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Chapter 1

Cellular complexes

Data −→ Cellular Complexes

::::::::::::::::::::::::

RegularCWPolytope(L):: List --> RegCWComplex

RegularCWPolytope(G,v):: PermGroup, List --> RegCWComplex

Inputs a list L of vectors in Rn and outputs their convex hull as a regular CW-complex.
Inputs a permutation group G of degree d and vector v ∈ Rd , and outputs the convex hull of the

orbit {vg : g ∈ G} as a regular CW-complex.

::::::::::::::::::::::::

CubicalComplex(A):: List --> CubicalComplex

Inputs a binary array A and returns the cubical complex represented by A. The array A must of
course be such that it represents a cubical complex.

::::::::::::::::::::::::

PureCubicalComplex(A):: List --> PureCubicalComplex

Inputs a binary array A and returns the pure cubical complex represented by A.

::::::::::::::::::::::::
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PureCubicalKnot(n,k):: Int, Int --> PureCubicalComplex

PureCubicalKnot(L):: List --> PureCubicalComplex

Inputs integers n,k and returns the k-th prime knot on n crossings as a pure cubical complex (if
this prime knot exists).

Inputs a list L describing an arc presentation for a knot or link and returns the knot or link as a
pure cubical complex.

::::::::::::::::::::::::

PurePermutahedralKnot(n,k):: Int, Int --> PurePermutahedralComplex

PurePermutahedralKnot(L):: List --> PurePermutahedralComplex

Inputs integers n,k and returns the k-th prime knot on n crossings as a pure permutahedral complex
(if this prime knot exists).

Inputs a list L describing an arc presentation for a knot or link and returns the knot or link as a
pure permutahedral complex.

::::::::::::::::::::::::

PurePermutahedralComplex(A):: List --> PurePermComplex

Inputs a binary array A and returns the pure permutahedral complex represented by A.

::::::::::::::::::::::::

CayleyGraphOfGroup(G,L):: Group, List --> Graph

Inputs a finite group G and a list L of elements in G.It returns the Cayley graph of the group
generated by L.

::::::::::::::::::::::::

EquivariantEuclideanSpace(G,v):: MatrixGroup, List --> EquivariantRegCWComplex
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Inputs a crystallographic group G with left action on Rn together with a row vector v ∈ Rn. It
returns an equivariant regular CW-space corresponding to the Dirichlet-Voronoi tessellation of Rn

produced from the orbit of v under the action.

::::::::::::::::::::::::

EquivariantOrbitPolytope(G,v):: PermGroup, List --> EquivariantRegCWComplex

Inputs a permutation group G of degree n together with a row vector v ∈ Rn. It returns, as an
equivariant regular CW-space, the convex hull of the orbit of v under the canonical left action of G on
Rn.

::::::::::::::::::::::::

EquivariantTwoComplex(G):: Group --> EquivariantRegCWComplex

Inputs a suitable group G and returns, as an equivariant regular CW-space, the 2-complex
associated to some presentation of G.

::::::::::::::::::::::::

QuillenComplex(G,p):: Group, Int --> SimplicialComplex

Inputs a finite group G and prime p, and returns the simplicial complex arising as the order
complex of the poset of elementary abelian p-subgroups of G.

::::::::::::::::::::::::

RestrictedEquivariantCWComplex(Y,H):: RegCWComplex, Group --> EquivariantRegCWComplex

Inputs a G-equivariant regular CW-space Y and a subgroup H ≤ G for which GAP can find a
transversal. It returns the equivariant regular CW-complex obtained by retricting the action to H.

::::::::::::::::::::::::
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RandomSimplicialGraph(n,p):: Int, Int --> SimplicialComplex

Inputs an integer n ≥ 1 and positive prime p, and returns an Erd\"os-R\’enyi random graph as a
1-dimensional simplicial complex. The graph has n vertices. Each pair of vertices is, with probability
p, directly connected by an edge.

::::::::::::::::::::::::

RandomSimplicialTwoComplex(n,p):: Int, Int --> SimplicialComplex

Inputs an integer n ≥ 1 and positive prime p, and returns a Linial-Meshulam random simplicial
2-complex. The 1-skeleton of this simplicial complex is the complete graph on n vertices. Each triple
of vertices lies, with probability p, in a common 2-simplex of the complex.

::::::::::::::::::::::::

ReadCSVfileAsPureCubicalKnot(str):: String --> PureCubicalComplex

ReadCSVfileAsPureCubicalKnot(str,r):: String, Int --> PureCubicalComplex

ReadCSVfileAsPureCubicalKnot(L):: List --> PureCubicalComplex

ReadCSVfileAsPureCubicalKnot(L,R):: List,List --> PureCubicalComplex

Reads a CSV file identified by a string str such as "file.pdb" or "path/file.pdb" and returns a 3-
dimensional pure cubical complex K. Each line of the file should contain the coordinates of a point in
R3 and the complex K should represent a knot determined by the sequence of points, though the latter
is not guaranteed. A useful check in this direction is to test that K has the homotopy type of a circle.

If the test fails then try the function again with an integer r ≥ 2 entered as the optional second
argument. The integer determines the resolution with which the knot is constructed.

The function can also read in a list L of strings identifying CSV files for several knots. In this
case a list R of integer resolutions can also be entered. The lists L and R must be of equal length.

::::::::::::::::::::::::

ReadImageAsPureCubicalComplex(str,t):: String, Int --> PureCubicalComplex

Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg",
"path/file.png" etc., together with an integer t between 0 and 765. It returns a 2-dimensional
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pure cubical complex corresponding to a black/white version of the image determined by the thresh-
old t. The 2-cells of the pure cubical complex correspond to pixels with RGB value R+G+B≤ t.

::::::::::::::::::::::::

ReadImageAsFilteredPureCubicalComplex(str,n):: String, Int --> FilteredPureCubicalComplex

Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg",
"path/file.png" etc., together with a positive integer n. It returns a 2-dimensional filtered pure
cubical complex of filtration length n. The kth term in the filtration is a pure cubical complex
corresponding to a black/white version of the image determined by the threshold tk = k×765/n. The
2-cells of the kth term correspond to pixels with RGB value R+G+B≤ tk.

::::::::::::::::::::::::

ReadImageAsWeightFunction(str,t):: String, Int --> RegCWComplex, Function

Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg",
"path/file.png" etc., together with an integer t. It constructs a 2-dimensional regular CW-complex
Y from the image, together with a weight function w:Y → Z corresponding to a filtration on Y of
filtration length t. The pair [Y,w] is returned.

::::::::::::::::::::::::

ReadPDBfileAsPureCubicalComplex(str):: String --> PureCubicalComplex

ReadPDBfileAsPureCubicalComplex(str,r):: String, Int --> PureCubicalComplex

Reads a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb"
and returns a 3-dimensional pure cubical complex K. The complex K should represent a (protein
backbone) knot but this is not guaranteed. A useful check in this direction is to test that K has the
homotopy type of a circle.

If the test fails then try the function again with an integer r ≥ 2 entered as the optional second
argument. The integer determines the resolution with which the knot is constructed.

::::::::::::::::::::::::
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ReadPDBfileAsPurepermutahedralComplex(str):: String --> PurePermComplex

ReadPDBfileAsPurePermutahedralComplex(str,r):: String, Int --> PurePermComplex

Reads a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb"
and returns a 3-dimensional pure permutahedral complex K. The complex K should represent a (pro-
tein backbone) knot but this is not guaranteed. A useful check in this direction is to test that K has the
homotopy type of a circle.

If the test fails then try the function again with an integer r ≥ 2 entered as the optional second
argument. The integer determines the resolution with which the knot is constructed.

::::::::::::::::::::::::

RegularCWPolytope(L):: List --> RegCWComplex

RegularCWPolytope(G,v):: PermGroup, List --> RegCWComplex

Inputs a list L of vectors in Rn and outputs their convex hull as a regular CW-complex.
Inputs a permutation group G of degree d and vector v ∈ Rd , and outputs the convex hull of the

orbit {vg : g ∈ G} as a regular CW-complex.

::::::::::::::::::::::::

SimplicialComplex(L):: List --> SimplicialComplex

Inputs a list L whose entries are lists of vertices representing the maximal simplices of a simplicial
complex, and returns the simplicial complex. Here a "vertex" is a GAP object such as an integer or a
subgroup. The list L can also contain non-maximal simplices.

::::::::::::::::::::::::

SymmetricMatrixToFilteredGraph(A,m,s):: Mat, Int, Rat --> FilteredGraph

SymmetricMatrixToFilteredGraph(A,m):: Mat, Int --> FilteredGraph

Inputs an n× n symmetric matrix A, a positive integer m and a positive rational s. The function
returns a filtered graph of filtration length m. The t-th term of the filtration is a graph with n vertices
and an edge between the i-th and j-th vertices if the (i, j) entry of A is less than or equal to t× s/m.

If the optional input s is omitted then it is set equal to the largest entry in the matrix A.
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::::::::::::::::::::::::

SymmetricMatrixToGraph(A,t):: Mat, Rat --> Graph

Inputs an n× n symmetric matrix A over the rationals and a rational number t ≥ 0, and returns
the graph on the vertices 1,2, . . . ,n with an edge between distinct vertices i and j precisely when the
(i, j) entry of A is ≤ t.

Metric Spaces

::::::::::::::::::::::::

CayleyMetric(g,h):: Permutation, Permutation --> Int

Inputs two permutations g,h and optionally the degree N of a symmetric group containing
them. It returns the minimum number of transpositions needed to express g ∗ h−1 as a product of
transpositions.

::::::::::::::::::::::::

EuclideanMetric(g,h):: List, List --> Rat

Inputs two vectors v,w ∈ Rn and returns a rational number approximating the Euclidean distance
between them.

::::::::::::::::::::::::

EuclideanSquaredMetric(g,h):: List, List --> Rat

Inputs two vectors v,w ∈ Rn and returns the square of the Euclidean distance between them.

::::::::::::::::::::::::

HammingMetric(g,h):: Permutation, Permutation --> Int
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Inputs two permutations g,h and optionally the degree N of a symmetric group containing them.
It returns the minimum number of integers moved by the permutation g∗h−1.

::::::::::::::::::::::::

KendallMetric(g,h):: Permutation, Permutation --> Int

Inputs two permutations g,h and optionally the degree N of a symmetric group containing them.
It returns the minimum number of adjacent transpositions needed to express g ∗ h−1 as a product of
adjacent transpositions. An {\em adjacent} transposition is of the form (i, i+1).

::::::::::::::::::::::::

ManhattanMetric(g,h):: List, List --> Rat

Inputs two vectors v,w ∈ Rn and returns the Manhattan distance between them.

::::::::::::::::::::::::

VectorsToSymmetricMatrix(V):: List --> Matrix

VectorsToSymmetricMatrix(V,d):: List, Function --> Matrix

Inputs a list V = {v1, . . . ,vk} ∈ Rn and returns the k× k symmetric matrix of Euclidean distances
d(vi,v j). When these distances are irrational they are approximated by a rational number.

As an optional second argument any rational valued function d(x,y) can be entered.

Cellular Complexes −→ Cellular Complexes

::::::::::::::::::::::::

BoundaryMap(K):: RegCWComplex --> RegCWMap

Inputs a pure regular CW-complex K and returns the regular CW-inclusion map ι :∂K ↪→ K from
the boundary ∂K into the complex K.
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::::::::::::::::::::::::

CliqueComplex(G,n):: Graph, Int --> SimplicialComplex

CliqueComplex(F,n):: FilteredGraph, Int --> FilteredSimplicialComplex

CliqueComplex(K,n):: SimplicialComplex, Int --> SimplicialComplex

Inputs a graph G and integer n ≥ 1. It returns the n-skeleton of a simplicial complex K with one
k-simplex for each complete subgraph of G on k+1 vertices.

Inputs a fitered graph F and integer n≥ 1. It returns the n-skeleton of a filtered simplicial complex
K whose t-term has one k-simplex for each complete subgraph of the t-th term of G on k+1 vertices.

Inputs a simplicial complex of dimension d = 1 or d = 2. If d = 1 then the clique complex of a
graph returned. If d = 2 then the clique complex of a $2$-complex is returned.

::::::::::::::::::::::::

ConcentricFiltration(K,n):: PureCubicalComplex, Int --> FilteredPureCubicalComplex

Inputs a pure cubical complex K and integer n ≥ 1, and returns a filtered pure cubical complex
of filtration length n. The t-th term of the filtration is the intersection of K with the ball of radius rt

centred on the centre of gravity of K, where 0 = r1 ≤ r2 ≤ r3 ≤ ·· · ≤ rn are equally spaced rational
numbers. The complex K is contained in the ball of radius rn. (At present, this is implemented only
for 2- and 3-dimensional complexes.)

::::::::::::::::::::::::

DirectProduct(M,N):: RegCWComplex, RegCWComplex --> RegCWComplex

DirectProduct(M,N):: PureCubicalComplex, PureCubicalComplex --> PureCubicalComplex

Inputs two or more regular CW-complexes or two or more pure cubical complexes and returns
their direct product.

::::::::::::::::::::::::

FiltrationTerm(K,t):: FilteredPureCubicalComplex, Int --> PureCubicalComplex
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FiltrationTerm(K,t):: FilteredRegCWComplex, Int --> RegCWComplex

Inputs a filtered regular CW-complex or a filtered pure cubical complex K together with an
integer t ≥ 1. The t-th term of the filtration is returned.

::::::::::::::::::::::::

Graph(K):: RegCWComplex --> Graph

Graph(K):: SimplicialComplex --> Graph

Inputs a regular CW-complex or a simplicial complex K and returns its $1$-skeleton as a graph.

::::::::::::::::::::::::

HomotopyGraph(Y):: RegCWComplex --> Graph

Inputs a regular CW-complex Y and returns a subgraph M ⊂ Y 1 of the 1-skeleton for which the
induced homology homomorphisms H1(M,Z)→ H1(Y,Z) and H1(Y 1,Z)→ H1(Y,Z) have identical
images. The construction tries to include as few edges in M as possible, though a minimum is not
guaranteed.

::::::::::::::::::::::::

Nerve(M):: PureCubicalComplex --> SimplicialComplex

Nerve(M):: PurePermComplex --> SimplicialComplex

Nerve(M,n):: PureCubicalComplex, Int --> SimplicialComplex

Nerve(M,n):: PurePermComplex, Int --> SimplicialComplex

Inputs a pure cubical complex or pure permutahedral complex M and returns the simplicial
complex K obtained by taking the nerve of an open cover of |M|, the open sets in the cover being
sufficiently small neighbourhoods of the top-dimensional cells of |M|. The spaces |M| and |K| are
homotopy equivalent by the Nerve Theorem. If an integer n ≥ 0 is supplied as the second argument
then only the n-skeleton of K is returned.

::::::::::::::::::::::::
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RegularCWComplex(K):: SimplicialComplex --> RegCWComplex

RegularCWComplex(K):: PureCubicalComplex --> RegCWComplex

RegularCWComplex(K):: CubicalComplex --> RegCWComplex

RegularCWComplex(K):: PurePermComplex --> RegCWComplex

RegularCWComplex(L):: List --> RegCWComplex

RegularCWComplex(L,M):: List,List --> RegCWComplex

Inputs a simplicial, pure cubical, cubical or pure permutahedral complex K and returns the
corresponding regular CW-complex. Inputs a list L = Y !.boundaries of boundary incidences of a
regular CW-complex Y and returns Y . Inputs a list L = Y !.boundaries of boundary incidences of a
regular CW-complex Y together with a list M = Y !.orientation of incidence numbers and returns
a regular CW-complex Y . The availability of precomputed incidence numbers saves recalculating
them.

::::::::::::::::::::::::

RegularCWMap(M,A):: PureCubicalComplex, PureCubicalComplex --> RegCWMap

Inputs a pure cubical complex M and a subcomplex A and returns the inclusion map A→M as a
map of regular CW complexes.

::::::::::::::::::::::::

ThickeningFiltration(K,n):: PureCubicalComplex, Int --> FilteredPureCubicalComplex

ThickeningFiltration(K,n,s):: PureCubicalComplex, Int, Int --> FilteredPureCubicalComplex

Inputs a pure cubical complex K and integer n≥ 1, and returns a filtered pure cubical complex of
filtration length n. The t-th term of the filtration is the t-fold thickening of K. If an integer s ≥ 1 is
entered as the optional third argument then the t-th term of the filtration is the ts-fold thickening of K.

Cellular Complexes −→ Cellular Complexes (Preserving Data Types)

::::::::::::::::::::::::
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ContractedComplex(K):: RegularCWComplex --> RegularCWComplex

ContractedComplex(K):: FilteredRegularCWComplex --> FilteredRegularCWComplex

ContractedComplex(K):: CubicalComplex --> CubicalComplex

ContractedComplex(K):: PureCubicalComplex --> PureCubicalComplex

ContractedComplex(K,S):: PureCubicalComplex, PureCubicalComplex --> PureCubicalComplex

ContractedComplex(K):: FilteredPureCubicalComplex --> FilteredPureCubicalComplex

ContractedComplex(K):: PurePermComplex --> PurePermComplex

ContractedComplex(K,S):: PurePermComplex, PurePermComplex --> PurePermComplex

ContractedComplex(K):: SimplicialComplex --> SimplicialComplex

ContractedComplex(G):: Graph --> Graph

Inputs a complex (regular CW, Filtered regular CW, pure cubical etc.) and returns a homotopy
equivalent subcomplex.

Inputs a pure cubical complex or pure permutahedral complex K and a subcomplex S. It returns a
homotopy equivalent subcomplex of K that contains S.

Inputs a graph G and returns a subgraph S such that the clique complexes of G and S are homotopy
equivalent.

::::::::::::::::::::::::

ContractibleSubcomplex(K):: PureCubicalComplex --> PureCubicalComplex

ContractibleSubcomplex(K):: PurePermComplex --> PurePermComplex

ContractibleSubcomplex(K):: SimplicialComplex --> SimplicialComplex

Inputs a non-empty pure cubical, pure permutahedral or simplicial complex K and returns a
contractible subcomplex.

::::::::::::::::::::::::

KnotReflection(K):: PureCubicalComplex --> PureCubicalComplex
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Inputs a pure cubical knot and returns the reflected knot.

::::::::::::::::::::::::

KnotSum(K,L):: PureCubicalComplex, PureCubicalComplex --> PureCubicalComplex

Inputs two pure cubical knots and returns their sum.

::::::::::::::::::::::::

OrientRegularCWComplex(Y):: RegCWComplex --> Void

Inputs a regular CW-complex Y and computes and stores incidence numbers for Y . If Y already
has incidence numbers then the function does nothing.

::::::::::::::::::::::::

PathComponent(K,n):: SimplicialComplex, Int --> SimplicialComplex

PathComponent(K,n):: PureCubicalComplex, Int --> PureCubicalComplex

PathComponent(K,n):: PurePermComplex, Int --> PurePermComplex

Inputs a simplicial, pure cubical or pure permutahedral complex K together with an integer
1≤ n≤ β0(K). The n-th path component of K is returned.

::::::::::::::::::::::::

PureComplexBoundary(M):: PureCubicalComplex --> PureCubicalComplex

PureComplexBoundary(M):: PurePermComplex --> PurePermComplex

Inputs a d-dimensional pure cubical or pure permutahedral complex M and returns a d-
dimensional complex consisting of the closure of those d-cells whose boundaries contains some cell
with coboundary of size less than the maximal possible size.

::::::::::::::::::::::::
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PureComplexComplement(M):: PureCubicalComplex --> PureCubicalComplex

PureComplexComplement(M):: PurePermComplex --> PurePermComplex

Inputs a pure cubical complex or a pure permutahedral complex and returns its complement.

::::::::::::::::::::::::

PureComplexDifference(M,N):: PureCubicalComplex, PureCubicalComplex --> PureCubicalComplex

PureComplexDifference(M,N):: PurePermComplex, PurePermComplex --> PurePermComplex

Inputs two pure cubical complexes or two pure permutahedral complexes and returns the
difference M−N.

::::::::::::::::::::::::

PureComplexInterstection(M,N):: PureCubicalComplex, PureCubicalComplex --> PureCubicalComplex

PureComplexIntersection(M,N):: PurePermComplex, PurePermComplex --> PurePermComplex

Inputs two pure cubical complexes or two pure permutahedral complexes and returns their
intersection.

::::::::::::::::::::::::

PureComplexThickened(M):: PureCubicalComplex --> PureCubicalComplex

PureComplexThickened(M):: PurePermComplex --> PurePermComplex

Inputs a pure cubical complex or a pure permutahedral complex and returns the a thickened
complex.

::::::::::::::::::::::::

PureComplexUnion(M,N):: PureCubicalComplex, PureCubicalComplex --> PureCubicalComplex
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PureComplexUnion(M,N):: PurePermComplex, PurePermComplex --> PurePermComplex

Inputs two pure cubical complexes or two pure permutahedral complexes and returns their union.

::::::::::::::::::::::::

SimplifiedComplex(K):: RegularCWComplex --> RegularCWComplex

SimplifiedComplex(K):: PurePermComplex --> PurePermComplex

SimplifiedComplex(R):: FreeResolution --> FreeResolution

SimplifiedComplex(C):: ChainComplex --> ChainComplex

Inputs a regular CW-complex or a pure permutahedral complex K and returns a homeomorphic
complex with possibly fewer cells and certainly no more cells.

Inputs a free ZG-resolution R of Z and returns a ZG-resolution S with potentially fewer free
generators.

Inputs a chain complex C of free abelian groups and returns a chain homotopic chain complex D
with potentially fewer free generators.

::::::::::::::::::::::::

ZigZagContractedComplex(K):: PureCubicalComplex --> PureCubicalComplex

ZigZagContractedComplex(K):: FilteredPureCubicalComplex --> FilteredPureCubicalComplex

ZigZagContractedComplex(K):: PurePermComplex --> PurePermComplex

Inputs a pure cubical, filtered pure cubical or pure permutahedral complex and returns a homotopy
equivalent complex. In the filtered case, the t-th term of the output is homotopy equivalent to the t-th
term of the input for all t.

Cellular Complexes −→ Homotopy Invariants

::::::::::::::::::::::::

AlexanderPolynomial(K):: PureCubicalComplex --> Polynomial

AlexanderPolynomial(K):: PurePermComplex --> Polynomial
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AlexanderPolynomial(G):: FpGroup --> Polynomial

Inputs a 3-dimensional pure cubical or pure permutahdral complex K representing a knot and
returns the Alexander polynomial of the fundamental group G = π1(R3 \K).

Inputs a finitely presented group G with infinite cyclic abelianization and returns its Alexander
polynomial.

::::::::::::::::::::::::

BettiNumber(K,n):: SimplicialComplex, Int --> Int

BettiNumber(K,n):: PureCubicalComplex, Int --> Int

BettiNumber(K,n):: CubicalComplex, Int --> Int

BettiNumber(K,n):: PurePermComplex, Int --> Int

BettiNumber(K,n):: RegCWComplex, Int --> Int

BettiNumber(K,n):: ChainComplex, Int --> Int

BettiNumber(K,n):: SparseChainComplex, Int --> Int

BettiNumber(K,n,p):: SimplicialComplex, Int, Int --> Int

BettiNumber(K,n,p):: PureCubicalComplex, Int, Int --> Int

BettiNumber(K,n,p):: CubicalComplex, Int, Int --> Int

BettiNumber(K,n,p):: PurePermComplex, Int, Int --> Int

BettiNumber(K,n,p):: RegCWComplex, Int, Int --> Int

Inputs a simplicial, cubical, pure cubical, pure permutahedral, regular CW, chain or sparse chain
complex K together with an integer n≥ 0 and returns the nth Betti number of K.

Inputs a simplicial, cubical, pure cubical, pure permutahedral or regular CW-complex K together
with an integer n≥ 0 and a prime p≥ 0 or p = 0. In this case the nth Betti number of K over a field
of characteristic p is returned.

::::::::::::::::::::::::

EulerCharacteristic(C):: ChainComplex --> Int

EulerCharacteristic(K):: CubicalComplex --> Int
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EulerCharacteristic(K):: PureCubicalComplex --> Int

EulerCharacteristic(K):: PurePermComplex --> Int

EulerCharacteristic(K):: RegCWComplex --> Int

EulerCharacteristic(K):: SimplicialComplex --> Int

Inputs a chain complex C and returns its Euler characteristic.
Inputs a cubical, or pure cubical, or pure permutahedral or regular CW-, or simplicial complex K

and returns its Euler characteristic.

::::::::::::::::::::::::

EulerIntegral(Y,w):: RegCWComplex, Int --> Int

Inputs a regular CW-complex Y and a weight function w:Y → Z, and returns the Euler integral∫
Y wdχ .

::::::::::::::::::::::::

FundamentalGroup(K):: RegCWComplex --> FpGroup

FundamentalGroup(K,n):: RegCWComplex, Int --> FpGroup

FundamentalGroup(K):: SimplicialComplex --> FpGroup

FundamentalGroup(K):: PureCubicalComplex --> FpGroup

FundamentalGroup(K):: PurePermComplex --> FpGroup

FundamentalGroup(F):: RegCWMap --> GroupHomomorphism

FundamentalGroup(F,n):: RegCWMap, Int --> GroupHomomorphism

Inputs a regular CW, simplicial, pure cubical or pure permutahedral complex K and returns the
fundamental group.

Inputs a regular CW complex K and the number n of some zero cell. It returns the fundamental
group of K based at the n-th zero cell.

Inputs a regular CW map F and returns the induced homomorphism of fundamental groups. If
the number of some zero cell in the domain of F is entered as an optional second variable then the
fundamental group is based at this zero cell.

::::::::::::::::::::::::
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FundamentalGroupOfQuotient(Y):: EquivariantRegCWComplex --> Group

Inputs a G-equivariant regular CW complex Y and returns the group G.

::::::::::::::::::::::::

IsAspherical(F,R):: FreeGroup, List --> Boolean

Inputs a free group F and a list R of words in F . The function attempts to test if the quotient
group G = F/〈R〉F is aspherical. If it succeeds it returns true. Otherwise the test is inconclusive and
f ail is returned.

::::::::::::::::::::::::

KnotGroup(K):: PureCubicalComplex --> FpGroup

KnotGroup(K):: PureCubicalComplex --> FpGroup

Inputs a pure cubical or pure permutahedral complex K and returns the fundamental group of
its complement. If the complement is path-connected then this fundamental group is unique up
to isomorphism. Otherwise it will depend on the path-component in which the randomly chosen
base-point lies.

::::::::::::::::::::::::

PiZero(Y):: RegCWComplex --> List

PiZero(Y):: Graph --> List

PiZero(Y):: SimplicialComplex --> List

Inputs a regular CW-complex Y , or graph Y , or simplicial complex Y and returns a pair [cells,r]
where: cells is a list of vertices of $Y$ representing the distinct path-components; r(v) is a function
which, for each vertex v of Y returns the representative vertex r(v) ∈ cells.

::::::::::::::::::::::::
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PersistentBettiNumbers(K,n):: FilteredSimplicialComplex, Int --> List

PersistentBettiNumbers(K,n):: FilteredPureCubicalComplex, Int --> List

PersistentBettiNumbers(K,n):: FilteredRegCWComplex, Int --> List

PersistentBettiNumbers(K,n):: FilteredChainComplex, Int --> List

PersistentBettiNumbers(K,n):: FilteredSparseChainComplex, Int --> List

PersistentBettiNumbers(K,n,p):: FilteredSimplicialComplex, Int, Int --> List

PersistentBettiNumbers(K,n,p):: FilteredPureCubicalComplex, Int, Int --> List

PersistentBettiNumbers(K,n,p):: FilteredRegCWComplex, Int, Int --> List

PersistentBettiNumbers(K,n,p):: FilteredChainComplex, Int, Int --> List

PersistentBettiNumbers(K,n,p):: FilteredSparseChainComplex, Int, Int --> List

Inputs a filtered simplicial, filtered pure cubical, filtered regular CW, filtered chain or filtered
sparse chain complex K together with an integer n≥ 0 and returns the nth PersistentBetti numbers of
K as a list of lists of integers.

Inputs a filtered simplicial, filtered pure cubical, filtered regular CW, filtered chain or filtered
sparse chain complex K together with an integer n ≥ 0 and a prime p ≥ 0 or p = 0. In this case the
nth PersistentBetti numbers of K over a field of characteristic p are returned.

Data −→ Homotopy Invariants

::::::::::::::::::::::::

DendrogramMat(A,t,s):: Mat, Rat, Int --> List

Inputs an n×n symmetric matrix A over the rationals, a rational t ≥ 0 and an integer s≥ 1. A list
[v1, . . . ,vt+1] is returned with each vk a list of positive integers. Let tk = (k−1)s. Let G(A, tk) denote
the graph with vertices 1, . . . ,n and with distinct vertices i and j connected by an edge when the (i, j)
entry of A is ≤ tk. The i-th path component of G(A, tk) is included in the vk[i]-th path component of
G(A, tk+1). This defines the integer vector vk. The vector vk has length equal to the number of path
components of G(A, tk).

Cellular Complexes −→ Non Homotopy Invariants

::::::::::::::::::::::::
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ChainComplex(K):: CubicalComplex --> ChainComplex

ChainComplex(K):: PureCubicalComplex --> ChainComplex

ChainComplex(K):: PurePermComplex --> ChainComplex

ChainComplex(Y):: RegCWComplex --> ChainComplex

ChainComplex(K):: SimplicialComplex --> ChainComplex

Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex K and returns its
chain complex of free abelian groups. In degree n this chain complex has one free generator for each
n-dimensional cell of K.

Inputs a regular CW-complex Y and returns a chain complex C which is chain homotopy
equivalent to the cellular chain complex of Y . In degree n the free abelian chain group Cn has one free
generator for each critical n-dimensional cell of Y with respect to some discrete vector field on Y .

::::::::::::::::::::::::

ChainComplexEquivalence(X):: RegCWComplex --> List

Inputs a regular CW-complex X and returns a pair [ f∗,g∗] of chain maps f∗:C∗(X)→ D∗(X),
g∗:D∗(X)→C∗(X). Here C∗(X) is the standard cellular chain complex of X with one free generator
for each cell in X . The chain complex D∗(X) is a typically smaller chain complex arising from a
discrete vector field on X . The chain maps f∗,g∗ are chain homotopy equivalences.

::::::::::::::::::::::::

ChainComplexOfQuotient(Y):: EquivariantRegCWComplex --> ChainComplex

Inputs a G-equivariant regular CW-complex Y and returns the cellular chain complex of the
quotient space Y/G.

::::::::::::::::::::::::

ChainMap(X,A,Y,B):: PureCubicalComplex, PureCubicalComplex, PureCubicalComplex, PureCubicalComplex --> ChainMap

ChainMap(f):: RegCWMap --> ChainMap

ChainMap(f):: SimplicialMap --> ChainComplex
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Inputs a pure cubical complex Y and pure cubical sucomplexes X ⊂Y , B⊂Y ,A⊂ B. It returns the
induced chain map f∗:C∗(X/A)→C∗(Y/B) of cellular chain complexes of pairs. (Typlically one takes
A and B to be empty or contractible subspaces, in which case C∗(X/A)'C∗(X), C∗(Y/B)'C∗(Y ).)

Inputs a map f :X → Y between two regular CW-complexes X ,Y and returns an induced chain
map f∗:C∗(X)→ C∗(Y ) where C∗(X), C∗(Y ) are chain homotopic to (but usually smaller than) the
cellular chain complexes of X , Y .

Inputs a map f :X →Y between two simplicial complexes X ,Y and returns the induced chain map
f∗:C∗(X)→C∗(Y ) of cellular chain complexes.

::::::::::::::::::::::::

CochainComplex(K):: CubicalComplex --> CochainComplex

CochainComplex(K):: PureCubicalComplex --> CochainComplex

CochainComplex(K):: PurePermComplex --> CochainComplex

CochainComplex(Y):: RegCWComplex --> CochainComplex

CochainComplex(K):: SimplicialComplex --> CohainComplex

Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex K and returns its
cochain complex of free abelian groups. In degree n this cochain complex has one free generator for
each n-dimensional cell of K.

Inputs a regular CW-complex Y and returns a cochain complex C which is chain homotopy
equivalent to the cellular cochain complex of Y . In degree n the free abelian cochain group Cn has
one free generator for each critical n-dimensional cell of Y with respect to some discrete vector field
on Y .

::::::::::::::::::::::::

CriticalCells(K):: RegCWComplex --> List

Inputs a regular CW-complex K and returns its critical cells with respect to some discrete vector
field on K. If no discrete vector field on K is available then one will be computed and stored.

::::::::::::::::::::::::

DiagonalApproximation(X):: RegCWComplex --> RegCWMap, RegCWMap
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Inputs a regular CW-complex X and outputs a pair [p, ι ] of maps of CW-complexes. The map
p:X∆→ X will often be a homotopy equivalence. This is always the case if X is the CW-space of any
pure cubical complex. In general, one can test to see if the induced chain map p∗:C∗(X∆)→C∗(X) is
an isomorphism on integral homology. The second map ι :X∆ ↪→ X×X is an inclusion into the direct
product. If p∗ induces an isomorphism on homology then the chain map ι∗:C∗(X∆)→C∗(X×X) can
be used to compute the cup product.

::::::::::::::::::::::::

Size(Y):: RegCWComplex --> Int

Size(Y):: SimplicialComplex --> Int

Size(K):: PureCubicalComplex --> Int

Size(K):: PurePermComplex --> Int

Inputs a regular CW complex or a simplicial complex Y and returns the number of cells in the
complex.

Inputs a d-dimensional pure cubical or pure permutahedral complex K and returns the number of
d-dimensional cells in the complex.

(Co)chain Complexes −→ (Co)chain Complexes

::::::::::::::::::::::::

FilteredTensorWithIntegers(R):: FreeResolution, Int --> FilteredChainComplex

Inputs a free ZG-resolution R for which ” f ilteredDimension” lies in NAMESOFCOMPO-
NENTS(R). (Such a resolution can be produced using TWISTERTENSORPRODUCT(), RESOLUTION-
NORMALSUBGROUPS() or FREEGRESOLUTION().) It returns the filtered chain complex obtained
by tensoring with the trivial module $\mathbb Z$.

::::::::::::::::::::::::

FilteredTensorWithIntegersModP(R,p):: FreeResolution, Int --> FilteredChainComplex

Inputs a free ZG-resolution R for which ” f ilteredDimension” lies in NAMESOFCOMPO-
NENTS(R), together with a prime p. (Such a resolution can be produced using TWISTERTEN-
SORPRODUCT(), RESOLUTIONNORMALSUBGROUPS() or FREEGRESOLUTION().) It returns the
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filtered chain complex obtained by tensoring with the trivial module $\mathbb F$, the field of p
elements.

::::::::::::::::::::::::

HomToIntegers(C):: ChainComplex --> CochainComplex

HomToIntegers(R):: FreeResolution --> CochainComplex

HomToIntegers(F):: EquiChainMap --> CochainMap

Inputs a chain complex C of free abelian groups and returns the cochain complex HomZ(C,Z).
Inputs a free ZG-resolution R in characteristic 0 and returns the cochain complex HomZG(R,Z).
Inputs an equivariant chain map F :R→ S of resolutions and returns the induced cochain map

HomZG(S,Z)−→ HomZG(R,Z).

::::::::::::::::::::::::

TensorWithIntegersModP(C,p):: ChainComplex, Int --> ChainComplex

TensorWithIntegersModP(R,p):: FreeResolution, Int --> ChainComplex

TensorWithIntegersModP(F,p):: EquiChainMap, Int --> ChainMap

Inputs a chain complex C of characteristic 0 and a prime integer p. It returns the chain complex
C⊗ZZp of characteristic p.

Inputs a free ZG-resolution R of characteristic 0 and a prime integer p. It returns the chain complex
R⊗ZG Zp of characteristic p.

Inputs an equivariant chain map F :R→ S in characteristic 0 a prime integer p. It returns the
induced chain map F⊗ZG Zp:R⊗ZG Zp −→ S⊗ZG Zp.

(Co)chain Complexes −→ Homotopy Invariants

::::::::::::::::::::::::

Cohomology(C,n):: CochainComplex, Int --> List

Cohomology(F,n):: CochainMap, Int --> GroupHomomorphism

Cohomology(K,n):: CubicalComplex, Int --> List
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Cohomology(K,n):: PureCubicalComplex, Int --> List

Cohomology(K,n):: PurePermComplex, Int --> List

Cohomology(K,n):: RegCWComplex, Int --> List

Cohomology(K,n):: SimplicialComplex, Int --> List

Inputs a cochain complex C and integer n ≥ 0 and returns the n-th cohomology group of C as a
list of its abelian invariants.

Inputs a chain map F and integer n≥ 0. It returns the induced cohomology homomorphism Hn(F)
as a homomorphism of finitely presented groups.

Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex
K together with an integer n ≥ 0. It returns the n-th integral cohomology group of K as a list of its
abelian invariants.

::::::::::::::::::::::::

CupProduct(Y):: RegCWComplex --> Function

CupProduct(R,p,q,P,Q):: FreeRes, Int, Int, List, List --> List

Inputs a regular CW-complex Y and returns a function f (p,q,P,Q). This function f inputs two
integers p,q ≥ 0 and two integer lists P = [p1, . . . , pm], Q = [q1, . . . ,qn] representing elements P ∈
H p(Y,Z) and Q ∈ Hq(Y,Z). The function f returns a list P∪Q representing the cup product P∪Q ∈
H p+q(Y,Z).

Inputs a free ZG resolution R of Z for some group G, together with integers p,q ≥ 0 and integer
lists P,Q representing cohomology classes P ∈ H p(G,Z), Q ∈ Hq(G,Z). An integer list representing
the cup product P∪Q ∈ H p+q(G,Z) is returned.

::::::::::::::::::::::::

Homology(C,n):: ChainComplex, Int --> List

Homology(F,n):: ChainMap, Int --> GroupHomomorphism

Homology(K,n):: CubicalComplex, Int --> List

Homology(K,n):: PureCubicalComplex, Int --> List

Homology(K,n):: PurePermComplex, Int --> List

Homology(K,n):: RegCWComplex, Int --> List
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Homology(K,n):: SimplicialComplex, Int --> List

Inputs a chain complex C and integer n≥ 0 and returns the n-th homology group of C as a list of
its abelian invariants.

Inputs a chain map F and integer n ≥ 0. It returns the induced homology homomorphism Hn(F)
as a homomorphism of finitely presented groups.

Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex K
together with an integer n≥ 0. It returns the n-th integral homology group of K as a list of its abelian
invariants.

Visualization

::::::::::::::::::::::::

BarCodeDisplay(L) :: List --> void

Displays a barcode L=PERSITENTBETTINUMBERS(X,N).

::::::::::::::::::::::::

BarCodeCompactDisplay(L) :: List --> void

Displays a barcode L=PERSITENTBETTINUMBERS(X,N) in compact form.

::::::::::::::::::::::::

CayleyGraphOfGroup(G,L):: Group, List --> Void

Inputs a finite group G and a list L of elements in G.It displays the Cayley graph of the group
generated by L where edge colours correspond to generators.

::::::::::::::::::::::::

Display(G) :: Graph --> void

Display(M) :: PureCubicalComplex --> void
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Display(M) :: PurePermutahedralComplex --> void

Displays a graph G; a $2$- or $3$-dimensional pure cubical complex M; a $3$-dimensional pure
permutahedral complex M.

::::::::::::::::::::::::

DisplayArcPresentation(K) :: PureCubicalComplex --> void

Displays a 3-dimensional pure cubical knot K=PURECUBICALKNOT(L) in the form of an arc
presentation.

::::::::::::::::::::::::

DisplayCSVKnotFile(str) :: String --> void

Inputs a string str that identifies a csv file containing the points on a piecewise linear knot in R3.
It displays the knot.

::::::::::::::::::::::::

DisplayDendrogram(L):: List --> Void

Displays the dendrogram L:=DENDROGRAMMAT(A,T,S).

::::::::::::::::::::::::

DisplayDendrogramMat(A,t,s):: Mat, Rat, Int --> Void

Inputs an n×n symmetric matrix A over the rationals, a rational t ≥ 0 and an integer s ≥ 1. The
dendrogram defined by DENDROGRAMMAT(A,T,S) is displayed.

::::::::::::::::::::::::
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DisplayPDBfile(str):: String --> Void

Displays the protein backone described in a PDB (Protein Database) file identified by a string str
such as "file.pdb" or "path/file.pdb".

::::::::::::::::::::::::

OrbitPolytope(G,v,L) :: PermGroup, List, List --> void

Inputs a permutation group or finite matrix group G of degree d and a rational vector v ∈ Rd .
In both cases there is a natural action of G on Rd . Let P(G,v) be the convex hull of the orbit of v
under the action of G. The function also inputs a sublist L of the following list of strings: ["dimen-
sion","vertex\_degree", "visual\_graph", "schlegel", "visual"]

Depending on L, the function displays the following information:\\ the dimension of the orbit
polytope P(G,v);\\ the degree of a vertex in the graph of P(G,v);\\ a visualization of the graph
of P(G,v);\\ a visualization of the Schlegel diagram of P(G,v);\\ a visualization of the polytope
P(G,v) if d = 2,3.

The function requires Polymake software.

::::::::::::::::::::::::

ScatterPlot(L):: List --> Void

Inputs a list L = [[x1,y1], . . . , [xn,yn]] of pairs of rational numbers and displays a scatter plot of the
points in the x-y-plane.



Chapter 2

ZG-Resolutions and Group Cohomology

Resolutions

EquivariantChainMap(R,S,f):: FreeResolution, FreeResolution, GroupHomomorphisms --> EquiChainMap

Inputs a free ZG-resolution R of Z, a free ZQ-resolution S of Z, and a group homomorphism
f :G→ Q. It returns the induced f -equivariant chain map F :R→ S.

FreeGResolution(P,n):: NonFreeResolution, Int --> FreeResolution

Inputs a non-free $\mathbb ZG$-resolution $P_\ast$ and a positive integer n. It attempts to return n
terms of a free ZG-resolution of Z. However, the stabilizer groups in the non-free resolution must be

such that HAP can construct free resolutions with contracting homotopies for them.
The contracting homotopy on the resolution was implemented by Bui Anh Tuan.

ResolutionBieberbachGroup(G):: MatrixGroup --> FreeResolution

ResolutionBieberbachGroup(G,v):: MatrixGroup, List --> FreeResolution

Inputs a torsion free crystallographic group G, also known as a Bieberbach group, represented using
AFFINECRYSTGROUPONRIGHT as in the GAP package Cryst. It also optionally inputs a choice of
vector v in the Euclidean space Rn on which G acts freely. The function returns n+1 terms of the

free ZG-resolution of Z arising as the cellular chain complex of the tessellation of Rn by the
Dirichlet-Voronoi fundamental domain determined by v. No contracting homotopy is returned with

the resolution.
This function is part of the HAPcryst package written by Marc Roeder and thus requires the

HAPcryst package to be loaded.
The function requires the use of Polymake software.

ResolutionCubicalCrustGroup(G,k):: MatrixGroup, Int --> FreeResolution

Inputs a crystallographic group G represented using AFFINECRYSTGROUPONRIGHT as in the GAP
package Cryst together with an integer k ≥ 1. The function tries to find a cubical fundamental

domain in the Euclidean space Rn on which G acts. If it succeeds it uses this domain to return k+1
terms of a free ZG-resolution of Z.

This function was written by Bui Anh Tuan.

30
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ResolutionFiniteGroup(G,k):: Group, Int --> FreeResolution

Inputs a finite group G and an integer k ≥ 1. It returns k+1 terms of a free ZG-resolution of Z.

ResolutionNilpotentGroup(G,k):: Group, Int --> FreeResolution

Inputs a nilpotent group G (which can be infinite) and an integer k ≥ 1. It returns k+1 terms of a
free ZG-resolution of Z.

ResolutionNormalSeries(L,k):: List, Int --> FreeResolution

Inputs a a list L consisting of a chain $1 = N1 ≤ N2 ≤ ·· · ≤ Nn = G of normal subgroups of G,
together with an integer k ≥ 1. It returns k+1 terms of a free ZG-resolution of Z.

ResolutionPrimePowerGroup(G,k):: Group, Int --> FreeResolution

Inputs a finite p-group G and an integer k ≥ 1. It returns k+1 terms of a minimal free FG-resolution
of the field F of p elements.

ResolutionSL2Z(m,k):: Int, Int --> FreeResolution

Inputs positive integers m,n and returns n terms of a free ZG-resolution of Z for the group
G = SL2(Z[1/m]).

This function is joint work with Bui Anh Tuan.

ResolutionSmallGroup(G,k):: Group, Int --> FreeResolution

ResolutionSmallGroup(G,k):: FpGroup, Int --> FreeResolution

Inputs a small group G and an integer k ≥ 1. It returns k+1 terms of a free ZG-resolution of Z.
If G is a finitely presented group then up to degree $2$ the resolution coincides with cellular chain

complex of the universal cover of the 2 complex associated to the presentation of G. Thus the
boundaries of the generators in degree 3 provide a generating set for the module of identities of the

presentation.
This function was written by Irina Kholodna.

ResolutionSubgroup(R,H):: FreeResolution, Group --> FreeResolution

Inputs a free ZG-resolution of Z and a finite index subgroup H ≤ G. It returns a free ZH-resolution
of Z.

Algebras −→ (Co)chain Complexes

LeibnizComplex(g,n):: LeibnizAlgebra, Int --> ChainComplex

Inputs a Leibniz algebra, or Lie algebra, g over a ring K together with an integer n≥ 0. It returns the
first n terms of the Leibniz chain complex over K. The complex was implemented by Pablo

Fernandez Ascariz.
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Resolutions −→ (Co)chain Complexes

HomToIntegers(C):: ChainComplex --> CochainComplex

HomToIntegers(R):: FreeResolution --> CochainComplex

HomToIntegers(F):: EquiChainMap --> CochainMap

Inputs a chain complex C of free abelian groups and returns the cochain complex HomZ(C,Z).
Inputs a free ZG-resolution R in characteristic 0 and returns the cochain complex HomZG(R,Z).

Inputs an equivariant chain map F :R→ S of resolutions and returns the induced cochain map
HomZG(S,Z)−→ HomZG(R,Z).

HomToIntegralModule(R,A):: FreeResolution, GroupHomomorphism --> CochainComplex

Inputs a free ZG-resolution R in characteristic 0 and a group homomorphism A:G→ GLn(Z). The
homomorphism A can be viewed as the ZG-module with underlying abelian group Zn on which G

acts via the homomorphism A. It returns the cochain complex HomZG(R,A).

TensorWithIntegers(R):: FreeResolution --> ChainComplex

TensorWithIntegers(F):: EquiChainMap --> ChainMap

Inputs a free ZG-resolution R of characteristic 0 and returns the chain complex R⊗ZG Z.
Inputs an equivariant chain map F :R→ S in characteristic 0 and returns the induced chain map

F⊗ZG Z:R⊗ZG Z−→ S⊗ZG Z.

TensorWithIntegersModP(C,p):: ChainComplex, Int --> ChainComplex

TensorWithIntegersModP(R,p):: FreeResolution, Int --> ChainComplex

TensorWithIntegersModP(F,p):: EquiChainMap, Int --> ChainMap

Inputs a chain complex C of characteristic 0 and a prime integer p. It returns the chain complex
C⊗ZZp of characteristic p.

Inputs a free ZG-resolution R of characteristic 0 and a prime integer p. It returns the chain complex
R⊗ZG Zp of characteristic p.

Inputs an equivariant chain map F :R→ S in characteristic 0 a prime integer p. It returns the induced
chain map F⊗ZG Zp:R⊗ZG Zp −→ S⊗ZG Zp.

Cohomology rings

AreIsomorphicGradedAlgebras(A,B):: PresentedGradedAlgebra, PresentedGradedAlgebra --> Boolean

Inputs two freely presented graded algebras A = F[x1, . . . ,xm]/I and B = F[y1, . . . ,yn]/J and returns
TRUE if they are isomorphic, and FALSE otherwise. This function was implemented by Paul Smith.
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HAPDerivation(R,I,L):: PolynomialRing, List, List --> Derivation

Inputs a polynomial ring R = F[x1, . . . ,xm] over a field F together with a list I of generators for an
ideal in R and a list L = [y1, . . . ,ym]⊂ R. It returns the derivation d:E→ E for E = R/I defined by

d(xi) = yi. This function was written by Paul Smith. It uses the Singular commutative algebra
package.

HilbertPoincareSeries::PresentedGradedAlgebra --> RationalFunction

Inputs a presentation E = F[x1, . . . ,xm]/I of a graded algebra and returns its Hilbert-Poincar\’e
series. This function was written by Paul Smith and uses the Singular commutative algebra package.

It is essentially a wrapper for Singular’s Hilbert-Poincare series.

HomologyOfDerivation(d):: Derivation --> List

Inputs a derivation d:E→ E on a quotient E = R/I of a polynomial ring R = F[x1, . . . ,xm] over a
field F. It returns a list [S,J,h] where S is a polynomial ring and J is a list of generators for an ideal in

$S$ such that there is an isomorphism α:S/J→ kerd/im d. This isomorphism lifts to the ring
homomorphism h:S→ kerd. This function was written by Paul Smith. It uses the Singular

commutative algebra package.

IntegralCohomologyGenerators(R,n):: FreeResolution, Int --> List

Inputs at least n+1 terms of a free ZG-resolution of Z and the integer n≥ 1. It returns a minimal list
of cohomology classes in Hn(G,Z) which, together with all cup products of lower degree classes,

generate the group Hn(G,Z) . (Let ai be the i-th canonical generator of the d-generator abelian group
Hn(G,Z). The cohomology class n1a1 + ...+ndad is represented by the integer vector

u = (n1, ...,nd). )

LHSSpectralSequence(G,N,r):: Group, Int, Int --> List

Inputs a finite 2-group G, and normal subgroup N and an integer r. It returns a list of length r whose
i-th term is a presentation for the i-th page of the Lyndon-Hochschild-Serre spectral sequence. This

function was written by Paul Smith. It uses the Singular commutative algebra package.

LHSSpectralSequenceLastSheet(G,N):: Group, Int --> List

Inputs a finite 2-group G and normal subgroup N. It returns presentation for the E∞ page of the
Lyndon-Hochschild-Serre spectral sequence. This function was written by Paul Smith. It uses the

Singular commutative algebra package.

ModPCohomologyGenerators(G,n):: Group, Int --> List

ModPCohomologyGenerators(R):: FreeResolution --> List

Inputs either a p-group G and positive integer n, or else n+1 terms of a minimal FG-resolution R of
the field F of p elements. It returns a pair whose first entry is a minimal list of homogeneous

generators for the cohomology ring A = H∗(G,F) modulo all elements in degree greater than n. The
second entry of the pair is a function DEG which, when applied to a minimal generator, yields its
degree. WARNING: the following rule must be applied when multiplying generators xi together.
Only products of the form x1 ∗ (x2 ∗ (x3 ∗ (x4 ∗ ...))) with deg(xi)≤ deg(xi+1) should be computed
(since the xi belong to a structure constant algebra with only a partially defined structure constants

table).
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ModPCohomologyRing(R):: FreeResolution --> SCAlgebra

ModPCohomologyRing(R,level):: FreeResolution, String --> SCAlgebra

ModPCohomologyRing(G,n):: Group, Int --> SCAlgebra

ModPCohomologyRing(G,n,level):: Group, Int, String --> SCAlgebra

Inputs either a p-group G and positive integer n, or else n terms of a minimal FG-resolution R of the
field F of p elements. It returns the cohomology ring A = H∗(G,F) modulo all elements in degree
greater than n. The ring is returned as a structure constant algebra A. The ring A is graded. It has a

component A!.DEGREE(X) which is a function returning the degree of each (homogeneous) element
x in GENERATORSOFALGEBRA(A). An optional input variable ”level” can be set to one of the
strings ”medium” or ”high”. These settings determine parameters in the algorithm. The default

setting is ”medium”. When ”level” is set to ”high” the ring A is returned with a component
A!.NICEBASIS. This component is a pair [Coe f f ,Bas]. Here Bas is a list of integer lists; a "nice"

basis for the vector space A can be constructed using the command
LIST(BAS,X->PRODUCT(LIST(X,I->BASIS(A)[I])). The coefficients of the canonical basis

element BASIS(A)[I] are stored as COEFF[I]. If the ring A is computed using the setting
”level” = ”medium” then the component A!.NICEBASIS can be added to A using the command

A:=MODPCOHOMOLOGYRING\_PART\_2(A).

Mod2CohomologyRingPresentation(G):: Group --> PresentedGradedAlgebra

Mod2CohomologyRingPresentation(G,n):: Group --> PresentedGradedAlgebra

Mod2CohomologyRingPresentation(A):: Group --> PresentedGradedAlgebra

Mod2CohomologyRingPresentation(R):: Group --> PresentedGradedAlgebra

When applied to a finite 2-group G this function returns a presentation for the mod-2 cohomology
ring H∗(G,F). The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation

is complete. When the function is applied to a 2-group G and positive integer n the function first
constructs n+1 terms of a free FG-resolution R, then constructs the finite-dimensional graded
algebra A = H(∗≤n)(G,F), and finally uses A to approximate a presentation for H∗(G,F). For

"sufficiently large" n the approximation will be a correct presentation for H∗(G,F). Alternatively, the
function can be applied directly to either the resolution R or graded algebra A. This function was

written by Paul Smith. It uses the Singular commutative algebra package to handle the
Lyndon-Hochschild-Serre spectral sequence.

Group Invariants

GroupCohomology(G,k):: Group, Int --> List

GroupCohomology(G,k,p):: Group, Int, Int --> List
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Inputs a group G and integer k ≥ 0. The group G should either be finite or else lie in one of a range
of classes of infinite groups (such as nilpotent, crystallographic, Artin etc.). The function returns the

list of abelian invariants of Hk(G,Z).
If a prime p is given as an optional third input variable then the function returns the list of abelian
invariants of Hk(G,Zp). In this case each abelian invariant will be equal to p and the length of the

list will be the dimension of the vector space Hk(G,Zp).

GroupHomology(G,k):: Group, Int --> List

GroupHomology(G,k,p):: Group, Int, Int --> List

Inputs a group G and integer k ≥ 0. The group G should either be finite or else lie in one of a range
of classes of infinite groups (such as nilpotent, crystallographic, Artin etc.). The function returns the

list of abelian invariants of Hk(G,Z).
If a prime p is given as an optional third input variable then the function returns the list of abelian

invariants of Hk(G,Zp). In this case each abelian invariant will be equal to p and the length of the list
will be the dimension of the vector space Hk(G,Zp).

PrimePartDerivedFunctor(G,R,A,k):: Group, FreeResolution, Function, Int --> List

Inputs a group G, an integer k ≥ 0, at least k+1 terms of a free ZP-resolution of Z for P a Sylow
p-subgroup of G. A function such as A=TENSORWITHINTEGERS is also entered. The abelian
invariants of the p-primary part Hk(G,A)(p) of the homology with coefficients in A is returned.

PoincareSeries(G,n):: Group, Int --> RationalFunction

PoincareSeries(G):: Group --> RationalFunction

PoincareSeries(R,n):: Group, Int --> RationalFunction

PoincareSeries(L,n):: Group, Int --> RationalFunction

Inputs a finite p-group G and a positive integer n. It returns a quotient of polynomials
f (x) = P(x)/Q(x) whose expansion has coefficient of xk equal to the rank of the vector space

Hk(G,Fp) for all k in the range 1≤ k ≤ n. (The second input variable can be omitted, in which case
the function tries to choose a ‘reasonable’ value for n. For 2-groups the function

POINCARESERIESLHS(G) can be used to produce an f (x) that is correct in all degrees.) In place of
the group G the function can also input (at least n terms of) a minimal mod-p resolution R for G.
Alternatively, the first input variable can be a list L of integers. In this case the coefficient of xk in

f (x) is equal to the (k+1)st term in the list.

PoincareSeries(G,n):: Group, Int --> RationalFunction

PoincareSeries(G):: Group --> RationalFunction

PoincareSeries(R,n):: Group, Int --> RationalFunction

PoincareSeries(L,n):: Group, Int --> RationalFunction
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Inputs a finite p-group G and a positive integer n. It returns a quotient of polynomials
f (x) = P(x)/Q(x) whose expansion has coefficient of xk equal to the rank of the vector space

Hk(G,Fp) for all k in the range 1≤ k ≤ n. (The second input variable can be omitted, in which case
the function tries to choose a ‘reasonable’ value for n. For 2-groups the function

POINCARESERIESLHS(G) can be used to produce an f (x) that is correct in all degrees.) In place of
the group G the function can also input (at least n terms of) a minimal mod-p resolution R for G.
Alternatively, the first input variable can be a list L of integers. In this case the coefficient of xk in

f (x) is equal to the (k+1)st term in the list.

RankHomologyPGroup(G,P,n):: Group, RationalFunction, Int --> Int

Inputs a p-group G, a rational function P representing the Poincar\’e series of the mod-p
cohomology of G and a positive integer n. It returns the minimum number of generators for the finite

abelian p-group HnG,Z).

Fp-modules

GroupAlgebraAsFpGModule:: Group --> FpGModule

Inputs a finite p-group G and returns the modular group algebra FpG in the form of an FpG-module.

Radical:: FpGModule --> FpGModule

Inputs an FpG-module and returns its radical.

RadicalSeries(M):: FpGModule --> List

RadicalSeries(R):: Resolution --> FilteredSparseChainComplex

Inputs an FpG-module M and returns its radical series as a list of FpG-modules.
Inputs a free FpG-resolution R and returns the filtered chain complex

· · ·Rad2(FpG)R≤ Rad1(FpG)R≤ R.



Chapter 3

Homological Group Theory

Cocycles

CcGroup(N,f):: GOuterGroup, StandardCocycle --> CcGroup

Inputs a G-outer group N with nonabelian cocycle describing some extension N � E � G together
with standard 2-cocycle f :G×G→ A where A = Z(N). It returns the extension group determined by

the cocycle f . The group is returned as a cocyclic group.
This function is part of the HAPcocyclic package of functions implemented by Robert F. Morse.

CocycleCondition(R,n):: FreeRes, Int --> IntMat

Inputs a free ZG-resolution R of Z and an integer n≥ 1. It returns an integer matrix M with the
following property. Let d be the ZG-rank of Rn. An integer vector f = [ f1, ..., fd ] then represents a
ZG-homomorphism Rn→ Zq which sends the ith generator of Rn to the integer fi in the trivial

ZG-module Zq = Z/qZ (where possibly q = 0). The homomorphism f is a cocycle if and only if
Mt f = 0 mod q.

StandardCocycle(R,f,n):: FreeRes, List, Int --> Function

StandardCocycle(R,f,n,q):: FreeRes, List, Int --> Function

Inputs a free ZG-resolution R (with contracting homotopy), a positive integer n and an integer vector
f representing an n-cocycle Rn→ Zq = Z/qZ where G acts trivially on Zq. It is assumed q = 0

unless a value for q is entered. The command returns a function F(g1, ...,gn) which is the standard
cocycle Gn→ Zq corresponding to f . At present the command is implemented only for n = 2 or 3.

G-Outer Groups

ActedGroup(M):: GOuterGroup --> Group

Inputs a G-outer group M corresponding to a homomorphism α:G→ Out(N) and returns the group
$N$.

ActingGroup(M):: GOuterGroup --> Group
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Inputs a G-outer group M corresponding to a homomorphism α:G→ Out(N) and returns the group
$G$.

Centre(M):: GOuterGroup --> GOuterGroup

Inputs a G-outer group M and returns its group-theoretic centre as a G-outer group.

GOuterGroup(E,N):: Group, Subgroup --> GOuterGroup

GOuterGroup():: Group, Subgroup --> GOuterGroup

Inputs a group E and normal subgroup N. It returns N as a G-outer group where G = E/N. A
nonabelian cocycle f :G×G→ N is attached as a component of the G-Outer group.

The function can be used without an argument. In this case an empty outer group C is returned. The
components must be set using SETACTINGGROUP(C,G), SETACTEDGROUP(C,N) and

SETOUTERACTION(C,ALPHA).

G-cocomplexes

CohomologyModule(C,n):: GCocomplex, Int --> GOuterGroup

Inputs a G-cocomplex C together with a non-negative integer n. It returns the cohomology Hn(C) as
a G-outer group. If C was constructed from a ZG-resolution R by homing to an abelian G-outer

group A then, for each x in H :=CohomologyModule(C,n), there is a function
f := H!.representativeCocycle(x) which is a standard n-cocycle corresponding to the cohomology

class x. (At present this is implemented only for n = 1,2,3.)

HomToGModule(R,A):: FreeRes, GOuterGroup --> GCocomplex

Inputs a ZG-resolution R and an abelian G-outer group A. It returns the G-cocomplex obtained by
applying HomZG(_,A). (At present this function does not handle equivariant chain maps.)



Chapter 4

Parallel Computation

Six Core Functions

ChildCreate():: Void --> Child process

ChildProcess("computer.address.ie"):: String --> Child process

ChildProcess(["-m", "100000M", "-T"]):: List --> Child process

ChildProcess("computer.ac.wales", ["-m", "100000M", "-T"]):: String, List --> Child process

Starts a GAP session as a child process and returns a stream to the child process. If no argument is
given then the child process is created on the local machine; otherwise the argument should be: (1)

the address of a remote computer for which ssh has been configured to require no password from the
user; (2) or a list of GAP command line options; (3) or the address of a computer followed by a list

of command line options.

ChildCreate():: Void --> Child process

ChildProcess("computer.address.ie"):: String --> Child process

ChildProcess(["-m", "100000M", "-T"]):: List --> Child process

ChildProcess("computer.ac.wales", ["-m", "100000M", "-T"]):: String, List --> Child process

Starts a GAP session as a child process and returns a stream to the child process. If no argument is
given then the child process is created on the local machine; otherwise the argument should be: (1)

the address of a remote computer for which ssh has been configured to require no password from the
user; (2) or a list of GAP command line options; (3) or the address of a computer followed by a list

of command line options.
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Chapter 5

Resolutions of the ground ring

::::::::::::::::::::::::
TietzeReducedResolution(R)

Inputs a ZG-resolution R and returns a ZG-resolution S which is obtained from R by applying
"Tietze like operations" in each dimension. The hope is that S has fewer free generators than R.

::::::::::::::::::::::::
ResolutionArithmeticGroup("PSL(4,Z)",n)

Inputs a positive integer n and one of the following strings:

"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" , "PSL(4,Z)" , "PSL(4,Z)_b" ,
"PSL(4,Z)_c" , "PSL(4,Z)_d" , "Sp(4,Z)"

or the string

"GL(2,O(-d))"

for d=1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43

or the string

"SL(2,O(-d))"

for d=2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43, 67, 163

or the string

"SL(2,O(-d))_a"

for d=2, 7, 11, 19.
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It returns n terms of a free ZG-resolution for the group G described by the string. Here O(-d)
denotes the ring of integers of Q(sqrt(-d)) and subscripts _a, _b , _c , _d denote alternative non-free
ZG-resolutions for a given group G.

Data for the first list of resolutions was provided provided by MATHIEU DUTOUR. Data for
GL(2,O(-d)) was provided by SEBASTIAN SCHOENENNBECK. Data for SL(2,O(-d)) was provided
bySEBASTIAN SCHOENNENBECK for d <= 26 and by ALEXANDER RAHM for d>26 and for the
alternative complexes.

::::::::::::::::::::::::
FreeGResolution(P,n)
FreeGResolution(P,n,p)

Inputs a non-free ZG-resolution P with finite stabilizer groups, and a positive integer n. It returns
a free ZG-resolution of length equal to the minimum of n and the length of P. If one requires only a
mod p resolution then the prime p can be entered as an optional third argument.

The free resolution is returned without a contracting homotopy.

::::::::::::::::::::::::
ResolutionGTree(P,n)

Inputs a non-free ZG-resolution P of dimension 1 (i.e. a G-tree) with finite stabilizer groups, and
a positive integer n. It returns a free ZG-resolution of length equal to n.

If P has a contracting homotopy then the free resolution is returned with a contracting homotopy.
This function was written by BUI ANH TUAN.

::::::::::::::::::::::::
ResolutionSL2Z(p,n)

Inputs positive integers m,n and returns n terms of a ZG-resolution for the group G =
SL(2,Z[1/m]) .

This function is joint work with BUI ANH TUAN.

::::::::::::::::::::::::
ResolutionAbelianGroup(L,n)
ResolutionAbelianGroup(G,n)

Inputs a list L := [m1,m2, ...,md ] of nonnegative integers, and a positive integer n. It returns n
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terms of a ZG-resolution for the abelian group G = ZL[1]+ZL[2]+ +ZL[d] .
If G is finite then the first argument can also be the abelian group G itself.

::::::::::::::::::::::::
ResolutionAlmostCrystalGroup(G,n)

Inputs a positive integer n and an almost crystallographic pcp group G. It returns n terms of a free
ZG-resolution. (A group is almost crystallographic if it is nilpotent-by-finite and has no non-trivial
finite normal subgroup. Such groups can be constructed using the ACLIB package.)

::::::::::::::::::::::::
ResolutionAlmostCrystalQuotient(G,n,c)
ResolutionAlmostCrystalQuotient(G,n,c,false)

An almost crystallographic group G is an extension of a finite group P by a nilpotent group T , and
has no non-trivial finite normal subgroup. We define the relative lower central series by setting T1 = T
and Ti+1 = [Ti,G].

This function inputs an almost crystallographic group G together with positive integers n and c. It
returns n terms of a free ZQ-resolution R for the group Q = G/Tc .

In addition to the usual components, the resolution R has the component
R.quotientHomomorphism which gives the quotient homomorphism G−→ Q.

If a fourth optional variable is set equal to "false" then the function omits to test whether Q is
finite and a "more canonical" resolution is constructed.

::::::::::::::::::::::::
ResolutionArtinGroup(D,n)

Inputs a Coxeter diagram D and an integer n > 1. It returns n terms of a free ZG-resolution R
where G is the Artin monoid associated to D. It is conjectured that R is also a free resolution for the
Artin group G. The conjecture is known to hold in certain cases.

G = R.group is infinite and returned as a finitely presented group. The list R.elts is a partial
listing of the elements of G which grows as R is used. Initially R.elts is empty and then, any time the
boundary of a resolution generator is called, R.elts is updated to include elements of G involved in the
boundary.

The contracting homotopy on R has not yet been implemented! Furthermore, the group G is
currently returned only as a finitely presented group (without any method for solving the word
problem).

::::::::::::::::::::::::

../www/SideLinks/About/aboutArtinGroups.html
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ResolutionAsphericalPresentation(F,R,n)

Inputs a free group F , a set R of words in F which constitute an aspherical presentation for a
group G, and a positive integer n. (Asphericity can be a difficult property to verify. The function
IsAspherical(F,R) could be of help.)

The function returns n terms of a free ZG-resolution R which has generators in dimensions < 3
only. No contracting homotopy on R will be returned.

::::::::::::::::::::::::
ResolutionBieberbachGroup( G )
ResolutionBieberbachGroup( G, v )

Inputs a torsion free crystallographic group G, also known as a Bieberbach group, represented
using AffineCrystGroupOnRight as in the GAP package Cryst. It also optionally inputs a choice of
vector v in the euclidean space Rn on which G acts freely. The function returns n+ 1 terms of the
free ZG-resolution of Z arising as the cellular chain complex of the tesselation of Rn by the Dirichlet-
Voronoi fundamental domain determined by v.

This function is part of the HAPcryst package written by MARC ROEDER and thus requires the
HAPcryst package to be loaded.

The function requires the use of Polymake software.

::::::::::::::::::::::::
ResolutionCoxeterGroup(D,n)

Inputs a Coxeter diagram D and an integer n > 1. It returns k terms of a free ZG-resolution R
where G is the Coxeter group associated to D. Here k is the maximum of n and the number of vertices
in the Coxeter diagram. At present the implementation is only for finite Coxeter groups and the group
G is returned as a permutation group. The contracting homotopy on R has not yet been implemented!

::::::::::::::::::::::::
ResolutionDirectProduct(R,S)
ResolutionDirectProduct(R,S,"internal")

Inputs a ZG-resolution R and ZH-resolution S. It outputs a ZD-resolution for the direct product
D = GxH.

If G and H lie in a common group K, and if they commute and have trivial intersection, then an
optional third variable "internal" can be used. This will force D to be the subgroup GH in K.

::::::::::::::::::::::::
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ResolutionExtension(g,R,S)
ResolutionExtension(g,R, S,"TestFiniteness")
ResolutionExtension(g,R,S,"NoTest",GmapE)

Inputs a surjective group homomorphism g : E −→G with kernel N. It also inputs a ZN-resolution
R and a ZG-resolution S. It returns a ZE-resolution. The groups E and G can be infinite.

If an optional fourth argument is set equal to "TestFiniteness" then the groups N and G will be
tested to see if they are finite. If they are finite then some speed saving routines will be invoked.

If the homomorphism g is such that the GAP function PreImagesElement(g,x) doesn’t work, then
a function GmapE() should be included as a fifth input. For any x in G this function should return an
element GmapE(x) in E which gets mapped onto x by g.

The contracting homotopy on the ZE-resolution has not yet been fully implemented for infinite
groups!

::::::::::::::::::::::::
ResolutionFiniteDirectProduct(R,S)
ResolutionFiniteDirectProduct(R,S, "internal")

Inputs a ZG-resolution R and ZH-resolution S where G and H are finite groups. It outputs a
ZD-resolution for the direct product D = G×H.

If G and H lie in a common group K, and if they commute and have trivial intersection, then an
optional third variable "internal" can be used. This will force D to be the subgroup GH in K.

::::::::::::::::::::::::
ResolutionFiniteExtension(gensE,gensG,R,n)
ResolutionFiniteExtension(gensE,gensG,R,n,true)
ResolutionFiniteExtension(gensE,gensG,R,n,false,S)

Inputs: a set gensE of generators for a finite group E; a set gensG equal to the image of gensE in
a quotient group G of E; a ZG-resolution R up to dimension at least n; a positive integer n. It uses the
TwistedTensorProduct() construction to return n terms of a ZE-resolution.

The function has an optional fourth argument which, when set equal to "true", invokes tietze
reductions in the construction of a resolution for the kernel of E −→ G.

If a ZN-resolution S is available, where N is the kernel of the quotient E −→ G, then this can be
incorporated into the computations using an optional fifth argument.

::::::::::::::::::::::::
ResolutionFiniteGroup(gens,n)
ResolutionFiniteGroup(gens,n,true)
ResolutionFiniteGroup(gens,n,false,p)
ResolutionFiniteGroup(gens,n,false,0,"extendible")
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Inputs a set gens of generators for a finite group G and a positive integer n. It outputs n terms of a
ZG-resolution.

The function has an optional third argument which, when set equal to true, invokes tietze reduc-
tions in the construction of the resolution.

The function has an optional fourth argument which, when set equal to a prime p, records the
fact that the resolution will only be used for mod p calculations. This could speed up subsequent
constructions.

The function has an optional fifth argument which, when set equal to "extendible", returns a
resolution whose length can be increased using the command R!.extend() .

::::::::::::::::::::::::
ResolutionFiniteSubgroup(R,K)
ResolutionFiniteSubgroup(R,gensG,gensK)

Inputs a ZG-resolution for a finite group G and a subgroup K of index |G : K|. It returns a free
ZK-resolution whose ZK-rank is |G : K| times the ZG-rank in each dimension.

Generating sets gensG, gensK for G and K can also be input to the function (though the method
does not depend on a choice of generators).

This ZK-resolution is not reduced. ie. it has more than one generator in dimension 0.

::::::::::::::::::::::::
ResolutionGraphOfGroups(D,n)
ResolutionGraphOfGroups(D,n,L)

Inputs a graph of groups D and a positive integer n. It returns n terms of a free ZG-resolution for
the fundamental group G of D.

An optional third argument L = [R1, . . . ,Rt ] can be used to list (in any order) free resolutions for
some/all of the vertex and edge groups in D. If for some vertex or edge group no resolution is listed
in L then the function ResolutionFiniteGroup() will be used to try to construct the resolution.

The ZG-resolution is usually not reduced. i.e. it has more than one generator in dimension 0.
The contracting homotopy on the ZG-resolution has not yet been implemented! Furthermore, the

group G is currently returned only as a finitely presented group (without any method for solving the
word problem).

::::::::::::::::::::::::
ResolutionNilpotentGroup(G,n)
ResolutionNilpotentGroup(G,n,"TestFiniteness")

Inputs a nilpotent group G and positive integer n. It returns n terms of a free ZG-resolution. The
resolution is computed using a divide-and-conquer technique involving the lower central series.
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This function can be applied to infinite groups G. For finite groups the function
ResolutionNormalSeries() probably gives better results.

If an optional third argument is set equal to "TestFiniteness" then the groups N and G will be
tested to see if they are finite. If they are finite then some speed saving routines will be invoked.

The contracting homotopy on the ZE-resolution has not yet been fully implemented for infinite
groups.

::::::::::::::::::::::::
ResolutionNormalSeries(L,n)
ResolutionNormalSeries(L,n,true)
ResolutionNormalSeries(L,n,false,p)

Inputs a positive integer n and a list L = [L1, ...,Lk] of normal subgroups Li of a finite group G
satisfying G = L1 > L2 >. . . >Lk. Alternatively, L = [gensL1, ...gensLk] can be a list of generating sets
for the Li (and these particular generators will be used in the construction of resolutions). It returns a
ZG-resolution by repeatedly using the function ResolutionFiniteExtension().

The function has an optional third argument which, if set equal to true, invokes tietze reductions
in the construction of resolutions.

The function has an optional fourth argument which, if set equal to p > 0, produces a resolution
which is only valid for mod p calculations.

::::::::::::::::::::::::
ResolutionPrimePowerGroup(P,n)
ResolutionPrimePowerGroup(G,n,p)

Inputs a p-group P and integer n>0. It uses GAP’s standard linear algebra functions over the
field F of p elements to construct a free FP-resolution for mod p calculations only. The resolution is
minimal - meaning that the number of generators of Rn equals the rank of Hn(P,F).

The function can also be used to obtain a free non-minimal FG-resolution of a small group G of
non-prime-power order. In this case the prime p must be entered as the third input variable. (In the
non-prime-power case the algorithm is naive and not very good.)

::::::::::::::::::::::::
ResolutionSmallFpGroup(G,n)
ResolutionSmallFpGroup(G,n,p)

Inputs a small finitely presented group G and an integer n>0. It returns n terms of a ZG-resolution
which, in dimensions 1 and 2, corresponds to the given presentation for G. The method returns no
contracting homotopy for the resolution.

The function has an optional fourth argument which, when set equal to a prime p, records the
fact that the resolution will only be used for mod p calculations. This could speed up subsequent
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constructions.
This function was written by Irina Kholodna.

::::::::::::::::::::::::
ResolutionSubgroup(R,K)

Inputs a ZG-resolution for an (infinite) group G and a subgroup K of finite index |G : K|. It returns
a free ZK-resolution whose ZK-rank is |G : K| times the ZG-rank in each dimension.

If G is finite then the function ResolutionFiniteSubgroup(R,G,K) will probably work
better. In particular, resolutions from this function probably won’t work with the function
EquivariantChainMap(). This ZK-resolution is not reduced. i.e. it has more than one generator in
dimension 0.

::::::::::::::::::::::::
ResolutionSubnormalSeries(L,n)

Inputs a positive integer n and a list L = [L1, . . . ,Lk] of subgroups Li of a finite group G = L1 such
that L1 > L2 . . . > Lk is a subnormal series in G (meaning that each Li+1 must be normal in Li). It
returns a ZG-resolution by repeatedly using the function ResolutionFiniteExtension().

If L is a series of normal subgroups in G then the function ResolutionNormalSeries(L,n) will
possibly work more efficiently.

::::::::::::::::::::::::
TwistedTensorProduct(R,S,EhomG,GmapE,NhomE,NEhomN,EltsE,Mult,InvE)

Inputs a ZG-resolution R, a ZN-resolution S, and other data relating to a short exact sequence
1 −→ N −→ E −→ G −→ 1. It uses a perturbation technique of CTC Wall to construct a ZE-
resolution F . Both G and N could be infinite. The "length" of F is equal to the minimum of the
"length"s of R and S. The resolution R needs no contracting homotopy if no such homotopy is requied
for F .

::::::::::::::::::::::::
ConjugatedResolution(R,x)

Inputs a ZG-resoluton R and an element x from some group containing G. It returns a ZGx-
resolution S where the group Gx is the conjugate of G by x. (The component S!.elts will be a
pseudolist rather than a list.)
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::::::::::::::::::::::::
RecalculateIncidenceNumbers(R)

Inputs a ZG-resoluton R which arises as the cellular chain complex of a regular CW-complex.
(Thus the boundary of any cell is a list of distinct cells.) It recalculates the incidence numbers for R.
If it is applied to a resolution that is not regular then a wrong answer may be returned.



Chapter 6

Resolutions of modules

::::::::::::::::::::::::
ResolutionFpGModule(M,n)

Inputs an F pG-module M and a positive integer n. It returns n terms of a minimal free FG-
resolution of the module M (where G is a finite group and F the field of p elements).
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Chapter 7

Induced equivariant chain maps

::::::::::::::::::::::::
EquivariantChainMap(R,S,f)

Inputs a ZG-resolution R, a ZG′-resolution S, and a group homomorphism f : G−→G′. It outputs
a component object M with the following components.

M!.source is the resolution R.

M!.target is the resolution S.

M!.mapping(w,n) is a function which gives the image in Sn, under a chain map induced by f ,
of a word w in Rn. (Here Rn and Sn are the n-th modules in the resolutions R and S.)

F!.properties is a list of pairs such as ["type", "equivariantChainMap"].

The resolution S must have a contracting homotopy.
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Chapter 8

Functors

::::::::::::::::::::::::
ExtendScalars(R,G,EltsG)

Inputs a ZH-resolution R, a group G containing H as a subgroup, and a list EltsG of elements of
G. It returns the free ZG-resolution (R⊗ZH ZG). The returned resolution S has S!.elts:=EltsG. This is
a resolution of the ZG-module (Z⊗ZH ZG). (Here ⊗ZH means tensor over ZH.)

::::::::::::::::::::::::
HomToIntegers(X)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R −→ S). It returns
the cochain complex or cochain map obtained by applying HomZG(,Z) where Z is the trivial module
of integers (characteristic 0).

::::::::::::::::::::::::
HomToIntegersModP(R)

Inputs a ZG-resolution R and returns the cochain complex obtained by applying HomZG(,Zp)
where Zp is the trivial module of integers mod p. (At present this functor does not handle equivariant
chain maps.)

::::::::::::::::::::::::
HomToIntegralModule(R,f)

Inputs a ZG-resolution R and a group homomorphism f : G −→ GLn(Z) to the group of n×n
invertible integer matrices. Here Z must have characteristic 0. It returns the cochain complex obtained
by applying HomZG(,A) where A is the ZG-module Zn with G action via f . (At present this function
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does not handle equivariant chain maps.)

::::::::::::::::::::::::
TensorWithIntegralModule(R,f)

Inputs a ZG-resolution R and a group homomorphism f : G −→ GLn(Z) to the group of n×n
invertible integer matrices. Here Z must have characteristic 0. It returns the chain complex obtained
by tensoring over ZG with the ZG-module A = Zn with G action via f . (At present this function does
not handle equivariant chain maps.)

::::::::::::::::::::::::
HomToGModule(R,A)

Inputs a ZG-resolution R and an abelian G-outer group A. It returns the G-cocomplex obtained
by applying HomZG(,A). (At present this function does not handle equivariant chain maps.)

::::::::::::::::::::::::
InduceScalars(R,hom)

Inputs a ZQ-resolution R and a surjective group homomorphism hom : G→ Q. It returns the
unduced non-free ZG-resolution.

::::::::::::::::::::::::
LowerCentralSeriesLieAlgebra(G)
LowerCentralSeriesLieAlgebra(f)

Inputs a pcp group G. If each quotient Gc/Gc+1 of the lower central series is free abelian or
p-elementary abelian (for fixed prime p) then a Lie algebra L(G) is returned. The abelian group
underlying L(G) is the direct sum of the quotients Gc/Gc+1 . The Lie bracket on L(G) is induced by
the commutator in G. (Here G1 = G, Gc+1 = [Gc,G] .)

The function can also be applied to a group homomorphism f : G−→G′ . In this case the induced
homomorphism of Lie algebras L( f ) : L(G)−→ L(G′) is returned.

If the quotients of the lower central series are not all free or p-elementary abelian then the function
returns fail.

This function was written by Pablo Fernandez Ascariz

::::::::::::::::::::::::
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TensorWithIntegers(X)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R−→ S). It returns the
chain complex or chain map obtained by tensoring with the trivial module of integers (characteristic
0).

::::::::::::::::::::::::
FilteredTensorWithIntegers(R)

Inputs a ZG-resolution R for which "filteredDimension" lies in NamesOfComponents(R). (Such
a resolution can be produced using TwisterTensorProduct(), ResolutionNormalSubgroups() or
FreeGResolution().) It returns the filtered chain complex obtained by tensoring with the trivial
module of integers (characteristic 0).

::::::::::::::::::::::::
TensorWithTwistedIntegers(X,rho)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R−→ S). It also inputs
a function rho:G→ Z where the action of g ∈ G on Z is such that g.1 = rho(g). It returns the chain
complex or chain map obtained by tensoring with the (twisted) module of integers (characteristic 0).

::::::::::::::::::::::::
TensorWithIntegersModP(X,p)

Inputs either a ZG-resolution X = R, or a characteristics 0 chain complex, or an equivariant chain
map X = (F : R −→ S), or a chain map between characteristic 0 chain complexes, together with a
prime p. It returns the chain complex or chain map obtained by tensoring with the trivial module of
integers modulo p.

::::::::::::::::::::::::
TensorWithTwistedIntegersModP(X,p,rho)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R−→ S), and a prime
p. It also inputs a function rho:G→ Z where the action of g ∈ G on Z is such that g.1 = rho(g).
It returns the chain complex or chain map obtained by tensoring with the trivial module of integers
modulo p.
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::::::::::::::::::::::::
TensorWithRationals(R)

Inputs a ZG-resolution R and returns the chain complex obtained by tensoring with the trivial
module of rational numbers.



Chapter 9

Chain complexes

::::::::::::::::::::::::
ChainComplex(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns the (often
very large) cellular chain complex of T .

::::::::::::::::::::::::
ChainComplexOfPair(T,S)

Inputs a pure cubical complex or cubical complex T and contractible subcomplex S. It returns the
quotient C(T )/C(S) of cellular chain complexes.

::::::::::::::::::::::::
ChevalleyEilenbergComplex(X,n)

Inputs either a Lie algebra X =A (over the ring of integers Z or over a field K) or a homomorphism
of Lie algebras X = ( f : A−→B), together with a positive integer n. It returns either the first n terms of
the Chevalley-Eilenberg chain complex C(A), or the induced map of Chevalley-Eilenberg complexes
C( f ) : C(A)−→C(B).

(The homology of the Chevalley-Eilenberg complex C(A) is by definition the homology of the Lie
algebra A with trivial coefficients in Z or K).

This function was written by PABLO FERNANDEZ ASCARIZ

::::::::::::::::::::::::
LeibnizComplex(X,n)

Inputs either a Lie or Leibniz algebra X = A (over the ring of integers Z or over a field K) or

55



56

a homomorphism of Lie or Leibniz algebras X = ( f : A −→ B), together with a positive integer n.
It returns either the first n terms of the Leibniz chain complex C(A), or the induced map of Leibniz
complexes C( f ) : C(A)−→C(B).

(The Leibniz complex C(A) was defined by J.-L.Loday. Its homology is by definition the Leibniz
homology of the algebra A).

This function was written by PABLO FERNANDEZ ASCARIZ

::::::::::::::::::::::::
SuspendedChainComplex(C)

Inputs a chain complex C and returns the chain complex S defined by applying the degree shift
Sn =Cn−1 to chain groups and boundary homomorphisms.

::::::::::::::::::::::::
ReducedSuspendedChainComplex(C)

Inputs a chain complex C and returns the chain complex S defined by applying the degree shift
Sn = Cn−1 to chain groups and boundary homomorphisms for all n > 0. The chain complex S has
trivial homology in degree 0 and S0 = Z.

::::::::::::::::::::::::
CoreducedChainComplex(C)
CoreducedChainComplex(C,2)

Inputs a chain complex C and returns a quasi-isomorphic chain complex D. In many cases the
complex D should be smaller than C. If an optional second input argument is set equal to 2 then an
alternative method is used for reducing the size of the chain complex.

::::::::::::::::::::::::
TensorProductOfChainComplexes(C,D)

Inputs two chain complexes C and D of the same characteristic and returns their tensor product as
a chain complex.

This function was written by LE VAN LUYEN.

::::::::::::::::::::::::
LefschetzNumber(F)
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Inputs a chain map F :C→C with common source and target. It returns the Lefschetz number of
the map (that is, the alternating sum of the traces of the homology maps in each degree).



Chapter 10

Sparse Chain complexes

::::::::::::::::::::::::
SparseMat(A)

Inputs a matrix A and returns the matrix in sparse format.

::::::::::::::::::::::::
TransposeOfSparseMat(A)

Inputs a sparse matrix A and returns its transpose sparse format.

::::::::::::::::::::::::
ReverseSparseMat(A)

Inputs a sparse matrix A and modifies it by reversing the order of the columns. This function
modifies A and returns no value.

::::::::::::::::::::::::
SparseRowMult(A,i,k)

Multiplies the i-th row of a sparse matrix A by k. The sparse matrix A is modified but nothing is
returned.

::::::::::::::::::::::::
SparseRowInterchange(A,i,k)
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Interchanges the i-th and j-th rows of a sparse matrix A by k. The sparse matrix A is modified but
nothing is returned.

::::::::::::::::::::::::
SparseRowAdd(A,i,j,k)

Adds k times the j-th row to the i-th row of a sparse matrix A. The sparse matrix A is modified but
nothing is returned.

::::::::::::::::::::::::
SparseSemiEchelon(A)

Converts a sparse matrix A to semi-echelon form (which means echelon form up to a permutation
of rows). The sparse matrix A is modified but nothing is returned.

::::::::::::::::::::::::
RankMatDestructive(A)

Returns the rank of a sparse matrix A. The sparse matrix A is modified during the calculation.

::::::::::::::::::::::::
RankMat(A)

Returns the rank of a sparse matrix A.

::::::::::::::::::::::::
SparseChainComplex(Y)

Inputs a regular CW-complex Y and returns a sparse chain complex which is chain homotopy
equivalent to the cellular chain complex of Y . The function uses discrete vector fields to calculate a
smallish chain complex.

::::::::::::::::::::::::
SparseChainComplexOfRegularCWComplex(Y)
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Inputs a regular CW-complex Y and returns its cellular chain complex as a sparse chain complex.
The function SparseChainComplex(Y) will usually return a smaller chain complex.

::::::::::::::::::::::::
SparseBoundaryMatrix(C,n)

Inputs a sparse chain complex C and integer n. Returns the n-th boundary matrix of the chain
complex in sparse format.

::::::::::::::::::::::::
Bettinumbers(C,n)

Inputs a sparse chain complex C and integer n. Returns the n-th Netti number of the chain
complex.



Chapter 11

Homology and cohomology groups

::::::::::::::::::::::::
Cohomology(X,n)

Inputs either a cochain complex X =C (or G-cocomplex C) or a cochain map X = (C −→ D) in
characteristic p together with a non-negative intereg n.

If X = C and p = 0 then the torsion coefficients of Hn(C) are retuned. If X = C and p is
prime then the dimension of Hn(C) are retuned.

If X = (C −→ D) then the induced homomorphism Hn(C) −→ Hn(D) is returned as a homo-
morphism of finitely presented groups.

A G-cocomplex C can also be input. The cohomology groups of such a complex may not be
abelian. WARNING: in this case Cohomology(C,n) returns the abelian invariants of the n-th
cohomology group of C.

::::::::::::::::::::::::
CohomologyModule(C,n)

Inputs a G-cocomplex C together with a non-negative integer n. It returns the cohomology Hn(C)
as a G-outer group. If C was constructed from a resolution R by homing to an abelian G-outer group A
then, for each x in H:=CohomologyModule(C,n), there is a function f:=H!.representativeCocycle(x)
which is a standard n-cocycle corresponding to the cohomology class x. (At present this works only
for n=1,2,3.)

::::::::::::::::::::::::
CohomologyPrimePart(C,n,p)

Inputs a cochain complex C in characteristic 0, a positive integer n, and a prime p. It returns a
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list of those torsion coefficients of Hn(C) that are positive powers of p. The function uses the EDIM
package by Frank Luebeck.

::::::::::::::::::::::::
GroupCohomology(X,n)
GroupCohomology(X,n,p)

Inputs a positive integer n and either

a finite group X = G

or a nilpotent Pcp-group X = G

or a space group X = G

or a list X = D representing a graph of groups

or a pair X = [”Artin”,D] where D is a Coxeter diagram representing an infinite Artin group
G.

or a pair X = [”Coxeter”,D] where D is a Coxeter diagram representing a finite Coxeter group
G.

It returns the torsion coefficients of the integral cohomology Hn(G,Z).
There is an optional third argument which, when set equal to a prime p, causes the function to

return the the mod p cohomology Hn(G,Zp) as a list of length equal to its rank.
This function is a composite of more basic functions, and makes choices for a number of

parameters. For a particular group you would almost certainly be better using the more basic
functions and making the choices yourself!

::::::::::::::::::::::::
GroupHomology(X,n)
GroupHomology(X,n,p)

Inputs a positive integer n and either

a finite group X = G

or a nilpotent Pcp-group X = G

or a space group X = G

or a list X = D representing a graph of groups
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or a pair X = [”Artin”,D] where D is a Coxeter diagram representing an infinite Artin group
G.

or a pair X = [”Coxeter”,D] where D is a Coxeter diagram representing a finite Coxeter group
G.

It returns the torsion coefficients of the integral homology Hn(G,Z).
There is an optional third argument which, when set equal to a prime p, causes the function to

return the mod p homology Hn(G,Zp) as a list of lenth equal to its rank.
This function is a composite of more basic functions, and makes choices for a number of

parameters. For a particular group you would almost certainly be better using the more basic
functions and making the choices yourself!

::::::::::::::::::::::::
PersistentHomologyOfQuotientGroupSeries(S,n)
PersistentHomologyOfQuotientGroupSeries(S,n,p,Resolution_Algorithm)

Inputs a positive integer n and a decreasing chain S = [S1,S2, ...,Sk] of normal subgroups in a finite
p-group G = S1. It returns the bar code of the persistent mod p homology in degree n of the sequence
of quotient homomorphisms G→G/Sk→G/Sk−1→ ...→G/S2. The bar code is returned as a matrix
containing the dimensions of the images of the induced homology maps.

If one sets p = 0 then the integral persitent homology bar code is returned. This is a matrix whose
entries are pairs of the lists: the list of abelian invariants of the images of the induced homology maps
and the cokernels of the induced homology maps. (The matrix probably does not uniquely determine
the induced homology maps.)

Non prime-power (and possibly infinite) groups G can also be handled; in this case the prime
must be entered as a third argument, and the resolution algorithm (e.g. ResolutionNilpotentGroup)
can be entered as a fourth argument. (The default algorithm is ResolutionFiniteGroup, so this must
be changed for infinite groups.)

::::::::::::::::::::::::
PersistentCohomologyOfQuotientGroupSeries(S,n)
PersistentCohomologyOfQuotientGroupSeries(S,n,p,Resolution_Algorithm)

Inputs a positive integer n and a decreasing chain S = [S1,S2, ...,Sk] of normal subgroups in a
finite p-group G = S1. It returns the bar code of the persistent mod p cohomology in degree n of the
sequence of quotient homomorphisms G→ G/Sk→ G/Sk−1→ ...→ G/S2. The bar code is returned
as a matrix containing the dimensions of the images of the induced homology maps.

If one sets p = 0 then the integral persitent cohomology bar code is returned. This is a matrix
whose entries are pairs of the lists: the list of abelian invariants of the images of the induced coho-
mology maps and the cokernels of the induced cohomology maps. (The matrix probably does not
uniquely determine the induced homology maps.)
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Non prime-power (and possibly infinite) groups G can also be handled; in this case the prime
must be entered as a third argument, and the resolution algorithm (e.g. ResolutionNilpotentGroup)
can be entered as a fourth argument. (The default algorithm is ResolutionFiniteGroup, so this must be
changed for infinite groups.)

(The implementation is possibly a little less efficient than that of the corresponding persistent
homology function.)

::::::::::::::::::::::::
UniversalBarCode("UpperCentralSeries",n,d)
UniversalBarCode("UpperCentralSeries",n,d,k)

Inputs integers n,d that identify a prime power group G=SmallGroup(n,d), together with one
of the strings "UpperCentralSeries", LowerCentralSeries", "DerivedSeries", "UpperPCentralSeries",
"LowerPCentralSeries". The function returns a matrix of rational functions; the coefficients of xk in
their expansions yield the persistence matrix for the degree k homology with trivial mod p coefficients
associated to the quotients of G by the terms of the given series.

If the additional integer argument k is supplied then the function returns the degree k homology
persistence matrix.

::::::::::::::::::::::::
PersistentHomologyOfSubGroupSeries(S,n)
PersistentHomologyOfSubGroupSeries(S,n,p,Resolution_Algorithm)

Inputs a positive integer n and a decreasing chain S = [S1,S2, ...,Sk] of subgroups in a finite p-
group G = S1. It returns the bar code of the persistent mod p homology in degree n of the sequence
of inclusion homomorphisms Sk→ Sk−1→ ...→ S1 = G. The bar code is returned as a binary matrix.

Non prime-power (and possibly infinite) groups G can also be handled; in this case the prime
must be entered as a third argument, and the resolution algorithm (e.g. ResolutionNilpotentGroup)
must be entered as a fourth argument.

::::::::::::::::::::::::
PersistentHomologyOfFilteredChainComplex(C,n,p)

Inputs a filtered chain complex C (of characteristic 0 or p) together with a positive integer n
and prime p. It returns the bar code of the persistent mod p homology in degree n of the filtered
chain complex C. (This function needs a more efficient implementation. Its fine as it stands for
investigation in group homology, but not sufficiently efficient for the homology of large complexes
arising in applied topology.)
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PersistentHomologyOfCommutativeDiagramOfPGroups(D,n)

Inputs a commutative diagram D of finite p-groups and a positive integer n. It returns a list
containing, for each homomorphism in the nerve of D, a triple [k, l,m] where k is the dimension of
the source of the induced mod p homology map in degree n, l is the dimension of the image, and m is
the dimension of the cokernel.

::::::::::::::::::::::::
PersistentHomologyOfFilteredPureCubicalComplex(M,n)

Inputs a filtered pure cubical complex M and a non-negative integer n. It returns the degree n
persistent homology of M with rational coefficients.

::::::::::::::::::::::::
PersistentHomologyOfPureCubicalComplex(L,n,p)

Inputs a positive integer n, a prime p and an increasing chain L = [L1,L2, ...,Lk] of subcomplexes
in a pure cubical complex Lk. It returns the bar code of the persistent mod p homology in degree n
of the sequence of inclusion maps. The bar code is returned as a matrix. (This function is extremely
inefficient and it is better to use PersistentHomologyOFilteredfPureCubicalComplex.

::::::::::::::::::::::::
ZZPersistentHomologyOfPureCubicalComplex(L,n,p)

Inputs a positive integer n, a prime p and any sequence L = [L1,L2, ...,Lk] of subcomplexes of
some pure cubical complex. It returns the bar code of the zig-zag persistent mod p homology in
degree n of the sequence of maps L1 → L1 ∪L2 ← L2 → L2 ∪L3 ← L4 → ...← Lk. The bar code is
returned as a matrix.

::::::::::::::::::::::::
RipsHomology(G,n)
RipsHomology(G,n,p)

Inputs a graph G, a non-negative integer n (and optionally a prime number p). It returns the
integral homology (or mod p homology) in degree n of the Rips complex of G.

::::::::::::::::::::::::
BarCode(P)

Inputs an integer persistence matrix P and returns the same information in the form of a binary
matrix (corresponding to the usual bar code).
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::::::::::::::::::::::::
::::::::::::::::::::::::
BarCodeDisplay(P)
BarCodeDisplay(P,"mozilla")
BarCodeCompactDisplay(P)
BarCodeCompactDisplay(P,"mozilla")

Inputs an integer persistence matrix P, and an optional string specifying a viewer/browser. It
displays a picture of the bar code (using GraphViz software). The compact display is better for large
bar codes.

::::::::::::::::::::::::
Homology(X,n)

Inputs either a chain complex X =C or a chain map X = (C −→ D).

If X =C then the torsion coefficients of Hn(C) are retuned.

If X = (C −→ D) then the induced homomorphism Hn(C) −→ Hn(D) is returned as a homo-
morphism of finitely presented groups.

A G-complex C can also be input. The homology groups of such a complex may not be
abelian. WARNING: in this case Homology(C,n) returns the abelian invariants of the n-th homology
group of C.

::::::::::::::::::::::::
HomologyPb(C,n)

This is a back-up function which might work in some instances where Homology(C,n) fails. It is
most useful for chain complexes whose boundary homomorphisms are sparse.

It inputs a chain complex C in characteristic 0 and returns the torsion coefficients of Hn(C) .
There is a small probability that an incorrect answer could be returned. The computation relies on
probabilistic Smith Normal Form algorithms implemented in the Simplicial Homology GAP package.
This package therefore needs to be loaded. The computation is stored as a component of C so, when
called a second time for a given C and n, the calculation is recalled without rerunning the algorithm.

The choice of probabalistic algorithm can be changed using the command
SetHomologyAlgorithm(HomologyAlgorithm[i]);
where i = 1,2,3 or 4. The upper limit for the probability of an incorrect answer can be set to any

rational number 0<e<= 1 using the following command.
SetUncertaintyTolerence(e);
See the Simplicial Homology package manual for further details.
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::::::::::::::::::::::::
HomologyVectorSpace(X,n)

Inputs either a chain complex X =C or a chain map X = (C −→ D) in prime characteristic.

If X =C then Hn(C) is retuned as a vector space.

If X = (C −→ D) then the induced homomorphism Hn(C) −→ Hn(D) is returned as a homo-
morphism of vector spaces.

::::::::::::::::::::::::
HomologyPrimePart(C,n,p)

Inputs a chain complex C in characteristic 0, a positive integer n, and a prime p. It returns a list of
those torsion coefficients of Hn(C) that are positive powers of p. The function uses the EDIM GAP
package by Frank Luebeck.

::::::::::::::::::::::::
LeibnizAlgebraHomology(A,n)

Inputs a Lie or Leibniz algebra X = A (over the ring of integers Z or over a field K), together with
a positive integer n. It returns the n-dimensional Leibniz homology of A.

::::::::::::::::::::::::
LieAlgebraHomology(A,n)

Inputs a Lie algebra A (over the integers or a field) and a positive integer n. It returns the
homology Hn(A,k) where k denotes the ground ring.

::::::::::::::::::::::::
PrimePartDerivedFunctor(G,R,F,n)

Inputs a finite group G, a positive integer n, at least n+1 terms of a ZP-resolution for a Sylow sub-
group P<G and a "mathematically suitable" covariant additive functor F such as TensorWithIntegers
. It returns the abelian invariants of the p-component of the homology Hn(F(R)) .
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Warning: All calculations are assumed to be in characteristic 0. The function should not be used
if the coefficient module is over the field of p elements.

"Mathematically suitable" means that the Cartan-Eilenberg double coset formula must hold.

::::::::::::::::::::::::
RankHomologyPGroup(G,n)
RankHomologyPGroup(R,n)
RankHomologyPGroup(G,n,"empirical")

Inputs a (smallish) p-group G, or n terms of a minimal ZpG-resolution R of Zp , together with
a positive integer n. It returns the minimal number of generators of the integral homology group
Hn(G,Z).

If an option third string argument "empirical" is included then an empirical algorithm will be
used. This is one which always seems to yield the right answer but which we can’t prove yields the
correct answer.

::::::::::::::::::::::::
RankPrimeHomology(G,n)

Inputs a (smallish) p-group G together with a positive integer n. It returns a function dim(k)
which gives the rank of the vector space Hk(G,Zp) for all 0 <= k <= n.
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Poincare series

EfficientNormalSubgroups(G)
EfficientNormalSubgroups(G,k)

Inputs a prime-power group G and, optionally, a positive integer k. The default is k = 4. The
function returns a list of normal subgroups N in G such that the Poincare series for G equals the
Poincare series for the direct product (N× (G/N)) up to degree k.

::::::::::::::::::::::::
ExpansionOfRationalFunction(f,n)

Inputs a positive integer n and a rational function f (x) = p(x)/q(x) where the degree of the poly-
nomial p(x) is less than that of q(x). It returns a list [a0,a1,a2,a3, . . . ,an] of the first n+1 coefficients
of the infinite expansion

f (x) = a0 +a1x+a2x2 +a3x3 + . . . .

::::::::::::::::::::::::
PoincareSeries(G,n)
PoincareSeries(R,n)
PoincareSeries(L,n)
PoincareSeries(G)

Inputs a finite p-group G and a positive integer n. It returns a quotient of polynomials f (x) =
P(x)/Q(x) whose coefficient of xk equals the rank of the vector space Hk(G,Zp) for all k in the range
k = 1 to k = n. (The second input variable can be omitted, in which case the function tries to choose
a "reasonable" value for n. For 2-groups the function PoincareSeriesLHS(G) can be used to produce
an f (x) that is correct in all degrees.)

In place of the group G the function can also input (at least n terms of) a minimal mod p resolution
R for G.

Alternatively, the first input variable can be a list L of integers. In this case the coefficient of xk in
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f (x) is equal to the (k+1)st term in the list.

::::::::::::::::::::::::
PoincareSeriesPrimePart(G,p,n)

Inputs a finite group G, a prime p, and a positive integer n. It returns a quotient of polynomials
f (x) = P(x)/Q(x) whose coefficient of xk equals the rank of the vector space Hk(G,Zp) for all k in
the range k = 1 to k = n.

The efficiency of this function needs to be improved.

PoincareSeriesLHS(G)

Inputs a finite 2-group G and returns a quotient of polynomials f (x) = P(x)/Q(x) whose coeffi-
cient of xk equals the rank of the vector space Hk(G,Z2) for all k.

This function was written by PAUL SMITH. It use the Singular system for commutative algebra.

::::::::::::::::::::::::
Prank(G)

Inputs a p-group G and returns the rank of the largest elementary abelian subgroup.
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Cohomology ring structure

::::::::::::::::::::::::
IntegralCupProduct(R,u,v,p,q)
IntegralCupProduct(R,u,v,p,q,P,Q,N)

(Various functions used to construct the cup product are also available.)
Inputs a ZG-resolution R, a vector u representing an element in H p(G,Z), a vector v representing

an element in Hq(G,Z) and the two integers p,q >0. It returns a vector w representing the cup
product u · v in H p+q(G,Z). This product is associative and u · v = (−1)pqv ·u . It provides H∗(G,Z)
with the structure of an anti-commutative graded ring. This function implements the cup product for
characteristic 0 only.

The resolution R needs a contracting homotopy.
To save the function from having to calculate the abelian groups Hn(G,Z) additional input

variables can be used in the form IntegralCupProduct(R,u,v, p,q,P,Q,N) , where

P is the output of the command CRCocyclesAndCoboundaries(R, p, true)

Q is the output of the command CRCocyclesAndCoboundaries(R,q, true)

N is the output of the command CRCocyclesAndCoboundaries(R, p+q, true) .

::::::::::::::::::::::::
IntegralRingGenerators(R,n)

Inputs at least n+1 terms of a ZG-resolution and integer n> 0. It returns a minimal list of coho-
mology classes in Hn(G,Z) which, together with all cup products of lower degree classes, generate
the group Hn(G,Z) .

(Let ai be the i-th canonical generator of the d-generator abelian group Hn(G,Z). The cohomol-
ogy class n1a1 + ...+ndad is represented by the integer vector u = (n1, ...,nd). )
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::::::::::::::::::::::::
ModPCohomologyGenerators(G,n)
ModPCohomologyGenerators(R)

Inputs either a p-group G and positive integer n, or else n terms of a minimal ZpG-resolution R of
Zp. It returns a pair whose first entry is a minimal set of homogeneous generators for the cohomology
ring A = H∗(G,Zp) modulo all elements in degree greater than n. The second entry of the pair is a
function deg which, when applied to a minimal generator, yields its degree.

WARNING: the following rule must be applied when multiplying generators xi together. Only
products of the form x1 ∗ (x2 ∗ (x3 ∗ (x4 ∗ ...))) with deg(xi) ≤ deg(xi+1) should be computed (since
the xi belong to a structure constant algebra with only a partially defined structure constants table).

::::::::::::::::::::::::
ModPCohomologyRing(G,n)
ModPCohomologyRing(G,n,level)
ModPCohomologyRing(R)
ModPCohomologyRing(R,level)

Inputs either a p-group G and positive integer n, or else n terms of a minimal ZpG-resolution R of
Zp. It returns the cohomology ring A = H∗(G,Zp) modulo all elements in degree greater than n.

The ring is returned as a structure constant algebra A.
The ring A is graded. It has a component A!.degree(x) which is a function returning the degree of

each (homogeneous) element x in GeneratorsO f Algebra(A).
An optional input variable "level" can be set to one of the strings "medium" or "high". These

settings determine parameters in the algorithm. The default setting is "medium".
When "level" is set to "high" the ring A is returned with a component A!.niceBasis. This com-

ponent is a pair [Coe f f ,Bas]. Here Bas is a list of integer lists; a "nice" basis for the vector space
A can be constructed using the command List(Bas,x− > Product(List(x, i− > Basis(A)[i])). The
coefficients of the canonical basis element Basis(A)[i] are stored as Coe f f [i].

If the ring A is computed using the setting "level"="medium" then the component A!.niceBasis
can be added to A using the command A := ModPCohomologyRingpart2(A).

::::::::::::::::::::::::
ModPRingGenerators(A)

Inputs a mod p cohomology ring A (created using the preceeding function). It returns a minimal
generating set for the ring A. Each generator is homogeneous.

Mod2CohomologyRingPresentation(G)
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Mod2CohomologyRingPresentation(G,n)
Mod2CohomologyRingPresentation(A)
Mod2CohomologyRingPresentation(R)

When applied to a finite 2-group G this function returns a presentation for the mod 2 cohomology
ring H∗(G,Z2). The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation
is correct.

When the function is applied to a 2-group G and positive integer n the function first constructs
n terms of a free Z2G-resolution R, then constructs the finite-dimensional graded algebra A = H(∗ ≤
n)(G,Z2), and finally uses A to approximate a presentation for H∗(G,Z2). For "sufficiently large" the
approximation will be a correct presentation for H∗(G,Z2).

Alternatively, the function can be applied directly to either the resolution R or graded algebra A.
This function was written by PAUL SMITH. It uses the Singular commutative algebra package to

handle the Lyndon-Hochschild-Serre spectral sequence.



Chapter 14

Cohomology rings of p-groups (mainly
p = 2)

The functions on this page were written by PAUL SMITH. (They are included in HAP but they are
also independently included in Paul Smiths HAPprime package.)

::::::::::::::::::::::::
Mod2CohomologyRingPresentation(G)
Mod2CohomologyRingPresentation(G,n)
Mod2CohomologyRingPresentation(A)
Mod2CohomologyRingPresentation(R)

When applied to a finite 2-group G this function returns a presentation for the mod 2 cohomology
ring H∗(G,Z2). The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation
is correct.

When the function is applied to a 2-group G and positive integer n the function first constructs
n terms of a free Z2G-resolution R, then constructs the finite-dimensional graded algebra A = H(∗ ≤
n)(G,Z2), and finally uses A to approximate a presentation for H∗(G,Z2). For "sufficiently large" the
approximation will be a correct presentation for H∗(G,Z2).

Alternatively, the function can be applied directly to either the resolution R or graded algebra A.
This function was written by PAUL SMITH. It uses the Singular commutative algebra package to

handle the Lyndon-Hochschild-Serre spectral sequence.

::::::::::::::::::::::::
PoincareSeriesLHS(G)

Inputs a finite 2-group G and returns a quotient of polynomials f (x) = P(x)/Q(x) whose coeffi-
cient of xk equals the rank of the vector space Hk(G,Z2) for all k.

This function was written by PAUL SMITH. It use the Singular system for commutative algebra.
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Chapter 15

Commutator and nonabelian tensor
computations

::::::::::::::::::::::::
BaerInvariant(G,c)

Inputs a nilpotent group G and integer c>0. It returns the Baer invariant M(c)(G) defined as
follows. For an arbitrary group G let L∗c+1(G) be the (c+1)-st term of the upper central series of the
group U =F/[[[R,F ],F ]...] (with c copies of F in the denominator) where F/R is any free presentation
of G. This is an invariant of G and we define M(c)(G) to be the kernel of the canonical homomorphism
M(c)(G)−→ G. For c = 1 the Baer invariant M(1)(G) is isomorphic to the second integral homology
H2(G,Z).

This function requires the NQ package.

::::::::::::::::::::::::
BogomolovMultiplier(G)

BogomolovMultiplier(G, "standard")
BogomolovMultiplier(G, "homology")
BogomolovMultiplier(G, "tensor")

Inputs a finite group G and returns the quotient H2(G,Z)/K(G) of the second integral homol-
ogy of G where K(G) is the subgroup of H2(G,Z) generated by the images of all homomorphisms
H2(A,Z)→ H2(G,Z) induced from abelian subgroups of G.

Three slight variants of the implementation are available. The defaults "standard" implementation
seems to work best on average. But for some groups the "homology" implementation or the "tensor"
implementation will be faster. The variants are called by including the appropriate string as the
second argument.

::::::::::::::::::::::::
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Bogomology(G,n)

Inputs a finite group G and positive integer n, and returns the quotient Hn(G,Z)/K(G) of the
degree n integral homology of G where K(G) is the subgroup of Hn(G,Z) generated by the images of
all homomorphisms Hn(A,Z)→ Hn(G,Z) induced from abelian subgroups of G.

::::::::::::::::::::::::
Coclass(G)

Inputs a group G of prime-power order pn and nilpotency class c say. It returns the integer
r = n− c .

::::::::::::::::::::::::
EpiCentre(G,N)
EpiCentre(G)

Inputs a finite group G and normal subgroup N and returns a subgroup Z∗(G,N) of the centre of N.
The group Z∗(G,N) is trivial if and only if there is a crossed module d : E −→ G with N = Image(d)
and with Ker(d) equal to the subgroup of E consisting of those elements on which G acts trivially.

If no value for N is entered then it is assumed that N = G. In this case the group Z∗(G,G) is
trivial if and only if G is isomorphic to a quotient G = E/Z(E) of some group E by the centre of E.
(See also the command U pperE picentralSeries(G,c). )

::::::::::::::::::::::::
NonabelianExteriorProduct(G,N)

Inputs a finite group G and normal subgroup N. It returns a record E with the following
components.

E.homomorphism is a group homomorphism µ : (G ∧ N) −→ G from the nonabelian exterior
product (G∧N) to G. The kernel of µ is the relative Schur multiplier.

E.pairing(x,y) is a function which inputs an element x in G and an element y in N and re-
turns (x∧ y) in the exterior product (G∧N) .

This function should work for reasonably small nilpotent groups or extremely small non-nilpotent
groups.

::::::::::::::::::::::::
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NonabelianSymmetricKernel(G)
NonabelianSymmetricKernel(G,m)

Inputs a finite or nilpotent infinite group G and returns the abelian invariants of the Fourth homo-
topy group SG of the double suspension SSK(G,1) of the Eilenberg-Mac Lane space K(G,1).

For non-nilpotent groups the implementation of the function NonabelianSymmetricKernel(G) is
far from optimal and will soon be improved. As a temporary solution to this problem, an optional
second variable m can be set equal to 0, and then the function efficiently returns the abelian invariants
of groups A and B such that there is an exact sequence 0−→ B−→ SG−→ A−→ 0.

Alternatively, the optional second varible m can be set equal to a positive multiple of the order
of the symmetric square (G⊗̃G). In this case the function returns the abelian invariants of SG.
This might help when G is solvable but not nilpotent (especially if the estimated upper bound m is
reasonable accurate).

::::::::::::::::::::::::
NonabelianSymmetricSquare(G)
NonabelianSymmetricSquare(G,m)

Inputs a finite or nilpotent infinite group G and returns a record T with the following components.

T.homomorphism is a group homomorphism µ : (G⊗̃G) −→ G from the nonabelian symmet-
ric square of G to G. The kernel of µ is isomorphic to the fourth homotopy group of the double
suspension SSK(G,1) of an Eilenberg-Mac Lane space.

T.pairing(x,y) is a function which inputs two elements x,y in G and returns the tensor (x⊗ y)
in the symmetric square (G⊗G) .

An optional second varible m can be set equal to a multiple of the order of the symmetric
square (G⊗̃G). This might help when G is solvable but not nilpotent (especially if the estimated
upper bound m is reasonable accurate) as the bound is used in the solvable quotient algorithm.

The optional second variable m can also be set equal to 0. In this case the Todd-Coxeter procedure
will be used to enumerate the symmetric square even when G is solvable.

This function should work for reasonably small solvable groups or extremely small non-solvable
groups.

::::::::::::::::::::::::
NonabelianTensorProduct(G,N)

Inputs a finite group G and normal subgroup N. It returns a record E with the following
components.

E.homomorphism is a group homomorphism µ : (G⊗ N) −→ G from the nonabelian exterior
product (G⊗N) to G.
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E.pairing(x,y) is a function which inputs an element x in G and an element y in N and re-
turns (x⊗ y) in the tensor product (G⊗N) .

This function should work for reasonably small nilpotent groups or extremely small non-nilpotent
groups.

::::::::::::::::::::::::
NonabelianTensorSquare(G)
NonabelianTensorSquare(G,m)

Inputs a finite or nilpotent infinite group G and returns a record T with the following components.

T.homomorphism is a group homomorphism µ : (G ⊗ G) −→ G from the nonabelian tensor
square of G to G. The kernel of µ is isomorphic to the third homotopy group of the suspension
SK(G,1) of an Eilenberg-Mac Lane space.

T.pairing(x,y) is a function which inputs two elements x,y in G and returns the tensor (x⊗ y)
in the tensor square (G⊗G) .

An optional second varible m can be set equal to a multiple of the order of the tensor square
(G⊗G). This might help when G is solvable but not nilpotent (especially if the estimated upper
bound m is reasonable accurate) as the bound is used in the solvable quotient algorithm.

The optional second variable m can also be set equal to 0. In this case the Todd-Coxeter procedure
will be used to enumerate the tensor square even when G is solvable.

This function should work for reasonably small solvable groups or extremely small non-solvable
groups.

::::::::::::::::::::::::
RelativeSchurMultiplier(G,N)

Inputs a finite group G and normal subgroup N. It returns the homology group H2(G,N,Z) that
fits into the exact sequence

. . .−→ H3(G,Z)−→ H3(G/N,Z)−→ H2(G,N,Z)−→ H3(G,Z)−→ H3(G/N,Z)−→ . . . .
This function should work for reasonably small nilpotent groups G or extremely small non-

nilpotent groups.

::::::::::::::::::::::::
TensorCentre(G)

Inputs a group G and returns the largest central subgroup N such that the induced homomorphism
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of nonabelian tensor squares (G⊗G) −→ (G/N⊗G/N) is an isomorphism. Equivalently, N is the
largest central subgroup such that π3(SK(G,1))−→ π3(SK(G/N,1)) is injective.

::::::::::::::::::::::::
ThirdHomotopyGroupOfSuspensionB(G)
ThirdHomotopyGroupOfSuspensionB(G,m)

Inputs a finite or nilpotent infinite group G and returns the abelian invariants of the third homotopy
group JG of the suspension SK(G,1) of the Eilenberg-Mac Lane space K(G,1).

For non-nilpotent groups the implementation of the function
T hirdHomotopyGroupO f SuspensionB(G) is far from optimal and will soon be improved. As
a temporary solution to this problem, an optional second variable m can be set equal to 0, and then
the function efficiently returns the abelian invariants of groups A and B such that there is an exact
sequence 0−→ B−→ JG−→ A−→ 0.

Alternatively, the optional second varible m can be set equal to a positive multiple of the order of
the tensor square (G⊗G). In this case the function returns the abelian invariants of JG. This might
help when G is solvable but not nilpotent (especially if the estimated upper bound m is reasonable
accurate).

::::::::::::::::::::::::
UpperEpicentralSeries(G,c)

Inputs a nilpotent group G and an integer c. It returns the c-th term of the upper epicentral series
1 < Z∗1(G) < Z∗2(G) < . . ..

The upper epicentral series is defined for an arbitrary group G. The group Z∗c (G) is the image in
G of the c-th term Zc(U) of the upper central series of the group U = F/[[[R,F ],F ] . . .] (with c copies
of F in the denominator) where F/R is any free presentation of G.

This functions requires the NQ package.



Chapter 16

Lie commutators and nonabelian Lie
tensors

Functions on this page are joint work with HAMID MOHAMMADZADEH, and implemented by him.

::::::::::::::::::::::::
LieCoveringHomomorphism(L)

Inputs a finite dimensional Lie algebra L over a field, and returns a surjective Lie homomorphism
phi : C→ L where:

the kernel of phi lies in both the centre of C and the derived subalgebra of C,

the kernel of phi is a vector space of rank equal to the rank of the second Chevalley-Eilenberg
homology of L.

::::::::::::::::::::::::
LeibnizQuasiCoveringHomomorphism(L)

Inputs a finite dimensional Lie algebra L over a field, and returns a surjective homomorphism
phi : C→ L of Leibniz algebras where:

the kernel of phi lies in both the centre of C and the derived subalgebra of C,

the kernel of phi is a vector space of rank equal to the rank of the kernel J of the homomor-
phism L⊗L→ L from the tensor square to L. (We note that, in general, J is NOT equal to the second
Leibniz homology of L.)
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::::::::::::::::::::::::
LieEpiCentre(L)

Inputs a finite dimensional Lie algebra L over a field, and returns an ideal Z∗(L) of the centre of
L. The ideal Z∗(L) is trivial if and only if L is isomorphic to a quotient L = E/Z(E) of some Lie
algebra E by the centre of E.

::::::::::::::::::::::::
LieExteriorSquare(L)

Inputs a finite dimensional Lie algebra L over a field. It returns a record E with the following
components.

E.homomorphism is a Lie homomorphism µ : (L ∧ L) −→ L from the nonabelian exterior
square (L∧L) to L. The kernel of µ is the Lie multiplier.

E.pairing(x,y) is a function which inputs elements x,y in L and returns (x ∧ y) in the exterior
square (L∧L) .

::::::::::::::::::::::::
LieTensorSquare(L)

Inputs a finite dimensional Lie algebra L over a field and returns a record T with the following
components.

T.homomorphism is a Lie homomorphism µ : (L⊗L) −→ L from the nonabelian tensor square of L
to L.

T.pairing(x,y) is a function which inputs two elements x,y in L and returns the tensor (x⊗ y)
in the tensor square (L⊗L) .

::::::::::::::::::::::::
LieTensorCentre(L)
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Inputs a finite dimensional Lie algebra L over a field and returns the largest ideal N such that the
induced homomorphism of nonabelian tensor squares (L⊗L)−→ (L/N⊗L/N) is an isomorphism.



Chapter 17

Generators and relators of groups

::::::::::::::::::::::::
CayleyGraphOfGroupDisplay(G,X)
CayleyGraphOfGroupDisplay(G,X,"mozilla")

Inputs a finite group G together with a subset X of G. It displays the corresponding Cayley graph
as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser
can be set using a second argument.

The argument G can also be a finite set of elements in a (possibly infinite) group containing X .
The edges of the graph are coloured according to which element of X they are labelled by. The list X
corresponds to the list of colours [blue, red, green, yellow, brown, black] in that order.

This function requires Graphviz software.

::::::::::::::::::::::::
IdentityAmongRelatorsDisplay(R,n)
IdentityAmongRelatorsDisplay(R,n,"mozilla")

Inputs a free ZG-resolution R and an integer n. It displays the boundary R!.boundary(3,n) as a
tessellation of a sphere. It displays the tessellation as a .gif file and uses the Mozilla web browser
as a default display mechanism. An alternative browser can be set using a second argument. (The
resolution R should be reduced and, preferably, in dimension 1 it should correspond to a Cayley graph
for G. )

This function uses GraphViz software.

::::::::::::::::::::::::
IsAspherical(F,R)

Inputs a free group F and a set R of words in F . It performs a test on the 2-dimensional CW-space
K associated to this presentation for the group G = F/<R>F .

The function returns "true" if K has trivial second homotopy group. In this case it prints: Presen-
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tation is aspherical.
Otherwise it returns "fail" and prints: Presentation is NOT piece-wise Euclidean non-positively

curved. (In this case K may or may not have trivial second homotopy group. But it is NOT possible
to impose a metric on K which restricts to a Euclidean metric on each 2-cell.)

The function uses Polymake software.

::::::::::::::::::::::::
PresentationOfResolution(R)

Inputs at least two terms of a reduced ZG-resolution R and returns a record P with components

P. f reeGroup is a free group F ,

P.relators is a list S of words in F ,

P.gens is a list of positive integers such that the i-th generator of the presentation corresponds
to the group element R!.elts[P[i]] .

where G is isomorphic to F modulo the normal closure of S. This presentation for G corre-
sponds to the 2-skeleton of the classifying CW-space from which R was constructed. The resolution
R requires no contracting homotopy.

::::::::::::::::::::::::
TorsionGeneratorsAbelianGroup(G)

Inputs an abelian group G and returns a generating set [x1, . . . ,xn] where no pair of generators
have coprime orders.



Chapter 18

Orbit polytopes and fundamental
domains

::::::::::::::::::::::::
CoxeterComplex(D)
CoxeterComplex(D,n)

Inputs a Coxeter diagram D of finite type. It returns a non-free ZW-resolution for the associated
Coxeter group W . The non-free resolution is obtained from the permutahedron of type W . A positive
integer n can be entered as an optional second variable; just the first n terms of the non-free resolution
are then returned.

::::::::::::::::::::::::
ContractibleGcomplex("PSL(4,Z)")

Inputs one of the following strings:

"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" , "PSL(4,Z)" , "PSL(4,Z)_b" ,
"PSL(4,Z)_c" , "PSL(4,Z)_d" , "Sp(4,Z)"

or one of the following strings

"SL(2,O-2)" , "SL(2,O-7)" , "SL(2,O-11)" , "SL(2,O-19)" , "SL(2,O-43)" , "SL(2,O-67)" ,
"SL(2,O-163)"

It returns a non-free ZG-resolution for the group G described by the string. The stabilizer
groups of cells are finite. (Subscripts _b , _c , _d denote alternative non-free ZG-resolutions for a
given group G.)

Data for the first list of non-free resolutions was provided provided by MATHIEU DUTOUR.
Data for the second list was provided by ALEXANDER RAHM.
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::::::::::::::::::::::::
QuotientOfContractibleGcomplex(C,D)

Inputs a non-free ZG-resolution C and a finite subgroup D of G which is a subgroup of each
cell stabilizer group for C. Each element of D must preserves the orientation of any cell stabilized
by it. It returns the corresponding non-free Z(G/D)-resolution. (So, for instance, from the SL(2,O)
complex C = ContractibleGcomplex(”SL(2,O− 2)”); we can construct a PSL(2,O)-complex using
this function.)

::::::::::::::::::::::::
TruncatedGComplex(R,m,n)

Inputs a non-free ZG-resolution R and two positive integers m and n. It returns the non-free
ZG-resolution consisting of those modules in R of degree at least m and at most n.

::::::::::::::::::::::::
FundamentalDomainStandardSpaceGroup(v,G)

Inputs a crystallographic group G (represented using AffineCrystGroupOnRight as in the GAP
package Cryst). It also inputs a choice of vector v in the euclidean space Rn on which G acts. It
returns the Dirichlet-Voronoi fundamental cell for the action of G on euclidean space corresponding
to the vector v. The fundamental cell is a fundamental domain if G is Bieberbach. The fundamen-
tal cell/domain is returned as a “Polymake object”. Currently the function only applies to certain
crystallographic groups. See the manuals to HAPcryst and HAPpolymake for full details.

This function is part of the HAPcryst package written by MARC ROEDER and is thus only avail-
able if HAPcryst is loaded.

The function requires the use of Polymake software.

::::::::::::::::::::::::
OrbitPolytope(G,v,L)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In
both cases there is a natural action of G on v. Let P(G,v) be the convex polytope arising as the convex
hull of the Euclidean points in the orbit of v under the action of G. The function also inputs a sublist
L of the following list of strings:

["dimension","vertex_degree", "visual_graph", "schlegel","visual"]
Depending on the sublist, the function:

prints the dimension of the orbit polytope P(G,v);
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prints the degree of a vertex in the graph of P(G,v);

visualizes the graph of P(G,v);

visualizes the Schlegel diagram of P(G,v);

visualizes P(G,v) if the polytope is of dimension 2 or 3.

The function uses Polymake software.

::::::::::::::::::::::::
PolytopalComplex(G,v)
PolytopalComplex(G,v,n)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n.
In both cases there is a natural action of G on v. Let P(G,v) be the convex polytope arising as the
convex hull of the Euclidean points in the orbit of v under the action of G. The cellular chain complex
C∗ = C∗(P(G,v)) is an exact sequence of (not necessarily free) ZG-modules. The function returns a
component object R with components:

R!.dimension(k) is a function which returns the number of G-orbits of the k-dimensional faces
in P(G,v). If each k-face has trivial stabilizer subgroup in G then Ck is a free ZG-module of rank
R.dimension(k).

R!.stabilizer(k,n) is a function which returns the stabilizer subgroup for a face in the n-th or-
bit of k-faces.

If all faces of dimension <k + 1 have trivial stabilizer group then the first k terms of C∗ consti-
tute part of a free ZG-resolution. The boundary map is described by the function boundary(k,n) . (If
some faces have non-trivial stabilizer group then C∗ is not free and no attempt is made to determine
signs for the boundary map.)

R!.elements, R!.group, R!.properties are as in a ZG-resolution.

If an optional third input variable n is used, then only the first n terms of the resolution C∗
will be computed.

The function uses Polymake software.

::::::::::::::::::::::::
PolytopalGenerators(G,v)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In
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both cases there is a natural action of G on v, and the vector v must be chosen so that it has trivial
stabilizer subgroup in G. Let P(G,v) be the convex polytope arising as the convex hull of the Eu-
clidean points in the orbit of v under the action of G. The function returns a record P with components:

P.generators is a list of all those elements g in G such that g · v has an edge in common with
v. The list is a generating set for G.

P.vector is the vector v.

P.hasseDiagram is the Hasse diagram of the cone at v.

The function uses Polymake software. The function is joint work with Seamus Kelly.

::::::::::::::::::::::::
VectorStabilizer(G,v)

Inputs a permutation group or matrix group G of degree n and a rational vector of degree n. In
both cases there is a natural action of G on v and the function returns the group of elements in G that
fix v.



Chapter 19

Cocycles

::::::::::::::::::::::::
CcGroup(A,f)

Inputs a G-module A (i.e. an abelian G-outer group) and a standard 2-cocycle f GxG−−− > A.
It returns the extension group determined by the cocycle. The group is returned as a CcGroup.

This is a HAPcocyclic function and thus only works when HAPcocyclic is loaded.

::::::::::::::::::::::::
CocycleCondition(R,n)

Inputs a resolution R and an integer n>0. It returns an integer matrix M with the following
property. Suppose d = R.dimension(n). An integer vector f = [ f1, . . . , fd ] then represents a
ZG-homomorphism Rn −→ Zq which sends the ith generator of Rn to the integer fi in the trivial
ZG-module Zq (where possibly q = 0 ). The homomorphism f is a cocycle if and only if Mt f = 0
mod q.

::::::::::::::::::::::::
StandardCocycle(R,f,n)

StandardCocycle(R,f,n,q)

Inputs a ZG-resolution R (with contracting homotopy), a positive integer n and an integer vector
f representing an n-cocycle Rn −→ Zq where G acts trivially on Zq. It is assumed q = 0 unless a
value for q is entered. The command returns a function F(g1, ...,gn) which is the standard cocycle
Gn −→ Zq corresponding to f . At present the command is implemented only for n = 2 or 3.

::::::::::::::::::::::::
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Syzygy(R,g)

Inputs a ZG-resolution R (with contracting homotopy) and a list g = [g[1], ...,g[n]] of elements in
G. It returns a word w in Rn. The word w is the image of the n-simplex in the standard bar resolution
corresponding to the n-tuple g. This function can be used to construct explicit standard n-cocycles.
(Currently implemented only for n<4.)



Chapter 20

Words in free ZG-modules

::::::::::::::::::::::::
AddFreeWords(v,w)

Inputs two words v,w in a free ZG-module and returns their sum v+w. If the characteristic of Z
is greater than 0 then the next function might be more efficient.

::::::::::::::::::::::::
AddFreeWordsModP(v,w,p)

Inputs two words v,w in a free ZG-module and the characteristic p of Z. It returns the sum v+w.
If p = 0 the previous function might be fractionally quicker.

::::::::::::::::::::::::
AlgebraicReduction(w)

AlgebraicReduction(w,p)

Inputs a word w in a free ZG-module and returns a reduced version of the word in which all pairs
of mutually inverse letters have been cancelled. The reduction is performed in a free abelian group
unless the characteristic p of Z is entered.

::::::::::::::::::::::::
Multiply Word(n,w)

Inputs a word w and integer n. It returns the scalar multiple n ·w.
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::::::::::::::::::::::::
Negate([i,j])

Inputs a pair [i, j] of integers and returns [−i, j].

::::::::::::::::::::::::
NegateWord(w)

Inputs a word w in a free ZG-module and returns the negated word −w.

::::::::::::::::::::::::
PrintZGword(w,elts)

Inputs a word w in a free ZG-module and a (possibly partial but sufficient) listing elts of the
elements of G. The function prints the word w to the screen in the form

r1E1 + . . .+ rnEn

where ri are elements in the group ring ZG, and Ei denotes the i-th free generator of the module.

::::::::::::::::::::::::
TietzeReduction(S,w)

Inputs a set S of words in a free ZG-module, and a word w in the module. The function returns a
word w′ such that {S,w′} generates the same abelian group as {S,w}. The word w′ is possibly shorter
(and certainly no longer) than w. This function needs to be improved!

::::::::::::::::::::::::
ResolutionBoundaryOfWord(R,n,w)

Inputs a resolution R, a positive integer n and a list w representing a word in the free module Rn.
It returns the image of w under the n-th boundary homomorphism.



Chapter 21

F pG-modules

::::::::::::::::::::::::
CompositionSeriesOfFpGModules(M)

Inputs an F pG-module M and returns a list of F pG-modules that constitute a composition series
for M.

::::::::::::::::::::::::
DirectSumOfFpGModules(M,N)
DirectSumOfFpGModules([ M[1], M[2], ..., M[k] ]))

Inputs two F pG-modules M and N with common group and characteristic. It returns the direct
sum of M and N as an F pG-Module.

Alternatively, the function can input a list of F pG-modules with common group G. It returns the
direct sum of the list.

::::::::::::::::::::::::
FpGModule(A,P)
FpGModule(A,G,p)

Inputs a p-group P and a matrix A whose rows have length a multiple of the order of G. It returns
the “canonical” F pG-module generated by the rows of A.

A small non-prime-power group G can also be input, provided the characteristic p is entered as a
third input variable.

::::::::::::::::::::::::
FpGModuleDualBasis(M)
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Inputs an F pG-module M. It returns a record R with two components:

R. f reeModule is the free module FG of rank one.

R.basis is a list representing an F-basis for the module HomFG(M,FG). Each term in the list
is a matrix A whose rows are vectors in FG such that M!.generators[i] −→ A[i] extends to a module
homomorphism M −→ FG.

::::::::::::::::::::::::
FpGModuleHomomorphism(M,N,A)
FpGModuleHomomorphismNC(M,N,A)

Inputs F pG-modules M and N over a common p-group G. Also inputs a list A of vectors in the
vector space spanned by N!.matrix. It tests that the function

M!.generators[i]−→ A[i]
extends to a homomorphism of F pG-modules and, if the test is passed, returns the corresponding

F pG-module homomorphism. If the test is failed it returns fail.
The "NC" version of the function assumes that the input defines a homomorphism and simply

returns the F pG-module homomorphism.

::::::::::::::::::::::::
DesuspensionFpGModule(M,n)
DesuspensionFpGModule(R,n)

Inputs a positive integer n and and FpG-module M. It returns an FpG-module DnM which is
mathematically related to M via an exact sequence 0 −→ DnM −→ Rn −→ . . . −→ R0 −→M −→ 0
where R∗ is a free resolution. (If G = Group(M) is of prime-power order then the resolution is
minimal.)

Alternatively, the function can input a positive integer n and at least n terms of a free resolution R
of M.

::::::::::::::::::::::::
RadicalOfFpGModule(M)

Inputs an F pG-module M with G a p-group, and returns the Radical of M as an F pG-module. (Ig
G is not a p-group then a submodule of the radical is returned.
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::::::::::::::::::::::::
RadicalSeriesOfFpGModule(M)

Inputs an F pG-module M and returns a list of F pG-modules that constitute the radical series for
M.

::::::::::::::::::::::::
GeneratorsOfFpGModule(M)

Inputs an F pG-module M and returns a matrix whose rows correspond to a minimal generating
set for M.

::::::::::::::::::::::::
ImageOfFpGModuleHomomorphism(f)

Inputs an F pG-module homomorphism f : M −→ N and returns its image f (M) as an F pG-
module.

::::::::::::::::::::::::
GroupAlgebraAsFpGModule(G)

Inputs a p-group G and returns its mod p group algebra as an F pG-module.

::::::::::::::::::::::::
IntersectionOfFpGModules(M,N)

Inputs two F pG-modules M,N arising as submodules in a common free module (FG)n where G
is a finite group and F the field of p-elements. It returns the F pG-module arising as the intersection
of M and N.

::::::::::::::::::::::::
IsFpGModuleHomomorphismData(M,N,A)

Inputs F pG-modules M and N over a common p-group G. Also inputs a list A of vectors in the
vector space spanned by N!.matrix. It returns true if the function

M!.generators[i]−→ A[i]
extends to a homomorphism of F pG-modules. Otherwise it returns false.
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::::::::::::::::::::::::
MaximalSubmoduleOfFpGModule(M)

Inputs an F pG-module M and returns one maximal F pG-submodule of M.

::::::::::::::::::::::::
MaximalSubmodulesOfFpGModule(M)

Inputs an F pG-module M and returns the list of maximal F pG-submodules of M.

::::::::::::::::::::::::
MultipleOfFpGModule(w,M)

Inputs an F pG-module M and a list w := [g1, ...,gt ] of elements in the group G = M!.group. The
list w can be thought of as representing the element w = g1 + . . .+ gt in the group algebra FG, and
the function returns a semi-echelon matrix B which is a basis for the vector subspace wM .

::::::::::::::::::::::::
ProjectedFpGModule(M,k)

Inputs an F pG-module M of ambient dimension n|G|, and an integer k between 1 and n. The
module M is a submodule of the free module (FG)n . Let Mk denote the intersection of M with the
last k summands of (FG)n . The function returns the image of the projection of Mk onto the k-th
summand of (FG)n . This image is returned an F pG-module with ambient dimension |G|.

::::::::::::::::::::::::
RandomHomomorphismOfFpGModules(M,N)

Inputs two F pG-modules M and N over a common group G. It returns a random matrix A whose
rows are vectors in N such that the function

M!.generators[i]−→ A[i]
extends to a homomorphism M −→ N of F pG-modules. (There is a problem with this function at

present.)
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::::::::::::::::::::::::
Rank(f)

Inputs an F pG-module homomorphism f : M −→ N and returns the dimension of the image of f
as a vector space over the field F of p elements.

::::::::::::::::::::::::
SumOfFpGModules(M,N)

Inputs two F pG-modules M,N arising as submodules in a common free module (FG)n where G
is a finite group and F the field of p-elements. It returns the F pG-Module arising as the sum of M
and N.

::::::::::::::::::::::::
SumOp(f,g)

Inputs two F pG-module homomorphisms f ,g : M −→N with common sorce and common target.
It returns the sum f +g : M −→ N . (This operation is also available using "+".

::::::::::::::::::::::::
VectorsToFpGModuleWords(M,L)

Inputs an F pG-module M and a list L = [v1, . . . ,vk] of vectors in M. It returns a list L′ = [x1, ...,xk]
. Each x j = [[W1,G1], ..., [Wt ,Gt ]] is a list of integer pairs corresponding to an expression of v j as a
word

v j = g1 ∗w1 +g2 ∗w1 + ...+gt ∗wt

where
gi = Elements(M!.group)[Gi]
wi = GeneratorsO f F pGModule(M)[Wi] .
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Meataxe modules

::::::::::::::::::::::::
DesuspensionMtxModule(M)

Inputs a meataxe module M over the field of p elements and returns an FpG-module DM. The two
modules are related mathematically by the existence of a short exact sequence DM −→ FM −→ M
with FM a free module. Thus the homological properties of DM are equal to those of M with a
dimension shift.

(If G := Group(M.generators) is a p-group then FM is a projective cover of M in the sense that
the homomorphism FM −→M does not factor as FM −→ P−→M for any projective module P.)

::::::::::::::::::::::::
FpG_to_MtxModule(M)

Inputs an FpG-module M and returns an isomorphic meataxe module.

::::::::::::::::::::::::
GeneratorsOfMtxModule(M)

Inputs a meataxe module M acting on, say, the vector space V . The function returns a minimal
list of row vectors in V which generate V as a G-module (where G=Group(M.generators) ).
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G-Outer Groups

::::::::::::::::::::::::
GOuterGroup(E,N)
GOuterGroup()

Inputs a group E and normal subgroup N. It returns N as a G-outer group where G = E/N.
The function can be used without an argument. In this case an empty outer group C is returned.

The components must be set using SetActingGroup(C,G), SetActedGroup(C,N) and SetOuterAc-
tion(C,alpha).

::::::::::::::::::::::::
GOuterGroupHomomorphismNC(A,B,phi)
GOuterGroupHomomorphismNC()

Inputs G-outer groups A and B with common acting group, and a group homomorphism
phi:ActedGroup(A) –> ActedGroup(B). It returns the corresponding G-outer homomorphism PHI:A–
> B. No check is made to verify that phi is actually a group homomorphism which preserves the
G-action.

The function can be used without an argument. In this case an empty outer group homomorphism
PHI is returned. The components must then be set.

::::::::::::::::::::::::
GOuterHomomorphismTester(A,B,phi)

Inputs G-outer groups A and B with common acting group, and a group homomorphism
phi:ActedGroup(A) –> ActedGroup(B). It tests whether phi is a group homomorphism which pre-
serves the G-action.

The function can be used without an argument. In this case an empty outer group homomorphism
PHI is returned. The components must then be set.
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::::::::::::::::::::::::
Centre(A)

Inputs G-outer group A and returns the group theoretic centre of ActedGroup(A) as a G-outer
group.

::::::::::::::::::::::::
DirectProductGog(A,B)
DirectProductGog(Lst)

Inputs G-outer groups A and B with common acting group, and returns their group-theoretic direct
product as a G-outer group. The outer action on the direct product is the diagonal one.

The function also applies to a list Lst of G-outer groups with common acting group.
For a direct product D constructed using this function, the embeddings and projections can be ob-

tained (as G-outer group homomorphisms) using the functions Embedding(D,i) and Projection(D,i).
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Cat-1-groups

::::::::::::::::::::::::
AutomorphismGroupAsCatOneGroup(G)

Inputs a group G and returns the Cat-1-group C corresponding to the crossed module G→ Aut(G).

::::::::::::::::::::::::
HomotopyGroup(C,n)

Inputs a cat-1-group C and an integer n. It returns the nth homotopy group of C.

::::::::::::::::::::::::
HomotopyModule(C,2)

Inputs a cat-1-group C and an integer n=2. It returns the second homotopy group of C as a
G-module (i.e. abelian G-outer group) where G is the fundamental group of C.

::::::::::::::::::::::::
QuasiIsomorph(C)

Inputs a cat-1-group C and returns a cat-1-group D for which there exists some homomorphism
C→ D that induces isomorphisms on homotopy groups.

This function was implemented by LE VAN LUYEN.

::::::::::::::::::::::::
ModuleAsCatOneGroup(G,alpha,M)
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Inputs a group G, an abelian group M and a homomorphism α:G → Aut(M). It returns the
Cat-1-group C corresponding th the zero crossed module 0:M→ G.

::::::::::::::::::::::::
MooreComplex(C)

Inputs a cat-1-group C and returns its Moore complex as a G-complex (i.e. as a complex of
groups considered as 1-outer groups).

::::::::::::::::::::::::
NormalSubgroupAsCatOneGroup(G,N)

Inputs a group G with normal subgroup N. It returns the Cat-1-group C corresponding th the
inclusion crossed module N→ G.

::::::::::::::::::::::::
XmodToHAP(C)

Inputs a cat-1-group C obtained from the Xmod package and returns a cat-1-group D for which
IsHapCatOneGroup(D) returns true.

It returns "fail" id C has not been produced by the Xmod package.
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Simplicial groups

::::::::::::::::::::::::
NerveOfCatOneGroup(G,n)

Inputs a cat-1-group G and a positive integer n. It returns the low-dimensional part of the nerve
of G as a simplicial group of length n.

This function applies both to cat-1-groups for which IsHapCatOneGroup(G) is true, and to
cat-1-groups produced using the Xmod package.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
EilenbergMacLaneSimplicialGroup(G,n,dim)

Inputs a group G, a positive integer n, and a positive integer dim. The function returns the first
1+dim terms of a simplicial group with n−1st homotopy group equal to G and all other homotopy
groups equal to zero.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
EilenbergMacLaneSimplicialGroupMap(f,n,dim)

Inputs a group homomorphism f : G→ Q, a positive integer n, and a positive integer dim. The
function returns the first 1+ dim terms of a simplicial group homomorphism f : K(G,n)→ K(Q,n)
of Eilenberg-MacLane simplicial groups.

This function was implemented by VAN LUYEN LE.
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::::::::::::::::::::::::
MooreComplex(G)

Inputs a simplicial group G and returns its Moore complex as a G-complex.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
ChainComplexOfSimplicialGroup(G)

Inputs a simplicial group G and returns the cellular chain complex C of a CW-space X represented
by the homotopy type of the simplicial group. Thus the homology groups of C are the integral
homology groups of X .

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
SimplicialGroupMap(f)

Inputs a homomorphism f : G→ Q of simplicial groups. The function returns an induced map
f : C(G)→ C(Q) of chain complexes whose homology is the integral homology of the simplicial
group G and Q respectively.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
HomotopyGroup(G,n)

Inputs a simplicial group G and a positive integer n. The integer n must be less than the length
of G. It returns, as a group, the (n)-th homology group of its Moore complex. Thus Homotopy-
Group(G,0) returns the "fundamental group" of G.

::::::::::::::::::::::::
Representation of elements in the bar resolution

For a group G we denote by Bn(G) the free ZG-module with basis the lists [g1|g2|...|gn] where
the gi range over G.
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We represent a word

w = h1.[g11|g12|...|g1n]−h2.[g21|g22|...|g2n]+ ...+hk.[gk1|gk2|...|gkn]

in Bn(G) as a list of lists:

[[+1,h1,g11,g12, ...,g1n], [−1,h2,g21,g22, ...|g2n]+ ...+[+1,hk,gk1,gk2, ...,gkn].

::::::::::::::::::::::::
BarResolutionBoundary(w)

This function inputs a word w in the bar resolution module Bn(G) and returns its image under the
boundary homomorphism dn:Bn(G)→ Bn−1(G) in the bar resolution.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
BarResolutionHomotopy(w)

This function inputs a word w in the bar resolution module Bn(G) and returns its image under the
contracting homotopy hn:Bn(G)→ Bn+1(G) in the bar resolution.

This function is currently being implemented by VAN LUYEN LE.

::::::::::::::::::::::::
Representation of elements in the bar complex

For a group G we denote by BCn(G) the free abelian group with basis the lists [g1|g2|...|gn] where
the gi range over G.

We represent a word

w = [g11|g12|...|g1n]− [g21|g22|...|g2n]+ ...+[gk1|gk2|...|gkn]

in BCn(G) as a list of lists:

[[+1,g11,g12, ...,g1n], [−1,g21,g22, ...|g2n]+ ...+[+1,gk1,gk2, ...,gkn].
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::::::::::::::::::::::::
BarComplexBoundary(w)

This function inputs a word w in the n-th term of the bar complex BCn(G) and returns its image
under the boundary homomorphism dn:BCn(G)→ BCn−1(G) in the bar complex.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
BarResolutionEquivalence(R)

This function inputs a free ZG-resolution R. It returns a component object HE with components

HE!.phi(n,w) is a function which inputs a non-negative integer n and a word w in Bn(G). It
returns the image of w in Rn under a chain equivalence φ :Bn(G)→ Rn.

HE!.psi(n,w) is a function which inputs a non-negative integer n and a word w in Rn. It re-
turns the image of w in Bn(G) under a chain equivalence ψ:Rn→ Bn(G).

HE!.equiv(n,w) is a function which inputs a non-negative integer n and a word w in Bn(G). It
returns the image of w in Bn+1(G) under a ZG-equivariant homomorphism

equiv(n,−):Bn(G)→ Bn+1(G)

satisfying
w−ψ(φ(w)) = d(n+1,equiv(n,w))+ equiv(n−1,d(n,w)).

where d(n,−):Bn(G)→ Bn−1(G) is the boundary homomorphism in the bar resolution.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
BarComplexEquivalence(R)

This function inputs a free ZG-resolution R. It first constructs the chain complex
T = TensorWithIntegerts(R). The function returns a component object HE with components

HE!.phi(n,w) is a function which inputs a non-negative integer n and a word w in BCn(G). It
returns the image of w in Tn under a chain equivalence φ :BCn(G)→ Tn.

HE!.psi(n,w) is a function which inputs a non-negative integer n and an element w in Tn. It
returns the image of w in BCn(G) under a chain equivalence ψ:Tn→ BCn(G).
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HE!.equiv(n,w) is a function which inputs a non-negative integer n and a word w in BCn(G).
It returns the image of w in BCn+1(G) under a homomorphism

equiv(n,−):BCn(G)→ BCn+1(G)

satisfying
w−ψ(φ(w)) = d(n+1,equiv(n,w))+ equiv(n−1,d(n,w)).

where d(n,−):BCn(G)→ BCn−1(G) is the boundary homomorphism in the bar complex.

This function was implemented by VAN LUYEN LE.

::::::::::::::::::::::::
Representation of elements in the bar cocomplex

For a group G we denote by BCn(G) the free abelian group with basis the lists [g1|g2|...|gn] where
the gi range over G.

We represent a word

w = [g11|g12|...|g1n]− [g21|g22|...|g2n]+ ...+[gk1|gk2|...|gkn]

in BCn(G) as a list of lists:

[[+1,g11,g12, ...,g1n], [−1,g21,g22, ...|g2n]+ ...+[+1,gk1,gk2, ...,gkn].

::::::::::::::::::::::::
BarCocomplexCoboundary(w)

This function inputs a word w in the n-th term of the bar cocomplex BCn(G) and returns its image
under the coboundary homomorphism dn:BCn(G)→ BCn+1(G) in the bar cocomplex.

This function was implemented by VAN LUYEN LE.
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Coxeter diagrams and graphs of groups

::::::::::::::::::::::::
CoxeterDiagramComponents(D)

Inputs a Coxeter diagram D and returns a list [D1, ...,Dd ] of the maximal connected subgraphs Di.

::::::::::::::::::::::::
CoxeterDiagramDegree(D,v)

Inputs a Coxeter diagram D and vertex v. It returns the degree of v (i.e. the number of edges
incident with v).

::::::::::::::::::::::::
CoxeterDiagramDisplay(D)
CoxeterDiagramDisplay(D,"web browser")

Inputs a Coxeter diagram D and displays it as a .gif file. It uses the Mozilla web browser as a
default to view the diagram. An alternative browser can be set using a second argument.

This function requires Graphviz software.

::::::::::::::::::::::::
CoxeterDiagramFpArtinGroup(D)

Inputs a Coxeter diagram D and returns the corresponding finitely presented Artin group.

::::::::::::::::::::::::
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CoxeterDiagramFpCoxeterGroup(D)

Inputs a Coxeter diagram D and returns the corresponding finitely presented Coxeter group.

::::::::::::::::::::::::
CoxeterDiagramIsSpherical(D)

Inputs a Coxeter diagram D and returns "true" if the associated Coxeter groups is finite, and
returns "false" otherwise.

::::::::::::::::::::::::
CoxeterDiagramMatrix(D)

Inputs a Coxeter diagram D and returns a matrix representation of it. The matrix is given as a
function DiagramMatrix(D)(i, j) where i, j can range over the vertices.

::::::::::::::::::::::::
CoxeterSubDiagram(D,V)

Inputs a Coxeter diagram D and a subset V of its vertices. It returns the full sub-diagram of D
with vertex set V .

::::::::::::::::::::::::
CoxeterDiagramVertices(D)

Inputs a Coxeter diagram D and returns its set of vertices.

::::::::::::::::::::::::
EvenSubgroup(G)

Inputs a group G and returns a subgroup G+. The subgroup is that generated by all products xy
where x and y range over the generating set for G stored by GAP. The subgroup is probably only
meaningful when G is an Artin or Coxeter group.

::::::::::::::::::::::::



111

GraphOfGroupsDisplay(D)
GraphOfGroupsDisplay(D,"web browser")

Inputs a graph of groups D and displays it as a .gif file. It uses the Mozilla web browser as a
default to view the diagram. An alternative browser can be set using a second argument.

This function requires Graphviz software.

::::::::::::::::::::::::
GraphOfResolutions(D,n)

Inputs a graph of groups D and a positive integer n. It returns a graph of resolutions, each resolu-
tion being of length n. It uses the function ResolutionGenericGroup() to produce the resolutions.

::::::::::::::::::::::::
GraphOfGroups(D)

Inputs a graph of resolutions D and returns the corresponding graph of groups.

::::::::::::::::::::::::
GraphOfResolutionsDisplay(D)

Inputs a graph of resolutions D and displays it as a .gif file. It uses the Mozilla web browser as a
default to view the diagram.

This function requires Graphviz software.

::::::::::::::::::::::::
GraphOfGroupsTest(D)

Inputs an object D and itries to test whether it is a Graph of Groups. However, it DOES NOT test
the injectivity of any homomorphisms. It returns true if D passes the test, and false otherwise.

Note that there is no function IsHapGraphO f Groups() because no special data type has been
created for these graphs.

::::::::::::::::::::::::
TreeOfGroupsToContractibleGcomplex(D,G)

Inputs a graph of groups D which is a tree, and also inputs the fundamental group G of the tree
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in a form which contains each of the groups in the graph as subgroups. It returns a corresponding
contractible G-complex.

::::::::::::::::::::::::
TreeOfResolutionsToContractibleGcomplex(D,G)

Inputs a graph of resolutions D which is a tree, and also inputs the fundamental group G of the
tree in a form which contains each of the groups in the graph as subgroups. It returns a corresponding
contractible G-complex. The resolutions are stored as a component of the contractible G-complex.

#
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Torsion Subcomplexes

The Torsion Subcomplex subpackage has been conceived and implemented by BUI ANH TUAN and ALEXANDER D. RAHM

RigidFacetsSubdivision( X ) It inputs an n-dimensional G-equivariant CW-complex X on which all the cell stabilizer subgroups in G are finite. It returns an n-dimensional G-equivariant CW-complex Y which is topologically the same as X , but equipped with a G-CW-structure which is rigid.
IsPNormal( G, p) Inputs a finite group G and a prime p. Checks if the group G is p-normal for the prime p. Zassenhaus defines a finite group to be p-normal if the center of one of its Sylow p-groups is the center of every Sylow p-group in which it is contained.

TorsionSubcomplex( C, p) Inputs either a cell complex with action of a group as a variable or a group name. In HAP, presently the following cell complexes with stabilisers fixing their cells pointwise are available, specified by the following "groupName" strings:

"SL(2,O-2)" , "SL(2,O-7)" , "SL(2,O-11)" , "SL(2,O-19)" , "SL(2,O-43)" , "SL(2,O-67)" , "SL(2,O-163)",

where the symbol O[-m] stands for the ring of integers in the imaginary quadratic number field Q(sqrt(-m)), the latter being the extension of the field of rational numbers by the square root of minus the square-free positive integer m. The additive structure of this ring O[-m] is given as the module Z[omega] over the natural integers Z with basis {1, omega}, and omega being the square root of minus m if m is congruent to 1 or 2 modulo four; else, in the case m congruent 3 modulo 4, the element omega is the arithmetic mean with 1, namely (1+ sqrt(−m))/2.

The function TorsionSubcomplex prints the cells with p-torsion in their stabilizer on the screen and returns the incidence matrix of the 1-skeleton of this cellular subcomplex, as well as a Boolean value on whether the cell complex has its cell stabilisers fixing their cells pointwise.

It is also possible to input the cell complexes

"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" , "PSL(4,Z)" , "PSL(4,Z)_b" , "PSL(4,Z)_c" , "PSL(4,Z)_d" , "Sp(4,Z)"

provided by MATHIEU DUTOUR.
DisplayAvailableCellComplexes(); Displays the cell complexes that are available in HAP.
VisualizeTorsionSkeleton( groupName, p) Executes the function TorsionSubcomplex( groupName, p) and visualizes its output, namely the incidence matrix of the 1-skeleton of the p-torsion subcomplex, as a graph.
ReduceTorsionSubcomplex( C, p) This function start with the same operations as the function TorsionSubcomplex( C, p), and if the cell stabilisers are fixing their cells pointwise, it continues as follows.

It prints on the screen which cells to merge and which edges to cut off in order to reduce the p-torsion subcomplex without changing the equivariant Farrell cohomology. Finally, it prints the representative cells, their stabilizers and the Abelianization of the latter.
EquivariantEulerCharacteristic( X ) It inputs an n-dimensional Γ-equivariant CW-complex X all the cell stabilizer subgroups in Γ are finite. It returns the equivariant euler characteristic obtained by using mass formula ∑σ (−1)dimσ 1

card(Γσ )

CountingCellsOfACellComplex( X ) It inputs an n-dimensional Γ-equivariant CW-complex X on which all the cell stabilizer subgroups in Γ are finite. It returns the number of cells in X
CountingControlledSubdividedCells( X ) It inputs an n-dimensional Γ-equivariant CW-complex X on which all the cell stabilizer subgroups in Γ are finite. It returns the number of cells in X appear during the subdivision process using the RigidFacetsSubdivision.
CountingBaryCentricSubdividedCells( X ) It inputs an n-dimensional Γ-equivariant CW-complex X on which all the cell stabilizer subgroups in Γ are finite. It returns the number of cells in X appear during the subdivision process using the barycentric subdivision.
EquivariantSpectralSequencePage( C, m, n) It inputs a triple (C,m,n) where C is either a groupName explained as in TorsionSubcomplex, m is the dimension of the reduced torsion subcomplex, and n is the highest vertical degree in the spectral sequence page. At the moment, the function works only when m=1,i.e, after reduction the torsion subcomplex has degree 1. It returns a component object R consists of the first page of spectral sequence, and i-th cohomology groups for i less than n.
ExportHapCellcomplexToDisk( C, groupName) It inputs a cell complex C which is stored as a variable in the memory, together with a user’s desire name. In case, the input is a torsion cell complex then the user’s desire name should be in the form "group_ptorsion" in order to use the function EquivariantSpectralSequencePage. The function will export C to the hard disk.
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Simplicial Complexes

Homology(T,n)
Homology(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and a non-negative
integer n. It returns the n-th integral homology of T as a list of torsion integers. If no value of n is
input then the list of all homologies of T in dimensions 0 to Dimension(T) is returned .

RipsHomology(G,n)
RipsHomology(G,n,p)

Inputs a graph G, a non-negative integer n (and optionally a prime number p). It returns the
integral homology (or mod p homology) in degree n of the Rips complex of G.

::::::::::::::::::::::::
Bettinumbers(T,n)
Bettinumbers(T)

Inputs a pure cubical complex, or cubical complex, simplicial complex or chain complex T and
a non-negative integer n. The rank of the n-th rational homology group Hn(T,Q) is returned. If no
value for n is input then the list of Betti numbers in dimensions 0 to Dimension(T) is returned .

ChainComplex(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns the (often
very large) cellular chain complex of T .
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::::::::::::::::::::::::
CechComplexOfPureCubicalComplex(T)

Inputs a d-dimensional pure cubical complex T and returns a simplicial complex S. The simplicial
complex S has one vertex for each d-cube in T , and an n-simplex for each collection of n+1 d-cubes
with non-trivial common intersection. The homotopy types of T and S are equal.

::::::::::::::::::::::::
PureComplexToSimplicialComplex(T,k)

Inputs either a d-dimensional pure cubical complex T or a d-dimensional pure permutahedral
complex T together with a non-negative integer k. It returns the first k dimensions of a simplicial
complex S. The simplicial complex S has one vertex for each d-cell in T , and an n-simplex for each
collection of n+1 d-cells with non-trivial common intersection. The homotopy types of T and S are
equal.

For a pure cubical complex T this uses a slightly different algorithm to the function CechCom-
plexOfPureCubicalComplex(T) but constructs the same simplicial complex.

::::::::::::::::::::::::
RipsChainComplex(G,n)

Inputs a graph G and a non-negative integer n. It returns n+ 1 terms of a chain complex whose
homology is that of the nerve (or Rips complex) of the graph in degrees up to n.

::::::::::::::::::::::::
VectorsToSymmetricMatrix(M)
VectorsToSymmetricMatrix(M,distance)

Inputs a matrix M of rational numbers and returns a symmetric matrix S whose (i, j) entry is the
distance between the i-th row and j-th rows of M where distance is given by the sum of the absolute
values of the coordinate differences.

Optionally, a function distance(v,w) can be entered as a second argument. This function has to
return a rational number for each pair of rational vectors v,w of length Length(M[1]).

::::::::::::::::::::::::
EulerCharacteristic(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns its Euler
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characteristic.

::::::::::::::::::::::::
MaximalSimplicesToSimplicialComplex(L)

Inputs a list L whose entries are lists of vertices representing the maximal simplices of a simplicial
complex. The simplicial complex is returned. Here a "vertex" is a GAP object such as an integer or a
subgroup.

::::::::::::::::::::::::
SkeletonOfSimplicialComplex(S,k)

Inputs a simplicial complex S and a positive integer k less than or equal to the dimension of S. It
returns the truncated k-dimensional simplicial complex Sk (and leaves S unchanged).

::::::::::::::::::::::::
GraphOfSimplicialComplex(S)

Inputs a simplicial complex S and returns the graph of S.

::::::::::::::::::::::::
ContractibleSubcomplexOfSimplicialComplex(S)

Inputs a simplicial complex S and returns a (probably maximal) contractible subcomplex of S.

::::::::::::::::::::::::
PathComponentsOfSimplicialComplex(S,n)

Inputs a simplicial complex S and a nonnegative integer n. If n = 0 the number of path compo-
nents of S is returned. Otherwise the n-th path component is returned (as a simplicial complex).

::::::::::::::::::::::::
QuillenComplex(G)

Inputs a finite group G and returns, as a simplicial complex, the order complex of the poset of
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non-trivial elementary abelian subgroups of G.

::::::::::::::::::::::::
SymmetricMatrixToIncidenceMatrix(S,t)
SymmetricMatrixToIncidenceMatrix(S,t,d)

Inputs a symmetric integer matrix S and an integer t. It returns the matrix M with Mi j = 1 if Ii j is
less than t and Ii j = 1 otherwise.

An optional integer d can be given as a third argument. In this case the incidence matrix should
have roughly at most d entries in each row (corresponding to the $d$ smallest entries in each row of
S).

::::::::::::::::::::::::
IncidenceMatrixToGraph(M)

Inputs a symmetric 0/1 matrix M. It returns the graph with one vertex for each row of M and an
edges between vertices i and j if the (i, j) entry in M equals 1.

::::::::::::::::::::::::
CayleyGraphOfGroup(G,A)

Inputs a group G and a set A of generators. It returns the Cayley graph.

::::::::::::::::::::::::
PathComponentsOfGraph(G,n)

Inputs a graph G and a nonnegative integer n. If n = 0 the number of path components is returned.
Otherwise the n-th path component is returned (as a graph).

::::::::::::::::::::::::
ContractGraph(G)

Inputs a graph G and tries to remove vertices and edges to produce a smaller graph G′ such that
the indlusion G′→ G induces a homotopy equivalence RG→ RG′ of Rips complexes. If the graph G
is modified the function returns true, and otherwise returns false.
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::::::::::::::::::::::::
GraphDisplay(G)

This function uses GraphViz software to display a graph G.

::::::::::::::::::::::::
::::::::::::::::::::::::
SimplicialMap(K,L,f)
SimplicialMapNC(K,L,f)

Inputs simplicial complexes K , L and a function f :K!.vertices → L!.vertices representing a
simplicial map. It returns a simplicial map K → L. If f does not happen to represent a simplicial
map then SimplicialMap(K,L,f) will return fail; SimplicialMapNC(K,L,f) will not do any check and
always return something of the data type "simplicial map".

::::::::::::::::::::::::
ChainMapOfSimplicialMap(f)

Inputs a simplicial map f :K→ L and returns the corresponding chain map C∗( f ):C∗(K)→C∗(L)
of the simplicial chain complexes..

::::::::::::::::::::::::
SimplicialNerveOfGraph(G,d)

Inputs a graph G and returns a d-dimensional simplicial complex K whose 1-skeleton is equal
to G. There is a simplicial inclusion K → RG where: (i) the inclusion induces isomorphisms on
homotopy groups in dimensions less than d; (ii) the complex RG is the Rips complex (with one
n-simplex for each complete subgraph of G on n+1 vertices).



Chapter 29

Cubical Complexes

::::::::::::::::::::::::
ArrayToPureCubicalComplexA,n)

Inputs an integer array A of dimension d and an integer n. It returns a d-dimensional pure cubical
complex corresponding to the black/white "image" determined by the threshold n and the values
of the entries in A. (Integers below the threshold correspond to a black pixel, and higher integers
correspond to a white pixel.)

::::::::::::::::::::::::
PureCubicalComplexA,n)

Inputs a binary array A of dimension d. It returns the corresponding d-dimensional pure cubical
complex.

::::::::::::::::::::::::
FramedPureCubicalComplex(M)

Inputs a pure cubical complex M and returns the pure cubical complex with a border of zeros
attached the each face of the boundary array M!.boundaryArray. This function just adds a bit of space
for performing operations such as thickenings to M.

::::::::::::::::::::::::
RandomCubeOfPureCubicalComplex(M)

Inputs a pure cubical complex M and returns a pure cubical complex R with precisely the same
dimensions as M. The complex R consist of one cube selected at random from M.
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::::::::::::::::::::::::
PureCubicalComplexIntersection(S,T)

Inputs two pure cubical complexes with common dimension and array size. It returns the
intersection of the two complexes. (An entry in the binary array of the intersection has value 1 if and
only if the corresponding entries in the binary arrays of S and T both have value 1.)

::::::::::::::::::::::::
PureCubicalComplexUnion(S,T)

Inputs two pure cubical complexes with common dimension and array size. It returns the union
of the two complexes. (An entry in the binary array of the union has value 1 if and only if at least one
of the corresponding entries in the binary arrays of S and T has value 1.)

::::::::::::::::::::::::
PureCubicalComplexDifference(S,T)

Inputs two pure cubical complexes with common dimension and array size. It returns the differ-
ence S-T. (An entry in the binary array of the difference has value 1 if and only if the corresponding
entry in the binary array of S is 1 and the corresponding entry in the binary array of T is 0.)

::::::::::::::::::::::::
ReadImageAsPureCubicalComplex("file.png",n)

Reads an image file ("file.png", "file.eps", "file.bmp" etc) and an integer n between 0 and 765.
It returns a 2-dimensional pure cubical complex based on the black/white version of the image
determined by the threshold n.

::::::::::::::::::::::::
ReadLinkImageAsPureCubicalComplex("file.png")
ReadLinkImageAsPureCubicalComplex("file.png",n)

Reads an image file ("file.png", "file.eps", "file.bmp" etc) containing a knot or link diagram, and
optionally a positive integer n. The integer n should be a little larger than the line thickness in the link
diagram, and if not provided then n is set equal to 10. The function tries to output the corresponding
knot or link as a 3-dimensional pure cubical complex. Ideally the link diagram should be produced
with line thickness 6 in Xfig, and the under-crossing spaces should not be too large or too small or
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too near one another. The function does not always succeed: it applies several checks, and if one of
these checks fails then the function returns "fail".

::::::::::::::::::::::::
ReadImageSequenceAsPureCubicalComplex("directory",n)

Reads the name of a directory containing a sequence of image files (ordered alphanumerically),
and an integer n between 0 and 765. It returns a 3-dimensional pure cubical complex based on the
black/white version of the images determined by the threshold n.

Size(T)

This returns the number of non-zero entries in the binary array of the cubical complex, or pure
cubical complex T.

Dimension(T)

This returns the dimension of the cubical complex, or pure cubical complex T.

::::::::::::::::::::::::
WritePureCubicalComplexAsImage(T,"filename","ext")

Inputs a 2-dimensional pure cubical complex T, and a filename followed by its extension (e.g.
"myfile" followed by "png"). A black/white image is saved to the file.

::::::::::::::::::::::::
ViewPureCubicalComplex(T)
ViewPureCubicalComplex(T,"mozilla")

Inputs a 2-dimensional pure cubical complex T, and optionally a command such as "mozilla" for
viewing image files. A black/white image is displayed.

::::::::::::::::::::::::
Homology(T,n)
Homology(T)
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Inputs a pure cubical complex, or cubical complex, or simplicial complex T and a non-negative
integer n. It returns the n-th integral homology of T as a list of torsion integers. If no value of n is
input then the list of all homologies of T in dimensions 0 to Dimension(T) is returned .

::::::::::::::::::::::::
Bettinumbers(T,n)
Bettinumbers(T)

Inputs a pure cubical complex, or cubical complex, simplicial complex or chain complex T and
a non-negative integer n. The rank of the n-th rational homology group Hn(T,Q) is returned. If no
value for n is input then the list of Betti numbers in dimensions 0 to Dimension(T) is returned .

::::::::::::::::::::::::
DirectProductOfPureCubicalComplexes(M,N)

Inputs two pure cubical complexes M,N and returns their direct product D as a pure cubical
complex. The dimension of D is the sum of the dimensions of M and N.

::::::::::::::::::::::::
SuspensionOfPureCubicalComplex(M)

Inputs a pure cubical complex M and returns a pure cubical complex with the homotopy type of
the suspension of M.

EulerCharacteristic(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns its Euler
characteristic.

::::::::::::::::::::::::
PathComponentOfPureCubicalComplex(T,n)

Inputs a pure cubical complex T and an integer n in the rane 1, ..., Bettinumbers(T)[1] . It returns
the n-th path component of T as a pure cubical complex. The value n = 0 is also allowed, in which
case the number of path components is returned.
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ChainComplex(T)

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns the (often
very large) cellular chain complex of T .

ChainComplexOfPair(T,S)

Inputs a pure cubical complex or cubical complex T and subcomplex S. It returns the quotient
C(T )/C(S) of cellular chain complexes.

ExcisedPureCubicalPair(T,S)

Inputs a pure cubical complex T and subcomplex S. It returns the pair [T \ intS,S \ intS]) of pure
cubical complexes where intS is the pure cubical complex obtained from S by removing its boundary.

::::::::::::::::::::::::
ChainInclusionOfPureCubicalPair(S,T)

Inputs a pure cubical complex T and subcomplex S. It returns the chain inclusion C(S)→C(T )
of cellular chain complexes.

::::::::::::::::::::::::
ChainMapOfPureCubicalPairs(M,S,N,T)

Inputs a pure cubical complex N and subcomplexes M, T and S in T . It returns the chain map
C(M/S)→C(N/T ) of quotient cellular chain complexes.

::::::::::::::::::::::::
ContractPureCubicalComplex(T)

Inputs a pure cubical complex T of dimension d and removes d-dimensional cells from T without
changing the homotopy type of T . When the function has been applied, no further d-cells can be
removed from T without changing its homotopy type. This function modifies T .
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::::::::::::::::::::::::
ContractedComplex(T)

Inputs a pure cubical complex T and returns a structural copy of the complex obtained from T by
applying the function ContractPureCubicalComplex(T).

::::::::::::::::::::::::
ZigZagContractedPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a homotopy equivalent pure cubical complex S. The
aim is for S to involve fewer cells than T and certainly to involve no more cells than T .

::::::::::::::::::::::::
ContractCubicalComplex(T)

Inputs a cubical complex T and removes cells without changing the homotopy type of T . It
changes T . In particular, it adds the components T.vectors and T.rewrite of a discrete vector field.

At present this function only works for cubical complexes of dimension 2 or 3.

::::::::::::::::::::::::
DVFReducedCubicalComplex(T)

Inputs a cubical complex T and returns a non-regular cubical complex R by constructing a discrete
vector field. The vector field is designed to minimize the number of critical cells in R at the cost of
allowing cell attaching maps that are not homeomorphisms on boundaries.

At present this function works only for 2- and 3-dimensional cubical complexes.
The function ChainComplex(R) can be used to obtain the cellular chain complex of R.

::::::::::::::::::::::::
SkeletonOfCubicalComplex(T,n)

Inputs a cubical complex, or pure cubical complex T and positive integer n. It returns the
n-skeleton of T as a cubical complex.

::::::::::::::::::::::::
ContractibleSubomplexOfPureCubicalComplex(T)
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Inputs a pure cubical complex T and returns a maximal contractible pure cubical subcomplex.

::::::::::::::::::::::::
AcyclicSubomplexOfPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a (not necessarily connected) pure cubical subcom-
plex having trivial homology in all degrees greater than 0.

::::::::::::::::::::::::
HomotopyEquivalentMaximalPureCubicalSubcomplex(T,S)

Inputs a pure cubical complex T together with a pure cubical subcomplex S. It returns a pure
cubical subcomplex H of T which contains S and is maximal with respect to the property that it is
homotopy equivalent to S.

::::::::::::::::::::::::
HomotopyEquivalentMinimalPureCubicalSubcomplex(T,S)

Inputs a pure cubical complex T together with a pure cubical subcomplex S. It returns a pure
cubical subcomplex H of T which contains S and is minimal with respect to the property that it is
homotopy equivalent to T .

::::::::::::::::::::::::
BoundaryOfPureCubicalComplex(T)

Inputs a pure cubical complex T and returns its boundary as a pure cubical complex. The
boundary consists of all cubes which have one or more facets that lie in just the one cube.

::::::::::::::::::::::::
SingularitiesOfPureCubicalComplex(T,radius,tolerance)

Inputs a pure cubical complex T together with a positive integer "radius" and an integer "tol-
erance" in the range 1..100. It returns the pure cubical subcomplex of those cells in the boundary
where the boundary is not differentiable. (The method for deciding differentiability at a point is
crude/discrete, prone to errors and depends on the radius and tolerance.)
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::::::::::::::::::::::::
ThickenedPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a pure cubical complex S. If a euclidean cube is in T
then this cube and all its neighbouring cubes are included in S.

::::::::::::::::::::::::
CropPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a pure cubical complex S obtained from T by
removing any "zero boundary sheets" of the binary array. Thus S and T are isometric as euclidean
spaces but there may be fewer zero entries in the binary array for S.

::::::::::::::::::::::::
BoundingPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a contractible pure cubical complex S containing T .

::::::::::::::::::::::::
MorseFiltration(M,i,t,bool)
MorseFiltration(M,i,t)

Inputs a pure cubical complex M of dimension d, an integer i between 1 and d, a positive integer
t and a boolean value True or False. The function returns a list [M1,M2, ...,Mt ] of pure cubical com-
plexes with Mk a subcomplex of Mk+1. The list is constructed by setting all slices of M perpendicular
to the i-th axis equal to zero if they meet the ith axis at a sufficiently high coordinate (if bool=True) or
sufficiently low coordinate (if bool=False).

If the variable bool is not specified then it is assumed to have the value True.

::::::::::::::::::::::::
ComplementOfPureCubicalComplex(T)

Inputs a pure cubical complex T and returns a pure cubical complex S. A euclidean cube is in S
precisely when the cube is not in T .
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::::::::::::::::::::::::
PureCubicalComplexToTextFile(file,M)

Inputs a pure cubical complex M and a string containing the address of a file. A representation
of this complex is written to the file in a format that can be read by the CAPD (Computer Assisted
Proofs in Dynamics) software developed by Marian Mrozek and others.

::::::::::::::::::::::::
ThickeningFiltration(M,n)
ThickeningFiltration(M,n,k)

Inputs a pure cubical complex M and a positive integer n. It returns a filtered pure cubical
complex constructed frim n thickenings of M. If a positive integer k is supplied as an optional third
argument, then each step of the filtration is obtained from a k-fold thickening.

::::::::::::::::::::::::
Dendrogram(M)

Inputs a filtered pure cubical complex M and returns data that specifies the dendrogram (or
phylogenetic tree) describing how path components are born and then merge during the filtration.

::::::::::::::::::::::::
DendrogramDisplay(M)

Inputs a filtered pure cubical complex M, or alternatively inputs the out from the command
Dendrogram(M), and then uses GraphViz software to display the path component dendrogram of M.

::::::::::::::::::::::::
DendrogramToPersistenceMat(D)

Inputs the output of the function Dendrogram(M) and returns the corresponding degree 0 Betti
bar code.

::::::::::::::::::::::::
ReadImageAsFilteredPureCubicalComplex(file,n)

Inputs a string containing the path to an image file, together with a positive integer n. It returns a
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filtered pure cubical complex of filtration length n.

::::::::::::::::::::::::
ComplementOfFilteredPureCubicalComplex(M)

Inputs a filtered pure cubical complex M and returns the complement as a filtered pure cubical
complex.

::::::::::::::::::::::::
PersistentHomologyOfFilteredPureCubicalComplex(M,n)

Inputs a filtered pure cubical complex M and a non-negative integer n. It returns the degree n
persistent homology of M with rational coefficients.
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Regular CW-Complexes

SimplicialComplexToRegularCWComplex(K) Inputs a simplicial complex K and returns the corresponding regular CW-complex.
CubicalComplexToRegularCWComplex(K) CubicalComplexToRegularCWComplex(K,n) Inputs a pure cubical complex (or cubical complex) K and returns the corresponding regular CW-complex. If a positive integer n is entered as an optional second argument, then just the n-skeleton of K is returned.
CriticalCellsOfRegularCWComplex(Y) CriticalCellsOfRegularCWComplex(Y,n) Inputs a regular CW-complex Y and returns the critical cells of Y with respect to some discrete vector field. If Y does not initially have a discrete vector field then one is constructed. If a positive integer n is given as a second optional input, then just the critical cells in dimensions up to and including n are returned. The function CriticalCellsO f RegularCWComplex(Y ) works by homotopy reducing cells starting at the top dimension. The function CriticalCellsO f RegularCWComplex(Y,n) works by homotopy coreducing cells starting at dimension 0. The two methods may well return different numbers of cells.
ChainComplex(Y) Inputs a regular CW-complex Y and returns the cellular chain complex of a CW-complex W whose cells correspond to the critical cells of Y with respect to some discrete vector field. If Y does not initially have a discrete vector field then one is constructed.
ChainComplexOfRegularCWComplex(Y) Inputs a regular CW-complex Y and returns the cellular chain complex of Y .
FundamentalGroup(Y) FundamentalGroup(Y,n) Inputs a regular CW-complex Y and, optionally, the number of some 0-cell. It returns the fundamental group of Y based at the 0-cell n. The group is returned as a finitely presented group. If n is not specified then it is set n = 1. The algorithm requires a discrete vector field on Y . If Y does not initially have a discrete vector field then one is constructed.
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Knots and Links

PureCubicalKnot(L) PureCubicalKnot(n,i) Inputs a list L = [[m1,n1], [m2,n2], ..., [mk,nk]] of pairs of integers describing a cubical arc presentation of a link with all vertical lines at the front and all horizontal lines at the back. The bottom horizontal line extends from the m1-th column to the n1-th column. The second to bottom horizontal line extends from the m2-th column to the n2-th column. And so on. The link is returned as a 3-dimensional pure cubical complex. Alternatively the function inputs two integers n, i and returns the i-th prime knot on n crossings.
ViewPureCubicalKnot(L) Inputs a pure cubical link L and displays it.
KnotSum(K,L) Inputs two pure cubical knots K, L and returns their sum as a pure cubical knot. This function is not defined for links with more than one component.
KnotGroup(K) Inputs a pure cubical link K and returns the fundamental group of its complement. The group is returned as a finitely presented group.
AlexanderMatrix(G) Inputs a finitely presented group G whose abelianization is infinite cyclic. It returns the Alexander matrix of the presentation.
AlexanderPolynomial(K) AlexanderPolynomial(G) Inputs either a pure cubical knot K or a finitely presented group G whose abelianization is infinite cyclic. The Alexander Polynomial is returned.
ProjectionOfPureCubicalComplex(K) Inputs an $n$-dimensional pure cubical complex K and returns an n-1-dimensional pure cubical complex K’. The returned complex is obtained by projecting Euclidean n-space onto Euclidean n-1-space.
ReadPDBfileAsPureCubicalComplex(file) ReadPDBfileAsPureCubicalComplex(file,m ,c) Inputs a protein database file describing a protein, and optionally inputs a positive integer m and character string c. The default values for the optional inputs are m=5 and c="A". It loads the chain of amino acids labelled by c in the file as a 3-dimensional pure cubical complex of the homotopy type of a circle. It might happen that the function fails to construct a pure cubical complex of the homotopy type of a circle. In this case retry with a larger integer m.
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Finite metric spaces and their filtered
complexes

CayleyMetric(g,h,N) CayleyMetric(g,h) Inputs two permutations g,h and optionally the degree N of a symmetric group containing them. It returns the minimum number of transpositions needed to express g∗h−1 as a product of transpositions.
HammingMetric(g,h,N) HammingMetric(g,h) Inputs two permutations g,h and optionally the degree N of a symmetric group containing them. It returns the number of integers moved by the permutation g∗h−1.
KendallMetric(g,h,N) KendallMetric(g,h) Inputs two permutations g,h and optionally the degree N of a symmetric group containing them. It returns the minimum number of adjacent transpositions needed to express g∗h−1 as a product of adjacent transpositions. An adjacent transposition has the for (i, i+1).
EuclideanSquaredMetric(v,w) Inputs two vectors v,w of equal length and returns the sum of the squares of the components of v−w. In other words, it returns the square of the Euclidean distance between v and w.
EuclideanApproximatedMetric(v,w) Inputs two vectors v,w of equal length and returns a rational approximation to the square root of the sum of the squares of the components of v−w. In other words, it returns an approximation to the Euclidean distance between v and w.
ManhattanMetric(v,w) Inputs two vectors v,w of equal length and returns the sum of the absolute values of the components of v−w. This is often referred to as the taxi-cab distance between v and w.
VectorsToSymmetricMatrix(L) VectorsToSymmetricMatrix(L,D) Inputs a list L of vectors and optionally a metric D. The default is D = ManhattanMetric. It returns the symmetric matrix whose i-j-entry is S[i][ j] = D(L[i],L[ j]).
SymmetricMatDisplay(S) SymmetricMatDisplay(L,V) Inputs an n×n symmetric matrix S of non-negative integers and an integer t in [0..100]. Optionally it inputs a list V = [V1, ...,Vk] of disjoint subsets of [1..n]. It displays the graph with vertex set [1..n] and with an edge between i and j if S[i][ j]< t. If the optional list V is input then the vertices in Vi will be given a common colour distinct from other vertices.
SymmetricMatrixToFilteredGraph(S,t,m) Inputs an integer symmetric matrix S, a positive integer t and a positive integer m. The function returns a filtered graph of filtration length t. The k-th term of the filtration is a graph with one vertex for each row of S. There is an edge in this graph between the i-th and j-th vertices if the entry S[i][ j] is less than or equal to k ∗m/t.
PermGroupToFilteredGraph(S,D) Inputs a permutation group G and a metric D defined on permutations. The function returns a filtered graph. The k-th term of the filtration is a graph with one vertex for each element of the group G. There is an edge in this graph between vertices g and h if D(g,h) is less than some integer threshold tk. The thresholds t1 < t2 < ... < tN are chosen to form as long a sequence as possible subject to each term of the filtration being a distinct graph.
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Commutative diagrams and abstract
categories

COMMUTATIVE DIAGRAMS

::::::::::::::::::::::::
HomomorphismChainToCommutativeDiagram(H)

Inputs a list H = [h1,h2, ...,hn] of mappings such that the composite h1h2...hn is defined. It returns
the list of composable homomorphism as a commutative diagram.

::::::::::::::::::::::::
NormalSeriesToQuotientDiagram(L)
NormalSeriesToQuotientDiagram(L,M)

Inputs an increasing (or decreasing) list L = [L1,L2, ...,Ln] of normal subgroups of a group G with
G = Ln. It returns the chain of quotient homomorphisms G/Li→ G/Li+1 as a commutative diagram.

Optionally a subseries M of L can be entered as a second variable. Then the resulting diagram of
quotient groups has two rows of horizontal arrows and one row of vertical arrows.

::::::::::::::::::::::::
NerveOfCommutativeDiagram(D)

Inputs a commutative diagram D and returns the commutative diagram ND consisting of all
possible composites of the arrows in D.
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::::::::::::::::::::::::
GroupHomologyOfCommutativeDiagram(D,n)
GroupHomologyOfCommutativeDiagram(D,n,prime)
GroupHomologyOfCommutativeDiagram(D,n,prime,Resolution_Algorithm)

Inputs a commutative diagram D of p-groups and positive integer n. It returns the commutative
diagram of vector spaces obtained by applying mod p homology.

Non-prime power groups can also be handled if a prime p is entered as the third argument. Integral
homology can be obtained by setting p = 0. For p = 0 the result is a diagram of groups.

A particular resolution algorithm, such as ResolutionNilpotentGroup, can be entered as a fourth
argument. For positive p the default is ResolutionPrimePowerGroup. For p = 0 the default is
ResolutionFiniteGroup.

::::::::::::::::::::::::
PersistentHomologyOfCommutativeDiagramOfPGroups(D,n)

Inputs a commutative diagram D of finite p-groups and a positive integer n. It returns a list
containing, for each homomorphism in the nerve of D, a triple [k, l,m] where k is the dimension of
the source of the induced mod p homology map in degree n, l is the dimension of the image, and m is
the dimension of the cokernel.

ABSTRACT CATEGORIES

::::::::::::::::::::::::
CategoricalEnrichment(X,Name)

Inputs a structure X such as a group or group homomorphism, together with the name of some
existing category such as Name:=Category_of_Groups or Category_of_Abelian_Groups. It returns,
as appropriate, an object or arrow in the named category.

::::::::::::::::::::::::
IdentityArrow(X)

Inputs an object X in some category, and returns the identity arrow on the object X .

::::::::::::::::::::::::
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InitialArrow(X)

Inputs an object X in some category, and returns the arrow from the initial object in the category
to X .

::::::::::::::::::::::::
TerminalArrow(X)

Inputs an object X in some category, and returns the arrow from X to the terminal object in the
category.

::::::::::::::::::::::::
HasInitialObject(Name)

Inputs the name of a category and returns true or false depending on whether the category has an
initial object.

::::::::::::::::::::::::
HasTerminalObject(Name)

Inputs the name of a category and returns true or false depending on whether the category has a
terminal object.

::::::::::::::::::::::::
Source(f)

Inputs an arrow f in some category, and returns its source.

::::::::::::::::::::::::
Target(f)

Inputs an arrow f in some category, and returns its target.

::::::::::::::::::::::::
CategoryName(X)
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Inputs an object or arrow X in some category, and returns the name of the category.

"*", "=", "+", "-"

Composition of suitable arrows f ,g is given by f ∗g when the source of f equals the target of g.
(Warning: this differes to the standard GAP convention.)

Equality is tested using f = g.
In an additive category the sum and difference of suitable arrows is given by f +g and f −g.

::::::::::::::::::::::::
Object(X)

Inputs an object X in some category, and returns the GAP structure Y such that
X =CategoricalEnrichment(Y,CategoryName(X)).

::::::::::::::::::::::::
Mapping(X)

Inputs an arrow f in some category, and returns the GAP structure Y such that
f =CategoricalEnrichment(Y,CategoryName(X)).

::::::::::::::::::::::::
IsCategoryObject(X)

Inputs X and returns true if X is an object in some category.

::::::::::::::::::::::::
IsCategoryArrow(X)

Inputs X and returns true if X is an arrow in some category.
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Arrays and Pseudo lists

::::::::::::::::::::::::
Array(A,f)

Inputs an array A and a function f . It returns the the array obtained by applying f to each entry
of A (and leaves A unchanged).

::::::::::::::::::::::::
PermuteArray(A,f)

Inputs an array A of dimension d and a permutation f of degree at most d. It returns the array B
defined by B[i1][i2]...[id] = A[ f (i1)][ f (i2)]...A[ f (id)] (and leaves A unchanged).

::::::::::::::::::::::::
ArrayDimension(A)

Inputs an array A and returns its dimension.

::::::::::::::::::::::::
ArrayDimensions(A)

Inputs an array A and returns its dimensions.

::::::::::::::::::::::::
ArraySum(A)
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Inputs an array A and returns the sum of its entries.

::::::::::::::::::::::::
ArrayValue(A,x)

Inputs an array A and a coordinate vector x. It returns the value of the entry in A with coordinate
x.

::::::::::::::::::::::::
ArrayValueFunctions(d)

Inputs a positive integer d and returns an efficient version of the function ArrayValue for arrays
of dimension d.

::::::::::::::::::::::::
ArrayAssign(A,x,n)

Inputs an array A and a coordinate vector x and an integer n. It sets the entry of A with coordinate
x equal to n.

::::::::::::::::::::::::
ArrayAssignFunctions(d)

Inputs a positive integer d and returns an efficient version of the function ArrayAssign for arrays
of dimension d.

::::::::::::::::::::::::
ArrayIterate(d)

Inputs a positive integer d and returns a function ArrayIt(Dimensions,f). This function inputs a
list Dimensions of d positive integers and also a function f (x). It applies the function f (x) to each
integer list x of length d with entries x[i] in the range [1..Dimension[i]].

::::::::::::::::::::::::
BinaryArrayToTextFile(file,A)
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Inputs a string containing the address of a file, and an array A of 0s and 1s. The array represents
a pure cubical complex. A representation of this complex is written to the file in a format that can be
read by the CAPD (Computer Assisted Proofs in Dynamics) software developed by Marian Mrozek
and others.

The second input A can also be a pure cubical complex.

::::::::::::::::::::::::
FrameArray(A)

Inputs an array A and returns the array obtained by appending a 0 to the beginning and end of
each "row" of the array.

::::::::::::::::::::::::
UnframeArray(A)

Inputs an array A and returns the array obtained by removing the first and last entry in each "row"
of the array.

::::::::::::::::::::::::
Add(L,x)

Let L be a pseudo list of length n, and x an object compatible with the entries in L. If x is not in L
then this operation converts L into a pseudo list of length n+1 by adding x as the final entry. If x is in
L the operation has no effect on L.

::::::::::::::::::::::::
Append(L,K)

Let L be a pseudo list and K a list whose objects are compatible with those in L. This operation
applies Add(L,x) for each x in K.

::::::::::::::::::::::::
ListToPseudoList(L)

Inputs a list L and returns the pseudo list representation of L.
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Chapter 35

Parallel Computation - Core Functions

::::::::::::::::::::::::
ChildProcess()
ChildProcess("computer.ac.wales")
ChildProcess(["-m", "100000M", "-T"])
ChildProcess("computer.ac.wales", ["-m", "100000M", "-T"])

This starts a GAP session as a child process and returns a stream to the child process. If no
argument is given then the child process is created on the local machine; otherwise the argument
should be: 1) the address of a remote computer for which ssh has been configured to require no
password from the user; (2) or a list of GAP command line options; (3) or the address of a computer
followed by a list of command line options.

(To configure ssh so that the user can login without a password prompt from "thishost" to
"remotehost" either consult "man ssh" or

- open a shell on thishost
- cd .ssh
- ls
-> if id_dsa, id_rsa etc exists, skip the next two steps!
- ssh-keygen -t rsa
- ssh-keygen -t dsa
- scp *.pub user@remotehost:~/
- ssh remotehost -l user
- cat id_rsa.pub >> .ssh/authorized_keys
- cat id_dsa.pub >> .ssh/authorized_keys
- rm id_rsa.pub id_dsa.pub
- exit

You should now be able to connect from "thishost" to "remotehost" without a password prompt.)

::::::::::::::::::::::::
ChildClose(s)

140



141

This closes the stream s to a child GAP process.

::::::::::::::::::::::::
ChildCommand("cmd;",s)

This runs a GAP command "cmd;" on the child process accessed by the stream s. Here "cmd;" is
a string representing the command.

::::::::::::::::::::::::
NextAvailableChild(L)

Inputs a list L of child processes and returns a child in L which is ready for computation (as soon
as such a child is available).

::::::::::::::::::::::::
IsAvailableChild(s)

Inputs a child process s and returns true if s is currently available for computations, and false
otherwise.

::::::::::::::::::::::::
ChildPut(A,"B",s)

This copies a GAP object A on the parent process to an object B on the child process s. (The
copying relies on the function PrintObj(A); )

::::::::::::::::::::::::
ChildGet("A",s)

This functions copies a GAP object A on the child process s and returns it on the parent process.
(The copying relies on the function PrintObj(A); )

::::::::::::::::::::::::
HAPPrintTo("file",R)
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Inputs a name "file" of a new text file and a HAP object R. It writes the object R to "file".
Currently this is only implemented for R equal to a resolution.

::::::::::::::::::::::::
HAPRead("file",R)

Inputs a name "file" containing a HAP object R and returns the object. Currently this is only
implemented for R equal to a resolution.



Chapter 36

Parallel Computation - Extra Functions

::::::::::::::::::::::::
ChildFunction("function(arg);",s)

This runs the GAP function "function(arg);" on a child process accessed by the stream s. The
output from "func;" can be accessed via the stream.

::::::::::::::::::::::::
ChildRead(s)

This returns, as a string, the output of the last application of ChildFunction(” f unction(arg); ”,s).

::::::::::::::::::::::::
ChildReadEval(s)

This returns, as an evaluated string, the output of the last application of
ChildFunction(” f unction(arg); ”,s).

::::::::::::::::::::::::
ParallelList(I,fn,L)

Inputs a list I, a function f n such that f n(x) is defined for all x in I, and a list of children L. It
uses the children in L to compute List(I,x−> f n(x)). (Obviously the function f n must be defined on
all child processes in L.)

143



Chapter 37

Some functions for accessing basic data

::::::::::::::::::::::::
BoundaryMap(C)

Inputs a resolution, chain complex or cochain complex C and returns the function C!.boundary.

::::::::::::::::::::::::
BoundaryMatrix(C,n)

Inputs a chain or cochain complex C and integer n>0. It returns the n-th boundary map of C as a
matrix.

::::::::::::::::::::::::
Dimension(C)

Dimension(M)

Inputs a resolution, chain complex or cochain complex C and returns the function C!.dimension .
Alternatively, inputs an F pG-module M and returns its dimension as a vector space over the field

of p elements.

::::::::::::::::::::::::
EvaluateProperty(X,"name")

Inputs a component object X (such as a ZG-resolution or chain map) and a string "name" (such
as "characteristic" or "type"). It searches X .property for the pair ["name",value] and returns value. If
X .property does not exist, or if ["name",value] does not exist, it returns fail.
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::::::::::::::::::::::::
GroupOfResolution(R)

Inputs a ZG-resolution R and returns the group G.

::::::::::::::::::::::::
Length(R)

Inputs a resolution R and returns its length (i.e. the number of terms of R that HAP has computed).

::::::::::::::::::::::::
Map(f)

Inputs a chain map, or cochain map or equivariant chain map f and returns the mapping function
(as opposed to the target or the source of f ) .

::::::::::::::::::::::::
Source(f)

Inputs a chain map, or cochain map, or equivariant chain map, or F pG-module homomorphism f
and returns it source.

::::::::::::::::::::::::
Target(f)

Inputs a chain map, or cochain map, or equivariant chain map, or F pG-module homomorphism f
and returns its target.



Chapter 38

Miscellaneous

::::::::::::::::::::::::
SL2Z(p)
SL2Z(1/m)

Inputs a prime p or the reciprocal 1/m of a square free integer m. In the first case the function
returns the conjugate SL(2,Z)P of the special linear group SL(2,Z) by the matrix P = [[1,0], [0, p]].
In the second case it returns the group SL(2,Z[1/m]).

::::::::::::::::::::::::
BigStepLCS(G,n)

Inputs a group G and a positive integer n. It returns a subseries G = L1>L2>. . .Lk = 1 of the lower
central series of G such that Li/Li+1 has order greater than n.

::::::::::::::::::::::::
Classify(L,Inv)

Inputs a list of objects L and a function Inv which computes an invariant of each object. It returns
a list of lists which classifies the objects of L according to the invariant..

::::::::::::::::::::::::
RefineClassification(C,Inv)

Inputs a list C := Classi f y(L,OldInv) and returns a refined classification according to the
invariant Inv.
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::::::::::::::::::::::::
Compose(f,g)

Inputs two F pG-module homomorphisms f : M −→ N and g : L −→ M with Source( f ) =
Target(g) . It returns the composite homomorphism f g : L−→ N .

This also applies to group homomorphisms f ,g.

::::::::::::::::::::::::
HAPcopyright()

This function provides details of HAP’S GNU public copyright licence.

::::::::::::::::::::::::
IsLieAlgebraHomomorphism(f)

Inputs an object f and returns true if f is a homomorphism f : A−→ B of Lie algebras (preserving
the Lie bracket).

::::::::::::::::::::::::
IsSuperperfect(G)

Inputs a group G and returns "true" if both the first and second integral homology of G is trivial.
Otherwise, it returns "false".

::::::::::::::::::::::::
MakeHAPManual()

This function creates the manual for HAP from an XML file.

::::::::::::::::::::::::
PermToMatrixGroup(G,n)

Inputs a permutation group G and its degree n. Returns a bijective homomorphism f : G −→M
where M is a group of permutation matrices.



148

::::::::::::::::::::::::
SolutionsMatDestructive(M,B)

Inputs an m×n matrix M and a k×n matrix B over a field. It returns a k×m matrix S satisfying
SM = B.

The function will leave matrix M unchanged but will probably change matrix B.
(This is a trivial rewrite of the standard GAP function SolutionMatDestructive(<mat>,<vec>) .)

::::::::::::::::::::::::
LinearHomomorphismsPersistenceMat(L)

Inputs a composable sequence L of vector space homomorphisms. It returns an integer matrix
containing the dimensions of the images of the various composites. The sequence L is determined up
to isomorphism by this matrix.

::::::::::::::::::::::::
NormalSeriesToQuotientHomomorphisms(L)

Inputs an (increasing or decreasing) chain L of normal subgroups in some group G. This G
is the largest group in the chain. It returns the sequence of composable group homomorphisms
G/L[i]→ G/L[i+/−1].

::::::::::::::::::::::::
TestHap()

This runs a representative sample of HAP functions and checks to see that they produce the
correct output.
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