GAP - Reference Manual

Release 4.8.9, 18-Dec-2017

The GAP Group

The GAP Group Email: support@gap-system.org
Homepage: https://www.gap-system.org

mailto://support@gap-system.org
https://www.gap-system.org

GAP - Reference Manual 2

Copyright

Copyright © (1987-2017) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are distributed under the terms of
the GNU General Public License, see http://www.gnu.org/licenses/gpl.html or the file GPL in the etc
directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in Section
1.4 of this manual.

GAP is developed over a long time and has many authors and contributors. More detailed information can

be found in Section 1.2 of this manual.

http://www.gnu.org/licenses/gpl.html

Contents

1 Preface 23
1.1 The GAP System 23
1.2 Authors and Maintainers o 25
1.3 Acknowledgements 25
1.4 Copyrightand License i 26
1.5 Further Information about GAP 27
2 The Help System 28
2.1 InvokingtheHelp 28
2.2 Browsing through the Sections 28
2.3 Changingthe Help Viewer 29
24 ThePager Command, 31
3 Running GAP 33
3.1 Command Line Options 33
32 Thegap.iniand gaprcfiles L 38
3.3 Saving and Loading a Workspace 41
3.4 Testing for the System Architecture, 42
3.5 Global Values that Control the GAP Session 42
3.6 Coloring the Promptand Input 43
4 The Programming Language 45
4.1 Language OVerview o v v it e e 45
42 Lexical Structure e e e e e 46
43 Symbols e e 46
4.4 WhItespaces o v v v e e e e e e e 47
45 Keywords e e e 48
4.6 Identifiers e e e 48
477 EXPIressions oo ..o i e e e e e e e 49
4.8 Variables e 50
49 More About Global Variables 51
4.10 Namespaces for GAP packages 54
411 FunctionCalls e e e e 55
412 CompariSOnS v v v v e e e e e e e e e e e e e e e e e 56
4.13 Arithmetic Operators L e e e 57
414 Statementso i e e e e e e e e 59

GAP - Reference Manual

415 ASSIZNMENTS i e e e e e e e e e e e e e e
4,16 ProcedureCalls e
417 IF . o e
418 While. e e e
419 Repeat e e e e
420 For e e e e
421 Break e e
422 ContinuUe v v vt e e e e e e e e e e e e e e e e e
423 Function e e e e e e
424 Return (Withor without Value)
Functions

5.1 Information aboutafunction,
5.2 Calling a function with a list argument that is interpreted as several arguments . . .
5.3 Calling a function with a time limit
54 Functions thatdonothing
5.5 FunctionTypes. 0 i e e e
5.6 Naming Conventions e
Main Loop and Break Loop

6.1 MainLoop
6.2 Special Rules for Input Lines
6.3 ViewandPrint
6.4 BreakLoops
6.5 Variable AccessinaBreakLoop,
6.6 Errorand ErrorCount
6.7 Leaving GAP
6.8 LineEditing e
6.9 Editing using the readlinelibrary L oo
6.10 EditingFiles e
6.11 Editor Support
6.12 Changing the Screen Size e
6.13 TeachingMode
Debugging and Profiling Facilities

7.1 Recovery from NoMethodFound-Errors
7.2 Inspecting Applicable Methods oL
7.3 TracingMethods
74 InfoFunctions
7.5 ASSEItiONS e e e e e e e e e
7.6 TIMING e e e e e e e e
7.7 Profiling
7.8 Information about the versionused
7.9 TestFiles e e e
7.10 Debugging Recursion
7.11 Global Memory Informationo

59
60
60
62
62
63
65
65
66
69

70
70
72
73
74
76
77

79
79
81
81
85
89
91
92
93
96
99
99
100
100

GAP - Reference Manual

8 Options Stack

8.1 Functions Dealing with the Options Stack
8.2 Options Stack —anExample L o
9 Files and Filenames
9.1 Portability e e e
9.2 GAPRootDirectories
0.3 DIrectories i it e e e
94 FileNames e
9.5 Special Filenames
9.6 File Access e
9.7 File Operations. o i i e e e e e
10 Streams
10.1 Categories for Streams and the StreamsFamily
10.2 Operations applicable to All Streams
10.3 Operations for Input Streams
10.4 Operations for Output Streams o
10.5 File Streams oL e e
10.6 User Streams o v v it e e e e e e e
10.7 String Streams e e e e e e e e e e
10.8 Input-Output Streams L e e
10.9 Dummy Streams e e e e e e e
10.10 Handling of Streams in the Background
10.11 Commaseparatedfiles

11 Processes

11.1

Processand Exec e

12 Objects and Elements

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Objects e
Elements as equivalence classes,
SetS . . o e e
Domains L
Identical Objects e
Mutability and Copyability
Duplication of Objects e
Other Operations Applicable to any Object

13 Types of Objects

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Families e e
Filters e e
CateOoTieS . .+ . v v o e e e e e e e e e
Representation
Atributes e e e
Setter and Tester for Attributes o
Properties e

127
127
129

130
130
130
131
133
134
134
135

139
139
141
141
144
147
148
148
149
151
151
152

153
153

156
156
156
157
157
157
159
161
162

GAP - Reference Manual

13.8° Other Filters e
139 Types o e e
14 Integers
14.1 Integers: Global Variables
14.2 Elementary Operations for Integers
14.3 Quotients and Remainders
14.4 Prime Integers and Factorization
145 Residue ClassRings e
14.6 Check Digits e e e
147 Random Sources e

15 Number Theory

15.1
15.2
15.3
15.4
15.5
15.6
15.7

InfoNumtheor (Info Class)
Prime Residues
Primitive Roots and Discrete Logarithms
Roots Modulo Integers
Multiplicative Arithmetic Functions
Continued Fractions e
Miscellaneous e e e e e e

16 Combinatorics

16.1
16.2
16.3
16.4

Combinatorial Numbers L
Combinations, Arrangements and Tuples
Fibonacci and Lucas Sequences
Permanentof aMatrixo

17 Rational Numbers

17.1
17.2

Rationals: Global Variables
Elementary Operations for Rationals

18 Cyclotomic Numbers

18.1
18.2
18.3
18.4
18.5
18.6

19 Floats

19.1
19.2
19.3
19.4
19.5

Operations for Cyclotomics oo
Infinity and negative Infinity L oL oL
Comparisons of Cyclotomics L
ATLAS Irrationalities
Galois Conjugacy of Cyclotomics,
Internally Represented Cyclotomics

Asamplerun. L
Methods o
High-precision-specific methods
Complex arithmetic
Interval-specificmethods

175
175

177
177
178
181
184
189
191
192

195
195
195
197
198
201
202
203

205
205
208
217
218

220
220
221

223
223
228
229
229
233
235

GAP - Reference Manual

20 Booleans

21

20.1
20.2
20.3
20.4

Lists
21.1
21.2
21.3
214
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21
21.22
21.23

IsBool (Filter) e
Fail (Variable) e
Comparisons of Booleans
Operations for Booleans

List Categories v v v i e e e e e e e e e e e e e e
Basic Operations for Lists L
ListElements e
List Assignment e e e e e e e
IsBound and Unbind for Lists
Identical Lists e
Duplication of Lists e
Membership Test for Lists o
Enlarging Internally Represented Lists
Comparisons of Lists
Arithmetic for Lists
Filters Controlling the Arithmetic Behaviourof Lists
Additive Arithmetic for Lists Lo
Multiplicative Arithmetic for Lists
Mutability Status and List Arithmetic
Finding Positions in Lists
Properties and Attributes for Lists oL oL oL oo
Sorting Lists o e e e e
Sorted Listsand Sets L
Operations for Lists e
Advanced List Manipulations
Ranges oL
Enumerators

22 Boolean Lists

23

22.1
22.2
22.3
22.4
22.5

IsBlist (Filter) e
Boolean Lists Representing Subsets
Set Operations via Boolean Lists
Function that Modify Boolean Lists
More about Boolean Lists L

Row Vectors

23.1
23.2
23.3
23.4
23.5
23.6
23.7

IsRowVector (Filter) e
Operators for Row Vectors
Row Vectors over Finite Fields
Coefficient List Arithmetic
Shifting and Trimming Coefficient Lists
Functions for Coding Theory
Vectors as coefficients of polynomials

245
245
245
246
246

249
249
251
252
254
257
258
259
261
261
262
263
263
265
267
270
271
275
277
279
282
292
294
296

298
298
299
300
301
302

GAP - Reference Manual

24 Matrices

25

24.1
24.2
243
24.4
24.5
24.6
24.7
24.8
24.9
24.10
24.11
24.12
24.13
24.14
24.15
24.16
24.17

InfoMatrix (InfoClass) e
Categories Of MatriCes v v v i i e e e e e e e
Operators for Matrices oL e e e e
Properties and Attributes of Matrices
Matrix Constructionso e e
Random Matrices
Matrices Representing Linear Equations and the Gaussian Algorithm
Eigenvectors and eigenvalueso
Elementary Divisors e
Echelonized Matrices e
Matrices as BasisofaRow Space
Triangular Matrices
Matrices as Linear Mappings o it
Matrices over Finite Fields
Inverse and Nullspace of an Integer Matrix ModuloanIdeal
Special Multiplication Algorithms for Matricesover GF(2)
Block Matrices e e e

Integral matrices and lattices

25.1
25.2
25.3
254
25.5
25.6

Linear equations over the integers and Integral Matrices
Normal Forms over the Integers
Determinant of an integer matrixo
Decompositions L e e e e e
Lattice Reduction
Orthogonal Embeddings

26 Vector and matrix objects

27

26.1
26.2
26.3
26.4
26.5
26.6

Fundamentalideasandrules
Categories of vectors and matricest
Constructing vector and matrix objects
Operations for row vector objects
Operations for row list matrix objects
Operations for flat matrix objects

Strings and Characters

27.1
27.2
27.3
27.4
27.5
27.6
27.7
27.8
279
27.10
27.11

IsCharand IsString e
Special Characters e e
Triple Quoted Strings e
Internally Represented Strings o L.
Recognizing Characters it
Comparisons of Strings L
Operations to Produce or Manipulate Strings
Character Conversion i v vt i e e e e e e
Operations to Evaluate Strings
Calendar Arithmetic e
Obtaining LaTeX Representations of Objects

314
314
314
315
318
320
322
323
325
326
328
330
331
332
334
336
337
338

339
339
341
344
344
346
348

350
350
351
351
351
351
351

28

29

30

31

GAP - Reference Manual

Dictionaries and General Hash Tables

28.1 Using Dictionaries e
28.2 Dictionarieso e e e e
28.3 Dictionaries via Binary Lists o o oo
284 General HashTables
28.5 Hashkeys e
28.6 Densehashtables
28.7 Sparsehashtables
Records

29.1 IsRecordand RecNames
29.2 AccessingRecord Elements
293 Record Assignment L. L e
29.4 Identical Records
29.5 Comparisonsof Records oL oo
29.6 IsBound and Unbind forRecords
29.7 Record Access Operations v i e e e e e e
Collections

30.1 IsCollection (Filter) e e e e e e
30.2 Collection Families L
30.3 Listsand Collections i i i i e e e e e
30.4 Attributes and Properties for Collections
30.5 Operations for Collections
30.6 Membership Test for Collections
30.7 Random Elements
30.8 Tterators L e e e

Domains and their Elements

31.1 Operational Structure of Domains
31.2 Equality and Comparison of Domains
31.3 Constructing Domains e
31.4 Changing the Structure L
31.5 Changing the Representation
31.6 Domain Categories e e e e e e
317 Parents e e e
31.8 Constructing Subdomains L. Lo
31.9 Operations for Domains
31.10 Attributes and Properties of Elements
31.11 Comparison Operations for Elements
31.12 Arithmetic Operations for Elements
31.13 Relations Between Domainso
31.14 Useful Categories of Elements

31.15 Useful Categories for all Elements of a Family

371
371
373
373
374
375
375
375

377
377
378
379
379
381
382
383

384
384
384
385
391
393
395
396
397

GAP - Reference Manual

32 Mappings

32.1
322
323
324
325
326
32.7
32.8
329
32.10
32.11
32.12
32.13
32.14

IsDirectProductElement (Filter)
Creating Mappings 0 v v v i e e e e e e
Properties and Attributes of (General) Mappings
Images under Mappings e e
Preimages under Mappings e e
Arithmetic Operations for General Mappings
Mappings which are Compatible with Algebraic Structures
Magma Homomorphisms
Mappings that Respect Multiplication
Mappings that Respect Addition
Linear Mappings o v v i e e e e e e e e
Ring Homomorphisms e
General Mappings e e e e e e
Technical Matters Concerning General Mappings

33 Relations

33.1
33.2
333
334
335
33.6
33.7

General Binary Relations L oL
Properties and Attributes of Binary Relations
Binary Relationson Points Lo
Closure Operations and Other Constructors
Equivalence Relations L
Attributes of and Operations on Equivalence Relations
Equivalence Classes o e

34 Orderings

34.1
34.2
343
344

35 Magm
35.1
352
353
354

36 Words
36.1
36.2
36.3
36.4
36.5

IsOrdering (Filter) e
Building new orderings e
Properties and basic functionalityo
Orderings on families of associative words

as

Magma Categories ot i e e e e e e e e e e e
Magma Generationt e e e e e e e e e
Magmas Defined by Multiplication Tables
Attributes and Properties for Magmas

Categories of Words and Nonassociative Words
Comparisonof Words L
Operations for Words e
Free Magmas e
External Representation for Nonassociative Words

GAP - Reference Manual

37 Associative Words

37.1
37.2
37.3
374
37.5
37.6
37.7
37.8
37.9

Categories of Associative Words Lo
Free Groups, Monoids and Semigroups
Comparison of Associative Words Lo
Operations for Associative Words
Operations for Associative Words by their Syllables
Representations for Associative Wordso
The External Representation for Associative Words
Straight Line Programs L o
Straight Line Program Elements

38 Rewriting Systems

38.1
38.2
38.3
384
38.5

Operations on rewriting SyStems ot et e e e
Operations on elements of the algebra
Properties of rewriting systems oL oL e
Rewriting in Groups and Monoids
Developing rewriting Systems oo . e e e e e e e e e e e

39 Groups

39.1
39.2
39.3
394
39.5
39.6
39.7
39.8
39.9
39.10
39.11
39.12
39.13
39.14
39.15
39.16
39.17
39.18
39.19
39.20
39.21
39.22
39.23
39.24
39.25

Group Elements L
Creating Groups v vt i e e e e e e e e e e e e e
Subgroups e
Closures of (Sub)groups e
Expressing Group Elements as Words in Generators
Structure Descriptions e e
COSELS .« v v e e e e e e e e
Transversals e
Double Cosets e e e
Conjugacy Classeso it e
Normal Structure e e e
Specific and Parametrized Subgroups oL L.
Sylow Subgroups and Hall Subgroups
Subgroups characterized by prime powers Lo
Group Properties e
Numerical Group Attributes L
Subgroup Series e e
Factor Groups e
Sets of Subgroups e
Subgroup Lattice e
Specific Methods for Subgroup Lattice Computations
Special Generating Sets e e
I-Cohomology e
Schur Covers and Multipliers,
Tests for the Availability of Methods

GAP - Reference Manual

40 Group Homomorphisms

41

42

43

40.1
40.2
40.3
40.4
40.5
40.6
40.7
40.8
40.9
40.10

Creating Group Homomorphisms
Operations for Group Homomorphisms
Efficiency of Homomorphisms
Homomorphism for very large groups,
Nice Monomorphisms e e e
Group Automorphisms
Groups of Automorphisms
Calculating with Group Automorphisms
Searching for Homomorphisms
Representations for Group Homomorphisms

Group Actions

41.1 About Group ACtionS e e e e
41.2 BasiC ACIONS e e e e e e e e
41.3 Action on canonical representativeso e
414 Orbits o o e e
41.5 Stabilizers e e
41.6 Elements with Prescribed Images
41.7 The Permutation Image of an Action,
41.8 Actionofagrouponitself
41.9 Permutations Induced by Elements and Cycles
41.10 Testsfor ACtions o it e e e e
41.11 Block Systems oL e e
41.12 External Sets oL e
Permutations

42.1 IsPerm (Filter) e
42.2 Comparison of Permutations oo
42.3 Moved Points of Permutations oo
424 Signand Cycle Structure L
42.5 Creating Permutations

Permutation Groups

43.1
43.2
43.3
43.4
43.5
43.6
43.7
43.8
43.9
43.10
43.11
43.12
43.13

IsPermGroup (Filter)
The Natural Action
Computing a Permutation Representation
Symmetric and Alternating Groups L.
Primitive Groups e e e
Stabilizer Chains e
Randomized Methods for Permutation Groups
Construction of Stabilizer Chains
Stabilizer Chain Records
Operations for Stabilizer Chains
Low Level Routines to Modify and Create Stabilizer Chains
Backtrack L
Working with large degree permutation groups oL

12

554
554
557
558
559
560
561
563
564
565
568

571
571
572
576
576
578
580
580
582
583
585
587
588

594
594
595
596
597
598

GAP - Reference Manual

44 Matrix Groups

45

46

47

44.1 IsMatrixGroup (Filter) L
44.2 Attributes and Properties for Matrix Groups
44.3 Actions of Matrix Groups oo e e e
444 GLand SL e
44.5 Invariant Forms e
44.6 Matrix Groups in CharacteristicO
447 Acting OnRightand OnLleft
Polycyclic Groups

45.1 Polycyclic Generating Systemso e
452 ComputingaPcgs
45.3 Defining a Pcgs Yourself Lo L
45.4 Elementary Operations foraPcgs
45.5 Elementary Operations for a Pcgs and an Element
45.6 Exponents of Special Products oL
45.7 Subgroups of Polycyclic Groups - InducedPcgs
45.8 Subgroups of Polycyclic Groups — Canonical Pcgs
45.9 Factor Groups of Polycyclic Groups —ModuloPcgs
45.10 Factor Groups of Polycyclic Groups in their Own Representation
45.11 Pcgsand Normal Series it
45.12 Sum and Intersectionof Pcgso o oo
45.13 Special Pcgs e e e
45.14 Action on Subfactors DefinedbyaPcgs
45.15 Orbit Stabilizer Methods for Polycyclic Groups
45.16 Operations which have Special Methods for Groups withPcgs
45.17 Conjugacy Classes in Solvable Groups
Pc Groups

46.1 Thefamily pcgs e e e
46.2 Elementsof pcgroups e
46.3 Pcgroups versusfpgroups e
46.4 Constructing Pc Groups oL
46.5 Computing Pc Groups
46.6 SavingaPcGroup e
46.7 Operations for Pc Groups
46.8 2-Cohomology and Extensions
46.9 CodingaPcPresentation
46.10 Random Isomorphism Testing

Finitely Presented Groups

47.1
47.2
473
474
47.5
47.6

IsSubgroupFpGroup and IsFpGroup
Creating Finitely Presented Groups
Comparison of Elements of Finitely Presented Groups
Preimagesinthe Free Group,
Operations for Finitely Presented Groups
Coset Tables and Coset Enumeration

13

619
619
620
621
621
623
624
627

628
628
629
630
630
631
633
634
636
637
639
640
644
645
647
649
649
649

651
652
653
653
654
657
658
658
658
662
663

48

49

50

47.7

47.8

479

47.10
47.11
47.12
47.13
47.14
47.15
47.16

GAP - Reference Manual

Standardization of coset tables
Coset tables for subgroups in the whole group
Augmented Coset Tables and Rewriting
Low Index Subgroups e
Converting Groups to Finitely Presented Groups
New Presentations and Presentations for Subgroups
Preimages under Homomorphisms from an FpGroup
Quotient Methods
Abelian Invariants for Subgroups oL oo oL
Testing Finiteness of Finitely Presented Groups

Presentations and Tietze Transformations

48.1 Creating Presentations L e
48.2 Subgroup Presentations
48.3 RelatorsinaPresentation
48.4 Printing Presentations
48.5 Changing Presentations
48.6 Tietze Transformations e
48.7 Elementary Tietze Transformations
48.8 Tietze Transformations that introduce new Generators
48.9 Tracing generator images through Tietze transformations
48.10 The Decoding Tree Procedure
48.11 Tietze Options o v v e e e e e e e e e e e e
Group Products

49.1 Direct Products e e
49.2 Semidirect Products
49.3 Subdirect Products
49.4 WreathProducts e
49.5 FreeProducts e
49.6 Embeddings and Projections for Group Products

Group Libraries

50.1
50.2
50.3
50.4
50.5
50.6
50.7
50.8
50.9
50.10
50.11
50.12

Basic Groups e e e
Classical Groups v i it e e e e e
Conjugacy Classes in Classical Groups
Constructors for BasicGroupso oL
Selection Functions oL
Transitive Permutation Groupso
Small Groups e
Finite Perfect Groups e e
Primitive Permutation Groups oL L
Index numbers of primitive groups
Irreducible Solvable Matrix Groupso
Irreducible Maximal Finite Integral Matrix Groups

14

674
675
676
677
678
681
682
683
686
688

690
690
693
697
698
700
701
704
706
710
712
715

718
718
719
721
721
723
724

GAP - Reference Manual

51 Semigroups and Monoids

51.1
51.2
51.3
514
51.5
51.6
51.7
51.8
51.9

Semigroups e e e e e e e
Monoids e
Inverse semigroups and monoids Lo oL
Properties of Semigroups
Ideals of sSemigroups e e e e e
Congruences for Semigroups oL
QUOIentS e e e e e e e
Green’s Relations e
Rees Matrix Semigroups v v o i e e e e e e e e

52 Finitely Presented Semigroups and Monoids

52.1
52.2
52.3
524
52.5
52.6
52.7

IsSubsemigroupFpSemigroup (Filter)
Creating Finitely Presented Semigroups
Comparison of Elements of Finitely Presented Semigroups
Preimages in the Free Semigroup
Finitely presented monoids
Rewriting Systems and the Knuth-Bendix Procedure
Todd-Coxeter Procedure

53 Transformations

53.1
53.2
53.3
534
53.5
53.6
53.7

The family and categories of transformations
Creating transformations
Changing the representation of a transformation
Operators for transformations
Attributes for transformations
Displaying transformations
Semigroups of transformationso

54 Partial permutations

54.1
54.2
54.3
54.4
54.5
54.6
54.7

The family and categories of partial permutations
Creating partial permutations
Attributes for partial permutations Lo
Changing the representation of a partial permutation
Operators and operations for partial permutations
Displaying partial permutationso
Semigroups and inverse semigroups of partial permutations

55 Additive Magmas

55.1
55.2
55.3
554

(Near-)Additive Magma Categories« o .o v vt
(Near-)Additive Magma Generation
Attributes and Properties for (Near-)Additive Magmas
Operations for (Near-)Additive Magmas

15

762
762
766
768
770
772
772
773
773
776

784
786
787
788
788
790
790
793

794
795
796
799
801
803
812
813

817
819
819
823
831
833
836
838

GAP - Reference Manual

56 Rings
56.1 Generating Rings
56.2 Idealsof Rings e
563 RingsWithOne e
56.4 Propertiesof Rings
56.5 Units and Factorizations
56.6 EuclideanRings e
567 GedandLem. oL
56.8 Homomorphismsof Rings
569 SmallRings e

57 Modules
57.1 Generatingmodules L e
572 Submodules
573 FreeModules

58 Fields and Division Rings

58.1
58.2
58.3

Generating Fields L
Subfieldsof Fields
Galois ACtION e e e e

59 Finite Fields

59.1
59.2
59.3
59.4
59.5
59.6

Finite Field Elements
Operations for Finite Field Elements
Creating Finite Fields
Frobenius Automorphisms L
Conway Polynomials
Printing, Viewing and Displaying Finite Field Elements

60 Abelian Number Fields

60.1
60.2
60.3
60.4
60.5

Construction of Abelian Number Fields
Operations for Abelian Number Fields
Integral Bases of Abelian Number Fields
Galois Groups of Abelian Number Fields
GausSians e e e e e e

61 Vector Spaces

61.1
61.2
61.3
61.4
61.5
61.6
61.7
61.8
61.9
61.10

IsLeftVectorSpace (Filter)
Constructing Vector Spaces v v i i e e e e e e
Operations and Attributes for Vector Spaces
Domains of Subspaces of Vector Spaces
Bases of Vector Spaces L L
Operations for Vector Space Bases
Operations for Special Kindsof Bases
Mutable Bases
Row and Matrix Spaces
Vector Space Homomorphisms,

16

848
848
851
854
856
857
860
861
864
865

868
868
870
871

874
874
876
878

882
882
884
887
888
889
890

892
892
894
895
897
899

GAP - Reference Manual

61.11 Vector Spaces Handled By Nice Bases
61.12 How to Implement New Kinds of Vector Spaces

62 Algebras
62.1 InfoAlgebra(InfoClass)
62.2 Constructing Algebras by Generators
62.3 Constructing Algebras as Free Algebras
62.4 Constructing Algebras by Structure Constants
62.5 Some Special Algebras L
62.6 Subalgebras e e e
62.7 Idealsof Algebras
62.8 Categories and Properties of Algebras
62.9 Attributes and Operations for Algebras
62.10 Homomorphisms of Algebras
62.11 Representations of Algebras oo

63 Finitely Presented Algebras

64 Lie Algebras
64.1 LieObjects e
64.2 Constructing Lie algebras
64.3 Distinguished Subalgebras Lo o
64.4 SeriesofIdeals
64.5 Propertiesof alie Algebra oL
64.6 Semisimple Lie Algebras and Root Systems
64.7 Semisimple Lie Algebras and Weyl Groups of Root Systems
64.8 Restricted Liealgebras
64.9 The Adjoint Representation
64.10 Universal Enveloping Algebras
64.11 Finitely Presented Lie Algebras
64.12 Modules over Lie Algebras and Their Cohomology
64.13 Modules over Semisimple Lie Algebras
64.14 Admissible Latticesin UEA o
64.15 Tensor Products and Exterior and Symmetric Powers

65 Magma Rings
65.1 FreeMagmaRings.
65.2 Elements of Free MagmaRings,
65.3 Natural Embeddings related to MagmaRings
65.4 Magma Rings modulo Relations
65.5 Magma Rings modulo the Span of a Zero Element
65.6 Technical Details about the Implementation of Magma Rings

66 Polynomials and Rational Functions
66.1 Indeterminates e
66.2 Operations for Rational Functions
66.3 Comparison of Rational Functions

17

917
919

921
921
921
922
923
926
928
929
930
932
940
945

955

956
956
958
961
963
964
965
968
971
973
975
975
977
980
981
984

986
987
988
989
990
991
992

67

68

69

GAP - Reference Manual

66.4 Properties and Attributes of Rational Functions
66.5 Univariate Polynomials o .
66.6 Polynomials as Univariate Polynomials in one Indeterminate
66.7 Multivariate Polynomials o o
66.8 Minimal Polynomials
66.9 Cyclotomic Polynomials
66.10 Polynomial Factorization
66.11 Polynomials over the Rationals
66.12 Factorization of Polynomials over the Rationals
66.13 Laurent Polynomials
66.14 Univariate Rational Functions
66.15 Polynomial Rings and FunctionFields
66.16 Univariate Polynomial Rings
66.17 Monomial Orderings e e
66.18 Groebner Bases
66.19 Rational Function Families
66.20 The Representations of Rational Functions
66.21 The Defining Attributes of Rational Functions
66.22 Creation of Rational Functions
66.23 Arithmetic for External Representations of Polynomials
66.24 Cancellation Tests for Rational Functions,

Algebraic extensions of fields
67.1 Creation of Algebraic Extensions
67.2 Elements in Algebraic Extensions

p-adic Numbers (preliminary)

68.1 Purep-adicNumbers
68.2 Extensions of the p-adic Numbers L.
The MeatAxe

69.1 MeatAxeModules
69.2 Module Constructions e e e e
69.3 Selecting a Different MeatAxe
69.4 AccessingaModule L
69.5 Irreducibility Tests
69.6 Decompositionof modules oo o
69.7 Finding Submodules
69.8 Induced Actions e
69.9 Module Homomorphisms L
69.10 Module Homomorphisms for irreducible modules
69.11 MeatAxe Functionality for Invariant Forms
69.12 The Smash MeatAxe o i i
69.13 Smash MeatAxe Flags Lo

GAP - Reference Manual

70 Tables of Marks

71

72

70.1
70.2
70.3
70.4
70.5
70.6
70.7
70.8
70.9
70.10
70.11
70.12
70.13

More about Tablesof Marks,
Table of Marks Objectsin GAP
Constructing Tablesof Marks L L.
Printing Tablesof Marks
Sorting Tablesof Marks
Technical Details about Tables of Marks
Attributes of Tablesof Marks,
Properties of Tablesof Marks
Other Operations for Tablesof Marks
Accessing Subgroups via Tablesof Marks
The Interface between Tables of Marks and Character Tables
Generic Construction of Tablesof Marks
The Library of Tablesof Marks

Character Tables

71.1
71.2
71.3
71.4
71.5
71.6
71.7
71.8
71.9
71.10
71.11
71.12
71.13
71.14
71.15
71.16
71.17
71.18
71.19
71.20
71.21
71.22
71.23

Some Remarks about Character Theory in GAP
History of Character Theory Stuffin GAP
Creating Character Tables
Character Table Categories v it
Conventions for Character Tables
The Interface between Character Tables and Groups
Operators for Character Tables
Attributes and Properties for Groups and Character Tables
Attributes and Properties only for Character Tables
Normal Subgroups Represented by Lists of Class Positions
Operations Concerning Blocks,
Other Operations for Character Tables
Printing Character Tables
Computing the Irreducible Characters of aGroup
Representations Given by Modules 0oL
The Dixon-Schneider Algorithm, .
Advanced Methods for Dixon-Schneider Calculations
Components of aDixonRecord
An Example of Advanced Dixon-Schneider Calculations
Constructing Character Tables from Others
Sorted Character Tables
Automorphisms and Equivalence of Character Tables
Storing Normal Subgroup Information

Class Functions

72.1
72.2
72.3
72.4
72.5
72.6

Comparison of Class Functions
Arithmetic Operations for Class Functions
Printing Class Functions
Creating Class Functions from Values Lists

73

74

75

76

77

78

GAP - Reference Manual

72.7 Creating Class Functions using Groups
72.8 Operations for Class Functions
72.9 Restricted and Induced Class Functions
72.10 Reducing Virtual Characters e
72.11 Symmetrizations of Class Functions
72.12 Molien Serieso e e e
72.13 Possible Permutation Characters
72.14 Computing Possible Permutation Characters
72.15 Operations for Brauer Characters
72.16 Domains Generated by Class Functions

Maps Concerning Character Tables

73.1 PowerMaps
73.2 Orbits on Sets of Possible Power Maps
73.3 Class Fusions between Character Tables
73.4 Orbits on Sets of Possible Class Fusions
73.5 Parametrized Maps L
73.6 Subroutines for the Construction of Power Maps
73.7 Subroutines for the Construction of Class Fusions

Unknowns
74.1 Moreabout Unknowns e

Monomiality Questions

75.1 InfoMonomial (Info Class)
75.2 Character Degrees and Derived Length
75.3 Primitivity of Characters
75.4 Testing Monomiality e e
75.5 Minimal Nonmonomial Groups L oo

Using GAP Packages

76.1 Installinga GAPPackage,
76.2 Loadinga GAPPackage
76.3 Functions for GAP Packages,

Replaced and Removed Command Names

77.1 Group Actions — Name Changes
77.2 Package Interface — Obsolete Functions and Name Changes
77.3 Normal Forms of Integer Matrices — Name Changes
77.4 Miscellaneous Name Changes or Removed Names

77.5 Theformer.gaprcfile
77.6 Semigroup propertieso u e e e e e e e
Method Selection

78.1 Operationsand Methods
78.2 Method Installation
78.3 Applicable Methods and Method Selection
78.4 Partial Methods

GAP - Reference Manual

78.5 Redispatching
78.6 Immediate Methods L
78.7 Logical Implications e e
78.8 Operations and Mathematical Terms

79 Creating New Objects
79.1 Creating Categories v v v vt e e e e e
79.2 Creating Representations i
79.3 Creating Attributes and Properties L.
79.4 Creating Other Filters
79.5 Creating Operationst v it
79.6 Creating Constructors v v v v v et e e e e e e
79.7 Creating Families
79.8 Creating Types o e e
79.9 Creating Objects e
79.10 Component Objects o e e e e
79.11 Positional Objects e
79.12 Implementing New List Objects
79.13 Example — Constructing Enumerators
79.14 Example — Constructing Iterators L.
79.15 Arithmetic Issues in the Implementation of New Kinds of Lists
79.16 External Representation L
79.17 Mutability and Copying e
79.18 Global Variablesinthe Library
79.19 Declaration and Implementation Part

80 Examples of Extending the System
80.1 AdditionofaMethod
80.2 Extending the Range of Definition of an Existing Operation
80.3 Enforcing Property Tests e
80.4 Addinganew Operation L e
80.5 Addinganew Attribute
80.6 Adding anew Representationo
80.7 Components versus Attributes
80.8 Addingnew Concepts e e e
80.9 Creating Own Arithmetic Objects

81 An Example — Residue Class Rings
81.1 A First Attempt to Implement Elements of Residue Class Rings
81.2 Why Proceed in a Different Way? oo
81.3 A Second Attempt to Implement Elements of Residue Class Rings
81.4 Compatibility of Residue Class Rings with Prime Fields
81.5 Further Improvements in Implementing Residue Class Rings

82 An Example — Designing Arithmetic Operations
82.1 New Arithmetic Operations vs. New Objects
82.2 Designing new Multiplicative Objects

GAP - Reference Manual

83 Library Files

83.1
83.2
83.3

FileTypes,
Finding Implementations in the Library
Undocumented Variables

84 Interface to the GAP Help System

84.1
84.2
84.3
84.4

Installing and Removing a Help Book
The manualsixFile
The Help Book Handler
Introducing new Viewer for the Online Help

85 Function-Operation-Attribute Triples

85.1
85.2
85.3

Key Dependent Operations
In Parent Attributes
Operation Functions

86 Weak Pointers

86.1
86.2
86.3
86.4
86.5

Weak Pointer Objects
Low Level Access Functions for Weak Pointer Objects
Accessing Weak Pointer Objects as Lists
Copying Weak Pointer Objects
The GASMAN Interface for Weak Pointer Objects . .

87 More about Stabilizer Chains

87.1

Generalized Conjugation Technique

87.2 The General Backtrack Algorithm with Ordered Partitions
87.3 Stabilizer Chains for Automorphisms Acting on Enumerators

References

Index

22

1287
1287
1287
1288

1290
1290
1291
1291
1293

1294
1294
1295
1296

1300
1300
1301
1302
1302
1303

1304
1304
1305
1313

1326

1327

Chapter 1

Preface

Welcome to GAP. This is one of three manuals documenting the core part of GAP, the other being
the GAP Tutorial . and the document called “GAP - Changes from Earlier Versions” .

This preface serves not only to introduce “The GAP Reference Manual”, but also as an introduc-
tion to the whole system.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the aim
of the system, which is introduced in this reference manual. Since that choice, the system has become
somewhat broader, and you will also find information about algorithms and programming for other
algebraic structures, such as semigroups and algebras.

This manual, the GAP reference manual contains the official definitions of GAP functions. It
should contain all the information needed to use GAP, and is not intended to be read cover-to-cover.

To get started a new user may first look at parts of the GAP Tutorial .

A lot of the functionality of the system and a number of contributed extensions are provided as
“GAP packages” which are developed independently of the core part of GAP and can be loaded into
a GAP session. Each package comes with a its own manual which is also available through the GAP
help system.

This manual is divided into chapters, sections and subsections. Chapter 2 describes the help
system, which provides access to all the manuals from a running GAP session. Chapter 3 gives
technical advice for running GAP. Chapter 4 introduces the GAP language, and the next chapters
deal with the environment provided by GAP for the user. These are followed by the main bulk of
chapters which are devoted to the various mathematical structures that GAP can handle.

Subsequent sections of this preface explain the structure of the system and provide copyright and
licensing information.

1.1 The GAP System

GARP is a free, open and extensible software package for computation in discrete abstract algebra. The
terms “free” and “open” describe the conditions under which the system is distributed — in brief, it is
free of charge (except possibly for the immediate costs of delivering it to you), you are free to pass it
on within certain limits, and all of the workings of the system are open for you to examine and change.
Details of these conditions can be found in Section (Reference: Copyright and License).

The system is “extensible” in that you can write your own programs in the GAP language, and
use them in just the same way as the programs which form part of the system (the “library”). Indeed,
we actively support the contribution, refereeing and distribution of extensions to the system, in the

23

GAP - Reference Manual 24

form of “GAP packages”. Further details of this can be found in chapter (Reference: Using GAP
Packages), and on our website.

Development of GAP began at Lehrstuhl D fiir Mathematik, RWTH-Aachen, under the leader-
ship of Joachim Neubiiser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In
1997 coordination of GAP development, now very much an international effort, was transferred to
St Andrews. A complete internal redesign and almost complete rewrite of the system was completed
over the following years and version 4.1 was released in July 1999. A sign of the further internation-
alization of the project was the GAP 4.4 release in 2004, which has been coordinated from Colorado
State University, Fort Collins.

More information on the motivation and development of GAP to date, can be found on our Web
pages in a section entitled “Release history and Prefaces”.

For those readers who have used an earlier version of GAP, an overview of the changes from
GAP 4.4 and a brief summary of changes from earlier versions is given in a separate manual
(Changes: Changes between GAP 4.4 and GAP 4.5).

The system that you are getting now consists of a “core system” and a number of packages. The
core system consists of four main parts.

1. A kernel, written in C, which provides the user with

* automatic dynamic storage management, which the user needn’t bother about in his pro-
gramming;

* aset of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields,
permutations and words, as well as natural operations for lists and records;

* an interpreter for the GAP language, an untyped imperative programming language with
functions as first class objects and some extra built-in data types such as permutations and
finite field elements. The language supports a form of object-oriented programming, simi-
lar to that supported by languages like C++ and Java but with some important differences.

* a small set of system functions allowing the GAP programmer to handle files and execute
external programs in a uniform way, regardless of the particular operating system in use.

* aset of programming tools for testing, debugging, and timing algorithms.

* a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since
this is written entirely in the GAP language, the GAP language is both the main implementation
language and the user language of the system. Therefore the user can as easily as the original
programmers investigate and vary algorithms of the library and add new ones to it, first for own
use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the
library of small groups (containing all groups of order at most 2000, except those of order
1024) and others. Large libraries of ordinary and Brauer character tables and Tables of Marks
are included as packages.

4. The documentation. This is available as on-line help, as printable files in PDF format and as
HTML for viewing with a Web browser.

Also included with the core system are some test files and a few small utilities which we hope you
will find useful.

GAP - Reference Manual 25

GAP packages are self-contained extensions to the core system. A package contains GAP
code and its own documentation and may also contain data files or external programs to which the
GAP code provides an interface. These packages may be loaded into GAP using the LoadPackage
(Reference: LoadPackage) command, and both the package and its documentation are then available
just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only
be available on the operating systems where those programs are available (usually UNIX). You should
note that, while the packages included with this release are the most recent versions ready for release
at this time, new packages and new versions may be released at any time and can be easily installed
in your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the
library of tables of marks) which contain functionality developed from parts of the GAP core system.
These have been moved into packages for ease of maintenance and to allow new versions to be released
independently of new releases of the core system. The library of small groups should also be regarded
as a package, although it does not currently use the standard package mechanism. Other packages
contain functionality which has never been part of the core system, and may extend it substantially,
implementing specific algorithms to enhance its capabilities, providing data libraries, interfaces to
other computer algebra systems and data sources such as the electronic version of the Atlas of Finite
Group Representations; therefore, installation and usage of packages is recommended.

Further details about GAP packages can be found in chapter (Reference: Using GAP Packages),
and on the GAP website here: https://www.gap-system.org/Packages/packages.html.

1.2 Authors and Maintainers

GAP is the work of very many people, many of whom still maintain parts of the system. A com-
plete list of authors, and an approximation to the current list of maintainers can be found on the
GAP World Wide Web site at https://wuw.gap-system.org/Contacts/People/authors.html
and https://www.gap-system.org/Contacts/People/modules.html. All GAP packages have
their own authors and maintainers. It should however be noted that some packages provide interfaces
between GAP and an external program, a copy of which is included for convenience, and that, in
these cases, we do not claim that the package authors or maintainers wrote, or maintain, this external
program. Similarly, the system and some packages include large data libraries that may have been
computed by many people. We try to make clear in each case what credit is attributable to whom.

We have, for some time, operated a refereeing system for contributed packages, both to ensure the
quality of the software we distribute, and to provide recognition for the authors. We now consider this
to be a refereeing system for modules, and we would note, in particular that, although it does not use
the standard package interface, the library of small groups has been refereed and accepted on exactly
the same basis as the accepted packages.

We also include with this distribution a number of packages which have not (yet) gone through
our refereeing process. Some may be accepted in the future, in other cases the authors have chosen
not to submit them. More information can be found on our World Wide Web site (see Section 1.5).

1.3 Acknowledgements

Very many people have worked on, and contributed to, GAP over the years since its inception. On our
Web site you will find the prefaces to the previous releases, each of which acknowledges people who

https://www.gap-system.org/Packages/packages.html
https://www.gap-system.org/Contacts/People/authors.html
https://www.gap-system.org/Contacts/People/modules.html

GAP - Reference Manual 26

have made special contributions to that release. Even so, it is appropriate to mention here Joachim
Neubiiser whose vision of a free, open and extensible system for computational algebra inspired GAP
in the first place, and Martin Schonert, who was the technical architect of GAP 3 and GAP 4.

1.4 Copyright and License

Copyright © (1987-2017) by the GAP Group,

incorporating the Copyright © 1999, 2000 by School of Mathematical and Computational Sci-
ences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright © 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany,
transferred to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In par-
ticular, the copyright of packages distributed with GAP is usually with the package authors or their
institutions.

GARP is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. For details, see the file GPL in the etc directory of the GAP distribution
or see http://www.gnu.org/licenses/gpl.html.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the
address support@gap-system.org. This helps us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as
you would cite another paper that you used (see below for sample citation). Also we would appreciate
if you could inform us about such a paper, which we will add to the GAP bibliography.

Specifically, please refer to

[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming,
Version 4.8.9; 2017 (https://www.gap-system.org)

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further
redistribution. That is to say proprietary modifications will not be allowed. We want all versions of
GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This
should specify what modifications you made in which files. We do not want to take credit or be
blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-
fixes, improvements and new functions. So again we would appreciate it if you would inform us about
all modifications you make.

In addition to the general copyright for GAP set forth above, the following terms apply to the
versions of GAP for Windows.

The executable of GAP for Windows that we distribute was compiled with the gcc compiler
supplied with Cygwin installation (http://cygwin.com/).

The GNU C compiler is

Copyright © 2010 Free Software Foundation, Inc.

under the terms of the GNU General Public License (GPL).

The Cygwin API library is also covered by the GNU GPL. The executable we provide is linked
against this library (and in the process includes GPL’d Cygwin glue code). This means that the
executable falls under the GPL too, which it does anyhow.

http://www.gnu.org/licenses/gpl.html
mailto://support@gap-system.org
https://www.gap-system.org/Doc/Bib/bib.html
http://cygwin.com/

GAP - Reference Manual 27

The cyggcc_s-1.d11, cygncurses-10.d1ll, cygncursesw-10.d1l, cygpanel-10.d11l,
cygpopt-0.dll, cygreadline7.d1ll, cygstart.exe, cygwinl.d1l1l, 1ibW11l.d11, mintty.exe,
rxvt.exe and regtool.exe are taken unmodified from the Cygwin distribution. They are copy-
right by RedHat Software and released under the GPL. For more information on Cygwin, see
http://www.cygwin.com.

Please contact support@gap-system. org if you need further information.

1.5 Further Information about GAP

Information about GAP is best obtained from the GAP website
https://www.gap-system.org
There you will find, amongst other things

* directions to the sites from which you can download the current GAP distribution, all accepted
and deposited GAP packages, and a selection of other contributions.

¢ the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a
Web browser, and indexed for searching.

* information about GAP developers, and about the email addresses available for comment, dis-
cussion and support.

We would particularly ask you to note the following things:

* The GAP Forum — an email discussion forum for comments, discussions or questions about
GAP. You must subscribe to the list before you can post to it, see the website for details. In
particular we will announce new releases in this mailing list.

* The email address support@gap-system.org to which you are asked to send any questions
or bug reports which do not seem likely to be of interest to the whole GAP Forum. Please give
a (short, if possible) self-contained excerpt of a GAP session containing both input and output
that illustrates your problem (including comments of why you think it is a bug) and state the
type of the machine, operating system, (compiler used, if UNIX/Linux) and the version of GAP
you are using (the first line after the GAP 4 banner starting GAP, Version 4...).

» We also ask you to send a brief message to support@gap-system.org when you install GAP.

 The correct form of citation of GAP, which we ask you use whenever you publish scientific
results obtained using GAP.

It finally remains for us to wish you all pleasure and success in using GAP, and to invite your
constructive comment and criticism.

The GAP Group,

18-Dec-2017

http://www.cygwin.com
mailto://support@gap-system.org
https://www.gap-system.org
mailto://support@gap-system.org
mailto://support@gap-system.org

Chapter 2

The Help System

This chapter describes the GAP help system. The help system lets you read the documentation inter-
actively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.

?[book :]1[?] topic

For an explanation and some examples see (Tutorial: Help).

Note that the first question mark must appear in the first position after the gap> prompt. The
search strings book and topic are normalized in a certain way (see the end of this section for details)
before the search starts. This makes the search case insensitive and there can be arbitrary white space
after the first question mark.

When there are several manual sections that match the query a numbered list of topics is displayed.
These matches can be accessed with Pnumber.

There are some further specially handled commands which start with a question mark. They are
explained in Section 2.2.

By default GAP shows the help sections as text in the terminal (window), page by page if the
shown text does not fit on the screen. But there are several other choices to read (other formats of) the
documents: via a viewer for pdf files or via a web browser. This is explained below in Section 2.3.

Details of the string normalization process

Here is a precise description how the search strings book and topic are normalized before a
search starts: backslashes and double or single quotes are removed, parentheses and braces are substi-
tuted by blanks, non-ASCII characters are considered as ISO-latin1 characters and the accented letters
are substituted by their non-accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections, and subsections. There are a few special
commands starting with a question mark (in the first position after the gap> prompt) which allow
browsing a book section or chapter wise.

7>

7<

28

GAP - Reference Manual 29

The two help commands 7< and 7> allow one to browse through a whole help book. ?< displays
the section or subsection preceding the previously shown (sub)section, and 7> takes you to the section
or subsection following the previously shown one.

7>>

<<

7<< takes you back to the beginning of the current chapter. If you are already at the start of a
chapter 7<< takes you to the beginning of the previous chapter. ?>> takes you to the beginning of the
next chapter.

7-

7+

GAP remembers the last few sections that you have read. 7- takes you to the one that you have
read before the current one, and displays it again. Further applications of 7- take you further back
in this history. 7+ reverses this process, i.e., it takes you back to the section that you have read after
the current one. It is important to note that 7- and 7+ do not alter the history like the other help
commands.

?books

This command shows a list of the books which are currently known to the help system. For each
book there is a short name which is used with the book part of the basic help query and there is a long
name which hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is
loaded but which needs a call of LoadPackage (76.2.1) before you can use the described functions.

7 [book :]sections

?[book :] [chapters]

These commands show tables of contents for all available, respectively the matching books. For
some books these commands show the same, namely the whole table of contents.

?

7%

These commands redisplay the last shown help section. In the form 7& the next preferred help
viewer is used for the display (provided one has chosen several viewers), see SetHelpViewer (2.3.1)
below.

2.3 Changing the Help Viewer

Books of the GAP help system or package manuals can be available in several formats. Currently the
following formats occur (not all of them may be available for all books):

text This is used for display in the terminal window in which GAP is running. Complicated mathe-
matical expressions may not be easy to read in this format.

pdf Adobe’s pdf format. Can be used for printing and onscreen reading on most current systems
(with freely available software). Some manual books contain hyperlinks in this format.

HTML
The format of web pages. Can be used with any web browser. There may be hyperlink informa-
tion available which allows a convenient browsing through the book via cross-references. This
format has the problem that complicated formulae may be not be easy to read since there is no

GAP - Reference Manual 30

syntax for formulae in HTML. (Some older manual books use special symbol fonts for formu-
lae and need a particular configuration of the web browser for correct display. Some manuals
may use technology for quite sophisticated formula display.)

Depending on your operating system and available additional software you can use several of
these formats with GAP’s help system. This is configured with the following command.

2.3.1 SetHelpViewer

> SetHelpViewer(viewerl, viewer2, ...) (function)

This command takes an arbitrary number of arguments which must be strings describing a viewer.
The recognized viewers are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the
format needed by viewerl, this viewer is used. If not, availability of the format for viewer2 is
checked and so on. Recall that the command 7& displays the last seen section again but with the next
possible viewer in your list, see 2.2.

The viewer "screen" (see below) is always silently appended since we assume that each help
book is available in text format.

If you want to change the default setting you can use a call of SetUserPreference(
"HelpViewers", [... 1); (the listin the second argument containing the viewers you want)
in your gap. ini file (see 3.2).

"screen"

This is the default setting. The help is shown in text format using the Pager (2.4.1) command.
Hint: Text versions of manuals are formatted assuming that your terminal displays at least 80
characters per line, if this is not the case some sections may look very bad. We suggest to
use a terminal in UTF-8 encoding with a fixed width font (this is the default on most modern
Linux/Windows/Mac systems anyway). Terminals in IS0-8859-X encoding will also work
reasonably well (so far, since we do not yet use many special characters which such terminals
could not display).

"firefox", "chrome", "mozilla", "netscape", "konqueror"
If a book is available in HTML format this is shown using the corresponding web browser.
How well this works, for example by using a running instance of this browser, depends on
your particular start script of this browser. (Note, that for some old books the browser must be
configured to use symbol fonts.)

"browser"
(for MS Windows) If a book is available in HTML format, it will be opened using the Windows
default application (typically, a web browser).

"links2", "w3m", "lynx"
If a book is available in HTML format this is shown using the text based "1inks2" (in graphics
mode), w3m or 1ynx web browser, respectively, inside the terminal running GAP. (Formulae in
some older books which use symbol fonts may be unreadable.)

"mac default browser", "browser", "safari", "firefox"
(for Mac OS X) If a book is available in HTML format this is shown in a web browser. The

GAP - Reference Manual 31

options "safari" and "firefox" use the corresponding browsers. The other two options use
the program default browser (which can be set in Safari’s preferences, in the "General" tab).

"Xpdf n
(on X-windows systems) If a book is available in pdf format it is shown with the onscreen
viewer program xpdf (which must be installed on your system). This is a nice program, once it
is running it is reused by GAP for the next displays of help sections.

"acroread"
If a book is available in pdf format it is shown with the onscreen viewer program acroread
(which must be available on your system). This program does not allow remote commands or
startup with a given page. Therefore the page numbers you have to visit are just printed on the
screen. When you are looking at several sections of the same book, this viewer assumes that
the acroread window still exists. When you go to another book a new acroread window is
launched.

"pdf viewer", "skim", "preview", "adobe reader"

(for Mac OS X) If a book is available in pdf format this is shown in a pdf viewer. The options
"skim", "preview" and "adobe reader" use the corresponding viewers. The other two op-
tions use the pdf viewer which you have chosen to open pdf files from the Finder. Note that
only "Skim" seems to be capable to open a pdf file on a given page. For the other help viewers,
the page numbers where the information can be found will just be printed on the screen. None
of the help viewers seems to be capable of opening a pdf at a given named destination (i. e.,
jump to precisely the place where the information can be found). The pdf viewer "Skim" is
open source software, it can be downloaded from http://skim-app.sourceforge.net/.

"less" or "more"
This is the same as "screen" but additionally the user preferences "Pager" and
""PagerOptions" are set, see the section 2.4 for more details.

Please, send ideas for further viewer commands to support@gap-system.org.

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which does not fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there
are powerful external standard programs which do this job.

2.4.1 Pager

> Pager(lines) (function)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by
page.

There is a default builtin pager in GAP which has very limited capabilities but should work on
any system.

At least on a UNIX system one should use an external pager program like less or more. GAP
assumes that this program has a command line option +nr which starts the display of the text with
line number nr.

mailto://support@gap-system.org

GAP - Reference Manual 32

Which pager is used can be controlled by setting the user preference "Pager". The default value
is "builtin" which means that the internal pager is used.

On UNIX systems you probably want to set the user preference "Pager" to the value "less" or
"more", you can do this for example in your gap.ini file (see 3.2). In that case you can also tell
GAP a list of standard options for the external pager, via the user preference "PagerOptions".

Example
SetUserPreference("Pager", "less");
SetUserPreference("PagerOptions", ["-f",6"-r","-a","-i","-M","-j2"]);

The argument 1ines can have one of the following forms:

1. astring (i.e., lines are separated by newline characters)

2. a list of strings (without newline characters) which are interpreted as lines of the text to be
shown

3. arecord with component 1ines as in 1. or 2. and optional further components
In case 3. currently the following additional components are used:

formatted
can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAP’s automatic line breaking),

start
must be a positive integer. This is interpreted as the number of the first line shown by the pager
(one may see the beginning of the text via back scrolling).

exitAtEnd
can be false or true. If set to true (the default), the builtin pager is terminated as soon as the
end of the list is shown; otherwise entering the Q key is necessary in order to return from the

pager.

The Pager command is used by GAP’s help system for displaying help sections in text format.
But, of course, it may be used for other purposes as well.
Example

gap> s6 := SymmetricGroup(6);;

gap> words := ["This", "is", "a", "very", "stupid", "example"];;
gap> 1 := List(s6, p-> Permuted(words, p));;

gap> Pager(List(1l, a-> JoinStringsWithSeparator(a," ")));;

Chapter 3

Running GAP

This chapter informs about command line options for GAP (see 3.1), some files in user specific GAP
root directory (see 3.2) and saving and loading a GAP workspace (see 3.3).

3.1 Command Line Options

When you start GAP from a command line or from a script you may specify a number of options on
the command-line to change the default behaviour of GAP. All these options start with a hyphen -,
followed by a single letter. Options must not be grouped, e.g., gap -gq is invalid, use gap -g -q
instead. Some options require an argument, this must follow the option and must be separated by
whitespace, e.g., gap -m 256m, it is not correct to say gap -m256m instead. Certain Boolean options
(-b, -q, -e, -1, -A, -D, -M, -T, -X, -Y) toggle the current value so that gap -b -b is equivalent to
gapandtogap -b -q -b -qetc.

GAP for UNIX will distinguish between upper and lower case options.

As described in the GAP installation instructions (see the INSTALL file in the GAP root directory,
or at https://www.gap-system.org/Download/INSTALL), usually you will not execute GAP di-
rectly. Instead you will call a (shell) script, with the name gap, which in turn executes GAP. This
script sets some options which are necessary to make GAP work on your system. This means that the
default settings mentioned below may not be what you experience when you execute GAP on your
system.

During a GAP session, one can find the current values of command line options in the record
GAPInfo.CommandLineOptions (see GAPInfo (3.5.1)), whose component names are the command
line options (without the leading -).

-A By default, some needed and suggested GAP packages (see 76) are loaded, if present, into the
GAP session when it starts. This option disables (actually toggles) the loading of suggested
packages, which can be useful for debugging or testing. The needed packages (and their needed
packages, and so on) are loaded in any case.

-a memory
GASMAN, the storage manager of GAP uses sbrk to get blocks of memory from (certain)
operating systems and it is required that subsequent calls to sbrk produce adjacent blocks of
memory in this case because GAP only wants to deal with one large block of memory. If the
C function malloc is called for whatever reason, it is likely that sbrk will no longer produce
adjacent blocks, therefore GAP does not use malloc itself.

33

https://www.gap-system.org/Download/INSTALL

GAP - Reference Manual 34

However some operating systems insist on calling malloc to create a buffer when a file is
opened, or for some other reason. In order to catch these cases GAP preallocates a block of
memory with malloc which is immediately freed. The amount preallocated can be controlled
with the -a option. (Most users do not need this option.)

The option argument memory is specified as with the -m option.

-B architecture

Executable binary files that form part of GAP or of a GAP package are kept in a subdirectory
of the bin directory within the GAP or package root directory. The subdirectory name is
determined from the operating system, processor and compiler details when GAP (resp. the
package) is installed. Under rare circumstances, it may be necessary to override this name, and
this can be done using the -B option.

tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This
is useful when, after a while, you get tired of the banner. This option can be repeated to enable
the banner; each -b toggles the state of banner display.

The -D option tells GAP to print short messages when it is reading files or loading modules.
This option may be repeated to toggle this behavior on and off. The message,

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ as GAP file

tells you that GAP has started to read the library file 1ib/kernel.g.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ statically

tells you that GAP has used the compiled version of the library file 1ib/kernel.g. This
compiled module was statically linked to the GAP kernel at the time the kernel was created.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ dynamically

tells you that GAP has loaded the compiled version of the library file 1ib/kernel.g. This
compiled module was dynamically loaded to the GAP kernel at runtime from a corresponding
.so file.

Obviously, this is a debugging option and most users will not need it.

If your GAP installation uses the readline library for command line editing (see 6.9), this
may be disabled by using -E option. This option may be repeated to toggle this behavior
on and off. If your GAP installation does not use the readline library (you can check by
IsBound (GAPInfo.UseReadline) ; if this is the case), this option will have no effect at all.

tells GAP not to quit when receiving a CTRL-D on an empty input line (see 6.4.1). This option
should not be used when the input is a file or pipe. This option may be repeated to toggle this
behavior on and off.

GAP - Reference Manual 35

-f tells GAP to enable the line editing and history (see 6.8).
In general line editing will be enabled if the input is connected to a terminal. There are rare cir-
cumstances, for example when using a remote session with a corrupted telnet implementation,
when this detection fails. Try using -£ in this case to enable line editing. This option does not
toggle; you must use -n to disable line editing.

-g tells GAP to print a message every time a full garbage collection is performed.

Example
#G FULL 44580/2479kb live 57304/4392kb dead 734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage col-
lection, that 57304 unused objects were reclaimed by it, and that 734 kilobytes from a total
allocated memory of 4096 kilobytes are available afterwards.

-g -8
If you give the option -g twice, GAP prints a information message every time a partial or full
garbage collection is performed. The message,

Example
#G PART 9405/961kb+live 7525/1324kb+dead 2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 kilobytes from a total allocated memory of 4096 kilobytes are
available afterwards.

-h tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits

after printing the summary, all other options are ignored.

-i filename

changes the name of the init file from the default init.g to filename. (Usually not needed.)

-K memory

is like the -o option. But while the latter actually allocates more memory if the system allows
it and then prints a warning inside a break loop the -K options tells GAP not even to try to
allocate more memory. Instead GAP just exits with an appropriate message. The default is that
this feature is switched off. You have to set it explicitly when you want to enable it.

-L filename

The option -L tells GAP to load a saved workspace. See section 3.3.

-1 path_list

can be used to set or modify GAP’s list of root directories (see 9.2). The defaultifno -1 option
is given is the current directory ./. This option can be used several times. Depending on the
-r option a further user specific path is prepended to the list of root directories (the path in
GAPInfo.UserGapRoot).

path_list should be a list of directories separated by semicolons. No whitespace is permit-
ted before or after a semicolon. If path_list does not start or end with a semicolon, then
path_list replaces the existing list of root directories. If path_list starts with a semicolon,
then path_list is appended to the existing list of root directories. If path_list ends with

GAP - Reference Manual 36

a semicolon and does not start with one, then the new list of root directories is the concate-
nation of path_list and the existing list of root directories. After GAP has completed its
startup procedure and displays the prompt, the list of root directories can be seen in the variable
GAPInfo.RootPaths, see GAPInfo (3.5.1).

Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -1 option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how
several root paths can be used to do this.

GAP will attempt to read the file root_dir/lib/init.g during startup where root_dir is
one of the directories in its list of root directories. If GAP cannot find its init.g file it will
print the following warning.

Example
gap: hmm, I cannot find ’lib/init.g’ maybe use option ’-1 <gaproot>’?

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -1 option.

tells GAP not to check for, nor to use, compiled versions of library files. This option may be
repeated to toggle this behavior on and off.

- memory

tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it
is taken as kilobytes, if the last character is m or M memory is taken as megabytes and if it is g or
G it is taken as gigabytes.

This amount of memory should be large enough so that computations do not require too many
garbage collections. On the other hand, if GAP allocates more memory than is physically
available, it will spend most of the time paging.

tells GAP to disable the line editing and history (see 6.8).

You may want to do this if the command line editing is incompatible with another program that
is used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n
should be used since otherwise every input line will be echoed twice, once by Emacs and once
by GAP. This option does not toggle; you must use -f to enable line editing.

disables loading obsolete variables (see Chapter 77). This option is used mainly for testing
purposes, for example in order to make sure that a GAP package or one’s own GAP code does
not rely on the obsolete variables.

-0 memory

tells GAP to allocate at most memory bytes without asking. The option argument memory is
specified as with the -m option.

If more than this amount is required during the GAP session, GAP prints an error message and
enters a break loop. In that case you can enter return; which implicitly doubles the amount
given with this option.

tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>.
This is useful if you want to run GAP as a filter with input and output redirection and want to

GAP - Reference Manual 37

avoid the banner and the prompts appearing in the output file. This option may be repeated to
disable quiet mode; each -q toggles quiet mode.

The option -R tells GAP not to load a saved workspace previously specified via the -L option.
This option does not toggle.

The option -r tells GAP to ignore any user specific configuration files. In particular, the user
specific root directory GAPInfo.UserGapRoot is not added to the GAP root directories and so
gap.ini and gaprc files that may be contained in that directory are not read, see 3.2. Multiple
-r options toggle this behaviour.

-S memory

With this option GAP does not use sbrk to get memory from the operating system. Instead it
uses mmap, malloc or some other command for the amount given with this option to allocate
space for the GASMAN memory manager. Usually GAP does not really use all of this memory,
the options -m, -o, -K still work as documented. This feature assumes that the operating system
only assigns physical memory to the GAP process when it is accessed, so that specifying a large
amount of memory with -s should not cause any performance problem. The advantage of using
this option is that GAP can work together with kernel modules which allocate a lot of memory
with malloc.

The option argument memory is specified as with the -m option.

suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user
quit immediately from every break loop. This is intended for automated testing of GAP. This
option may be repeated to toggle this behavior on and off.

tells GAP to do a consistency check of the library file and the corresponding compiled module
when loading the compiled module. This option may be repeated to toggle this behavior on and
off.

-x length

With this option you can tell GAP how long lines are. GAP uses this value to decide when to
split long lines. After starting GAP you may use SizeScreen (6.12.1) to alter the line length.

The default value is 80, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

-y length

With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should wait. After starting GAP you may use
SizeScreen (6.12.1) to alter the number of lines.

The default value is 24, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

filename ...

Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. The files are read in

GAP - Reference Manual 38

the order in which they appear on the command line. GAP only accepts up to 14 filenames on
the command line. If a file cannot be opened GAP will print an error message and will abort.

Additional options, -C, -U, -P, -W, -p and -z are used internally by the gac script (see 76.3.10)
and/or on specific operating systems.

3.2 The gap.ini and gaprec files

When you start GAP, it looks for files with the names gap.ini and gaprc in its root directories
(see 9.2), and reads the first gap.ini and the first gaprc file it finds. These files are used for certain
initializations, as follows.

The file gap.ini is read early in the startup process. Therefore, the parameters set in this file can
influence the startup process, such as which packages are automatically loaded (see LoadPackage
(76.2.1)) and whether library files containing obsolete variables are read (see Chapter 77). On the
other hand, only calls to a restricted set of GAP functions are allowed in a gap.ini file. Usually,
it should only contain calls of SetUserPreference (3.2.3). This file can be generated (or updated
when new releases introduce further user preferences) with the command WriteGapIniFile (3.2.3).
This file is read whenever GAP is started, with or without a workspace.

The file gaprc is read after the startup process, before the first input file given on the command
line (see 3.1). So the contents of this file cannot influence the startup process, but all GAP library
functions can be called in this file. When GAP is started with a workspace then the file is read only if
no gaprec file had been read before the workspace was created. (With this setup, it is on the one hand
possible that administrators provide a GAP workspace for several users such that the user’s gaprc
file is read when GAP is started with the workspace, and on the other hand one can start GAP, read
one’s gaprc file, save a workspace, and then start from this workspace without reading one’s gaprc
file again.)

Note that by default, the user specific GAP root directory GAPInfo.UserGapRoot is the first
GAP root directory. So you can put your gap.ini and gaprc files into this directory.

This mechanism substitutes the much less flexible reading of a users .gaprc file in versions of
GAP up to 4.4. For compatibility this . gaprc file is still read if the directory GAPInfo.UserGapRoot
does not exist, see 77.5 how to migrate your old setup.

3.2.1 The gap.ini file

The file gap.ini is read after the declaration part of the GAP library is read, before the declaration
parts of the packages needed and suggested by GAP are read, and before the implementation parts of
GAP and of the packages are read.

The file gap. ini is expected to consist of calls to the function SetUserPreference (3.2.3), see
Section SetUserPreference (3.2.3).

Since the file gap.ini is read before the implementation part of GAP is read, not all GAP
functions may be called in the file. Assignments of numbers, lists, and records are admissible as
well as calls to basic functions such as Concatenation (21.20.1) and JoinStringsWithSeparator
(27.7.17).

Note that the file gap.ini is read also when GAP is started with a workspace.

GAP - Reference Manual 39

3.2.2 The gaprec file

If a file gaprc is found it is read after GAP’s init.g, but before any of the files mentioned on the
command line are read. You can use this file for your private customizations. (Many users may be
happy with using just user preferences in the gap. ini file (see above) for private customization.) For
example, if you have a file containing functions or data that you always need, you could read this from
gaprc. Or if you find some of the names in the library too long, you could define abbreviations for
those names in gaprc. The following sample gaprc file does both.

Example
Read("/usr/you/dat/mygroups.grp");
Ac := Action;
AcHom := ActionHomomorphism;
RepAc := RepresentativeAction;

Note that only one gaprec file is read when GAP is started. When a workspace is created in a GAP
session after a gaprec file has been read then no more gaprc file will be read when GAP is started
with this workspace.

Also note that the file must be called gaprc. If you use a Windows text editor, in particular if your
default is not to show file suffixes, you might accidentally create a file gaprc.txt or gaprc.doc
which GAP will not recognize.

3.2.3 Configuring User preferences

> SetUserPreference([package, Iname, value) (function)
> UserPreference([package, Jname) (function)
> ShowUserPreferences(packagel, package2, ...) (function)
> WriteGapIniFile([dir,][ignorecurrent]) (function)

Some aspects of the behaviour of GAP can be customized by the user via user preferences. Ex-
amples include the way help sections are displayed or the use of colors in the terminal.

User preferences are specified via a pair of strings, the first is the (case insensitive) name of a
package (or "GAP" for the core GAP library) and the second is some arbitrary case sensitive string.

User preferences can be set to some value with SetUserPreference. The current value of a
user preference can be found with UserPreference. In both cases, if no package name is given the
default "GAP" is used. If a user preference is not known or not set then UserPreference returns
fail.

The function ShowUserPreferences with no argument shows in a pager an overview of all
known user preferences together with some explanation and the current value. If one or more strings
packagel, ... are given then only the user preferences for these packages are shown.

The easiest way to make use of user preferences is probably to use the function
WriteGapIniFile, usually without argument. This function creates a file gap.ini in your user
specific GAP root directory (GAPInfo.UserGapRoot). If such a file already exists the function will
make a backup of it first. This newly created file contains descriptions of all known user preferences
and also calls of SetUserPreference for those user preferences which currently do not have their
default value. You can then edit that file to customize (further) the user preferences for future GAP
sessions.

GAP - Reference Manual 40

Should a later version of GAP or some packages introduce new user preferences then you can
call WriteGapIniFile again since it will set the previously known user preferences to their current
values.

Optionally, a different directory for the resulting gap . ini file can be specified as argument dir to
WriteGapIniFile. Another optional argument is the boolean value true, if this is given, the settings
of all user preferences in the current session are ignored.

Note that your gap.ini file is read by GAP very early during its startup process. A conse-
quence is that the value argument in a call of SetUserPreference must be some very basic GAP
object, usually a boolean, a number, a string or a list of those. A few user preferences support
more complicated settings. For example, the user preference "UseColorPrompt" admits a record
as its value whose components are available only after the GAPDocC package has been loaded,
see ColorPrompt (3.6.1). If you want to specify such a complicated value, then move the correspond-
ing call of SetUserPreference from your gap.ini file into your gaprc file (also in the directory
GAPInfo.UserGapRoot). This file is read much later.

Example
gap> SetUserPreference("Pager", "less");
gap> SetUserPreference("PagerOptions",
> [ll_fll, ||_r||’ u_au, "—i", II_MII, n_j2u]);
gap> UserPreference("Pager");
"less"

The first two lines of this example will cause GAP to use the programm less as a pager. This is
highly recommended if less is available on your system. The last line displays the current setting.

3.2.4 DeclareUserPreference

> DeclareUserPreference(record) (function)

This function can be used (also in packages) to introduce new user preferences. It declares a user
preference, determines a default value and contains documentation of the user preference. After dec-
laration a user preference will be shown with ShowUserPreferences (3.2.3) and WriteGapIniFile
(3.2.3).

When this declaration is evaluated it is checked, if this user preference is already set in the current
session. If not the value of the user preference is set to its default. (Do not use fail as default value
since this indicated that a user preference is not set.)

The argument record of DeclareUserPreference must be a record with the following compo-
nents.

name
a string or a list of strings, the latter meaning several preferences which belong together,

description
a list of strings describing the preference(s), one string for each paragraph; if several preferences
are declared together then the description refers to all of them,

default
the default value that is used, or a function without arguments that computes this default value;
if several preferences are declared together then the value of this component must be the list of
default values for the individual preferences.

GAP - Reference Manual 41

The following components of record are optional.

check
a function that takes a value as its argument and returns either true or false, depending on
whether the given value is admissible for this preference; if several preferences are declared
together then the number of arguments of the function must equal the length of the name list,

values
the list of admissible values, or a function without arguments that returns this list,

multi
true or false, depending on whether one may choose several values from the given list or just
one; needed (and useful only) if the values component is present,

package
the name of the GAP package to which the preference is assigned; if the declaration happens
inside a file that belongs to this package then the value of this component is computed, using
GAPInfo.PackageCurrent; otherwise, the default value for package is "GAP",

omitFromGapIniFile
if the value is true then this user preference is ignored by WriteGapIniFile (3.2.3).

Example
gap> UserPreference("MyFavouritePrime");
fail
gap> DeclareUserPreference(rec(
> name:= "MyFavouritePrime",
> description:= ["is not used, serves as an example"],
> default:= 2,
> omitFromGapIniFile:= true));
gap> UserPreference("MyFavouritePrime");
2
gap> SetUserPreference("MyFavouritePrime", 17);
gap> UserPreference("MyFavouritePrime");
17

3.3 Saving and Loading a Workspace

GAP workspace files are binary files that contain the data of a GAP session. One can produce a
workspace file with SaveWorkspace (3.3.1), and load it into a new GAP session using the -L com-
mand line option, see Section 3.1.

One purpose of workspace files is of course the possibility to save a “snapshot” image of the
current GAP workspace in a file.

The recommended way to start GAP is to load an existing workspace file, because this reduces the
startup time of GAP drastically. So if you have installed GAP yourself then you should think about
creating a workspace file immediately after you have started GAP, and then using this workspace
file later on, whenever you start GAP. If your GAP installation is shared between several users, the
system administrator should think about providing such a workspace file.

GAP - Reference Manual 42

3.3.1 SaveWorkspace
> SaveWorkspace(filename) (function)
will save a “‘snapshot” image of the current GAP workspace in the file filename. This image then

can be loaded by another copy of GAP which then will behave as at the point when SaveWorkspace
was called.

Example
gap> a:=1;

gap> SaveWorkspace("savefile");

true

gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of
a loop or function, or called from a break loop.
3.4 Testing for the System Architecture
3.4.1 ARCH_IS_UNIX

> ARCH_IS_UNIX() (function)

tests whether GAP is running on a UNIX system (including Mac OS X).

34.2 ARCH_IS_MAC _OS_X

> ARCH_IS_MAC_0S_X() (function)

tests whether GAP is running on Mac OS X. Note that on Mac OS X, also ARCH_IS_UNIX (3.4.1)
will be true.
3.43 ARCH_IS_WINDOWS

> ARCH_IS_WINDOWS() (function)

tests whether GAP is running on a Windows system.

3.5 Global Values that Control the GAP Session

3.5.1 GAPInfo

> GAPInfo (global variable)

Several global values control the GAP session, such as the command line, the architecture, or
the information about available and loaded packages. Many of these values are accessible as compo-
nents of the global record GAPInfo. Typically, these components are set and read in low level GAP
functions, so changing the values of existing components of GAPInfo “by hand” is not recommended.

Important components are documented via index entries, try the input ??GAPInfo for getting an
overview of these components.

GAP - Reference Manual 43

3.6 Coloring the Prompt and Input

GAP provides hooks for functions which are called when the prompt is to be printed and when an
input line is finished.
An example of using this feature is the following function.

3.6.1 ColorPrompt

> ColorPrompt (bool[, optrec]) (function)

With ColorPrompt (true) ; GAP changes its user interface: The prompts and the user input are
displayed in different colors. Switch off the colored prompts with ColorPrompt (false) ;.

Note that this will only work if your terminal emulation in which you run GAP understands the so
called ANSI color escape sequences —almost all terminal emulations on current UNIX/Linux (xterm,
rxvt, konsole, ...) systems do so.

The colors shown depend on the terminal configuration and cannot be forced from an application.
If your terminal follows the ANSI conventions you see the standard prompt in bold blue and the break
loop prompt in bold red, as well as your input in red.

If it works for you and you like it, put a call of SetUserPreference("UseColorPrompt",
true); in your gap.ini file. If you want a more complicated setting as explained below then put
your SetUserPreference ("UseColorPrompt", rec(...)); callinto your gaprc file.

The optional second argument optrec allows one to further customize the behaviour. It must be
a record from which the following components are recognized:

MarkupStdPrompt
a string or no argument function returning a string containing the escape sequence used for the
main prompt gap> .

MarkupContPrompt
a string or no argument function returning a string containing the escape sequence used for the
continuation prompt > .

MarkupBrkPrompt
a string or no argument function returning a string containing the escape sequence used for the
break prompt brk...> .

MarkupInput
a string or no argument function returning a string containing the escape sequence used for user
input.

TextPrompt
a no argument function returning the string with the text of the prompt, but without any escape
sequences. The current standard prompt is returned by CPROMPT (). But note that changing the
standard prompts makes the automatic removal of prompts from input lines impossible (see 6.2).

PrePrompt
a function called before printing a prompt.

Here is an example.

GAP - Reference Manual

LoadPackage ("GAPDoc") ;
timeSHOWMIN := 100;
ColorPrompt (true, rec(
usually cyan bold, see 7TextAttr
MarkupStdPrompt := Concatenation(TextAttr.bold, TextAttr.6),
MarkupContPrompt := Concatenation(TextAttr.bold, TextAttr.6),
PrePrompt := function()
show the ’time’ automatically if at least timeSHOWMIN
if CPROMPT() = "gap> " and time >= timeSHOWMIN then
Print ("Time of last command: ", time, ms\n") ;
fi;
end))

Chapter 4

The Programming Language

This chapter describes the GAP programming language. It should allow you in principle to predict
the result of each and every input. In order to know what we are talking about, we first have to look
more closely at the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP
is operating system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a
window, or read from a file. The mechanism does not matter. This representation of expressions by
characters is called the external representation of the expression. Every expression has at least one
external representation that can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal
representation. At this point the input is analyzed and inputs that are not legal external representations,
according to the rules given below, are rejected as errors. Those rules are usually called the syntax of
a programming language.

The internal representation created by reading is called either an expression or a statement. Later
we will distinguish between those two terms. However for now we will use them interchangeably.
The exact form of the internal representation does not matter. It could be a string of characters equal
to the external representation, in which case the reading would only need to check for errors. It could
be a series of machine instructions for the processor on which GAP is running, in which case the
reading would more appropriately be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution.
Later we will distinguish between those two terms too, but for the moment we will use them inter-
changeably. The name hints at the nature of this process, it replaces an expression with the value
of the expression. This works recursively, i.e., to evaluate an expression first the subexpressions are
evaluated and then the value of the expression is computed from those values according to rules given
below. Those rules are usually called the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a
value is represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an
external representation, i.e., a string of characters again. What you do with this external representation
is up to you. You can look at it, paste it with the mouse into another window, or write it to a file.

45

GAP - Reference Manual 46

Lets look at an example to make this more clear. Suppose you type in the following string of 8
characters

1+ 2 % 3;

GAP takes this external representation and creates a tree-like internal representation, which we
can picture as follows

+

/ \

1 *
/ \
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3.
Again, to do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they
are their own value, we say that they are self-evaluating. After this has been done, the rule for * tells
us that the value is the product of the values of the two subexpressions, which in this case is clearly 6.
Combining this with the value of the left operand of the +, which is self-evaluating, too, gives us the
value of the whole expression 7. This is then printed, i.e., converted into the external representation
consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how its value is
computed in terms of the values of the subexpressions. The syntactic rules are given in sections 4.2,
4.3, 4.4, 4.5, and 4.6, the semantic rules are given in sections 4.7, 4.8, 4.11, 4.12, 4.13, 4.14, 4.15,
4.16,4.17,4.18, 4.19, 4.20, 4.23, and the chapters describing the individual data types.

4.2 Lexical Structure

Most input of GAP consists of sequences of the following characters.
Digits, uppercase and lowercase letters, SPACE, TAB, NEWLINE, RETURN and the special char-
acters

,_|
~
—
)
|
A~ N+
(-

It is possible to use other characters in identifiers by escaping them with backslashes, but we do
not recommend to use this feature. Inside strings (see section 4.3 and chapter 27) and comments
(see 4.4) the full character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scan-
ning, that assembles the characters into symbols. A symbol is a sequence of characters that form a
lexical unit. The set of symbols consists of keywords, identifiers, strings, integers, and operator and
delimiter symbols.

GAP - Reference Manual 47

A keyword is a reserved word (see 4.5). An identifier is a sequence of letters, digits and under-
scores (or other characters escaped by backslashes) that contains at least one non-digit and is not a
keyword (see 4.6). An integer is a sequence of digits (see 14), possibly prepended by - and + sign
characters. A string is a sequence of arbitrary characters enclosed in double quotes (see 27).

Operator and delimiter symbols are

+ - * / - A
= <> < <= > >= I[
1= . .. -> s ; 1{

L] { } ()

Note also that during the process of scanning all whitespace is removed (see 4.4).

4.4 Whitespaces

The characters SPACE, TAB, NEWLINE, and RETURN are called whitespace characters. Whitespace is
used as necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example
Thorondor is a single identifier, while Th or ondor is the keyword or between the two identifiers
Th and ondor. Whitespace may occur between any two symbols, but not within a symbol. Two or
more adjacent whitespace characters are equivalent to a single whitespace. Apart from the role as
separator of symbols, whitespace characters are otherwise insignificant. Whitespace characters may
also occur inside a string, where they are significant. Whitespace characters should also be used freely
for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to
the end of the line on which the comment character appears. The whole comment, including # and the
NEWLINE character is treated as a single whitespace. Inside a string, the comment character # loses
its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if i < 0 then # if i is negative

a := -i; # take its additive inverse
else # otherwise

a = 1i; # take itself
fi;

(which by the way shows that it is possible to write superfluous comments). However the first
statement is not equivalent to

ifi<Othena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then
and a, and else and a must be separated.

GAP - Reference Manual 48

4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The list of keywords is contained in the GAPInfo.Keywords compo-
nent of the GAPInfo record (see 3.5.1). We will show how to print it in a nice table, demonstrating at
the same time some list manipulation techniques:

Example

gap> keys:=SortedList(GAPInfo.Keywords);; l:=Length(keys);;
gap> arr:= List([O .. Int(1/4)-1 1, i-> keys{ 4*xi + [1 .. 41 });;
gap> if 1 mod 4 <> O then Add(arr, keys{[4*Int(1/4) + 1 .. 1 1}); fi;
gap> Length(keys); PrintArray(arr);
35
[[Assert, Info, IsBound, QUIT 1,

[TryNextMethod, Unbind, and, atomic],

[break, continue, do, elif],

[else, end, false, fi],

[for, function, if, in],

[local, mod, not, od],

[or, quit, readonly, readwrite],

[rec, repeat, return, then],

[true, until, while]]

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For
example else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must
not contain whitespace, for example el if is not the same as elif.

Note: Several tokens from the list of keywords above may appear to be normal identifiers repre-
senting functions or literals of various kinds but are actually implemented as keywords for technical
reasons. The only consequence of this is that those identifiers cannot be re-assigned, and do not ac-
tually have function objects bound to them, which could be assigned to other variables or passed to
functions. These keywords are true, false, Assert (7.5.3), IsBound (4.8.1), Unbind (4.8.2), Info
(7.4.5) and TryNextMethod (78.4.1).

Keywords atomic, readonly, readwrite are not used at the moment. They are reserved for the
future version of GAP to prevent their accidental use as identifiers.

4.6 Identifiers

An identifier is used to refer to a variable (see 4.8). An identifier usually consists of letters, digits, un-
derscores _, and “at”-characters @, and must contain at least one non-digit. An identifier is terminated
by the first character not in this class. Note that the “at”-character @ is used to implement namespaces,
see Section 4.10 for details.

Examples of valid identifiers are

a foo alongIdentifier
hello Hello HELLO
x100 100x _100

some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords
abc@def

GAP - Reference Manual 49

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed by a
character is equivalent to the character, except that this escape sequence is considered to be an ordinary
letter. For example

G\ (2\,5\)

is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example * and \mod are
identifiers.

The length of identifiers is not limited, however only the first 1023 characters are significant. The
escape sequence \NEWLINE is ignored, making it possible to split long identifiers over multiple lines.

4.6.1 IsValidldentifier

> IsValidIdentifier(str) (function)

returns true if the string str would form a valid identifier consisting of letters, digits and under-
scores; otherwise it returns false. It does not check whether str contains characters escaped by a
backslash \.

Note that the “at”-character is used to implement namespaces for global variables in packages.
See 4.10 for details.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.14). Expressions appear as right hand
sides of assignments (see 4.15), as actual arguments in function calls (see 4.11), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose
value is the integer 12. The external representation of this integer is the character sequence 12, i.e.,
this sequence is output if the integer is printed. This sequence is another expression whose value is the
integer 12. The process of finding the value of an expression is done by the interpreter and is called
the evaluation of the expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals (see
4.8,4.11, 14, 42,27, 4.23, 21, 29), are the simplest cases of expressions.

Expressions, for example the simple expressions mentioned above, can be combined with the
operators to form more complex expressions. Of course those expressions can then be combined
further with the operators to form even more complex expressions. The operators fall into three
classes. The comparisons are =, <>, <, <=, >, >= and in (see 4.12 and 30.6). The arithmetic operators
are +, -, *, /, mod, and ~ (see 4.13). The logical operators are not, and, and or (see 20.4).

The following example shows a very simple expression with value 4 and a more complex expres-
sion.

Example

gap> 2 * 2;

4

gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true

GAP - Reference Manual 50

For the precedence of operators, see 4.12.

4.8 Variables

A variable is a location in a GAP program that points to a value. We say the variable is bound to this
value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by
assigning this value to the variable (see 4.15). Because of this we sometimes say that a variable that is
not bound to any value has no assigned value. Assignment is in fact the only way by which a variable,
which is not an argument of a function, can be bound to a value. After a variable has been bound to a
value an assignment can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call (see 4.11).

Each variable has a name that is also called its identifier. This is because in a given scope an
identifier identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There
is the global scope that encloses the entire program text, and there are local scopes that range from
the function keyword, denoting the beginning of a function definition, to the corresponding end
keyword. A local scope introduces new variables, whose identifiers are given in the formal argument
list and the local declaration of the function (see 4.23). Usage of an identifier in a program text
refers to the variable in the innermost scope that has this identifier as its name. Because this mapping
from identifiers to variables is done when the program is read, not when it is executed, GAP is said to
have lexical scoping. The following example shows how one identifier refers to different variables at
different points in the program text.

g = 0; # global variable g
x := function (a, b, c)
local vy,
g := c; # c refers to argument c of function x

y := function (y)
local d, e, f;
d :=y; # y refers to argument y of function y
e := b; # b refers to argument b of function x
f :=g; # g refers to global variable g
return d + e + f;

end;

return y(a); # y refers to local y of function x

end;

It is important to note that the concept of a variable in GAP is quite different from the concept of
a variable in most compiled programming languages.

In those languages a variable denotes a block of memory. The value of the variable is stored in
this block. So in those languages two variables can have the same value, but they can never have
identical values, because they denote different blocks of memory. Note that some languages have
the concept of a reference argument. It seems as if such an argument and the variable used in the
actual function call have the same value, since changing the argument’s value also changes the value
of the variable used in the actual function call. But this is not so; the reference argument is actually
a pointer to the variable used in the actual function call, and it is the compiler that inserts enough
magic to make the pointer invisible. In order for this to work the compiler needs enough information

GAP - Reference Manual 51

to compute the amount of memory needed for each variable in a program, which is readily available
in the declarations.

In GAP on the other hand each variable just points to a value, and different variables can share
the same value.

4.8.1 IsBound (for a global variable)

> IsBound(ident) (function)

IsBound returns true if the variable ident points to a value, and false otherwise.
For records and lists IsBound can be used to check whether components or entries, respectively,
are bound (see Chapters 29 and 21).

4.8.2 Unbind (unbind a variable)

> Unbind(ident) (function)

deletes the identifier ident. If there is no other variable pointing to the same value as ident was,
this value will be removed by the next garbage collection. Therefore Unbind can be used to get rid of
unwanted large objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chap-
ters 29 and 21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used
to access functions and other objects created either in the GAP library or packages or in the user’s
code.

Note that for packages there is a mechanism to implement package local namespaces on top of
this global namespace. See Section 4.10 for details.

Certain special facilities are provided for manipulating global variables which are not available
for other types of variable (such as local variables or function arguments).

First, such variables may be marked read-only. In which case attempts to change them will fail.
Most of the global variables defined in the GAP library are so marked.

Second, a group of functions are supplied for accessing and altering the values assigned to global
variables. Use of these functions differs from the use of assignment, Unbind (4.8.2) and IsBound
(4.8.1) statements, in two ways. First, these functions always affect global variables, even if local
variables of the same names exist. Second, the variable names are passed as strings, rather than being
written directly into the statements.

Note that the functions NamesGVars (4.9.8), NamesSystemGVars (4.9.9), NamesUserGVars
(4.9.10), and TemporaryGlobalVarName (4.9.11) deal with the global namespace.

4.9.1 IsReadOnlyGlobal

> IsReadOnlyGlobal (name) (function)

GAP - Reference Manual

52

returns true if the global variable named by the string name is read-only and false otherwise

(the default).

4.9.2 MakeReadOnlyGlobal

> MakeReadOnlyGlobal (name) (function)
marks the global variable named by the string name as read-only.
A warning is given if name has no value bound to it or if it is already read-only.
4.9.3 MakeReadWriteGlobal
> MakeReadWriteGlobal (name) (function)
marks the global variable named by the string name as read-write.
A warning is given if name is already read-write.
Example
gap> xx := 17;
17
gap> IsReadOnlyGlobal ("xx");
false
gap> xx := 15;
15
gap> MakeReadOnlyGlobal ("xx");
gap> xx := 16;
Variable: ’xx’ is read only
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ after making it writable to continue
brk> quit;
gap> IsReadOnlyGlobal("xx");
true
gap> MakeReadWriteGlobal ("xx");
gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false
4.9.4 ValueGlobal
> ValueGlobal (name) (function)

returns the value currently bound to the global variable named by the string name. An error is

raised if no value is currently bound.

4.9.5 IsBoundGlobal

> IsBoundGlobal (name)

(function)

GAP - Reference Manual 53

returns true if a value currently bound to the global variable named by the string name and false
otherwise.

4.9.6 UnbindGlobal

> UnbindGlobal (name) (function)

removes any value currently bound to the global variable named by the string name. Nothing is
returned.

A warning is given if name was not bound. The global variable named by name must be writable,
otherwise an error is raised.

4.9.7 BindGlobal

> BindGlobal (name, val) (function)

sets the global variable named by the string name to the value val, provided it is writable, and
makes it read-only. If name already had a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as opera-
tions and filters).

Caution should be exercised in using these functions, especially BindGlobal and UnbindGlobal
(4.9.6) as unexpected changes in global variables can be very confusing for the user.

Example
gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false
gap> ValueGlobal("xx");
16
gap> IsBoundGlobal("xx");
true

gap> BindGlobal("xx",17);

#W BIND_GLOBAL: variable ‘xx’ already has a value
gap> xx;

17

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal ("xx");

gap> Unbind(xx) ;

4.9.8 NamesGVars

> NamesGVars() (function)

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable
names known to the system. This includes names of variables which were bound but have now been
unbound and some other names which have never been bound but have become known to the system
by various routes.

GAP - Reference Manual 54

4.9.9 NamesSystemG Vars

> NamesSystemGVars () (function)

This function returns an immutable sorted list of all the global variable names created by the GAP
library when GAP was started.

4.9.10 NamesUserGVars

> NamesUserGVars () (function)

This function returns an immutable sorted list of the global variable names created since the library
was read, to which a value is currently bound.

4.9.11 TemporaryGlobalVarName

> TemporaryGlobalVarName ([prefix]) (function)

returns a string that can be used as the name of a global variable that is not bound at the time when
TemporaryGlobalVarName is called. The optional argument prefix can specify a string with which
the name of the global variable starts.

4.10 Namespaces for GAP packages

As mentioned in Section 4.9 above all global variables share a common namespace. This can relatively
easily lead to name clashes, in particular when many GAP packages are loaded at the same time. To
give package code a way to have a package local namespace without breaking backward compatibility
of the GAP language, the following simple rule has been devised:

If in package code a global variable that ends with an “at”-character @ is accessed in any way,
the name of the package is appended before accessing it. Here, “package code” refers to everything
which is read with ReadPackage (76.3.1). As the name of the package the entry PackageName in its
PackageInfo.g file is taken. As for all identifiers, this name is case sensitive.

For example, if the following is done in the code of a package with name xYz:

Example

gap> a@ := 12;

Then actually the global variable a@xYz is assigned. Further accesses to a@ within the package code
will all be redirected to a@xYz. This includes all the functions described in Section 4.9 and indeed all
the functions described Section 79.18 like for example DeclareCategory (79.18.1). Note that from
code in the same package it is still possible to access the same global variable via a@xYz explicitly.

All other code outside the package as well as interactive user input that wants to refer to that
variable a@xYz must do so explicitly by using a@xYz.

Since in earlier releases of GAP the “at”-character @ was not a legal character (without using
backslashes), this small extension of the language does not break any old code.

GAP - Reference Manual 55

4.11 Function Calls

4.11.1 Function Call With Arguments

function-var ([arg-expr[, arg-expr, ...1]1)

The function call has the effect of calling the function function-var. The precise semantics are
as follows.

First GAP evaluates the function-var. Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, such as a reference to an element of a list (see Chapter 21)
list-var [int-expr], or to a component of a record (see Chapter 29) record-var .ident. In
any case GAP tests whether the value is a function. If it is not, GAP signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an error. An
exception is the case when the function has a variable length argument list, which is denoted by adding

. after the final argument. In this case there must be at least as many actual arguments as there are
formal arguments before the final argument and can be any larger number (see 4.23 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers
in the local declaration) a new variable. Remember that a variable is a location in a GAP program
that points to a value. Thus for each formal argument and for each formal local such a location is
allocated.

Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created
variables corresponding to the formal arguments. Of course the first value is assigned to the new
variable corresponding to the first formal argument, the second value is assigned to the new variable
corresponding to the second formal argument, and so on. However, GAP does not make any guarantee
about the order in which the arguments are evaluated. They might be evaluated left to right, right
to left, or in any other order, but each argument is evaluated once. An exception again occurs if
the last formal argument has the name arg. In this case the values of all the actual arguments not
assigned to the other formal parameters are stored in a list and this list is assigned to the new variable
corresponding to the formal argument arg,.

The new variables corresponding to the formal locals are initially not bound to any value. So
trying to evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the
formal arguments or formal locals appears in the body of the function it refers to the new variable that
was allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see
4.24) is executed, execution of the body is terminated and the value of the function call is the value
of the expression of the return. If during the execution of the body a return statement without an
expression is executed, execution of the body is terminated and the function call does not produce a
value, in which case we call this call a procedure call (see 4.16). If the execution of the body completes
without execution of a return statement, the function call again produces no value, and again we talk
about a procedure call.

Example

gap> Fibonacci(11);
89

The above example shows a call to the function Fibonacci (16.3.1) with actual argument 11, the

GAP - Reference Manual 56

following one shows a call to the operation RightCosets (39.7.2) where the second actual argument
is another function call.

Example
gap> RightCosets(G, Intersection(U, V));;

4.11.2 Function Call With Options

function-var (arg-expr[, arg-expr, ...]J[: [option-expr [,option-expr,
N D)

As well as passing arguments to a function, providing the mathematical input to its calculation,
it is sometimes useful to supply “hints” suggesting to GAP how the desired result may be computed
more quickly, or specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have
much the same syntax as the components of a record expression. The one exception to this is that a
component name may appear without a value, in which case the value true is silently inserted.

The following example shows a call to Size (30.4.6) passing the options hard (with the value
true) and tcselection (with the string "external" as value).

Example
gap> Size(fpgrp : hard, tcselection := "external");

Options supplied with function calls in this way are passed down using the global options stack
described in chapter 8, so that the call above is exactly equivalent to
Example
gap> PushOptions(rec(hard := true, tcselection := "external"));
gap> Size(fpgrp);
gap> PopOptions();

Note that any option may be passed with any function, whether or not it has any actual meaning
for that function, or any function called by it. The system provides no safeguard against misspelled
option names.

4.12 Comparisons

left-expr = right-expr

left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and
to false otherwise. Likewise <> tests for inequality of its two operands. For each type of objects
the definition of equality is given in the respective chapter. Objects in different families (see 13.1) are
never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr

left-expr > right-expr

left-expr <= right-expr

left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two
operands. For each kind of objects the definition of the ordering is given in the respective chapter.

GAP - Reference Manual 57

Note that < implements a fotal ordering of objects (which can be used for example to sort a list
of elements). Therefore in general < will not be compatible with any inclusion relation (which can be
tested using IsSubset (30.5.1)). (For example, it is possible to compare permutation groups with <
in a total ordering of all permutation groups, but this ordering is not compatible with the relation of
being a subgroup.)

Only for the following kinds of objects, an ordering via < of objects in different tfamilies (see 13.1)
is supported. Rationals (see IsRat (17.2.1)) are smallest, next are cyclotomics (see IsCyclotomic
(18.1.3)), followed by finite field elements (see ISFFE (59.1.1)); finite field elements in different
characteristics are compared via their characteristics, next are permutations (see IsPerm (42.1.1)),
followed by the boolean values true, false, and fail (see IsBool (20.1.1)), characters (such as
{}a{’}’, see IsChar (27.1.1)), and lists (see IsList (21.1.1)) are largest; note that two lists can be
compared with < if and only if their elements are again objects that can be compared with <.

For other objects, GAP does not provide an ordering via <. The reason for this is that a total
ordering of all GAP objects would be hard to maintain when new kinds of objects are introduced, and
such a total ordering is hardly used in its full generality.

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For
example, one can form sorted lists containing integers and nested lists of integers, and then search in
them using PositionSorted (see 21.16).

Of course it would in principle be possible to define an ordering via < also for certain other objects,
by installing appropriate methods for the operation \<. But this may lead to problems at least as soon
as one loads GAP code in which the same is done, under the assumption that one is completely free to
define an ordering via < for other objects than the ones for which the “official” GAP provides already
an ordering via <.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not
allowed towritea = b <> ¢ = d,youmustuse (a = b) <> (¢ = d) instead. The comparison
operators have higher precedence than the logical operators (see 20.4), but lower precedence than the
arithmetic operators (see 4.13). Thus, for instance, a * b = ¢ and d is interpreted as ((a * b)
= ¢) and d).

The following example shows a comparison where the left operand is an expression.

Example

gap> 2 * 2 + 9 = Fibonacci(7);
true

For the underlying operations of the operators introduced above, see 31.11.

4.13 Arithmetic Operators

+ right-expr

- right-expr

left-expr + right-expr
left-expr - right-expr
left-expr * right-expr
left-expr / right-expr
left-expr mod right-expr
left-expr ~ right-expr

GAP - Reference Manual 58

The arithmetic operators are +, -, *, /, mod, and ~. The meanings (semantics) of those operators
generally depend on the types of the operands involved, and they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b.

a - b denotes the addition of a and the additive inverse of b.

a * b denotes the multiplication of multiplicative elements a and b.

a / b denotes the multiplication of a with the multiplicative inverse of b.

a mod b, for integer or rational left operand a and for non-zero integer right operand b, is defined
as follows. If a and b are both integers, a mod b is the integer r in the integer range 0 .. |b]
- 1 satisfying a = r + bq, for some integer q (where the operations occurring have their usual
meaning over the integers, of course).

If a is a rational number and b is a non-zero integer, and a = m / n where m and n are coprime
integers with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such
that m is congruent to rn modulo b, and r is called the “modular remainder” of a modulo b. Also, 1
/ n mod b is called the “modular inverse” of n modulo b. (A pair of integers is said to be coprime
(or relatively prime) if their greatest common divisor is 1.)

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal
to 22), despite the fact that 6 has no inverse modulo 32.

Note: For rational a, a mod b could have been defined to be the non-negative rational c less
than |b| such thata - c¢ is a multiple of b. However this definition is seldom useful and not the one
chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the
additive inverse of its operand; over the integers it is equivalent to multiplication by -1.

~ denotes powering of a multiplicative element if the right operand is an integer, and is also used
to denote the action of a group element on a point of a set if the right operand is a group element.

The precedence of those operators is as follows. The powering operator ~ has the highest prece-
dence, followed by the unary operators + and -, which are followed by the multiplicative operators
*, /, and mod, and the additive binary operators + and - have the lowest precedence. That means
that the expression -2 ~ -2 * 3 + 1 is interpreted as (-(2 ~ (-2)) * 3) + 1. If in doubt use
parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ~ is not associative, i.e., it is invalid to
write 27374, use parentheses to clarify whether you mean (2~3) ~4 or 2~ (3~4). The unary operators
+ and - are right associative, because they are written to the left of their operands. *, /, mod, +, and
- are all left associative, i.e., 1-2-3 is interpreted as (1-2) -3 not as 1-(2-3). Again, if in doubt use
parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.12
and 30.6) and the logical operators (see 20.4). Thus, for example, a * b = ¢ and d is interpreted,
((a *x b) = ¢) and d.

Example
gap> 2 * 2 + 9; # a very simple arithmetic expression
13

For other arithmetic operations, and for the underlying operations of the operators introduced
above, see 31.12.

GAP - Reference Manual 59

4.14 Statements

Assignments (see 4.15), Procedure calls (see 4.16), if statements (see 4.17), while (see 4.18),
repeat (see 4.19) and for loops (see 4.20), and the return statement (see 4.24) are called state-
ments. They can be entered interactively or be part of a function definition. Every statement must be
terminated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For
example an assignment has the effect of assigning a value to a variable, a for loop has the effect of
executing a statement sequence for all elements in a list and so on. We will talk about evaluation of
expressions but about execution of statements to emphasize this difference.

Using expressions as statements is treated as syntax error.

Example
gap> i = 7;;
gap> if i <> O then k = 16/i; fi;
Syntax error: := expected

if i <> 0 then k = 16/i; fi;

gap>

As you can see from the example this warning does in particular address those users who are used
to languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.

A sequence of one or more statements is a statement sequence, and may occur everywhere instead
of a single statement. Each construct is terminated by a keyword. The simplest statement sequence is
a single semicolon, which can be used as an empty statement sequence. In fact an empty statement
sequence as in for i in [1 .. 2] do od is also permitted and is silently translated into the
sequence containing just a semicolon.

4.15 Assignments

var := expr;

The assignment has the effect of assigning the value of the expressions expr to the variable var.

The variable var may be an ordinary variable (see 4.8), a list element selection
list-var [int-expr] (see 21.4) or a record component selection record-var . ident (see 29.3).
Since a list element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable. For
example a variable with an integer value may be assigned a permutation or a list or anything else.

Example
gap> data:= rec(numbers:= [1, 2, 3]);
rec(numbers := [1, 2, 3])
gap> data.string:= "string";; data;
rec(numbers := [1, 2, 3], string := "string")
gap> data.numbers[2]:= 4;; data;
rec(numbers := [1, 4, 3], string := "string")

If the expression expr is a function call then this function must return a value. If the function
does not return a value an error is signalled and you enter a break loop (see 6.4). As usual you can

GAP - Reference Manual 60

leave the break loop with quit;. If you enter return return-expr; the value of the expression
return-expr is assigned to the variable, and execution continues after the assignment.

Example
gap> f1:= function(x) Print("value: ", x, "\n"); end;;
gap> f2:= function(x) return f1(x); end;;
gap> f2(4);
value: 4

Function Calls: <func> must return a value at
return f1(x);
called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can supply one by ’return <value>;’ to continue
brk> return "hello";
"hello"

In the above example, the function £2 calls £1 with argument 4, and since £1 does not return a
value (but only prints a line “value: ...”), the return statement of £2 cannot be executed. The
error message says that it is possible to return an appropriate value, and the returned string "hello"
is used by £2 instead of the missing return value of 1.

4.16 Procedure Calls

procedure-var ([arg-expr [,arg-expr, ...1]1);

The procedure call has the effect of calling the procedure procedure-var. A procedure call is
done exactly like a function call (see 4.11). The distinction between functions and procedures is only
for the sake of the discussion, GAP does not distinguish between them. So we state the following
conventions.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., "Length", "Concatenation" and
"Order".

A procedure is a function that does not return a value but produces some effect. Procedures are
called only for this effect. As a convention the name of a procedure is a verb, denoting what the
procedure does, e.g., "Print", "Append" and "Sort".
Example
gap> Read("myfile.g"); # a call to the procedure Read
gap> 1 := [1, 2 1;;
gap> Append(1, [3,4,5]); # a call to the procedure Append

There are a few exceptions of GAP functions that do both return a value and produce some effect.
An example is Sortex (21.18.3) which sorts a list and returns the corresponding permutation of the
entries.

417 It

if bool-exprl then statementsl { elif bool-expr2 then statements2 }[else
statements3] fi;

GAP - Reference Manual 61

The if statement allows one to execute statements depending on the value of some boolean ex-
pression. The execution is done as follows.

First the expression bool-expr1 following the if is evaluated. If it evaluates to true the state-
ment sequence statements1 after the first then is executed, and the execution of the if statement is
complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to true the
corresponding statement sequence statements2 is executed and execution of the if statement is
complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of the if
statement is complete. If there is no else part the if statement is complete without executing any
statement sequence.

Since the if statement is terminated by the £i keyword there is no question where an else part
belongs, i.e., GAP has no “dangling else”. In

if exprl then if expr2 then statsl else stats2 fi; fi;

the else part belongs to the second if statement, whereas in

if exprl then if expr2 then statsl fi; else stats2 fi;

the else part belongs to the first if statement.
Since an if statement is not an expression it is not possible to write

abs := if x > 0 then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a
value that could be assigned to abs.

If one of the expressions bool-exprl, bool-expr2 is evaluated and its value is neither true nor
false an error is signalled and a break loop (see 6.4) is entered. As usual you can leave the break loop
with quit;. If you enter return true;, execution of the if statement continues as if the expression
whose evaluation failed had evaluated to true. Likewise, if you enter return false;, execution of
the if statement continues as if the expression whose evaluation failed had evaluated to false.

Example
gap> i := 10;;
gap> if 0 < i then
> s :=1;
> elif i < O then
> s := -1;
> else
> s := 0;
> fi;
gap> s; # the sign of i
1

GAP - Reference Manual 62

4.18 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
and the statement immediately following the while loop is executed next. Otherwise if it evaluates to
true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 4.19) is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4)
is entered. As usual you can leave the break loop with quit ;. If you enter return false;, execution
continues with the next statement immediately following the while loop. If you enter return true;,
execution continues at statements, after which the next evaluation of bool-expr may cause another
error.

The following example shows a while loop that sums up the squares 12,22, ... until the sum
exceeds 200.

Example

gap> i := 0;; s := 0;;

gap> while s <= 200 do

> i:=1i+1; s :=8 + i~2;
> od;

gap> s;

204

A while loop may be left prematurely using break, see 4.21.

4.19 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat
loop terminates and the statement immediately following the repeat loop is executed next. Otherwise
if it evaluates to false the whole process begins again with the execution of the statements.

The difference between the while loop (see 4.18) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see
6.4) is entered. As usual you can leave the break loop with quit;. If you enter return true;,
execution continues with the next statement immediately following the repeat loop. If you enter
return false;, execution continues at statements, after which the next evaluation of bool-expr
may cause another error.

The repeat loop in the following example has the same purpose as the while loop in the preced-
ing example, namely to sum up the squares 12,22, ... until the sum exceeds 200.

GAP - Reference Manual 63

Example
gap> 1 := 0;; s := 0;;
gap> repeat

> i:=1i+1; s :=8s8 + i~2;
> until s > 200;

gap> s;

204

A repeat loop may be left prematurely using break, see 4.21.

420 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list
list-expr.

The statement sequence statements is first executed with simple-var bound to the first element
of the list 1ist-expr, then with simple-var bound to the second element of 1ist-expr and so on.
simple-var must be a simple variable, it must not be a list element selection 1ist-var [int-expr]
or a record component selection record-var . ident.

The execution of the for loop over a list is exactly equivalent to the following while loop.

loop_list := list;

loop_index := 1;

while loop_index <= Length(loop_list) do
variable := loop_list[loop_index];
statements
loop_index := loop_index + 1;

od;

with the exception that “loop_list” and “loop_index” are different variables for each for loop, i.e.,
these variables of different for loops do not interfere with each other.

The list 1ist-expr is very often a range (see 21.22).

for variable in [from..to] do statements od;

corresponds to the more common

for variable from from to to do statements od;

in other programming languages.

Example

gap> s := 0;;

gap> for i in [1..100] do
> s := s + i;

> od;

gap> s;

5050

Note in the following example how the modification of the /ist in the loop body causes the loop
body also to be executed for the new values.

GAP - Reference Manual

Example

64

gap> 1 := [1, 2, 3, 4, 5, 6 1;;

gap> for i in 1 do

> Print(i, " ");

> if i mod 2 = 0 then Add(1, 3 * i / 2); fi;
> od; Print("\n");

12345636929

gap> 1;

(1,2, 3,4,5,6,3,6,9, 9]

Note in the following example that the modification of the variable that holds the list has no

influence on the loop.

Example
gap> 1 := [1, 2, 3, 4, 5, 6 1;;
gap> for i in 1 do
> Print(i, " ");
> 1 :=1[1;
> od; Print("\n");
123456
gap> 1;
L]

for variable in iterator do statements od;

It is also possible to have a for-loop run over an iterator (see 30.8). In this case the for-loop is

equivalent to

while not IsDonelterator (iterator) do
variable := NextIterator (iterator)
statements

od;

for variable in object do statements od;

Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will
attempt to evaluate the function call Iterator (object). If this is successful then the loop is taken

to run over the iterator returned.
Example

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));

Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> count := 0;; sumord := 0;;

gap> for x in g do

> count := count + 1; sumord := sumord + Order(x); od;
gap> count;

120

gap> sumord;

471

The effect of
for variable in domain do
should thus normally be the same as

GAP - Reference Manual 65

for variable in AsList(domain) do

but may use much less storage, as the iterator may be more compact than a list of all the elements.

See 30.8 for details about iterators.

A for loop may be left prematurely using break, see 4.21. This combines especially well with
a loop over an iterator, as a way of searching through a domain for an element with some useful

property.

4.21 Break
break;
The statement break; causes an immediate exit from the innermost loop enclosing it.

Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> for x in g do

> if Order(x) = 3 then

> break;

> fi; od;

gap> X;

(1,5,2)(3,4,6)

It is an error to use this statement other than inside a loop.
Example

gap> break;
Error, A break statement can only appear inside a loop
not in any function

4.22 Continue

continue;
The statement continue; causes the rest of the current iteration of the innermost loop enclosing

it to be skipped.
Example

gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2) 1)

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

O

(2,3)

(1,3)

(1,2)

It is an error to use this statement other than inside a loop.
Example

gap> continue;
Error, A continue statement can only appear inside a loop
not in any function

GAP - Reference Manual 66

4.23 Function

function([arg-ident {, arg-ident}])
[local loc-ident {, loc-ident} ; 1]
statements
end
A function is in fact a literal and not a statement. Such a function literal can be assigned to a
variable or to a list element or a record component. Later this function can be called as described in
4.11.
The following is an example of a function definition. It is a function to compute values of the
Fibonacci sequence (see Fibonacci (16.3.1)).

Example
gap> fib := function (n)
> local f1, f2, £3, i;
> f1 :=1; £f2 := 1;
> for i in [3..n] do
> f3 := f1 + £2;
> f1 := £2;
> f2 := £3;
> od;
> return f2;
> end;;
gap> List([1..10], fib);
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Because for each of the formal arguments arg-ident and for each of the formal locals
loc-ident a new variable is allocated when the function is called (see 4.11), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function that com-
putes values of the Fibonacci sequence.

Example

gap> fib := function (n)
if n < 3 then
return 1;
else
return fib(n-1) + fib(n-2);
fi;
end;;
ap> List([1..10], fib);
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 1]

—,0Q V V V V V V

Note that the recursive version needs 2 * fib(a) -1 steps to compute fib(n), while the iterative
version of £ib needs only n-2 steps. Both are not optimal however, the library function Fibonacci
(16.3.1) only needs about Log(n) steps.

As noted in Section 4.11, the case where a function’s last argument is followed by . . . is special.
It provides a way of defining a function with a variable number of arguments. The values of the actual
arguments are computed and the first ones are assigned to the new variables corresponding to the
formal arguments before the last argument, if any. The values of all the remaining actual arguments
are stored in a list and this list is assigned to the new variable corresponding to the final formal

GAP - Reference Manual 67

argument. There are two typical scenarios for wanting such a possibility: having optional arguments
and having any number of arguments.

The following example shows one way that the function Position (21.16.1) might be encoded
and demonstrates the “optional argument” scenario.

Example
gap> position := function (list, obj, arg...)
> local pos;
> if 0 = Length(arg) then
> pos := 0;
> else
> pos := argli];
> fi;
> repeat
> pos := pos + 1;
> if pos > Length(list) then
> return fail;
> fi;
> until list[pos] = obj;
> return pos;
> end;
function(list, obj, arg...) ... end
gap> position([1, 4, 2], 4);

2

gap> position([1l, 4, 2], 3);
fail

gap> position([1, 4, 2], 4, 2);
fail

The following example demonstrates the “any number of arguments” scenario.

Example
gap> sum := function (1...)
> local total, x;
> total := O;
> for x in 1 do
> total := total + x;
> od;
> return total;
> end;
function(1...) ... end
gap> sum(1, 2, 3);

6

gap> sum(1l, 2, 3, 4);
10

gap> sum();

0

The user should compare the above with the GAP function Sum (21.20.26) which, for example,
may take a list argument and optionally an initial element (which zero should the sum of an empty list
return?).

GAP will also special case a function with a single argument with the name arg as function with
a variable length list of arguments, as if the user had written arg. . ..

GAP - Reference Manual 68

Note that if a function f is defined as above then NumberArgumentsFunction(f) returns minus
the number of formal arguments (including the final argument) (see NumberArgumentsFunction
(5.1.2)).

Using the . .. notation on a function £ with only a single named argument tells GAP that when
it encounters f that it should form a list out of the arguments of £f. What if one wishes to do the
“opposite”: tell GAP that a list should be “unwrapped” and passed as several arguments to a function.
The function CallFuncList (5.2.1) is provided for this purpose.

Also see Chapter 5.

arg-ident -> expr

This is a shorthand for

function (arg-ident) return expr; end.

arg-ident must be a single identifier, i.e., it is not possible to write functions of several argu-
ments this way. Also arg is not treated specially, so it is also impossible to write functions that take a
variable number of arguments this way.

The following is an example of a typical use of such a function
Example
gap> Sum(List([1..100], x -> x"2));
338350

When the definition of a function fun1 is evaluated inside another function fun2, GAP binds all
the identifiers inside the function fun1 that are identifiers of an argument or a local of fun2 to the
corresponding variable. This set of bindings is called the environment of the function funl. When
fun1 is called, its body is executed in this environment. The following implementation of a simple
stack uses this. Values can be pushed onto the stack and then later be popped off again. The interesting
thing here is that the functions push and pop in the record returned by Stack access the local variable
stack of Stack. When Stack is called, a new variable for the identifier stack is created. When
the function definitions of push and pop are then evaluated (as part of the return statement) each
reference to stack is bound to this new variable. Note also that the two stacks A and B do not interfere,
because each call of Stack creates a new variable for stack.

Example

gap> Stack := function ()
local stack;
stack := [];
return rec(
push := function (value)
Add(stack, value);
end,
pop := function ()
local value;
value := stack[Length(stack)];
Unbind(stack[Length(stack)]);
return value;
end
)3
end;;
gap> A := Stack(Q);;
gap> B := Stack();;
gap> A.push(1); A.push(2); A.push(3);
gap> B.push(4); B.push(5); B.push(6);

V VVV VYV VYV VYV VYVVYV

GAP - Reference Manual 69

gap> A.pop(); A.pop(); A.popQ);
3
2
1

gap> B.pop(); B.pop(); B.pop();
6

5
4

This feature should be used rarely, since its implementation in GAP is not very efficient.

4.24 Return (With or without Value)

return;

In this form return terminates the call of the innermost function that is currently executing, and
control returns to the calling function. An error is signalled if no function is currently executing. No
value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing, and
returns the value of the expression expr. Control returns to the calling function. An error is signalled
if no function is currently executing.

Both statements can also be used in break loops (see 6.4). return; has the effect that the com-
putation continues where it was interrupted by an error or the user hitting CTRL-C. return expr;
can be used to continue execution after an error. What happens with the value expr depends on the
particular error.

For examples of return statements, see the functions £ib and Stack in Section 4.23.

Chapter 5

Functions

The section 4.23 describes how to define a function. In this chapter we describe functions that give in-
formation about functions, and various utility functions used either when defining functions or calling
functions.

5.1 Information about a function

5.1.1 NameFunction

> NameFunction(func) (operation)

returns the name of a function. For operations, this is the name used in their declaration. For
functions, this is the variable name they were first assigned to. (For some internal functions, this
might be a name different from the name that is documented.) If no such name exists, the string
"unknown" is returned.
Example

gap> NameFunction(SylowSubgroup) ;
"SylowSubgroup"

gap> Blubberflutsch:=x->x;;

gap> NameFunction(Blubberflutsch);
"Blubberflutsch"

gap> a:=Blubberflutsch;;

gap> NameFunction(a);
"Blubberflutsch"

gap> NameFunction(x->x);
"unknown"

gap> NameFunction(NameFunction);
"NameFunction"

5.1.2 NumberArgumentsFunction
> NumberArgumentsFunction(func) (operation)
returns the number of arguments the function func accepts. -1 is returned for all operations. For

functions that use . . . or arg to take a variable number of arguments, the number returned is -1 times
the total number of parameters. For attributes, 1 is returned.

70

GAP - Reference Manual 71

Example
gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);
11
gap> NumberArgumentsFunction(Size) ;
1
gap> NumberArgumentsFunction(IsCollsCollsElms) ;
3
gap> NumberArgumentsFunction(Sum) ;
-1
gap> NumberArgumentsFunction(function(a, x...) return 1; end);
-2

5.1.3 NamesLocalVariablesFunction

> NamesLocalVariablesFunction(func) (operation)

returns a mutable list of strings; the first entries are the names of the arguments of the function
func, in the same order as they were entered in the definition of func, and the remaining ones are the
local variables as given in the 1ocal statement in func. (The number of arguments can be computed
with NumberArgumentsFunction (5.1.2).)

Example
gap> NamesLocalVariablesFunction(function(a, b) local c¢; return 1; end);
[llall’ llbll’ I|CII]

gap> NamesLocalVariablesFunction(function(arg) local a; return 1; end);
[n argll , llall]

gap> NamesLocalVariablesFunction(Size);

fail

5.1.4 FilenameFunc
> FilenameFunc (func) (function)
For a function func, FilenameFunc returns either fail or the absolute path of the file from which

func has been read. The return value fail occurs if func is a compiled function or an operation.
For functions that have been entered interactively, the string "*stdin*" is returned, see Section 9.5.

Example
gap> FilenameFunc(LEN_LIST); # a kernel function
fail
gap> FilenameFunc(Size); # an operation
fail
gap> FilenameFunc(x -> x72); # an interactively entered function
"sxstdinx"
gap> meth:= ApplicableMethod(Size, [Group(O) 1);;
gap> FilenameFunc(meth);
"... some path .../grpperm.gi"

5.1.5 StartlineFunc

> StartlineFunc (func) (function)
> EndlineFunc (func) (function)

GAP - Reference Manual 72

Let func be a function. If FilenameFunc (5.1.4) returns fail for func then also
StartlineFunc returns fail. If FilenameFunc (5.1.4) returns a filename for func then
StartlineFunc returns the line number in this file where the definition of func starts.

EndlineFunc behaves similarly and returns the line number in this file where the definition of
func ends.

Example
gap> meth:= ApplicableMethod(Size, [Group(O) 1);;
gap> FilenameFunc(meth);
"... some path ... gap4r5/1ib/grpperm.gi"
gap> StartlineFunc(meth);
487
gap> EndlineFunc(meth);
487

5.1.6 PageSource

> PageSource (func) (function)

This shows the file containing the source code of the function or method func in a pager (see
Pager (2.4.1)). The display starts at a line shortly before the code of func.

This function works if FilenameFunc (func) returns the name of a proper file. In that case this
filename and the position of the function definition are also printed. Otherwise the function indicates
that the source is not available (for example this happens for functions which are implemented in the
GAP C-kernel).

Usage examples:
met := ApplicableMethod(\~, [(1,2),2743527]); PageSource(met);
PageSource(Combinations) ;
ct:=CharacterTable(Group((1,2,3)));
met := ApplicableMethod(Size, [ct]); PageSource(met);

5.2 Calling a function with a list argument that is interpreted as several
arguments

5.2.1 CallFuncList

> CallFuncList(func, args) (operation)

returns the result, when calling function func with the arguments given in the list args, i.e. args
is “unwrapped” so that args appears as several arguments to func.

Example

gap> CallFuncList(\+, [6, 7]);
13

gap> #is equivalent to:

gap> \+(6, 7);

13

GAP - Reference Manual 73

A more useful application of CallFuncList is for a function g that is called in the body of a
function £ with (a sublist of) the arguments of f, where £ has been defined with a single formal
argument arg (see 4.23), as in the following code fragment.

Example

f := function (arg)
CallFunclList(g, arg);

end;

In the body of f the several arguments passed to £ become a list arg. If g were called instead via
g(arg) then g would see a single list argument, so that g would, in general, have to “unwrap” the
passed list. The following (not particularly useful) example demonstrates both described possibilities
for the call to g.

Example
gap> PrintNumberFromDigits := function (arg)
> CallFuncList(Print, arg);
> Print("\n");
> end;
function(arg...) ... end
gap> PrintNumberFromDigits(1, 9, 7, 3, 2);
19732
gap> PrintDigits := function (arg)
> Print(arg);
> Print("\n");
> end;
function(arg...) ... end
gap> PrintDigits(1, 9, 7, 3, 2);

[1, 9,7, 3, 2]

5.3 Calling a function with a time limit

5.3.1 CallWithTimeout

> CallWithTimeout (timeout, func,) (function)
> CallWithTimeoutList(timeout, func, arglist) (function)

CallWithTimeout and CallWithTimeoutList support calling a function with a limit on the
CPU time it can consume.

This functionality may not be available on all systems and you should check
GAPInfo.TimeoutsSupported (5.3.2) before using this functionality.

CallWithTimeout is variadic. Its third and subsequent arguments, if any, are the arguments
passed to func. CallWithTimeoutList in contrast takes exactly three arguments, of which the third
is a list (possibly empty) or arguments to pass to func.

If the call completes within the allotted time and returns a value res, the result of
CallWithTimeout [List] is a length 2 list of the form [true, res 1]

If the call completes within the allotted time and returns no value, the result of
CallWithTimeout [List] is a list of length 1 containing the value true.

GAP - Reference Manual 74

If the call does not complete within the timeout, the result of CallWithTimeout [List] is a list
of length 1 containing the value false In this case, just as if you had quit from a break loop, there
is some risk that internal data structures in GAP may have been left in an inconsistent state, and you
should proceed with caution.

The timer is suspended during execution of a break loop and abandoned when you quit from a
break loop.

Timeouts may not be nested. That is, during execution of
CallWithTimeout (timeout ,func,...), func (or functions it calls) may not call
CallWithTimeout or CallWithTimeoutList. This restriction may be lifted on at least some
systems in future releases. It is permitted to use CallWithTimeout or CallWithTimeoutList from
within a break loop, even if a suspended timeout exists, although there is limit on the depth of such
nesting.

The limit timeout is specified as a record. At present the following components are recognised
nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days and weeks. Any
of these components which is present should be bound to a positive integer, rational or float and the
times represented are totalled to give the actual timeout. As a shorthand, a single positive integers
may be supplied, and is taken as a number of microseconds. Further components are permitted and
ignored, to allow for future functionality.

The precision of the timeouts is not guaranteed, and there is a system dependent upper limit on
the timeout which is typically about 8 years on 32 bit systems and about 30 billion years on 64 bit
systems. Timeouts longer than this will be reduced to this limit. On Windows systems, timing is based
on elapsed time, not CPU time because the necessary POSIX CPU timing API is not supported.

5.3.2 GAPInfo.TimeoutsSupported

> GAPInfo.TimeoutsSupported (global variable)

tests whether this installation of GAP supports the timeout functionality of CallWithTimeout
(5.3.1) and related functions.

5.4 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places
when the syntax requires a function, but actually no functionality is required. So ReturnTrue (5.4.1)
is often used as family predicate in InstallMethod (78.2.1).

5.4.1 ReturnTrue

> ReturnTrue(...) (function)

This function takes any number of arguments, and always returns true.

Example
gap> f:=ReturnTrue;
function(arg...) ... end
gap> £Q);

true

GAP - Reference Manual 75

gap> f(42);
true

5.4.2 ReturnFalse

> ReturnFalse(...) (function)

This function takes any number of arguments, and always returns false.

Example

gap> f:=ReturnFalse;
function(arg...) ... end
gap> £();

false

gap> f("any_string");
false

5.4.3 ReturnFail

> ReturnFail(...) (function)

This function takes any number of arguments, and always returns fail.

Example

gap> oops:=ReturnFail;
function(arg...) ... end
gap> oops();

fail

gap> oops(-42);

fail

5.4.4 ReturnNothing

> ReturnNothing(...) (function)

This function takes any number of arguments, and always returns nothing.

Example

gap> n:=ReturnNothing;
function(object...) ... end
gap> n(Q);

gap> n(-42);

5.4.5 ReturnFirst

> ReturnFirst(...) (function)

This function takes one or more arguments, and always returns the first argument. IdFunc (5.4.6)
behaves similarly, but only accepts a single argument.

GAP - Reference Manual

76

Example
gap> f:=ReturnFirst;
function(object...) ... end
gap> f£(1);
1
gap> £(2,3,4);
2
gap> £O;
Error, RETURN_FIRST requires one or more arguments

5.4.6 IdFunc

> IdFunc(obj)

(function)

returns obj. ReturnFirst (5.4.5) is similar, but accepts one or more arguments, returning only

the first.

Example
gap> id:=IdFunc;

function(object) ... end

gap> 1d(42);

42

gap> f:=id(SymmetricGroup(3));

Sym(C [1 ..31)

gap> s:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 31))

gap> f=s;

false

5.5 Function Types

Functions are GAP objects and thus have categories and a family.

5.5.1 IsFunction

> IsFunction(obj)

is the category of functions.

(Category)

Example
gap> IsFunction(x->x"2);

true

gap> IsFunction(Factorial);

true

gap> f:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 371))

gap> IsFunction(f);

false

GAP - Reference Manual 77

5.5.2 IsOperation

> IsOperation(obj) (Category)

is the category of operations. Every operation is a function, but not vice versa.
Example

gap> MinimalPolynomial;

<Operation "MinimalPolynomial'>
gap> IsOperation(MinimalPolynomial);
true

gap> IsFunction(MinimalPolynomial);
true

gap> Factorial;

function(n) ... end

gap> IsOperation(Factorial);

false

5.5.3 FunctionsFamily

> FunctionsFamily (family)

is the family of all functions.

5.6 Naming Conventions

The way functions are named in GAP might help to memorize or even guess names of library func-
tions.

If a variable name consists of several words then the first letter of each word is capitalized.

If the first part of the name of a function is a verb then the function may modify its argument(s) but
does not return anything, for example Append (21.4.5) appends the list given as second argument to the
list given as first argument. Otherwise the function returns an object without changing the arguments,
for example Concatenation (21.20.1) returns the concatenation of the lists given as arguments.

If the name of a function contains the word “0f” then the return value is thought of as informa-
tion deduced from the arguments. Usually such functions are attributes (see 13.5). Examples are
Generators0fGroup (39.2.4), which returns a list of generators for the group entered as argument,
or DiagonalOfMat (24.12.1).

For the setter and tester functions of an attribute Attr the names SetAttr resp. HasAttr are
available (see 13.5).

If the name of a function contains the word “By” then the return value is thought of as
built in a certain way from the parts given as arguments. For example, creating a group
as a factor group of a given group by a normal subgroup can be done by taking the image
of NaturalHomomorphismByNormalSubgroup (39.18.1). Other examples of “By” functions are
GroupHomomorphismByImages (40.1.1) and LaurentPolynomialByCoefficients (66.13.1).

Often such functions construct an algebraic structure given by its generators (for exam-
ple, RingByGenerators (56.1.4)). In some cases, “By” may be replaced by “With” (like e.g.
GroupWithGenerators (39.2.3)) or even both versions of the name may be used. The difference
between StructByGenerators and StructWithGenerators is that the latter guarantees that the
Generators0fStruct value of the result is equal to the given set of generators (see 31.3).

GAP - Reference Manual 78

If the name of a function has the form “AsSomething” then the return value is an object (usually
a collection which has the same family of elements), which may, for example:

* know more about its own structure (and so support more operations) than its input (e.g. if the
elements of the collection form a group, then this group can be constructed using AsGroup
(39.2.5));

* discard its additional structure (e.g. AsList (30.3.8) applied to a group will return a list of its
elements);

* contain all elements of the original object without duplicates (like e.g. AsSet (30.3.10) does if
its argument is a list of elements from the same family);

* remain unchanged (like e.g. AsSemigroup (51.1.6) does if its argument is a group).

If Something and the argument of AsSomething are domains, some further rules apply as explained
in Tutorial: Changing the Structure.

If the name of a function fun1 ends with “NC” then there is another function fun2 with the same
name except that the NC is missing. NC stands for “no check”. When fun2 is called then it checks
whether its arguments are valid, and if so then it calls funl. The functions SubgroupNC (39.3.1) and
Subgroup (39.3.1) are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure
that they are unnecessary. For example, if an algorithm produces generators of the derived subgroup
of a group then it is guaranteed that they lie in the original group; Subgroup (39.3.1) would check
this, and SubgroupNC (39.3.1) omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero
(31.10.3) instead of two operations ZeroOfElement and ZeroO0fAdditiveGroup.

Chapter 6

Main Loop and Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you
use GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that you
type an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print
may be confusing since there is a GAP function called Print (6.3.4) (see 6.3) which is in fact not
used in the read-eval-print loop, but traditions are hard to break. In the following, whenever we want
to express that GAP places some characters on the standard output, we will say that GAP shows
something.

The exact sequence in the read-eval-print loop is as follows.

To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this,
you know that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter RETURN (i.e.,
strike the RETURN key) before GAP starts to read and evaluate your input. (The RETURN key may
actually be marked with the word ENTER and a returning arrow on your terminal.) Because GAP
does not do anything until you enter RETURN, you can edit your input to fix typos and only when
everything is correct enter RETURN and have GAP take a look at it (see 6.8). It is also possible to
enter several statements as input on a single line. Of course each statement must be terminated by a
semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered
the beginning of a statement, but the statement is not yet complete, and you enter RETURN, GAP
will show the partial prompt >. When you see this, you know that GAP is waiting for the rest of the
statement. This happens also when you forget the semicolon ; that terminates every GAP statement.
Note that when RETURN has been entered and the current statement is not yet complete, GAP will
already evaluate those parts of the input that are complete, for example function calls that appear as
arguments in another function call which needs several input lines. So it may happen that one has to
wait some time for the partial prompt.

When you enter RETURN, GAP first checks your input to see if it is syntactically correct (see
Chapter 4 for the definition of syntactically correct). If it is not, GAP prints an error message of the
following form

79

GAP - Reference Manual 80

Example

gap> 1 * ;
Syntax error: expression expected
1 *x

The first line tells you what is wrong about the input, in this case the * operator takes two ex-
pressions as operands, so obviously the right one is missing. If the input came from a file (see Read
(9.7.1)), this line will also contain the filename and the line number. The second line is a copy of the
input. And the third line contains a caret pointing to the place in the previous line where GAP realized
that something is wrong. This need not be the exact place where the error is, but it is usually quite
close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically
incorrect. This is because GAP is so confused by your input, that it thinks that there is still something
to follow. In this case you should enter ; RETURN repeatedly, ignoring further error messages, until
you see the full prompt again. When you see the full prompt, you know that GAP forgave you and is
now ready to accept your next —hopefully correct— input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required
computations (see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you
can type ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP
has completed the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed.
Note that not all statements produce a value, for example, if you enter a for loop, nothing will be
printed, because the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and
now want to assign the result to a variable, you probably do not want to see the value again. You can
terminate statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show
the first one, then read, evaluate, and show the second one, and so on. This means that the second
statement will not even be checked for syntactical correctness until GAP has completed the first
computation.

After the result has been shown GAP will display another prompt, and wait for your next input.
And the whole process starts all over again. Note that if you have entered several statements on a
single line, a new prompt will only be printed after GAP has read, evaluated, and shown the last
statement.

In each statement that you enter, the result of the previous statement that produced a value is
available in the variable 1ast. The next to previous result is available in 1ast2 and the result produced
before that is available in last3.

Example
gap> 1;2;3;

1

2

3

gap> last3 + last2 * last;

7

GAP - Reference Manual 81

Also in each statement the time spent by the last statement, whether it produced a value or not, is
available in the variable time (7.6.3). This is an integer that holds the number of milliseconds.

6.2 Special Rules for Input Lines

The input for some GAP objects may not fit on one line, in particular big integers, long strings or
long identifiers. In these cases you can still type or paste them in long single lines. For nicer display
you can also specify the input on several lines. This is achieved by ending a line by a backslash or
by a backslash and a carriage return character, then continue the input on the beginning of the next
line. When reading this GAP will ignore such continuation backslashes, carriage return characters
and newline characters. GAP also prints long strings and integers this way.

Example

gap> n := 1234\

> 567890;

1234567890

gap> "This is a very long string that does not fit on a line \

> and is therefore continued on the next line.";

"This is a very long string that does not fit on a line and is therefo\
re continued on the next line."

gap> bla\

> bla := 5;; blabla;

5

There is a special rule about GAP prompts in input lines: In line editing mode (usual user input
and GAP started without -n) in lines starting with whitespace following gap> , > or brk> this
beginning part is removed. This rule is very convenient because it allows to cut and paste input from
other GAP sessions or manual examples easily into your current session.

6.3 View and Print

GAP has three different operations to display or print objects: Display (6.3.6), ViewObj (6.3.5) and
Print0bj (6.3.5), and these three have different purposes as follows. The first, Display (6.3.6),
should print the object to the standard output in a human-readable relatively complete and verbose
form. The second, ViewObj (6.3.5), should print the object to the standard output in a short and con-
cise form, it is used in the main read-eval-print loop to display the resulting object of a computation.
The third, Print0bj (6.3.5), should print the object to the standard output in a complete form which
is GAP-readable if at all possible, such that reading the output into GAP produces an object which is
equal to the original one.

All three operations have corresponding operations which do not print anything to standard out-
put but return the output as a string. These are DisplayString (27.7.1), ViewString (27.7.3) and
PrintString (27.7.5) (corresponding to Print0bj (6.3.5)). Additionally, there is String (27.7.6)
which is very similar to PrintString (27.7.5) but does not insert control characters for line breaks.

For implementation convenience it is allowed that some of these operations have methods which
delegate to some other of these operations. However, the rules for this are that a method may only
delegate to another operation which appears further down in the following table:

GAP - Reference Manual 82

Display (6.3.6)
ViewObj (6.3.5)
Print0bj (6.3.5)
DisplayString (27.7.1)
ViewString (27.7.3)
PrintString (27.7.5)
String (27.7.6)

This is to avoid circular delegations.

Note in particular that none of the methods of the string producing operations may delegate to
the corresponding printing operations. Note also that the above mentioned purposes of the different
operations suggest that delegations between different operations will be sub-optimal in most scenarios.

6.3.1 Default delegations in the library

The library contains the following low ranked default methods:

* A method for DisplayString (27.7.1) which returns the constant value of the global variable
DEFAULTDISPLAYSTRING (27.7.2).

* A method for ViewString (27.7.3) which returns the constant value of the global variable
DEFAULTVIEWSTRING (27.7.4).

* A method for Display (6.3.6) which first calls DisplayString (27.7.1) and prints the result, if
it is a different object than DEFAULTDISPLAYSTRING (27.7.2). Otherwise the method delegates
to Print0bj (6.3.5).

* A method for ViewObj (6.3.5) which first calls ViewString (27.7.3) and prints the result, if
it is a different object than DEFAULTVIEWSTRING (27.7.4). Otherwise the method delegates to
Print0bj (6.3.5).

* A method for Print0bj (6.3.5) which prints the result of PrintString (27.7.5).

* A method for PrintString (27.7.5) which returns the result of String (27.7.6)

6.3.2 Recommendations for the implementation

This subsection describes what methods for printing and viewing one should implement for new GAP
objects.

One should at the very least install a String (27.7.6) method to allow printing. Using the standard
delegations this enables a limited form of viewing, displaying and printing.

If, for larger objects, nicer line breaks are needed, one should install a separate PrintString
(27.7.5) method which puts in positions for good line breaks using the control characters \< (ASCII
1) and \> (ASCII 2).

If, for even larger objects, output performance and memory usage matters, one should install a
separate Print0Obj (6.3.5) method.

One should usually install a ViewString (27.7.3) method, unless the above String (27.7.6)
method is good enough for ViewObj (6.3.5) purposes. Performance and memory should never matter
here, so it is usually unnecessary to install a separate ViewObj (6.3.5) method.

GAP - Reference Manual 83

If the type of object calls for it one should install a DisplayString (27.7.1) method. This is the
case if a human readable verbose form is required.

If the performance and memory usage for Display (6.3.6) matters, one should install a separate
Display (6.3.6) method.

Note that if only a String (27.7.6) method is installed, then ViewObj (6.3.5) works and
ViewString (27.7.3) returns DEFAULTVIEWSTRING (27.7.4). Likewise, Display (6.3.6) works and
DisplayString (27.7.1) returns DEFAULTDISPLAYSTRING (27.7.2). If you want to avoid this then
install methods for these operations as well.

6.3.3 View

> View(objl 5 Obj2. L) (function)
View shows the objects obj1, obj2... etc. in a short form on the standard output by calling the

ViewQObj (6.3.5) operation on each of them. View is called in the read-eval-print loop, thus the output

looks exactly like the representation of the objects shown by the main loop. Note that no space or

newline is printed between the objects.

6.3.4 Print

> Print(objl, Obj?, L) (function)
Also Print shows the objects obj1, obj2... etc. on the standard output. The difference compared

to View (6.3.3) is in general that the shown form is not required to be short, and that in many cases
the form shown by Print is GAP readable.

Example

gap> z:= Z(2);

Z(2)~0

gap> v:= [z, z, z, z, z, z, z];

[Z(2)~0, Z2(2)"0, Z(2)"0, Z(2)~0, Z(2)~0, Z(2)"0, Z2(2)"0]
gap> ConvertToVectorRep(v);; v;

<a GF2 vector of length 7>

gap> Print(v, "\n");

[Z(2)~0, Z2(2)"0, Z(2)"0, Z(2)~0, Z(2)~0, Z(2)"0, Z2(2)"0]

Another difference is that Print shows strings without the enclosing quotes, so Print can be used
to produce formatted text on the standard output (see also chapter 27). Some characters preceded by
a backslash, such as \n, are processed specially (see chapter 27.2). PrintTo (9.7.3) can be used to
print to a file.

Example
gap> for i in [1..5] do

Print(i, " ", i~2, " ", i~3, "\n");
od;

© D e
N 00

7

16 64

25 125

gap> g:= SmallGroup(12,5);

>
>
1
2
3
4
5

GAP - Reference Manual 84

<pc group of size 12 with 3 generators>
gap> Print(g, "\n");

Group([f1, f2, £3 1)

gap> View(g); Print("\n");

<pc group of size 12 with 3 generators>

6.3.5 ViewObj

> ViewObj (Obj) (operation)
> PrintObj (Obj) (operation)

The functions View (6.3.3) and Print (6.3.4) actually call the operations ViewObj and PrintQbj,
respectively, for each argument. By installing special methods for these operations, it is possible to
achieve special printing behavior for certain objects (see chapter 78). The only exceptions are strings
(see Chapter 27), for which the default Print0Obj and ViewObj methods as well as the function View
(6.3.3) print also the enclosing doublequotes, whereas Print (6.3.4) strips the doublequotes.

The default method for ViewObj is to call PrintObj. So it is sufficient to have a Print0bj
method for an object in order to View (6.3.3) it. If one wants to supply a “short form” for View
(6.3.3), one can install additionally a method for ViewQObj.

6.3.6 Display
> Display(obj) (operation)

Displays the object obj in a nice, formatted way which is easy to read (but might be difficult for
machines to understand). The actual format used for this depends on the type of obj. Each method
should print a newline character as last character.

Example
gap> Display([[1, 2, 31, [4, 5, 611 x Z(5));
241
3.2

One can assign a string to an object that Print (6.3.4) will use instead of the default used by
Print (6.3.4), via SetName (12.8.1). Also, Name (12.8.2) returns the string previously assigned to the
object for printing, via SetName (12.8.1). The following is an example in the context of domains.

Example
gap> g:= Group((1,2,3,4));

Group([(1,2,3,4) 1)

gap> SetName(g, "C4"); g;

Cc4

gap> Name(g);

IIC4||

When setting up examples, in particular if for beginning users, it sometimes can be convenient
to hide the structure behind a printing name. For many objects, such as groups, this can be done
using SetName (12.8.1). If the objects however is represented internally, for example permutations
representing group elements, this function is not applicable. Instead the function SetNameObject
(6.3.7) can be used to interface with the display routines on a lower level.

GAP - Reference Manual 85

6.3.7 SetNameObject

> SetNameObject(o, s) (function)

SetNameObject sets the string s as display name for object o in an interactive session. When
applying View (6.3.3) to object o, for example in the system’s main loop, GAP will print the string s.
Calling SetNameQObject for the same object o with s set to fail deletes the special viewing setup.
since use of this features potentially slows down the whole print process, this function should be used
sparingly.

Example

gap> SetNameObject(3,"three") ;
gap> Filtered([1..10],IsPrimelnt);
[2, three, 5, 7 1]

gap> SetNameObject(3,fail);

gap> Filtered([1..10],IsPrimelnt);
[2,3,5,7]1]

6.4 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting CTRL-C) GAP enters a
break loop, that is in most respects like the main read eval print loop (see 6.1). That is, you can enter
statements, GAP reads them, evaluates them, and shows the result if any. However those evaluations
happen within the context in which the error occurred. So you can look at the arguments and local
variables of the functions that were active when the error happened and even change them. The prompt
is changed from gap> to brk> to indicate that you are in a break loop.

Example

gap> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is
indicated by a number appended to brk:

Example

brk> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue
brk_02>

There are two ways to leave a break loop, see 6.4.1 and 6.4.2.

GAP - Reference Manual 86

6.4.1 (quit from a break loop

The first way to leave a break loop is to quit the break loop. To do this you enter quit; or type the eof
(end of file) character, which is usually CTRL-D except when using the -e option (see Section 3.1).
Note that GAP code between quit ; and the end of the input line is ignored.

Example
brk_02> quit;
brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So
iterated break loops must be left iteratively. Note also that if you type quit; from a gap> prompt,
GAP will exit (see 6.7).

Note: If you leave a break loop with quit without completing a command it is possible (though
not very likely) that data structures will be corrupted or incomplete data have been stored in objects.
Therefore no guarantee can be given that calculations afterwards will return correct results! If you
have been using options quitting a break loop generally leaves the options stack with options you no
longer want. The function ResetOptionsStack (8.1.3) removes all options on the options stack, and
this is the sole intended purpose of this function.

6.4.2 return from a break loop

The other way to leave a break loop is to return from a break loop. To do this you type return; or
return obj;. If the break loop was entered because you interrupted GAP, then you can continue
by typing return;. If the break loop was entered due to an error, you may have to modify the value
of a variable before typing return; (see the example for IsDenseList (21.1.2)) or you may have to
return an object obj (by typing: return obj ;) to continue the computation; in any case, the message
printed on entering the break loop will tell you which of these alternatives is possible. For example, if
the break loop was entered because a variable had no assigned value, the value to be returned is often
a value that this variable should have to continue the computation.

Example
brk> return 9; # we had tried to enter the divisor 9 but typed O ...
1/9

gap>

6.4.3 OnBreak

> OnBreak () (function)

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands cur-
rently being executed. This behaviour can be configured by changing the value of the global variable
OnBreak. When a break loop is entered, the value of OnBreak is checked. If it is a function, then it is
called with no arguments. By default, the value of OnBreak is Where (6.4.5).

Example
gap> OnBreak := function() Print("Hello\n"); end;
function() ... end

GAP - Reference Manual 87

Example
gap> Error("!'\n");

Error, !

Hello

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chap-
ter 8), a quit; will also cause the options stack to be reset and an Info-ed warning stating this is
emitted at InfoWarning (7.4.7) level 1 (see Chapter 7.4).

Note that for break loops entered by a call to Error (6.6.1), the lines after “Entering break
read-eval-print loop ” and before the brk> prompt can also be customised, namely by
redefining OnBreakMessage (6.4.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above,
the default value of OnBreak is Where (6.4.5). Thus, a call to Error (6.6.1) generally gives a trace
back up to five levels of calling functions. Conceivably, we might like to have a function like Error
(6.6.1) that does not trace back without globally changing OnBreak. Such a function we might call
ErrorNoTraceBack and here is how we might define it. (Note ErrorNoTraceBack is not a GAP
function.)

Example
gap> ErrorNoTraceBack := function(arg) # arg is special variable that GAP
> # knows to treat as list of arg’s
> local SavedOnBreak, ENTBOnBreak;
> SavedOnBreak := OnBreak; # save current value of OnBreak
>
> ENTBOnBreak := function() # our ‘local’ OnBreak
> local s;
> for s in arg do
> Print(s);
> od;
> OnBreak := SavedOnBreak; # restore OnBreak afterwards
> end;
>
> OnBreak := ENTBOnBreak;
> Error();
> end;
function(arg...) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.
Example
gap> ErrorNoTraceBack("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

Now we call Error (6.6.1) with the same arguments to show the difference.

GAP - Reference Manual 88

Example
gap> Error("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However,
we had changed OnBreak from its default value; to restore OnBreak to its default value, we should do

the following.
Example

gap> OnBreak := Where;;

6.44 OnBreakMessage

> OnBreakMessage () (function)

When a break loop is entered by a call to Error (6.6.1) the message after the “Entering break

read-eval-print loop ...” line is produced by the function OnBreakMessage, which just like
OnBreak (6.4.3) is a user-configurable global variable that is a function with no arguments.
Example

gap> OnBreakMessage(); # By default, OnBreakMessage prints the following
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded.
In this case, you might wish to do the following (the first line just makes it easy to restore the default
value later).

Example
gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value
gap> OnBreakMessage := function() end; # do-nothing function
function() ... end
gap> OnBreakMessage(Q) ;
gap> OnBreakMessage := NormalOnBreakMessage;; # reset

With OnBreak (6.4.3) still set away from its default value, calling Error (6.6.1) as we did above,
now produces:

Example
gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
brk> quit; # to get back to outer loop

However, suppose you are writing a function which detects an error condition and
OnBreakMessage needs to be changed only locally, i.e., the instructions on how to recover from
the break loop need to be specific to that function. The same idea used to define ErrorNoTraceBack
(see OnBreak (6.4.3)) can be adapted to achieve this. The function CosetTableFromGensAndRels
(47.6.5) is an example in the GAP code where the idea is actually used.

GAP - Reference Manual 89

6.4.5 Where

> Where(ar) (function)

shows the last nr commands on the execution stack during whose execution the error occurred. If
not given, nr defaults to 5. (Assume, for the following example, that after the last example OnBreak
(6.4.3) has been set back to its default value.)
Example
gap> StabChain(SymmetricGroup(100)); # After this we typed ~C
user interrupt at
bpt := S.orbit[1];

called from
SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S, GeneratorsOfGroup(G), options); called from
StabChainOp(G, rec(
)) called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where(2);
called from
SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from

Note that the variables displayed even in the first line of the Where list (after the called from
line) may be already one environment level higher and DownEnv (6.5.1) may be necessary to access
them.

At the moment this backtrace does not work from within compiled code (this includes the method
selection which by default is compiled into the kernel). If this creates problems for debugging, call
GAP with the -M option (see 3.1) to avoid loading compiled code.

(Function calls to Info (7.4.5) and methods installed for binary operations are handled in a special
way. In rare circumstances it is possible therefore that they do not show up in a Where log but the log
refers to the last proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing
purposes and for special applications. If this option is given then errors simply cause GAP to return
to the main loop.

6.5 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the
same variable name is used for different objects or if a function calls itself recursively, of course only
the variable at the lowest level can be accessed.

GAP - Reference Manual

6.5.1 DownEnv and UpEnv

> DownEnv (nr)
> UpEnv(nr)

DownEnv moves down nr steps in the environment and allows one to inspect variables on this
level; if nr is negative it steps up in the environment again; nr defaults to 1 if not given. UpEnv
acts similarly to DownEnv but in the reverse direction (the mnemonic rule to remember the difference
between DownEnv and UpEnv is the order in which commands on the execution stack are displayed by

Where (6.4.5)).

gap> OnBreak
gap>

Error, !

brk> Where();
called from

test(n + 1)
test(n+ 1)

brk> n;
4

brk> n;

3

brk> Where();
called from

test(n + 1)

brk> n;

1

brk> Where();
called from

brk> n;

3

brk> quit;
gap> OnBreak

Example

:= function() Where(0); end;; # eliminate back-tracing on

entry to break loop

gap> test:= function(n)
> if n > 3 then Error("!'\n"); fi; test(n+l); end;;
gap> test(1);

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

test(n + 1); called from
; called from
; called from
<function>(<arguments>) called from read-eval-loop

brk> DownEnv() ;

test(n + 1); called from

; called from

<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);

<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);

:= Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the
break loop. If you use return to continue a calculation GAP automatically jumps to the right envi-

ronment level again.

GAP - Reference Manual 91

Note also that search for variables looks first in the chain of outer functions which enclosed the
definition of a currently executing function, before it looks at the chain of calling functions which led
to the current invocation of the function.

Example
gap> foo := function()
> local x; x := 1;
> return function() local y; y := x*x; Error("!!\n"); end;
> end;
function() ... end
gap> bar := foo();
function() ... end
gap> fun := function() local x; x := 3; bar(); end;
function() ... end
gap> fun();
Error, !!

called from
bar(); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> x;
1
brk> DownEnv(1);
brk> x;
3

Here the x of foo which contained the definition of bar is found before that of fun which caused
its execution. Using DownEnv we can access the x from fun.

6.6 Error and ErrorCount

6.6.1 Error

> Error(messages, ...) (function)

Error signals an error from within a function. First the messages messages are printed, this
is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. You can leave
this break loop with return; to continue execution with the statement following the call to Error.
ErrorNoReturn (6.6.2) operates identically to Error, except it does not allow using return; to
continue execution.

6.6.2 ErrorNoReturn

> ErrorNoReturn(messages, ...) (function)

ErrorNoReturn signals an error from within a function. First the messages messages are printed,
this is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop

GAP - Reference Manual 92

(see 6.4) is entered, unless the standard error output is not connected to a terminal. This break loop
can only be exited with quit ;. The function differs from Error (6.6.1) by not allowing execution to
continue.

6.6.3 ErrorCount

> ErrorCount () (function)

ErrorCount returns a count of the number of errors (including user interruptions) which have
occurred in the GAP session so far. This count is reduced modulo 2?® on 32 bit systems, 2°° on 64
bit systems. The count is incremented by each error, even if GAP was started with the -T option to
disable the break loop.

6.7 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an
end-of-file character (usually CTRL-D) at the gap> prompt in the main read eval print loop.

6.7.1 QUIT

> QUIT (global variable)

An emergency way to leave GAP is to enter QUIT at any gap> or brk> or brk_nn> prompt.

6.7.2 GAP_EXIT_CODE

> GAP_EXIT_CODE(ret) (function)

A GAP_EXIT_CODE sets the return value which will be used when GAP exits. This may be an
integer, or a boolean (where true is interpreted as 0, and false is interpreted as 1.

6.7.3 QUIT_GAP

> QUIT_GAP ([ret]) (function)

A QUIT_GAP acts similarly to the keyword quit. It exits GAP cleanly, calling any function
installed using InstallAtExit. The optional argument will be passed to GAP_EXIT_CODE.

6.7.4 FORCE_QUIT_GAP
> FORCE_QUIT_GAP([ret]) (function)
A FORCE_QUIT_GAP is similar to QUIT_GAP, except it ignores any functions installed with

InstallAtExit, or any other functions normally run at GAP exit, and exits GAP immediately. The
optional argument will be passed to GAP_EXIT_CODE.

GAP - Reference Manual 93

6.7.5 InstallAtExit

> InstallAtExit (func) (function)
> QUITTING (global variable)

Before actually terminating, GAP will call (with no arguments) all of the functions that have been
installed using InstallAtExit. These typically perform tasks such as cleaning up temporary files
created during the session, and closing open files. If an error occurs during the execution of one of
these functions, that function is simply abandoned, no break loop is entered.

Example
gap> InstallAtExit(function() Print("bye\n"); end);
gap> quit;
bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is
exiting because the user typed QUIT and false otherwise. Since QUIT is considered as an emergency
measure, different action may be appropriate.

6.7.6 SaveOnExitFile

> SaveOnExitFile (global variable)

If, when GAP is exiting due to a quit or end-of-file (i.e. not due to a QUIT) the variable
SaveOnExitFile is bound to a string value, then the system will try to save the workspace to that
file.

6.8 Line Editing

In most installations GAP will be compiled to use the Gnu readline library (see the line Libs used:
on GAP startup). In that case skip to the next section 6.9. (The line editing commands described in
the rest of this section were available in previous versions of GAP, they will work almost the same in
the standard configuration of the Gnu readline library.)

GAP allows one you to edit the current input line with a number of editing commands. Those
commands are accessible either as control keys or as escape keys. You enter a control key by pressing
the CTRL key, and, while still holding the CTRL key down, hitting another key key. You enter an
escape key by hitting ESC and then hitting another key key. Below we denote control keys by CTRL-
key and escape keys by ESC-key. The case of key does not matter, i.e., CTRL-A and CTRL-A are
equivalent.

Normally, line editing will be enabled if the input is connected to a terminal. Line editing can be
enabled or disabled using the command line options -f and -n respectively (see 3.1), however this is
a machine dependent feature of GAP.

Typing CTRL-KEY or ESC-KEY for characters not mentioned below always inserts CTRL-key
resp. ESC-key at the current cursor position.

The first few commands allow you to move the cursor on the current line.

CTRL-A
move the cursor to the beginning of the line.

GAP - Reference Manual

Esc-B

move the cursor to the beginning of the previous word.

CTRL-B
move the cursor backward one character.

CTRL-F
move the cursor forward one character.

Esc-F
move the cursor to the end of the next word.

CTRL-E
move the cursor to the end of the line.

94

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different

position, with the “yank” command CTRL-Y.

CTRL-H or del
delete the character left of the cursor.

CTRL-D
delete the character under the cursor.

CTRL-K
kill up to the end of the line.

Esc-D
kill forward to the end of the next word.

ESC-DEL
kill backward to the beginning of the last word.

CTRL-X

kill entire input line, and discard all pending input.

CTRL-Y
insert (yank) a just killed text.

The next commands allow you to change the input.

CTRL-T

exchange (twiddle) current and previous character.

Esc-U
uppercase next word.

Esc-L
lowercase next word.

Esc-C
capitalize next word.

GAP - Reference Manual 95

The TAB character, which is in fact the control key CTRL-I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier. If there
is more than one possible completion, it completes to the longest common prefix of all those comple-
tions. If the characters to the left of the cursor are already the longest common prefix of all completions
hitting TAB a second time will display all possible completions.

TAB complete the identifier before the cursor.
The next commands allow you to fetch previous lines, e.g., to correct typos, etc.

CTRL-L
insert last input line before current character.

CTRL-P
redisplay the last input line, another CTRL-P will redisplay the line before that, etc. If the cursor
is not in the first column only the lines starting with the string to the left of the cursor are taken.

CTRL-N
Like CTRL-P but goes the other way round through the history.

Esc-<
goes to the beginning of the history.

Esc->
goes to the end of the history.

CTRL-O
accepts this line and perform a CTRL-N.

Finally there are a few miscellaneous commands.

CTRL-V
enter next character literally, i.e., enter it even if it is one of the control keys.

CTRL-U
execute the next line editing command 4 times.

ESC-num
execute the next line editing command num times.

Esc-CTRL-L
redisplay input line.

The four arrow keys (cursor keys) can be used instead of CTRL-B, CTRL-F, CTRL-P, and CTRL-
N, respectively.

GAP - Reference Manual 96

6.9 Editing using the readline library

The descriptions in this section are valid only if your GAP installation uses the readline library for
command line editing. You can check by IsBound (GAPInfo.UseReadline) ; if this is the case.

You can wuse all the features of readline, as for example explained in
http://tiswww.case.edu/php/chet/readline/rluserman.html. Therefore the command line
editing in GAP is similar to the bash shell and many other programs. On a Unix/Linux system you
may also have a manpage, try man readline.

Compared to the command line editing which was used in GAP up to version 4.4 (or compared to
not using the readline library) using readline has several advantages:

* Most keys still do the same as explained in 6.8 (in the default configuration).

e There are many additional commands, e.g. undoing (CTRL-_, keyboard macros (CTRL-X(,
CTRL-X) and CTRL-XE), file name completion (hit ESC two or four times), showing matching
parentheses, vi-style key bindings, deleting and yanking text, ...

* Lines which are longer than a physical terminal row can be edited more conveniently.
* Arbitrary unicode characters can be typed into string literals.

* The key bindings can be configured, either via your ~/.inputrc file or by GAP commands,
see 6.9.1.

* The command line history can be saved to and read from a file, see 6.9.2.
* Adventurous users can even implement completely new command line editing functions on
GAP level, see 6.9.4.
6.9.1 Readline customization

You can use your readline init file (by default ~/. inputrc on Unix/Linux) to customize key bindings.
If you want settings be used only within GAP you can write them between lines containing $if GAP

and $endif. For a detailed documentation of the available settings and functions see here.
From readline init file

$if GAP
set blink-matching-paren on
"\C-n": dump-functions
"\ep": kill-region

$endif

Alternatively, from within GAP the command ReadlineInitLine(1ine) ; can be used, where l1ine
is a string containing a line as in the init file.

Note that after pressing CTRL-V the next special character is input verbatim. This is very
useful to bind keys or key sequences. For example, binding the function key F3 to the com-
mand kill-whole-line by using the sequence CTRL-V F3 looks on many terminals like this:
ReadlineInitLine("\"~[OR\":kill-whole-line");. (You can get the line back later with
CTRL-Y.)

The CTRL-G key can be used to type any unicode character by its code point. The number of the
character can either be given as a count, or if the count is one the input characters before the cursor

http://tiswww.case.edu/php/chet/readline/rluserman.html
http://tiswww.case.edu/php/chet/readline/rluserman.html

GAP - Reference Manual 97

are taken (as decimal number or as hex number which starts with Ox. For example, the double stroke
character Z can be input by any of the three key sequences ESC 8484 CTRL-G, 8484 CTRL-G or
0x2124 CTRL-G.

Some terminals bind the CTRL-S and CTRL-Q keys to stop and restart terminal output. Further-
more, sometimes CTRL-\ quits a program. To disable this behaviour (and maybe use these keys for
command line editing) you can use Exec("stty stop undef; stty start undef; stty quit
undef") ; in your GAP session or your gaprec file (see 3.2).

6.9.2 The command line history

GAP can save your input lines for later reuse. The keys CTRL-P (or UP), CTRL-N (or DOWN), ESC<
and ESC> work as documented in 6.8, that is they scroll backward and forward in the history or go
to its beginning or end. Also, CTRL-O works as documented, it is useful for repeating a sequence of
previous lines. (But CTRL-L clears the screen as in other programs.)

The command line history can be used across several instances of GAP via the following two
commands.

6.9.3 SaveCommandLineHistory

> SaveCommandLineHistory([fname,][appl) (function)
Returns: fail or number of saved lines
> ReadCommandLineHistory ([fname]) (function)

Returns: fail or number of added lines

The first command saves the lines in the command line history to the file given by the string
fname. The default for fname is history in the user’s GAP root path GAPInfo.UserGapRoot or
"~/ .gap_hist" if this directory does not exist. If the optional argument app is true then the lines
are appended to that file otherwise the file is overwritten.

The second command is the converse, it reads the lines from file fname and prepends them to the
current command line history.

By default an arbitrary number of input lines is stored in the command line history. For
very long GAP sessions or if SaveCommandLineHistory and ReadCommandLineHistory
are used repeatedly it can be sensible to restrict the number of saved lines via
SetUserPreference ("HistoryMaxLines", num); to a non negative number num (the de-
faultis infinity). An automatic storing and restoring of the command line history can be configured
via SetUserPreference ("SaveAndRestoreHistory", true);.

Note that these functions are only available if your GAP is configured to use the readline li-
brary.

6.9.4 Writing your own command line editing functions

It is possible to write new command line editing functions in GAP as follows.

The functions have one argument 1 which is a list with five entries of the form [count, key,
line, cursorpos, markpos] where count and key are the last pressed key and its count (these
are not so useful here because users probably do not want to overwrite the binding of a single key),
then 1ine is a string containing the line typed so far, cursorpos is the current position of the cursor
(point), and markpos the current position of the mark.

The result of such a function must be a list which can have various forms:

GAP - Reference Manual 98

[str]
with a string str. In this case the text str is inserted at the cursor position.

[kill, begin, end]
where kill is true or false and begin and end are positions on the input line. This removes
the text from the lower position to before the higher position. If kill is true the text is killed,
i.e. put in the kill ring for later yanking.

[begin, end, str]
where begin and end are positions on the input line and str is a string. Then the text from
position begin to before end is substituted by str.

[1, 1str]
where 1str is a list of strings. Then these strings are displayed like a list of possible comple-
tions. The input line is not changed.

[2, chars]
where chars is a string. The characters from chars are used as the next characters from the
input. (At most 512 characters are possible.)

[100]
This rings the bell as configured in the terminal.

In the first three cases the result list can contain a position as a further entry, this becomes the new
cursor position. Or it can contain two positions as further entries, these become the new cursor position
and the new position of the mark.

Such a function can be installed as a macro for readline via InstallReadlineMacro(name,
fun) ; where name is a string used as name of the macro and fun is a function as above. This macro
can be called by a key sequence which is returned by InvocationReadlineMacro (name) ;.

As an example we define a function which puts double quotes around the word under or before
the cursor position. The space character, the characters in " (,)", and the beginning and end of the
line are considered as word boundaries. The function is then installed as a macro and bound to the
key sequence Esc Q.

Example
gap> EditAddQuotes := function(l)
local str, pos, i, j, new;
str := 1[3];
pos := 1[4];
i := pos;
while i > 1 and (not str[i-1] in ",(") do
i = 1i-1;
od;
j := pos;
while IsBound(str[j]) and not str([j] in ",) " do
Joi= g+
od;
new := "\"";
Append (new, str{[i..j-11});
Append (new, "\"");
return [i, j, new];
end;;

VV VVVV VYV VYV VYVYVVVYV

GAP - Reference Manual 99

gap> InstallReadlineMacro("addquotes", EditAddQuotes);
gap> invl := InvocationReadlineMacro("addquotes");;
gap> ReadlineInitLine(Concatenation("\"\\eQ\":\"",invl,"\""));;

6.10 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an
editor, and to read in the result via Read (9.7.1). Note that Read (9.7.1) by default reads from the
directory in which GAP was started (respectively under Windows the directory containing the GAP
binary), so you might have to give an absolute path to the file.

If you cannot create several windows, the Edit (6.10.1) command may be used to leave GAP,
start an editor, and read in the edited file automatically.

6.10.1 Edit

> Edit(filename) (function)

Edit starts an editor with the file whose filename is given by the string filename, and reads the
file back into GAP when you exit the editor again.

GAP will call your preferred editor if you call SetUserPreference ("Editor", path); where
path is the path to your editor, e.g., /usr/bin/vim. On Windows you can use edit.com.

Under Mac OS X, you should use SetUserPreference("Editor", "open");, this will open
the file in the default editor. If you call SetUserPreference("EditorOptions", ["-t"]);, the
file will open in TextEdit, and SetUserPreference("EditorOptions", ["-a", "<appl>"]);
will open the file using the application <appl>.

This can for example be done in your gap . ini file, see Section 3.2.1.

6.11 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editors vim and
emacs/xemacs.

vim is a powerful editor that understands the basic vi commands but provides much more func-
tionality. You can find more information about it (and download it) from http://www.vim.org.

To get support for GAP syntax in vim, create in your home directory a directory .vim with subdi-
rectories .vim/syntax and .vim/indent (If you are not using Unix, refer to the vim documentation
on where to place syntax files). Then copy the file etc/gap.vimto .vim/syntax/gap.vim and the
file etc/gap_indent.vimto .vim/indent/gap.vim.

Then edit the . vimrc file in your home directory. Add lines as in the following example:

Example
if has("syntax")

syntax on " Default to no syntax highlightning
endif

" For GAP files

augroup gap
" Remove all gap autocommands
au!

http://www.vim.org

GAP - Reference Manual 100

autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\

" I'm using the external program ‘par’ for formating comment lines starting
" with ‘## ’. Include these lines only when you have par installed.
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"
autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"
augroup END

See the headers of the two mentioned files for additional comments and adjust details according
to your personal taste. Send comments and suggestions to support@gap-system.org. Setup files
for emacs/xemacs are contained in the etc/emacs subdirectory.

6.12 Changing the Screen Size

6.12.1 SizeScreen

> SizeScreen([sz]) (function)

Called with no arguments, SizeScreen returns the size of the screen as a list with two entries.
The first is the length of each line, the second is the number of lines.

Called with one argument that is a list sz, SizeScreen sets the size of the screen; The first entry
of sz, if bound, is the length of each line, and the second entry of sz, if bound, is the number of lines.
The values for unbound entries of sz are left unaffected. The function returns the new values.

Note that those parameters can also be set with the command line options -x for the line length
and -y for the number of lines (see Section 3.1).

To check/change whether line breaking occurs for files and streams see PrintFormattingStatus
(10.4.8) and SetPrintFormattingStatus (10.4.8).

The line length must be between 20 and 4096 characters (inclusive) and the number of lines must
be at least 10. Values outside this range will be adjusted to the nearest endpoint of the range.

6.13 Teaching Mode

When using GAP in the context of (undergraduate) teaching it is often desirable to simplify some of
the system output and functionality defaults (potentially at the cost of making the printing of objects
more expensive). This can be achieved by turning on a teaching mode:

6.13.1 TeachingMode

> TeachingMode ([switch]) (function)

When called with a boolean argument switch, this function will turn teaching mode respectively

on or off.
Example

gap> a:=Z(11)"3;

Z(11)°3

gap> TeachingMode (true);

#I Teaching mode is turned ON
gap> a;

\ ,e:##\ \ b:#

mailto://support@gap-system.org

GAP - Reference Manual 101

ZmodnZ0bj(8,11)

gap> TeachingMode (false);

#I Teaching mode is turned OFF
gap> a;

Z(11)°3

At the moment, teaching mode changes the following things

Prime Field Elements
Elements of fields of prime order are printed as ZmodnZ0bj (14.5.3) instead as power of a
primitive root.

Quadratic Irrationalities
Elements of a quadratic extension of the rationals are printed using the square root ER (18.4.2)
instead of using roots of unity.

Creation of some small groups
The group creator functions CyclicGroup (50.1.2), AbelianGroup (50.1.3),
ElementaryAbelianGroup (50.1.4), and DihedralGroup (50.1.6) create by default (if
no other representation is specified) not a pc group, but a finitely presented group, which makes
the generators easier to interpret.

Chapter 7

Debugging and Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.

Probably the most important debugging tool in GAP is the break loop (see Section 6.4) which
can be entered by putting an Error (6.6.1) statement into your code or by hitting Control-C. In the
break loop one can inspect variables, stack traces and issue commands as usual in an interactive GAP
session. See also the DownEnv (6.5.1), UpEnv (6.5.1) and Where (6.4.5) functions.

Sections 7.2 and 7.3 show how to get information about the methods chosen by the method selec-
tion mechanism (see chapter 78).

The final sections describe functions for collecting statistics about computations (see Runtime
(7.6.2), 7.7).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following

example occurs and a break loop is entered:
Example

gap> IsNormal(2,2);

Error, no method found! For debugging hints type 7Recovery from NoMethodFound
Error, no 1st choice method found for ‘IsNormal’ on 2 arguments called from
<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments
and failed. In this situation it is crucial to find out, why this happened. Therefore there are a few
functions which can display further information. Note that you can leave the break loop by the quit
command (see 6.4.1) and that the information about the incident is no longer accessible afterwards.

7.1.1 ShowArguments

> ShowArguments () (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
as a list the arguments of the operation call for which no method was found.

102

GAP - Reference Manual 103

7.1.2 ShowArgument

> ShowArgument (nr) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the nr-th arguments of the operation call for which no method was found. ShowArgument
needs exactly one argument which is an integer between 0 and the number of arguments the operation
was called with.

7.1.3 ShowDetails

> ShowDetails() (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
the details of this error: The operation, the number of arguments, a flag which indicates whether the
operation is being traced, a flag which indicates whether the operation is a constructor method, and
the number of methods that refused to apply by calling TryNextMethod (78.4.1). The last num-
ber is called Choice and is printed as an ordinal. So if exactly k& methods were found but called
TryNextMethod (78.4.1) and there were no more methods it says Choice: kth.

7.1.4 ShowMethods

> ShowMethods ([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
an overview about the installed methods for those arguments the operation was called with (using
7.2. The verbosity can be controlled by the optional integer parameter verbosity. The default is 2,
which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of installed
methods and the methods matching, which can only be those that were already called but refused to
work by calling TryNextMethod (78.4.1). With verbosity 3 not only all installed methods but also the
reasons why they do not match are displayed.

7.1.5 ShowOtherMethods

> ShowOtherMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for a different number of arguments than the number
of arguments the operation was called with (using 7.2. The verbosity can be controlled by the optional
integer parameter verbosity. The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons,
why they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will nor-
mally not make any sense, because the different numbers of arguments are simulated by supplying the
corresponding number of ones, for which normally no reasonable methods will be installed.

GAP - Reference Manual 104

7.2 Inspecting Applicable Methods

7.2.1 ApplicableMethod

> ApplicableMethod(opr, args[, printlevell[, nr]]) (function)
> ApplicableMethodTypes(opr, args[, printlevel[, nr]]) (function)

Called with two arguments, ApplicableMethod returns the method of highest rank that is appli-
cable for the operation opr with the arguments in the list args. The default printlevel is 0. If no
method is applicable then fail is returned.

If a positive integer is given as the fourth argument nr then ApplicableMethod returns the nr-th
applicable method for the operation opr with the arguments in the list args, where the methods are
ordered according to descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument nr is the string "all" then ApplicableMethod returns a list of all appli-
cable methods for opr with arguments args, ordered according to descending rank.

Depending on the integer value printlevel, additional information is printed. Admissible values
and their meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,
4 also for each not applicable method all reasons why it is not applicable.

6 also the function body of the selected method(s)

When a method returned by ApplicableMethod is called then it returns either the desired result
or the string "TRY_NEXT_METHOD", which corresponds to a call to TryNextMethod (78.4.1) in the
method and means that the method selection would call the next applicable method.

Note: The GAP kernel provides special treatment for the infix operations \+, \-, *, \/, \~, \mod
and \in. For some kernel objects (notably cyclotomic numbers, finite field elements and row vectors
thereof) it calls kernel methods circumventing the method selection mechanism. Therefore for these
operations ApplicableMethod may return a method which is not the kernel method actually used.

The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if
only filters are given of course family predicates cannot be tested).

7.3 Tracing Methods

7.3.1 TraceMethods (for operations)

> TraceMethods(oprl, opr2, ...) (function)
> TraceMethods (oprs) (function)

After the call of TraceMethods, whenever a method of one of the operations opr1, opr2, ... is
called, the information string used in the installation of the method is printed. The second form has
the same effect for each operation from the list oprs of operations.

GAP - Reference Manual 105

7.3.2 TraceAllMethods

> TraceAllMethods () (function)

Invokes TraceMethods for all operations.

7.3.3 UntraceMethods (for operations)

> UntraceMethods(oprl, opr2, ...) (function)
> UntraceMethods (oprs) (function)

turns the tracing off for all operations opr1, opr2, ... or in the second form, for all operations in
the list oprs.

Example
gap> TraceMethods([Size]);

gap> g:= Group((1,2,3), (1,2));;

gap> Size(g);

#I Size: for a permutation group at /gap5/lib/grpperm.gi:487
#I Setter(Size): system setter

#I Size: system getter

#I Size: system getter

6

gap> UntraceMethods([Size]);

7.3.4 UntraceAllMethods

> UntraceAllMethods () (function)

Equivalent to calling UntraceMethods for all operations.

7.3.5 TraceImmediateMethods

> TraceImmediateMethods([flag]) (function)
> UntraceImmediateMethods () (function)

TraceImmediateMethods enables tracing for all immediate methods if f1ag is either true, or
not present. UntraceImmediateMethods, or TraceImmediateMethods with flag equal false
turns tracing off. (There is no facility to trace specific immediate methods.)

Example

gap> TraceImmediateMethods();
gap> g:= Group((1,2,3), (1,2));;
#I immediate: Size

#I immediate: IsCyclic

#I immediate: IsCommutative

#I immediate: IsTrivial

gap> Size(g);

#I immediate: IsNonTrivial

#I immediate: Size

#I immediate: IsFreeAbelian

#I immediate: IsTorsionFree

GAP - Reference Manual 106

#I immediate: IsNonTrivial

#I immediate: GeneralizedPcgs
#I immediate: IsPerfectGroup
#I immediate: IsEmpty

6

gap> UntraceImmediateMethods();
gap> UntraceMethods([Size]);

This example gives an explanation for the two calls of the “system getter” for Size (30.4.6).
Namely, there are immediate methods that access the known size of the group. Note that the group
g was known to be finitely generated already before the size was computed, the calls of the imme-
diate method for IsFinitelyGeneratedGroup (39.15.17) after the call of Size (30.4.6) have other
arguments than g.

7.4 Info Functions

The Info (7.4.5) mechanism permits operations to display intermediate results or information about
the progress of the algorithms. Information is always given according to one or more info classes.
Each of the info classes defined in the GAP library usually covers a certain range of algorithms, so for
example InfoLattice covers all the cyclic extension algorithms for the computation of a subgroup
lattice.

The amount of information to be displayed can be specified by the user for each info class sepa-
rately by a level, the higher the level the more information will be displayed. Ab initio all info classes
have level zero except InfoWarning (7.4.7) which initially has level 1.

7.4.1 NewlnfoClass

> NewInfoClass (name) (operation)

creates a new info class with name name.

7.4.2 DeclareInfoClass

> DeclareInfoClass (name) (function)

creates a new info class with name name and binds it to the global variable name. The variable
must previously be writable, and is made readonly by this function.

7.4.3 SetInfoLevel

> SetInfolevel(infoclass, level) (operation)

Sets the info level for infoclass to level.

7.4.4 InfoLevel

> Infolevel(infoclass) (operation)

GAP - Reference Manual 107

returns the info level of infoclass.

7.4.5 Info

> Info(infoclass, level, info[, moreinfo, ...]) (function)

If the info level of infoclass is at least level the remaining arguments, info and possibly
moreinfo and so on, are evaluated. (Technically, Info is a keyword and not a function.)

By default, they are viewed, preceded by the string "#I " and followed by a newline. Otherwise
the third and subsequent arguments are not evaluated. (The latter can save substantial time when
displaying difficult results.)

The behaviour can be customized with SetInfoHandler (7.4.6).

Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
gap> SetInfolevel (InfoExample,1);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
#I one

gap> SetInfolLevel (InfoExample,2);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

#I two

gap> InfolLevel (InfoExample) ;
2

gap> Info(InfoExample,3,Length(Combinations([1..9999])));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample
causes Info to ignore the last argument, which prevents Length (Combinations ([1..9999])) from
being evaluated; note that an evaluation would be impossible due to memory restrictions.

A set of info classes (called an info selector) may be passed to a single Info statement. As a
shorthand, info classes and selectors may be combined with + rather than Union (30.5.3). In this case,
the message is triggered if the level of any of the classes is high enough.

Example
gap> InfoExample:=NewInfoClass("InfoExample");;
gap> SetInfolLevel (InfoExample,0);

gap> Info(InfoExample + InfoWarning, 1, "hello");
#I hello

gap> Info(InfoExample + InfoWarning, 2, "hello");
gap> SetInfolLevel (InfoExample,2);

gap> Info(InfoExample + InfoWarning, 2, "hello");

#I hello
gap> Infolevel (InfoWarning) ;
1

7.4.6 Customizing Info (7.4.5) statements

> SetInfoHandler (infoclass, handler) (function)
> SetInfoOutput(infoclass, out) (function)

GAP - Reference Manual 108

> SetDefaultInfoOutput (out) (function)
Returns: nothing
This allows to customize what happens in an Info(infoclass, level, ...) statement.

In the first function handler must be a function with three arguments infoclass, level, list.
Here 1ist is the list containing the third to last argument of the Info (7.4.5) call.

The default handler is the function DefaultInfoHandler. It prints "#I ", then the third and
further arguments of the info statement, and finally a "\n".

If the first argument of an Info (7.4.5) statement is a sum of Info classes, the handler of the first
summand is used.

The file or stream to which Info (7.4.5) statements for individual Info (7.4.5) classes print can be
changed with SetInfoOutput. The initial default for all Info (7.4.5) classes is the string "*Print*"
which means the current output file. The default can be changed with SetDefaultInfoOutput. The
argument out can be a filename or an open stream, the special names "*Print*", "*errout* and
"xstdout* are also recognized.

For example, SetDefaultInfoOutput ("*errout*"); would send Info (7.4.5) output to stan-
dard error, which can be interesting if GAPs output is redirected.

7.4.7 InfoWarning

> InfoWarning (info class)
is an info class to which general warnings are sent at level 1, which is its default level. More

specialised warnings are shown via calls of Info (7.4.5) at InfoWarning level 2, e.g. information

about the autoloading of GAP packages and the initial line matched when displaying an on-line help
topic.

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to
required conditions and issue an error if not.

7.5.1 SetAssertionLevel

> SetAssertionLevel (lev) (function)

assigns the global assertion level to 1ev. By default it is zero.

7.5.2 AssertionLevel

> AssertionLevel () (function)

returns the current assertion level.

7.5.3 Assert

> Assert(lev, cond[, message]) (function)

GAP - Reference Manual 109

With two arguments, if the global assertion level is at least Iev, condition cond is tested and if it

does not return true an error is raised. Thus Assert(lev, cond) is equivalent to the code

Example

if AssertionLevel() >= lev and not <cond> then
Error("Assertion failure");

fi;

With the message argument form of the Assert statement, if the global assertion level is at least
lev, condition cond is tested and if it does not return true then message is evaluated and printed.

Assertions are used at various places in the library. Thus turning assertions on can slow code
execution significantly.

7.6 Timing

7.6.1 Runtimes

> Runtimes() (function)

Runtimes returns a record with components bound to integers or fail. Each integer is the cpu
time (processor time) in milliseconds spent by GAP in a certain status:

user_time
cpu time spent with GAP functions (without child processes).

system_time
cpu time spent in system calls, e.g., file access (fail if not available).

user_time_children
cpu time spent in child processes (fail if not available).

system_time_children
cpu time spent in system calls by child processes (fail if not available).

Note that this function is not fully supported on all systems. Only the user_time component is
(and may on some systems include the system time).
The following example demonstrates tasks which contribute to the different time components:

Example

gap> Runtimes(); # after startup

rec(user_time := 3980, system_time := 60, user_time_children := O,
system_time_children := 0)

gap> Exec("cat /usr/bin/*||wc"); # child process with a lot of file access

893799 7551659 200928302

gap> Runtimes();

rec(user_time := 3990, system_time := 60, user_time_children := 1590,
system_time_children := 600)

gap> a:=0;;for i in [1..100000000] do a:=a+l; od; # GAP user time

gap> Runtimes();

rec(user_time := 12980, system_time := 70, user_time_children := 1590,
system_time_children := 600)

gap> 7blabla # first call of help, a lot of file access

GAP - Reference Manual 110

Help: no matching entry found

gap> Runtimes();

rec(user_time := 13500, system_time := 440, user_time_children := 1590,
system_time_children := 600)

7.6.2 Runtime

> Runtime() (function)

Runtime returns the time spent by GAP in milliseconds as an integer. It is the same as the value
of the user_time component given by Runtimes (7.6.1), as explained above.
See StringTime (27.10.9) for a translation from milliseconds into hour/minute format.

7.6.3 time

> time (global variable)

In the read-eval-print loop, time stores the time the last command took.

7.7 Profiling

Profiling of code can be used to determine in which parts of a program how much time has been
spent and how much memory has been allocated during runtime. GAP has two different methods of
profiling. GAP can either profile by function, or line-by-line. Line by line profiling is currently only
used for code coverage, while function profiling tracks memory and time usage.

7.7.1 Function Profiling

This section describes how to profiling at the function level. The idea is that

* first one switches on profiling for those GAP functions the performance of which one wants to
check,

* then one runs some GAP computations,
* then one looks at the profile information collected during these computations,

* then one runs more computations (perhaps clearing all profile information before, see
ClearProfile (7.7.10)),

* and finally one switches off profiling.

For switching on and off profiling, GAP supports entering a list of functions (see
ProfileFunctions (7.7.5), UnprofileFunctions (7.7.6)) or a list of operations whose methods
shall be (un)profiled (ProfileMethods (7.7.7), UnprofileMethods (7.7.8)), and DisplayProfile
(7.7.9) can be used to show profile information about functions in a given list.

Besides these functions, ProfileGlobalFunctions (7.7.2), ProfileOperations (7.7.3), and
ProfileOperationsAndMethods (7.7.4) can be used for switching on or off profiling for all global

GAP - Reference Manual 111

functions, operations, and operations together with all their methods, respectively, and for showing
profile information about these functions.
Note that GAP will perform more slowly when profiling than when not.

7.7.2 ProfileGlobalFunctions

> ProfileGlobalFunctions([bool]) (function)

Called with argument true, ProfileGlobalFunctions starts profiling of all functions that have
been declared via DeclareGlobalFunction (79.18.7). Old profile information for all these functions
is cleared. A function call with the argument false stops profiling of all these functions. Recorded
information is still kept, so you can display it even after turning the profiling off.

When ProfileGlobalFunctions is called without argument, profile information for all global
functions is displayed, see DisplayProfile (7.7.9).

7.7.3 ProfileOperations

> ProfileOperations([bool]) (function)

Called with argument true, ProfileOperations starts profiling of all operations. Old profile
information for all operations is cleared. A function call with the argument false stops profiling of
all operations. Recorded information is still kept, so you can display it even after turning the profiling
off.

When ProfileOperations is called without argument, profile information for all operations is
displayed (see DisplayProfile (7.7.9)).

7.7.4 ProfileOperationsAndMethods

> ProfileOperationsAndMethods([bool]) (function)

Called with argument true, ProfileOperationsAndMethods starts profiling of all operations
and their methods. Old profile information for these functions is cleared. A function call with the
argument false stops profiling of all operations and their methods. Recorded information is still
kept, so you can display it even after turning the profiling off.

When ProfileOperationsAndMethods is called without argument, profile information for all
operations and their methods is displayed, see DisplayProfile (7.7.9).

7.7.5 ProfileFunctions

> ProfileFunctions (funcs) (function)

starts profiling for all function in the list funcs. You can use ProfileGlobalFunctions (7.7.2)
to turn profiling on for all globally declared functions simultaneously.

7.7.6 UnprofileFunctions

> UnprofileFunctions (funcs) (function)

GAP - Reference Manual 112

stops profiling for all function in the list funcs. Recorded information is still kept, so you can
display it even after turning the profiling off.

7.7.7 ProfileMethods

> ProfileMethods (ops) (function)

starts profiling of the methods for all operations in the list ops.

7.7.8 UnprofileMethods

> UnprofileMethods (ops) (function)

stops profiling of the methods for all operations in the list ops. Recorded information is still kept,
so you can display it even after turning the profiling off.

7.7.9 DisplayProfile

> DisplayProfile([functions,][mincount, mintime]) (function)
> GAPInfo.ProfileThreshold (global variable)

Called without arguments, DisplayProfile displays the profile information for profiled opera-
tions, methods and functions. If an argument functions is given, only profile information for the
functions in the list functions is shown. If two integer values mincount, mintime are given as ar-
guments then the output is restricted to those functions that were called at least mincount times or for
which the total time spent (see below) was at least mintime milliseconds. The defaults for mincount
and mintime are the entries of the list stored in the global variable GAPInfo.ProfileThreshold.

The default value of GAPInfo.ProfileThresholdis [10000, 30 1].

Profile information is displayed in a list of lines for all functions (including operations and meth-
ods) which are profiled. For each function, “count” gives the number of times the function has been
called. “self/ms” gives the time (in milliseconds) spent in the function itself, “chld/ms” the time (in
milliseconds) spent in profiled functions called from within this function, “stor/kb” the amount of
storage (in kilobytes) allocated by the function itself, “chld/kb” the amount of storage (in kilobytes)
allocated by profiled functions called from within this function, and “package” the name of the GAP
package to which the function belongs; the entry “GAP” in this column means that the function be-
longs to the GAP library, the entry “(oprt.)” means that the function is an operation (which may
belong to several packages), and an empty entry means that FilenameFunc (5.1.4) cannot determine
in which file the function is defined.

The list is sorted according to the total time spent in the functions, that is the sum of the values in
the columns “self/ms” and “chld/ms”.

At the end of the list, two lines are printed that show the total time used and the total memory
allocated by the profiled functions not shown in the list (label OTHER) and by all profiled functions
(label TOTAL), respectively.

An interactive variant of DisplayProfile is the function BrowseProfile (Browse: Browse-
Profile) that is provided by the GAP package Browse.

7.7.10 ClearProfile

> ClearProfile()

GAP - Reference Manual

clears all stored profile information.

7.7.11 An Example of Function Profiling

113

(function)

Let us suppose we want to get information about the computation of the conjugacy classes of a certain
permutation group. For that, first we create the group, then we start profiling for all global functions
and for all operations and their methods, then we compute the conjugacy classes, and then we stop

profiling.

gap> g:= PrimitiveGroup(24, 1);;
gap> ProfileGlobalFunctions(true);
gap> ProfileOperationsAndMethods(true);
gap> ConjugacyClasses(g);;
gap> ProfileGlobalFunctions(false);
gap> ProfileOperationsAndMethods(false);

Example

Now the profile information is available. We can list the information for all profiled functions with

DisplayProfile (7.7.9).

gap> DisplayProfile();
count self/ms chld/ms
17647 0 0
10230 0 0
10139 0 0
10001 0 0
10001 8 0
14751 12 0
10830 8 4
2700 20 12
2444 28 4
4368 0 32
2174 32 4
585 4 32
1532 32 8
1221 8 32
185309 28 12
336 4 40
4 28 20
2798 0 52
560 4 48
432 16 40
185553 48 8
26 0 64
26 0 64
26 0 64
152 4 64
1605 0 68

stor/kb
275

226

0

638

28

0

182

313
3924

1030
45
194
349

95
488
54
83
259
915

O O O O O

Example

chld/kb

package
GAP
(oprt.)

(oprt.)

GAP
GAP
GAP
(oprt.)
GAP
GAP
GAP
GAP
(oprt.)
GAP
(oprt.)
GAP
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
(oprt.)
(oprt.)

function

BasePoint

ShallowCopy
PositionSortedOp: for*
UniteSet: for two intx*
UniteSet

=: for two families: *
Concatenation
AddRefinement
ConjugateStabChain
Size

List

RRefine
AddGeneratorsExtendSc*
Partition

Length
ExtendSeriesPermGroup
Sortex
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
Add

CentralizerQOp
Centralizer0Op: perm g
Centralizer: try to ex
Centralizer
StabilizerOfExternalS*

26
382
5130
7980
12076
192
2208
217
217
216
1479
1453
126

13400

B O O

1164
484
2048

68

96

96
116
136
148
148
160
148
464
668
684
728
736
736
736

GAP - Reference Manual

69
309
330
351

60
334
566

12052
23319

2024
1922
3165
6434
6478
3029
3083
3177
3117
12546
18474
18460
19233
19671
19678
19675

GAP
GAP
GAP
GAP
GAP
GAP

(oprt.
(oprt.

GAP
GAP
GAP
GAP
GAP
GAP

(oprt.

GAP

(oprt.

Meth(StabilizerOfExtex
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
StabChainMutable: calx*
StabChainMutable
StabChainOp
StabChainOp: group an*
PartitionBacktrack
RepOpElmTuplesPermGro*
in: perm class rep
ConjugacyClassesTry
ConjugacyClassesByRan*
ConjugacyClasses
ConjugacyClasses: per*
Position

OTHER

TOTAL

114

We can restrict the list to global functions with ProfileGlobalFunctions (7.7.2).

gap> ProfileGlobalFunctions();

count
17647
10830
2700
2444
2174
585
1532
1221
336
2798
560
432
382
5130
7980
12076
216
1479
126

1

self/ms

0
8
20
28
32
4
32
8
4
0
4
16
0
4
24
12
36
12
0
0
1804
2048

chld/ms

0

4
12
4

4
32
8
32
40
52
48
40
96
96
116
136
464
668
728
736

stor/kb

275
182
313
3924
1030
45
194
349
95
54
83
259
69
309
330
351
334
566
13

0
14536
23319

Example

chld/kb

0

276
55
317
116
742
56
420
817
944
628
461
1922
3165
6434
6478
12546
18474
19233
19671

package

GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP

function

BasePoint
Concatenation
AddRefinement
ConjugateStabChain
List

RRefine
AddGeneratorsExtendSc*
Partition
ExtendSeriesPermGroup
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
PartitionBacktrack
RepOpElmTuplesPermGro*
ConjugacyClassesTry
ConjugacyClassesByRan*
OTHER

TOTAL

We can restrict the list to operations with ProfileOperations (7.7.3).

gap> ProfileOperations();

count

self/ms

chld/ms

stor/kb

Example

chld/kb package

function

10230 0
10001 8
4368 0
185309 28
4 28
185553 48
26 0

152 4
1605 0
2208 4
217 0

2 0
13400 1164
764

2048

32
12
20

64
64
68
148
160
736

GAP - Reference Manual

226 0 (oprt.)

28 688 (oprt.)

7 714 (oprt.)

0 0 (oprt.)

488 454 (oprt.)

915 94 (oprt.)

0 2023 (oprt.)

0 2024 (oprt.)

0 2032 (oprt.)

3 3083 (oprt.)

0 3177 (oprt.)

2 19678 (oprt.)

0 0 (oprt.)
21646
23319

115

ShallowCopy
UniteSet

Size

Length

Sortex

Add
CentralizerOp
Centralizer
StabilizerOfExternalS*
StabChainMutable
StabChainOp
ConjugacyClasses
Position

OTHER

TOTAL

We can restrict the list to operations and their methods with

ProfileOperationsAndMethods

(7.7.4).
Example
gap> ProfileOperationsAndMethods() ;
count self/ms chld/ms stor/kb chld/kb package
10230 0 0 226 0 (oprt.)
10139 0 0 0 0
10001 0 0 688 0
10001 8 0 28 688 (oprt.)
14751 12 0 0 0
4368 0 32 7 714 (oprt.)
185309 28 12 0 0 (oprt.)
4 28 20 488 454 (oprt.)
185553 48 8 915 94 (oprt.)
26 0 64 0 2023 (oprt.)
26 0 64 0 2023 GAP
26 0 64 0 2023 GAP
152 4 64 0 2024 (oprt.)
1605 0 68 0 2032 (oprt.)
26 0 68 0 2024 GAP
192 0 148 4 3029 GAP
2208 4 148 3 3083 (oprt.)
217 0 160 0 3177 (oprt.)
217 12 148 60 3117 GAP
1453 12 684 56 18460 GAP
2 0 736 2 19678 (oprt.)
1 0 736 0 19675 GAP
13400 1164 0 0 0 (oprt.)
728 20834
2048 23319

function

ShallowCopy
PositionSortedOp: for*
UniteSet: for two intx*
UniteSet

=: for two families: *
Size

Length

Sortex

Add

CentralizerOp
Centralizer(Op: perm g*
Centralizer: try to e*
Centralizer
StabilizerOfExternalS*
Meth(StabilizerOfExte*
StabChainMutable: calx*
StabChainMutable
StabChainOp
StabChainOp: group an
in: perm class rep
ConjugacyClasses
ConjugacyClasses: perx*
Position

OTHER

TOTAL

Finally, we can restrict the list to explicitly given functions

entering the list of functions as an argument.

Example

with DisplayProfile (7.7.9), by

gap> DisplayProfile([StabChainOp, Centralizer]);

count self/ms

chld/ms

stor/kb

chld/kb

package

function

GAP - Reference Manual 116

152 4 64 0 2024 (oprt.) Centralizer
217 0 160 0 3177 (oprt.) StabChainOp
2044 23319 OTHER
2048 23319 TOTAL

7.7.12 Line By Line Profiling
Line By Line profiling tracks which lines have been executed in a piece of GAP code. Built into
GAP are the methods necessary to generate profiles, the resulting profiles can be displayed with the
“profiling’ package.
7.7.13 Line by Line profiling example
There are two kinds of profiles GAP can build:

» Coverage : This records which lines of code are executed

* Timing : This records how much time is spend executing each line of code

A timing profile provides more information, but will take longer to generate and parse. A timing
profile is generated using the functions ProfileLineByLine (7.7.14) and UnprofileLineByLine
(7.7.16), as follows:

Example
gap> ProfilelLineByLine("output.gz");

gap> Size(AlternatingGroup(10)); ; # Execute some GAP code you want to profile
gap> UnprofileLineByLine();

For code coverage, wuse instead the functions CoverageLineByLine (7.7.15) and
UncoverageLineByLine (7.7.17). The profiler will only record lines which are read and ex-
ecuted while the profiler is running. If you want to perform code coverage or profile GAP’s
library, then you can use the GAP command line option '—cover filename.gz’, which executes
CoverageLineByLine (7.7.15) before GAP starts. Similarly the option "—prof filename.gz’ executes
ProfileLineByLine (7.7.14) before GAP starts. The profiler is designed for high performance,
because of this, there are some limitations which users should be aware of:

* By default the profiler records the wall-clock time which has passed, rather than the CPU time
taken (because it is lower overhead), so any time taken writing commands will be charged to the
last GAP statement which was executed. Therefore it is better to write a function which starts
profiling, executes your code, and then stops profiling.

¢ If you end the filename with ".gz", the resulting file will automatically be compressed. This is
highly recommended!

* The profiler can only track GAP code which occurs in a function — this is most obvious when
looking at code coverage examples, which will appear to miss lines of code in files not in a
function.

Profiles are transformed into a human-readable form with ’profiling’ package, for example with the
’OutputAnnotatedCodeCoverageFiles’ function.

GAP - Reference Manual 117

7.7.14 ProfileLineByLine

> ProfileLineByLine(filename[, options]) (function)

ProfileLineByLine begins GAP recording profiling data to the file filename. This file will
get *very* large very quickly. This file is compressed using gzip to reduce its size. options is an
optional dictionary, which sets various configuration options. These are

coverage
Boolean (defaults to false). If this is enabled, only information about which lines are read and
executed is stored. Enabling this is the same as calling CoverageLineByLine (7.7.15). Using
this ignores all other options.

justStat
Boolean (defaults to false). This switches profiling to only consider entire statements, rather
than parts of statements. In general this will provide a courser profile, but produce smaller files.

wallTime
Boolean (defaults to true). Sets if time should be measured using wall-clock time or CPU time.
(measuring wall-clock time is lower overhead).

resolution
Integer (defaults to 0). How frequently (in nanoseconds) to check which line is being executed.
Setting this to a non-zero value improves performance and produces smaller traces, at the cost
of accuracy. Setting this to a non-zero value will also make the number of executions per
statement become inaccurance. However,i profiling will still accurately record which statements
are executed at all.

7.715 CoverageLineByLine

> CoverageLineByLine(filename) (function)

CoverageLineByLine begins GAP recording code coverage to the file filename. This is equiv-
alent to calling ProfileLineByLine (7.7.14) with coverage=true.

7.7.16 UnprofileLineByLine

> UnprofileLineByLine() (function)

Stops profiling which was previously started with ProfileLineByLine (7.7.14) or
CoverageLineByLine (7.7.15).

7.7.17 UncoverageLineByLine

> UncoverageLineByLine () (function)

Stops profiling which was previously started with ProfileLineByLine (7.7.14) or
CoverageLineByLine (7.7.15).

GAP - Reference Manual 118

7.7.18 ActivateProfileColour

> ActivateProfileColour () (function)

Called with argument true, ActivateProfileColour makes GAP colour functions when print-
ing them to show which lines have been executed while profiling was active via ProfileLineByLine
(7.7.14) at any time during this GAP session. Passing false disables this behaviour.

7.7.19 IsLineByLineProfileActive

> IsLineByLineProfileActive() (function)

IsLineByLineProfileActive returns if line-by-line profiling is currently activated.

7.7.20 DisplayCacheStats

> DisplayCacheStats() (function)

displays statistics about the different caches used by the method selection.

7.7.21 ClearCacheStats

> ClearCacheStats() (function)

clears all statistics about the different caches used by the method selection.

7.8 Information about the version used

The global variable GAPInfo.Version (see GAPInfo (3.5.1)) contains the version number of the
version of GAP. Its value can be checked other version number using CompareVersionNumbers
(76.3.7).

To produce sample citations for the used version of GAP or for a package available in this GAP
installation, use Cite (76.3.16).

If you wish to report a problem to GAP Support or GAP Forum, it may be useful to not only report
the version used, but also to include the GAP banner displays the information about the architecture
for which the GAP binary is built, used libraries and loaded packages.

7.9 Test Files

Test files are used to check that GAP produces correct results in certain computations. A selection of
test files for the library can be found in the tst directory of the GAP distribution.

7.9.1 Starting and stopping test

> START_TEST(id) (function)
> STOP_TEST(file, fac) (function)

GAP - Reference Manual 119

START_TEST (7.9.1) and STOP_TEST (7.9.1) may be optionally used in files that are read via Test
(7.9.2). If used, START_TEST (7.9.1) reinitialize the caches and the global random number generator,
in order to be independent of the reading order of several test files. Furthermore, the assertion level
(see Assert (7.5.3)) is set to 2 (if it was lower before) by START_TEST (7.9.1) and set back to the
previous value in the subsequent STOP_TEST (7.9.1) call.

To use these options, a test file should be started with a line

Example
gap> START_TEST("arbitrary identifier string");

(Note that the gap> prompt is part of the line!)
and should be finished with a line
Example

gap> STOP_TEST("filename", 10000);

Here the string "filename" should give the name of the test file. The number is a proportionality
factor that is used to output a “GAPstone” speed ranking after the file has been completely processed.
For the files provided with the distribution this scaling is roughly equalized to yield the same numbers
as produced by the test file tst/combinat.tst.

Note that the functions in tst/testutil.g temporarily replace STOP_TEST (7.9.1) before they
call Test (7.9.2).

If you want to run a quick test of your GAP installation (though this is not required), you can read
in a test script that exercises some GAP’s capabilities.

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "testinstall.g"));

The test requires up to 1 GB of memory and runs about one minute on an Intel Core 2 Duo / 2.53
GHz machine. You will get a large number of lines with output about the progress of the tests.

Example
test file GAP4stones time (msec)
testing: /gap4rb/tst/zlattice.tst
zlattice.tst 0 0
testing: /gap4rb/tst/gaussian. tst
gaussian.tst 0 10
[further lines deleted]

If you want to run a more advanced check (this is not required and make take up to an hour), you can
read teststandard.g which is an extended test script performing all tests from the tst directory.

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "teststandard.g"));

The test requires up to 1 GB of memory and runs about one hour on an Intel Core 2 Duo / 2.53
GHz machine, and produces an output similar to the testinstall.g test.

GAP - Reference Manual 120

7.9.2 Test

> Test(fname[, optrec]) (function)

Returns: true or false.

The argument fname must be the name of a file or an open input stream. The content of this file
or stream should contain GAP input and output. The function Test runs the input lines, compares
the actual output with the output stored in fname and reports differences. With an optional record as
argument optrec details of this process can be adjusted.

More precisely, the content of fname must have the following format.

Lines starting with "gap> " are considered as GAP input, they can be followed by lines starting with
"> " if the input is continued over several lines.

To allow for comments in fname the following lines are ignored by default: lines at the beginning of
fname that start with "#", and one empty line together with one or more lines starting with "#".

All other lines are considered as GAP output from the preceding GAP input.

By default the actual GAP output is compared exactly with the stored output, and if these are
different some information about the differences is printed.

If any differences are found then Test returns false, otherwise true.

If the optional argument optrec is given it must be a record. The following components of
optrec are recognized and can change the default behaviour of Test:

ignoreComments
If set to false then no lines in fname are ignored as explained above (default is true).

width
The screen width used for the new output (default is 80).

compareFunction
This must be a function that gets two strings as input, the newly generated and the stored output
of some GAP input. The function must return true or false, indicating if the strings should
be considered equivalent or not. By default \= (31.11.1) is used.
Two strings are recognized as abbreviations in this component: "uptowhitespace" checks
if the two strings become equal after removing all white space. And "uptonl" compares the
string up to trailing newline characters.

reportDiff
A function that gets six arguments and reports a difference in the output: the GAP input, the
expected GAP output, the newly generated output, the name of tested file, the line number of
the input, the time to run the input. (The default is demonstrated in the example below.)

rewriteToFile
If this is bound to a string it is considered as a file name and that file is written with the same
input and comment lines as fname but the output substituted by the newly generated version
(default is false).

writeTimings
If this is bound to a string it is considered as a file name, that file is written and contains timing
information for each input in fname.

compareTimings
If this is bound to a string it is considered as name of a file to which timing information was

GAP - Reference Manual 121

stored via writeTimings in a previous call. The new timings are compared to the stored ones.
By default only commands which take more than a threshold of 100 milliseconds are consid-
ered, and only differences of more than 20% are considered significant. These defaults can be
overwritten by assigning a list [timingfile, threshold, percentage] to this component.
(The default of compareTimings is false.)

reportTimeDiff
This component can be used to overwrite the default function to display timing differences. It
must be a function with 5 arguments: GAP input, name of test file, line number, stored time,
new time.

ignoreSTOP_TEST
By default set to true, in that case the output of GAP input starting with "STOP_TEST" is not
checked.

showProgress
If this is true then GAP prints position information and the input line before it is processed
(default is false).

subsWindowsLineBreaks
If this is true then GAP substitutes DOS/Windows style line breaks "\r\n" by UNIX style line
breaks "\n" after reading the test file. (default is true).

Example
gap> tnam := Filename(DirectoriesLibrary(), "../doc/ref/demo.tst");;
gap> mask := function(str) return Concatenation("| ",
> JoinStringsWithSeparator(SplitString(str, "\n", ""), "\n|l "),

> "\n"); end;;

gap> Print (mask(StringFile(tnam)));

| # this is a demo file for the ’Test’ function
#
gap> g := Group((1,2), (1,2,3));
Group([(1,2), (1,2,3) 1)

the following fails:
gap> a := 13+29;
41
gap> ss := InputTextString(StringFile(tnam));;
gap> Test(ss);
########> Diff in test stream, line 8:
Input is:
a := 13+29;
Expected output:
41
But found:
42
HUHHHH IS
false
gap> RewindStream(ss);
true
gap> dtmp := DirectoryTemporary();;
gap> ftmp := Filename(dtmp,"demo.tst");;

|
|
|
|
| # another comment following an empty line
|
I
|

GAP - Reference Manual 122

gap> Test(ss, rec(reportDiff := Ignore, rewriteToFile := ftmp));
false

gap> Test(ftmp);

true

gap> Print(mask(StringFile(ftmp)));

| # this is a demo file for the ’Test’ function
#
gap> g := Group((1,2), (1,2,3));
Group([(1,2), (1,2,3) 1)

the following fails:
gap> a := 13+29;

|
|
|
|
| # another comment following an empty line
|
|
| 42

7.9.3 TestDirectory

> TestDirectory(inlist[, optrec]) (function)

Returns: true or false.

The argument inlist must be either a single filename or directory name, or a list of filenames
and directories. The function TestDirectory will take create a list of files to be tested by taking any
files in inlist, and recursively searching any directories in inlist for files ending in .tst. Each
of these files is then run through Test (7.9.2), and the results printed, and true returned if all tests
passed.

If the optional argument optrec is given it must be a record. The following components of
optrec are recognized and can change the default behaviour of TestDirectory:

testOptions
A record which will be passed on as the second argument of Test (7.9.2) if present.

earlyStop
If true, stop as soon as any Test (7.9.2) fails (defaults to false).

showProgress
Print information about how tests are progressing (defaults to true).

suppressStatusMessage

suppress displaying status messages #I Errors detected while testing and #I No
errors detected while testing after the test (defaults to false).

exitGAP

Rather than returning true or false, exit GAP with the return value of GAP set to success or
fail, depending on if all tests passed (defaults to false).

stonesLimit
Only try tests which take less than stonesLimit stones (defaults to infinity)

renormaliseStones
Re-normalise the stones number given in every tst files’s ’STOP_TEST’

See also TestPackage (76.3.3) for the information on running standard tests for GAP packages.

GAP - Reference Manual 123

7.10 Debugging Recursion

The GAP interpreter monitors the level of nesting of GAP functions during execution. By default,
whenever this nesting reaches a multiple of 5000, GAP enters a break loop (6.4) allowing you to
terminate the calculation, or enter RETURN ; to continue it.
Example
gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> dive(100);
gap> OnBreak:= function() Where(l); end; # shorter traceback
function() ... end
gap> dive(6000) ;
recursion depth trap (5000)

at

dive(depth - 1);

called from

dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
gap> dive(11000) ;
recursion depth trap (5000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (10000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

brk> return;

gap>

This behaviour can be controlled using the following procedure.

7.10.1 SetRecursionTrapInterval

> SetRecursionTrapInterval (interval) (function)

GAP - Reference Manual 124

interval must be a non-negative small integer (between 0 and 22%). An interval of 0 sup-

presses the monitoring of recursion altogether. In this case excessive recursion may cause GAP to
crash.
Example
gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> SetRecursionTrapInterval(1000);
gap> dive(2500) ;
recursion depth trap (1000)

at

dive(depth - 1);

called from

dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (2000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you may ’return;’ to continue

brk> return;

gap> SetRecursionTrapInterval(-1);

SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
1 integer

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return Q;

SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
1 integer

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return O;

gap> dive(20000) ;

gap> dive(2000000) ;

Segmentation fault

7.11 Global Memory Information

The GAP environment provides automatic memory management, so that the programmer does not
need to concern themselves with allocating space for objects, or recovering space when objects are

GAP - Reference Manual 125

no longer needed. The component of the kernel which provides this is called GASMAN (GAP Storage
MANager). Messages reporting garbage collections performed by GASMAN can be switched on by the
-g command line option (see section 3.1). There are also some facilities to access information from
GASMAN from GAP programs.

7.11.1 GasmanStatistics

> GasmanStatistics() (function)

GasmanStatistics returns a record containing some information from the garbage collection
mechanism. The record may contain up to four components: full, partial, npartial, and nfull.

The full component will be present if a full garbage collection has taken place since GAP started.
It contains information about the most recent full garbage collection. It is a record, with six compo-
nents: 1ivebags contains the number of bags which survived the garbage collection; 1ivekb contains
the total number of kilobytes occupied by those bags; deadbags contains the total number of bags
which were reclaimed by that garbage collection and all the partial garbage collections preceding it,
since the previous full garbage collection; deadkb contains the total number of kilobytes occupied
by those bags; freekb reports the total number of kilobytes available in the GAP workspace for new
objects and totalkb the actual size of the workspace.

These figures should be viewed with some caution. They are stored internally in fixed length
integer formats, and deadkb and deadbags are liable to overflow if there are many partial collections
before a full collection. Also, note that 1ivekb and freekb will not usually add up to totalkb. The
difference is essentially the space overhead of the memory management system.

The partial component will be present if there has been a partial garbage collection since the
last full one. It is also a record with the same six components as full. In this case deadbags and
deadkb refer only to the number and total size of the garbage bags reclaimed in this partial garbage
collection and 1ivebagsand 1ivekb only to the numbers and total size of the young bags that were
considered for garbage collection, and survived.

The npartial and nfull components will contain the number of full and partial garbage collec-
tions performed since GAP started.

7.11.2 GasmanMessageStatus

> GasmanMessageStatus () (function)
> SetGasmanMessageStatus(stat) (function)

GasmanMessageStatus returns one of the strings "none", "full", or "all", depending on
whether the garbage collector is currently set to print messages on no collections, full collections
only, or all collections, respectively.

Calling SetGasmanMessageStatus with the argument stat, which should be one of the three
strings mentioned above, sets the garbage collector messaging level.

7.11.3 GasmanLimits

> GasmanLimits() (function)

GAP - Reference Manual 126

GasmanLimits returns a record with three components: min is the minimum workspace size as
set by the -m command line option in kilobytes. The workspace size will never be reduced below this
by the garbage collector. max is the maximum workspace size, as set by the ’-0’ command line option,
also in kilobytes. If the workspace would need to grow past this point, GAP will enter a break loop to
warn the user. A value of 0 indicates no limit. kill is the absolute maximum, set by the -K command
line option. The workspace will never be allowed to grow past this limit.

Chapter 8

Options Stack

GAP supports a global options system. This is intended as a way for the user to provide guidance to
various algorithms that might be used in a computation. Such guidance should not change mathemati-
cally the specification of the computation to be performed, although it may change the algorithm used.
A typical example is the selection of a strategy for the Todd-Coxeter coset enumeration procedure.
An example of something not suited to the options mechanism is the imposition of exponent laws in
the p-Quotient algorithm.

The basis of this system is a global stack of records. All the entries of each record are thought of
as options settings, and the effective setting of an option is given by the topmost record in which the
relevant field is bound.

The reason for the choice of a stack is the intended pattern of use:

PushOptions(rec(stuff));

DoSomething(args);

PopOptions();

This can be abbreviated, to DoSomething(args : stuff); with a small additional abbre-
viation of stuff permitted. See 4.11.2 for details. The full form can be used where the same options
are to run across several calls, or where the DoSomething procedure is actually an infix operator, or
other function with special syntax.

An alternative to this system is the use of additional optional arguments in procedure calls. This is
not felt to be sufficient because many procedure calls might cause, for example, a coset enumeration
and each would need to make provision for the possibility of extra arguments. In this system the
options are pushed when the user-level procedure is called, and remain in effect (unless altered) for
all procedures called by it.

Note that in some places in the system optional records containing options which are valid only
for the immediate function or method call are in fact used.

8.1 Functions Dealing with the Options Stack

8.1.1 PushOptions

> PushOptions(options, record) (function)

This function pushes a record of options onto the global option stack. Note that PushOptions (
rec(opt:= fail)) has the effect of resetting the option opt, since an option that has never been

127

GAP - Reference Manual 128

set has the value fail returned by ValueOption (8.1.5).
Note that there is no check for misspelt or undefined options.

8.1.2 PopOptions

> PopOptions O (function)

This function removes the top-most options record from the options stack if there is one.

8.1.3 ResetOptionsStack

> ResetOptionsStack() (function)

unbinds (i.e. removes) all the options records from the options stack.

Note: ResetOptionsStack should not be used within a function. Its intended use is to clean
up the options stack in the event that the user has quit from a break loop, so leaving a stack of
no-longer-needed options (see 6.4.1).

8.1.4 OnQuit
> 0nQuit () (function)
called when a user selects to quit; a break loop entered via execution of Error (6.6.1). As GAP
starts up, OnQuit is defined to do nothing, in case an error is encountered during GAP start-up. Later
in the loading process we redefine OnQuit to do a variant of ResetOptionsStack (8.1.3) to ensure
the options stack is empty after a user quits an Error (6.6.1)-induced break loop. (OnQuit differs
from ResetOptionsStack (8.1.3) in that it warns when it does something rather than the other way
round.) Currently, OnQuit is not advertised, since exception handling may make it obsolete.

8.1.5 ValueOption

> ValueOption(opt) (function)
This function is a method for accessing the options stack without changing it; opt should be the

name of an option, i.e. a string. A function which makes decisions that might be affected by options
should examine the result of ValueOption. If opt is currently not set then fail is returned.

8.1.6 DisplayOptionsStack

> DisplayOptionsStack() (function)

This function prints a human-readable display of the complete options stack.

8.1.7 InfoOptions

> InfoOptions (info class)

GAP - Reference Manual 129

This info class can be used to enable messages about options being changed (level 1) or accessed
(level 2).

8.2 Options Stack — an Example

The example below shows simple manipulation of the Options Stack, first using PushOptions (8.1.1)
and PopOptions (8.1.2) and then using the special function calling syntax.

Example
gap> foo := function()
> Print ("myoptl = ", ValueOption("myoptl"),
> " myopt2 = ",ValueOption("myopt2"),"\n");
> end;
function() ... end
gap> foo();

myoptl = fail myopt2 = fail
gap> PushOptions(rec(myoptl := 17));
gap> foo();
myoptl = 17 myopt2 = fail
gap> DisplayOptionsStack();
[rec(
myoptl := 17)]
gap> PopOptions();
gap> foo();
myoptl = fail myopt2 = fail
gap> foo(: myoptl, myopt2 := [Z(3),"aardvark"]);
myoptl = true myopt2 = [Z(3), "aardvark"]
gap> DisplayOptionsStack();
L]
gap>

Chapter 9

Files and Filenames

Files are identified by filenames, which are represented in GAP as strings. Filenames can be created
directly by the user or a program, but of course this is operating system dependent.

Filenames for some files can be constructed in a system independent way using the following
functions. This is done by first getting a directory object for the directory the file shall reside in, and
then constructing the filename. However, it is sometimes necessary to construct filenames of files in
subdirectories relative to a given directory object. In this case the directory separator is always / even
under DOS or MacOS.

Section 9.3 describes how to construct directory objects for the common GAP and system direc-
tories. Using the command Filename (9.4.1) it is possible to construct a filename pointing to a file in
these directories. There are also functions to test for accessibility of files, see 9.6.

9.1 Portability

For portability filenames and directory names should be restricted to at most 8 alphanumerical charac-
ters optionally followed by a dot . and between 1 and 3 alphanumerical characters. Upper case letters
should be avoided because some operating systems do not make any distinction between case, so that
NaMe, Name and name all refer to the same file whereas some operating systems are case sensitive. To
avoid problems only lower case characters should be used.

Another function which is system-dependent is LastSystemError (9.1.1).

9.1.1 LastSystemError

> LastSystemError () (function)

LastSystemError returns a record describing the last system error that has occurred. This record
contains at least the component message which is a string. This message is, however, highly operating
system dependent and should only be used as an informational message for the user.

9.2 GAP Root Directories

When GAP is started it determines a list of directories which we call the GAP root directories. In a
running GAP session this list can be found in GAPInfo.RootPaths.

130

GAP - Reference Manual 131

The core part of GAP knows which files to read relative to its root directories. For exam-
ple when GAP wants to read its library file 1ib/group.gd, it appends this path to each path in
GAPInfo.RootPaths until it finds the path of an existing file. The first file found this way is read.

Furthermore, GAP looks for available packages by examining the subdirectories pkg/ in each of
the directories in GAPInfo.RootPaths.

The root directories are specified via one or several of the -1 paths command line options, see
3.1. Furthermore, by default GAP automatically prepends a user specific GAP root directory to the
list; this can be avoided by calling GAP with the -r option. The name of this user specific directory
depends on your operating system, it can be found in GAPInfo.UserGapRoot. This directory can be
used to tell GAP about personal preferences, to always load some additional code, to install additional
packages, or to overwrite some GAP files. See 3.2 for more information how to do this.

9.3 Directories

9.3.1 IsDirectory

> IsDirectory(obj) (Category)

IsDirectory is a category of directories.

9.3.2 Directory

> Directory(string) (operation)

returns a directory object for the string string. Directory understands "." for “current direc-
tory”, that is, the directory in which GAP was started. It also understands absolute paths.

If the variable GAPInfo.UserHome is defined (this may depend on the operating system) then
Directory understands a string with a leading ~ (tilde) character for a path relative to the user’s
home directory (but a string beginning with "~other_user" is not interpreted as a path relative to
other_user’s home directory, as in a UNIX shell).

Paths are otherwise taken relative to the current directory.

9.3.3 DirectoryTemporary

> DirectoryTemporary () (function)

returns a directory object in the category IsDirectory (9.3.1) for a new temporary directory. This
is guaranteed to be newly created and empty immediately after the call to DirectoryTemporary.
GAP will make a reasonable effort to remove this directory upon termination of the GAP job that
created the directory.

If DirectoryTemporary is unable to create a new directory, fail is returned. In this case
LastSystemError (9.1.1) can be used to get information about the error.

A warning message is given if more than 1000 temporary directories are created in any GAP
session.

GAP - Reference Manual 132

9.3.4 DirectoryCurrent

> DirectoryCurrent () (function)

returns the directory object for the current directory.

9.3.5 DirectoriesLibrary

> DirectoriesLibrary([name]) (function)

DirectoriesLibrary returns the directory objects for the GAP library name as a list. name
must be one of "1ib" (the default), "doc", "tst", and so on.

The string "" is also legal and with this argument DirectoriesLibrary returns the list of GAP
root directories. The return value of this call differs from GAPInfo.RootPaths in that the former is a
list of directory objects and the latter a list of strings.

The directory name must exist in at least one of the root directories, otherwise fail is returned.

As the files in the GAP root directories (see 9.2) can be distributed into different directories in the
filespace a list of directories is returned. In order to find an existing file in a GAP root directory you
should pass that list to Filename (9.4.1) as the first argument. In order to create a filename for a new
file inside a GAP root directory you should pass the first entry of that list. However, creating files
inside the GAP root directory is not recommended, you should use DirectoryTemporary (9.3.3)
instead.

9.3.6 DirectoriesSystemPrograms

> DirectoriesSystemPrograms O (function)

DirectoriesSystemPrograms returns the directory objects for the list of directories where the
system programs reside, as a list. Under UNIX this would usually represent $PATH.

9.3.7 DirectoryContents

> DirectoryContents(dir) (function)

This function returns a list of filenames/directory names that reside in the directory dir. The
argument dir can either be given as a string indicating the name of the directory or as a directory
object (see IsDirectory (9.3.1)). It is an error, if such a directory does not exist.

The ordering of the list entries can depend on the operating system.

An interactive way to show the contents of a directory is provided by the function
BrowseDirectory (Browse: BrowseDirectory) from the GAP package Browse.

9.3.8 DirectoryDesktop
> DirectoryDesktop() (function)
returns a directory object for the users desktop directory as defined on many modern operating

systems. The function is intended to provide a cross-platform interface to a directory that is easily
accessible by the user. Under Unix systems (including Mac OS X) this will be the Desktop directory

GAP - Reference Manual 133

in the users home directory if it exists, and the users home directory otherwise. Under Windows it
will the users Desktop folder (or the appropriate name under different languages).

9.3.9 DirectoryHome

> DirectoryHome () (function)

returns a directory object for the users home directory, defined as a directory in which the user
will typically have full read and write access. The function is intended to provide a cross-platform
interface to a directory that is easily accessible by the user. Under Unix systems (including Mac OS
X) this will be the usual user home directory. Under Windows it will the users My Documents folder
(or the appropriate name under different languages).

9.4 File Names

9.4.1 Filename

> Filename(dir, name) (operation)
> Filename(list-of-dirs, name) (operation)

If the first argument is a directory object dir, Filename returns the (system dependent) filename
as a string for the file with name name in the directory dir. Filename returns the filename regardless
of whether the directory contains a file with name name or not.

If the first argument is a list 1ist-of-dirs (possibly of length 1) of directory objects, then
Filename searches the directories in order, and returns the filename for the file name in the first
directory which contains a file name or fail if no directory contains a file name.

For example, in order to locate the system program date use DirectoriesSystemPrograms
(9.3.6) together with the second form of Filename.
Example

gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

In order to locate the library file files.gd use DirectoriesLibrary (9.3.5) together with the

second form of Filename.
Example

gap> path := DirectoriesLibrary();;
gap> Filename(path, "files.gd");
"./lib/files.gd"

In order to construct filenames for new files in a temporary directory use DirectoryTemporary
(9.3.3) together with the first form of Filename.
Example
gap> tmpdir := DirectoryTemporary();;
gap> Filename([tmpdir], "file.new");
fail
gap> Filename(tmpdir, "file.new");
"/var/tmp/tmp.0.021738.0001/file.new"

GAP - Reference Manual 134

9.5 Special Filenames

The special filename "*stdin*" denotes the standard input, i.e., the stream through which the user
enters commands to GAP. The exact behaviour of reading from "*stdin*" is operating system de-
pendent, but usually the following happens. If GAP was started with no input redirection, statements
are read from the terminal stream until the user enters the end of file character, which is usually CTRL-
D. Note that terminal streams are special, in that they may yield ordinary input after an end of file.
Thus when control returns to the main read-eval-print loop the user can continue with GAP. If GAP
was started with an input redirection, statements are read from the current position in the input file up
to the end of the file. When control returns to the main read eval view loop the input stream will still
return end of file, and GAP will terminate.

The special filename "*errin*" denotes the stream connected to the UNIX stderr output. This
stream is usually connected to the terminal, even if the standard input was redirected, unless the
standard error stream was also redirected, in which case opening of "*errinx*" fails.

The special filename "*stdout*" can be used to print to the standard output.

The special filename "*errout*" can be used to print to the standard error output file, which is
usually connected to the terminal, even if the standard output was redirected.

9.6 File Access

When the following functions return false one can use LastSystemError (9.1.1) to find out the
reason (as provided by the operating system), see the examples.

9.6.1 IsExistingFile

> IsExistingFile(filename) (function)

IsExistingFile returns true if a file with the filename filename exists and can be seen by the
GAP process. Otherwise false is returned.

Example
gap> IsExistingFile("/bin/date"); # file ‘/bin/date’ exists
true
gap> IsExistingFile("/bin/date.new"); # non existing ‘/bin/date.new’
false

gap> IsExistingFile("/bin/date/new"); # ‘/bin/date’ is not a directory
false

gap> LastSystemError() .message;

"Not a directory"

9.6.2 IsReadableFile

> IsReadableFile(filename) (function)

IsReadableFile returns true if a file with the filename filename exists and the GAP process
has read permissions for the file, or false if this is not the case.

Example
gap> IsReadableFile("/bin/date"); # file ‘/bin/date’ is readable
true

GAP - Reference Manual 135

gap> IsReadableFile("/bin/date.new"); # non-existing ‘/bin/date.new’
false

gap> LastSystemError() .message;

"No such file or directory"

9.6.3 IsWritableFile

> IsWritableFile(filename) (function)

IsWritableFile returns true if a file with the filename filename exists and the GAP process
has write permissions for the file, or false if this is not the case.

Example
gap> IsWritableFile("/bin/date"); # file ‘/bin/date’ is not writable
false
9.6.4 IsExecutableFile
> IsExecutableFile(filename) (function)

IsExecutableFile returns true if a file with the filename filename exists and the GAP pro-
cess has execute permissions for the file, or false if this is not the case. Note that execute permissions
do not imply that it is possible to execute the file, e.g., it may only be executable on a different ma-
chine.

Example
gap> IsExecutableFile("/bin/date"); # ... but executable
true
9.6.5 IsDirectoryPath
> IsDirectoryPath(filename) (function)

IsDirectoryPath returns true if the file with the filename filename exists and is a direc-
tory, and false otherwise. Note that this function does not check if the GAP process actually
has write or execute permissions for the directory. You can use IsWritableFile (9.6.3), resp.
IsExecutableFile (9.6.4) to check such permissions.

9.7 File Operations
9.71 Read

> Read (fil ename) (operation)

reads the input from the file with the filename filename, which must be given as a string.

Read first opens the file filename. If the file does not exist, or if GAP cannot open it, e.g.,
because of access restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The reading
and evaluations happens exactly as described for the main loop (see 6.1).

GAP - Reference Manual 136

If a statement in the file causes an error a break loop is entered (see 6.4). The input for this break
loop is not taken from the file, but from the input connected to the stderr output of GAP. If stderr
is not connected to a terminal, no break loop is entered. If this break loop is left with quit (or CTRL-
D), GAP exits from the Read command, and from all enclosing Read commands, so that control is
normally returned to an interactive prompt. The QUIT statement (see 6.7) can also be used in the break
loop to exit GAP immediately.

Note that a statement must not begin in one file and end in another. lLe., eof (end-of-file) is not
treated as whitespace, but as a special symbol that must not appear inside any statement.

Note that one file may very well contain a read statement causing another file to be read, before
input is again taken from the first file. There is an upper limit of 15 on the number of files that may be
open simultaneously.

9.7.2 ReadAsFunction

> ReadAsFunction(filename) (operation)

reads the file with filename filename as a function and returns this function.

Example

Suppose that the file /tmp/example. g contains the following
Example

local a;

a := 10;

return ax*x10;

Reading the file as a function will not affect a global variable a.

Example

gap> a := 1;

1

gap> ReadAsFunction("/tmp/example.g") ();

100

gap> a;

1
9.7.3 PrintTo and AppendTo
> PrintTo(filename[, objl, ...1) (function)
> AppendTo(filename[, objl, ...1) (function)

PrintTo works like Print (6.3.4), except that the arguments obj1, ... (if present) are printed to
the file with the name filename instead of the standard output. This file must of course be writable
by GAP. Otherwise an error is signalled. Note that PrintTo will overwrite the previous contents of
this file if it already existed; in particular, PrintTo with just the filename argument empties that
file.

AppendTo works like PrintTo, except that the output does not overwrite the previous contents of
the file, but is appended to the file.

There is an upper limit of 15 on the number of output files that may be open simultaneously.

Note that one should be careful not to write to a logfile (see LogTo (9.7.4)) with PrintTo or
AppendTo.

GAP - Reference Manual 137

9.74 LogTo

> LogTo(filename) (operation)
> Lo gTO () (operation)

Calling LogTo with a string filename causes the subsequent interaction to be logged to the file
with the name filename, i.e., everything you see on your terminal will also appear in this file. (LogTo
(10.4.5) may also be used to log to a stream.) This file must of course be writable by GAP, otherwise
an error is signalled. Note that LogTo will overwrite the previous contents of this file if it already
existed.

Called without arguments, LogTo stops logging to a file or stream.

9.7.5 InputLogTo

> InputLogTo(filename) (operation)
> InputLogTo O (operation)

Calling InputLogTo with a string filename causes the subsequent input to be logged to the
file with the name filename, i.e., everything you type on your terminal will also appear in this file.
Note that InputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo and
OutputLogTo (9.7.6) can. Note that InputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, InputLogTo stops logging to a file or stream.

9.7.6 OutputLogTo

> OutputLogTo(filename) (operation)
> OutputLogTo O (operation)

Calling OutputLogTo with a string filename causes the subsequent output to be logged to the
file with the name filename, i.e., everything GAP prints on your terminal will also appear in this
file. Note that OutputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo
(9.7.5) and OutputLogTo can. Note that OutputLogTo will overwrite the previous contents of this
file if it already existed.

Called without arguments, OutputLogTo stops logging to a file or stream.

9.7.7 CrcFile

> CrcFile(filename) (function)

CRC (cyclic redundancy check) numbers provide a certain method of doing checksums. They are
used by GAP to check whether files have changed.

CrcFile computes a checksum value for the file with filename filename and returns this value
as an integer. The function returns fail if a system error occurred, say, for example, if filename
does not exist. In this case the function LastSystemError (9.1.1) can be used to get information
about the error.

GAP - Reference Manual 138

Example

gap> CrcFile("lib/morpheus.gi");
2705743645

9.7.8 RemoveFile

> RemoveFile(filename) (function)

will remove the file with filename filename and returns true in case of success. The function
returns fail if a system error occurred, for example, if your permissions do not allow the removal of
filename. In this case the function LastSystemError (9.1.1) can be used to get information about
the error.

9.7.9 Reread

> Reread(filename) (function)
> REREADING (global variable)

In general, it is not possible to read the same GAP library file twice, or to read a compiled version
after reading a GAP version, because crucial global variables are made read-only (see 4.9) and filters
and methods are added to global tables.

A partial solution to this problem is provided by the function Reread (and related functions
RereadLib etc.). Reread(filename) sets the global variable REREADING to true, reads the
file named by filename and then resets REREADING. Various system functions behave differently
when REREADING is set to true. In particular, assignment to read-only global variables is permitted,
calls to NewRepresentation (79.2.1) and NewInfoClass (7.4.1) with parameters identical to those
of an existing representation or info class will return the existing object, and methods installed with
InstallMethod (78.2.1) may sometimes displace existing methods.

This function may not entirely produce the intended results, especially if what has changed is the
super-representation of a representation or the requirements of a method. In these cases, it is necessary
to restart GAP to read the modified file.

An additional use of Reread is to load the compiled version of a file for which the GAP language
version had previously been read (or perhaps was included in a saved workspace). See 76.3.10 and
3.3 for more information.

It is not advisable to use Reread programmatically. For example, if a file that contains calls to
Reread is read with Reread then REREADING may be reset too early.

Chapter 10

Streams

Streams provide flexible access to GAP’s input and output processing. An input stream takes charac-
ters from some source and delivers them to GAP which reads them from the stream. When an input
stream has delivered all characters it is at end-of -stream. An output stream receives characters from
GAP which writes them to the stream, and delivers them to some destination.

A major use of streams is to provide efficient and flexible access to files. Files can be read and
written using Read (9.7.1) and AppendTo (9.7.3), however the former only allows a complete file to
be read as GAP input and the latter imposes a high time penalty if many small pieces of output are
written to a large file. Streams allow input files in other formats to be read and processed, and files to
be built up efficiently from small pieces of output. Streams may also be used for other purposes, for
example to read from and print to GAP strings, or to read input directly from the user.

Any stream is either a text stream, which translates the end-of-1ine character (\n) to or from
the system’s representation of end-of -1ine (e.g., new-line under UNIX and carriage-return-new-line
under DOS), or a binary stream, which does not translate the end-of-1ine character. The processing
of other unprintable characters by text streams is undefined. Binary streams pass them unchanged.

Whereas it is cheap to append to a stream, streams do consume system resources, and only a
limited number can be open at any time, therefore it is necessary to close a stream as soon as possible
using CloseStream (10.2.1). If creating a stream failed then LastSystemError (9.1.1) can be used
to get information about the failure.

10.1 Categories for Streams and the StreamsFamily

10.1.1 IsStream

> IsStream(obj) (Category)

Streams are GAP objects and all open streams, input, output, text and binary, lie in this category.

10.1.2 IsClosedStream

> IsClosedStream(obj) (Category)

When a stream is closed, its type changes to lie in IsClosedStream. This category is used to
install methods that trap accesses to closed streams.

139

GAP - Reference Manual 140

10.1.3 IsInputStream

> IsInputStream(obj) (Category)

All input streams lie in this category, and support input operations such as ReadByte (10.3.3) (see
10.3)

10.1.4 IsInputTextStream

> IsInputTextStream(obj) (Category)

All text input streams lie in this category. They translate new-line characters read.

10.1.5 IsInputTextNone

> IsInputTextNone(obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.6 IsOutputStream

> IsOutputStream(obj) (Category)

All output streams lie in this category and support basic operations such as WriteByte (10.4.1)
(see Section 10.4).

10.1.7 IsOutputTextStream

> IsOutputTextStream(obj) (Category)

All text output streams lie in this category and translate new-line characters on output.

10.1.8 IsOutputTextNone

> IsOutputTextNone (obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.9 StreamsFamily

> StreamsFamily (family)

All streams lie in the StreamsFamily.

GAP - Reference Manual 141

10.2 Operations applicable to All Streams

10.2.1 CloseStream

> CloseStream(stream) (operation)

In order to preserve system resources and to flush output streams every stream should be closed
as soon as it is no longer used using CloseStream.

It is an error to try to read characters from or write characters to a closed stream. Closing a stream
tells the GAP kernel and/or the operating system kernel that the file is no longer needed. This may
be necessary because the GAP kernel and/or the operating system may impose a limit on how many
streams may be open simultaneously.

10.2.2 FileDescriptorOfStream

> FileDescriptorOfStream(stream) (operation)

returns the UNIX file descriptor of the underlying file. This is mainly useful for the UNIXSelect
(10.2.3) function call. This is as of now only available on UNIX-like operating systems and only for
streams to local processes and local files.

10.2.3 UNIXSelect

> UNIXSelect(inlist, outlist, exclist, timeoutsec, timeoutusec) (function)

makes the UNIX C-library function select accessible from GAP for streams. The functionality
is as described in the man page (see UNIX file descriptors (integers) for streams. They can be obtained
via FileDescriptor0fStream (10.2.2) for streams to local processes and to local files. The argu-
ment timeoutsec is a timeout in seconds as in the struct timeval on the C level. The argument
timeoutusec is analogously in microseconds. The total timeout is the sum of both. If one of those
timeout arguments is not a small integer then no timeout is applicable (fail is allowed for the timeout
arguments).

The return value is the number of streams that are ready, this may be 0 if a timeout was specified.
All file descriptors in the three lists that are not yet ready are replaced by fail in this function. So the
lists are changed!

This function is not available on the Macintosh architecture and is only available if your operating
system has select, which is detected during compilation of GAP.

10.3 Operations for Input Streams

Two operations normally used to read files: Read (9.7.1) and ReadAsFunction (9.7.2) can also be
used to read GAP input from a stream. The input is immediately parsed and executed. When reading
from a stream str, the GAP kernel generates calls to ReadLine (str) to supply text to the parser.

Three further operations: ReadByte (10.3.3), ReadLine (10.3.4) and ReadAl1l (10.3.5), support
reading characters from an input stream without parsing them. This can be used to read data in any
format and process it in GAP.

GAP - Reference Manual 142

Additional operations for input streams support detection of end of stream, and (for those streams
for which it is appropriate) random access to the data.

10.3.1 Read (for streams)
> Read (input-text -stream) (operation)
reads the input-text-stream as input until end-of -stream occurs. See 9.7 for details.

10.3.2 ReadAsFunction (for streams)

> ReadAsFunction(input-text-stream) (operation)

reads the input-text-stream as function and returns this function. See 9.7 for details.
Example
gap> # a function with local ‘a’ does not change the global one
gap> a := 1;;

gap> i := InputTextString("local a; a := 10; return a*10;");;
gap> ReadAsFunction(i) O;

100

gap> a;

1

gap> # reading it via ‘Read’ does

gap> i := InputTextString("a := 10;");;
gap> Read(i);

gap> a;

10

10.3.3 ReadByte

> ReadByte (input-stream) (operation)

ReadByte returns one character (returned as integer) from the input stream input-stream.
ReadByte returns fail if there is no character available, in particular if it is at the end of a file.

If input-stream is the input stream of a input/output process, ReadByte may also return fail
if no byte is currently available.

ReadByte is the basic operation for input streams. If a ReadByte method is installed for a user-
defined type of stream which does not block, then all the other input stream operations will work
(although possibly not at peak efficiency).

ReadByte will wait (block) until a byte is available. For instance if the stream is a connection to
another process, it will wait for the process to output a byte.

10.3.4 ReadLine
> ReadLine (input-stream) (operation)

ReadLine returns one line (returned as string with the newline) from the input stream
input-stream. ReadLine reads in the input until a newline is read or the end-of-stream is en-
countered.

GAP - Reference Manual 143

If input-stream is the input stream of a input/output process, ReadLine may also return fail
or return an incomplete line if the other process has not yet written any more. It will always wait
(block) for at least one byte to be available, but will then return as much input as is available, up to a
limit of one line

A default method is supplied for ReadLine which simply calls ReadByte (10.3.3) repeatedly.
This is only safe for streams that cannot block. The kernel uses calls to ReadLine to supply input to
the parser when reading from a stream.

10.3.5 ReadAll

> ReadAll(input-stream[, limit]) (operation)

ReadAll returns all characters as string from the input stream stream-in. It waits (blocks) until
at least one character is available from the stream, or until there is evidence that no characters will
ever be available again. This last indicates that the stream is at end-of-stream. Otherwise, it reads
as much input as it can from the stream without blocking further and returns it to the user. If the
stream is already at end of file, so that no bytes are available, fail is returned. In the case of a file
stream connected to a normal file (not a pseudo-tty or named pipe or similar), all the bytes should be
immediately available and this function will read the remainder of the file.

With a second argument, at most 1imit bytes will be returned. Depending on the stream a
bounded number of additional bytes may have been read into an internal buffer.

A default method is supplied for ReadAll which simply calls ReadLine (10.3.4) repeatedly. This
is only really safe for streams which cannot block. Other streams should install a method for ReadA11l

Example
gap> i := InputTextString("1Hallo\nYou\ni");;
gap> ReadByte(i);

49

gap> CHAR_INT(last);

71’

gap> ReadLine(i);

"Hallo\n"

gap> ReadLine(i);

"You\n"

gap> ReadLine(i);

Il1l|

gap> ReadLine(i);

fail

gap> ReadAll(i);

nn

gap> RewindStream(i);;

gap> ReadAll(i);

"1Hallo\nYou\nl"

10.3.6 IsEndOfStream

> IsEnd0fStream(input-stream) (operation)

IsEnd0fStream returns true if the input stream is at end-of-stream, and false otherwise. Note
that IsEnd0fStream might return false even if the next ReadByte (10.3.3) fails.

GAP - Reference Manual 144

10.3.7 PositionStream
> PositionStream(input-stream) (operation)
Some input streams, such as string streams and file streams attached to disk files, support a form
of random access by way of the operations PositionStream, SeekPositionStream (10.3.9) and
RewindStream (10.3.8). PositionStream returns a non-negative integer denoting the current posi-
tion in the stream (usually the number of characters before the next one to be read.
If this is not possible, for example for an input stream attached to standard input (normally the
keyboard), then fail is returned
10.3.8 RewindStream
> RewindStream(input-stream) (operation)
RewindStream attempts to return an input stream to its starting condition, so that all the same

characters can be read again. It returns true if the rewind succeeds and fail otherwise
A default method implements RewindStream using SeekPositionStream (10.3.9).

10.3.9 SeekPositionStream

> SeekPositionStream(input-stream, pos) (operation)

SeekPositionStream attempts to rewind or wind forward an input stream to the specified posi-
tion. This is not possible for all streams. It returns true if the seek is successful and fail otherwise.

10.4 Operations for Output Streams

10.4.1 WriteByte

> WriteByte (output-stream, byte) (operation)

writes the next character (given as integer) to the output stream output-stream. The function
returns true if the write succeeds and fail otherwise.

WriteByte is the basic operation for output streams. If a WriteByte method is installed for a
user-defined type of stream, then all the other output stream operations will work (although possibly
not at peak efficiency).

10.4.2 WriteLine

> WriteLine(output-stream, string) (operation)

appends string to output-stream. A final newline is written. The function returns true if the
write succeeds and fail otherwise.

A default method is installed which implements WriteLine by repeated calls to WriteByte
(10.4.1).

GAP - Reference Manual 145

10.4.3 WriteAll

> WriteAll(output-stream, string) (operation)

appends string to output-stream. No final newline is written. The function returns true if
the write succeeds and fail otherwise. It will block as long as necessary for the write operation to
complete (for example for a child process to clear its input buffer)

A default method is installed which implements WriteAll by repeated calls to WriteByte
(10.4.1).

When printing or appending to a stream (using PrintTo (9.7.3), or AppendTo (9.7.3) or when
logging to a stream), the kernel generates a call to WriteAll for each line output.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> WriteByte(a,INT_CHAR(’H’));
true
gap> WriteLine(a,"allo");
true
gap> WriteAll(a,"You\n");
true

gap> CloseStream(a);
gap> Print(str);
Hallo

You

10.4.4 PrintTo and AppendTo (for streams)

> PrintTo(output-stream, argl, ...) (function)
> AppendTo(output-stream, argl, ...) (function)

These functions work like Print (6.3.4), except that the output is appended to the output stream
output-stream.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> AppendTo(a, (1,2,3), ":", Z(3));
gap> CloseStream(a);
gap> Print(str, "\n");
(1,2,3):2(3)
10.4.5 LogTo (for streams)
> LogTo(stream) (operation)

causes the subsequent interaction to be logged to the output stream stream. It works in precisely
the same way as it does for files (see LogTo (9.7.4)).

10.4.6 InputLogTo (for streams)

> InputLogTo (stream) (operation)

GAP - Reference Manual 146

causes the subsequent input to be logged to the output stream stream. It works just like it does
for files (see InputLogTo (9.7.5)).

10.4.7 OutputLogTo (for streams)

> OutputLogTo (stream) (operation)

causes the subsequent output to be logged to the output stream stream. It works just like it does
for files (see OutputLogTo (9.7.6)).

10.4.8 SetPrintFormattingStatus

> SetPrintFormattingStatus(stream, newstatus) (operation)
> PrintFormattingStatus(stream) (operation)

When text is being sent to an output text stream via PrintTo (9.7.3), AppendTo (9.7.3), LogTo
(10.4.5), etc., it is by default formatted just as it would be were it being printed to the screen. Thus,
it is broken into lines of reasonable length at (where possible) sensible places, lines containing el-
ements of lists or records are indented, and so forth. This is appropriate if the output is eventually
to be viewed by a human, and harmless if it to passed as input to GAP, but may be unhelpful if
the output is to be passed as input to another program. It is possible to turn off this behaviour for
a stream using the SetPrintFormattingStatus operation, and to test whether it is on or off using
PrintFormattingStatus.

SetPrintFormattingStatus sets whether output sent to the output stream stream via PrintTo
(9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation. If the second
argument newstatus is true then output will be so formatted, and if false then it will not. If the
stream is not a text stream, only false is allowed.

PrintFormattingStatus returns true if output sent to the output text stream stream via
PrintTo (9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation, and false
otherwise. For non-text streams, it returns false. If as argument stream the string "*stdout*" is
given, these functions refer to the formatting status of the standard output (so usually the users termi-
nal screen).

These functions do not influence the behaviour of the low level functions WriteByte (10.4.1),
WriteLine (10.4.2) or WriteAll (10.4.3) which always write without formatting.

Example
gap> s := "";; str := OutputTextString(s,false);;
gap> PrintTo(str,Primes{[1..30]1});
gap> s;

"(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 "

gap> Print(s,"\n");

[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

gap> SetPrintFormattingStatus(str, false);

gap> PrintTo(str,Primes{[1..30]});

gap> s;

"2, 3, 65, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 1[2, 3, 5, 7\

, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, \

GAP - Reference Manual 147

79, 83, 89, 97, 101, 103, 107, 109, 113 1"

gap> Print(s,"\n");

[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 1[2, 3, 5, 7, 1\

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,\
83, 89, 97, 101, 103, 107, 109, 113]

10.5 File Streams

File streams are streams associated with files. An input file stream reads the characters it delivers from
a file, an output file stream prints the characters it receives to a file. The following functions can be
used to create such streams. They return fail if an error occurred, in this case LastSystemError
(9.1.1) can be used to get information about the error.

10.5.1 InputTextFile

> InputTextFile(filename) (operation)

InputTextFile(filename) returns an input stream in the category IsInputTextStream
(10.1.4) that delivers the characters from the file filename.

10.5.2 OutputTextFile

> OQutputTextFile(filename, append) (operation)

OutputTextFile(filename, append) returns an output stream in the category
IsOutputTextFile that writes received characters to the file filename. If append is false,
then the file is emptied first, otherwise received characters are added at the end of the file.

Example

gap> # use a temporary directory

gap> name := Filename(DirectoryTemporary(), "test");;

gap> # create an output stream, append output, and close again
gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "Hallo\n", "You\n");

gap> CloseStream(output) ;

gap> # create an input, print complete contents of file, and close

gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));

Hallo

You

gap> CloseStream(input);

gap> # append a single line

gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "AppendLine\n");

gap> # close output stream to flush the output

gap> CloseStream(output) ;

gap> # create an input, print complete contents of file, and close
gap> input := InputTextFile(name);;

gap> Print(ReadAll(input));

GAP - Reference Manual 148

Hallo

You

AppendLine

gap> CloseStream(input);

10.6 User Streams

The commands described in this section create streams which accept characters from, or deliver char-
acters to, the user, via the keyboard or the GAP session display.

10.6.1 InputTextUser

> InputTextUser O (function)

returns an input text stream which delivers characters typed by the user (or from the standard input
device if it has been redirected). In normal circumstances, characters are delivered one by one as they
are typed, without waiting until the end of a line. No prompts are printed.

10.6.2 OutputTextUser

> OutputTextUser () (function)

returns an output stream which delivers characters to the user’s display (or the standard output
device if it has been redirected). Each character is delivered immediately it is written, without waiting
for a full line of output. Text written in this way is not written to the session log (see LogTo (9.7.4)).
10.6.3 InputFromUser
> InputFromUser(arg) (function)
prints the arg as a prompt, then waits until a text is typed by the user (or from the standard input

device if it has been redirected). This text must be a single expression, followed by one enter. This is
evaluated (see EvalString (27.9.3)) and the result is returned.

10.7 String Streams

String streams are streams associated with strings. An input string stream reads the characters it
delivers from a string, an output string stream appends the characters it receives to a string. The
following functions can be used to create such streams.

10.7.1 InputTextString
> InputTextString(string) (operation)
InputTextString(string) returns an input stream that delivers the characters from the

string string. The string is not changed when reading characters from it and changing the string
after the call to InputTextString has no influence on the input stream.

GAP - Reference Manual 149

10.7.2 OutputTextString

> OutputTextString(list, append) (operation)

returns an output stream that puts all received characters into the list 1ist. If append is false,

then the list is emptied first, otherwise received characters are added at the end of the list.
Example

gap> # read input from a string
gap> input := InputTextString("Hallo\nYou\n");;
gap> ReadLine(input);

"Hallo\n"

gap> ReadLine(input) ;

"You\n"

gap> # print to a string

gap> str := "";;

gap> out := OutputTextString(str, true);;

gap> PrintTo(out, 1, "\n", (1,2,3,4)(5,6), "\n");
gap> CloseStream(out) ;

gap> Print(str);

1

(1,2,3,4)(5,6)

10.8 Input-Output Streams

Input-output streams capture bidirectional communications between GAP and another process, either
locally or (@as yet unimplemented @) remotely.

Such streams support the basic operations of both input and output streams. They should provide
some buffering, allowing output data to be written to the stream, even when input data is waiting to
be read, but the amount of this buffering is operating system dependent, and the user should take care
not to get too far ahead in writing, or behind in reading, or deadlock may occur.

At present the only type of Input-Output streams that are implemented provide communication
with a local child process, using a pseudo-tty.

Like other streams, write operations are blocking, read operations will block to get the first char-
acter, but not thereafter.

As far as possible, no translation is done on characters written to, or read from the stream, and no
control characters have special effects, but the details of particular pseudo-tty implementations may
effect this.

10.8.1 IsInputOutputStream

> IsInputOutputStream(obj) (Category)

IsInputOutputStream is the Category of Input-Output Streams; it returns true if the obj is an
input-output stream and false otherwise.

10.8.2 InputOutputLocalProcess

> InputOutputLocalProcess(dir, executable, args) (function)

GAP - Reference Manual 150

starts up a slave process, whose executable file is executable, with “command line” ar-
guments args in the directory dir. (Suitable choices for dir are DirectoryCurrent ()
or DirectoryTemporary() (see Section 9.3); DirectoryTemporary() may be a good
choice when executable generates output files that it doesn’t itself remove afterwards.)
InputOutputLocalProcess returns an InputOutputStream object. Bytes written to this stream are
received by the slave process as if typed at a terminal on standard input. Bytes written to standard
output by the slave process can be read from the stream.

When the stream is closed, the signal SIGTERM is delivered to the child process, which is ex-
pected to exit.

Example
gap> d := DirectoryCurrent();
dir("./")
gap> f := Filename(DirectoriesSystemPrograms(), "rev");
"/usr/bin/rev"

gap> s := InputOutputLocalProcess(d,f,[]);
< input/output stream to rev >

gap> WriteLine(s,"The cat sat on the mat");
true

gap> Print(ReadLine(s));

tam eht no tas tac ehT

gap> x := ListWithIdenticalEntries(10000,°x’);;
gap> ConvertToStringRep(x);

gap> WriteLine(s,x);

true

gap> WriteByte(s,INT_CHAR(’\n’));

true

gap> y := ReadAll(s);;

gap> Length(y);

4095

gap> CloseStream(s);

gap> s;

< closed input/output stream to rev >

10.8.3 ReadAllLine

> ReadAllLine(iostream[, nofail][, IsAllLine]) (operation)

For an input/output stream iostream ReadAllLine reads until a newline character if any input
is found or returns fail if no input is found, i.e. if any input is found ReadA11Line is non-blocking.

If the argument nofail (which must be false or true) is provided and it is set to true then
ReadAllLine will wait, if necessary, for input and never return fail.

If the argument IsAl11Line (which must be a function that takes a string argument and returns
either true or false) then it is used to determine what constitutes a whole line. The default behaviour
is equivalent to passing the function

Example
line -> 0 < Length(line) and line[Length(line)] = ’\n’

for the IsA11Line argument. The purpose of the IsA11Line argument is to cater for the case
where the input being read is from an external process that writes a “prompt” for data that does not
terminate with a newline.

GAP - Reference Manual 151

If the first argument is an input stream but not an input/output stream then ReadAl11Line behaves
as if ReadLine (10.3.4) was called with just the first argument and any additional arguments are
ignored.

10.9 Dummy Streams

The following two commands create dummy streams which will consume all characters and never
deliver one.

10.9.1 InputTextNone

> InputTextNone() (function)

returns a dummy input text stream, which delivers no characters, i.e., it is always at end of stream.
Its main use is for calls to Process (11.1.1) when the started program does not read anything.

10.9.2 OutputTextNone

> OutputTextNone () (function)

returns a dummy output stream, which discards all received characters. Its main use is for calls to
Process (11.1.1) when the started program does not write anything.

10.10 Handling of Streams in the Background

This section describes a feature of the GAP kernel that can be used to handle pending streams some-
how “in the background”. This is currently not available on the Macintosh architecture and only on
operating systems that have select.

Right before GAP reads a keypress from the keyboard it calls a little subroutine that can handle
streams that are ready to be read or ready to be written. This means that GAP can handle these streams
during user input on the command line. Note that this does not work when GAP is in the middle of
some calculation.

This feature is used in the following way. One can install handler functions for reading
or writing streams via InstallCharReadHookFunc (10.10.1). Handlers can be removed via
UnInstallCharReadHookFunc (10.10.2)

Note that handler functions must not return anything and get one integer argument, which refers
to an index in one of the following arrays (according to whether the function was installed for input,
output or exceptions on the stream). Handler functions usually should not output anything on the
standard output because this ruins the command line during command line editing.

10.10.1 InstallCharReadHookFunc

> InstallCharReadHookFunc(stream, mode, func) (function)

installs the function func as a handler function for the stream stream. The argument mode
decides, for what operations on the stream this function is installed. mode must be a string, in which
a letter r means “read”, w means “write” and x means “exception”, according to the select function

GAP - Reference Manual 152

call in the UNIX C-library (see man select and UNIXSelect (10.2.3)). More than one letter is
allowed in mode. As described above the function is called in a situation when GAP is reading a
character from the keyboard. Handler functions should not use much time to complete.

This functionality does not work on the Macintosh architecture and only works if the operating
system has a select function.

10.10.2 UnlInstallCharReadHookFunc

> UnInstallCharReadHookFunc(stream, func) (function)

uninstalls the function func as a handler function for the stream stream. All instances are dein-
stalled, regardless of the mode of operation (read, write, exception).

This functionality does not work on the Macintosh architecture and only works if the operating
system has a select function.

10.11 Comma separated files

In some situations it can be desirable to process data given in the form of a spreadsheet (such as Excel).
GAP can do this using the CSV (comma separated values) format, which spreadsheet programs can
usually read in or write out.

The first line of the spreadsheet is used as labels of record components, each subsequent line then
corresponds to a record. Entries enclosed in double quotes are considered as strings and are permitted
to contain the separation character (usually a comma).

10.11.1 ReadCSV

> ReadCSV(filename[, nohead][, separator]) (function)

This function reads in a spreadsheet, saved in CSV format (comma separated values) and returns
its entries as a list of records. The entries of the first line of the spreadsheet are used to denote the
names of the record components. Blanks will be translated into underscore characters. If the parameter
nohead is given as true, instead the record components will be called fieldn. Each subsequent line
will create one record. If given, separator is the character used to separate fields. Otherwise it
defaults to a comma.

10.11.2 PrintCSV

> PrintCSV(filename, list[, fields]) (function)

This function prints a list of records as a spreadsheet in CSV format (which can be read in for
example into Excel). The names of the record components will be printed as entries in the first line.
If the argument fields is given only the record fields listed in this list will be printed and they will
be printed in the same arrangement as given in this list. If the option noheader is set to true the line
with the record field names will not be printed.

Chapter 11

Processes

GAP can call other programs, such programs are called processes. There are two kinds of processes:
first there are processes that are started, run and return a result, while GAP is suspended until the
process terminates. Then there are processes that will run in parallel to GAP as subprocesses and
GAP can communicate and control the processes using streams (see InputOutputLocalProcess
(10.8.2)).

11.1 Process and Exec

11.1.1 Process

> Process(dir, prg, stream-in, stream-out, options) (operation)

Process runs a new process and returns when the process terminates. It returns the return value
of the process if the operating system supports such a concept.

The first argument dir is a directory object (see 9.3) which will be the current directory (in the
usual UNIX or MSDOS sense) when the program is run. This will only matter if the program accesses
files (including running other programs) via relative path names. In particular, it has nothing to do
with finding the binary to run.

In general the directory will either be the current directory, which is returned by
DirectoryCurrent (9.3.4) —this was the behaviour of GAP 3— or a temporary directory returned
by DirectoryTemporary (9.3.3). If one expects that the process creates temporary or log files the
latter should be used because GAP will attempt to remove these directories together with all the files
in them when quitting.

If a program of a GAP package which does not only consist of GAP code needs to be launched
in a directory relative to certain data libraries, then the first entry of DirectoriesPackageLibrary
(76.3.5) should be used. The argument of DirectoriesPackageLibrary (76.3.5) should be the path
to the data library relative to the package directory.

If a program calls other programs and needs to be launched in a directory containing the executa-
bles for such a GAP package then the first entry of DirectoriesPackagePrograms (76.3.6) should
be used.

The latter two alternatives should only be used if absolutely necessary because otherwise one risks
accumulating log or core files in the package directory.

Example
gap> path := DirectoriesSystemPrograms();;

153

GAP - Reference Manual 154

gap> ls := Filename(path, "ls");;

gap> stdin := InputTextUser();;

gap> stdout := OutputTextUser();;

gap> Process(path[1], 1ls, stdin, stdout, ["-c"]);;

awk 1s mkdir

gap> # current directory, here the root directory

gap> Process(DirectoryCurrent(), 1ls, stdin, stdout, ["-c"]);;
bin 1ib trans tst CVS grp prim thr two
src dev etc tbl doc pkg small tom

gap> # create a temporary directory

gap> tmpdir := DirectoryTemporary();;

gap> Process(tmpdir, 1ls, stdin, stdout, ["-c"]);;

gap> PrintTo(Filename(tmpdir, "emil"));

gap> Process(tmpdir, 1ls, stdin, stdout, ["-c"]);;

emil

prg is the filename of the program to launch, for portability it should be the result of Filename
(9.4.1) and should pass IsExecutableFile (9.6.4). Note that Process does no searching through a
list of directories, this is done by Filename (9.4.1).

stream-in is the input stream that delivers the characters to the process. For portability it should
either be InputTextNone (10.9.1) (if the process reads no characters), InputTextUser (10.6.1), the
result of a call to InputTextFile (10.5.1) from which no characters have been read, or the result of
a call to InputTextString (10.7.1).

Process is free to consume all the input even if the program itself does not require any input at
all.

stream-out is the output stream which receives the characters from the process. For portability
it should either be OutputTextNone (10.9.2) (if the process writes no characters), OutputTextUser
(10.6.2), the result of a call to OutputTextFile (10.5.2) to which no characters have been written, or
the result of a call to OutputTextString (10.7.2).

options is a list of strings which are passed to the process as command line argument. Note
that no substitutions are performed on the strings, i.e., they are passed immediately to the process and
are not processed by a command interpreter (shell). Further note that each string is passed as one
argument, even if it contains space characters. Note that input/output redirection commands are not
allowed as options.

In order to find a system program use DirectoriesSystemPrograms (9.3.6) together with
Filename (9.4.1).

Example
gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

The next example shows how to execute date with no argument and no input, and collect the
output into a string stream.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> Process(DirectoryCurrent(), date, InputTextNone(), a, []1);
0
gap> CloseStream(a);
gap> Print(str);
Fri Jul 11 09:04:23 MET DST 1997

GAP - Reference Manual 155

11.1.2 Exec

> Exec(cmd, optionl, ..., optionN) (function)

Exec runs a shell in the current directory to execute the command given by the string cmd with
options optionli, ..., optionN.

Example
gap> Exec("date");
Thu Jul 24 10:04:13 BST 1997

cmd is interpreted by the shell and therefore we can make use of the various features that a shell
offers as in following example.
Example
gap> Exec("echo \"GAP is great!\" > foo");
gap> Exec("cat foo");
GAP is great!
gap> Exec("rm foo");

Exec calls the more general operation Process (11.1.1). The function Edit (6.10.1) should be
used to call an editor from within GAP.

Chapter 12

Objects and Elements

An object is anything in GAP that can be assigned to a variable, so nearly everything in GAP is an
object.

Different objects can be regarded as equal with respect to the equivalence relation “=", in this case
we say that the objects describe the same element.

12.1 Objects

Nearly all things one deals with in GAP are objects. For example, an integer is an object, as is a
list of integers, a matrix, a permutation, a function, a list of functions, a record, a group, a coset or a
conjugacy class in a group.

Examples of things that are not objects are comments which are only lexical constructs, while
loops which are only syntactical constructs, and expressions, such as 1 + 1; but note that the value
of an expression, in this case the integer 2, is an object.

Objects can be assigned to variables, and everything that can be assigned to a variable is an object.
Analogously, objects can be used as arguments of functions, and can be returned by functions.

12.1.1 IsObject

> IsObject(obj) (Category)

IsObject returns true if the object obj is an object. Obviously it can never return false.
It can be used as a filter in InstallMethod (78.2.1) when one of the arguments can be anything.

12.2 Elements as equivalence classes

The equality operation “=" defines an equivalence relation on all GAP objects. The equivalence
classes are called elements.

There are basically three reasons to regard different objects as equal. Firstly the same information
may be stored in different places. Secondly the same information may be stored in different ways;
for example, a polynomial can be stored sparsely or densely. Thirdly different information may be
equal modulo a mathematical equivalence relation. For example, in a finitely presented group with
the relation a® = 1 the different objects a and a® describe the same element.

156

GAP - Reference Manual 157

As an example of all three reasons, consider the possibility of storing an integer in several places
of the memory, of representing it as a fraction with denominator 1, or of representing it as a fraction
with any denominator, and numerator a suitable multiple of the denominator.

12.3 Sets

In GAP there is no category whose definition corresponds to the mathematical property of being a
set, however in the manual we will often refer to an object as a sef in order to convey the fact that
mathematically, we are thinking of it as a set. In particular, two sets A and B are equal if and only if,
xX€A < xcB.

There are two types of object in GAP which exhibit this kind of behaviour with respect to equality,
namely domains (see Section 12.4) and lists whose elements are strictly sorted see IsSSortedList
(21.17.4). In general, set in this manual will mean an object of one of these types.

More precisely: two domains can be compared with “{=}", the answer being true if and only if
the sets of elements are equal (regardless of any additional structure) and; a domain and a list can be
compared with “=", the answer being true if and only if the list is equal to the strictly sorted list of
elements of the domain.

A discussion about sorted lists and sets can be found in Section 21.19.

12.4 Domains

An especially important class of objects in GAP are those whose underlying mathematical abstraction
is that of a structured set, for example a group, a conjugacy class, or a vector space. Such objects are
called domains. The equality relation between domains is always equality as sets, so that two domains
are equal if and only if they contain the same elements.

Domains play a central role in GAP. In a sense, the only reason that GAP supports objects such
as integers and permutations is the wish to form domains of them and compute the properties of those
domains.

Domains are described in Chapter 31.

12.5 Identical Objects

Two objects that are equal as objects (that is they actually refer to the same area of computer memory)
and not only w.r.t. the equality relation “=" are called identical. Identical objects do of course describe
the same element.

12.5.1 IsldenticalObj

> IsIdenticalObj(obj1, obj2) (function)

IsIdenticalObj tests whether the objects obj1 and obj2 are identical (that is they are either
equal immediate objects or are both stored at the same location in memory.

If two copies of a simple constant object (see section 12.6) are created, it is not defined whether
GAP will actually store two equal but non-identical objects, or just a single object. For mutable
objects, however, it is important to know whether two values refer to identical or non-identical objects,

GAP - Reference Manual 158

and the documentation of operations that return mutable values should make clear whether the values
returned are new, or may be identical to values stored elsewhere.

Example
gap> IsIdenticalObj(1076, 1076);
true
gap> IsIdenticalObj(10~30, 10°30);
false
gap> IsIdenticalObj(true, true);
true

Generally, one may compute with objects but think of the results in terms of the underlying el-
ements because one is not interested in locations in memory, data formats or information beyond
underlying equivalence relations. But there are cases where it is important to distinguish the relations
identity and equality. This is best illustrated with an example. (The reader who is not familiar with
lists in GAP, in particular element access and assignment, is referred to Chapter 21.)

Example

gap> 11:= [1, 2, 3 1;; 12:= [1, 2, 3 1;;
gap> 11 = 12;

true

gap> IsIdenticalObj(11, 12);

false

gap> 11[3]:= 4;; 11; 12;

[1, 2, 4]

[1, 2, 3]

gap> 11 = 12;

false

The two lists 11 and 12 are equal but not identical. Thus a change in 11 does not affect 12.

Example
gap> 11:= [1, 2, 3 1;; 12:= 11;;
gap> 11 = 12;
true
gap> IsIdenticalObj(11, 12);
true
gap> 11[3]:= 4;; 11; 12;
[1, 2, 4]
[1, 2, 4]
gap> 11 = 12;
true

Here, 11 and 12 are identical objects, so changing 11 means a change to 12 as well.

12.5.2 IsNotldenticalObj

> IsNotIdenticalObj(objl, obj2) (function)

tests whether the objects obj1 and obj2 are not identical.

GAP - Reference Manual 159

12.6 Mutability and Copyability

An object in GAP is said to be immutable if its mathematical value (as defined by =) does not change
under any operation. More explicitly, suppose a is immutable and O is some operation on a, then if
a = b evaluates to true before executing O(a), a = b also evaluates to true afterwards. (Examples
for operations O that change mutable objects are Add (21.4.2) and Unbind (21.5.2) which are used
to change list objects, see Chapter 21.) An immutable object may change, for example to store new
information, or to adopt a more efficient representation, but this does not affect its behaviour under =.

There are two points here to note. Firstly, “operation” above refers to the functions and methods
which can legitimately be applied to the object, and not the ! . operation whereby virtually any aspect
of any GAP level object may be changed. The second point which follows from this, is that when
implementing new types of objects, it is the programmer’s responsibility to ensure that the functions
and methods they write never change immutable objects mathematically.

In fact, most objects with which one deals in GAP are immutable. For instance, the permutation
(1,2) will never become a different permutation or a non-permutation (although a variable which
previously had (1,2) stored in it may subsequently have some other value).

For many purposes, however, mutable objects are useful. These objects may be changed to rep-
resent different mathematical objects during their life. For example, mutable lists can be changed by
assigning values to positions or by unbinding values at certain positions. Similarly, one can assign
values to components of a mutable record, or unbind them.

12.6.1 IsCopyable

> IsCopyable(obj) (Category)

If a mutable form of an object obj can be made in GAP, the object is called copyable. Examples
of copyable objects are of course lists and records. A new mutable version of the object can always
be obtained by the operation ShallowCopy (12.7.1).

Objects for which only an immutable form exists in GAP are called constants. Examples of
constants are integers, permutations, and domains. Called with a constant as argument, Immutable
(12.6.3) and ShallowCopy (12.7.1) return this argument.

12.6.2 IsMutable

> IsMutable(o bj) (Category)

tests whether obj is mutable.

If an object is mutable then it is also copyable (see IsCopyable (12.6.1)), and a ShallowCopy
(12.7.1) method should be supplied for it. Note that IsMutable must not be implied by another filter,
since otherwise Immutable (12.6.3) would be able to create paradoxical objects in the sense that
IsMutable for such an object is false but the filter that implies IsMutable is true.

In many situations, however, one wants to ensure that objects are immutable. For example, take the
identity of a matrix group. Since this matrix may be referred to as the identity of the group in several
places, it would be fatal to modify its entries, or add or unbind rows. We can obtain an immutable
copy of an object with Immutable (12.6.3).

GAP - Reference Manual 160

12.6.3 Immutable

> Immutable(obj) (function)

returns an immutable structural copy (see StructuralCopy (12.7.2)) of obj in which the sub-
objects are immutable copies of the subobjects of obj. If obj is immutable then Immutable returns
obj itself.

GAP will complain with an error if one tries to change an immutable object.

12.6.4 MakeImmutable

> MakeImmutable(obj) (function)

One can turn the (mutable or immutable) object obj into an immutable one with MakeImmutable;
note that this also makes all subobjects of obj immutable, so one should call MakeImmutable only if
obj and its mutable subobjects are newly created. If one is not sure about this, Immutable (12.6.3)
should be used.

Note that it is not possible to turn an immutable object into a mutable one; only mutable copies
can be made (see 12.7).

Using Immutable (12.6.3), it is possible to store an immutable identity matrix or an immutable
list of generators, and to pass around references to this immutable object safely. Only when a mutable
copy is really needed does the actual object have to be duplicated. Compared to the situation without
immutable objects, much unnecessary copying is avoided this way. Another advantage of immutabil-
ity is that lists of immutable objects may remember whether they are sorted (see 21.19), which is not
possible for lists of mutable objects.

Since the operation Immutable (12.6.3) must work for any object in GAP, it follows that an
immutable form of every object must be possible, even if it is not sensible, and user-defined objects
must allow for the possibility of becoming immutable without notice.

12.6.5 Mutability of Iterators

An interesting example of mutable (and thus copyable) objects is provided by iterators, see 30.8. (Of
course an immutable form of an iterator is not very useful, but clearly Immutable (12.6.3) will yield
such an object.) Every call of NextIterator (30.8.5) changes a mutable iterator until it is exhausted,
and this is the only way to change an iterator. ShallowCopy (12.7.1) for an iterator iter is defined
so as to return a mutable iterator that has no mutable data in common with iter, and that behaves
equally to iter w.r.t. IsDoneIterator (30.8.4) and (if iter is mutable) NextIterator (30.8.5).
Note that this meaning of the “shallow copy” of an iterator that is returned by ShallowCopy (12.7.1)
is not as obvious as for lists and records, and must be explicitly defined.

12.6.6 Mutability of Results of Arithmetic Operations

Many operations return immutable results, among those in particular attributes (see 13.5). Exam-
ples of attributes are Size (30.4.6), Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and
Inverse (31.10.8). Arithmetic operations, such as the binary infix operations +, -, *, /, ~, mod, the
unary -, and operations such as Comm (31.12.3) and LeftQuotient (31.12.2), return mutable results,
except if all arguments are immutable. So the product of two matrices or of a vector and a matrix
is immutable if and only if the two matrices or both the vector and the matrix are immutable (see

GAP - Reference Manual 161

also 21.11). There is one exception to this rule, which arises where the result is less deeply nested
than at least one of the argument, where mutable arguments may sometimes lead to an immutable
result. For instance, a mutable matrix with immutable rows, multiplied by an immutable vector gives
an immutable vector result. The exact rules are given in 21.11.

It should be noted that O * obj is equivalent to ZeroSM(obj), -obj is equivalent to
AdditiveInverseSM(obj), obj~0 is equivalent to OneSM(obj), and obj~-1 is equivalent to
InverseSM(obj). The “SM” stands for “same mutability”, and indicates that the result is mutable
if and only if the argument is mutable.

The operations ZeroOp (31.10.3), AdditiveInverseOp (31.10.9), OneOp (31.10.2), and
InverseOp (31.10.8) return mutable results whenever a mutable version of the result exists, contrary
to the attributes Zero (31.10.3), AdditiveInverse (31.10.9), One (31.10.2), and Inverse (31.10.8).

If one introduces new arithmetic objects then one need not install methods for the attributes One
(31.10.2), Zero (31.10.3), etc. The methods for the associated operations OneOp (31.10.2) and ZeroOp
(31.10.3) will be called, and then the results made immutable.

All methods installed for the arithmetic operations must obey the rule about the mutability of the
result. This means that one may try to avoid the perhaps expensive creation of a new object if both
operands are immutable, and of course no problems of this kind arise at all in the (usual) case that the
objects in question do not admit a mutable form, i.e., that these objects are not copyable.

In a few, relatively low-level algorithms, one wishes to treat a matrix partly as a data structure,
and manipulate and change its entries. For this, the matrix needs to be mutable, and the rule that
attribute values are immutable is an obstacle. For these situations, a number of additional operations
are provided, for example TransposedMatMutable (24.5.6) constructs a mutable matrix (contrary to
the attribute TransposedMat (24.5.6)), while TriangulizeMat (24.7.3) modifies a mutable matrix
(in place) into upper triangular form.

Note that being immutable does not forbid an object to store knowledge. For example, if it is
found out that an immutable list is strictly sorted then the list may store this information. More
precisely, an immutable object may change in any way, provided that it continues to represent the
same mathematical object.

12.7 Duplication of Objects

12.7.1 ShallowCopy

> Shal lOWCOpy (Obj) (operation)

ShallowCopy returns a new mutable object equal to its argument, if this is possible. The subob-
jects of ShallowCopy(obj) are identical to the subobjects of obj.

If GAP does not support a mutable form of the immutable object obj (see 12.6) then
ShallowCopy returns obj itself.

Since ShallowCopy is an operation, the concrete meaning of “subobject” depends on the type of
obj. But for any copyable object obj, the definition should reflect the idea of “first level copying”.

The definition of ShallowCopy for lists (in particular for matrices) can be found in 21.7.

12.7.2 StructuralCopy

> StructuralCopy(obj) (function)

GAP - Reference Manual 162

In a few situations, one wants to make a structural copy scp of an object obj. This is defined as
follows. scp and obj are identical if obj is immutable. Otherwise, scp is a mutable copy of obj such
that each subobject of scp is a structural copy of the corresponding subobject of obj. Furthermore, if

two subobjects of obj are identical then also the corresponding subobjects of scp are identical.
Example

gap> obj:= [[0, 1] 1;;

gap> obj[2]:= obj[1];;

gap> obj[3]:= Immutable(obj[1]);;
gap> scp:= StructuralCopy(obj);;
gap> scp = obj; IsIdenticalObj(scp, obj);
true

false

gap> IsIdenticalObj(scpl[1]l, objl[1]);
false

gap> IsIdenticalObj(scpl3], obj[3]);
true

gap> IsIdenticalObj(scpl1], scpl2]);
true

That both ShallowCopy (12.7.1) and StructuralCopy return the argument obj itself if it is not
copyable is consistent with this definition, since there is no way to change obj by modifying the result
of any of the two functions, because in fact there is no way to change this result at all.

12.8 Other Operations Applicable to any Object

There are a number of general operations which can be applied, in principle, to any object in GAP.
Some of these are documented elsewhere —see String (27.7.6), Print0bj (6.3.5) and Display
(6.3.6). Others are mainly somewhat technical.

12.8.1 SetName

> SetName (Ob_j , name) (operation)

for a suitable object obj sets that object to have name name (a string).

12.8.2 Name

> Name (obj) (attribute)

returns the name, a string, previously assigned to obj via a call to SetName (12.8.1). The name
of an object is used only for viewing the object via this name.

There are no methods installed for computing names of objects, but the name may be set for
suitable objects, using SetName (12.8.1).
Example
gap> R := PolynomialRing(Integers,2);
Integers[x_1,x_2]
gap> SetName(R,"Z[x,y1");
gap> R;
Z[x,y]

GAP - Reference Manual 163

gap> Name(R) ;
"Z[X,y] "

12.8.3 InfoText

> InfoText(obj) (attribute)

is a mutable string with information about the object obj. There is no default method to create an
info text.

12.8.4 IsInternallyConsistent

> IsInternallyConsistent (obj) (operation)

For debugging purposes, it may be useful to check the consistency of an object obj that is com-
posed from other (composed) objects.

There is a default method of IsInternallyConsistent, with rank zero, that returns true.
So it is possible (and recommended) to check the consistency of subobjects of obj recursively by
IsInternallyConsistent.

(Note that IsInternallyConsistent is not an attribute.)

12.8.5 MemoryUsage

> MemoryUsage (obj) (operation)

returns the amount of memory in bytes used by the object obj and its subobjects. Note that in
general, objects can reference each other in very difficult ways such that determining the memory
usage is a recursive procedure. In particular, computing the memory usage of a complicated structure
itself uses some additional memory, which is however no longer used after completion of this oper-
ation. This procedure descends into lists and records, positional and component objects, however it
does not take into account the type and family objects! For functions, it only takes the memory usage
of the function body, not of the local context the function was created in, although the function keeps
a reference to that as well!

Chapter 13

Types of Objects

Every GAP object has a rype. The type of an object is the information which is used to decide
whether an operation is admissible or possible with that object as an argument, and if so, how it is to
be performed (see Chapter 78).

For example, the types determine whether two objects can be multiplied and what function is
called to compute the product. Analogously, the type of an object determines whether and how the
size of the object can be computed. It is sometimes useful in discussing the type system, to identify
types with the set of objects that have this type. Partial types can then also be regarded as sets, such
that any type is the intersection of its parts.

The type of an object consists of two main parts, which describe different aspects of the object.

The family determines the relation of the object to other objects. For example, all permutations
form a family. Another family consists of all collections of permutations, this family contains the set
of permutation groups as a subset. A third family consists of all rational functions with coefficients in
a certain family.

The other part of a type is a collection of filters (actually stored as a bit-list indicating, from the
complete set of possible filters, which are included in this particular type). These filters are all treated
equally by the method selection, but, from the viewpoint of their creation and use, they can be divided
(with a small number of unimportant exceptions) into categories, representations, attribute testers and
properties. Each of these is described in more detail below.

This chapter does not describe how types and their constituent parts can be created. Information
about this topic can be found in Chapter 79.

Note: Detailed understanding of the type system is not required to use GAP. It can be helpful,
however, to understand how things work and why GAP behaves the way it does.

A discussion of the type system can be found in [BL98].

13.1 Families

The family of an object determines its relationship to other objects.

More precisely, the families form a partition of all GAP objects such that the following two
conditions hold: objects that are equal w.r.t. = lie in the same family; and the family of the result of
an operation depends only on the families of its operands.

The first condition means that a family can be regarded as a set of elements instead of a set of
objects. Note that this does not hold for categories and representations (see below), two objects that
are equal w.r.t. = need not lie in the same categories and representations. For example, a sparsely

164

GAP - Reference Manual 165

represented matrix can be equal to a densely represented matrix. Similarly, each domain is equal w.r.t.
= to the sorted list of its elements, but a domain is not a list, and a list is not a domain.

13.1.1 FamilyObj

> FamilyObj (Ob_j) (function)

returns the family of the object obj.

The family of the object obj is itself an object, its family is Family0fFamilies.

It should be emphasized that families may be created when they are needed. For example, the
family of elements of a finitely presented group is created only after the presentation has been con-
structed. Thus families are the dynamic part of the type system, that is, the part that is not fixed after
the initialisation of GAP.

Families can be parametrized. For example, the elements of each finitely presented group form
a family of their own. Here the family of elements and the finitely presented group coincide when
viewed as sets. Note that elements in different finitely presented groups lie in different families. This
distinction allows GAP to forbid multiplications of elements in different finitely presented groups.

As a special case, families can be parametrized by other families. An important example is the
family of collections that can be formed for each family. A collection consists of objects that lie in
the same family, it is either a nonempty dense list of objects from the same family or a domain.

Note that every domain is a collection, that is, it is not possible to construct domains whose
elements lie in different families. For example, a polynomial ring over the rationals cannot contain
the integer 0 because the family that contains the integers does not contain polynomials. So one has
to distinguish the integer zero from each zero polynomial.

Let us look at this example from a different viewpoint. A polynomial ring and its coefficients
ring lie in different families, hence the coefficients ring cannot be embedded ‘“naturally” into the
polynomial ring in the sense that it is a subset. But it is possible to allow, e.g., the multiplication of an
integer and a polynomial over the integers. The relation between the arguments, namely that one is a
coefficient and the other a polynomial, can be detected from the relation of their families. Moreover,
this analysis is easier than in a situation where the rationals would lie in one family together with
all polynomials over the rationals, because then the relation of families would not distinguish the
multiplication of two polynomials, the multiplication of two coefficients, and the multiplication of a
coefficient with a polynomial. So the wish to describe relations between elements can be taken as a
motivation for the introduction of families.

13.2 Filters

A filter is a special unary GAP function that returns either true or false, depending on whether or
not the argument lies in the set defined by the filter. Filters are used to express different aspects of
information about a GAP object, which are described below (see 13.3, 13.4, 13.5, 13.6, 13.7, 13.8).

Presently any filter in GAP is implemented as a function which corresponds to a set of positions
in the bitlist which forms part of the type of each GAP object, and returns true if and only if the
bitlist of the type of the argument has the value true at all of these positions.

The intersection (or meet) of two filters filt1, filt2 is again a filter, it can be formed as

filtl and filt2

See 20.4 for more details.

GAP - Reference Manual 166

For example, IsList and IsEmpty is a filter that returns true if its argument is an empty
list, and false otherwise. The filter IsGroup (39.2.7) is defined as the intersection of the category
IsMagmaWithInverses (35.1.4) and the property IsAssociative (35.4.7).

A filter that is not the meet of other filters is called a simple filter. For example, each attribute
tester (see 13.6) is a simple filter. Each simple filter corresponds to a position in the bitlist currently
used as part of the data structure representing a type.

Every filter has a rank, which is used to define a ranking of the methods installed for an operation,
see Section 78.2. The rank of a filter can be accessed with RankFilter (13.2.1).

13.2.1 RankFilter

> RankFilter(filt) (function)

For simple filters, an incremental rank is defined when the filter is created, see the sections about
the creation of filters: 79.1, 79.2, 79.3, 79.4. For an arbitrary filter, its rank is given by the sum of
the incremental ranks of the involved simple filters; in addition to the implied filters, these are also
the required filters of attributes (again see the sections about the creation of filters). In other words,
for the purpose of computing the rank and only for this purpose, attribute testers are treated as if they
would imply the requirements of their attributes.

13.2.2 NamesFilter

> NamesFilter(filt) (function)

NamesFilter returns a list of names of the implied simple filters of the filter filt, these are all
those simple filters imp such that every object in £filt also lies in imp. For implications between
filters, see ShowImpliedFilters (13.2.3) as well as sections 78.7, 79.1, 79.2, 79.3.

13.2.3 ShowlmpliedFilters

> ShowImpliedFilters(filter) (function)

Displays information about the filters that may be implied by filter. They are given by their
names. ShowImpliedFilters first displays the names of all filters that are unconditionally implied
by filter. It then displays implications that require further filters to be present (indicating by + the
required further filters). The function displays only first-level implications, implications that follow
in turn are not displayed (though GAP will do these).
Example

gap> ShowImpliedFilters(IsMatrix);
Implies:
IsGeneralizedRowVector
IsNearAdditiveElementWithInverse
IsAdditiveElement
IsMultiplicativeElement

May imply with:
+IsGF2MatrixRep
IsOrdinaryMatrix

GAP - Reference Manual 167

+CategoryCollections(CategoryCollections(IsAdditivelyCommutativeElement))
IsAdditivelyCommutativeElement

+IsInternalRep
IsOrdinaryMatrix

13.3 Categories

The categories of an object are filters (see 13.2) that determine what operations an object admits.
For example, all integers form a category, all rationals form a category, and all rational functions
form a category. An object which claims to lie in a certain category is accepting the requirement that
it should have methods for certain operations (and perhaps that their behaviour should satisfy certain
axioms). For example, an object lying in the category IsList (21.1.1) must have methods for Length
(21.17.5), IsBound\ [\] (21.2.1) and the list element access operation \ [\] (21.2.1).

An object can lie in several categories. For example, a row vector lies in the categories IsList
(21.1.1) and IsVector (31.14.14); each list lies in the category IsCopyable (12.6.1), and depending
on whether or not it is mutable, it may lie in the category IsMutable (12.6.2). Every domain lies in
the category IsDomain (31.9.1).

Of course some categories of a mutable object may change when the object is changed. For
example, after assigning values to positions of a mutable non-dense list, this list may become part of
the category IsDenseList (21.1.2).

However, if an object is immutable then the set of categories it lies in is fixed.

All categories in the library are created during initialization, in particular they are not created
dynamically at runtime.

The following list gives an overview of important categories of arithmetic objects. Indented cate-

gories are to be understood as subcategories of the non indented category listed above it.
Example

IsObject
IsExtLElement
IsExtRElement
IsMultiplicativeElement
IsMultiplicativeElementWithOne
IsMultiplicativeElementWithInverse
IsExtAElement
IsAdditiveElement
IsAdditiveElementWithZero
IsAdditiveElementWithInverse

Every object lies in the category IsObject (12.1.1).

The categories IsExtLElement (31.14.8) and IsExtRElement (31.14.9) contain objects that can
be multiplied with other objects via * from the left and from the right, respectively. These categories
are required for the operands of the operation *.

The category IsMultiplicativeElement (31.14.10) contains objects that can
be multiplied from the left and from the right with objects from the same fam-
ily. IsMultiplicativeElementWithOne (31.14.11) contains objects obj for which
a multiplicatively neutral element can be obtained by taking the O-th power obj~0.

GAP - Reference Manual 168

IsMultiplicativeElementWithInverse (31.14.13) contains objects obj for which a multi-
plicative inverse can be obtained by forming obj~-1.

Likewise, the categories IsExtAElement (31.14.1), IsAdditiveElement (31.14.3),
IsAdditiveElementWithZero (31.14.5) and IsAdditiveElementWithInverse (31.14.7)
contain objects that can be added via + to other objects, objects that can be added to objects of the
same family, objects for which an additively neutral element can be obtained by multiplication with
zero, and objects for which an additive inverse can be obtained by multiplication with -1.

So a vector lies in IsExtLElement (31.14.8), IsExtRElement (31.14.9) and
IsAdditiveElementWithInverse (31.14.7). A ring element must additionally lie in
IsMultiplicativeElement (31.14.10).

As stated above it is not guaranteed by the categories of objects whether the result of an opera-
tion with these objects as arguments is defined. For example, the category IsMatrix (24.2.1) is a
subcategory of IsMultiplicativeElementWithInverse (31.14.13). Clearly not every matrix has
a multiplicative inverse. But the category IsMatrix (24.2.1) makes each matrix an admissible argu-
ment of the operation Inverse (31.10.8), which may sometimes return fail. Likewise, two matrices
can be multiplied only if they are of appropriate shapes.

Analogous to the categories of arithmetic elements, there are categories of domains of these ele-

ments.
Example

IsObject
IsDomain
IsMagma
IsMagmaWithOne
IsMagmaWithInversesIfNonzero
IsMagmaWithInverses
IsAdditiveMagma
IsAdditiveMagmaWithZero
IsAdditiveMagmaWithInverses
IsExtLSet
IsExtRSet

Of course IsDomain (31.9.1) is a subcategory of IsObject (12.1.1). A domain that is closed under
multiplication * is called a magma and it lies in the category IsMagma (35.1.1). If a magma is closed
under taking the identity, it lies in IsMagmaWithOne (35.1.2), and if it is also closed under taking in-
verses, it lies in IsMagmaWithInverses (35.1.4). The category IsMagmaWithInversesIfNonzero
(35.1.3) denotes closure under taking inverses only for nonzero elements, every division ring lies in
this category.

Note that every set of categories constitutes its own notion of generation, for example a group may
be generated as a magma with inverses by some elements, but to generate it as a magma with one it
may be necessary to take the union of these generators and their inverses.

13.3.1 CategoriesOfObject

> Categories0f0Object(object) (operation)

returns a list of the names of the categories in which object lies.
Example

gap> g:=Group((1,2),(1,2,3));;
gap> CategoriesOfObject(g);

GAP - Reference Manual 169

["IsListOrCollection", "IsCollection", "IsExtLElement",
"CategoryCollections (IsExtLElement)", "IsExtRElement",
"CategoryCollections (IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)",
"CategoryCollections(IsMultiplicativeElementWithOne)",
"CategoryCollections(IsMultiplicativeElementWithInverse)",
"CategoryCollections(IsAssociativeElement)",

"CategoryCollections (IsFiniteOrderElement)", "IsGeneralizedDomain",
"CategoryCollections(IsPerm)", "IsMagma", "IsMagmaWithOne",
"IsMagmaWithInversesIfNonzero", "IsMagmaWithInverses"]

13.4 Representation

The representation of an object is a set of filters (see 13.2) that determines how an object is actually
represented. For example, a matrix or a polynomial can be stored sparsely or densely; all dense poly-
nomials form a representation. An object which claims to lie in a certain representation is accepting
the requirement that certain fields in the data structure be present and have specified meanings.

GAP distinguishes four essentially different ways to represent objects. First there are
the representations IsInternalRep for internal objects such as integers and permutations, and
IsDataObjectRep for other objects that are created and whose data are accessible only by kernel
functions. The data structures underlying such objects cannot be manipulated at the GAP level.

All other objects are either in the representation IsComponentObjectRep or in the representation
IsPositionalObjectRep, see 79.10 and 79.11.

An object can belong to several representations in the sense that it lies in several subrepresen-
tations of IsComponentObjectRep or of IsPositionalObjectRep. The representations to which
an object belongs should form a chain and either two representations are disjoint or one is contained
in the other. So the subrepresentations of IsComponentObjectRep and IsPositionalObjectRep
each form trees. In the language of Object Oriented Programming, we support only single inheritance
for representations.

These trees are typically rather shallow, since for one representation to be contained in another
implies that all the components of the data structure implied by the containing representation, are
present in, and have the same meaning in, the smaller representation (whose data structure presumably
contains some additional components).

Objects may change their representation, for example a mutable list of characters can be converted
into a string.

All representations in the library are created during initialization, in particular they are not created
dynamically at runtime.

Examples of subrepresentations of IsPositionalObjectRep are IsModulusRep, which is used
for residue classes in the ring of integers, and IsDenseCoeffVectorRep, which is used for elements
of algebras that are defined by structure constants.

An important subrepresentation of IsComponentObjectRep is IsAttributeStoringRep,
which is used for many domains and some other objects. It provides automatic storing of all attribute
values (see below).

GAP - Reference Manual 170

13.4.1 RepresentationsOfObject

> RepresentationsOfObject(object) (operation)

returns a list of the names of the representations object has.
Example

gap> g:=Group((1,2),(1,2,3));;
gap> Representations0fObject(g);
["IsComponentObjectRep", "IsAttributeStoringRep"]

13.5 Attributes

The attributes of an object describe knowledge about it.

An attribute is a unary operation without side-effects.

An object may store values of its attributes once they have been computed, and claim that it knows
these values. Note that “store” and “know” have to be understood in the sense that it is very cheap to
get such a value when the attribute is called again.

The stored value of an attribute is in general immutable (see 12.6), except if the attribute had been
specially constructed as “mutable attribute”.

It depends on the representation of an object (see 13.4) which attribute values it stores. An object
in the representation IsAttributeStoringRep stores all attribute values once they are computed.
Moreover, for an object in this representation, subsequent calls to an attribute will return the same
object; this is achieved via a special method for each attribute setter that stores the attribute value in
an object in IsAttributeStoringRep, and a special method for the attribute itself that fetches the
stored attribute value. (These methods are called the “system setter” and the “system getter” of the
attribute, respectively.)

Note also that it is impossible to get rid of a stored attribute value because the system may have
drawn conclusions from the old attribute value, and just removing the value might leave the data
structures in an inconsistent state. If necessary, a new object can be constructed.

Several attributes have methods for more than one argument. For example IsTransitive
(41.10.1) is an attribute for a G-set that can also be called for the two arguments, being a group G
and its action domain. If attributes are called with more than one argument then the return value is not
stored in any of the arguments.

Properties are a special form of attributes that have the value true or false, see section 13.7.

Examples of attributes for multiplicative elements are Inverse (31.10.8), One (31.10.2), and
Order (31.10.10). Size (30.4.6) is an attribute for domains, Centre (35.4.5) is an attribute for mag-
mas, and DerivedSubgroup (39.12.3) is an attribute for groups.

13.5.1 KnownAttributesOfObject

> KnownAttributesOfObject (object) (operation)

returns a list of the names of the attributes whose values are known for object.

Example

gap> g:=Group((1,2),(1,2,3));;Size(g);;

gap> KnownAttributes0fObject(g);

["Size", "OneImmutable", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement",

GAP - Reference Manual 171

"HomePcgs", "Pcgs", "GeneralizedPcgs", "StabChainMutable",
"StabChainOptions"]

13.6 Setter and Tester for Attributes

For every attribute, the attribute setter and the attribute tester are defined.

To check whether an object belongs to an attribute attr, the tester of the attribute is used, see
Tester (13.6.1). To store a value for the attribute attr in an object, the setter of the attribute is used,
see Setter (13.6.2).

13.6.1 Tester

> Tester(attr) (function)

For an attribute attr, Tester (attr) is a filter (see 13.2) that returns true or false, depending
on whether or not the value of attr for the object is known. For example, Tester(Size) (obj
) is true if the size of the object obj is known.

13.6.2 Setter

> Setter(attr) (function)

For an attribute attr, Setter(attr) is called automatically when the attribute value has been
computed for the first time. One can also call the setter explicitly, for example, Setter(Size) (
obj, val) sets val as size of the object obj if the size was not yet known.

For each attribute attr that is declared with DeclareAttribute (79.18.3)
resp. DeclareProperty (79.18.4) (see 79.18), tester and setter are automatically made acces-
sible by the names Hasattr and Setattr, respectively. For example, the tester for Size (30.4.6) is
called HasSize, and the setter is called SetSize.

Example
gap> g:=Group((1,2,3,4),(1,2));;8ize(g);
24
gap> HasSize(g);
true

gap> SetSize(g,99);
gap> Size(g);
24

For two properties propl and prop2, the intersection propl and prop2 (see 13.2) is again a
property for which a setter and a tester exist. Setting the value of this intersection to true for a GAP
object means to set the values of prop! and prop2 to true for this object.

Example
gap> prop:= IsFinite and IsCommutative;
<Property "<<and-filter>>">

gap> g:= Group((1,2,3), (4,5));;

gap> Tester(prop)(g);

false

gap> Setter(prop)(g, true);

GAP - Reference Manual 172

gap> Tester(prop)(g); prop(g);
true
true

It is not allowed to set the value of such an intersection to false for an object.

Example
gap> Setter(prop)(Rationals, false);
You cannot set an "and-filter" except to true

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can type ’return true;’ to set all components true

(but you might really want to reset just one component) to continue
brk>

13.6.3 AttributeValueNotSet

> AttributeValueNotSet(attr, obj) (function)

If the value of the attribute attr is already stored for obj, AttributeValueNotSet simply
returns this value. Otherwise the value of attr (obj) is computed and returned without storing it
in obj. This can be useful when “large” attribute values (such as element lists) are needed only once
and shall not be stored in the object.

Example

gap> HasAsSSortedList(g);

false

gap> AttributeValueNotSet(AsSSortedList,g);

L O, 4,5, 1,2,3), (1,2,3)4,5), 1,3,2), (1,3,2)(4,5) 1
gap> HasAsSSortedList(g);

false

The normal behaviour of attributes (when called with just one argument) is that once a method
has been selected and executed, and has returned a value the setter of the attribute is called, to (pos-
sibly) store the computed value. In special circumstances, this behaviour can be altered dynami-
cally on an attribute-by-attribute basis, using the functions DisableAttributeValueStoring and
EnableAttributeValueStoring.

In general, the code in the library assumes, for efficiency, but not for correctness, that attribute
values will be stored (in suitable objects), so disabling storing may cause substantial computations to
be repeated.

13.6.4 InfoAttributes
> InfoAttributes (info class)
This info class (together with InfoWarning (7.4.7) is used for messages about attribute storing

being disabled (at level 2) or enabled (level 3). It may be used in the future for other messages
concerning changes to attribute behaviour.

GAP - Reference Manual 173

13.6.5 DisableAttributeValueStoring

> DisableAttributeValueStoring(attr) (function)

disables the usual call of Setter(attr) when a method for attr returns a value. In conse-
quence the values will never be stored. Note that attr must be an attribute and not a property.

13.6.6 EnableAttributeValueStoring

> EnableAttributeValueStoring(attr) (function)

enables the usual call of Setter(attr) when a method for attr returns a value.
In consequence the values may be stored. This will usually have no effect unless
DisableAttributeValueStoring has previously been used for attr. Note that attr must be

an attribute and not a property.

Example

gap> g := Group((1,2,3,4,5),(1,2,3));

Group([(1,2,3,4,5), (1,2,3) 1)

gap> KnownAttributes0fObject(g);

["LargestMovedPoint", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement"]

gap> SetInfolLevel (InfoAttributes,3);

gap> DisableAttributeValueStoring(Size);

#I Disabling value storing for Size

gap> Size(g);

60

gap> KnownAttributes0fObject(g);

["OneImmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement", "StabChainMutable",
"StabChainOptions"]

gap> Size(g);

60

gap> EnableAttributeValueStoring(Size);

#I Enabling value storing for Size

gap> Size(g);

60

gap> KnownAttributesOfObject(g);

["Size", "OneImmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement", "StabChainMutable",
"StabChainOptions"]

13.7 Properties

The properties of an object are those of its attributes (see 13.5) whose values can only be true or
false.

The main difference between attributes and properties is that a property defines two sets of objects,
namely the usual set of all objects for which the value is known, and the set of all objects for which
the value is known to be true.

GAP - Reference Manual 174

(Note that it makes no sense to consider a third set, namely the set of objects for which the value
of a property is true whether or not it is known, since there may be objects for which the containment
in this set cannot be decided.)

For a property prop, the containment of an object obj in the first set is checked again by applying
Tester(prop) to obj, and obj lies in the second set if and only if Tester(prop) (obj)
and prop(obj) istrue.

If a property value is known for an immutable object then this value is also stored, as part of the
type of the object. To some extent, property values of mutable objects also can be stored, for example
a mutable list all of whose entries are immutable can store whether it is strictly sorted. When the
object is mutated (for example by list assignment) the type may need to be adjusted.

Important properties for domains are IsAssociative (35.4.7), IsCommutative (35.4.9),
IsAnticommutative (56.4.6), IsLDistributive (56.4.3) and IsRDistributive (56.4.4), which
mean that the multiplication of elements in the domain satisfies (axb)xc =ax* (b*c), axb=b=xa,
axb=—(bxa),ax(b+c)=axb+axc,and (a+b)*c=ax*c+bxc, respectively, for all a, b, ¢ in
the domain.

13.7.1 KnownPropertiesOfObject

> KnownPropertiesOfObject (object) (operation)

returns a list of the names of the properties whose values are known for object.

13.7.2 KnownTruePropertiesOfObject

> KnownTruePropertiesOfObject(object) (operation)

returns a list of the names of the properties known to be true for object.

Example

gap> g:=Group((1,2),(1,2,3));;

gap> KnownProperties0fObject(g);

["IsFinite", "CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",
"IsAssociative", "IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsInverseSemigroup",
"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",
"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsNilpotentByFinite"]

gap> Size(g);

6

gap> KnownProperties0fObject(g);

["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",
"CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses",
"IsAssociative", "IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsInverseSemigroup",
"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",
"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",

"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsPerfectGroup", "IsSolvableGroup",

GAP - Reference Manual 175

"IsPolycyclicGroup", "IsNilpotentByFinite", "IsTorsionFree",
"IsFreeAbelian"]

gap> KnownTrueProperties0fObject(g);

["IsNonTrivial", "IsFinite", "CanEasilyCompareElements",
"CanEasilySortElements", "IsDuplicateFree",
"IsGeneratorsOfMagmaWithInverses", "IsAssociative",
"IsGeneratorsOfSemigroup", "IsSimpleSemigroup",
"IsRegularSemigroup", "IsInverseSemigroup",
"IsCompletelyRegularSemigroup", "IsCompletelySimpleSemigroup",
"IsGroupAsSemigroup", "IsMonoidAsSemigroup", "IsOrthodoxSemigroup",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsSolvableGroup", "IsPolycyclicGroup",
"IsNilpotentByFinite"]

13.8 Other Filters

There are situations where one wants to express a kind of knowledge that is based on some heuristic.

For example, the filters (see 13.2) CanEasilyTestMembership (39.25.1) and
CanEasilyComputePcgs (45.2.3) are defined in the GAP library. Note that such filters do not
correspond to a mathematical concept, contrary to properties (see 13.7). Also it need not be defined
what “easily” means for an arbitrary GAP object, and in this case one cannot compute the value for
an arbitrary GAP object. In order to access this kind of knowledge as a part of the type of an object,
GAP provides filters for which the value is false by default, and it is changed to true in certain
situations, either explicitly (for the given object) or via a logical implication (see 78.7) from other
filters.

For example, a true value of CanEasilyComputePcgs (45.2.3) for a group means that certain
methods are applicable that use a pcgs (see 45.1) for the group. There are logical implications to set
the filter value to true for permutation groups that are known to be solvable, and for groups that have
already a (sufficiently nice) pcgs stored. In the case one has a solvable matrix group and wants to
enable methods that use a pcgs, one can set the CanEasilyComputePcgs (45.2.3) value to true for
this particular group.

A filter filt of the kind described here is different from the other filters introduced in the previous
sections. In particular, filt is not a category (see 13.3) or a property (see 13.7) because its value may
change for a given object, and filt is not a representation (see 13.4) because it has nothing to do
with the way an object is made up from some data. filt is similar to an attribute tester (see 13.6),
the only difference is that fi1t does not refer to an attribute value; note that filt is also used in the
same way as an attribute tester; namely, the true value may be required for certain methods to be
applicable.

13.9 Types

We stated above (see 13) that, for an object obj, its fype is formed from its family and its filters. There
is a also a third component, used in a few situations, namely defining data of the type.

GAP - Reference Manual 176

13.9.1 TypeObj

> TypeObj(obj) (function)

returns the type of the object obj.

The type of an object is itself an object.

Two types are equal if and only if the two families are identical, the filters are equal, and, if
present, also the defining data of the types are equal.

13.9.2 DataType

> DataType (type) (function)

The last part of the type, defining data, has not been mentioned before and seems to be of minor
importance. It can be used, e.g., for cosets U g of a group U, where the type of each coset may contain
the group U as defining data. As a consequence, two such cosets mod U and V can have the same
type only if U = V. The defining data of the type type can be accessed via DataType.

Chapter 14

Integers

One of the most fundamental datatypes in every programming language is the integer type. GAP is
no exception.

GAP integers are entered as a sequence of decimal digits optionally preceded by a “+” sign for
positive integers or a “~” sign for negative integers. The size of integers in GAP is only limited by the
amount of available memory, so you can compute with integers having thousands of digits.

Example
gap> -1234;

-1234

gap> 123456789012345678901234567890123456789012345678901234567890;
123456789012345678901234567890123456789012345678901234567890

Many more functions that are mainly related to the prime residue group of integers modulo an
integer are described in chapter 15, and functions dealing with combinatorics can be found in chap-
ter 16.

14.1 Integers: Global Variables

14.1.1 Integers (global variable)

> Int egers (global variable)
> PositiveIntegers (global variable)
> Nonnegativelntegers (global variable)

These global variables represent the ring of integers and the semirings of positive and nonnegative
integers, respectively.
Example
gap> Size(Integers); 2 in Integers;
infinity
true

Integers is a subset of Rationals (17.1.1), which is a subset of Cyclotomics (18.1.2). See
Chapter 18 for arithmetic operations and comparison of integers.

177

GAP - Reference Manual 178

14.1.2 IsIntegers

> IsIntegers(obj) (Category)
> IsPositiveIntegers(obj) (Category)
> IsNonnegativeIntegers(obj) (Category)

are the defining categories for the domains Integers (14.1.1), PositiveIntegers (14.1.1), and

NonnegativeIntegers (14.1.1).

Example
gap> IsIntegers(Integers); IsIntegers(Rationals); IsIntegers(7);
true

false

false

14.2 Elementary Operations for Integers

14.2.1 IsInt

> IsInt(Obj) (Category)

Every rational integer lies in the category IsInt, which is a subcategory of IsRat (17.2.1).

14.2.2 IsPoslInt

> IsPosInt(obj) (Category)

Every positive integer lies in the category IsPosInt.

14.2.3 Int

> Int(elm) (attribute)

Int returns an integer int whose meaning depends on the type of elm.

If elm is a rational number (see Chapter 17) then int is the integer part of the quotient of numer-
ator and denominator of elm (see QuoInt (14.3.1)).

If elm is an element of a finite prime field (see Chapter 59) then int is the smallest nonnegative
integer such that elm = int * One(elm).

If elm is a string (see Chapter 27) consisting of digits 0, >1°, ..., ’9? and ’-’ (at the first
position) then int is the integer described by this string. The operation String (27.7.6) can be used
to compute a string for rational integers, in fact for all cyclotomics.

Example

gap> Int(4/3); 1Int(-2/3);

1

0

gap> int:= Int(Z(5)); dint * One(Z(5));

2

Z(5)

gap> Int("12345"); Int("-27"); Int("-27/3");
12345

GAP - Reference Manual 179

-27
fail

14.2.4 IsEvenlnt

> IsEvenInt(n) (function)

tests if the integer n is divisible by 2.

14.2.5 IsOddInt

> Is0ddInt(n) (function)

tests if the integer n is not divisible by 2.

14.2.6 AbsInt

> AbsInt(n) (function)

AbsInt returns the absolute value of the integer n, i.e., n if n is positive, -n if n is negative and 0
ifnis 0.
AbsInt is a special case of the general operation EuclideanDegree (56.6.2).

See also AbsoluteValue (18.1.8).
Example

gap> AbsInt(33);

33

gap> AbsInt(-214378);
214378

gap> AbsInt(0);

0

14.2.7 SignInt

> Signlnt (n) (function)

SignInt returns the sign of the integer n, i.e., 1 if n is positive, -1 if n is negative and 0 if n is 0.
Example

gap> SignInt(33);

1

gap> SignInt(-214378);
-1

gap> SignInt(0);

0

14.2.8 LoglInt

> LogInt(n, base) (function)

GAP - Reference Manual 180

LogInt returns the integer part of the logarithm of the positive integer n with respect to the
positive integer base, i.e., the largest positive integer e such that base® < n. The function LogInt
will signal an error if either n or base is not positive.

For base =2 this is very efficient because the internal binary representation of the integer is used.

Example

gap> LogInt(1030, 2);
10

gap> 2710;

1024

gap> LogInt(1, 10);

0

14.2.9 RootInt

> RootInt(n[, k1) (function)

RootInt returns the integer part of the kth root of the integer n. If the optional integer argument
k is not given it defaults to 2, i.e., RootInt returns the integer part of the square root in this case.

If n is positive, RootInt returns the largest positive integer r such that K <n Ifnis negative
and k is odd RootInt returns -RootInt(-n, k). If n is negative and k is even RootInt will
cause an error. RootInt will also cause an error if k is O or negative.

Example

gap> RootInt(361);

19

gap> RootInt(2 * 10712);
1414213

gap> RootInt(17000, 5);
7

gap> 7°5;

16807

14.2.10 SmallestRootInt

> SmallestRootInt (n) (function)

SmallestRootInt returns the smallest root of the integer n.

The smallest root of an integer n is the integer r of smallest absolute value for which a positive

integer k exists such that n = r*.

Example
gap> SmallestRootInt(2730);
2
gap> SmallestRootInt(-(2°30));
-4
Note that (—2)30 = +(2%).
Example

gap> SmallestRootInt(279936);
6
gap> LogInt(279936, 6);

GAP - Reference Manual 181

7
gap> SmallestRootInt(1001);
1001

14.2.11 ListOfDigits
> LiStOfDigitS(n) (function)
For a positive integer n this function returns a list 1, consisting of the digits of n in decimal

representation.
Example

gap> List0fDigits(3142);
[3,1, 4, 2]

14.2.12 Random (for integers)

> Random(Integers) (method)

Random for integers returns pseudo random integers between —10 and 10 distributed according to
a binomial distribution. To generate uniformly distributed integers from a range, use the construction
Random([low .. high]) (seeRandom (30.7.1)).

14.3 Quotients and Remainders

14.3.1 Quolnt

> QuolInt(n, m) (function)

QuoInt returns the integer part of the quotient of its integer operands.

If n and m are positive, QuoInt returns the largest positive integer g such that gxm < n. If n orm
or both are negative the absolute value of the integer part of the quotient is the quotient of the absolute
values of n and m, and the sign of it is the product of the signs of n and m.

QuoInt is used in a method for the general operation EuclideanQuotient (56.6.3).
Example
gap> QuoInt(5,3); QuoInt(-5,3); QuoInt(5,-3); QuoInt(-5,-3);
1

-1

-1

1

14.3.2 BestQuolnt
> BestQuolInt(n, m) (function)
BestQuoInt returns the best quotient g of the integers n and m. This is the quotient such that

n — ¢ *m has minimal absolute value. If there are two quotients whose remainders have the same
absolute value, then the quotient with the smaller absolute value is chosen.

GAP - Reference Manual 182

Example
gap> BestQuoInt(5, 3); BestQuoInt(-5, 3);
2
-2
14.3.3 Remlnt
> RemInt (Il, m) (function)

RemInt returns the remainder of its two integer operands.

If m is not equal to zero, RemInt returns n - m * QuoInt(n, m). Note that the rules given
for QuoInt (14.3.1) imply that the return value of RemInt has the same sign as n and its absolute
value is strictly less than the absolute value of m. Note also that the return value equals n mod m
when both n and m are nonnegative. Dividing by 0 signals an error.

RemInt is used in a method for the general operation EuclideanRemainder (56.6.4).
Example
gap> RemInt(5,3); RemInt(-5,3); RemInt(5,-3); RemInt(-5,-3);
2

-2

2

-2

14.3.4 GcedInt

> GecdInt(m, n) (function)

GedInt returns the greatest common divisor of its two integer operands m and n, i.e., the greatest
integer that divides both m and n. The greatest common divisor is never negative, even if the arguments
are. We define GedInt(m, 0) = GedInt(O, m) = AbsInt(m) and GedInt(0, 0) =
0.

GcdInt is a method used by the general function Ged (56.7.1).

Example

gap> GedInt(123, 66);
3

14.3.5 Gcedex

> Gcdex(m, n) (function)

returns a record g describing the extended greatest common divisor of m and n. The compo-
nent ged is this ged, the components coeffl and coeff2 are integer cofactors such that g.gcd =
g.coeffl * m + g.coeff2 * n, and the components coeff3 and coeff4 are integer cofactors
suchthat 0 = g.coeff3 * m + g.coeffd * n.

If m and n both are nonzero, AbsInt(g.coeffl) is less than or equal to AbsInt(n) / (2 *
g.gcd), and AbsInt(g.coeff2) isless than or equal to AbsInt(m) / (2 * g.gcd).

If m or n or both are zero coeff3is -n / g.gcd and coeffdism / g.gcd.

The coefficients always form a unimodular matrix, i.e., the determinant g.coeffl * g.coeff4
- g.coeff3 * g.coeff2isor —1.

GAP - Reference Manual 183

Example

gap> Gedex(123, 66);
rec(coeffl := 7, coeff2 := -13, coeff3 := -22, coeffd := 41,
ged = 3)

This means 3 =7 123 —13%66, 0 = —22 % 123 441 * 66.
Example

gap> Gedex(0, -3);
rec(coeffl := 0, coeff2 := -1, coeff3 := 1, coeff4d := 0, gcd := 3)
gap> Gecdex(0, 0);
rec(coeffl := 1, coeff2 := 0, coeff3 := 0, coeffd := 1, gcd := 0)

GcdRepresentation (56.7.3) provides similar functionality over arbitrary Euclidean rings.

14.3.6 LcmliInt

> LemInt (m, n) (function)

returns the least common multiple of the integers m and n.
LemInt is a method used by the general operation Lem (56.7.6).
Example

gap> LemInt(123, 66);
2706

14.3.7 CoefficientsQadic

> CoefficientsQadic(i, q) (operation)

returns the g-adic representation of the integer i as a list / of coefficients satisfying the equality
i=Y,_0q’ 1[j+1] foran integer q > I.
Example

gap> l:=CoefficientsQadic(462,3);
[0, 1,0,2,2,1]

14.3.8 CoefficientsMultiadic

> CoefficientsMultiadic(ints, int) (function)

returns the multiadic expansion of the integer int modulo the integers given in ints (in ascending
order). It returns a list of coefficients in the reverse order to that in ints.

14.3.9 ChineseRem
> ChineseRem(moduli, residues) (function)

ChineseRem returns the combination of the residues modulo the moduli, i.e., the unique in-
teger ¢ from [0..Lcm(moduli)-1] such that ¢ = residues [i] modulo moduli [i] for all 1, if it
exists. If no such combination exists ChineseRem signals an error.

GAP - Reference Manual 184

Such a combination does exist if and only if residues[i] = residues[k] mod Gcd(
moduli [i], moduli [k]) for every pair i, k. Note that this implies that such a combination exists
if the moduli are pairwise relatively prime. This is called the Chinese remainder theorem.

Example
gap> ChineseRem([2, 3, 5, 71, [1, 2, 3, 41);
53
gap> ChineseRem([6, 10, 14 1, [1, 3, 51);
103
Example

gap> ChineseRem([6, 10, 14 1, [1, 2, 31);

Error, the residues must be equal modulo 2 called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> gap>

14.3.10 PowerModInt

> PowerModInt(r, e, m) (function)

returns r€ (mod m) for integers r, e and m (e > 0).

Note that PowerModInt can reduce intermediate results and thus will generally be faster than
using r~e mod m, which would compute r€ first and reduces the result afterwards.

PowerModInt is a method for the general operation PowerMod (56.7.9).

14.4 Prime Integers and Factorization

14.4.1 Primes

> Primes (global variable)

Primes is a strictly sorted list of the 168 primes less than 1000.

This is used in IsPrimeInt (14.4.2) and FactorsInt (14.4.7) to cast out small primes quickly.
Example

gap> Primes[1];

2

gap> Primes[100];
541

14.4.2 IsPrimelnt

> IsPrimelInt(n) (function)
> IsProbablyPrimelnt (n) (function)

IsPrimelInt returns false if it can prove that the integer n is composite and true otherwise.
By convention IsPrimeInt(0) = IsPrimeInt(1l) = false and we define IsPrimeInt(-n) =
IsPrimeInt(n).

GAP - Reference Manual 185

IsPrimeInt will return true for every prime n. IsPrimeInt will return false for all composite
n < 10" and for all composite n that have a factor p < 1000. So for integers n < 10'8, IsPrimeInt
is a proper primality test. It is conceivable that IsPrimeInt may return true for some composite
n > 10", but no such n is currently known. So for integers n > 10'8, IsPrimeInt is a probable-
primality test. IsPrimeInt will issue a warning when its argument is probably prime but not a proven
prime. (The function IsProbablyPrimeInt will do a similar calculation but not issue a warning.)
The warning can be switched off by SetInfolLevel (InfoPrimelInt, 0);, the default level is 1
(also see SetInfoLevel (7.4.3)).

If composites that fool IsPrimeInt do exist, they would be extremely rare, and finding one by
pure chance might be less likely than finding a bug in GAP. We would appreciate being informed
about any example of a composite number n for which IsPrimeInt returns true.

IsPrimelnt is a deterministic algorithm, i.e., the computations involve no random numbers, and
repeated calls will always return the same result. IsPrimeInt first does trial divisions by the primes
less than 1000. Then it tests that n is a strong pseudoprime w.r.t. the base 2. Finally it tests whether
n is a Lucas pseudoprime w.r.t. the smallest quadratic nonresidue of n. A better description can be
found in the comment in the library file primality.gi.

The time taken by IsPrimeInt is approximately proportional to the third power of the number of
digits of n. Testing numbers with several hundreds digits is quite feasible.

IsPrimelInt is a method for the general operation IsPrime (56.5.8).

Remark: In future versions of GAP we hope to change the definition of IsPrimeInt to return
true only for proven primes (currently, we lack a sufficiently good primality proving function). In

applications, use explicitly IsPrimeInt or IsProbablyPrimeInt with this change in mind.
Example

gap> IsPrimeInt(2731 - 1);
true
gap> IsPrimeInt(10742 + 1);
false

14.4.3 PrimalityProof

> PrimalityProof (n) (function)

Construct a machine verifiable proof of the primality of (the probable prime) n, following the
ideas of [BLS75]. The proof consists of various Fermat and Lucas pseudoprimality tests, which taken
as a whole prove the primality. The proof is represented as a list of witnesses of two kinds. The first
kind, ["F", divisor, base], indicates a successful Fermat pseudoprimality test, where n is a
strong pseudoprime at base with order not divisible by (n — 1) /divisor. The second kind, ["L",
divisor, discriminant, P] indicates a successful Lucas pseudoprimality test, for a quadratic
form of given discriminant and middle term P with an extra check at (n + 1) /divisor.

14.4.4 IsPrimePowerlInt

> IsPrimePowerInt (n) (function)

IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.

An integer n is a prime power if there exists a prime p and a positive integer i such that p’ = n.
If n is negative the condition is that there must exist a negative prime p and an odd positive integer i
such that p’ = n. The integers 1 and -1 are not prime powers.

GAP - Reference Manual 186

Note that IsPrimePowerInt uses SmallestRootInt (14.2.10) and a probable-primality test (see
IsPrimeInt (14.4.2)).

Example
gap> IsPrimePowerInt(3175);
true
gap> IsPrimePowerInt(2°31-1); # 2~31-1 is actually a prime
true
gap> IsPrimePowerInt(2°63-1);
false
gap> Filtered([-10..10], IsPrimePowerInt);
[-8, -7, -5, -3, -2, 2, 3, 4,5,7,8, 9]

14.4.5 NextPrimelnt

> NextPrimeInt (n) (function)

NextPrimeInt returns the smallest prime which is strictly larger than the integer n.
Note that NextPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).

Example
gap> NextPrimeInt(541); NextPrimeInt(-1);
547
2
14.4.6 PrevPrimelnt
> PrevPrimeInt (n) (function)

PrevPrimeInt returns the largest prime which is strictly smaller than the integer n.
Note that PrevPrimeInt uses a probable-primality test (see IsPrimeInt (14.4.2)).

Example
gap> PrevPrimeInt(541); PrevPrimeInt(1);
523
-2
14.4.7 Factorsint
> FactorsInt(n) (function)
> FactorsInt(n: RhoTrials := trials) (function)

FactorsInt returns a list of factors of a given integer n such that Product (FactorsInt(n)
) = n. If |n| <1 the list [n] is returned. Otherwise the result contains probable primes, sorted by
absolute value. The entries will all be positive except for the first one in case of a negative n.

See PrimeDivisors (14.4.8) for a function that returns a set of (probable) primes dividing n.

Note that FactorsInt uses a probable-primality test (see IsPrimeInt (14.4.2)). Thus
FactorsInt might return a list which contains composite integers. In such a case you will get a
warning about the use of a probable prime. You can switch off these warnings by SetInfoLevel(
InfoPrimeInt, O); (also see SetInfolLevel (7.4.3)).

The time taken by FactorsInt is approximately proportional to the square root of the second
largest prime factor of n, which is the last one that FactorsInt has to find, since the largest factor

GAP - Reference Manual 187

is simply what remains when all others have been removed. Thus the time is roughly bounded by the
fourth root of n. FactorsInt is guaranteed to find all factors less than 10° and will find most factors
less than 10'°. If n contains multiple factors larger than that FactorsInt may not be able to factor n
and will then signal an error.

FactorsInt is used in a method for the general operation Factors (56.5.9).

In the second form, FactorsInt calls FactorsRho with a limit of trials on the number of
trials it performs. The default is 8192. Note that Pollard’s Rho is the fastest method for finding prime
factors with roughly 5-10 decimal digits, but becomes more and more inferior to other factorization
techniques like e.g. the Elliptic Curves Method (ECM) the bigger the prime factors are. Therefore
instead of performing a huge number of Rho trials, itis usually more advisable to install the Factint
package and then simply to use the operation Factors (56.5.9). The factorization of the 8-th Fermat

number by Pollard’s Rho below takes already a while.
Example

gap> FactorsInt(-Factorial(6));

[-2, 2,2,2,3,3,5]

gap> Set(FactorsInt(Factorial(13)/11));

[2,3,5,7,13]

gap> FactorsInt(2763 - 1);

[7,7, 73, 127, 337, 92737, 649657]

gap> FactorsInt(10742 + 1);

[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]

gap> FactorsInt(2°256+1:RhoTrials:=100000000) ;

[1238926361552897,
93461639715357977769163558199606896584051237541638188580280321]

14.4.8 PrimeDivisors

> PrimeDivisors(n) (attribute)

PrimeDivisors returns for a non-zero integer n a set of its positive (probable) primes divisors.
In rare cases the result could contain a composite number which passed certain primality tests, see

IsProbablyPrimelInt (14.4.2) and FactorsInt (14.4.7) for more details.
Example

gap> PrimeDivisors(-12);
[2, 3]
gap> PrimeDivisors(1);

L]

14.4.9 PartialFactorization

> PartialFactorization(n/[, effort]) (operation)

PartialFactorization returns a partial factorization of the integer n. No assertions are made
about the primality of the factors, except of those mentioned below.

The argument effort, if given, specifies how intensively the function should try to determine
factors of n. The default is effort = 5.

o If effort =0, trial division by the primes below 100 is done. Returned factors below 10* are
guaranteed to be prime.

GAP - Reference Manual 188

s If effort = 1, trial division by the primes below 1000 is done. Returned factors below 10° are
guaranteed to be prime.

e If effort = 2, additionally trial division by the numbers in the lists Primes2 and
ProbablePrimes2 is done, and perfect powers are detected. Returned factors below 10° are
guaranteed to be prime.

* If effort =3, additionally FactorsRho (Pollard’s Rho) with RhoTrials = 256 is used.
e If effort =4, as above, but RhoTrials = 2048.

o If effort = 5, as above, but RhoTrials = 8192. Returned factors below 102 are guaranteed
to be prime, and all prime factors below 10° are guaranteed to be found.

» If effort = 6 and the package Factlnt is loaded, in addition to the above quite a number of
special cases are handled.

 If effort =7 and the package Factint is loaded, the only thing which is not attempted to obtain
a full factorization into Baillie-Pomerance-Selfridge-Wagstaft pseudoprimes is the application
of the MPQS to a remaining composite with more than 50 decimal digits.

Increasing the value of the argument effort by one usually results in an increase of the runtime
requirements by a factor of (very roughly!) 3 to 10. (Also see CheapFactorsInt (EDIM: Cheap-

Factorslnt)).
Example
gap> List([0..5],i->PartialFactorization(97~35-1,1));
[[2, 2,2, 2,2, 3, 11, 31, 43,
2446338959059521520901826365168917110105972824229555319002965029 1,
[2, 2,2, 2,2, 3, 11, 31, 43, 967,
2529823122088440042297648774735177983563570655873376751812787],
[2, 2,2, 2,2, 3, 11, 31, 43, 967,
2529823122088440042297648774735177983563570655873376751812787 1,
[2, 2,2, 2,2, 3, 11, 31, 43, 967, 39761, 262321,
242549173950325921859769421435653153445616962914227 1,
[2, 2,2, 2,2, 3, 11, 31, 43, 967, 39761, 262321, 687121,
352993394104278463123335513593170858474150787],
[2, 2, 2,2, 2, 3, 11, 31, 43, 967, 39761, 262321, 687121,
20241187, 504769301, 34549173843451574629911361501] 1]

14.4.10 PrintFactorsInt

> PrintFactorsInt (n) (function)

prints the prime factorization of the integer n in human-readable form.
Example
gap> PrintFactorsInt(Factorial(7)); Print("\n");
274%372%5X7

GAP - Reference Manual 189

14.4.11 PrimePowersInt

> PrimePowersInt (n) (function)

returns the prime factorization of the integer n as a list [pi,ey,..., pk,ex] withn = pi' - p3? - .- pi*.

Example
gap> PrimePowersInt(Factorial(7));
[2,4,3,2,5,1,7,1]

14.4.12 DivisorsInt

> DivisorsInt (n) (function)

DivisorsInt returns a list of all divisors of the integer n. The list is sorted, so that it starts with
1 and ends with n. We define that DivisorsInt(-n) = DivisorsInt(n).

Since the set of divisors of 0 is infinite calling DivisorsInt(0) causes an error.

DivisorsInt may call FactorsInt (14.4.7) to obtain the prime factors. Sigma (15.5.1) and Tau
(15.5.2) compute the sum and the number of positive divisors, respectively.

Example
gap> DivisorsInt(1); DivisorsInt(20); DivisorsInt(541);
[1]
[1, 2, 4, 5, 10, 20]
[1, 541]

14.5 Residue Class Rings

ZmodnZ (14.5.2) returns a residue class ring of Integers (14) modulo an ideal. These residue class
rings are rings, thus all operations for rings (see Chapter 56) apply. See also Chapters 59 and 15.

14.5.1 \mod (for residue class rings)

> \mod (r/ S, Il) (operation)
If r, s and n are integers, r / s as a reduced fraction is p/q, where q and n are coprime, then

r / s mod n is defined to be the product of p and the inverse of ¢ modulo n. See Section 4.13 for

more details and definitions.

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal
to 22), despite the fact that 6 has no inverse modulo 32.

14.5.2 ZmodnZ

> ZmodnZ (n) (function)
> Zmode (p) (function)
> ZmodeNC (p) (function)

ZmodnZ returns a ring R isomorphic to the residue class ring of the integers modulo the ideal
generated by n. The element corresponding to the residue class of the integer i in this ring can be

GAP - Reference Manual 190

obtained by i * One(R), and a representative of the residue class corresponding to the element
X € R can be computed by Int(x).

ZmodnZ(n) is equal to Integers mod n.

ZmodpZ does the same if the argument p is a prime integer, additionally the result is a field.
ZmodpZNC omits the check whether p is a prime.

Each ring returned by these functions contains the whole family of its elements if n is not a prime,
and is embedded into the family of finite field elements of characteristic n if n is a prime.

14.5.3 ZmodnZObj (for a residue class family and integer)

> ZmodnZ0bj (Fam, r) (operation)
> ZmodnZ0bj(r, n) (operation)

If the first argument is a residue class family Fam then ZmodnZ0bj returns the element in Fam
whose coset is represented by the integer r.

If the two arguments are an integer r and a positive integer n then ZmodnZ0bj returns the element
in ZmodnZ (n) (see ZmodnZ (14.5.2)) whose coset is represented by the integer r.

Example

gap> r:= ZmodnZ(15);

(Integers mod 15)

gap> fam:=ElementsFamily(FamilyObj(r));;
gap> a:= ZmodnZ0bj(fam,9);

ZmodnZ0bj(9, 15)

gap> ata;

ZmodnZ0Obj(3, 15)

gap> Int(a+a);

3

14.5.4 IsZmodnZObj

> IsZmodnZObj (Obj) (Category)
> IsZmodnZ0bjNonprime (obj) (Category)
> I sZmodeObj (Obj) (Category)
> IsZmodpZObjSmall(obj) (Category)
> IsZmodpZObjLarge(obj) (Category)

The elements in the rings Z/nZ are in the category IsZmodnZ0bj. If n is a prime then the elements
are of course also in the category IsFFE (59.1.1), otherwise they are in IsZmodnZObjNonprime.
IsZmodpZObj is an abbreviation of IsZmodnZ0Obj and ISFFE. This category is the disjoint union
of IsZmodpZ0ObjSmall and IsZmodpZObjLarge, the former containing all elements with n at most
MAXSIZE_GF_INTERNAL.

The reasons to distinguish the prime case from the nonprime case are

* that objects in IsZmodnZObjNonprime have an external representation (namely the residue in
the range [0,1,...,n— 1)),

* that the comparison of elements can be defined as comparison of the residues, and

GAP - Reference Manual 191

* that the elements lie in a family of type IsZmodnZ0bjNonprimeFamily (note that for prime n,
the family must be an IsFFEFamily).

The reasons to distinguish the small and the large case are that for small n the elements must
be compatible with the internal representation of finite field elements, whereas we are free to define
comparison as comparison of residues for large n.

Note that we cannot claim that every finite field element of degree 1 is in IsZmodnZ0bj, since
finite field elements in internal representation may not know that they lie in the prime field.

14.6 Check Digits

14.6.1 CheckDigitISBN

> CheckDigitISBN(n) (function)
> CheCkDigitISBNlS(n) (function)
> CheckDigitPostalMoneyOrder (n) (function)
> CheckDigitUPC(n) (function)

These functions can be used to compute, or check, check digits for some everyday items. In each
case what is submitted as input is either the number with check digit (in which case the function
returns true or false), or the number without check digit (in which case the function returns the
missing check digit). The number can be specified as integer, as string (for example in case of leading
zeros) or as a sequence of arguments, each representing a single digit. The check digits tested are
the 10-digit ISBN (International Standard Book Number) using CheckDigitISBN (since arithmetic is
module 11, a digit 11 is represented by an X); the newer 13-digit ISBN-13 using CheckDigitISBN13;
the numbers of 11-digit US postal money orders using CheckDigitPostalMoneyOrder; and the 12-
digit UPC bar code found on groceries using CheckDigitUPC.

Example

gap> CheckDigitISBN("052166103");

Check Digit is ’X’

7X7

gap> CheckDigitISBN("052166103X");
Checksum test satisfied

true

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,1);
Checksum test failed

false

gap> CheckDigitISBN(0,5,2,1,6,6,1,0,3,°X’); # note single quotes!
Checksum test satisfied

true

gap> CheckDigitISBN13("9781420094527") ;
Checksum test satisfied

true

gap> CheckDigitUPC("07164183001");

Check Digit is 1

1

gap> CheckDigitPostalMoneyOrder (16786457155) ;
Checksum test satisfied

true

GAP - Reference Manual 192

14.6.2 CheckDigitTestFunction

> CheckDigitTestFunction(l, m, f) (function)

This function creates check digit test functions such as CheckDigitISBN (14.6.1) for check digit
schemes that use the inner products with a fixed vector modulo a number. The scheme creates will
use strings of 1 digits (including the check digits), the check consists of taking the standard product
of the vector of digits with the fixed vector £ modulo m; the result needs to be 0. The function returns

a function that then can be used for testing or determining check digits.
Example
gap> isbntest:=CheckDigitTestFunction(10,11,[1,2,3,4,5,6,7,8,9,-1]);
function(arg...) ... end

gap> isbntest("038794680") ;

Check Digit is 2

2

14.7 Random Sources

GAP provides Random (30.7.1) methods for many collections of objects. On a lower level these
methods use random sources which provide random integers and random choices from lists.

14.7.1 IsRandomSource

> IsRandomSource(obj) (Category)

This is the category of random source objects which are defined to have, for an object rs in this
category, methods available for the following operations which are explained in more detail below:
Random(rs, list) giving a random element of a list, Random(rs, low, high) giving a
random integer between 1ow and high (inclusive), Init (14.7.3), State (14.7.3) and Reset (14.7.3).

Use RandomSource (14.7.5) to construct new random sources.

One idea behind providing several independent (pseudo) random sources is to make algorithms
which use some sort of random choices deterministic. They can use their own new random source
created with a fixed seed and so do exactly the same in different calls.

Random source objects lie in the family RandomSourcesFamily.

14.7.2 Random (for random source and list)

> Random(rs, list) (operation)
> Random(rs, low, high) (operation)

This operation returns a random element from list 1ist, or an integer in the range from the given
(possibly large) integers 1ow to high, respectively.
The choice should only depend on the random source rs and have no effect on other random

sources.

Example
gap> mysource := RandomSource(IsMersenneTwister, 42);;

gap> Random(mysource, 1, 10760);
999331861769949319194941485000557997842686717712198687315183

GAP - Reference Manual 193

14.7.3 State

> State(rs) (operation)
> Reset(rs[, seed]) (operation)
> Init(prers[, seed]) (operation)

These are the basic operations for which random sources (see IsRandomSource (14.7.1)) must
have methods.

State should return a data structure which allows to recover the state of the random source such
that a sequence of random calls using this random source can be reproduced. If a random source
cannot be reset (say, it uses truly random physical data) then State should return fail.

Reset(rs, seed) resets the random source rs to a state described by seed, if the random
source can be reset (otherwise it should do nothing). Here seed can be an output of State and then
should reset to that state. Also, the methods should always allow integers as seed. Without the seed
argument the default seed = 1 is used.

Init is the constructor of a random source, it gets an empty component object prers which has
already the correct type and should fill in the actual data which are needed. Optionally, it should allow
one to specify a seed for the initial state, as explained for Reset.

Most methods for Random (30.7.1) in the GAP library use the GlobalMersenneTwister (14.7.4)
as random source. It can be reset into a known state as in the following example.

Example
gap> seed := State(GlobalMersenneTwister);;
gap> List([1..10],i->Random(Integers));
[2, -1, -2, -1, -1, 1, -4, 1, 0, -1]

gap> List([1..10],i->Random(Integers));

[-1, -1, 1, -1, 1, -2, -1, -2, 0, -1]
gap> Reset(GlobalMersenneTwister, seed);;
gap> List([1..10],i->Random(Integers));

[2, -1, -2, -1, -1, 1, -4, 1, 0, -1]

14.7.4 IsMersenneTwister

> IsMersenneTwister(rs) (Category)
> IsGAPRandomSource(rs) (Category)
> IsGlobalRandomSource (rs) (Category)
> GlobalMersenneTwister (global variable)
> GlobalRandomSource (global variable)

Currently, the GAP library provides three types of random sources, distinguished by the three
listed categories.

IsMersenneTwister are random sources which use a fast random generator of 32 bit numbers,
called the Mersenne twister. The pseudo random sequence has a period of 2!°37 — 1 and the numbers
have a 623-dimensional equidistribution. For more details and the origin of the code used in the GAP
kernel, see: http://www.math.sci.hiroshima-u.ac.jp/ "m-mat/MT/emt.html.

Use the Mersenne twister if possible, in particular for generating many large random integers.

There is also a predefined global random source GlobalMersenneTwister which is used by most
of the library methods for Random (30.7.1).

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

GAP - Reference Manual 194

IsGAPRandomSource uses the same number generator as IsGlobalRandomSource, but you can
create several of these random sources which generate their random numbers independently of all
other random sources.

IsGlobalRandomSource gives access to the classical global random generator which was
used by GAP in former releases. You do not need to construct new random sources of this
kind which would all use the same global data structure. Just use the existing random source
GlobalRandomSource. This uses the additive random number generator described in [Knu98] (Al-
gorithm A in 3.2.2 with lag 30).

14.7.5 RandomSource

> RandomSource(cat[, seed]) (operation)

This operation is used to create new random sources. The first argument cat is the category
describing the type of the random generator, an optional seed which can be an integer or a type
specific data structure can be given to specify the initial state.

Example
gap> rsl := RandomSource(IsMersenneTwister);
<RandomSource in IsMersenneTwister>

gap> statel := State(rsl);;

gap> 11 := List([1..10000], i-> Random(rsi, [1..61));;

gap> rs2 := RandomSource(IsMersenneTwister);;

gap> 12 := List([1..10000], i-> Random(rs2, [1..61));;
gap> 11 = 12;

true

gap> 11 = List([1..10000], i-> Random(rsil, [1..6]));

false
gap> n := Random(rsil, 1, 27220);
1077726777923092117987668044202944212469136000816111066409337432400

Chapter 15

Number Theory

GAP provides a couple of elementary number theoretic functions. Most of these deal with the group
of integers coprime to m, called the prime residue group. The order of this group is ¢ (m) (see Phi
(15.2.2)), and A(m) (see Lambda (15.2.3)) is its exponent. This group is cyclic if and only if m is 2,
4, an odd prime power p", or twice an odd prime power 2p". In this case the generators of the group,
i.e., elements of order ¢ (m), are called primitive roots (see PrimitiveRootMod (15.3.3)).

Note that neither the arguments nor the return values of the functions listed below are groups or
group elements in the sense of GAP. The arguments are simply integers.

15.1 InfoNumtheor (Info Class)

15.1.1 InfoNumtheor

> InfoNumtheor (info class)

InfoNumtheor is the info class (see 7.4) for the functions in the number theory chapter.

15.2 Prime Residues

15.2.1 PrimeResidues

> PrimeResidues (m) (function)

PrimeResidues returns the set of integers from the range [O .. Abs(m)-1] that are co-
prime to the integer m.
Abs (m) must be less than 2%, otherwise the set would probably be too large anyhow.

Example
gap> PrimeResidues(O); PrimeResidues(1); PrimeResidues(20);
]

0 1]
1, 3, 7, 9, 11, 13, 17, 19]

195

GAP - Reference Manual 196

15.2.2 Phi
> Phi(m) (operation)
Phi returns the number ¢ (m) of positive integers less than the positive integer m that are coprime

to m.
Suppose that m = p§' p$ -+ pf*. Then ¢ (m) is p$' " (p1 — D)p$ " (pa— 1) pf (pr—1).

Example
gap> Phi(12);
4
gap> Phi(2713-1); # this proves that 2°(13)-1 is a prime
8190
gap> Phi(2715-1);
27000
15.2.3 Lambda
> Lambda(m) (operation)

Lambda returns the exponent A (m) of the group of prime residues modulo the integer m.

A(m) is the smallest positive integer / such that for every a relatively prime to m we have o’ = 1
(mod m). Fermat’s theorem asserts ¢ ™) =1 (mod m); thus A(m) divides ¢ (m) (see Phi (15.2.2)).

Carmichael’s theorem states that A can be computed as follows: A(2) =1, A(4) =2 and A(2¢) =
2¢72if 3 < e, A(p?) = (p—1)p¢~! (i.e. ¢(m)) if p is an odd prime and A (m *n) =Lcm(A (m),A(n))
if m,n are coprime.

Composites for which A(m) divides m — 1 are called Carmichaels. If 6k+ 1, 12k + 1 and
18k 4 1 are primes their product is such a number. There are only 1547 Carmichaels below 10'°

but 455052511 primes.
Example

gap> Lambda(10);

4

gap> Lambda(30);

4

gap> Lambda(561); # 561 is the smallest Carmichael number
80

15.2.4 GeneratorsPrimeResidues

> GeneratorsPrimeResidues(n) (function)

Let n be a positive integer. GeneratorsPrimeResidues returns a description of generators of
the group of prime residues modulo n. The return value is a record with components

primes:
a list of the prime factors of n,

exponents:
a list of the exponents of these primes in the factorization of n, and

GAP - Reference Manual 197

generators:
a list describing generators of the group of prime residues; for the prime factor 2, either a
primitive root or a list of two generators is stored, for each other prime factor of n, a primitive
root is stored.

Example
gap> GeneratorsPrimeResidues(1);
rec(exponents := [], generators := [], primes := [])
gap> GeneratorsPrimeResidues(4%3);
rec(exponents := [2, 1], generators := [7, 51,

primes := [2, 3 1)
gap> GeneratorsPrimeResidues(8*9%5);
rec(exponents := [3, 2, 1 1],

generators := [[271, 181], 281, 217], primes := [2, 3, 561)
15.3 Primitive Roots and Discrete Logarithms
15.3.1 OrderMod
> OrderMod(n, m) (function)

OrderMod returns the multiplicative order of the integer n modulo the positive integer m. If n and
m are not coprime the order of n is not defined and OrderMod will return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest positive
integer i such that n’ =1 (modm). If the group of prime residues modulo m is cyclic then each
element of maximal order is called a primitive root modulo m (see IsPrimitiveRootMod (15.3.4)).

OrderMod usually spends most of its time factoring m and ¢ (m) (see FactorsInt (14.4.7)).
Example

gap> OrderMod(2, 7);

3

gap> OrderMod(3, 7); # 3 is a primitive root modulo 7
6

15.3.2 LogMod

> LogMod(n, r, m) (function)
> LogModShanks(n, r, m) (function)

computes the discrete r-logarithm of the integer n modulo the integer m. It returns a number 1
such that r1 = n (mod m) if such a number exists. Otherwise fail is returned.
LogModShanks uses the Baby Step - Giant Step Method of Shanks (see for example [Coh93,

section 5.4.1]) and in general requires more memory than a call to LogMod.

Example
gap> 1:= LogMod(2, 5, 7); 571 mod 7 = 2;
4
true
gap> LogMod(1, 3, 3); LogMod(2, 3, 3);
0
fail

GAP - Reference Manual 198

15.3.3 PrimitiveRootMod

> PrimitiveRootMod(m[, start]) (function)

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and
fail if no such primitive root exists. If the optional second integer argument start is given
PrimitiveRootMod returns the smallest primitive root that is strictly larger than start.

Example
gap> # largest primitive root for a prime less than 2000:
gap> PrimitiveRootMod(409);

21

gap> PrimitiveRootMod(541, 2);

10

gap> # 327 is the largest primitive root mod 337:

gap> PrimitiveRootMod(337, 327);

fail

gap> # there exists no primitive root modulo 30:

gap> PrimitiveRootMod(30);

fail

15.3.4 IsPrimitiveRootMod
> IsPrimitiveRootMod(r, m) (function)
IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive integer

m, and false otherwise. If r is less than O or larger than m it is replaced by its remainder.
Example

gap> IsPrimitiveRootMod(2, 541);

true

gap> IsPrimitiveRootMod(-539, 541); # same computation as above;
true

gap> IsPrimitiveRootMod(4, 541);

false

gap> ForAny([1..29], r -> IsPrimitiveRootMod(r, 30));

false

gap> # there is no a primitive root modulo 30

15.4 Roots Modulo Integers

15.4.1 Jacobi

> Jacobi (Il, m) (function)

Jacobi returns the value of the Kronecker-Jacobi symbol J(n,m) of the integer n modulo the
integer m. It is defined as follows:

If n and m are not coprime then J(n,m) = 0. Furthermore, J(n,1) =1 and J(n,—1) = —1 if
m < 0 and +1 otherwise. And for odd 7 it is J(n,2) = (— 1)k with k = (n> — 1) /8. For odd primes
m which are coprime to n the Kronecker-Jacobi symbol has the same value as the Legendre symbol
(see Legendre (15.4.2)).

GAP - Reference Manual 199

For the general case suppose that m = p; - p» - - - py is a product of —1 and of primes, not necessarily
distinct, and that n is coprime to m. Then J(n,m) = J(n,p1)-J(n,p2)---J(n, px).

Note that the Kronecker-Jacobi symbol coincides with the Jacobi symbol that is defined for odd m
in many number theory books. For odd primes m and n coprime to m it coincides with the Legendre
symbol.

Jacobi is very efficient, even for large values of n and m, it is about as fast as the Euclidean
algorithm (see Ged (56.7.1)).

Example
gap> Jacobi(11, 35); # 972 = 11 mod 35

1

gap> # this is -1, thus there is no r such that r~2 = 6 mod 35
gap> Jacobi(6, 35);

-1

gap> # this is 1 even though there is no r with r°2 = 3 mod 35
gap> Jacobi(3, 35);

1

15.4.2 Legendre

> Legendre(n, m) (function)
Legendre returns the value of the Legendre symbol of the integer n modulo the positive integer

The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e., if there
exists an integer 7 such that ¥ =n (mod m) and —1 otherwise.

If a root of n exists it can be found by RootMod (15.4.3).

While the value of the Legendre symbol usually is only defined for m a prime, we have extended
the definition to include composite moduli too. The Jacobi symbol (see Jacobi (15.4.1)) is another
generalization of the Legendre symbol for composite moduli that is much cheaper to compute, because
it does not need the factorization of m (see FactorsInt (14.4.7)).

A description of the Jacobi symbol, the Legendre symbol, and related topics can be found in
[Bak&4].

Example
gap> Legendre(5, 11); # 472 = 5 mod 11
1
gap> # this is -1, thus there is no r such that r°2 = 6 mod 11
gap> Legendre(6, 11);
-1
gap> # this is -1, thus there is no r such that r°2 = 3 mod 35
gap> Legendre(3, 35);
-1
15.4.3 RootMod
> RootMod(n[, k], m) (function)

RootMod computes a kth root of the integer n modulo the positive integer m, i.e., a r such that
rX=n (mod m). If no such root exists RootMod returns fail. If only the arguments n and m are
given, the default value for k is 2.

GAP - Reference Manual 200

A square root of n exists only if Legendre(n,m) = 1 (see Legendre (15.4.2)). If m has r
different prime factors then there are 2" different roots of n mod m. It is unspecified which one
RootMod returns. You can, however, use RootsMod (15.4.4) to compute the full set of roots.

RootMod is efficient even for large values of m, in fact the most time is usually spent factoring m
(see FactorsInt (14.4.7)).

Example
gap> # note ’RootMod’ does not return 8 in this case but -8:
gap> RootMod(64, 1009);
1001
gap> RootMod(64, 3, 1009);
518
gap> RootMod(64, 5, 1009);
656
gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009); # set of all square roots of 64 mod 1009
[1001, 8]

15.4.4 RootsMod
> RootsMod(n[, k], m) (function)
RootsMod computes the set of kth roots of the integer n modulo the positive integer m, i.e., the

list of all 7 such that X =n (mod m). If only the arguments n and m are given, the default value for
kis 2.

Example
gap> RootsMod(1, 7*31); # the same as ‘RootsUnityMod(7%31)’
[1, 92, 125, 216]

gap> RootsMod(7, 7*31);

[21, 196]
gap> RootsMod(5, 7%31);
[]

gap> RootsMod(1, 5, 7*31);
[1, 8, 64, 78, 190]

15.4.5 RootsUnityMod

> RootsUnityMod([k, Jm) (function)

RootsUnityMod returns the set of k-th roots of unity modulo the positive integer m, i.e., the list
of all solutions 7 of ¥ =n (mod m). If only the argument m is given, the default value for k is 2.

In general there are k" such roots if the modulus m has n different prime factors p such that p =1
(mod k). If k2 divides m then there are k"*! such roots; and especially if k = 2 and 8 divides m there
are 2”2 such roots.

In the current implementation k must be a prime.
Example
gap> RootsUnityMod(7*31); RootsUnityMod(3, 7%31);
[1, 92, 125, 216]

[1, 25, 32, 36, 67, 149, 156, 191, 211]
gap> RootsUnityMod(5, 731);
[1, 8, 64, 78, 190]

GAP - Reference Manual 201

gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009); # set of all square roots of 64 mod 1009
[1001, 8]

15.5 Multiplicative Arithmetic Functions

15.5.1 Sigma

> Sigma (n) (operation)

Sigma returns the sum of the positive divisors of the nonzero integer n.

Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have that
o(n-m)=o(n)o(m).

Together with the formula o (p*) = (p**! —1)/(p — 1) this allows us to compute ¢ (n).

Integers n for which o(n) = 2n are called perfect. Even perfect integers are exactly of the form
20128 — 1) where 22 — 1 is prime. Primes of the form 2 — 1 are called Mersenne primes, and 42
among the known Mersenne primes are obtained for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107,
127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209,
44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377,
6972593, 13466917, 20996011, 24036583 and 25964951. Please find more up to date information
about Mersenne primes at http://www.mersenne.org. It is not known whether odd perfect integers
exist, however [BC89] show that any such integer must have at least 300 decimal digits.

Sigma usually spends most of its time factoring n (see FactorsInt (14.4.7)).

Example

gap> Sigma(1);

1

gap> Sigma(1009); # 1009 is a prime

1010

gap> Sigma(8128) = 2%8128; # 8128 is a perfect number
true

15.5.2 Tau

> Tau(n) (operation)

Tau returns the number of the positive divisors of the nonzero integer n.
Tau is a multiplicative arithmetic function, i.e., if n and m are relative prime we have t(n-m) =
7(n)t(m). Together with the formula 7(p*) = k+ 1 this allows us to compute 7(n).

Tau usually spends most of its time factoring n (see FactorsInt (14.4.7)).
Example

gap> Tau(1);

1

gap> Tau(1013); # thus 1013 is a prime

2

gap> Tau(8128);

14

gap> # result is odd if and only if argument is a perfect square:

http://www.mersenne.org

GAP - Reference Manual 202

gap> Tau(36);
9

15.5.3 MoebiusMu

> MoebiusMu(n) (function)

MoebiusMu computes the value of Moebius inversion function for the nonzero integer n. This is
0 for integers which are not squarefree, i.e., which are divided by a square 7>. Otherwise it is 1 if n
has a even number and —1 if n has an odd number of prime factors.

The importance of u stems from the so called inversion formula. Suppose f is a multiplica-
tive arithmetic function defined on the positive integers and let g(n) = Y4, f(d). Then f(n) =
Yant(d)g(n/d). As a special case we have ¢(n) = Y;, u(d)n/d since n = Y4, ¢(d) (see Phi
(15.2.2)).

MoebiusMu usually spends all of its time factoring n (see FactorsInt (14.4.7)).
Example
gap> MoebiusMu(60); MoebiusMu(61); MoebiusMu(62);
0

-1

15.6 Continued Fractions

15.6.1 ContinuedFractionExpansionOfRoot

> ContinuedFractionExpansionOfRoot(f, n) (function)

The first n terms of the continued fraction expansion of the only positive real root of the polyno-
mial £ with integer coefficients. The leading coefficient of £ must be positive and the value of £ at 0
must be negative. If the degree of f is 2 and n = 0, the function computes one period of the continued
fraction expansion of the root in question. Anything may happen if £ has three or more positive real

roots.
Example

gap> x := Indeterminate(Integers);;

gap> ContinuedFractionExpansionOfRoot (x~2-7,20);

[2, 1,1, 1,4, 1,1, 1, 4,1, 1,1, 4,1, 1,1, 4,1, 1, 1]

gap> ContinuedFractionExpansionOfRoot(x~2-7,0);

[2,1, 1,1, 4]

gap> ContinuedFractionExpansionOfRoot (x~3-2,20);

[1,3,1,5,1, 1, 4,1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3]

gap> ContinuedFractionExpansionOfRoot (x~5-x-1,50);

[1, 5, 1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5,
i, 7, 11, 1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1,
1, 1,1, 1,9, 2,1, 5, 4]

15.6.2 ContinuedFractionApproximationOfRoot

> ContinuedFractionApproximationOfRoot(f, n) (function)

GAP - Reference Manual 203

The nth continued fraction approximation of the only positive real root of the polynomial f with
integer coefficients. The leading coefficient of £ must be positive and the value of £ at 0 must be
negative. Anything may happen if £ has three or more positive real roots.

Example
gap> ContinuedFractionApproximationOfRoot (x~2-2,10);
3363/2378
gap> 3363°2-2%2378°2;
1
gap> z := ContinuedFractionApproximationOfRoot (x~5-x-1,20);
499898783527/428250732317
gap> z"5-z-1;
486192462527432755459620441970617283/
14404247382319842421697357558805709031116987826242631261357

15.7 Miscellaneous

15.7.1 TwoSquares

> TwoSquares (n) (function)

TwoSquares returns a list of two integers x < y such that the sum of the squares of x and y is equal
to the nonnegative integer n, i.e., n = x> + y>. If no such representation exists TwoSquares will return
fail. TwoSquares will return a representation for which the gcd of x and y is as small as possible. It
is not specified which representation TwoSquares returns if there is more than one.

Let a be the product of all maximal powers of primes of the form 4k + 3 dividing n. A represen-
tation of n as a sum of two squares exists if and only if a is a perfect square. Let b be the maximal
power of 2 dividing n or its half, whichever is a perfect square. Then the minimal possible gcd of x
and y is the square root ¢ of a-b. The number of different minimal representation with x <y is 2/~
where [is the number of different prime factors of the form 4k + 1 of n.

The algorithm first finds a square root r of —1 modulo n/(a-b), which must exist, and applies the
Euclidean algorithm to r and n. The first residues in the sequence that are smaller than \/n/(a-b)
times ¢ are a possible pair x and y.

Better descriptions of the algorithm and related topics can be found in [Wag90] and [Zag90].
Example

gap> TwoSquares(5);

[1, 2]

gap> TwoSquares(11); # there is no representation

fail

gap> TwoSquares(16);

[0, 4]

gap> # 3 is the minimal possible gcd because 9 divides 45:
gap> TwoSquares(45);

[3, 6]

gap> # it is not [5,10] because their gcd is not minimal:

gap> TwoSquares(125);

[2, 11]

gap> # [10,11] would be the other possible representation:
gap> TwoSquares(13%17);

[5, 14]

GAP - Reference Manual 204

gap> TwoSquares(848654483879497562821); # argument is prime
[6305894639, 28440994650]

Chapter 16

Combinatorics

This chapter describes functions that deal with combinatorics. We mainly concentrate on two areas.
One is about selections, that is the ways one can select elements from a set. The other is about
partitions, that is the ways one can partition a set into the union of pairwise disjoint subsets.

16.1 Combinatorial Numbers
16.1.1 Factorial
> Factorial(n) (function)

returns the factorial n! of the positive integer n, which is defined as the product 1-2-3---n.
n! is the number of permutations of a set of n elements. 1/n! is the coefficient of x” in the formal
series exp(x), which is the generating function for factorial.

Example

gap> List([0..10], Factorial);

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
gap> Factorial(30);

265252859812191058636308480000000

PermutationsList (16.2.12) computes the set of all permutations of a list.

16.1.2 Binomial

> Binomial(n, k) (function)

returns the binomial coefficient (}) of integers n and k, which is defined as n!/(k!(n —k)!) (see

Factorial (16.1.1)). We define () =1, (}) =0ifk<Oorn <k, and (}) = (—=1)*(T"*) ifn <0,
which is consistent with the equivalent definition (}) = (") + (}_}).

(Z) is the number of combinations with k elements, i.e., the number of subsets with k elements,
of a set with n elements. (Z) is the coefficient of the term x* of the polynomial (x -+ 1)", which is the
generating function for ("), hence the name.

Example
gap> # Knuth calls this the trademark of Binomial:
gap> List([0..4], k->Binomial(4, k));

205

GAP - Reference Manual 206

[1, 4, 6, 4, 1]

gap> List([0..6], n->List([0..6], k->Binomial(n, k)));;
gap> # the lower triangle is called Pascal’s triangle:

gap> PrintArray(last);

rr 1+ o0, o0, O, O, O, 01,
r ¢ 1, o0, o0, O, O, 01,
[1, 2, 1, o0, o©0, O0, 01,
r 1, 3, 3 1, o0, o0, 01,
[1, 4, 6, 4, 1, o0, 01,
[1, 5, 10, 10, 5, 1, 01,
[1, 6, 15, 20, 15, 6, 111

gap> Binomial(50, 10);
10272278170

NrCombinations (16.2.3) is the generalization of Binomial for multisets. Combinations
(16.2.1) computes the set of all combinations of a multiset.

16.1.3 Bell

> Bell (n) (function)

returns the Bell number B(n). The Bell numbers are defined by B(0) = 1 and the recurrence
B(n-+1) = Yo (1) BK).

B(n) is the number of ways to partition a set of n elements into pairwise disjoint nonempty subsets
(see PartitionsSet (16.2.16)). This implies of course that B(n) = Y}_S2(n,k) (see Stirling2
(16.1.6)). B(n)/n! is the coefficient of x" in the formal series exp(exp(x) — 1), which is the generating

function for B(n).
Example

gap> List([0..6], n -> Bell(n));
[1, 1, 2, 5, 15, 52, 203]

gap> Bell(14);

190899322

16.1.4 Bernoulli

> Bernoulli(n) (function)

returns the n-th Bernoulli number B, which is defined by By = 1 and B,, = — ZZ;(I) (”Z])Bk/(n +
1).
B, /n! is the coefficient of x" in the power series of x/(exp(x) — 1). Except for Bj = —1/2 the

Bernoulli numbers for odd indices are zero.
Example

gap> Bernoulli(4);

-1/30

gap> Bernoulli(10);

5/66

gap> Bernoulli(12); # there is no simple pattern in Bernoulli numbers
-691/2730

gap> Bernoulli(50); # and they grow fairly fast
495057205241079648212477525/66

GAP - Reference Manual 207

16.1.5 Stirlingl

> Stirlingl(n, k) (function)

returns the Stirling number of the first kind S)(n,k) of the integers n and k. Stirling numbers
of the first kind are defined by S;(0,0) = 1, S1(n,0) = S1(0,k) = 0 if n,k # 0 and the recurrence
Si(nk)=(n—1)S1(n—1,k)+S1(n—1,k—1).

S1(n,k) is the number of permutations of n points with k cycles. Stirling numbers of the first kind
appear as coefficients in the series n! (Z) =Y"_oS1(n,k)x* which is the generating function for Stirling
numbers of the first kind. Note the similarity to x* = Y}_(S2(n,k)k!(;) (see Stirling2 (16.1.6)).
Also the definition of S} implies S} (n,k) = S>(—k, —n) if n,k < 0. There are many formulae relating
Stirling numbers of the first kind to Stirling numbers of the second kind, Bell numbers, and Binomial
coefficients.

Example
gap> # Knuth calls this the trademark of S_1:

gap> List([0..4], k -> Stirlingl(4, k));

[0, 6, 11, 6, 1]

gap> List([0..6], n->List([0..6], k->Stirlingi(n, k)));;

gap> # note the similarity with Pascal’s triangle for Binomial numbers
gap> PrintArray(last);

(L 1, 0, 0, 0, 0, 0, 017,
L o, 1, 0, 0, 0, 0, 01,
L o, 1, 1, 0, 0, 0, 017,
[o, 2, 3, 1, 0, 0, 017,
[o, 6, 11, 6, 1, 0, 017,
(o, 24, 50, 35, 10, 1, 017,
(o, 120, 274, 225, 85, 15, 111

gap> Stirlingl(50,10);
101623020926367490059043797119309944043405505380503665627365376

16.1.6 Stirling2

> Stirling?2 (n, k) (function)

returns the Stirling number of the second kind S,(n,k) of the integers n and k. Stirling numbers
of the second kind are defined by $2(0,0) = 1, S»(n,0) = S»(0,k) = 0 if n,k # 0 and the recurrence
Sz(l’l,k) = kSz(l’l - l,k) —I—Sz(l’l —1,k— 1).

S»(n, k) is the number of ways to partition a set of n elements into k pairwise disjoint nonempty
subsets (see PartitionsSet (16.2.16)). Stirling numbers of the second kind appear as coefficients
in the expansion of x" = Y_(S>(n,k)k!(;). Note the similarity to n!(¥) = ¥}_S1(n,k)x* (see
Stirlingl (16.1.5)). Also the definition of Sy implies S»(n,k) = Si(—k,—n) if n,k < 0. There
are many formulae relating Stirling numbers of the second kind to Stirling numbers of the first kind,
Bell numbers, and Binomial coefficients.

Example
gap> # Knuth calls this the trademark of S_2:

gap> List([0..4], k->Stirling2(4, k));

[o,1,7,6,1]

gap> List([0..6], n->List([0..6], k->Stirling2(n, k)));;

gap> # note the similarity with Pascal’s triangle for Binomial numbers
gap> PrintArray(last);

GAP - Reference Manual 208

([1, 0, 0, 0, 0, 0, 01,

[0, 1, 0, 0, 0, 0, 01,

[0, 1, 1, 0, 0, 0, 01,

[0, 1, 3, 1, 0, 0, 01,

[0, 1, 7, 6, 1, 0, 01,

[0, 1, 15, 25, 10, 1, 01,

(o, 1, 31, 90, 65, 15, 11]
gap> Stirling2(50, 10);
26154716515862881292012777396577993781727011

16.2 Combinations, Arrangements and Tuples

16.2.1 Combinations

> Combinations(mset[, kJ) (function)

returns the set of all combinations of the multiset mset (a list of objects which may contain the
same object several times) with k elements; if k is not given it returns all combinations of mset.

A combination of mset is an unordered selection without repetitions and is represented by a sorted
sublist of mset. If mset is a proper set, there are (|msket ‘) (see Binomial (16.1.2)) combinations with
k elements, and the set of all combinations is just the power set of mset, which contains all subsets
of mset and has cardinality 21S€t|.

To loop over combinations of a larger multiset use IteratorOfCombinations (16.2.2) which
produces combinations one by one and may save a lot of memory. Another memory efficient repre-

sentation of the list of all combinations is provided by EnumeratorOfCombinations (16.2.2).

16.2.2 Iterator and enumerator of combinations

> IteratorOfCombinations(mset[, kJ]) (function)
> EnumeratorOfCombinations (mset) (function)

IteratorOfCombinations returns an Iterator (30.8.1) for combinations (see Combinations
(16.2.1)) of the given multiset mset. If a non-negative integer k is given as second argument then
only the combinations with k entries are produced, otherwise all combinations.

Enumerator0fCombinations returns an Enumerator (30.3.2) of the given multiset mset. Cur-
rently only a variant without second argument k is implemented.

The ordering of combinations from these functions can be different and also different from the list
returned by Combinations (16.2.1).

Example
gap> m:=[1..15];; Add(m, 15);
gap> NrCombinations(m);
49152
gap> i := 0;; for ¢ in Combinations(m) do i := i+1; od;
gap> 1i;
49152
gap> cm := EnumeratorOfCombinations(m);;
gap> cm[1000] ;
[1, 2, 3,6, 7, 8,9, 101

GAP - Reference Manual 209

gap> Position(cm, [1,13,15,15]);
36866

16.2.3 NrCombinations

> NrCombinations(mset[, kJ) (function)

returns the number of Combinations (mset , k).

Example

gap> Combinations([1,2,2,3]);

tc 1,011, 01,21,01,2,21,101,2,2,31]1,I[1,2,31],
(1,31, 0271,02,21,[02,2,31,02,31,[31]

gap> # number of different hands in a game of poker:

gap> NrCombinations([1..52], 5);

2598960

The function Arrangements (16.2.4) computes ordered selections without repetitions,
UnorderedTuples (16.2.6) computes unordered selections with repetitions, and Tuples (16.2.8)
computes ordered selections with repetitions.

16.2.4 Arrangements

> Arrangements(mset/[, kJ) (function)

returns the set of arrangements of the multiset mset that contain k elements. If k is not given it
returns all arrangements of mset.

An arrangement of mset is an ordered selection without repetitions and is represented by a list
that contains only elements from mset, but maybe in a different order. If mset is a proper set there
are |mset|!/(|mset| —k)! (see Factorial (16.1.1)) arrangements with k elements.

16.2.5 NrArrangements

> NrArrangements(mset[, kJ) (function)

returns the number of Arrangements (mset , k).
As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have the
six characters of the word "settle" and you have to make a four letter word. Then the possibilities
are given by
Example
gap> Arrangements(["s","e","t","t","1"