* (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6* (for bipartitions) 3.4 * (for PBRs) 4.4* (for matrices over a semiring) 5.2< (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6< (for bipartitions) 3.4< (for PBRs) 4.4< (for matrices over a semiring) 5.2 = (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6= (for bipartitions) 3.4= (for PBRs) 4.4= (for matrices over a semiring) 5.2\<, for Green's classes 12.3-1\^, for a matrix over finite field group and matrix over finite field 5.7-8\in 5.3-3 ^ (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6AnnularJonesMonoid 8.3-5ApsisMonoid 8.3-11AsBipartition 3.3-1AsBlockBijection 3.3-2AsBooleanMat 5.3-2AsInverseSemigroupCongruenceByKernelTrace 16.7-3AsList 5.1-10AsListCanonical 13.1-1AsMatrix, for a filter and a matrix 5.1-6AsMatrix, for a filter, matrix, and threshold 5.1-6AsMatrix, for a filter, matrix, threshold, and period 5.1-6AsMatrixGroup 5.7-10AsMonoid 6.5-4AsMutableList 5.1-10AsPartialPerm, for a PBR 4.3-3AsPartialPerm, for a bipartition 3.3-4AsPBR 4.3-1AsPermutation, for a PBR 4.3-4AsPermutation, for a bipartition 3.3-5AsRMSCongruenceByLinkedTriple 16.6-8AsRZMSCongruenceByLinkedTriple 16.6-8AsSemigroup 6.5-3AsSemigroupCongruenceByGeneratingPairs 16.6-7AsTransformation, for a PBR 4.3-2AsTransformation, for a bipartition 3.3-3BaseDomain, for a matrix over finite field 5.4-7Bipartition 3.2-1BipartitionByIntRep 3.2-2BlistNumber 5.3-7BlocksNC 3.6-2BooleanMat 5.3-1BooleanMatNumber 5.3-6BrauerMonoid 8.3-2CanonicalBlocks 3.5-18CanonicalBooleanMat 5.3-8CanonicalBooleanMat, for a perm group and boolean matrix 5.3-8CanonicalBooleanMat, for a perm group, perm group and boolean matrix 5.3-8CanonicalForm, for a free inverse semigroup element 10.3-1CanonicalRepresentative 16.6-6CanonicalTransformation 13.12-9CatalanMonoid 8.1-1CharacterTableOfInverseSemigroup 15.1-10ClosureInverseMonoid 6.4-1ClosureInverseSemigroup 6.4-1ClosureMonoid 6.4-1ClosureSemigroup 6.4-1CodomainOfBipartition 3.5-11ComponentRepsOfPartialPermSemigroup 13.13-1ComponentRepsOfTransformationSemigroup 13.12-1ComponentsOfPartialPermSemigroup 13.13-2ComponentsOfTransformationSemigroup 13.12-2CompositionMapping2, for IsRMSIsoByTriple 17.2-4CompositionMapping2, for IsRZMSIsoByTriple 17.2-4CongruenceClasses 16.3-5CongruenceClassOfElement 16.3-4CongruencesOfPoset 16.4-7CongruencesOfSemigroup, for a semigroup 16.4-1CongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-1ContentOfFreeBandElement 10.4-7ContentOfFreeBandElementCollection 10.4-7CrossedApsisMonoid 8.3-11CyclesOfPartialPerm 13.13-3CyclesOfPartialPermSemigroup 13.13-4CyclesOfTransformationSemigroup 13.12-3DClass 12.1-2DClasses 12.1-4DClassNC 12.1-3DClassOfHClass 12.1-1DClassOfLClass 12.1-1DClassOfRClass 12.1-1DClassReps 12.1-5DegreeOfBipartition 3.5-1DegreeOfBipartitionCollection 3.5-1DegreeOfBipartitionSemigroup 3.8-5DegreeOfBlocks 3.6-5DegreeOfPBR 4.5-2DegreeOfPBRCollection 4.5-2DegreeOfPBRSemigroup 4.6-2DigraphOfActionOnPairs, for a transformation semigroup 13.12-4DigraphOfActionOnPairs, for a transformation semigroup and an integer 13.12-4DigraphOfActionOnPoints, for a transformation semigroup 13.12-5DigraphOfActionOnPoints, for a transformation semigroup and an integer 13.12-5DimensionOfMatrixOverSemiring 5.1-3DimensionOfMatrixOverSemiringCollection 5.1-4DirectProduct 6.4-4DirectProductOp 6.4-4DomainOfBipartition 3.5-10DotSemilatticeOfIdempotents 18.2-2DotString 18.2-1DualSymmetricInverseMonoid 8.3-7DualSymmetricInverseSemigroup 8.3-7ELM_LIST (for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6ELM_LIST, for IsRMSIsoByTriple 17.2-3EmptyPBR 4.2-3EndomorphismMonoid, for a digraph 6.7-1EndomorphismMonoid, for a digraph and vertex coloring 6.7-1EndomorphismsPartition 8.1-2Enumerate 13.1-3EnumeratorCanonical 13.1-1EquivalenceRelationCanonicalLookup 16.3-11EquivalenceRelationCanonicalPartition 16.3-12EquivalenceRelationLookup 16.3-10EvaluateWord 13.5-1ExtRepOfObj, for a PBR 4.5-3ExtRepOfObj, for a bipartition 3.5-3ExtRepOfObj, for a blocks 3.6-3FactorisableDualSymmetricInverseMonoid 8.3-8Factorization 13.5-2FixedPointsOfTransformationSemigroup, for a transformation semigroup 13.12-6FreeBand, for a given rank 10.4-1FreeBand, for a list of names 10.4-1FreeBand, for various names 10.4-1FreeInverseSemigroup, for a given rank 10.1-1FreeInverseSemigroup, for a list of names 10.1-1FreeInverseSemigroup, for various names 10.1-1FullBooleanMatMonoid 8.6-1FullMatrixMonoid 8.5-1FullPBRMonoid 8.4-1FullTropicalMaxPlusMonoid 8.7-1FullTropicalMinPlusMonoid 8.7-2GeneralLinearMonoid 8.5-1GeneratingPairsOfLeftSemigroupCongruence 16.2-4GeneratingPairsOfRightSemigroupCongruence 16.2-4GeneratingPairsOfSemigroupCongruence 16.2-4Generators 13.6-1GeneratorsOfSemigroupIdeal 7.2-1GeneratorsSmallest, for a semigroup 13.6-5GLM 8.5-1GossipMonoid 8.6-5GraphInverseSemigroup 11.1-1GraphOfGraphInverseSemigroup 11.1-5GreensDClasses 12.1-4GreensDClassOfElement 12.1-2GreensDClassOfElement, for a free band and element 10.5-1GreensDClassOfElementNC 12.1-3GreensHClasses 12.1-4GreensHClassOfElement 12.1-2GreensHClassOfElement, for a Rees matrix semigroup 12.1-2GreensHClassOfElementNC 12.1-3GreensJClasses 12.1-4GreensLClasses 12.1-4GreensLClassOfElement 12.1-2GreensLClassOfElementNC 12.1-3GreensRClasses 12.1-4GreensRClassOfElement 12.1-2GreensRClassOfElementNC 12.1-3GroupHClass 12.4-1GroupOfUnits 13.8-1HallMonoid 8.6-4HClass 12.1-2HClass, for a Rees matrix semigroup 12.1-2HClasses 12.1-4HClassNC 12.1-3HClassReps 12.1-5IdempotentGeneratedSubsemigroup 13.9-3Idempotents 13.9-1IdentityBipartition 3.2-3IdentityMatrixOverFiniteField, for a finite field and a pos int 5.4-2IdentityMatrixOverFiniteField, for a matrix over finite field and pos int 5.4-2IdentityPBR 4.2-4ImagesElm, for IsRMSIsoByTriple 17.2-5ImagesRepresentative, for IsRMSIsoByTriple 17.2-5IndexPeriodOfSemigroupElement 13.4-1InfoSemigroups 2.6-1InjectionNormalizedPrincipalFactor 12.4-7InjectionPrincipalFactor 12.4-7IntRepOfBipartition 3.5-4InverseMonoidByGenerators 6.2-1InverseOp 5.6-1InverseOp, for an integer matrix 5.5-1InverseSemigroupByGenerators 6.2-1InverseSemigroupCongruenceByKernelTrace 16.7-2InverseSubsemigroupByProperty 6.4-3IrredundantGeneratingSubset 13.6-3IsActingSemigroup 6.1-3IsAntiSymmetricBooleanMat 5.3-13IsAperiodicSemigroup 14.1-18IsBand 14.1-1IsBipartition 3.1-1IsBipartitionCollColl 3.1-2IsBipartitionCollection 3.1-2IsBipartitionMonoid 3.8-1IsBipartitionPBR 4.5-8IsBipartitionSemigroup 3.8-1IsBlockBijection 3.5-16IsBlockBijectionMonoid 3.8-2IsBlockBijectionPBR 4.5-8IsBlockBijectionSemigroup 3.8-2IsBlockGroup 14.1-2IsBlocks 3.6-1IsBooleanMat 5.1-8IsBooleanMatCollColl 5.1-9IsBooleanMatCollection 5.1-9IsBooleanMatMonoid 5.7-2IsBooleanMatSemigroup 5.7-1IsBrandtSemigroup 15.2-2IsCliffordSemigroup 15.2-1IsColTrimBooleanMat 5.3-9IsCombinatorialSemigroup 14.1-18IsCommutativeSemigroup 14.1-3IsCompletelyRegularSemigroup 14.1-4IsCompletelySimpleSemigroup 14.1-21IsCongruenceClass 16.3-1IsCongruenceFreeSemigroup 14.1-5IsCongruencePoset 16.4-4IsConnectedTransformationSemigroup, for a transformation semigroup 13.12-10IsDTrivial 14.1-18IsDualTransBipartition 3.5-13IsDualTransformationPBR 4.5-10IsEmptyPBR 4.5-5IsEnumerableSemigroupRep 6.1-4IsEquivalenceBooleanMat 5.3-16IsEUnitaryInverseSemigroup 15.2-3IsFactorisableInverseMonoid 15.2-4IsFinite 5.7-3IsFreeBand, for a given semigroup 10.4-3IsFreeBandCategory 10.4-2IsFreeBandElement 10.4-4IsFreeBandElementCollection 10.4-5IsFreeBandSubsemigroup 10.4-6IsFreeInverseSemigroup 10.1-3IsFreeInverseSemigroupCategory 10.1-2IsFreeInverseSemigroupElement 10.1-4IsFreeInverseSemigroupElementCollection 10.1-5IsFullMatrixMonoid 8.5-3IsFullyEnumerated 13.1-4IsGeneralLinearMonoid 8.5-3IsGraphInverseSemigroup 11.1-4IsGraphInverseSemigroupElement 11.1-4IsGraphInverseSemigroupElementCollection 11.1-6IsGraphInverseSubsemigroup 11.1-7IsGreensClassNC 12.3-3IsGreensDGreaterThanFunc 12.1-12IsGroupAsSemigroup 14.1-6IsHTrivial 14.1-18IsIdempotentGenerated 14.1-7IsIdentityPBR 4.5-6IsIntegerMatrix 5.1-8IsIntegerMatrixCollColl 5.1-9IsIntegerMatrixCollection 5.1-9IsIntegerMatrixMonoid 5.7-2IsIntegerMatrixSemigroup 5.7-1IsInverseSemigroupCongruenceByKernelTrace 16.7-1IsInverseSemigroupCongruenceClassByKernelTrace 16.7-6IsIsomorphicSemigroup 17.1-1IsJoinIrreducible 15.2-5IsLeftCongruenceClass 16.3-2IsLeftSemigroupCongruence 16.1-2IsLeftSimple 14.1-8IsLeftZeroSemigroup 14.1-9IsLinkedTriple 16.6-5IsLTrivial 14.1-18IsMajorantlyClosed 15.2-6IsMatrixOverFiniteField 5.1-8IsMatrixOverFiniteFieldCollColl 5.1-9IsMatrixOverFiniteFieldCollection 5.1-9IsMatrixOverFiniteFieldGroup 5.7-7IsMatrixOverFiniteFieldMonoid 5.7-2IsMatrixOverFiniteFieldSemigroup 5.7-1IsMatrixOverSemiring 5.1-1IsMatrixOverSemiringCollColl 5.1-2IsMatrixOverSemiringCollection 5.1-2IsMatrixOverSemiringMonoid 5.7-2IsMatrixOverSemiringSemigroup 5.7-1IsMaximalSubsemigroup 13.10-3IsMaxPlusMatrix 5.1-8IsMaxPlusMatrixCollColl 5.1-9IsMaxPlusMatrixCollection 5.1-9IsMaxPlusMatrixMonoid 5.7-2IsMaxPlusMatrixSemigroup 5.7-1IsMinPlusMatrix 5.1-8IsMinPlusMatrixCollColl 5.1-9IsMinPlusMatrixCollection 5.1-9IsMinPlusMatrixMonoid 5.7-2IsMinPlusMatrixSemigroup 5.7-1IsMonogenicInverseMonoid 15.2-8IsMonogenicInverseSemigroup 15.2-7IsMonogenicMonoid 14.1-11IsMonogenicSemigroup 14.1-10IsMonoidAsSemigroup 14.1-12IsNTPMatrix 5.1-8IsNTPMatrixCollColl 5.1-9IsNTPMatrixCollection 5.1-9IsNTPMatrixMonoid 5.7-2IsNTPMatrixSemigroup 5.7-1IsomorphismMatrixGroup 5.7-9IsomorphismMonoid 6.5-2IsomorphismPermGroup 6.5-5IsomorphismReesMatrixSemigroup, for a D-class 12.4-7IsomorphismReesMatrixSemigroup, for a semigroup 13.15-1IsomorphismReesMatrixSemigroupOverPermGroup 13.15-1IsomorphismReesZeroMatrixSemigroup 13.15-1IsomorphismReesZeroMatrixSemigroupOverPermGroup 13.15-1IsomorphismSemigroup 6.5-1IsomorphismSemigroups 17.1-3IsOntoBooleanMat 5.3-14IsOrthodoxSemigroup 14.1-13IsPartialOrderBooleanMat 5.3-15IsPartialPermBipartition 3.5-15IsPartialPermBipartitionMonoid 3.8-3IsPartialPermBipartitionSemigroup 3.8-3IsPartialPermPBR 4.5-11IsPBR 4.1-1IsPBRCollColl 4.1-2IsPBRCollection 4.1-2IsPBRMonoid 4.6-1IsPBRSemigroup 4.6-1IsPermBipartition 3.5-14IsPermBipartitionGroup 3.8-4IsPermPBR 4.5-12IsRectangularBand 14.1-14IsRectangularGroup 14.1-15IsReesCongruenceClass 16.8-2IsReflexiveBooleanMat 5.3-11IsRegularGreensClass 12.3-2IsRegularSemigroup 14.1-16IsRightCongruenceClass 16.3-3IsRightSemigroupCongruence 16.1-3IsRightSimple 14.1-8IsRightZeroSemigroup 14.1-17IsRMSCongruenceByLinkedTriple 16.6-1IsRMSCongruenceClassByLinkedTriple 16.6-3IsRMSIsoByTriple 17.2-1IsRowTrimBooleanMat 5.3-9IsRTrivial 14.1-18IsRZMSCongruenceByLinkedTriple 16.6-1IsRZMSCongruenceClassByLinkedTriple 16.6-3IsRZMSIsoByTriple 17.2-1IsSemiband 14.1-7IsSemigroupCongruence 16.1-1IsSemigroupWithAdjoinedZero 14.1-19IsSemilattice 14.1-20IsSimpleSemigroup 14.1-21IsSubrelation 16.5-1IsSuperrelation 16.5-2IsSymmetricBooleanMat 5.3-10IsSynchronizingSemigroup, for a transformation semigroup 14.1-22IsSynchronizingSemigroup, for a transformation semigroup and a positive integer 14.1-22IsTorsion 5.7-4IsTorsion, for an integer matrix 5.5-2IsTotalBooleanMat 5.3-14IsTransBipartition 3.5-12IsTransformationPBR 4.5-9IsTransitive, for a transformation
semigroup and a pos int 13.12-7IsTransitive, for a transformation
semigroup and a set 13.12-7IsTransitiveBooleanMat 5.3-12IsTrimBooleanMat 5.3-9IsTropicalMatrix 5.1-8IsTropicalMatrixCollection 5.1-9IsTropicalMatrixMonoid 5.7-2IsTropicalMatrixSemigroup 5.7-1IsTropicalMaxPlusMatrix 5.1-8IsTropicalMaxPlusMatrixCollColl 5.1-9IsTropicalMaxPlusMatrixCollection 5.1-9IsTropicalMaxPlusMatrixMonoid 5.7-2IsTropicalMaxPlusMatrixSemigroup 5.7-1IsTropicalMinPlusMatrix 5.1-8IsTropicalMinPlusMatrixCollColl 5.1-9IsTropicalMinPlusMatrixCollection 5.1-9IsTropicalMinPlusMatrixMonoid 5.7-2IsTropicalMinPlusMatrixSemigroup 5.7-1IsUniformBlockBijection 3.5-17IsUnitRegularMonoid 14.1-23IsUniversalPBR 4.5-7IsUniversalSemigroupCongruence 16.9-1IsUniversalSemigroupCongruenceClass 16.9-2IsVertex, for a graph inverse semigroup element 11.1-3IsZeroGroup 14.1-24IsZeroRectangularBand 14.1-25IsZeroSemigroup 14.1-26IsZeroSimpleSemigroup 14.1-27IteratorCanonical 13.1-1IteratorFromOldGeneratorsFile 19.1-3IteratorFromPickledFile 19.1-3IteratorOfDClasses 12.2-2IteratorOfDClassReps 12.2-1IteratorOfHClasses 12.2-2IteratorOfHClassReps 12.2-1IteratorOfLClasses 12.2-2IteratorOfLClassReps 12.2-1IteratorOfRClasses 12.2-2IteratorOfRClassReps 12.2-1JClasses 12.1-4JoinIrreducibleDClasses 15.1-2JoinLeftSemigroupCongruences 16.5-4JoinRightSemigroupCongruences 16.5-4JoinSemigroupCongruences 16.5-4JoinSemilatticeOfCongruences, for a congruence poset and a function 16.4-10JoinSemilatticeOfCongruences, for a list or collection and a function 16.4-10JonesMonoid 8.3-3KernelOfSemigroupCongruence 16.7-4LargestElementSemigroup 13.12-8LatticeOfCongruences, for a semigroup 16.4-5LatticeOfCongruences, for a semigroup and a multiplicative element collection 16.4-5LatticeOfLeftCongruences, for a semigroup 16.4-5LatticeOfLeftCongruences, for a semigroup and a multiplicative element collection 16.4-5LatticeOfRightCongruences, for a semigroup 16.4-5LatticeOfRightCongruences, for a semigroup and a multiplicative element collection 16.4-5LClass 12.1-2LClasses 12.1-4LClassNC 12.1-3LClassOfHClass 12.1-1LClassReps 12.1-5LeftBlocks 3.5-6LeftCayleyGraphSemigroup 13.2-1LeftCongruenceClasses 16.3-5LeftCongruenceClassOfElement 16.3-4LeftCongruencesOfSemigroup, for a semigroup 16.4-1LeftCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-1LeftInverse, for a matrix over finite field 5.4-6LeftOne, for a bipartition 3.2-4LeftProjection 3.2-4LeftSemigroupCongruence 16.2-2LeftZeroSemigroup 9.1-5LengthOfLongestDClassChain 12.1-11MajorantClosure 15.1-3Matrix, for a filter and a matrix 5.1-5Matrix, for a semiring and a matrix 5.1-5MaximalDClasses 12.1-7MaximalSubsemigroups, for a finite semigroup 13.10-1MaximalSubsemigroups, for a finite semigroup and a record 13.10-1MeetSemigroupCongruences 16.5-3MinimalCongruences, for a congruence poset 16.4-11MinimalCongruences, for a list or collection 16.4-11MinimalCongruencesOfSemigroup, for a semigroup 16.4-2MinimalCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-2MinimalDClass 12.1-6MinimalFactorization 13.5-3MinimalIdeal 13.7-1MinimalIdealGeneratingSet 7.2-2MinimalInverseMonoidGeneratingSet 13.6-4MinimalInverseSemigroupGeneratingSet 13.6-4MinimalLeftCongruencesOfSemigroup, for a semigroup 16.4-2MinimalLeftCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-2MinimalMonoidGeneratingSet 13.6-4MinimalRightCongruencesOfSemigroup, for a semigroup 16.4-2MinimalRightCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-2MinimalSemigroupGeneratingSet 13.6-4MinimalWord, for free inverse semigroup element 10.3-2MinimumGroupCongruence 16.7-7Minorants 15.1-4ModularPartitionMonoid 8.3-10MonogenicSemigroup 9.1-2MotzkinMonoid 8.3-6MultiplicativeNeutralElement, for an H-class 12.4-5MultiplicativeZero 13.7-3MunnSemigroup 8.2-1NaturalLeqBlockBijection 3.4-3NaturalLeqInverseSemigroup 15.1-1NaturalLeqPartialPermBipartition 3.4-2NewIdentityMatrixOverFiniteField 5.4-3NewMatrixOverFiniteField, for a filter, a field, an integer, and a list 5.4-1NewZeroMatrixOverFiniteField 5.4-3NonTrivialCongruenceClasses 16.3-7NonTrivialEquivalenceClasses 16.3-6NonTrivialLeftCongruenceClasses 16.3-7NonTrivialRightCongruenceClasses 16.3-7NormalizedPrincipalFactor 12.4-8Normalizer, for a perm group, semigroup, record 13.11-1Normalizer, for a semigroup, record 13.11-1NormalizeSemigroup 5.7-5NrBlocks, for a bipartition 3.5-9NrBlocks, for blocks 3.5-9NrCongruenceClasses 16.3-9NrDClasses 12.1-9NrEquivalenceClasses 16.3-8NrHClasses 12.1-9NrIdempotents 13.9-2NrLClasses 12.1-9NrLeftBlocks 3.5-7NrLeftCongruenceClasses 16.3-9NrMaximalSubsemigroups 13.10-2NrRClasses 12.1-9NrRegularDClasses 12.1-8NrRightBlocks 3.5-8NrRightCongruenceClasses 16.3-9NrTransverseBlocks, for a bipartition 3.5-2NrTransverseBlocks, for blocks 3.6-4NumberBlist 5.3-7NumberBooleanMat 5.3-6NumberPBR 4.5-4OnBlist 5.3-4OnLeftBlocks 3.7-2OnLeftCongruenceClasses 16.3-13OnRightBlocks 3.7-1OnRightCongruenceClasses 16.3-14Order 5.5-3OrderAntiEndomorphisms 8.1-5OrderEndomorphisms, monoid of order preserving transformations 8.1-5PartialBrauerMonoid 8.3-2PartialDualSymmetricInverseMonoid 8.3-7PartialJonesMonoid 8.3-4PartialOrderAntiEndomorphisms 8.1-5PartialOrderEndomorphisms 8.1-5PartialOrderOfDClasses 12.1-10PartialPermLeqBipartition 3.4-1PartialTransformationMonoid 8.1-3PartialUniformBlockBijectionMonoid 8.3-8PartitionMonoid 8.3-1PBR 4.2-1PBRNumber 4.5-4PeriodNTPMatrix 5.1-12PermLeftQuoBipartition 3.4-4PlanarModularPartitionMonoid 8.3-10PlanarPartitionMonoid 8.3-9PlanarUniformBlockBijectionMonoid 8.3-8PODI, monoid of order preserving or reversing partial perms 8.2-3POI, monoid of order preserving partial perms 8.2-3POPI, monoid of orientation preserving partial perms 8.2-3PORI, monoid of orientation preserving or reversing partial perms 8.2-3PosetOfCongruences 16.4-9PosetOfPrincipalCongruences, for a semigroup 16.4-6PosetOfPrincipalCongruences, for a semigroup and a multiplicative element collection 16.4-6PosetOfPrincipalLeftCongruences, for a semigroup 16.4-6PosetOfPrincipalLeftCongruences, for a semigroup and a multiplicative element collection 16.4-6PosetOfPrincipalRightCongruences, for a semigroup 16.4-6PosetOfPrincipalRightCongruences, for a semigroup and a multiplicative element collection 16.4-6PositionCanonical 13.1-2PrimitiveIdempotents 15.1-5PrincipalCongruencesOfSemigroup, for a semigroup 16.4-3PrincipalCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-3PrincipalFactor 12.4-8PrincipalLeftCongruencesOfSemigroup, for a semigroup 16.4-3PrincipalLeftCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-3PrincipalRightCongruencesOfSemigroup, for a semigroup 16.4-3PrincipalRightCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-3ProjectionFromBlocks 3.6-6RadialEigenvector 5.6-2Random, for a semigroup 13.3-1RandomBipartition 3.2-7RandomBlockBijection 3.2-7RandomInverseMonoid 6.6-1RandomInverseSemigroup 6.6-1RandomMatrix, for a filter and a matrix 5.1-7RandomMatrix, for a semiring and a matrix 5.1-7RandomMonoid 6.6-1RandomPBR 4.2-2RandomSemigroup 6.6-1Range, for a graph inverse semigroup element 11.1-2RankOfBipartition 3.5-2RankOfBlocks 3.6-4RClass 12.1-2RClasses 12.1-4RClassNC 12.1-3RClassOfHClass 12.1-1RClassReps 12.1-5ReadGenerators 19.1-1ReadOldGenerators 19.1-1RectangularBand 9.1-3ReflexiveBooleanMatMonoid 8.6-3RegularBooleanMatMonoid 8.6-2RegularDClasses 12.1-8RepresentativeOfMinimalDClass 13.7-2RepresentativeOfMinimalIdeal 13.7-2RightBlocks 3.5-5RightCayleyGraphSemigroup 13.2-1RightCongruenceClasses 16.3-5RightCongruenceClassOfElement 16.3-4RightCongruencesOfSemigroup, for a semigroup 16.4-1RightCongruencesOfSemigroup, for a semigroup and a multiplicative element collection 16.4-1RightCosetsOfInverseSemigroup 15.1-6RightInverse, for a matrix over finite field 5.4-6RightOne, for a bipartition 3.2-5RightProjection 3.2-5RightSemigroupCongruence 16.2-3RightZeroSemigroup 9.1-5RMSCongruenceByLinkedTriple 16.6-2RMSCongruenceClassByLinkedTriple 16.6-4RMSIsoByTriple 17.2-2RMSNormalization 6.5-7RookMonoid 8.2-2RookPartitionMonoid 8.3-1RowRank, for a matrix over finite field 5.4-5RowSpaceBasis, for a matrix over finite field 5.4-4RowSpaceTransformation, for a matrix over finite field 5.4-4RowSpaceTransformationInv, for a matrix over finite field 5.4-4RZMSCongruenceByLinkedTriple 16.6-2RZMSCongruenceClassByLinkedTriple 16.6-4RZMSConnectedComponents 13.14-2RZMSDigraph 13.14-1RZMSIsoByTriple 17.2-2RZMSNormalization 6.5-6SameMinorantsSubgroup 15.1-7SchutzenbergerGroup 12.4-2SemigroupCongruence 16.2-1SemigroupIdeal 7.1-1SemigroupIdealOfReesCongruence 16.8-1SEMIGROUPS.DefaultOptionsRec 6.3-1SemigroupsMakeDoc 2.4-1SemigroupsTestExtreme 2.5-3SemigroupsTestInstall 2.5-1SemigroupsTestStandard 2.5-2SingularApsisMonoid 8.3-11SingularBrauerMonoid 8.3-2SingularCrossedApsisMonoid 8.3-11SingularDualSymmetricInverseMonoid 8.3-7SingularFactorisableDualSymmetricInverseMonoid 8.3-8SingularJonesMonoid 8.3-3SingularModularPartitionMonoid 8.3-10SingularOrderEndomorphisms 8.1-5SingularPartitionMonoid 8.3-1SingularPlanarModularPartitionMonoid 8.3-10SingularPlanarPartitionMonoid 8.3-9SingularPlanarUniformBlockBijectionMonoid 8.3-8SingularTransformationMonoid 8.1-4SingularTransformationSemigroup 8.1-4SingularUniformBlockBijectionMonoid 8.3-8SLM 8.5-2SmallerDegreePartialPermRepresentation 15.1-8SmallestElementSemigroup 13.12-8SmallestIdempotentPower 13.4-2SmallestMultiplicationTable 17.1-2SmallGeneratingSet 13.6-2SmallInverseMonoidGeneratingSet 13.6-2SmallInverseSemigroupGeneratingSet 13.6-2SmallMonoidGeneratingSet 13.6-2SmallSemigroupGeneratingSet 13.6-2Source, for a graph inverse semigroup element 11.1-2SpecialLinearMonoid 8.5-2SpectralRadius 5.6-3Splash 18.1-1Star, for a PBR 4.5-1Star, for a bipartition 3.2-6StarOp, for a PBR 4.5-1StarOp, for a bipartition 3.2-6StructureDescription, for an H-class 12.4-6StructureDescriptionMaximalSubgroups 12.4-4StructureDescriptionSchutzenbergerGroups 12.4-3SubsemigroupByProperty, for a semigroup and function 6.4-2SubsemigroupByProperty, for a semigroup, function, and limit on the size of the subsemigroup 6.4-2Successors 5.3-5SupersemigroupOfIdeal 7.2-3TemperleyLiebMonoid 8.3-3TexString 18.3-1ThresholdNTPMatrix 5.1-12ThresholdTropicalMatrix 5.1-11TikzString 18.4-1TraceOfSemigroupCongruence 16.7-5TransposedMatImmutable, for a matrix over finite field 5.4-8TriangularBooleanMatMonoid 8.6-6TrivialSemigroup 9.1-1UnderlyingSemigroupOfCongruencePoset 16.4-8UnderlyingSemigroupOfSemigroupWithAdjoinedZero 13.7-4UniformBlockBijectionMonoid 8.3-8UnitriangularBooleanMatMonoid 8.6-6UniversalPBR 4.2-5UniversalSemigroupCongruence 16.9-3UnweightedPrecedenceDigraph 5.6-4VagnerPrestonRepresentation 15.1-9WriteGenerators 19.1-2ZeroSemigroup 9.1-4
generated by GAPDoc2HTML