occurred with Church’s Simple Theory of Types. The A-calculus notation, orig-
inally used for expressing functionality, could also be used as an encoding of natural deduction proofs.
This Curry-Howard isomorphism was used by N. de Bruijn in the Automath project, the first full-scale
attempt to develop and mechanically verify mathematical proofs. This effort culminated with Jutting’s
verification of Landau’s Grundlagen in the 1970’s. Exploiting this Curry-Howard isomorphism, no-
table achievements in proof theory saw the emergence of two type-theoretic frameworks; the first one,
Martin-Lof’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on constructive
principles. The second one, Girard’s polymorphic A-calculus F,, is a very strong functional system in
which we may represent higher-order logic proof structures. Combining both systems in a higher-order
extension of the Automath languages, T. Coquand presented in 1985 the first version of the Calculus of
Constructions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive
definitions were not possible, and inductive notions had to be defined indirectly through functional en-
codings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989 by T.
Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of Inductive
Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete ex-
amples are discussed. We refer the interested reader to relevant research papers for more information
about the formalism, its meta-theoretic properties, and semantics. However, it should not be necessary
to understand this theoretical material in order to write specifications. It is possible to understand the
Calculus of Inductive Constructions at a higher level, as a mixture of predicate calculus, inductive pred-
icate definitions presented as typed PROLOG, and recursive function definitions close to the language
ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional cal-
culus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-order logic
was proposed in 1965 by J.A. Robinson, with a single uniform inference rule called resolution. Reso-
lution relies on solving equations in free algebras (i.e. term structures), using the unification algorithm.
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Many refinements of resolution were studied in the 1970’s, but few convincing implementations were re-
alized, except of course that PROLOG is in some sense issued from this effort. A less ambitious approach
to proof development is computer-aided proof-checking. The most notable proof-checkers developed in
the 1970’s were LCEF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover,
an automation of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover
attempted to synthesize proofs by a combination of automated methods, LCF constructed its proofs
through the programming of tactics, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and
Moore’s, is its possibility to extract programs from the constructive contents of proofs. This compu-
tational interpretation of proof objects, in the tradition of Bishop’s constructive mathematics, is based
on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user must just mark
his intention by separating in the logical statements the assertions stating the existence of a computa-
tional object from the logical assertions which specify its properties, but which may be considered as
just comments in the corresponding program. Given this information, the system automatically extracts
a functional term from a consistency proof of its specifications. This functional term may be in turn
compiled into an actual computer program. This methodology of extracting programs from proofs is a
revolutionary paradigm for software engineering. Program synthesis has long been a theme of research
in artificial intelligence, pioneered by R. Waldinger. The Tablog system of Z. Manna and R. Waldinger
allows the deductive synthesis of functional programs from proofs in tableau form of their specifica-
tions, written in a variety of first-order logic. Development of a systematic programming logic, based
on extensions of Martin-Lof’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by
R. Constable. The first actual program extractor, PX, was designed and implemented around 1985 by
S. Hayashi from Kyoto University. It allows the extraction of a LISP program from a proof in a logical
system inspired by the logical formalisms of S. Feferman. Interest in this methodology is growing in
the theoretical computer science community. We can foresee the day when actual computer systems
used in applications will contain certified modules, automatically generated from a consistency proof
of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time
systems taking advantage of special hardware, debuggers, and the like. We hope that COQ can be of use
to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation
language was CAML, a functional programming language from the ML family designed at INRIA
in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typed A-calculus,
called the Constructive Engine. This engine was operated through a high-level notation permitting the
declaration of axioms and parameters, the definition of mathematical types and objects, and the explicit
construction of proof objects encoded as A-terms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language
was called the Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the
incremental construction of proof trees in a top-down manner, subgoaling recursively and backtracking
from dead-alleys. The theorem prover executed tactics written in CAML, in the LCF fashion. A basic set
of tactics was predefined, which the user could extend by his own specific tactics. This system (Version
4.10) was released in 1989. Then, the system was extended to deal with the new calculus with inductive
types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set of tactics
was streamlined, and the vernacular extended for tactics execution. A package to compile programs
extracted from proofs to actual computer programs in CAML or some other functional language was
designed and implemented by B. Werner. A new user-interface, relying on a CAML-X interface by D.
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de Rauglaudre, was designed and implemented by A. Felty. It allowed operation of the theorem-prover
through the manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system
(Version 5.6) was released in 1991.

CoQ was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de
Rauglaudre (Version 5.7) in 1992. A new version of COQ was then coordinated by C. Murthy, with
new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to pro-
gram extraction) and a new user-interaction loop. This system (Version 5.8) was released in May 1993.
A Centaur interface CTC0OQ was then developed by Y. Bertot from the Croap project from INRIA-
Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manip-
ulation of existential variables consistently with dependent types in an experimental version of COQ
(V5.9).

The version V5.10 of C0OQ is based on a generic system for manipulating terms with binding op-
erators due to Chet Murthy. A new proof engine allows the parallel development of partial proofs for
independent subgoals. The structure of these proof trees is a mixed representation of derivation trees
for the Calculus of Inductive Constructions with abstract syntax trees for the tactics scripts, allowing the
navigation in a proof at various levels of details. The proof engine allows generic environment items
managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

* User-programmable tactics are allowed

* Itis possible to separately verify development modules, and to load their compiled images without
verifying them again - a quick relocation process allows their fast loading

* A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-
printer

» Syntactic definitions allow convenient abbreviations

A limited facility of meta-variables allows the automatic synthesis of certain type expressions,
allowing generic notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and fam-
ilies by a new structure, allowing the mutually recursive definitions. P. Manoury implemented a trans-
lation of recursive definitions into the primitive recursive style imposed by the internal recursion oper-
ators, in the style of the ProPre system. C. Muiioz implemented a decision procedure for intuitionistic
propositional logic, based on results of R. Dyckhoff. J.C. Fillidtre implemented a decision procedure
for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inver-
sion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

Credits: addendum for version 6.1
The present version 6.1 of COQ is based on the V5.10 architecture. It was ported to the new language

OBJECTIVE CAML by Bruno Barras. The underlying framework has slightly changed and allows more
conversions between sorts.
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The new version provides powerful tools for easier developments.

Cristina Cornes designed an extension of the COQ syntax to allow definition of terms using a pow-
erful pattern-matching analysis in the style of ML programs.

Amokrane Saibi wrote a mechanism to simulate inheritance between types families extending a
proposal by Peter Aczel. He also developed a mechanism to automatically compute which arguments of
a constant may be inferred by the system and consequently do not need to be explicitly written.

Yann Coscoy designed a command which explains a proof term using natural language. Pierre
Crégut built a new tactic which solves problems in quantifier-free Presburger Arithmetic. Both function-
alities have been integrated to the COQ system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of
rewriting rules and equality modulo associativity and commutativity.

Finally the organisation of the COQ distribution has been supervised by Jean-Christophe Filliatre
with the help of Judicaé€l Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

Credits: addendum for version 6.2

In version 6.2 of C0OQ, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML
designed by Daniel de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of COQ
for camlp4, this work was continued by Bruno Barras who also changed the structure of COQ abstract
syntax trees and the primitives to manipulate them. The result of these changes is a faster parsing
procedure with greatly improved syntax-error messages. The user-interface to introduce grammar or
pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions
corresponding to COQ tactic names.

Bruno Barras wrote new more efficient reductions functions.

Hugo Herbelin introduced more uniform notations in the COQ specification language: the definitions
by fixpoints and pattern-matching have a more readable syntax. Patrick Loiseleur introduced user-
friendly notations for arithmetic expressions.

New tactics were introduced: Eduardo Giménez improved a mechanism to introduce macros for
tactics, and designed special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to
simplify polynomial expressions in an arbitrary commutative ring which generalizes the previous tactic
implemented by Samuel Boutin. Jean-Christophe Filliatre introduced a tactic for refining a goal, using
a proof term with holes as a proof scheme.

David Delahaye designed the Searchlsos tool to search an object in the library given its type (up to
isomorphism).

Henri Laulhére produced the CoQ distribution for the Windows environment.

Finally, Hugo Herbelin was the main coordinator of the COQ documentation with principal contri-
butions by Bruno Barras, David Delahaye, Jean-Christophe Fillidtre, Eduardo Giménez, Hugo Herbelin
and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin
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Credits: addendum for version 6.3

The main changes in version V6.3 was the introduction of a few new tactics and the extension of the
guard condition for fixpoint definitions.

B. Barras extended the unification algorithm to complete partial terms and solved various tricky bugs
related to universes.
D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and
provided the tacticals First and Solve.
J.-C. Filliatre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the ITnduction tactic.
P. Loiseleur developed the Quote tactic and the new design of the Aut o tactic, he also introduced the
index of errors in the documentation.
C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last
feature was proposed by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliatre. This
is a major revision with respect to the internal architecture of the system. The C0Q version 7.0 was
distributed in March 2001, version 7.1 in September 2001, version 7.2 in January 2002, version 7.3 in
May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliatre designed the architecture of the new system, he introduced a new repre-
sentation for environments and wrote a new kernel for type-checking terms. His approach was to use
functional data-structures in order to get more sharing, to prepare the addition of modules and also to
get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified”
names, wrote a new pattern-matching compilation algorithm and designed a more compact algorithm
for checking the logical consistency of universes. He contributed to the simplification of COQ internal
structures and the optimisation of the system. He added basic tactics for forward reasoning and coercions
in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern-matching on
goals and context can directly be written from the COQ toplevel. He also provided primitives for the
design of user-defined tactics in CAML.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library
with axiomatic trigonometric functions, square, square roots, finite sums, Chasles property and basic
plane geometry.

Jean-Christophe Fillidtre and Pierre Letouzey redesigned a new extraction procedure from COQ
terms to CAML or HASKELL programs. This new extraction procedure, unlike the one implemented
in previous version of COQ is able to handle all terms in the Calculus of Inductive Constructions, even
involving universes and strong elimination. P. Letouzey adapted user contributions to extract ML pro-
grams when it was sensible. Jean-Christophe Fillidtre wrote cogdoc, a documentation tool for COQ
libraries usable from version 7.2.
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Bruno Barras improved the reduction algorithms efficiency and the confidence level in the correct-
ness of COQ critical type-checking algorithm.

Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the
PCOQ interface (http://www—sop.inria.fr/lemme/pcoqg/).

Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.

Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.

Loic Pottier developed Fourier, a tactic solving linear inequalities on real numbers.

Pierre Crégut developed a new version based on reflexion of the Omega decision tactic.

Claudio Sacerdoti Coen designed an XML output for the COQ modules to be used in the Hypertex-
tual Electronic Library of Mathematics (HELM cf http://www.cs.unibo.it/helm).

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault
was integrated in the basic theories.

Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively
defined functions.

Jacek Chrzaszcz designed and implemented the module system of COQ whose foundations are in
Judicaél Courant’s PhD thesis.

The development was coordinated by C. Paulin.

Many discussions within the Démons team and the LogiCal project influenced significantly the de-
sign of COQ especially with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and
B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman
from INRIA, C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
Hugo Herbelin & Christine Paulin

Credits: version 8.0

CoqQ version 8 is a major revision of the COQ proof assistant. First, the underlying logic is slightly
different. The so-called impredicativity of the sort Set has been dropped. The main reason is that it
is inconsistent with the principle of description which is quite a useful principle for formalizing mathe-
matics within classical logic. Moreover, even in an constructive setting, the impredicativity of Set does
not add so much in practice and is even subject of criticism from a large part of the intuitionistic math-
ematician community. Nevertheless, the impredicativity of Set remains optional for users interested in
investigating mathematical developments which rely on it.
Secondly, the concrete syntax of terms has been completely revised. The main motivations were

* a more uniform, purified style: all constructions are now lowercase, with a functional program-
ming perfume (e.g. abstraction is now written fun), and more directly accessible to the novice
(e.g. dependent product is now written forall and allows omission of types). Also, parentheses
and are no longer mandatory for function application.

* extensibility: some standard notations (e.g. “<” and “>”) were incompatible with the previous
syntax. Now all standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of
the syntax.
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Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits
to reuse the same symbols (typically +, -, *, /, <, <=) in various mathematical theories without any
ambiguities for C0Q, leading to a largely improved readability of COQ scripts. New commands to
easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language
of commands has been carried out. The purpose here is a better uniformity making the tactics and
commands easier to use and to remember.

Thirdly, a restructuration and uniformisation of the standard library of COQ has been performed.
There is now just one Leibniz’ equality usable for all the different kinds of COQ objects. Also, the set
of real numbers now lies at the same level as the sets of natural and integer numbers. Finally, the names
of the standard properties of numbers now follow a standard pattern and the symbolic notations for the
standard definitions as well.

The fourth point is the release of COQIDE, a new graphical gtk2-based interface fully integrated to
CoQ. Close in style from the Proof General Emacs interface, it is faster and its integration with CoQ
makes interactive developments more friendly. All mathematical Unicode symbols are usable within
CoQIDE.

Finally, the module system of COQ completes the picture of COQ version 8.0. Though released with
an experimental status in the previous version 7.4, it should be considered as a salient feature of the new
version.

Besides, COQ comes with its load of novelties and improvements: new or improved tactics (includ-
ing a new tactic for solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflexion and the imple-
mentation of the new syntax. The smart automatic translator from old to new syntax released with COQ
is also their work with contributions by Olivier Desmettre.

Hugo Herbelin is the main designer and implementor of the notion of interpretation scopes and of
the commands for easily adding new notations.

Hugo Herbelin is the main implementor of the restructuration of the standard library.

Pierre Corbineau is the main designer and implementor of the new tactic for solving first-order state-
ments in presence of inductive types. He is also the maintainer of the non-domain specific automation
tactics.

Benjamin Monate is the developer of the COQIDE graphical interface with contributions by Jean-
Christophe Filliatre, Pierre Letouzey, Claude Marché and Bruno Barras.

Claude Marché coordinated the edition of the Reference Manual for CoQ V8.0.

Pierre Letouzey and Jacek Chrzaszcz respectively maintained the extraction tool and module system
of CoQ.

Jean-Christophe Fillidtre, Pierre Letouzey, Hugo Herbelin ando contributors from Sophia-Antipolis
and Nijmegen participated to the extension of the library.

Julien Narboux built a NSIS-based automatic COQ installation tool for the Windows platform.

Hugo Herbelin and Christine Paulin coordinated the development which was under the responsabil-
ity of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
Hugo Herbelin & Christine Paulin
(updated Apr. 2006)
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Credits: version 8.1

CoQ version 8.1 adds various new functionalities.

Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the
CoQ type-checker. This alternative algorithm works by compilation to an efficient bytecode that is
interpreted in an abstract machine similar to Xavier Leroy’s ZINC machine. Convertibility is performed
by comparing the normal forms. This alternative algorithm is specifically interesting for proofs by
reflection. More generally, it is convenient in case of intensive computations.

Christine Paulin implemented an extension of inductive types allowing recursively non uniform
parameters. Hugo Herbelin implemented sort-polymorphism for inductive types (now called template
polymorphism).

Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence rela-
tions. He also generalized rewriting to arbitrary transition systems.

Claudio Sacerdoti Coen added new features to the module system.

Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new more efficient and more
general simplification algorithm on rings and semi-rings.

Laurent Théry and Bruno Barras developed a new significantly more efficient simplification algo-
rithm on fields.

Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added
new tactic features.

Hugo Herbelin implemented matching on disjunctive patterns.

New mechanisms made easier the communication between COQ and external provers. Nicolas Ay-
ache and Jean-Christophe Fillidtre implemented connections with the provers CVCL, SIMPLIFY and
ZENON. Hugo Herbelin implemented an experimental protocol for calling external tools from the tactic
language.

Matthieu Sozeau developed RUSSELL, an experimental language to specify the behavior of programs
with subtypes.

A mechanism to automatically use some specific tactic to solve unresolved implicit has been imple-
mented by Hugo Herbelin.

Laurent Théry’s contribution on strings and Pierre Letouzey and Jean-Christophe Fillidtre’s contri-
bution on finite maps have been integrated to the COQ standard library. Pierre Letouzey developed a
library about finite sets “a la OBJECTIVE CAML”. With Jean-Marc Notin, he extended the library on
lists. Pierre Letouzey’s contribution on rational numbers has been integrated and extended..

Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based
intuitionistic tautology solver.

Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive struc-
ture of recursively defined functions.

Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took
care of coqdoc.

Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improve-
ments to the libraries.

Pierre Corbineau implemented a declarative mathematical proof language, usable in combination
with the tactic-based style of proof.

Finally, many users suggested improvements of the system through the Cog-Club mailing list and
bug-tracker systems, especially user groups from INRIA Rocquencourt, Radboud University, University
of Pennsylvania and Yale University.

Palaiseau, July 2006
Hugo Herbelin
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Credits: version 8.2

CoqQ version 8.2 adds new features, new libraries and improves on many various aspects.

Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a pack-
age of commands providing Haskell-style type classes. Type classes, that come with a few convenient
features such as type-based resolution of implicit arguments, plays a new role of landmark in the ar-
chitecture of Coq with respect to automatization. For instance, thanks to type classes support, Matthieu
Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting on arbitrary
transitive relations.

Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools
associated to them. Benjamin Grégoire and Laurent Théry contributed a modular library for building
arbitrarily large integers from bounded integers while Evgeny Makarov contributed a modular library
of abstract natural and integer arithmetics together with a few convenient tactics. On his side, Pierre
Letouzey made numerous extensions to the arithmetic libraries on Z and (), including extra support for
automatization in presence of various number-theory concepts.

Frédéric Besson contributed a reflexive tactic based on Krivine-Stengle Positivstellensatz (the easy
way) for validating provability of systems of inequalities. The platform is flexible enough to support the
validation of any algorithm able to produce a “certificate” for the Positivstellensatz and this covers the
case of Fourier-Motzkin (for linear systems in Q and R), Fourier-Motzkin with cutting planes (for linear
systems in Z) and sum-of-squares (for non-linear systems). Evgeny Makarov made the platform generic
over arbitrary ordered rings.

Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire
and Laurent Théry’s library, delivered a library of unbounded integers in base 23!. As importantly, he de-
veloped a notion of “retro-knowledge” so as to safely extend the kernel-located bytecode-based efficient
evaluation algorithm of Coq version 8.1 to use 31-bits machine arithmetics for efficiently computing
with the library of integers he developed.

Beside the libraries, various improvements contributed to provide a more comfortable end-user lan-
guage and more expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern-
matching compilation algorithm (detection of impossible clauses in pattern-matching, automatic infer-
ence of the return type). Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau contributed various new
convenient syntactic constructs and new tactics or tactic features: more inference of redundant infor-
mation, better unification, better support for proof or definition by fixpoint, more expressive rewriting
tactics, better support for meta-variables, more convenient notations, ...

Elie Soubiran improved the module system, adding new features (such as an “include” command)
and making it more flexible and more general. He and Pierre Letouzey improved the support for modules
in the extraction mechanism.

Matthieu Sozeau extended the RUSSELL language, ending in an convenient way to write programs
of given specifications, Pierre Corbineau extended the Mathematical Proof Language and the autom-
atization tools that accompany it, Pierre Letouzey supervised and extended various parts the standard
library, Stéphane Glondu contributed a few tactics and improvements, Jean-Marc Notin provided help
in debugging, general maintenance and cogdoc support, Vincent Siles contributed extensions of the
Scheme command and of injection.

Bruno Barras implemented the cogchk tool: this is a stand-alone type-checker that can be used to
certify . vo files. Especially, as this verifier runs in a separate process, it is granted not to be “hijacked”
by virtually malicious extensions added to COQ.

Yves Bertot, Jean-Christophe Fillidtre, Pierre Courtieu and Julien Forest acted as maintainers of
features they implemented in previous versions of Coq.
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Julien Narboux contributed to COQIDE. Nicolas Tabareau made the adaptation of the interface of
the old “setoid rewrite” tactic to the new version. Lionel Mamane worked on the interaction between
Coq and its external interfaces. With Samuel Mimram, he also helped making Coq compatible with
recent software tools. Russell O’Connor, Cezary Kaliscyk, Milad Niqui contributed to improved the
libraries of integers, rational, and real numbers. We also thank many users and partners for suggestions
and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges
Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radboud
university in Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008
Hugo Herbelin

Credits: version 8.3

CoqQ version 8.3 is before all a transition version with refinements or extensions of the existing fea-
tures and libraries and a new tactic nsatz based on Hilbert’s Nullstellensatz for deciding systems of
equations over rings.

With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the
library of finite sets FSets and a new round of evolutions in the modular development of arithmetic
(library Numbers). The reason for making FSet s evolve is that the computational and logical contents
were quite intertwined in the original implementation, leading in some cases to longer computations than
expected and this problem is solved in the new MSet s implementation. As for the modular arithmetic
library, it was only dealing with the basic arithmetic operators in the former version and its current
extension adds the standard theory of the division, min and max functions, all made available for free to
any implementation of N, Z or Z/nZ.

The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting
library (includingh a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned
up the library of reals.

The module system evolved significantly. Besides the resolution of some efficiency issues and a
more flexible construction of module types, Elie Soubiran brought a new model of name equivalence,
the A-equivalence, which respects as much as possible the names given by the users. He also designed
with Pierre Letouzey a new convenient operator <+ for nesting functor application, what provides a light
notation for inheriting the properties of cascading modules.

The new tactic nsat z is due to Loic Pottier. It works by computing Grébner bases. Regarding the
existing tactics, various improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre
Letouzey.

Matthieu Sozeau extended and refined the type classes and Program features (the RUSSELL lan-
guage). Pierre Letouzey maintained and improved the extraction mechanism. Bruno Barras and Elie
Soubiran maintained the Coq checker, Julien Forest maintained the Function mechanism for rea-
soning over recursively defined functions. Matthieu Sozeau, Hugo Herbelin and Jean-Marc Notin
maintained cogdoc. Frédéric Besson maintained the MICROMEGA plateform for deciding systems
of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude
Marché maintained the plugin for calling external provers (dp). Yves Bertot made some improve-
ments to the libraries of lists and integers. Matthias Puech improved the search functions. Guillaume
Melquiond usefully contributed here and there. Yann Régis-Gianas grounded the support for Unicode
on a more standard and more robust basis.
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Though invisible from outside, Arnaud Spiwack improved the general process of management of ex-
istential variables. Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq
archive. Vincent Gross provided support to COQIDE. Jean-Marc Notin provided support for bench-
marking and archiving.

Many users helped by reporting problems, providing patches, suggesting improvements or making
useful comments, either on the bug tracker or on the Cog-club mailing list. This includes but not exhaus-
tively Cédric Auger, Arthur Charguéraud, Francois Garillot, Georges Gonthier, Robin Green, Stéphane
Lescuyer, Eelis van der Weegen, ...

Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre
Castéran, Adam Chlipala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010
Hugo Herbelin

Credits: version 8.4

CoQ version 8.4 contains the result of three long-term projects: a new modular library of arithmetic
by Pierre Letouzey, a new proof engine by Arnaud Spiwack and a new communication protocol for
CoQIDE by Vincent Gross.

The new modular library of arithmetic extends, generalizes and unifies the existing libraries on Peano
arithmetic (types nat, N and BigN), positive arithmetic (type positive), integer arithmetic (Z and
Bigz) and machine word arithmetic (type Int31). It provides with unified notations (e.g. systematic
use of add and mul for denoting the addition and multiplication operators), systematic and generic
development of operators and properties of these operators for all the types mentioned above, including
gcd, pcm, power, square root, base 2 logarithm, division, modulo, bitwise operations, logical shifts,
comparisons, iterators, ...

The most visible feature of the new proof engine is the support for structured scripts (bullets and
proof brackets) but, even if yet not user-available, the new engine also provides the basis for refining
existential variables using tactics, for applying tactics to several goals simultaneously, for reordering
goals, all features which are planned for the next release. The new proof engine forced to reimplement
info and Show Script differently, what was done by Pierre Letouzey.

Before version 8.4, COQIDE was linked to COQ with the graphical interface living in a separate
thread. From version 8.4, COQIDE is a separate process communicating with CoQ through a textual
channel. This allows for a more robust interfacing, the ability to interrupt COQ without interrupting the
interface, and the ability to manage several sessions in parallel. Relying on the infrastructure work made
by Vincent Gross, Pierre Letouzey, Pierre Boutillier and Pierre-Marie Pédrot contributed many various
refinements of COQIDE.

CoQ 8.4 also comes with a bunch of many various smaller-scale changes and improvements regard-
ing the different components of the system.

The underlying logic has been extended with n-conversion thanks to Hugo Herbelin, Stéphane
Glondu and Benjamin Grégoire. The addition of 7-conversion is justified by the confidence that the
formulation of the Calculus of Inductive Constructions based on typed equality (such as the one con-
sidered in Lee and Werner to build a set-theoretic model of CIC [97]) is applicable to the concrete
implementation of COQ.

The underlying logic benefited also from a refinement of the guard condition for fixpoints by Pierre
Boutillier, the point being that it is safe to propagate the information about structurally smaller arguments
through S-redexes that are blocked by the “match” construction (blocked commutative cuts).
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Relying on the added permissiveness of the guard condition, Hugo Herbelin could extend the pattern-
matching compilation algorithm so that matching over a sequence of terms involving dependencies of a
term or of the indices of the type of a term in the type of other terms is systematically supported.

Regarding the high-level specification language, Pierre Boutillier introduced the ability to give im-
plicit arguments to anonymous functions, Hugo Herbelin introduced the ability to define notations with
several binders (e.g. exists x y z, P), Matthieu Sozeau made the type classes inference mech-
anism more robust and predictable, Enrico Tassi introduced a command Arguments that generalizes
Implicit Arguments and Arguments Scope for assigning various properties to arguments of
constants. Various improvements in the type inference algorithm were provided by Matthieu Sozeau and
Hugo Herbelin with contributions from Enrico Tassi.

Regarding tactics, Hugo Herbelin introduced support for referring to expressions occurring in the
goal by pattern in tactics such as set or destruct. Hugo Herbelin also relied on ideas from
Chung-Kil Hur’s Heq plugin to introduce automatic computation of occurrences to generalize when
using destruct and induction on types with indices. Stéphane Glondu introduced new tactics
constr_eq, is_evar and has_evar to be used when writing complex tactics. Enrico Tassi added
support to fine-tuning the behavior of simpl. Enrico Tassi added the ability to specify over which vari-
ables of a section a lemma has to be exactly generalized. Pierre Letouzey added a tactic t imeout and
the interruptibility of vim_compute. Bug fixes and miscellaneous improvements of the tactic language
came from Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau.

Regarding decision tactics, Loic Pottier maintained Nsatz, moving in particular to a type-class
based reification of goals while Frédéric Besson maintained Micromega, adding in particular support
for division.

Regarding vernacular commands, Stéphane Glondu provided new commands to analyze the structure
of type universes.

Regarding libraries, a new library about lists of a given length (called vectors) has been provided by
Pierre Boutillier. A new instance of finite sets based on Red-Black trees and provided by Andrew Appel
has been adapted for the standard library by Pierre Letouzey. In the library of real analysis, Yves Bertot
changed the definition of 7 and provided a proof of the long-standing fact yet remaining unproved in
this library, namely that sin§ = 1.

Pierre Corbineau maintained the Mathematical Proof Language (C-zar).

Bruno Barras and Benjamin Grégoire maintained the call-by-value reduction machines.

The extraction mechanism benefited from several improvements provided by Pierre Letouzey.

Pierre Letouzey maintained the module system, with contributions from Elie Soubiran.

Julien Forest maintained the Function command.

Matthieu Sozeau maintained the setoid rewriting mechanism.

CoqQ related tools have been upgraded too. In particular, cogq_makefile has been largely revised
by Pierre Boutillier. Also, patches from Adam Chlipala for cogdoc have been integrated by Pierre
Boutillier.

Bruno Barras and Pierre Letouzey maintained the cogchk checker.

Pierre Courtieu and Arnaud Spiwack contributed new features for using CoQ through Proof General.

The Dp plugin has been removed. Use the plugin provided with Why 3 instead (http://why3.
lri.fr).

Under the hood, the COQ architecture benefited from improvements in terms of efficiency and ro-
bustness, especially regarding universes management and existential variables management, thanks to
Pierre Letouzey and Yann Régis-Gianas with contributions from Stéphane Glondu and Matthias Puech.
The build system is maintained by Pierre Letouzey with contributions from Stéphane Glondu and Pierre
Boutillier.
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A new backtracking mechanism simplifying the task of external interfaces has been designed by
Pierre Letouzey.

The general maintenance was done by Pierre Letouzey, Hugo Herbelin, Pierre Boutillier, Matthieu
Sozeau and Stéphane Glondu with also specific contributions from Guillaume Melquiond, Julien Nar-
boux and Pierre-Marie Pédrot.

Packaging tools were provided by Pierre Letouzey (Windows), Pierre Boutillier (MacOS), Stéphane
Glondu (Debian). Releasing, testing and benchmarking support was provided by Jean-Marc Notin.

Many suggestions for improvements were motivated by feedback from users, on either the bug
tracker or the cog-club mailing list. Special thanks are going to the users who contributed patches,
starting with Tom Prince. Other patch contributors include Cédric Auger, David Baelde, Dan Grayson,
Paolo Herms, Robbert Krebbers, Marc Lasson, Hendrik Tews and Eelis van der Weegen.

Paris, December 2011
Hugo Herbelin

Credits: version 8.5

CoQ version 8.5 contains the result of five specific long-term projects:

* A new asynchronous evaluation and compilation mode by Enrico Tassi with help from Bruno
Barras and Carst Tankink.

* Full integration of the new proof engine by Arnaud Spiwack helped by Pierre-Marie Pédrot,

* Addition of conversion and reduction based on native compilation by Maxime Dén¢s and Ben-
jamin Grégoire.

* Full universe polymorphism for definitions and inductive types by Matthieu Sozeau.

* An implementation of primitive projections with n-conversion bringing significant performance
improvements when using records by Matthieu Sozeau.

The full integration of the proof engine, by Arnaud Spiwack and Pierre-Marie Pédrot, brings to
primitive tactics and the user level Ltac language dependent subgoals, deep backtracking and multiple
goal handling, along with miscellaneous features and an improved potential for future modifications.
Dependent subgoals allow statements in a goal to mention the proof of another. Proofs of unsolved
subgoals appear as existential variables. Primitive backtracking makes it possible to write a tactic with
several possible outcomes which are tried successively when subsequent tactics fail. Primitives are also
available to control the backtracking behavior of tactics. Multiple goal handling paves the way for
smarter automation tactics. It is currently used for simple goal manipulation such as goal reordering.

The way COQ processes a document in batch and interactive mode has been redesigned by Enrico
Tassi with help from Bruno Barras. Opaque proofs, the text between Proof and Qed, can be processed
asynchronously, decoupling the checking of definitions and statements from the checking of proofs.
It improves the responsiveness of interactive development, since proofs can be processed in the back-
ground. Similarly, compilation of a file can be split into two phases: the first one checking only defini-
tions and statements and the second one checking proofs. A file resulting from the first phase — with the
.vio extension — can be already Required. All .vio files can be turned into complete .vo files in parallel.
The same infrastructure also allows terminating tactics to be run in parallel on a set of goals via the
par: goal selector.
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CoOQIDE was modified to cope with asynchronous checking of the document. Its source code was
also made separate from that of CoQ, so that COQIDE no longer has a special status among user inter-
faces, paving the way for decoupling its release cycle from that of COQ in the future.

Carst Tankink developed a CoQ back-end for user interfaces built on Makarius Wenzel’s Prover
IDE framework (PIDE), like PIDE/jEdit (with help from Makarius Wenzel) or PIDE/Coqoon (with help
from Alexander Faithfull and Jesper Bengtson). The development of such features was funded by the
Paral-ITP French ANR project.

The full universe polymorphism extension was designed by Matthieu Sozeau. It conservatively
extends the universes system and core calculus with definitions and inductive declarations parameter-
ized by universes and constraints. It is based on a modification of the kernel architecture to handle
constraint checking only, leaving the generation of constraints to the refinement/type inference engine.
Accordingly, tactics are now fully universe aware, resulting in more localized error messages in case
of inconsistencies and allowing higher-level algorithms like unification to be entirely type safe. The
internal representation of universes has been modified but this is invisible to the user.

The underlying logic has been extended with n-conversion for records defined with primitive pro-
jections by Matthieu Sozeau. This additional form of n-conversion is justified using the same principle
than the previously added n-conversion for function types, based on formulations of the Calculus of
Inductive Constructions with typed equality. Primitive projections, which do not carry the parameters
of the record and are rigid names (not defined as a pattern-matching construct), make working with
nested records more manageable in terms of time and space consumption. This extension and universe
polymorphism were carried out partly while Matthieu Sozeau was working at the IAS in Princeton.

The guard condition has been made compliant with extensional equality principles such as proposi-
tional extensionality and univalence, thanks to Maxime Dénes and Bruno Barras. To ensure compatibil-
ity with the univalence axiom, a new flag “-indices-matter” has been implemented, taking into account
the universe levels of indices when computing the levels of inductive types. This supports using COQ as
a tool to explore the relations between homotopy theory and type theory.

Maxime Dénes and Benjamin Grégoire developed an implementation of conversion test and normal
form computation using the OCaml native compiler. It complements the virtual machine conversion
offering much faster computation for expensive functions.

CoQ 8.5 also comes with a bunch of many various smaller-scale changes and improvements regard-
ing the different components of the system. We shall only list a few of them.

Pierre Boutillier developed an improved tactic for simplification of expressions called cbn.

Maxime Dénes maintained the bytecode-based reduction machine. Pierre Letouzey maintained the
extraction mechanism.

Pierre-Marie Pédrot has extended the syntax of terms to, experimentally, allow holes in terms to be
solved by a locally specified tactic.

Existential variables are referred to by identifiers rather than mere numbers, thanks to Hugo Herbelin
who also improved the tactic language here and there.

Error messages for universe inconsistencies have been improved by Matthieu Sozeau. Error mes-
sages for unification and type inference failures have been improved by Hugo Herbelin, Pierre-Marie
Pédrot and Arnaud Spiwack.

Pierre Courtieu contributed new features for using CoQ through Proof General and for better inter-
active experience (bullets, Search, etc).

The efficiency of the whole system has been significantly improved thanks to contributions from
Pierre-Marie Pédrot.

A distribution channel for COQ packages using the OPAM tool has been initiated by Thomas
Braibant and developed by Guillaume Claret, with contributions by Enrico Tassi and feedback from
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Hugo Herbelin.

Packaging tools were provided by Pierre Letouzey and Enrico Tassi (Windows), Pierre Boutillier,
Matthieu Sozeau and Maxime Dénes (MacOS X). Maxime Dénes improved significantly the testing and
benchmarking support.

Many power users helped to improve the design of the new features via the bug tracker, the coq de-
velopment mailing list or the coq-club mailing list. Special thanks are going to the users who contributed
patches and intensive brain-storming, starting with Jason Gross, Jonathan Leivent, Greg Malecha, CIé-
ment Pit-Claudel, Marc Lasson, Lionel Rieg. It would however be impossible to mention with precision
all names of people who to some extent influenced the development.

Version 8.5 is one of the most important release of COQ. Its development spanned over about 3 years
and a half with about one year of beta-testing. General maintenance during part or whole of this period
has been done by Pierre Boutillier, Pierre Courtieu, Maxime Dénes, Hugo Herbelin, Pierre Letouzey,
Guillaume Melquiond, Pierre-Marie Pédrot, Matthieu Sozeau, Arnaud Spiwack, Enrico Tassi as well as
Bruno Barras, Yves Bertot, Frédéric Besson, Xavier Clerc, Pierre Corbineau, Jean-Christophe Filliatre,
Julien Forest, Sébastien Hinderer, Assia Mahboubi, Jean-Marc Notin, Yann Régis-Gianas, Francois
Ripault, Carst Tankink. Maxime Dénes coordinated the release process.

Paris, January 2015, revised December 2015,
Hugo Herbelin, Matthieu Sozeau and the COQ development team

Credits: version 8.6

CoqQ version 8.6 contains the result of refinements, stabilization of 8.5’s features and cleanups of the
internals of the system. Over the year of (now time-based) development, about 450 bugs were resolved
and over 100 contributions integrated. The main user visible changes are:

* A new, faster state-of-the-art universe constraint checker, by Jacques-Henri Jourdan.

* In CoqIDE and other asynchronous interfaces, more fine-grained asynchronous processing and
error reporting by Enrico Tassi, making COQ capable of recovering from errors and continue
processing the document.

* More access to the proof engine features from Ltac: goal management primitives, range selec-
tors and a typeclasses eauto engine handling multiple goals and multiple successes, by
Cyprien Mangin, Matthieu Sozeau and Arnaud Spiwack.

* Tactic behavior uniformization and specification, generalization of intro-patterns by Hugo Herbe-
lin and others.

* A brand new warning system allowing to control warnings, turn them into errors or ignore them
selectively by Maxime Dénes, Guillaume Melquiond, Pierre-Marie Pédrot and others.

* Irrefutable patterns in abstractions, by Daniel de Rauglaudre.

* The ssreflect subterm selection algorithm by Georges Gonthier and Enrico Tassi is now ac-
cessible to tactic writers through the ssrmatching plugin.

* Integration of LtacProf, a profiler for Lt ac by Jason Gross, Paul Steckler, Enrico Tassi and
Tobias Tebbi.
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CoqQ 8.6 also comes with a bunch of smaller-scale changes and improvements regarding the different
components of the system. We shall only list a few of them.

The iota reduction flag is now a shorthand for match, fix and cofix flags controlling the
corresponding reduction rules (by Hugo Herbelin and Maxime Déne¢s).

Maxime Dénes maintained the native compilation machinery.

Pierre-Marie Pédrot separated the Ltac code from general purpose tactics, and generalized and ra-
tionalized the handling of generic arguments, allowing to create new versions of Ltac more easily in the
future.

In patterns and terms, @, abbreviations and notations are now interpreted the same way, by Hugo
Herbelin.

Name handling for universes has been improved by Pierre-Marie Pédrot and Matthieu Sozeau. The
minimization algorithm has been improved by Matthieu Sozeau.

The unifier has been improved by Hugo Herbelin and Matthieu Sozeau, fixing some incompatibilities
introduced in Coq 8.5. Unification constraints can now be left floating around and be seen by the user
thanks to a new option. The Keyed Unification mode has been improved by Matthieu Sozeau.

The typeclass resolution engine and associated proof-search tactic have been reimplemented on top
of the proof-engine monad, providing better integration in tactics, and new options have been introduced
to control it, by Matthieu Sozeau with help from Théo Zimmermann.

The efficiency of the whole system has been significantly improved thanks to contributions from
Pierre-Marie Pédrot, Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason
Gross and Paul Steckler.

Standard library improvements by Jason Gross, Sébastien Hinderer, Pierre Letouzey and others.

Emilio Jests Gallego Arias contributed many cleanups and refactorings of the pretty-printing and
user interface communication components.

Frédéric Besson maintained the micromega tactic.

The OPAM repository for COQ packages has been maintained by Guillaume Claret, Guillaume
Melquiond, Matthieu Sozeau, Enrico Tassi and others. A list of packages is now available at ht tps:
//coq.inria.fr/opam/www/.

Packaging tools and software development kits were prepared by Michael Soegtrop with the help of
Maxime Dénes and Enrico Tassi for Windows, and Maxime Dénés and Matthieu Sozeau for MacOS X.
Packages are now regularly built on the continuous integration server. COQ now comes with a META file
usable with ocaml find, contributed by Emilio Jestis Gallego Arias, Gregory Malecha, and Matthieu
Sozeau.

Matej Kosik maintained and greatly improved the continuous integration setup and the testing of
CoQ contributions. He also contributed many API improvement and code cleanups throughout the
system.

The contributors for this version are Bruno Barras, C.J. Bell, Yves Bertot, Frédéric Besson, Pierre
Boutillier, Tej Chajed, Guillaume Claret, Xavier Clerc, Pierre Corbineau, Pierre Courtieu, Maxime
Dénes, Ricky Elrod, Emilio Jesis Gallego Arias, Jason Gross, Hugo Herbelin, Sébastien Hinderer,
Jacques-Henri Jourdan, Matej Kosik, Xavier Leroy, Pierre Letouzey, Gregory Malecha, Cyprien Man-
gin, Erik Martin-Dorel, Guillaume Melquiond, Clément Pit—Claudel, Pierre-Marie Pédrot, Daniel de
Rauglaudre, Lionel Rieg, Gabriel Scherer, Thomas Sibut-Pinote, Matthieu Sozeau, Arnaud Spiwack,
Paul Steckler, Enrico Tassi, Laurent Théry, Nickolai Zeldovich and Théo Zimmermann. The develop-
ment process was coordinated by Hugo Herbelin and Matthieu Sozeau with the help of Maxime Dénes,
who was also in charge of the release process.

Many power users helped to improve the design of the new features via the bug tracker, the pull
request system, the COQ development mailing list or the coq-club mailing list. Special thanks to the users
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who contributed patches and intensive brain-storming and code reviews, starting with Cyril Cohen, Jason
Gross, Robbert Krebbers, Jonathan Leivent, Xavier Leroy, Gregory Malecha, Clément Pit—Claudel,
Gabriel Scherer and Beta Ziliani. It would however be impossible to mention exhaustively the names of
everybody who to some extent influenced the development.

Version 8.6 is the first release of COQ developed on a time-based development cycle. Its development
spanned 10 months from the release of COQ 8.5 and was based on a public roadmap. To date, it contains
more external contributions than any previous C0OQ system. Code reviews were systematically done
before integration of new features, with an important focus given to compatibility and performance
issues, resulting in a hopefully more robust release than CoQ 8.5.

Coq Enhancement Proposals (CEPs for short) were introduced by Enrico Tassi to provide more
visibility and a discussion period on new features, they are publicly available https://github.
com/coqg/ceps.

Started during this period, an effort is led by Yves Bertot and Maxime Dénes to put together a COQ
consortium.

Paris, November 2016,
Matthieu Sozeau and the CoQ development team

Credits: version 8.7

CoQ version 8.7 contains the result of refinements, stabilization of features and cleanups of the internals
of the system along with a few new features. The main user visible changes are:

» New tactics: variants of tactics supporting existential variables eassert, eenough, etc... by
Hugo Herbelin. Tactics extensionality in Hand inversion_sigma by Jason Gross,
specialize with ... accepting partial bindings by Pierre Courtieu.

e Cumulative Polymorphic Inductive Types, allowing cumulativity of universes to go through ap-
plied inductive types, by Amin Timany and Matthieu Sozeau.

* Integration of the SSReflect plugin and its documentation in the reference manual, by Enrico
Tassi, Assia Mahboubi and Maxime Dénes.

* The cog_makefile tool was completely redesigned to improve its maintainability and the ex-
tensibility of generated Makefiles, and to make _CogProject files more palatable to IDEs by
Enrico Tassi.

CoQ 8.7 involved a large amount of work on cleaning and speeding up the code base, notably
the work of Pierre-Marie Pédrot on making the tactic-level system insensitive to existential vari-
able expansion, providing a safer API to plugin writers and making the code more robust. The
dev/doc/changes.txt file documents the numerous changes to the implementation and improve-
ments of interfaces. An effort to provide an official, streamlined API to plugin writers is in progress,
thanks to the work of Matej Kosik.

Version 8.7 also comes with a bunch of smaller-scale changes and improvements regarding the dif-
ferent components of the system. We shall only list a few of them.

The efficiency of the whole system has been significantly improved thanks to contributions from
Pierre-Marie Pédrot, Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason
Gross and Paul Steckler.
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Maxime Dénes and Enrico Tassi for Windows, and Maxime Dénes for MacOS X. Packages are regularly
built on the Travis continuous integration server.

The contributors for this version are Abhishek Anand, C.J. Bell, Yves Bertot, Frédéric Besson, Tej
Chajed, Pierre Courtieu, Maxime Dénes, Julien Forest, Gaétan Gilbert, Jason Gross, Hugo Herbelin,
Emilio Jesds Gallego Arias, Ralf Jung, Matej Ko$ik, Xavier Leroy, Pierre Letouzey, Assia Mahboubi,
Cyprien Mangin, Erik Martin-Dorel, Olivier Marty, Guillaume Melquiond, Sam Pablo Kuper, Ben-
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The development process was coordinated by Matthieu Sozeau with the help of Maxime Dénes, who
was also in charge of the release process. Théo Zimmermann is the maintainer of this release.

Many power users helped to improve the design of the new features via the bug tracker, the pull
request system, the CoQ development mailing list or the cog-club mailing list. Special thanks to the
users who contributed patches and intensive brain-storming and code reviews, starting with Jason Gross,
Ralf Jung, Robbert Krebbers, Xavier Leroy, Clément Pit—Claudel and Gabriel Scherer. It would how-
ever be impossible to mention exhaustively the names of everybody who to some extent influenced the
development.

Version 8.7 is the second release of COQ developed on a time-based development cycle. Its devel-
opment spanned 9 months from the release of COQ 8.6 and was based on a public road-map. It attracted
many external contributions. Code reviews and continuous integration testing were systematically used
before integration of new features, with an important focus given to compatibility and performance
issues, resulting in a hopefully more robust release than CoQ 8.6 while maintaining compatibility.

Coq Enhancement Proposals (CEPs for short) and open pull-requests discussions were used to dis-
cuss publicly the new features.

The COQ consortium, an organization directed towards users and supporters of the system, is now
upcoming and will rely on Inria’s newly created Foundation.

Paris, August 2017,
Matthieu Sozeau and the COQ development team
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Chapter 1

The GALLINA specification language

This chapter describes GALLINA, the specification language of C0Q. It allows developing mathematical
theories and proofs of specifications of programs. The theories are built from axioms, hypotheses,
parameters, lemmas, theorems and definitions of constants, functions, predicates and sets. The syntax of
logical objects involved in theories is described in Section 1.2. The language of commands, called The
Vernacular is described in section 1.3.

In CoQ, logical objects are typed to ensure their logical correctness. The rules implemented by the
typing algorithm are described in Chapter 4.

About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in typewriter
font. In addition, there are special notations for regular expressions.

An expression enclosed in square brackets [... ] means at most one occurrence of this expression
(this corresponds to an optional component).

The notation “entry sep ... sep entry” stands for a non empty sequence of expressions parsed by
entry and separated by the literal “sep”!.

Similarly, the notation “entry ... entry” stands for a non empty sequence of expressions parsed by
the “entry” entry, without any separator between.

Finally, the notation “[entry sep ... sep entry]’ stands for a possibly empty sequence of expres-
sions parsed by the “entry” entry, separated by the literal “sep”.

1.1 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they
separate tokens.

Comments Comments in COQ are enclosed between (* and =), and can be nested. They can contain
any character. However, string literals must be correctly closed. Comments are treated as blanks.

Identifiers and access identifiers Identifiers, written ident, are sequences of letters, digits, _ and ',
that do not start with a digit or ’ . That is, they are recognized by the following lexical class:

'This is similar to the expression “entry { sep entry }” in standard BNF, or “entry ( sep entry )*” in the syntax of regular
expressions.
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first_letter = a..z|A..Z|_|unicode-letter
subsequent_letter = a..z|A..Z]0..9|_]|’ |unicode-letter |unicode-id-part
ident = first_letter [subsequent_letter. .. subsequent_letter]
All characters are meaningful. In particular, identifiers are case-sensitive. The entry

unicode-letter non-exhaustively includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Geor-
gian, Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical letter-like symbols,
hyphens, non-breaking space, ... The entry unicode-id-part non-exhaustively includes symbols
for prime letters and subscripts.

Access identifiers, written access_ident, are identifiers prefixed by . (dot) without blank. They are
used in the syntax of qualified identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally
preceded by a minus sign.

digit == 0..9
num = digit...digit
integer = [—|num

Strings  Strings are delimited by " (double quote), and enclose a sequence of any characters different
from " or the sequence "" to denote the double quote character. In grammars, the entry for quoted
strings is string.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

_ as at cofix else end
exists exists2 fix for forall fun
if IF in let match mod
Prop return Set then Type using

where with

Special tokens The following sequences of characters are special tokens:

! % & && () )
* + ++ - —->
( ./ /\ T <
= > < <- <=> <
<= <> = => =D > >—>
>= 2 2= @ [ \/ ]
» { | = I } ~

Lexical ambiguities are resolved according to the “longest match” rule: when a sequence of non
alphanumerical characters can be decomposed into several different ways, then the first token is the
longest possible one (among all tokens defined at this moment), and so on.
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1.2 Terms

1.2.1 Syntax of terms

Figures 1.1 and 1.2 describe the basic syntax of the terms of the Calculus of Inductive Constructions
(also called C1cC). The formal presentation of CIC is given in Chapter 4. Extensions of this syntax are
given in chapter 2. How to customize the syntax is described in Chapter 12.

1.2.2 Types

CoqQ terms are typed. COQ types are recognized by the same syntactic class as term. We denote by type
the semantic subclass of types inside the syntactic class term.

1.2.3 Qualified identifiers and simple identifiers

Qualified identifiers (qualid) denote global constants (definitions, lemmas, theorems, remarks or facts),
global variables (parameters or axioms), inductive types or constructors of inductive types. Simple
identifiers (or shortly ident) are a syntactic subset of qualified identifiers. Identifiers may also denote
local variables, what qualified identifiers do not.

1.2.4 Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to
objects through the notation mechanism (see Chapter 12 for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see 3.1.3).

Note: negative integers are not at the same level as num, for this would make precedence unnatural.

1.2.5 Sorts
There are three sorts Set, Prop and Type.

* Prop is the universe of logical propositions. The logical propositions themselves are typing the
proofs. We denote propositions by form. This constitutes a semantic subclass of the syntactic
class term.

 Set s is the universe of program types or specifications. The specifications themselves are typing
the programs. We denote specifications by specif. This constitutes a semantic subclass of the
syntactic class term.

* Type is the type of Set and Prop

More on sorts can be found in Section 4.1.1.

1.2.6 Binders

Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented
by an identifier. If the binding variable is not used in the expression, the identifier can be replaced by the
symbol _. When the type of a bound variable cannot be synthesized by the system, it can be specified
with the notation ( ident : type ). There is also a notation for a sequence of binding variables sharing
the same type: (ident;...ident, : type ). A binder can also be any pattern prefixed by a quote, e.g.
"(x,v).
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term »= forall binders , term (1.2.8)
|  fun binders => term (1.2.7)
|  fix fix_bodies (1.2.14)
|  cofix cofix_bodies (1.2.14)
| let ident [binders] [: term] := term in term (1.2.12)
| let fix fix_body in term (1.2.14)
| let cofix cofix_body in term (1.2.14)
| let ( [name , ... , name]) [dep_ret_type] :=term in term (1.2.13,2.2.1)
| let ' pattern [in term] : = term [return_type] in term (1.2.13,2.2.1)
|  if term [dep_ret type] then term else term (1.2.13,2.2.1)
| term : term (1.2.10)
|  term <: term (1.2.10)
| term :> (24.1.1)
|  term —> term (1.2.8)
| termarg ... arg (1.2.9)
|  @qualid [term ... term] (2.7.11)
|  term % ident (12.2.2)
| match match_item , ... , match_item [return_type] with

[[1]equation | ... | equation]end (1.2.13)

|  qualid (1.2.3)
| sort (1.2.5)
|  num (1.2.4)
| _ (1.2.11)
| (term)

arg = term
| ( ident := term ) (2.7.11)

binders ::= binder ... binder

binder := name (1.2.6)
| ( name ... name : term )
| ( name [: term] := term )
| 7 pattern

name = ident
| _

qualid = ident

|  qualid access_ident

sort = Prop | Set | Type

Figure 1.1: Syntax of terms
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fix_bodies = fix_body
|  fix_body with fix_body with ... with fix_body for ident
cofix_bodies ::= cofix_body

| cofix_body with cofix_body with ... with cofix_body for ident

fix_body ::= ident binders [annotation] [: term] : = term
cofix_body ::= ident [binders] [: term] : = term

annotation = { struct ident }

match_item = term [as name] [in qualid[pattern ... pattern]]
dep_ret_type = [as name] return_type

return_type = return term

equation = mult_pattern | ... | mult_pattern => term
mult_pattern ::= pattern , ... , pattern

pattern = qualid pattern ... pattern

| @ qualid pattern ... pattern
|  pattern as ident

|  pattern % ident

|  qualid
|

|

|

num
( or_pattern , ... , or_pattern )
or_pattern 1= pattern | ... | pattern

Figure 1.2: Syntax of terms (continued)

Some constructions allow the binding of a variable to value. This is called a “let-binder”. The entry
binder of the grammar accepts either an assumption binder as defined above or a let-binder. The notation
in the latter case is ( ident :=term ). In a let-binder, only one variable can be introduced at the same
time. It is also possible to give the type of the variable as follows: (ident : term :=term ).

Lists of binder are allowed. In the case of fun and forall, it is intended that at least one
binder of the list is an assumption otherwise fun and forall gets identical. Moreover, paren-
theses can be omitted in the case of a single sequence of bindings sharing the same type (e.g.:
fun (x y z : A) => tcanbeshortenedin fun x y z : A => t).

1.2.7 Abstractions

The expression “fun ident : type => term” defines the abstraction of the variable ident, of type type,
over the term term. It denotes a function of the variable ident that evaluates to the expression term
(e.g. fun x:A => x denotes the identity function on type A). The keyword fun can be followed by
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several binders as given in Section 1.2.6. Functions over several variables are equivalent to an iteration
of one-variable functions. For instance the expression “fun ident; ... ident, : type => term’ denotes
the same function as “fun ident; : type => ... fun ident, : type => term”. If a let-binder occurs in
the list of binders, it is expanded to a let-in definition (see Section 1.2.12).

1.2.8 Products

The expression “forall ident : type, term” denotes the product of the variable ident of type type,
over the term term. As for abstractions, forall is followed by a binder list, and products over several
variables are equivalent to an iteration of one-variable products. Note that term is intended to be a type.

If the variable ident occurs in term, the product is called dependent product. The intention behind
a dependent product forall x : A, B is twofold. It denotes either the universal quantification of
the variable x of type A in the proposition B or the functional dependent product from A to B (a
construction usually written I1,. 4.5 in set theory).

Non dependent product types have a special notation: “A —> B” stands for “forall _:A4, B”.
The non dependent product is used both to denote the propositional implication and function types.

1.2.9 Applications

The expression termg term; denotes the application of termg to term;.
The expression termg term; ... term, denotes the application of the term termg to the arguments
term; ... then term,,. It is equivalentto (... ( termg term; ) ... ) term, : associativity is to the left.
The notation ( ident : = term ) for arguments is used for making explicit the value of implicit argu-
ments (see Section 2.7.11).

1.2.10 Type cast

The expression “term : type” is a type cast expression. It enforces the type of term to be type.
“term <: type” locally sets up the virtual machine for checking that term has type type.

1.2.11 Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred
by C0Q can be replaced by the symbol “_" and COQ will guess the missing piece of information.

1.2.12 Let-in definitions

let ident := term; in terms denotes the local binding of term; to the variable ident in termsy. There
is a syntactic sugar for let-in definition of functions: 1et ident binder; ... binder, := term; in terms
stands for 1let ident := fun binder; ... binder,, => term; in terms.

1.2.13 Definition by case analysis

Objects of inductive types can be destructurated by a case-analysis construction called pattern-matching
expression. A pattern-matching expression is used to analyze the structure of an inductive objects and
to apply specific treatments accordingly.

This paragraph describes the basic form of pattern-matching. See Section 2.2.1 and Chapter 17 for
the description of the general form. The basic form of pattern-matching is characterized by a single
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match_item expression, a mult_pattern restricted to a single pattern and pattern restricted to the form
qualid ident ... ident.

The expression match termg return_type with pattern; => term; | ... | pattern, => term,
end, denotes a pattern-matching over the term termg (expected to be of an inductive type I). The
terms term;. .. term,, are the branches of the pattern-matching expression. Each of pattern; has a form
qualid ident ... ident where qualid must denote a constructor. There should be exactly one branch for
every constructor of I.

The return_type expresses the type returned by the whole match expression. There are several
cases. In the non dependent case, all branches have the same type, and the return_type is the common
type of branches. In this case, return_type can usually be omitted as it can be inferred from the type of
the branches’.

In the dependent case, there are three subcases. In the first subcase, the type in each branch may
depend on the exact value being matched in the branch. In this case, the whole pattern-matching itself
depends on the term being matched. This dependency of the term being matched in the return type is

expressed with an “as ident” clause where ident is dependent in the return type. For instance, in the
following example:

Cog < Inductive bool : Type := true : bool | false : bool.
Cog < Inductive eq (A:Type) (x:A) : A —-> Prop := eq_refl : eqg A x X.
Cogq < Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
Cog < Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eg_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)

(eg_refl bool false)
end.

the branches have respective types or (eq bool true true) (eq bool true false) and
or (eq bool false true) (eq bool false false) while the whole pattern-matching
expression has type or (eq bool b true) (eq bool b false), the identifier x being used
to represent the dependency. Remark that when the term being matched is a variable, the as clause can
be omitted and the term being matched can serve itself as binding name in the return type. For instance,
the following alternative definition is accepted and has the same meaning as the previous one.

Cogq < Definition bool_case (b:bool) : or (eq bool b true) (eqg bool b false)
:= match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eg_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
(eg_refl bool false)
end.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see
Section 3.1.2), the order predicate on natural numbers or the type of lists of a given length (see Sec-
tion 17.3). In this configuration, the type of each branch can depend on the type dependencies specific
to the branch and the whole pattern-matching expression has a type determined by the specific depen-
dencies in the type of the term being matched. This dependency of the return type in the annotations of
the inductive type is expressed using a “in I _ ... _ pattern; ... pattern,,” clause, where

2Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.
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* [ is the inductive type of the term being matched;

* the _’s are matching the parameters of the inductive type: the return type is not dependent on
them.

* the pattern;’s are matching the annotations of the inductive type: the return type is dependent on
them

* in the basic case which we describe below, each pattern; is a name ident;; see 17.3.2 for the
general case

For instance, in the following example:

Cog < Definition eg _sym (A:Type) (x y:A) (H:eg A x y) : eg Ay x :=
match H in eq _ _ z return eqg A z x with
| eqg_refl _ _ => eq_refl A x
end.

the type of the branch has type eqg A x x because the third argument of eq is x in the type of the
pattern refl_equal. On the contrary, the type of the whole pattern-matching expression has type
eq A vy x because the third argument of eq is y in the type of H. This dependency of the case analysis
in the third argument of eq is expressed by the identifier z in the return type.

Finally, the third subcase is a combination of the first and second subcase. In particular, it only
applies to pattern-matching on terms in a type with annotations. For this third subcase, both the clauses
as and in are available.

There are specific notations for case analysis on types with one or two constructors: “if
then ... else ...” and “let (... , ..., ...) := ... 1in...” (see Sections 2.2.2
and 2.2.3).

1.2.14 Recursive functions

The expression “fix ident; binder, : type; := term; with ... with ident, binder, : type, :=
term,, for ident;” denotes the i"'component of a block of functions defined by mutual well-founded
recursion. It is the local counterpart of the Fixpoint command. See Section 1.3.4 for more details.
When n = 1, the “for ident;” clause is omitted.

The expression “cofix ident; binder; : type; with ... with ident, binder, : type, for
ident;” denotes the i"component of a block of terms defined by a mutual guarded co-recursion. It is the
local counterpart of the CoFixpoint command. See Section 1.3.4 for more details. When n = 1, the
“for ident;” clause is omitted.

The association of a single fixpoint and a local definition have a special syntax: “let
fix f... :=... in...” stands for “let f := fix f ... :=... in ...”. The same applies for
co-fixpoints.

1.3 The Vernacular

Figure 1.3 describes The Vernacular which is the language of commands of GALLINA. A sentence of
the vernacular language, like in many natural languages, begins with a capital letter and ends with a dot.

The different kinds of command are described hereafter. They all suppose that the terms occurring
in the sentences are well-typed.

Coq Reference Manual, V8.7.0, October 18, 2017



1.3 The Vernacular

49

sentence

assumption

assumption_keyword

assums

definition

inductive

ind_body

fixpoint

assertion

assertion_keyword

proof

assumption
definition
inductive
fixpoint
assertion proof

assumption_keyword assums .

Axiom|Conjecture
Parameter | Parameters
Variable |Variables
Hypothesis | Hypotheses

ident ... ident : term

( ident ... ident : term ) ( ident ... ident : term )
[Local]Definition ident [binders] [: term] := term .

Let ident [binders] [: term] : = term .

Inductive ind_body with ... with ind_body .
CoInductive ind_body with ... with ind_body .

ident [binders] [: term] :=

[[ | ]ident [binders] [: term] | ... | ident [binders] [: term]]
Fixpoint fix_body with ... with fix_body .
CoFixpoint cofix_body with ... with cofix_body .

assertion_keyword ident [binders] : term .

Theorem | Lemma

Remark | Fact
Corollary|Proposition
Definition|Example

Proof . ... Qed.
Proof . ... Defined.
Proof . ... Admitted .

Figure 1.3: Syntax of sentences

1.3.1 Assumptions

Assumptions extend the environment with axioms, parameters, hypotheses or variables. An assumption
binds an ident to a type. Itis accepted by C0OQ if and only if this type is a correct type in the environment
preexisting the declaration and if ident was not previously defined in the same module. This type is
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considered to be the type (or specification, or statement) assumed by ident and we say that ident has
type type.
Axiom ident :term

This command links term to the name ident as its specification in the global context. The fact asserted
by term is thus assumed as a postulate.

Error messages:

1. ident already exists

Variants:

1. Parameter ident :term.
Is equivalent to Axiom ident : term

2. Parameter ident; ... Iident, :term.
Adds n parameters with specification term

3. Parameter (identy; ... identyy, :termy ) ... (identy;...ident,y, : term, ) .
Adds n blocks of parameters with different specifications.

4. Local Axiom ident : term.
Such axioms are never made accessible through their unqualified name by Import and its
variants (see 2.5.8). You have to explicitly give their fully qualified name to refer to them.

5. Conjecture ident :term.
Is equivalent to Axiom ident : term.

Remark: It is possible to replace Parameter by Parameters.

Variable ident :term.

This command links term to the name ident in the context of the current section (see Section 2.4 for a
description of the section mechanism). When the current section is closed, name ident will be unknown
and every object using this variable will be explicitly parametrized (the variable is discharged). Using
the Variable command out of any section is equivalent to using Local Parameter.

Error messages:

1. ident already exists

Variants:

1. Vvariable ident;y ... ident, :term.
Links term to names ident; ... ident,,.

2. Variable (identyy ... identyy, :termy ) ... (ident,; ...ident,y, :term, ).
Adds n blocks of variables with different specifications.

3. Hypothesis ident :term.
Hypothesis is a synonymous of Variable
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Remark: It is possible to replace Variable by Variables and Hypothesis by Hypotheses.

It is advised to use the keywords Axiom and Hypothesis for logical postulates (i.e. when the
assertion term is of sort Prop), and to use the keywords Parameter and Variable in other cases
(corresponding to the declaration of an abstract mathematical entity).

1.3.2 Definitions

Definitions extend the environment with associations of names to terms. A definition can be seen as a
way to give a meaning to a name or as a way to abbreviate a term. In any case, the name can later be
replaced at any time by its definition.

The operation of unfolding a name into its definition is called d-conversion (see Section 4.3). A
definition is accepted by the system if and only if the defined term is well-typed in the current context of
the definition and if the name is not already used. The name defined by the definition is called a constant
and the term it refers to is its body. A definition has a type which is the type of its body.

A formal presentation of constants and environments is given in Section 4.2.

Definition ident := term.

This command binds term to the name ident in the environment, provided that term is well-typed.

Error messages:

1. ident already exists

Variants:

1. Definition ident : termi := terms .
It checks that the type of terms is definitionally equal to term;, and registers ident as being of
type termy, and bound to value terms.

2. Definition ident binder; ... binder, : termq := terms .
This is equivalent to
Definition 1ident : forallbinder; ... binder,,, term; := fun binder;

binder,, => termo .

3. Local Definition ident := term.
Such definitions are never made accessible through their unqualified name by Import and its
variants (see 2.5.8). You have to explicitly give their fully qualified name to refer to them.

4. Example ident := term.
Example ident : term; := terms .
Example ident binder; ... binder,, : term; := terms.
These are synonyms of the Definition forms.

Error messages:

1. The term term has type type while it is expected to have type type

See also: Sections 6.10.1, 6.10.2, 8.7.5.
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Let ident := term.

This command binds the value term to the name ident in the environment of the current section. The
name ident disappears when the current section is eventually closed, and, all persistent objects (such
as theorems) defined within the section and depending on ident are prefixed by the let-in definition
let ident := term in. Using the Let command out of any section is equivalent to using Local
Definition.

Error messages:

1. ident already exists

Variants:
1. Let ident : termy := termso.
2. Let Fixpoint ident fix_body with ... with fix_body
3. Let CoFixpoint ident cofix_body with ... with cofix_body

See also: Sections 2.4 (section mechanism), 6.10.1, 6.10.2 (opaque/transparent constants), 8.7.5 (tactic
unfold).

1.3.3 Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric in-
ductive types, mutually inductive types. We explain also co-inductive types.

Simple inductive types

The definition of a simple inductive type has the following form:

Inductive ident : sort :=
ident; : type;

| ...

| ident, : typey
The name ident is the name of the inductively defined type and sort is the universes where it lives.
The names identq, ..., ident,, are the names of its constructors and types, ..., type, their respective
types. The types of the constructors have to satisfy a positivity condition (see Section 4.5.2) for ident.
This condition ensures the soundness of the inductive definition. If this is the case, the names ident,
identy, ..., ident, are added to the environment with their respective types. Accordingly to the uni-
verse where the inductive type lives (e.g. its type sort), COQ provides a number of destructors for
ident. Destructors are named ident_ind, ident_rec or ident_rect which respectively correspond
to elimination principles on Prop, Set and Type. The type of the destructors expresses structural
induction/recursion principles over objects of ident. We give below two examples of the use of the

Inductive definitions.
The set of natural numbers is defined as:

Cog < Inductive nat : Set :=
| O : nat
| S : nat —-> nat.
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nat is defined

nat_rect 1is defined
nat_ind is defined
nat_rec 1is defined

The type nat is defined as the least Set containing O and closed by the S constructor. The names
nat, O and S are added to the environment.

Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec
and nat_rect. The type of nat_indis:

Cog < Check nat_ind.
nat_ind
forall P : nat -> Prop,
P O —> (forall n : nat, P n —> P (S n)) —-> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order
form of Peano’s induction principle. It allows proving some universal property of natural numbers
(forall n:nat, P n)by induction on n.

The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set)
and (P:nat->Type) respectively . They correspond to primitive induction principles (allowing de-
pendent types) respectively over sorts Set and Type. The constant ident_ind is always provided,
whereas ident_rec and ident_rect can be impossible to derive (for example, when ident is a propo-
sition).

Variants:

1. Cogq < Inductive nat : Set := O | S (_:nat).
In the case where inductive types have no annotations (next section gives an example of such
annotations), a constructor can be defined by only giving the type of its arguments.

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple
sort, but what is called an arity, which is a type whose conclusion is a sort.
As an example of annotated inductive types, let us define the even predicate:

Cog < Inductive even : nat -> Prop :=

| even_0 : even O

| even_SS : forall n:nat, even n —> even (S (S n)).
even 1s defined
even_ind is defined

The type nat->Prop means that even is a unary predicate (inductively defined) over natural
numbers. The type of its two constructors are the defining clauses of the predicate even. The type of
even_indis:

Cog < Check even_ind.
even_ind
forall P : nat -> Prop,
P O —>
(forall n : nat, even n -> P n —> P (S (S n))) —->
forall n : nat, even n —> P n
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From a mathematical point of view it asserts that the natural numbers satisfying the predicate even
are exactly in the smallest set of naturals satisfying the clauses even_0 or even_SS. This is why,
when we want to prove any predicate P over elements of even, it is enough to prove it for O and to
prove that if any natural number n satisfies P its double successor (S (S n) ) satisfies also P. This is
indeed analogous to the structural induction principle we got for nat.

Error messages:
1. Non strictly positive occurrence of ident in type

2. The conclusion of type is not valid; it must be built from ident

Parametrized inductive types

In the previous example, each constructor introduces a different instance of the predicate even. In some
cases, all the constructors introduces the same generic instance of the inductive definition, in which case,
instead of an annotation, we use a context of parameters which are binders shared by all the constructors
of the definition.

The general scheme is:

Inductive ident binder;...binder;, : term := identy: termq | ... | ident,,: term,, .

Parameters differ from inductive type annotations in the fact that the conclusion of each type of con-

structor term; invoke the inductive type with the same values of parameters as its specification.
A typical example is the definition of polymorphic lists:

Cog < Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A —-> list A.

Note that in the type of nil and cons, we write (1ist A) and notjust 1ist.
The constructors nil and cons will have respectively types:

Cog < Check nil.
nil

forall A : Set, 1list A
Cog < Check cons.

cons
forall A : Set, A —> list A —> list A

Types of destructors are also quantified with (A:Set).

Variants:
1. Cog < Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).
This is an alternative definition of lists where we specify the arguments of the constructors rather
than their full type.
2.
Cog < Variant sum (A B:Set) : Set := left : A -> sum A B | right : B ->

The Variant keyword is identical to the Inductive keyword, except that it disallows recur-
sive definition of types (in particular lists cannot be defined with the Variant keyword). No in-
duction scheme is generated for this variant, unless the option Nonrecursive Elimination
Schemes is set (see 13.1.1).
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Error messages:

1. The numth argument of ident must be ident’ in type

New from C0Q V8.1 The condition on parameters for inductive definitions has been relaxed since
CoQ V8.1. It is now possible in the type of a constructor, to invoke recursively the inductive definition

on an argument which is not the parameter itself.
One can define :

Cog < Inductive list2 (A:Set) : Set :=
| nil2 : 1list2 A
| cons2 : A —> list2 (A*A) —> list2 A.
list2 is defined
list2_rect is defined
list2_ind is defined
list2 rec is defined

that can also be written by specifying only the type of the arguments:
Cog < Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:1list2 (AxA)).
But the following definition will give an error:

Cogq < Fail Inductive listw (A:Set) : Set :=
| nilw : listw (A%*A)
| consw : A —> listw (AxA) —> listw (A*A).
The command has indeed failed with message:
Last occurrence of "listw" must have "A" as 1st argument in
"listw (A x A)S$type".

Because the conclusion of the type of constructors should be 1istw A in both cases.

A parametrized inductive definition can be defined using annotations instead of parameters but it will
sometimes give a different (bigger) sort for the inductive definition and will produce a less convenient
rule for case elimination.

See also: Sections 4.5 and 8.5.2.

Mutually defined inductive types

The definition of a block of mutually inductive types has the form:

Inductive ident; : type; :=
ident] . typel
...
| ident} : type;,
with
with ident,, : type, :=
ident”  :  typeT
...
| identy’  : typep’ .
It has the same semantics as the above Inductive definition for each identy, ..., ident,,. All names
identy, ..., ident,, and ident%, e, ident;”m are simultaneously added to the environment. Then well-
typing of constructors can be checked. Each one of the identq, ..., ident,, can be used on its own.
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It is also possible to parametrize these inductive definitions. However, parameters correspond to a
local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types The extended syntax is:

Inductive ident; params : type; :=

ident} : typel
| ...
| 1'd€nt,111 : type}11
with

with ident,, params : type,, :=
ident*  :  typel"

| ...

| ident;!  : typey .

Example: The typical example of a mutual inductive data type is the one for trees and forests. We
assume given two types A and B as variables. It can be declared the following way.

Cogq < Variables A B : Set.

Cog < Inductive tree : Set :=
node : A -> forest —-> tree
with forest : Set :=
| leaf : B —> forest
| cons : tree —> forest —-> forest.

This declaration generates automatically six induction principles. They are respectively called
tree_rec, tree_ind, tree_rect, forest_rec, forest_ind, forest_rect. These ones
are not the most general ones but are just the induction principles corresponding to each inductive part
seen as a single inductive definition.

To illustrate this point on our example, we give the types of tree_rec and forest_rec.

Cog < Check tree_rec.
tree_rec
forall P : tree -> Set,
(forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t

Cog < Check forest_rec.
forest_rec
forall P : forest —> Set,
(forall b : B, P (leaf b)) —>
(forall (t : tree) (fO0 : forest), P f0 -> P (cons t f0)) —>
forall f1 : forest, P fl

Assume we want to parametrize our mutual inductive definitions with the two type variables A and
B, the declaration should be done the following way:

Cog < Inductive tree (A B:Set) : Set :=
node : A -> forest A B -> tree A B
with forest (A B:Set) : Set :=

| leaf : B —> forest A B
| cons : tree A B —> forest A B -> forest A B.
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Assume we define an inductive definition inside a section. When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive
definition.

See also: Section 2.4.

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other
words, such objects contain only a finite number of constructors. Co-inductive types arise from relaxing
this condition, and admitting types whose objects contain an infinity of constructors. Infinite objects are
introduced by a non-ending (but effective) process of construction, defined in terms of the constructors

of the type.
An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called
streams. It can be introduced in COQ using the CoInduct ive command:

Cog < CoInductive Stream : Set :=
Seq : nat —-> Stream —-> Stream.
Stream is defined

The syntax of this command is the same as the command Inductive (see Section 1.3.3). Notice
that no principle of induction is derived from the definition of a co-inductive type, since such principles
only make sense for inductive ones. For co-inductive ones, the only elimination principle is case anal-
ysis. For example, the usual destructors on streams hd: Stream->nat and t1:Str->Str can be
defined as follows:

Cog < Definition hd (x:Stream) := let (a,s) := x in a.
hd is defined

Cogq < Definition tl (x:Stream) := let (a,s) := x in s.
tl is defined

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also al-
lowed. An example of a co-inductive predicate is the extensional equality on streams:

Cog < CoInductive EgSt : Stream -> Stream -> Prop :=
eqgst
forall sl s2:Stream,
hd s1 = hd s2 -> EgSt (tl sl) (tl s2) -> EgSt sl s2.
EgSt is defined

In order to prove the extensionally equality of two streams s; and s we have to construct an infinite
proof of equality, that is, an infinite object of type (EqgSt s1 s2). We will see how to introduce infinite
objects in Section 1.3.4.

1.3.4 Definition of recursive functions
Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See Sec-
tion 2.3 for more advanced constructions. The command:

Fixpoint ident params {struct identy } : typeg := termg
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allows defining functions by pattern-matching over inductive objects using a fixed point construction.
The meaning of this declaration is to define ident a recursive function with arguments specified by the
binders in params such that ident applied to arguments corresponding to these binders has type typeg,
and is equivalent to the expression termg. The type of the ident is consequently forall params ,
typeg and the value is equivalent to fun params => termg.

To be accepted, a Fixpoint definition has to satisfy some syntactical constraints on a special
argument called the decreasing argument. They are needed to ensure that the Fixpoint definition
always terminates. The point of the { st ruct ident} annotation is to let the user tell the system which
argument decreases along the recursive calls. For instance, one can define the addition function as :

Cog < Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O =>m
| S p =>S (add p m)
end.

add is defined
add is recursively defined (decreasing on 1lst argument)

The {struct ident} annotation may be left implicit, in this case the system try successively
arguments from left to right until it finds one that satisfies the decreasing condition. Note that some
fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the
reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument
is not the desired one. Writing explicit annotations can also speed up type-checking of large mutual
fixpoints.

The mat ch operator matches a value (here n) with the various constructors of its (inductive) type.
The remaining arguments give the respective values to be returned, as functions of the parameters of
the corresponding constructor. Thus here when n equals O we return m, and when n equals (S p) we
return (S (add p m)).

The match operator is formally described in detail in Section 4.5.3. The system recognizes that
in the inductive call (add p m) the first argument actually decreases because it is a pattern variable
coming frommatch n with.

Example: The following definition is not correct and generates an error message:

Cog < Fail Fixpoint wrongplus (n m:nat) {struct n} : nat :=
match m with
| O =>n
| S p =>S (wrongplus n p)
end.
The command has indeed failed with message:
Recursive definition of wrongplus is ill-formed.
In environment

wrongplus : nat -> nat —-> nat
n : nat
m : nat
p : nat

Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n".
Recursive definition 1is:
"fun n m : nat => match m with
| 0O => n
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| S p =>8S (wrongplus n p)
end"”.

because the declared decreasing argument n actually does not decrease in the recursive call. The
function computing the addition over the second argument should rather be written:

Cog < Fixpoint plus (n m:nat) {struct m} : nat :=
match m with
| O =>n
| S p =>S (plus n p)
end.

The ordinary match operation on natural numbers can be mimicked in the following way.

Cog < Fixpoint nat_match
(C:Set) (f£f0:C) (fS:nat —> C -> C) (n:nat) {struct n} : C :=
match n with

| O => f0
| S p => £fS p (nat_match C f0 £S p)
end.

The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper
subterm and we can directly write the function mod2 which gives the remainder modulo 2 of a natural
number.

Cog < Fixpoint mod2 (n:nat) : nat :=

match n with

| O => 0

| S p => match p with
| O =>S 0
| S g => mod2 g
end

end.

In order to keep the strong normalization property, the fixed point reduction will only be performed when
the argument in position of the decreasing argument (which type should be in an inductive definition)
starts with a constructor.

The Fixpoint construction enjoys also the with extension to define functions over mutually
defined inductive types or more generally any mutually recursive definitions.

Variants:

1. Fixpoint ident; params; : type; := term;

with...
with ident,, params,, : type,, := termy,
Allows to define simultaneously ident, ..., ident,,.

Example: The size of trees and forests can be defined the following way:

Cog < Fixpoint tree_size (t:tree) : nat :=
match t with
| node a £ => S (forest_size f)
end
with forest_size (f:forest) : nat :=
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match f with

| leaf b => 1

| cons t f' => (tree_size t + forest_size f')
end.

A generic command Scheme is useful to build automatically various mutual induction principles. It is
described in Section 13.1.

Definitions of recursive objects in co-inductive types

The command:
CoFixpoint ident : typey := termyg

introduces a method for constructing an infinite object of a coinductive type. For example, the stream
containing all natural numbers can be introduced applying the following method to the number O (see
Section 1.3.3 for the definition of St ream, hd and t1):

Cog < CoFixpoint from (n:nat) : Stream := Seqg n (from (S n)).
from is defined
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be
admissible, a method of construction must provide at least one extra constructor of the infinite object
for each iteration. A syntactical guard condition is imposed on co-recursive definitions in order to
ensure this: each recursive call in the definition must be protected by at least one constructor, and only
by constructors. That is the case in the former definition, where the single recursive call of from is
guarded by an application of Seq. On the contrary, the following recursive function does not satisfy the
guard condition:

Cogq < Fail CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
if p (hd s) then Seqg (hd s) (filter p (tl s)) else filter p (tl s).
The command has indeed failed with message:
Recursive definition of filter is ill-formed.
In environment

filter : (nat -> bool) —-> Stream -> Stream
p : nat —-> bool
s : Stream

Unguarded recursive call in "filter p (tl s)".
Recursive definition 1is:
"fun (p : nat -> bool) (s : Stream) =>
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl1 s)".

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it
occurs at the head of an application which is the argument of a case analysis expression. In any other
context, it is considered as a canonical expression which is completely evaluated. We can test this using
the command Eval, which computes the normal forms of a term:

Cog < Eval compute in (from 0).
= (cofix from (n : nat) : Stream := Seqg n (from (S n))) O
Stream

Cog < Eval compute in (hd (from 0)).
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: nat

Cog < Eval compute in (tl (from 0)).

= (cofix from (n : nat) : Stream := Seq n (from (S n))) 1
Stream
Variants:
1. CoFixpoint ident; params :type; := term;
As for most constructions, arguments of co-fixpoints expressions can be introduced before the : =
sign.

2. CoFixpoint ident; : type; := term;
with

with ident,, : type,, := term,,
Asinthe Fixpoint command (see Section 1.3.4), it is possible to introduce a block of mutually
dependent methods.

1.3.5 Assertions and proofs

An assertion states a proposition (or a type) of which the proof (or an inhabitant of the type) is in-
teractively built using tactics. The interactive proof mode is described in Chapter 7 and the tactics in
Chapter 8. The basic assertion command is:

Theorem ident [binders] : type.

After the statement is asserted, COQ needs a proof. Once a proof of type under the assumptions repre-
sented by binders is given and validated, the proof is generalized into a proof of forall [binders],
type and the theorem is bound to the name ident in the environment.

Error messages:
1. The term form has type ... which should be Set, Prop or Type

2. ident already exists

The name you provided is already defined. You have then to choose another name.

Variants:
1. Lemma ident [binders] : type.
Remark ident [binders] : type.
Fact ident [binders] : type.
Corollary ident [binders] : type.
Proposition ident [binders] : type.

These commands are synonyms of Theorem ident [binders] : type.
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2. Theorem ident [binders]: type with ... with ident [binders]: type.

This command is useful for theorems that are proved by simultaneous induction over a mutually
inductive assumption, or that assert mutually dependent statements in some mutual co-inductive
type. Itis equivalent to Fixpoint or CoFixpoint (see Section 1.3.4) but using tactics to build
the proof of the statements (or the body of the specification, depending on the point of view). The
inductive or co-inductive types on which the induction or coinduction has to be done is assumed
to be non ambiguous and is guessed by the system.

Like in a Fixpoint or CoFixpoint definition, the induction hypotheses have to be used
on structurally smaller arguments (for a Fixpoint) or be guarded by a constructor (for a
CoFixpoint). The verification that recursive proof arguments are correct is done only at the
time of registering the lemma in the environment. To know if the use of induction hypotheses is
correct at some time of the interactive development of a proof, use the command Guarded (see
Section 7.3.2).

The command can be used also with Lemma, Remark, etc. instead of Theorem.

3. Definition ident [binders] : type.

This allows defining a term of type type using the proof editing mode. It behaves as Theorem
but is intended to be used in conjunction with Defined (see 1) in order to define a constant of
which the computational behavior is relevant.

The command can be used also with Example instead of Definition.

See also: Sections 6.10.1 and 6.10.2 (Opagque and Transparent) and 8.7.5 (tactic unfold).

4. Let ident [binders] : type.
Like Definition ident [binders] : type. except that the definition is turned into a let-in
definition generalized over the declarations depending on it after closing the current section.

5. Fixpoint ident binders [annotation] [: term] [:= term] with ... with ident
binders [annotation] [: term] [:= term].

This generalizes the syntax of Fixpoint so that one or more bodies can be defined interactively
using the proof editing mode (when a body is omitted, its type is mandatory in the syntax). When
the block of proofs is completed, it is intended to be ended by Defined.

6. CoFixpoint ident [binders] [: term] [:= term] with ... with ident [binders]
[: term] [:= term].

This generalizes the syntax of CoFixpoint so that one or more bodies can be defined interac-
tively using the proof editing mode.
Proof. ... Qed.

A proof starts by the keyword Proof. Then COQ enters the proof editing mode until the proof is
completed. The proof editing mode essentially contains tactics that are described in chapter 8. Besides
tactics, there are commands to manage the proof editing mode. They are described in Chapter 7. When
the proof is completed it should be validated and put in the environment using the keyword Qed.

Error message:
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1. ident already exists

Remarks:
1. Several statements can be simultaneously asserted.

2. Not only other assertions but any vernacular command can be given while in the process of proving
a given assertion. In this case, the command is understood as if it would have been given before
the statements still to be proved.

3. Proof is recommended but can currently be omitted. On the opposite side, Qed (or Defined,
see below) is mandatory to validate a proof.

4. Proofs ended by Qed are declared opaque. Their content cannot be unfolded (see 8.7), thus
realizing some form of proof-irrelevance. To be able to unfold a proof, the proof should be ended
by Defined (see below).

Variants:
1. Proof. ... Defined.
Same as Proof. ... Qed. but the proof is then declared transparent, which means that its

content can be explicitly used for type-checking and that it can be unfolded in conversion tactics
(see 8.7, 6.10.1, 6.10.2).

2. Proof. ... Admitted.
Turns the current asserted statement into an axiom and exits the proof mode.
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Chapter 2

Extensions of GALLINA

GALLINA is the kernel language of COQ. We describe here extensions of the Gallina’s syntax.

2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming
languages. Its syntax is described on Figure 2.1. In fact, the Record macro is more general than
the usual record types, since it allows also for “manifest” expressions. In this sense, the Record
construction allows defining “signatures”.

sentence ++= record

record ::=  record_keyword ident [binders] [: sort] :=
[ident] { [field ; ... ; field] } .

record_keyword Record | Inductive | CoInductive

field ::= name [binders]: type [where notation]
| name [binders] [: type] := term

Figure 2.1: Syntax for the definition of Record

In the expression

Record ident params : sort := identy ({
identy binders; : term; ; ... ;
ident,, binders,, : term, }.

the identifier ident is the name of the defined record and sort is its type. The identifier ident is the name
of its constructor. If identy is omitted, the default name Build_ident is used. If sort is omitted, the
default sort is Type. The identifiers ident, ..., ident,, are the names of fields and forall bindersy,
termy, ..., forall binders,, term, their respective types. Remark that the type of ident; may
depend on the previous ident; (for j < %). Thus the order of the fields is important. Finally, params are
the parameters of the record.
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term ++= {| [field_def ; ... ; field_def] |}

field_def ::= name [binders] := term

Figure 2.2: Syntax for constructing elements of a Record using named fields

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, Record
ident [ params ] : sort := { ident; : type; ; identy := termsy ; idents : types } in which case the
correctness of types may rely on the instance terms of idents and terms in turn may depend on ident; .

Example: The set of rational numbers may be defined as:

Cog < Record Rat : Set := mkRat
{sign : bool;
top : nat;

bottom : nat;

Rat_bottom_cond : 0 <> bottom;

Rat_irred_cond

forall x y z:nat, (x = y) = top /\ (x % z) = bottom -> x = 1}.

Rat 1is defined
sign is defined
top is defined
bottom is defined
Rat_bottom _cond is defined
Rat_irred cond 1is defined

Remark here that the field Rat_bottom_cond depends on the field bottom and
Rat_irred_cond depends on both top and bottom.

Let us now see the work done by the Record macro. First the macro generates a variant type
definition with just one constructor:

Variant ident params : Ssort :=
identy (ident; : termy) ... (ident, : termy,) .

To build an object of type ident, one should provide the constructor identy with n terms filling the fields
of the record.
As an example, let us define the rational 1/2:

Cog < Theorem one_two_irred
forall x y z:nat, x * vy =1 /\ x  z =2 —> x = 1.
Cog < Admitted.

Cogq < Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
half is defined

Cog < Check half.
half
: Rat

Alternatively, the following syntax allows creating objects by using named fields, as shown on Fig-
ure 2.2. The fields do not have to be in any particular order, nor do they have to be all present if the
missing ones can be inferred or prompted for (see Section 24).
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Cogq < Definition half' :=

{| sign := true;
Rat_bottom_cond := O_S 1;
Rat_irred_cond := one_two_irred |}.

half' is defined

This syntax can be disabled globally for printing by
Unset Printing Records.
For a given type, one can override this using either
Add Printing Record ident.
to get record syntax or
Add Printing Constructor ident.

to get constructor syntax.
This syntax can also be used for pattern matching.

Cog < Eval compute in (
match half with
| {|] sign := true; top :=n |} =>n
| _ => 0
end) .

nat

The macro generates also, when it is possible, the projection functions for destructuring an object
of type ident. These projection functions are given the names of the corresponding fields. If a field is
named “_" then no projection is built for it. In our example:

Cog < Eval compute in top half.
=1
: nat

Cogq < Eval compute in bottom half.
=2
: nat

Cogq < Eval compute in Rat_bottom_cond half.
= 0.5 1
0 <> bottom half

An alternative syntax for projections based on a dot notation is available:
Cog < Eval compute in half. (top).

=1

: nat

It can be activated for printing with the command

Set Printing Projections.
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term ++= term . ( qualid )
| term . ( qualid arg ... arg)
|  term . ( @qualid term ... term )

Figure 2.3: Syntax for Record projections

Cog < Set Printing Projections.

Cog < Check top half.
half. (top)
: nat

The corresponding grammar rules are given in Figure 2.3. When qualid denotes a projection,
the syntax term . (qualid) is equivalent to qualid term, the syntax term . (qualid arg, ... arg,) to
qualid argy ... arg, term, and the syntax term. (Qqualid term; ... termy) to @qualid term; ...
term,, term. In each case, term is the object projected and the other arguments are the parameters of the
inductive type.

Remarks:

1. Records defined with the Record keyword are not allowed to be recursive (references to the
record’s name in the type of its field raises an error). To define recursive records, one can use the
Inductive and CoInductive keywords, resulting in an inductive or co-inductive record. A
caveat, however, is that records cannot appear in mutually inductive (or co-inductive) definitions.

2. Induction schemes are automatically generated for inductive records. Automatic generation of
induction schemes for non-recursive records defined with the Record keyword can be activated
with the Nonrecursive Elimination Schemes option (see 13.1.1).

3. Structure is a synonym of the keyword Record.

Warnings:

1. ident; cannot be defined.
It can happen that the definition of a projection is impossible. This message is followed by an
explanation of this impossibility. There may be three reasons:
(a) The name ident; already exists in the environment (see Section 1.3.1).
(b) The body of ident; uses an incorrect elimination for ident (see Sections 1.3.4 and 4.5.3).

(c) The type of the projections ident; depends on previous projections which themselves could
not be defined.

Error messages:

1. Records declared with the keyword Record or Structure cannot be
recursive.

The record name ident appears in the type of its fields, but uses the keyword Record. Use the
keyword Inductive or CoInductive instead.
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2. Cannot handle mutually (co)inductive records.

Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether
with records only or mixed with standard definitions.

3. During the definition of the one-constructor inductive definition, all the errors of inductive defini-
tions, as described in Section 1.3.3, may also occur.

See also: Coercions and records in Section 18.9 of the chapter devoted to coercions.

2.1.1 Primitive Projections

The option Set Primitive Projections turns on the use of primitive projections when defining
subsequent records (even through the Inductive and CoInductive commands). Primitive pro-
jections extended the Calculus of Inductive Constructions with a new binary term constructor r. (p)
representing a primitive projection p applied to a record object r (i.e., primitive projections are always
applied). Even if the record type has parameters, these do not appear at applications of the projection,
considerably reducing the sizes of terms when manipulating parameterized records and typechecking
time. On the user level, primitive projections can be used as a replacement for the usual defined ones,
although there are a few notable differences.

The internally omitted parameters can be reconstructed at printing time even though they are ab-
sent in the actual AST manipulated by the kernel. This can be obtained by setting the Printing
Primitive Projection Parameters flag. Another compatibility printing can be activated
thanks tothe Printing Primitive Projection Compatibility option which governs the
printing of pattern-matching over primitive records.

Primitive Record Types

When the Set Primitive Projections option is on, definitions of record types change mean-
ing. When a type is declared with primitive projections, its match construct is disabled (see 2.1.1
though). To eliminate the (co-)inductive type, one must use its defined primitive projections.

There are currently two ways to introduce primitive records types:

* Through the Record command, in which case the type has to be non-recursive. The defined
type enjoys eta-conversion definitionally, that is the generalized form of surjective pairing for
records: r = Build_R (r.(p1) .. r.(pn)).Eta-conversion allows to define dependent
elimination for these types as well.

* Through the Inductive and CoInductive commands, when the body of the definition is a
record declaration of the form Build_R { p1 : t1; .. ; Ppn : tp }.Inthiscasethe
types can be recursive and eta-conversion is disallowed. These kind of record types differ from
their traditional versions in the sense that dependent elimination is not available for them and only
non-dependent case analysis can be defined.

Reduction

The basic reduction rule of a primitive projectionis p; (Build_R #; .. t,) —, t;. However, to
take the ¢ flag into account, projections can be in two states: folded or unfolded. An unfolded primitive
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projection application obeys the rule above, while the folded version delta-reduces to the unfolded ver-
sion. This allows to precisely mimic the usual unfolding rules of constants. Projections obey the usual
simpl flags of the Argument s command in particular.

There is currently no way to input unfolded primitive projections at the user-level, and one must
use the Printing Primitive Projection Compatibility to display unfolded primitive
projections as matches and distinguish them from folded ones.

Compatibility Projections and match

To ease compatibility with ordinary record types, each primitive projection is also defined as a ordinary
constant taking parameters and an object of the record type as arguments, and whose body is an applica-
tion of the unfolded primitive projection of the same name. These constants are used when elaborating
partial applications of the projection. One can distinguish them from applications of the primitive pro-
jection if the Printing Primitive Projection Parameters option is off: for a primitive
projection application, parameters are printed as underscores while for the compatibility projections they
are printed as usual.

Additionally, user-written mat ch constructs on primitive records are desugared into substitution of
the projections, they cannot be printed back as mat ch constructs.

2.2 Variants and extensions of match

2.2.1 Multiple and nested pattern-matching

The basic version of match allows pattern-matching on simple patterns. As an extension, multiple
nested patterns or disjunction of patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence of match on
simple patterns. Especially, a construction defined using the extended mat ch is generally printed under
its expanded form (see Set Printing Matching in section 2.2.4).

See also: Chapter 17.

2.2.2 Pattern-matching on boolean values: the i f expression

For inductive types with exactly two constructors and for pattern-matchings expressions which do not
depend on the arguments of the constructors, it is possible touse a if ... then ... else
notation. For instance, the definition

Cog < Definition not (b:bool) :=
match b with
| true => false
| false => true
end.
not is defined

can be alternatively written

Cogq < Definition not (b:bool) := if b then false else true.
not 1is defined
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More generally, for an inductive type with constructors C; and Cg, we have the following equivalence

match term [dep_ret_type] with

i £ term [dep_ret type] th term 1 termso = e
1 en else =
p_ret_typ ! 2 | Co _ ... _ => termy
end

Here is an example.

Cog < Check (fun x (H:{x=0}+{x<>0}) =>
match H with

| left _ => true
| right _ => false
end) .

fun (x : nat) (H : {x = 0} + {x <> 0}) => 1f H then true else false
forall x : nat, {x = 0} + {x <> 0} -> bool

Notice that the printing uses the i f syntax because sumbool is declared as such (see Section 2.2.4).

2.2.3 Irrefutable patterns: the destructuring 1et variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively
written using let ... in ... constructions. There are two variants of them.

First destructuring 1et syntax

The expression let ( identy,...,ident, ) := termg in term; performs case analysis on a termyg
which must be in an inductive type with one constructor having itself n» arguments. Variables
ident;...ident, are bound to the n arguments of the constructor in expression term;. For instance,
the definition

match H with
| pair x y => x

Cogq < Definition fst (A B:Set) (H:A % B)

end.
fst is defined
can be alternatively written
Cog < Definition fst (A B:Set) (p:A x B) = let (x, _) := p in x.
fst is defined
Notice that reduction is different from regular 1et ... in ... construction since it happens only

if termy is in constructor form. Otherwise, the reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using
match or the 1et construction (see Section 2.2.4).

If term inhabits an inductive type with one constructor C, we have an equivalence between

let (identy, ...,ident,) [dep_ret_type] := term in term’
and

match term [dep_ret type] with C ident; ... ident, => term’ end
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Second destructuring 1et syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an
arbitrary pattern instead of just a tuple for all the arguments. For example, the preceding example can
be written:

Cogq < Definition fst (A B:Set) (p:AxB) := let 'pair x _ := p in x.
fst is defined

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax

let "p := t in Db allows arbitrary patterns to do the deconstruction. For example:
Cogq < Definition deep_tuple (A:Set) (x: (A*xA)x* (A*A)) : AxA*xAxA :=
let '"((a,b), (c, d)) := x in (a,b,c,d).

deep_tuple is defined

Cog < Notation " x 'With' p " := (exist _ x p) (at level 20).
Identifier 'With' now a keyword

Coqg < Definition projl_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
let 'x With p := t in x.
projl_sig' is defined

When printing definitions which are written using this construct it takes precedence over let print-
ing directives for the datatype under consideration (see Section 2.2.4).

2.2.4 Controlling pretty-printing of mat ch expressions

The following commands give some control over the pretty-printing of mat ch expressions.

Printing nested patterns

The Calculus of Inductive Constructions knows pattern-matching only over simple patterns. It is how-
ever convenient to re-factorize nested pattern-matching into a single pattern-matching over a nested
pattern. COQ’s printer try to do such limited re-factorization.

Set Printing Matching.
This tells COQ to try to use nested patterns. This is the default behavior.
Unset Printing Matching.

This tells COQ to print only simple pattern-matching problems in the same way as the CoQ kernel
handles them.

Test Printing Matching.

This tells if the printing matching mode is on or off. The default is on.
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Printing of wildcard pattern

Some variables in a pattern may not occur in the right-hand side of the pattern-matching clause. There
are options to control the display of these variables.

Set Printing Wildcard.

The variables having no occurrences in the right-hand side of the pattern-matching clause are just printed
using the wildcard symbol “_".

Unset Printing Wildcard.

The variables, even useless, are printed using their usual name. But some non dependent variables have
no name. These ones are still printed using a *“_"".

Test Printing Wildcard.

This tells if the wildcard printing mode is on or off. The default is to print wildcard for useless variables.

Printing of the elimination predicate

In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially,
if the result type does not depend of the matched term.

Set Printing Synth.

The result type is not printed when COQ knows that it can re-synthesize it.
Unset Printing Synth.

This forces the result type to be always printed.
Test Printing Synth.

This tells if the non-printing of synthesizable types is on or off. The default is to not print synthesizable
types.

Printing matching on irrefutable pattern

If an inductive type has just one constructor, pattern-matching can be written using the first destructuring
let syntax.

Add Printing Let ident.

This adds ident to the list of inductive types for which pattern-matching is written using a 1et expres-
sion.

Remove Printing Let ident.

This removes ident from this list. Note that removing an inductive type from this list has an impact only
for pattern-matching written using mat ch. Pattern-matching explicitly written using a destructuring let
are not impacted.
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Test Printing Let for ident.
This tells if ident belongs to the list.
Print Table Printing Let.

This prints the list of inductive types for which pattern-matching is written using a 1et expression.
The list of inductive types for which pattern-matching is written using a 1et expression is managed
synchronously. This means that it is sensible to the command Reset.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern-matching can be written using i f ...
then .. else ..

Add Printing If ident.

This adds ident to the list of inductive types for which pattern-matching is written using an i £ expres-
sion.

Remove Printing If ident.
This removes ident from this list.

Test Printing If for ident.
This tells if ident belongs to the list.

Print Table Printing If.

This prints the list of inductive types for which pattern-matching is written using an i £ expression.
The list of inductive types for which pattern-matching is written using an i £ expression is managed
synchronously. This means that it is sensible to the command Reset.

Example

This example emphasizes what the printing options offer.

Coqg < Definition snd (A B:Set) (H:A x B) := match H with
| pair x y => vy
end.

snd is defined

Cogq < Test Printing Let for prod.
Cases on elements of prod are printed using a let' form

Cog < Print snd.

snd =

fun (A B : Set) (H : A x B) => let (_, y) := H in 'y
forall A B : Set, A B —> B

Argument scopes are [type_scope type_scope _]

Cog < Remove Printing Let prod.
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A

Cog Unset Printing Synth.

A

Cog Unset Printing Wildcard.

A

Cog Print snd.
snd =
fun (A B : Set) (H : A % B) => match H return B with
I (x, y) =>y
end
forall A B : Set, A B —> B

Argument scopes are [type_scope type_scope _]

2.2.5 Printing match templates

The Show Match vernacular command prints a mat ch template for a given type. See Section 7.3.1.

2.3 Advanced recursive functions

The following experimental command is available when the FunInd library has been loaded via
Require Import FunInd:

Function ident binder;. . .binder, {decrease_annot} : typeg := termg

This command can be seen as a generalization of Fixpoint. It is actually a wrapper for several ways
of defining a function and other useful related objects, namely: an induction principle that reflects the
recursive structure of the function (see 8.5.5) and its fixpoint equality. The meaning of this declaration is
to define a function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must
be given (unless the function is not recursive), but it might not necessarily be structurally decreasing.
The point of the {} annotation is to name the decreasing argument and to describe which kind of
decreasing criteria must be used to ensure termination of recursive calls.

The Function construction also enjoys the with extension to define mutually recursive defini-
tions. However, this feature does not work for non structurally recursive functions.

See the documentation of functional induction (see Section 8.5.5) and Functional
Scheme (see Section 13.2 and 13.2) for how to use the induction principle to easily reason about the
function.

Remark: To obtain the right principle, it is better to put rigid parameters of the function as first
arguments. For example it is better to define plus like this:

Cog < Function plus (m n : nat) {struct n} : nat :=
match n with
| => m
| S p =>S (plus m p)
end.

than like this:

Cog < Function plus (n m : nat) {struct n} : nat
match n with
| 0 =>m
| S p =>3S (plus p m)
end.

Coq Reference Manual, V8.7.0, October 18, 2017



76

2 Extensions of GALLINA

Limitations termgy must be built as a pure pattern-matching tree (match. . .with) with applications
only at the end of each branch.

Function does not support partial application of the function being defined. Thus, the following
example cannot be accepted due to the presence of partial application of identwrong into the body of
identwrong :

Cog < Fail Function wrong (C:nat) : nat :=

List.hd 0 (List.map wrong (C::nil)).

For now dependent cases are not treated for non structurally terminating functions.

Error messages:

1.
2.

3.

The recursive argument must be specified
No argument name ident

Cannot use mutual definition with well-founded recursion or
measure
Cannot define graph for ident... (warning)

The generation of the graph relation (R_ident) used to compute the induction scheme of ident
raised a typing error. Only the ident is defined; the induction scheme will not be generated.

This error happens generally when:

* the definition uses pattern matching on dependent types, which Funct ion cannot deal with
yet.

* the definition is not a pattern-matching tree as explained above.

. Cannot define principle(s) for ident... (warning)

The generation of the graph relation (R_ident) succeeded but the induction principle could not
be built. Only the ident is defined. Please report.

Cannot build functional inversion principle (warning)

functional inversion will not be available for the function.

See also: 13.2,13.2,8.5.5
Depending on the {...} annotation, different definition mechanisms are used by Funct ion. More
precise description given below.

Variants:

1.

Function ident binder;. . .binder,, : typeg := termg

Defines the not recursive function ident as if declared with Definit ion. Moreover the follow-
ing are defined:

e ident_rect, ident_rec and ident_ind, which reflect the pattern matching structure of
termg (see the documentation of Inductive 1.3.3);

* The inductive R__ident corresponding to the graph of ident (silently);
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* ident_complete and ident_correct which are inversion information linking the func-
tion and its graph.

2. Function ident binder;. . .binder, {struct identy} : typeg := termg

Defines the structural recursive function ident as if declared with Fixpoint. Moreover the
following are defined:

* The same objects as above;

* The fixpoint equation of ident: ident_equation.

3. Function ident binder;. . .binder,, {measure term; identy} : typeg := termy

4. Function ident binder;. . .binder, {wf term; identy} : typeg := termg

Defines a recursive function by well founded recursion. The module Recdef£ of the standard
library must be loaded for this feature. The { } annotation is mandatory and must be one of the
following:

* {measure term; identy} with identy being the decreasing argument and term; being a
function from type of ident( to nat for which value on the decreasing argument decreases
(for the 1t order on nat) at each recursive call of termg. Parameters of the function are
bound in termg;

* {wf term; identy} with identy being the decreasing argument and term; an ordering rela-
tion on the type of identq (i.e. of type Tidenr, — Tident, — Prop) for which the decreasing
argument decreases at each recursive call of termg. The order must be well founded. Param-
eters of the function are bound in termy.

Depending on the annotation, the user is left with some proof obligations that will be used to
define the function. These proofs are: proofs that each recursive call is actually decreasing with
respect to the given criteria, and (if the criteria is wf) a proof that the ordering relation is well
founded.

Once proof obligations are discharged, the following objects are defined:

* The same objects as with the st ruct;
* The lemma ident__t cc which collects all proof obligations in one property;

* The lemmas ident_terminate and ident_F which is needed to be inlined during extrac-
tion of ident.

The way this recursive function is defined is the subject of several papers by Yves Bertot and

Antonia Balaa on the one hand, and Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu
on the other hand.

Remark: Proof obligations are presented as several subgoals belonging to a Lemma ident_tcc.

2.4 Section mechanism

The sectioning mechanism can be used to to organize a proof in structured sections. Then local declara-
tions become available (see Section 1.3.2).
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2.4.1 Section ident

This command is used to open a section named ident.

2.4.2 End ident

This command closes the section named ident. After closing of the section, the local declarations
(variables and local definitions) get discharged, meaning that they stop being visible and that all global
objects defined in the section are generalized with respect to the variables and local definitions they each
depended on in the section.

Here is an example :
Cog < Section sl.

Cog < Variables x y : nat.
x 1s declared

y 1is declared

Cog < Let y' :=y.

y' is defined

Coq < Definition x' := S x.

x' is defined

Coqg < Definition x'' := x' + y'.
x''" is defined
Cog < Print x'.
x'" =85 x
nat

Cog < End sl.

Cog < Print x'.
x' = fun x : nat => S x
nat -> nat
Argument scope 1s [nat_scope]

Cogq < Print x''.

r

X = fun x y : nat => let y' :=y in x' x + y'
nat —-> nat —-> nat
Argument scopes are [nat_scope nat_scope]

Notice the difference between the value of x’ and x” inside section s1 and outside.
Error messages:

1. This is not the last opened section

Remarks:

1. Most commands, like Hint, Notation, option management, ... which appear inside a section
are canceled when the section is closed.

2.5 Module system

The module system provides a way of packaging related elements together, as well as a means of massive
abstraction.

In the syntax of module application, the ! prefix indicates that any Tnline directive in the type of
the functor arguments will be ignored (see 2.5.4 below).
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module_type = qualid
|  module_type with Definition qualid := term
|  module_type with Module qualid := qualid
|  qualid qualid ... qualid
| lqualid qualid ... qualid

module_binding := ( [Import|Export] ident ... ident : module_type )
module_bindings ::= module_binding ... module_binding
module_expression = qualid ... qualid

| lqualid ... qualid

Figure 2.4: Syntax of modules

2.5.1 Module ident

This command is used to start an interactive module named ident.
Variants:
1. Module ident module_bindings

Starts an interactive functor with parameters given by module_bindings.

2. Module ident : module_type

Starts an interactive module specifying its module type.

3. Module ident module_bindings : module_type
Starts an interactive functor with parameters given by module_bindings, and output module type
module_type.

4. Module ident <: module_type; <: ... <: module_type,

Starts an interactive module satisfying each module_type;.

5. Module ident module_bindings <: module_type; <: ... <: module_type,
Starts an interactive functor with parameters given by module_bindings. The output module type
is verified against each module type module_type;.

6. Module [Import|Export]

Behaves like Module, but automatically imports or exports the module.

Reserved commands inside an interactive module:

1. Include module

Includes the content of module in the current interactive module. Here module can be a mod-
ule expression or a module type expression. If module is a high-order module or module type
expression then the system tries to instantiate module by the current interactive module.

2. Include module; <+ ... <+ module,,

is a shortcut for Include module; ... Include module,,
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2.5.2 End ident

This command closes the interactive module ident. If the module type was given the content of the
module is matched against it and an error is signaled if the matching fails. If the module is basic (is not
a functor) its components (constants, inductive types, submodules etc) are now available through the dot
notation.

Error messages:
1. No such label ident
2. Signature components for label ident do not match

3. This is not the last opened module

2.5.3 Module ident := module_expression
This command defines the module identifier ident to be equal to module_expression.

Variants:

1. Module ident module_bindings := module_expression

Defines a functor with parameters given by module_bindings and body module_expression.

2. Module ident module_bindings : module_type := module_expression

Defines a functor with parameters given by module_bindings (possibly none), and output module
type module_type, with body module_expression.

3. Module ident module_bindings <: module_typei <: ... <: module_typey:= mod-
ule_expression

Defines a functor with parameters given by module_bindings (possibly none) with body mod-
ule_expression. The body is checked against each module_type;.

4. Module ident module_bindings := module_expression; <+ ... <+ mod-
ule_expressiony,

is equivalent to an interactive module where each module_expression; are included.

2.5.4 Module Type ident
This command is used to start an interactive module type ident.

Variants:

1. Module Type ident module_bindings

Starts an interactive functor type with parameters given by module_bindings.

Coq Reference Manual, V8.7.0, October 18, 2017



2.5 Module system 81

Reserved commands inside an interactive module type:

1. Include module

Same as Include inside a module.

2. Include module; <+ ... <+ module,

is a shortcut for Include module; ... Include module,,

3. assumption_keyword Inline assums

The instance of this assumption will be automatically expanded at functor application, except
when this functor application is prefixed by a ! annotation.

2.5.5 End ident

This command closes the interactive module type ident.

Error messages:

1. This is not the last opened module type

2.5.6 Module Type ident := module_type
Defines a module type ident equal to module_type.
Variants:

1. Module Type ident module_bindings := module_type

Defines a functor type ident specifying functors taking arguments module_bindings and returning
module_type.

2. Module Type ident module_bindings := module_type; <+ ... <+ module_type,

is equivalent to an interactive module type were each module_type; are included.

2.5.7 Declare Module ident : module_type
Declares a module ident of type module_type.
Variants:

1. Declare Module ident module_bindings : module_type

Declares a functor with parameters module_bindings and output module type module_type.

Example
Let us define a simple module.

Cog < Module M.
Interactive Module M started

Coqg < Definition T := nat.
T is defined

Coqg < Definition x := 0.
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x 1s defined

Cog < Definition y : bool.
1 subgoal

Cog < exact true.
No more subgoals.

Cog < Defined.
y 1s defined

Cog < End M.
Module M is defined

Inside a module one can define constants, prove theorems and do any other things that can be done in
the toplevel. Components of a closed module can be accessed using the dot notation:

Cog < Print M.x.
M.x =0
nat

A simple module type:

Cog < Module Type SIG.
Interactive Module Type SIG started

Cog < Parameter T : Set.
T is declared

Cog < Parameter x : T.
x 1s declared

Cog < End SIG.
Module Type SIG is defined

Now we can create a new module from M, giving it a less precise specification: the y component is
dropped as well as the body of x.

Cog < Module N : SIG with Definition T := nat := M.
Module N is defined

Cog < Print N.T.
N.T = nat
Set

Cogq < Print N.x.
4% [ N.x : N.T ]

Cog < Fail Print N.y.
The command has indeed failed with message:
N.y not a defined object.

The definition of N using the module type expression SIG with Definition T:=nat is equiva-
lent to the following one:
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A

Cog Module Type SIG'.

Cogq < Definition T : Set := nat.
Cog < Parameter x : T.

Cog < End SIG'.

Cog < Module N : SIG' := M.

If we just want to be sure that the our implementation satisfies a given module type without restricting
the interface, we can use a transparent constraint

Cog < Module P <: SIG := M.
Module P is defined

Cog < Print P.y.
P.y = true
bool

Now let us create a functor, i.e. a parametric module

Cog < Module Two (X Y: SIG).
Interactive Module Two started

Cog < Definition T := (X.T * Y.T)S%type.

Coqg < Definition x (X.x, Y.x).

Cog < End Two.
Module Two is defined

and apply it to our modules and do some computations

Cogq < Module Q := Two M N.
Module Q is defined

Cog < Eval compute in (fst Q.x + snd Q.x).
= N.Xx
nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of
its possible implementations:

Cog < Module Type SIG2.
Interactive Module Type SIGZ started

Coqg < Declare Module M1 : SIG.
Module M1 is declared

Cog < Module M2 <: SIG.
Interactive Module M2 started

Cogq < Definition T := M1.T.
T is defined

Cog < Parameter x : T.
x 1s declared

Cog < End M2.
Module M2 is defined

Cogq < End SIG2.
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Module Type SIG2 is defined

Coqg
Coqg
Coqg
Coqg
Coqg
Coqg
Coqg

< Module Mod <: SIG2.

< Module M1.

< Definition T := nat.
< Definition x := 1.

< End MI1.

< Module M2 := M.

< End Mod.

Module Mod is defined

Notice that M is a correct body for the component M2 since its T component is equal nat and hence
M1.T as specified.

Remarks:

1.

Modules and module types can be nested components of each other.

2. One can have sections inside a module or a module type, but not a module or a module type inside

a section.

Commands like Hint or Notation can also appear inside modules and module types. Note
that in case of a module definition like:

Module N : SIG := M.

or

Module N : SIG.

End N.

hints and the like valid for N are not those defined in M (or the module body) but the ones defined
in SIG.

2.5.8 Import qualid

If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components
available by their short names.
Example:

Coqg

< Module Mod.

Interactive Module Mod started

Coqg

< Definition T:=nat.

T is defined

Coqg
T

Coqg

< Check T.
Set
< End Mod.

Module Mod is defined
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Cog < Check Mod.T.
Mod.T
Set

Cog < Fail Check T. (% Incorrect! =x)
The command has indeed failed with message:
The reference T was not found in the current environment.

Cog < Import Mod.

Cog < Check T. (x Now correct x)
T
Set

Some features defined in modules are activated only when a module is imported. This is for instance
the case of notations (see Section 12.1).

Declarations made with the Local flag are never imported by the Import command. Such decla-
rations are only accessible through their fully qualified name.

Example:

Cog < Module A.
Interactive Module A started

Cog < Module B.
Interactive Module B started

Cogq < Local Definition T := nat.
T is defined

Cog < End B.
Module B is defined

Cog < End A.
Module A is defined

Cog < Import A.

Cog < Fail Check B.T.
The command has indeed failed with message:
The reference B.T was not found in the current environment.

Variants:

1. Export qualid

When the module containing the command Export qualid is imported, qualid is imported as
well.

Error messages:

1. qualid is not a module

Warnings:

1. Trying to mask the absolute name qualid !
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2.59 Print Module ident

Prints the module type and (optionally) the body of the module ident.

25.10 Print Module Type ident

Prints the module type corresponding to ident.

2.5.11 Locate Module qualid

Prints the full name of the module qualid.

2.6 Libraries and qualified names

2.6.1 Names of libraries

The theories developed in COQ are stored in library files which are hierarchically classified into libraries
and sublibraries. To express this hierarchy, library names are represented by qualified identifiers qualid,
i.e. as list of identifiers separated by dots (see Section 1.2.3). For instance, the library file Mult of
the standard COQ library Arith is named Coqg.Arith.Mult. The identifier that starts the name of a
library is called a library root. All library files of the standard library of COQ have the reserved root Coq
but library file names based on other roots can be obtained by using COQ commands (cogc, cogtop,
coqgdep, ...) options —Q or —R (see Section 14.3.3). Also, when an interactive COQ session starts, a
library of root Top is started, unless option —t op is set (see Section 14.3.3).

2.6.2 Qualified names

Library files are modules which possibly contain submodules which eventually contain constructions
(axioms, parameters, definitions, lemmas, theorems, remarks or facts). The absolute name, or full name,
of a construction in some library file is a qualified identifier starting with the logical name of the li-
brary file, followed by the sequence of submodules names encapsulating the construction and ended by
the proper name of the construction. Typically, the absolute name Cog.Init.Logic.eq denotes
Leibniz’ equality defined in the module Logic in the sublibrary Init of the standard library of C0Q.

The proper name that ends the name of a construction is the short name (or sometimes base name)
of the construction (for instance, the short name of Cog.Init.Logic.eqis eqg). Any partial suffix
of the absolute name is a partially qualified name (e.g. Logic.eq is a partially qualified name for
Cog.Init.Logic.eq). Especially, the short name of a construction is its shortest partially qualified
name.

CoQ does not accept two constructions (definition, theorem, ...) with the same absolute name but
different constructions can have the same short name (or even same partially qualified names as soon as
the full names are different).

Notice that the notion of absolute, partially qualified and short names also applies to library file
names.

Visibility Co0Q maintains a table called name table which maps partially qualified names of construc-
tions to absolute names. This table is updated by the commands Require (see 6.5.1), Import and
Export (see 2.5.8) and also each time a new declaration is added to the context. An absolute name is
called visible from a given short or partially qualified name when this latter name is enough to denote
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it. This means that the short or partially qualified name is mapped to the absolute name in COQ name
table. Definitions flagged as Local are only accessible with their fully qualified name (see 1.3.2).

It may happen that a visible name is hidden by the short name or a qualified name of another con-
struction. In this case, the name that has been hidden must be referred to using one more level of
qualification. To ensure that a construction always remains accessible, absolute names can never be
hidden.

Examples:

Cogq < Check 0.
0
: nat

Cog < Definition nat := bool.
nat 1is defined

Cog < Check 0.
0
: Datatypes.nat

Cog < Check Datatypes.nat.
Datatypes.nat
Set

Cog < Locate nat.
Constant Top.nat
Inductive Coqg.Init.Datatypes.nat
(shorter name to refer to it in current context 1is Datatypes.nat)

See also: Command Locate in Section 6.3.10 and Locate Library in Section 6.6.11.

2.6.3 Libraries and filesystem

Please note that the questions described here have been subject to redesign in Coq v8.5. Former versions
of Coq use the same terminology to describe slightly different things.

Compiled files (. vo and .vio) store sub-libraries. In order to refer to them inside COQ, a transla-
tion from file-system names to COQ names is needed. In this translation, names in the file system are
called physical paths while COQ names are contrastingly called logical names.

A logical prefix Lib can be associated to a physical path path using the command line option —Q
path Lib. All subfolders of path are recursively associated to the logical path Lib extended with
the corresponding suffix coming from the physical path. For instance, the folder path/f00/Bar
maps to Lib. fO0.Bar. Subdirectories corresponding to invalid COQ identifiers are skipped, and, by
convention, subdirectories named CVS or _darcs are skipped too.

Thanks to this mechanism, .vo files are made available through the logical name of the folder
they are in, extended with their own basename. For example, the name associated to the file
path/f00/Bar/File.vo is Lib.f00.Bar.File. The same caveat applies for invalid identi-
fiers. When compiling a source file, the . vo file stores its logical name, so that an error is issued if it is
loaded with the wrong loadpath afterwards.

Some folders have a special status and are automatically put in the path. COQ commands
associate automatically a logical path to files in the repository trees rooted at the directory from
where the command is launched, coglib/user—contrib/, the directories listed in the SCOQPATH,
$S{XDG_DATA_HOME} /coqg/ and $ {XDG_DATA_DIRS}/coqg/ environment variables (see http:
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//standards.freedesktop.org/basedir-spec/basedir-spec-latest.html)
with the same physical-to-logical translation and with an empty logical prefix.

The command line option -R is a variant of —Q which has the strictly same behavior regarding
loadpaths, but which also makes the corresponding . vo files available through their short names in a
way not unlike the ITmport command (see 2.5.8). For instance, —R path Lib associates to the file
path/f00/Bar/File.vo the logical name Lib.f00.Bar.File, but allows this file to be ac-
cessed through the short names fOO.Bar.File,Bar.File and File. If several files with identical
base name are present in different subdirectories of a recursive loadpath, which of these files is found
first may be system-dependent and explicit qualification is recommended. The From argument of the
Require command can be used to bypass the implicit shortening by providing an absolute root to the
required file (see 6.5.1).

There also exists another independent loadpath mechanism attached to OBJECTIVE CAML object
files (. cmo or . cmxs) rather than COQ object files as described above. The OBJECTIVE CAML load-
path is managed using the option —I path (in the OBJECTIVE CAML world, there is neither a notion
of logical name prefix nor a way to access files in subdirectories of path). See the command Declare
ML Module in Section 6.5 to understand the need of the OBJECTIVE CAML loadpath.

See Section 14.3.3 for a more general view over the COQ command line options.

2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge.
There are different kinds of implicit arguments that can be considered implicit in different ways. There
are also various commands to control the setting or the inference of implicit arguments.

2.7.1 The different kinds of implicit arguments
Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the
type of other arguments of the function, or of the type of the surrounding context of the application.
Especially, such implicit arguments correspond to parameters dependent in the type of the function.
Typical implicit arguments are the type arguments in polymorphic functions. There are several kinds of
such implicit arguments.

Strict Implicit Arguments. An implicit argument can be either strict or non strict. An implicit ar-
gument is said strict if, whatever the other arguments of the function are, it is still inferable from the
type of some other argument. Technically, an implicit argument is strict if it corresponds to a parameter
which is not applied to a variable which itself is another parameter of the function (since this parameter
may erase its arguments), not in the body of a mat ch, and not itself applied or matched against patterns
(since the original form of the argument can be lost by reduction).

For instance, the first argument of

cons: forall A:Set, A —-> list A —-> list A

in module List . v is strict because 1ist is an inductive type and A will always be inferable from the
type 1ist A of the third argument of cons. On the contrary, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n -> ex nat P
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is implicit but not strict, since it can only be inferred from the type P n of the third argument and
if P is, e.g.,, fun _ => True, it reduces to an expression where n does not occur any longer. The
first argument P is implicit but not strict either because it can only be inferred from P n and P is not
canonically inferable from an arbitrary n and the normal form of P n (consider e.g. that n is 0 and the
third argument has type True, then any P of the form fun n => match n with 0 => True |
_ => anything end would be a solution of the inference problem).

Contextual Implicit Arguments. An implicit argument can be contextual or not. An implicit argu-
ment is said contextual if it can be inferred only from the knowledge of the type of the context of the
current expression. For instance, the only argument of

nil : forall A:Set, list A
is contextual. Similarly, both arguments of a term of type
forall P:nat->Prop, forall n:nat, Pn \/ n =0

are contextual (moreover, n is strict and P is not).

Reversible-Pattern Implicit Arguments. There is another class of implicit arguments that can be
reinferred unambiguously if all the types of the remaining arguments are known. This is the class of
implicit arguments occurring in the type of another argument in position of reversible pattern, which
means it is at the head of an application but applied only to uninstantiated distinct variables. Such an
implicit argument is called reversible-pattern implicit argument. A typical example is the argument P of
nat_recin

nat_rec : forall P : nat —> Set, P 0 —> (forall n : nat, P
n ->P (S n)) —> forall x : nat, P x.

(P is reinferable by abstracting over n in the type P n).
See Section 2.7.9 for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non dependent implicit arguments that are solved based on the structure
of their type only.

2.7.2 Maximal or non maximal insertion of implicit arguments

In case a function is partially applied, and the next argument to be applied is an implicit argument, two
disciplines are applicable. In the first case, the function is considered to have no arguments furtherly: one
says that the implicit argument is not maximally inserted. In the second case, the function is considered
to be implicitly applied to the implicit arguments it is waiting for: one says that the implicit argument is
maximally inserted.

Each implicit argument can be declared to have to be inserted maximally or non maximally. This can
be governed argument per argument by the command Implicit Arguments (see 2.7.4) or globally
by the command Set Maximal Implicit Insertion (see 2.7.10). See also Section 2.7.13.
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2.7.3 Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the
other arguments, the user can force the given argument to be guessed by replacing it by “_". If possible,
the correct argument will be automatically generated.

Error messages:

1. Cannot infer a term for this placeholder

[T3E ]

Co0Q was not able to deduce an instantiation of a

2.7.4 Declaration of implicit arguments

In case one wants that some arguments of a given object (constant, inductive types, constructors, as-
sumptions, local or not) are always inferred by Coq, one may declare once and for all which are the
expected implicit arguments of this object. There are two ways to do this, a priori and a posteriori.

Implicit Argument Binders

In the first setting, one wants to explicitly give the implicit arguments of a declared object as part of its
definition. To do this, one has to surround the bindings of implicit arguments by curly braces:

Cog < Definition id {A : Type} (x : A) : A := X.
id is defined

This automatically declares the argument A of id as a maximally inserted implicit argument. One
can then do as-if the argument was absent in every situation but still be able to specify it if needed:

Coqg < Definition compose {A B C} (g : B ->C) (f : A —> B) :=
fun x => g (f x).
compose 1is defined

Coqg < Goal forall A, compose id id = id (A:=A).
1 subgoal

forall A : Type, compose id id = id

The syntax is supported in all top-level definitions: Definition, Fixpoint, Lemma and so
on. For (co-)inductive datatype declarations, the semantics are the following: an inductive parameter
declared as an implicit argument need not be repeated in the inductive definition but will become implicit
for the constructors of the inductive only, not the inductive type itself. For example:

Cog < Inductive list {A : Type} : Type :=
| nil : 1list
| cons : A -> list —-> list.

list is defined

list_rect 1is defined

list_ind is defined

list_rec is defined

Cog < Print list.
Inductive list (A : Type) : Type := nil : list | cons : A -> list -> 1list
For list: Argument A is implicit and maximally inserted
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For nil: Argument A is implicit and maximally inserted
For cons: Argument A is implicit and maximally inserted
For 1list: Argument scope 1s [type_scope]

For nil: Argument scope 1s [type_scope]

For cons: Argument scopes are [type_scope _ _]

One can always specify the parameter if it is not uniform using the usual implicit arguments disam-
biguation syntax.

Declaring Implicit Arguments

To set implicit arguments a posteriori, one can use the command:
Arguments qualid possibly_bracketed ident ... possibly_bracketed ident

where the list of possibly_bracketed_ident is a prefix of the list of arguments of qualid where the ones to
be declared implicit are surrounded by square brackets and the ones to be declared as maximally inserted
implicits are surrounded by curly braces.

After the above declaration is issued, implicit arguments can just (and have to) be skipped in any
expression involving an application of qualid.

Implicit arguments can be cleared with the following syntax:

Arguments qualid : clear implicits
Variants:
1. Global Arguments qualid possibly_bracketed_ident ... possibly_bracketed_ident

Tell to recompute the implicit arguments of qualid after ending of the current section if any,
enforcing the implicit arguments known from inside the section to be the ones declared by the
command.

2. Local Arguments qualid possibly_bracketed ident ... possibly_bracketed_ident
When in a module, tell not to activate the implicit arguments of qualid declared by this command
to contexts that require the module.

3. [Global | Local] Arguments qualid [possibly_bracketed ident ...  possi-
bly_bracketed_ident , ... , possibly_bracketed_ident ... possibly_bracketed_ident]

For names of constants, inductive types, constructors, lemmas which can only be applied to a fixed
number of arguments (this excludes for instance constants whose type is polymorphic), multiple
implicit arguments decflarations can be given. Depending on the number of arguments qualid is
applied to in practice, the longest applicable list of implicit arguments is used to select which
implicit arguments are inserted.

For printing, the omitted arguments are the ones of the longest list of implicit arguments of the
sequence.

Example:
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Coqg < Inductive list (A:Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

Cog < Check (cons nat 3 (nil nat)).

cons nat 3 (nil nat)
1list nat

Cog < Arguments cons [A] _ _

Cog < Arguments nil [A].

Cog < Check (cons 3 nil).
cons 3 nil

1list nat
Cog < Fixpoint map (A B:Type) (f:A->B) (l:1list A) : list B :=
match 1 with nil => nil | cons a t => cons (f a) (map A B f t) end.

map 1s defined
map 1is recursively defined (decreasing on 4th argument)

Cog < Fixpoint length (A:Type) (l:1list A) : nat :=

match 1 with nil => 0 | cons _ m => S (length A m) end.
length is defined
length is recursively defined (decreasing on 2nd argument)

Cog < Arguments map [A B] £ 1.

Cog < Arguments length {A} 1. (* A has to be maximally inserted x)

A

Coqg
fun

Check (fun 1l:1ist (list nat) => map length 1).
list (list nat) => map length 1
list (list nat) —> 1ist nat

I~

Cog < Arguments map [A B] £ 1, [A] B f£f 1, A B £ 1.

A

Coqg Check (fun 1 => map length 1 = map (list nat) nat length 1).
fun 1 : 1list (list nat) => map length 1 = map length 1
list (list nat) —-> Prop

Remark: To know which are the implicit arguments of an object, use the command Print Implicit
(see 2.7.13).

2.7.5 Automatic declaration of implicit arguments

CoQ can also automatically detect what are the implicit arguments of a defined object. The command is
just

Arguments qualid : default implicits

The auto-detection is governed by options telling if strict, contextual, or reversible-pattern implicit ar-
guments must be considered or not (see Sections 2.7.7, 2.7.8, 2.7.9 and also 2.7.10).

Variants:

1. Global Arguments qualid : default implicits

Tell to recompute the implicit arguments of qualid after ending of the current section if any.
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2. Local Arguments qualid : default implicits

When in a module, tell not to activate the implicit arguments of qualid computed by this declara-
tion to contexts that requires the module.

Example:
Cog < Inductive list (A:Set) : Set :=

| nil : list A

| cons : A -> list A -> list A.
Cog < Arguments cons : default implicits.

Cogq < Print Implicit cons.
cons : forall A : Set, A —-> 1list A —-> 1ist A
Argument A is implicit

Cog < Arguments nil : default implicits.

Cogq < Print Implicit nil.
nil : forall A : Set, 1list A

Cog < Set Contextual Implicit.
Cogq < Arguments nil : default implicits.

Cogq < Print Implicit nil.
nil : forall A : Set, list A
Argument A is implicit and maximally inserted

The computation of implicit arguments takes account of the unfolding of constants. For instance,
the variable p below has type (Transitivity R) which is reducible to forall x,y:U, R x
y —> forall z:U, Ry z -> R x z. As the variables x, y and z appear strictly in body of
the type, they are implicit.

Cog < Variable X : Type.

Cogq < Definition Relation := X -> X -> Prop.

Cogq < Definition Transitivity (R:Relation) :=
forall x y:X, R x y —> forall z:X, Ry z —> R x z.

Cog < Variables (R : Relation) (p : Transitivity R).
Cog < Arguments p : default implicits.

Cog < Print p.

*%x% [ p : Transitivity R ]

Expanded type for implicit arguments

p ¢ forall xy : X, Rx y —-> forall z : X, Ry z -—> R x z
Arguments x, y, z are implicit

Cogq < Print Implicit p.
p : forall xy : X, Rxy —> forall z : X, Ry z -—> R x z
Arguments x, y, z are implicit

Cog < Variables (a b c : X) (rl : Rab) (r2 : Rb c).

Cogq < Check (p rl r2).
p rl r2
R ac
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2.7.6 Mode for automatic declaration of implicit arguments

In case one wants to systematically declare implicit the arguments detectable as such, one may switch
to the automatic declaration of implicit arguments mode by using the command

Set Implicit Arguments.

Conversely, one may unset the mode by using Unset Implicit Arguments. The mode is off
by default. Auto-detection of implicit arguments is governed by options controlling whether strict and
contextual implicit arguments have to be considered or not.

2.7.7 Controlling strict implicit arguments

When the mode for automatic declaration of implicit arguments is on, the default is to automatically
set implicit only the strict implicit arguments plus, for historical reasons, a small subset of the non
strict implicit arguments. To relax this constraint and to set implicit all non strict implicit arguments by
default, use the command

Unset Strict Implicit.

Conversely, use the command Set Strict Implicit to restore the original mode that declares
implicit only the strict implicit arguments plus a small subset of the non strict implicit arguments.

In the other way round, to capture exactly the strict implicit arguments and no more than the strict
implicit arguments, use the command:

Set Strongly Strict Implicit.

Conversely, use the command Unset Strongly Strict Implicit to letthe option “Strict
Implicit” decide what to do.

Remark: In versions of COQ prior to version 8.0, the default was to declare the strict implicit arguments
as implicit.

2.7.8 Controlling contextual implicit arguments

By default, COQ does not automatically set implicit the contextual implicit arguments. To tell COQ to
infer also contextual implicit argument, use command

Set Contextual Implicit.

Conversely, use command Unset Contextual Implicit to unsetthe contextual implicit mode.

2.7.9 Controlling reversible-pattern implicit arguments

By default, CoQ does not automatically set implicit the reversible-pattern implicit arguments. To tell
CoqQ to infer also reversible-pattern implicit argument, use command

Set Reversible Pattern Implicit.

Conversely, use command Unset Reversible Pattern Implicit to unset the reversible-
pattern implicit mode.
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term ++= @ qualid term ... term

| @ qualid

| qualid argument ... argument
argument = term

| (ident : =term)

Figure 2.5: Syntax for explicitly giving implicit arguments

2.7.10 Controlling the insertion of implicit arguments not followed by explicit argu-
ments

Implicit arguments can be declared to be automatically inserted when a function is partially applied and
the next argument of the function is an implicit one. In case the implicit arguments are automatically
declared (with the command Set Implicit Arguments), the command

Set Maximal Implicit Insertion.

is used to tell to declare the implicit arguments with a maximal insertion status. By default, automatically
declared implicit arguments are not declared to be insertable maximally. To restore the default mode for
maximal insertion, use command Unset Maximal Implicit Insertion.

2.7.11 Explicit applications

In presence of non strict or contextual argument, or in presence of partial applications, the synthesis
of implicit arguments may fail, so one may have to give explicitly certain implicit arguments of an
application. The syntax for this is (ident : =term) where ident is the name of the implicit argument and
term is its corresponding explicit term. Alternatively, one can locally deactivate the hiding of implicit
arguments of a function by using the notation @qualid term; . .term,. This syntax extension is given
Figure 2.5.

Example (continued):

Cog < Check (p rl (z:=c)).
p rl (z:=c)
: Rbc >R ac

Cog < Check (p (x:=a) (y:=b) rl (z:=c) r2).
p rl r2
: R ac

2.7.12 Renaming implicit arguments
Implicit arguments names can be redefined using the following syntax:
Arguments qualid name ... name : rename
With the assert flag, Arguments can be used to assert that a given object has the expected

number of arguments and that these arguments are named as expected.
Example (continued):
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Cog < Arguments p [s t] _ [u] _: rename.

Cog < Check (p rl (u:=c)).
p rl (u:=c)
: Rbc ->Rac

Cog < Check (p (s:=a) (t:=b) rl (u:=c) r2).
p rl r2
: R ac

Cog < Fail Arguments p [s t] _ [w] _ : assert.

The command has indeed failed with message:

To rename arguments the "rename" flag must be specified.
Argument u renamed to w.

2.7.13 Displaying what the implicit arguments are

To display the implicit arguments associated to an object, and to know if each of them is to be used
maximally or not, use the command

Print Implicit qualid.

2.7.14 Explicit displaying of implicit arguments for pretty-printing

By default the basic pretty-printing rules hide the inferable implicit arguments of an application. To
force printing all implicit arguments, use command

Set Printing Implicit.
Conversely, to restore the hiding of implicit arguments, use command
Unset Printing Implicit.

By default the basic pretty-printing rules display the implicit arguments that are not detected as strict
implicit arguments. This “defensive” mode can quickly make the display cumbersome so this can be
deactivated by using the command

Unset Printing Implicit Defensive.
Conversely, to force the display of non strict arguments, use command

Set Printing Implicit Defensive.

See also: Set Printing All in Section 2.9.

2.7.15 Interaction with subtyping

When an implicit argument can be inferred from the type of more than one of the other arguments, then
only the type of the first of these arguments is taken into account, and not an upper type of all of them.
As a consequence, the inference of the implicit argument of “=" fails in

Cog < Fail Check nat = Prop.
but succeeds in

Cog < Check Prop = nat.
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2.7.16 Deactivation of implicit arguments for parsing
Use of implicit arguments can be deactivated by issuing the command:
Set Parsing Explicit.

In this case, all arguments of constants, inductive types, constructors, etc, including the arguments
declared as implicit, have to be given as if none arguments were implicit. By symmetry, this also affects
printing. To restore parsing and normal printing of implicit arguments, use:

Unset Parsing Explicit.

2.7.17 Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve unification
problems involving a projection applied to an unknown structure instance (an implicit argument) and
a value. The complete documentation of canonical structures can be found in Chapter 19, here only a
simple example is given.

Assume that qualid denotes an object (Build_struc ¢i ... ¢,) in the structure struct of which the
fields are z, ..., z,,. Assume that qualid is declared as a canonical structure using the command

Canonical Structure qualid.

Then, each time an equation of the form (x; _) =gs,¢ ¢; has to be solved during the type-checking
process, qualid is used as a solution. Otherwise said, qualid is canonically used to extend the field ¢;

into a complete structure built on ¢;.
Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.
Here is an example.

Cog < Require Import Relations.
Cog < Require Import EgNat.

Cog < Set Implicit Arguments.
Cog < Unset Strict Implicit.

Cog < Structure Setoid : Type :=
{Carrier :> Set;
Equal : relation Carrier;
Prf_equiv : equivalence Carrier Equal}.

Cog < Definition is_law (A B:Setoid) (f:A -> B) :=
forall x y:A, Equal x y —> Equal (f x) (f vy).

Cog < Axiom eqg_nat_equiv : equivalence nat eq_nat.
Cog < Definition nat_setoid : Setoid := Build_Setoid eg _nat_equiv.

Cog < Canonical Structure nat_setoid.

Thanks to nat__setoid declared as canonical, the implicit arguments A and B can be synthesized
in the next statement.

Cog < Lemma is_law_S : is_law S.
1 subgoal

is _law (A:=nat_setoid) (B:=nat_setoid) S

Coq Reference Manual, V8.7.0, October 18, 2017



98 2 Extensions of GALLINA

Remark: If a same field occurs in several canonical structure, then only the structure declared first as
canonical is considered.

Variants:
1. Canonical Structure ident := term : type.
Canonical Structure ident := term.
Canonical Structure ident : type := term.

These are equivalent to a regular definition of ident followed by the declaration

Canonical Structure ident.
See also: more examples in user contribution category (Rocq/ALGEBRA).

Print Canonical Projections.

This displays the list of global names that are components of some canonical structure. For each of
them, the canonical structure of which it is a projection is indicated. For instance, the above example
gives the following output:

Cog < Print Canonical Projections.

nat <- Carrier ( nat_setoid )

eq_nat <- Equal ( nat_setoid )
eq_nat_equiv <- Prf _equiv ( nat_setoid )

2.7.18 Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be
convenient to bind the names n or m to the type nat of natural numbers). The command for that is

Implicit Types ident ... ident : type

The effect of the command is to automatically set the type of bound variables starting with ident (either
ident itself or ident followed by one or more single quotes, underscore or digits) to be type (unless the
bound variable is already declared with an explicit type in which case, this latter type is considered).

Example:
Cog < Require Import List.

Cogq < Implicit Types m n : nat.

Cog < Lemma cons_inj_nat : forall mn l, n :: 1 =m :: 1 -> n = m.
1 subgoal

forall (m n : nat) (1 : Datatypes.list nat), n :: 1 =m :: 1 -> n =m

Cog < intros m n.
1 subgoal

m, n : nat

forall 1 : Datatypes.list nat, n :: 1 =m :: 1 -> n =m
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Cog < Lemma cons_inj_bool : forall (m n:bool) 1, n :: 1 =m :: 1 -> n = m.
1 subgoal

forall (m n : bool) (1 : Datatypes.list bool), n :: 1 =m :: 1 -> n = m
Variants:

1. Implicit Type ident : type

This is useful for declaring the implicit type of a single variable.

2. Implicit Types (identy;...identy, : termy ) ... (identy,; .. .ident,y, : term,
) .
Adds n blocks of implicit types with different specifications.

2.7.19 Implicit generalization

Implicit generalization is an automatic elaboration of a statement with free variables into a closed state-
ment where these variables are quantified explicitly. Implicit generalization is done inside binders start-
ing with a * and terms delimited by * { } and * ( ), always introducing maximally inserted implicit
arguments for the generalized variables. Inside implicit generalization delimiters, free variables in the
current context are automatically quantified using a product or a lambda abstraction to generate a closed
term. In the following statement for example, the variables n and m are automatically generalized and
become explicit arguments of the lemma as we are using ~ ( ):

Cog < Generalizable All Variables.

Cog < Lemma nat_comm : ~(n = n + 0).
1 subgoal

forall n : nat, n = n + 0

One can control the set of generalizable identifiers with the Generalizable vernacular command to
avoid unexpected generalizations when mistyping identifiers. There are three variants of the command:

Generalizable (All|No) Variable(s)? (identy identy) ? .

Variants:

1. Generalizable All Variables. All variables are candidate for generalization if they
appear free in the context under a generalization delimiter. This may result in confusing errors
in case of typos. In such cases, the context will probably contain some unexpected generalized
variable.

2. Generalizable No Variables. Disable implicit generalization entirely. This is the de-
fault behavior.

3. Generalizable Variable (s)? ident; ident,. Allow generalization of the given iden-
tifiers only. Calling this command multiple times adds to the allowed identifiers.

4. Global Generalizable Allows to export the choice of generalizable variables.
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One can also use implicit generalization for binders, in which case the generalized variables are
added as binders and set maximally implicit.

Coqg < Definition id " (x : A) : A := Xx.

Cog < Print id.
id = fun (A : Type) (x : A) => x
forall A : Type, A —> A
Argument A is implicit and maximally inserted
Argument scopes are [type_scope _]

The generalizing binders * { } and * ( ) work similarly to their explicit counterparts, only binding
the generalized variables implicitly, as maximally-inserted arguments. In these binders, the binding
name for the bound object is optional, whereas the type is mandatory, dually to regular binders.

2.8 Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one.
A class is either a sort (denoted by the keyword Sortclass), a product type (denoted by the keyword
Funclass), or a type constructor (denoted by its name), e.g. an inductive type or any constant with a
type of the form forall (z; : A1)..(zy : Ay), s where s is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and
more generally to consider that a term of type A is of type B provided that there is a declared coercion
between A and B. The main command is

Coercion qualid : class; >—> classsy.

which declares the construction denoted by qualid as a coercion between class; and classs.

More details and examples, and a description of the commands related to coercions are provided in
Chapter 18.

2.9 Printing constructions in full

Coercions, implicit arguments, the type of pattern-matching, but also notations (see Chapter 12) can
obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are
sensitive to the implicit arguments). The command

Set Printing All.

deactivates all high-level printing features such as coercions, implicit arguments, returned
type of pattern-matching, notations and various syntactic sugar for pattern-matching or record
projections.  Otherwise said, Set Printing All includes the effects of the commands
Set Printing Implicit, Set Printing Coercions, Set Printing Synth, Unset
Printing Projections and Unset Printing Notations. To reactivate the high-level
printing features, use the command

Unset Printing All.
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2.10 Printing universes

The following command:
Set Printing Universes

activates the display of the actual level of each occurrence of Type. See Section 4.1.1 for details.
This wizard option, in combination with Set Printing All (see section 2.9) can help to diagnose
failures to unify terms apparently identical but internally different in the Calculus of Inductive Construc-
tions. To reactivate the display of the actual level of the occurrences of Type, use

Unset Printing Universes.

The constraints on the internal level of the occurrences of Type (see Section 4.1.1) can be printed
using the command

Print [Sorted] Universes.

If the optional Sorted option is given, each universe will be made equivalent to a numbered label
reflecting its level (with a linear ordering) in the universe hierarchy.
This command also accepts an optional output filename:

Print [Sorted] Universes string.

If string ends in .dot or .gv, the constraints are printed in the DOT language, and can be processed
by Graphviz tools. The format is unspecified if string doesn’t end in . dot or . gv.

2.11 Ecxistential variables

Coq terms can include existential variables which represents unknown subterms to eventually be re-
placed by actual subterms.

Existential variables are generated in place of unsolvable implicit arguments or placeholders
when using commands such as Check (see Section 6.3.1) or when using tactics such as refine (see
Section 8.2.3), as well as in place of unsolvable instances when using tactics such that eapply (see
Section 8.2.4). An existential variable is defined in a context, which is the context of variables of
the placeholder which generated the existential variable, and a type, which is the expected type of the
placeholder.

As a consequence of typing constraints, existential variables can be duplicated in such a way that
they possibly appear in different contexts than their defining context. Thus, any occurrence of a given
existential variable comes with an instance of its original context. In the simple case, when an existential
variable denotes the placeholder which generated it, or is used in the same context as the one in which
it was generated, the context is not displayed and the existential variable is represented by “?” followed
by an identifier.

9

Cog < Parameter identity : forall (X:Set), X —-> X.
identity is declared

Cog < Check identity _ _.
identity ?y ?x

?PX@{x:=?x}
where
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?y ¢ [ |- forall x : ?P, ?X]
°P : [ |- Set]

?X : [x : ?P |- Set]

?x : [ |- ?P]

Cog < Check identity _ (fun x => _).
identity ?y (fun x : ?P => ?y0)
?X@{x:=fun x : ?P => ?y0}
where
?y ¢ [ |- forall x : forall x : ?P, ?P0, ?X]
?X : [x : forall x : ?P, ?P0 |- Set]
°P : [ |- Set]
?P0 : [x : PP |- Set]
?y0 : [x : ?P |- ?P0O]

In the general case, when an existential variable ?ident appears outside of its context of definition, its
instance, written under the form @ {idl:=terml; ...; idn:=termn}, is appending to its name,
indicating how the variables of its defining context are instantiated. The variables of the context of the
existential variables which are instantiated by themselves are not written, unless the flag Printing
Existential Instances ison (see Section2.11.1), and this is why an existential variable used in
the same context as its context of definition is written with no instance.

Cogq < Check (fun x y => _) 0 1.
(fun x y : nat => ?y) 0 1
?TA{x:=0; y:=1}

where
?T : [x : nat 'y : nat |- Type]
?y : [x : nat 'y : nat [- ?T]

Cog < Set Printing Existential Instances.

Cog < Check (fun x y => _) 0 1.
(fun x y : nat => ?y@{x:=x; y:=y}) 0 1
?TA{x:=0; y:=1}

where
?T : [x : nat 'y : nat [- Type]
?y : [x : nat y : nat |- ?T@{x:=x; y:=y}]

Existential variables can be named by the user upon creation using the syntax ? [ident]. This is
useful when the existential variable needs to be explicitly handled later in the script (e.g. with a named-
goal selector, see 9.2).

2.11.1 Explicit displaying of existential instances for pretty-printing
The command:

Set Printing Existential Instances

activates the full display of how the context of an existential variable is instantiated at each of the
occurrences of the existential variable.
To deactivate the full display of the instances of existential variables, use

Unset Printing Existential Instances.
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2.11.2 Solving existential variables using tactics

Instead of letting the unification engine try to solve an existential variable by itself, one can also provide
an explicit hole together with a tactic to solve it. Using the syntax 1tac: (tacexpr), the user can put
a tactic anywhere a term is expected. The order of resolution is not specified and is implementation-
dependent. The inner tactic may use any variable defined in its scope, including repeated alternations
between variables introduced by term binding as well as those introduced by tactic binding. The expres-
sion tacexpr can be any tactic expression as described at section 9.

Coqg < Definition foo (x : nat) : nat := ltac: (exact x).

This construction is useful when one wants to define complicated terms using highly automated
tactics without resorting to writing the proof-term by means of the interactive proof engine.

This mechanism is comparable to the Declare Implicit Tactic command defined at 8.9.7,
except that the used tactic is local to each hole instead of being declared globally.
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Chapter 3

The COQ library

The CoQ library is structured into two parts:

The initial library: it contains elementary logical notions and data-types. It constitutes the basic state
of the system directly available when running COQ;

The standard library: general-purpose libraries containing various developments of COQ axiomatiza-
tions about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules
are directly accessible through the Require command (see Section 6.5.1);

In addition, user-provided libraries or developments are provided by COQ users’ community. These
libraries and developments are available for download at http://coqg.inria. fr (see Section 3.3).

The chapter briefly reviews the CoQ libraries whose contents can also be browsed at http://
cog.inria.fr/stdlib.

3.1 The basic library

This section lists the basic notions and results which are directly available in the standard COQ system'.

3.1.1 Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However,
it does not assign a meaning to these notations. The purpose of this is to define and fix once for all the
precedence and associativity of very common notations. The main notations fixed in the initial state are
listed on Figure 3.1.

3.1.2 Logic

The basic library of COQ comes with the definitions of standard (intuitionistic) logical connectives
(they are defined as inductive constructions). They are equipped with an appealing syntax enriching the
(subclass form) of the syntactic class term. The syntax extension is shown on Figure 3.2.

Remark: Implication is not defined but primitive (it is a non-dependent product of a proposition over
another proposition). There is also a primitive universal quantification (it is a dependent product over a

"Most of these constructions are defined in the Pre 1ude module in directory theories/Init atthe COQ root directory;
this includes the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type
also makes it in the initial state
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Notation Precedence  Associativity

<=> 95 no

_\/ _ 85 right

_/\ _ 80 right

~ 75 right

_ = _ 70 no
= = _ 70 no
_=_ > _ 170 no
<> 70 no
<> _ > _ 170 no
_ < _ 70 no
> 70 no
<= _ 70 no
_o>= 70 no
< < 70 no
_ < _ <= _ 170 no
<= _ < _ 170 no
<= _ <= _ 170 no
_ + _ 50 left

S N 50 left
_ - _ 50 left
_ox 40 left
_&& _ 40 left
_/ _ 40 left

_ 35 right

_ 35 right

_ " 30 right

Figure 3.1: Notations in the initial state

form := True
False
~ form
form /\ form
form \/ form
form —> form

forall ident : type , form
exists ident [: specif], form

(primitive implication)

exists?2 ident [: specif], form & form

term = term
term = term :> specif

|
\
|
\
|
|  form <—> form
|
|
\
|
\

(True)
(False)
(not)
(and)
(or)

(1ff)
(primitive for all)
(ex)

(ex2)

(eq)

(eq)

Figure 3.2: Syntax of formulas
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proposition). The primitive universal quantification allows both first-order and higher-order quantifica-
tion.

Propositional Connectives

First, we find propositional calculus connectives:

Cogq < Inductive True : Prop := I.

Cog < Inductive False : Prop :=

Coqg < Definition not (A: Prop) := A —-> False.

Cogq < Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).

Cog < Section Projections.
Cog < Variables A B : Prop.
Cog < Theorem projl : A /\ B -> A.

Cog < Theorem proj2 : A /\ B —> B.

Cog < End Projections.

Cog < Inductive or (A B:Prop) : Prop :=
| or_introl (_:A)
| or_intror (_:B).
Cog < Definition iff (P Q:Prop) := (P -> Q) /\ (Q —> P).

Coq < Definition IF_then_else (P Q R:Prop) P/\NQ\/ ~P /\R.

Quantifiers

Then we find first-order quantifiers:

Coq < Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Cogq < Inductive ex (A: Set) (P:A -> Prop) : Prop :=
ex_intro (x:A) (_:P x).
Cog < Inductive ex2 (A:Set) (P Q:A —-> Prop) : Prop :=
ex_intro2 (x:A) (_:P x) (_:0 x).

The following abbreviations are allowed:

exists x:A, P ex A (fun x:A => P)

exists x, P ex _ (fun x => P)

exists?2 x:A, P & Q| ex2 A (fun x:A => P) (fun x:A => Q)
exists?2 x, P & Q ex2 _ (fun x => P) (fun x => Q)

The type annotation “: A” can be omitted when A can be synthesized by the system.
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Equality

Then, we find equality, defined as an inductive relation. That is, given a type A and an x of type A,
the predicate (eq A x) is the smallest one which contains x. This definition, due to Christine Paulin-
Mohring, is equivalent to define eq as the smallest reflexive relation, and it is also equivalent to Leibniz’
equality.

Cog < Inductive eqg (A:Type) (x:A) : A —-> Prop :=
eqg_refl : eq A x X.

Lemmas

Finally, a few easy lemmas are provided.

Coq < Theorem absurd : forall A C:Prop, A -> ~ A -> C.

Cog < Section equality.

Coqg < Variables A B : Type.

Cog < Variable £ : A -> B.

Cog < Variables x y z : A.

Cog < Theorem eg_sym : x =y —> y = X.

Cog < Theorem eg_trans : x

Il
<
|
\%
g
Il
N
|
\%
b

Cogq < Theorem f_equal : x =y —> f x = f y.

Cog < Theorem not_eg sym : x <> y —> y <> X.

Cog < End equality.

Cogq < Definition eqg_ind_r
forall (A:Type) (x:A) (P:A->Prop), P x —-> forall y:A, y =x —> P y.

Cog < Definition eg rec_r
forall (A:Type) (x:A) (P:A->Set), P x —-> forall y:A, y =x —> P y.

Cogq < Definition eqg rect_r
forall (A:Type) (x:A) (P:A->Type), P x —-> forall y:A, y =x —> P y.

Cog < Hint Immediate eg_sym not_eq_sym : core.

The theorem f_equal is extended to functions with two to five arguments. The theorem are names
f_equal2, f_equal3, f_equal4 and f_equalb. For instance f_equal 3 is defined the follow-
ing way.

Coqg < Theorem f_equal3
forall (Al A2 A3 B:Type) (f:A1 -> A2 -> A3 —-> B)
(x1 y1:Al) (x2 y2:A2) (x3 y3:A3),
x1l =yl => x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f yl y2 y3.
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specif = specif x specif (prod)
|  specif + specif (sum)

| specif + { specif } (sumor)

| { specif } + { specif } (sumbool)

|  { ident : specif | form } (sig)

| { ident : specif | form & form } (sig2)

| { ident : specif & specif } (sigT)

| { ident : specif & specif & specif } (sigT2)

term = (term , term ) (pair)

Figure 3.3: Syntax of data-types and specifications

3.1.3 Datatypes

In the basic library, we find the definition” of the basic data-types of programming, again defined as in-
ductive constructions over the sort Set. Some of them come with a special syntax shown on Figure 3.3.

Programming

Cog < Inductive unit : Set := tt.

Cog < Inductive bool : Set := true | false.

Coqg < Inductive nat : Set := O | S (n:nat).

Cog < Inductive option (A:Set) : Set := Some (_:A) | None.
Cog < Inductive identity (A:Type) (a:A) : A —-> Type :=

refl_identity : identity A a a.

Note that zero is the letter O, and not the numeral 0.
The predicate identity is logically equivalent to equality but it lives in sort Type. It is mainly
maintained for compatibility.
We then define the disjoint sum of A+B of two sets A and B, and their product AxB.
Cogq < Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Cog < Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Cog < Section projections.

Cog < Variables A B : Set.

Cogq < Definition fst (H: prod A B) := match H with
| pair _ _ xy => x
end.

match H with
| pair _ _ xy =>y
end.

Cogq < Definition snd (H: prod A B)

Cog < End projections.

Some operations on bool are also provided: andb (with infix notation & &), orb (with infix nota-
tion | |), xorb, implb and negb.

2'I‘heyareinDatatypes.v
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3.1.4 Specification

The following notions® allow to build new data-types and specifications. They are available with the
syntax shown on Figure 3.3.

For instance, given A: Type and P :A->Prop, the construct {x:A | P x} (in abstract syntax
(sig A P))is a Type. We may build elements of this set as (exist x p) whenever we have a
witness x : A with its justification p: P x.

Fromsucha (exist x p) we may in turn extract its witness x : A (using an elimination construct
such as match) but not its justification, which stays hidden, like in an abstract data-type. In technical
terms, one says that sig is a “weak (dependent) sum”. A variant sig2 with two predicates is also
provided.

Cogq < Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Cog < Inductive sig2 (A:Set) (P Q:A —-> Prop) : Set :=
exist2 (x:A) (_:P x) (_:0 x).

A “strong (dependent) sum” {x:A & P x} may be also defined, when the predicate P is now
defined as a constructor of types in Type.

Coq < Inductive sigT (A:Type) (P:A —> Type) : Type := existT (x:A) (_:P x).
Cog < Section Projections2.

Cog < Variable A : Type.

Cogq < Variable P : A -> Type.

Cogq < Definition projTl (H:sigT A P) let (x, h) := H in x.

Cog < Definition projT2 (H:sigT A P) :=
match H return P (projTl H) with
existT _ _ x h =>h
end.

Cog < End Projections2.
Cog < Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
existT2 (x:A) (_:P x) (_:0 x).
A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

Cog < Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate
between sumbool and sum is the mixed sumor which combines A:Set and B:Prop in the Set
A+{B}.

Cog < Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).

We may define variants of the axiom of choice, like in Martin-L6f’s Intuitionistic Type Theory.

3They are defined in module Specif.v
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Cog < Lemma Choice
forall (S S':Set) (R:S -> S' -> Prop),
(forall x:S, {y : S'" | R x y}) —>
{f : S -—>S'" | forall z:S, Rz (f z)}.

Cog < Lemma Choice2
forall (S S':Set) (R:S -> S' -> Set),
(forall x:S, {y : S' & R x y}) —>
{f : S -—>S8'" & forall z:S, R z (f z)}.

Cogq < Lemma bool_choice
forall (S:Set) (Rl R2:S —-> Prop),
(forall x:S, {R1l x} + {R2 x}) —->
{f : S —> bool |
forall x:S, £ x = true /\ Rl x \/ f x = false /\ R2 x}.

The next construct builds a sum between a data-type A: Type and an exceptional value encoding
errors:

Cogq < Definition Exc := option.
Coq < Definition value := Some.
Cogq < Definition error := None.

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is
consistent with the realizability interpretation.

Cog < Definition except := False_rec.
Cogq < Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.

Cog < Theorem and_rect?2
forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.

3.1.5 Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions
of predecessor, addition and multiplication®. It also provides a scope nat_scope gathering standard
notations for common operations (+, *) and a decimal notation for numbers. That is he can write 3
for (S (S (S 0))). This also works on the left hand side of a mat ch expression (see for example
section 8.2.3). This scope is opened by default.

The following example is not part of the standard library, but it shows the usage of the notations:

Cog < Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S n) => even n
end.

Cogq < Theorem eq_S : forall x y:nat, x =y -> S x = S y.

“This is in module Peano . v
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Coqg < Definition pred (n:nat) : nat :=
match n with
| 0 =>0
| S u=>u
end.

Cog < Theorem pred_Sn : forall m:nat, m = pred (S m).
Cog < Theorem eqg_add_S : forall n m:nat, S n =S m ->n = m.
Cog < Hint Immediate eqg_add_S : core.
Cog < Theorem not_eqg_S : forall n m:nat, n <> m -> S n <> S m.
Coqg < Definition IsSucc (n:nat) : Prop :=

match n with

| 0 => False
| S p => True

end.
Coqg < Theorem O_S : forall n:nat, 0 <> S n.
Cog < Theorem n_Sn : forall n:nat, n <> S n.
Cogq < Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| 0 =>m
| Sp=>S (p + m
end
where "n + m" := (plus n m) : nat_scope.
Cog < Lemma plus_n_O : forall n:nat, n =n + 0.
Cogq < Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Cog < Fixpoint mult (n m:nat) {struct n} : nat :=
match n with
| 0 => 0
| Sp=>m+p *xm
end
where "n » m" := (mult n m) : nat_scope.
Cog < Lemma mult_n_O : forall n:nat, 0 = n * 0.
Cog < Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).

Finally, it gives the definition of the usual orderings le, 1t, ge, and gt.

Cog < Inductive le (n:nat) : nat —-> Prop :=
| le_n : le n n
| le_S : forall m:nat, n <= m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Coqg < Definition 1t (n m:nat) := S n <= m.
Coqg < Definition ge (n m:nat) := m <= n.

Il
3
A
=

Cogq < Definition gt (n m:nat)
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Properties of these relations are not initially known, but may be required by the user from modules
Le and Lt. Finally, Peano gives some lemmas allowing pattern-matching, and a double induction
principle.

Cog < Theorem nat_case
forall (n:nat) (P:nat -> Prop),
P 0 —> (forall m:nat, P (S m)) —-> P n.

Cog < Theorem nat_double_ind
forall R:nat -> nat -> Prop,
(forall n:nat, R 0 n) -—>
(forall n:nat, R (S n) 0) -—>
(forall n m:nat, Rnm -> R (S n) (S m)) -> forall n m:nat, R n m.

3.1.6 Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction®.

Cog < Section Well_ founded.
Cog < Variable A : Type.
Cogq < Variable R : A -> A -> Prop.

Cog < Inductive Acc (x:A) : Prop :=
Acc_intro : (forall y:A, Ry x —> Acc y) —> Acc X.

Coqg < Lemma Acc_inv x : Acc x —-> forall y:A, Ry x —-> Acc y.

Coqg < Definition well_ founded := forall a:A, Acc a.
Cog < Hypothesis Rwf : well_founded.

Cog < Theorem well_founded_induction
forall P:A -> Set,
(forall x:A, (forall y:A, Ry x —> P y) -> P x) —-> forall a:A, P a.

Coqg < Theorem well_founded_ind
forall P:A -> Prop,
(forall x:A, (forall y:A, Ry x -> P y) —-> P x) —-> forall a:A, P a.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using
well-founded relations to justify termination. Assuming extensionality of the functional used for the
recursive call, the fixpoint equation can be proved.

Cog < Section FixPoint.
Cog < Variable P : A —-> Type.
Cog < Variable F : forall x:A, (forall y:A, Ry x -> P y) -> P x.

Cog < Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
F x (fun (y:A) (p:Ry x) => Fix F y (Acc_inv x r y p)).

Coqg < Definition Fix (x:A) := Fix_F x (Rwf x).

Cog < Hypothesis F_ext
forall (x:A) (f g:forall y:A, Ry x —> P vy),

5This is defined in module Wf . v

Coq Reference Manual, V8.7.0, October 18, 2017



114 3 The CoQ library

(forall (y:A) (p:Ry x), fyp=gyp) —>Fxf=FxdJg.

Cog < Lemma Fix_F_eq
forall (x:A) (r:Acc x),
F x (fun (y:A) (p:R vy x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.

Cog < Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix F x r = Fix_F x s.

Cogq < Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix vy).

Cog < End FixPoint.

Cog < End Well_founded.

3.1.7 Accessing the Type level

The basic library includes the definitions® of the counterparts of some data-types and logical quantifiers
at the Type level: negation, pair, and properties of identity.

Coq < Definition notT (A:Type) := A —-> False.

Cog < Inductive prodT (A B:Type) : Type := pairT (_:A) (_:B).

At the end, it defines data-types at the Type level.

3.1.8 Tactics

A few tactics defined at the user level are provided in the initial state’. They are listed at http:
//coqg.inria.fr/stdlib (paragraph Init, link Tactics).

3.2 The standard library

3.2.1 Survey

The rest of the standard library is structured into the following subdirectories:

6ThisisinmoduleLogic_Type.v
"This is in module Tactics.v
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Logic Classical logic and dependent equality

Arith Basic Peano arithmetic

PArith Basic positive integer arithmetic

NArith Basic binary natural number arithmetic

ZArith Basic relative integer arithmetic

Numbers Various approaches to natural, integer and cyclic numbers (currently axiomat-
ically and on top of 23! binary words)

Bool Booleans (basic functions and results)

Lists Monomorphic and polymorphic lists (basic functions and results), Streams (in-
finite sequences defined with co-inductive types)

Sets Sets (classical, constructive, finite, infinite, power set, etc.)

FSets Specification and implementations of finite sets and finite maps (by lists and
by AVL trees)

Reals Axiomatization of real numbers (classical, basic functions, integer part, frac-
tional part, limit, derivative, Cauchy series, power series and results,...)

Relations Relations (definitions and basic results)

Sorting Sorted list (basic definitions and heapsort correctness)

Strings 8-bits characters and strings

Wellfounded Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are
compiled at installation time. So they are directly accessible with the command Require (see Chap-
ter 6).

The different modules of the COQ standard library are described in the additional document
Library.dvi. They are also accessible on the WWW through the COQ homepage ®.

3.2.2 Notations for integer arithmetics

On Figure 3.4 is described the syntax of expressions for integer arithmetics. It is provided by requiring
and opening the module ZArith and opening scope Z_scope.

Figure 3.4 shows the notations provided by Z_scope. It specifies how notations are interpreted
and, when not already reserved, the precedence and associativity.

Cog < Require Import ZArith.

Cog < Check (2 + 3)%Z.

(2 + 3)%Z2
: Z

Cog < Open Scope Z_scope.

Cog < Check 2 + 3.
2 + 3
A

3.2.3 Peano’s arithmetic (nat)

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further
operations and results belong to other modules. For instance, the decidability of the basic predicates are
defined here. This is provided by requiring the module Arith.

Figure 3.5 describes notation available in scope nat_scope.

$http://coq.inria.fr
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Notation Interpretation Precedence | Associativity
< Z.1lt

X <=y Z.le

> Z.gt

X >=y Z.ge

x <y < z x <y /\Ny < z

X <y <= x <y /Ny <=2z

x <=y < x <=y /\y < z

X <=y <=z |x <=y /\y <=2z

_ 7= _ Z .compare 70 no
_ T _ Z.add

T _ Z.sub

ok Z .mul

_/ _ Z.div

_ mod 7 .modulo 40 no
- _ Z .0opp

_ N Z .pow

Figure 3.4: Definition of the scope for integer arithmetics (Z_scope)

Notation Interpretation

< _ 1t

X <=y le

> gt

X >=y ge

Xx <y < z x <y /\y < z
x <y <=z x <y /\y <=z
X <=y < z x <=y /\y < z
X <=y <=z |x<=y /\y <=z
_ t _ plus

- minus

— * _ mult

Figure 3.5: Definition of the scope for natural numbers (nat_scope)

3.2.4 Real numbers library
Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R_scope. This set
of notations is very similar to the notation for integer arithmetics. The inverse function was added.
Cog < Require Import Reals.

Cog < Check (2 + 3)%R.
(2 + 3)%R
: R

Cog < Open Scope R_scope.
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Notation Interpretation

< R1t

X <=y Rle

- > _ Rgt

X >=y Rge

X y < z x <y /\y < z
x <y <=z x <y /\y <=z
x <=y < z x <=y /\y < z
Xx <=y <=2z |x <=y /\y <=2z
. Rplus

- - _ Rminus

- * _ Rmult

_/ _ Rdiv

- _ Ropp

/ _ Rinv

_ " _ pow

Figure 3.6: Definition of the scope for real arithmetics (R_scope)

Cog < Check 2 + 3.
2 + 3

: R
Some tactics

In addition to the ring, field and fourier tactics (see Chapter 8) there are:

e discrR

Proves that a real integer constant ¢; is different from another real integer constant c;.

Cog < Require Import DiscrR.

Cog < Goal 5 <> 0.

Cog < discrR.
No more subgoals.

* split_Rabs allows unfolding the Rabs constant and splits corresponding conjunctions.

Cog < Require Import SplitAbsolu.

Cog < Goal forall x:R, x <= Rabs x.

Cog < intro; split_Rabs.
2 subgoals

X : R
HIt : x < 0
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Notation ‘ Interpretation ‘ Precedence ‘ Associativity
_ right
right

cons 60

app 60

Figure 3.7: Definition of the scope for lists (1ist_scope)

X <= - x
subgoal 2 is:
X <= X

* split_Rmult splits a condition that a product is non null into subgoals corresponding to the
condition on each operand of the product.

Cog < Require Import SplitRmult.

Cog < Goal forall x y z:R,

Cog < intros;
3 subgoals

split_Rmult.

X * vy x z <> 0.

x <> 0
subgoal 2 is:
y <> 0
subgoal 3 is:
z <> 0

These tactics has been written with the tactic language Ltac described in Chapter 9.

3.2.5 Listlibrary

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring

module List.
It defines the following notions:

length
head

tail

app

rev

nth

map
flat_map
fold_left
fold_right

length

first element (with default)

all but first element

concatenation

reverse

accessing n-th element (with default)
applying a function

applying a function returning lists
iterator (from head to tail)

iterator (from tail to head)

Table show notations available when opening scope 1ist__scope.
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3.3 Users’ contributions

Numerous users’ contributions have been collected and are available at URL http://coqg.inria.
fr/contribs/. On this web page, you have a list of all contributions with informations (author,
institution, quick description, etc.) and the possibility to download them one by one. You will also find
informations on how to submit a new contribution.

Coq Reference Manual, V8.7.0, October 18, 2017


http://coq.inria.fr/contribs/
http://coq.inria.fr/contribs/

120 3 The CoQ library

Coq Reference Manual, V8.7.0, October 18, 2017



Chapter 4

Calculus of Inductive Constructions

The underlying formal language of COQ is a Calculus of Inductive Constructions (C1C) whose inference
rules are presented in this chapter. The history of this formalism as well as pointers to related work are
provided in a separate chapter; see Credits.

4.1 The terms

The expressions of the CIC are terms and all terms have a type. There are types for functions (or
programs), there are atomic types (especially datatypes)... but also types for proofs and types for the
types themselves. Especially, any object handled in the formalism must belong to a type. For instance,
universal quantification is relative to a type and takes the form “for all x of type T, P”. The expression
“x of type T” is written “x:T”. Informally, “x:T” can be thought as “x belongs to T”.

The types of types are sorts. Types and sorts are themselves terms so that terms, types and sorts are
all components of a common syntactic language of terms which is described in Section 4.1.2 but, first,
we describe sorts.

4.1.1 Sorts

All sorts have a type and there is an infinite well-founded typing hierarchy of sorts whose base sorts are
Prop and Set.

The sort Prop intends to be the type of logical propositions. If M is a logical proposition then it
denotes the class of terms representing proofs of M. An object m belonging to M witnesses the fact
that M is provable. An object of type Prop is called a proposition.

The sort Set intends to be the type of small sets. This includes data types such as booleans and
naturals, but also products, subsets, and function types over these data types.

Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type.
Because assuming simply that Set has type Set leads to an inconsistent theory [25], the language of C1C
has infinitely many sorts. There are, in addition to Set and Prop a hierarchy of universes Type(:) for
any integer ¢.

Like Set, all of the sorts Type(i) contain small sets such as booleans, natural numbers, as well as
products, subsets and function types over small sets. But, unlike Set, they also contain large sets, namely
the sorts Set and Type(j) for j < 4, and all products, subsets and function types over these sorts.

Formally, we call S the set of sorts which is defined by:

S = {Prop, Set, Type(i) | i € N}
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Their properties, such as: Prop:Type(1), Set:Type(1), and Type(i):Type(i + 1), are defined in Sec-
tion 4.4.

The user does not have to mention explicitly the index ¢ when referring to the universe Type(4). One
only writes Type. The system itself generates for each instance of Type a new index for the universe
and checks that the constraints between these indexes can be solved. From the user point of view we
consequently have Type:Type. We shall make precise in the typing rules the constraints between the
indexes.

Implementation issues In practice, the Type hierarchy is implemented using algebraic universes.
An algebraic universe v is either a variable (a qualified identifier with a number) or a successor of
an algebraic universe (an expression u + 1), or an upper bound of algebraic universes (an expression
maxz(uy, ..., up)), or the base universe (the expression 0) which corresponds, in the arity of template
polymorphic inductive types (see Section 4.5.2), to the predicative sort Set. A graph of constraints
between the universe variables is maintained globally. To ensure the existence of a mapping of the
universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions that
violate the acyclicity of the graph of constraints results in a Universe inconsistency error (see
also Section 2.10).

4.1.2 Terms

Terms are built from sorts, variables, constants, abstractions, applications, local definitions, and prod-
ucts. From a syntactic point of view, types cannot be distinguished from terms, except that they cannot
start by an abstraction or a constructor. More precisely the language of the Calculus of Inductive Con-
structions is built from the following rules.

1. the sorts Set, Prop, Type(s) are terms.
2. variables, hereafter ranged over by letters x, y, etc., are terms
3. constants, hereafter ranged over by letters c, d, etc., are terms.

4. if x is a variable and T, U are terms then V z : T, U (forall z : T, U in COQ concrete syntax) is a
term. If x occurs in U,V x : T, U reads as “for all x of type T, U”. As U depends on z, one says
thatV z : T, U is a dependent product. If x does not occur in U thenV x : T', U reads as “if T then
U”. A non dependent product can be written: T' — U.

5. if x is a variable and T, u are terms then Az : T. w (fun 2 : T" => u in COQ concrete syntax) is
a term. This is a notation for the A-abstraction of A-calculus [8]. The term Az : T u is a function
which maps elements of 1" to the expression .

6. if t and u are terms then (¢ ) is a term (¢ u in COQ concrete syntax). The term (¢ u) reads as “t
applied to u”.

7. if z is a variable, and ¢, T' and u are terms then let x := ¢ : T in w is a term which denotes the
term v where the variable x is locally bound to ¢ of type 7". This stands for the common “let-in”
construction of functional programs such as ML or Scheme.

Free variables. The notion of free variables is defined as usual. In the expressions Az : 7. U and
Vx : T, U the occurrences of x in U are bound.
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Substitution. The notion of substituting a term # to free occurrences of a variable x in a term u is
defined as usual. The resulting term is written u{x/t}.

The logical vs programming readings. The constructions of the CIC can be used to express both
logical and programming notions, accordingly to the Curry-Howard correspondence between proofs
and programs, and between propositions and types [38, 81, 39].

For instance, let us assume that nat is the type of natural numbers with zero element written 0 and
that True is the always true proposition. Then — is used both to denote nat — nat which is the type
of functions from nat to nat, to denote True — True which is an implicative proposition, to denote
nat — Prop which is the type of unary predicates over the natural numbers, etc.

Let us assume that mult is a function of type nat — nat — nat and eqgnat a predicate of type
nat — nat — Prop. The A-abstraction can serve to build “ordinary” functions as in Az : nat.(mult z z)
(i.e. fun z : nat => mult = z in COQ notation) but may build also predicates over the natural numbers.
For instance Az : nat.(eqnat = 0) (i.e. fun z : nat => eqgnat = 0 in COQ notation) will represent the
predicate of one variable x which asserts the equality of = with 0. This predicate has type nat — Prop
and it can be applied to any expression of type nat, say ¢, to give an object P ¢ of type Prop, namely a
proposition.

Furthermore forall z : nat, P x will represent the type of functions which associate to each nat-
ural number n an object of type (P n) and consequently represent the type of proofs of the formula
“Yx. P(x)”.

4.2 Typing rules

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on a
global environment and a local context.

Local context. A local context is an ordered list of local declarations of names which we call vari-
ables. The declaration of some variable x is either a local assumption, written z : T (T is a type) or
a local definition, written z := t : T. We use brackets to write local contexts. A typical example is
[ : T;y := u : U;z : V]. Notice that the variables declared in a local context must be distinct. If T’
declares some x, we write z € ['. By writing (z : T') € I' we mean that either = : T" is an assumption
in I" or that there exists some ¢ such that x := ¢ : T" is a definition in I'. If I defines some z :=¢ : T,
we also write (¢ := t : T') € I'. For the rest of the chapter, the I' :: (y : T") denotes the local context
I" enriched with the local assumption y : T'. Similarly, I :: (y := ¢ : T') denotes the local context I’
enriched with the local definition (y := ¢ : T'). The notation [] denotes the empty local context. By
I'1; ', we mean concatenation of the local context I'; and the local context I's.

Global environment. A global environment is an ordered list of global declarations. Global decla-
rations are either global assumptions or global definitions, but also declarations of inductive objects.
Inductive objects themselves declare both inductive or coinductive types and constructors (see Sec-
tion 4.5).

A global assumption will be represented in the global environment as (¢ : T') which assumes the
name c to be of some type 1. A global definition will be represented in the global environment as
c := t : T which defines the name c to have value ¢ and type T'. We shall call such names constants.
For the rest of the chapter, the F;c : T denotes the global environment F enriched with the global
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assumption ¢ : 7'. Similarly, F'; ¢ := ¢ : T denotes the global environment F enriched with the global
definition (¢ :=¢: T).

The rules for inductive definitions (see Section 4.5) have to be considered as assumption rules to
which the following definitions apply: if the name c is declared in £, we write ¢ € £ and if ¢ : T or
c:=t: T isdeclared in E, we write (¢: T) € E.

Typing rules. In the following, we define simultaneously two judgments. The first one E[I'| F ¢ : T
means the term ¢ is well-typed and has type 7' in the global environment F and local context I". The
second judgment WF (E)[I'] means that the global environment E is well-formed and the local context
I" is a valid local context in this global environment.

A term t is well typed in a global environment E iff there exists a local context I" and a term 7" such
that the judgment E[I'] - ¢ : T can be derived from the following rules.

W-Empty
WE(DI]

W-Local-Assum
ETFT:s s€8§ z¢T

WF(E) =2 (z:T)]

W-Local-Def
ElFt:T xz¢0

WF(E)L = (z:=t:T)]

W-Global-Assum
E|FT:s s€8 c¢¢FE

WF(E;c:T)]

W-Global-Def
ElFt:T c¢ E

WF(E;c:=t:T)]

Ax-Pr
" WF(E)[T]
E[T'] F Prop : Type(1)
Ax-Set WF(B)[T]
E[I'l - Set : Type(1)
Ax-
e WF(E)[T]
E[T] + Type(i) : Type(i + 1)
Var
WFE)] (z:T)eTl or (x:=t:T) €T forsome ¢
ElFz:T
Const

WF(E)I] (¢c:T)€ FE or (c:=t:T) € E for some t
EllFc:T
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Prod-Prop
ElFT:s se€8 El':(z:T)|FU:Prop
El'lFYz:T,U : Prop
Prod-Set
El'MFT:s se{Prop,Set} FElI':(z:T)|FU:Set
EllFVYz:T,U : Set
Prod-Type
ElIF-T:Type(i) E[':(z:T)]F U :Type(s)
E -V :T,U : Type(i)
Lam
ElTFYz:T,U:s ETl:u(z:T)|Ft:U
E|F e :T.t:Va:T,U
App
ElrFt:Vz:UT Eltru:U
ElF (tu): T{z/u}
Let

ElNFt:T El:(z:=t:T))Fu:U
El'lFletz:=t:Tinu:U{z/t}

Remark: Prod; and Prods typing-rules make sense if we consider the semantic difference between
Prop and Set:

* All values of a type that has a sort Set are extractable.

 No values of a type that has a sort Prop are extractable.

Remark: We may have let 2 := ¢ : T in u well-typed without having ((A\z : T. u) ¢) well-typed (where
T is a type of t). This is because the value ¢ associated to £ may be used in a conversion rule (see
Section 4.3).

4.3 Conversion rules

In CIc, there is an internal reduction mechanism. In particular, it can decide if two programs are inten-
tionally equal (one says convertible). Convertibility is described in this section.

B-reduction. We want to be able to identify some terms as we can identify the application of a function
to a given argument with its result. For instance the identity function over a given type 1" can be written
Az : T. z. In any global environment £ and local context [', we want to identify any object a (of type
T') with the application ((Az : T. x) a). We define for this a reduction (or a conversion) rule we call 3:

ET]F ((Az:T.t) u)vg t{z/u}

We say that t{z/u} is the S-contraction of ((Az : T. t) u) and, conversely, that ((Az : T. t) u) is the
B-expansion of t{x /u}.

According to S-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental
properties such as confluence, strong normalization, subject reduction. These results are theoretically of
great importance but we will not detail them here and refer the interested reader to [24].
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t-reduction. A specific conversion rule is associated to the inductive objects in the global environment.
We shall give later on (see Section 4.5.3) the precise rules but it just says that a destructor applied to
an object built from a constructor behaves as expected. This reduction is called ¢-reduction and is more
precisely studied in [126, ].

o-reduction. We may have variables defined in local contexts or constants defined in the global envi-
ronment. It is legal to identify such a reference with its value, that is to expand (or unfold) it into its
value. This reduction is called J-reduction and shows as follows.

EllFzvst if(x:=t:T)el EllFerst if(c:=t:T)€eFE

(-reduction. Co0Q allows also to remove local definitions occurring in terms by replacing the defined
variable by its value. The declaration being destroyed, this reduction differs from J-reduction. It is
called (-reduction and shows as follows.

ElFletz:=uintoe t{x/u}

n-expansion. Another important concept is -expansion. It is legal to identify any term ¢ of functional
type Vz : T, U with its so-called n-expansion Az : T (¢ x) for z an arbitrary variable name fresh in ¢.

Remark: We deliberately do not define n-reduction:
e T (tx) fot

This is because, in general, the type of ¢ need not to be convertible to the type of Az : T. (¢ z). E.g., if
we take f such that:

f o Vo :Type(2), Type(1)
then
Az Type(1), (fz) : Vax:Type(l), Type(1)

‘We could not allow
A s Type(l),(fz) fy f

because the type of the reduced term Vz : T'ype(2), T'ype(1) would not be convertible to the type of the
original term Vz : Type(1), Type(1).

Convertibility.  Let us write E[I'] - ¢ > u for the contextual closure of the relation ¢ reduces to u in
the global environment £ and local context I" with one of the previous reduction 3, ¢, § or (.

We say that two terms ¢ and ¢y are Std(n-convertible, or simply convertible, or equivalent, in the
global environment E and local context I' iff there exist terms u; and ug such that E[T] F ;> ... >y
and E[I'] F ta> ... > ug and either u; and w9 are identical, or they are convertible up to n-expansion,
i.e. upis Az : T. u) and ug z is recursively convertible to ), or, symmetrically, ug is Az : T. uh and
uy x is recursively convertible to u. We then write E[I'] - 1 =gg,¢y to.

Apart from this we consider two instances of polymorphic and cumulative (see Chap-
ter 29) inductive types (see below) convertible E[I'|Ftwi ... wm =gseptw)...w), if we
have subtypings (see below) in both directions, ie., FE[T]Ftwi...wy <gsemtw)...w,
and EFtw) ... w;, <gsentwi... wpn. Furthermore, we consider
ElF cvr...vm =gsicy ¢ 0] ...v,, convertible if FE[I']F v; =gs,c, v; and we have that ¢ and
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¢’ are the same constructors of different instances the same inductive types (differing only in universe

levels) such that E[T'] F cvy...vp : t wy ... wy and B[ F ¢ 0] .. 0], : ¢ w] ... w), and we have

E[F] Fitwy...wpy :gngntwll...w;n.

The convertibility relation allows introducing a new typing rule which says that two convertible
well-formed types have the same inhabitants.

4.4 Subtyping rules
At the moment, we did not take into account one rule between universes which says that any term in a
universe of index ¢ is also a term in the universe of index ¢ + 1 (this is the cumulativity rule of CIC). This
property extends the equivalence relation of convertibility into a subtyping relation inductively defined
by:

1. if E[F] Ft =B5ucn U then E[F] Ft SB&CW U,

2. ifi < jthen E[I'] F Type(i) <gs.cy Type(s),

3. for any ¢, E[I'] - Set <gs.cpy Type(i),

4. ET'| F Prop <gs.¢c, Set, hence, by transitivity, E[I'] - Prop <gs,¢c, Type(i), for any ¢

5. if E[F] T =pBduln U and E[F o (:L‘ : T)] =T S/BMC?? U’ then
ElFYz:T, T <gsuicn YV : U, U'.

6. if Ind[p](I'; :=I'¢) is a universe polymorphic and cumulative (see Chapter 29) inductive type

(see below) and (¢ : VT'p, VT gy (), S) € Ty and (2 : VF’P,VF’AW(U, 8') € Ty are two different
instances of the same inductive type (differing only in universe levels) with constructors

[Cl : VFP,VTLl e lenl,t UV11---V1ms---5Ck - VFP, VTk,l e Tk,nka t Unt--- 'Un,m]
and
. / !/ !/ !0 / . . . !/ ! ! ! /
[Cl . VI‘P’ \VITLI o Tl,nl’t /Ul,l PR U17m7 o e 7Ck . VFP7VT]€71 .« e Tk‘,TLk7t /UTL,I PR 'Un’m]

respectively then E[T'] F ¢ w ... wp <gsicn t w) ... w,, (notice that ¢ and ¢’ are both fully ap-
plied, i.e., they have a sort as a type) if E[T'] - w; =gg,¢cn w) for 1 <4 < m and we have

E[TTE T,; <pawen Ty and E[TTE Ai <gicn Aj
where I' 4y = [a1 : Aryar 2 Al and T gy = [a1 2 A a1 2 Aj].

The conversion rule up to subtyping is now exactly:

Conv
ETFU:s ETFt:T E[FT <gsen U
EL|Ft:U
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Normal form. A term which cannot be any more reduced is said to be in normal form. There
are several ways (or strategies) to apply the reduction rules. Among them, we have to mention
the head reduction which will play an important role (see Chapter 8). Any term can be written as
Axy :Ty. .oz Ty (to t1 ... ty) where ¢ is not an application. We say then that ¢ is the head of t.
If we assume that g is Az : 7. ug then one step of S-head reduction of ¢ is:

Axy Ty ooz T Ax Tougty .. tn) > Moy Th) .. (g 2 T)- (wo{z/t1} ta. .. ty)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads
to the -head normal form of t:

to...p Az Ty o Axg s Ty (Vug .. uy)

where v is not an abstraction (nor an application). Note that the head normal form must not be confused
with the normal form since some w; can be reducible. Similar notions of head-normal forms involving
d, ¢ and ¢ reductions or any combination of those can also be defined.

4.5 Inductive Definitions

Formally, we can represent any inductive definition as Ind[p](I'; := T'¢ ) where:
* T'; determines the names and types of inductive types;
* T'¢ determines the names and types of constructors of these inductive types;
* p determines the number of parameters of these inductive types.

These inductive definitions, together with global assumptions and global definitions, then form the global
environment. Additionally, for any p there always exists I'p = [a1 : Ai;...;ap @ Ap] such that each
Tin (¢t : T) € T'; U can be written as: VI'p, T” where I'p is called the context of parameters.
Furthermore, we must have that each T in (¢ : T) € T’y can be written as: VI'p, VT 4,y.(), S Where
I prr(¢) 1s called the Arity of the inductive type ¢ and S is called the sort of the inductive type ?.

Examples The declaration for parameterized lists is:

nil:vA : Set, list A
cons:VA : Set, A — list A — list A

which corresponds to the result of the COQ declaration:

Ind [1] ([Iist : Set — Set] :=

Cog < Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

The declaration for a mutual inductive definition of tree and forest is:

tree:Set

node:forest — tree
Ind ] [ forest:Set ] B

emptyf.forest
consf:tree — forest — forest

which corresponds to the result of the COQ declaration:
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Cog < Inductive tree : Set :=
node : forest —-> tree
with forest : Set :=
| emptyf : forest
| consf : tree —-> forest -> forest.

The declaration for a mutual inductive definition of even and odd is:

even_O:even O

even_S:Vn : nat,odd n — even (S n)
odd_S:Vn : nat,even n — odd (S n)

even:nat — Prop

Ind [1] odd:nat — Prop

which corresponds to the result of the COQ declaration:

Cog < Inductive even : nat —-> Prop :=
| even_O : even 0
| even_S : forall n, odd n —> even (S n)
with odd : nat -> Prop :=
| odd_S : forall n, even n —> odd (S n).

4.5.1 Types of inductive objects

We have to give the type of constants in a global environment £ which contains an inductive declaration.

Ind
WEF(E)[T] Indjp](T';:=T¢) € E (a:A)eTy

E[[Fa:A

Constr
WF(E)[T] Ind[p](T';:=T¢) € E (c: C)eTl¢

El'lFe:C

Example. Provided that our environment ¥ contains inductive definitions we showed before, these
two inference rules above enable us to conclude that:

E[I'l F even : nat — Prop

E[I']+ odd: nat — Prop

E[I'' - even_O :even O

E[l'lF even_S:Vn:nat,odd n — even (Sn)
E[I''F odd_S:Vn:nat,evenn — odd (S n)

4.5.2 Well-formed inductive definitions

We cannot accept any inductive declaration because some of them lead to inconsistent systems. We
restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving the formal
rules, we need a few definitions:

Definition A type 7' is an arity of sort s if it converts to the sort s or to a product V « : T, U with U an
arity of sort s.

Examples A — Set is an arity of sort Set. V A : Prop, A — Prop is an arity of sort Prop.
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Definition A type 7' is an arity if there is a s € & such that 7 is an arity of sort s.
Examples A — SetandV A : Prop, A — Prop are arities.

Definition We say that T is a type of constructor of I in one of the following two cases:
e Tis (Itl... tn)

e TisVx : U, T where T' is also a type of constructor of I

Examples nat and nat — nat are types of constructors of nat.
VA : Type,list A and VA : Type, A — list A — list A are constructors of list.

Definition The type of constructor 1" will be said to satisfy the positivity condition for a constant X in
the following cases:

e T=(X1...t,)and X does not occur free in any ¢;

e T'=Vx:UYV and X occurs only strictly positively in U and the type V satisfies the positivity
condition for X

The constant X occurs strictly positively in T in the following cases:
* X does not occur in T’
* T converts to (X ¢ ... t,) and X does not occur in any of ¢;
* T converts to V z : U,V and X does not occur in type U but occurs strictly positively in type V'

* T converts to ([ ay... Gy t1... t,) where [ is the name of an inductive declaration of
the form Ind[m](I: A:=c1:Vp1: P1,...Vpp : Py, Ch;...5¢ 1 V1t Pry. . .Yppy 2 Py, Cr)
(in particular, it is not mutually defined and it has m parameters) and X does not occur in any
of the ¢;, and the (instantiated) types of constructor C;{p;/a;};j—1..m of I satisfy the nested posi-
tivity condition for X

The type of constructor T of I satisfies the nested positivity condition for a constant X in the following
cases:

e T'=(Ibi...byui... up),Iisaninductive definition with 7 parameters and X does not occur
in any u;

e T'=Vz: UV and X occurs only strictly positively in U and the type V satisfies the nested
positivity condition for X

For instance, if one considers the type

Inductive tree (A:Type) : Type :=
| leaf : list A
| node : A -> (nat -> tree A) -> tree A
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Then every instantiated constructor of list A satisfies the nested positivity condition for list

— concerning type list A of constructor nil:
Type list A of constructor nil satisfies the positivity condition for list
because list does not appear in any (real) arguments of the type of that constructor
(primarily because list does not have any (real) arguments) ... (bullet 1)

— concerning type V A — list A — list A of constructor cons:
Type V A : Type, A — list A — list A of constructor cons
satisfies the positivity condition for list because:

— list occurs only strictly positively in Type ... (bullet 3)

— list occurs only strictly positively in A ... (bullet 3)

— list occurs only strictly positively in list A ... (bullet 4)

— list satisfies the positivity condition for list A ... (bullet 1)

Correctness rules. We shall now describe the rules allowing the introduction of a new inductive defi-
nition.

W-Ind Let E be a global environment and I'p,I';,'c are contexts such that I'; is [[;
VFP,Al; PR Ik : VFP, Ak] and FC is [Cl : VFP, 01; a3 Cp VFP, Cn]

(E[CplF Aj:si)jm1k (B[LnTplE Citsg)izin
WF (E; Ind[p](T'; :=Tc))[I]

provided that the following side conditions hold:

* k> 0and all of I; and ¢; are distinct names for j =1...kand7=1...n,
* p is the number of parameters of Ind(I'; :=I'¢) and I'p is the context of parameters,
 for j =1...k we have that A; is an arity of sort s; and I; ¢ E,

 for7 = 1...7n we have that Cj is a type of constructor of I,, which satisfies the positivity
condition for I ... Iy and¢; ¢ ' U E.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort
of the type of its constructors which will always be satisfied for the impredicative sort Prop but may
fail to define inductive definition on sort Set and generate constraints between universes for inductive
definitions in the Type hierarchy.

Examples. It is well known that existential quantifier can be encoded as an inductive definition. The
following declaration introduces the second-order existential quantifier 3.X.P(X).

Cog < Inductive exProp (P:Prop->Prop) : Prop :=
exP_intro : forall X:Prop, P X -> exProp P.

The same definition on Set is not allowed and fails:
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Cog < Fail Inductive exSet (P:Set->Prop) : Set :=
exS_intro : forall X:Set, P X —-> exSet P.

The command has indeed failed with message:

Large non-propositional inductive types must be in Type.

It is possible to declare the same inductive definition in the universe Type. The exType inductive
definition has type (Type; — Prop) — Type; with the constraint that the parameter X of exT_intro
has type Type,, with k£ < j and £ < 3.

Cog < Inductive exType (P:Type->Prop) : Type :=
exT_intro : forall X:Type, P X —> exType P.

Template polymorphism. Inductive types declared in Type are polymorphic over their arguments in
Type. If A is an arity of some sort and s is a sort, we write A/, for the arity obtained from A by replacing
its sort with s. Especially, if A is well-typed in some global environment and local context, then A/, is
typable by typability of all products in the Calculus of Inductive Constructions. The following typing
rule is added to the theory.

Ind-Family Let Ind[p](T'; :=T'¢) be an inductive definition. Let T'p = [p1 : Pi;...;pp : P,] be
its context of parameters, I'; = [} : VI'p, Ay;...; Iy : VD' p, Ay] its context of definitions and
T'c =[c1:VIp,Ch;...;¢cn 2 VI'p, Cy] its context of constructors, with ¢; a constructor of Iy,.

Let m < p be the length of the longest prefix of parameters such that the m first arguments
of all occurrences of all I; in all C}, (even the occurrences in the hypotheses of C}) are exactly
applied to p; ... py, (m is the number of recursively uniform parameters and the p —m remaining
parameters are the recursively non-uniform parameters). Let q1, ..., g, with0 < r < m, be a
(possibly) partial instantiation of the recursively uniform parameters of I'p. We have:

Ind[p](FI = Fc) ekl
(ElFa:P)i=1.,

(B F P} <gsuen P{pu/qutu=1..1—1)i=1..r
1<5<k

ElFIiq ... ¢ :Vprg1: Pryas .o 5pp 2 Byl (Aj)/Sj

provided that the following side conditions hold:

* T'pr is the context obtained from I p by replacing each P that is an arity with P/ for 1 <1 <
r (notice that P arity implies P/ arity since E[] - P/ <gs,cn P{pu/qu}u=1..1-1);

o there are sorts s;, for 1 < 4 < k such that, for I'yy = [I; : VFPI,(Al)/sl;...;Ik :
VFp/, (Ak?)/sk] we have (E[Fp; Fp/] [ Cz : Sqi)izlwn;

* the sorts s; are such that all eliminations, to Prop, Set and Type(3), are allowed (see Sec-
tion 4.5.3).

Notice that if I; ¢; ... g, is typable using the rules Ind-Const and App, then it is typable using the rule
Ind-Family. Conversely, the extended theory is not stronger than the theory without Ind-Family. We get
an equiconsistency result by mapping each Ind[p](I'; := I'¢ ) occurring into a given derivation into as
many different inductive types and constructors as the number of different (partial) replacements of sorts,
needed for this derivation, in the parameters that are arities (this is possible because Ind[p](I'; :=I'¢)
well-formed implies that Ind[p](I'y := "¢ ) is well-formed and has the same allowed eliminations,
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where I'r is defined as above and I'cv = [¢1 : VI'pr, C1;...5¢p @ VI pr, Cp]). That is, the changes in
the types of each partial instance q; ... g, can be characterized by the ordered sets of arity sorts among
the types of parameters, and to each signature is associated a new inductive definition with fresh names.
Conversion is preserved as any (partial) instance [ q; ... g, or C;qy ... g is mapped to the names
chosen in the specific instance of Ind[p](I'; :=T'¢).

In practice, the rule Ind-Family is used by CoQ only when all the inductive types of the inductive
definition are declared with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over
the parameters whose type is an arity of sort in the Type hierarchy. The sort s; are chosen canonically
so that each s; is minimal with respect to the hierarchy Prop C Set,, C Type where Set,, is predicative
Set. More precisely, an empty or small singleton inductive definition (i.e. an inductive definition of
which all inductive types are singleton — see paragraph 4.5.3) is set in Prop, a small non-singleton
inductive type is set in Set (even in case Set is impredicative — see Section 4.8), and otherwise in the
Type hierarchy.

Note that the side-condition about allowed elimination sorts in the rule Ind-Family is just to avoid

to recompute the allowed elimination sorts at each instance of a pattern-matching (see section 4.5.3). As
an example, let us consider the following definition:

Cog < Inductive option (A:Type) : Type :=
| None : option A
| Some : A —-> option A.

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types
are arities of a sort in the Type hierarchy. Here, the parameter A has this property, hence, if option
is applied to a type in Set, the result is in Set. Note that if option is applied to a type in Prop, then,
the result is not set in Prop but in Set still. This is because option is not a singleton type (see
section 4.5.3) and it would lose the elimination to Set and Type if set in Prop.

Cog < Check (fun A:Set => option A).
fun A : Set => option A
Set —> Set

Cog < Check (fun A:Prop => option A).
fun A : Prop => option A
: Prop —-> Set

Here is another example.
Cog < Inductive prod (A B:Type) : Type := pair : A -> B -> prod A B.

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice
to at least one type in Set and none in Type, and in Type otherwise. In all cases, the three kind of
eliminations schemes are allowed.

Cog < Check (fun A:Set => prod A).
fun A : Set => prod A
Set —> Type —-> Type

Cog < Check (fun A:Prop => prod A A).
fun A : Prop => prod A A
: Prop —> Prop

Cog < Check (fun (A:Prop) (B:Set) => prod A B).
fun (A : Prop) (B : Set) => prod A B
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: Prop —-> Set —-> Set
Cog < Check (fun (A:Type) (B:Prop) => prod A B).

fun (A : Type) (B : Prop) => prod A B
Type —> Prop —> Type

Remark: Template polymorphism used to be called “sort-polymorphism of inductive types” before
universe polymorphism (see Chapter 29) was introduced.

4.5.3 Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have
to say how to use an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them
are logically equivalent but not always equivalent from the computational point of view or from the user
point of view.

From the computational point of view, we want to be able to define a function whose domain is an
inductively defined type by using a combination of case analysis over the possible constructors of the
object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing
reduction, we cannot accept any sort of recursion (even terminating). So the basic idea is to restrict
ourselves to primitive recursive functions and functionals.

For instance, assuming a parameter A : Set exists in the local context, we want to build a function
length of type list A — nat which computes the length of the list, so such that (length (nil A)) = O
and (length (cons A a 1)) = (S (length [)). We want these equalities to be recognized implicitly and
taken into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want
to capture the fact that we do not have any other way to build an object in this type. So when trying
to prove a property about an object m in an inductive definition it is enough to enumerate all the cases
where m starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra property
that we have built the smallest fixed point of this recursive equation. This says that we are only ma-
nipulating finite objects. This analysis provides induction principles. For instance, in order to prove
Vi : list A, (has_length Al (length 7)) it is enough to prove:

* (has_length A (nil A) (length (nil A)))

e Va: A,V :list A, (has_length Al (length 1)) —
— (has_length A (cons A a 1) (length (cons A a [)))

which given the conversion equalities satisfied by length is the same as proving:
* (has_length A (nil A) O)

* Va: A,Vi:list A, (has_length Al (length [)) —
— (has_length A (cons A a 1) (S (length [)))

One conceptually simple way to do that, following the basic scheme proposed by Martin-Lof in his
Intuitionistic Type Theory, is to introduce for each inductive definition an elimination operator. At the
logical level it is a proof of the usual induction principle and at the computational level it implements a
generic operator for doing primitive recursion over the structure.
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But this operator is rather tedious to implement and use. We choose in this version of COQ to
factorize the operator for primitive recursion into two more primitive operations as was first suggested
by Th. Coquand in [28]. One is the definition by pattern-matching. The second one is a definition by
guarded fixpoints.

The match...with ...end construction.

The basic idea of this operator is that we have an object m in an inductive type I and we want to
prove a property which possibly depends on m. For this, it is enough to prove the property for m =
(¢; w1 ... up,;) for each constructor of 1. The COQ term for this proof will be written:

match m with (61 T11 --- :Elpl) = f1 ‘ AN ’ (Cn Tpl --- xnpn) = fn end

In this expression, if m eventually happens to evaluate to (¢; u; ... up,) then the expression will behave
as specified in its 4-th branch and it will reduce to f; where the x;1...x;),, are replaced by the u; ... uy,
according to the (-reduction.

Actually, for type-checking a match. . . with. . . end expression we also need to know the predicate P
to be proved by case analysis. In the general case where I is an inductively defined n-ary relation, P is a
predicate over .+ 1 arguments: the n first ones correspond to the arguments of I (parameters excluded),
and the last one corresponds to object m. COQ can sometimes infer this predicate but sometimes not.
The concrete syntax for describing this predicate uses the as. . .in...return construction. For instance,
let us assume that I is an unary predicate with one parameter and one argument. The predicate is made
explicit using the syntax:

match m as z in I _areturn P with (¢; 211 ... 1p,) = f1| ... | (cn Zn1 - Tnp,) = frend

The as part can be omitted if either the result type does not depend on m (non-dependent elimination)
or m is a variable (in this case, m can occur in P where it is considered a bound variable). The in
part can be omitted if the result type does not depend on the arguments of /. Note that the arguments
of I corresponding to parameters must be _, because the result type is not generalized to all possible
values of the parameters. The other arguments of / (sometimes called indices in the literature) have to
be variables (a above) and these variables can occur in P. The expression after in must be seen as an
inductive type pattern. Notice that expansion of implicit arguments and notations apply to this pattern.
For the purpose of presenting the inference rules, we use a more compact notation:

case(m, (Aax. P),Az11 ... Z1p,- fi| .. | AZp1oZnp,- fn)

Allowed elimination sorts. An important question for building the typing rule for match is what can
be the type of Aax. P with respect to the type of m. If m : I and I : A and Aax. P : B then by
[I : A|B] we mean that one can use Aaz. P with m in the above match-construct.

Notations. The [I : A|B] is defined as the smallest relation satisfying the following rules: We write
[I|B] for [I : A|B] where A is the type of I.

The case of inductive definitions in sorts Set or Type is simple. There is no restriction on the sort of
the predicate to be eliminated.

Prod
[(I z): A'|B']

[I:Vx: A AVz: A, B
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Set & Type
s1 € {Set, Type(j)} s2 €8
[ : 51| — s9]

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of
this sort. The only harmless allowed elimination, is the one when predicate P is also of sort Prop.

Prop
[I : Prop|I — Prop]

Prop is the type of logical propositions, the proofs of properties P in Prop could not be used for
computation and are consequently ignored by the extraction mechanism. Assume A and B are two
propositions, and the logical disjunction A V B is defined inductively by:

Cog < Inductive or (A B:Prop) : Prop :=
or_introl : A —> or A B | or_intror : B -> or A B.

The following definition which computes a boolean value by case over the proof of or A B is not
accepted:

Cog < Fail Definition choice (A B: Prop) (x:or A B) :=
match x with or_introl _ _ a => true | or_intror _ _ b => false end.
The command has indeed failed with message:
Incorrect elimination of " in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.

n n

X

From the computational point of view, the structure of the proof of (or A B) in this term is needed
for computing the boolean value.

In general, if I has type Prop then P cannot have type I — Set, because it will mean to build
an informative proof of type (P m) doing a case analysis over a non-computational object that will
disappear in the extracted program. But the other way is safe with respect to our interpretation we can
have I a computational object and P a non-computational one, it just corresponds to proving a logical

property of a computational object.

In the same spirit, elimination on P of type I — Type cannot be allowed because it trivially implies
the elimination on P of type I — Set by cumulativity. It also implies that there are two proofs of
the same property which are provably different, contradicting the proof-irrelevance property which is
sometimes a useful axiom:

Cog < Axiom proof_irrelevance : forall (P : Prop) (xy : P), x=y.
proof_irrelevance is declared

The elimination of an inductive definition of type Prop on a predicate P of type I — Type leads to a
paradox when applied to impredicative inductive definition like the second-order existential quantifier
exProp defined above, because it give access to the two projections on this type.

Empty and singleton elimination There are special inductive definitions in Prop for which more
eliminations are allowed.

Prop-extended
1 is an empty or singleton definition s € §

[{ : Prop|l — s]
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A singleton definition has only one constructor and all the arguments of this constructor have type Prop.
In that case, there is a canonical way to interpret the informative extraction on an object in that type,
such that the elimination on any sort s is legal. Typical examples are the conjunction of non-informative
propositions and the equality. If there is an hypothesis /& : ¢ = b in the local context, it can be used for
rewriting not only in logical propositions but also in any type.

Cog < Print eqg_rec.

eq _rec =

fun (A : Type) (x : A) (P : A —-> Set) => eq_rect x P
forall (A : Type) (x : A) (P : A -> Set),
P x —> forall y : A, x =y —> Py

Argument A is implicit

Argument scopes are [type_scope _ function_scope _ _ _]
Cog < Extraction eqg_rec.
(#+ val eq rec : 'al —-> 'a2 -> 'al -> 'al2 #*%*)
let eq rec _ f _ =
f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.

Type of branches. Let ¢ be a term of type C, we assume C' is a type of constructor for an inductive
type I. Let P be a term that represents the property to be proved. We assume r is the number of
parameters and p is the number of arguments.

We define a new type {c : C'}”" which represents the type of the branch corresponding to the ¢ : C

constructor.
{e:Ipr...prti.. tp)}Y =(Pti... tpc)

{¢:Vz:T CF =Vz:T,{(cz): C}F

We write {c¢}¥ for {c¢ : C'}¥" with C the type of c.

Example. The following term in concrete syntax:

match t as 1 return P’ with

| nil _ => tl
| cons _ hd tl => t2
end

can be represented in abstract syntax as
case(t, P, f1| f2)
where

P = )l.P
i = &
fo = A(hd:nat). A (¢ :listnat) . ¢

According to the definition:

{(nil nat)}* = {(nil nat) : (list nat)}*” = (P (nil nat))

Coq Reference Manual, V8.7.0, October 18, 2017



138 4 Calculus of Inductive Constructions

{(cons nat)}¥ = {(cons nat) : (nat — list nat — list nat)}* =
= Vn : nat, {(cons nat n) : list nat — list nat)}” =
=Vn :nat, Vi : listnat, {(cons natn ) : list nat) }
=Vn :nat, Vi : listnat, (P (cons natni)).

o

Given some P, then {(nil nat)}* represents the expected type of f1, and {(cons nat)}* represents the
expected type of fo.

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

match

Elbte:Iqr...qpt1...ts) ELFP:B [(Lq1...q)|B] (ELF fi:{(cp, qr )Y )iz
EI'lFcase(c, P, fi|...|f1) : (Pt1...ts ¢)

provided I is an inductive type in a definition Ind[r](I'; := T¢ ) with e = [c1 : Cy;. .. ;¢ Cp
and ¢y, ... cp, are the only constructors of 1.

Example. Below is a typing rule for the term shown in the previous example:

E[l]+t: (listnaty E[T)FP:B [(listnat)|B] E[]F fi:{(nilnat)}¥ E[T]+ f2:{(cons nat)}”
E['| F case(t, P, f1|f2) : (P t)

Definition of ;-reduction.  We still have to define the +-reduction in the general case.
A t-redex is a term of the following form:

case((cp, qi---Gr a1...am), P, f1|...|f1)

with ¢, the i-th constructor of the inductive type I with r parameters.
The (-contraction of this term is (f; aq . . . a,) leading to the general reduction rule:

case((cp, qi---qr ai...am), P, fi| ... |fa) >, (fiar...am)

4.5.4 Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually
recursive definitions. The basic concrete syntax for a recursive set of mutually recursive declarations is
(with T'; contexts):

fix f1 (Fl) : A1 =1 with ... with fn(I‘n) : An =1,

The terms are obtained by projections from this set of declarations and are written
fix f1(T'1) : A1 := ¢y with...with f,,(T,) : 4, := ¢, for f;
In the inference rules, we represent such a term by
Fix fi{fi : Al =10 fu: Ay =1}

with ¢} (resp. A}) representing the term ¢; abstracted (resp. generalized) with respect to the bindings in
the context I';, namely ¢, = AT';. ¢; and A, = VT, A;.
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Typing rule
The typing rule is the expected one for a fixpoint.
Fix
(BT F Az si)iztn (BT, f1: A, fo An] Fti s Ai)iz1m
EMFFix fi{fi: Ai:=t1... fn: An =1tn}  4;

Any fixpoint definition cannot be accepted because non-normalizing terms allow proofs of absurdity.
The basic scheme of recursion that should be allowed is the one needed for defining primitive recursive
functionals. In that case the fixpoint enjoys a special syntactic restriction, namely one of the arguments
belongs to an inductive type, the function starts with a case analysis and recursive calls are done on
variables coming from patterns and representing subterms. For instance in the case of natural numbers,
a proof of the induction principle of type

VP : nat — Prop, (P O) — (Vn:nat,(Pn) — (P (Sn))) = Vn:nat, (P n)
can be represented by the term:

AP :nat — Prop. Af : (P O). Ag : (Vn: nat, (P n) = (P (Sn))).
Fix h{h:Vn:nat, (P n):= An:nat.case(n, P, f | A\p:nat. (g p (hp)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is “guarded”.
A precise analysis of this notion can be found in [67]. The first stage is to precise on which argument
the fixpoint will be decreasing. The type of this argument should be an inductive definition. For doing
this, the syntax of fixpoints is extended and becomes

Fix fz{fl/kl AL =1 fn/kn P Ay = tn}

where k; are positive integers. Each k; represents the index of pararameter of f;, on which f;
is decreasing. Each A; should be a type (reducible to a term) starting with at least k; products
Vyy : By,...Yyg, : By,, A, and By, an is unductive type.

Now in the definition #;, if f; occurs then it should be applied to at least k; arguments and the &;-th
argument should be syntactically recognized as structurally smaller than yy,

The definition of being structurally smaller is a bit technical. One needs first to define the notion
of recursive arguments of a constructor. For an inductive definition Ind[r](I'; := I'¢ ), if the type of a
constructor ¢ has the form Vpy : Py,...Vp, : P.,Yay : Th, ...V, : T, (I p1...pp t1 ... 1), then the
recursive arguments will correspond to 7; in which one of the I; occurs.

The main rules for being structurally smaller are the following:
Given a variable y of type an inductive definition in a declaration Ind[r|(I'; := ') where 'y is [1; :
Aty Iy s Agl,and T is [er : Cy;. . .5 ¢ 0 Cy). The terms structurally smaller than y are:

* (tw)and Az : u. t when ¢ is structurally smaller than y.

e case(c, P, f1 ... fr) when each f; is structurally smaller than y.
If ¢ is y or is structurally smaller than y, its type is an inductive definition I, part of the in-
ductive declaration corresponding to y. Each f; corresponds to a type of constructor C;, =
Vpy : Pr,...,¥p, ¢ P ¥y1 : By,... Yy, : Bg, (I a1...ax) and can consequently be written
Ayi @ Bl. ... Ay @ Bj. g;. (Bj is obtained from B; by substituting parameters variables) the
variables y; occurring in g; corresponding to recursive arguments B; (the ones in which one of
the I; occurs) are structurally smaller than y.
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The following definitions are correct, we enter them using the Fixpoint command as described in
Section 1.3.4 and show the internal representation.

Cogq < Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O =>m
| S p =>3S (plus p m)
end.

plus is defined
plus is recursively defined (decreasing on 1st argument)

Cog < Print plus.

plus =
fix plus (n m : nat) {struct n} : nat :=
match n with
/| 0 => m
/| S p=>3S (plus p m)
end

nat —-> nat -> nat
Argument scopes are [nat_scope nat_scope]

Cog < Fixpoint lgth (A:Set) (l:1ist A) {struct 1} : nat :=
match 1 with

| nil _ => 0O
| cons _ a 1' => S (lgth A 1")
end.

lgth is defined
lgth is recursively defined (decreasing on 2nd argument)

Cog < Print lgth.

lgth =

fix lgth (A : Set) (1 : 1list A) {struct 1} : nat :=
match 1 with

[ nil _ => 0
| cons _ _ 1'" => S (lgth A 1'")
end

forall A : Set, 1list A —-> nat
Argument scopes are [type_scope _]

Cog < Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
with sizef (f:forest) : nat :=
match f with
| emptyf => O
| consf t £ => plus (sizet t) (sizef f)
end.
sizet is defined
sizef is defined
sizet, sizef are recursively defined (decreasing respectively on 1st,
1st arguments)

Coq < Print sizet.

sizet =
fix sizet (t : tree) : nat := let (f) :=t in S (sizef f)
with sizef (f : forest) : nat :=

match f with
| emptyf => 0
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| consf t f0 => plus (sizet t) (sizef f0)
end
for sizet
: tree —-> nat

Reduction rule

Let F' be the set of declarations: fi/k1 : Ay :==t1 ... fn/kn : Ap := {y. The reduction for fixpoints is:
(Fix fi{F} ar...a) > ti{(fi/Fix fi{ F}k=1..n} 01.. . ag,

when ay, starts with a constructor. This last restriction is needed in order to keep strong normalization
and corresponds to the reduction for primitive recursive operators. The following reductions are now
possible:

plus (S(S0)) (SO) &, S (plus(SO)(SO))
> S (S (plusO (S 0)))
> S(S(S0))

Mutual induction

The principles of mutual induction can be automatically generated using the Scheme command de-
scribed in Section 13.1.

4.6 Admissible rules for global environments

From the original rules of the type system, one can show the admissibility of rules which change the
local context of definition of objects in the global environment. We show here the admissible rules that
are used used in the discharge mechanism at the end of a section.

Abstraction. One can modify a global declaration by generalizing it over a previously assumed con-
stant ¢. For doing that, we need to modify the reference to the global declaration in the subsequent global
environment and local context by explicitly applying this constant to the constant ¢’.

Below, if ' is a context of the form [y; : Aj;...;yn @ Ap], we write Vo : U, T'{¢/x} to mean
[y1 :Vao:U Ai{c/z};..5yn Vo U An{c/z}] and E{|I'|/|T'|c}. to mean the parallel substitution
E{y1/(y1 &)} Ayn/(yn ©)}-

First abstracting property:
WF(E;c:U;E'; ¢ :=t: T; E")[I)
WF(E;c:U; B¢ = de U . t{c/x} Vo : UT{c/z}; E"{/(c c)})[I{c/(c)}]

WF(E;c:U; E'; ¢ - T B[
WF(E;c:U; B¢ VYo :UT{c/z}; E"{/(c )} {c/(c)}]

WF(Bse - U B Indp)(Ty = T ) BT
(E;c:U; EsInd[p + 1|(Vz : U, Ti{c/z} :=Vz : U Tc{c/z}); E"{IT1,Tc|/IT1,Tc| ¢})
[T{ITr, Cel/ITr, Tel e}

WF
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One can similarly modify a global declaration by generalizing it over a previously defined con-
stant ¢/. Below, if I is a context of the form [y; : Ay;...;5y, : A,], we write ['{c/u} to mean

[y1 : Ai{c/u};. . 5yn « An{c/u}].
Second abstracting property:

WF(E;c:=u:U;FE;d :=t:T; E")[T]
WF(E;c:=u:U; E';d = (letz:=u:Uint{c/z}) : T{c/u}; E")[I]

WF(E;c:=u:U;E; ¢ . T; E")[T]
WF(E;c:=u:U;E; " : T{c/u}; E")[T]

WF(E;c:=u:U; E';Ind[p|(I'r :=T¢); B[]
WF(E;c:=u:U; B Ind[p|(I'{c/u} :=Tc{c/u}); E")[I]

Pruning the local context. If one abstracts or substitutes constants with the above rules then it may
happen that some declared or defined constant does not occur any more in the subsequent global envi-
ronment and in the local context. One can consequently derive the following property.

First pruning property:

WF(F;c: U; E')[T ¢ does not occur in £ and T’
WF(E; E")[T]

Second pruning property:

WF(E;¢:=u:U; B[] ¢ does not occur in E' and T"
WF(E; E")[T]

4.7 Co-inductive types

The implementation contains also co-inductive definitions, which are types inhabited by infinite objects.
More information on co-inductive definitions can be found in [68, 70, 71].

4.8 The Calculus of Inductive Construction with impredicative Set

Co0Q can be used as a type-checker for the Calculus of Inductive Constructions with an impredicative
sort Set by using the compiler option —impredicative-set. For example, using the ordinary
cogtop command, the following is rejected.

Cog < Fail Definition id: Set := forall X:Set,X->X.
The command has indeed failed with message:

The term "forall X : Set, X —-> X" has type "Type"
while it is expected to have type "Set".

while it will type-check, if one uses instead the cogtop —impredicative-set command.
The major change in the theory concerns the rule for product formation in the sort Set, which is
extended to a domain in any sort:
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Prod
EllFT:s s€8 E[l':(z:T))FU:Set

ElFYz:T,U : Set

This extension has consequences on the inductive definitions which are allowed. In the impredicative
system, one can build so-called large inductive definitions like the example of second-order existential
quantifier (exSet).

There should be restrictions on the eliminations which can be performed on such definitions. The
eliminations rules in the impredicative system for sort Set become:

Set
s € {Prop, Set} I is asmall inductive definition s € {Type(i)}

[7:Set|T — 5] [7: Set|T — 3|
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Chapter 5

The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to
structure large developments as well as a means of massive abstraction.

5.1 Modules and module types

Access path. It is denoted by p, it can be either a module variable X or, if p’ is an access path and id
an identifier, then p’.id is an access path.

Structure element. It is denoted by e and is either a definition of a constant, an assumption, a defini-
tion of an inductive, a definition of a module, an alias of module or a module type abbreviation.

Structure expression. It is denoted by S and can be:
* an access path p
e aplain structure Struct e;...;e End
* a functor Functor(X : S) S’, where X is a module variable, S and S’ are structure expression
* an application S p, where S is a structure expression and p an access path

* arefined structure S with p := p' or S with p := ¢ : T where S is a structure expression, p and p’
are access paths, ¢ is a term and 7" is the type of £.

Module definition, is written Mod(X : S [:= S’]) and consists of a module variable X, a module
type S which can be any structure expression and optionally a module implementation S’ which can be
any structure expression except a refined structure.

Module alias, is written ModA(X == p) and consists of a module variable X and a module path p.

Module type abbreviation, is written ModType(Y := S), where Y is an identifier and .S is any
structure expression .

Coq Reference Manual, V8.7.0, October 18, 2017



146 5 The Module System

5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environ-
ments given in section 4.1. The environments, apart from definitions of constants and inductive types
now also hold any other structure elements. Terms, apart from variables, constants and complex terms,
include also access paths.

We also need additional typing judgments:

* B[] F WF(S), denoting that a structure S is well-formed,
* E[]F p: S, denoting that the module pointed by p has type S in environment E.

* B[]S — S, denoting that a structure S is evaluated to a structure S in weak head normal form.

E[l F 81 <: So, denoting that a structure S; is a subtype of a structure S5.

* E[| F e1 <: e, denoting that a structure element e; is more precise that a structure element e;.
The rules for forming structures are the following:
WF-STR

WF(E; E]]
E[] - WF(Struct E' End)

WF-FUN -
E;Mod(X : S)[| F WF(S")
E[] - WF(Functor(X : S) 57)

Evaluation of structures to weak head normal form:

WEVAL-APP -
E[J| =S — Functor(X : $1) So E[JF 51— 5
E[]"p:Sg EH"S?, <: 5
E[JF Sp — So{p/ X, t1/pr.c1,- .. tn/pn-cn}
In the last rule, {¢1/pi.c1,...,tn/pn.cn} is the resulting substitution from the inlining mechanism. We

substitute in S the inlined fields p;.c; form Mod(X : S7) by the corresponding delta-reduced term ¢; in
p.
WEVAL-WITH-MOD
E[|F S — Struct e1;...;e;;Mod(X : S1);€i49;...;5e, End  Eep;...;e[]F S — St
EllFp: Sy Eiep;...ieF S2 < 5

E[|F Swithz :=p —
Struct eg;...; e;; ModA(X == p); ejro{p/X};...; en{p/X} End

WEVAL-WITH-MOD-REC

E[JF S — Struct ey;...;¢;Mod(Xy = S1); €42;...5 e, End
Eiep;...;e[]F Sy withp:=p, — 52
E[|F Swith X;.p:=p —
Struct e1;...; ¢;; Mod(X : S2); € 12{p1/X1.p};- -5 en{p1/X1.p} End
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WEVAL-WITH-DEF
E[| 8§ — Struct eg;...; ¢;; Assum()(c : T1); €i12; ... ; en End
E;e;...56] FDef()(c:=t:T) <: Assum()(c: T1)
E[JF Swithc:=¢:T —
Struct e;...;e;Def()(c:=t:T); ejyo;...; e, End

WEVAL-WITH-DEF-REC

E[JF S — Struct ey;...;¢;;Mod(Xy ¢ S1); €i42;...5 e, End
Esep;...5¢[]F S withp :=p; — So
Ell - Swith Xy.p:=t:T —
Struct eg;...;e;Mod(X @ S9); €i490;...; e, End

WEVAL-PATH-MOD

E[]Fp —> Struct eg;...; ¢;5;Mod(X : S[:= S51]); €i42;...; en End
Eiep;...;e[]F S — S
E[FpX —3S

WF(E)]] Mod(X:S[:=51]) € E
EFS— S
EFX — S

WEVAL-PATH-ALIAS

EllFp — Struct er;...; ¢;; ModA(X == p1); €i42;...; €y End
E;ei;...56l]]Fp— S
EFpX — S

WF(E)[] ModA(X ==p;) € E
EH F pL — ?
EJFX — S

WEVAL-PATH-TYPE
E[JFp — Struct eg;...; e;; ModType(Y := 5); eiyo;...; en End
Eie;...56[]F S — S
ElFpY — S

WEVAL-PATH-TYPE
WF(E)[] ModType(Y :=S5) € E

EFS— S
EJFY — S
Rules for typing module:
MT-EVAL _
Ellkp— S
ElFp:S
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MT-STR
E[ltp:S

EllFp:S/p

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The
notation S/p has the following meaning:

« if S — Struct ej;...; e, End then S/p = Struct e;/p;...; e,/p End where e/p is defined as
follows:

Def()(c:=t:T)/p' = Def()(c:=t:T)

Assum()(c: U)/p = Def()(c:=p.c:U)

Mod(X : S)/p = ModA(X == p.X)

ModA(X ==p')/p = ModA(X ==7p’)

IndI'p)(T'c :=T7)/p = Ind,()[Lp](Tc:=T7)

Indy ()['p](l'c :=Tr)/p = Indy ()[Lp](I'c :=1T7)

e if S — Functor(X : S") S” then S/p =S

The notation Ind,()[I'p]('c :=T;) denotes an inductive definition that is definitionally
equal to the inductive definition in the module denoted by the path p. All rules which have
Ind[I'p](I'c :=I'y ) as premises are also valid for Ind,()[I'p](I'c :=T';) . We give the formation rule
for Ind,()[I'p](I'c :=1I'r) below as well as the equality rules on inductive types and constructors.

The module subtyping rules:

MSUB-STR
Eier;...sen[]Fegy <:ef fori=1.m
o:{l...m}— {1...n} injective
E[] F Struct e;;...; e, End <: Struct ef;...; e/, End
MSUB-FUN

E[|F S <81 E;Mod(X : S))[| - S <: S}
E] F Functor(X : S1) S2 <: Functor(X : S}) S},

Structure element subtyping rules:

ASSUM-ASSUM
Bl - T <gsicy T>

E[ = Assum()(c: T1) <: Assum()(c: Ty)

DEF-ASSUM
B[l F Ty <gsicy T2

E[| - Def()(c:=t:T1) <: Assum()(c : T»)

ASSUM-DEF
E|FT <gsin T2 E[F c=pscn t2

E[] F Assum()(c: T1) <: Def()(c :=to : To)

'Opaque definitions are processed as assumptions.
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DEF-DEF
E[|F T <gsicn To Bl Ft1 =goucn b2
E[| - Def()(c: =t : T1) <: Def()(c =ty : T2)
IND-IND
E[] FTp =861 F'P E[Fp] FTo =B861(n FIC E[Fp; FC] FT; =B6uCn F'I
B[ F IndTp](Tc == T; ) <: Ind[Tp](T == T )
INDP-IND
ElFTpr=pocn Up  Elp]-Tco=pacn e ElpTc] b Tr =gsicn I
B F Ind,([Cp)(Tc =T7) <: Ind[Cp)(T% = I%)
INDP-INDP

ElETpr =pscn s E'PIF Lo =pocn e Epi Tl b Tt =pocy Ut B[ Fp =gsun ¥/
E[lEInd,()[I'p)(Te :=T7) <:Indy ()[Lp](Le :=17)

MOD-MOD
EH = Sl <: SQ
E[ - Mod(X : S;) <: Mod(X : Ss)
ALIAS-MOD
E[]l—plsl EH"Sl <: 85
B - ModA(X == p) <: Mod(X : S3)
MOD-ALIAS

E[]"pZSQ EH"Sl <ZSQ E[]FX:55L<7Ip
E[|F Mod(X : S)) <: ModA(X == p)

ALIAS-ALIAS
E F p1 =gs.cn P2

MODTYPE-MODTYPE

EH'_Sl <ISQ E[]l_SQ <ZSl
E[] F ModType(Y := S;) <: ModType(Y := 52)

New environment formation rules

WF-MOD
WF(E)[] E[| - WF(S)
WF(E;Mod(X : S))]]
WF-MOD
EH ~ SQ <: Sl
WF(E)] FE[JFWF(S1) E[JFWF(Ss)
WF(E;Mod(X : Sy [:= S2]))]]

WF-ALIAS

WF(E)[] ElJFp:S
WF(E,ModA(X == p))[]
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WF-MODTYPE
WF(E)]] E[| - WF(S)

WF(E,ModType(Y :=9))][]

WF-IND
WF(E; Ind[L'p](Lc == I'7))]]
E[JFp:Struct er;...; ey INd[T] (T :=T%);... End:
E[lFIndI')(T :=T%) < Ind[l'p](Tc :=T7)

WF(E; Ind, ) [L'p](Ce :=T7) )]

Component access rules

ACC-TYPE
E[l]F p: Struct eg;...;e;;Assum()(c: T);... End

EllFpc:T

E[I'lFp:Struct eg;...;e;Def()(c:=¢t:T);... End
El'lFpc:T

ACC-DELTA Notice that the following rule extends the delta rule defined in section 4.3

E[l'|Fp:Structep;...;e;Def()(c:=¢:U);... End
E[lF p.epgt

In the rules below we assume I'p is [p1 : Pi;...;pp : P, Tris [Iy : Ay I 0 Ay, and T is
[c1:C5. .50 Oy
ACC-IND
E[l'lFp:Structey;...;e;Ind[I'p](Ce :=17);... End
ElbFpl;:(p1:P)...(pr: Pr)A;
E[l'lFp:Structer;...;e;Ind[I'p](Ce :=1"1);... End
ET Epem:(pr:P)...(pr: Pr)Cp (I p1 .. 'pr)j:L..k
ACC-INDP

EllFp:Structer;...;e;Indy()[I'p](I'c:=17) ;... End
E[] F p-Ii >§ pI.IZ'

E[]Fp:Struct eg;...;¢;Indy ()[Tp](Tc :=T7) ;... End
E[lF p.civspe
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Chapter 6

Vernacular commands

6.1 Displaying

6.1.1 Print qualid.

This command displays on the screen information about the declared or defined object referred by
qualid.

Error messages:

1. qualid not a defined object

Variants:

. Print Term qualid.
This is a synonym to Print qualid when qualid denotes a global constant.

2. About qualid.
This displays various information about the object denoted by qualid: its kind (module, constant,
assumption, inductive, constructor, abbreviation, ...), long name, type, implicit arguments and
argument scopes. It does not print the body of definitions or proofs.

6.1.2 Print All.

This command displays information about the current state of the environment, including sections and
modules.

Variants:

1. Inspect num.
This command displays the num last objects of the current environment, including sections and
modules.

2. Print Section ident.
should correspond to a currently open section, this command displays the objects defined since
the beginning of this section.
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6.2 Flags, Options and Tables

CoQ configurability is based on flags (e.g. Set Printing All in Section 2.9), options (e.g. Set
Printing Width integer in Section 6.9.6), or tables (e.g. Add Printing Record ident, in
Section 2.2.4). The names of flags, options and tables are made of non-empty sequences of identifiers
(conventionally with capital initial letter). The general commands handling flags, options and tables are
given below.

6.2.1 Set flag.
This command switches flag on. The original state of flag is restored when the current module ends.
Variants:

1. Local Set flag.
This command switches flag on. The original state of flag is restored when the current section
ends.

2. Global Set flag.
This command switches flag on. The original state of flag is not restored at the end of the module.
Additionally, if set in a file, flag is switched on when the file is Require-d.

6.2.2 Unset flag.
This command switches flag off. The original state of flag is restored when the current module ends.
Variants:

1. Local Unset flag.
This command switches flag off. The original state of flag is restored when the current section
ends.

2. Global Unset flag.
This command switches flag off. The original state of flag is not restored at the end of the module.
Additionally, if set in a file, flag is switched off when the file is Require-d.

6.2.3 Test flag.

This command prints whether flag is on or off.

6.2.4 Set option value.

This command sets option to value. The original value of option is restored when the current module
ends.

Variants:

1. Local Set option value. This command sets option to value. The original value of option is
restored at the end of the module.

2. Global Set option value. This command sets option to value. The original value of option
is not restored at the end of the module. Additionally, if set in a file, option is set to value when
the file is Require-d.
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6.2.5 Unset option.
This command resets option to its default value.

Variants:

1. Local Unset option.
This command resets option to its default value. The original state of option is restored when the
current section ends.

2. Global Unset option.
This command resets option to its default value. The original state of option is not restored at the
end of the module. Additionally, if unset in a file, option is reset to its default value when the file
is Require-d.

6.2.6 Test option.

This command prints the current value of option.

6.2.7 Tables

The general commands for tables are Add table value, Remove table value, Test table, Test
table for valueand Print Table table.

6.2.8 Print Options.
This command lists all available flags, options and tables.
Variants:

1. Print Tables.
This is a synonymous of Print Options.

6.3 Requests to the environment

6.3.1 Check term.

This command displays the type of term. When called in proof mode, the term is checked in the local
context of the current subgoal.

Variants:

1. selector: Check term.
specifies on which subgoal to perform typing (see Section 8.1).

6.3.2 Eval convtactic in term.

This command performs the specified reduction on term, and displays the resulting term with its type.
The term to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in
progress).

See also: Section 8.7.
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6.3.3 Compute term.

This command performs a call-by-value evaluation of term by using the bytecode-based virtual machine.
It is a shortcut for Eval vm_compute in term.

See also: Section 8.7.

6.3.4 Extraction term.

This command displays the extracted term from term. The extraction is processed according to the
distinction between Set and Prop; that is to say, between logical and computational content (see Sec-
tion 4.1.1). The extracted term is displayed in OBJECTIVE CAML syntax, where global identifiers are
still displayed as in COQ terms.

Variants:

1. Recursive Extraction qualid; ... qualid, .
Recursively extracts all the material needed for the extraction of global qualid, ..., qualid,,.

See also: Chapter 23.

6.3.5 Print Assumptions qualid.

This commands display all the assumptions (axioms, parameters and variables) a theorem or definition
depends on. Especially, it informs on the assumptions with respect to which the validity of a theorem
relies.

Variants:

1. Print Opaque Dependencies qualid.
Displays the set of opaque constants qualid relies on in addition to the assumptions.

2. Print Transparent Dependencies qualid.
Displays the set of transparent constants qualid relies on in addition to the assumptions.

3. Print All Dependencies qualid.
Displays all assumptions and constants qualid relies on.

6.3.6 Search qualid.

This command displays the name and type of all objects (hypothesis of the current goal, theorems,
axioms, etc) of the current context whose statement contains qualid. This command is useful to remind
the user of the name of library lemmas.

Error messages:

1. The reference qualid was not found in the current environment
There is no constant in the environment named qualid.

Variants:
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1. Search string.

If string is a valid identifier, this command displays the name and type of all objects (theorems,
axioms, etc) of the current context whose name contains string. If string is a notation’s string
denoting some reference qualid (referred to by its main symbol as in "+" or by its notation’s
string asin "_ 4+ _"or "_ U’ _", see Section 12.1), the command works like Search
qualid.

2. Search string%key.
The string string must be a notation or the main symbol of a notation which is then interpreted in
the scope bound to the delimiting key key (see Section 12.2.2).

3. Search term_pattern .

This searches for all statements or types of definition that contains a subterm that matches the
pattern term_pattern (holes of the pattern are either denoted by “_ or by “?ident” when non
linear patterns are expected).

4. Search [-]term_pattern-string ... [-]term_pattern-string .

where term_pattern-string is a term_pattern or a string, or a string followed by a scope delimiting
key %key.

This generalization of Search searches for all objects whose statement or type contains a subterm
matching term_pattern (or qualid if string is the notation for a reference qualid) and whose name
contains all string of the request that correspond to valid identifiers. If a term_pattern or a string
is prefixed by “-”, the search excludes the objects that mention that term_pattern or that string.

5. Search term_pattern-string ... term_pattern-string inside module; ... module,, .
This restricts the search to constructions defined in modules module; ... module,.

6. Search term_pattern-string ... term_pattern-string outside mod-
ule; . . . module,, .

This restricts the search to constructions not defined in modules module; ... module,,.

7. selector: Search [-]term_pattern-string ... [-]term_pattern-string .

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

Examples:

Cog < Require Import ZArith.

Cog < Search Z.mul Z.add "distr".
Z.mul_add _distr_1:

forall nmp : Z, (n ~ (m + p))%Z
Z.mul_add _distr_r:

forall nmp : Z, ((n + m) * p)%Z = (n ~ p + m * p)3Z
fast_Zmult_plus_distr_1:

forall (n mp : Zz) (P : Z -> Prop),

P (n p+m * p)szZ —> P ((n + m)

(n *m + n * p)%Z

*

T

N—
o
N
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Cog < Search "+"%Z "x"%Z "distr" -positive -Prop.
Z.mul_add _distr_1:

forall nmp : Z, (n  (m + p))%Z = (n +m + n * p)sZ
Z.mul_add distr_r:

forall n mp : Z, ((n + m) % p)%Z

(n + p + m * p)3Z

Cog < Search (?x x _ + ?x * _)%Z outside Omegalemmas.
Z.mul_add _distr_1:
forall nmp : Z, (n * (m+ p))%Z = (n x m + n *x p)3Z

Warning: Up to COQ version 8.4, Search had the behavior of current SearchHead and the behavior
of current Search was obtained with command SearchAbout. For compatibility, the deprecated
name SearchAbout can still be used as a synonym of Search. For compatibility, the list of objects
to search when using SearchAbout may also be enclosed by optional [ ] delimiters.

6.3.7 SearchHead term.

This command displays the name and type of all hypothesis of the current goal (if any) and theorems of
the current context whose statement’s conclusion has the form (term t1 .. tn). This command
is useful to remind the user of the name of library lemmas.

Cog < SearchHead le.

le n: forall n : nat, n <= n
le 0 n: forall n : nat, 0 <= n
le S: forall n m : nat, n <= m -> n <= S m

le pred: forall n m : nat, n <= m —-> Nat.pred n <= Nat.pred m
le n S: forall nm : nat, n <=m -> S n <= S m
le S n: forall nm : nat, S n <= S m -—> n <=m

Cog < SearchHead (@eqg bool).
andb_true_intro:
forall bl b2 : bool, bl = true /\ b2 = true —-> (bl && b2)%bool = true

Variants:

1. SearchHead term inside module; ... module,, .

This restricts the search to constructions defined in modules module; ... module,,.

2. SearchHead term outside moduley ... module,, .

This restricts the search to constructions not defined in modules module; ... module,,.
Error messages:

(a) Module/section module not found No module module has been required (see
Section 6.5.1).

3. selector: SearchHead term.

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

Warning: Up to COQ version 8.4, SearchHead was named Search.
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6.3.8 SearchPattern term.

This command displays the name and type of all hypothesis of the current goal (if any) and theorems
of the current context whose statement’s conclusion or last hypothesis and conclusion matches the ex-
pression term where holes in the latter are denoted by “_". It is a variant of Search term_pattern that
does not look for subterms but searches for statements whose conclusion has exactly the expected form,
or whose statement finishes by the given series of hypothesis/conclusion.

Cog < Require Import Arith.

Cog < SearchPattern (_ + _ = _ + _).
Nat.add comm: forall n m : nat, n + m = m + n
plus_Snm nSm: forall n m : nat, S n +m =n + S m
Nat.add succ_comm: forall n m : nat, S n + m = n + S m
Nat.add _shuffle3: forall n m p : nat, n + (m + p) = m + (n + p)
plus_assoc_reverse: forall n mp : nat, n +m + p = n + (m + p)
Nat.add _assoc: forall nm p : nat, n + (m + p) = n + m + p
Nat.add shuffle(O: forall n mp : nat, n +m + p =n + p + m
f_equalZ plus:

forall x1 yl x2 y2 : nat, x1 = yl —-> x2 = y2 —> x1 + x2
Nat.add _shuffleZ: forall n m p g : nat, n m + (p + q)
Nat.add_shufflel: forall n m p q : nat, n m+ (p + q) =

vyl + y2
+ g+ (m+ p)
+p + (m+ g)

+ +
505

Cog < SearchPattern (nat -> bool).

Nat.odd: nat -> bool

Init.Nat.odd: nat -> bool

Nat.even: nat —-> bool

Init.Nat.even: nat —-> bool

Init.Nat.testbit: nat -> nat —-> bool

Nat.leb: nat -> nat —-> bool

Nat.egb: nat -> nat -> bool

Init.Nat.egb: nat -> nat -> bool

Nat.1ltb: nat —-> nat -> bool

Nat.testbhit: nat -> nat -> bool

Init.Nat.leb: nat -> nat -> bool

Init.Nat.ltb: nat -> nat -> bool

BinNat.N.testbit_nat: BinNums.N —> nat —-> bool
BinPosDef.Pos.testbit_nat: BinNums.positive —-> nat -> bool
BinPos.Pos.testbit_nat: BinNums.positive -> nat —-> bool
BinNatDef.N.testbit_nat: BinNums.N —-> nat —-> bool

Coqg < SearchPattern (forall 1 : list _, _ 1 1).
List.incl_refl: forall (A : Type) (1 : 1list A), List.incl 1 1
List.lel _refl: forall (A : Type) (1 : list A), List.lel 1 1

Patterns need not be linear: you can express that the same expression must occur in two places by
using pattern variables ‘?ident”.

Cog < SearchPattern (?X1 + _ = _ + ?2X1).
Nat.add comm: forall n m : nat, n + m = m + n
Variants:

1. SearchPattern term inside module; ... module, .

This restricts the search to constructions defined in modules moduley ... module,,.
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2. SearchPattern term outside module; ... module,, .

This restricts the search to constructions not defined in modules module; ... module,,.

3. selector: SearchPattern term.

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

6.3.9 SearchRewrite term.

This command displays the name and type of all hypothesis of the current goal (if any) and theorems of
the current context whose statement’s conclusion is an equality of which one side matches the expression
term. Holes in term are denoted by “_”

Cog < Require Import Arith.

Cog < SearchRewrite (_ + _ + _).

Nat.add _shuffleO: forall n mp : nat, n + m + p =n + p + m
plus_assoc_reverse: forall nm p : nat, n + m + p = n + (m + p)

Nat.add _assoc: forall nm p : nat, n + (m + p) = n + m + p

Nat.add shufflel: forall nmp q : nat, n +m + (p + q) =n + p + (m + Qq)
Nat.add shuffleZ: forall n mp q : nat, n + m + (p + q) = n + g + (m + p)

Nat.add carry divZ2:
forall (a b : nat) (cO : bool),
(a + b + Nat.b2n c0) / 2 =
a/ 2+b/ 2+

Nat.bZn
(Nat.testbit a 0 && Nat.testbit b 0
/| cO0 && (Nat.testbit a 0 || Nat.testbit b 0))
Variants:
1. SearchRewrite term inside module; ... module, .

This restricts the search to constructions defined in modules module; ... module,,.

2. SearchRewrite term outside module; ... module, .

This restricts the search to constructions not defined in modules module; ... module,,.

3. selector: SearchRewrite term.

This specifies the goal on which to search hypothesis (see Section 8.1). By default the 1st goal is
searched. This variant can be combined with other variants presented here.

Nota Bene:

For the Search, SearchHead, SearchPattern and SearchRewrite queries, it is possible to
globally filter the search results via the command Add Search Blacklist "substringl". A
lemma whose fully-qualified name contains any of the declared substrings will be removed from the
search results. The default blacklisted substrings are "_subproof" "Private_". The command
Remove Search Blacklist ... allowsexpunging this blacklist.
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6.3.10 Locate qualid.

This command displays the full name of objects whose name is a prefix of the qualified identifier qualid,
and consequently the COQ module in which they are defined. It searches for objects from the different
qualified name spaces of COQ: terms, modules, Ltac, etc.

Cogq < Locate nat.
Inductive Coq.Init.Datatypes.nat

Cog < Locate Datatypes.O.
Constructor Coqg.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Cog < Locate Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Cog < Locate Cog.Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Cog < Locate I.Dont.Exist.
No object of suffix I.Dont.Exist
Variants:

1. Locate Term qualid.
As Locate but restricted to terms.

2. Locate Module qualid. As Locate but restricted to modules.

3. Locate Ltac qualid.
As Locate but restricted to tactics.

See also: Section 12.1.10

6.4 Loading files

CoqQ offers the possibility of loading different parts of a whole development stored in separate files.
Their contents will be loaded as if they were entered from the keyboard. This means that the loaded
files are ASCII files containing sequences of commands for COQ’s toplevel. This kind of file is called a
script for COQ. The standard (and default) extension of COQ’s script files is . v.

6.4.1 Load ident.

This command loads the file named ident . v, searching successively in each of the directories specified
in the loadpath. (see Section 2.6.3)

Variants:

1. Load string.
Loads the file denoted by the string string, where string is any complete filename. Then the ~ and
. abbreviations are allowed as well as shell variables. If no extension is specified, COQ will use
the default extension . v
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2. Load Verbose ident.,Load Verbose string
Display, while loading, the answers of COQ to each command (including tactics) contained in the
loaded file See also: Section 6.9.1

Error messages:

1. Can’t find file ident on loadpath

6.5 Compiled files

This section describes the commands used to load compiled files (see Chapter 14 for documentation on
how to compile a file). A compiled file is a particular case of module called library file.

6.5.1 Require qualid.

This command looks in the loadpath for a file containing module qualid and adds the corresponding
module to the environment of COQ. As library files have dependencies in other library files, the com-
mand Require qualid recursively requires all library files the module qualid depends on and adds the
corresponding modules to the environment of COQ too. COQ assumes that the compiled files have been
produced by a valid COQ compiler and their contents are then not replayed nor rechecked.

To locate the file in the file system, qualid is decomposed under the form dirpath . ident and the file
ident . vo is searched in the physical directory of the file system that is mapped in COQ loadpath to the
logical path dirpath (see Section 2.6.3). The mapping between physical directories and logical names
at the time of requiring the file must be consistent with the mapping used to compile the file. If several
files match, one of them is picked in an unspecified fashion.

Variants:

1. Require Import qualid.

This loads and declares the module qualid and its dependencies then imports the contents of qualid
as described in Section 2.5.8.

It does not import the modules on which qualid depends unless these modules were itself required
in module qualid using Require Export, as described below, or recursively required through
a sequence of Require Export.

If the module required has already been loaded, Require Import qualid simply imports it,
as Import qualid would.
2. Require Export qualid.

This command acts as Require Import qualid, but if a further module, say A, contains a
command Require Export B, then the command Require Import A also imports the
module B.

3. Require [Import | Export]qualid; ... qualid, .

This loads the modules qualidy, ..., qualid,, and their recursive dependencies. If Import or
Export is given, it also imports qualidy, ..., qualid,, and all the recursive dependencies that
were marked or transitively marked as Export.
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4. From dirpath Require qualid.

This command acts as Require, but picks any library whose absolute name is of the form
dirpath . dirpath’ . qualid for some dirpath’. This is useful to ensure that the qualid library comes
from a given package by making explicit its absolute root.

Error messages:
1. Cannot load qualid: no physical path bound to dirpath

2. Cannot find library foo in loadpath
The command did not find the file foo . vo. Either foo . v exists but is not compiled or foo.vo
is in a directory which is not in your LoadPath (see Section 2.6.3).

3. Compiled library ident.vo makes inconsistent assumptions over
library qualid
The command tried to load library file ident.vo that depends on some specific version of library
qualid which is not the one already loaded in the current COQ session. Probably ident.v was not
properly recompiled with the last version of the file containing module qualid.

4. Bad magic number
The file ident . vo was found but either it is not a COQ compiled module, or it was compiled with
an older and incompatible version of C0Q.

5. The file ident.vo contains library dirpath and not library dirpath’
The library file dirpath’ is indirectly required by the Require command but it is bound in the
current loadpath to the file ident.vo which was bound to a different library name dirpath at the
time it was compiled.

6. Require is not allowed inside a module or a module type

This command is not allowed inside a module or a module type being defined. It is meant to
describe a dependency between compilation units. Note however that the commands Import
and Export alone can be used inside modules (see Section 2.5.8).

See also: Chapter 14

6.5.2 Print Libraries.

This command displays the list of library files loaded in the current COQ session. For each of these
libraries, it also tells if it is imported.

6.5.3 Declare ML Module string; .. string,.

This commands loads the OBJECTIVE CAML compiled files string; ... string, (dynamic link). It is
mainly used to load tactics dynamically. The files are searched into the current OBJECTIVE CAML
loadpath (see the command Add ML Path in the Section 2.6.3). Loading of OBJECTIVE CAML files
is only possible under the bytecode version of cogtop (i.e. cogtop.byte, see chapter 14), or when
CoQ has been compiled with a version of OBJECTIVE CAML that supports native Dynlink (> 3.11).

Variants:
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1. Local Declare ML Module string; .. string,.
This variant is not exported to the modules that import the module where they occur, even if
outside a section.

Error messages:

1. File not found on loadpath : string

2. Loading of ML object file forbidden in a native Co0gQ

6.54 Print ML Modules.

This print the name of all OBJECTIVE CAML modules loaded with Declare ML Module. To know

from where these module were loaded, the user should use the command Locate File (see Sec-
tion 6.6.10)

6.6 Loadpath

Loadpaths are preferably managed using COQ command line options (see Section 2.6.3) but there remain
vernacular commands to manage them for practical purposes. Such commands are only meant to be
issued in the toplevel, and using them in source files is discouraged.

6.6.1 Pwd.

This command displays the current working directory.

6.6.2 Cd string.

This command changes the current directory according to string which can be any valid path.
Variants:

1. cd.
Is equivalent to Pwd.

6.6.3 Add LoadPath string as dirpath .

This command is equivalent to the command line option —Q string dirpath. It adds the physical direc-
tory string to the current COQ loadpath and maps it to the logical directory dirpath.

Variants:

1. Add LoadPath string.
Performs as Add LoadPath string as dirpath but for the empty directory path.

6.6.4 Add Rec LoadPath string as dirpath.

This command is equivalent to the command line option —R string dirpath. It adds the physical direc-
tory string and all its subdirectories to the current COQ loadpath.

Variants:

1. Add Rec LoadPath string.
Works as Add Rec LoadPath string as dirpath but for the empty logical directory path.
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6.6.5 Remove LoadPath string.

This command removes the path string from the current COQ loadpath.

6.6.6 Print LoadPath.

This command displays the current COQ loadpath.

Variants:

1. Print LoadPath dirpath.

Works as Print LoadPath but displays only the paths that extend the dirpath prefix.

6.6.7 Add ML Path string.
This command adds the path string to the current OBJECTIVE CAML loadpath (see the command
Declare ML Module in the Section 6.5).
6.6.8 Add Rec ML Path string.
This command adds the directory string and all its subdirectories to the current OBJECTIVE CAML
loadpath (see the command Declare ML Module in the Section 6.5).
6.6.9 Print ML Path string.
This command displays the current OBJECTIVE CAML loadpath. This command makes sense only under
the bytecode version of cogtop, i.e. cogtop.byte (see the command Declare ML Module in
the section 6.5).
6.6.10 Locate File string.
This command displays the location of file string in the current loadpath. Typically, string is a . cmo or
.voor .v file.
6.6.11 Locate Library dirpath.

This command gives the status of the COQ module dirpath. It tells if the module is loaded and if not
searches in the load path for a module of logical name dirpath.

6.7 Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part
of a vernacular file loaded via Load or compiled by cogc.

6.7.1 Reset ident.

This command removes all the objects in the environment since ident was introduced, including ident.
ident may be the name of a defined or declared object as well as the name of a section. One cannot reset
over the name of a module or of an object inside a module.

Error messages:
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1. ident: no such entry

Variants:

1. Reset Initial.
Goes back to the initial state, just after the start of the interactive session.

6.7.2 Back.

This commands undoes all the effects of the last vernacular command. Commands read from a ver-
nacular file via a Load are considered as a single command. Proof management commands are also
handled by this command (see Chapter 7). For that, Back may have to undo more than one command
in order to reach a state where the proof management information is available. For instance, when the
last command is a Qed, the management information about the closed proof has been discarded. In this
case, Back will then undo all the proof steps up to the statement of this proof.

Variants:

1. Back n
Undoes n vernacular commands. As for Back, some extra commands may be undone in order to
reach an adequate state. For instance Back n will not re-enter a closed proof, but rather go just
before that proof.

Error messages:

1. Invalid backtrack
The user wants to undo more commands than available in the history.

6.7.3 BackTo num.

This command brings back the system to the state labeled num, forgetting the effect of all commands
executed after this state. The state label is an integer which grows after each successful command. It is
displayed in the prompt when in —~emacs mode. Just as Back (see above), the BackTo command now
handles proof states. For that, it may have to undo some extra commands and end on a state num’ < num
if necessary.

Variants:

1. Backtrack num; nums nums.
Backtrack is a deprecated form of BackTo which allows explicitly manipulating the proof
environment. The three numbers num;, nums and numjs represent the following:

* numsj: Number of Abort to perform, i.e. the number of currently opened nested proofs that
must be canceled (see Chapter 7).

* numy: Proof state number to unbury once aborts have been done. CoQ will compute the
number of Undo to perform (see Chapter 7).

e numj: State label to reach, as for BackTo.

Error messages:

1. Invalid backtrack
The destination state label is unknown.
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6.8 Quitting and debugging

6.8.1 Quit.

This command permits to quit COQ.

6.8.2 Drop.

This is used mostly as a debug facility by COQ’s implementors and does not concern the casual user. This
command permits to leave COQ temporarily and enter the OBJECTIVE CAML toplevel. The OBJECTIVE
CAML command:

#use "include";;

add the right loadpaths and loads some toplevel printers for all abstract types of COQ- section_path,
identifiers, terms, judgments, .... You can also use the file base_include instead, that loads only
the pretty-printers for section_paths and identifiers. You can return back to COQ with the command:

go();;

Warnings:

1. It only works with the bytecode version of COQ (i.e. cogtop called with option —byte, see the
contents of Section 14.1).

2. You must have compiled COQ from the source package and set the environment variable COQTOP

to the root of your copy of the sources (see Section 14.3.2).

6.8.3 Time command .

This command executes the vernacular command command and display the time needed to execute it.

6.8.4 Redirect "file" command .

This command executes the vernacular command command, redirecting its output to “file.out”.

6.8.5 Timeout int command .

This command executes the vernacular command command. If the command has not terminated after
the time specified by the integer (time expressed in seconds), then it is interrupted and an error message
is displayed.

6.8.6 Set Default Timeout int.

After using this command, all subsequent commands behave as if they were passed to a Timeout
command. Commands already starting by a Timeout are unaffected.

6.8.7 Unset Default Timeout.

This command turns off the use of a default timeout.
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6.8.8 Test Default Timeout.

This command displays whether some default timeout has be set or not.

6.9 Controlling display

6.9.1 Set Silent.

This command turns off the normal displaying.

6.9.2 Unset Silent.

This command turns the normal display on.

6.9.3 Set Warnings “ (Wi, ..., w,)".

This command configures the display of warnings. It is experimental, and expects, between quotes,
a comma-separated list of warning names or categories. Adding - in front of a warning or category
disables it, adding + makes it an error. It is possible to use the special categories all and default,
the latter containing the warnings enabled by default. The flags are interpreted from left to right, so in
case of an overlap, the flags on the right have higher priority, meaning that A, —A is equivalent to —A.

694 Set Search Output Name Only.

This command restricts the output of search commands to identifier names; turning it on causes invoca-
tions of Search, SearchHead, SearchPattern, SearchRewrite etc. to omit types from their
output, printing only identifiers.

6.9.5 Unset Search Output Name Only.

This command turns type display in search results back on.

6.9.6 Set Printing Width integer.

This command sets which left-aligned part of the width of the screen is used for display.

6.9.7 Unset Printing Width.

This command resets the width of the screen used for display to its default value (which is 78 at the time
of writing this documentation).

6.9.8 Test Printing Width.

This command displays the current screen width used for display.

6.99 Set Printing Depth integer.

This command sets the nesting depth of the formatter used for pretty-printing. Beyond this depth, display
of subterms is replaced by dots.
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6.9.10 Unset Printing Depth.

This command resets the nesting depth of the formatter used for pretty-printing to its default value (at
the time of writing this documentation, the default value is 50).

6.9.11 Test Printing Depth.

This command displays the current nesting depth used for display.

6.9.12 Unset Printing Compact Contexts.

This command resets the displaying of goals contexts to non compact mode (default at the time of writing
this documentation). Non compact means that consecutive variables of different types are printed on
different lines.

6.9.13 Set Printing Compact Contexts.

This command sets the displaying of goals contexts to compact mode. The printer tries to reduce the
vertical size of goals contexts by putting several variables (even if of different types) on the same line
provided it does not exceed the printing width (See Set Printing Width above).

6.9.14 Test Printing Compact Contexts.

This command displays the current state of compaction of goal.

6.9.15 Unset Printing Unfocused.

This command resets the displaying of goals to focused goals only (default). Unfocused goals are created
by focusing other goals with bullets(see 7.2.7) or curly braces (see 7.2.6).

6.9.16 Set Printing Unfocused.

This command enables the displaying of unfocused goals. The goals are displayed after the focused
ones and are distinguished by a separator.

6.9.17 Test Printing Unfocused.

This command displays the current state of unfocused goals display.

6.9.18 Set Printing Dependent Evars Line.

This command enables the printing of the “ (dependent evars: ...)” line when —emacs is
passed.

6.9.19 Unset Printing Dependent Evars Line.

This command disables the printing of the “ (dependent evars: ...) " line when —emacs is
passed.
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6.10 Controlling the reduction strategies and the conversion algorithm

CoQ provides reduction strategies that the tactics can invoke and two different algorithms to check the
convertibility of types. The first conversion algorithm lazily compares applicative terms while the other
is a brute-force but efficient algorithm that first normalizes the terms before comparing them. The second
algorithm is based on a bytecode representation of terms similar to the bytecode representation used in
the ZINC virtual machine [98]. It is especially useful for intensive computation of algebraic values, such
as numbers, and for reflection-based tactics. The commands to fine-tune the reduction strategies and the
lazy conversion algorithm are described first.

6.10.1 Opaque qualid, ... qualid,, .

This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let
(with an explicit body), or by a command assimilated to a definition such as Fixpoint, Program
Definition, etc, or by a proof ended by Defined. The command tells not to unfold the constants
qualid; ... qualid, in tactics using §-conversion (unfolding a constant is replacing it by its definition).

Opague has also an effect on the conversion algorithm of C0Q, telling it to delay the unfolding of
a constant as much as possible when C0Q has to check the conversion (see Section 4.3) of two distinct
applied constants.

The scope of Opaque is limited to the current section, or current file, unless the variant Global
Opaque qualid; ... qualidy, is used.

See also: sections 8.7, 8.16, 7.1

Error messages:

1. The reference qualid was not found in the current environment
There is no constant referred by qualid in the environment. Nevertheless, if you asked Opaque
foo bar and if bar does not exist, foo is set opaque.

6.10.2 Transparent qualid, ... qualid,, .

This command is the converse of Opaque and it applies on unfoldable constants to restore their unfold-
ability after an Opaque command.

Note in particular that constants defined by a proof ended by Qed are not unfoldable and
Transparent has no effect on them. This is to keep with the usual mathematical practice of proof
irrelevance: what matters in a mathematical development is the sequence of lemma statements, not their
actual proofs. This distinguishes lemmas from the usual defined constants, whose actual values are of
course relevant in general.

The scope of Transparent is limited to the current section, or current file, unless the variant
Global Transparent qualid; ... qualid, is used.

Error messages:

1. The reference qualid was not found in the current environment
There is no constant referred by qualid in the environment.

See also: sections 8.7, 8.16, 7.1
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6.10.3 Strategylevel [ qualid, ... qualid, ] .

This command generalizes the behavior of Opaque and Transparent commands. It is used to fine-
tune the strategy for unfolding constants, both at the tactic level and at the kernel level. This command
associates a level to qualid; ... qualid,. Whenever two expressions with two distinct head constants
are compared (for instance, this comparison can be triggered by a type cast), the one with lower level is
expanded first. In case of a tie, the second one (appearing in the cast type) is expanded.

Levels can be one of the following (higher to lower):

opaque : level of opaque constants. They cannot be expanded by tactics (behaves like 400, see next
item).

num : levels indexed by an integer. Level 0 corresponds to the default behavior, which corresponds
to transparent constants. This level can also be referred to as transparent. Negative levels cor-
respond to constants to be expanded before normal transparent constants, while positive levels
correspond to constants to be expanded after normal transparent constants.

expand : level of constants that should be expanded first (behaves like —o0)

These directives survive section and module closure, unless the command is prefixed by Local. In
the latter case, the behavior regarding sections and modules is the same as for the Transparent and
Opagque commands.

6.104 Print Strategy qualid.

This command prints the strategy currently associated to qualid. It fails if qualid is not an unfoldable
reference, that is, neither a variable nor a constant.

Error messages:

1. The reference is not unfoldable.

Variants:

1. Print Strategies
Print all the currently non-transparent strategies.

6.10.5 Declare Reduction ident := convtactic.

This command allows giving a short name to a reduction expression, for instance lazy beta delta

[foo bar]. This short name can then be used in Eval ident in ... or eval directives. This
command accepts the Local modifier, for discarding this reduction name at the end of the file or
module. For the moment the name cannot be qualified. In particular declaring the same name in several
modules or in several functor applications will be refused if these declarations are not local. The name
ident cannot be used directly as an Ltac tactic, but nothing prevent the user to also perform a Ltac
ident := convtactic.

See also: sections 8.7
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6.11 Controlling the locality of commands

6.11.1 Local,Global

Some commands support a Local or Global prefix modifier to control the scope of their effect. There
are four kinds of commands:

e Commands whose default is to extend their effect both outside the section and the module or
library file they occur in.

For these commands, the Local modifier limits the effect of the command to the current section
or module it occurs in.

As an example, the Coercion (see Section 2.8) and St rategy (see Section 6.10.3) commands
belong to this category.

* Commands whose default behavior is to stop their effect at the end of the section they occur in but
to extent their effect outside the module or library file they occur in.

For these commands, the Local modifier limits the effect of the command to the current module
if the command does not occur in a section and the G1obal modifier extends the effect outside
the current sections and current module if the command occurs in a section.

As an example, the Implicit Arguments (see Section 2.7), Ltac (see Chapter 9) or
Notation (see Section 12.1) commands belong to this category.

Notice that a subclass of these commands do not support extension of their scope outside sections
at all and the G1obal is not applicable to them.

» Commands whose default behavior is to stop their effect at the end of the section or module they
occur in.

For these commands, the G1obal modifier extends their effect outside the sections and modules
they occurs in.

The Transparent and Opaque (see Section 6.10) commands belong to this category.
¢ Commands whose default behavior is to extend their effect outside sections but not outside mod-

ules when they occur in a section and to extend their effect outside the module or library file they
occur in when no section contains them.

For these commands, the Local modifier limits the effect to the current section or module while
the Global modifier extends the effect outside the module even when the command occurs in a
section.

The Set and Unset commands belong to this category.
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Chapter 7

Proof handling

In CoQ’s proof editing mode all top-level commands documented in Chapter 6 remain available and
the user has access to specialized commands dealing with proof development pragmas documented in
this section. He can also use some other specialized commands called factics. They are the very tools
allowing the user to deal with logical reasoning. They are documented in Chapter 8.

When switching in editing proof mode, the prompt Cog < is changed into ident < where ident is the
declared name of the theorem currently edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only
in the theorem itself. After having applied some tactics, the list of goals contains the subgoals generated
by the tactics.

To each subgoal is associated a number of hypotheses called the local_context of the goal. Initially,
the local context contains the local variables and hypotheses of the current section (see Section 1.3.1)
and the local variables and hypotheses of the theorem statement. It is enriched by the use of certain
tactics (see e.g. intro in Section 8.3.1).

When a proof is completed, the message Proof completed is displayed. One can then register
this proof as a defined constant in the environment. Because there exists a correspondence between
proofs and terms of A-calculus, known as the Curry-Howard isomorphism [81, 6, 75, 85], COQ stores
proofs as terms of CIC. Those terms are called proof terms.

Error message: When one attempts to use a proof editing command out of the proof editing mode,
CoQ raises the error message : No focused proof.
7.1 Switching on/off the proof editing mode
The proof editing mode is entered by asserting a statement, which typically is the assertion of a theorem:
Theorem ident [binders] : form.
The list of assertion commands is given in Section 1.3.5. The command Goal can also be used.

7.1.1 Goal form.

This is intended for quick assertion of statements, without knowing in advance which name to give to
the assertion, typically for quick testing of the provability of a statement. If the proof of the statement
is eventually completed and validated, the statement is then bound to the name Unnamed_thm (or a
variant of this name not already used for another statement).
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7.1.2 Qed.

This command is available in interactive editing proof mode when the proof is completed. Then Qed
extracts a proof term from the proof script, switches back to COQ top-level and attaches the extracted
proof term to the declared name of the original goal. This name is added to the environment as an
Opaque constant.

Error messages:
1. Attempt to save an incomplete proof
2. Sometimes an error occurs when building the proof term, because tactics do not enforce com-

pletely the term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this
point, one may have to wait a while when the proof is large. In some exceptional cases one may
even incur a memory overflow.

Variants:

1. Defined.

Defines the proved term as a transparent constant.

2. Save ident.

Forces the name of the original goal to be ident. This command (and the following ones) can only
be used if the original goal has been opened using the Goal command.

7.1.3 Admitted.

This command is available in interactive editing proof mode to give up the current proof and declare the
initial goal as an axiom.

7.1.4 Proof term.

This command applies in proof editing mode. It is equivalent to exact term. Qed. Thatis, you
have to give the full proof in one gulp, as a proof term (see Section 8.2.1).

Variant: Proof.

Is a noop which is useful to delimit the sequence of tactic commands which start a proof, after a
Theorem command. It is a good practice to use Proof. as an opening parenthesis, closed in the
script with a closing Qed.

See also: Proof with tactic. in Section 8.9.7.

71.5 Proof usingident, ... ident, .

This command applies in proof editing mode. It declares the set of section variables (see 1.3.1) used by
the proof. At Qed time, the system will assert that the set of section variables actually used in the proof
is a subset of the declared one.

The set of declared variables is closed under type dependency. For example if T is variable and a is a
variable of type T, the commands Proof using aandProof using T a are actually equivalent.
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Variant: Proof using ident; ... ident, with tactic. in Section 8.9.7.

Variant: Proof using All.
Use all section variables.

Variant: Proof using Type. Variant: Proof using.
Use only section variables occurring in the statement.

Variant: Proof using Type=x.

The * operator computes the forward transitive closure. E.g. if the variable H has type p < 5 then
His in p* since p occurs in the type of H. Typex is the forward transitive closure of the entire set of
section variables occurring in the statement.

Variant: Proof using - ( ident;y ... ident, ) .
Use all section variables except ident; ... ident,,.

Variant: Proof using collection; + collections
Variant: Proof using collection; — collectionsy
Variant: Proof using collection — ( ident; ... ident, ) .

Variant: Proof using collection x

Use section variables being, respectively, in the set union, set difference, set complement, set forward
transitive closure. See Section 7.1.5 to know how to form a named collection. The * operator binds
stronger than + and —.

Proof using options

The following options modify the behavior of Proof using.

Variant: Set Default Proof Using "expression".
Use expression as the default Proof using value. E.g. Set Default Proof Using
"a b". will complete all Proof commands not followed by a using part with using a b.

Variant: Set Suggest Proof Using.
When Qed is performed, suggest a using annotation if the user did not provide one.

Name a set of section hypotheses for Proof using
The command Collection can be used to name a set of section hypotheses, with the purpose of
making Proof using annotations more compact.

Variant: Collection Some := x y z.
Define the collection named "Some" containing x y and z

Variant: Collection Fewer := Some - Xx.
Define the collection named "Fewer" containing only x y

Variant: Collection Many := Fewer + Some. Variant: Collection Many :=

Fewer - Some.
Define the collection named "Many" containing the set union or set difference of "Fewer" and
"Some".

Variant: Collection Many := Fewer - (X y).
Define the collection named "Many" containing the set difference of "Fewer" and the unnamed
collection x .
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7.1.6 2bort.

This command cancels the current proof development, switching back to the previous proof develop-
ment, or to the COQ toplevel if no other proof was edited.

Error messages:

1. No focused proof (No proof-editing in progress)

Variants:

1. Abort ident.
Aborts the editing of the proof named ident.

2. Abort All.
Aborts all current goals, switching back to the COQ toplevel.

7.1.7 Existential num := term.

This command instantiates an existential variable. num is an index in the list of uninstantiated existential
variables displayed by Show Existentials (described in Section 7.3.1).

This command is intended to be used to instantiate existential variables when the proof is completed
but some uninstantiated existential variables remain. To instantiate existential variables during proof
edition, you should use the tactic instantiate.

See also: instantiate (num:= term) . in Section 8.4.4. See also: Grab Existential

Variables. below.

71.8 Grab Existential Variables.

This command can be run when a proof has no more goal to be solved but has remaining uninstantiated
existential variables. It takes every uninstantiated existential variable and turns it into a goal.

7.2 Navigation in the proof tree

7.2.1 Undo.
This command cancels the effect of the last command. Thus, it backtracks one step.

Variants:

1. Undo num.

Repeats Undo num times.

7.2.2 Restart.
This command restores the proof editing process to the original goal.

Error messages:

1. No focused proof to restart
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7.2.3 Focus.

This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended
until the focused subgoal is solved or unfocused. This is useful when there are many current subgoals
which clutter your screen.

Variant:

1. Focus num.
This focuses the attention on the num*” subgoal to prove.

7.2.4 Unfocus.

This command restores to focus the goal that were suspended by the last Focus command.

7.2.5 Unfocused.

Succeeds in the proof is fully unfocused, fails is there are some goals out of focus.

7.2.6 { and }

The command { (without a terminating period) focuses on the first goal, much like Focus. does,
however, the subproof can only be unfocused when it has been fully solved (i.e. when there is no
focused goal left). Unfocusing is then handled by } (again, without a terminating period). See also
example in next section.

Note that when a focused goal is proved a message is displayed together with a suggestion about the
right bullet or } to unfocus it or focus the next one.

Error messages:

1. This proof is focused, but cannot be unfocused this way You are trying
to use } but the current subproof has not been fully solved.

2. see also error message about bullets below.

7.2.7 Bullets

Alternatively to { and }, proofs can be structured with bullets. The use of a bullet b for the first time
focuses on the first goal g, the same bullet cannot be used again until the proof of g is completed, then it
is mandatory to focus the next goal with b. The consequence is that g and all goals present when g was
focused are focused with the same bullet b. See the example below.

Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing {
and }, so bullets can be reused as further nesting levels provided they are delimited by these. Available
bullets are —, +, *, —, ++, **, ——, +++, *x*, ... (without a terminating period).

Note again that when a focused goal is proved a message is displayed together with a suggestion
about the right bullet or } to unfocus it or focus the next one.

Remark: In PROOF GENERAL (Emacs interface to COQ), you must use bullets with the priority
ordering shown above to have a correct indentation. For example — must be the outer bullet and *  the
inner one in the example below.

The following example script illustrates all these features:
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Cog < Goal (((True/\True)/\True)/\True)/\True.
Coqg < Proof.
Cogq < split.
Coqg < - split.
Coqg < + split.
Cog < % { split.
Cog < - trivial.
Cogq < - trivial.
Cog < }
Cogq < *% trivial.
Cogq < + trivial.
Cog < - assert True.
Coqg < { trivial. }
Cog < assumption.
Error messages:
1. Wrong bullet bulletl : Current bullet bullet2 is not finished.

Before using bullet bullet1 again, you should first finish proving the current focused goal. Note
that bullet1 and bullet2 may be the same.

Wrong bullet bulletl : Bullet bullet2 is mandatory here. You must put
bullet? to focus next goal. No other bullet is allowed here.

. No such goal. Focus next goal with bullet bullet.

You tried to applied a tactic but no goal where under focus. Using bullet is mandatory here.

No such goal. Try unfocusing with "}". You just finished a goal focused by {,
you must unfocus it with "} ".

The bullet behavior can be controlled by the following commands.

Set Bullet Behavior "None".

This makes bullets inactive.

Set Bullet Behavior "Strict Subproofs".

This makes bullets active (this is the default behavior).
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7.3

Requesting information

7.3.1 Show.

This command displays the current goals.

Variants:

1.

Show num.
Displays only the num-th subgoal.
Error messages:

(a) No such goal
(b) No focused proof
Show ident.
Displays the named goal ident. This is useful in particular to display a shelved goal but only

works if the corresponding existential variable has been named by the user (see 2.11) as in the
following example.

Cogq < Goal exists n, n = 0.
Cog < eexists ?[n].

Cog < Show n.
subgoal n is:

nat

. Show Script.

Displays the whole list of tactics applied from the beginning of the current proof. This tac-
tics script may contain some holes (subgoals not yet proved). They are printed under the form
<Your Tactic Text here>.

Show Proof.

It displays the proof term generated by the tactics that have been applied. If the proof is not
completed, this term contain holes, which correspond to the sub-terms which are still to be con-
structed. These holes appear as a question mark indexed by an integer, and applied to the list of
variables in the context, since it may depend on them. The types obtained by abstracting away the
context from the type of each hole-placer are also printed.

Show Conjectures.
It prints the list of the names of all the theorems that are currently being proved. As it is possible to
start proving a previous lemma during the proof of a theorem, this list may contain several names.

Show Intro.

If the current goal begins by at least one product, this command prints the name of the first product,
as it would be generated by an anonymous int ro. The aim of this command is to ease the writing
of more robust scripts. For example, with an appropriate PROOF GENERAL macro, it is possible
to transform any anonymous intro into a qualified one such as intro y13. In the case of a
non-product goal, it prints nothing.
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7. Show Intros.
This command is similar to the previous one, it simulates the naming process of an intros.

8. Show Existentials.
It displays the set of all uninstantiated existential variables in the current proof tree, along with
the type and the context of each variable.

9. Show Match ident.
This variant displays a template of the Gallina mat ch construct with a branch for each constructor
of the type ident.

Example:

Cog < Show Match nat.
match # with

/| O =>

/| S x =>

end

Error messages:
(a) Unknown inductive type

10. Show Universes.
It displays the set of all universe constraints and its normalized form at the current stage of the
proof, useful for debugging universe inconsistencies.

7.3.2 Guarded.

Some tactics (e.g. refine 8.2.3) allow to build proofs using fixpoint or co-fixpoint constructions. Due to
the incremental nature of interactive proof construction, the check of the termination (or guardedness) of
the recursive calls in the fixpoint or cofixpoint constructions is postponed to the time of the completion
of the proof.

The command Guarded allows checking if the guard condition for fixpoint and cofixpoint is vio-
lated at some time of the construction of the proof without having to wait the completion of the proof."

7.4 Controlling the effect of proof editing commands

74.1 Set Hyps Limit num.

This command sets the maximum number of hypotheses displayed in goals after the application of a
tactic. All the hypotheses remains usable in the proof development.

74.2 Unset Hyps Limit.

This command goes back to the default mode which is to print all available hypotheses.
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74.3 Set Automatic Introduction.

The option Automatic Introduction controls the way binders are handled in assertion com-
mands such as Theorem ident [binders] : form. When the option is set, which is the default,
binders are automatically put in the local context of the goal to prove.

The option can be unset by issuing Unset Automatic Introduction. When the option
is unset, binders are discharged on the statement to be proved and a tactic such as intro (see Sec-
tion 8.3.1) has to be used to move the assumptions to the local context.

7.5 Controlling memory usage

When experiencing high memory usage the following commands can be used to force Coq to optimize
some of its internal data structures.
7.5.1 Optimize Proof.

This command forces Coq to shrink the data structure used to represent the ongoing proof.

7.5.2 Optimize Heap.

This command forces the OCaml runtime to perform a heap compaction. This is in general an expensive
operation. See: http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#
VALcompact
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Chapter 8

Tactics

A deduction rule is a link between some (unique) formula, that we call the conclusion and (several)
formulas that we call the premises. A deduction rule can be read in two ways. The first one says: “if [
know this and this then I can deduce this”. For instance, if I have a proof of A and a proof of B then
I have a proof of A A B. This is forward reasoning from premises to conclusion. The other way says:
“to prove this I have to prove this and this”. For instance, to prove A A B, I have to prove A and I have
to prove B. This is backward reasoning from conclusion to premises. We say that the conclusion is the
goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied
to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to
its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is
applied to the current goal, but one can address a particular goal in the list by writing n:tactic which
means “apply tactic tactic to goal number n”. We can show the list of subgoals by typing Show (see
Section 7.3.1).

Since not every rule applies to a given statement, every tactic cannot be used to reduce any goal.
In other words, before applying a tactic to a given goal, the system checks that some preconditions are
satisfied. If it is not the case, the tactic raises an error message.

Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of
tactical) to combine those atomic tactics. This chapter is devoted to atomic tactics. The tactic language
will be described in Chapter 9.

8.1 Invocation of tactics

A tactic is applied as an ordinary command. It may be preceded by a goal selector (see Section 9.2). If
no selector is specified, the default selector (see Section 8.1.1) is used.
tactic_invocation ::= toplevel_selector : tactic .
| tactic .

8.1.1 sSet Default Goal Selector “toplevel_selector” .

After using this command, the default selector — used when no selector is specified when applying a
tactic — is set to the chosen value. The initial value is 1, hence the tactics are, by default, applied to
the first goal. Using Set Default Goal Selector “all” will make is so that tactics are, by
default, applied to every goal simultaneously. Then, to apply a tactic tac to the first goal only, you can
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write 1:tac. Although more selectors are available, only “all” or a single natural number are valid
default goal selectors.

8.1.2 Test Default Goal Selector.

This command displays the current default selector.

8.1.3 Bindings list

Tactics that take a term as argument may also support a bindings list, so as to instantiate some parameters
of the term by name or position. The general form of a term equipped with a bindings listis term with
bindings_list where bindings_list may be of two different forms:

* In a bindings list of the form (ref; := term;) ... (ref, := termy), ref is either an ident
or a num. The references are determined according to the type of term. If ref; is an identifier,
this identifier has to be bound in the type of term and the binding provides the tactic with an
instance for the parameter of this name. If ref; is some number n, this number denotes the n-th
non dependent premise of the term, as determined by the type of term.

Error message: No such binder

* A bindings list can also be a simple list of terms term; ... term,. In that case the references to
which these terms correspond are determined by the tactic. In case of induction, destruct,
elimand case (see Section 9) the terms have to provide instances for all the dependent products
in the type of term while in the case of apply, or of constructor and its variants, only
instances for the dependent products that are not bound in the conclusion of the type are required.

Error message: Not the right number of missing arguments

8.1.4 Occurrences sets and occurrences clauses

An occurrences clause is a modifier to some tactics that obeys the following syntax:
occurrence_clause ::= 1in goal_occurrences
goal_occurrences  ::= [identy [at_occurrences] ,
o
ident,,, [at_occurrences]]
[| = [* [at_occurrences]]]
I * | — [* [at_occurrences]]
| *
at_occurrences = at occurrences
occurrences = [-]num; ... num,

The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first
case, the ident; [at num} ... numfli] parts indicate that occurrences have to be selected in the hypothe-
ses named ident;. If no numbers are given for hypothesis ident;, then all the occurrences of term in
the hypothesis are selected. If numbers are given, they refer to occurrences of term when the term is
printed using option Set Printing All (see Section 2.9), counting from left to right. In particular,
occurrences of term in implicit arguments (see Section 2.7) or coercions (see Section 2.8) are counted.

If a minus sign is given between at and the list of occurrences, it negates the condition so that the
clause denotes all the occurrences except the ones explicitly mentioned after the minus sign.
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As an exception to the left-to-right order, the occurrences in the ret urn subexpression of a match
are considered before the occurrences in the matched term.

In the second case, the = on the left of | — means that all occurrences of term are selected in every
hypothesis.

In the first and second case, if * is mentioned on the right of | —, the occurrences of the conclusion
of the goal have to be selected. If some numbers are given, then only the occurrences denoted by these
numbers are selected. In no numbers are given, all occurrences of term in the goal are selected.

Finally, the last notation is an abbreviation for » |- . Note also that | — is optional in the first
case when no * is given.

Here are some tactics that understand occurrences clauses: set, remember, induction,
destruct.

See also: Sections 8.3.7, 8.5.2, 2.9.

8.2 Applying theorems

8.2.1 exact term

This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p
be a term of type U then exact p succeeds iff T and U are convertible (see Section 4.3).

Error messages:

1. Not an exact proof

Variants:

1. eexact term

This tactic behaves like exact but is able to handle terms and goals with meta-variables.

8.2.2 assumption

This tactic looks in the local context for an hypothesis which type is equal to the goal. If it is the case,
the subgoal is proved. Otherwise, it fails.

Error messages:

1. No such assumption

Variants:

1. eassumption

This tactic behaves like assumpt ion but is able to handle goals with meta-variables.

8.2.3 refine term

This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some
holes (denoted by _ or (_:type)) in the term. refine will generate as many subgoals as there are
holes in the term. The type of holes must be either synthesized by the system or declared by an explicit
cast like (_:nat->Prop). Any subgoal that occurs in other subgoals is automatically shelved, as if
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calling shelve_unifiable (see Section 8.17.4). This low-level tactic can be useful to advanced

users.
Example:

Cog < Inductive Option : Set :=
| Fail : Option
| Ok : bool -> Option.

Coqg < Definition get : forall x:0ption, x <> Fail -> bool.

1 subgoal

forall x : Option, x <> Fail -> bool

Cog < refine
(fun x:0Option =>
match x return x <> Fail -> bool with

| Fail => _
| Ok b => fun _ => b
end) .

1 subgoal

x : Option

Fail <> Fail -> bool

Cog < intros; absurd (Fail = Fail); trivial.
No more subgoals.

Cog < Defined.

Error messages:

1.
2.

invalid argument: the tactic refine does not know what to do with the term you gave.

Refine passed ill-formed term: the term you gave is not a valid proof (not easy to
debug in general). This message may also occur in higher-level tactics that call refine inter-
nally.

Cannot infer a term for this placeholder: there is a hole in the term you gave
which type cannot be inferred. Put a cast around it.

Variants:

1.

simple refine term

This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any
beta-reduction either.

notypeclasses refine term

This tactic behaves like refine except it performs typechecking without resolution of type-
classes.

simple notypeclasses refine term

This tactic behaves like simple refine except it performs typechecking without resolution of
typeclasses.
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8.2.4 apply term

This tactic applies to any goal. The argument term is a term well-formed in the local context. The
tactic apply tries to match the current goal against the conclusion of the type of term. If it succeeds,
then the tactic returns as many subgoals as the number of non-dependent premises of the type of term.
If the conclusion of the type of term does not match the goal and the conclusion is an inductive type
isomorphic to a tuple type, then each component of the tuple is recursively matched to the goal in the
left-to-right order.

The tactic apply relies on first-order unification with dependent types unless the conclusion of the
type of term is of the form (P ¢ ... t,) with P to be instantiated. In the latter case, the behavior
depends on the form of the goal. If the goal is of the form (fun =z => () w1 ... uy,andthet; and
u; unifies, then P is taken to be (fun z => (). Otherwise, apply tries to define P by abstracting
over t1 ... t, in the goal. See pattern in Section 8.7.7 to transform the goal so that it gets the form
(fun z => @) u1 ... Up.

Error messages:

1. Unable to unify ... with

The apply tactic failed to match the conclusion of term and the current goal. You can help
the apply tactic by transforming your goal with the change or pattern tactics (see sec-
tions 8.7.7, 8.6.5).

2. Unable to find an instance for the variables ident ... ident

This occurs when some instantiations of the premises of term are not deducible from the unifica-
tion. This is the case, for instance, when you want to apply a transitivity property. In this case,
you have to use one of the variants below:

Variants:

1. apply term with termy ... termy

Provides apply with explicit instantiations for all dependent premises of the type of term that do
not occur in the conclusion and consequently cannot be found by unification. Notice that term;
... term, must be given according to the order of these dependent premises of the type of term.

Error message: Not the right number of missing arguments

2. apply term with (ref; := term;) ... (ref, := term,)
This also provides apply with values for instantiating premises. Here, variables are referred by
names and non-dependent products by increasing numbers (see syntax in Section 8.1.3).

3. apply term; , ... , termy,

This is a shortcut for apply term; ; [ .. |...; [ .. | apply term, ] ... ],1e. for
the successive applications of term;;; on the last subgoal generated by apply term;, starting
from the application of term;.

4. eapply term

The tactic eapply behaves like apply but it does not fail when no instantiations are deducible
for some variables in the premises. Rather, it turns these variables into existential variables which
are variables still to instantiate (see Section 2.11). The instantiation is intended to be found later
in the proof.
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5. simple apply term

This behaves like apply but it reasons modulo conversion only on subterms that contain no
variables to instantiate. For instance, the following example does not succeed because it would
require the conversion of id ?foo and O.

Cog < Definition id (x : nat) := x.
Cog < Hypothesis H : forall y, idy = vy.
Cog < Goal O = O.

Cog < Fail simple apply H.

The command has indeed failed with message:
Unable to unify "id ?M158 = ?M158" with "0 = 0".
1 subgoal

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than
apply and it is then well-suited for uses in used-defined tactics that backtrack often. Moreover,
it does not traverse tuples as apply does.

6. [simple] apply term; [with bindings_list1], ..., term, [with bindings_list, ]
[simple] eapply term; [with bindings_listi], ..., term, [with bindings_list, |

This summarizes the different syntaxes for apply and eapply.

7. lapply term

This tactic applies to any goal, say G. The argument term has to be well-formed in the current
context, its type being reducible to a non-dependent product A —> B with B possibly contain-
ing products. Then it generates two subgoals B—>G and A. Applying lapply H (where H has
type A->B and B does not start with a product) does the same as giving the sequence cut B.
2:apply H. where cut is described below.

Warning: When term contains more than one non dependent product the tactic lapply only
takes into account the first product.

Example: Assume we have a transitive relation R on nat:

Cog < Variable R : nat -> nat -> Prop.

Cog < Hypothesis Rtrans : forall x y z:nat, Rxy -> Ry z -> R x z.
Cog < Variables n m p : nat.

Cog < Hypothesis Rnm : R n m.

Cog < Hypothesis Rmp : R m p.
Consider the goal (R n p) provable using the transitivity of R:

Cog < Goal R n p.
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The direct application of Rt rans with apply fails because no value for y in Rt rans is found by
apply:

Cogq < Fail apply Rtrans.

The command has indeed failed with message:
Unable to find an instance for the variable y.
1 subgoal

R n p
A solution is to apply (Rtrans n m p) or (Rtrans n m).

Cog < apply (Rtrans n m p).
2 subgoals

R nm
subgoal 2 1is:
R m p
Note that n can be inferred from the goal, so the following would work too.
Cog < apply (Rtrans _ m).
More elegantly, apply Rtrans with (y:=m) allows only mentioning the unknown m:
Cog < apply Rtrans with (y := m).

Another solution is to mention the proof of (R x y) inRtrans...

Cogq < apply Rtrans with (1 := Rnm).
1 subgoal

R mp
...or the proof of (R y z).

Cog < apply Rtrans with (2 := Rmp).
1 subgoal

On the opposite, one can use eapply which postpones the problem of finding m. Then one can
apply the hypotheses Rnm and Rmp. This instantiates the existential variable and completes the proof.

Cog < eapply Rtrans.
2 focused subgoals
(shelved: 1)
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R n ?y
subgoal 2 is:
R ?y p
Cog < apply Rnm.
1 subgoal

R mp

Cog < apply Rmp.
No more subgoals.

Remark: When the conclusion of the type of the term to apply is an inductive type isomorphic to a

tuple type and apply looks recursively whether a component of the tuple matches the goal, it excludes

components whose statement would result in applying an universal lemma of the form forall A,
—> A. Excluding this kind of lemma can be avoided by setting the following option:

Set Universal Lemma Under Conjunction

This option, which preserves compatibility with versions of COQ prior to 8.4 is also available for
apply term in ident (see Section 8.2.5).

8.2.5 apply term in ident

This tactic applies to any goal. The argument term is a term well-formed in the local context and the
argument ident is an hypothesis of the context. The tactic apply term in ident tries to match the
conclusion of the type of ident against a non-dependent premise of the type of term, trying them from
right to left. If it succeeds, the statement of hypothesis ident is replaced by the conclusion of the type
of term. The tactic also returns as many subgoals as the number of other non-dependent premises in the
type of term and of the non-dependent premises of the type of ident. If the conclusion of the type of
term does not match the goal and the conclusion is an inductive type isomorphic to a tuple type, then
the tuple is (recursively) decomposed and the first component of the tuple of which a non-dependent
premise matches the conclusion of the type of ident. Tuples are decomposed in a width-first left-to-right
order (for instance if the type of H1 isa A <-> B statement, and the type of H2 is A then apply H1
in H2 transforms the type of H2 into B). The tactic apply relies on first-order pattern-matching with
dependent types.

Error messages:

1. Statement without assumptions

This happens if the type of term has no non dependent premise.

2. Unable to apply

This happens if the conclusion of ident does not match any of the non dependent premises of the
type of term.

Variants:

1. apply term , ... , term in ident

This applies each of term in sequence in ident.
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2. apply term with bindings_list , ... , term with bindings_list in ident

This does the same but uses the bindings in each bindings_list to instantiate the parameters of the
corresponding type of term (see syntax of bindings in Section 8.1.3).

3. eapply term with bindings_list , ... , term with bindings_list in ident

This works as apply term with bindings_list , ... , term with bindings_list in
ident but turns unresolved bindings into existential variables, if any, instead of failing.

4. apply term with bindings_list , ... , term with bindings_list in ident as
intro_pattern

This works as apply term with bindings_list , ... , term with bindings_list in
ident then applies the intro_pattern to the hypothesis ident.

5. eapply term with bindings_list , ... , term with bindings_list in ident as
intro_pattern

This works as apply term with bindings_list , ... , term with bindings_list in
ident as intro_pattern but using eapply.

6. simple apply term in ident

This behaves like apply term in ident but it reasons modulo conversion only on subterms
that contain no variables to instantiate. For instance, if id := fun x:nat => x and H

forall y, id y = y —> TrueandHO : O = Othensimple apply H in HO
does not succeed because it would require the conversion of id 21234 and O where 21234 is
a variable to instantiate. Tactic simple apply term in ident does not either traverse tuples
as apply term in ident does.

7. [simple] apply term [with bindings_list] , ... , term [with bindings_list] in
ident [as intro_pattern]
[simple] eapply term [with bindings_list] , ... , term [with bindings_list]

in ident [as intro_pattern]

This summarizes the different syntactic variants of apply term in ident and eapply term
in ident.

8.2.6 constructor num

This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument num
must be less or equal to the numbers of constructor(s) of I.Let ci be the i-th constructor of I, then
constructor 1iisequivalentto intros; apply ci.

Error messages:

1. Not an inductive product

2. Not enough constructors

Variants:

1. constructor

This tries constructor 1 then constructor 2, ..., then constructor n where n is
the number of constructors of the head of the goal.
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2. constructor num with bindings_list
Let ci be the i-th constructor of I, then constructor i with bindings_list is equivalent

tointros; apply ci with bindings_list.

Warning: the terms in the bindings_list are checked in the context where constructor is
executed and not in the context where apply is executed (the introductions are not taken into
account).

3. split

This applies only if I has a single constructor. It is then equivalent to constructor 1. Itis
typically used in the case of a conjunction A A B.

Error message: Not an inductive goal with 1 constructor

4. exists bindings_list

This applies only if T has a single constructor. It is then equivalent to intros; constructor
1 with bindings_list. It is typically used in the case of an existential quantification 3z, P(x).

Error message: Not an inductive goal with 1 constructor

5. exists bindings_list , ... , bindings_list

This iteratively applies exists bindings_list.

6. left
right

These tactics apply only if T has two constructors, for instance in the case of a disjunction AV B.
Then, they are respectively equivalent to constructor 1 and constructor 2.

Error message: Not an inductive goal with 2 constructors

7. left with bindings_list
right with bindings_list
split with bindings_list

As soon as the inductive type has the right number of constructors, these expressions are equivalent
to calling constructor ¢ with bindings_list for the appropriate 7.

8. econstructor
eexists
esplit
eleft
eright

These tactics and their variants behave like constructor, exists, split, left, right
and their variants but they introduce existential variables instead of failing when the instantiation
of a variable cannot be found (cf eapply and Section 8.2.4).
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8.3 Managing the local context

8.3.1 intro

This tactic applies to a goal that is either a product or starts with a let binder. If the goal is a product,
the tactic implements the “Lam” rule given in Section 4.2'. If the goal starts with a let binder, then the
tactic implements a mix of the “Let” and “Conv”.

If the current goal is a dependent product Vo : T, U (resp let z:=t in U) then intro puts
x: 1" (resp x : =t) in the local context. The new subgoal is U.

If the goal is a non-dependent product 1" — U, then it puts in the local context either Hn: 1" (if 1" is
of type Set or Prop) or Xn:T (if the type of T' is Type). The optional index »n is such that Hn or Xn is
a fresh identifier. In both cases, the new subgoal is U

If the goal is neither a product nor starting with a let definition, the tactic int ro applies the tactic
hnf until the tactic intro can be applied or the goal is not head-reducible.

Error messages:
1. No product even after head-reduction

2. ident is already used

Variants:

1. intros
This repeats int ro until it meets the head-constant. It never reduces head-constants and it never
fails.

2. intro ident

This applies int ro but forces ident to be the name of the introduced hypothesis.
Error message: name ident is already used

Remark: If a name used by intro hides the base name of a global constant then the latter can
still be referred to by a qualified name (see 2.6.2).
3. intros ident; ... ident,
This is equivalent to the composed tactic intro ident;; ... ; intro identy.
More generally, the intros tactic takes a pattern as argument in order to introduce names for
components of an inductive definition or to clear introduced hypotheses. This is explained in 8.3.2.
4, intros until ident
This repeats intro until it meets a premise of the goal having form ( ident : term ) and dis-

charges the variable named ident of the current goal.

Error message: No such hypothesis in current goal

! Actually, only the second subgoal will be generated since the other one can be automatically checked.
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5. intros until num
This repeats intro until the num-th non-dependent product. For instance, on the sub-
goal forall x y:nat, x=y -> y=x the tactic intros until 1 is equivalent to
intros x y H, as x=y —-> y=x is the first non-dependent product. And on the sub-
goal forall x y z:nat, x=y —-> y=x the tactic intros until 1 is equivalent
to intros x y z as the product on z can be rewritten as a non-dependent product:
forall x y:nat, nat -> x=y —-> y=x
Error message: No such hypothesis in current goal
This happens when num is O or is greater than the number of non-dependent products of the goal.

6. intro after ident
intro before ident
intro at top
intro at bottom
These tactics apply intro and move the freshly introduced hypothesis respectively after the
hypothesis ident, before the hypothesis ident, at the top of the local context, or at the bottom
of the local context. All hypotheses on which the new hypothesis depends are moved too so as
to respect the order of dependencies between hypotheses. Note that intro at bottomis a
synonym for int ro with no argument.
Error message: No such hypothesis : ident

7. intro ident; after identsy
intro ident; before identy
intro ident; at top
intro ident; at bottom
These tactics behave as previously but naming the introduced hypothesis ident;. It is equivalent
to intro ident; followed by the appropriate call to move (see Section 8.3.5).

8.3.2 intros intro_pattern_list

This extension of the tactic intros allows to apply tactics on the fly on the variables or hypotheses
which have been introduced. An introduction pattern list intro_pattern_list is a list of introduction
patterns possibly containing the filling introduction patterns » and . An introduction pattern is either:

a naming introduction pattern, i.e. either one of:

— the pattern ?
— the pattern ?ident

— an identifier
an action introduction pattern which itself classifies into:

— adisjunctive/conjunctive introduction pattern, i.e. either one of:

* a disjunction of lists of patterns: [intro_pattern_list, | ... | intro_pattern_list, ]

# a conjunction of patterns: (p1 , ... , Pn)
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+ a list of patterns (p; & ... & pp) for sequence of right-associative binary con-
structs

— an equality introduction pattern, i.e. either one of:

* a pattern for decomposing an equality: [= p1 ... pp]

+ the rewriting orientations: —> or <—

— the on-the-fly application of lemmas: p%term; ... $term, where p itself is not a pattern for
on-the-fly application of lemmas (note: syntax is in experimental stage)

¢ the wildcard: _

Assuming a goal of type () — P (non-dependent product), or of type Vx : T', P (dependent product),
the behavior of intros p is defined inductively over the structure of the introduction pattern p:

* introduction on ? performs the introduction, and lets COQ choose a fresh name for the variable;

* introduction on ?ident performs the introduction, and lets COQ choose a fresh name for the vari-
able based on ident;

« introduction on ident behaves as described in Section 8.3.1;

* introduction over a disjunction of list of patterns [intro_pattern list; | ... |
intro_pattern_list,;] expects the product to be over an inductive type whose number of
constructors is n (or more generally over a type of conclusion an inductive type built from n
constructors, e.g. C —> A\/B with n = 2 since A\ /B has 2 constructors): it destructs the
introduced hypothesis as destruct (see Section 8.5.1) would and applies on each generated
subgoal the corresponding tactic; intros intro_pattern_list;. The introduction patterns in
intro_pattern_list; are expected to consume no more than the number of arguments of the i
constructor. If it consumes less, then COQ completes the pattern so that all the arguments of
the constructors of the inductive type are introduced (for instance, the list of patterns [ | ]
H applied on goal forall x:nat, x=0 —> 0=x behaves the same as the list of patterns

(1?21 H)

* introduction over a conjunction of patterns (p1, ..., Ppp) expects the goal to be a product
over an inductive type I with a single constructor that itself has at least n arguments: it performs
a case analysis over the hypothesis, as destruct would, and applies the patterns p; ... p;, to

the arguments of the constructor of I (observe that (p;, ..., pp) isan alternative notation for
(p1 -.. Pal)

e introduction  via (p1 & ... & pp) is a shortcut for introduction via
(prs (vvvy (o voypp) .. .)); it expects the hypothesis to be a sequence of right-associative

binary inductive constructors such as conj or ex_intro; for instance, an hypothesis with type
A/\ (exists x, B/\C/\D) can be introduced viapattern (a & x & b & c & d);

* if the product is over an equality type, then a pattern of the form [= p; ... p,] applies either
injection (see Section 8.5.7) or discriminate (see Section 8.5.6) instead of destruct;
if injection is applicable, the patterns p1, ..., p, are used on the hypotheses generated by
injection; if the number of patterns is smaller than the number of hypotheses generated, the
pattern ? is used to complete the list;
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* introduction over —> (respectively <-) expects the hypothesis to be an equality and the right-
hand-side (respectively the left-hand-side) is replaced by the left-hand-side (respectively the right-
hand-side) in the conclusion of the goal; the hypothesis itself is erased; if the term to substitute is
a variable, it is substituted also in the context of goal and the variable is removed too;

* introduction over a pattern p%term; ...%term, first applies term;,..., term, on the hypothesis
to be introduced (as in apply terms, ..., term, in) prior to the application of the introduction
pattern p;

* introduction on the wildcard depends on whether the product is dependent or not: in the non-
dependent case, it erases the corresponding hypothesis (i.e. it behaves as an int ro followed by
aclear, cf Section 8.3.3) while in the dependent case, it succeeds and erases the variable only if
the wildcard is part of a more complex list of introduction patterns that also erases the hypotheses
depending on this variable;

* introduction over = introduces all forthcoming quantified variables appearing in a row; introduc-
tion over * x introduces all forthcoming quantified variables or hypotheses until the goal is not any
more a quantification or an implication.

Example:

Cog < Goal forall A B C:Prop, A \/ B /\ C -—> (A -> C) -> C.
1 subgoal

forall A B C : Prop, A \/ B /\ C -=> (A > C) —> C

Cog < intros x [a | (_,c)] f.
2 subgoals

A, B, C : Prop
a : A

subgoal 2 is:
C

Remark: intros p; ... p,isnotequivalentto intros p;;...; intros p, for the follow-
ing reason: If one of the p; is a wildcard pattern, he might succeed in the first case because the further
hypotheses it depends in are eventually erased too while it might fail in the second case because of
dependencies in hypotheses which are not yet introduced (and a fortiori not yet erased).

Remark: In intros intro_pattern_list, if the last introduction pattern is a disjunctive or conjunctive
pattern [intro_pattern_list; | ... | intro_pattern_list, ], the completion of intro_pattern_list; so
that all the arguments of the i constructors of the corresponding inductive type are introduced can be
controlled with the following option:

Set Bracketing Last Introduction Pattern

Force completion, if needed, when the last introduction pattern is a disjunctive or conjunctive pattern
(this is the default).
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Unset Bracketing Last Introduction Pattern

Deactivate completion when the last introduction pattern is a disjunctive or conjunctive pattern.

8.3.3 clear ident

This tactic erases the hypothesis named ident in the local context of the current goal. As a consequence,
ident is no more displayed and no more usable in the proof development.

Error messages:

1. No such hypothesis
2. ident is used in the conclusion

3. ident is used in the hypothesis ident’

Variants:
1. clear ident; ... ident,
This is equivalentto clear ident;. ... clear identy,.

2. clearbody ident

This tactic expects ident to be a local definition then clears its body. Otherwise said, this tactic
turns a definition into an assumption.

Error message: ident is not a local definition

3. clear - ident; ... ident,

This tactic clears all the hypotheses except the ones depending in the hypotheses named ident; ...
ident,, and in the goal.

4. clear

This tactic clears all the hypotheses except the ones the goal depends on.

5. clear dependent ident

This clears the hypothesis ident and all the hypotheses that depend on it.

8.34 revert ident; ... ident,

This applies to any goal with variables ident; ... ident,. It moves the hypotheses (possibly defined) to
the goal, if this respects dependencies. This tactic is the inverse of intro.

Error messages:

1. No such hypothesis

2. ident is used in the hypothesis ident’

Variants:

1. revert dependent ident

This moves to the goal the hypothesis ident and all the hypotheses that depend on it.
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8.3.5 move ident; after ident,

This moves the hypothesis named ident; in the local context after the hypothesis named idents, where
“after” is in reference to the direction of the move. The proof term is not changed.

If ident, comes before ident; in the order of dependencies, then all the hypotheses between ident
and identy that (possibly indirectly) depend on ident; are moved too, and all of them are thus moved
after ident; in the order of dependencies.

If ident; comes after idents in the order of dependencies, then all the hypotheses between ident;
and ident; that (possibly indirectly) occur in the type of ident; are moved too, and all of them are thus

moved before idents in the order of dependencies.

Variants:

1. move ident; before identsy

This moves ident; towards and just before the hypothesis named idents. As for move ident;
after identy, dependencies over ident; (when ident; comes before idents in the order of de-
pendencies) or in the type of ident; (when ident; comes after idents in the order of dependencies)

are moved too.

2. move ident at top

This moves ident at the top of the local context (at the beginning of the context).

3. move ident at bottom

This moves ident at the bottom of the local context (at the end of the context).

Error messages:

1. No such hypothesis

2. Cannot move ident; after idents:

3. Cannot move ident; after idents:

Example:

Cog < Goal forall x :nat,
1 subgoal

forall x : nat, x = 0 —-> nat

Cogq < intros x H z y HO.
1 subgoal

X : nat
H: x =20
z, y : nat
HO : yv =y
0 = x

Cog < move x after HO.
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1 subgoal

z, y : nat

HO : yv =y
X : nat
H : x =20
0 = x
Cog < Undo.
1 subgoal
X : nat
H: x =20
z, y : nat
HO : yv =y
0 = x

Cog < move x before HO.

1 subgoal

z, y, X : nat

H: x =20
HO : y =y
0 = x
Cog < Undo.
1 subgoal
X : nat
H: x =20
z, y : nat
HO : yv =y
0 = x

Cog < move HO after H.
1 subgoal

x, y : nat

HO : y =y
H X 0
z nat
0 = x
Cog < Undo.
1 subgoal
X : nat
H : x =20

z, y : nat
HO : y =y
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0 = x
Cog < move HO before H.
1 subgoal

X : nat

H x =0

0% nat

HO @y =y

z nat

0 = x

8.3.6 rename ident; into ident,

This renames hypothesis ident; into idents in the current context. The name of the hypothesis in the
proof-term, however, is left unchanged.

Variants:

1. rename ident; into identy, ..., identy,_; into identgy

This renames the variables ident; ...identsk — 1 into respectively idents ... identyk in parallel.
In particular, the target identifiers may contain identifiers that exist in the source context, as long
as the latter are also renamed by the same tactic.

Error messages:
I. No such hypothesis

2. identy is already used

8.3.7 set ( ident := term )

This replaces term by ident in the conclusion of the current goal and adds the new definition ident :=
term to the local context.

If term has holes (i.e. subexpressions of the form “_”), the tactic first checks that all subterms
matching the pattern are compatible before doing the replacement using the leftmost subterm matching
the pattern.

Error messages:

1. The variable ident is already defined

Variants:

1. set ( ident := term ) in goal_occurrences

This notation allows specifying which occurrences of term have to be substituted in the context.
The in goal_occurrences clause is an occurrence clause whose syntax and behavior are described
in Section 8.1.4.

2. set ( ident binder ... binder := term )

This is equivalent to set ( ident := fun binder ... binder => term ).
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10.

11.

12.

13.

set term

This behaves as set ( ident := term ) but ident is generated by C0oQ. This variant also supports
an occurrence clause.

. set ( identy binder ... binder := term ) 1in goal_occurrences

set term in goal_occurrences

These are the general forms that combine the previous possibilities.

eset ( identg binder ... binder := term ) in goal_occurrences
eset term in goal_occurrences

While the different variants of set expect that no existential variables are generated by the tactic,
eset removes this constraint. In practice, this is relevant only when eset is used as a synonym
of epose, i.e. when the term does not occur in the goal.

remember term as Iident

This behaves as set ( ident := term ) in x and using a logical (Leibniz’s) equality in-
stead of a local definition.

. remember term as ident eqn:ident

This behaves as remember term as ident, except that the name of the generated equality is
also given.

. remember term as ident in goal_occurrences

This is a more general form of remember that remembers the occurrences of term specified by
an occurrences set.

eremember term as ident
eremember term as ident in goal_occurrences
eremember term as ident eqn:ident

While the different variants of remember expect that no existential variables are generated by
the tactic, eremember removes this constraint.

pose ( ident := term )

This adds the local definition ident := term to the current context without performing any re-
placement in the goal or in the hypotheses. It is equivalent to set ( ident := term ) in
| —.

pose ( ident binder ... binder := term )

This is equivalent to pose ( ident := fun binder ... binder => term ) .

pose term

This behaves as pose ( ident := term ) but ident is generated by COQ.
epose ( ident := term )

epose ( ident binder ... binder := term )

epose term

While the different variants of pose expect that no existential variables are generated by the
tactic, epose removes this constraint.
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8.3.8 decompose [ qualid, ... qualid, ] term
This tactic recursively decomposes a complex proposition in order to obtain atomic ones.

Example:

Cog < Goal forall A B C:Prop, A /\ B /\NC\/ B /\NC\/ C/\ A ->C.
1 subgoal

forall A B C : Prop, 2 /\ B /\Cc \/ B/\C\/ C/\ A —-—>°C

Cogq < intros A B C H; decompose [and or] H; assumption.
No more subgoals.

Cog < Qed.
decompose does not work on right-hand sides of implications or products.
Variants:

1. decompose sum term

This decomposes sum types (like or).

2. decompose record term

This decomposes record types (inductive types with one constructor, like and and exists and
those defined with the Record macro, see Section 2.1).

8.4 Controlling the proof flow

84.1 assert ( ident : form )

This tactic applies to any goal. assert (H : U) adds a new hypothesis of name H asserting U to the
current goal and opens a new subgoal U”. The subgoal U comes first in the list of subgoals remaining to
prove.

Error messages:
1. Not a proposition or a type
Arises when the argument form is neither of type Prop, Set nor Type.
Variants:

1. assert form

This behaves as assert ( ident : form ) but ident is generated by COQ.

2. assert form by tactic

This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.

Error message: Proof is not complete

2This corresponds to the cut rule of sequent calculus.
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10.

11.

. assert form as intro_pattern

If intro_pattern is a naming introduction pattern (see Section 8.3.2), the hypothesis is named after
this introduction pattern (in particular, if intro_pattern is ident, the tactic behaves like assert
(ident : form)).

If intro_pattern is an action introduction pattern, the tactic behaves like assert form followed
by the action done by this introduction pattern.

. assert form as intro_pattern by tactic

This combines the two previous variants of assert.

. assert ( ident := term )

This behaves as assert (ident : type) by exact term where type is the type of term.
This is deprecated in favor of pose proof.

If the head of term is ident, the tactic behaves as specialize term.

Error message: Variable ident is already declared

. eassert form as intro_pattern by tactic

assert ( ident := term )

While the different variants of assert expect that no existential variables are generated by the
tactic, eassert removes this constraint. This allows not to specify the asserted statement com-
pletely before starting to prove it.

. pose proof term [as intro_pattern]

This tactic behaves like assert T [as intro_pattern] by exact term where T is the type
of term.

In particular, pose proof term as ident behaves as assert (ident := term) and
pose proof term as intro_pattern is the same as applying the intro_pattern to term.

. epose proof term [as intro_pattern]

While pose proof expects that no existential variables are generated by the tactic, epose
proof removes this constraint.

enough (ident : form)

This adds a new hypothesis of name ident asserting form to the goal the tactic enough is applied
to. A new subgoal stating form is inserted after the initial goal rather than before it as assert
would do.

enough form

This behaves like enough (ident : form) with the name ident of the hypothesis generated by
CoQ.

enough form as intro_pattern

This behaves like enough form using intro_pattern to name or destruct the new hypothesis.
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12.

13.

14.

15.

enough (ident : form) by tactic
enough form by tactic
enough form as intro_pattern by tactic

This behaves as above but with tactic expected to solve the initial goal after the extra assumption
form is added and possibly destructed. If the as intro_pattern clause generates more than one
subgoal, tactic is applied to all of them.

eenough (ident : form) by tactic
eenough form by tactic
eenough form as intro_pattern by tactic

While the different variants of enough expect that no existential variables are generated by the
tactic, eenough removes this constraint.

cut form

This tactic applies to any goal. It implements the non-dependent case of the “App” rule given in
Section 4.2. (This is Modus Ponens inference rule.) cut U transforms the current goal T into the
two following subgoals: U —> T and U. The subgoal U —> T comes first in the list of remaining
subgoal to prove.

specialize (ident term; ... term,) [as intro_pattern]
specialize ident with bindings_list [as intro_pattern]

The tactic specialize works on local hypothesis ident. The premises of this hypothesis (ei-
ther universal quantifications or non-dependent implications) are instantiated by concrete terms
coming either from arguments term; ... term, or from a bindings list (see Section 8.1.3 for more
about bindings lists). In the first form the application to term; ... term, can be partial. The first
form is equivalent to assert (ident := ident term; ... termy).

In the second form, instantiation elements can also be partial. In this case the uninstantiated
arguments are inferred by unification if possible or left quantified in the hypothesis otherwise.

With the as clause, the local hypothesis ident is left unchanged and instead, the modified hypoth-
esis is introduced as specified by the intro_pattern.

The name ident can also refer to a global lemma or hypothesis. In this case, for compatibility
reasons, the behavior of specialize is close to that of generalize: the instantiated state-
ment becomes an additional premise of the goal. The as clause is especially useful in this case to
immediately introduce the instantiated statement as a local hypothesis.

Error messages:

(a) ident is used in hypothesis ident’

(b) ident is used in conclusion

84.2 generalize term

This tactic applies to any goal. It generalizes the conclusion with respect to some term.

Example:
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Cog < Show.
1 subgoal

x, y : nat

0 <=x+y +y
Cog < generalize (x + y + V).

1 subgoal

X, y : nat

forall n : nat, 0 <= n

If the goal is GG and ¢ is a subterm of type 7" in the goal, then generalize ¢ replaces the goal by
forall (x:T), G’'whereG'is obtained from G by replacing all occurrences of ¢ by x. The name
of the variable (here n) is chosen based on 7.

Variants:
1. generalize termy; , ... , termy,
This is equivalent to generalize termy,; ... ; generalize term;. Note that the se-

quence of term;’s are processed from n to 1.

2. generalize term at num; ... num,;

This is equivalent to generalize term but it generalizes only over the specified occurrences of
term (counting from left to right on the expression printed using option Set Printing All).

3. generalize term as ident

This is equivalent to generalize term but it uses ident to name the generalized hypothesis.

4. generalize term; at numi; ... numy;, as ident; , ... , term, at numpy
numy; as identy

This is the most general form of generalize that combines the previous behaviors.

5. generalize dependent term

This generalizes term but also all hypotheses that depend on term. It clears the generalized hy-
potheses.

84.3 evar ( ident : term )
The evar tactic creates a new local definition named ident with type term in the context. The body of
this binding is a fresh existential variable.

844 instantiate ( ident := term )

The instantiate tactic refines (see Section 8.2.3) an existential variable ident with the term term.
Itis equivalent to only [ident]: refine term (preferred alternative).

Remarks:
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1. To be able to refer to an existential variable by name, the user must have given the name explicitly
(see 2.11).

2. When you are referring to hypotheses which you did not name explicitly, be aware that Coq may
make a different decision on how to name the variable in the current goal and in the context of the
existential variable. This can lead to surprising behaviors.

Variants:

1. instantiate ( num := term ) This variant allows to refer to an existential variable
which was not named by the user. The num argument is the position of the existential vari-
able from right to left in the goal. Because this variant is not robust to slight changes in the goal,
its use is strongly discouraged.

2. instantiate ( num term ) in ident

3. instantiate ( num := term ) in ( Value of ident )

4. instantiate ( num term ) in ( Type of ident )

These allow to refer respectively to existential variables occurring in a hypothesis or in the body
or the type of a local definition.
5. instantiate

Without argument, the instantiate tactic tries to solve as many existential variables as possi-
ble, using information gathered from other tactics in the same tactical. This is automatically done
after each complete tactic (i.e. after a dot in proof mode), but not, for example, between each
tactic when they are sequenced by semicolons.

84.5 admit

The admi t tactic allows temporarily skipping a subgoal so as to progress further in the rest of the proof.
A proof containing admitted goals cannot be closed with Qed but only with Admitted.

Variants:

1. give_up

Synonym of admit.

8.4.6 absurd term

This tactic applies to any goal. The argument term is any proposition P of type Prop. This tactic applies
False elimination, that is it deduces the current goal from False, and generates as subgoals ~P and
P. It is very useful in proofs by cases, where some cases are impossible. In most cases, P or ~P is one
of the hypotheses of the local context.
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8.4.7 contradiction

This tactic applies to any goal. The contradiction tactic attempts to find in the current context
(after all intros) an hypothesis that is equivalent to an empty inductive type (e.g. False), to the
negation of a singleton inductive type (e.g. True or x=x), or two contradictory hypotheses.

Error messages:

1. No such assumption

Variants:

1. contradiction ident

The proof of False is searched in the hypothesis named ident.

8.4.8 contradict ident

This tactic allows manipulating negated hypothesis and goals. The name ident should correspond to a
hypothesis. With contradict H, the current goal and context is transformed in the following way:

e H:—=A F B becomes -+ A
e H:—=A F —B becomes H: B F A
e H: A F B becomes - —A

e H: A F —B becomes H: B F —-A

849 exfalso

This tactic implements the “ex falso quodlibet” logical principle: an elimination of False is performed
on the current goal, and the user is then required to prove that False is indeed provable in the current
context. This tactic is a macro for el imtype False.

8.5 Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive
objects (see Section 4.5).

8.5.1 destruct term

This tactic applies to any goal. The argument term must be of inductive or co-inductive type and the tac-
tic generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive
or co-inductive type. Unlike induction, no induction hypothesis is generated by destruct.

There are special cases:

 If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then
destruct ident behaves as intros until ident; destruct ident. If ident is not any-
more dependent in the goal after application of destruct, it is erased (to avoid erasure, use
parentheses, as in destruct (ident)).
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e If term is a num, then destruct num behaves as intros until num followed by

destruct applied to the last introduced hypothesis. Remark: For destruction of a numeral,
use syntax destruct (num) (not very interesting anyway).

* In case term is an hypothesis ident of the context, and ident is not anymore dependent in the goal

after application of destruct, it is erased (to avoid erasure, use parentheses, as in destruct
(ident) ).

* The argument term can also be a pattern of which holes are denoted by “_”. In this case, the tactic

checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible
and performs case analysis using this subterm.

Variants:

1.

destruct term;, ..., term,

This is a shortcut for destruct termy; ...; destruct term,.

destruct term as disj_conj_intro_pattern

This behaves as destruct term but uses the names in intro_pattern to name the variables in-
troduced in the context. The intro_pattern must have the form [ p11...p1n, | ... | Pl -+ -Pmn,,
] with m being the number of constructors of the type of term. Each variable introduced by
destruct in the context of the ;" goal gets its name from the list p;1 ... p;y,; in order. If there
are not enough names, destruct invents names for the remaining variables to introduce. More
generally, the p;; can be any introduction pattern (see Section 8.3.2). This provides a concise
notation for chaining destruction of an hypothesis.

. destruct term eqn:naming_intro_pattern

This behaves as destruct term but adds an equation between term and the value that term
takes in each of the possible cases. The name of the equation is specified by naming_intro_pattern
(see Section 8.3.2), in particular ? can be used to let Coq generate a fresh name.

destruct term with bindings_list

This behaves like destruct term providing explicit instances for the dependent premises of
the type of term (see syntax of bindings in Section 8.1.3).

. edestruct term

This tactic behaves like dest ruct term except that it does not fail if the instance of a dependent
premises of the type of term is not inferable. Instead, the unresolved instances are left as existential
variables to be inferred later, in the same way as eapply does (see Section 8.2.4).

destruct term; using terms
destruct term; using terms with bindings_list

These are synonyms of induction term; using terms and induction term; using
termy with bindings_list.

. destruct term in goal _occurrences

This syntax is used for selecting which occurrences of term the case analysis has to be done on.
The in goal_occurrences clause is an occurrence clause whose syntax and behavior is described
in Section 8.1.4.
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8.

10.

11.

12.

13.

14.

8.5.2

destruct term; with bindings_list; as disj_conj_intro_pattern
eqgn:naming_intro_pattern using terms with bindings_list; in goal_occurrences
edestruct term; with bindings_list; as disj_conj_intro_pattern
eqgn:naming_intro_pattern using terms with bindings_lista in goal_occurrences

These are the general forms of destruct and edestruct. They combine the effects of the
with, as, egn:, using, and in clauses.

case term

The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as
elim term but using a case-analysis elimination principle and not a recursive one.

case term with bindings_list

Analogous to elim term with bindings_list above.

ecase term

ecase term with bindings_list

In case the type of term has dependent premises, or dependent premises whose values are not
inferable from the with bindings_list clause, ecase turns them into existential variables to be
resolved later on.

simple destruct ident

This tactic behaves as intros until ident; case ident when ident is a quantified variable
of the goal.

simple destruct num

This tactic behaves as intros until num; case ident where ident is the name given by
intros until num to the num-th non-dependent premise of the goal.

case_eq term

The tactic case_eq is a variant of the case tactic that allow to perform case analysis on a term
without completely forgetting its original form. This is done by generating equalities between the
original form of the term and the outcomes of the case analysis.

induction term

This tactic applies to any goal. The argument term must be of inductive type and the tactic induction
generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive

type.

If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is
replaced by the appropriate constructor form in each of the resulting subgoals and induction hypotheses
are added to the local context using names whose prefix is IH.

There are particular cases:

* If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then

induction ident behaves as intros until ident; induction ident. If ident is not
anymore dependent in the goal after application of induction, it is erased (to avoid erasure,
use parentheses, as in induction (ident)).
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e If term is a num, then induction num behaves as intros until num followed by

induction applied to the last introduced hypothesis. Remark: For simple induction on a nu-
meral, use syntax induction (num) (not very interesting anyway).

* In case term is an hypothesis ident of the context, and ident is not anymore dependent in the

goal after application of induction, it is erased (to avoid erasure, use parentheses, as in
induction (ident)).

* The argument term can also be a pattern of which holes are denoted by “_”. In this case, the tactic

checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible
and performs induction using this subterm.

Example:

Cog < Lemma induction_test

1 subgoal

forall n : nat, n = n —-> n <=

Cog < intros n H.
1 subgoal

n : nat
H : n =n

n <= n

Cog < induction n.
2 subgoals

0 <=0
subgoal 2 is:
S n <= S n

Error messages:

forall n:nat,

n

n =n ->n <= n.

1. Not an inductive product

2. Unable to find an instance for the variables ident .. .ident

Use in this case the variant elim ... with ... below.

Variants:

1. induction term as disj_conj_intro_pattern

This behaves as induction term but uses the names in disj_conj_intro_pattern to name the
variables introduced in the context. The disj_conj_intro_pattern must typically be of the form
[p11--- Ping | -+« | Dm1 --- Dmn,, ] With m being the number of constructors of the type
of term. Each variable introduced by induction in the context of the i** goal gets its name
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from the list p;1 ... pip,; in order. If there are not enough names, induct ion invents names for
the remaining variables to introduce. More generally, the p;; can be any disjunctive/conjunctive
introduction pattern (see Section 8.3.2). For instance, for an inductive type with one constructor,
the pattern notation (p; , ... , pn) canbe used instead of [ p1 ... pp 1.

2. induction term with bindings_list
This behaves like induction term providing explicit instances for the premises of the type of
term (see the syntax of bindings in Section 8.1.3).

3. einduction term
This tactic behaves like induction term excepts that it does not fail if some dependent premise
of the type of term is not inferable. Instead, the unresolved premises are posed as existential
variables to be inferred later, in the same way as eapply does (see Section 8.2.4).

4. induction term; using terms
This behaves as induction term; but using terms as induction scheme. It does not expect the
conclusion of the type of term; to be inductive.

5. induction term; using terms with bindings_list
This behaves as induction term; using terms but also providing instances for the
premises of the type of terms.

6. induction termi, ..., term, using qualid
This syntax is used for the case qualid denotes an induction principle with complex predicates as
the induction principles generated by Function or Functional Scheme may be.

7. induction term in goal occurrences

This syntax is used for selecting which occurrences of term the induction has to be carried
on. The in goal_occurrences clause is an occurrence clause whose syntax and behavior is de-
scribed in Section 8.1.4. If variables or hypotheses not mentioning term in their type are listed in
goal_occurrences, those are generalized as well in the statement to prove.

Example:

Cog < Lemma comm X y : X +y =Yy + X.
1 subgoal

X, Yy : nat

X +y =y + X

Cog < induction y in x |- *.
2 subgoals

x + 0 =0 + x
subgoal 2 is:
x+Sy=8y+x
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10.

11.

12.

13.

Cog < Show 2.
subgoal 2 is:

X, y : nat
IHy : forall x : nat, x +y =y + X

x+Sy=8y+Xx

. induction term; with bindings_listy as disj_conj_intro_pattern using terms

with bindings_list, in goal occurrences
einduction term; with bindings_listy as disj_conj_intro_pattern using terms
with bindings_listy in goal occurrences

These are the most general forms of induction and einduction. It combines the effects of
the with, as, using, and in clauses.

. elim term

This is a more basic induction tactic. Again, the type of the argument term must be an inductive
type. Then, according to the type of the goal, the tactic e1im chooses the appropriate destructor
and applies it as the tactic apply would do. For instance, if the proof context contains n:nat
and the current goal is T of type Prop, then elim n is equivalent to apply nat_ind with
(n:=n). The tactic e1 im does not modify the context of the goal, neither introduces the induc-
tion loading into the context of hypotheses.

More generally, elim term also works when the type of term is a statement with premises and
whose conclusion is inductive. In that case the tactic performs induction on the conclusion of
the type of term and leaves the non-dependent premises of the type as subgoals. In the case of
dependent products, the tactic tries to find an instance for which the elimination lemma applies
and fails otherwise.

elim term with bindings_list

Allows to give explicit instances to the premises of the type of term (see Section 8.1.3).

eelim term

In case the type of term has dependent premises, this turns them into existential variables to be
resolved later on.

elim term; using terms
elim term; using terme with bindings_list

Allows the user to give explicitly an elimination predicate terms that is not the standard one for
the underlying inductive type of term;. The bindings_list clause allows instantiating premises of
the type of terms.

elim term; with bindings_list; using terms with bindings_list;
eelim term; with bindings_list; using terms with bindings_listy

These are the most general forms of elim and eelim. It combines the effects of the using
clause and of the two uses of the with clause.
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14. elimtype form

The argument form must be inductively defined. elimtype Iisequivalenttocut I. intro
Hn; elim Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of
the subgoal(s). Conversely, if t is a term of (inductive) type I that does not occur in the goal, then
elim tisequivalentto elimtype I; 2: exact t.

15. simple induction ident
This tactic behaves as intros until ident; elim ident when ident is a quantified variable
of the goal.

16. simple induction num

This tactic behaves as intros until num; elim ident where ident is the name given by
intros until num to the num-th non-dependent premise of the goal.

8.5.3 double induction ident; idents

This tactic is deprecated and should be replaced by induction ident;; induction idents (or
induction ident;; destruct idents depending on the exact needs).

Variant:

1. double induction num; nums

This tactic is deprecated and should be replaced by induction num;; induction nums
where numyg is the result of nums-numj.

8.5.4 dependent induction ident

The experimental tactic dependent induction performs induction-inversion on an instantiated
inductive predicate. One needs to first require the Cog.Program.Equality module to use this
tactic. The tactic is based on the BasicElim tactic by Conor McBride [107] and the work of Cristina
Cornes around inversion [36]. From an instantiated inductive predicate and a goal, it generates an
equivalent goal where the hypothesis has been generalized over its indexes which are then constrained
by equalities to be the right instances. This permits to state lemmas without resorting to manually adding
these equalities and still get enough information in the proofs.

Example:
Cogq < Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal

forall n : nat, n < 1 -> n = 0

Cog < intros n H ; induction H.

2 subgoals
n nat
n =0

subgoal 2 is:
n =0
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Here we did not get any information on the indexes to help fulfill this proof. The problem is that,
when we use the induction tactic, we lose information on the hypothesis instance, notably that
the second argument is 1 here. Dependent induction solves this problem by adding the corresponding
equality to the context.

Cog < Require Import Cog.Program.Equality.

Cog < Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal
forall n : nat, n < 1 -=> n = 0

Cog < intros n H ; dependent induction H.
2 subgoals

0 =0
subgoal 2 is:
n =0

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to
the generated equalities. In this enriched context, it becomes possible to solve this subgoal.

Cogq < reflexivity.
1 subgoal

n : nat
H: S n<=20
IHle : 0 =1 —> n =0

Now we are in a contradictory context and the proof can be solved.

Cog < inversion H.
No more subgoals.

This technique works with any inductive predicate. In fact, the dependent induction tacticis
just a wrapper around the induct ion tactic. One can make its own variant by just writing a new tactic
based on the definition found in Coq.Program.Equality.

Variants:
1. dependent induction ident generalizing ident; ...ident,

This performs dependent induction on the hypothesis ident but first generalizes the goal by the
given variables so that they are universally quantified in the goal. This is generally what one wants
to do with the variables that are inside some constructors in the induction hypothesis. The other
ones need not be further generalized.

2. dependent destruction ident

This performs the generalization of the instance ident but uses destruct instead of
induction on the generalized hypothesis. This gives results equivalent to inversion or
dependent inversion if the hypothesis is dependent.

See also: 10.1 for a larger example of dependent induction and an explanation of the underlying tech-
nique.
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8.5.5 functional induction (qualid term; ... term,)

The tactic functional induction performs case analysis and induction following the definition
of a function. It makes use of a principle generated by Function (see Section 2.3) or Functional
Scheme (see Section 13.2). Note that this tactic is only available after a Require Import FunInd.

Cog < Require Import FunInd.

[Loading ML file extraction plugin.cmxs ... done]
[Loading ML file recdef_plugin.cmxs ... done]
Cog < Functional Scheme minus_ind := Induction for minus Sort Prop.

sub_equation is defined
minus_ind is defined

Cog < Check minus_ind.
minus_ind
forall P : nat —-> nat —-> nat —-> Prop,

(forall nm : nat, n =0 -> P 0 m n) —->
(forall n m k : nat, n = S k ->m =0 ->P (S k) 0 n) —>
(forall n m k : nat,

n=3Sk —>
forall 1 : nat, m =S 1 -> P k 1 (k - 1) -=> P (S k) (S 1) (k - 1)) ->

forall nm : nat, P n m (n — m)
Cog < Lemma le_minus (n m:nat) : n - m <= n.
1 subgoal
n, m : nat
n — m <= n

Cog < functional induction (minus n m) using minus_ind; simpl; auto.
No more subgoals.

Cog < Qed.

Remark: (qualid term; ... term,) must be a correct full application of qualid. In particular, the
rules for implicit arguments are the same as usual. For example use @qualid if you want to write implicit
arguments explicitly.

Remark: Parentheses over qualid. .. term,, are mandatory.

Remark: functional induction (f x1 x2 x3) is actually a wrapper for induction
x1, x2, x3, (f x1 x2 x3) using qualid followed by a cleaning phase, where qualid is
the induction principle registered for f (by the Function (see Section 2.3) or Functional
Scheme (see Section 13.2) command) corresponding to the sort of the goal. Therefore functional
induction may fail if the induction scheme qualid is not defined. See also Section 2.3 for the function
terms accepted by Function.

Remark: There is a difference between obtaining an induction scheme for a function by using
Function (see Section 2.3) and by using Functional Scheme after a normal definition using
Fixpoint orDefinition. See 2.3 for details.

See also: 2.3,13.2,13.2, 8.14.1

Error messages:
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1. Cannot find induction information on qualid

2. Not the right number of induction arguments

Variants:

1. functional induction (qualid term; ... termy) as disj_conj_intro_pattern
using term,,4+; with bindings_list

Similarly to Induction and elim (see Section 8.5.2), this allows giving explicitly the name
of the introduced variables, the induction principle, and the values of dependent premises of the
elimination scheme, including predicates for mutual induction when qualid is part of a mutually
recursive definition.

8.5.6 discriminate term

This tactic proves any goal from an assumption stating that two structurally different terms of an induc-
tive set are equal. For example, from (S (S 0) )= (S O) we can derive by absurdity any proposition.

The argument term is assumed to be a proof of a statement of conclusion term; = terms with term;
and term, being elements of an inductive set. To build the proof, the tactic traverses the normal forms®
of term; and terms looking for a couple of subterms u and w (u subterm of the normal form of term;
and w subterm of the normal form of terms), placed at the same positions and whose head symbols
are two different constructors. If such a couple of subterms exists, then the proof of the current goal is
completed, otherwise the tactic fails.

Remark: The syntax discriminate ident can be used to refer to a hypothesis quantified in the
goal. In this case, the quantified hypothesis whose name is ident is first introduced in the local context
using intros until ident.

Error messages:
1. No primitive equality found

2. Not a discriminable equality

Variants:

1. discriminate num
This does the same thing as intros until num followed by discriminate ident where
ident is the identifier for the last introduced hypothesis.

2. discriminate term with bindings_list
This does the same thing as discriminate term but using the given bindings to instantiate
parameters or hypotheses of term.

3. ediscriminate num
ediscriminate term [with bindings_list]

This works the same as di scriminate but if the type of term, or the type of the hypothesis re-
ferred to by num, has uninstantiated parameters, these parameters are left as existential variables.

3Reminder: opaque constants will not be expanded by d reductions.

Coq Reference Manual, V8.7.0, October 18, 2017



8.5 Case analysis and induction 217

4. discriminate

This behaves like discriminate ident if ident is the name of an hypothesis to which
discriminate is applicable; if the current goal is of the form term; <> terms, this behaves as
intro ident; discriminate ident.

Error message: No discriminable equalities

8.5.7 injection term

The injection tactic exploits the property that constructors of inductive types are injective, i.e. that
if ¢ is a constructor of an inductive type and ¢ ¢; and c ¢, are equal then #; and t5 are equal too.

If term is a proof of a statement of conclusion term; = terms, then injection applies the injec-
tivity of constructors as deep as possible to derive the equality of all the subterms of term; and terms
at positions where term; and terms start to differ. For example, from (S p, S n) = (g, S (S
m) we may derive S p = gandn = S m. For this tactic to work, term; and terms should be typed
with an inductive type and they should be neither convertible, nor having a different head constructor.
If these conditions are satisfied, the tactic derives the equality of all the subterms of term; and terms at
positions where they differ and adds them as antecedents to the conclusion of the current goal.

Example: Consider the following goal:

Cog < Inductive list : Set :=
| nil : list
| cons : nat —> list —-> list.

Cog < Variable P : list -> Prop.

Cog < Show.
1 subgoal
1 : 1list
n : nat
H : P nil
HO : cons n 1 = cons 0 nil
P 1

Cog < injection HO.

1 subgoal
1 : 1ist
n : nat
H : P nil
HO : cons n 1 = cons 0 nil

Beware that injection yields an equality in a sigma type whenever the injected object has a
dependent type P with its two instances in different types (P ¢y ... t,) and (P u; ... uy). If ¢1 and ug
are the same and have for type an inductive type for which a decidable equality has been declared using
the command Scheme Equality (see 13.1), the use of a sigma type is avoided.
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Remark: If some quantified hypothesis of the goal is named ident, then injection ident first intro-
duces the hypothesis in the local context using intros until ident.

Error messages:

1. Not a projectable equality but a discriminable one

2. Nothing to do, it is an equality between convertible terms
3. Not a primitive equality

4. Nothing to inject

Variants:
1. injection num

This does the same thing as intros until num followed by injection ident where ident
is the identifier for the last introduced hypothesis.

2. injection term with bindings_list

This does the same as injection term but using the given bindings to instantiate parameters
or hypotheses of term.

3. einjection num
einjection term [with bindings_list]

This works the same as in ject ion but if the type of term, or the type of the hypothesis referred
to by num, has uninstantiated parameters, these parameters are left as existential variables.

4. injection

If the current goal is of the form term; <> terms, this behaves as intro ident; injection
ident.

Error message: goal does not satisfy the expected preconditions

5. injection term [with bindings_list] as intro_pattern ... intro_pattern
injection num as intro_pattern ... intro_pattern
injection as intro_pattern ... intro_pattern
einjection term [with bindings_list] as intro_pattern ... intro_pattern
einjection num as intro_pattern ... intro_pattern
einjection as intro_pattern ... intro_pattern

These variants apply intros intro_pattern ... intro_pattern after the call to injection or
einjection so that all equalities generated are moved in the context of hypotheses. The num-
ber of intro_pattern must not exceed the number of equalities newly generated. If it is smaller,
fresh names are automatically generated to adjust the list of intro_pattern to the number of new
equalities. The original equality is erased if it corresponds to an hypothesis.

It is possible to ensure that injection term erases the original hypothesis and leaves the gen-
erated equalities in the context rather than putting them as antecedents of the current goal, as if giv-
ing injection term as (with an empty list of names). To obtain this behavior, the option Set
Structural Injection mustbe activated. This option is off by default.

By default, injection only creates new equalities between terms whose type is in sort Type or
Set, thus implementing a special behavior for objects that are proofs of a statement in Prop. This
behavior can be turned off by setting the option Set Keep Proof Equalities.
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8.5.8 inversion ident

Let the type of ident in the local context be (I %), where I is a (co)inductive predicate. Then,
inversion applied to ident derives for each possible constructor ¢; of (I t_), all the necessary condi-
tions that should hold for the instance (I %) to be proved by ¢;.

Remark: If ident does not denote a hypothesis in the local context but refers to a hypothesis quantified
in the goal, then the latter is first introduced in the local context using intros until ident.

Remark: As inversion proofs may be large in size, we recommend the user to stock the lemmas when-
ever the same instance needs to be inverted several times. See Section 13.3.

Remark: Part of the behavior of the inversion tactic is to generate equalities between expressions
that appeared in the hypothesis that is being processed. By default, no equalities are generated if they
relate two proofs (i.e. equalities between terms whose type is in sort Prop). This behavior can be turned
off by using the option Set Keep Proof Equalities.

Variants:

1. inversion num

This does the same thing as intros until num then inversion ident where ident is the
identifier for the last introduced hypothesis.

2. inversion_clear ident

This behaves as inversion and then erases ident from the context.

3. inversion ident as intro_pattern

This generally behaves as inversion but using names in intro_pattern for naming hypotheses.
The intro_pattern must have the form [ p11...p1n, | --. | Pm1---Pmn,, ] With m being the
number of constructors of the type of ident. Be careful that the list must be of length m even if
inversion discards some cases (which is precisely one of its roles): for the discarded cases,
just use an empty list (i.e. n; = 0).

The arguments of the i*” constructor and the equalities that inversion introduces in the context
of the goal corresponding to the ‘" constructor, if it exists, get their names from the list p;
...Din; in order. If there are not enough names, inversion invents names for the remaining
variables to introduce. In case an equation splits into several equations (because inversion
applies injection on the equalities it generates), the corresponding name p;; in the list must
be replaced by a sublist of the form [p;j1 ... pijq] (or, equivalently, (pij1, ..., Pijq))
where ¢ is the number of subequalities obtained from splitting the original equation. Here is an
example.

The inversion ... as variant of inversion generally behaves in a slightly more ex-
pectable way than inversion (no artificial duplication of some hypotheses referring to other
hypotheses) To take benefit of these improvements, it is enough to use inversion ... as
[ 1, letting the names being finally chosen by CoQ.

Cog < Inductive containsO : list nat —-> Prop :=
| in_hd : forall 1, containsO (0 :: 1)
| in_tl : forall 1 b, containsO 1 -> containsO (b :: 1).

contains(0 is defined
contains(0_ind is defined
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10.

11.

Cog < Goal forall 1l:1ist nat, contains0 (1 :: 1) -> containsO 1.
1 subgoal

forall 1 : Datatypes.list nat, contains0O (1 :: 1) —-> containsO 1

Cogq < intros 1 H; inversion H as [ | 1' p H1' [Hegp Heqgql'] 1.
1 subgoal

1 : Datatypes.list nat

H : containsO (1 :: 1)

1' : Datatypes.list nat
P : nat

HI'" : containsO 1

Hegp : p =1

Heql' : 1" =1

contains(0 1

inversion num as intro_pattern

This allows naming the hypotheses introduced by inversion num in the context.

inversion_clear ident as intro_pattern

This allows naming the hypotheses introduced by inversion_clear in the context. No-
tice that hypothesis names can be provided as if inversion were called, even though the
inversion_clear will eventually erase the hypotheses.

. inversion ident in ident; ... ident,

Let ident; ... identy, be identifiers in the local context. This tactic behaves as generalizing ident;
. ident,,, and then performing inversion.
inversion ident as intro_pattern in ident; ... identy,
This allows naming the hypotheses introduced in the context by inversion ident in ident;
ident,,.
inversion_clear ident in ident; ... ident,

Let ident; ... identy, be identifiers in the local context. This tactic behaves as generalizing ident;
. ident,,, and then performing inversion_clear.

. inversion_clear ident as intro_pattern in ident; ... ident,

This allows naming the hypotheses introduced in the context by inversion_clear ident in
identy ... ident,.

dependent inversion ident

That must be used when ident appears in the current goal. It acts like inversion and then
substitutes ident for the corresponding term in the goal.

dependent inversion ident as intro_pattern

This allows naming the hypotheses introduced in the context by dependent inversion
ident.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

dependent inversion_clear ident

Like dependent inversion, except that ident is cleared from the local context.

dependent inversion_clear ident as intro_pattern

This allows naming the hypotheses introduced in the context by dependent
inversion_clear ident.

dependent inversion ident with term

This variant allows you to specify the generalization of the goal. It is useful when the system
fails to generalize the goal automatically. If ident has type (I i) and I has type V(& : T), s, then
term must be of type I : V(Z : T'), I & — s’ where ' is the type of the goal.

dependent inversion ident as intro_pattern with term

This allows naming the hypotheses introduced in the context by dependent inversion
ident with term.

dependent inversion_clear ident with term

Like dependent inversion ... with butclears ident from the local context.

dependent inversion_clear ident as intro_pattern with term

This allows naming the hypotheses introduced in the context by dependent
inversion_clear ident with term.

simple inversion ident

Itis a very primitive inversion tactic that derives all the necessary equalities but it does not simplify
the constraints as inversion does.

simple inversion ident as intro_pattern

This allows naming the hypotheses introduced in the context by simple inversion.

inversion ident using ident’

Let ident have type (I i) (I an inductive predicate) in the local context, and ident’ be a (dependent)
inversion lemma. Then, this tactic refines the current goal with the specified lemma.

inversion ident using ident’ in identy... ident,

This tactic behaves as generalizing ident;... ident,, then doing inversion ident using
ident’.

inversion_sigma

This tactic turns equalities of dependent pairs (e.g., existT P x p = existT P y q, fre-
quently left over by inversion on a dependent type family) into pairs of equalities (e.g., a
hypothesis H : x = y and a hypothesis of type rew H in p = q); these hypotheses can
subsequently be simplified using subst, without ever invoking any kind of axiom asserting
uniqueness of identity proofs. If you want to explicitly specify the hypothesis to be inverted,
or name the generated hypotheses, you can invoke induction H as [H1 H2] using
eq_sigT_rect. This tactic also works for sig, sigT2, and sig2, and there are similar
eq_sig#*_rect induction lemmas.
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Example 1: Non-dependent inversion
Let us consider the relation Le over natural numbers and the following variables:

Cog < Inductive Le : nat -> nat —-> Set :=
| LeO : forall n:nat, Le 0 n

| LeS : forall n m:nat, Le nm -> Le (S n) (S m).
Cog < Variable P : nat -> nat -> Prop.
Cog < Variable Q : forall n m:nat, Le n m —-> Prop.

Let us consider the following goal:

Cog < Show.
1 subgoal

n, m : nat
H : Le (S n) m

P n m

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the
form (S myg) for certain mg and that (Le n my). Deriving these conditions corresponds to prove that
the only possible constructor of (Le (S n) m) is LeS and that we can invert the —> in the type of
LesS. This inversion is possible because Le is the smallest set closed by the constructors LeO and LeS.

Cog < inversion_clear H.
1 subgoal

n, m, mO : nat
HO : Le n mO

P n (S m0)

Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n mO) has
been added to the context.

Sometimes it is interesting to have the equality m= (S mO) in the context to use it after. In that case
we can use inversion that does not clear the equalities:

Cog < inversion H.
1 subgoal

n, m : nat

H : Le (S n) m
n0, mO : nat
H1 : Le n mO
HO : nO = n

H2 : S m0O = m

P n (S m0)

Example 2: Dependent inversion
Let us consider the following goal:
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Cog < Show.
1 subgoal

n, m : nat
H : Le (S n) m

QO (S n) mH

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like
inversion tactics to substitute H by the corresponding term in constructor form. Neither Inversion

nor Inversion_clear make such a substitution. To have such a behavior we use the dependent
inversion tactics:

Cog < dependent inversion_clear H.
1 subgoal

n, m, mO : nat
1l : Le n mO

QO (S n) (S mO0) (LeS n mO 1)

Note that H has been substituted by (LeS n m0 1) andmby (S m0).

Example 3: Using inversion_sigma
Let us consider the following inductive type of length-indexed lists, and a lemma about inverting
equality of cons:

Cogq < Require Cog.Logic.Egdep_dec.

Cog < Inductive vec A : nat -> Type :=
| nil : vec A O

| cons {n} (x : A) (xs : vec A n) : vec A (S n).
Cogq < Lemma invert_cons : forall A n x Xxs y VS,
@cons A n x xs = @Qcons A ny ys
-> XS = ys.

Cog < Proof.

Cogq < intros A n x xs y ys H.
1 subgoal

A : Type n : nat x : A XS : vec A n y + A ys : vec A n
H : cons A x xs = cons Ay ys

After performing inversion, we are left with an equality of existTs:

Cog < inversion H.
1 subgoal

A : Type n : nat x : A xs : vec A n y : A ys : vec A n
H : cons A x Xxs = cons A y ys
HI : x =y
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H2 : existT (fun n : nat => vec A n) n xs =
existT (fun n : nat => vec A n) n ys
Xs = ys

We can turn this equality into a usable form with inversion_sigma:

Cog < inversion_sigma.
1 subgoal

A : Type n : nat x : A XS : vec A n y A ys : vec A n
H : cons A x xs = cons A y ys

HlI : x =y

HO : n =n

H3 : eq_rect n (fun a : nat => vec A a) xs n HO = ys

xS = ys

To finish cleaning up the proof, we will need to use the fact that that all proofs of n = n forn a
nat areeqg_refl:

Cogq < let H := match goal with H : n = n |- _ => H end in
pose proof (Egdep_dec.UIP_refl nat _ H); subst H.
1 subgoal

A : Type n : nat x : A xXs : vec A n y ¢ A ys : vec A n
H : cons A x xs = cons A y ys

HI : x =y

H3 : eq_rect n (fun a : nat => vec A a) xs n eq_refl = ys

xs = ys

Cog < simpl in =*.
1 subgoal

A : Type n : nat x : A XS : vec A n y + A ys : vec A n
H : cons A x xs = cons A y ys

HI : x =y

H3 : xs = ys

Finally, we can finish the proof:

Cog < assumption.
No more subgoals.

Cog < Qed.
invert_cons is defined

8.5.9 fix ident num

This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level
induction tactics such as the ones described in Section 8.5.2.
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In the syntax of the tactic, the identifier ident is the name given to the induction hypothesis. The
natural number num tells on which premise of the current goal the induction acts, starting from 1,
counting both dependent and non dependent products, but skipping local definitions. Especially, the
current lemma must be composed of at least num products.

Like in a fix expression, the induction hypotheses have to be used on structurally smaller argu-
ments. The verification that inductive proof arguments are correct is done only at the time of registering
the lemma in the environment. To know if the use of induction hypotheses is correct at some time of the
interactive development of a proof, use the command Guarded (see Section 7.3.2).

Variants:

1. fix ident; num with ( identy bindery ... binders [{ struct ident, }]
typea ) ... ( ident, binder, ... binder, [{ struct ident), }] : type, )

This starts a proof by mutual induction. The statements to be simultaneously proved are re-
spectively forall binders ... bindery, types, ..., forall binder, ... binder,, type,. The
identifiers ident; ... ident,, are the names of the induction hypotheses. The identifiers ident?,

. ident], are the respective names of the premises on which the induction is performed in the
statements to be simultaneously proved (if not given, the system tries to guess itself what they
are).

8.5.10 cofix ident

This tactic starts a proof by coinduction. The identifier ident is the name given to the coinduction hy-
pothesis. Like in a cof i x expression, the use of induction hypotheses have to guarded by a constructor.
The verification that the use of co-inductive hypotheses is correct is done only at the time of registering
the lemma in the environment. To know if the use of coinduction hypotheses is correct at some time of
the interactive development of a proof, use the command Guarded (see Section 7.3.2).

Variants:
1. cofix ident; with ( identy binders ... binders : types ) ... ( identy
binder,, ... binder, : type, )

This starts a proof by mutual coinduction. The statements to be simultaneously proved are re-
spectively forall bindersy ... bindery, types, ..., forall bindery, ... binder,, type,. The
identifiers ident; ... ident, are the names of the coinduction hypotheses.

8.6 Rewriting expressions

These tactics use the equality eq: forall A:Type, A->A->Prop defined in file Logic.v (see
Section 3.1.2). The notation for eq T ¢ u is simply ¢=u dropping the implicit type of £ and w.

8.6.1 rewrite term

This tactic applies to any goal. The type of term must have the form

forall (x1:A1) ... (xXp:Ap)eqterm; terms.
where eq is the Leibniz equality or a registered setoid equality.
Then rewrite term finds the first subterm matching term; in the goal, resulting in instances term’
and term!, and then replaces every occurrence of term) by term’,. Hence, some of the variables x; are
solved by unification, and some of the types 21, ..., A, become new subgoals.

Coq Reference Manual, V8.7.0, October 18, 2017



226

8 Tactics

Error messages:

1. The term provided does not end with an equation

2. Tactic generated a subgoal identical to the original goal

This happens if term; does not occur in the goal.

Variants:

1. rewrite —> term

Is equivalent to rewrite term

rewrite <- term

Uses the equality term;=terms from right to left

. rewrite term in clause

Analogous to rewrite term but rewriting is done following clause (similarly to 8.7). For in-
stance:

* rewrite H in HI will rewrite H in the hypothesis H1 instead of the current goal.

* rewrite H in H1 at 1, H2 at - 2 |- *meansrewrite H; rewrite H
in H1 at 1; rewrite H in H2 at - 2. Inparticular a failure will happen if any
of these three simpler tactics fails.

* rewrite H in % |- will do rewrite H in H; for all hypothesis H; <> H. A
success will happen as soon as at least one of these simpler tactics succeeds.

e rewrite H in = is a combination of rewrite H and rewrite H in * |- that
succeeds if at least one of these two tactics succeeds.

Orientation —> or <— can be inserted before the term to rewrite.

rewrite term at occurrences

Rewrite only the given occurrences of term’. Occurrences are specified from left to right as for
pattern (§8.7.7). The rewrite is always performed using setoid rewriting, even for Leibniz’s
equality, so one has to Import Setoid to use this variant.

rewrite term by tactic

Use tactic to completely solve the side-conditions arising from the rewrite.

rewrite termy; , ... , termy,

Is equivalent to the n successive tactics rewrite term; uptorewrite term,, each one work-
ing on the first subgoal generated by the previous one. Orientation —> or <— can be inserted before
each term to rewrite. One unique clause can be added at the end after the keyword in; it will then
affect all rewrite operations.

. In all forms of rewrite described above, a term to rewrite can be immediately prefixed by one

of the following modifiers:

e ? : the tactic rewrite ?term performs the rewrite of term as many times as possible
(perhaps zero time). This form never fails.
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* n? : works similarly, except that it will do at most n rewrites.
* | : works as ?, except that at least one rewrite should succeed, otherwise the tactic fails.
* n! (or simply n) : precisely n rewrites of term will be done, leading to failure if these n
rewrites are not possible.
8. erewrite term

This tactic works as rewrite term but turning unresolved bindings into existential variables, if
any, instead of failing. It has the same variants as rewrite has.

8.6.2 replace term; with term,

This tactic applies to any goal. It replaces all free occurrences of term; in the current goal with termy and
generates the equality termo=term; as a subgoal. This equality is automatically solved if it occurs among
the assumption, or if its symmetric form occurs. It is equivalent to cut termg=term;; [intro Hn;
rewrite <- Hn; clear Hn| assumption || symmetry; try assumption].

Error messages:

1. terms do not have convertible types

Variants:

1. replace term; with termo by tactic
This acts as replace term; with termo but applies tactic to solve the generated subgoal
termo=term;.

2. replace term
Replaces term with term’ using the first assumption whose type has the form term=term’ or
term’ =term.

3. replace —-> term

Replaces term with term’ using the first assumption whose type has the form term=term’

4. replace <- term

Replaces term with term’ using the first assumption whose type has the form term’ =term
5. replace term; with terms in clause

replace term; with terms in clause by tactic

replace term in clause

replace —> term in clause
replace <- term in clause

Acts as before but the replacements take place in clause (see Section 8.7) and not only in the
conclusion of the goal. The clause argument must not contain any type of nor value of.

6. cutrewrite <- (term; = terms)
This tactic is deprecated. It acts like replace terms with term;, or, equivalently as enough
(term; = termsy) as <-.

7. cutrewrite —-> (termi = terms)

This tactic is deprecated. It can be replaced by enough (term; = terms) as —>.
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8.6.3 subst ident

This tactic applies to a goal that has ident in its context and (at least) one hypothesis, say H, of type
ident =t or t = ident with ident not occurring in ¢. Then it replaces ident by ¢ everywhere in the goal
(in the hypotheses and in the conclusion) and clears ident and H from the context.

If ident is a local definition of the form ident := ¢, it is also unfolded and cleared.

Remark: When several hypotheses have the form ident =¢ or ¢ = ident, the first one is used.

Remark: If H is itself dependent in the goal, it is replaced by the proof of reflexivity of equality.

Variants:
1. subst ident; ... identy,
This is equivalent to subst ident;; ...; subst ident,.
2. subst

This applies subst repeatedly from top to bottom to all identifiers of the context for which an
equality of the form ident =t or t = ident or ident := t exists, with ident not occurring in £.

Remark: The behavior of subst can be controlled using option Set Regular Subst
Tactic. When this option is activated, subst also deals with the following corner cases:

e A context with ordered hypotheses ident; = idents and ident; = t, or t' = ident; with ¢’
not a variable, and no other hypotheses of the form idents = w oru = identy; without the
option, a second call to subst would be necessary to replace idents by ¢ or ' respectively.

* The presence of a recursive equation which without the option would be a cause of failure
of subst.

* A context with cyclic dependencies as with hypotheses ident; = f identy and ident; =
g ident; which without the option would be a cause of failure of subst.

Additionally, it prevents a local definition such as ident := ¢ to be unfolded which otherwise it
would exceptionally unfold in configurations containing hypotheses of the form ident = wu, or v’
= ident with v’ not a variable.

Finally, it preserves the initial order of hypotheses, which without the option it may break.

The option is on by default.

8.6.4 stepl term

This tactic is for chaining rewriting steps. It assumes a goal of the form “R term; termy” where R is a
binary relation and relies on a database of lemmas of the form forallzyz, Rzy->eqxz-> Rz
1y where eq is typically a setoid equality. The application of stepl term then replaces the goal by “R
term terms” and adds a new goal stating “eq term term;”.

Lemmas are added to the database using the command

Declare Left Step term.

The tactic is especially useful for parametric setoids which are not accepted as regular setoids for
rewrite and setoid_replace (see Chapter 27).

Variants:
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1. stepl term by tactic

This applies stepl term then applies tactic to the second goal.

2. stepr term
stepr term by tactic

This behaves as stepl but on the right-hand-side of the binary relation. Lemmas are expected to
be of the form “forall zy 2z, Rxy —>eqy z —> R x 2” and are registered using the command

Declare Right Step term.

8.6.5 change term

This tactic applies to any goal. It implements the rule “Conv” given in Section 4.4. change U replaces
the current goal T with U providing that U is well-formed and that T and U are convertible.

Error messages:

1. Not convertible

Variants:

1. change term; with terms

This replaces the occurrences of term; by terms in the current goal. The terms term; and terms
must be convertible.

2. change term; at num; ... num; with terms

This replaces the occurrences numbered num; ... num; of term; by terms in the current goal.
The terms term; and terms must be convertible.

Error message: Too few occurrences
3. change term in ident
4. change termj; with terms in ident
5. change termi at num; ... num; with terms in ident

This applies the change tactic not to the goal but to the hypothesis ident.

See also: 8.7

8.7 Performing computations

This set of tactics implements different specialized usages of the tactic change.

All conversion tactics (including change) can be parameterized by the parts of the goal where
the conversion can occur. This is done using goal clauses which consists in a list of hypotheses and,
optionally, of a reference to the conclusion of the goal. For defined hypothesis it is possible to specify if
the conversion should occur on the type part, the body part or both (default).
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Goal clauses are written after a conversion tactic (tactics set 8.3.7, rewrite 8.6.1,
replace 8.6.2 and autorewrite 8.8.4 also use goal clauses) and are introduced by the keyword
in. If no goal clause is provided, the default is to perform the conversion only in the conclusion.

The syntax and description of the various goal clauses is the following:

in ident; ... ident; |- only in hypotheses ident; ...ident,

in ident; ... ident, |- = in hypotheses ident; ...ident, and in the conclusion

in % |- inevery hypothesis

in = (equivalentto in * |- *)everywhere

in (type of ident;) (value of identy) ... |- in type part of ident;, in the value part of
idents, etc.

For backward compatibility, the notation in ident;...ident, performs the conversion in hypotheses
ident. . .ident,,.

871 cbv flag, ... flag,,lazy flagy ... flag,,and compute

These parameterized reduction tactics apply to any goal and perform the normalization of the goal ac-
cording to the specified flags. In correspondence with the kinds of reduction considered in COQ namely
B (reduction of functional application), ¢ (unfolding of transparent constants, see 6.10.2), ¢+ (reduction
of pattern-matching over a constructed term, and unfolding of £ix and cofix expressions) and { (con-
traction of local definitions), the flags are either beta, delta, match, fix, cofix, iota or zeta.
The iota flag is a shorthand for match, fix and cofix. The delta flag itself can be refined into
delta [qualid;...qualid;] ordelta -[qualid;. . .qualidg],restricting in the first case the con-
stants to unfold to the constants listed, and restricting in the second case the constant to unfold to all
but the ones explicitly mentioned. Notice that the delta flag does not apply to variables bound by a
let-in construction inside the term itself (use here the zet a flag). In any cases, opaque constants are not
unfolded (see Section 6.10.1).

Normalization according to the flags is done by first evaluating the head of the expression into a
weak-head normal form, i.e. until the evaluation is bloked by a variable (or an opaque constant, or an
axiom),ase.g. inx u; ... Up,ormatch x with ... end,or (fix f x {struct x} :=

.) x,oris a constructed form (a A-expression, a constructor, a cofixpoint, an inductive type, a
product type, a sort), or is a redex that the flags prevent to reduce. Once a weak-head normal form is
obtained, subterms are recursively reduced using the same strategy.

Reduction to weak-head normal form can be done using two strategies: lazy (Lazy tactic), or call-
by-value (cbv tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the
arguments of a function call are weakly evaluated only when necessary, and if an argument is used
several times then it is weakly computed only once. This reduction is efficient for reducing expressions
with dead code. For instance, the proofs of a proposition exists z. P(x) reduce to a pair of a
witness ¢, and a proof that ¢ satisfies the predicate P. Most of the time, ¢ may be computed without
computing the proof of P(t), thanks to the lazy strategy.

The call-by-value strategy is the one used in ML languages: the arguments of a function call are
systematically weakly evaluated first. Despite the lazy strategy always performs fewer reductions than
the call-by-value strategy, the latter is generally more efficient for evaluating purely computational ex-
pressions (i.e. with few dead code).

Variants:
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1. compute
cbv

These are synonyms for cbv beta delta iota zeta.

2. lazy
This is a synonym for lazy beta delta iota zeta.
3. compute [qualid;. . .qualidg]
cbv [qualid; . . .qualidy]
These are synonyms of cbv beta delta [qualid;...qualidy] iota zeta.
4. compute -[qualid;. . .qualidg]
cbv —[qualid;. . .qualidg]
These are synonyms of cbv beta delta -[qualid;...qualidy] iota zeta.
5. lazy [qualid;. . .qualidy]
lazy -[qualid;. . .qualid]
These are respectively synonyms of lazy beta delta [qualid;...qualidy] iota
zetaand lazy beta delta —[qualid;...qualidy] iota zeta.
6. vim_compute

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual
machine described in [77]. This algorithm is dramatically more efficient than the algorithm used
for the cbv tactic, but it cannot be fine-tuned. It is specially interesting for full evaluation of
algebraic objects. This includes the case of reflection-based tactics.

7. native_compute

This tactic evaluates the goal by compilation to OBJECTIVE CAML as described in [16]. If COQ
is running in native code, it can be typically two to five times faster than vm_compute. Note
however that the compilation cost is higher, so it is worth using only for intensive computations.

8.7.2 red

This tactic applies to a goal that has the form forall (x:T1)...(xk:Tk), t with t Bu(-
reducingto ¢ tl ... tn and c a constant. If c is transparent then it replaces ¢ with its definition
(say t) and thenreduces (t t1 ... tn) according to S¢(-reduction rules.

Error messages:

1. Not reducible

8.7.3 hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the
Bdul-reduction rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible
term. All inner Si-redexes are also reduced.

Example: The term forall n:nat, (plus (S n) (S n)) isnotreduced by hnf.

Remark: The § rule only applies to transparent constants (see Section 6.10.1 on transparency and
opacity).
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8.7.4 cbn and simpl

These tactics apply to any goal. They try to reduce a term to something still readable instead of fully
normalizing it. They perform a sort of strong normalization with two key differences:

* They unfold a constant if and only if it leads to a ¢-reduction, i.e. reducing a match or unfolding a
fixpoint.

* While reducing a constant unfolding to (co)fixpoints, the tactics use the name of the constant the
(co)fixpoint comes from instead of the (co)fixpoint definition in recursive calls.

The cbn tactic is claimed to be a more principled, faster and more predictable replacement for
simpl.

The cbn tactic accepts the same flags as cbv and 1azy. The behavior of both simpl and cbn can
be tuned using the Argument s vernacular command as follows:

* A constant can be marked to be never unfolded by cbn or simpl:

Cog < Arguments minus n m : simpl never.

After that command an expression like (minus (S x) vy) is left untouched by the tactics cbn
and simpl.

* A constant can be marked to be unfolded only if applied to enough arguments. The number of
arguments required can be specified using the / symbol in the arguments list of the Arguments
vernacular command.

Cog < Definition fcomp A B C f (g : A => B) (x : A) : C := f (g x).
Cog < Notation "f \o g" := (fcomp f g) (at level 50).

Cog < Arguments fcomp {A B C} f g x /.

After that command the expression (£ \o g) is left untouched by simpl while ( (£ \o g)
t) isreducedto (f (g t)). The same mechanism can be used to make a constant volatile, i.e.
always unfolded.

Cog < Definition volatile := fun x : nat => x.

Cog < Arguments volatile / x.

* A constant can be marked to be unfolded only if an entire set of arguments evaluates to a con-
structor. The ! symbol can be used to mark such arguments.

Cog < Arguments minus !n !m.

After that command, the expression (minus (S x) vy) is left untouched by simpl, while
(minus (S x) (S y)) isreducedto (minus x y).

* A special heuristic to determine if a constant has to be unfolded can be activated with the following
command:

Cog < Arguments minus n m : simpl nomatch.
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The heuristic avoids to perform a simplification step that would expose a mat ch construct in head
position. For example the expression (minus (S (S x)) (S y)) issimplified to (minus
(S x) y) even if an extra simplification is possible.

In detail, the tactic simp1 first applies Se-reduction. Then, it expands transparent constants and tries
to reduce further using fi-reduction. But, when no ¢ rule is applied after unfolding then §-reductions are
not applied. For instance trying to use simpl on (plus n O)=n changes nothing.

Notice that only transparent constants whose name can be reused in the recursive calls are possibly
unfolded by simpl. For instance a constant defined by plus’ := plus is possibly unfolded and
reused in the recursive calls, but a constant such as succ := plus (S 0) isnever unfolded. This is
the main difference between simpl and cbn. The tactic cbn reduces whenever it will be able to reuse
itornot: succ tisreducedto S t.

Variants:
1. cbn [qualid;y. . .qualid]
cbn - [qualid; . . .qualidg]
These are respectively synonyms of cbn beta delta [qualid;...qualidy] iota zeta
and cbn beta delta -[qualid;...qualid;] iota zeta (see 8.7.1).
2. simpl pattern

This applies simpl only to the subterms matching pattern in the current goal.

3. simpl pattern at num; ... num;

This applies simp1l only to the numy, ..., num; occurrences of the subterms matching pattern in
the current goal.

Error message: Too few occurrences
4. simpl qualid
simpl string

This applies simpl only to the applicative subterms whose head occurrence is the unfoldable
constant qualid (the constant can be referred to by its notation using string if such a notation

exists).
5. simpl qualid at num; ... num;
simpl string at num; ... num;
This applies simpl only to the numy, ..., num; applicative subterms whose head occurrence is

qualid (or string).
Refolding Reduction
Deprecated since 8.7
This option (off by default) controls the use of the refolding strategy of clon while doing reductions
in unification, type inference and tactic applications. It can result in expensive unifications, as refolding

currently uses a potentially exponential heuristic.
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8.7.5 unfold qualid

This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local
definition (see Sections 1.3.2 and 6.10.2). The tactic unfold applies the ¢ rule to each occurrence of
the constant to which qualid refers in the current goal and then replaces it with its S:-normal form.

Error messages:

1. qualid does not denote an evaluable constant

Variants:
1. unfold qualidy, ..., qualid,
Replaces simultaneously qualid, ..., qualid,, with their definitions and replaces the current goal

with its S¢ normal form.

2. unfold qualid, at num}, ..., num}, ..., qualid, at num?} ... num’

The lists num%, e, num% and num?, ..., num;-’ specify the occurrences of qualidy, ..., qualid,

to be unfolded. Occurrences are located from left to right.
Error message: bad occurrence number of qualid;

Error message: qualid; does not occur

3. unfold string

If string denotes the discriminating symbol of a notation (e.g. "+") or an expression defining
a notation (e.g. "_ + _"), and this notation refers to an unfoldable constant, then the tactic
unfolds it.

4. unfold string%key

This is variant of unfold string where string gets its interpretation from the scope bound to the
delimiting key key instead of its default interpretation (see Section 12.2.2).

5. unfold qualid_or_string; at num%, ey num}, ..., qualid_or_string, at num?}

n
num]

This is the most general form, where qualid_or_string is either a qualid or a string referring to a
notation.

8.7.6 fold term

This tactic applies to any goal. The term term is reduced using the red tactic. Every occurrence of the
resulting term in the goal is then replaced by term.

Variants:

1. foldterm; ... termy,

Equivalent to fold term;;...; fold term,,.
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8.7.7 pattern term

This command applies to any goal. The argument term must be a free subterm of the current goal. The
command pattern performs S-expansion (the inverse of S-reduction) of the current goal (say T) by

1. replacing all occurrences of term in T with a fresh variable
2. abstracting this variable
3. applying the abstracted goal to term

For instance, if the current goal 7" is expressible has ¢(¢) where the notation captures all the instances
of tin ¢(t), thenpattern ttransformsitinto (fun x:A => ¢(x)) ¢. Thiscommand can be used,
for instance, when the tactic apply fails on matching.

Variants:

1. pattern term at num; ... numy,
Only the occurrences num; ... num, of term are considered for S-expansion. Occurrences are
located from left to right.

2. pattern term at - num; ... num,

All occurrences except the occurrences of indexes num; ... num, of term are considered for
[-expansion. Occurrences are located from left to right.

3. pattern term;, ..., termy,
Starting from a goal ¢(¢1 ... t,,), the tactic pattern t;, ..., t, generates the equivalent
goal (fun (x1:41) ... (Xm:Am) => ¢(x1... xm)) t1 ... tm. Ift; occursin one

of the generated types A; these occurrences will also be considered and possibly abstracted.

1
ny’

m

4. pattern term; at numi ... num m

m
., term,, at numy” ... num

This behaves as above but processing only the occurrences num%, e, numz1 of termy, ..., num}’,

e, num}” of termy, starting from term,,.

5. pattern term; [at [-] num% num}n] y oo., termp [at [-]num?® ... nump' |

This is the most general syntax that combines the different variants.

8.7.8 Conversion tactics applied to hypotheses

conv_tactic in ident; ... ident,

Applies the conversion tactic conv_tactic to the hypotheses ident;, ..., ident,. The tactic
conv_tactic is any of the conversion tactics listed in this section.

If ident; is a local definition, then ident; can be replaced by (Type of ident;) to address not the
body but the type of the local definition. Example: unfold not in (Type of H1) (Type of
H3) .

Error messages:

1. No such hypothesis: ident.
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8.8 Automation

8.8.1 auto

This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve
the goal using the assumption tactic, then it reduces the goal to an atomic one using intros and
introduces the newly generated hypotheses as hints. Then it looks at the list of tactics associated to the
head symbol of the goal and tries to apply one of them (starting from the tactics with lower cost). This
process is recursively applied to the generated subgoals.

By default, aut o only uses the hypotheses of the current goal and the hints of the database named
core.

Variants:

1. auto num

Forces the search depth to be num. The maximal search depth is 5 by default.

2. auto with ident; ... ident,

Uses the hint databases ident; ... ident,, in addition to the database core. See Section 8.9.1 for
the list of pre-defined databases and the way to create or extend a database.

3. auto with =

Uses all existing hint databases. See Section 8.9.1

4. auto usinglemma; , ... , lemma,

Uses lemmay, ..., lemma, in addition to hints (can be combined with the with ident option).
If lemma; is an inductive type, it is the collection of its constructors which is added as hints.

5. info_auto

Behaves like aut o but shows the tactics it uses to solve the goal. This variant is very useful for
getting a better understanding of automation, or to know what lemmas/assumptions were used.

6. [info_Jauto [num][using lemma, , ... , lemma,] [with ident; ... identy]

This is the most general form, combining the various options.

7. trivial

This tactic is a restriction of auto that is not recursive and tries only hints that cost 0. Typically
it solves trivial equalities like X = X.

8. trivial with ident; ... ident,

9. trivial with =*

10. trivial using lemma; , ... , lemma,,
11. info_trivial

12. [info_Jtrivial [using lemma; , ... , lemma,] [with ident; ... ident,,]

Remark: auto either solves completely the goal or else leaves it intact. auto and trivial never
fail.

See also: Section 8.9.1
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8.8.2 eauto

This tactic generalizes auto. While auto does not try resolution hints which would leave existential
variables in the goal, eauto does try them (informally speaking, it uses simple eapply where
autouses simple apply). As aconsequence, eauto can solve such a goal:

Cog < Hint Resolve ex_intro.
the hint: eapply ex_intro will only be used by eauto

Cogq < Goal forall P:nat -> Prop, P 0 -> exists n, P n.
1 subgoal

forall P : nat -> Prop, P 0 -> exists n : nat, P n

Cog < eauto.
No more subgoals.

Note that ex_intro should be declared as a hint.
Variants:

1. [info_Jeauto [num][using lemma; , ... , lemma,] [with ident; ... ident, ]

The various options for eauto are the same as for auto.

See also: Section 8.9.1

8.8.3 autounfold with ident; ... ident,
This tactic unfolds constants that were declared through a Hint Unfold in the given databases.
Variants:

1. autounfold with ident; ... ident, in clause

Performs the unfolding in the given clause.

2. autounfold with =
Uses the unfold hints declared in all the hint databases.

8.8.4 autorewrite with ident; ... ident,

This tactic # carries out rewritings according the rewriting rule bases ident; . . .ident,.

Each rewriting rule of a base ident; is applied to the main subgoal until it fails. Once all the rules
have been processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal)
then the rules of this base are processed again. If the main subgoal has not progressed then the next base
is processed. For the bases, the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with the Hint Rewrite vernacular command.

Warning: This tactic may loop if you build non terminating rewriting systems.

Variant:

“The behavior of this tactic has much changed compared to the versions available in the previous distributions (V6). This
may cause significant changes in your theories to obtain the same result. As a drawback of the re-engineering of the code, this
tactic has also been completely revised to get a very compact and readable version.
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1. autorewrite with ident; ... ident, using tactic
Performs, in the same way, all the rewritings of the bases ident; ... ident, applying tactic to
the main subgoal after each rewriting step.

2. autorewrite with ident; ... ident, in qualid

Performs all the rewritings in hypothesis qualid.

3. autorewrite with ident; ... ident, in qualid using tactic

Performs all the rewritings in hypothesis qualid applying tactic to the main subgoal after each
rewriting step.

4. autorewrite with ident; ... ident, in clause

Performs all the rewriting in the clause clause. The clause argument must not contain any type
of nor value of.

See also: Section 8.9.5 for feeding the database of lemmas used by autorewrite.

See also: Section 10.2 for examples showing the use of this tactic.

8.9 Controlling automation

8.9.1 The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list
of hints. One can use the command Print Hint ident to display the hints associated to the head
symbol ident (see 8.9.4). Each hint has a cost that is a nonnegative integer, and an optional pattern. The
hints with lower cost are tried first. A hint is tried by auto when the conclusion of the current goal
matches its pattern or when it has no pattern.

Creating Hint databases

One can optionally declare a hint database using the command Create HintDb. If a hint is added to
an unknown database, it will be automatically created.

Create HintDb ident [discriminated]

This command creates a new database named ident. The database is implemented by a Discrimina-
tion Tree (DT) that serves as an index of all the lemmas. The DT can use transparency information to
decide if a constant should be indexed or not (c.f. 8.9.1), making the retrieval more efficient. The legacy
implementation (the default one for new databases) uses the DT only on goals without existentials (i.e.,
auto goals), for non-Immediate hints and do not make use of transparency hints, putting more work on
the unification that is run after retrieval (it keeps a list of the lemmas in case the DT is not used). The
new implementation enabled by the discriminated option makes use of DTs in all cases and takes
transparency information into account. However, the order in which hints are retrieved from the DT may
differ from the order in which they were inserted, making this implementation observationally different
from the legacy one.

The general command to add a hint to some databases ident;, ..., ident,, is

Hint hint _definition : ident; ... Iident,
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Variants:

1. Hint hint_definition

No database name is given: the hint is registered in the core database.

2. Local Hint hint_definition : ident; ... ident,

This is used to declare hints that must not be exported to the other modules that require and import
the current module. Inside a section, the option Local is useless since hints do not survive
anyway to the closure of sections.

3. Local Hint hint_definition

Idem for the core database.

The hint_definition is one of the following expressions:

* Resolve term[| [num] [pattern]]

This command adds simple apply term to the hint list with the head symbol of the type of
term. The cost of that hint is the number of subgoals generated by simple apply term or
numif specified. The associated pattern is inferred from the conclusion of the type of termor the
given patternif specified.

In case the inferred type of term does not start with a product the tactic added in the hint list is
exact term. In case this type can however be reduced to a type starting with a product, the
tactic simple apply term is also stored in the hints list.

If the inferred type of term contains a dependent quantification on a variable which occurs only in
the premisses of the type and not in its conclusion, no instance could be inferred for the variable
by unification with the goal. In this case, the hint is added to the hint list of eauto (see 8.8.2)
instead of the hint list of auto and a warning is printed. A typical example of a hint that is used
only by eauto is a transitivity lemma.

Error messages:

1. term cannot be used as a hint

The head symbol of the type of term is a bound variable such that this tactic cannot be
associated to a constant.

Variants:

1. Resolve term; ... termy,
Adds each Resolve term;.

2. Resolve —-> term

Adds the left-to-right implication of an equivalence as a hint (informally the hint will be used
as apply <- term, although as mentionned before, the tactic actually used is a restricted
version of apply).

3. Resolve <- term

Adds the right-to-left implication of an equivalence as a hint.
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e Tmmediate term

This command adds simple apply term; trivial to the hintlist associated with the head
symbol of the type of ident in the given database. This tactic will fail if all the subgoals generated
by simple apply term are not solved immediately by the trivial tactic (which only tries
tactics with cost 0).

This command is useful for theorems such as the symmetry of equalityorn+1 = m+1 —-n=m
that we may like to introduce with a limited use in order to avoid useless proof-search.

The cost of this tactic (which never generates subgoals) is always 1, so that it is not used by
trivial itself.

Error messages:

1. term cannot be used as a hint

Variants:

1. Immediate term; ... termy,
Adds each Immediate term,;.
Constructors ident

If ident is an inductive type, this command adds all its constructors as hints of type Resolve.
Then, when the conclusion of current goal has the form (ident ...), auto will try to apply
each constructor.

Error messages:

1. ident is not an inductive type

Variants:

1. Constructors ident; ... ident,,
Adds each Constructors ident;.

Unfold qualid
This adds the tactic unfold qualid to the hint list that will only be used when the head constant
of the goal is ident. Its cost is 4.

Variants:

1. Unfold ident; ... ident,,
Adds each Unfold ident;.

Transparent, Opaque qualid

This adds a transparency hint to the database, making qualid a transparent or opaque constant
during resolution. This information is used during unification of the goal with any lemma
in the database and inside the discrimination network to relax or constrain it in the case of
discriminated databases.

Variants:
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1. Transparent, Opaque ident; ... ident,,

Declares each ident; as a transparent or opaque constant.

* Extern num [pattern] => tactic

This hint type is to extend aut o with tactics other than apply and unfold. For that, we must
specify a cost, an optional pattern and a tactic to execute. Here is an example:

Hint Extern 4 (~(_ = _)) => discriminate.

Now, when the head of the goal is a disequality, auto will try discriminate if it does not
manage to solve the goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question
mark followed by an identifier, like ?X1 or ?X2. Here is an example:

Cogq < Require Import List.

Cog < Hint Extern 5 ({?X1 = ?2X2} + {?2X1 <> 2X2}) =>
generalize X1, X2; decide equality : eqgdec.

Cog < Goal
forall a b:list (nat % nat), {a = b} + {a <> b}.
1 subgoal

forall a b : 1list (nat #* nat), {a = b} + {a <> b}

Cogq < Info 1 auto with egdec.
<ltac _plugin::auto@0> "egdec"
No more subgoals.

e Cut regexp

Warning: these hints currently only apply to typeclass proof search and the typeclasses
eauto tactic (20.6.5).

This command can be used to cut the proof-search tree according to a regular expression match-
ing paths to be cut. The grammar for regular expressions is the following. Beware, there is no
operator precedence during parsing, one can check with Print HintDb to verify the current
cut expression:

e == 1ident hint or instance identifier
_ any hint
ele’  disjunction
ee’ sequence
ex Kleene star
emp  empty
eps  epsilon
(e)

The emp regexp does not match any search path while eps matches the empty path. During proof
search, the path of successive successful hints on a search branch is recorded, as a list of identifiers
for the hints (note Hint Extern’s do not have an associated identifier). Before applying any
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hint ident the current path p extended with ident is matched against the current cut expression ¢
associated to the hint database. If matching succeeds, the hint is not applied. The semantics of
Hint Cut eis to set the cut expression to c|e, the initial cut expression being emp.

e Mode qualid (+ | ! | —-)*

This sets an optional mode of use of the identifier qualid. When proof-search faces a goal that ends
in an application of qualid to arguments term; ... termy, the mode tells if the hints associated
to qualid can be applied or not. A mode specification is a list of n +, ! or — items that specify if
an argument of the identifier is to be treated as an input (+), if its head only is an input (!) or an
output (-) of the identifier. For a mode to match a list of arguments, input terms and input heads
must not contain existential variables or be existential variables respectively, while outputs can be
any term. Multiple modes can be declared for a single identifier, in that case only one mode needs
to match the arguments for the hints to be applied.

The head of a term is understood here as the applicative head, or the match or projection scrutinee’s
head, recursively, casts being ignored.

Hint Mode is especially useful for typeclasses, when one does not want to support default in-
stances and avoid ambiguity in general. Setting a parameter of a class as an input forces proof-
search to be driven by that index of the class, with ! giving more flexibility by allowing existen-
tials to still appear deeper in the index but not at its head.

Remark: One can use an Extern hint with no pattern to do pattern-matching on hypotheses using
match goal with inside the tactic.

8.9.2 Hint databases defined in the COQ standard library

Several hint databases are defined in the COQ standard library. The actual content of a database is
the collection of the hints declared to belong to this database in each of the various modules currently
loaded. Especially, requiring new modules potentially extend a database. At COQ startup, only the
core database is non empty and can be used.

core This special database is automatically used by aut o, except when pseudo-database nocore is
given to auto. The core database contains only basic lemmas about negation, conjunction, and
so on from. Most of the hints in this database come from the Init and Logic directories.

arith This database contains all lemmas about Peano’s arithmetic proved in the directories Init and
Arith

zarith contains lemmas about binary signed integers from the directories theories/ZArith.
When required, the module Omega also extends the database zarith with a high-cost hint that
calls omega on equations and inequalities in nat or Z.

bool contains lemmas about booleans, mostly from directory theories/Bool.

datatypes is for lemmas about lists, streams and so on that are mainly proved in the Lists subdi-
rectory.

sets contains lemmas about sets and relations from the directories Sets and Relations.
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typeclass_instances contains all the type class instances declared in the environment, including
those used for setoid_rewrite, from the Classes directory.

You are advised not to put your own hints in the core database, but use one or several databases
specific to your development.

8.9.3 Remove Hints term; ... term, : ident; ... ident,,

This command removes the hints associated to terms term; ... term,, in databases ident; ... ident,,.

894 Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while
the two variants can be used at every moment.
Variants:
1. Print Hint ident
This command displays only tactics associated with ident in the hints list. This is independent of
the goal being edited, so this command will not fail if no goal is being edited.
2. Print Hint =«

This command displays all declared hints.

3. Print HintDb ident

This command displays all hints from database ident.

8.9.5 Hint Rewrite term; ... term, : ident; ... ident,,
This vernacular command adds the terms term; ... term, (their types must be equalities) in the
rewriting bases ident, ..., ident,, with the default orientation (left to right). Notice that the rewriting

bases are distinct from the aut o hint bases and that aut o does not take them into account.

This command is synchronous with the section mechanism (see 2.4): when closing a section, all
aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all
Hint Rewrite declarations at the global level of that module are loaded.

Variants:
1. Hint Rewrite -> termy ... term, : ident; ... Ident,,

This is strictly equivalent to the command above (we only make explicit the orientation which
otherwise defaults to —>).

2. Hint Rewrite <- termy ... term, : ident; ... Iident,,
Adds the rewriting rules term; ... term, with a right-to-left orientation in the bases ident,
..., ident,.

3. Hint Rewrite term; ... term, using tactic : ident; ... identy,,
When the rewriting rules termy, ... term, in identy, ..., ident,, will be used, the tactic tactic

will be applied to the generated subgoals, the main subgoal excluded.

4. Print Rewrite HintDb ident

This command displays all rewrite hints contained in ident.
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8.9.6 Hint locality

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a
module A that are not defined inside a section (and not defined with option Local) become available
when the module 2 is imported (using e.g. Require Import A.).

As of today, hints only have a binary behavior regarding locality, as described above: either they
disappear at the end of a section scope, or they remain global forever. This causes a scalability issue,
because hints coming from an unrelated part of the code may badly influence another development. It
can be mitigated to some extent thanks to the Remove Hints command (see 8.9.3), but this is a mere
workaround and has some limitations (for instance, external hints cannot be removed).

A proper way to fix this issue is to bind the hints to their module scope, as for most of the other
objects Coq uses. Hints should only made available when the module they are defined in is imported,
not just required. Itis very difficult to change the historical behavior, as it would break a lot of scripts. We
propose a smooth transitional path by providing the Loose Hint Behavior option which accepts
three flags allowing for a fine-grained handling of non-imported hints.

Variants:

1. Set Loose Hint Behavior "Lax"

This is the default, and corresponds to the historical behavior, that is, hints defined outside of a
section have a global scope.

2. Set Loose Hint Behavior "Warn"

When set, it outputs a warning when a non-imported hint is used. Note that this is an over-
approximation, because a hint may be triggered by a run that will eventually fail and backtrack,
resulting in the hint not being actually useful for the proof.

3. Set Loose Hint Behavior "Strict"

When set, it changes the behavior of an unloaded hint to a immediate fail tactic, allowing to
emulate an import-scoped hint mechanism.

8.9.7 Setting implicit automation tactics
Proof with tactic

This command may be used to start a proof. It defines a default tactic to be used each time a tactic
command tacticy is ended by “. . .”. In this case the tactic command typed by the user is equivalent to
tacticy ;tactic.

See also: Proof. in Section 7.1.4.

Variants:

1. Proof with tactic using ident; ... identy,

Combines in a single line Proof with and Proof using,see 7.1.5

2. Proof using ident; ... ident, with tactic

Combines in a single line Proof with and Proof using,see 7.1.5
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Declare Implicit Tactic tactic

This command declares a tactic to be used to solve implicit arguments that COQ does not know how to
solve by unification. It is used every time the term argument of a tactic has one of its holes not fully
resolved.

Here is an example:

Cog < Parameter quo : nat -> forall n:nat, n<>0 -> nat.
quo 1s declared

Coq < Notation "x // y" := (quo x y _) (at level 40).
Cog < Declare Implicit Tactic assumption.

Coqg < Goal forall nm, m<>0 -> { g:tnat & { r | g *m + r =n } }.
1 subgoal

forall n m : nat, m <> 0 -> {q : nat & {r : nat | g ~ m + r = n}}
Cog < intros.

1 subgoal

n, m : nat
H: m<>20

{qg : nat & {r : nat | g » m + r = n}}
Cog < exists (n // m).

1 subgoal

n, m : nat
H: m<>20

{r : nat | n // m » m + r = n}

The tactic exists (n // m) did not fail. The hole was solved by assumption so that it
behaved as exists (quo n m H).

8.10 Decision procedures

8.10.1 tauto

This tactic implements a decision procedure for intuitionistic propositional calculus based on the
contraction-free sequent calculi LJT* of Roy Dyckhoff [56]. Note that tauto succeeds on any in-
stance of an intuitionistic tautological proposition. tauto unfolds negations and logical equivalence
but does not unfold any other definition.

The following goal can be proved by taut o whereas auto would fail:

Cog < Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x —> x <> 0 -> P x.
1 subgoal

forall (x : nat) (P : nat -> Prop), x =0 \/ P x —> x <> 0 -> P x
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Coqg < intros.
1 subgoal

x : nat

P : nat —> Prop
H: x=0\/P x
HO : x <> 0

Cog < tauto.
No more subgoals.

Moreover, if it has nothing else to do, t aut o performs introductions. Therefore, the use of intros
in the previous proof is unnecessary. tauto can for instance prove the following:

Cog < (* auto would fail x)
Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ A —-> P x.
1 subgoal

forall (A : Prop) (P : nat -> Prop),
A \/ (forall x : nat, ~ A —-> P x) —-> forall x : nat, ~ A —> P x

Cog < tauto.
No more subgoals.

Remark: In contrast, tauto cannot solve the following goal

Cog < Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x).

because (forall x:nat, ~ A —-> P x) cannot be treated as atomic and an instantiation of
X is necessary.

Variants:

1. dtauto

While tauto recognizes inductively defined connectives isomorphic to the standard connective
and, prod, or, sum, False, Empty_set, unit, True, dtauto recognizes also all induc-
tive types with one constructors and no indices, i.e. record-style connectives.

8.10.2 intuition tactic

The tactic intuition takes advantage of the search-tree built by the decision procedure involved in
the tactic tauto. It uses this information to generate a set of subgoals equivalent to the original one
(but simpler than it) and applies the tactic tactic to them [113]. If this tactic fails on some goals then
intuition fails. In fact, tautois simply intuition fail.

For instance, the tactic intuition auto applied to the goal

(forall (x:nat), P x)/\B -> (forall (y:nat),P y)/\ P O \/B/\ P O

internally replaces it by the equivalent one:

Coq Reference Manual, V8.7.0, October 18, 2017



8.10 Decision procedures 247

(forall (x:nat), P x), B |- P O

and then uses aut o which completes the proof.

Originally due to César Mufloz, these tactics (tauto and intuition) have been completely re-
engineered by David Delahaye using mainly the tactic language (see Chapter 9). The code is now much
shorter and a significant increase in performance has been noticed. The general behavior with respect
to dependent types, unfolding and introductions has slightly changed to get clearer semantics. This may
lead to some incompatibilities.

Variants:

1. intuition

Is equivalentto intuition auto with .

2. dintuition

While intuition recognizes inductively defined connectives isomorphic to the standard con-
nective and, prod, or, sum, False, Empty_set, unit, True, dintuition recognizes
also all inductive types with one constructors and no indices, i.e. record-style connectives.

Some aspects of the tactic intuition can be controlled using options. To avoid that inner nega-
tions which do not need to be unfolded are unfolded, use:

Unset Intuition Negation Unfolding
To do that all negations of the goal are unfolded even inner ones (this is the default), use:
Set Intuition Negation Unfolding

To avoid that inner occurrence of i ff which do not need to be unfolded are unfolded (this is the
default), use:

Unset Intuition Iff Unfolding
To do that all negations of the goal are unfolded even inner ones (this is the default), use:

Set Intuition Iff Unfolding

8.10.3 rtauto

The rtauto tactic solves propositional tautologies similarly to what taut o does. The main difference
is that the proof term is built using a reflection scheme applied to a sequent calculus proof of the goal.
The search procedure is also implemented using a different technique.

Users should be aware that this difference may result in faster proof-search but slower proof-
checking, and rtauto might not solve goals that t aut o would be able to solve (e.g. goals involving
universal quantifiers).
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8104 firstorder

The tactic firstorder is an experimental extension of tauto to first-order reasoning, written by
Pierre Corbineau. It is not restricted to usual logical connectives but instead may reason about any
first-order class inductive definition.

The default tactic used by firstorder when no rule applies is auto with =, it can be reset
locally or globally using the Set Firstorder Solver tactic vernacular command and printed
using Print Firstorder Solver.

Variants:

1. firstorder tactic

Tries to solve the goal with tactic when no logical rule may apply.

2. firstorder using qualidy , ... , qualid,

Adds lemmas qualid; ... qualid,, to the proof-search environment. If qualid; refers to an induc-
tive type, it is the collection of its constructors which are added to the proof-search environment.

3. firstorder with ident; ... ident,

Adds lemmas from auto hint bases ident; ... ident,, to the proof-search environment.

4. firstorder tactic using qualidy , ... , qualid, with ident; ... identy,

This combines the effects of the different variants of firstorder.

Proof-search is bounded by a depth parameter which can be set by typing the Set Firstorder
Depth n vernacular command.

8.10.5 congruence

The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congru-
ence closure algorithm, which is a decision procedure for ground equalities with uninterpreted symbols.
It also include the constructor theory (see 8.5.7 and 8.5.6). If the goal is a non-quantified equality,
congruence tries to prove it with non-quantified equalities in the context. Otherwise it tries to in-
fer a discriminable equality from those in the context. Alternatively, congruence tries to prove that a
hypothesis is equal to the goal or to the negation of another hypothesis.

congruence is also able to take advantage of hypotheses stating quantified equalities, you have
to provide a bound for the number of extra equalities generated that way. Please note that one of the
members of the equality must contain all the quantified variables in order for congruence to match
against it.

Cogq < Theorem T:
a=(f a) => (g b (f a))=(f (£ a)) -> (g a b)
1 subgoal

(f (gba)) —> (gab)=a.

a=fa->qgb (fa) =f (fa) —>gab=1fFf (gba) —-—>gab-=a

Cog < intros.
1 subgoal
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HO : g b (f a) = £ (£ a)
HlI : gab=f*f (gb a)

Cog < congruence.
No more subgoals.

Cogq < Theorem inj : f = pair a —> Some (f c) = Some (f d) —-> c=d.
1 subgoal

f = pair a —-> Some (f c) = Some (f d) -> c =d

Cog < intros.
1 subgoal

H : f = pair a
HO : Some (f c) = Some (f d)

c = d

Cog < congruence.
No more subgoals.

Variants:

1. congruence n

Tries to add at most n instances of hypotheses stating quantified equalities to the problem in order
to solve it. A bigger value of n does not make success slower, only failure. You might consider

adding some lemmas as hypotheses using assert in order for congruence to use them.

2. congruence with term; ... termy,

Adds term; ... term, tothe pool of terms used by congruence. This helps in case you have

partially applied constructors in your goal.

Error messages:

1. T don’t know how to handle dependent equality

The decision procedure managed to find a proof of the goal or of a discriminable equality but this

proof could not be built in COQ because of dependently-typed functions.

2. Goal is solvable by congruence but some arguments are missing.

Try "congruence with ...", replacing metavariables by arbitrary

terms.

The decision procedure could solve the goal with the provision that additional arguments are
supplied for some partially applied constructors. Any term of an appropriate type will allow the
tactic to successfully solve the goal. Those additional arguments can be given to congruence
by filling in the holes in the terms given in the error message, using the with variant described
above.
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8.11 Checking properties of terms

Each of the following tactics acts as the identity if the check succeeds, and results in an error otherwise.

8.11.1 constr_eq term; terms
This tactic checks whether its arguments are equal modulo alpha conversion and casts.

Error message: Not equal

8.11.2 unify term; terms,

This tactic checks whether its arguments are unifiable, potentially instantiating existential variables.
Error message: Not unifiable

Variants:

1. unify termq terms with ident

Unification takes the transparency information defined in the hint database ident into account (see
Section 8.9.1).

8.11.3 is_evar term

This tactic checks whether its argument is a current existential variable. Existential variables are unin-
stantiated variables generated by eapply (see Section 8.2.4) and some other tactics.

Error message: Not an evar

8.11.4 has_evar term

This tactic checks whether its argument has an existential variable as a subterm. Unlike context
patterns combined with 1s_evar, this tactic scans all subterms, including those under binders.

Error message: No evars

8.11.5 is_var term

This tactic checks whether its argument is a variable or hypothesis in the current goal context or in the
opened sections.

Error message: Not a variable or hypothesis

8.12 Equality

8.12.1 f_equal

This tactic applies to a goal of the form f a1 ... a, = f'a} ... al,. Using £_equal on such a goal
leads to subgoals f = f’ and a; = a) and so on up to a,, = al,. Amongst these subgoals, the simple
ones (e.g. provable by reflexivity or congruence) are automatically solved by f_equal.
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8.12.2 reflexivity

This tactic applies to a goal that has the form t=u. It checks that t and u are convertible and then solves
the goal. It is equivalent to apply refl_equal.

Error messages:

1. The conclusion is not a substitutive equation

2. Unable to unify ... with

8.12.3 symmetry

This tactic applies to a goal that has the form t=u and changes it into u=t.
Variants:
. symmetry in ident

If the statement of the hypothesis ident has the form t=u, the tactic changes it to u=t.

8.124 transitivity term

This tactic applies to a goal that has the form t=u and transforms it into the two subgoals t=term and
term=u.

8.13 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or
types. These tactics use the equality eq: forall (A:Type), A->A->Prop, simply written with
the infix symbol =.

8.13.1 decide equality

This tactic solves a goal of the form forall z y:R, {z=y}+{~x=y}, where R is an inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent
types. It solves goals of the form {z=y}+{~z=y} as well.

8.13.2 compare term; terms

This tactic compares two given objects term; and terms of an inductive datatype. If (G is the current
goal, it leaves the sub-goals term;=termo —> GG and ~term;=terms —> (G. The type of term; and terms
must satisfy the same restrictions as in the tactic decide equality.

8.13.3 simplify_eqg term

Let term be the proof of a statement of conclusion term;=terms. If term; and terms are structurally dif-
ferent (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves
as discriminate term, otherwise it behaves as injection term.

Remark: If some quantified hypothesis of the goal is named ident, then simplify_eq ident first
introduces the hypothesis in the local context using intros until ident.

Variants:
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1. simplify_eqg num
This does the same thing as intros until num then simplify_eq ident where ident is
the identifier for the last introduced hypothesis.
2. simplify_eq term with bindings_list
This does the same as simplify_eq term butusing the given bindings to instantiate parameters
or hypotheses of term.
3. esimplify_eq num
esimplify_eqterm [with bindings_list]
This works the same as simplify_eq but if the type of term, or the type of the hypothesis re-
ferred to by num, has uninstantiated parameters, these parameters are left as existential variables.
4, simplify_eq

If the current goal has form ¢ <>, it behaves as intro ident; simplify_eqg ident.

8.13.4 dependent rewrite -> ident

This tactic applies to any goal. If ident has type (existT B a b)=(existT B a’ b’) inthe
local context (i.e. each term of the equality has a sigma type {a : A & (B a)}) this tactic rewrites a
into a’ and b into b’ in the current goal. This tactic works even if B is also a sigma type. This kind of
equalities between dependent pairs may be derived by the injection and inversion tactics.

Variants:

1. dependent rewrite <- ident

Analogous to dependent rewrite -—> butuses the equality from right to left.

8.14 Inversion

8.14.1 functional inversion ident

functional inversion is a tactic that performs inversion on hypothesis ident of the form qualid
term; . . .term, = term or term = qualid term;. . .term, where qualid must have been defined
using Function (see Section 2.3). Note that this tactic is only available after a Require Import
FunInd.

Error messages:
1. Hypothesis ident must contain at least one Function
2. Cannot find inversion information for hypothesis ident
This error may be raised when some inversion lemma failed to be generated by Function.
Variants:

1. functional inversion num

This does the same thing as intros until num then functional inversion ident
where ident is the identifier for the last introduced hypothesis.
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2. functional inversion ident qualid
functional inversion num qualid

If the hypothesis ident (or num) has a type of the form qualid, term;. . .term, = qualidy
termyy1 . . . termyy,.,, wWhere qualid; and qualid, are valid candidates to functional inversion,
this variant allows choosing which qualid is inverted.

8.14.2 quote ident

This kind of inversion has nothing to do with the tactic inversion above. This tactic does change
(ident t), where t is a term built in order to ensure the convertibility. In other words, it does inversion
of the function ident. This function must be a fixpoint on a simple recursive datatype: see 10.3 for the
full details.

Error messages:
1. quote: not a simple fixpoint
Happens when quote is not able to perform inversion properly.
Variants:

1. quote ident [ ident; ...ident, ]

All terms that are built only with ident; ...ident, will be considered by quote as constants
rather than variables.

8.15 C(lassical tactics

In order to ease the proving process, when the Classical module is loaded. A few more tactics are
available. Make sure to load the module using the Require Import command.
8.15.1 classical_leftandclassical_right

The tactics classical_left and classical_right are the analog of the left and right
but using classical logic. They can only be used for disjunctions. Use classical_left to
prove the left part of the disjunction with the assumption that the negation of right part holds. Use
classical_right to prove the right part of the disjunction with the assumption that the negation of
left part holds.

8.16 Automatizing

8.16.1 btauto

The tactic bt aut o implements a reflexive solver for boolean tautologies. It solves goals of the form t
= u where t and u are constructed over the following grammar:

t =1 | true | false | orbt; to | andb t; to | xorb t; to | negb t | if t; then t; else t3

Whenever the formula supplied is not a tautology, it also provides a counter-example.
Internally, it uses a system very similar to the one of the ring tactic.
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8.16.2 omega

The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic.
It solves quantifier-free formulas built with ~, \/, /\, —> on top of equalities, inequalities and dise-
qualities on both the type nat of natural numbers and Z of binary integers. This tactic must be loaded
by the command Require Import Omega. See the additional documentation about omega (see
Chapter 21).

8.163 ringand ring_simplify term; ... term,

The ring tactic solves equations upon polynomial expressions of a ring (or semi-ring) structure. It
proceeds by normalizing both hand sides of the equation (w.r.t. associativity, commutativity and dis-
tributivity, constant propagation) and comparing syntactically the results.

ring_simplify applies the normalization procedure described above to the terms given. The
tactic then replaces all occurrences of the terms given in the conclusion of the goal by their normal forms.
If no term is given, then the conclusion should be an equation and both hand sides are normalized.

See Chapter 25 for more information on the tactic and how to declare new ring structures. All
declared field structures can be printed with the Print Rings command.

8.164 field,field _simplify term; ... term,,and field_simplify_eq

The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies
equations in a field structure. The main idea is to reduce a field expression (which is an extension of ring
expressions with the inverse and division operations) to a fraction made of two polynomial expressions.

Tactic field is used to solve subgoals, whereas field_ simplify term;. . .term, replaces
the provided terms by their reduced fraction. field_simplify_eq applies when the conclusion is
an equation: it simplifies both hand sides and multiplies so as to cancel denominators. So it produces an
equation without division nor inverse.

All of these 3 tactics may generate a subgoal in order to prove that denominators are different from
Zero.

See Chapter 25 for more information on the tactic and how to declare new field structures. All
declared field structures can be printed with the Print Fields command.

Example:

Cog < Require Import Reals.

Cog < Goal forall x y:R,
(x » y > 0)%R —>
(x » (1 / x+x/ (x +y)))SR =
((- 1/ y) »y * (-—xx (x/ (x+y)) - 1))3%R.

Cog < intros; field.
1 subgoal

(x + y)%R <> 0%R /\ y <> 0%R /\ x <> 0%R

See also: file plugins/setoid_ring/RealField.v for an example of instantiation,
theory theories/Reals for many examples of use of field.
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8.16.5 fourier

This tactic written by Loic Pottier solves linear inequalities on real numbers using Fourier’s method [65].
This tactic must be loaded by Require Import Fourier.

Example:

Cog < Require Import Reals.
Cog < Require Import Fourier.

Cog < Goal forall x y:R, (x < y)%R -> (y + 1 >= x - 1)%R.

Cogq < intros; fourier.
No more subgoals.

8.17 Non-logical tactics

8.17.1 cycle num

This tactic puts the num first goals at the end of the list of goals. If num is negative, it will put the last
|num| goals at the beginning of the list.

Example:

Cog < Parameter P : nat —-> Prop.
Cog < Goal P 1 /\P 2 /NP 3 /\P 4 /\ P 5.

Cog < repeat split.
5 subgoals

subgoal 2 is:

subgoal 3 1is:

Cog < all: cycle 2.
5 subgoals

subgoal 2 is:

subgoal 3 1is:
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Cog < all: cycle -3.
5 subgoals

P 5
subgoal 2 is:
P 1
subgoal 3 1is:
P 2
subgoal 4 is:
P 3
subgoal 5 is:
P 4

8.17.2 swap num; num,

This tactic switches the position of the goals of indices num; and nums. If either num; or nums is
negative then goals are counted from the end of the focused goal list. Goals are indexed from 1, there is
no goal with position 0.

Example:
Cog < Parameter P : nat —-> Prop.
Coq < Goal P 1 /\NP 2 /\P 3 /\P 4 /\ P 5.

Cog < repeat split.
5 subgoals

P 1
subgoal 2 1is:
P 2
subgoal 3 is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5

Cog < all: swap 1 3.
5 subgoals

P 3
subgoal 2 is:
P 2
subgoal 3 is:
P 1
subgoal 4 is:
P 4
subgoal 5 is:
P 5

Cog < all: swap 1 -1.
5 subgoals
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P 5
subgoal 2 1is:
P 2
subgoal 3 is:
P 1
subgoal 4 is:
P 4
subgoal 5 is:
P 3

8.17.3 revgoals

This tactics reverses the list of the focused goals.
Example:

Cog < Parameter P : nat -> Prop.

Cog < Goal P 1 /\P 2 /\NP 3 /\P 4 /\ P 5.

Cog < repeat split.
5 subgoals

P 1
subgoal 2 is:
P 2
subgoal 3 1is:
P 3
subgoal 4 1is:
P 4
subgoal 5 is:
P 5

Cog < all: revgoals.
5 subgoals

P 5
subgoal 2 1is:
P 4
subgoal 3 is:
P 3
subgoal 4 is:
P 2
subgoal 5 is:
P 1

8174 shelve

This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on.
They can be solved by unification, or they can be called back into focus with the command Unshelve
(Section 8.17.5).
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Variants:

1. shelve_unifiable

Shelves only the goals under focus that are mentioned in other goals. Goals that appear in the type

of other goals can be solved by unification.

Example:
Cog < Goal exists n, n=0.
1 subgoal

exists n nat, n = 0

Cog < refine (ex_intro _ _
1 focused subgoal
(shelved: 1)

?Goal = 0

Cog < all:shelve_unifiable.
1 focused subgoal
(shelved: 1)

Cog < reflexivity.
No more subgoals.

8.17.5 Unshelve

This command moves all the goals on the shelf (see Section 8.17.4) from the shelf into focus, by ap-

pending them to the end of the current list of focused goals.

8.17.6 give_up

This tactic removes the focused goals from the proof. They are not solved, and cannot be solved later in

the proof. As the goals are not solved, the proof cannot be closed.

The give_up tactic can be used while editing a proof, to choose to write the proof script in a

non-sequential order.

8.18 Simple tactic macros

A simple example has more value than a long explanation:

Cog < Ltac Solve := intros; auto.

Solve 1s defined

simpl;

Cog < Ltac ElimBoolRewrite b H1 H2 :=
elim b; [ intros; rewrite HI1;
ElimBoolRewrite is defined

eauto | intros; rewrite H2;
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The tactics macros are synchronous with the COQ section mechanism: a tactic definition is deleted
from the current environment when you close the section (see also 2.4) where it was defined. If you
want that a tactic macro defined in a module is usable in the modules that require it, you should put it
outside of any section.

Chapter 9 gives examples of more complex user-defined tactics.
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Chapter 9

The tactic language

This chapter gives a compact documentation of Ltac, the tactic language available in COQ. We start by
giving the syntax, and next, we present the informal semantics. If you want to know more regarding this
language and especially about its foundations, you can refer to [43]. Chapter 10 is devoted to giving
examples of use of this language on small but also with non-trivial problems.

9.1 Syntax

The syntax of the tactic language is given Figures 9.1 and 9.2. See Chapter 1 for a description of the
BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chap-
ter: entries natural, integer, ident, qualid, term, cpattern and atomic_tactic represent respectively the
natural and integer numbers, the authorized identificators and qualified names, COQ’s terms and patterns
and all the atomic tactics described in Chapter 8. The syntax of cpattern is the same as that of terms,
but it is extended with pattern matching metavariables. In cpattern, a pattern-matching metavariable
is represented with the syntax ?id where id is an ident. The notation _ can also be used to denote
metavariable whose instance is irrelevant. In the notation ?1d, the identifier allows us to keep instanti-
ations and to make constraints whereas _ shows that we are not interested in what will be matched. On
the right hand side of pattern-matching clauses, the named metavariable are used without the question
mark prefix. There is also a special notation for second-order pattern-matching problems: in an applica-

tive pattern of the form @?id id; ...id,, the variable id matches any complex expression with
(possible) dependencies in the variables id; . ..id, and returns a functional term of the form fun
id; ...id, => term.

The main entry of the grammar is expr. This language is used in proof mode but it can also be used
in toplevel definitions as shown in Figure 9.3.

Remarks:

1. The infix tacticals “... || ...”, “... +...”7, and “... ; ...” are associative.

2. In tacarg, there is an overlap between qualid as a direct tactic argument and qualid as a particular
case of term. The resolution is done by first looking for a reference of the tactic language and if it
fails, for a reference to a term. To force the resolution as a reference of the tactic language, use the
form 1tac : qualid. To force the resolution as a reference to a term, use the syntax (qualid) .

3. As shown by the figure, tactical | | binds more than the prefix tacticals try, repeat, do and
abstract which themselves bind more than the postfix tactical “... ;[ ... 17 which

’

binds more than “... ; ...”.
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For instance
try repeat tacticy || tactico; tactics; [tacticsi| . .. |tacticsy] ; tacticy .
1s understood as

(try (repeat (tacticy || tactics))) ;
( (tactics; [tacticsy | . . . |tacticsy,]) ; tacticy) .

9.2 Semantics

Tactic expressions can only be applied in the context of a proof. The evaluation yields either a term,
an integer or a tactic. Intermediary results can be terms or integers but the final result must be a tactic
which is then applied to the focused goals.

There is a special case for match goal expressions of which the clauses evaluate to tactics. Such
expressions can only be used as end result of a tactic expression (never as argument of a non recursive
local definition or of an application).

The rest of this section explains the semantics of every construction of Ltac.

Sequence

A sequence is an expression of the following form:
expri ; expro

The expressions expr; and expro are evaluated to v; and v which have to be tactic values. The tactic
vy is then applied and vy is applied to the goals generated by the application of v;. Sequence is left-
associative.

Local application of tactics

Different tactics can be applied to the different goals using the following form:
[ >expry | ... | expry, ]

The expressions expr; are evaluated to v;, for 2 = 0, ..., n and all have to be tactics. The v; is applied to
the ¢-th goal, for = 1, ..., n. It fails if the number of focused goals is not exactly n.

Variants:

1. If no tactic is given for the z-th goal, it behaves as if the tactic idtac were given. For instance,
[ > | auto ]isashortcutfor [ > idtac | auto ].
2. [ >expry | ... | expr; | expr .. | exprityi+; | ... | expry ]

In this variant, expr is used for each goal numbered from ¢+ 1 to ¢ + 5 (assuming 7 is the number
of goals).

Note that . . is part of the syntax, while ... is the meta-symbol used to describe a list of expr of
arbitrary length. goals numbered from ¢+ 1 to ¢ + j.

Coq Reference Manual, V8.7.0, October 18, 2017



9.2 Semantics

263

expr

tacexprs

tacexpra

tacexpry

expr ; expr
[>expr | ... | expr ]
expr; [expr | ... | expr]
tacexprs

do (natural | ident) tacexprs
progress tacexprs

repeat tacexprs

try tacexprs

once tacexprs

exactly_once tacexprs
timeout (natural | ident) tacexprs
time [string] tacexprs

only selector : tacexprs

tacexpr,

tacexpry | | tacexprs
tacexpr) + tacexprs
tryif tacexpr; then tacexpr; else tacexpr

tacexpry

fun name ... name => atom

let [rec]let_clause with ... with let_clause in atom

match goal with context_rule | ... | context _rule end

match reverse goal with context rule | ... | context_rule end
match expr with match_rule | ... | match_rule end

lazymatch goal with context_rule | ... | context_rule end
lazymatch reverse goal with context rule | ... | context_rule end
lazymatch expr with match_rule | ... | match_rule end

multimatch goal with context_rule | ... | context_rule end
multimatch reverse goal with context_rule | ... | context_rule end
multimatch expr with match_rule | ... | match_rule end

abstract atom
abstract atom using ident

first [expr| ... | expr]

solve [expr | ... | expr ]

idtac [message_token ... message_token]

fail [natural ] [ message_token ... message_token]
gfail [natural ] [message_token ... message_token]

fresh | fresh stringl fresh qualid
context ident [ term ]

eval redexpr in term

type of term

external string string tacarg ... tacarg
constr : term

uconstr : term

type_term term

numgoals
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qualid tacarg ... tacarg
atom

Figure 9.1: Syntax of the tactic language
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atom = qualid
0
| integer
| ( expr)

message_token string | ident | integer

tacarg = qualid
\ ()

| ltac : atom

|  term

let_clause ::= ident [name ... name] := expr

context_rule ::= context_hyp , ... , context_hyp |-cpattern => expr
| |- cpattern => expr
| _ =>expr

context_hyp ;= name : cpattern

|  name := cpattern [: cpattern]

match_rule :i=  cpattern => expr
| context [ident] [ cpattern 1 => expr
| appcontext [ident] [ cpattern ] => expr
|  _ =>expr

test = integer = integer
integer < integer
integer <= integer
integer > integer
integer >= integer

selector = [ident]
|  integer
|  (integer | integer — integer) , ... , (integer | integer — integer)

toplevel_selector ::= selector
| all
| par

Figure 9.2: Syntax of the tactic language (continued)
3. [ >expry | ... | expri | .. | expriyi45 | ... | expry ]
In this variant, idtac is used for the goals numbered from 7z + 1 to 7 + 7.

4. [ >expr .. ]
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top [Local] Ltac Itac_def with ... with Itac_def

Itac_def ident [ident ... ident] := expr

qualid [ident ... ident] : :=expr

Figure 9.3: Tactic toplevel definitions

In this variant, the tactic expr is applied independently to each of the goals, rather than globally.
In particular, if there are no goal, the tactic is not run at all. A tactic which expects multiple goals,
such as swap, would act as if a single goal is focused.

.expr; [ expri | .. | expr,]

This variant of local tactic application is paired with a sequence. In this variant, » must be the
number of goals generated by the application of expr to each of the individual goals independently.
All the above variants work in this form too. Formally, expr ; [ ... ] is equivalent to

[ >expr; [ >...]1 ..1

Goal selectors

We can restrict the application of a tactic to a subset of the currently focused goals with:

toplevel_selector : expr

We can also use selectors as a tactical, which allows to use them nested in a tactic expression, by using
the keyword only:

only selector : expr

When selecting several goals, the tactic expr is applied globally to all selected goals.

Variants:

1.

[ident] : expr

In this variant, expr is applied locally to a goal previously named by the user (see 2.11).

num : expr

In this variant, expr is applied locally to the num-th goal.

. N-Ma, ..., NE-Mg ¢ €Xpr

In this variant, expr is applied globally to the subset of goals described by the given ranges. You
can write a single n as a shortcut for n-n when specifying multiple ranges.

all: expr

In this variant, expr is applied to all focused goals. all: can only be used at the toplevel of a
tactic expression.
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5. par: expr

In this variant, expr is applied to all focused goals in parallel. The number of workers can be con-
trolled via the command line option —async-proofs—-tac—7j taking as argument the desired
number of workers. Limitations: par:  only works on goals containing no existential variables
and expr must either solve the goal completely or do nothing (i.e. it cannot make some progress).
par: can only be used at the toplevel of a tactic expression.

Error message: No such goal

For loop
There is a for loop that repeats a tactic num times:
do num expr

expr is evaluated to v which must be a tactic value. This tactic value v is applied num times. Supposing
num > 1, after the first application of v, v is applied, at least once, to the generated subgoals and so on.
It fails if the application of v fails before the num applications have been completed.

Repeat loop

We have a repeat loop with:

repeat expr

expr is evaluated to v. If v denotes a tactic, this tactic is applied to each focused goal independently. If
the application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually
fails. The recursion stops in a subgoal when the tactic has failed to make progress. The tactic repeat
expr itself never fails.

Error catching

We can catch the tactic errors with:

try expr
expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focused goal
independently. If the application of v fails in a goal, it catches the error and leaves the goal unchanged.
If the level of the exception is positive, then the exception is re-raised with its level decremented.
Detecting progress
We can check if a tactic made progress with:

progress expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focued subgoal
independently. If the application of v to one of the focused subgoal produced subgoals equal to the
initial goals (up to syntactical equality), then an error of level O is raised.

Error message: Failed to progress
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Backtracking branching

We can branch with the following structure:
expri + expro

expr1 and expry are evaluated to vy and v2 which must be tactic values. The tactic value v; is applied
to each focused goal independently and if it fails or a later tactic fails, then the proof backtracks to the
current goal and vs is applied.

Tactics can be seen as having several successes. When a tactic fails it asks for more successes of the
prior tactics. expr; + exprs has all the successes of v; followed by all the successes of vo. Algebraically,
(expry + exprg);expras = (expry;exprs) + (expra;exprs).

Branching is left-associative.

First tactic to work

Backtracking branching may be too expensive. In this case we may restrict to a local, left biased,
branching and consider the first tactic to work (i.e. which does not fail) among a panel of tactics:

first [expry | ... | expry ]

expr; are evaluated to v; and v; must be tactic values, for i = 1,...,n. Supposing n > 1, it applies, in
each focused goal independently, vy, if it works, it stops otherwise it tries to apply vy and so on. It fails
when there is no applicable tactic. In other words, first [ expr; | ... | expry ] behaves, in each
goal, as the the first v; to have at least one success.

Error message: No applicable tactic

Variant: first expr

This is an Ltac alias that gives a primitive access to the £irst tactical as a Ltac definition without
going through a parsing rule. It expects to be given a list of tactics through a Tactic Notation,
allowing to write notations of the following form.

Example:

Tactic Notation "foo" tactic_list(tacs) := first tacs.

Left-biased branching
Yet another way of branching without backtracking is the following structure:
expry | | exprs

expry and expry are evaluated to v and v which must be tactic values. The tactic value v; is applied in
each subgoal independently and if it fails to progress then vs is applied. expr; | | exprs is equivalent to
first [ progressexpr; | progress exprs ] (except that if it fails, it fails like v2). Branching is
left-associative.
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Generalized biased branching
The tactic
tryif expr; then expra else expr3

is a generalization of the biased-branching tactics above. The expression expry is evaluated to v, which
is then applied to each subgoal independently. For each goal where v; succeeds at least once, tacexpra
is evaluated to vy which is then applied collectively to the generated subgoals. The v9 tactic can trigger
backtracking points in v;: where v; succeeds at least once, tryif expr; then expra else exprs
is equivalent to v; v2. In each of the goals where v; does not succeed at least once, exprs is evaluated
in v3 which is is then applied to the goal.

Soft cut
Another way of restricting backtracking is to restrict a tactic to a single success a posteriori:
once expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied but only its first success
is used. If v fails, once expr fails like v. If v has a least one success, once expr succeeds once, but
cannot produce more successes.

Checking the successes
Coq provides an experimental way to check that a tactic has exactly one success:
exactly_once expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied if it has at most one
success. If v fails, exact 1ly_once expr fails like v. If v has a exactly one success, exactly_once
expr succeeds like v. If v has two or more successes, exactly_once expr fails.

The experimental status of this tactic pertains to the fact if v performs side effects, they may occur in
aunpredictable way. Indeed, normally v would only be executed up to the first success until backtracking
is needed, however exactly_once needs to look ahead to see whether a second success exists, and
may run further effects immediately.

Error message: This tactic has more than one success

Solving
We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:
solve [expri | ... | expry ]

expr; are evaluated to v; and v; must be tactic values, for ¢ = 1, ..., n. Supposing n > 1, it applies v; to
each goal independently, if it doesn’t solve the goal then it tries to apply vy and so on. It fails if there is
no solving tactic.

Error message: Cannot solve the goal

Variant: solve expr
This is an Ltac alias that gives a primitive access to the solve tactical. See the £irst tactical for
more information.
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Identity

The constant idtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

Variant: idtac message_token ... message_token
This prints the given tokens. Strings and integers are printed literally. If a (term) variable is given,
its contents are printed.

Failing

The tactic fail is the always-failing tactic: it does not solve any goal. It is useful for defining other
tacticals since it can be caught by try, repeat, match goal, or the branching tacticals. The fail
tactic will, however, succeed if all the goals have already been solved.

Variants:

1. fail n
The number n is the failure level. If no level is specified, it defaults to 0. The level is used by t ry,
repeat, match goal and the branching tacticals. If 0, it makes match goal considering
the next clause (backtracking). If non zero, the current match goal block, try, repeat,
or branching command is aborted and the level is decremented. In the case of +, a non-zero
level skips the first backtrack point, even if the call to fail n is not enclosed in a + command,
respecting the algebraic identity.

2. fail message _token ... message_token
The given tokens are used for printing the failure message.

3. fail n message _token ... message_token
This is a combination of the previous variants.

4, gfail
This variant fails even if there are no goals left.

5. gfail message_token ... message_token
gfail n message _token ... message_token

These variants fail with an error message or an error level even if there are no goals left. Be careful
however if Coq terms have to be printed as part of the failure: term construction always forces the
tactic into the goals, meaning that if there are no goals when it is evaluated, a tactic call like 1et
x:=H in fail 0 x will succeed.

Error message: Tactic Failure message (level n).

Timeout
We can force a tactic to stop if it has not finished after a certain amount of time:
timeout num expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied normally, except that it
is interrupted after num seconds if it is still running. In this case the outcome is a failure.

Warning: For the moment, t imeout is based on elapsed time in seconds, which is very machine-
dependent: a script that works on a quick machine may fail on a slow one. The converse is even
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possible if you combine a t imeout with some other tacticals. This tactical is hence proposed only
for convenience during debug or other development phases, we strongly advise you to not leave any
timeout in final scripts. Note also that this tactical isn’t available on the native Windows port of Coq.

Timing a tactic
A tactic execution can be timed:
time string expr

evaluates expr and displays the time the tactic expression ran, whether it fails or successes. In case of
several successes, the time for each successive runs is displayed. Time is in seconds and is machine-
dependent. The string argument is optional. When provided, it is used to identify this particular occur-
rence of t ime.

Local definitions

Local definitions can be done as follows:

let ident; := expr
with identy := expra

with ident, := expry, in
expr

each expr; is evaluated to v;, then, expr is evaluated by substituting v; to each occurrence of ident;, for
1 =1, ...,n. There is no dependencies between the expr; and the ident;.

Local definitions can be recursive by using 1et rec instead of 1et. In this latter case, the defini-
tions are evaluated lazily so that the rec keyword can be used also in non recursive cases so as to avoid
the eager evaluation of local definitions.

Application

An application is an expression of the following form:
qualid tacarg; ... tacarg,

The reference qualid must be bound to some defined tactic definition expecting at least n arguments.
The expressions expr; are evaluated to v;, fori = 1, ..., n.

Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:
fun ident; ... ident,, => expr
Indeed, local definitions of functions are a syntactic sugar for binding a fun tactic to an identifier.
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Pattern matching on terms

We can carry out pattern matching on terms with:

match expr with
cpatterny => expri
| cpatterng => expro

| cpattern, => expry,
| _ =>exprp+1
end

The expression expr is evaluated and should yield a term which is matched against cpattern;. The
matching is non-linear: if a metavariable occurs more than once, it should match the same expression
every time. It is first-order except on the variables of the form @?1id that occur in head position of an
application. For these variables, the matching is second-order and returns a functional term.

Alternatively, when a metavariable of the form ?1id occurs under binders, say =1, ..., z, and the
expression matches, the metavariable is instantiated by a term which can then be used in any context
which also binds the variables z;, ..., x, with same types. This provides with a primitive form of
matching under context which does not require manipulating a functional term.

If the matching with cpattern; succeeds, then expr; is evaluated into some value by substituting
the pattern matching instantiations to the metavariables. If expr; evaluates to a tactic and the match
expression is in position to be applied to a goal (e.g. it is not bound to a variable by a 1et in), then
this tactic is applied. If the tactic succeeds, the list of resulting subgoals is the result of the match
expression. If expr; does not evaluate to a tactic or if the match expression is not in position to be
applied to a goal, then the result of the evaluation of expr; is the result of the mat ch expression.

If the matching with cpattern; fails, or if it succeeds but the evaluation of expr; fails, or if the eval-
uation of expr; succeeds but returns a tactic in execution position whose execution fails, then cpatterns
is used and so on. The pattern _ matches any term and shunts all remaining patterns if any. If all clauses
fail (in particular, there is no pattern _) then a no-matching-clause error is raised.

Failures in subsequent tactics do not cause backtracking to select new branches or inside the right-
hand side of the selected branch even if it has backtracking points.

Error messages:

1. No matching clauses for match

No pattern can be used and, in particular, there is no __ pattern.

2. Argument of match does not evaluate to a term

This happens when expr does not denote a term.

Variants:

1. Using multimatch instead of match will allow subsequent tactics to backtrack into a right-
hand side tactic which has backtracking points left and trigger the selection of a new matching
branch when all the backtracking points of the right-hand side have been consumed.

The syntax match ... is, in fact, a shorthand for once multimatch
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2. Using lazymatch instead of mat ch will perform the same pattern matching procedure but will
commit to the first matching branch rather than trying a new matching if the right-hand side fails.
If the right-hand side of the selected branch is a tactic with backtracking points, then subsequent
failures cause this tactic to backtrack.

3. There is a special form of patterns to match a subterm against the pattern:
context ident [ cpattern ]

It matches any term with a subterm matching cpattern. If there is a match, the optional ident is
assigned the “matched context”, i.e. the initial term where the matched subterm is replaced by a
hole. The example below will show how to use such term contexts.

If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If
no further subterm matches, the next clause is tried. Matching subterms are considered top-bottom
and from left to right (with respect to the raw printing obtained by setting option Printing
All, see Section 2.9).

Cog < Ltac f x :=
match x with
context £ [S ?X] =>

idtac X; (» To display the evaluation order x)

assert (p := egq_refl 1 : X=1); ( To filter the case X=1 =*)

let x:= context f[O] in assert (x=0) (* To observe the context =)
end.

f is defined

Cog < Goal True.
1 subgoal

True

Cog < £ (3+4).
2

1

2 subgoals

p 1 =1
1+ 4 =20
subgoal 2 is:

True

4. For historical reasons, context used to consider n-ary applications such as (f 1 2) as a
whole, and not as a sequence of unary applications ( (£ 1) 2). Hence context [f ?x]
would fail to find a matching subterm in (£ 1 2): if the pattern was a partial application, the
matched subterms would have necessarily been applications with exactly the same number of
arguments. As a workaround, one could use the following variant of context:

appcontext ident [ cpattern ]

This syntax is now deprecated, as context behaves as intended. The former behavior can be
retrieved with the Tactic Compat Context flag.
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Pattern matching on goals

We can make pattern matching on goals using the following expression:

match goal with
| hypi1, ..., hyp1,m, |—cpatterni=> expr;
| hyp2,1, ..., hypa,m, | —cpatterno=> expro

| hypnis ..., BYPum, | —cpattern,=> expry,
| =>exprpt1
end

If each hypothesis pattern hypi ;, with ¢ = 1,...,m is matched (non-linear first-order unification)
by an hypothesis of the goal and if cpattern; is matched by the conclusion of the goal, then expr; is
evaluated to v by substituting the pattern matching to the metavariables and the real hypothesis names
bound to the possible hypothesis names occurring in the hypothesis patterns. If v; is a tactic value, then
it is applied to the goal. If this application fails, then another combination of hypotheses is tried with the
same proof context pattern. If there is no other combination of hypotheses then the second proof context
pattern is tried and so on. If the next to last proof context pattern fails then expr,, 41 is evaluated to vy, 41
and vy, 41 is applied. Note also that matching against subterms (using the context ident [ cpattern 1)
is available and is also subject to yielding several matchings.

Failures in subsequent tactics do not cause backtracking to select new branches or combinations of
hypotheses, or inside the right-hand side of the selected branch even if it has backtracking points.

Error message: No matching clauses for match goal
No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.

It is important to know that each hypothesis of the goal can be matched by at most one hypothesis
pattern. The order of matching is the following: hypothesis patterns are examined from the right to the
left (i.e. hyp;m,; before hyp; 1). For each hypothesis pattern, the goal hypothesis are matched in order
(fresher hypothesis first), but it possible to reverse this order (older first) with the match reverse
goal with variant.

Variant:

Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand
side tactic which has backtracking points left and trigger the selection of a new matching branch or
combination of hypotheses when all the backtracking points of the right-hand side have been consumed.

The syntax match [reverse] goal ... is, in fact, a shorthand for once multimatch

[reverse] goal

Using lazymatch instead of match will perform the same pattern matching procedure but will
commit to the first matching branch with the first matching combination of hypotheses rather than trying
a new matching if the right-hand side fails. If the right-hand side of the selected branch is a tactic with
backtracking points, then subsequent failures cause this tactic to backtrack.

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a
term to be used in tactic expressions:

context ident [ expr ]

Coq Reference Manual, V8.7.0, October 18, 2017



274 9 The tactic language

ident must denote a context variable bound by a context pattern of a mat ch expression. This expres-
sion evaluates replaces the hole of the value of ident by the value of expr.

Error message: not a context variable

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with
the intro tactic is not so good since it is very awkward to retrieve the name the system gave. The
following expression returns an identifier:

fresh component ... component

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the
value of the component’s (each of them is, either an qualid which has to refer to a (unqualified) name,
or directly a name denoted by a string). If the resulting name is already used, it is padded with a number
so that it becomes fresh. If no component is given, the name is a fresh derivative of the name H.

Computing in a constr

Evaluation of a term can be performed with:
eval redexpr in term

where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy,unfold, fold,
pattern.

Recovering the type of a term
The following returns the type of term:
type of term

Manipulating untyped terms

The terms built in Ltac are well-typed by default. It may not be appropriate for building large terms using
a recursive Ltac function: the term has to be entirely type checked at each step, resulting in potentially
very slow behavior. It is possible to build untyped terms using Ltac with the syntax

uconstr : term
An untyped term, in Ltac, can contain references to hypotheses or to Ltac variables containing
typed or untyped terms. An untyped term can be type-checked using the function type_term whose
argument is parsed as an untyped term and returns a well-typed term which can be used in tactics.
type_term term
Untyped terms built using uconstr : can also be used as arguments to the refine tactic 8.2.3.
In that case the untyped term is type checked against the conclusion of the goal, and the holes which are

not solved by the typing procedure are turned into new subgoals.
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Counting the goals

The number of goals under focus can be recovered using the numgoals function. Combined with the
guard command below, it can be used to branch over the number of goals produced by previous tactics.
Cog < Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals".
Coq < Goal True /\ True /\ True.

Cogq < split; [|split].

Cogq < all:pr_numgoals.
There are 3 goals
3 subgoals

True
subgoal 2 is:
True
subgoal 3 1is:
True

Testing boolean expressions

The guard tactic tests a boolean expression, and fails if the expression evaluates to false. If the expres-
sion evaluates to true, it succeeds without affecting the proof.

guard fest

The accepted tests are simple integer comparisons.

Cog < Goal True /\ True /\ True.
Cog < split; [|split].

Cogq < all:let n:= numgoals in guard n<4.
3 subgoals

True
subgoal 2 is:
True
subgoal 3 is:
True

Cogq < Fail all:let n:= numgoals in guard n=2.
The command has indeed failed with message:
Ltac call to "guard (test)" failed.

Condition not satisfied: 3=2

3 subgoals

True
subgoal 2 is:
True
subgoal 3 is:
True
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Error messages:

1. Condition not satisfied

Proving a subgoal as a separate lemma

From the outside “abstract expr” is the same as solve expr. Internally it saves an auxiliary
lemma called ident_subproofn where ident is the name of the current goal and n is chosen so that
this is a fresh name. Such auxiliary lemma is inlined in the final proof term unless the proof is ended with
“Qed exporting”. In such case the lemma is preserved. The syntax “Qed exporting ident;,

., Identy,” is also supported. In such case the system checks that the names given by the user
actually exist when the proof is ended.

This tactical is useful with tactics such as omega or discriminate that generate huge proof
terms. With that tool the user can avoid the explosion at time of the Save command without having to
cut manually the proof in smaller lemmas.

It may be useful to generate lemmas minimal w.r.t. the assumptions they depend on. This can be
obtained thanks to the option below.

Set Shrink Abstract

Deprecated since 8.7

When set  (default), all lemmas  generated through abstract expr and
transparent_abstract expr are quantified only over the variables that appear in the term
constructed by expr.

Variants:

1. abstract expr using ident.
Give explicitly the name of the auxiliary lemma. Use this feature at your own risk; explicitly
named and reused subterms don’t play well with asynchronous proofs.

2. transparent_abstract expr.
Save the subproof in a transparent lemma rather than an opaque one. Use this feature at your own
risk; building computationally relevant terms with tactics is fragile.

3. transparent_abstract expr using ident.
Give explicitly the name of the auxiliary transparent lemma. Use this feature at your own risk;
building computationally relevant terms with tactics is fragile, and explicitly named and reused
subterms don’t play well with asynchronous proofs.

Error message: Proof is not complete

9.3 Tactic toplevel definitions

9.3.1 Defining £,,. functions

Basically, L4, toplevel definitions are made as follows:

Ltac ident ident; ... ident, := expr
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This defines a new L;,. function that can be used in any tactic script or new Ly, toplevel definition.

Remark: The preceding definition can equivalently be written:
Ltacident := fun ident ... ident, => expr

Recursive and mutual recursive function definitions are also possible with the syntax:

Ltac identy identy ; ... identy ,,, := exprq
with idents idents ; ... idents ,,, := expro
with ident, ident, ; ... identy, ,,, := expr,

It is also possible to redefine an existing user-defined tactic using the syntax:
Ltac qualid ident; ... ident,, : : = expr

A previous definition of qualid must exist in the environment. The new definition will always be used
instead of the old one and it goes across module boundaries.

If preceded by the keyword Local the tactic definition will not be exported outside the current
module.

9.3.2 Printing £,,. tactics

Defined L, functions can be displayed using the command
Print Ltac qualid.

The command Print Ltac Signatures displays a list of all user-defined tactics, with their
arguments.

9.4 Debugging L,,. tactics

94.1 Info trace

It is possible to print the trace of the path eventually taken by an Ly, script. That is, the list of executed
tactics, discarding all the branches which have failed. To that end the Info command can be used with
the following syntax.

Info num expr.

The number num is the unfolding level of tactics in the trace. At level 0, the trace contains a sequence
of tactics in the actual script, at level 1, the trace will be the concatenation of the traces of these tactics,
etc...

Cog < Ltac t x := exists x; reflexivity.

Cog < Goal exists n, n=0.

Cog < Info O t 1]t O.
t <constr: (0)>
No more subgoals.
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Cog < Undo.

Coqg < Info 1 t 11|t O.
exists O;,reflexivity
No more subgoals.

The trace produced by Info tries its best to be a reparsable Ly, script, but this goal is not achievable
in all generality. So some of the output traces will contain oddities.

As an additional help for debugging, the trace produced by Info contains (in comments) the mes-
sages produced by the idtac tacticals 9.2 at the right possition in the script. In particular, the calls to
idtac in branches which failed are not printed.

An alternative to the Info command is to use the Info Level option as follows:

Set Info Level num.

This will automatically print the same trace as Info num at each tactic call. The unfolding level
can be overridden by a call to the Info command. And this option can be turned off with:

Unset Info Level num.

The current value for the Info Level option can be checked using the Test Info Level
command.

9.4.2 Interactive debugger

The L4, interpreter comes with a step-by-step debugger. The debugger can be activated using the
command

Set Ltac Debug.
and deactivated using the command
Unset Ltac Debug.

To know if the debugger is on, use the command Test Ltac Debug. When the debugger is
activated, it stops at every step of the evaluation of the current L. expression and it prints information
on what it is doing. The debugger stops, prompting for a command which can be one of the following:

simple newline:  go to the next step

h: get help

X: exit current evaluation

s: continue current evaluation without stopping
rn: advance n steps further

T string: advance up to the next call to “idtac string”

A non-interactive mode for the debugger is available via the command
Set Ltac Batch Debug.

This option has the effect of presenting a newline at every prompt, when the debugger is on. The
debug log thus created, which does not require user input to generate when this option is set, can then
be run through external tools such as diff.
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9.4.3 Profiling £,,. tactics

It is possible to measure the time spent in invocations of primitive tactics as well as tactics defined in
L and their inner invocations. The primary use is the development of complex tactics, which can
sometimes be so slow as to impede interactive usage. The reasons for the performence degradation can
be intricate, like a slowly performing L4, match or a sub-tactic whose performance only degrades in
certain situations. The profiler generates a call tree and indicates the time spent in a tactic depending its
calling context. Thus it allows to locate the part of a tactic definition that contains the performance bug.

Set Ltac Profiling.
Enables the profiler

Unset Ltac Profiling.
Disables the profiler

Show Ltac Profile.
Prints the profile

Show Ltac Profile string.

Prints a profile for all tactics that start with string. Append a period (.) to the string if you only want
exactly that name.

Reset Ltac Profile.

Resets the profile, that is, deletes all accumulated information. Note that backtracking across a Reset
Ltac Profile will not restore the information.

Cog < Require Import Cog.omega.Omega.

Cog < Ltac mytauto := tauto.
Cog < Ltac tac := intros; repeat split; omega || mytauto.
Cog < Notation max x y := (x + (y — X)) (only parsing).

Cogq < Goal forall x vy zABCDEFGHIJKLMNOPQRSTUVWIXY Z,
max X (max y z) = max (max x y) z /\ max x (max y z) = max (max X y) z
/\ (A /\NB/NC/\ND/NE/NF/NG/\NH/NIT/NJ/NK/\NL/\M/\N/\ O/
> Z/\NY /NX/Nw/NV/NU/NT /NS /NR/NQ /NP /N O /NN /\NM /N

Cog < Proof.
Cog < Set Ltac Profiling.

Cog < tac.
No more subgoals.

Cog < Show Ltac Profile.
total time: 6.884s

tactic local total calls max
| | | | |

T 0.1% 100.0% 1 6.884s
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—<Cog.Init.Tauto.with_uniform_flags> —— 0.0% 65.4% 26 0.300s
—<Cog.Init.Tauto.tauto_gen> ———————— 0.0% 65.3% 26 0.300s
—<Cog.Init.Tauto.tauto_intuitionistic> - 0.0% 65.3% 26 0.300s
—t_tauto_intuit -—-——————————- 1.6% 65.3% 26 0.300s
—<Cog.Init.Tauto.simplif> ————————— 42.9% 63.2% 26 0.294s
—omega —————————————————————— 34.2% 34.2% 28 1.035s
—<Cog.Init.Tauto.is_conj> ————————— 10.2% 10.2% 28756 0.000s
—elim id ————————————————————— 5.7% 5.7% 650 0.001s
—intro ——————————-— 2.7% 2.7% 1300 0.057s
tactic local total calls max
| | | | |
—tac ————————————————————— 0.1% 100.0% 1 6.884s
—<Coqg.Init.Tauto.with_uniform flags> - 0.0% 65.4% 26 0.300s
L<Coq.Init.Tauto.tauto_gen> ——————— 0.0% 65.3% 26 0.300s
L<Coq.Init.Tauto.tauto_intuitionistic> 0.0% ©65.3% 26 0.300s
Lt_tauto_intuit ——————————————— 1.6% 65.3% 26 0.300s
L<Coq.Init.Tauto.simplif> ———————— 42.9% 63.2% 26 0.294s
<Cog.Init.Tauto.is_conj> ——————— 10.2% 10.2% 28756 0.000s
erlim id -—————— 5.7% 5.7% 650 0.001s
intro ————————————————— 2.7% 2.7% 1300 0.057s
—omega ————————————————————— 34.2% 34.2% 28 1.035s
Cogq < Show Ltac Profile "omega".
total time: 6.884s
tactic local total calls max
| | | | |
—omega —————————————————————— 34.2% 34.2% 28 1.035s
tactic local total calls max

Cog < Abort.

Cog < Unset Ltac Profiling.

The following two tactics behave like idtac but enable and disable the profiling. They allow you
to exclude parts of a proof script from profiling.

start ltac profiling.
stop ltac profiling.
You can also pass the ~-profile—1tac command line option to cogc, which performs a Set
Ltac Profiling at the beginning of each document, and a Show Ltac Profile atthe end.

Note that the profiler currently does not handle backtracking into multi-success tactics, and issues a
warning to this effect in many cases when such backtracking occurs.
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Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

10.1 dependent induction

The tactics dependent induction and dependent destruction are another solution for in-
verting inductive predicate instances and potentially doing induction at the same time. It is based on
the BasicElim tactic of Conor McBride which works by abstracting each argument of an inductive
instance by a variable and constraining it by equalities afterwards. This way, the usual induction and
destruct tactics can be applied to the abstracted instance and after simplification of the equalities we
get the expected goals.

The abstracting tactic is called generalize_eqgs and it takes as argument an hypothesis to gen-
eralize. It uses the JMeq datatype defined in Cog.Logic.JMeq, hence we need to require it before.
For example, revisiting the first example of the inversion documentation above:

Cog < Require Import Cog.Logic.JMeq.

Cog < Goal forall n m:nat, Le (S n) m —> P n m.
Cogq < intros n m H.
Cogq < generalize_eqgs H.

1 subgoal

n, m, gen_x : nat
H : Le gen_x m

gen_x =S n —-> P nm

The index S n gets abstracted by a variable here, but a corresponding equality is added under the
abstract instance so that no information is actually lost. The goal is now almost amenable to do induction
or case analysis. One should indeed first move n into the goal to strengthen it before doing induction, or
n will be fixed in the inductive hypotheses (this does not matter for case analysis). As a rule of thumb,
all the variables that appear inside constructors in the indices of the hypothesis should be generalized.
This is exactly what the generalize_eqgs_vars variant does:

Cog < generalize_eqgs_vars H.
1 subgoal
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Cog < induction H.
2 subgoals

n : nat

forall nO : nat, 0 = S n0 -> P n0O n
subgoal 2 is:
forall nO : nat, S n =S n0O —> P n0O (S m)

As the hypothesis itself did not appear in the goal, we did not need to use an heterogeneous equality
to relate the new hypothesis to the old one (which just disappeared here). However, the tactic works just
as well in this case, e.g.:

Cogq < Goal forall nm (p : Le (S n) m), Q (S n) mp.
1 subgoal

forall (n m : nat) (p : Le (S n) m), O (S n) mp

Cog < intros n m p ; generalize_egs_vars p.

1 subgoal
m, gen_x : nat
p : Le gen_x m

forall (n : nat) (pO : Le (S n) m),
gen_x =S n -> p ~=p0 -> Q (S n) m p0

One drawback of this approach is that in the branches one will have to substitute the equalities back
into the instance to get the right assumptions. Sometimes injection of constructors will also be needed
to recover the needed equalities. Also, some subgoals should be directly solved because of inconsistent
contexts arising from the constraints on indexes. The nice thing is that we can make a tactic based on dis-
criminate, injection and variants of substitution to automatically do such simplifications (which may in-
volve the K axiom). This is whatthe simplify_dep_elimtactic from Coq.Program.Equality
does. For example, we might simplify the previous goals considerably:

Cog < induction p ; simplify_dep_elim.
1 subgoal

n, m : nat
p : Le nm
IHp : forall (nO : nat) (pO : Le (S n0O) m),
n =S8 n0 ->p ~=p0 -> Q (S n0) m p0

Q (S n) (S m) (LeS nmp)

The higher-order tactic do_depind defined in Cog.Program.Equality takes a tactic and
combines the building blocks we have seen with it: generalizing by equalities calling the given tactic with
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the generalized induction hypothesis as argument and cleaning the subgoals with respect to equalities. Its
most important instantiations are dependent induction and dependent destruction that
do induction or simply case analysis on the generalized hypothesis. For example we can redo what
we’ve done manually with dependent destruction:

Cog < Require Import Cog.Program.Equality.

Cogq < Lemma ex : forall n m:nat, Le (S n) m -> P n m.
Cog < intros n m H.

Cog < dependent destruction H.

1 subgoal

n, m : nat
H : Le nm

P n (S m)

This gives essentially the same result as inversion. Now if the destructed hypothesis actually ap-
peared in the goal, the tactic would still be able to invert it, contrary to dependent inversion.
Consider the following example on vectors:

Cog < Require Import Cog.Program.Equality.

Cog < Set Implicit Arguments.

Cog < Variable A : Set.
Cog < Inductive vector : nat —-> Type :=
| vnil : vector 0
| vcons : A —-> forall n, vector n -> vector (S n).
Cog < Goal forall n, forall v : vector (S n),
exists v' : vector n, exists a : A, v = vcons a v'.
Coqg < intros n v.
Cog < dependent destruction v.
1 subgoal
n : nat
a : A
v : vector n
exists (v' : vector n) (a0 : A), vcons a v = vcons a0 v'

In this case, the v variable can be replaced in the goal by the generalized hypothesis only when it
has a type of the form vector (S n), thatis only in the second case of the destruct. The first
one is dismissed because S n <> 0.

10.1.1 A larger example

Let’s see how the technique works with induction on inductive predicates on a real example. We

will develop an example application to the theory of simply-typed lambda-calculus formalized in a
dependently-typed style:
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Cog < Inductive type : Type :=
| base : type
| arrow : type —-> type —-> type.

Cog < Notation " t -> t' " := (arrow t t') (at level 20, t' at next level).

Cog < Inductive ctx : Type :=
| empty : ctx
| snoc : ctx —-> type -> ctx.

Cog < Notation " G , tau " (snoc G tau) (at level 20, tau at next level).

Cog < Fixpoint conc (G D : ctx) : ctx :=
match D with
| empty => G

| snoc D' x => snoc (conc G D') x
end.
Cog < Notation " G ; D " := (conc G D) (at level 20).
Cog < Inductive term : ctx —-> type —-> Type :=
| ax : forall G tau, term (G, tau) tau
| weak : forall G tau,
term G tau -> forall tau', term (G, tau') tau
| abs : forall G tau tau',
term (G , tau) tau' -> term G (tau -> tau')
| app : forall G tau tau',
term G (tau -> tau') —> term G tau —> term G tau'.

We have defined types and contexts which are snoc-lists of types. We also have a conc operation
that concatenates two contexts. The term datatype represents in fact the possible typing derivations
of the calculus, which are isomorphic to the well-typed terms, hence the name. A term is either an
application of:

* the axiom rule to type a reference to the first variable in a context,
* the weakening rule to type an object in a larger context
* the abstraction or lambda rule to type a function

* the application to type an application of a function to an argument
Once we have this datatype we want to do proofs on it, like weakening:

Cogq < Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

The problem here is that we can’t just use induction on the typing derivation because it will
forget about the G ; D constraint appearing in the instance. A solution would be to rewrite the goal as:

Cogq < Lemma weakening' : forall G' tau, term G' tau —->
forall G D, (G ; D) = G'" -—>
forall tau', term (G, tau' ; D) tau.

With this proper separation of the index from the instance and the right induction loading (putting
G and D after the inducted-on hypothesis), the proof will go through, but it is a very tedious process.
One is also forced to make a wrapper lemma to get back the more natural statement. The dependent
induction tactic alleviates this trouble by doing all of this plumbing of generalizing and substituting
back automatically. Indeed we can simply write:
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Cog < Require Import Cog.Program.Tactics.

Cog < Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

Cogq < Proof with simpl in % ; simpl_depind ; auto.

Cog < intros G D tau H. dependent induction H generalizing G D ; intros.

This call to dependent induction has an additional arguments which is a list of variables
appearing in the instance that should be generalized in the goal, so that they can vary in the induction
hypotheses. By default, all variables appearing inside constructors (except in a parameter position) of
the instantiated hypothesis will be generalized automatically but one can always give the list explicitly.

Cog < Show.

4 subgoals
GO : ctx
tau : type

G, D : ctx
x : GO, tau = G; D

term ((G, tau'),; D) tau
subgoal 2 is:

term ((G, tau'QO); D) tau
subgoal 3 1is:

term ((G, tau'O); D) (tau —> tau')
subgoal 4 is:

term ((G, tau'O),; D) tau'

The simpl_depind tactic includes an automatic tactic that tries to simplify equalities appearing
at the beginning of induction hypotheses, generally using trivial applications of reflexivity. In cases
where the equality is not between constructor forms though, one must help the automation by giving
some arguments, using the specialize tactic for example.

Cog < destruct D... apply weak ; apply ax. apply ax.
Cog < destruct D...

Cog < Show.
4 subgoals

GO : ctx
tau : type
H : term GO tau
tau' : type
IHterm : forall G D : ctx,
GO = G; D —> forall tau' : type, term ((G, tau'), D) tau
tau'0 : type

term ((G0O, tau'), tau'O) tau
subgoal 2 is:

term (((G, tau'O),; D), t) tau
subgoal 3 is:
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term ((G, tau'O),; D) (tau —-> tau')
subgoal 4 is:
term ((G, tau'QO); D) tau'

Cogq < specialize (IHterm GO empty eqg _refl).
4 subgoals

GO : ctx
tau : type
H : term GO tau

tau' : type

IHterm : forall tau' : type, term ((GO, tau'),; empty) tau
tau'0 : type

term ((GO, tau'), tau'0O) tau
subgoal 2 1is:
term (((G, tau'O),; D), t) tau
subgoal 3 is:
term ((G, tau'O),; D) (tau —-> tau')
subgoal 4 is:
term ((G, tau'QO); D) tau'

Once the induction hypothesis has been narrowed to the right equality, it can be used directly.

Cog < apply weak, IHterm.
3 subgoals

tau : type
G, D : ctx
IHterm : forall GO DO : ctx,

G; D = GO; DO —->

forall tau' : type, term ((GO, tau'),; DO0) tau
H : term (G, D) tau
t, tau'l0 : type

term (((G, tau'O); D), t) tau
subgoal 2 1is:

term ((G, tau'O); D) (tau —> tau')
subgoal 3 is:

term ((G, tau'O),; D) tau'

If there is an easy first-order solution to these equations as in this subgoal, the specialize_eqgs
tactic can be used instead of giving explicit proof terms:

Coqg < specialize_eqgs IHterm.

Toplevel input, characters 2-23:

> specialize _eqgs IHterm.

S AAAAAAAAAAAAAAAAAAAAA

Error:

Ltac call to "specialize egs (var)" failed.
Specialization not allowed on dependent hypotheses

This concludes our example. See also: The induction 9, case 9 and inversion 8.14 tactics.
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10.2 autorewrite

Here are two examples of autorewrite use. The first one (Ackermann function) shows actually a
quite basic use where there is no conditional rewriting. The second one (Mac Carthy function) involves
conditional rewritings and shows how to deal with them using the optional tactic of the Hint Rewrite

command.

Example 1: Ackermann function

Cog < Reset Initial.
Cog < Require Import Arith.

Cog < Variable Ack
nat —-> nat -> nat.

Cog < Axiom AckO
forall m:nat, Ack 0 m = S m.

Cog < Axiom Ackl : forall n:nat, Ack (S n) 0 = Ack n 1.

Cog < Axiom Ack2 : forall n m:nat, Ack (S n) (S m)

Cog < Hint Rewrite AckO Ackl Ack2 : baseO0.

Cog < Lemma ResAckO
Ack 3 2 = 29.
1 subgoal

Cog < autorewrite with baseO using try reflexivity.

No more subgoals.

Example 2: Mac Carthy function

Cog < Require Import Omega.

Cog < Variable g
nat —-> nat —-> nat.

Cogq < Axiom g0
forall m:nat, g 0 m = m.

Cog < Axiom

gl
forall n m:nat,

(n >0) -=> (m > 100) -=> gnm-=g (pred n)

Cog < Axiom

g2
forall n m:nat,

(n > 0) => (m <= 100) -=> gnm=g (S n)

Cog < Hint Rewrite g0 gl g2 using omega : basel.

Cog < Lemma Resg0
g 1l 110 = 100.

Ack n (Ack (S n) m).

(m — 10).

(m + 11).
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1 subgoal

g 1 110 = 100

Cog < autorewrite with basel using reflexivity || simpl.
No more subgoals.

Cog < Lemma Resgl : g 1 95 = 91.

1 subgoal
g1l 95 = 91
Cog < autorewrite with basel using reflexivity || simpl.

No more subgoals.

10.3 guote

The tactic quote allows using Barendregt’s so-called 2-level approach without writing any ML code.

Suppose you have a language L of *abstract terms’ and a type A of ’concrete terms’ and a function £

L -> A.IfLis asimple inductive datatype and £ a simple fixpoint, quote £ will replace the head of

current goal by a convertible term of the form (£ t). L must have a constructor of type: A -> L.
Here is an example:

Cog < Require Import Quote.

Cogq < Parameters A B C : Prop.
A is declared
B is declared
C is declared

Cog < Inductive formula : Type :=

| f_and : formula -> formula -> formula (x binary constructor «)
| £ or : formula -> formula -> formula

| f_not : formula -> formula (x unary constructor x)

| f_true : formula (x O-ary constructor =)

| f_const : Prop —-> formula (x constructor for constants «).

formula is defined

formula_rect is defined
formula_ind is defined
formula rec 1is defined

Cog < Fixpoint interp_f (f:
formula) : Prop :=
match f with
| f_and f1 f2 => interp_f f1 /\ interp_f f2
| f_or f1 f2 => interp_f f1 \/ interp_f f2
| f_not fl1 => ~ interp_f f1l
| £f_true => True
| f_const ¢ => ¢
end.
interp_f is defined
interp_f is recursively defined (decreasing on 1lst argument)
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Cog < Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
1 subgoal

A /\ (A \/ True) /\ ~ B /\ (A <-> A)

Cog < quote interp_f.
1 subgoal

interp_f
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_and (f_not (f_const B)) (f_const (A <> A)))))

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of
£. If there is a match, apply the corresponding left-hand side and call yourself recursively on sub-terms.
If there is no match, we are at a leaf: return the corresponding constructor (here £_const) applied to
the term.

Error messages:

1. quote: not a simple fixpoint
Happens when quote is not able to perform inversion properly.

10.3.1 Introducing variables map

The normal use of quote is to make proofs by reflection: one defines a function simplify
formula -> formula and proves a theorem simplify_ok: (f:formula) (interp_f
(simplify f)) -> (interp_f f£). Then, one can simplify formulas by doing:

quote interp_f.
apply simplify_ok.
compute.

But there is a problem with leafs: in the example above one cannot write a function that implements,
for example, the logical simplifications A A A — A or A A —-A — False. This is because the Prop is
impredicative.

It is better to use that type of formulas:

Cog < Inductive formula : Set :=
| £ and : formula —-> formula -> formula
| £f_or : formula —-> formula -> formula
| f_not : formula -> formula
| f_true : formula

| f_atom : index —-> formula.
formula is defined
formula_rect is defined
formula ind is defined
formula _rec is defined

index is defined in module quote. Equality on that type is decidable so we are able to simplify
A A Ainto A at the abstract level.

Coq Reference Manual, V8.7.0, October 18, 2017



290 10 Detailed examples of tactics

When there are variables, there are bindings, and quote provides also a type (varmap A) of
bindings from index to any set A, and a function varmap_find to search in such maps. The inter-
pretation function has now another argument, a variables map:

Cog < Fixpoint interp_f (vm:
varmap Prop) (f:formula) {struct f} : Prop :=
match £ with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm £2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not fl1 => ~ interp_f vm f1l
| £_true => True
| f_atom i => varmap_find True i vm
end.
interp_f is defined
interp_f is recursively defined (decreasing on 2nd argument)

quote handles this second case properly:

Cog < Goal A /\ (B \/ A) /\ (A \/ ~ B).
1 subgoal

A/\ (B \/ A /\ (A \/ ~ B)

Cog < quote interp_f.
1 subgoal

interp_f
(Node_vm B (Node_vm A (Empty_vm Prop) (Empty_vm Prop)) (Empty_vm Prop))
(f_and (f_atom (Left_idx End_idx))
(f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
(f_or (f_atom (Left_idx End idx)) (f_not (f_atom End_idx)))))

It builds vm and t such that (f vm t) is convertible with the conclusion of current goal.

10.3.2 Combining variables and constants

One can have both variables and constants in abstracts terms; that is the case, for example, for the ring
tactic (chapter 25). Then one must provide to quote a list of constructors of constants. For example,
if the list is [O S] then closed natural numbers will be considered as constants and other terms as
variables.

Example:

Cog < Inductive formula : Type :=
| £f_and : formula —-> formula -> formula

| £ or : formula -> formula -> formula

| f_not : formula -> formula

| £ _true : formula

| £f_const : Prop —> formula (*x constructor for constants x)
| f_atom : index -> formula.

Cog < Fixpoint interp_f
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(vm: (+ constructor for variables =«*)
varmap Prop) (f:formula) {struct f} : Prop :=
match £ with

| f_and f1 f2 => interp_f vm f1 /\ interp_f vm £2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not fl => ~ interp_f vm f1l

| £f_true => True

| f_const c => c

| f_atom i => varmap_find True i vm

end.

Cog < Goal
A /N (A \/ True) /\ ~ B /\ (C <—> C).

Cog < quote interp_f [ A B ].
1 subgoal

interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_and (f_not (f_const B)) (f_atom End_idx))))

Cog < Undo.
1 subgoal

A /\ (A \/ True) /\ ~ B /\ (C <> C)

Coqg < quote interp_f [ B C iff ].
1 subgoal

interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_atom End_idx)
(f_and (f_or (f_atom End idx) f_true)
(f_and (f_not (f_const B)) (f_const (C <=>C)))))

Warning: Since function inversion is undecidable in general case, don’t expect miracles from it!

Variants:

1. quote ident in term using tactic

tactic must be a functional tactic (starting with fun x =>) and will be called with the quoted
version of term according to ident.

2. quote ident [ ident; ... ident, ] in term using tactic

Same as above, but will use ident, ..., ident,, to chose which subterms are constants (see above).

See also: comments of source file plugins/quote/quote.ml

See also: the ring tactic (Chapter 25)
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Cog < Section Sort.

Coqg < Variable A : Set.
Cog < Inductive permut : list A -> list A —-> Prop :=
| permut_refl : forall 1, permut 1 1
| permut_cons
forall a 10 11, permut 10 11 -> permut (a :: 10) (a :: 11)
| permut_append : forall a 1, permut (a :: 1) (1 ++ a :: nil)

| permut_trans
forall 10 11 12, permut 10 11 -> permut 11 12 -> permut 10 12.

Cog < End Sort.

Figure 10.1: Definition of the permutation predicate

10.4 Using the tactical language

10.4.1 About the cardinality of the set of natural numbers

A first example which shows how to use the pattern matching over the proof contexts is the proof that
natural numbers have more than two elements. The proof of such a lemma can be done as follows:

Cog < Lemma card_nat
~ (exists x : nat, exists y : nat, forall z:nat, x =z \/ y = z).

Coqg < Proof.
Cogq < red; intros (x, (y, Hy)).

Cog < elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
match goal with
| [_:(?2a = ?b),_:(?2a = 2c) |- _1 =>
cut (b = c¢); [ discriminate | transitivity a; auto ]
end.

Cog < Qed.

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct
natural numbers) are successfully solved by amatch goal structure and, in particular, with only one
pattern (use of non-linear matching).

10.4.2 Permutation on closed lists

Another more complex example is the problem of permutation on closed lists. The aim is to show that a
closed list is a permutation of another one.

First, we define the permutation predicate as shown in table 10.1.

A more complex example is the problem of permutation on closed lists. The aim is to show that
a closed list is a permutation of another one. First, we define the permutation predicate as shown on
Figure 10.1.

Next, we can write naturally the tactic and the result can be seen on Figure 10.2. We can no-
tice that we use two toplevel definitions PermutProve and Permut. The function to be called is
PermutProve which computes the lengths of the two lists and calls Permut with the length if the
two lists have the same length. Permut works as expected. If the two lists are equal, it concludes. Oth-
erwise, if the lists have identical first elements, it applies Permut on the tail of the lists. Finally, if the
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Cog < Ltac Permut n :=
match goal with
| |—= (permut _ ?1 ?1) => apply permut_refl

| |= (permut _ (?a :: ?11) (2a :: 212)) =>
let newn := eval compute in (length 11) in
(apply permut_cons; Permut newn)
| |- (permut ?A (?a :: ?11) 212) =>
match eval compute in n with
| 1 => fail
| =
let 11" := constr: (11 ++ a :: nil) in
(apply (permut_trans A (a :: 11) 11' 12);

[ apply permut_append | compute; Permut (pred n) ])
end
end.
Permut is defined

Cogq < Ltac PermutProve :=
match goal with
| |- (permut _ 2?11 212) =>
match eval compute in (length 11 = length 12) with
| (?n = ?n) => Permut n
end
end.
PermutProve is defined

Figure 10.2: Permutation tactic

lists have different first elements, it puts the first element of one of the lists (here the second one which
appears in the permut predicate) at the end if that is possible, i.e., if the new first element has been at
this place previously. To verify that all rotations have been done for a list, we use the length of the list
as an argument for Permut and this length is decremented for each rotation down to, but not including,
1 because for a list of length n, we can make exactly n — 1 rotations to generate at most n distinct lists.
Here, it must be noticed that we use the natural numbers of COQ for the rotation counter. On Figure 9.1,
we can see that it is possible to use usual natural numbers but they are only used as arguments for prim-
itive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a
natural choice is to use COQ data structures so that COQ makes the computations (reductions) by eval
compute in and we can get the terms back by match.

With PermutProve, we can now prove lemmas as follows:

Cog < Lemma permut_exl
permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).

Cog < Proof. PermutProve. Qed.
Cog < Lemma permut_ex2
permut nat
(0 ::21 22 2 2 3 224 25 6 127 228 19 1 onil)
(0 ::22 24 126 28 29 27 25 3 01 nil).

Cog < Proof. PermutProve. Qed.
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10.4.3 Deciding intuitionistic propositional logic

The pattern matching on goals allows a complete and so a powerful backtracking when returning tactic
values. An interesting application is the problem of deciding intuitionistic propositional logic. Consid-
ering the contraction-free sequent calculi LIT * of Roy Dyckhoff ([56]), it is quite natural to code such a
tactic using the tactic language as shown on Figures 10.3 and 10.4. The tactic Axioms tries to conclude
using usual axioms. The tactic DSimpli f applies all the reversible rules of Dyckhoff’s system. Finally,
the tactic Taut oP rop (the main tactic to be called) simplifies with DSimpli £, tries to conclude with
Axioms and tries several paths using the backtracking rules (one of the four Dyckhoff’s rules for the
left implication to get rid of the contraction and the right or).
For example, with Taut oProp, we can prove tautologies like those:

Cog < Lemma tauto_exl : forall A B:Prop, A /\ B -> A \/ B.
Cog < Proof. TautoProp. Qed.

Cog < Lemma tauto_ex2
forall A B:Prop, (~ ~B ->B) -> (A -> B) -> ~ ~ A -> B.

Cog < Proof. TautoProp. Qed.

10.4.4 Deciding type isomorphisms

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose
to use the isomorphisms of the simply typed A-calculus with Cartesian product and unit type (see, for
example, [45]). The axioms of this A-calculus are given by table 10.5.

A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we
choose to use the isomorphisms of the simply typed A-calculus with Cartesian product and unit type
(see, for example, [45]). The axioms of this A-calculus are given on Figure 10.5.

The tactic to judge equalities modulo this axiomatization can be written as shown on Figures 10.6
and 10.7. The algorithm is quite simple. Types are reduced using axioms that can be oriented (this
done by MainSimplif). The normal forms are sequences of Cartesian products without Cartesian
product in the left component. These normal forms are then compared modulo permutation of the com-
ponents (this is done by CompareStruct). The main tactic to be called and realizing this algorithm

is IsoProve.
Here are examples of what can be solved by IsoProve.

Cog < Lemma isos_exl
forall A B:Set, A x unit * B = B * (unit = A).

Cog < Proof.

Cog < intros; IsoProve.

Cog < Ltac Axioms :=
match goal with
| |- True => trivial
| _:False |- _ => elimtype False; assumption
| _:?A |- ?A => auto
end.
Axioms 1s defined

Figure 10.3: Deciding intuitionistic propositions (1)
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Cogq < Ltac DSimplif :=
repeat
(intros;
match goal with
| id:(~ _) |- _ => red in id
| id:(_ /\ ) |- _ =>
elim id; do 2 intro; clear id
| id:(_ \/ ) |- _ =>
elim id; intro; clear id
| id: (?A /\ ?B —-> ?2C) |- _ =>
cut (A —> B —> C);
[ intro | intros; apply id; split; assumption ]
| id:(?A \/ ?B -> 2C) |- _ =>
cut (B -> C);
[ cut (A —> C);
[ intros; clear id
| intro; apply id; left; assumption ]
| intro; apply id; right; assumption ]
| 1d0: (?A -> ?B),idl:?A |- _ =>
cut B; [ intro; clear id0 | apply 1id0; assumption ]
I 1= (_ /\ _) => split
I = (~ ) => red
end) .
DSimplif is defined
Cog < Ltac TautoProp :=
DSimplif;
Axioms ||
match goal with
| 1d: ((?A -> ?B) —> ?2C) |- _ =>
cut (B -> C);
[ intro; cut (A -> B);
[ intro; cut C;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; intro; assumption ]; TautoProp
| id: (~ ?A —> ?B) |- _ =>
cut (False -> B);
[ intro; cut (A -> False);
[ intro; cut B;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; red; intro; assumption ]; TautoProp
| |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
end.
TautoProp 1is defined

Figure 10.4: Deciding intuitionistic propositions (2)

Cog < Qed.

Cog < Lemma isos_ex2
forall A B C:Set,

(A * unit -> B % (C % unit)

) =
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Cog < Open Scope type_scope.

Cog < Section Iso_axioms.

Cog < Variables A B C Set.

Cog < Axiom Com A x B =B * A.

Cog < Axiom Ass A+ (B C) =A% B x C.

Cog < Axiom Cur (A B->C) = (A ->B —-—>20C).

Cog < Axiom Dis (A ->B « C) = (A ->B) » (A —>2C).
Cog < Axiom P_unit A *x unit = A.

Cog < Axiom AR_unit (A —> unit) = unit.

Cog < Axiom AL_unit (unit -> A) = A.

Cog < Lemma Cons B=C->A B =A% C.

Cog < Proof.

Cog < intro Heq; rewrite Heq; reflexivity.

Cog < Qed.

Cogq < End Iso_axioms.

Figure 10.5: Type isomorphism axioms

(A % unit -> (C -> unit) =
Coqg < Proof.
Cog < intros; IsoProve.

Cog < Qed.
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Cog < Ltac DSimplif trm :=
match trm with
| (?A %= ?B % ?2C) =>
rewrite <- (Ass A B C); try MainSimplif
| (?A = ?B —-> ?C) =>
rewrite (Cur A B C); try MainSimplif
| (?A —> ?B % 2C) =>
rewrite (Dis A B C); try MainSimplif
| (?A % unit) =>
rewrite (P_unit A); try MainSimplif
| (unit = ?B) =>
rewrite (Com unit B); try MainSimplif
| (?A —=> unit) =>
rewrite (AR_unit A); try MainSimplif
| (unit -> ?B) =>
rewrite (AL_unit B); try MainSimplif
| (?A * ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
| (?A => ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)

end
with MainSimplif :=
match goal with
| |- (?2A = ?B) => try DSimplif A; try DSimplif B
end.
DSimplif is defined
MainSimplif is defined

Cog < Ltac Length trm :=
match trm with
| (_ = ?B) => let succ := Length B in constr: (S succ)
| _ => constr: (1)
end.
Length is defined

Cog < Ltac assoc := repeat rewrite <- Ass.
assoc is defined

Figure 10.6: Type isomorphism tactic (1)
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Cog < Ltac DoCompare n :=
match goal with
| [ |- (?A = ?A) ] => reflexivity
| [ |- (A % ?B = ?A % 2C) ] =>
apply Cons; let newn := Length B in
DoCompare newn
| [ |- (?A « ?B = 2C) ] =>
match eval compute in n with
| 1 => fail
| _ =
pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n
end
end.
DoCompare is defined

Cog < Ltac CompareStruct :=
match goal with
I [ = (?A = 2B) ] =>
let 11 := Length A
with 12 := Length B in
match eval compute in (11 = 12) with
| (?n = ?n) => DoCompare n
end
end.
CompareStruct 1is defined

Cog < Ltac IsoProve := MainSimplif; CompareStruct.
IsoProve is defined

Figure 10.7: Type isomorphism tactic (2)

Coq Reference Manual, V8.7.0, October 18, 2017



Chapter 11

The SSReflect proof language

Georges Gonthier, Assia Mahboubi, Enrico Tassi

11.1 Introduction

This chapter describes a set of tactics known as SSREFLECT originally designed to provide support for
the so-called small scale reflection proof methodology. Despite the original purpose this set of tactic is
of general interest and is available in Coq starting from version 8.7.

SSREFLECT was developed independently of the tactics described in Chapter 8. Indeed the scope of
the tactics part of SSREFLECT largely overlaps with the standard set of tactics. Eventually the overlap
will be reduced in future releases of Coq.

Proofs written in SSREFLECT typically look quite different from the ones written using only tactics
as per Chapter 8. We try to summarise here the most “visible” ones in order to help the reader already
accustomed to the tactics described in Chapter 8 to read this chapter.

The first difference between the tactics described in this chapter and the tactics described in Chapter 8
is the way hypotheses are managed (we call this bookkeeping). In Chapter 8 the most common approach
is to avoid moving explicitly hypotheses back and forth between the context and the conclusion of the
goal. On the contrary in SSREFLECT all bookkeeping is performed on the conclusion of the goal, using
for that purpose a couple of syntactic constructions behaving similar to tacticals (and often named as
such in this chapter). The : tactical moves hypotheses from the context to the conclusion, while =>
moves hypotheses from the conclusion to the context, and in moves back and forth an hypothesis from
the context to the conclusion for the time of applying an action to it.

While naming hypotheses is commonly done by means of an as clause in the basic model of Chap-
ter 8, it is here to => that this task is devoted. As tactics leave new assumptions in the conclusion, and
are often followed by => to explicitly name them. While generalizing the goal is normally not explicitly
needed in Chapter 8, it is an explicit operation performed by :.

Beside the difference of bookkeeping model, this chapter includes specific tactics which have
no explicit counterpart in Chapter 8 such as tactics to mix forward steps and generalizations as
generally haveorwithout loss.

SSREFLECT adopts the point of view that rewriting, definition expansion and partial evaluation
participate all to a same concept of rewriting a goal in a larger sense. As such, all these functionalities
are provided by the rewrite tactic.
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SSREFLECT includes a little language of patterns to select subterms in tactics or tacticals where it
matters. Its most notable application is in the rewrite tactic, where patterns are used to specify where
the rewriting step has to take place.

Finally, SSREFLECT supports so-called reflection steps, typically allowing to switch back and forth
between the computational view and logical view of a concept.

To conclude it is worth mentioning that SSREFLECT tactics can be mixed with non SSREFLECT
tactics in the same proof, or in the same Ltac expression. The few exceptions to this statement are
described in section 11.2.2.

We follow the default color scheme of the SSREFLECT mode for ProofGeneral provided in the distribu-
tion:

tactic or Command or keywordor tactical
Closing tactics/tacticals like exact or by (see section 11.6.2) are in red.
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11.2 Usage

11.2.1 Getting started

To be available, the tactics presented in this manual need the following minimal set of libraries to loaded:
ssreflect.v, ssrfun.v and ssrbool.v. Moreover, these tactics come with a methodology
specific to the authors of Ssreflect and which requires a few options to be set in a different way than in
their default way. All in all, this corresponds to working in the following context:

From Cog Require Import ssreflect ssrfun ssrbool.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

11.2.2 Compatibility issues

Requiring the above modules creates an environment which is mostly compatible with the rest of C0Q,
up to a few discrepancies:

New keywords (is) might clash with variable, constant, tactic or tactical names, or with quasi-
keywords in tactic or vernacular notations.

New tactic(al)s names (last, done, have, suffices, suff, without loss, wlog,
congr, unlock) might clash with user tactic names.

Identifiers with both leading and trailing _, such as _x_, are reserved by SSREFLECT and cannot
appear in scripts.

The extensions to the rewrite tactic are partly incompatible with those available in current ver-
sions of COQ; in particular: rewrite .. in (type of k) or

rewrite .. in x orany other variant of rewrite will not work, and the SSREFLECT syn-
tax and semantics for occurrence selection and rule chaining is different.

Use an explicit rewrite direction (rewrite <- ... or rewrite —> ...) to access the COQ
rewrite tactic.

New symbols (//, /=, //=) might clash with adjacent existing symbols (e.g., *//’) instead
of °/”/”). This can be avoided by inserting white spaces.

New constant and theorem names might clash with the user theory. This can be avoided by not
importing all of SSREFLECT:

From Cog Require ssreflect.
Import ssreflect.SsrSyntax.

Note that the full syntax of SSREFLECT’s rewrite and reserved identifiers are enabled only
if the ssreflect module has been required and if SsrSyntax has been imported. Thus a
file that requires (without importing) ssreflect and imports SsrSyntax, can be required
and imported without automatically enabling SSREFLECT’s extended rewrite syntax and reserved
identifiers.

Some user notations (in particular, defining an infix ’;’) might interfere with the "open term",
parenthesis free, syntax of tactics such as have, set and pose.

Coq Reference Manual, V8.7.0, October 18, 2017



302 11 The SSReflect proof language

* The generalization of if statements to non-Boolean conditions is turned off by SSREFLECT,
because it is mostly subsumed by Coercion to bool of the sumXXX types (declared in
ssrfun.v) and the if term is pattern then term else term construct (see 11.3.2). To
use the generalized form, turn off the SSREFLECT Boolean i f notation using the command:

Close Scope boolean_if_scope.

* The following two options can be unset to disable the incompatible rewrite syntax and allow
reserved identifiers to appear in scripts.

Unset SsrRewrite.
Unset SsrIdents.

11.3 Gallina extensions

Small-scale reflection makes an extensive use of the programming subset of Gallina, COQ’s logical spec-
ification language. This subset is quite suited to the description of functions on representations, because
it closely follows the well-established design of the ML programming language. The SSREFLECT ex-
tension provides three additions to Gallina, for pattern assignment, pattern testing, and polymorphism;
these mitigate minor but annoying discrepancies between Gallina and ML.

11.3.1 Pattern assignment

The SSREFLECT extension provides the following construct for irrefutable pattern matching, that is,
destructuring assignment:

let: pattern := term; in termsq

Note the colon ‘:’ after the 1et keyword, which avoids any ambiguity with a function definition or
CoQ’s basic destructuring 1et. The 1et : construct differs from the latter in that

* The pattern can be nested (deep pattern matching), in particular, this allows expression of the
form:

let: exist (x, y) p_xy := Hp in
» The destructured constructor is explicitly given in the pattern, and is used for type inference, e.g.,
Let £f u := let: (m, n) := u in m + n.

using a colon let:,infers £ : nat * nat -> nat, whereas

Let £f u := let (m, n) := u in m + n.
with a usual 1et, requires an extra type annotation.

The 1et : construct is just (more legible) notation for the primitive Gallina expression
match term; with pattern => terms end

The SSREFLECT destructuring assignment supports all the dependent match annotations; the full
syntax is
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let: pattern; as ident in patterns := term; return terms in terms

where patterns is a type pattern and term and terms are types.

When the as and return are both present, then ident is bound in both the type termo and the
expression terms; variables in the optional type pattern patterns are bound only in the type terms, and
other variables in pattern; are bound only in the expression terms, however.

11.3.2 Pattern conditional

The following construct can be used for a refutable pattern matching, that is, pattern testing:
if termy is pattern; then termg else terms

Although this construct is not strictly ML (it does exits in variants such as the pattern calculus or
the p-calculus), it turns out to be very convenient for writing functions on representations, because most
such functions manipulate simple datatypes such as Peano integers, options, lists, or binary trees, and
the pattern conditional above is almost always the right construct for analyzing such simple types. For
example, the null and all list function(al)s can be defined as follows:

Variable d: Set.
Fixpoint null (s : list d) := if s is nil then true else false.
Variable a : d —-> bool.
Fixpoint all (s : list d) : bool :=
if s 1is cons x s’ then a x && all s’ else true.

The pattern conditional also provides a notation for destructuring assignment with a refutable pattern,
adapted to the pure functional setting of Gallina, which lacks a
Match_Failure exception.

Like let: above, the if...is construct is just (more legible) notation for the primitive Gallina
expression:

match term; with pattern => termo | _ => termo end

Similarly, it will always be displayed as the expansion of this form in terms of primitive match
expressions (where the default expression terms may be replicated).

Explicit pattern testing also largely subsumes the generalization of the if construct to all binary
datatypes; compare:

ifterm is inl _ then term; else term,
and:
if term then term; else term,

The latter appears to be marginally shorter, but it is quite ambiguous, and indeed often requires an
explicit annotation term : {__}+{_} to type-check, which evens the character count.

Therefore, SSREFLECT restricts by default the condition of a plain if construct to the standard
bool type; this avoids spurious type annotations, e.g., in:

Definition orb bl b2 := if bl then true else b2.
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As pointed out in section 11.2.2, this restriction can be removed with the command:
Close Scope boolean_if_scope.

Like 1et : above, the if term is pattern else term construct supports the dependent mat ch anno-
tations:

if term; is pattern; as ident in patterns return termo then terms else termy

As in let : the variable ident (and those in the type pattern patterns) are bound in terms; ident is
also bound in terms3 (but not in term.), while the variables in pattern; are bound only in terms.
Another variant allows to treat the else case first:

if termy isn’t pattern; then termo else terms

Note that pattern; eventually binds variables in termg and not terms.

11.3.3 Parametric polymorphism

Unlike ML, polymorphism in core Gallina is explicit: the type parameters of polymorphic functions
must be declared explicitly, and supplied at each point of use. However, COQ provides two features to
suppress redundant parameters:

 Sections are used to provide (possibly implicit) parameters for a set of definitions.

* Implicit arguments declarations are used to tell COQ to use type inference to deduce some param-
eters from the context at each point of call.

The combination of these features provides a fairly good emulation of ML-style polymorphism, but
unfortunately this emulation breaks down for higher-order programming. Implicit arguments are indeed
not inferred at all points of use, but only at points of call, leading to expressions such as

Definition all_null (s : 1list T) := all (@null T) s.

Unfortunately, such higher-order expressions are quite frequent in representation functions, especially
those which use C0Q’s St ructures to emulate Haskell type classes.

Therefore, SSREFLECT provides a variant of COQ’s implicit argument declaration, which causes
CoqQ to fill in some implicit parameters at each point of use, e.g., the above definition can be written:

Definition all_null (s : list d) := all null s.

Better yet, it can be omitted entirely, since all_null s isn’t much of an improvement over
all null s.
The syntax of the new declaration is

Prenex Implicits identt.

Let us denote 1 ... ¢, the list of identifiers given to a Prenex Implicits command. The com-
mand checks that each ¢; is the name of a functional constant, whose implicit arguments are prenex,
i.e., the first n; > 0 arguments of ¢; are implicit; then it assigns Maximal Implicit status to these
arguments.

As these prenex implicit arguments are ubiquitous and have often large display strings, it is strongly
recommended to change the default display settings of COQ so that they are not printed (except after a
Set Printing All command). All SSREFLECT library files thus start with the incantation
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Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

11.3.4 Anonymous arguments

When in a definition, the type of a certain argument is mandatory, but not its name, one usually use
“arrow” abstractions for prenex arguments, or the (_ :term) syntax for inner arguments. In SSRE-
FLECT, the latter can be replaced by the open syntax ‘of term’ or (equivalently) ‘&term’, which are
both syntactically equivalentto a (_ :term) expression.

For instance, the usual two-contrsuctor polymorphic type 11ist, i.e. the one of the standard List
library, can be defined by the following declaration:

Inductive list (A : Type) : Type := nil | cons of A & list A.

11.3.5 Wildcards

The terms passed as arguments to SSREFLECT tactics can contain holes, materialized by wildcards _.
Since SSREFLECT allows a more powerful form of type inference for these arguments, it enhances the
possibilities of using such wildcards. These holes are in particular used as a convenient shorthand for
abstractions, especially in local definitions or type expressions.

Wildcards may be interpreted as abstractions (see for example sections 11.4.1 and 11.6.6), or their
content can be inferred from the whole context of the goal (see for example section 11.4.2).

11.4 Definitions

11.4.1 Definitions

The pose tactic allows to add a defined constant to a proof context. SSREFLECT generalizes this tactic
in several ways. In particular, the SSREFLECT pose tactic supports open syntax: the body of the
definition does not need surrounding parentheses. For instance:

pose t = x + y.

is a valid tactic expression.
The pose tactic is also improved for the local definition of higher order terms. Local definitions of
functions can use the same syntax as global ones. The tactic:

pose £ x y = x + y.
adds to the context the defined constant:
f := fun x y : nat => x + y : nat -> nat -> nat

The SSREFLECT pose tactic also supports (co)fixpoints, by providing the local counterpart of the
Fixpoint f :=...and CoFixpoint f :=...constructs. For instance, the following tactic:

pose fix f (x y : nat) {struct x} : nat :=
if x is S p then S (f p y) else 0.

defines a local fixpoint £, which mimics the standard plus operation on natural numbers.
Similarly, local cofixpoints can be defined by a tactic of the form:
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pose cofix £ (arg : T)

The possibility to include wildcards in the body of the definitions offers a smooth way of defining
local abstractions. The type of “holes” is guessed by type inference, and the holes are abstracted. For
instance the tactic:

pose £ := _ + 1.
is shorthand for:
pose £ n :=n + 1.

When the local definition of a function involves both arguments and holes, hole abstractions appear
first. For instance, the tactic:
pose £ x = x + _
is shorthand for:
pose £f n x := x + n.

The interaction of the pose tactic with the interpretation of implicit arguments results in a powerful
and concise syntax for local definitions involving dependent types. For instance, the tactic:

pose f x vy = (x, V).
adds to the context the local definition:
pose £ (Tx Ty : Type) (x : Tx) (y : Ty) := (%, Vy).

The generalization of wildcards makes the use of the pose tactic resemble ML-like definitions of poly-
morphic functions.

11.4.2 Abbreviations

The SSREFLECT set tactic performs abbreviations: it introduces a defined constant for a subterm
appearing in the goal and/or in the context.
SSREFLECT extends the set tactic by supplying:

* an open syntax, similarly to the pose tactic;
* a more aggressive matching algorithm;
* an improved interpretation of wildcards, taking advantage of the matching algorithm;

* an improved occurrence selection mechanism allowing to abstract only selected occurrences of a
term.

The general syntax of this tactic is

set ident [: termq] := [occ-switch | termo
occ-switch ::= {[+|-] natural* }
where:

* ident is a fresh identifier chosen by the user.
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* term; is an optional type annotation. The type annotation term; can be given in open syntax
(no surrounding parentheses). If no occ-switch (described hereafter) is present, it is also the
case for termy. On the other hand, in presence of occ-switch, parentheses surrounding terms are
mandatory.

* In the occurrence switch occ-switch, if the first element of the list is a natural, this element should
be a number, and not an Ltac variable. The empty list { } is not interpreted as a valid occurrence

switch.
The tactic:
set t := £ _
transforms the goal £ x + £ x = £ xintot + t = t,addingt := £ x to the context, and
the tactic:
set t := {2}(f _).
transformsitinto f x + t = f x,addingt := f x to the context.

The type annotation term; may contain wildcards, which will be filled with the appropriate value by
the matching process.

The tactic first tries to find a subterm of the goal matching terms (and its type term;), and stops at
the first subterm it finds. Then the occurrences of this subterm selected by the optional occ-switch are
replaced by ident and a definition ident := term is added to the context. If no occ-switch is present,
then all the occurrences are abstracted.

Matching

The matching algorithm compares a pattern term with a subterm of the goal by comparing their heads and
then pairwise unifying their arguments (modulo conversion). Head symbols match under the following
conditions:

* If the head of term is a constant, then it should be syntactically equal to the head symbol of the
subterm.

* If this head is a projection of a canonical structure, then canonical structure equations are used for
the matching.

« If the head of term is not a constant, the subterm should have the same structure (A abstraction,
let...in structure...).

* If the head of term is a hole, the subterm should have at least as many arguments as ferm. For
instance the tactic:

set t = _ x.

transforms the goal x + y = zintot y = zandaddst := plus x : nat —-> natto
the context.

* In the special case where term is of the form (let £ :=tg in £f)t;...%,, then the pattern
term is treated as (_1j...t,). For each subterm in the goal having the form (A wy ... u,)
with n' > n, the matching algorithm successively tries to find the largest partial application
(A uy ... uy) convertible to the head g of term. For instance the following tactic:
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set t = (let gy z :=y.+1l + z in g) 2.

transforms the goal

(let f xy z :=x+vy + 2z in £ 1) 2 3 = 6.
intot 3 = 6 and adds the local definition of t to the context.

Moreover:

Multiple holes in term are treated as independent placeholders. For instance, the tactic:

set t = _ +

transforms the goal x + y = zintot = zandpushest := x + y : nat in the context.

* The type of the subterm matched should fit the type (possibly casted by some type annotations) of
the pattern term.

* The replacement of the subterm found by the instantiated pattern should not capture variables,
hence the following script:

Goal forall x : nat, x + 1 = 0.
set u := + 1.

raises an error message, since x is bound in the goal.

* Typeclass inference should fill in any residual hole, but matching should never assign a value to a
global existential variable.

Occurrence selection

SSREFLECT provides a generic syntax for the selection of occurrences by their position indexes. These
occurrence switches are shared by all SSREFLECT tactics which require control on subterm selection
like rewriting, generalization, ...

An occurrence switch can be:

* Alist { natural* } of occurrences affected by the tactic. For instance, the tactic:

set x := {1 3}(f 2).

transforms the goal £ 2 + £ 8 = £ 2 + £ 2intox + £ 8 = £ 2 + x, and adds the
abbreviation x := f 2 in the context. Notice that some occurrences of a given term may be
hidden to the user, for example because of a notation. The vernacular Set Printing All
command displays all these hidden occurrences and should be used to find the correct coding of
the occurrences to be selected'. For instance, the following script:

Notation "a < b":= (le (S a) b).
Goal forall x vy, x <y —> S x < S vy.
intros x y; set t := S x.

generates the goal t <= y —-> t < S ysince x < yisnow anotationfor S x <= vy.

"Unfortunately, even after a call to the Set Printing All command, some occurrences are still not displayed to the user,
essentially the ones possibly hidden in the predicate of a dependent match structure.
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