*
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6*
(for bipartitions) 3.4 *
(for PBRs) 4.4*
(for matrices over a semiring) 5.2<
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6<
(for bipartitions) 3.4<
(for PBRs) 4.4<
(for matrices over a semiring) 5.2 =
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6=
(for bipartitions) 3.4=
(for PBRs) 4.4=
(for matrices over a semiring) 5.2\<
, for Green's classes 12.3-1\^
, for a matrix over finite field group and matrix over finite field 5.7-8\in
5.3-3 ^
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6AnnularJonesMonoid
8.3-5ApsisMonoid
8.3-11AsBipartition
3.3-1AsBlockBijection
3.3-2AsBooleanMat
5.3-2AsInverseSemigroupCongruenceByKernelTrace
16.7-3AsList
5.1-10AsListCanonical
13.1-1AsMatrix
, for a filter and a matrix 5.1-6AsMatrix
, for a filter, matrix, and threshold 5.1-6AsMatrix
, for a filter, matrix, threshold, and period 5.1-6AsMatrixGroup
5.7-10AsMonoid
6.5-4AsMutableList
5.1-10AsPartialPerm
, for a PBR 4.3-3AsPartialPerm
, for a bipartition 3.3-4AsPBR
4.3-1AsPermutation
, for a PBR 4.3-4AsPermutation
, for a bipartition 3.3-5AsRMSCongruenceByLinkedTriple
16.6-8AsRZMSCongruenceByLinkedTriple
16.6-8AsSemigroup
6.5-3AsSemigroupCongruenceByGeneratingPairs
16.6-7AsTransformation
, for a PBR 4.3-2AsTransformation
, for a bipartition 3.3-3BaseDomain
, for a matrix over finite field 5.4-7Bipartition
3.2-1BipartitionByIntRep
3.2-2BlistNumber
5.3-7BlocksNC
3.6-2BooleanMat
5.3-1BooleanMatNumber
5.3-6BrauerMonoid
8.3-2CanonicalBlocks
3.5-18CanonicalBooleanMat
5.3-8CanonicalBooleanMat
, for a perm group and boolean matrix 5.3-8CanonicalBooleanMat
, for a perm group, perm group and boolean matrix 5.3-8CanonicalForm
, for a free inverse semigroup element 10.3-1CanonicalRepresentative
16.6-6CanonicalTransformation
13.12-9CatalanMonoid
8.1-1CharacterTableOfInverseSemigroup
15.1-10ClosureInverseMonoid
6.4-1ClosureInverseSemigroup
6.4-1ClosureMonoid
6.4-1ClosureSemigroup
6.4-1CodomainOfBipartition
3.5-11ComponentRepsOfPartialPermSemigroup
13.13-1ComponentRepsOfTransformationSemigroup
13.12-1ComponentsOfPartialPermSemigroup
13.13-2ComponentsOfTransformationSemigroup
13.12-2CompositionMapping2
, for IsRMSIsoByTriple 17.2-4CompositionMapping2
, for IsRZMSIsoByTriple 17.2-4CongruenceClasses
16.3-5CongruenceClassOfElement
16.3-4CongruencesOfPoset
16.4-7CongruencesOfSemigroup
, for a semigroup 16.4-1CongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-1ContentOfFreeBandElement
10.4-7ContentOfFreeBandElementCollection
10.4-7CrossedApsisMonoid
8.3-11CyclesOfPartialPerm
13.13-3CyclesOfPartialPermSemigroup
13.13-4CyclesOfTransformationSemigroup
13.12-3DClass
12.1-2DClasses
12.1-4DClassNC
12.1-3DClassOfHClass
12.1-1DClassOfLClass
12.1-1DClassOfRClass
12.1-1DClassReps
12.1-5DegreeOfBipartition
3.5-1DegreeOfBipartitionCollection
3.5-1DegreeOfBipartitionSemigroup
3.8-5DegreeOfBlocks
3.6-5DegreeOfPBR
4.5-2DegreeOfPBRCollection
4.5-2DegreeOfPBRSemigroup
4.6-2DigraphOfActionOnPairs
, for a transformation semigroup 13.12-4DigraphOfActionOnPairs
, for a transformation semigroup and an integer 13.12-4DigraphOfActionOnPoints
, for a transformation semigroup 13.12-5DigraphOfActionOnPoints
, for a transformation semigroup and an integer 13.12-5DimensionOfMatrixOverSemiring
5.1-3DimensionOfMatrixOverSemiringCollection
5.1-4DirectProduct
6.4-4DirectProductOp
6.4-4DomainOfBipartition
3.5-10DotSemilatticeOfIdempotents
18.2-2DotString
18.2-1DualSymmetricInverseMonoid
8.3-7DualSymmetricInverseSemigroup
8.3-7ELM_LIST
(for Rees (0-)matrix semigroup isomorphisms by triples) 17.2-6ELM_LIST
, for IsRMSIsoByTriple 17.2-3EmptyPBR
4.2-3EndomorphismMonoid
, for a digraph 6.7-1EndomorphismMonoid
, for a digraph and vertex coloring 6.7-1EndomorphismsPartition
8.1-2Enumerate
13.1-3EnumeratorCanonical
13.1-1EquivalenceRelationCanonicalLookup
16.3-11EquivalenceRelationCanonicalPartition
16.3-12EquivalenceRelationLookup
16.3-10EvaluateWord
13.5-1ExtRepOfObj
, for a PBR 4.5-3ExtRepOfObj
, for a bipartition 3.5-3ExtRepOfObj
, for a blocks 3.6-3FactorisableDualSymmetricInverseMonoid
8.3-8Factorization
13.5-2FixedPointsOfTransformationSemigroup
, for a transformation semigroup 13.12-6FreeBand
, for a given rank 10.4-1FreeBand
, for a list of names 10.4-1FreeBand
, for various names 10.4-1FreeInverseSemigroup
, for a given rank 10.1-1FreeInverseSemigroup
, for a list of names 10.1-1FreeInverseSemigroup
, for various names 10.1-1FullBooleanMatMonoid
8.6-1FullMatrixMonoid
8.5-1FullPBRMonoid
8.4-1FullTropicalMaxPlusMonoid
8.7-1FullTropicalMinPlusMonoid
8.7-2GeneralLinearMonoid
8.5-1GeneratingPairsOfLeftSemigroupCongruence
16.2-4GeneratingPairsOfRightSemigroupCongruence
16.2-4GeneratingPairsOfSemigroupCongruence
16.2-4Generators
13.6-1GeneratorsOfSemigroupIdeal
7.2-1GeneratorsSmallest
, for a semigroup 13.6-5GLM
8.5-1GossipMonoid
8.6-5GraphInverseSemigroup
11.1-1GraphOfGraphInverseSemigroup
11.1-5GreensDClasses
12.1-4GreensDClassOfElement
12.1-2GreensDClassOfElement
, for a free band and element 10.5-1GreensDClassOfElementNC
12.1-3GreensHClasses
12.1-4GreensHClassOfElement
12.1-2GreensHClassOfElement
, for a Rees matrix semigroup 12.1-2GreensHClassOfElementNC
12.1-3GreensJClasses
12.1-4GreensLClasses
12.1-4GreensLClassOfElement
12.1-2GreensLClassOfElementNC
12.1-3GreensRClasses
12.1-4GreensRClassOfElement
12.1-2GreensRClassOfElementNC
12.1-3GroupHClass
12.4-1GroupOfUnits
13.8-1HallMonoid
8.6-4HClass
12.1-2HClass
, for a Rees matrix semigroup 12.1-2HClasses
12.1-4HClassNC
12.1-3HClassReps
12.1-5IdempotentGeneratedSubsemigroup
13.9-3Idempotents
13.9-1IdentityBipartition
3.2-3IdentityMatrixOverFiniteField
, for a finite field and a pos int 5.4-2IdentityMatrixOverFiniteField
, for a matrix over finite field and pos int 5.4-2IdentityPBR
4.2-4ImagesElm
, for IsRMSIsoByTriple 17.2-5ImagesRepresentative
, for IsRMSIsoByTriple 17.2-5IndexPeriodOfSemigroupElement
13.4-1InfoSemigroups
2.6-1InjectionNormalizedPrincipalFactor
12.4-7InjectionPrincipalFactor
12.4-7IntRepOfBipartition
3.5-4InverseMonoidByGenerators
6.2-1InverseOp
5.6-1InverseOp
, for an integer matrix 5.5-1InverseSemigroupByGenerators
6.2-1InverseSemigroupCongruenceByKernelTrace
16.7-2InverseSubsemigroupByProperty
6.4-3IrredundantGeneratingSubset
13.6-3IsActingSemigroup
6.1-3IsAntiSymmetricBooleanMat
5.3-13IsAperiodicSemigroup
14.1-18IsBand
14.1-1IsBipartition
3.1-1IsBipartitionCollColl
3.1-2IsBipartitionCollection
3.1-2IsBipartitionMonoid
3.8-1IsBipartitionPBR
4.5-8IsBipartitionSemigroup
3.8-1IsBlockBijection
3.5-16IsBlockBijectionMonoid
3.8-2IsBlockBijectionPBR
4.5-8IsBlockBijectionSemigroup
3.8-2IsBlockGroup
14.1-2IsBlocks
3.6-1IsBooleanMat
5.1-8IsBooleanMatCollColl
5.1-9IsBooleanMatCollection
5.1-9IsBooleanMatMonoid
5.7-2IsBooleanMatSemigroup
5.7-1IsBrandtSemigroup
15.2-2IsCliffordSemigroup
15.2-1IsColTrimBooleanMat
5.3-9IsCombinatorialSemigroup
14.1-18IsCommutativeSemigroup
14.1-3IsCompletelyRegularSemigroup
14.1-4IsCompletelySimpleSemigroup
14.1-21IsCongruenceClass
16.3-1IsCongruenceFreeSemigroup
14.1-5IsCongruencePoset
16.4-4IsConnectedTransformationSemigroup
, for a transformation semigroup 13.12-10IsDTrivial
14.1-18IsDualTransBipartition
3.5-13IsDualTransformationPBR
4.5-10IsEmptyPBR
4.5-5IsEnumerableSemigroupRep
6.1-4IsEquivalenceBooleanMat
5.3-16IsEUnitaryInverseSemigroup
15.2-3IsFactorisableInverseMonoid
15.2-4IsFinite
5.7-3IsFreeBand
, for a given semigroup 10.4-3IsFreeBandCategory
10.4-2IsFreeBandElement
10.4-4IsFreeBandElementCollection
10.4-5IsFreeBandSubsemigroup
10.4-6IsFreeInverseSemigroup
10.1-3IsFreeInverseSemigroupCategory
10.1-2IsFreeInverseSemigroupElement
10.1-4IsFreeInverseSemigroupElementCollection
10.1-5IsFullMatrixMonoid
8.5-3IsFullyEnumerated
13.1-4IsGeneralLinearMonoid
8.5-3IsGraphInverseSemigroup
11.1-4IsGraphInverseSemigroupElement
11.1-4IsGraphInverseSemigroupElementCollection
11.1-6IsGraphInverseSubsemigroup
11.1-7IsGreensClassNC
12.3-3IsGreensDGreaterThanFunc
12.1-12IsGroupAsSemigroup
14.1-6IsHTrivial
14.1-18IsIdempotentGenerated
14.1-7IsIdentityPBR
4.5-6IsIntegerMatrix
5.1-8IsIntegerMatrixCollColl
5.1-9IsIntegerMatrixCollection
5.1-9IsIntegerMatrixMonoid
5.7-2IsIntegerMatrixSemigroup
5.7-1IsInverseSemigroupCongruenceByKernelTrace
16.7-1IsInverseSemigroupCongruenceClassByKernelTrace
16.7-6IsIsomorphicSemigroup
17.1-1IsJoinIrreducible
15.2-5IsLeftCongruenceClass
16.3-2IsLeftSemigroupCongruence
16.1-2IsLeftSimple
14.1-8IsLeftZeroSemigroup
14.1-9IsLinkedTriple
16.6-5IsLTrivial
14.1-18IsMajorantlyClosed
15.2-6IsMatrixOverFiniteField
5.1-8IsMatrixOverFiniteFieldCollColl
5.1-9IsMatrixOverFiniteFieldCollection
5.1-9IsMatrixOverFiniteFieldGroup
5.7-7IsMatrixOverFiniteFieldMonoid
5.7-2IsMatrixOverFiniteFieldSemigroup
5.7-1IsMatrixOverSemiring
5.1-1IsMatrixOverSemiringCollColl
5.1-2IsMatrixOverSemiringCollection
5.1-2IsMatrixOverSemiringMonoid
5.7-2IsMatrixOverSemiringSemigroup
5.7-1IsMaximalSubsemigroup
13.10-3IsMaxPlusMatrix
5.1-8IsMaxPlusMatrixCollColl
5.1-9IsMaxPlusMatrixCollection
5.1-9IsMaxPlusMatrixMonoid
5.7-2IsMaxPlusMatrixSemigroup
5.7-1IsMinPlusMatrix
5.1-8IsMinPlusMatrixCollColl
5.1-9IsMinPlusMatrixCollection
5.1-9IsMinPlusMatrixMonoid
5.7-2IsMinPlusMatrixSemigroup
5.7-1IsMonogenicInverseMonoid
15.2-8IsMonogenicInverseSemigroup
15.2-7IsMonogenicMonoid
14.1-11IsMonogenicSemigroup
14.1-10IsMonoidAsSemigroup
14.1-12IsNTPMatrix
5.1-8IsNTPMatrixCollColl
5.1-9IsNTPMatrixCollection
5.1-9IsNTPMatrixMonoid
5.7-2IsNTPMatrixSemigroup
5.7-1IsomorphismMatrixGroup
5.7-9IsomorphismMonoid
6.5-2IsomorphismPermGroup
6.5-5IsomorphismReesMatrixSemigroup
, for a D-class 12.4-7IsomorphismReesMatrixSemigroup
, for a semigroup 13.15-1IsomorphismReesMatrixSemigroupOverPermGroup
13.15-1IsomorphismReesZeroMatrixSemigroup
13.15-1IsomorphismReesZeroMatrixSemigroupOverPermGroup
13.15-1IsomorphismSemigroup
6.5-1IsomorphismSemigroups
17.1-3IsOntoBooleanMat
5.3-14IsOrthodoxSemigroup
14.1-13IsPartialOrderBooleanMat
5.3-15IsPartialPermBipartition
3.5-15IsPartialPermBipartitionMonoid
3.8-3IsPartialPermBipartitionSemigroup
3.8-3IsPartialPermPBR
4.5-11IsPBR
4.1-1IsPBRCollColl
4.1-2IsPBRCollection
4.1-2IsPBRMonoid
4.6-1IsPBRSemigroup
4.6-1IsPermBipartition
3.5-14IsPermBipartitionGroup
3.8-4IsPermPBR
4.5-12IsRectangularBand
14.1-14IsRectangularGroup
14.1-15IsReesCongruenceClass
16.8-2IsReflexiveBooleanMat
5.3-11IsRegularGreensClass
12.3-2IsRegularSemigroup
14.1-16IsRightCongruenceClass
16.3-3IsRightSemigroupCongruence
16.1-3IsRightSimple
14.1-8IsRightZeroSemigroup
14.1-17IsRMSCongruenceByLinkedTriple
16.6-1IsRMSCongruenceClassByLinkedTriple
16.6-3IsRMSIsoByTriple
17.2-1IsRowTrimBooleanMat
5.3-9IsRTrivial
14.1-18IsRZMSCongruenceByLinkedTriple
16.6-1IsRZMSCongruenceClassByLinkedTriple
16.6-3IsRZMSIsoByTriple
17.2-1IsSemiband
14.1-7IsSemigroupCongruence
16.1-1IsSemigroupWithAdjoinedZero
14.1-19IsSemilattice
14.1-20IsSimpleSemigroup
14.1-21IsSubrelation
16.5-1IsSuperrelation
16.5-2IsSymmetricBooleanMat
5.3-10IsSynchronizingSemigroup
, for a transformation semigroup 14.1-22IsSynchronizingSemigroup
, for a transformation semigroup and a positive integer 14.1-22IsTorsion
5.7-4IsTorsion
, for an integer matrix 5.5-2IsTotalBooleanMat
5.3-14IsTransBipartition
3.5-12IsTransformationPBR
4.5-9IsTransitive
, for a transformation
semigroup and a pos int 13.12-7IsTransitive
, for a transformation
semigroup and a set 13.12-7IsTransitiveBooleanMat
5.3-12IsTrimBooleanMat
5.3-9IsTropicalMatrix
5.1-8IsTropicalMatrixCollection
5.1-9IsTropicalMatrixMonoid
5.7-2IsTropicalMatrixSemigroup
5.7-1IsTropicalMaxPlusMatrix
5.1-8IsTropicalMaxPlusMatrixCollColl
5.1-9IsTropicalMaxPlusMatrixCollection
5.1-9IsTropicalMaxPlusMatrixMonoid
5.7-2IsTropicalMaxPlusMatrixSemigroup
5.7-1IsTropicalMinPlusMatrix
5.1-8IsTropicalMinPlusMatrixCollColl
5.1-9IsTropicalMinPlusMatrixCollection
5.1-9IsTropicalMinPlusMatrixMonoid
5.7-2IsTropicalMinPlusMatrixSemigroup
5.7-1IsUniformBlockBijection
3.5-17IsUnitRegularMonoid
14.1-23IsUniversalPBR
4.5-7IsUniversalSemigroupCongruence
16.9-1IsUniversalSemigroupCongruenceClass
16.9-2IsVertex
, for a graph inverse semigroup element 11.1-3IsZeroGroup
14.1-24IsZeroRectangularBand
14.1-25IsZeroSemigroup
14.1-26IsZeroSimpleSemigroup
14.1-27IteratorCanonical
13.1-1IteratorFromOldGeneratorsFile
19.1-3IteratorFromPickledFile
19.1-3IteratorOfDClasses
12.2-2IteratorOfDClassReps
12.2-1IteratorOfHClasses
12.2-2IteratorOfHClassReps
12.2-1IteratorOfLClasses
12.2-2IteratorOfLClassReps
12.2-1IteratorOfRClasses
12.2-2IteratorOfRClassReps
12.2-1JClasses
12.1-4JoinIrreducibleDClasses
15.1-2JoinLeftSemigroupCongruences
16.5-4JoinRightSemigroupCongruences
16.5-4JoinSemigroupCongruences
16.5-4JoinSemilatticeOfCongruences
, for a congruence poset and a function 16.4-10JoinSemilatticeOfCongruences
, for a list or collection and a function 16.4-10JonesMonoid
8.3-3KernelOfSemigroupCongruence
16.7-4LargestElementSemigroup
13.12-8LatticeOfCongruences
, for a semigroup 16.4-5LatticeOfCongruences
, for a semigroup and a multiplicative element collection 16.4-5LatticeOfLeftCongruences
, for a semigroup 16.4-5LatticeOfLeftCongruences
, for a semigroup and a multiplicative element collection 16.4-5LatticeOfRightCongruences
, for a semigroup 16.4-5LatticeOfRightCongruences
, for a semigroup and a multiplicative element collection 16.4-5LClass
12.1-2LClasses
12.1-4LClassNC
12.1-3LClassOfHClass
12.1-1LClassReps
12.1-5LeftBlocks
3.5-6LeftCayleyGraphSemigroup
13.2-1LeftCongruenceClasses
16.3-5LeftCongruenceClassOfElement
16.3-4LeftCongruencesOfSemigroup
, for a semigroup 16.4-1LeftCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-1LeftInverse
, for a matrix over finite field 5.4-6LeftOne
, for a bipartition 3.2-4LeftProjection
3.2-4LeftSemigroupCongruence
16.2-2LeftZeroSemigroup
9.1-5LengthOfLongestDClassChain
12.1-11MajorantClosure
15.1-3Matrix
, for a filter and a matrix 5.1-5Matrix
, for a semiring and a matrix 5.1-5MaximalDClasses
12.1-7MaximalSubsemigroups
, for a finite semigroup 13.10-1MaximalSubsemigroups
, for a finite semigroup and a record 13.10-1MeetSemigroupCongruences
16.5-3MinimalCongruences
, for a congruence poset 16.4-11MinimalCongruences
, for a list or collection 16.4-11MinimalCongruencesOfSemigroup
, for a semigroup 16.4-2MinimalCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-2MinimalDClass
12.1-6MinimalFactorization
13.5-3MinimalIdeal
13.7-1MinimalIdealGeneratingSet
7.2-2MinimalInverseMonoidGeneratingSet
13.6-4MinimalInverseSemigroupGeneratingSet
13.6-4MinimalLeftCongruencesOfSemigroup
, for a semigroup 16.4-2MinimalLeftCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-2MinimalMonoidGeneratingSet
13.6-4MinimalRightCongruencesOfSemigroup
, for a semigroup 16.4-2MinimalRightCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-2MinimalSemigroupGeneratingSet
13.6-4MinimalWord
, for free inverse semigroup element 10.3-2MinimumGroupCongruence
16.7-7Minorants
15.1-4ModularPartitionMonoid
8.3-10MonogenicSemigroup
9.1-2MotzkinMonoid
8.3-6MultiplicativeNeutralElement
, for an H-class 12.4-5MultiplicativeZero
13.7-3MunnSemigroup
8.2-1NaturalLeqBlockBijection
3.4-3NaturalLeqInverseSemigroup
15.1-1NaturalLeqPartialPermBipartition
3.4-2NewIdentityMatrixOverFiniteField
5.4-3NewMatrixOverFiniteField
, for a filter, a field, an integer, and a list 5.4-1NewZeroMatrixOverFiniteField
5.4-3NonTrivialCongruenceClasses
16.3-7NonTrivialEquivalenceClasses
16.3-6NonTrivialLeftCongruenceClasses
16.3-7NonTrivialRightCongruenceClasses
16.3-7NormalizedPrincipalFactor
12.4-8Normalizer
, for a perm group, semigroup, record 13.11-1Normalizer
, for a semigroup, record 13.11-1NormalizeSemigroup
5.7-5NrBlocks
, for a bipartition 3.5-9NrBlocks
, for blocks 3.5-9NrCongruenceClasses
16.3-9NrDClasses
12.1-9NrEquivalenceClasses
16.3-8NrHClasses
12.1-9NrIdempotents
13.9-2NrLClasses
12.1-9NrLeftBlocks
3.5-7NrLeftCongruenceClasses
16.3-9NrMaximalSubsemigroups
13.10-2NrRClasses
12.1-9NrRegularDClasses
12.1-8NrRightBlocks
3.5-8NrRightCongruenceClasses
16.3-9NrTransverseBlocks
, for a bipartition 3.5-2NrTransverseBlocks
, for blocks 3.6-4NumberBlist
5.3-7NumberBooleanMat
5.3-6NumberPBR
4.5-4OnBlist
5.3-4OnLeftBlocks
3.7-2OnLeftCongruenceClasses
16.3-13OnRightBlocks
3.7-1OnRightCongruenceClasses
16.3-14Order
5.5-3OrderAntiEndomorphisms
8.1-5OrderEndomorphisms
, monoid of order preserving transformations 8.1-5PartialBrauerMonoid
8.3-2PartialDualSymmetricInverseMonoid
8.3-7PartialJonesMonoid
8.3-4PartialOrderAntiEndomorphisms
8.1-5PartialOrderEndomorphisms
8.1-5PartialOrderOfDClasses
12.1-10PartialPermLeqBipartition
3.4-1PartialTransformationMonoid
8.1-3PartialUniformBlockBijectionMonoid
8.3-8PartitionMonoid
8.3-1PBR
4.2-1PBRNumber
4.5-4PeriodNTPMatrix
5.1-12PermLeftQuoBipartition
3.4-4PlanarModularPartitionMonoid
8.3-10PlanarPartitionMonoid
8.3-9PlanarUniformBlockBijectionMonoid
8.3-8PODI
, monoid of order preserving or reversing partial perms 8.2-3POI
, monoid of order preserving partial perms 8.2-3POPI
, monoid of orientation preserving partial perms 8.2-3PORI
, monoid of orientation preserving or reversing partial perms 8.2-3PosetOfCongruences
16.4-9PosetOfPrincipalCongruences
, for a semigroup 16.4-6PosetOfPrincipalCongruences
, for a semigroup and a multiplicative element collection 16.4-6PosetOfPrincipalLeftCongruences
, for a semigroup 16.4-6PosetOfPrincipalLeftCongruences
, for a semigroup and a multiplicative element collection 16.4-6PosetOfPrincipalRightCongruences
, for a semigroup 16.4-6PosetOfPrincipalRightCongruences
, for a semigroup and a multiplicative element collection 16.4-6PositionCanonical
13.1-2PrimitiveIdempotents
15.1-5PrincipalCongruencesOfSemigroup
, for a semigroup 16.4-3PrincipalCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-3PrincipalFactor
12.4-8PrincipalLeftCongruencesOfSemigroup
, for a semigroup 16.4-3PrincipalLeftCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-3PrincipalRightCongruencesOfSemigroup
, for a semigroup 16.4-3PrincipalRightCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-3ProjectionFromBlocks
3.6-6RadialEigenvector
5.6-2Random
, for a semigroup 13.3-1RandomBipartition
3.2-7RandomBlockBijection
3.2-7RandomInverseMonoid
6.6-1RandomInverseSemigroup
6.6-1RandomMatrix
, for a filter and a matrix 5.1-7RandomMatrix
, for a semiring and a matrix 5.1-7RandomMonoid
6.6-1RandomPBR
4.2-2RandomSemigroup
6.6-1Range
, for a graph inverse semigroup element 11.1-2RankOfBipartition
3.5-2RankOfBlocks
3.6-4RClass
12.1-2RClasses
12.1-4RClassNC
12.1-3RClassOfHClass
12.1-1RClassReps
12.1-5ReadGenerators
19.1-1ReadOldGenerators
19.1-1RectangularBand
9.1-3ReflexiveBooleanMatMonoid
8.6-3RegularBooleanMatMonoid
8.6-2RegularDClasses
12.1-8RepresentativeOfMinimalDClass
13.7-2RepresentativeOfMinimalIdeal
13.7-2RightBlocks
3.5-5RightCayleyGraphSemigroup
13.2-1RightCongruenceClasses
16.3-5RightCongruenceClassOfElement
16.3-4RightCongruencesOfSemigroup
, for a semigroup 16.4-1RightCongruencesOfSemigroup
, for a semigroup and a multiplicative element collection 16.4-1RightCosetsOfInverseSemigroup
15.1-6RightInverse
, for a matrix over finite field 5.4-6RightOne
, for a bipartition 3.2-5RightProjection
3.2-5RightSemigroupCongruence
16.2-3RightZeroSemigroup
9.1-5RMSCongruenceByLinkedTriple
16.6-2RMSCongruenceClassByLinkedTriple
16.6-4RMSIsoByTriple
17.2-2RMSNormalization
6.5-7RookMonoid
8.2-2RookPartitionMonoid
8.3-1RowRank
, for a matrix over finite field 5.4-5RowSpaceBasis
, for a matrix over finite field 5.4-4RowSpaceTransformation
, for a matrix over finite field 5.4-4RowSpaceTransformationInv
, for a matrix over finite field 5.4-4RZMSCongruenceByLinkedTriple
16.6-2RZMSCongruenceClassByLinkedTriple
16.6-4RZMSConnectedComponents
13.14-2RZMSDigraph
13.14-1RZMSIsoByTriple
17.2-2RZMSNormalization
6.5-6SameMinorantsSubgroup
15.1-7SchutzenbergerGroup
12.4-2SemigroupCongruence
16.2-1SemigroupIdeal
7.1-1SemigroupIdealOfReesCongruence
16.8-1SEMIGROUPS.DefaultOptionsRec
6.3-1SemigroupsMakeDoc
2.4-1SemigroupsTestExtreme
2.5-3SemigroupsTestInstall
2.5-1SemigroupsTestStandard
2.5-2SingularApsisMonoid
8.3-11SingularBrauerMonoid
8.3-2SingularCrossedApsisMonoid
8.3-11SingularDualSymmetricInverseMonoid
8.3-7SingularFactorisableDualSymmetricInverseMonoid
8.3-8SingularJonesMonoid
8.3-3SingularModularPartitionMonoid
8.3-10SingularOrderEndomorphisms
8.1-5SingularPartitionMonoid
8.3-1SingularPlanarModularPartitionMonoid
8.3-10SingularPlanarPartitionMonoid
8.3-9SingularPlanarUniformBlockBijectionMonoid
8.3-8SingularTransformationMonoid
8.1-4SingularTransformationSemigroup
8.1-4SingularUniformBlockBijectionMonoid
8.3-8SLM
8.5-2SmallerDegreePartialPermRepresentation
15.1-8SmallestElementSemigroup
13.12-8SmallestIdempotentPower
13.4-2SmallestMultiplicationTable
17.1-2SmallGeneratingSet
13.6-2SmallInverseMonoidGeneratingSet
13.6-2SmallInverseSemigroupGeneratingSet
13.6-2SmallMonoidGeneratingSet
13.6-2SmallSemigroupGeneratingSet
13.6-2Source
, for a graph inverse semigroup element 11.1-2SpecialLinearMonoid
8.5-2SpectralRadius
5.6-3Splash
18.1-1Star
, for a PBR 4.5-1Star
, for a bipartition 3.2-6StarOp
, for a PBR 4.5-1StarOp
, for a bipartition 3.2-6StructureDescription
, for an H-class 12.4-6StructureDescriptionMaximalSubgroups
12.4-4StructureDescriptionSchutzenbergerGroups
12.4-3SubsemigroupByProperty
, for a semigroup and function 6.4-2SubsemigroupByProperty
, for a semigroup, function, and limit on the size of the subsemigroup 6.4-2Successors
5.3-5SupersemigroupOfIdeal
7.2-3TemperleyLiebMonoid
8.3-3TexString
18.3-1ThresholdNTPMatrix
5.1-12ThresholdTropicalMatrix
5.1-11TikzString
18.4-1TraceOfSemigroupCongruence
16.7-5TransposedMatImmutable
, for a matrix over finite field 5.4-8TriangularBooleanMatMonoid
8.6-6TrivialSemigroup
9.1-1UnderlyingSemigroupOfCongruencePoset
16.4-8UnderlyingSemigroupOfSemigroupWithAdjoinedZero
13.7-4UniformBlockBijectionMonoid
8.3-8UnitriangularBooleanMatMonoid
8.6-6UniversalPBR
4.2-5UniversalSemigroupCongruence
16.9-3UnweightedPrecedenceDigraph
5.6-4VagnerPrestonRepresentation
15.1-9WriteGenerators
19.1-2ZeroSemigroup
9.1-4
generated by GAPDoc2HTML