Gradle User Manual

Version 4.5.1

Copyright © 2007-2018 Hans Dockter, Adam Murdoch

Gradle build tool source code is open and licensed under the Apache License 2.0. Gradle user manual and
DSL references are licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://github.com/gradle/gradle/blob/master/LICENSE
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Table of Contents

About Gradle

Introduction
Overview

Working with existing builds

Installing Gradle

Command-Line Interface

The Gradle Wrapper

The Gradle Daemon

Dependency Management for Java Projects
Executing Multi-Project Builds
Continuous build

Composite builds

Build Environment

Troubleshooting

Embedding Gradle using the Tooling API
Build Cache

Writing Gradle build scripts

Build Script Basics

Build Init Plugin

Writing Build Scripts
Authoring Tasks

Working With Files

Using Ant from Gradle

Build Lifecycle

Logging

Authoring Multi-Project Builds
Using Gradle Plugins
Standard Gradle plugins
The Project Report Plugin
The Build Dashboard Plugin
Comparing Builds
Publishing artifacts

The Maven Plugin

The Signing Plugin

Ivy Publishing (new)

Maven Publishing (new)
The Distribution Plugin

The Announce Plugin

The Build Announcements Plugin

Dependency management

Introduction to Dependency Management
Declaring Dependencies

Declaring Repositories

Inspecting Dependencies

Managing Transitive Dependencies

Working with Dependencies

Customizing Dependency Resolution Behavior
Troubleshooting Dependency Resolution

Extending the build

Writing Custom Task Classes
Writing Custom Plugins

Gradle Plugin Development Plugin
Organizing Build Logic

Lazy Configuration

Initialization Scripts

Testing Build Logic with TestKit

Building JVM projects

Java Quickstart

The Java Plugin

The Java Library Plugin
Web Application Quickstart
The War Plugin

The Ear Plugin

The Jetty Plugin

The Application Plugin
The Java Library Distribution Plugin
Groovy Quickstart

The Groovy Plugin

The Scala Plugin

The ANTLR Plugin

The Checkstyle Plugin
The CodeNarc Plugin
The FindBugs Plugin
The JDepend Plugin
The PMD Plugin

The JaCoCo Plugin
The OSGi Plugin

The Eclipse Plugins
The IDEA Plugin

The Software model

Rule based model configuration
Software model concepts
Implementing model rules in a plugin
Building Java Libraries

Building Play applications

Building native software

Extending the software model

Glossary

Dependency Types
Repository Types

Appendix
A. Gradle Samples
B. Potential Traps

C. The Feature Lifecycle
D. Documentation licenses

List of Examples

1. Excluding tasks
2. Abbreviated camel case task name

. Obtaining detailed help for tasks

. Information about properties

. Running the Wrapper task

. The generated distribution URL

. Providing options to Wrapper task

. The generated distribution URL

. Executing the build with the Wrapper batch file

. Upgrading the Wrapper version

. Checking the Wrapper version after upgrading
. Customizing the Wrapper task

. The generated distribution URL

. Specifying the HTTP Basic Authentication credentials using system properties
. Specifying the HTTP Basic Authentication credentials in di st ri buti onUr |

. Configuring SHA-256 checksum verification

. Declaring dependencies

. Definition of an external dependency

. Shortcut definition of an external dependency

. Usage of Maven central repository

. Usage of JCenter repository

. Usage of a remote Maven repository

. Usage of a remote lvy directory

. Usage of a local Ivy directory

. Publishing to an Ivy repository

. Publishing to a Maven repository

. Listing the projects in a build

. Dependencies of my-app

. Declaring a command-line composite

. Declaring a separate composite

. Depending on task from included build

. Build that does not declare group attribute

. Declaring the substitutions for an included build

. Depending on a single task from an included build

. Depending on a tasks with path in all included builds
. Setting properties with a gradle.properties file

. Specifying system properties in gr adl e. properties
. Setting a project property via gradle.properties

. Setting a project property via environment variable

. Changing JVM settings for Gradle client JVM

. Changing JVM settings for forked Gradle JVMs

. Set Java compile options for JavaConpi | e tasks

. Prevent releasing outside of Cl

. Configuring an HTTP proxy using gr adl e. properties

. Configuring an HTTPS proxy using gr adl e. properties

. Using the tooling API
. Configure the local cache

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

Pull from HttpBuildCache

Configure remote HTTP cache

Allow untrusted SSL certificate for HttpBuildCache
Recommended setup for Cl push use case
Consistent setup for buildSrc and main build

Init script to configure the build cache

Your first build script

Execution of a build script

A task definition shortcut

Using Groovy in Gradle's tasks

Using Groovy in Gradle's tasks

Declaration of task that depends on other task
Lazy dependsOn - the other task does not exist (yet)
Dynamic creation of a task

Accessing a task via API - adding a dependency
Accessing a task via API - adding behaviour
Accessing task as a property of the build script
Adding extra properties to a task

Using AntBuilder to execute ant.loadfile target
Using methods to organize your build logic
Defining a default task

Different outcomes of build depending on chosen tasks
Accessing property of the Project object

Using local variables

Using extra properties

Configuring arbitrary objects

Configuring arbitrary objects using a script
Groovy JDK methods

Property accessors

Method call without parentheses

List and map literals

Closure as method parameter

Closure delegates

Defining tasks

Defining tasks - using strings for task names
Defining tasks with alternative syntax

Accessing tasks as properties

Accessing tasks via tasks collection

Accessing tasks by path

Creating a copy task

Configuring a task - various ways

Configuring a task - with closure

Defining a task with closure

Adding dependency on task from another project
Adding dependency using task object

93. Adding dependency using closure

94. Adding a 'must run after' task ordering

95. Adding a 'should run after' task ordering

96. Task ordering does not imply task execution

97. A 'should run after' task ordering is ignored if it introduces an ordering cycle
98. Adding a description to a task

99. Overwriting a task

100. Skipping a task using a predicate

101. Skipping tasks with StopExecutionException

102. Enabling and disabling tasks

103. Custom task class

104. Ad-hoc task

105. Ad-hoc task declaring a destroyable

106. Using runtime API with custom task type

107. Using skipWhenEmpty() via the runtime API

108. Inferred task dependency via task outputs

109. Inferred task dependency via a task argument

110. Declaring a method to add task inputs

111. Declaring a method to add a task as an input

112. Failed attempt at setting up an inferred task dependency
113. Setting up an inferred task dependency between output dir and input files
114. Setting up an inferred task dependency with files()

115. Setting up an inferred task dependency with builtBy()

116. Ignoring up-to-date checks

117. Runtime classpath normalization

118. Task rule

119. Dependency on rule based tasks

120. Adding a task finalizer

121. Task finalizer for a failing task

122. Locating files

123. Creating a file collection

124. Using a file collection

125. Implementing a file collection

126. Creating a file tree

127. Using a file tree

128. Using an archive as a file tree

129. Specifying a set of files

130. Appending a set of files

131. Copying files using the copy task

132. Specifying copy task source files and destination directory
133. Selecting the files to copy

134. Copying files using the copy() method without up-to-date check
135. Copying files using the copy() method with up-to-date check
136. Renaming files as they are copied

137. Filtering files as they are copied

138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
1565.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.

Nested copy specs

Using the Sync task to copy dependencies
Creating a ZIP archive

Creation of ZIP archive

Configuration of archive task - custom archive name
Configuration of archive task - appendix & classifier
Activating reproducible archives

Using an Ant task

Passing nested text to an Ant task

Passing nested elements to an Ant task

Using an Ant type

Using a custom Ant task

Declaring the classpath for a custom Ant task
Using a custom Ant task and dependency management together
Importing an Ant build

Task that depends on Ant target

Adding behaviour to an Ant target

Ant target that depends on Gradle task

Renaming imported Ant targets

Setting an Ant property

Getting an Ant property

Setting an Ant reference

Getting an Ant reference

Fine tuning Ant logging

Single project build

Hierarchical layout

Flat layout

Lookup of elements of the project tree

Modification of elements of the project tree

Adding of test task to each project which has certain property set
Notifications

Setting of certain property to all tasks

Logging of start and end of each task execution
Using stdout to write log messages

Writing your own log messages

Writing a log message with placeholder

Using SLF4J to write log messages

Configuring standard output capture

Configuring standard output capture for a task
Customizing what Gradle logs

Multi-project tree - water & bluewhale projects

Build script of water (parent) project

Multi-project tree - water, bluewhale & krill projects
Water project build script

Defining common behavior of all projects and subprojects

183.
184.
1865.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
2009.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.

Defining specific behaviour for particular project
Defining specific behaviour for project krill
Adding custom behaviour to some projects (filtered by project name)
Adding custom behaviour to some projects (filtered by project properties)
Running build from subproject

Evaluation and execution of projects

Evaluation and execution of projects

Running tasks by their absolute path
Dependencies and execution order
Dependencies and execution order
Dependencies and execution order

Declaring dependencies

Declaring dependencies

Cross project task dependencies

Configuration time dependencies

Configuration time dependencies - evaluationDependsOn
Configuration time dependencies
Dependencies - real life example - crossproject configuration
Project lib dependencies

Project lib dependencies

Fine grained control over dependencies

Build and Test Single Project

Partial Build and Test Single Project

Build and Test Depended On Projects

Build and Test Dependent Projects

Applying a script plugin

Applying a core plugin

Applying a community plugin

Applying plugins only on certain subprojects.
Using plugins from custom plugin repositories.
Plugin resolution strategy.

Complete Plugin Publishing Sample

Applying a binary plugin

Applying a binary plugin by type

Applying a plugin with the buildscript block
Using the Build Dashboard plugin

Defining an artifact using an archive task
Defining an artifact using a file

Customizing an artifact

Map syntax for defining an artifact using a file
Configuration of the upload task

Using the Maven plugin

Creating a standalone pom.

Upload of file to remote Maven repository
Upload of file via SSH

228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245,
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.

Customization of pom

Builder style customization of pom

Modifying auto-generated content
Customization of Maven installer

Generation of multiple poms

Accessing a mapping configuration

Using the Signing plugin

Sign with GnuPG

Configure the GnupgSignatory

Signing a configuration

Signing a configuration output

Signing a task

Signing a task output

Conditional signing

Signing a POM for deployment

Applying the “ivy-publish” plugin

Publishing a Java module to Ivy

Publishing additional artifact to lvy

customizing the publication identity
Customizing the module descriptor file
Publishing multiple modules from a single project
Declaring repositories to publish to

Choosing a particular publication to publish
Publishing all publications via the “publish” lifecycle task
Generating the Ivy module descriptor file
Publishing a Java module

Example generated ivy.xml

Applying the 'maven-publish’ plugin

Adding a MavenPublication for a Java component
Adding additional artifact to a MavenPublication
customizing the publication identity

Modifying the POM file

Publishing multiple modules from a single project
Declaring repositories to publish to

Publishing a project to a Maven repository
Publish a project to the Maven local repository
Generate a POM file without publishing

Using the distribution plugin

Adding extra distributions

Configuring the main distribution

publish main distribution

Applying the announce plugin

Configure the announce plugin

Using the announce plugin

Using the build announcements plugin

273. Using the build announcements plugin from an init script

274. Declaring a binary dependencies with a concrete version

275. Declaring a binary dependencies with a dynamic version

276. Declaring a binary dependencies with a changing version

277. Declaring multiple file dependencies

278. Declaring project dependencies

279. Declaring and using a custom configuration

280. Resolving a JavaScript artifact for a declared dependency

281. Resolving a JavaScript artifact with classifier for a declared dependency
282. Declaring JCenter repository as source for resolving dependencies
283. Declaring a custom repository by URL

284. Declaring multiple repositories

285. Declaring the JGit dependency with a custom configuration

286. Rendering the dependency report for a custom configuration

287. Declaring the JGit dependency and a conflicting dependency

288. Using the dependency insight report for a given dependency

289. Unresolved artifacts for transitive dependencies

290. Excluding transitive dependency for a particular dependency declaration
291. Excluding transitive dependency for a particular configuration

292. Enforcing a dependency version

293. Enforcing a dependency version on the configuration-level

294. Disabling transitive dependency resolution for a declared dependency
295. Disabling transitive dependency resolution on the configuration-level
296. Configuration.copy

297. Accessing declared dependencies

298. Configuration.files

299. Configuration.files with spec

300. Configuration.copy

301. Configuration.copy vs. Configuration.files

302. Forcing consistent version for a group of libraries

303. Using a custom versioning scheme

304. Blacklisting a version with a replacement

305. Changing dependency group and/or name at the resolution

306. Substituting a module with a project

307. Substituting a project with a module

308. Conditionally substituting a dependency

309. Specifying default dependencies on a configuration

310. Enabling dynamic resolve mode

311. 'Latest' version selector

312. Custom status scheme

313. Custom status scheme by module

314. lvy component metadata rule

315. Rule source component metadata rule

316. Component selection rule

317. Component selection rule with module target

318. Component selection rule with metadata

319. Component selection rule using a rule source object
320. Declaring module replacement

321. Dynamic version cache control

322. Changing module cache control

323. Defining a custom task

324. A hello world task

325. A customizable hello world task

326. A build for a custom task

327. A custom task

328. Using a custom task in another project

329. Testing a custom task

330. Defining an incremental task action

331. Running the incremental task for the first time

332. Running the incremental task with unchanged inputs
333. Running the incremental task with updated input files
334. Running the incremental task with an input file removed
335. Running the incremental task with an output file removed
336. Running the incremental task with an input property changed
337. Creating a unit of work implementation

338. Submitting a unit of work for execution

339. Waiting for asynchronous work to complete

340. Submitting an item of work to run in a worker daemon
341. A custom plugin

342. A custom plugin extension

343. A custom plugin with configuration closure

344. Evaluating file properties lazily

345. Mapping extension properties to task properties

346. A build for a custom plugin

347. Wiring for a custom plugin

348. Using a custom plugin in another project

349. Applying a community plugin with the plugins DSL
350. Testing a custom plugin

351. Using the Java Gradle Plugin Development plugin
352. Nested DSL elements

353. Managing a collection of objects

354. Using the Java Gradle Plugin Development plugin
355. Using the gradlePlugin {} block.

356. Using inherited properties and methods

357. Using injected properties and methods

358. Configuring the project using an external build script
359. Custom buildSrc build script

360. Adding subprojects to the root buildSrc project

361. Running another build from a build

362. Declaring external dependencies for the build script

363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.

A build script with external dependencies

Ant optional dependencies

Using a read-only and configurable property

Using file and directory property

Implicit task dependency

List property

Using init script to perform extra configuration before projects are evaluated
Declaring external dependencies for an init script

An init script with external dependencies

Using plugins in init scripts

Declaring the TestKit dependency

Declaring the JUnit dependency

Using GradleRunner with JUnit

Using GradleRunner with Spock

Making the code under test classpath available to the tests
Injecting the code under test classes into test builds

Injecting the code under test classes into test builds for Gradle versions prior to 2.8
Using the Java Gradle Development plugin for generating the plugin metadata
Automatically injecting the code under test classes into test builds
Reconfiguring the classpath generation conventions of the Java Gradle Development plugin
Specifying a Gradle version for test execution

Testing cacheable tasks

Using the Java plugin

Building a Java project

Adding Maven repository

Adding dependencies

Customization of MANIFEST.MF

Adding a test system property

Publishing the JAR file

Eclipse plugin

Java example - complete build file

Multi-project build - hierarchical layout

Multi-project build - settings.gradle file

Multi-project build - common configuration

Multi-project build - dependencies between projects

Multi-project build - distribution file

Using the Java plugin

Custom Java source layout

Accessing a source set

Configuring the source directories of a source set

Defining a source set

Defining source set dependencies

Compiling a source set

Assembling a JAR for a source set

Generating the Javadoc for a source set

408. Running tests in a source set

409. Declaring annotation processors

410. Filtering tests in the build script

411. JUnit Categories

412. Grouping TestNG tests

413. Preserving order of TestNG tests

414. Grouping TestNG tests by instances

415. Creating a unit test report for subprojects

416. Customization of MANIFEST.MF

417. Creating a manifest object.

418. Separate MANIFEST.MF for a particular archive
419. Saving a MANIFEST.MF to disk

420. Configure Java 6 build

421. Using the Java Library plugin

422. Declaring APl and implementation dependencies
423. Making the difference between API and implementation
424. Declaring APl and implementation dependencies
425. Configuring the Groovy plugin to work with Java Library
426. War plugin

427. Running web application with Gretty plugin

428. Using the War plugin

429. Customization of war plugin

430. Using the Ear plugin

431. Customization of ear plugin

432. Using the application plugin

433. Configure the application main class

434. Configure default JVM settings

435. Configure custom directory for start scripts

436. Include output from other tasks in the application distribution
437. Automatically creating files for distribution

438. Using the Java library distribution plugin

439. Configure the distribution name

440. Include files in the distribution

441. Groovy plugin

442. Dependency on Groovy

443. Groovy example - complete build file

444. Using the Groovy plugin

445. Custom Groovy source layout

446. Configuration of Groovy dependency

447. Configuration of Groovy test dependency

448. Configuration of bundled Groovy dependency
449. Configuration of Groovy file dependency

450. Configure Java 6 build for Groovy

451. Using the Scala plugin

452. Custom Scala source layout

453.
454,
455,
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474,
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494,
495.
496.
497.

Declaring a Scala dependency for production code
Declaring a Scala dependency for test code

Declaring a version of the Zinc compiler to use

Forcing a scala-library dependency for all configurations
Forcing a scala-library dependency for the zinc configuration
Adjusting memory settings

Forcing all code to be compiled

Configure Java 6 build for Scala

Explicitly specify a target IntelliJ IDEA version

Using the ANTLR plugin

Declare ANTLR version

setting custom max heap size and extra arguments for ANTLR
Using the Checkstyle plugin

Using the config_loc property

Customizing the HTML report

Using the CodeNarc plugin

Using the FindBugs plugin

Customizing the HTML report

Using the JDepend plugin

Using the PMD plugin

Applying the JaCoCo plugin

Configuring JaCoCo plugin settings

Configuring test task

Configuring violation rules

Configuring test task

Using application plugin to generate code coverage data
Coverage reports generated by applicationCodeCoverageReport
Using the OSGi plugin

Configuration of OSGi MANIFEST.MF file

Using the Eclipse plugin

Using the Eclipse WTP plugin

Partial Overwrite for Classpath

Partial Overwrite for Project

Export Classpath Entries

Customizing the XML

Using the IDEA plugin

Partial Rewrite for Module

Partial Rewrite for Project

Export Dependencies

Customizing the XML

applying a rule source plugin

a model creation rule

a model mutation rule

creating a task

a managed type

498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.

a String property

a File property

a Long property

a boolean property

an int property

a managed property

an enumeration type property

a managed set

a scalar collection

strongly modelling sources sets

a DSL example applying a rule to every element in a scope
DSL configuration rule

Configuration run when required

Configuration not run when not required

DSL creation rule

DSL creation rule without initialization

Initialization before configuration

Nested DSL creation rule

Nested DSL configuration rule

DSL configuration rule for each element in a map

Nested DSL property configuration

a DSL example showing type conversions

a DSL rule using inputs

model task output

Using the Java software plugins

Creating a java library

Configuring a source set

Creating a new source set

The components report

Declaring a dependency onto a library

Declaring a dependency onto a project with an explicit library
Declaring a dependency onto a project with an implicit library
Declaring a dependency onto a library published to a Maven repository
Declaring a module dependency using shorthand notation
Configuring repositories for dependency resolution
Specifying api packages

Specifying api dependencies

Main sources

Client component

Broken client component

Making non-API implementation-only change
Recompiling the client

Declaring target platforms

Declaring binary specific sources

Declaring target platforms

543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.

Using the JUnit plugin

Executing the test suite

Executing the test suite

Declaring a component under test

Declaring local Java installations

Using the Play plugin

The components report

Selecting a version of the Play Framework

Adding dependencies to a Play application

A Play 2.6 project

Adding Guice dependency in Play 2.6 project

Configuring extra source sets to a Play application

Adding extra source sets to a Play application

Configuring Scala compiler options

Configuring routes style

Configuring a custom asset pipeline

Configuring dependencies on Play subprojects

Add extra files to a Play application distribution

Applying both the Play and IDEA plugins

Defining a library component

Defining executable components

Sample build

Dependent components report

Dependent components report

Report of components that depends on the operators component

Report of components that depends on the operators component, including test suites
Assemble components that depends on the passing/static binary of the operators component
Build components that depends on the passing/static binary of the operators component
Adding a custom check task

Running checks for a given binary

The components report

The ‘cpp’ plugin

C++ source set

The 'c’ plugin

C source set

The 'assembler’ plugin

The 'objective-c' plugin

The 'objective-cpp’ plugin

Settings that apply to all binaries

Settings that apply to all shared libraries

Settings that apply to all binaries produced for the 'main' executable component
Settings that apply only to shared libraries produced for the 'main’ library component
The 'windows-resources' plugin

Configuring the location of Windows resource sources

Building a resource-only dll

588. Providing a library dependency to the source set
589. Providing a library dependency to the binary
590. Declaring project dependencies

591. Creating a precompiled header file

592. Including a precompiled header file in a source file
593. Configuring a precompiled header

594. Defining build types

595. Configuring debug binaries

596. Defining platforms

597. Defining flavors

598. Targeting a component at particular platforms
599. Building all possible variants

600. Defining tool chains

601. Reconfigure tool arguments

602. Defining target platforms

603. Registering CUnit tests

604. Configuring CUnit tests

605. Running CUnit tests

606. Registering GoogleTest tests

607. an example of using a custom software model
608. Declare a custom component

609. Register a custom component

610. Declare a custom binary

611. Register a custom binary

612. Declare a custom source set

613. Register a custom source set

614. Generates documentation binaries

615. Generates tasks for text source sets

616. Register a custom source set

617. an example of using a custom software model
618. components report

619. public type and internal view declaration

620. type registration

621. public and internal data mutation

622. example build script and model report output
623. Module dependencies

624. File dependencies

625. Generated file dependencies

626. Project dependencies

627. Gradle API dependencies

628. Gradle TestKit dependencies

629. Gradle's Groovy dependencies

630. Flat repository resolver

631. Adding central Maven repository

632. Adding Bintray's JCenter Maven repository

633. Adding Google Maven repository

634. Adding the local Maven cache as a repository

635. Adding custom Maven repository

636. Adding additional Maven repositories for JAR files
637. Accessing password-protected Maven repository
638. Ivy repository

639. lvy repository with named layout

640. Ivy repository with pattern layout

641. lvy repository with multiple custom patterns

642. vy repository with Maven compatible layout

643. lvy repository with authentication

644. Declaring a Maven and lvy repository

645. Using the SFTP protocol for a repository

646. Declaring a S3 backed Maven and Ivy repository
647. Declaring a S3 backed Maven and Ivy repository using IAM
648. Declaring a Google Cloud Storage backed Maven and Ivy repository using default application
credentials

649. Configure repository to use only digest authentication
650. Configure repository to use preemptive authentication
B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

About Gradle

Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology
in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!
Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or pom xm andi v
files.

Ant tasks and builds as first class citizens.

Groovy build scripts.

A rich domain model for describing your build.

In Overview you will find a detailed overview of Gradle. Otherwise, the guides are waiting, have fun :)

8§
About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren’t
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 20 of 717

https://guides.gradle.org
http://www.gradle.org/contribute

Overview

8§
Features

Here is a list of some of Gradle’s features.

Declarative builds and build-by-convention
At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build
The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don’t be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle allows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up to
huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental
build function, this is also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds
Gradle’s support for multi-project build is outstanding. Project dependencies are first class citizens. We
allow you to model the project relationships in a multi-project build as they really are for your problem

Page 21 of 717

domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds this is a big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and Ivy
repositories to jars or directories on the local file system.

Gradle is the first build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime.
You can depend on them from Gradle, you can enhance them from Gradle, you can even declare
dependencies on Gradle tasks in your build.xml. The same integration is provided for properties, paths,
etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xm into a Gradle script.

Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend to
write tests that make sure that the produced artifacts are similar. That way migration is as less disruptive
and as reliable as possible. This is following the best-practices for refactoring by applying baby steps.

Groovy

Gradle’s build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as a rigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an
enjoyable and productive experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. This
is useful for example for some continuous integration servers. It is also useful for an open source project
to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is a zero
administration approach for the client machines. It also enforces the usage of a particular Gradle version
thus minimizing support issues.

Free and open source
Gradle is an open source project, and is licensed under the ASL.

Page 22 of 717

http://www.gradle.org/license

§
Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer lies in
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build should
be as transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think this is a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful as it
could be.ll Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn’'t have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML, Java
and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

Page 23 of 717

http://www.defmacro.org/ramblings/lisp.html

Working with existing builds

Installing Gradle

§
Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 7 or higher (to check, use j ava -versi on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

8
Download

You can download one of the Gradle distributions from the Gradle web site.
8§
Unpacking
The Gradle distribution comes packaged as a ZIP. The full distribution contains:
The Gradle binaries.
The user guide (HTML and PDF).
The DSL reference guide.
The APl documentation (Javadoc).

Extensive samples, including the examples referenced in the user guide, along with some complete and
more complex builds you can use as a starting point for your own build.

The binary sources. This is for reference only. If you want to build Gradle you need to download the source
distribution or checkout the sources from the source repository. See the Gradle web site for details.

Page 25 of 717

http://www.gradle.org/downloads
http://www.gradle.org/development

8
Environment variables

For running Gradle, firstly add the environment variable GRADLE HOVME. This should point to the unpacked
files from the Gradle website. Next add GRADLE_HOVE/ bi n to your PATH environment variable. Usually,
this is sufficient to run Gradle.

8§
Running and testing your installation

You run Gradle via the gr adl e command. To check if Gradle is properly installed just type gr adl e -v. The
output shows the Gradle version and also the local environment configuration (Groovy, JVM version, OS,
etc.). The displayed Gradle version should match the distribution you have downloaded.

8§
JVM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS or J
, or both. JAVA_OPTS is by convention an environment variable shared by many Java applications. A typical
use case would be to set the HTTP proxy in JAVA_OPTS and the memory options in GRADLE_OPTS. Those
variables can also be set at the beginning of the gr adl e or gr adl ew script.

Note that it's not currently possible to set JVM options for Gradle on the command line.

Page 26 of 717

Command-Line Interface

The command-line interface is one of the primary methods of interacting with Gradle. The following serves
as a reference of executing and customizing Gradle use of a command-line or when writing scripts or
configuring continuous integration.

Use of the Gradle Wrapper is highly encouraged. You should substitute . / gr adl ewor gr adl ew. bat for gr
in all following examples when using the Wrapper.

Executing Gradle on the command-line conforms to the following structure. Options are allowed before and
after task names.

gradle [taskNane...] [--option-nane...]

If multiple tasks are specified, they should be separated with a space.

Options that accept values can be specified with or without = between the option and argument; however,

use of = is recommended.

--consol e=pl ain

Options that enable behavior have long-form options with inverses specified with - - no- . The following are
opposites.

--bui |l d-cache
--no-bui | d- cache

Many long-form options, have short option equivalents. The following are equivalent:

--help
-h

Note: Many command-line flags can be specified in gr adl e. properti es to avoid needing to be
typed. See the configuring build environment guide for details.

The following sections describe use of the Gradle command-line interface, grouped roughly by user goal.
Some plugins also add their own command line options, for example - - t est s for Java test filtering.

Page 27 of 717

8§
Executing tasks

You can run a task and all of its dependencies.

gradl e nyTask

You can learn about what projects and tasks are available in the project reporting section.

§
Executing tasks in multi-project builds

In a multi-project build, subproject tasks can be executed with ":" separating subproject name and task
name. The following are equivalent when run from the root project.

gradl e : nmySubproj ect: t askNane
gradl e nmySubpr oj ect: t askNane

You can also run a task for all subprojects using the task hame only. For example, this will run the "test" task
for all subprojects when invoked from the root project directory.

gradl e test

When invoking Gradle from within a subproject, the project name should be omitted:

cd nmySubpr oj ect
gradl e taskNane

Note: When executing the Gradle Wrapper from subprojects, one must reference gr adl ew
relatively. For example: . ./ gradl ew t askNanme. The community gdub project aims to make this

more convenient.

8
Executing multiple tasks

You can also specify multiple tasks. For example, the following will execute the t est and depl oy tasks in

the order that they are listed on the command-line and will also execute the dependencies for each task.

gradl e test depl oy

8
Excluding tasks from execution

You can exclude a task from being executed using the - x or - - excl ude-t ask command-line option and
providing the name of the task to exclude.

Page 28 of 717

http://www.gdub.rocks/

Figure 1. Example Task Graph

compile compile Test dist
test

Example 1. Excluding tasks

Output of gradl e di st --excl ude-task test
> gradl e dist --exclude-task test

.conpile
conpi l i ng source
di st

buil ding the distribution

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

You can see that the t est task is not executed, even though it is a dependency of the di st task. The t est
task’s dependencies such as conpi | eTest are not executed either. Those dependencies of t est that are
required by another task, such as conpi | e, are still executed.

8
Forcing tasks to execute

You can force Gradle to execute all tasks ignoring up-to-date checks using the - - r er un-t asks option:

gradle test --rerun-tasks

This will force t est and all task dependencies of t est to execute. It's a little like running gradl e cl ean t
, but without the build’s generated output being deleted.

§
Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possible in a single build execution, you can use the - - cont i nue option.

gradl e test --continue

When executed with --conti nue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If a task fails, any subsequent tasks that were depending on it will not be executed. For example, tests will
not run if there is a compilation failure in the code under test; because the test task will depend on the

Page 29 of 717

compilation task (either directly or indirectly).

8
Task name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task. You only
need to provide enough of the task name to uniquely identify the task. For example, it's likely gr adl e che
is enough for Gradle to identify the check task.

You can also abbreviate each word in a camel case task name. For example, you can execute task conpi | €
by running gr adl e conpTest orevengradl e cT.

Example 2. Abbreviated camel case task name

Outputofgradl e cT
> gradle cT

.conpile
conpi l i ng source
:conpi | eTest

conmpiling unit tests

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

You can also use these abbreviations with the -x command-line option.

8
Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

8
Computing all outputs

It is common in Gradle builds for the bui | d task to designate assembling all outputs and running all checks.
gradle build

8
Running applications

It is common for applications to be run with the r un task, which assembles the application and executes
some script or binary.

gradl e run

Page 30 of 717

8
Running all checks

It is common for all verification tasks, including tests and linting, to be executed using the check task.

gradl e check

§
Cleaning outputs

You can delete the contents of the build directory using the cl ean task, though doing so will cause
pre-computed outputs to be lost, causing significant additional build time for the subsequent task execution.

gradl e cl ean

8§
Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

You can get basic help about available reporting options using gr adl e hel p.

8
Listing projects

Running gradl e projects gives you a list of the sub-projects of the selected project, displayed in a
hierarchy.

gradl e projects
You also get a project report within build scans. Learn more about creating build scans.

§
Listing tasks

Running gr adl e t asks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task.

gradl e tasks

By default, this report shows only those tasks which have been assigned to a task group. You can obtain
more information in the task listing using the - - al | option.

gradl e tasks --all

Page 31 of 717

https://guides.gradle.org/creating-build-scans/

8
Show task usage details

Running gradl e hel p --task soneTask gives you detailed information about a specific task.
Example 3. Obtaining detailed help for tasks

Outputofgradle -gq help --task |ibs
> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
;api:libs
s webapp: | i bs

Type
Task (org.gradle. api. Task)

Descri ption
Buil ds the JAR

G oup
buil d

This information includes the full task path, the task type, possible command line options and the description
of the given task.

8
Reporting dependencies

Build scans give a full, visual report of what project and binary dependencies exist on which configurations,
transitive dependencies, and dependency version selection.

gradl e myTask --scan

This will give you a link to a web-based report, where you can find dependency information like this.

Page 32 of 717

@ ® < il # scans.gradle.com u O

ﬂ Build Scan G + gradle :core:test

E Summary
214 dependencies resolved in 70 projects across 156 configurations
-] Console log

Timeline 5
W Performance :announce
antlr
EB Tests ‘baseServices ~
&& Projects compileClasspath ~ :
jenci com.google code findbugs:jsr305:1.3.9
ﬂ Depe - com.google guavaguava-jdk5:17.0
M Plugins commaons-io:commens-io:2,2
5= Custom values commaons-lang:commons-lang: 2.6
= . net.jcipijcip-annotations: 1.0
ca Switches org.sifdjsifdj-api:1.7.10
@ Infrastructure runtimeClasspath »
testFixturesCompileClasspath

ThaceServicscramney

Learn more in Inspecting Dependencies.

8
Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken down
by configuration. For each configuration, the direct and transitive dependencies of that configuration are
shown in a tree. Below is an example of this report:

gradl e dependenci es
Concrete examples of build scripts and output available in the Inspecting Dependencies.

Running gradl e bui |l dEnvi r onment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualizes the dependencies of the software being built.

gradl e buil dEnvi ronnent

Running gradl e dependencyl nsi ght gives you an insight into a particular dependency (or

dependencies) that match specified input.

gradl e dependencyl nsi ght

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.

Page 33 of 717

This is achieved with the optional - - conf i gur at i on parameter:

§
Listing project properties

Running gr adl e properti es gives you a list of the properties of the selected project.
Example 4. Information about properties

Outputofgradl e -qg api: properties
> gradle -q api:properties

Project :api - The shared APl for the application

all projects: [project ':api']

ant: org.gradle.api.internal.project. DefaultAntBuil der@2345

ant Bui | der Factory: org.gradle.api.internal.project.DefaultAntBuil derFact ory@234!
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decor at el
asDynam cObj ect: Dynam cObj ect for project ':api
baseC assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoaderSi
bui I dDir: /home/ user/ gradl e/ sanpl es/ user gui de/tutorial/projectReports/api/build
bui l dFi | e: /hone/ user/ gradl e/ sanpl es/ usergui de/tutorial / project Reports/api/build.

8
Software Model reports

You can get a hierarchical view of elements for software model projects using the nodel task:

gr adl e nodel

Learn more about the model report in the software model documentation.

8§
Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties through
gradle-completion, installed separately.

Page 34 of 717

https://github.com/gradle/gradle-completion

Figure 2. Gradle Completion

Page 35 of 717

8§
Debugging options

-?,-h,--help

Shows a help message with all available CLI options.

-V, --version

Prints Gradle, Groovy, Ant, JVM, and operating system version information.

-S,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See also logging options.

-s,--stacktrace
Print out the stacktrace also for user exceptions (e.g. compile error). See also logging options.

--S§can

Create a build scan with fine-grained information about all aspects of your Gradle build.

- Dorg. gradl e. debug=t r ue
Debug Gradle client (non-Daemon) process. Gradle will wait for you to attach a debugger at | ocal host :
by default.

- Dor g. gr adl e. daenon. debug=t r ue
Debug Gradle Daemon process.

8§
Performance options

Try these options when optimizing build performance. Learn more about improving performance of Gradle
builds here.

Many of these options can be specified in gr adl e. pr operti es so command-line flags are not necessary.
See the configuring build environment guide.

- -bui | d- cache, - - no- bui | d- cache
Toggles the Gradle build cache. Gradle will try to reuse outputs from previous builds. Default is off.

--confi gure-on-denand, - - no- confi gur e- on- demand
Toggles Configure-on-demand. Only relevant projects are configured in this build run. Default is off.

- - max- wor kers
Sets maximum number of workers that Gradle may use. Default is number of processors.

--parallel,--no-parallel
Build projects in parallel. For limitations of this option please see the section called “Parallel project
execution”. Default is off.

Page 36 of 717

https://gradle.com/build-scans
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/

--profile
Generates a high-level performance report in the $bui | dDi r/ report s/ profi | e directory. - - scan is

preferred.

--Scan

Generate a build scan with detailed performance diagnostics.

0@ < LH| & scans.gradle.com [i o
d' Build Scan e’ + gradle :coreitest Sep 27 2017 2:00:13 PM MST
E Summary Build Confipuration Dependency resalution Task executic
[*-] Console log
L Total build time
+## Timeline

Startup 0.767s

Settings and buildSre

Loading projects

H;] fests Configuration

& Projects Task execution

g-g Dependencies End of build

[Plugins Total garbage collection time

a= Custom values
Peak heap memory usage

D £}
cp Switches PS5 Eden Space 551.55/624.95 MB
B Infrastructure PS Survivor Space 67.87/86.51 MB
PS Old Gen 0.31/1.43 GB (21.6

§
Gradle daemon options

You can manage the Gradle Daemon through the following command line options.

- - daenon, - - no- daenon
Use the Gradle Daemon to run the build. Starts the daemon if not running or existing daemon busy.
Default is on.

--foreground
Starts the Gradle Daemon in a foreground process.

- - st at us (Standalone command)
Run gradl e - - st at us to list running and recently stopped Gradle daemons. Only displays daemons of

Page 37 of 717

the same Gradle version.

- - st op (Standalone command)
Run gr adl e - - st op to stop all Gradle Daemons of the same version.

-Dorg. gradl e. daenon. i dl eti meout =(nunber of mlliseconds)
Gradle Daemon will stop itself after this number of milliseconds of idle time. Default is 10800000 (3
hours).

8§
Logging options

§
Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least verbose to
most verbose. Learn more in the logging documentation.

-Dorg. gradl e. | oggi ng. | evel =(qui et,warn, |i fecycl e, i nfo, debug)
Set logging level via Gradle properties.

-q,--qui et
Log errors only.

-W, --warn

Set log level to warn.

-i,--info
Set log level to info.

-d, - -debug
Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

8
Customizing log format

You can control the use of rich output (colors and font variants) by specifying the "console"” mode in the
following ways:

-Dorg. gradl e. consol e=(aut o, pl ai n, rich, verbose)
Specify console mode via Gradle properties. Different modes described immediately below.

--consol e=(auto, plain,rich, verbose)
Specifies which type of console output to generate.

Set to pl ai n to generate plain text only. This option disables all color and other rich output in the

Page 38 of 717

console output. This is the default when Gradle is not attached to a terminal.

Set to aut o (the default) to enable color and other rich output in the console output when the build
process is attached to a console, or to generate plain text only when not attached to a console. This is
the default when Gradle is attached to a terminal.

Set to ri ch to enable color and other rich output in the console output, regardless of whether the build
process is not attached to a console. When not attached to a console, the build output will use ANSI
control characters to generate the rich output.

Set to ver bose to enable color and other rich output like the ri ch, but output task names and outcomes
at the lifecycle log level, as is done by default in Gradle 3.5 and earlier.

8
Showing or hiding warnings

By default, Gradle won't display all warnings (e.g. deprecation warnings). Instead, Gradle will collect them
and render a summary at the end of the build like:

Deprecated G adl e APl and/or features were used in this build, making it inconpat
You can control the verbosity of warnings on the console with the following options:

- Dor g. gr adl e. war ni ng. nrode=(al | , none, summary)
Specify warning mode via Gradle properties. Different modes described immediately below.

- -war ni ng- node=(al I , none, summary)

Specifies how to log warnings. Default is summary.

Setto al | to log all warnings.

Set to sunmar y to suppress all warnings and log a summary at the end of the build.
Set to none to suppress all warnings, including the summary at the end of the build.

§
Rich Console

Gradle’s rich console displays extra information while builds are running.

Page 39 of 717

200

> Task :logging:compilelava

Note: /Users/eric/src/gradle/gradle/subprojects/
src/main/java/org/gradle/internal/logging/progres
essLogger.java uses or overrides a deprecated AP
Note: Recompile with -Xlint:deprecation for deta
Note: Some input files use unchecked or unsafe oj
S.

Note: Recompile with =Xlint:unchecked for details

> :toolingApi:compilelava

> :logging:compileTestFixturesGroovy
> :dependencyManagement:compilelava
> :reporting:classpathManifest

Features:

Logs above grouped by task that generated them

Progress bar and timer visually describe overall status

Parallel work-in-progress lines below describe what is happening now

8§
Execution options

The following options affect how builds are executed, by changing what is built or how dependencies are
resolved.

--include-build
Run the build as a composite, including the specified build. See Composite Builds.

--offline
Specifies that the build should operate without accessing network resources. Learn more about options
to override dependency caching.

Page 40 of 717

--refresh-dependenci es
Refresh the state of dependencies. Learn more about how to use this in the dependency management
docs.

--dry-run
Run Gradle with all task actions disabled. Use this to show which task would have executed.

8§
Bootstrapping new projects

8
Creating new Gradle builds

Use the built-in gr adl e i ni t task to create a new Gradle builds, with new or existing projects.

gradle init

Most of the time you'll want to specify a project type. Available types include basi ¢ (default), j ava-1i brar®
, j ava-appl i cati on, and more. See init plugin documentation for details.

gradle init --type java-library

8
Standardize and provision Gradle

The built-in gr adl e wr apper task generates a script, gr adl ew, that invokes a declared version of Gradle,
downloading it beforehand if necessary.

gradl e wrapper --gradle-version=4.4

You can also specify - -di stri bution-type=(bin|all),--gradle-distribution-url,--gradle-
in addition to - - gr adl e- ver si on. Full details on how to use these options are documented in the Gradle

wrapper section.

8§
Environment options

You can customize many aspects about where build scripts, settings, caches, and so on through the options
below. Learn more about customizing your build environment.

-b,--build-file
Specifies the build file. For example: gradl e --buil d-fil e=f 0o. gradl e. The defaultis bui | d. gra
,then bui | d. gradl e. kt s, then nyPr oj ect Nane. gr adl e.

-c,--settings-file
Specifies the settings file. For example: gradl e --settings-fil e=somewher e/ el se/ settings. gl

Page 41 of 717

-g,--gradl e-user-hone
Specifies the Gradle user home directory. The default is the . gr adl e directory in the user's home

directory.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory.

--project-cache-dir

Specifies the project-specific cache directory. Default value is . gr adl e in the root project directory.

- U, - - no- sear ch- upwar d (deprecated)
Don’t search in parent directories for a set ti ngs. gr adl e file.

-D,--system prop
Sets a system property of the JVM, for example - Dmypr op=nyval ue. See the section called “System
properties”.

-l,--init-script
Specifies an initialization script. See Initialization Scripts.

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=mnyval ue. See the section called
“Project properties”.

- Dorg. gradl e.jvmargs
Set JVM arguments.

- Dorg. gradl e. java. hone
Set JDK home dir.

Page 42 of 717

The Gradle Wrapper

The recommended way to execute any Gradle build is with the help of the Gradle Wrapper (in short just
“Wrapper”). The Wrapper is a script that invokes a declared version of Gradle, downloading it beforehand if
necessary. As a result, developers can get up and running with a Gradle project quickly without having to
follow manual installation processes saving your company time and money.

Figure 3. The Wrapper workflow

1. Download

distribution
_ Gradle > Serve
Build
. use 2 Storeond
distribution distribution

v

Gradle
User Home

In a nutshell you gain the following benefits:
Standardizes a project on a given Gradle version, leading to more reliable and robust builds.

Provisioning a new Gradle version to different users and execution environment (e.g. IDEs or Continuous
Integration servers) is as simple as changing the Wrapper definition.

So how does it work? For a user there are typically three different workflows:
You set up a new Gradle project and want to add the Wrapper to it.

You want to run a project with the Wrapper that already provides it.

Page 43 of 717

You want to upgrade the Wrapper to a new version of Gradle.
The following sections explain each of these use cases in more detail.

8§
Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine as
described in Installing Gradle. Thankfully, generating the initial Wrapper files is a one-time process.

Every vanilla Gradle build comes with a built-in task called wr apper . You'll be able to find the task listed
under the group "Build Setup tasks" when listing the tasks. Executing the wr apper task generates the

necessary Wrapper files in the project directory.
Example 5. Running the Wrapper task

Output of gr adl e wr apper
> gradl e wrapper
. W apper

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note: To make the Wrapper files available to other developers and execution environments you'll
need to check them into version control. All Wrapper files including the JAR file are very small in
size. Adding the JAR file to version control is expected. Some organizations do not allow projects to
submit binary files to version control. At the moment there are no alternative options to the
approach.

The generated Wrapper properties file, gr adl e/ wr apper/ gr adl e- wr apper . properti es, stores the
information about the Gradle distribution.

The server hosting the Gradle distribution.

The type of Gradle distribution. By default that's the - bi n distribution containing only the runtime but no
sample code and documentation.

The Gradle version used for executing the build. By default the wr apper task picks the exact same Gradle
version that was used to generate the Wrapper files.

Example 6. The generated distribution URL

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUl=https\://services.gradle.org/distributions/gradle-4.3.1-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the following

Page 44 of 717

command line options.

--gradl e-version
The Gradle version used for downloading and executing the Wrapper.

--distribution-type
The Gradle distribution type used for the Wrapper. Available options are bi n and al | . The default value
is bi n.

--gradl e-di stribution-url
The full URL pointing to Gradle distribution ZIP file. Using this option makes - - gr adl e- ver si on and - -
obsolete as the URL already contains this information. This option is extremely valuable if you want to
host the Gradle distribution inside your company’s network.

--gradl e-di stribution-sha256-sum
The SHA256 hash sum used for verifying the downloaded Gradle distribution.

Let's assume the following use case to illustrate the use of the command line options. You would like to
generate the Wrapper with version 4.0 and use the -al | distribution to enable your IDE to enable
code-completion and being able to navigate to the Gradle source code. Those requirements are captured by
the following command line execution:

Example 7. Providing options to Wrapper task

Output of gradl e wrapper --gradle-version 4.0 --distribution-type all
> gradl e wrapper --gradle-version 4.0 --distribution-type all
;. wWr apper

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

As a result you can find the desired information in the Wrapper properties file.
Example 8. The generated distribution URL

gr adl e/ wr apper/ gradl e-w apper. properties.
di stributionUrl=https\://services.gradle.org/distributions/gradle-4.0-all.zip

Let's have a look at the following project layout to illustrate the expected Wrapper files:

Page 45 of 717

buil d. gradl e
settings.gradle
gradl e
wWr apper
gr adl e-wr apper.j ar
gr adl e-wr apper . properties
gradl ew
gr adl ew. bat

A Gradle project typically provides a bui | d. gradl e and a set ti ngs. gr adl e file. The Wrapper files live
alongside in the gr adl e directory and the root directory of the project. The following list explains their
purpose.

gr adl e-wr apper. j ar
The Wrapper JAR file containing code for downloading the Gradle distribution.

gr adl e- wr apper . properties
A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle version
compatible with this version.

gr adl ew, gr adl ew. bat
A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and execute the build with the Wrapper without having to install the Gradle runtime. If the
project you are working on does not contain those Wrapper files then you'll need to generate them.

8§
Using the Gradle Wrapper

It is recommended to always execute a build with the Wrapper to ensure a reliable, controlled and
standardized execution of the build. Using the Wrapper looks almost exactly like running the build with a
Gradle installation. Depending on the operation system you either run gr adl ewor gr adl ew. bat instead of
the gradl e command. The following console output demonstrate the use of the Wrapper on a Windows
machine for a Java-based project.

Example 9. Executing the build with the Wrapper batch file

Output of gr adl ew. bat bui |l d
> gradl ew. bat build
Downl oadi ng https://services.gradle.org/distributions/gradle-4.0-all.zip

Unzi ppi ng C \ Docunents and Settings\C audi a\. gradl e\w apper\di sts\gradl e-4.0-al |l
Set executabl e perm ssions for: C\Docunents and Settings\C audi a\. gradl e\ w appel

BUI LD SUCCESSFUL in 12s
1 actionable task: 1 executed

Page 46 of 717

In case the Gradle distribution is not available on the machine, the Wrapper will download it and store in the
local file system. Any subsequent build invocation is going to reuse the existing local distribution as long as
the distribution URL in the Gradle properties doesn’t change.

Note: The Wrapper shell script and batch file reside in the root directory of a single or multi-project
Gradle build. You will need to reference the correct path to those files in case you want to execute
the build from a subproject directory e.g. . . /. . / gradl ew t asks.

8§
Upgrading the Gradle Wrapper

Projects will typically want to keep up with the times and upgrade their Gradle version to benefit from new
features and improvements. One way to upgrade the Gradle version is manually change the di stri buti on
property in the Wrapper property file. The better and recommended option is to run the wr apper task and
provide the target Gradle version as described in the section called “Adding the Gradle Wrapper”. Using the v
task ensures that any optimizations made to the Wrapper shell script or batch file with that specific Gradle
version are applied to the project. As usual you'd commit the changes to the Wrapper files to version control.

Use the Gradle wr apper task to generate the wrapper, specifying a version. The default is the current
version, which you can check by executing . / gr adl ew - - ver si on.

Example 10. Upgrading the Wrapper version

Output of . / gradl ew wr apper --gradle-version 4.2.1
> ./ gradl ew wrapper --gradle-version 4.2.1

BUI LD SUCCESSFUL in 4s
1 actionable task: 1 executed

Page 47 of 717

Example 11. Checking the Wrapper version after upgrading

Output of . / gradl ew -v
> ./gradlew -v
Downl oadi ng https://services.gradle.org/distributions/gradle-4.2.1-bin.zip

Unzi ppi ng / Users/cl audi a/ . gradl e/ wr apper/di sts/ gradl e-4. 2. 1- bi n/ daj vke9o8knaxbuOl
Set executabl e perm ssions for: /Users/claudial/.gradl e/wapper/dists/gradle-4.2.:

Build tine: 2017-10-02 15:36:21 UIC

Revi si on: a88ehbd6be7840c2e59ae4782eb0f 27f be3405ddf

G oovy: 2.4.12

Ant : Apache Ant(TM version 1.9.6 conpiled on June 29 2015
JVM 1.8.0_60 (Oracle Corporation 25.60-b23)

Cs: Mac OS X 10.13.1 x86_64

8§

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However, organizational
policies, security constraints or personal preferences might require you to dive deeper into customizing the
Wrapper. Thankfully, the built-in wr apper task exposes numerous options to bend the runtime behavior to

your needs. Most configuration options are exposed by the underlying task type W apper .

Let's assume you grew tired of defining the - al | distribution type on the command line every time you
upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the wr apper task.

Example 12. Customizing the Wrapper task
buil d. gradl e

wr apper {
di stributionType = Wapper.Di stributionType. ALL

With the configuration in place running ./ gradl ew wrapper --gradle-version 4.1 is enough to
produce adi stri butionUrl value in the Wrapper properties file that will request the - al | distribution.

Page 48 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Example 13. The generated distribution URL

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUrl=https\://services.gradle.org/distributions/gradle-4.1-all.zip

Check out the API documentation for more detail descriptions of the available configuration options. You can
also find various samples for configuring the Wrapper in the Gradle distribution.

8§
Authenticated Gradle distribution download

The Gradle W apper can download Gradle distributions from servers using HTTP Basic Authentication. This
enables you to host the Gradle distribution on a private protected server. You can specify a username and
password in two different ways depending on your use case: as system properties or directly embedded in
the di stri buti onUr | . Credentials in system properties take precedence over the ones embedded in di st

Security Warning

HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP ones. With
Basic Authentication, the user credentials are sent in clear text.

Using system properties can be done in the . gradl e/ gradl e. properties file in the user's home

directory, or by other means, see the section called “Gradle properties”.
Example 14. Specifying the HTTP Basic Authentication credentials using system properties

gradl e. properties.
syst enProp. gradl e. w apper User =user nane
syst enPr op. gr adl e. w apper Passwor d=passwor d

Embedding credentials in the di stri buti onUrl inthe gradl e/ wr apper/ gradl e-w apper. properti
file also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded in di stri buti onUrl should only be used in a controlled environment.

Example 15. Specifying the HTTP Basic Authentication credentials in di st ri buti onUr |

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUrl =https://usernane: password@onehost/ pat h/to/ gradl e-di stri bution. zi

This can be used in conjunction with a proxy, authenticated or not. See the section called “Accessing the
web through a HTTP proxy” for more information on how to configure the W apper to use a proxy.

Page 49 of 717

8§
Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature, download the . sha256 file associated with the Gradle distribution you want to verify.

§
Downloading the SHA-256 file

You can download the . sha256 file from the stable releases or release candidate and nightly releases. The
format of the file is a single line of text that is the SHA-256 hash of the corresponding zip file.

§
Configuring checksum verification

Add the downloaded hash sum to gr adl e- w apper . properti es using the di stri buti onSha256Sun
property or use - - gr adl e-di stri buti on-sha256- sumon the command-line.

Example 16. Configuring SHA-256 checksum verification

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributi onSha256Sunr371cb9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b8236!

Gradle will report a build failure in case the configured checksum does not match the checksum found on the
server for hosting the distribution. Checksum Verification is only performed if the configured Wrapper
distribution hasn’t been downloaded yet.

Page 50 of 717

https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under
the direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle builds
with the Daemon is no different than without. Simply configure whether you want to use it or not - everything
else is handled transparently by Gradle.

8§
Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for every build,
but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - pr of i | e to get a sense of how much impact the Gradle Daemon
can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything to
benefit from it.

If you run CI builds in ephemeral environments (such as containers) that do not reuse any processes, use of
the Daemon will slightly decrease performance (due to caching additional information) for no benefit, and
may be disabled.

8§
Running Daemon Status

To get a list of running Gradle Daemons and their statuses use the - - st at us command.

Sample output:

Page 51 of 717

PI D VERSI ON STATUS
28411 3.0 | DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of
Gradle.

8
Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. There are several ways to
disable the Daemon, but the most common one is to add the line

org. gradl e. daenon=f al se

to the file «USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home directory.
That's typically one of the following, depending on your platform:

C:. \ User s\ <user nanme> (Windows Vista & 7+)
/ User s/ <user nane> (macOS)
/ honme/ <user nane> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in the section called “FAQ” further down. That section also contains more detailed
information on how the Daemon works.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost, regardless of
the version of Gradle a particular build uses.

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both developers'
machines and Continuous Integration servers. However, if you suspect that Daemon makes your ClI
builds unstable, you can disable it to use a fresh runtime for each build since the runtime is
completely isolated from any previous builds.

8§
Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle
processes on your machine, though. Every Daemon monitors its memory usage compared to total system
memory and will stop itself if idle when available system memory is low. If you want to explicitly stop running
Daemon processes for any reason, just use the command gr adl e -- st op.

Page 52 of 717

This will terminate all Daemon processes that were started with the same version of Gradle used to execute
the command. If you have the Java Development Kit (JDK) installed, you can easily verify that a Daemon
has stopped by running the j ps command. You'll see any running Daemons listed with the name G adl eDau

8
FAQ

§
How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

Via environment variables: add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS environment
variable

Via properties file: add or g. gr adl e. daenon=f al se to the «<GRADLE_USER HOVE»/ gr adl e. properti e

file

Note: Note, «GRADLE_USER HOVE» defaults to «USER_HOVE»/ . gr adl e, where «USER_HOVE» is
the home directory of the current user. This location can be configured via the - g and - - gr adl e- user
command line switches, as well as by the GRADLE_USER HOVME environment variable and or g. gr adl ¢
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. pr operti es file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "9JSERPROFI LE% . gradl e" nkdir "%JSERPROFI LEY% . gradle") && (echo. >:

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the current
user:

nkdir -p ~/.gradle & echo "org. gradl e. daenon=fal se" >> ~/.gradl e/ gradl e. properti

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daenon option.

The - - daenon and - - no- daenon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

Page 53 of 717

8
Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is already
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don’t have to
worry about cleaning them up manually.

idle
An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible
A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another example is the set of JVM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory allocation (e.g. - Xmx1024n), default
text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Build Environment for details on how to specify and control the build environment.

The following JVM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s JVM has for this property, the Daemon is not
compatible.

file.encoding

user.language

user.country

user.variant

java.io.tmpdir
javax.net.ssl.keyStore
javax.net.ssl.keyStorePassword
javax.net.ssl.keyStoreType
javax.net.ssl.trustStore

javax.net.ssl.trustStorePassword

Page 54 of 717

javax.net.ssl.trustStoreType
com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

The maximum heap size (i.e. the -Xmx JVM argument)
The minimum heap size (i.e. the -Xms JVM argument)
The boot classpath (i.e. the -Xbootclasspath argument)
The “assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versions is a common reason for having more than one running Daemon process.

§
How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB of
heap. It will use the JVM'’s default minimum heap size. 1GB is more than enough for most builds. Larger
builds with hundreds of subprojects, lots of configuration, and source code may require, or perform better,
with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Build Environment for details.

§
How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to
stop a Daemon process before this, you can either kill the process via your operating system or run the gr ad
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same

Gradle version used to run the command, terminate themselves.

8
What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted.
A Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

Page 55 of 717

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do not
release resources correctly. This is a particularly poignant problem when using Microsoft Windows as it is
less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the or g. gr adl e. daenon. per f or mance. enabl e- noni t ori ng system property to
false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

8
Tools & IDEs

The Gradle Tooling API (see Embedding Gradle using the Tooling API), that is used by IDEs and other tools
to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are executing Gradle
builds from within you're IDE you are using the Gradle Daemon and do not need to enable it for your
environment.

8
How does the Gradle Daemon make builds faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed to
once for each build. This in itself is a significant performance optimization, but that's not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For example,
HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for
incremental building.

Page 56 of 717

Dependency Management for Java Projects

This chapter introduces some of the basics of dependency management in Gradle.

8§
What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the
dependencies of the project. Secondly, Gradle needs to build and upload the things that your project
produces. We call these outgoing files the publications of the project. Let's look at these two pieces in more
detail:

Most projects are not completely self-contained. They need files built by other projects in order to be
compiled or tested and so on. For example, in order to use Hibernate in my project, | need to include some
Hibernate jars in the classpath when | compile my source. To run my tests, | might also need to include
some additional jars in the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle allows you to tell it what the
dependencies of your project are, so that it can take care of finding these dependencies, and making them
available in your build. The dependencies might need to be downloaded from a remote Maven or Ivy
repository, or located in a local directory, or may need to be built by another project in the same multi-project
build. We call this process dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names” of your
dependencies, and other layers determine where to get those dependencies from. You can get similar
behavior from Ant by adding Apache lvy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core
requires several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for
your project, it also needs to find these dependencies and make them available. We call these transitive
dependencies.

The main purpose of most projects is to build some files that are to be used outside the project. For
example, if your project produces a Java library, you need to build a jar, and maybe a source jar and some
documentation, and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for

Page 57 of 717

you. You declare the publications of your project, and Gradle take care of building them and publishing them
somewhere. Exactly what “publishing” means depends on what you want to do. You might want to copy the
files to a local directory, or upload them to a remote Maven or lvy repository. Or you might use the files in
another project in the same multi-project build. We call this process publication.

8§
Declaring your dependencies

Let’s look at some dependency declarations. Here’s a basic build script:
Example 17. Declaring dependencies

buil d. gradl e
apply plugin: 'java

repositories {
mavenCentral ()

dependenci es {
conpil e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fina
testConpile group: 'junit', name: 'junit', version: '4. +

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate
core 3.6.7.Final is required to compile the project’s production source. By implication, Hibernate core and its
dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project’s tests. It also tells Gradle to look in the Maven central repository for any dependencies
that are required. The following sections go into the details.

8§
Dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a
Configuration:;

Declaring Dependencies
The plugin uses configurations to make it easy for build authors to declare what other subprojects or
external artifacts are needed for various purposes during the execution of tasks defined by the plugin.

Resolving Dependencies
The plugin uses configurations to find (and possibly download) inputs to the tasks it defines.

Exposing Artifacts for Consumption
The plugin uses configurations to define what artifacts it generates for other projects to consume.

With those three purposes in mind, let's take a look at a few of the standard configurations defined by the

Page 58 of 717

Java Library Plugin. You can find more details in the section called “The Java Library plugin configurations”.

implementation
The dependencies required to compile the production source of the project, but which are not part of the
api exposed by the project. This configuration is an example of a configuration used for Declaring
Dependencies.

runtimeClasspath
The dependencies required by the production classes at runtime. By default, this includes the
dependencies declared in the api, i npl enentation, and runti neOnly configurations. This
configuration is an example of a configuration used for Resolving Dependencies, and as such, users
should never declare dependencies directly in the r unt i mreCl asspat h configuration.

apiElements
The dependencies which are part of this project’s externally consumable API as well as the classes
which are defined in this project which should be consumable by other projects. This configuration is an
example of Exposing Artifacts for Consumption.

Various plugins add further standard configurations. You can also define your own custom configurations to
use in your build. Please see the section called “Defining the scope of a dependency with configurations” for
the details of defining and customizing dependency configurations.

8§
External dependencies

There are various types of dependencies that you can declare. One such type is an external dependency.
This is a dependency on some files built outside the current build, and stored in a repository of some kind,
such as Maven central, or a corporate Maven or lvy repository, or a directory in the local file system.

To define an external dependency, you add it to a dependency configuration:
Example 18. Definition of an external dependency

bui I d. gradl e
dependenci es {
conpil e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fina

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which kind
of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencies looks like “gr oup: nanme: ver si on”.

Page 59 of 717

Example 19. Shortcut definition of an external dependency

buil d. gradl e
dependenci es {

conpi l e 'org. hibernate: hi bernate-core: 3.6.7.Final'

To find out more about defining dependencies, have a look at Declaring Dependencies.

8§
Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A

repository is really just a collection of files, organized by gr oup, name and ver si on. Gradle understands

several different repository formats, such as Maven and lvy, and several different ways of accessing the

repository, such as using the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use

external dependencies. One option is use the Maven central repository:

Example 20. Usage of Maven central repository
buil d. gradl e

repositories {
mavenCentral ()

Or Bintray’s JCenter:

Example 21. Usage of JCenter repository

buil d. gradl e
repositories {

jcenter()
}

Or any other remote Maven repository:

Example 22. Usage of a remote Maven repository

bui I d. gradl e
repositories {
maven {

url "http://repo. nyconpany. com nmaven2"

Or a remote Ivy repository:

Page 60 of 717

Example 23. Usage of a remote lvy directory

buil d. gradl e
repositories {
ivy {

url "http://repo. myconpany. com repo"

You can also have repositories on the local file system. This works for both Maven and Ivy repositories.

Example 24. Usage of a local lvy directory

buil d. gradl e
repositories {
vy {
url "../local -repo”
}
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

To find out more about defining repositories, have a look at Declaring Repositories.

8§
Publishing artifacts

Dependency configurations are also used to publish files.[? We call these files publication artifacts, or
usually just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don’t need to do
anything special to tell Gradle what needs to be published. However, you do need to tell Gradle where to
publish the artifacts. You do this by attaching repositories to the upl oadAr chi ves task. Here’'s an example
of publishing to a remote Ivy repository:

Page 61 of 717

Example 25. Publishing to an lvy repository

buil d. gradl e
upl oadAr chi ves {
repositories {
ivy {
credentials {
user name "usernane"
password " pw'

}
url "http://repo. nyconpany. cont

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generate and upload ani vy. xm as well.

You can also publish to Maven repositories. The syntax is slightly different.[] Note that you also need to
apply the Maven plugin in order to publish to a Maven repository. when this is in place, Gradle will generate
and upload a pom xm .

Example 26. Publishing to a Maven repository

buil d. gradl e
apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/nyRepo/")

To find out more about publication, have a look at Publishing artifacts.

8
Where to next?

For all the details of dependency resolution, see Introduction to Dependency Management, and for artifact
publication see Publishing artifacts.

If you are interested in the DSL elements mentioned here, have a look at Proj ect. confi gurati ons{},

Proj ect.repositories{} and Proj ect. dependenci es{}.

Otherwise, continue on to some guides.

Page 62 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://guides.gradle.org

[2] We think this is confusing, and we are gradually teasing apart the two concepts in the Gradle DSL.

[3] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 63 of 717

Executing Multi-Project Builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you typically
want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

§
Structure of a multi-project build

Such builds come in all shapes and sizes, but they do have some common characteristics:
A settings. gradl e file in the root or mast er directory of the project
A bui | d. gradl e file in the root or nast er directory

Child directories that have their own *. gr adl e build files (some multi-project builds may omit child project
build scripts)

The settings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’t have to read this file simply to learn what the project structure is as you can run the command gr adl e
. Here's the output from using that command on the Java multiproject build in the Gradle samples:

Page 64 of 717

Example 27. Listing the projects in a build

Outputofgradl e -q projects
> gradle -qg projects

Root project 'multiproject’

+--- Project ':api

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services
project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it finds the setti ngs. gr adl e as the name of the root
project. This usually doesn’t cause problems since all developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that's not necessarily the case. In the above example, the
services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gradl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to all the child projects. It can also be used
to configure individual subprojects when it is preferable to have all the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects will
name the build files after the subproject nhames, such as api . gradl e and servi ces. gr adl e from the
previous example. Such an approach helps a lot in IDEs because it's tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic is handled by the settin
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the child
project directories to find the files with the . gr adl e suffix.

Page 65 of 717

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

8§
Executing a multi-project build

From a user’s perspective, multi-project builds are still collections of tasks you can run. The difference is that
you may want to control which project’s tasks get executed. You have two options here:

Change to the directory corresponding to the subproject you're interested in and just execute gr adl e <t ask
as normal.

Use a qualified task name from any directory, although this is usually done from the root. For example: gr adl

will build the webservice subproject and any subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case of
a multi-project build. The command gr adl e t est will execute the t est task in any subprojects, relative to
the current working directory, that have that task. So if you run the command from the root project directory,
you'll run t est in api, shared, services:shared and services:webservice. If you run the command from the
services project directory, you'll only execute the task in services:shared and services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These
are paths just like directory paths, but use “’ instead of ‘/’ or ‘\'. If the path begins with a *’, then the path is
resolved relative to the root project. In other words, the leading *:’ represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
the t asks task, e.g. gradl e : servi ces: webservi ce: tasks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how this is configured, you can read about writing multi-project builds later in the user guide.

There’s one last thing to note. When you're using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun . ./ ../ gradl ew bui | d.

That's all you really need to know about multi-project builds as a build user. You can now identify whether a
build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 66 of 717

Continuous build

Note: Continuous build is an incubating feature. This means that it is incomplete and not yet at
regular Gradle production quality. This also means that this Gradle User Guide chapter is a work in
progress.

Typically, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.
Gradle will determine the actual set of tasks that need to be executed to satisfy the request, execute them
all, and then stop doing work until the next request. A continuous build differs in that Gradle will keep
satisfying the initial build request (until instructed to stop) by executing the build when it is detected that the
result of the previous build is now out of date. For example, if your build compiles Java source files to Java
class files, a continuous build would automatically initiate a compile when the source files change.
Continuous build is useful for many scenarios.

8§
How do | start and stop a continuous build?

A continuous build can be started by supplying either the - - cont i nuous or -t switches to Gradle, along
with the list of tasks, switches and arguments that define the work to do. For example, gradl e build --cc
. This will have the same effect as running gr adl e bui | d, but instead of Gradle exiting when done, it will
wait for changes to the build inputs. When a change occurs, gr adl e bui | d will be automatically executed
again and the process repeats.

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D). If
Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | | command or similar). If the build is being executed via the Tooling
API, the build can be cancelled using the Tooling API's cancellation mechanism.

8§
What will cause a subsequent build?

Task file inputs

Task implementations declare their file system inputs by annotating their properties with
| nput Fi | es and other similar annotations. Please see the section called “Up-to-date checks (AKA
Incremental Build)” for more information.

Page 67 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/InputFiles.html

At this time, only changes to task inputs are noticed. Gradle will start watching for changes just before the
task starts to execute. No other changes will initiate a build. For example, changes to build scripts and build
logic will not initiate build. Likewise, changes to files that are read during the configuration of the build, not
the execution, will not initiate a build. In order to incorporate such changes, the continuous build must be
restarted manually.

Consider a typical build using the Java plugin, using the conventional filesystem layout. The following
diagram visualizes the task graph for gr adl e bui | d:

Figure 4. Java plugin task graph

javadoc

compileTestJava

compileJava

test check

processResources testClasses
processTestResources build
uploadArchives
assemble 14
clean

The following key tasks of the graph use files in the corresponding directories as inputs:

compileJava
src/ main/java

processResources
src/ mai n/ resour ces

compileTestJava
src/test/java

processTestResources
src/test/resources

Assuming that the initial build is successful (i.e. the bui | d task and its dependencies complete without
error), changes to files in, or the addition/remove of files from, the locations listed above will initiate a new
build. If a change is made to a Java source file in src/ mai n/ j ava, the build will fire and all tasks will be
scheduled. Gradle’s incremental build support ensures that only the tasks that are actually affected by the
change are executed.

If the change to the main Java source causes compilation to fail, subsequent changes to the test source in sr
will not initiate a new build. As the test source depends on the main source, there is no point building until
the main source has changed, potentially fixing the compilation error. After each build, only the inputs of the
tasks that actually executed will be monitored for changes.

Continuous build is in no way coupled to compilation. It works for all types of tasks. For example, the pr oces

task copies and processes the files from sr c/ mai n/ r esour ces for inclusion in the built JAR. As such, a

Page 68 of 717

change to any file in this directory will also initiate a build.

8§
Limitations and quirks

There are several issues to be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle releases.

§
Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn’t unique to continuous build. A task that
modifies its own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a task
that has that file as an input. In some cases, it may be obvious (e.g., a Java file is compiled with conpi | eJa

). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

8§
Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific
options, which means that:

On macOS, Gradle will poll for file changes every 10 seconds instead of every 2 seconds.

On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause continuous
build to no longer work on very large projects.

8
Performance and stability

The JDK file watching facility relies on inefficient file system polling on macOS (see: JDK-7133447). This can
significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on macOS (see: JDK-8079620). This
will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit continuous
build and start again.

On Linux, OpenJDK'’s implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

Page 69 of 717

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

8
Changes to symbolic links

Creating or removing symbolic link to files will initiate a build.

Modifying the target of a symbolic link will not cause a rebuild.

Creating or removing symbolic links to directories will not cause rebuilds.
Creating new files in the target directory of a symbolic link will not cause a rebuild.

Deleting the target directory will not cause a rebuild.

8
Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 70 of 717

Composite builds

Note: Composite build is an incubating feature. While useful for many use cases, there are bugs to
be discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

8§
What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to a
Gradle multi-project build, except that instead of including single pr oj ect s, complete bui | ds are included.

Composite builds allow you to:

combine builds that are usually developed independently, for instance when trying out a bug fix in a library
that your application uses

decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build". Included
builds do not share any configuration with the composite build, or the other included builds. Each included
build is configured and executed in isolation.

Included builds interact with other builds via dependency substituti on. If any build in the composite
has a dependency that can be satisfied by the included build, then that dependency will be replaced by a
project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.
However for more flexibility, it is possible to explicitly declare these substitutions if the default ones
determined by Gradle are not correct for the composite. See the section called “Declaring the dependencies
substituted by an included build”.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task
dependencies on the composite build or on other included builds. See the section called “Depending on
tasks in an included build”.

Page 71 of 717

8§
Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed
separately can be combined into a composite build. For these examples, the my- uti | s multi-project build
produces 2 different java libraries (nunber-util s and string-util s), and the ny- app build produces
an executable using functions from those libraries.

The ny-app build does not have direct dependencies on mny-utils. Instead, it declares binary
dependencies on the libraries produced by ny-util s.

Example 28. Dependencies of my-app

nmy-app/ bui | d. gradl e
apply plugin: 'java'
apply plugin: "application'
apply plugin: 'idea'

group "org.sanple"
version "1.0"

mai nCl assNane = "org. sanpl e. nyapp. Mai n"
dependenci es {

conpile "org. sanpl e: nunber-utils:1.0"
conpile "org.sanple:string-utils:1.0"

}

repositories {
jcenter()

}
Note: The code for this example can be found at sanpl es/ conposi t eBui | ds/ basi ¢ in the *-all’
distribution of Gradle.

8

Defining a composite build via - - i ncl ude- bui | d

The - -i ncl ude- bui I d command-line argument turns the executed build into a composite, substituting

dependencies from the included build into the executed build.

Page 72 of 717

Example 29. Declaring a command-line composite

Outputofgradl e --include-build ../my-utils run

> gradle --include-build ../my-utils run

. processResour ces NO SOURCE
sny-utils:string-utils:conpil eJava
smy-utils:string-utils: processResources NO SOURCE
cny-utils:string-utils:classes
cmy-utils:string-utils:jar
smy-utils:nunber-utils:conpilelava
cmy-utils:nunmber-utils: processResources NO SOURCE
cmy-utils:nunmber-utils:classes
sny-utils:nunber-utils:jar

:conpi | eJava

: cl asses

.run

The answer is 42

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

§
Defining a composite build via setti ngs. gradl e

It's possible to make the above arrangement persistent, by using
Settings.includeBuild(]ava.lang. Cbj ect) to declare the included build in the setti ngs. gradl e
file. The settings. gradl e file can be used to add subprojects and included builds at the same time.

Included builds are added by location. See the examples below for more details.

8
Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less
useful as a standalone build. One way to avoid this is to define a separate composite build, whose only
purpose is to combine otherwise separate builds.

Example 30. Declaring a separate composite

settings.gradle

r oot Proj ect . name=' adhoc'
i ncl udeBui I d

i ncl udeBui |l d

../ ny-app’
o lmy-util s

In this scenario, the 'main’ build that is executed is the composite, and it doesn’t define any useful tasks to
execute itself. In order to execute the 'run’ task in the 'my-app' build, the composite build must define a

Page 73 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

delegating task.
Example 31. Depending on task from included build

buil d. gradl e
task run {
dependsOn gradl e.incl udedBuil d(' nmy-app').task(':run")

More details tasks that depend on included build tasks below.

8
Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.

Every included build:

must have a setti ngs. gr adl e file.

must not itself be a composite build.

must not have a r oot Pr oj ect . nane the same as another included build.

must not have a r oot Pr oj ect . nane the same as a top-level project of the composite build.
must not have a r oot Pr oj ect . nanme the same as the composite build r oot Pr oj ect . nane.

8§
Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build. Tasks can be
executed, tests can be run, and builds can be imported into the IDE.

§
Executing tasks

Tasks from the composite build can be executed from the command line, or from you IDE. Executing a task
will result in direct task dependencies being executed, as well as those tasks required to build dependency
artifacts from included builds.

Note: There is not (yet) any means to directly execute a task from an included build via the
command line. Included build tasks are automatically executed in order to generate required
dependency artifacts, or the including build can declare a dependency on a task from an included
build.

Page 74 of 717

8
Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the idea or eclipse plugin
to your build, it is possible to generate a single IDEA or Eclipse project that permits all builds in the
composite to be developed together.

In addition to these Gradle plugins, recent versions of IntelliJ IDEA and Eclipse Buildship support direct
import of a composite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed together.
For every included build, each sub-project is included as an IDEA Module or Eclipse Project. Source
dependencies are configured, providing cross-build navigation and refactoring.

8§
Declaring the dependencies substituted by an included build

By default, Gradle will configure each included build in order to determine the dependencies it can provide.
The algorithm for doing this is very simple: Gradle will inspect the group and name for the projects in the
included build, and substitute project dependencies for any external dependency matching ${ pr oj ect . gr ol

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not
correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an
included build. Take for example a single-project build ‘unpublished', that produces a java utility library but
does not declare a value for the group attribute:

Example 32. Build that does not declare group attribute

buil d. gradl e
apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for pr oj ect . gr oup, and 'unpublished' being
the root project name). Clearly this isn’t going to be very useful in a composite build. To use the unpublished
library unmodified in a composite build, the composing build can explicitly declare the substitutions that it
provides:

Page 75 of 717

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

Example 33. Declaring the substitutions for an included build

settings.gradle
root Proj ect. nane = 'app'

i ncludeBuil d('../anonynous-library') {
dependencySubstitution {
substitute modul e(' org. sanpl e: nunber-utils'") with project(':")

With this configuration, the "my-app" composite build will substitute any dependency on or g. sanpl e: numnbe

with a dependency on the root project of "unpublished".

§
Cases where included build substitutions must be declared

Many builds that use the upl oadAr chi ves task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared substitutions
are required:

When the ar chi vesBaseNane property is used to set the name of the published artifact.

When a configuration other than def aul t is published: this usually means a task other than upl oadAr chi v

is used.
When the MavenPom addFi | t er () is used to publish artifacts that don’t match the project name.

When the maven- publish or ivy-publish plugins are used for publishing, and the publication
coordinates don’'t match ${ pr oj ect . group}: ${pr oj ect . nane}.

8
Cases where composite build substitutions won’t work

Some builds won't function correctly when included in a composite, even when dependency substitutions are
explicitly declared. This limitation is due to the fact that a project dependency that is substituted will always
point to the def aul t configuration of the target project. Any time that the artifacts and dependencies
specified for the default configuration of a project don’t match what is actually published to a repository, then
the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

When a configuration other than def aul t is published.
When the maven- publ i sh ori vy- publ i sh plugins are used.

When the POMor i vy. xm file is tweaked as part of publication.

Page 76 of 717

Builds using these features function incorrectly when included in a composite build. We plan to improve this
in the future.

8§
Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite
build is able to declare task dependencies on its included builds. The included builds are accessed using
Gradl e. get | ncl udedBui | ds() or Gradl e.includedBuild(java.lang.String), and a task

reference is obtained via the | ncl udedBui | d. t ask(] ava. | ang. St ring) method.

Using these APIs, it is possible to declare a dependency on a task in a particular included build, or tasks with
a certain path in all or some of the included builds.

Example 34. Depending on a single task from an included build

bui I d. gradl e
task run {
dependsOn gradl e.includedBuild(' nmy-app').task(':run")

Example 35. Depending on a tasks with path in all included builds

buil d. gradl e
task publishDeps {
dependsOn gradl e. i ncl udedBui | ds*. t ask("' : upl oadAr chi ves')

8§
Current limitations and future plans for composite builds

We think composite builds are pretty useful already. However, there are some things that don’t yet work the
way we’d like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

No support for included builds that have publications that don’t mirror the project default configuration. See
the section called “Cases where composite build substitutions won’t work”.

Native builds are not supported. (Binary dependencies are not yet supported for native builds).

Substituting plugins only works with the bui | dscri pt block but not with the pl ugi ns block.

Improvements we have planned for upcoming releases include:

Better detection of dependency substitution, for build that publish with custom coordinates, builds that

produce multiple components, etc. This will reduce the cases where dependency substitution needs to be

Page 77 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

explicitly declared for an included build.

The ability to target a task or tasks in an included build directly from the command line. We are currently
exploring syntax options for allowing this functionality, which will remove many cases where a delegating
task is required in the composite.

Making the implicit bui | dSr ¢ project an included build.

Supporting composite-of-composite builds.

Page 78 of 717

Build Environment

Gradle provides multiple mechanisms for configuring behavior of Gradle itself and specific projects. The
following is a reference for using these mechanisms.

When configuring Gradle behavior you can use these methods, listed in order of highest to lowest
precedence (first one wins):

Command-line flags such as - - bui | d- cache. These have precedence over properties and environment
variables.

System properties such as syst enPr op. htt p. pr oxyHost =sonehost . or g stored in a gr adl e. pr opert

file.

Gradle properties such as or g. gr adl e. cachi ng=t r ue that are typically stored in a gr adl e. properti e
file in a project root directory or GRADLE_USER_HOVE environment variable.

Environment variables such as GRADLE_OPTS sourced by the environment that executes Gradle.

Aside from configuring the build environment, you can configure a given project build using Project
properties such as - Pr el easeType=fi nal .

8§
Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute
your build. While it's possible to configure these in your local environment via GRADLE_OPTS or JAVA _OPTS,
it is useful to store certain settings like JVM memory configuration and Java home location in version control
so that an entire team can work with a consistent environment.

Setting up a consistent environment for your build is as simple as placing these settings into a gr adl e. pr of
file. The configuration is applied in following order (if an option is configured in multiple locations the last one
wins):

gradl e. properti es in project root directory.
gradl e. properties in GRADLE_USER_HOVE directory.

system properties, e.g. when - Dgr adl e. user. hon® is set on the command line.

Page 79 of 717

The following properties can be used to configure the Gradle build environment:

org. gradl e. cachi ng=(true, fal se)
When set to true, Gradle will reuse task outputs from any previous build, when possible, resulting is much
faster builds. Learn more about using the build cache.

org. gradl e. confi gureondenmand=(true, f al se)
Enables incubating configuration on demand, where Gradle will attempt to configure only necessary
projects.

org. gradl e. consol e=(aut o, pl ai n, rich, verbose)
Customize console output coloring or verbosity. Default depends on how Gradle is invoked. See
command-line logging for additional details.

org. gradl e. daenon=(true, f al se)
When set to t r ue the Gradle Daemon is used to run the build. Default is t r ue.

org. gradl e. daenon.idl etineout=(# of idle mllis)
Gradle Daemon will terminate itself after specified number of idle milliseconds. Default is 10800000 (3

hours).

org. gradl e. debug=(true, fal se)
When set to t r ue, Gradle will run the build with remote debugging enabled, listening on port 5005. Note
that this is the equivalent of adding - agent | i b: j dwp=t r ansport =dt _socket, server =y, suspend:=
to the JVM command line and will suspend the virtual machine until a debugger is attached. Default is f al

org. gradl e.java. hone=(path to JDK hone)
Specifies the Java home for the Gradle build process. The value can be set to either a jdk orjre
location, however, depending on what your build does, using a JDK is safer. A reasonable default is used
if the setting is unspecified.

org.gradle.jvmargs=(JVM ar gunment s)
Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance.

org. gradl e.l oggi ng. | evel =(qui et,warn, |ifecycle,info, debug)
When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are not case
sensitive. The | i f ecycl e level is the default. See the section called “Choosing a log level”.

org.gradle.parallel =(true, fal se)
When configured, Gradle will fork up to org. gradl e. wor kers. max JVMs to execute projects in
parallel. To learn more about parallel task execution, see the Gradle performance guide.

org. gradl e. war ni ng. node=(al | , none, summary)
When set to al | , summary or none, Gradle will use different warning type display. See the section
called “Logging options” for detalils.

Page 80 of 717

https://guides.gradle.org/performance/#parallel_execution

org. gradl e. workers. max=(max # of worker processes)
When configured, Gradle will use a maximum of the given number of workers. Default is number of CPU
processors. See also performance command-line options.

The following example demonstrates usage of various properties.
Example 36. Setting properties with a gradle.properties file

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi ttenBySysProp
envProj ect Prop=shoul dBeOver Wi ttenByEnvProp
syst enPr op. syst enrsyst enval ue

buil d. gradl e
task printProps {
doLast {

println comrandLi neProj ect Prop
println gradl eProperti esProp
println systenProjectProp

println envProjectProp

println System properties['systeni]

Output of gradle -q - PconmandLi nePr oj ect Pr op=commandLi nePr oj ect PropVal ue

- Dor g. gradl e. proj ect. syst enPr oj ect Prop=syst enPropertyVal ue printProps

> gradl e -g -PcommandLi nePr oj ect Prop=commandLi nePr oj ect PropVal ue - Dorg. gradl e. prt
commandLi nePr oj ect PropVal ue

gr adl eProperti esVal ue

syst enPr opertyVal ue

envPropertyVal ue

syst enVal ue

§
System properties

Using the - D command-line option, you can pass a system property to the JVM which runs Gradle. The - D

option of the gr adl e command has the same effect as the - D option of the j ava command.
You can also set system properties in gr adl e. properti es files with the prefix syst enPr op.
Example 37. Specifying system properties in gr adl e. properties

syst enProp. gradl e. w apper User =nyuser
syst enPr op. gr adl e. w apper Passwor d=nypassword

Page 81 of 717

The following system properties are available. Note that command-line options take precedence over system
properties.

gradl e. wr apper User =(myuser)
Specify user name to download Gradle distributions from servers using HTTP Basic Authentication.
Learn more in the section called “Authenticated Gradle distribution download”.

gr adl e. wr apper Passwor d=(nypasswor d)
Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradl e. user. hone=(path to directory)

Specify the Gradle user home directory.

In a multi project build, “syst enPr op. ” properties set in any project except the root will be ignored. That is,
only the root project’'s gr adl e. properti es file will be checked for properties that begin with the “syst enP
" prefix.

8
Environment variables

The following environment variables are available for the gradl e command. Note that command-line
options and system properties take precedence over environment variables.

GRADLE_OPTS
Specifies command-line arguments to use when starting the Gradle client. This can be useful for setting
the properties to use when running Gradle.

GRADLE_USER_HOVE
Specifies the Gradle user home directory (which defaults to $USER_HOVE/ . gr adl e if not set).

JAVA_HOVE
Specifies the JDK installation directory to use.

8§
Project properties

You can add properties directly to your Pr o] ect object via the - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment
variables. If the environment variable name looks like ORG_GRADLE_PRQIJECT_pr op=soneval ue, then
Gradle will set a pr op property on your project object, with the value of soneval ue. Gradle also supports
this for system properties, but with a different naming pattern, which looks like or g. gr adl e. pr oj ect . pr o}
. Both of the following will set the f oo property on your Project object to " bar .

Example 38. Setting a project property via gradle.properties

org. gradl e. proj ect. foo=bar

Page 82 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html

Example 39. Setting a project property via environment variable
ORG_GRADLE_PRQIJECT f oo=bar

Note: The properties file in the user’'s home directory has precedence over property files in the
project directories.

This feature is very useful when you don’'t have admin rights to a continuous integration server and you need
to set property values that should not be easily visible. Since you cannot use the - P option in that scenario,
nor change the system-level configuration files, the correct strategy is to change the configuration of your
continuous integration build job, adding an environment variable setting that matches an expected pattern.
This won't be visible to normal users on the system.

You can access a project property in your build script simply by using its name as you would use a variable.

Note: If a project property is referenced but does not exist, an exception will be thrown and the build
will fail.

You should check for existence of optional project properties before you access them using the
Proj ect. hasProperty(java.l ang. Stri ng) method.

8§
Configuring JVM memory

Gradle defaults to 1024 megabytes maximum heap per JVM process (- Xnx1024m), however, that may be
too much or too little depending on the size of your project. There are many JVM options (this blog post on
Java performance tuning and this reference may be helpful).

You can adjust JVM options for Gradle in the following ways:
The JAVA OPTS environment variable is used for the Gradle client, but not forked JVMs.

Example 40. Changing JVM settings for Gradle client JVM

JAVA OPTS="- Xnx2g - XX: MaxPer n5i ze=256m - XX: +HeapDunpOnQut O Menor yError -Dfil e. en

You need to use the org. gradl e. j vmar gs Gradle property to configure JVM settings for the Gradle
Daemon.

Example 41. Changing JVM settings for forked Gradle JVMs

org. gradl e.jvmargs=- Xmx2g - XX: MaxPer ni ze=256m - XX: +HeapDunpOnQut O Menor yError - |

Note: Many settings (like the Java version and maximum heap size) can only be specified when
launching a new JVM for the build process. This means that Gradle must launch a separate JVM
process to execute the build after parsing the various gr adl e. pr operti es files.

Page 83 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
https://dzone.com/articles/java-performance-tuning
https://dzone.com/articles/java-performance-tuning
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

When running with the Gradle Daemon, a JVM with the correct parameters is started once and
reused for each daemon build execution. When Gradle is executed without the daemon, then a new
JVM must be launched for every build execution, unless the JVM launched by the Gradle start script
happens to have the same parameters.

Certain tasks in Gradle also fork additional JVM processes, like the test task when using
Test.set MaxParal | el Forks(int) for JUnit or TestNG tests. You must configure these through the
tasks themselves.

Example 42. Set Java compile options for JavaConpi | e tasks
apply plugin: "java"

tasks. wi t hType(JavaConpil e) {
options.conpilerArgs += ["-Xdoclint:none", "-Xint:none", "-nowarn"]

See other examples in the Test APl documentation and test execution in the Java plugin reference.

Build scans will tell you information about the JVM that executed the build when you use the - - scan option.

o]
@
B

E scans.gradle.com L)

e +/ transitive-de... compileDebugCpp ©ct 11, 2017 11

308 31 SWITCNes

M %

L

s
=18

:
=2

Console log
13 infrastructure properties

#+ Timeline
Operating system I
VW Performance CPU cores
[rij, Projects Max Gradle workers
i Java runtime
%% Dependencies
> Plugins Java VM
H Switches Max INM memory heap size
%5 Infrastructure
See all items

Terms of Service | Status | Help and Feedback

Page 84 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com
https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

8§
Configuring a task using project properties

It's possible to change the behavior of a task based on project properties specified at invocation time.

Suppose you'd like to ensure release builds are only triggered by CI. A simple way to handle this is through
ani sCl project property.

Example 43. Prevent releasing outside of ClI

bui | d. gradl e
task perfornRel ease {
doLast {

i f (project.hasProperty("isCl")) {
println("Performng rel ease actions")
} else {
t hrow new | nval i dUser Dat aExcepti on(" Cannot performrel ease outsi de of

Output of gr adl e perfornRel ease -Pi sCl=true --qui et
> gradl e performnmRel ease -Pi sCl=true --quiet
Perform ng rel ease actions

8§
Accessing the web through a HTTP proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard
JVM system properties. These properties can be set directly in the build script; for example, setting the
HTTP proxy host would be done with Syst em set Property(' http. proxyHost', 'ww. sonmehost. or
. Alternatively, the properties can be specified in gradle.properties.

Example 44. Configuring an HTTP proxy using gr adl e. properti es

syst enProp. http. proxyHost =www. sonehost . or g

syst enProp. http. proxyPort =8080

syst enProp. http. proxyUser =userid

syst enProp. http. proxyPasswor d=passwor d

syst enProp. htt p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.

Page 85 of 717

Example 45. Configuring an HTTPS proxy using gr adl e. properti es

syst enProp. https.
systenProp. https.
syst enProp. https.
systenProp. https.
systenProp. https.

pr oxyHost =www. sonmehost . or g

pr oxyPor t =8080

proxyUser =userid

pr oxyPasswor d=passwor d

nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

You may need to set other properties to access other networks. Here are 2 references that may be helpful:

ProxySetup.java in the Ant codebase

JDK 7 Networking Properties

8

NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as

the username and password. There are 2 ways that you can provide the domain for authenticating to a

NTLM proxy:

Set the ht t p. proxyUser system property to a value like domai n/ user nane.

Provide the authentication domain via the htt p. aut h. nt I m domai n system property.

Page 86 of 717

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD
http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Troubleshooting

Note: This chapter is currently a work in progress.

When using Gradle (or any software package), you can run into problems. You may not understand how to
use a particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your
problems.

8§
Working through problems

If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New
versions of Gradle are released frequently with bug fixes and new features. The problem you are having may
have been fixed in a new release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line
switch - - no- daenon). More information about troubleshooting the daemon process is located in The
Gradle Daemon.

8§
Getting help

The place to go for help with Gradle is http://forums.gradle.org. The Gradle Forums is the place where you
can report problems and ask questions of the Gradle developers and other community members.

If something’s not working for you, posting a question or problem report to the forums is the fastest way to
get help. It's also the place to post improvement suggestions or new ideas. The development team
frequently posts news items and announces releases via the forum, making it a great way to stay up to date
with the latest Gradle developments.

Page 87 of 717

http://forums.gradle.org

Embedding Gradle using the Tooling API

§
Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into
your own software. This API allows you to execute and monitor builds and to query Gradle about the details
of a build. The main audience for this API is IDE, CI server, other Ul authors; however, the API is open for
anyone who needs to embed Gradle in their application.

Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.
Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.
IntelliJ IDEA uses the Tooling API for importing your Gradle project and running tasks.

8§
Tooling API Features

A fundamental characteristic of the Tooling APl is that it operates in a version independent way. This means
that you can use the same API to work with builds that use different versions of Gradle, including versions
that are newer or older than the version of the Tooling API that you are using. The Tooling API is Gradle
wrapper aware and, by default, uses the same Gradle version as that used by the wrapper-powered build.

Some features that the Tooling API provides:

Query the details of a build, including the project hierarchy and the project dependencies, external
dependencies (including source and Javadoc jars), source directories and tasks of each project.

Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages shown in
the 'status bar' when you run on the command line).

Execute a specific test class or test method.

Receive interesting events as a build executes, such as project configuration, task execution or test
execution.

Cancel a build that is running.

Combine multiple separate Gradle builds into a single composite build.

Page 88 of 717

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved
library, and makes no assumptions about your classloader structure or logging configuration. This makes the
API easy to embed in your application.

8§
Tooling APl and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it
model building requests or task executing requests will be executed in the same long-living process. The
Gradle Daemon contains more details about the daemon, specifically information on situations when new
daemons are forked.

8§
Quickstart

As the Tooling APl is an interface for developers, the Javadoc is the main documentation for it. We provide
several samples that live in sanpl es/ t ool i ngApi in your Gradle distribution. These samples specify all of
the required dependencies for the Tooling API with examples for querying information from Gradle builds
and executing tasks from the Tooling API.

To use the Tooling API, add the following repository and dependency declarations to your build script:
Example 46. Using the tooling API
buil d. gradl e

repositories {
maven { url 'https://repo.gradle.org/gradle/libs-rel eases' }

dependenci es {
conpile "org. gradl e: gradl e-tool i ng-api : ${t ool i ngApi Versi on}"

runtine 'org.slf4j:slf4j-sinple:1.7.10

The main entry point to the Tooling API is the Gr adl eConnect or . You can navigate from there to find code
samples and explore the available Tooling API models. You can use G adl eConnect or. connect () to
create a Proj ect Connecti on. A Proj ect Connecti on connects to a single Gradle project. Using the
connection you can execute tasks, tests and retrieve models relative to this project.

Page 89 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/tooling/GradleConnector.html#connect--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/tooling/ProjectConnection.html

8§
Gradle version and Java version compatibility

8§
Provider side

The current version of Tooling APl supports running builds using Gradle versions 1.2 and later. However,
support for running builds with Gradle versions older than 2.6 is deprecated and will be removed in Tooling
API version 5.0.

8§
Consumer side

The current version of Gradle supports running builds via Tooling API versions 2.0 and later. However,
support for running builds via Tooling API versions older than 3.0 is deprecated and will be removed in
Gradle 5.0.

You should note that not all features of the Tooling API are available for all versions of Gradle. For example,
build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the documentation for
each class and method for more details.

8
Java version

The Tooling API requires Java 8 or later. Java 7 is currently still supported but will be removed in Gradle 5.0.
The Gradle version used by builds may have additional Java version requirements.

Page 90 of 717

Build Cache

Note: The build cache feature is ready to be used for Java, Groovy and Scala projects. Work
continues to make it available in more areas.

Note: The build cache feature described here is different from the Android plugin build cache.

8
Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by other
builds. The build cache works by storing (locally or remotely) build outputs and allowing builds to fetch these
outputs from the cache when it is determined that inputs have not changed, avoiding the expensive work of
regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching leverages the
same intelligence as up-to-date checks that Gradle uses to avoid work when a previous local build has
already produced a set of task outputs. But instead of being limited to the previous build in the same
workspace, task output caching allows Gradle to reuse task outputs from any earlier build in any location on
the local machine. When using a shared build cache for task output caching this even works across
developer machines and build agents.

Apart from task output caching, we expect other features to use the build cache in the future.

Note: A complete guide is available about using the build cache. It covers the different scenarios
caching can improve, and detailed discussions of the different caveats you need to be aware of
when enabling caching for a build.

8
Enable the Build Cache

By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with - - bui | d- cache on the command-line
Gradle will use the build cache for this build only.

Put or g. gradl e. cachi ng=true in your gradl e. properties
Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled with - - no- bui

Page 91 of 717

http://tools.android.com/tech-docs/build-cache
https://guides.gradle.org/using-build-cache/

When the build cache is enabled, it will store build outputs in the Gradle user home. For configuring this
directory or different kinds of build caches see the section called “Configure the Build Cache”.

8§
Task Output Caching

Beyond incremental builds described in the section called “Up-to-date checks (AKA Incremental Build)”,
Gradle can save time by reusing outputs from previous executions of a task by matching inputs to the task.
Task outputs can be reused between builds on one computer or even between builds running on different
computers via a build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration agents
should pull cache entries from the remote build cache. We expect that developers will not be allowed to
populate the remote build cache, and all continuous integration builds populate the build cache after running
the cl ean task.

For your build to play well with task output caching it must work well with the incremental build feature. For
example, when running your build twice in a row all tasks with outputs should be UP- TO- DATE. You cannot
expect faster builds or correct builds when enabling task output caching when this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see the section called
“Enable the Build Cache”.

8§
What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build the first
time.

$> gradl e --build-cache conpil eJava

Bui I d cache is an incubating feature.

Using local directory build cache for the root build (location = /home/user/.grai
:conpi | eJava

: processResour ces

: cl asses

) ar

:assenbl e

BU LD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the same as
without the build cache. Let’s clean and run the build again.

Page 92 of 717

$> gradle clean
:cl ean

BU LD SUCCESSFUL

$> gradl e --buil d-cache assenble

Buil d cache is an incubating feature.

Using |l ocal directory build cache for the root build (location = /home/user/.grai
: conpi | eJava FROM CACHE

: processResour ces

: cl asses

) ar

:assenbl e

BU LD SUCCESSFUL

Now we see that, instead of executing the : conpi | eJava task, the outputs of the task have been loaded
from the build cache. The other tasks have not been loaded from the build cache since they are not
cacheable. This is due to : cl asses and : assenbl e being lifecycle tasks and : pr ocessResour ces and :
being Copy-like tasks which are not cacheable since it is generally faster to execute them.

8§
Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that uniquely
defines the task’s outputs based on its inputs. That build cache key is used to request previous outputs from
a build cache or push new outputs to the build cache. If the previous build is already populated by someone
else, e.g. your continuous integration server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for up-to-date
checks:

The task type and its classpath

The names of the output properties

The names and values of properties annotated as described in the section called “Custom task types”
The names and values of properties added by the DSL via Taskl nput s

The classpath of the Gradle distribution, buildSrc and plugins

The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the €Cacheabl eTask annotation. Note that €Cachesz
is not inherited by subclasses. Custom task types are not cacheable by default.

Page 93 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/CacheableTask.html

8
Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:
Java toolchain: JavaConpi | e, Javadoc
Groovy toolchain: G- oovyConpi | e, G oovydoc
Scala toolchain: Scal aConpi | e, Scal aDoc
Native toolchain: CppConpi | e, CConpi | e
Testing: Test
Code quality tasks: Checkst yl e, CodeNar c, Fi ndBugs, JDepend, Pnd
Jacoco: JacocoMer ge, JacocoRepor t
Other tasks: Ant | r Task Val i dat eTaskProperties, WiteProperties
§
Non-cacheable tasks

All other tasks are currently not cacheable, but this may change in the future for other languages (Kotlin) or
domains (native, Android, Play). Some tasks, like Copy or Jar, usually do not make sense to make
cacheable because Gradle is only copying files from one location to another. It also doesn’t make sense to
make tasks cacheable that do not produce outputs or have no task actions.

8
Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that the results
from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical because
the same cache key is used by both executions. Missing task outputs can cause build failures if Gradle does
not completely capture all outputs for a given task. Wrongly declared task inputs can lead to cache misses
especially when containing volatile data or absolute paths. (See the section called “Task inputs and outputs”
on what should be declared as inputs and outputs.)

Note: The task path is not an input to the build cache key. This means that tasks with different task
paths can re-use each other’s outputs as long as Gradle determines that executing them yields the
same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for example using

TestKit) to check that a task produces the same outputs for identical inputs and captures all output files for
the task. We suggest adding tests to ensure that the task inputs are relocatable, i.e. that the task can be

Page 94 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.cpp.tasks.CppCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.c.tasks.CCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.WriteProperties.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Jar.html

loaded from the cache into a different build directory (see €Pat hSensi ti ve).

In order to handle volatile inputs for your tasks consider configuring input normalization.

8
Known issues with task output caching

The task output caching feature has known issues that may impact the correctness of your build when using
the build cache, and there are some caveats to keep in mind which may reduce the number of cache hits
you get between machines. These issues will be corrected as this feature becomes stable.

Note that task output caching relies on incremental build. Problems that affect incremental builds can also
affect task output caching even if the affected tasks are not cacheable. Most issues only cause problems if
your build cache is populated by non-clean builds or if caching has been enabled for unsupported tasks. For
a current list of open problems with incremental builds see these Github issues.

Note: When reporting issues with the build cache, please check if your issue is a known issue or
related to a known issue.

§
Correctness issues

These issues may affect the correctness of your build when using the build cache. Please consider these
issues carefully.

Page 95 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/PathSensitive.html
https://github.com/gradle/gradle/issues?utf8=%E2%9C%93&q=is%3Aopen%20label%3Aa%3Abug%20label%3Ain%3Aincremental-build%20
https://github.com/gradle/gradle/issues/new?labels=in:build-cache

Table 1. Correctness issues

escription Impact Workaround

Gradle currently tracks the major version of Java that is Only enable caching for builds that all use the
racking the used for compilation and test execution. If your build uses same Java implementation or manually add the
ava vendor several Java implementations (IBM, OpenJDK, Oracle, etc) Java vendor as an input to compilation and test
plementation that are the same major version, Gradle will treat them all as execution tasks by using the runtime api for

equivalent and re-use outputs from any implementation. adding task inputs.

Gradle currently tracks the major version of Java (6 vs 7 vs
8) that is used for compilation and test execution. If your
racking the build expects to use several minor releases (1.8.0_102 vs Manually add the full Java version as an input to
. 1.8.0_25), Gradle will treat all of these as equivalent and compilation and test execution tasks by using the
bkt re-use outputs from any minor version. In our experience, runtime api for adding task inputs.
bytecode produced by each major version is functionally

equivalent.

nvironment For tasks that fork processes (like Test), Gradle does not Declare environment variables as inputs to the

ariables are track any of the environment variables visible to the process.t a s k with

ot tracked as This can allow undeclared inputs to affect the outputs of the Taskl nputs. property(java.lang. String,
puts. task. java.l ang. oj ect) .

hanges i

, . n Gradle can produce different task output based on the file Set the UTF-8 file encoding on all tasks which
radle.s file encoding used by the JVM. Gradle will use a default file allow setting the encoding. Use UTF-8 file
:‘Z::)tdltrr]\z bt:iio: encoding based on the operating system if f i | e. encodi ng encoding everywhere by setting fi | e. encodi ng
sript is not explicitly set. to UTF- 8 for the Gradle JVM.

avadoc

nores custom Gradle’'s Javadoc task does not take into account any You can add your custom options as input
ymmand-line changes to custom command-line options. properties or disable caching of Javadoc.

Jstions

8§
Caveats

These issues may affect the number of cache hits you get between machines.
Table 2. Caveats

escription Impact Workaround

verlapping If two or more tasks share an output directory or files,
Jtputs between Gradle will disable caching for these tasks when it Use separate output directories for each task.
isks detects an overlap.

Page 96 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property-java.lang.String, java.lang.Object-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property-java.lang.String, java.lang.Object-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskInputs.html#property-java.lang.String, java.lang.Object-

. When Gradle compiles C/C++ code, object files tend to
sing cached o)
. have absolute paths embedded inside them. This _ . .
/C++ object) Build the project from the same absolute path on
_ doesn't affect their correctness, but it can interfere with .
les with every machine.
debuggers that search for source code at those absolute

Jsolute paths
paths.

Gradle calculates the build cache key based on the MD5
di . hash of the build script contents. If the line endings are Check if your VCS will change source file line
ne endings in
.) g. different between developers and the Cl servers, Gradle endings and configure it to have a consistent line
Jild scripts files. .]))
will calculate different build cache keys even when all ending across all platforms.

other inputs to a task are the same.

Gradle provides ways of specifying the path sensitivity

for individual task properties (see €Pat hSensiti ve);
bsolute paths in however, it is common to need to pass absolute paths to
>mmand-line tools or to tests via system properties or command line If possible, wuse relative paths (via
‘guments and arguments. These kinds of inputs will cause cache Project.rel ativePath(java.lang. Obj ect)
ystem misses because not every developer or Cl server uses). Further tooling will be provided later.
‘operties. an identical absolute path to the root of a build. Tasks

like Test include system properties and JVM arguments

as inputs to the build cache key.

The JaCoCo agent relies on appending to a shared
sing JaCoCo output file that may be left over from a different test
sables caching execution. If Gradle allowed Test tasks to be cacheable None.
‘the Test task. with the JaCoCo plugin, it could not guarantee the same
results each time.

dding new
ctions to
acheable tasks

. a build file Actions added by a plugin (from buildSrc or externally) .) . . .
)) ~~ Avoid adding actions to cacheable tasks in a build
iakes that task do not have this problem because their classloader is il
ile

ansitive to restricted to the classpath of the plugin.
nrelated

1anges to the

Jild file.

o . It's possible to modify a task’s inputs or outputs during . o . .
odifying inputs . ~ Use a configure task to finalize configuration for a
. execution in ways that change the output of a task. This))
- outputs during . . . given task. A configure task configures another
. breaks incremental builds and can cause problems with . .
sk execution.] task as part of its execution.
the build cache.

) Some tools are sensitive to the order of its inputs and
rder of input . . .
will produce slightly different output. Gradle will usually .
les affects]))) _ Provide a stable order for tools affected by order.
out provide the order of files from the filesystem, which will
Jtputs.
P be different across operating systems.

Page 97 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:relativePath(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:relativePath(java.lang.Object)

When generating Java source code with ANTLR3 and
NTLR3 . . If you cannot upgrade to ANLTR4 use a custom
the The ANTLR Plugin, the generated sources contain a . .
‘oduces output o _ template or remove the timestamp in a doLast
] . timestamp that reduces how often Java compilation will
ith a timestamp. action.
be cached. ANTLR2 and ANTLR4 are not affected.

8§
Configure the Build Cache

You can configure the build cache by using the Settings. bui |l dCache(org. gradl e. api . Action)
block in setti ngs. gradl e.

Gradle supports a | ocal and a r enpt e build cache that can be configured separately. When both build
caches are enabled, Gradle tries to load build outputs from the local build cache first, and then tries the
remote build cache if no build outputs are found. If outputs are found in the remote cache, they are also
stored in the local cache, so next time they will be found locally. Gradle pushes build outputs to any build
cache that is enabled and has Bui | dCache. i sPush() settotrue.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a Di rect or yBui | dCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to (
Bui | dCacheConfi guration. renote(java.l ang. d ass)).

8
Built-in local build cache

The built-in local build cache, Di r ect or yBui | dCache, uses a directory to store build cache artifacts. By
default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory to reduce it to a configurable target size. This
means that the local build cache directory may temporarily grow over the target size until the next clean-up is
scheduled.

For more details on the configuration options refer to the DSL documentation of Di r ect or yBui | dCache.

Here is an example of the configuration.
Example 47. Configure the local cache

settings.gradle
bui | dCache {
| ocal (Di rectoryBuil dCache) {
directory = new File(rootDir, 'build-cache')
target Si zel nMB = 1024

Page 98 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush--
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.local.DirectoryBuildCache.html

8
Remote HTTP build cache

Gradle has built-in support for connecting to a remote build cache backend via HTTP. For more details on
what the protocol looks like see Ht t pBui | dCache. Note that by using the following configuration the local

build cache will be used for storing build outputs while the local and the remote build cache will be used for
retrieving build outputs.

Example 48. Pull from HttpBuildCache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/"'
}
}

You can configure the credentials the Ht t pBui | dCache uses to access the build cache server as shown in
the following example.

Example 49. Configure remote HTTP cache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "http://exanple.com 8123/ cache/"’
credentials {
username = 'buil d-cache-user'
password = ' sone-conpl i cat ed- passwor d'
}
}
}

Note: You may encounter problems with an untrusted SSL certificate when you try to use a build
cache backend with an HTTPS URL. The ideal solution is for someone to add a valid SSL certificate
to the build cache backend, but we recognize that you may not be able to do that. In that case, set
Ht t pBui | dCache. i sAl | ownt r ust edServer () totrue:

Example 50. Allow untrusted SSL certificate for HttpBuildCache

Note: settings. gradl e

bui | dCache {
renot e(Ht t pBui | dCache) {
url = '"https://exanpl e.com 8123/ cache/"'

al | owUnt rust edServer = true

Page 99 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.http.HttpBuildCache.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.http.HttpBuildCache.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer

This is a convenient workaround, but you shouldn’t use it as a long-term solution.

8
Configuration use cases

The recommended use case for the build cache is that your continuous integration server populates the
remote build cache with clean builds while developers pull from the remote build cache and push to a local
build cache. The configuration would then look as follows.

Example 51. Recommended setup for Cl push use case

settings.gradle
ext.isC Server = System getenv().contai nsKey("Cl")

bui | dCache {
| ocal {
enabl ed = !isC Server
}
renot e(Ht t pBui | dCache) {
url = "https://exanmpl e.com 8123/ cache/"

push = isC Server

If you use a bui | dSr ¢ directory, you should make sure that it uses the same build cache configuration as
the main build. This can be achieved by applying the same script to bui | dSrc/ setti ngs. gradl e and set
as shown in the following example.

Example 52. Consistent setup for buildSrc and main build

settings.gradle
apply from new File(settingsDir, 'gradle/buildCacheSettings.gradle')

buil dSrc/settings. gradle
apply from new File(settingsDir,

../ gradl e/ bui |l dCacheSettings. gradle')

gradl e/ bui | dCacheSettings. gradl e
ext.isC Server = System getenv().containsKey("Cl")

bui | dCache {
| ocal {
enabl ed = i sC Server
}
renot e(Ht t pBui | dCache) {
url = "https://exanple.com 8123/ cache/"'

push = isCG Server

Page 100 of 717

It is also possible to configure the build cache from an init script, which can be used from the command line,
added to your Gradle user home or be a part of your custom Gradle distribution.

Example 53. Init script to configure the build cache

init.gradle
gradl e. settingsEvaluated { settings ->
settings. buil dCache {

renot e(Ht t pBui | dCache) {
url = "https://exanple.com 8123/ cache/’

8§
Build cache and composite builds

Gradle’s composite build feature allows including other complete Gradle builds into another. Such included
builds will inherit the build cache configuration from the top level build, regardless of whether the included
builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the top level
build’s configuration. This also applies to any bui | dSr ¢ projects of any included builds.

8§
How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise for
centralized management. The cache node can also be used without a Gradle Enterprise installation with
restricted functionality.

8§
Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in support for
connecting to an HTTP backend) requires implementing your own logic for connecting to your custom build
cache backend. To this end, custom build cache types can be registered via
Bui | dCacheConfi guration. regi sterBuil dCacheServi ce(java. |l ang. Cl ass,

j ava. | ang. C ass) . For an example of what this could look like see the Gradle Hazelcast plugin.

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache backend.

Page 101 of 717

https://hub.docker.com/r/gradle/build-cache-node/
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
https://github.com/gradle/gradle-hazelcast-plugin
https://gradle.com/build-cache

Writing Gradle build scripts

Build Script Basics

§
Projects and tasks

Everything in Gradle sits on top of two basic concepts: projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that
you are doing with Gradle. For example, a project might represent a library JAR or a web application. It
might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your
application to staging or production environments. Don’t worry if this seems a little vague for now. Gradle’s
build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

8
Hello world

You run a Gradle build using the gr adl e command. The gr adl e command looks for a file called bui | d. gr
in the current directory.[*] We call this bui | d. gr adl e file a build script, although strictly speaking it is a
build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example 54. Your first build script

bui I d. gradl e
task hello {
doLast {

println "Hello world!'

Page 103 of 717

In a command-line shell, move to the containing directory and execute the build script with gr adl e -q hel |

What does - g do?

Most of the examples in this user guide are run with the - ¢ command-line option. This suppresses
Gradle’s log messages, so that only the output of the tasks is shown. This keeps the example output
in this user guide a little clearer. You don’'t need to use this option if you don’t want to. See Logging
for more details about the command-line options which affect Gradle’s output.

Example 55. Execution of a build script

Outputofgradl e -q hello
> gradle -q hello
Hell o worl d!

What's going on here? This build script defines a single task, called hel | o, and adds an action to it. When
you run gradl e hell o, Gradle executes the hel | o task, which in turn executes the action you've
provided. The action is simply a closure containing some Groovy code to execute.

If you think this looks similar to Ant’s targets, you would be right. Gradle tasks are the equivalent to Ant
targets, but as you will see, they are much more powerful. We have used a different terminology than Ant as
we think the word task is more expressive than the word target. Unfortunately this introduces a terminology
clash with Ant, as Ant calls its commands, such as j avac or copy, tasks. So when we talk about tasks, we
always mean Gradle tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant
commands), we explicitly say Ant task.

8
A shortcut task definition

Note: This functionality is deprecated and will be removed in Gradle 5.0 without replacement. Use
the methods Task. doFirst(org.gradl e. api . Action) and

Task. doLast (org. gradl e. api . Acti on) to define an action instead, as demonstrated by the
rest of the examples in this chapter.

There is a shorthand way to define a task like our hel | o task above, which is more concise.
Example 56. A task definition shortcut

buil d. gradl e
task hello << {
println "Hello world!’

Again, this defines a task called hel | o with a single closure to execute. The << operator is simply an alias
for doLast .

Page 104 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

8§
Build scripts are code

Gradle’s build scripts give you the full power of Groovy. As an appetizer, have a look at this:

Example 57. Using Groovy in Gradle's tasks

buil d. gradl e
task upper {
doLast {

String soneString =
println "Oiginal:
println "Upper case:

Output of gradl e -qgq upper
> gradl e -qg upper
Oiginal: my_nAnE
Upper case: MY_NAME

or

nY_nAnE'
+ soneString
+ soneString. t oUpper Case()

Example 58. Using Groovy in Gradle's tasks

buil d. gradl e
task count {
doLast ({

4.times { print "$it

Output of gradl e -g count
> gradl e -q count
0123

§

Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

o}

Page 105 of 717

Example 59. Declaration of task that depends on other task

buil d. gradl e
task hello {
doLast {
println 'Hello world!'
}
}
task intro(dependsOn: hello) {
doLast {
println "I'm G adl e"
}
}

Outputofgradl e -qg intro
> gradle -q intro
Hell o worl d!
I'm G adle

To add a dependency, the corresponding task does not need to exist.

Example 60. Lazy dependsOn - the other task does not exist (yet)

bui | d. gradl e
task taskX(dependsOn: 'taskY') {
doLast {
println 'taskX
}
}
task taskY {
doLast ({
println 'taskY
}
}

Outputofgradl e -g taskX
> gradle -qg taskX
taskyY

taskX

The dependency of taskX to taskY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in the section called “Adding
dependencies to a task”.

Please notice that you can’t use shortcut notation (see the section called “Shortcut notations”) when referring
to a task that is not yet defined.

Page 106 of 717

8§
Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it
to dynamically create tasks.

Example 61. Dynamic creation of a task

buil d. gradl e
4.times { counter ->
task "task$counter” {
doLast {
println "I'mtask nunber S$counter"

Outputof gradl e -qg taskl
> gradle -qg taskl
' mtask nunber 1

8§
Manipulating existing tasks

Once tasks are created they can be accessed via an API. For instance, you could use this to dynamically
add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example 62. Accessing a task via APl - adding a dependency

buil d. gradl e
4.times { counter ->
task "task$counter" {
doLast {
println "I'mtask nunber $counter"

}
t ask0. dependsOn task2, task3

Output of gradl e -qg taskO
> gradle -qg taskO
I''mtask nunber 2
I'mtask nunber 3
I''mtask nunber O

Or you can add behavior to an existing task.

Page 107 of 717

Example 63. Accessing a task via APl - adding behaviour

buil d. gradl e
task hello {
doLast {

println '"Hello Earth'

}
hel | 0. doFirst {

println 'Hello Venus'
}
hel | 0. doLast {

println '"Hello Mars'

}
hell o {
doLast ({
println 'Hello Jupiter'
}
}

Outputofgradl e -q hello
> gradle -q hello
Hel | o Venus

Hello Earth

Hell o Mars

Hel I o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or the

end of the task’s actions list. When the task executes, the actions in the action list are executed in order.

8
Shortcut notations

There is a convenient notation for accessing an existing task. Each task is available as a property of the

build script:

Page 108 of 717

Example 64. Accessing task as a property of the build script

buil d. gradl e
task hello {
doLast {

println 'Hello world!'

}
hel | 0. doLast {

println "Greetings fromthe $hell o. nane task."

Outputofgradl e -q hello

> gradle -q hello

Hell o worl d!

Greetings fromthe hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the conpi | e
task.

8§
Extra task properties

You can add your own properties to a task. To add a property named myPr operty, set ext. nmyProperty
to an initial value. From that point on, the property can be read and set like a predefined task property.

Example 65. Adding extra properties to a task

buil d. gradl e
task nmyTask {
ext.nyProperty = "nyVal ue”

task printTaskProperties {
doLast {
println myTask. nyProperty

Outputof gradl e -qg print TaskProperties
> gradle -q printTaskProperties
myVal ue

Extra properties aren’t limited to tasks. You can read more about them in the section called “Extra
properties”.

Page 109 of 717

8§
Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from a bui | d. xm file. From the example below, you
can learn how to execute Ant tasks and how to access Ant properties:

Example 66. Using AntBuilder to execute ant.loadfile target

buil d. gradl e
task loadfile {
doLast {

def files = file('../antLoadfil eResources").listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant.loadfile(srcFile: file, property: file.name)
println " *** $file. name ***"
println "${ant.properties[file.nane]}"

Outputofgradl e -qg | oadfile

> gradle -q loadfile

*** agile.manifesto.txt ***

I ndi vidual s and interacti ons over processes and tools

Wor ki ng sof tware over conprehensive docunentation

Custoner col |l aboration over contract negotiation

Respondi ng to change over followi ng a plan

*** gradl e. mani festo.txt ***

Make the inpossible possible, make the possible easy and nake the easy el egant.
(inspired by Mdshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Using Ant from Gradle.

§
Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the
example above, is extracting a method.

Page 110 of 717

Example 67. Using methods to organize your build logic

buil d. gradl e
task checksum {
doLast {

fileList('../antLoadfil eResources').each { File file ->
ant . checksun(file: file, property: "cs $file.nane")
println "$file.nane Checksum ${ant.properties["cs_$file.name"]}"

task loadfile {
doLast {
fileList('../antLoadfil eResources').each { File file ->
ant.loadfile(srcFile: file, property: file.nane)
println "I'mfond of $file.nane"

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()

Outputofgradl e -qg | oadfile

> gradle -q loadfile

I"'m fond of agile.manifesto.txt
I'mfond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
a whole chapter to this. See Organizing Build Logic.

8
Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 111 of 717

Example 68. Defining a default task

buil d. gradl e
def aul t Tasks 'clean', 'run

task clean {
doLast {
println 'Default C eaning!'

task run {
doLast {
println 'Default Running!'

}
}
task other {
doLast {
println "I"mnot a default task!"
}

Outputof gradl e -q
> gradle -q

Def aul t C eani ng!
Def aul t Runni ng!

This is equivalent to running gr adl e cl ean run. In a multi-project build every subproject can have its own
specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project
are used (if defined).

8§
Configure by DAG

As we later describe in full detail (see Build Lifecycle), Gradle has a configuration phase and an execution
phase. After the configuration phase, Gradle knows all tasks that should be executed. Gradle offers you a
hook to make use of this information. A use-case for this would be to check if the release task is among the
tasks to be executed. Depending on this, you can assign different values to some variables.

In the following example, execution of the di st ri buti on and r el ease tasks results in different value of

the ver si on variable.

Page 112 of 717

Example 69. Different outcomes of build depending on chosen tasks

buil d. gradl e
task distribution {
doLast {

printin "W build the zip with version=$versi on"

task rel ease(dependsOn: 'distribution') {
doLast {
println 'W rel ease now

gradl e. t askG aph. whenReady {taskG aph ->
i f (taskGraph. hasTask(rel ease)) {
version = '1. 0
} else {
versi on = ' 1. 0- SNAPSHOT'

Outputofgradl e -qg di stribution
> gradle -q distribution
We build the zip with versi on=1. 0- SNAPSHOT

Output of gradl e -q rel ease

> gradle -q rel ease

We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This
works even when the release task is not the primary task (i.e., the task passed to the gr adl e command).

8
Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to
jump into more of the details, have a look at Authoring Tasks.

Otherwise, continue on to the tutorials in Java Quickstart and Dependency Management for Java Projects.

[4] There are command line switches to change this behavior. See Command-Line Interface)

Page 113 of 717

Build Init Plugin

Note: The Build Init plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see the section called
“Using plugins”). The Build Init plugin is an automatically applied plugin, which means you do not need to
apply it explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the
Gradle build. There is no need to create a “stub” bui | d. gr adl e file in order to apply the plugin.

It also leverages the wr apper task to generate the Gradle Wrapper files for the project.

8
Tasks

The plugin adds the following tasks to the project:

Table 3. Build Init plugin - tasks

ask name Depends on Type Description
nit wr apper InitBuild Generates a Gradle project.
rapper - W apper Generates Gradle wrapper files.

What to set up

The i ni t supports different build setup types. The type is specified by supplying a - - t ype argument value.
For example, to create a Java library project simply execute: gradl e init --type java-library.

If a --type parameter is not supplied, Gradle will attempt to infer the type from the environment. For
example, it will infer a type value of “ponft if it finds a pom xm to convert to a Gradle build.

Page 114 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

If the type could not be inferred, the type “basi c” will be used.

The i nit plugin also supports generating build scripts using either the Gradle Groovy DSL or the Gradle
Kotlin DSL. The build script DSL to use defaults to the Groovy DSL and is specified by supplying a - - dsl
argument value. For example, to create a Java library project with Kotlin DSL build scripts simply execute: gr

All build setup types include the setup of the Gradle Wrapper.
Note that the migration from Maven builds only supports the Groovy DSL for generated build scripts.
8§

Build init types

Note: As this plugin is currently incubating, only a few build init types are currently supported. More
types will be added in future Gradle releases.

8
“pont (Maven conversion)

The “ponf type can be used to convert an Apache Maven build to a Gradle build. This works by converting
the POM to one or more Gradle files. It is only able to be used if there is a valid “pom xm " file in the
directory that the i ni t task is invoked in or, if invoked via the “-p” command line option, in the specified
project directory. This “poni type will be automatically inferred if such a file exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed
by Gradle community members.

The conversion process has the following features:

Uses effective POM and effective settings (support for POM inheritance, dependency management,
properties)

Supports both single module and multimodule projects

Supports custom module names (that differ from directory names)
Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)
Generates download repositories (inc. local Maven repository)

Adjusts Java compiler settings

Page 115 of 717

https://github.com/jbaruch/maven2gradle

Supports packaging of sources and tests
Supports TestNG runner
Generates global exclusions from Maven enforcer plugin settings

§
“| ava- appl i cation”

The “j ava- appl i cati on” build init type is not inferable. It must be explicitly specified.

It has the following features:

Uses the “appl i cati on” plugin to produce a command-line application implemented using Java
Uses the “j cent er " dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - -t est - f r anewor k argument value. To use a
different test framework, execute one of the following commands:

gradle init --type java-application --test-framework spock: Uses Spock for testing

instead of JUnit

gradle init --type java-application --test-framework testng: Uses TestNG for testing
instead of JUnit

§
“| ava-1i brary”

The “j ava- | i brar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “j ava” plugin to produce a library Jar

Uses the “j cent er ” dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - -t est - f r anewor k argument value. To use a

Page 116 of 717

http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://junit.org

different test framework, execute one of the following commands:

gradle init --type java-library --test-framework spock: Uses Spock for testing instead of
JUnit

gradle init --type java-library --test-framework testng: Uses TestNG for testing instead
of JUnit

8
“scal a-library”

The “scal a- | i br ar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “scal a” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses Scala 2.10

Uses ScalaTest for testing

Has directories in the conventional locations for source code

Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

Uses the Zinc Scala compiler by default

8
“‘groovy-library”

The “gr oovy- | i brary” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “gr oovy” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

Page 117 of 717

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org
http://spockframework.org

8
“gr oovy- appl i cati on”

The “gr oovy- appl i cati on” build init type is not inferable. It must be explicitly specified.

It has the following features:

Uses the “gr oovy” plugin

Uses the “appl i cat i on” plugin to produce a command-line application implemented using Groovy
Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

§
“basic”

The “basi c¢” build init type is useful for creating a fresh new Gradle project. It creates a sample bui | d. gr ac
file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

Page 118 of 717

http://spockframework.org

Writing Build Scripts

This chapter looks at some of the details of writing a build script.

§
The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element.’! Gradle assumes that each build script is encoded
using UTF-8.

8§
The Project API

In the tutorial in Java Quickstart we used, for example, the appl y() method. Where does this method come
from? We said earlier that the build script defines a project in Gradle. For each project in the build, Gradle
creates an object of type Proj ect and associates this Pr oj ect object with the build script. As the build
script executes, it configures this Pr oj ect object:

Getting help writing build scripts

Don't forget that your build script is simply Groovy code that drives the Gradle APIl. And the
Proj ect interface is your starting point for accessing everything in the Gradle API. So, if you're
wondering what 'tags' are available in your build script, you can start with the documentation for the Pr c
interface.

Any method you call in your build script which is not defined in the build script, is delegated to the Pr oj ect
object.

Any property you access in your build script, which is not defined in the build script, is delegated to the Pr oj
object.

Let’s try this out and try to access the nane property of the Pr oj ect object.

Page 119 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html

Example 70. Accessing property of the Project object

buil d. gradl e
println nane

println project.nanme

Output of gradl e -g check
> gradl e -q check

pr oj ect Api
pr oj ect Api

Both pri nt| n statements print out the same property. The first uses auto-delegation to the Pr oj ect

object, for properties not defined in the build script. The other statement uses the proj ect property

available to any build script, which returns the associated Pr oj ect object. Only if you define a property or a

method which has the same name as a member of the Pr oj ect object, would you need to use the pr oj ect

property.

8

Standard project properties

The Proj ect object provides some standard properties, which are available in your build script. The

following table lists a few of the commonly used ones.

Table 4. Project Properties

ame

roj ect

ane

at h

ascription

rojectDir

uildbir

roup

arsi on

nt

Type

Pr oj ect

String

String

String

File

File

oj ect

oj ect

Ant Bui | der

Default Value

The Pr oj ect instance

The name of the project directory.

The absolute path of the project.

A description for the project.

The directory containing the build script.

projectDir/build

unspecified

unspeci fi ed

An Ant Bui | der instance

Page 120 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/AntBuilder.html

8§
The Script API

When Gradle executes a script, it compiles the script into a class which implements Scri pt . This means
that all of the properties and methods declared by the Scri pt interface are available in your script.

8§
Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra properties.

8§
Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are a feature of the underlying Groovy language.

Example 71. Using local variables

bui I d. gradl e
def dest = "dest™

task copy(type: Copy) {
from "source"

i nto dest

§
Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This includes, but is
not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning
object’'s ext property. Alternatively, an ext block can be used to add multiple properties at once.

Page 121 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Script.html

Example 72. Using extra properties

buil d. gradl e
apply plugin: "java"

ext {
springVersion = "3. 1. 0. RELEASE"
emai | Notification = "buil d@muaster. org"

sourceSets.all { ext.purpose = null }

sourceSets {

mai n {

pur pose = "production"
}
test {

pur pose = "test"
}
pl ugi n {

pur pose = "production"
}

task printProperties {
doLast {
println springVersion
println email Notification
sourceSets. matching { it.purpose == "production" }.each { println it.nam

Outputofgradl e -q printProperties
> gradle -q printProperties

3. 1. 0. RELEASE

bui | d@raster.org

mai n

pl ugin

In this example, an ext block adds two extra properties to the proj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose to nul |l (null is a permissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be
accessed from anywhere their owning object can be accessed, giving them a wider scope than local
variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the Ext r aProperti esExt ensi on class in the

Page 122 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

API| documentation.

8§
Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

Example 73. Configuring arbitrary objects

buil d. gradl e
task configure {
doLast {

def pos = configure(new java.text. FieldPosition(10)) ({
begi nl ndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos.endl ndex

Output of gradl e -g configure
> gradle -q configure

1

5

8

Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

Page 123 of 717

Example 74. Configuring arbitrary objects using a script

buil d. gradl e
task configure {
doLast {

def pos = new java.text.Fiel dPosition(10)
apply from 'other.gradle', to: pos

println pos. begi nl ndex
println pos.endl ndex

ot her.gradl e

1
-

begi nl ndex
endl ndex = 5

Output of gradl e -g configure
> gradle -q configure

1

5

8§
Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write your build
script, and in particular, when you start to write custom plugins and tasks.

8
Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 75. Groovy JDK methods

bui I d. gradl e

configurations.runtinme.each { File f -> println f }

Have a look at http://groovy-lang.org/gdk.html for more details.

Page 124 of 717

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

8
Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 76. Property accessors

bui I d. gradl e

println project.buildbir
println getProject().getBuildDir()

project.buildDir = '"target'
getProject().setBuildDir('target')

8
Optional parentheses on method calls

Parentheses are optional for method calls.

Example 77. Method call without parentheses

bui I d. gradl e

test.systenProperty 'sone.prop', 'value
test.systenProperty(' sone. prop', 'value')
8

List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are

straightforward, but map literals have some interesting twists.

For instance, the “appl y” method (where you typically apply plugins) actually takes a map parameter.

However, when you have a line like “apply plugin:'java

, you aren't actually using a map literal,

you're actually using “named parameters”, which have almost exactly the same syntax as a map literal

(without the wrapping brackets). That named parameter list gets converted to a map when the method is

called, but it doesn't start out as a map.

Page 125 of 717

Example 78. List and map literals

buil d. gradl e
test.includes = ['org/gradle/api/**", '"org/gradle/internal/**"]

List<String> list = new ArrayLi st<String>()
list.add(' org/gradle/api/**")
list.add('org/gradle/internal/**")
test.includes = |ist

Map<String, String> map = [keyl:'valuel', key2: 'value2']

apply plugin: 'java'

8
Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the last
parameter of a method is a closure, you can place the closure after the method call:

Example 79. Closure as method parameter

buil d. gradl e
repositories {
println "in a closure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

8
Closure delegate

Each closure has a del egat e object, which Groovy uses to look up variable and method references which
are not local variables or parameters of the closure. Gradle uses this for configuration closures, where the de

object is set to the object to be configured.

Page 126 of 717

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Example 80. Closure delegates

buil d. gradl e
dependenci es {
assert del egate == project. dependenci es

testCompile('junit:junit:4.12")
del egate.testConpile('junit:junit:4.12")

8§
Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle
scripts. This means that instead of using t hr ow new or g. gradl e. api . t asks. St opExecut i onExcept

you can just type t hr ow new St opExecuti onExcepti on() instead.

Listed below are the imports added to each script:

Gradle default imports.

i mport org.gradle.*

i mport org.gradle.api.*

i mport org.gradle.api.artifacts.*

i mport org.gradle.api.artifacts. cache.*

i mport org.gradle.api.artifacts. conponent.*
i mport org.gradle.api.artifacts.dsl.*

i mport org.gradle.api.artifacts.ivy.*

i mport org.gradle.api.artifacts. maven. *

i mport org.gradle.api.artifacts. query.*

i mport org.gradle.api.artifacts.repositories.*

i mport org.gradle.api.artifacts.result.*
import org.gradle.api.artifacts.transform?*
i mport org.gradle.api.artifacts.type.*

i mport org.gradle.api.attributes.*

i mport org.gradl e. api.comnmponent . *

i mport org.gradle.api.credentials.*

i mport org.gradle.api.distribution.*

i mport org.gradle.api.distribution.plugins.*
i mport org.gradle.api.dsl.*

i mport org.gradle. api.execution.*

i mport org.gradle.api.file.*

i mport org.gradle.api.initialization.?*

i mport org.gradle.api.initialization.dsl.*

i mport org.gradle.api.invocation.*

i mport org.gradle.api.java. archives. *

i mport org.gradle.api.logging.*

i mport org.gradl e.api.logging.configuration.*

Page 127 of 717

i mport org.gradl e.api.nodel.*

i mport org.gradle. api.plugins.*

i mport org.gradle.api.plugins.announce. *

i mport org.gradle.api.plugins.antlr.*

i mport org.gradl e. api.plugins. bui |l dconpari son. gradl e. *
i mport org.gradl e.api.plugins.osgi.*

i mport org.gradle.api.plugins.quality.*

i mport org.gradle.api.plugins.scala.*

i mport org.gradl e. api.provider.*

i mport org.gradle. api.publish.*

i mport org.gradle.api.publish.ivy.*

i mport org.gradle.api.publish.ivy.plugins.*
i mport org.gradle.api.publish.ivy.tasks.*

i mport org.gradle.api.publish. maven. *

i mport org.gradl e. api.publish. maven. pl ugi ns. *
i mport org.gradle.api.publish. maven.tasks. *
i mport org.gradle. api.publish. plugins.*

i mport org.gradle.api.publish.tasks.*

i mport org.gradle.api.reflect.*

i mport org.gradle.api.reporting.*

i mport org.gradle.api.reporting.conponents. *
i mport org.gradl e. api.reporting. dependenci es. *
i mport org.gradle.api.reporting. dependents. *
i mport org.gradl e. api.reporting. nodel . *

i mport org.gradle.api.reporting.plugins.*

i mport org.gradle. api.resources.*

i mport org.gradle.api.specs.*

i mport org.gradle.api.tasks.*

i mport org.gradle. api.tasks.ant.*

i mport org.gradle. api.tasks. application.*

i mport org.gradl e. api.tasks. bundling.*

i mport org.gradle.api.tasks.conpile.*

i mport org.gradle.api.tasks. di agnostics.*

i mport org.gradle. api.tasks.increnental.*

i mport org.gradle.api.tasks.javadoc. *

i mport org.gradle. api.tasks.scal a.*

i mport org.gradle.api.tasks.testing.*

i mport org.gradle.api.tasks.testing.junit.*
i mport org.gradle.api.tasks.testing.testng.*
i mport org.gradle.api.tasks.util.*

i mport org.gradl e.api.tasks.w apper.*

i mport org.gradle.authentication.*

i mport org.gradl e.authentication. aws. *

i mport org.gradle.authentication.http.*

i mport org.gradle.buildinit.plugins.*

i mport org.gradle.buildinit.tasks.*

i mport org.gradle.caching.*

i mport org.gradl e.caching.configuration.*

i mport org.gradle.caching. http.*

Page 128 of 717

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

caching.local . *
concurrent.*

ext er nal

j avadoc. *

i de. vi sual studio. *

i de. vi sual st udi o. pl ugi ns. *
i de. vi sual studi o. tasks. *

i de. xcode. *

i de. xcode. pl ugi ns. *

i de. xcode. t asks. *

ivy.*
jvm*

jvm application.scripts.*
jvm application.tasks.*
jvmplatform*

jvm pl ugi ns. *

jvmtasks. *
jvmtasks. api . *

jvmtest.

*

j vm tool chain. *

| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.

*

assenbl er . *
assenbl er. pl ugi ns. *
assenbl er .t asks. *
base. *

base. artifact.*
base. conpil e. *
base. pl ugi ns. *
base. sour ces. *

c.*

c.plugins.*
c.tasks.*

cof feescript.*
cpp. *

cpp. pl ugi ns. *
cpp.tasks. *

java.*
java.artifact.*

j ava. pl ugi ns. *

j ava.tasks. *
javascript.*

jvm*

j vm pl ugi ns. *
jvmtasks. *
nativepl atform*
nativepl at f orm t asks. *
obj ectivec. *

obj ecti vec. pl ugi ns. *
obj ectivec. tasks. *
obj ecti vecpp. *

Page 129 of 717

i mport org.gradl e.l anguage. obj ecti vecpp. pl ugi ns. *

i mport org.gradl e. | anguage. obj ecti vecpp. t asks. *

i mport org.gradl e.l anguage. pl ugi ns. *

i mport org.gradle.language.rc. *

i mport org.gradl e.l anguage. rc. pl ugi ns. *

i mport org.gradle.language.rc.tasks.*

i mport org.gradl e.l anguage. routes. *

i mport org.gradl e.l anguage. scal a. *

i mport org.gradl e.l anguage. scal a. pl ugi ns. *

i mport org.gradle. | anguage. scal a. t asks. *

i mport org.gradl e.l anguage. scal a. tool chai n. *

i mport org.gradle.language. swift.*

i mport org.gradl e.l anguage. swi ft.plugins.*

i mport org.gradle.|anguage. swift.tasks.*

i mport org.gradle.language.twirl.*

i mport org.gradl e. maven. *

i mport org.gradl e. nodel . *

i mport org.gradle.nativeplatform?*

i mport org.gradle.nativeplatformplatform?*

i mport org.gradl e.nativepl atform pl ugins. *

i mport org.gradle.nativeplatformtasks.*

i mport org.gradle.nativeplatformtest.*

i mport org.gradle.nativeplatformtest.cpp.*

i mport org.gradle.nativeplatformtest.cpp.plugins.*
i mport org.gradle.nativeplatformtest.cunit.*

i mport org.gradle.nativeplatformtest.cunit.plugins.*
i mport org.gradle.nativeplatformtest.cunit.tasks.*
i mport org.gradle.nativeplatformtest.googletest.*

i mport org.gradle.nativeplatformtest.googl etest. plugins.*
i mport org.gradle.nativeplatformtest. plugins.*

i mport org.gradle.nativeplatformtest.tasks.*

i mport org.gradle.nativeplatformtest.xctest.*

i mport org.gradle.nativeplatformtest.xctest. plugins.*
i mport org.gradle.nativeplatformtest. xctest.tasks.*
i mport org.gradle.nativepl atformtool chain.*

i mport org.gradle.nativepl atformtool chain. pl ugi ns. *
i mport org.gradle.normalization.*

i mport org.gradle. platform base. *

i mport org.gradl e. pl atform base. bi nary. *

i mport org.gradl e. pl atform base. conponent . *

i mport org.gradl e. pl atform base. pl ugi ns. *

i mport org.gradle.play.*

i mport org.gradle.play.distribution.*

i mport org.gradle.play.platform?*

i nport org.gradle. play.plugins.*

i mport org.gradle.play.plugins.ide.*

i mport org.gradl e. play.tasks.*

i mport org.gradle. play.tool chain.*

i mport org.gradl e. pl ugi n. devel . *

Page 130 of 717

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

pl ug
pl ug
pl ug
pl ug
p!l ug
pl ug
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi

testi
testi
testi
testi
testi

ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.

ns

ns.
ns.
ns.
ns.
ns.
ns.
ns.
process.

ng
ng
ng
ng
ng

. devel . pl ugi ns. *
. devel . tasks. *
. managenent . *

.use. *
ear.*
ear. descriptor.*
i de. api . *
i de. eclipse.*
i de.idea.*

j avascri pt. base. *
javascript.coffeescript.*
javascript.envjs.*
javascript.envjs. browser. *
javascript.envjs. http.*
.javascript.envjs.http.sinple.*
javascript.jshint.*
javascript.rhino.*

si gni ng. *

si gni ng. si gnatory.*

si gni ng. si gnatory. pgp. *
signing.type. *

si gni ng. type. pgp. *

. base. *

. base. pl ugi ns. *

. j acoco. pl ugins. *
.jacoco. t asks. *
.jacoco.tasks.rul es. *

testkit.runner.*

Page 131 of 717

i mport org.gradle.vcs.*
i mport org.gradle.vecs.git.*
i mport org.gradl e.workers. *

[5] Any language element except for statement labels.

Page 132 of 717

Authoring Tasks

In the introductory tutorial (Build Script Basics) you learned how to create simple tasks. You also learned
how to add additional behavior to these tasks later on, and you learned how to create dependencies
between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle
supports enhanced tasks, which are tasks that have their own properties and methods. This is really
different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or built
into Gradle.

8
Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console Ul and via the
Tooling API (see Embedding Gradle using the Tooling API). These labels are based on if a task has actions
to execute, if it should execute those actions, if it did execute those actions and if those actions made any
changes.

Page 133 of 717

Table 5. Details about task outcomes

utcome L N .
bel Description of outcome Situations that have this outcome
e
® Used whenever a task has actions and Gradle has determined they should be
10 | abel) . . executed as part of a build.
- EXEGUTED Task executed its actions.
® Used whenever a task has no actions and some dependencies, and any of the
dependencies are executed. See also the section called “Lifecycle tasks”.
® Used when a task has outputs and inputs and they have not changed. See the
section called “Up-to-date checks (AKA Incremental Build)”.
® Used when a task has actions, but the task tells Gradle it did not change its outputs.
Task’s outputs did not
P- TO- DATE

change. ® Used when a task has no actions and some dependencies, but all of the
dependencies are up-to-date, skipped or from cache. See also the section called
“Lifecycle tasks”.

® Used when a task has no actions and no dependencies.

Task’s outputs could be
ROM CACHE found from a previo®s Used when a task has outputs restored from the build cache. See Build Cache.
execution.

® Used when a task has been explicitly excluded from the command-line. See the

Task did not execute its section called “Excluding tasks from execution”.

KI PPED]
actions. ® Used when a task has an onl yI f predicate return false. See the section called
“Using a predicate”.
= Task did not need fo Used when a task has inputs and outputs, but no sources. For example, source files
execute its actions. are . j ava files for JavaConpi | e.

Defining tasks

We have already seen how to define tasks using a keyword style in Build Script Basics. There are a few
variations on this style, which you may need to use in certain situations. For example, the keyword style
does not work in expressions.

Page 134 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 81. Defining tasks

buil d. gradl e
task(hello) {
doLast {

println "hello"

task(copy, type: Copy) {
fromfile('srcDir"))
i nto(buildDir)

You can also use strings for the task names:

Example 82. Defining tasks - using strings for task names

bui | d. gradl e
task(' hello') {
doLast {

println "hello"

task(' copy', type: Copy) {
from(file(' srchDir'))
i nto(buildDir)

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 83. Defining tasks with alternative syntax

buil d. gradl e
tasks. create(nanme: 'hello") {
doLast {

println "hello"

tasks. create(nanme: 'copy', type: Copy) {
fromfile('srcDir"))
into(buildDir)

Here we add tasks to the t asks collection. Have a look at TaskCont ai ner for more variations of the cr eat
method.

Page 135 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskContainer.html

8§
Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a
property of the project, using the task name as the property name:

Example 84. Accessing tasks as properties

buil d. gradl e
task hello

println hello.name
println project.hello.nane

Tasks are also available through the t asks collection.
Example 85. Accessing tasks via tasks collection

bui | d. gradl e
task hello

println tasks. hello. nane
println tasks[' hello'].nane

You can access tasks from any project using the task’s path using the t asks. get ByPat h() method. You

can call the get ByPat h() method with a task name, or a relative path, or an absolute path.
Example 86. Accessing tasks by path

buil d. gradl e
project(':projectA) {
task hello

task hello

println tasks. getByPath(' hello").path

println tasks.getByPath(':hello").path

println tasks. getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Outputofgradl e -q hello
> gradle -q hello
‘hello

“hello

:projectA hello
:projectA hello

Page 136 of 717

Have a look at TaskCont ai ner for more options for locating tasks.

8§
Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To create a Copy task for your build, you can
declare in your build script:

Example 87. Creating a copy task

bui I d. gradl e
task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “myCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You'll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 88. Configuring a task - various ways

bui I d. gradl e

Copy nyCopy = task(myCopy, type: Copy)

myCopy. from ' resour ces’

myCopy.into 'target’

nyCopy.include(' **/*. txt", "**/*.xm"', "**/* properties")

This is similar to the way we would configure objects in Java. You have to repeat the context (myCopy) in the

configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable.
It is usually our favorite.

Example 89. Configuring a task - with closure

buil d. gradl e
task nmyCopy(type: Copy)

my Copy {
from'resources'

into 'target'
include(' **/*. txt', "**/* . xm', '"**/* properties')

This works for any task. Line 3 of the example is just a shortcut for the t asks. get ByNanme() method. It is

Page 137 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html

important to note that if you pass a closure to the get ByNane() method, this closure is applied to configure

the task, not when the task executes.
You can also use a configuration closure when you define a task.
Example 90. Defining a task with closure

bui | d. gradl e

task copy(type: Copy) {
from'resources'
into 'target’

include('**/*. txt', "**/* xm', "**/* properties')

}
Don't forget about the build phases
A task has both configuration and actions. When using the doLast , you are simply using a shortcut
to define an action. Code defined in the configuration section of your task will get executed during
the configuration phase of the build regardless of what task was targeted. See Build Lifecycle for
more details about the build lifecycle.

8§

Adding dependencies to a task

There are several ways you can define the dependencies of a task. In the section called “Task
dependencies” you were introduced to defining dependencies using task names. Task names can refer to
tasks in the same project as the task, or to tasks in other projects. To refer to a task in another project, you
prefix the name of the task with the path of the project it belongs to. The following is an example which adds
a dependency from pr oj ect A: t askXto pr oj ect B: t ask:

Page 138 of 717

Example 91. Adding dependency on task from another project

buil d. gradl e
project('projectA) {
task taskX(dependsOn: ':projectB:taskY') {
doLast {
println 'taskX

project(' projectB) {
task taskY {
doLast {
println 'taskY

Outputofgradl e -qgq taskX
> gradle -qg taskX
taskyY

taskX

Instead of using a task name, you can define a dependency using a Task object, as shown in this example:

Example 92. Adding dependency using task object

buil d. gradl e
task taskX {
doLast {

println 'taskX

task taskY {
doLast {
println 'taskY

t askX. dependsOn t askY
Outputofgradl e -qg taskX
> gradle -qg taskX

t askY
t askX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

Page 139 of 717

passed the task whose dependencies are being calculated. The closure should return a single Task or
collection of Task objects, which are then treated as dependencies of the task. The following example adds
a dependency from t askX to all the tasks in the project whose name starts with | i b:

Example 93. Adding dependency using closure

buil d. gradl e
task taskX {
doLast {

println 'taskX

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}
task libl {
doLast {
println "libl
}
}
task lib2 {
doLast {
println "lib2'
}
}

task not ALib {
doLast {
println 'notALi b’

Outputof gradl e -qg taskX
> gradle -q taskX

libl

lib2

t askX

For more information about task dependencies, see the Task API.

8§
Ordering tasks

Note: Task ordering is an incubating feature. Please be aware that this feature may change in later
Gradle versions.

Page 140 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between a task ordering and a task dependency
is that an ordering rule does not influence which tasks will be executed, only the order in which they will be
executed.

Task ordering can be useful in a number of scenarios:
Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

Run build validations early in the build: e.g. validate | have the correct credentials before starting the work for
a release build.

Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests should
run before integration tests.

A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the outputs
of all executed test tasks.

There are two ordering rules available: “must run after” and “should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. This is expressed as t askB. nust RunAf t er (t askA) . The
“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using
that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a
task have been satisfied apart from the “should run after” task, then this task will be run regardless of
whether its “should run after” dependencies have been run or not. You should use “should run after” where
the ordering is helpful but not strictly required.

With these rules present it is still possible to execute t askA without t askB and vice-versa.

Page 141 of 717

Example 94. Adding a 'must run after' task ordering

buil d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

t askY. nust RunAfter taskX

Outputofgradl e -qg taskY taskX
> gradl e -qg taskY taskX

t askX

taskY

Example 95. Adding a 'should run after' task ordering

bui | d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast ({
println 'taskY
}
}

t askY. shoul dRunAfter taskX

Outputof gradl e -qg taskY taskX
> gradl e -q taskY taskX
taskX

taskY

In the examples above, it is still possible to execute t askY without causing t askX to run:
Example 96. Task ordering does not imply task execution

Outputofgradl e -qg taskY
> gradl e -qg taskY
taskyY

Page 142 of 717

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter (java.l ang. Obj ect[]) and Task. shoul dRunAfter(java.lang. Object[])
methods. These methods accept a task instance, a task name or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

Note that “B. must RunAf t er (A) ” or “B. shoul dRunAft er (A) ” does not imply any execution dependency
between the tasks:

It is possible to execute tasks A and B independently. The ordering rule only has an effect when both tasks
are scheduled for execution.

When run with - - cont i nue, it is possible for B to execute in the event that A fails.
As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Example 97. A 'should run after' task ordering is ignored if it introduces an ordering cycle

bui I d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}
task taskz {
doLast ({
println 'taskz
}
}

t askX. dependsOn taskY
t askY. dependsOn taskz
t askZ. shoul dRunAfter taskX

Outputof gradl e -qg taskX
> gradl e -qg taskX

t askZz

taskyY

taskX

8§
Adding a description to a task

You can add a description to your task. This description is displayed when executing gr adl e t asks.

Page 143 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object[]-
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 98. Adding a description to a task

buil d. gradl e

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.'

from'resources'
into 'target'
include('**/*. txt', "**/*.xm', '"**/* properties')

8§
Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java
plugin with a custom task of a different type. You can achieve this with:

Example 99. Overwriting a task

buil d. gradl e
task copy(type: Copy)

task copy(overwite: true) {
doLast {
println('l amthe new one.")

Output of gradl e -qgq copy
> gradl e -q copy
I amthe new one.

This will replace a task of type Copy with the task you've defined, because it uses the same name. When
you define the new task, you have to set the overwr it e property to true. Otherwise Gradle throws an

exception, saying that a task with that name already exists.

8§
Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

Page 144 of 717

8
Using a predicate

You can use the onl yl f () method to attach a predicate to a task. The task’s actions are only executed if
the predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as
a parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Example 100. Skipping a task using a predicate

bui | d. gradl e
task hello {
doLast {

println "hello world

hell o.onlylf { !project.hasProperty('skipHello") }

Output of gradl e hell o - Pski pHel | o
> gradle hello -PskipHello
:hel l o SKI PPED

BUI LD SUCCESSFUL in Os

8
Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcept i on. If this exception is thrown by an action, the further execution of this action as
well as the execution of any following action of this task is skipped. The build continues with executing the
next task.

Page 145 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 101. Skipping tasks with StopExecutionException

buil d. gradl e
task conpile {
doLast {

println 'W are doing the conpile.’

conpi |l e. doFirst {

if (true) { throw new St opExecuti onException() }

}
task nyTask(dependsOn: 'conpile') {
doLast ({
println 'l am not affected
}
}

Output of gradl e -g myTask
> gradl e -q nyTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution of
the built-in actions of such a task.!®!

8
Enabling and disabling tasks

Every task has an enabl ed flag which defaults to t r ue. Setting it to f al se prevents the execution of any of
the task’s actions. A disabled task will be labelled SKIPPED.

Example 102. Enabling and disabling tasks

buil d. gradl e
task disableMe {
doLast {

println 'This should not be printed if the task is disabled.’

}

di sabl eMe. enabl ed = fal se
Output of gr adl e di sabl eMe
> gradl e di sabl eMe

. di sabl eMe SKI PPED

BUI LD SUCCESSFUL in Os

Page 146 of 717

8§
Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done. Consider the
process of compilation. Once your source files have been compiled, there should be no need to recompile
them unless something has changed that affects the output, such as the modification of a source file or the
removal of an output file. And compilation can take a significant amount of time, so skipping the step when
it's not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have almost
certainly already seen it in action: it's active nearly every time the UP- TO- DATE text appears next to the
name of a task when you run a build. Task outcomes are described in the section called “Task outcomes”.

How does incremental build work? And what does it take to make use of it in your own tasks? Let's take a
look.

§
Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the compilation
example from earlier, we can see that the source files are the inputs and, in the case of Java, the generated
class files are the outputs. Other inputs might include things like whether debug information should be
included.

Figure 5. Example task inputs and outputs

Green: inputs

Blue: outputs
Target JDK
version \
Source JavaCompile .
: S —_—
files task Class files

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from the
previous figure. Different bytecode is generated depending on the content of the source files and the
minimum version of the Java runtime you want to run the code on. That makes them task inputs. But

Page 147 of 717

whether compilation has 500MB or 600MB of maximum memory available, determined by the menmor yMaxi
property, has no impact on what bytecode gets generated. In Gradle terminology, menor yMaxi munsi ze is
just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed since the
last build. If they haven't, Gradle can consider the task up to date and therefore skip executing its actions.
Also note that incremental build won't work unless a task has at least one task output, although tasks usually
have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are inputs and
which are outputs. If a task property affects the output, be sure to register it as an input, otherwise the task
will be considered up to date when it's not. Conversely, don't register properties as inputs if they don't affect
the output, otherwise the task will potentially execute when it doesn’'t need to. Also be careful of
non-deterministic tasks that may generate different output for exactly the same inputs: these should not be
configured for incremental build as the up-to-date checks won’t work.

Let’'s now look at how you can register task properties as inputs and outputs.

§
Custom task types

If you're implementing a custom task as a class, then it takes just two steps to make it work with incremental
build:

Create typed properties (via getter methods) for each of your task inputs and outputs
Add the appropriate annotation to each of those properties

Note: Annotations must be placed on getters or on Groovy properties. Annotations placed on
setters, or on a Java field without a corresponding annotated getter are ignored.

Gradle supports three main categories of inputs and outputs:
Simple values

Things like strings and numbers. More generally, a simple value can have any type that implements Seri al i

Filesystem types

These consist of the standard Fi | e class but also derivatives of Gradle’s Fi | eCol | ecti on type and
anything else that can be passed to either the Proj ect. fil e(java. |l ang. Cbj ect) method - for single
file/directory properties - or the Proj ect . fi | es(] ava. | ang. Obj ect[]) method.

Nested values

Custom types that don’t conform to the other two categories but have their own properties that are inputs or
outputs. In effect, the task inputs or outputs are nested inside these custom types.

Page 148 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

As an example, imagine you have a task that processes templates of varying types, such as FreeMarker,
Velocity, Moustache, etc. It takes template source files and combines them with some model data to
generate populated versions of the template files.

This task will have three inputs and one output:
Template source files

Model data

Template engine

Where the output files are written

When you're writing a custom task class, it's easy to register properties as inputs or outputs via annotations.
To demonstrate, here is a skeleton task implementation with some suitable inputs and outputs, along with
their annotations:

Example 103. Custom task class

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

Page 149 of 717

package org.exanpl e;

inmport java.io.File;

i mport java.util.HashMap;

i mport org.gradle.api.?*;

i mport org.gradle.api.file.*;
i mport org.gradle. api.tasks.*;

public class ProcessTenpl ates extends Defaul t Task {
private Tenpl at eEngi neType t enpl at eEngi ne;
private FileCollection sourceFiles;
private Tenpl ateData tenpl at eDat a;
private File outputDir;

@ nput
public Tenpl at eEngi neType get Tenpl at eEngi ne() {
return this.tenplateEngine;

@nput Fil es
public FileCollection getSourceFiles() {
return this.sourceFiles;

@Nest ed
public Tenpl at eDat a get Tenpl at eDat a() {
return this.tenplateData;

@out put Di rectory

public File getQutputDir() { return this.outputbDir; }

@askAction
public void processTenpl ates() {

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ Tenpl at eDat a. j ava

Page 150 of 717

package org. exanpl e;

i mport java.util.HashMap;
i mport java.util. Mp;
i mport org.gradle. api.tasks. I nput;

public class Tenpl ateData {
private String namne;
private Map<String, String> vari ables;

public Tenpl ateData(String name, Map<String, String> variables) ({
thi s. name = nane;
thi s.variabl es = new HashMap<>(vari abl es);

@ nput
public String getNanme() { return this.nane; }

@ nput
public Map<String, String> getVariables() {
return this.variables;

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
. processTenpl at es

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
: processTenpl at es UP- TO- DATE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s plenty to talk about in this example, so let’'s work through each of the input and output properties in
turn:

t enpl at eEngi ne

Represents which engine to use when processing the source templates, e.g. FreeMarker, Velocity, etc. You
could implement this as a string, but in this case we have gone for a custom enum as it provides greater type
information and safety. Since enums implement Ser i al i zabl e automatically, we can treat this as a simple
value and use the @ nput annotation, just as we would with a St ri ng property.

Page 151 of 717

sourceFil es

The source templates that the task will be processing. Single files and collections of files need their own
special annotations. In this case, we're dealing with a collection of input files and so we use the @ nput Fi | €
annotation. You'll see more file-oriented annotations in a table later.

t enpl at eDat a

For this example, we’re using a custom class to represent the model data. However, it does not implement Se
, SO we can't use the @ nput annotation. That's not a problem as the properties within Tenpl at eDat a - a
string and a hash map with serializable type parameters - are serializable and can be annotated with @ nput
. We use @Nest ed on t enpl at eDat a to let Gradle know that this is a value with nested input properties.

outputDir

The directory where the generated files go. As with input files, there are several annotations for output files
and directories. A property representing a single directory requires @ut put Di r ect ory. You'll learn about
the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template engine,
model data or generated files have changed since the previous time Gradle executed the task. This will often
save a significant amount of time. You can learn how Gradle detects changes later.

This example is particularly interesting because it works with collections of source files. What happens if only
one source file changes? Does the task process all the source files again or just the modified one? That
depends on the task implementation. If the latter, then the task itself is incremental, but that's a different
feature to the one we’re discussing here. Gradle does help task implementers with this via its incremental
task inputs feature.

Now that you have seen some of the input and output annotations in practice, let’'s take a look at all the
annotations available to you and when you should use them. The table below lists the available annotations
and the corresponding property type you can use with each one.

Table 6. Incremental build property type annotations

Expected property

nnotation Description
type
I nput Any serializable type A simple input value
InputFile Fil e* A single input file (not directory)
InputDirectory File* A single input directory (not file)
I nput Fi |l es I terabl e<Fil e>* Aniterable of input files and directories

Page 152 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Input.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/InputFile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/InputDirectory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/InputFiles.html

An iterable of input files and directories that represent a Java classpath. This
allows the task to ignore irrelevant changes to the property, such as different
names for the same files. It is similar to annotating the property @at hSensi ti ve
but it will ignore the names of JAR files directly added to the classpath, and it
will consider changes in the order of the files as a change in the classpath.
J asspat h It arable<Ei &5 Gradle will inspect the contents of jar files on the classpath and ignore changes
that do not affect the semantics of the classpath (such as file dates and entry

order). See also the section called “Using the classpath annotations”.

Note: The @ asspat h annotation was introduced in Gradle 3.2. To
stay compatible with earlier Gradle versions, classpath properties
should also be annotated with @ nput Fi | es.

An iterable of input files and directories that represent a Java compile
classpath. This allows the task to ignore irrelevant changes that do not affect
the API of the classes in classpath. See also the section called “Using the
classpath annotations”.

The following kinds of changes to the classpath will be ignored:
® Changes to the path of jar or top level directories.
® Changes to timestamps and the order of entries in Jars.

® Changes to resources and Jar manifests, including adding or removing
resources.

® Changes to private class elements, such as private fields, methods and inner
Conpi | eCl asspath I terabl e<File>* (|asses.

® Changes to code, such as method bodies, static initializers and field initializers
(except for constants).

® Changes to debug information, for example when a change to a comment
affects the line numbers in class debug information.

® Changes to directories, including directory entries in Jars.

Note: The @onpi | eCl asspat h annotation was introduced in Gradle
3.4. To stay compatible with Gradle 3.3 and 3.2, compile classpath
properties should also be annotated with @Cl asspath. For
compatibility with Gradle versions before 3.2 the property should also
be annotated with @ nput Fi | es.

Qut put Fil e Fil e* A single output file (not directory)

Qut put Directory File* A single output directory (not file)

Map<String, File>
) . An iterable of output files (no directories). The task outputs can only be cached
Qut put Fi | es **orlterabl e<Fil e> . .
if a Map is provided.

*

Page 153 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/CompileClasspath.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/OutputFile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/OutputDirectory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/OutputFiles.html

Map<String, File>)))]
)) . An iterable of output directories (no files). The task outputs can only be cached
Qut put Directories*orlterabl e<Fil e> .]
if a Map is provided.

*

- Fil e orlterabl e<Fi Beecifies one or more files that are removed by this task. Note that a task can
stroys
. * define either inputs/outputs or destroyables, but not both.

. I St at Fil e orlterabl e<Fi Bpecifies one or more files that represent the local state of the task. These files
ocal State
* are removed when the task is loaded from cache.

A custom type that may not implement Seri al i zabl e but does have at least
Nest ed Any custom type one field or property marked with one of the annotations in this table. It could
even be another @\est ed.

Indicates that the property is neither an input nor an output. It simply affects the
Consol e Any type console output of the task in some way, such as increasing or decreasing the
verbosity of the task.

Indicates that the property is used internally but is neither an input nor an
I nt ernal Any type
output.

In fact, Fi | e can be any type accepted by Proj ect.file(java.lang. Object) andlterabl e<Fil ¢
can be any type accepted by Proj ect. files(java. | ang. Obj ect[]) . Thisincludes instances of Cal
, such as closures, allowing for lazy evaluation of the property values. Be aware that the types Fi | eCol |
and Fil eTree are | t er abl e<Fi | e>s.

%

Similar to the above, Fi | e can be any type accepted by Proj ect . fil e(]java. | ang. Obj ect). The Me
itself can be wrapped in Cal | abl es, such as closures.

Page 154 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/OutputDirectories.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Destroys.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/LocalState.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Table 7. Additional annotations used to further qualifying property type annotations
nnotation Description

Used with @ nput Fi | es or @ nput Di r ect ory to tell Gradle to skip the task if the corresponding files or

SKi BWhenErot directory are empty, along with all other input files declared with this annotation. Tasks that have been
. i yskipped due to all of their input files that were declared with this annotation being empty will result in a

distinct “no source” outcome. For example, NO- SOURCE will be emitted in the console output.

ot | Used with any of the property type annotations listed in the Opt i onal API documentation. This annotation
i ona
disables validation checks on the corresponding property. See the section on validation for more details.

Used with any input file property to tell Gradle to only consider the given part of the file paths as important.
Pat hSensi t i vdror example, if a property is annotated with @at hSensi tive(Pat hSensitivity. NAME_ONLY), then
moving the files around without changing their contents will not make the task out-of-date.

Annotations are inherited from all parent types including implemented interfaces. Property type annotations
override any other property type annotation declared in a parent type. This way an @ nput Fi | e property
can be turned into an @ nput Di r ect or y property in a child task type.

Annotations on a property declared in a type override similar annotations declared by the superclass and in
any implemented interfaces. Superclass annotations take precedence over annotations declared in
implemented interfaces.

The Consol e and | nt er nal annotations in the table are special cases as they don’t declare either task
inputs or task outputs. So why use them? It's so that you can take advantage of the Java Gradle Plugin
Development plugin to help you develop and publish your own plugins. This plugin checks whether any
properties of your custom task classes lack an incremental build annotation. This protects you from
forgetting to add an appropriate annotation during development.

§
Using the classpath annotations

Besides @ nput Fi | es, for JVM-related tasks Gradle understands the concept of classpath inputs. Both
runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with € nput Fi | es, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and jar files on
the classpath itself are ignored. Timestamps and the order of class files and resources inside jar files on a
classpath are ignored, too, thus recreating a jar file with different file dates will not make the task out of date.

Runtime classpaths are marked with €Cl asspat h, and they offer further customization via classpath
normalization.

Input properties annotated with €Conpi | eCl asspat h are considered Java compile classpaths. Additionally

to the aforementioned general classpath rules, compile classpaths ignore changes to everything but class

Page 155 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/CompileClasspath.html

files. Gradle uses the same class analysis described in the section called “Compile avoidance” to further
filter changes that don't affect the class' ABls. This means that changes which only touch the implementation
of classes do not make the task out of date.

§
Nested inputs

When analyzing €Nest ed task properties for declared input and output sub-properties Gradle uses the type

of the actual value. Hence it can discover all sub-properties declared by a runtime sub-type.
When adding €\est ed to an iterable, each element is treated as a separate nested input.

This allows richer modeling and extensibility for tasks, as e.g. shown by Conpi | eOpt i ons. get Conpi | er A

For example, to declare annotation processor arguments, it is possible to do the following:

cl ass MyAnnot ati onProcessor i nplenents Conpil er Argunent Provi der {
@nputFile
@rat hSensi ti vi t e(NONE)
File inputFile

@ut putFile
File outputFile

MyAnnot at i onProcessor(File inputFile, File outputFile) {
this.inputFile = inputFile
this.outputFile = outputFile

@verride
Li st<String> asArgunents() {

[
"- A nput Fi | e=${i nput Fi | e. absol ut ePat h}",
"- Aout put Fi | e=${ out put Fi | e. absol ut ePat h}"

conpi | eJava. opti ons. conpi | er Argunent Provi ders << new MyAnnot ati onProcessor (i nput |
This models an annotation processor which requires an input file and generates an output file.

The approach works for Java compiler arguments, since Conpi | eOpt i ons. get Conpi | er Ar gunent Pr ovi
is an | t er abl e annotated with €\est ed. In the same way, this kind of modelling is available to custom
tasks.

Page 156 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Nested.html

8
Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental build, but
you don’t always have that option. That’'s why Gradle also provides an alternative API that can be used with
any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for scenarios
just like that. It can also be used for ad-hoc tasks, as you'll see next.

§
Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on every Gradle
task:

Task. get | nput s() of type Taskl nput s
Task. get Qut put s() of type TaskCQut put s
Task. get Destroyabl es() of type TaskDest r oyabl es

These objects have methods that allow you to specify files, directories and values which constitute the task’s
inputs and outputs. In fact, the runtime API has almost feature parity with the annotations. All it lacks is
validation of whether declared files are actually files and declared directories are directories. Nor will it create
output directories if they don’t exist. But that’s it.

Let’s take the template processing example from before and see how it would look as an ad-hoc task that
uses the runtime API:

Page 157 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskDestroyables.html

Example 104. Ad-hoc task

buil d. gradl e

task processTenpl at esAdHoc {
i nputs. property("engine", Tenpl at eEngi neType. FREEMARKER)
inputs.files(fileTree("src/tenplates"))
i nputs. property("tenpl at eDat a. nane", "docs")
i nputs. property("tenpl at eDat a. vari abl es", [year: 2013])
out puts. dir("$buil dDi r/ genCQut put 2")

doLast {

Output of gr adl e processTenpl at esAdHoc
> gradl e processTenpl at esAdHoc
. processTenpl at esAdHoc

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for this as
it's a non-trivial implementation that has several configuration options. In this case, there are no task
properties to store the root source folder, the location of the output directory or any of the other settings.
That's deliberate to highlight the fact that the runtime APl doesn’t require the task to have any state. In terms
of incremental build, the above ad-hoc task will behave the same as the custom task class.

All the input and output definitions are done through the methods on i nput s and out put s, such as pr oper
, files(),anddir (). Gradle performs up-to-date checks on the argument values to determine whether
the task needs to run again or not. Each method corresponds to one of the incremental build annotations, for
example i nput s. property() mapsto @ nput and out puts. dir() mapsto @ut putDi rectory. The
only difference is that the fil e(), files(), dir() and dirs() methods don't validate the type of file
object at the given path (file or directory), unlike the annotations.

The files that a task removes can be specified through dest r oyabl es. regi ster ().
Example 105. Ad-hoc task declaring a destroyable

buil d. gradl e
task removeTenpDir {
destroyabl es.regi ster("$projectDir/tnpDir")
doLast {
del ete("$projectDir/tnpDir")

One notable difference between the runtime APl and the annotations is the lack of a method that

Page 158 of 717

corresponds directly to @Nest ed. That's why the example uses two property() declarations for the
template data, one for each Tenpl at eDat a property. You should utilize the same technique when using the
runtime API with nested values. Any given task can either declare destroyables or inputs/outputs, but cannot
declare both.

§
Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task class that
lacks the requisite annotations. For example, imagine that the ProcessTenpl at es task is provided by a
plugin and that it's missing the incremental build annotations. In order to make up for that deficiency, you can
use the runtime API:

Example 106. Using runtime API with custom task type

bui I d. gradl e
task processTenpl at esRunti ne(type: ProcessTenpl at esNoAnnot ati ons) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
sourceFiles = fileTree("src/tenpl ates")
tenpl ateData = new Tenpl ateData("test", [year: 2014])
outputDir = file("S$buil dDir/genCutput3")

i nputs. property("engi ne",tenpl at eEngi ne)

i nputs.files(sourceFiles)

i nputs. property("tenpl ateData. nane", tenpl at eDat a. nane)

i nputs. property("tenpl ateDat a. vari abl es”, tenpl ateDat a. vari abl es)
outputs.dir(outputbDir)

Output of gr adl e processTenpl at esRunti me
> gradl e processTenpl at esRunti ne
. processTenpl at esRunti ne

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at esRunti me
> gradl e processTenpl at esRunti ne
: processTenpl at esRunti me UP- TO DATE

BU LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

As you can see, we can both configure the tasks properties and use those properties as arguments to the
incremental build runtime API. Using the runtime API like this is a little like using doLast () and doFi r st ()
to attach extra actions to a task, except in this case we’re attaching information about inputs and outputs.
Note that if the task type is already using the incremental build annotations, the runtime API will add inputs
and outputs rather than replace them.

Page 159 of 717

8§
Fine-grained configuration

The runtime APl methods only allow you to declare your inputs and outputs in themselves. However, the
file-oriented ones return a builder - of type Taskl nput Fi | ePropertyBui | der - that lets you provide

additional information about those inputs and outputs.

You can learn about all the options provided by the builder in its APl documentation, but we’ll show you a
simple example here to give you an idea of what you can do.

Let's say we don’t want to run the processTenpl at es task if there are no source files, regardless of
whether it's a clean build or not. After all, if there are no source files, there’s nothing for the task to do. The
builder allows us to configure this like so:

Example 107. Using skipWhenEmpty() via the runtime API

buil d. gradl e
task processTenpl at esRunti neConf (type: ProcessTenpl at esNoAnnot ations) {

sourceFiles = fileTree("src/tenplates") {
include "**/*_ fni

i nputs. files(sourceFiles).skipwenEnpty()

Output of gradl e cl ean processTenpl at esRunt i meConf
> gradl e cl ean processTenpl at esRunt i meConf
: processTenpl at esRunt i meConf NO SOURCE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

The Taskl nputs. fil es() method returns a builder that has a ski pvhenEnpt y() method. Invoking this
method is equivalent to annotating to the property with @ki p\VWhenEnpt v.

Prior to Gradle 3.0, you had to use the Taskl nputs. source() and Taskl nputs. sourcebDir ()
methods to get the same behavior as with ski pwhenEnpt y(). These methods are now deprecated and
should not be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which API you
should be using. Our recommendation is to use the annotations wherever possible, and it's sometimes worth
creating a custom task class just so that you can make use of them. The runtime API is more for situations in
which you can’t use the annotations.

Page 160 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

§
Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those properties.
For example, if an input of one task is set to the output of another, that means the first task depends on the
second, right? Gradle knows this and can act upon it.

We'll look at this feature next and also some other features that come from Gradle knowing things about
inputs and outputs.

§
Inferred task dependencies

Consider an archive task that packages the output of the pr ocessTenpl at es task. A build author will see
that the archive task obviously requires pr ocessTenpl at es to run first and so may add an explicit depend:
. However, if you define the archive task like so:

Example 108. Inferred task dependency via task outputs

buil d. gradl e
task packageFiles(type: Zip) {
from processTenpl at es. out put s

Output of gr adl e cl ean packageFil es
> gradl e cl ean packageFil es

. processTenpl at es

: packageFi | es

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Gradle will automatically make packageFi | es depend on pr ocessTenpl at es. It can do this because it's
aware that one of the inputs of packageFiles requires the output of the processTemplates task. We call this
an inferred task dependency.

The above example can also be written as

Page 161 of 717

Example 109. Inferred task dependency via a task argument

buil d. gradl e
task packageFil es2(type: Zip) {
from processTenpl at es

Output of gr adl e cl ean packageFi | es2
> gradl e cl ean packageFil es2

. processTenpl at es

: packageFi | es2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

This is because the fron{) method can accept a task object as an argument. Behind the scenes, f r on()
uses the proj ect. fil es() method to wrap the argument, which in turn exposes the task’s formal outputs
as a file collection. In other words, it's a special case!

§
Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic validation
on the annotated properties. In particular, it does the following for each property before the task executes:

@ nput Fi | e - verifies that the property has a value and that the path corresponds to a file (not a directory)
that exists.

@ nput Di rect ory - same as for @ nput Fi | e, except the path must correspond to a directory.

@out put Di rect ory - verifies that the path doesn’t match a file and also creates the directory if it doesn’t

already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to inputs and
outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may validly not
exist. That's why Gradle provides the @pt i onal annotation: you use it to tell Gradle that a particular input
is optional and therefore the build should not fail if the corresponding file or directory doesn't exist.

§
Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what files a task
depends on, it can automatically run a task again if any of its inputs change. By activating continuous build
when you run Gradle - through the - - cont i nuous or -t options - you will put Gradle into a state in which it
continually checks for changes and executes the requested tasks when it encounters such changes.

You can find out more about this feature in Continuous build.

Page 162 of 717

§
Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make decisions
about how to run tasks when the "--parallel" option is used. For instance, Gradle will inspect the outputs of
tasks when selecting the next task to run and will avoid concurrent execution of tasks that write to the same
output directory. Similarly, Gradle will use the information about what files a task destroys (e.g. specified by
the Dest r oys annotation) and avoid running a task that removes a set of files while another task is running
that consumes or creates those same files (and vice versa). It can also determine that a task that creates a
set of files has already run and that a task that consumes those files has yet to run and will avoid running a
task that removes those files in between. By providing task input and output information in this way, Gradle
can infer creation/consumption/destruction relationships between tasks and can ensure that task execution
does not violate those relationships.

8§
How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the
paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task
completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output
files and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is
executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If
the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date
and skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for
the next time the task is executed.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions, or its
dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When comparing
the snapshot of such a property, even a change in the order of the files will result in the task becoming
out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last time it was
executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an
output directory without interfering with each other. If this is not the behaviour you want for some reason,
consider using TaskQut put s. upToDat eWhen(gr oovy. | ang. Cl osur e)

The inputs for the task are also used to calculate the build cache key used to load task outputs when
enabled. For more details see the section called “Task Output Caching”.

Page 163 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

8
Advanced techniques

Everything you've seen so far in this section will cover most of the use cases you'll encounter, but there are
some scenarios that need special treatment. We'll present a few of those next with the appropriate solutions.

8§
Adding your own cached input/output methods

Have you ever wondered how the f r on{) method of the Copy task works? It's not annotated with @ nput Fi
and yet any files passed to it are treated as formal inputs of the task. What's happening?

The implementation is quite simple and you can use the same technique for your own tasks to improve their
APIs. Write your methods so that they add files directly to the appropriate annotated property. As an
example, here’s how to add a sour ces() method to the custom Pr ocessTenpl at es class we introduced

earlier:

Page 164 of 717

Example 110. Declaring a method to add task inputs

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava
public class ProcessTenpl ates extends Defaul t Task {

private FileCollection sourceFiles = getProject().files();

@ki pWhenEnpt y

@nput Fil es

@Pat hSensi ti ve(Pat hSensitivity. NONE)

public FileCollection getSourceFiles() {
return this.sourceFiles;

public void sources(FileCollection sourceFiles) {
this.sourceFiles = this.sourceFiles.plus(sourceFiles);

buil d. gradl e

task processTenpl ates(type: ProcessTenpl ates) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
tenpl ateData = new Tenpl ateData("test", [year: 2012])
outputDir = file("$buildDir/genCutput")

sources fileTree("src/tenplates")

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
. processTenpl at es

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

In other words, as long as you add values and files to formal task inputs and outputs during the configuration
phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use the pr oj e
method like so:

Page 165 of 717

Example 111. Declaring a method to add a task as an input

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

public void sources(Task inputTask) {
this.sourceFiles = this.sourceFiles.plus(getProject().files(inputTask));

buil d. gradl e

task copyTenpl ates(type: Copy) {
into "$buildDir/tnp"
from"src/tenpl at es"

task processTenpl ates2(type: ProcessTenpl ates) {

sources copyTenpl at es

Output of gr adl e processTenpl at es?
> gradl e processTenpl at es2

: copyTenpl at es

. processTenpl at es2

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

This technique can make your custom task easier to use and result in cleaner build files. As an added
benefit, our use of get Proj ect (). fil es() means that our custom method can set up an inferred task
dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs, like this
example, consider using the built-in Sour ceTask. It will save you having to implement some of the plumbing
that we put into Pr ocessTenpl at es.

§
Linking an @ut put Di rect ory to an @ nput Fi | es

When you want to link the output of one task to the input of another, the types often match and a simple
property assignment will provide that link. For example, a Fi | e output property can be assignedtoa Fi |l e
input.

Unfortunately, this approach breaks down when you want the files in a task’'s @ut put Di r ect ory (of type F
) to become the source for another task’s @ nput Fi | es property (of type Fi | eCol | ecti on). Since the
two have different types, property assignment won't work.

As an example, imagine you want to use the output of a Java compilation task - via the desti nati onDi r

Page 166 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.SourceTask.html

property - as the input of a custom task that instruments a set of files containing Java bytecode. This custom
task, which we’ll call I nstrunent , has a cl assFi | es property annotated with @ nput Fi | es. You might
initially try to configure the task like so:

Example 112. Failed attempt at setting up an inferred task dependency

buil d. gradl e
apply plugin: "java"

task badl nstrunent C asses(type: Instrument) {
classFiles = fil eTree(conpil eJava. destinationDir)
destinationDir = file("$buildDir/instrumented")

Output of gr adl e cl ean badl nstrunent C asses
> gradl e cl ean badl nstrunent C asses

. cl ean UP- TO DATE

: badl nstrunent G asses NO SOURCE

BU LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the compilation
task is missing. In this case you would need to add an explicit task dependency between i nst r ument C ass
and conpi | eJava via dependsOn. The use of fil eTree() means that Gradle can’t infer the task
dependency itself.

One solution is to use the TaskQut put s. fi | es property, as demonstrated by the following example:
Example 113. Setting up an inferred task dependency between output dir and input files

buil d. gradl e

task instrunent d asses(type: Instrunent) {
cl assFiles = compil eJava. outputs.files
destinationDir = file("$buildDir/instrunmented")

Output of gradl e cl ean i nstrunment Cl asses
> gradl e clean instrunentd asses

:cl ean UP- TO DATE

: conpi | eJava

sinstrunment d asses

BU LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Alternatively, you can get Gradle to access the appropriate property itself by using the proj ect.fil es()
method in place of proj ect.fil eTree():

Page 167 of 717

Example 114. Setting up an inferred task dependency with files()

buil d. gradl e

task instrunent d asses2(type: Instrunment) {
classFiles = fil es(compil eJava)
destinationDir = file("$buildDir/instrumented")

Output of gradl e cl ean i nstrunment Cl asses?2
> gradl e cl ean instrumentCl asses?

:cl ean UP- TO DATE

:conpi | eJava

sinstrument C asses?2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Remember thatfi | es() can take tasks as arguments, whereas fi | eTr ee() cannot.

The downside of this approach is that all file outputs of the source task become the input files of the target - i
in this case. That’s fine as long as the source task only has a single file-based output, like the JavaConpi | e
task. But if you have to link just one output property among several, then you need to explicitly tell Gradle
which task generates the input files using the bui | t By method:

Example 115. Setting up an inferred task dependency with builtBy()

buil d. gradl e
task instrunment Gl assesBuil tBy(type: Instrument) {
classFiles = fil eTree(conpilelava. destinationDir) {
bui | t By conpil eJava

}

destinationDir = file("$buildDi r/instrumented")

Output of gradl e cl ean i nstrunment C assesBui | t By
> gradl e cl ean instrument Cl assesBui | t By

:cl ean UP-TO DATE

:conpi | eJava

sinstrument Cl assesBui | t By

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

You can of course just add an explicit task dependency via dependsOn, but the above approach provides
more semantic meaning, explaining why conpi | eJava has to run beforehand.

Page 168 of 717

§
Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task output is
something else entirely? Perhaps it's an update to a web service or a database table. Gradle has no way of
knowing how to check whether the task is up to date in such cases.

That's where the upToDat eWhen() method on TaskCQut put s comes in. This takes a predicate function
that is used to determine whether a task is up to date or not. One use case is to disable up-to-date checks
completely for a task, like so:

Example 116. Ignoring up-to-date checks

bui | d. gradl e

task al waysl nstrument Cl asses(type: Instrunment) ({
classFiles = fil es(compil eJava)
destinationDir = file("$buildDir/instrumented")
out puts. upToDat eWhen { fal se }

Output of gradl e cl ean al waysl nstrunent C asses
> gradl e cl ean al waysl nstrunent C asses
:conpi | eJava

:al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Output of gr adl e al waysl nstrument Cl asses
> gradl e al waysl nstrunent Cl asses
:conpi |l eJava UP- TO- DATE

:al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
2 actionable tasks: 1 executed, 1 up-to-date

The { false } closure ensures that copyResour ces will always perform the copy, irrespective of
whether there is no change in the inputs or outputs.

You can of course put more complex logic into the closure. You could check whether a particular record in a
database table exists or has changed for example. Just be aware that up-to-date checks should save you
time. Don’t add checks that cost as much or more time than the standard execution of the task. In fact, if a
task ends up running frequently anyway, because it's rarely up to date, then it may not be worth having an
up-to-date check at all. Remember that your checks will always run if the task is in the execution task graph.

One common mistake is to use upToDat eWhen() instead of Task. onl yI f () . If you want to skip a task on
the basis of some condition unrelated to the task inputs and outputs, then you should use onl yIf (). For
example, in cases where you want to skip a task when a particular property is set or not set.

Page 169 of 717

§
Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties have the
same value. In order to do so, Gradle first normalizes both inputs and then compares the result. For
example, for a compile classpath, Gradle extracts the ABI signature from the classes on the classpath and
then compares signatures between the last Gradle run and the current Gradle run as described in the
section called “Compile avoidance”.

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs annotated
with €Cl asspat h are considered to be runtime classpaths.

Let's say you want to add a file bui | d-i nf o. properti es to all your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the CI job that
published the artifact. This file is only for auditing purposes, and has no effect on the outcome of running
tests. Nonetheless, this file is part of the runtime classpath for the t est task and changes on every build
invocation. Therefore, the t est would be never up-to-date or pulled from the build cache. In order to benefit
from incremental builds again, you are able tell Gradle to ignore this file on the runtime classpath at the
project level by using Pr oj ect . normal i zati on(org. gradl e. api . Action):

Example 117. Runtime classpath normalization

buil d. gradl e
normal i zati on {
runti meC asspath {
i gnore 'build-info.properties'

The effect of this configuration would be that changes to bui | d-i nf 0. properti es would be ignored for
up-to-date checks and build cache key calculations. Note that this will not change the runtime behavior of the
t est task - i.e. any test is still able to load bui | d-i nf o. properti es and the runtime classpath is still the
same as before.

§
Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older versions of
Gradle need to be removed to ensure that the newest version of the tasks are starting from a known clean
state.

Note: Automatic clean-up of stale output directories has only been implemented for the output of
source sets (Java/Groovy/Scala compilation).

Page 170 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

8
Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Example 118. Task rule

buil d. gradl e
t asks. addRul e("Pattern: ping<IiD>") { String taskNane ->
if (taskNanme.startsWth("ping")) {
task(taskNane) {
doLast ({
println "Pinging: " + (taskNane - 'ping')

Outputof gradl e -g pi ngServer1l
> gradl e -qg pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

Page 171 of 717

Example 119. Dependency on rule based tasks

buil d. gradl e
tasks. addRul e("Pattern: ping<ID>") { String taskName ->
i f (taskName.startsWth("ping")) {
task(taskNane) {
doLast {
println "Pinging: " + (taskNane - 'ping')

task groupPing {
dependsOn pi ngServer 1, pingServer?2

Output of gradl e -qg groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl

Pi ngi ng: Server2

If you run “gradl e -q tasks” you won't find a task named “pi ngSer ver 1” or “pi ngSer ver 2", but this
script is executing logic based on the request to run those tasks.

8
Finalizer tasks

Note: Finalizers tasks are an incubating feature (see the section called “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Page 172 of 717

Example 120. Adding a task finalizer

buil d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

taskX. finalizedBy taskY

Outputof gradl e -qg taskX
> gradle -qg taskX
taskX

taskyY

Finalizer tasks will be executed even if the finalized task fails.

Example 121. Task finalizer for a failing task

bui | d. gradl e
task taskX {
doLast {

println 'taskX
t hrow new Runti meException()

}
}
task taskY {
doLast {
println 'taskY
}
}

taskX. finalizedBy taskY

Output of gradl e -q taskX
> gradl e -qg taskX

t askX

t askY

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for example if it is
considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up

Page 173 of 717

regardless of the build failing or succeeding. An example of such a resource is a web container that is
started before an integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the Task.finalizedBy(]ava.lang. Object[]) method. This
method accepts a task instance, a task name, or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

8§
Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task actions.
Lifecycle tasks can represent several concepts:

a work-flow step (e.g., run all checks with check)

a buildable thing (e.g., create a debug 32-bit executable for native components with debug32Mai nExecut al

)

a convenience task to execute many of the same logical tasks (e.g., run all compilation tasks with conpi | eA

)

Many Gradle plug-ins define their own lifecycle tasks to make it convenient to do specific things. When
developing your own plugins, you should consider using your own lifecycle tasks or hooking into some of the
tasks already provided by Gradle. See the Java plugin the section called “Tasks” for an example.

Unless a lifecycle task has actions, its outcome is determined by its dependencies. If any of the task’s
dependencies are executed, the lifecycle task will be considered executed. If all of the task’s dependencies
are up-to-date, skipped or from cache, the lifecycle task will be considered up-to-date.

8
Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target
and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle combines these notions
into a single entity. Simple Gradle tasks are like Ant’'s targets, but enhanced Gradle tasks also include
aspects of Ant tasks. All of Gradle’s tasks share a common API and you can create dependencies between
them. These tasks are much easier to configure than an Ant task. They make full use of the type system,
and are more expressive and easier to maintain.

[6] You might be wondering why there is neither an import for the St opExecut i onExcepti on nor do we
access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script
(see the section called “Default imports”).

Page 174 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Working With Files

Most builds work with files. Gradle adds some concepts and APlIs to help you achieve this.
§

Locating files

You can locate a file relative to the project directory using the Project.file(java.lang. Obj ect)

method.
Example 122. Locating files

buil d. gradl e

File configFile = file('src/config.xnm")
configFile = file(configFile.absol utePat h)
configFile = file(new File('src/config.xm"))
configFile = file(Paths.get('src', 'config.xm"))

configFile = fil e(Paths. get(System get Property(' user.hone')).resolve(' gl obal -coni

You can pass any object to the fi | e() method, and it will attempt to convert the value to an absolute Fi | e
object. Usually, you would pass it a Stri ng, Fi | e or Pat h instance. If this path is an absolute path, it is
used to construct a Fi | e instance. Otherwise, a Fi | e instance is constructed by prepending the project
directory path to the supplied path. The fi | e() method also understands URLs, such as fi |l e: / sone/ pat

Using this method is a useful way to convert some user provided value into an absolute File. It is
preferable to using new Fi |l e(sonePat h), as fil e() always evaluates the supplied path relative to the
project directory, which is fixed, rather than the current working directory, which can change depending on
how the user runs Gradle.

Page 175 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

8
File collections

A file collection is simply a set of files. It is represented by the Fi | eCol | ect i on interface. Many objects in
the Gradle API implement this interface. For example, dependency configurations implement Fi | eCol | ect i

One way to obtain a Fi | eCol | ecti on instance is to use the Proj ect . fil es(java. |l ang. Ooject[])
method. You can pass this method any number of objects, which are then converted into a set of Fi |l e
objects. The fi | es() method accepts any type of object as its parameters. These are evaluated relative to
the project directory, as per the fil e() method, described in the section called “Locating files”. You can
also pass collections, iterables, maps and arrays to the fi |l es() method. These are flattened and the
contents converted to Fi | e instances.

Example 123. Creating a file collection

buil d. gradl e

FileCollection collection = files('src/filel.txt",
new File('src/file2.txt"),
['src/file3.txt', "src/filed.txt'],
Pat hs.get('src', 'fileb5.txt'))

A file collection is iterable, and can be converted to a number of other types using the as operator. You can
also add 2 file collections together using the + operator, or subtract one file collection from another using the
operator. Here are some examples of what you can do with a file collection.

Example 124. Using a file collection

buil d. gradl e

collection.each { File file ->
println file.nane

Set set = collection.files

Set set2 = collection as Set

List list = collection as List
String path = collection.asPath
File file = collection.singleFile
File file2 = collection as File

def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

Page 176 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

You can also pass the fi | es() method a closure or a Cal | abl e instance. This is called when the contents
of the collection are queried, and its return value is converted to a set of Fi | e instances. The return value
can be an object of any of the types supported by the fi | es() method. This is a simple way to 'implement’
the Fi | eCol | ect i on interface.

Example 125. Implementing a file collection

buil d. gradl e
task list {
doLast ({

File srchir

collection = files { srcDir.listFiles() }

srcDir = file('src')
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { printlnit }

srcDir = file('src2")
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { printlnit }

Outputofgradle -qg |i st
> gradle -q |ist
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl

src2/dir2

Some other types of things you can passtofil es():

Fil eCol | ection
These are flattened and the contents included in the file collection.

Task
The output files of the task are included in the file collection.

TaskQut put s
The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of a file collection is evaluated lazily, when it is needed. This means
you can, for example, create a Fi | eCol | ect i on that represents files which will be created in the future by,
say, some task.

Page 177 of 717

8
File trees

A file tree is a collection of files arranged in a hierarchy. For example, a file tree might represent a directory
tree or the contents of a ZIP file. It is represented by the Fi | eTr ee interface. The Fi | eTr ee interface
extends Fi | eCol | ecti on, so you can treat a file tree exactly the same way as you would a file collection.

Several objects in Gradle implement the Fi | eTr ee interface, such as source sets.

One way to obtain a Fi | eTr ee instance is to use the Proj ect.fileTree(java.util.NMap) method.
This creates a Fi | eTr ee defined with a base directory, and optionally some Ant-style include and exclude
patterns.

Example 126. Creating a file tree
buil d. gradl e
FileTree tree = fileTree(dir: 'src/main")

tree.include '**/*. java'
tree. exclude ' **/ Abstract*'

tree = fileTree('src').include(' **/*.java')
tree = fileTree('src') {
include '**/*_ java'
}
tree = fileTree(dir: '"src', include: "**/* java')
tree = fileTree(dir: 'src', includes: ['**/*. java', "**/*.xm"'])
tree = fileTree(dir: '"src', include: "**/* java', exclude: '**/*test*/**")

You use a file tree in the same way you use a file collection. You can also visit the contents of the tree, and
select a sub-tree using Ant-style patterns:

Page 178 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Example 127. Using afile tree

buil d. gradl e

tree.each {File file ->
printin file

FileTree filtered = tree. matchi ng {
i nclude 'org/gradl e/ api/**'

FileTree sum= tree + fileTree(dir: 'src/test')

tree.visit {elenment ->
println "$elenment.rel ativePath => $el enent.file"

Note: By default, the Fi | eTr ee instance fil eTr ee() returns will apply some Ant-style default
exclude patterns for convenience. For the complete default exclusion list, see Default Excludes.

8§
Using the contents of an archive as a file tree

You can use the contents of an archive, such as a ZIP or TAR file, as a file tree. You do this using the
Proj ect.zipTree(java.l ang. Object) and Project.tarTree(java.lang. Obj ect) methods.
These methods return a Fi | eTr ee instance which you can use like any other file tree or file collection. For
example, you can use it to expand the archive by copying the contents, or to merge some archives into
another.

Example 128. Using an archive as a file tree

bui | d. gradl e

FileTree zip = zipTree(' soneFile.zip")

FileTree tar = tarTree(' soneFile.tar")

FileTree someTar = tar Tree(resources. gzi p(' soneTar.ext"'))

Page 179 of 717

http://ant.apache.org/manual/dirtasks.html#defaultexcludes
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

8§
Specifying a set of input files

Many objects in Gradle have properties which accept a set of input files. For example, the JavaConpi | e
task has a sour ce property, which defines the source files to compile. You can set the value of this property
using any of the types supported by the files() method, which was shown above. This means you can set the
property using, for example, a Fil e, Stri ng, collection, Fi | eCol | ecti on or even a closure. Here are
some examples:

Example 129. Specifying a set of files

bui | d. gradl e
task conpil e(type: JavaConpil e)

compil e {
source = file('src/main/java')
}
conpile {
source = 'src/main/java'
}
compil e {
source = ['"src/main/java', '../shared/java']
}
compil e {
source = fileTree(dir: 'src/nmain/java').matching { include 'org/gradle/api/*:
}
compi l e {
source = {
file('src').listFiles().findAI'l {it.name.endsWth('.zip')}.collect { zip
}
}

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this
method accepts any of the types supported by the files() method.

Page 180 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 130. Appending a set of files

buil d. gradl e
compil e {
source 'src/main/java', 'src/main/groovy

source file('../shared/java')

source { file('src/test/").listFiles() }

8
Copying files

You can use the Copy task to copy files. The copy task is very flexible, and allows you to, for example, filter
the contents of the files as they are copied, and map to the file names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to copy the
files to. You may also specify how to transform the files as they are copied. You do all this using a copy spec
. A copy spec is represented by the CopySpec interface. The Copy task implements this interface. You
specify the source files using the CopySpec. fron(java.lang. Object[]) method. To specify the
destination directory, use the CopySpec. i nto(] ava. | ang. Obj ect) method.

Example 131. Copying files using the copy task

buil d. gradl e

task copyTask(type: Copy) {
from ' src/ mai n/ webapp'
into 'build/ expl odedWar'

The f r om() method accepts any of the arguments that the files() method does. When an argument resolves
to a directory, everything under that directory (but not the directory itself) is recursively copied into the
destination directory. When an argument resolves to a file, that file is copied into the destination directory.
When an argument resolves to a non-existing file, that argument is ignored. If the argument is a task, the
output files (i.e. the files the task creates) of the task are copied and the task is automatically added as a
dependency of the Copy task. The i nt o() accepts any of the arguments that the file() method does. Here
is another example:

Page 181 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object[]-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-

Example 132. Specifying copy task source files and destination directory

buil d. gradl e
t ask anot her CopyTask(type: Copy) {
[l Copy everything under src/nmain/webapp
from'src/ min/webapp'
/[l Copy a single file
from'src/stagi ng/index.htm"
/1 Copy the output of a task
from copyTask
/'l Copy the output of a task using Task outputs explicitly.
from copyTaskW t hPat t er ns. out put s
/1 Copy the contents of a Zip file
from zi pTree(' src/ main/assets. zip')
/[l Determ ne the destination directory |ater
into { getDestDir() }

You can select the files to copy using Ant-style include or exclude patterns, or using a closure:
Example 133. Selecting the files to copy

buil d. gradl e
task copyTaskWthPatterns(type: Copy) {
from ' src/ mai n/ webapp'
into 'build/ expl odedWar'
include "**/* htm"
include '**/* jsp'
exclude { details -> details.file.name.endsWth('.html"') &&
details.file.text.contains(' staging') }

You can also use the Proj ect.copy(org.gradle.api.Action) method to copy files. It works the
same way as the task with some major limitations though. First, the copy() is not incremental (see the
section called “Up-to-date checks (AKA Incremental Build)”).

Example 134. Copying files using the copy() method without up-to-date check

bui I d. gradl e
task copyMet hod {
doLast {

copy {

from'src/ min/ webapp'
into 'build/ expl odedWar'
include "**/* htm'
include '**/*. jsp'

Page 182 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Secondly, the copy() method cannot honor task dependencies when a task is used as a copy source (i.e.
as an argument to f r on()) because it's a method and not a task. As such, if you are using the copy()
method as part of a task action, you must explicitly declare all inputs and outputs in order to get the correct
behavior.

Example 135. Copying files using the copy() method with up-to-date check

bui | d. gradl e
task copyMet hodWt hExpli ci t Dependenci es{

i nputs.files copyTask
outputs.dir 'sone-dir’
doLast {

copy {

from copyTask
into 'some-dir’

It is preferable to use the Copy task wherever possible, as it supports incremental building and task
dependency inference without any extra effort on your part. The copy() method can be used to copy files
as part of a task’s implementation. That is, the copy method is intended to be used by custom tasks (see
Writing Custom Task Classes) that need to copy files as part of their function. In such a scenario, the custom
task should sufficiently declare the inputs/outputs relevant to the copy action.

8
Renaming files

Example 136. Renaming files as they are copied

buil d. gradl e

task rename(type: Copy) {
from'src/ min/ webapp'
into 'build/expl odedWar'

rename { String fileNane ->
fileNane.replace('-staging-', '")

renanme ' (.+)-staging-(.+)', '$1$2
rename(/ (.+)-staging-(.+)/, '$1%$2")

Page 183 of 717

8
Filtering files

Example 137. Filtering files as they are copied

bui | d. gradl e
i mport org.apache.tools.ant.filters.FixCrLfFilter
i mport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from' src/ mai n/ webapp'

into 'build/ expl odedWar'

expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)

filter(FixCrLfFilter)
filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])

filter { String line ->

"[$line]"
}
filter { String line ->
line.startsWth('-") ? null : line
}
filteringCharset = 'UTF-8

When you use the Repl aceTokens class with the “filter” operation, the result is a template engine that
replaces tokens of the form “@tokenName@” (the Apache Ant-style token) with a set of given values. The
“expand” operation does the same thing except it treats the source files as Groovy templates in which tokens
take the form “${tokenName}’. Be aware that you may need to escape parts of your source files when using
this option, for example if it contains literal “$” or “<%” strings.

It's a good practice to specify the charset when reading and writing the file, using the fi I t eri ngChar set
property. If not specified, the JVM default charset is used, which might not match with the actual charset of
the files to filter, and might be different from one machine to another.

8
Using the Copy Spec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns,
copy actions, name mappings and filters.

Page 184 of 717

http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

Example 138. Nested copy specs

buil d. gradl e
task nestedSpecs(type: Copy) {
into 'buil d/ expl odedWar'
excl ude ' **/*st agi ng*'
from('src/dist") {
include "**/* htm'

}
into('libs") {
from configurations.runtine

8§
Using the Sync task

The Sync task extends the Copy task. When it executes, it copies the source files into the destination
directory, and then removes any files from the destination directory which it did not copy. This can be useful
for doing things such as installing your application, creating an exploded copy of your archives, or
maintaining a copy of the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the bui l d/ | i bs

directory.
Example 139. Using the Sync task to copy dependencies

buil d. gradl e

task libs(type: Sync) {
from configurations.runtine
into "$buildDir/libs"

8§
Creating archives

A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to
your project. Archives are created using the various archive tasks: Zi p, Tar, Jar, \War, and Ear . They all

work the same way, so let’'s look at how you create a ZIP file.

Page 185 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ear.Ear.html

Example 140. Creating a ZIP archive

buil d. gradl e
apply plugin: 'java

task zip(type: Zip) {
from'src/dist'
into('libs") {
from configurations.runtinme

Why are you using the Java plugin?

The Java plugin adds a number of default values for the archive tasks. You can use the archive
tasks without using the Java plugin, if you like. You will need to provide values for some additional
properties.

The archive tasks all work exactly the same way as the Copy task, and implement the same Copy Spec
interface. As with the Copy task, you specify the input files using the f r om() method, and can optionally
specify where they end up in the archive using the i nt o() method. You can filter the contents of file,
rename files, and all the other things you can do with a copy spec.

8
Archive naming

The format of pr oj ect Name- ver si on. t ype is used for generated archive file names. For example:
Example 141. Creation of ZIP archive

buil d. gradl e
apply plugin: 'java'

version = 1.0

task nyZip(type: Zip) {
from' sonedir'

println nyZp.archi veNane
println relativePath(mnmyZi p. destinationDir)
println relativePath(mnmyzi p.archi vePat h)

Outputofgradl e -gq nyZip

> gradle -q nyZip

zipProject-1.0.zip

bui | d/ di stributions

bui l d/ di stributions/zipProject-1.0.zip

Page 186 of 717

This adds a Zi p archive task with the name nyZi p which produces ZIP file zi pPr oj ect-1. 0. zi p. It is
important to distinguish between the name of the archive task and the name of the archive generated by the
archive task. The default name for archives can be changed with the ar chi vesBaseNamne project property.
The name of the archive can also be changed at any time later on.

There are a number of properties which you can set on an archive task. These are listed below in Table 8.
You can, for example, change the name of the archive:

Example 142. Configuration of archive task - custom archive name

bui | d. gradl e

apply plugin: 'java'
version = 1.0

task nyZip(type: Zip) {
from' sonedir'
baseNane = ' cust onNane'

println myZip. archi veNane

Output ofgradl e -qg nyZip
> gradle -gq nyZip
customNane-1.0.zip

You can further customize the archive names:
Example 143. Configuration of archive task - appendix & classifier

bui I d. gradl e

apply plugin: 'java'

archi vesBaseNane = 'gradl e
version = 1.0

task nyZip(type: Zip) {
appendi x = "w apper'
classifier = "src'
from' sonedir’

println nyZip.archi veNane
Outputofgradl e -qgq nyZip

> gradle -gq nyZip
gradl e-wrapper-1.0-src.zip

Page 187 of 717

Table 8. Archive tasks - naming properties
roperty name Type Default value Description

baseNane- appendi x- versi on- cl assi fi er. extensi on
rchi veName String
If any of these properties is empty the trailing - is not added to the name.

The base file name of
the generated archive

. The absolute path of
rchi vePat h File destinationDir/ archiveNane .
the generated archive.

T director to
Depends on the archive type. JARs and WARs go into proj ect. bui | dDi r /qel braries y

astinationDir File))))))) generate the archive
. ZIPs and TARs go into proj ect. bui | dDi r/di stri buti ons. int
into
The base name
aseNane String project.nanme portion of the archive
file name.
The appendix portion
opendi x Stringnull of the archive file
name.
)) .) The version portion of
arsi on String project.version o
the archive file name.
The classifier portion
lassifier Stringnull of the archive file
name,
)) Depends on the archive type, and for TAR files, the compression type as The extension of the
Xt ensi on String

well: zi p,jar,war,tar,tgz ortbz2. archive file name.

§
Sharing content between multiple archives

You can use the Proj ect.copySpec(org. gradle.api.Action) method to share content between

archives.

8
Reproducible archives

Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. You want to
be sure that building an artifact from source code produces the same result, byte for byte, no matter when
and where it is built. This is necessary for projects like reproducible-builds.org.

Page 188 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/

Reproducing the same archive byte for byte poses some challenges since the order of the files in an archive
is influenced by the underlying filesystem. Each time a zip, tar, jar, war or ear is built from source, the order
of the files inside the archive may change. Files that only have a different timestamp also causes archives to
be slightly different between builds. All Abst ract Archi veTask (e.g. Jar, Zip) tasks shipped with Gradle
include incubating support producing reproducible archives.

For example, to make a Zi p task reproducible you need to set Zi p. i sReproduci bl eFi |l eOrder () totrt
and Zi p.isPreserveFi | eTi nest anps() to fal se. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

Example 144. Activating reproducible archives

bui I d. gradl e

tasks. wi t hType(Abstract Archi veTask) {
preserveFil eTi mestanps = fal se
reproduci bl eFil eOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is described
in Publishing artifacts

8§
Properties files

Properties files are used in many places during Java development. Gradle makes it easy to create properties
files as a normal part of the build. You can use the Wi t ePr operti es task to create properties files.

The Wi teProperti es task also fixes a well-known problem with Pr operti es. st ore() that can reduce
the usefulness of incremental builds (see the section called “Up-to-date checks (AKA Incremental Build)”).
The standard Java way to write a properties file produces a unique file every time, even when the same
properties and values are used, because it includes a timestamp in the comments. Gradle’s Wi t eProperti
task generates exactly the same output byte-for-byte if none of the properties have changed. This is
achieved by a few tweaks to how a properties file is generated:

no timestamp comment is added to the output
the line separator is system independent, but can be configured explicitly (it defaultsto " \ n')

the properties are sorted alphabetically

Page 189 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.WriteProperties.html

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant’'s XML format. You could even use Gradle simply as a powerful Ant task scripting
tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the bui | d. xi
file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything
except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d.
directly into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer Gradle

provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
Your build script may contain statements like: "ant cl ean conpi | e". execut e().l"]

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For example, you
could start by importing your existing Ant build. Then you could move your dependency declarations from the
Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with
some of Gradle’s plugins. This process can be done in parts over time, and you can have a working Gradle
build during the entire process.

8§
Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an Ant Bui | der
instance. This Ant Bui | der is used to access Ant tasks, types and properties from your build script. There
is a very simple mapping from Ant’s bui | d. xnl format to Groovy, which is explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task name as the
method name. For example, you execute the Ant echo task by calling the ant. echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo

task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 190 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/AntBuilder.html

Example 145. Using an Ant task

buil d. gradl e
task hello {
doLast {

String greeting = "hello from Ant'
ant . echo(nessage: greeting)

Output of gradl e hel | o

> gradle hello

thello

[ant:echo] hello from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we
pass the message for the echo task as nested text:

Example 146. Passing nested text to an Ant task

buil d. gradl e
task hello {
doLast ({

ant . echo(' hello from Ant")

Outputof gradl e hel |l o

> gradle hello

“hello

[ant:echo] hello from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as
tasks, by calling a method with the same name as the element we want to define.

Page 191 of 717

Example 147. Passing nested elements to an Ant task

buil d. gradl e
task zip {
doLast {

ant. zi p(destfile: "archive.zip') {
fileset(dir: "src') {
i nclude(nanme: ' **.xm ")
excl ude(nane: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 148. Using an Ant type

buil d. gradl e
task list {
doLast {
def path = ant.path {
fileset(dir: "libs', includes: "*.jar")
}
path.list().each {
println it
}
}
}

More information about Ant Bui | der can be found in 'Groovy in Action' 8.4 or at the Groovy Wiki

§
Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the t askdef (usually easier) or t ypedef Ant
task, just as you would in a bui |l d. xm file. You can then refer to the custom Ant task as you would a
built-in Ant task.

Page 192 of 717

http://groovy-lang.org/scripting-ant.html

Example 149. Using a custom Ant task

buil d. gradl e
task check {
doLast {

ant . t askdef (resource: 'checkstyl etask. properties') {
cl asspath {
fileset(dir: "libs', includes: "*.jar")

}
ant . checkstyl e(config: 'checkstyle.xm"') {

fileset(dir: "src")

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To
do this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. This is described in more detail in the section called “Declaring dependencies”.

Example 150. Declaring the classpath for a custom Ant task

buil d. gradl e

configurations {
pnd

}

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 151. Using a custom Ant task and dependency management together

buil d. gradl e
task check {
doLast {

ant . t askdef (nane: 'pnd',
cl assnanme: ' net.sourceforge. pnd. ant. PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(shortFil enanes: 'true',
failonrul eviolation: '"true',
rulesetfiles: file('pnd-rules.xm").toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: '"src')

Page 193 of 717

8§
Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When you
import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute
the Ant targets in exactly the same way as Gradle tasks.

Example 152. Importing an Ant build

bui | d. gradl e
ant.inmportBuild 'build. xm"

bui | d. xm
<pr oj ect >
<target name="hell 0">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Outputof gradl e hel |l o

> gradle hello

“hello

[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Page 194 of 717

Example 153. Task that depends on Ant target

buil d. gradl e
ant.inmportBuild '"build. xm"'

task intro(dependsOn: hello) {
doLast {
println '"Hello, from G adle'

Outputofgradl e intro

> gradle intro

thello

[ant:echo] Hello, from Ant
sintro

Hello, from Gradle

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Or, you can add behaviour to an Ant target:

Example 154. Adding behaviour to an Ant target

bui | d. gradl e
ant.inmportBuild 'build. xm"

hell o {
doLast {
println 'Hello, from G adle'

Output of gradl e hel |l o

> gradle hello

thello

[ant:echo] Hello, from Ant
Hello, from G adl e

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Page 195 of 717

Example 155. Ant target that depends on Gradle task

buil d. gradl e
ant.inmportBuild '"build. xm"'

task intro {
doLast {
println '"Hello, from G adle'

}
}
bui | d. xni
<pr oj ect >

<target name="hell 0" depends="intro">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Output of gradl e hel |l o

> gradle hello

sintro

Hello, from G adl e

thello

[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision

with existing Gradle tasks. To do this, use the AntBuil der.inportBuild(java.lang. Object,

org. gradl e. api . Transf or mer) method.

Page 196 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-

Example 156. Renaming imported Ant targets

buil d. gradl e
ant . i mportBui l d(' build.xm"') { antTarget Nane ->
"a-' + ant Target Nanme

}
bui | d. xni
<pr oj ect >

<target nanme="hello">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Output of gradl e a-hell o

> gradle a-hello

ra-hello

[ant:echo] Hello, from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note that while the second argument to this method should be a Tr ansf or ner, when programming in
Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy’s
support for automatically coercing closures to single-abstract-method types.

8§
Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set
the property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you
can change. You can also use the Ant pr oper t y task. Below are some examples of how to do this.

Example 157. Setting an Ant property

bui | d. gradl e

ant.buildDir = buildDr

ant. properties.buildDir = buildDr

ant. properties['buildDir'] = buildDir

ant . property(name: 'buildDir', location: buildDir)

bui | d. xmi
<echo>bui | dDir = ${buil dDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also
available as a Map. Below are some examples.

Page 197 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Example 158. Getting an Ant property

buil d. xm
<property name="ant Prop" val ue="a property defined in an Ant build"/>

bui I d. gradl e

println ant.antProp

println ant. properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example 159. Setting an Ant reference

bui I d. gradl e

ant.path(id: 'classpath', location: '"libs")

ant . references. cl asspath = ant.path(location: 'libs")
ant.references[' classpath'] = ant.path(location: '"libs")
bui | d. xn

<pat h refid="cl asspath"/>

There are several ways to get an Ant reference:

Example 160. Getting an Ant reference

bui I d. xn
<pat h id="antPath" |ocation="libs"/>
bui | d. gradl e

println ant.references. ant Pat h
println ant.references[' antPath']

8§
Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the
Gradle output. By default, these are mapped as follows:

Page 198 of 717

Table 9. Ant message priority mapping

nt Message Priority Gradle Log Level
ERBOSE DEBUG

EBUG DEBUG

\FO I NFO

/ARN WARN

RROR ERROR

§

Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LI FECYCLE log level, which is the default for
Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages from
Gradle, a build would have to be run with the log level set to | NFO, potentially logging much more output
than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would require
the build to be run at a higher log level, such as QUI ET. However, this could result in other, desirable output
being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message
priority to Gradle log level. This is done by setting the priority that should map to the default Gradle LI FECYC
log level using the Ant Bui | der. set Li fecycl eLogLevel (java. |l ang. String) method. When this
value is set, any Ant message logged at the configured priority or above will be logged at least at LI FECYCLE
. Any Ant message logged below this priority will be logged at most at | NFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed at the L
log level.

Page 199 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

Example 161. Fine tuning Ant logging

buil d. gradl e
ant.lifecycl eLogLevel = "INFO'

task hello {
doLast {
ant . echo(level: "info", message: "hello frominfo priority!")

Outputof gradl e hel |l o

> gradle hello

“hello

[ant:echo] hello frominfo priority!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

On the other hand, if the | i f ecycl eLogLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the | NFO level and
would be suppressed by default.

8
API

The Ant integration is provided by Ant Bui | der .

[7] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have
a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 200 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/AntBuilder.html

Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks
are executed in the order of their dependencies, and that each task is executed only once. These tasks form
a Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

8§
Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and creates a Pr oj ect instance for each of these projects.

Configuration
During this phase the project objects are configured. The build scripts of all projects which are part of the
build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on demand. In
this mode, Gradle configures only relevant projects (see the section called “Configuration on demand”).

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gr adl e command and
the current directory. Gradle then executes each of the selected tasks.

8§
Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for this file is setti ngs. gr adl e. Later in this chapter we explain
how Gradle looks for a settings file.

Page 201 of 717

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html

The settings file is executed during the initialization phase. A multiproject build must have a setti ngs. gr ac
file in the root project of the multiproject hierarchy. It is required because the settings file defines which
projects are taking part in the multi-project build (see Authoring Multi-Project Builds). For a single-project
build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to
your build script classpath (see Organizing Build Logic). Let’s first do some introspection with a single project
build

Example 162. Single project build

settings.gradle
println '"This is executed during the initialization phase.'

bui I d. gradl e
println 'This is executed during the configuration phase.

task configured {
println "This is al so executed during the configuration phase.'

}
task test {
doLast {
println '"This is executed during the execution phase."'
}
}
task testBoth {
doFirst {
println "This is executed first during the execution phase.'
}
doLast {

println 'This is executed |last during the execution phase."'

}

println "This is executed during the configuration phase as well.'

Outputofgradl e test testBoth

> gradl e test testBoth

This is executed during the initialization phase.
This is executed during the configuration phase.

This is also executed during the configuration phase.
This is executed during the configuration phase as well.
itest

This is executed during the execution phase.
:testBoth

This is executed first during the execution phase.
This is executed | ast during the execution phase.

BU LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

Page 202 of 717

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Set ti ngs

class in the APl documentation for more information.

8§
Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
You have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project builds in the chapter dedicated to this topic (see Authoring Multi-Project Builds).

8
Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents
a project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the setti ngs. gr adl e file. By default it is assumed
that the location of the settings file is also the location of the root project. But you can redefine the location of
the root project in the settings file.

8
Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

§
Hierarchical layouts

Example 163. Hierarchical layout

settings.gradle
include 'projectl', '"project2:child, 'project3:childl

The i ncl ude method takes project paths as arguments. The project path is assumed to be equal to the
relative physical file system path. For example, a path 'services:api' is mapped by default to a folder
'services/api' (relative from the project root). You only need to specify the leaves of the tree. This means that
the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and
'services:hotels:api'. More examples of how to work with the project path can be found in the DSL
documentation of Set ti ngs. i ncl ude(j ava. |l ang. String[]).

Page 203 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

§
Flat layouts

Example 164. Flat layout

settings.gradle
i ncl udeFl at ' project3', 'project4

The i ncl udeFl at method takes directory names as an argument. These directories need to exist as
siblings of the root project directory. The location of these directories are considered as child projects of the
root project in the multi-project tree.

8§
Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can modify
these descriptors in the settings file at any time. To access a descriptor you can do:

Example 165. Lookup of elements of the project tree

settings.gradle
println rootProject. nane
println project(':projectA). nanme

Using this descriptor you can change the name, project directory and build file of a project.
Example 166. Modification of elements of the project tree

settings.gradle

root Project.name = 'nain'

project(':projectA").projectDir = new File(settingsDir, '../nmy-project-a')
project(':projectA).buildFileNane = 'projectA gradle'

Look at the Proj ect Descri pt or class in the APl documentation for more information.
8§

Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from a
directory with a settings file, things are easy. But Gradle also allows you to execute the build from within any
subproject taking part in the build.[® If you execute Gradle from within a project with no set ti ngs. gradl e

file, Gradle looks for a set ti ngs. gr adl e file in the following way:
It looks in a directory called nmast er which has the same nesting level as the current dir.

If not found yet, it searches parent directories.

Page 204 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

If not found yet, the build is executed as a single project build.

Ifasettings. gradl e file is found, Gradle checks if the current project is part of the multiproject hierarchy
defined in the found set ti ngs. gr adl e file. If not, the build is executed as a single project build. Otherwise

a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent
projects are built, but Gradle needs to create the build configuration for the whole multiproject build (see
Authoring Multi-Project Builds). You can use the - u command line option to tell Gradle not to look in the
parent hierarchy for a setti ngs. gradl e file. The current project is then always built as a single project
build. If the current project contains a setti ngs. gr adl e file, the - u option has no meaning. Such a build
is always executed as:

a single project build, if the set ti ngs. gr adl e file does not define a multiproject hierarchy
a multiproject build, if the set ti ngs. gr adl e file does define a multiproject hierarchy.

The automatic search for a settings. gradl e file only works for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described
above (“mast er ”). Gradle supports arbitrary physical layouts for a multiproject build, but for such arbitrary
layouts you need to execute the build from the directory where the settings file is located. For information on
how to run partial builds from the root see the section called “Running tasks by their absolute path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are
the projects specified in the Settings object (plus the root project). Each project object has by default a name
equal to the name of its top level directory, and every project except the root project has a parent project.
Any project may have child projects.

8§
Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build script is
executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project builds is discussed in Authoring Multi-Project Builds.

8§
Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These notifications
generally take two forms: You can either implement a particular listener interface, or you can provide a
closure to execute when the notification is fired. The examples below use closures. For details on how to use
the listener interfaces, refer to the APl documentation.

Page 205 of 717

8
Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once all the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds a t est task to each project which has a hasTest s property value of true.

Example 167. Adding of test task to each project which has certain property set

bui I d. gradl e
al | projects {
afterEval uate { project ->
i f (project.hasTests) {
println "Adding test task to $project"
project.task('test"') {
doLast {
println "Running tests for $project"

proj ectA gradl e
hasTests = true

Outputofgradl e -qg test

> gradle -q test

Addi ng test task to project
Running tests for project '

: projectA
. proj ect A

This example uses method Proj ect. aft er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect noatification is received regardless of
whether the project evaluates successfully or fails with an exception.

Page 206 of 717

Example 168. Notifications

buil d. gradl e
gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uation of $project FAILED
} else {
println "Eval uation of $project succeeded"

Outputofgradl e -g test

> gradle -q test

Eval uation of root project 'buil dProjectEval uateEvents' succeeded
Eval uation of project ':projectA succeeded

Eval uation of project ':projectB FAl LED

You can also add a Pr o] ect Eval uati onLi st ener tothe G adl e to receive these events.

8§
Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example sets the srcDi r property of each task as it is created.

Example 169. Setting of certain property to all tasks

buil d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/main/java'

}

task a

println "source dir is $a.srcDr"

Outputofgradle -gq a
> gradle -q a
source dir is src/main/java

You can also add an Act i on to a TaskCont ai ner to receive these events.

Page 207 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskContainer.html

8
Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have
seen this already in the section called “Configure by DAG”.

You can also add a TaskExecuti onG aphlLi st ener to the TaskExecuti onG aph to receive these

events.

8§
Task execution

You can receive a naotification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task notification
is received regardless of whether the task completes successfully or fails with an exception.

Example 170. Logging of start and end of each task execution

buil d. gradl e
task ok

task broken(dependsOn: ok) {
doLast {
throw new Runti meException(' broken")

gradl e. t askG aph. bef oreTask { Task task ->
println "executing $task ..."

gradl e. t askG aph. afterTask { Task task, TaskState state ->
if (state.failure) {
println "FAILED

}
el se {

println "done"
}

Output of gradl e -qg broken
> gradle -q broken
executing task ':ok
done

executing task
FAI LED

: br oken’

Page 208 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

You can also use a TaskExecut i onLi st ener tothe TaskExecuti onG aph to receive these events.

[€] Gradle supports partial multiproject builds (see Authoring Multi-Project Builds).

Page 209 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 10. There are two Gradle-specific log levels, in addition to the ones
you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the default, and is used to
report build progress.

Table 10. Log levels

avel Used for

RROR Error messages

UIET Important information messages
TARNING Warning messages

FECYCLE Progress information messages
IFO Information messages

EBUG Debug messages

Note: The rich components of the console (build status and work in progress area) are displayed
regardless of the log level used. Before Gradle 4.0 those rich components were only displayed at
log level LI FECYCLE or below.

8§
Choosing a log level

You can use the command line switches shown in Table 11 to choose different log levels. You can also
configure the log level using gradle.properties, see the section called “Gradle properties”. In Table 12 you
find the command line switches which affect stacktrace logging.

Page 210 of 717

Table 11. Log level command-line options

ption Outputs Log Levels

) logging options LIFECYCLE and higher

jor--quiet QUIET and higher

NOF - -warn WARN and higher

lor--info INFO and higher

d or - - debug DEBUG and higher (that is, all log messages)

Table 12. Stacktrace command-line options
ption Meaning

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in case of
o stacktrace options internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated stacktraces
are always printed.

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full stacktraces

2 or BNEEEEAE are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet they usually do not
5 0r--
contain relevant information for what has gone wrong in your code.) This option renders stacktraces for

deprecation warnings.

Sor--full-stackt Thedull stacktraces are printed out. This option renders stacktraces for deprecation warnings.

8§
Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects
anything written to standard output to its logging system at the QUI ET log level.

Example 171. Using stdout to write log messages

buil d. gradl e
println 'A nessage which is | ogged at QU ET | evel'

Gradle also provides a | ogger property to a build script, which is an instance of Logger . This interface

extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is an example of

how this is used in the build script:

Page 211 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/logging/Logger.html

Example 172. Writing your own log messages

buil d. gradl e

| ogger.quiet('An info | og nessage which is always | ogged."')
| ogger.error('An error | og nessage.')

| ogger.warn(' A warning | og nessage.")

| ogger.lifecycle('Alifecycle info | og nessage.')

| ogger.info('An info | og nessage.')

| ogger . debug(' A debug | og nessage.')

| ogger.trace(' A trace | og nessage.')

Use the typical SLF4J pattern to replace a placeholder with an actual value as part of the log message.
Example 173. Writing a log message with placeholder

buil d. gradl e
| ogger.info('A {} log nessage', 'info')

You can also hook into Gradle’s logging system from within other classes used in the build (classes from the
directory for example). Simply use an SLF4J logger. You can use this logger the same way as you use the
provided logger in the build script.

Example 174. Using SLF4J to write log messages

buil d. gradl e
i nport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getLogger (' sonme-| ogger")
sl f4j Logger.info('An info | og nessage | ogged using SLF4]')

8§
Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging output
into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log levels,
except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the default
Gradle log level will not show any Ant/lvy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects
standard output to the QUI ET log level and standard error to the ERROR level. This behavior is configurable.
The project object provides a Loggi ngVanager, which allows you to change the log levels that standard

out or error are redirected to when your build script is evaluated.

Page 212 of 717

https://www.slf4j.org/manual.html#typical_usage
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/logging/LoggingManager.html

Example 175. Configuring standard output capture

buil d. gradl e
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
println 'A nessage which is | ogged at | NFO | evel

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 176. Configuring standard output capture for a task

buil d. gradl e
task loglnfo {
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
doFirst {
println 'A task nmessage which is |ogged at | NFO | evel

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradle’s logging system.

8§
Changing what Gradle logs

You can replace much of Gradle’s logging Ul with your own. You might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. You replace the
logging using the Gradl e. uselLogger (] ava. | ang. Obj ect) method. This is accessible from a build
script, or an init script, or via the embedding API. Note that this completely disables Gradle’s default output.
Below is an example init script which changes how task execution and build completion is logged.

Page 213 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Example 177. Customizing what Gradle logs

init.gradle
uselLogger (new Cust onmEvent Logger ())

cl ass CustonEvent Logger extends Buil dAdapter inplenents TaskExecuti onLi stener {

public void beforeExecute(Task task) {
println "[$task. nanme]"

public void afterExecute(Task task, TaskState state) {
println()

public void buil dFi ni shed(Buil dResult result) ({
println "build conpleted
if (result.failure !'= null) {
result.failure.printStackTrace()

}
}
}
Outputofgradle -1 init.gradle build
> gradle -1 init.gradle build
[conpi | €]

conpi |l i ng source

[test Conpil e]
conpiling test source

[test]
running unit tests

[bui | d]

buil d conpl et ed
3 actionabl e tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.
You can find out more about the listener interfaces in the section called “Responding to the lifecycle in the
build script”.

Bui | dLi st ener
Proj ect Eval uati onLi st ener

TaskExecuti onG aphlLi st ener

Page 214 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html

TaskExecuti onLi st ener

TaskAct i onLi st ener

Page 215 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/execution/TaskActionListener.html

Authoring Multi-Project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the
most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

8§
Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don’t have to be Java projects. Our first examples are about marine life.

§
Configuration and execution

the section called “Build phases” describes the phases of every Gradle build. Let's zoom into the
configuration and execution phases of a multi-project build. Configuration here means executing the bui | d.
file of a project, which implies e.g. downloading all plugins that were declared using ‘appl y pl ugi n’. By
default, the configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of multi-project build are configured first. The reason
every project needs to be configured is to support the flexibility of accessing and changing any part of the
Gradle project model.

§
Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every
project is configured before the execution phase. Yet, this approach may not be the most efficient in a very
large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The
configuration time of huge multi-project builds may become noticeable. Scalability is an important
requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode is
introduced.

Page 216 of 717

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.
it only executes the bui |l d. gradl e file of projects that are participating in the build. This way, the
configuration time of a large multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is
incubating so not every build is guaranteed to work correctly. The feature should work very well for
multi-project builds that have decoupled projects (the section called “Decoupled Projects”). In “configuration
on demand” mode, projects are configured as follows:

The root project is always configured. This way the typical common configuration is supported (allprojects or
subprojects script blocks).

The project in the directory where the build is executed is also configured, but only when Gradle is executed
without any tasks. This way the default tasks behave correctly when projects are configured on demand.

The standard project dependencies are supported and makes relevant projects configured. If project A has a
compile dependency on project B then building A causes configuration of both projects.

The task dependencies declared via task path are supported and cause relevant projects to be configured.
Example: someTask.dependsOn(":someOtherProject:someOtherTask")

A task requested via task path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see the section called
“Gradle properties”. To configure on demand just for a given build, see the section called “Performance
options”.

§
Defining common behavior

Let's look at some examples with the following project tree. This is a multi-project build with a root project
named wat er and a subproject named bl uewhal e.

Example 178. Multi-project tree - water & bluewhale projects

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/firstExar

in the ‘-all’ distribution of Gradle.

settings.gradle
i ncl ude ' bl uewhal e

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously for a

Page 217 of 717

single project build, a project without a build script doesn’'t make much sense. For multiproject builds the
situation is different. Let’s look at the build script for the wat er project and execute it:

Example 179. Build script of water (parent) project

buil d. gradl e
Closure cl ={ task -> println "I'm $task. proj ect. nane" }
task(' hello').doLast(cl)
proj ect(':bluewhale') {
task(' hell o").doLast(cl)

Outputofgradl e -q hello
> gradle -q hello

' m wat er

I m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect (), which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project configuration.
Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It is inconvenient to add the task explicitly
for every project. We can do better. Let’s first add another project called kri | | to our multi-project build.

Example 180. Multi-project tree - water, bluewhale & krill projects

Build layout

wat er/
bui I d. gradl e
settings.gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/addKrill/

in the ‘-all’ distribution of Gradle.

settings.gradle
i ncl ude ' bluewhale', "krill"’

Now we rewrite the wat er build script and boil it down to a single line.

Page 218 of 717

Example 181. Water project build script

buil d. gradl e
al | projects {
task hello {
doLast { task ->
println "I'm $task. proj ect. nang"

Outputofgradl e -q hello
> gradle -q hello

I''m wat er

' m bl uewhal e

I"mkrill

Is this cool or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.
You could also do an iteration via al | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject
builds.

Another possibility for sharing configuration is to use a common external script. See the section called
“Configuring the project using an external build script” for more information.

8§
Subproject configuration

The Project API also provides a property for accessing the subprojects only.

Page 219 of 717

8
Defining common behavior

Example 182. Defining common behavior of all projects and subprojects

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nane"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradl e -q hello
> gradle -q hello

' m wat er

' m bl uewhal e

- | depend on water
['"'mkril

- | depend on water

You may notice that there are two code snippets referencing the “hel | 0” task. The first one, which uses the
“t ask” keyword, constructs the task and provides it's base configuration. The second piece doesn't use the *
" keyword, as it is further configuring the existing “hel | 0” task. You may only construct a task once in a
project, but you may add any number of code blocks providing additional configuration.

8
Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don’t have to do it this way. We could add project specific behavior for the bl uewhal e project like this:

Page 220 of 717

Example 183. Defining specific behaviour for particular project

buil d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}
project(':bluewhale).hello {
doLast {
println "- I'mthe |argest aninmal that has ever lived on this planet."
}
}

Outputofgradl e -q hello

> gradle -q hello

"' m wat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
I"'mkrill

- | depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior to the kri | | project.

Example 184. Defining specific behaviour for project krill

Build layout
wat er/
bui I d. gradl e
settings.gradle
bl uewhal e/
buil d. gradl e
krill/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ spreadSpe
in the ‘-all’ distribution of Gradle.

Page 221 of 717

settings.gradle
i nclude ' bl uewhale', "krill

bl uewhal e/ bui | d. gradl e
hel | 0. doLast {
println "- I'mthe largest aninal that has ever lived on this planet."

krill/build.gradle
hel | 0. doLast {
println "- The weight of ny species in sumer is twi ce as heavy as all hunman b

bui I d. gradl e
al | projects {
task hello {
doLast { task ->

println "1'm $task. proj ect. nanme"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradl e -q hello

> gradle -q hello

' m wat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

["mkril

| depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs.

§
Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 222 of 717

§
Filtering by name

Example 185. Adding custom behaviour to some projects (filtered by project name)

Build layout
wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
buil d. gradl e
krill/
buil d. gradl e
t ropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ addTr opi ¢
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill', "tropicalFish'

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}
configure(subprojects.findAll {it.name != "tropical Fish'}) {
hell o {
doLast {
println'- | love to spend tinme in the arctic waters.'
}
}
}

Outputofgradl e -q hello

Page 223 of 717

> gradle -q hello

"' m wat er

I m bl uewhal e

- | depend on water

-1 love to spend time in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"mkril

| depend on water

-1 love to spend time in the arctic waters.

- The weight of ny species in sumer is twice as heavy as all hunman beings.
' mtropical Fi sh

| depend on water

The confi gure() method takes a list as an argument and applies the configuration to the projects in this
list.

§
Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See the section
called “Extra properties” for more information on extra properties.)

Example 186. Adding custom behaviour to some projects (filtered by project properties)

Build layout
wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
bui I d. gradl e
krill/
bui I d. gradl e
t ropi cal Fi sh/
bui I d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropical\
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill"', '"tropical Fish'

bl uewhal e/ bui | d. gradl e
ext.arctic = true
hel | 0. doLast ({
println "- I'mthe largest aninmal that has ever lived on this planet."

Page 224 of 717

krill/build.gradle
ext.arctic = true
hel | 0. doLast {

println "- The weight of ny species in summer is twice as heavy as all hunman

tropi cal Fi sh/ bui |l d. gradl e
ext.arctic = fal se

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nane"
}
}
}
subproj ects {
hell o {
doLast {println "- | depend on water"}
afterEval uate { Project project ->
if (project.arctic) { doLast {
println'- | love to spend tine in the arctic waters.' }
}
}
}
}

Outputofgradl e -qg hello

> gradle -q hello

I'''m wat er

" m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
- | love to spend tinme in the arctic waters.

["mkril

| depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs.
- | love to spend tinme in the arctic waters.

"' mtropical Fi sh

| depend on water

In the build file of the wat er project we use an af t er Eval uat e notification. This means that the closure
we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property ar ct i ¢
is set in those build scripts, we have to do it this way. You will find more on this topic in the section called
“Dependencies - Which dependencies?”

Page 225 of 717

8§
Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | ¢
tasks of the different projects were executed. Let’s switch to the bl uewhal e dir and see what happens if we
execute Gradle from there.

Example 187. Running build from subproject

Outputofgradl e -q hello

> gradle -q hello

' m bl uewhal e

- | depend on water

- I'"'mthe largest animal that has ever lived on this planet.
- | love to spend tinme in the arctic waters.

The basic rule behind Gradle’s behavior is simple. Gradle looks down the hierarchy, starting with the current
dir, for tasks with the name hel | o and executes them. One thing is very important to note. Gradle always
evaluates every project of the multi-project build and creates all existing task objects. Then, according to the
task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of
Gradle’s cross project configuration every project has to be evaluated before any task gets executed. We
will have a closer look at this in the next section. Let’'s now have our last marine example. Let's add a task to
bl uewhal e and kri || .

Page 226 of 717

Example 188. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e
ext.arctic = true

hell o {
doLast {
println "- I'mthe largest aninal that has ever lived on this planet."
}
}

task distanceTol ceberg {
doLast {
println '20 nautical mles

krill/build.gradle
ext.arctic = true

hell o {
doLast ({
println "- The weight of nmy species in summer is twi ce as heavy as all hi
}
}

task distanceTol ceberg {
doLast {
println '5 nautical niles'

Outputof gradl e -qg di stanceTol ceberg
> gradl e -q di stanceTol ceberg

20 nautical mles

5 nautical mles

Here’s the output without the - q option:
Example 189. Evaluation and execution of projects

Output of gr adl e di st anceTol ceberg
> gradl e di stanceTol ceberg

: bl uewhal e: di st anceTol ceberg

20 nautical niles
ckrill:distanceTol ceberg

5 nautical niles

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Page 227 of 717

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have a task with the
name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is: Execute
all tasks down the hierarchy which have this name. Only complain if there is no such task!

8§
Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from
there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle
also offers to execute tasks by their absolute path (see also the section called “Project and task paths”):

Example 190. Running tasks by their absolute path

Outputofgradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

"' m wat er

I'"'mkril

- | depend on water

- The weight of ny species in sumer is twice as heavy as all hunman bei ngs.
- | love to spend tinme in the arctic waters.

"' mtropical Fi sh

- | depend on water

The build is executed from the t r opi cal Fi sh project. We execute the hel | o tasks of the wat er, the kri |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

8§
Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of a task is simply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a project
you can address a task of the same project just by its name. This is interpreted as a relative path.

§
Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. The following sections illustrate the differences between these two types
of dependencies.

Page 228 of 717

8
Execution dependencies

§
Dependencies and execution order

Example 191. Dependencies and execution order

Build layout
messages/
bui I d. gradl e
settings.gradle
consuner/
buil d. gradl e
pr oducer/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the ‘-all’ distribution of Gradle.

bui | d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude ' consuner', ' producer

consumner/ bui | d. gradl e
task action {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

producer/ buil d. gradl e
task action {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.
}

Outputof gradl e -qg action
> gradle -q action
Consumi ng nessage: nul
Pr oduci ng nessage:

This didn’t quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric order.
Therefore, Gradle will execute “: consumner : acti on” before “: producer : acti on”. Let’s try to solve this
with a hack and rename the producer project to “aPr oducer .

Page 229 of 717

Example 192. Dependencies and execution order

Build layout
messages/
buil d. gradl e
settings.gradle
aProducer/
bui I d. gradl e
consuner/
bui I d. gradl e

buil d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude ' consuner', 'aProducer

aProducer/bui l d. gradl e
task action {

doLast {

println "Produci ng nmessage: "

r oot Proj ect. producer Message = 'Watch the order of execution.
}

consumer/ bui l d. gradl e
task action {
doLast {
println("Consum ng nmessage: ${rootProject.producer Message}")

Outputofgradl e -g action

> gradle -q action

Pr oduci ng nessage:

Consumi ng nmessage: Watch the order of execution

We can show where this hack doesn’t work if we now switch to the consuner dir and execute the build.
Example 193. Dependencies and execution order

Outputofgradl e -g action
> gradle -q action
Consum ng message: nul

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In

the last example only one “act i on” task was down the hierarchy and therefore it was the only task that was

Page 230 of 717

executed. We need something better than this hack.

§
Declaring dependencies

Example 194. Declaring dependencies

Build layout
messages/
buil d. gradl e
settings.gradle
consuner/
bui I d. gradl e
pr oducer/
bui I d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the *-all’ distribution of Gradle.

buil d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude 'consuner', 'producer’

consurmer/ bui |l d. gradl e
task action(dependsOn: ":producer:action") {
doLast ({
println("Consum ng nessage: ${rootProject.producer Message}")

producer/ buil d. gradl e
task action {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.
}

Outputofgradl e -g action

> gradle -q action

Pr oduci ng nessage:

Consumi ng nmessage: Watch the order of execution

Running this from the consuner directory gives:

Page 231 of 717

Example 195. Declaring dependencies

Outputofgradl e -g action

> gradle -q action

Pr oduci ng nessage:

Consumi ng nessage: Watch the order of execution.

This is now working better because we have declared that the “act i on” task in the “consuner ” project has

an execution dependency on the “act i on” task in the “pr oducer ” project.

§
The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let’s
change the naming of our tasks and execute the build.

Example 196. Cross project task dependencies

consuner/bui |l d. gradl e
task consune(dependsOn: ' :producer: produce') {
doLast {
println("Consum ng nmessage: ${rootProject.producer Message}")

producer/ buil d. gradl e
task produce {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.'
}

Output of gradl e -g consune

> gradle -q consune

Pr oduci ng nessage:

Consumi ng nmessage: Watch the order of execution.

§
Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter Java land. We add a
property to the “pr oducer ” project and create a configuration time dependency from “consuner ” to “pr odu

Page 232 of 717

Example 197. Configuration time dependencies

consuner/bui |l d. gradl e
def nessage = root Project. producer Message

task consune {
doLast {
println("Consum ng nessage: " + nessage)

producer/ buil d. gradl e
r oot Proj ect. producer Message = 'Watch the order of evaluation.'

Output of gradl e -g consune
> gradl e -gq consune
Consumi ng nessage: nul |

The default evaluation order of projects is alphanumeric (for the same nesting level). Therefore the “consum
" project is evaluated before the “pr oducer ” project and the “pr oducer Message” value is set after it is
read by the “consuner ” project. Gradle offers a solution for this.

Example 198. Configuration time dependencies - evaluationDependsOn

consuner/bui |l d. gradl e
eval uati onDependsOn(' : producer")

def nessage = root Project. producer Message

task consume {
doLast {
println("Consum ng nessage: " + nessage)

Outputof gradl e -g consune
> gradle -q consune
Consum ng nmessage: Watch the order of eval uation.

The use of the “eval uat i onDependsOn” command results in the evaluation of the “pr oducer ” project

before the “consuner ” project is evaluated. This example is a bit contrived to show the mechanism. In this
case there would be an easier solution by reading the key property at execution time.

Page 233 of 717

Example 199. Configuration time dependencies

consuner/bui |l d. gradl e
task consune {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

Outputof gradl e -g consune
> gradl e -q consune
Consum ng message: Watch the order of eval uation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies
are between projects whereas execution dependencies are always resolved to task dependencies. Also note
that all projects are always configured, even when you start the build from a subproject. The default
configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “eval uati onDependsOnChi |l dren()”
method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common
use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).
If you declare with dependsOn an execution dependency between different projects, the default behavior of
this method is to also create a configuration dependency between the two projects. Therefore it is likely that
you don't have to define configuration dependencies explicitly.

8
Real life examples

Gradle’s multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications.®! For
the example we use only one build script and do cross project configuration.

Page 234 of 717

Example 200. Dependencies - real life example - crossproject configuration

Build layout
webDi st/
settings.gradle
bui I d. gradl e
dat e/
src/ mai n/javal
or g/ gradl e/ sanpl e/
Dat eServl et . j ava
hel | o/
src/ mai n/javal
or g/ gradl e/ sanpl e/
Hel | oServl et.java

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'date', 'hello'

bui I d. gradl e

al | projects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'

subproj ects {
apply plugin: '"war'
repositories {
mavenCentral ()

}

dependenci es {
conpile "javax.servlet:servlet-api:2.5"

task expl odedDi st (type: Copy) {
into "$buil dDir/expl odedDi st "
subproj ects {
fromtasks.w thType(War)

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration
dependency on webDi st , as all the build logic for the webapp projects is injected by webDi st. The
execution dependency is in the other direction, as webDi st depends on the build artifacts of dat e and hel |

Page 235 of 717

. There is even a third dependency. webDi st has a configuration dependency on date and hell o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore we
have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system
does not support these patterns, you either can’t solve your problem or you need to do ugly hacks which are
hard to maintain and massively impair your productivity as a build master.

8§
Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also
the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project
builds. As already mentioned in the section called “Project dependencies”, Gradle offers project lib
dependencies for this.

Example 201. Project lib dependencies

Build layout
j aval
settings.gradle
buil d. gradl e
api /
src/ mai n/javal/
or g/ gradl e/ sanpl e/
api /
Per son. j ava
api | npl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j aval/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/javal/
or g/ gradl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the ‘-all’ distribution of Gradle.

We have the projects “shar ed”, “api ” and “per sonSer vi ce”. The “per sonSer vi ce” project has a lib

dependency on the other two projects. The “api ” project has a lib dependency on the “shar ed” project. “ser

Page 236 of 717

" is also a project, but we use it just as a container. It has no build script and gets nothing injected by another
build script. We use the : separator to define a project path. Consult the DSL documentation of
Settings.include(java.lang. String[]) for more information about defining project paths.

Example 202. Project lib dependencies

settings.gradle
include "api', 'shared', 'services:personService'

bui I d. gradl e
subproj ects {
apply plugin: 'java'
group = 'org.gradle.sanpl e
version = '1.0'
repositories {
mavenCentral ()

}
dependenci es {
testConpile "junit:junit:4.12"

project(':api') {
dependenci es {
conpil e project(':shared")

proj ect(':services:personService') {
dependenci es {
conpile project(':shared'), project(':api")

All the build logic is in the “bui | d. gr adl e” file of the root project.[*% A “lib” dependency is a special form of
an execution dependency. It causes the other project to be built first and adds the jar with the classes of the
other project to the classpath. It also adds the dependencies of the other project to the classpath. So you
can enter the “api ” directory and trigger a “gr adl e conpi | e”. First the “shar ed” project is built and then
the “api ” project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from lvy land, you might
expect some more fine grained control. Gradle offers this to you:

Page 237 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Example 203. Fine grained control over dependencies

buil d. gradl e

subprojects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'

project(':api') {
configurations {
spi
}
dependenci es {
conpil e project(':shared")

}
task spiJar(type: Jar) {
baseNarme = 'api-spi’
from sourceSet s. mai n. out put
i ncl ude(' org/ gradl e/ sanpl e/ api/**")
}
artifacts {
spi spiJar
}

proj ect(':services:personService') {
dependenci es {
conpile project(':shared')
conpile project(path: '":api', configuration: '"spi')
testConpile "junit:junit:4.12", project(':api")

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example
we create an additional library containing only the interfaces of the “api ” project. We assign this library to a
new dependency configuration. For the person service we declare that the project should be compiled only
against the “api " interfaces but tested with all classes from “api ”.

8§
Disabling the build of dependency projects

Sometimes you don’t want depended on projects to be built when doing a partial build. To disable the build
of the depended on projects you can run Gradle with the - a option.

Page 238 of 717

8§
Parallel project execution

With more and more CPU cores available on developer desktops and ClI servers, it is important that Gradle
is able to fully utilise these processing resources. More specifically, parallel execution attempts to:

Reduce total build time for a multi-project build where execution is 10 bound or otherwise does not consume
all available CPU resources.

Provide faster feedback for execution of small projects without awaiting completion of other projects.

Although Gradle already offers parallel test execution via Test . set MaxPar al | el For ks(i nt) the feature
described in this section is parallel execution at a project level. Parallel execution is an incubating feature.
Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
parallel (see also: the section called “Decoupled Projects”). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

the section called “Configuration on demand”.

Configuration of projects in parallel.

Re-use of configuration for unchanged projects.

Project-level up-to-date checks.

Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use the - - pa
command line argument or configure your build environment (the section called “Gradle properties”). Unless
you provide a specific number of parallel threads, Gradle attempts to choose the right number based on
available CPU cores. Every parallel worker exclusively owns a given project while executing a task. Task
dependencies are fully supported and parallel workers will start executing upstream tasks first. Bear in mind
that the alphabetical ordering of decoupled tasks, as can be seen during sequential execution, is not
guaranteed in parallel mode. In other words, in parallel mode tasks will run as soon as their dependencies
complete and a task worker is available to run them, which may be earlier than they would start during a
sequential build. You should make sure that task dependencies and task inputs/outputs are declared
correctly to avoid ordering issues.

Page 239 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-

8§
Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution phases.
While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that
Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly
building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built
artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model. Decoupled
projects may only interact in terms of declared dependencies: project dependencies (the section called
“Project dependencies”) and/or task dependencies (the section called “Task dependencies”). Any other form
of project interaction (i.e. by modifying another project object or by reading a value from another project
object) causes the projects to be coupled. The consequence of coupling during the configuration phase is
that if gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in
several ways. The consequence of coupling during execution phase is that if gradle is invoked with the
parallel option, one project task runs too late to influence a task of a project building in parallel. Gradle does
not attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (the section called “Cross
project configuration”). It may not be immediately apparent, but using key Gradle features like the al | pr oj e!
and subpr oj ect s keywords automatically cause your projects to be coupled. This is because these
keywords are used in a bui | d. gr adl e file, which defines a project. Often this is a “root project” that does
nothing more than define common configuration, but as far as Gradle is concerned this root project is still a
fully-fledged project, and by using al | pr oj ect s that project is effectively coupled to all other projects.
Coupling of the root project to subprojects does not impact ‘configuration on demand', but using the al | pr oj
and subpr oj ect s in any subproject’s bui | d. gr adl e file will have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subprc
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will also introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

Avoid a subproject’s bui | d. gr adl e referencing other subprojects; preferring cross configuration from the

root project.

Avoid changing the configuration of other projects at execution time.

Page 240 of 717

8§
Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these
tasks across a range of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 202. In this example, the “: ser vi ces: per sonser vi ce” project depends on both the “: af
"and “: shar ed” projects. The “: api ” project also depends on the “: shar ed” project.

Assume you are working on a single project, the “: api ” project. You have been making changes, but have
not built the entire project since performing a clean. You want to build any necessary supporting jars, but
only perform code quality and unit tests on the project you have changed. The bui | d task does this.

Example 204. Build and Test Single Project

Output of gradl e : api: build
> gradle :api:build

: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

»api : conpil eJava

:api : processResour ces
»api:classes

;api:jar

»api:assenbl e

:api: conpil eTest Java

:api : processTest Resour ces
;api:testd asses

s api:test
:api : check
capi:build

BU LD SUCCESSFUL in Os
9 actionable tasks: 9 executed

While you are working in a typical development cycle repeatedly building and testing changes to the “: api ”
project (knowing that you are only changing files in this one project), you may not want to even suffer the
expense of building “: shar ed: conpi | e” to see what has changed in the “: shar ed” project. Adding the “- a
" option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to re-build
the depended on projects.

Page 241 of 717

Example 205. Partial Build and Test Single Project

Outputofgradl e -a :api:build
> gradle -a :api:build

:api: conpil eJava

:api : processResour ces
;api:cl asses

capi:jar

:api: assenbl e

:api: conpil eTest Java

. api: processTest Resour ces
:api:testd asses

capi:test
:api : check
capi:build

BUI LD SUCCESSFUL in Os
6 actionabl e tasks: 6 executed

If you have just gotten the latest version of source from your version control system which included changes

in other projects that “: api ” depends on, you might want to not only build all the projects you depend on, but

test them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies of the

testRuntime configuration.

Page 242 of 717

Example 206. Build and Test Depended On Projects

Output of gradl e : api : bui | dNeeded
> gradl e :api:buil dNeeded
: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

:api: conpil eJava

: api : processResour ces
:api:cl asses

capi:jar

»api:assenbl e

:api: conpil eTest Java
:api: processTest Resour ces
:api:testd asses

capi:test
: api : check
capi:tbuild

: shar ed: assenbl e

: shar ed: conpi | eTest Java

: shar ed: processTest Resour ces
: shared: test d asses

: shared: t est

: shar ed: check

: shared: buil d

: shar ed: bui | dNeeded

:api : bui | dNeeded

BUI LD SUCCESSFUL in Os
12 actionabl e tasks: 12 executed

You also might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api " project, you also need to test all projects
that depend on the “: api ” project. The bui | dDependent s task also tests all the projects that have a
project lib dependency (in the testRuntime configuration) on the specified project.

Page 243 of 717

Example 207. Build and Test Dependent Projects

Output of gradl e : api : bui | dDependent s
> gradl e :api:buil dDependents
: shar ed: conpi | eJava

: shar ed: processResour ces

: shared: cl asses

:shared:jar

:api: conpil eJava

: api : processResour ces

:api:cl asses

capi:jar

»api:assenbl e

:api: conpil eTest Java

:api: processTest Resour ces
:api:testd asses

capi:test
: api : check
capi:tbuild

. services: personServi ce: conpi | eJava

1 services: personServi ce: processResour ces
. services: personServi ce: cl asses

. services: personService:jar

. services: personServi ce: assenbl e

. services: personService: conpi | eTest Java
:servi ces: personServi ce: processTest Resour ces
:services: personService: testd asses

. services: personServi ce: t est

: servi ces: personServi ce: check

:services: personService: build

: servi ces: personServi ce: bui | dDependent s
:api : bui | dDependent s

BU LD SUCCESSFUL in Os
17 actionabl e tasks: 17 executed

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on all the children. So you can just run “gr adl e bui | d” to build
and test all projects.

8§
Multi Project and buildSrc

the section called “Build sources in the bui | dSrc project” tells us that we can place build logic to be
compiled and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | d:
directory which must be located in the root directory.

Page 244 of 717

8§
Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In a future edition of this user guide we might write more about this.

Method inheritance might be interesting to use as Gradle’s Configuration Injection does not support methods
yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don’t like that much. One reason
is that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like
to offer our users a choice.

8§
Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for
this chapter is that multi-project builds with Gradle are usually not difficult. There are five elements you need
to remember: al | proj ect s, subproj ect s, eval uat i onDependsOn, eval uati onDependsOnChi | dre
and project lib dependencies.[*!! With those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory
Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
each index you are accessing. That was one reason why we have created a distribution of webapps. The
Resin servlet container allows us, to let such a distribution point to a base installation of the servlet
container.

[10] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the
build script of the respective projects.

[11] So we are well in the range of the 7 plus 2 Rule :)

Page 245 of 717

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Using Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the
ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | €), domain
objects (e.g. Sour ceSet), conventions (e.g. Java source is located at src/ mai n/java) as well as

extending core objects and objects from other plugins.
In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

8§
What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things such as:
Extend the Gradle model (e.g. add new DSL elements that can be configured)

Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)

Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
Allows a higher degree of modularization, enhancing comprehensibility and organization

Encapsulates imperative logic and allows build scripts to be as declarative as possible

8§
Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and
accessed from a remote location. Binary plugins are classes that implement the Pl ugi n interface and adopt
a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the
project hierarchy or externally in a plugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes

Page 246 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html

more valuable, it's migrated to a binary plugin that can be easily tested and shared between multiple projects
or organizations.

8§
Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to resolve
the plugin, and then it needs to apply the plugin to the target, usually a Pr o] ect .

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it
the script classpath. Once a plugin is resolved, its APl can be used in a build script. Script plugins are
self-resolving in that they are resolved from the specific file path or URL provided when applying them. Core
binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin’s Pl ugi n. appl y(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin multiple
times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current project.
Since this is such a common use case, it's recommended that build authors use the plugins DSL to both
resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and should
be used by most users.

8§
Script plugins
Example 208. Applying a script plugin

bui | d. gradl e
apply from 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a
remote location. Filesystem locations are relative to the project directory, while remote script locations are
specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

8§
Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core Gradle
plugins are special in that they provide short names, such as ' j ava' for the core JavaPl ugi n. All other
binary plugins must use the fully qualified form of the plugin id (e.g. com gi t hub. f 0o. bar), although
some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id depends on
whether you are using the plugins DSL or the buildscript block.

Page 247 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/plugins/JavaPlugin.html

8
Locations of binary plugins

A plugin is simply any class that implements the Pl ugi n interface. Gradle provides the core plugins (e.g. Jay
) as part of its distribution which means they are automatically resolved. However, non-core binary plugins
need to be resolved before they can be applied. This can be achieved in a number of ways:

Including the plugin from the plugin portal or a custom repository using the plugins DSL (see the section
called “Applying plugins with the plugins DSL").

Including the plugin from an external jar defined as a buildscript dependency (see the section called
“Applying plugins with the buildscript block”).

Defining the plugin as a source file under the buildSrc directory in the project (see the section called “Build
sources in the bui | dSr c project”).

Defining the plugin as an inline class declaration inside a build script.
For more on defining your own plugins, see Writing Custom Plugins.

§
Applying plugins with the plugins DSL

Note: The plugins DSL is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with
the Gradle plugin portal to provide easy access to both core and community plugins. The plugins DSL block
configures an instance of Pl ugi nDependenci esSpec.

To apply a core plugin, the short name can be used:

Example 209. Applying a core plugin

buil d. gradl e
pl ugi ns {

id"'java'
}

To apply a community plugin from the portal, the fully qualified plugin id must be used:
Example 210. Applying a community plugin
bui I d. gradl e

pl ugi ns {
id 'comjfrog.bintray' version '0.4.1

Page 248 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html
http://plugins.gradle.org
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

§
Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is
processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This
allows Gradle to do smart things such as:

Optimize the loading and reuse of plugin classes.
Allow different plugins to use different versions of dependencies.

Provide editors detailed information about the potential properties and values in the buildscript for editing
assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing
the rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism
is still being developed and some are inherent to the new approach.

§
Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any
time).

The form is:

pl ugi ns {
id «plugin id» version «plugin version» [apply «fal se»]

Where «pl ugi n ver si on» and «pl ugi n i d» must be constant, literal, strings and the appl y statement
with a bool ean can be used to disable the default behavior of applying the plugin immediately (e.g. you
want to apply it only in subpr oj ect s). No other statements are allowed; their presence will cause a

compilation error.

The pl ugi ns {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

§
Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project’s build script. It cannot be used in script
plugins, the settings.gradle file or init scripts.

Page 249 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins using the
buildscript {} block.

§
Applying plugins to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the subprojects in your
build, but not to the root or master project. The default behavior of the pl ugi ns {} block is to
immediately r esol ve and appl y the plugins. But, you can use the appl y fal se syntax to tell Gradle not
to apply the plugin to the current project and then use appl y pl ugi n: «pl ugi n i d» in the subpr oj ect ¢
block:

Example 211. Applying plugins only on certain subprojects.

settings.gradle
i nclude ' hel | oA
i nclude ' hel | oB
i ncl ude ' goodhyeC

buil d. gradl e

pl ugi ns {
id "org.gradl e.sanple. hello" version "1.0.0" apply fal se
id "org.gradl e. sanpl e. goodbye" version "1.0.0" apply fal se

subproj ects { subproject ->
i f (subproject.nane.startsWth("hello")) {
apply plugin: 'org.gradle.sanple. hello
}
i f (subproject.nane.startsWth("goodbye")) {
apply plugin: 'org.gradle. sanpl e. goodbye'

If you then run gr adl e hel | o you'll see that only the helloA and helloB subprojects had the hello plugin
applied.

gr adl e/ subpr oj ect s/ docs/ src/ sanpl es/ pl ugi ns/ mul ti project $> gradle hello
Paral |l el execution is an incubating feature.

:hell oA hell o

:helloB: hello

Hel | o!

Hel | o!

BU LD SUCCEEDED

Page 250 of 717

§
Plugin Management

Note: The pl ugi nManagenent {} DSL is currently incubating. Please be aware that the DSL and
other configuration may change in later Gradle versions.

§
Custom Plugin Repositories

By default, the pl ugi ns {} DSL resolves plugins from the public Gradle Plugin Portal. Many build authors
would also like to resolve plugins from private Maven or Ivy repositories because the plugins contain
proprietary implementation details, or just to have more control over what plugins are available to their
builds.

To specify custom plugin repositories, use the reposi tori es {} block inside pl ugi nManagenent {} in
the setti ngs. gradl e file:

Example 212. Using plugins from custom plugin repositories.

settings.gradle
pl ugi nManagenent {
repositories {
maven {
url 'maven-repo'

}
gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'
}

This tells Gradle to first look in the Maven repository at maven-r epo when resolving plugins and then to
check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don’t want the
Gradle Plugin Portal to be searched, omit the gr adl ePl ugi nPort al () line. Finally, the Ivy repository ati v
will be checked.

8
Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in pl ugi ns {} blocks, e.g. changing the
requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the r esol uti onStrat egy {} inside the pl ugi nManagenent {} block:

Page 251 of 717

https://plugins.gradle.org

Example 213. Plugin resolution strategy.

settings.gradle
pl ugi nManagenent {
resol utionStrategy {
eachPl ugin {
i f (requested.id. nanespace == 'org.gradle.sanple') {
useMdul e(' org. gradl e. sanpl e: sanpl e- pl ugi ns: 1. 0. 0")

repositories {
maven {
url 'maven-repo’

}
gr adl ePl ugi nPort al ()

ivy {
ur |

i Vy-repo'

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in default
mapping from plugin ID to Maven/Ivy coordinates.

The pl ugi nManagenent {} block may only appear in the setti ngs. gradl e file, and must be the first
block in the file. Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in addition to
the artifacts which actually implement the plugin. For more information on publishing plugins to custom
repositories read Gradle Plugin Development Plugin.

See Pl ugi nVanagenent Spec for complete documentation for using the pl ugi nManagenent {} block.

§
Plugin Marker Artifacts

Since the pl ugi ns {} DSL block only allows for declaring plugins by their globally unique plugin i d and ve
properties, Gradle needs a way to look up the coordinates of the plugin implementation artifact. To do so,
Gradle will look for a Plugin Marker Artifact with the coordinates pl ugi n. i d: pl ugi n. i d. gradl e. pl ugi n

. This marker needs to have a dependency on the actual plugin implementation. Publishing these markers is
automated by the java-gradle-plugin.

For example, the following complete sample from the sanpl e- pl ugi ns project shows how to publish a or g
plugin and a org. gradl e. sanpl e. goodbye plugin to both an Ivy and Maven repository using the
combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish plugin.

Page 252 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugin.management.PluginManagementSpec.html

Example 214. Complete Plugin Publishing Sample

buil d. gradl e

pl ugi ns {
id'java-gradl e-plugin'
id ' maven- publish’
id"'ivy-publish'

group 'org.gradle.sanpl e’
version '1.0.0

gradl ePl ugin {

pl ugi ns {
hell o {

id = "org.gradl e. sanpl e. hel | 0"
"org.gradl e. sanpl e. hel | 0. Hel | oPI ugi n"

i mpl ement ati ond ass

id = "org.gradl e. sanpl e. goodbye"
"org. gradl e. sanpl e. goodbye. GoodbyePI ugi n"

}
goodbye {
i mpl emrent ati onC ass
}
}
}
publ i shing {
repositories {
maven {
url "../consuni ng/ maven-repo"
}
ivy {
url "../consum ng/ivy-repo"
}
}
}

Running gr adl e publ i sh in the sample directory causes the following repo layouts to exist:

Page 253 of 717

/~ .Imaven-repo

groupld org.gradle.sample.hello groupld org.gradle.samplh
artifactld org.gradie.sample.hello.gradle.plugin artifactld sample-plugins
version 1.0.0 7 version 1.0.0
groupld org.gradle.sample.goodbye .
artifactld org.gradle. sample.goodbye. gradle. plugin sample |:Ill.|
version 1.0.0

_ 4

/— .[ivy-repo
org org.gradle. sample. hello org org.gradle. sample
module org.gradle.sample.hello.gradle. plugin module sample-plugins
rev 1.0.0 — rev 1.0.0

org org.gradle. sample.goodbye
module org.gradle. sample.goodbye.gradle. plugin
rev 1.0.0

'\ 4

Legacy Plugin Application

sample-plu

With the introduction of the plugins DSL, users should have little reason to use the legacy method of
applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions
in how it currently works.

§
Applying Binary Plugins

Example 215. Applying a binary plugin

buil d. gradl e
apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘j ava’ to apply the

JavaPl ugi n.
Rather than using a plugin id, plugins can also be applied by simply specifying the class of the plugin:
Example 216. Applying a binary plugin by type

buil d. gradl e
apply plugin: JavaPl ugin

The JavaPl ugi n symbol in the above sample refers to the JavaPl ugi n. This class does not strictly need

to be imported as the or g. gradl e. api . pl ugi ns package is automatically imported in all build scripts

Page 254 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/plugins/JavaPlugin.html

(see the section called “Default imports”). Furthermore, it is not necessary to append . cl ass to identify a
class literal in Groovy as it is in Java.

§
Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin
to the build script classpath and then applying the plugin. External jars can be added to the build script
classpath using the bui | dscri pt {} block as described in the section called “External dependencies for
the build script”.

Example 217. Applying a plugin with the buildscript block

bui | d. gradl e
bui | dscri pt {
repositories {
jcenter()

}

dependenci es {
classpath "comjfrog. bintray. gradl e: gradl e-bi ntray-pl ugin:0.4.1"

apply plugin: "comjfrog.bintray"

8§
Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.
The Gradle plugin portal provides an interface for searching and exploring community plugins.

8§
More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Writing Custom Plugins.

Page 255 of 717

http://plugins.gradle.org

Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

8§

Language plugins
These plugins add support for various languages which can be compiled for and executed in the JVM.
Table 13. Language plugins

lugin Automatically Works .
.) Description
\ applies with

. b Adds Java compilation, testing and bundling capabilities to a project. It serves as the basis for
ava ava- base -
: many of the other Gradle plugins. See also Java Quickstart.

roovy j ava, gr oovy--base Adds support for building Groovy projects. See also Groovy Quickstart.
cal a java, scal a-base Adds support for building Scala projects.
atlr java - Adds support for generating parsers using Antlr.

8§
Incubating language plugins

These plugins add support for various languages:

Page 256 of 717

http://www.antlr.org/

Table 14. Language plugins
lugin Id Automatically applies Works with Description

ssenbl er - - Adds native assembly language capabilities to a project.

- - Adds C source compilation capabilities to a project.

op - - Adds C++ source compilation capabilities to a project.

oj ective-c - - Adds Objective-C source compilation capabilities to a project.

oj ective-cpp - - Adds Objective-C++ source compilation capabilities to a project.
ndows-r esour ces - - Adds support for including Windows resources in native binaries.

§

Integration plugins
These plugins provide some integration with various runtime technologies.

Table 15. Integration plugins

) Automatically Works -
lugin Id . . Description
applies with

.) Adds tasks for running and bundling a Java project as a command-line
oplicationjava,distributien

application.
ar - j ava Adds support for building J2EE applications.
aven - j ava, warAdds support for publishing artifacts to Maven repositories.
5Qi j ava- base j ava Adds support for building OSGi bundles.

. Adds support for assembling web application WAR files. See also Web
ar ava -
J Application Quickstart.

Page 257 of 717

8§

Incubating integration plugins
These plugins provide some integration with various runtime technologies.
Table 16. Incubating integration plugins

) Automatically ~ Works .
lugin Id .) Description
applies with

stribution - - Adds support for building ZIP and TAR distributions.

Adds support for building ZIP and TAR distributions for a Java

ava-|ibrary-distributionjava,distribution
library.

bli'sh j ava, This plugin provides a new DSL to support publishing artifacts to vy
vy-pu | -
P war repositories, which improves on the existing DSL.

) j ava, This plugin provides a new DSL to support publishing artifacts to
aven- publ i sh -

war Maven repositories, which improves on the existing DSL.

8§
Software development plugins

These plugins provide help with your software development process.

Page 258 of 717

Table 17. Software development plugins

Automatically Works

lugin Id . .
applies with

nnounce - -

Ui I d- announcenent s announce -

Description

Publish messages to your favourite platforms, such as Twitter or Growl.

Sends local announcements to your desktop about interesting events in
the build lifecycle.

Performs quality checks on your project’'s Java source files using

neckstyl e j ava- base -
Checkstyle and generates reports from these checks.
Performs quality checks on your project’s Groovy source files using
odenarc groovy- base -
CodeNarc and generates reports from these checks.
i j ava,gr Gewmgrates files that are used by Eclipse IDE, thus making it possible to
cli pse -
. , scal a import the project into Eclipse. See also Java Quickstart.
Does the same as the eclipse plugin plus generates eclipse WTP (Web
) Tools Platform) configuration files. After importing to eclipse your
cli pse-wtp - ear, war . . .
war/ear projects should be configured to work with WTP. See also Java
Quickstart.
. Performs quality checks on your project’s Java source files using
ndbugs j ava- base -)
FindBugs and generates reports from these checks.
’) Generates files that are used by Intellij IDEA IDE, thus making it
ea - ava
: possible to import the project into IDEA.
. Performs quality checks on your project’s source files using JDepend
depend j ava- base -
and generates reports from these checks.
. Performs quality checks on your project’s Java source files using PMD
md j ava- base -
and generates reports from these checks.
roj ect-report reporting- base - Generates reports containing useful information about your Gradle build.
gni ng base - Adds the ability to digitally sign built files and artifacts.

Page 259 of 717

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

8§
Incubating software development plugins

These plugins provide help with your software development process.

Table 18. Software development plugins

Automatically

lugin Id . Works with Description
applies
ui | d- dashboard reporting-base - Generates build dashboard report.
uni t - - Adds support for running CUnit tests.
acoco reporting-base java Provides integration with the JaCoCo code coverage library for Java.
native
sual - studi o - language Adds integration with Visual Studio.
plugins

. Assists with development of Gradle plugins by providing standard
ava- gr adl e- pl ugi n java . .] . A
plugin build configuration and validation.

8§
Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are available
for you to use in your build files, and are listed here for completeness. However, be aware that they are not
yet considered part of Gradle’s public API. As such, these plugins are not documented in the user guide.
You might refer to their APl documentation to learn more about them.

Page 260 of 717

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/

Table 19. Base plugins

lugin Id Description

Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

® adds build ConfigurationName tasks. Those tasks assemble the artifacts belonging to the specified
configuration.

® adds upload ConfigurationName tasks. Those tasks assemble and upload the artifacts belonging to the
ase specified configuration.

¢ configures reasonable default values for all archive tasks (e.g. tasks that inherit from Abst r act Ar chi veTask).
For example, the archive tasks are tasks of types: Jar, Tar, Zi p. Specifically, dest i nati onDi r, baseNane
and ver si on properties of the archive tasks are preconfigured with defaults. This is extremely useful because it
drives consistency across projects; the consistency regarding naming conventions of archives and their location
after the build completed.

va-base Adds the source sets concept to the project. Does not add any particular source sets.
‘oovy-base Adds the Groovy source sets concept to the project.
sala-base Adds the Scala source sets concept to the project.

porting-base Adds some shared convention properties to the project, relating to report generation.

8§
Third party plugins

You can find a list of external plugins at the Gradle Plugins site.

Page 261 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. These tasks generate the same content that you get by executing the t asks, di
, and properti es tasks from the command line (see the section called “Project reporting”). In contrast to
the command line reports, the report plugin generates the reports into a file. There is also an aggregating
task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

§
Usage

To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report’

8
Tasks

The project report plugin defines the following tasks:

Page 262 of 717

Table 20. Project report plugin - tasks

ask name Depends on Type

apendencyRepor t -

t Ml DependencyReport -

ropertyReport - PropertyReport Task
askReport - TaskReport Task
dependencyReport, propertyReport
roj ect Report P yrep —— Task
,taskReport, ht M DependencyReport
§

Project layout
The project report plugin does not require any particular project layout.

8§
Dependency management

The project report plugin does not define any dependency configurations.

8§
Convention properties

The project report defines the following convention properties:

DependencyReport Task

Description

Generates the project
dependency report.

Generates an HTML
dependency and

Ht ml DependencyRepor t Task dependency insight report

for the project or a set of
projects.

Generates the project
property report.

Generates the project task
report.

Generates all project
reports.

Page 263 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html

Table 21. Project report plugin - convention properties

roperty name Type Default value Description

The name of the directory to generate reports

aport sDi r Nane String reports . . o
into, relative to the build directory.
. File .) . . .
sportsDir bui I dDi r / report sDi r Nane The directory to generate reports into.
(read-only)

A one element set with the
rojects Set <Pr oj ect > project the plugin was applied The projects to generate the reports for.
to.

The name of the directory to generate the project

roj ect ReportDi rNane String proj ect . . .
report into, relative to the reports directory.
)) File ! .)))
roj ect ReportDir (read-only) reportsDir/ proj ect Report Dhe Nasetory to generate the project report into.
read-only

These convention properties are provided by a convention object of type
Pr oj ect Report sPl ugi nConventi on.

Page 264 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

The Build Dashboard Plugin

Note: The build dashboard plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point
of access to all of the reports generated by a build.

8§

Usage
To use the Build Dashboard plugin, include the following in your build script:
Example 218. Using the Build Dashboard plugin

bui I d. gradl e
apply plugin: 'build-dashboard

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for all
tasks that implement the Repor t i ng interface from all projects in the build. It is typically only applied to the
root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks
that are independently being executed as part of the build run. To generate the build dashboard, simply
include this task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will
generate a dashboard for all of the reporting tasks that are dependents of the bui | d task.

8
Tasks

The Build Dashboard plugin adds the following task to the project:

Table 22. Build Dashboard plugin - tasks
ask name Depends on Type Description

ui | dbashboard - Gener at eBui | dDashboard Generates build dashboard report.

Page 265 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html

8§
Project layout

The Build Dashboard plugin does not require any particular project layout.

8§
Dependency management

The Build Dashboard plugin does not define any dependency configurations.

§
Configuration

You can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 266 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.reporting.ReportingExtension.html

Comparing Builds

Note: Build comparison support is an incubating feature. This means that it is incomplete and not
yet at regular Gradle production quality. This also means that this Gradle User Guide chapter is a
work in progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds.
There are several reasons why you may want to compare the outcomes of two builds. You may want to
compare:

A build with a newer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something else
(i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,
migration to Gradle or build change by understanding the differences in the outcomes. The comparison
process produces a HTML report outlining which outcomes were found to be identical and identifying the
differences between non-identical outcomes.

8
Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”
In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a
Gradle build.

“Build Outcome”
Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“Source Build”
The build that comparisons are being made against, typically the build in its “current” state. In other

Page 267 of 717

words, the left hand side of the comparison.

“Target Build”
The build that is being compared to the source build, typically the “proposed” build. In other words, the
right hand side of the comparison.

“Host Build”
The Gradle build that executes the comparison process. It may be the same project as either the “target”
or “source” build or may be a completely separate project. It does not need to be the same Gradle
version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”
Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome”
A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”
A build outcome that cannot be understood by the host build. This can occur when the source or target
build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.
Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent to
an unknown build outcome in the other build, but no meaningful comparison of what the build outcome
actually is can be performed. Using the latest Gradle version for the host build will avoid encountering
unknown build outcomes.

8§
Current Capabilities

As this is an incubating feature, a limited set of the eventual functionality has been implemented at this time.

8
Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2. If the host
build is run with version 3. 0 or newer, source and target builds must be at least version 1. 2. If the host
build is run with a version older than 2. 0, source and target builds must be older than version 3. 0. So if you
for example want to compare a build under version 1. 1 with a build under version 3. 0, you have to execute
the host build with a 2. x version.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

Page 268 of 717

8
Supported build outcomes

Only support for comparing build outcomes that are zi p archives is supported at this time. This includes j ar

,war and ear archives.

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

§
Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle builds.
The plugin adds a Conpar eG adl eBui | ds task named “conpar eG adl eBui | ds” to the project. The
configuration of this task specifies what is to be compared. By default, it is configured to compare the current
build with itself using the current Gradle version by executing the tasks: “cl ean assenbl e”.

apply plugin: 'conpare-gradl e-builds'
This task can be configured to change what is compared.

conpar eG adl eBui | ds {
sourceBuil d {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}
targetBuil d {

projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle
versions.

§
Trying Gradle upgrades

You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e of

the root project.

Page 269 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

apply plugin: 'conpare-gradl e-builds'

conpar eG adl eBui | ds {
target Buil d. gradl eVersi on = "«gradl e versi on»"

Then simply execute the conpar eGr adl eBui | ds task. You will see the console output of the “source” and
“target” builds as they are executing.

8
The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML
report providing insight into the comparison will be given. If all compared outcomes are found to be identical,
and there are no uncompared outcomes, and there are no unknown build outcomes, the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the i gnor eFai | ur es

property to true.

conpar eG adl eBui | ds {
i gnoreFailures = true

§
Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives
configuration. Take a look at Publishing artifacts for more information on how to configure and add artifacts.

The archive must also have been produced by a Zi p, Jar, War, Ear task. Future versions of Gradle will

support increased flexibility in this area.

Page 270 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ear.Ear.html

Publishing artifacts

Note: This chapter describes the original publishing mechanism available in Gradle 1.0: in Gradle
1.3 a new mechanism for publishing was introduced. While this new mechanism is incubating and
not yet complete, it introduces some new concepts and features that do (and will) make Gradle
publishing even more powerful.

You can read about the new publishing plugins in Ivy Publishing (new) and Maven Publishing (new).
Please try them out and give us feedback.

8
Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.
upload them). We define the artifacts of the projects as the files the project provides to the outside world.
This might be a library or a ZIP distribution or any other file. A project can publish as many artifacts as it
wants.

8§
Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks upl oadConf i gur ati onNane and bui | d¢
112 Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

the section called “Dependency configurations” shows the configurations added by the Java plugin. Two of
the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the standard
configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this
configuration. We will talk more about the r unt i ne configuration in the section called “More about project
libraries”. As with dependencies, you can declare as many custom configurations as you like and assign
artifacts to them.

Page 271 of 717

8§
Declaring artifacts

8§
Archive task artifacts

You can use an archive task to define an artifact:
Example 219. Defining an artifact using an archive task

bui | d. gradl e
task nyJar(type: Jar)

artifacts {
archi ves nyJar

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

8§
File artifacts

You can also use a file to define an artifact:
Example 220. Defining an artifact using a file

bui | d. gradl e
def someFile = file('build/ sonmefile.txt")

artifacts {
archi ves soneFile

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these

properties:

Page 272 of 717

Example 221. Customizing an artifact

buil d. gradl e
task nyTask(type: MTaskType) {
destFile = file(' build/sonmefile.txt")

artifacts {
archives(nyTask. destFile) {
name 'ny-artifact’
type 'text'
bui | t By nyTask

There is a map-based syntax for defining an artifact using a file. The map must include a fi | e entry that

defines the file. The map may include other artifact properties:
Example 222. Map syntax for defining an artifact using a file

bui | d. gradl e
task generate(type: MTaskType) {
destFile = file('build/somefile.txt")

artifacts {

archives file: generate.destFile, nane: 'ny-artifact', type: 'text',

8§
Publishing artifacts

bui | t By:

We have said that there is a specific upload task for each configuration. Before you can do an upload, you

have to configure the upload task and define where to publish the artifacts to. The repositories you have

defined (as described in Declaring Repositories) are not automatically used for uploading. In fact, some of

those repositories only allow downloading artifacts, not uploading. Here is an example of how you can

configure the upload task of a configuration:

Page 273 of 717

Example 223. Configuration of the upload task

buil d. gradl e
repositories {
flatDir {

name "fil eRepo”
dirs "repo"

upl oadAr chi ves {
repositories {
add project.repositories.fileRepo
vy {
credentials {
user name "usernane"
password " pw'

}
url "http://repo. myconpany. cont

As you can see, you can either use a reference to an existing repository or create a new repository.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading
each file. By default, Gradle will upload to the pattern defined by the ur| parameter, combined with the
optional | ayout parameter. If no ur | parameter is supplied, then Gradle will use the first defined arti f act
for uploading, or the first defined i vyPat t er n for uploading Ivy files, if this is set.

Uploading to a Maven repository is described in the section called “Interacting with Maven repositories”.

8§
More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this library and
what are the dependencies of these artifacts. The Java plugin adds a runti me configuration for this
purpose, with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact
you want to publish. Of course this is fully customizable. You can add your own custom configuration or let
the existing configurations extend from other configurations. You might have a different group of artifacts
which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur at i on property to declare this. If this
is not specified, the def aul t configuration is used (see the section called “Defining the scope of a
dependency with configurations”). Using your project as a library can either happen from within a
multi-project build or by retrieving your project from a repository. In the latter case, an i vy. xm descriptor in

Page 274 of 717

the repository is supposed to contain all the necessary information. If you work with Maven repositories you
don’t have the flexibility as described above. For how to publish to a Maven repository, see the section the
section called “Interacting with Maven repositories”.

[12] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the
Java plugin.

Page 275 of 717

The Maven Plugin

Note: This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.
8§
Usage
To use the Maven plugin, include the following in your build script:
Example 224. Using the Maven plugin

buil d. gradl e
apply plugin: 'maven

8
Tasks

The Maven plugin defines the following tasks:

Table 23. Maven plugin - tasks

ask
Depends on Type Description
- p yp p
All tasks
that build Installs the associated artifacts to the local Maven cache, including Maven metadata
a ui
generation. By default the install task is associated with the ar chi ves configuration. This
nstall the Upl oad])) _)
iated configuration has by default only the default jar as an element. To learn more about installing to
associate
hi the local repository, see: the section called “Installing to the local repository”
archives.

Dependency management

The Maven plugin does not define any dependency configurations.

Page 276 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Upload.html

8§
Convention properties

The Maven plugin defines the following convention properties:
Table 24. Maven plugin - properties

roperty name Type Default value Description

. The directory where the generated
avenPonDi r File ${project.buil dDir} /Ig)oms ;
OMs are written to.

Instructions for mapping Gradle

.)) configurations to Maven scopes. See
onf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a .
the section called “Dependency

mapping”.

These properties are provided by a VavenPl ugi nConvent i on convention object.

8
Convention methods

The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without
the context of uploading to a Maven repo.

Example 225. Creating a standalone pom.

buil d. gradl e
task writeNewPom {
doLast {
pom {
project {
i nceptionYear '2008
licenses {
license {
nanme ' The Apache Software License, Version 2.0
url '"http://ww. apache. org/licenses/ LI CENSE- 2. 0. t xt
di stribution 'repo
}
}
}

}.writeTo("$buil dDi r/ newpom xmi ")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see VavenPom See also: MavenPl ugi nConvent i on

Page 277 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

8§
Interacting with Maven repositories

8
Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle’'s
deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don’t have a POM. Fortunately Gradle can
generate this POM for you using the dependency information it has.

§
Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote
Maven repository.

Example 226. Upload of file to remote Maven repository

bui | d. gradl e
apply plugin: 'maven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the POM
to the specified repository.

There is more work to do if you need support for protocols other than fi | e. In this case the native Maven
code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you
plan to use. The available protocols and the corresponding libraries are listed in Table 25 (those libraries
have transitive dependencies which have transitive dependencies).!*3! For example, to use the ssh protocol
you can do:

Page 278 of 717

Example 227. Upload of file via SSH

buil d. gradl e
configurations {
depl oyer Jars

repositories {
mavenCentral ()

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 2. 2"

upl oadAr chi ves {
reposi tories. mavenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. myconpany.conirel eases") {
aut henti cati on(user Nane: "

me", password: "myPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to
the bean elements. To add bean elements to its parent, you use a closure. In the example above repository
and authentication are such bean elements. Table 26 lists the available bean elements and a link to the
Javadoc of the corresponding class. In the Javadoc you can see the possible attributes you can set for a
particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t ory element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Page 279 of 717

Table 25. Protocol jars for Maven deployment

rotocol Library

1p org.apache.maven.wagon:wagon-http:2.2

sh org.apache.maven.wagon:wagon-ssh:2.2

sh-external org.apache.maven.wagon:wagon-ssh-external:2.2

J org.apache.maven.wagon:wagon-ftp:2.2

ebdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
e -

Table 26. Configuration elements of the MavenDeployer

lement Javadoc

ot MavenDepl oyer

pository org.apache.maven.artifact.ant. RemoteRepository
Jthentication org.apache.maven.artifact.ant.Authentication
leases org.apache.maven.artifact.ant.RepositoryPolicy
1apshots org.apache.maven.artifact.ant.RepositoryPolicy
oXy org.apache.maven.artifact.ant.Proxy
1apshotRepository org.apache.maven.artifact.ant.RemoteRepository
8

Installing to the local repository

The Maven plugin adds an i nst al | task to your project. This task depends on all the archives task of the ar
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository is redefined in a Maven set ti ngs. xm , this is considered by this task.

Page 280 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

8
Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl ¢
,artifactld, versi on and packagi ng elements used for the POM default to the values shown in the

table below. The dependency elements are created from the project's dependency declarations.

Table 27. Default Values for Maven POM generation

aven Element Default Value

-‘oupld project.group

tifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or archiveTask.baseName.
arsion project.version

ackaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves and j ar). ar chi veTask. baseNane defaults to pr oj ect . ar ¢
which in turn defaults to pr oj ect . nane.

Note: When you set the “ar chi veTask. baseNane” property to a value other than the default,
you'll also have to set upl oadTask. reposi tori es. mavenDepl oyer. pom artifactl d to the
same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from
generated POMs for other projects in the same build.

Generated POMs can be found in <bui | dDi r >/ pons. They can be further customized via the MavenPon
API. For example, you might want the artifact deployed to the Maven repository to have a different version or
name than the artifact generated by Gradle. To customize these you can do:

Example 228. Customization of pom

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")
pom version = '1. OMaven'
pomartifactld = ' nmyMavenNaneg'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any element

Page 281 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html

listed in the Maven POM reference can be added.
Example 229. Builder style customization of pom

bui | d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
pom proj ect {
licenses {
license {
nanme ' The Apache Software License, Version 2.0
url 'http://ww. apache. org/|licenses/ LI CENSE- 2. 0. t xt
di stribution 'repo

Note: groupl d, arti factld, versi on, and packagi ng should always be set directly on the pomobject.
Example 230. Modifying auto-generated content

buil d. gradl e
def installer = install.repositories. mavenlnstaller
def depl oyer = upl oadArchives. repositories. mavenDepl oyer

[install er, deployer]*.pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3' && dep.artifactld ==

If you have more than one artifact to publish, things work a little bit differently. See the section called
“Multiple artifacts per project”.

To customize the settings for the Maven installer (see the section called “Installing to the local repository”),
you can do:

Example 231. Customization of Maven installer

buil d. gradl e
install {
repositories. mavenlnstaller {
pomversion = '1. OMaven'

pomartifactld = ' myNane'

Page 282 of 717

http://maven.apache.org/pom.html

§
Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The VavenDepl oyer and the Mavenlinstaller both provide an API for
this:

Example 232. Generation of multiple poms

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")
addFilter('api') {artifact, file ->

artifact.nane == 'api

}

addFilter('service') {artifact, file ->
artifact.nane == 'service'

}

pon(' api').version = 'nySpeci al MavenVer si on'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about this have a look at Ponti | t er Cont al ner and its associated classes.

§
Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. You can also assign a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn more.
To access the mapping configuration you can say:

Page 283 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Example 233. Accessing a mapping configuration

buil d. gradl e
task mappi ngs {
doLast {

println conf2ScopeMappi ngs. mappi ngs

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to
Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[13] It is planned for a future release to provide out-of-the-box support for this

Page 284 of 717

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then
be used to prove who built the artifact the signature is attached to as well as other information such as when
the signature was generated.

The signing plugin currently only provides support for generating OpenPGP signatures (which is the
signature format required for publication to the Maven Central Repository).

§

Usage
To use the Signing plugin, include the following in your build script:
Example 234. Using the Signing plugin

bui | d. gradl e
apply plugin: 'signing

8§
Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using
the GnuPG tools can be found in the GnuPG HOWTOSs). You need to provide the signing plugin with your
key information, which means three things:

The public key ID (an 8 character hexadecimal string).
The absolute path to the secret key ring file containing your private key.
The passphrase used to protect your private key.

These items must be supplied as the values of properties si gni ng. keyl d, si gni ng. secr et KeyRi ngFi |
, and si gni ng. passwor d respectively. Given the personal and private nature of these values, a good
practice is to store them in the user gradl e. properti es file (described in the section called “System
properties”).

Page 285 of 717

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

si gni ng. keyl d=24875D73
si gni ng. passwor d=secr et
si gni ng. secr et KeyRi ngFi | e=/ User s/ ne/ . gnupg/ secri ng. gpg

If specifying this information (especially si gni ng. passwor d) in the user gr adl e. properti es file is not
feasible for your environment, you can source the information however you need to and set the project
properties manually.

i mport org.gradl e. pl ugi ns. si gning.Sign

gradl e. t askG aph. whenReady { taskGraph ->
if (taskG aph.all Tasks.any { it instanceof Sign }) {
/1l Use Java 6's console to read fromthe console (no good for
/1 a Cl environment)
Consol e consol e = System consol e()
consol e.printf "\ n\nW have to sign some things in this build." +
"\ n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key 1d: ")
def file = consol e.readLi ne("PGP Secret Key Ring File (absolute path): "
def password = consol e. readPassword(" PGP Private Key Password: ")

al l projects { ext."signing. keyld" =id }
al l projects { ext."signing.secretKeyRingFile" = file }
al |l projects { ext."signing. password" = password }

consol e. printf "\ nThanks.\n\n"

Note that the presence of a null value for any these three properties will cause an exception.

8
Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they're bound to a master key pair. One
feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key
management easier. A practical case study of how subkeys can be leveraged in software development can
be read on the Debian wiki.

The signing plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID as the value in the si
property.

Page 286 of 717

https://wiki.debian.org/Subkeys

8§
Using gpg-agent

By default the signing plugin uses a Java-based implementation of PGP for signing. This implementation
cannot use the gpg-agent program for managing private keys, though. If you want to use the gpg-agent, you
can change the signatory implementation used by the signing plugin:

Example 235. Sign with GnuPG

buil d. gradl e
signing {
useGgCnd()

sign configurations. archives

This tells the signing plugin to use the GnupgSi gnat ory instead of the default PgpSi gnat or y. The Ghupg:
relies on the gpg2 program to sign the artifacts. Of course, this requires that GnuPG is installed.

Without any further configuration the gpg2 (on Windows: gpg2. exe) executable found on the PATH will be
used. The password is supplied by the gpg- agent and the default key is used for signing.

8
Gnupg signatory configuration

The GnhupgSi gnat or y supports a number of configuration options for controlling how gpg is invoked. These
are typically set in gradle.properties:

Example 236. Configure the GnupgSignatory

gradl e. properties

si gni ng. gnupg. execut abl e=gpg

si gni ng. gnupg. useLegacyGog=t r ue

si gni ng. gnupg. homeDi r =gnupg- homne

si gni ng. gnupg. opt i onsFi | e=gnupg- hone/ gpg. conf
si gni ng. gnupg. keyName=24875D73

si gni ng. gnupg. passphr ase=gr adl e

si gni ng. gnupg. execut abl e
The gpg executable that is invoked for signing. The default value of this property depends on uselLegacy

. If that is t r ue then the default value of executable is "gpg" otherwise it is "gpg2".

si gni ng. ghupg. uselLegacy&g
Must be t r ue if GnuPG version 1 is used and f al se otherwise. The default value of the property is f al <

si gni ng. gnupg. honmeDi r
Sets the home directory for GnuPG. If not given the default home directory of GnuPG is used.

Page 287 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/signing/signatory/pgp/PgpSignatory.html

si gni ng. gnupg. opti onsFil e
Sets a custom options file for GnuPG. If not given GnuPG's default configuration file is used.

si gni ng. gnupg. keyNane
The id of the key that should be used for signing. If not given then the default key configured in GnuPG
will be used.

si gni ng. gnupg. passphrase
The passphrase for unlocking the secret key. If not given then the gpg-agent program is used for getting
the passphrase.

All configuration properties are optional.

8§
Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify
what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or
configurations that should be signed.

§
Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin configures a jar to
build and this jar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify
that all of the artifacts of this configuration should be signed.

Example 237. Signing a configuration
buil d. gradl e

signing {
sign configurations. archives

This will create a task (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Page 288 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.signing.Sign.html

Example 238. Signing a configuration output

Output of gr adl e si gnAr chi ves
> gradl e signArchives
:conpi | eJava

: processResour ces

: cl asses

tjar

: si gnArchi ves

BUI LD SUCCESSFUL i n Os
4 actionable tasks: 4 executed

§
Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can
directly sign the task that produces the artifact to sign.

Example 239. Signing a task

bui | d. gradl e

task stuffZip (type: Zip) {
baseNane = "stuff"
from"src/stuff"

}

signing {
sign stuffzip

}

This will create a task (of type Si gn) in your project named “si gnSt uf f Zi p”, that will build the input task’s

archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.
Example 240. Signing a task output

Outputof gradl e si gnStuffZp
> gradl e signStuffzip
cstuffZip

:signStuffZp

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar, Zi p,
Jar, VWar and Ear tasks.

Page 289 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ear.Ear.html

8
Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not
wish to sign artifacts for non-release versions. To achieve this, you can specify that signing is only required
under certain conditions.

Example 241. Conditional signing

buil d. gradl e
version = ' 1. 0- SNAPSHOT'
ext.isRel easeVersion = !version. endsWth("SNAPSHOT")

signing {
requi red { isRel easeVersion && gradl e.taskG aph. hasTask("upl oadArchives") }
sign configurations. archives

In this example, we only want to require signing if we are building a release version and we are going to
publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must
set the signing.required property to a closure to defer the evaluation. See

Si gni ngExt ensi on. set Requi red(j ava. | ang. Obj ect) for more information.

8§
Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically
added to the si gnat ures and ar chi ves dependency configurations. This means that if you want to
upload your signatures to your distribution repository along with the artifacts you simply execute the upl oad/

task as normal.

8
Signing POM files

Note: Signing the generated POM file generated by the Maven Publishing plugin is currently not
supported. Future versions of Gradle might add this functionality.

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published
POM file. The signing plugin adds a si gni ng. si gnPom() (see:

Si gni ngExt ensi on. si gnPom(or g. gradl e. api . arti facts. maven. MavenDepl oynent ,
groovy. | ang. Cl osur e)) method that can be used in the bef or eDepl oynent () block in your upload
task configuration.

Page 290 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

Example 242. Signing a POM for deployment

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
bef or eDepl oynent { MavenDepl oynent depl oynment -> si gni ng. si gnPon{ depl

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no
credentials for signing) then the si gnPon() method will silently do nothing.

Page 291 of 717

lvy Publishing (new)

Note: This chapter describes the new incubating Ivy publishing support provided by the “i vy- publ i sh
" plugin. Eventually this new publishing support will replace publishing via the Upl oad task.

If you are looking for documentation on the original vy publishing support using the Upl oad task
please see Publishing artifacts.

This chapter describes how to publish build artifacts in the Apache lvy format, usually to a repository for
consumption by other builds or projects. What is published is one or more artifacts created by the build, and
an Ivy module descriptor (normally i vy. xni) that describes the artifacts and the dependencies of the
artifacts, if any.

A published Ivy module can be consumed by Gradle (see Declaring Dependencies) and other tools that
understand the Ivy format.

8§
The “i vy- publ i sh” Plugin
The ability to publish in the Ivy format is provided by the “i vy- publ i sh” plugin.

The “publi shing” plugin creates an extension on the project named “publi shing” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “i vy-publi sh” plugin works with | vyPublicati on publications and

| vyArtifact Reposit ory repositories.

Example 243. Applying the “ivy-publish” plugin

bui | d. gradl e
apply plugin: "ivy-publish'

Applying the “i vy- publ i sh” plugin does the following:
Applies the “publ i shi ng” plugin

Establishes a rule to automatically create a Gener at el vyDescri pt or task for each | vyPubl i cati on

added (see the section called “Publications”).

Establishes a rule to automatically create a Publ i shTol vyReposi t ory task for the combination of each

Page 292 of 717

http://ant.apache.org/ivy/
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

I vyPubl i cati on added (see the section called “Publications”), with each | vyArtifact Repository

added (see the section called “Repositories”).

8
Publications

Note: If you are not familiar with project artifacts and configurations, you should read Publishing
artifacts, which introduces these concepts. This chapter also describes “publishing artifacts” using a
different mechanism than what is described in this chapter. The publishing functionality described
here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the

Publ i shi ngExt ensi on. get Publ i cat i ons() container. Each publication has a unique name within the

project.

For the “i vy- publ i sh” plugin to have any effect, an | vyPubl i cati on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details included
in the associated Ivy module descriptor file. A publication can be configured by adding components,
customizing artifacts, and by modifying the generated module descriptor file directly.

§
Publishing a Software Component

The simplest way to publish a Gradle project to an lvy repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 28. Software Components

ame Provided By Artifacts Dependencies
ava Java Plugin Generated jar file Dependencies from ‘runtime' configuration
ab War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is

added by the Java Pl ugi n.

Page 293 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/component/SoftwareComponent.html

Example 244. Publishing a Java module to Ivy

buil d. gradl e
publications {
i vyJava(lvyPublication) {
from conponents. j ava

8
Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied as raw files, or as instances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the nane, ext ensi on, type, cl assi fi er and conf
values to use for publication. Note that each artifacts must have a unique name/classifier/extension
combination.

Configure custom artifacts as follows:
Example 245. Publishing additional artifact to lvy

bui I d. gradl e

task sourceldar(type: Jar) {
from sourceSets. nai n. java
classifier "source"

}
publ i shing {
publications {

i vy(lvyPublication) {
from conponents. j ava
artifact(sourcedar) {

type "source"
conf "conpile"
}
}
}
}

See the | vyPubl i cati on class in the APl documentation for more detailed information on how artifacts
can be customized.

Page 294 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

8
Identity values for the published project

The generated lvy module descriptor file contains an <i nf 0> element that identifies the module. The default
identity values are derived from the following:

organi sation-Project.get Goup()
nodul e - Proj ect . get Name()

revi sion-Project.getVersion()
status - Proj ect. get Stat us()
branch - (not set)

Overriding the default identity values is easy: simply specify the or gani sati on, nodul e or revi si on
attributes when configuring the | vyPubl i cati on. The st at us and br anch attributes can be set via the de
property (see | vyNbdul eDescri ptor Spec). The descri ptor property can also be used to add

additional custom elements as children of the <i nf 0> element.
Example 246. customizing the publication identity

buil d. gradl e
publ i shing {
publications {
i vy(lvyPublication) {
organi sation 'org.gradle.sanpl e’
nmodul e ' proj ect 1- sanpl e'
revision '1.1'

descriptor.status = 'mlestone'
descriptor.branch = "testing'
descriptor.extralnfo 'http://ny. nanespace', 'nyEl enent', 'Sone val ue'

from conponents. j ava

Tip: Certain repositories are not able to handle all supported characters. For example, the "
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Gradle will handle any valid Unicode character for organisation, module and revision (as well as artifact
name, extension and classifier). The only values that are explicitly prohibited are ‘\’, '/ * and any I1SO control
character. The supplied values are validated early during publication.

Page 295 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

8
Modifying the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked before
publishing. The “i vy- publ i sh” plugin provides a hook to allow such modification.

Example 247. Customizing the module descriptor file

buil d. gradl e
publications {
i vyCust om(| vyPubl i cation) ({
descriptor.wi thXm {
asNode() . i nfo[0] . appendNode("' descri ption',
"A denonstration of ivy descriptor custol

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

See | vyMbdul eDescri pt or Spec. wi t hXm (org. gradl e. api . Acti on) in the APl documentation for

more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it is
also possible to modify the descriptor in such a way that it is no longer a valid Ivy module descriptor, so care
must be taken when using this feature.

The identifier (organisation, module, revision) of the published module is an exception; these values cannot
be modified in the descriptor using the wi t hXM_ hook.

8
Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle
subproject. An example is publishing a separate APl and implementation jar for your library. With Gradle this
is simple:

Page 296 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

Example 248. Publishing multiple modules from a single project

buil d. gradl e

task apiJar(type: Jar) {
baseNane "publishing-api"
from sourceSet s. mai n. out put
exclude " **/inmpl/**'

}
publ i shing {
publications {
i mpl (1vyPublication) {
organi sation 'org.gradle.sanple.inpl
nmodul e ' project2-inpl’
revision '2.3
from conponents. j ava
}
api (1 vyPublication) ({
organi sation 'org.gradle.sanpl e’
nmodul e ' proj ect 2- api
revision '2'
}
}
}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

8§
Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Example 249. Declaring repositories to publish to

bui | d. gradl e
repositories {
ivy {

url "S$buil dDir/repo”

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for
dependencies (Reposit oryHandl er). However, in the context of Ivy publication only the repositories
created by the i vy() methods can be used as publication destinations. You cannot publish an | vyPubl i ca

Page 297 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

to a Maven repository for example.

8§
Performing a publish

The “i vy-publish” plugin automatically creates a PublishTol vyRepository task for each
| vyPublicationand!|vyArtifact Repository combination in the publ i shi ng. publicati ons and |
containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Reposi t ory”, which is “pt
" for this example. This task is of type Publ i shTol vyRepository.

Example 250. Choosing a particular publication to publish

buil d. gradl e

apply plugin: 'java'

apply plugin: "ivy-publish'
group = 'org.gradle.sanmpl e’
version = '1.0

publi shing {

publications {
i vyJava(lvyPublication) {
from conmponents. j ava

}
}
repositories {
ivy {
url "$buil dDir/repo"
}
}

Output of gr adl e publ i shl vyJavaPubl i cati onTol vyRepository
> gradl e publishlvyJavaPublicationTol vyRepository

: gener at eDescri ptor Fi | eForlvyJavaPubl i cati on

: conpi | eJava NO SOURCE

. processResour ces NO SOURCE

: cl asses UP- TO DATE

) ar

: publi shlvyJavaPubl i cati onTol vyReposi tory

BU LD SUCCESSFUL in Os
3 actionabl e tasks: 3 executed

Page 298 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

8
The “publ i sh” lifecycle task

The “publ i sh” plugin (that the “i vy- publ i sh” plugin implicitly applies) adds a lifecycle task that can be
used to publish all publications to all applicable repositories named “publ i sh”.

In more concrete terms, executing this task will execute all Publ i shTol vyRepository tasks in the
project. This is usually the most convenient way to perform a publish.

Example 251. Publishing all publications via the “publish” lifecycle task

Output of gr adl e publ i sh

> gradl e publish

: gener at eDescri pt or Fi | eFor | vyJavaPubl i cati on
: conpi | eJava NO SOURCE

: processResour ces NO SOURCE

:cl asses UP- TO DATE

) ar
: publi shl vyJavaPubl i cati onTol vyReposi tory
: publish

BUI LD SUCCESSFUL in Os
3 actionabl e tasks: 3 executed

8§
Generating the lvy module descriptor file without publishing

At times it is useful to generate the vy module descriptor file (normally i vy. xm) without publishing your
module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very
easy to do.

The “i vy-publish” plugin creates one CeneratelvyDescriptor task for each registered
I vyPubl i cati on, named “gener at eDescri pt or Fi | eFor « PUBNAME»Publ i cat i on”, which will be “ge

" for the previous example of the “i vyJava” publication.

You can specify where the generated Ivy file will be located by setting the dest i nati on property on the
generated task. By default this file is written to “bui | d/ publ i cati ons/ «PUBNAME»/ i vy. xm ".

Page 299 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Example 252. Generating the lvy module descriptor file

buil d. gradl e
nodel {
t asks. gener at eDescri ptor Fi | eFor | vyCust onPubl i cation {
destination = file("$buildDir/generated-ivy.xm")

Output of gr adl e gener at eDescri ptorFil eFor | vyCust onPubl i cati on
> gradl e generateDescriptorFil eForlvyCustonPublication
: gener at eDescri ptor Fi | eFor |l vyCust onPubl i cati on

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note: The “i vy-publish” plugin leverages some experimental support for late plugin
configuration, and the Gener at el vyDescri pt or task will not be constructed until the publishing
extension is configured. The simplest way to ensure that the publishing plugin is configured when
you attempt to access the Gener at el vyDescr i pt or task is to place the access inside a nodel
block, as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shTol vyReposi t ory. These tasks should be referenced from within a nodel block.

8§
Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the
project description for each project.

Example 253. Publishing a Java module

buil d. gradl e
subproj ects {
apply plugin: 'java'
apply plugin: '"ivy-publish'

version = '1.0'
group = 'org.gradle.sanpl e’

repositories {
mavenCentral ()

}
task sourcedar(type: Jar) {
from sourceSets. mai n. java

Page 300 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

classifier "source"

project(":projectl") {
description = "The first project"

dependenci es {
compile "junit:junit:4.12", project(':project2')

project(":project2") {
description = "The second project"

dependenci es {
conpi l e ' comons-col | ecti ons: commons-col | ections: 3. 2. 2

}
}
subproj ects {
publ i shing {
repositories {
vy {

/'l change to point to your repo, e.g. http://my.org/repo
url "${rootProject.buildDir}/repo"

}

publications {
i vy(lvyPublication) {

from conponents. j ava

artifact(sourcedar) {
type "source"
conf "conpile"

}

descriptor.w thXm {
asNode() . i nfo[O] . appendNode(' description', description)

Page 301 of 717

The result is that the following artifacts will be published for each project:

The vy module descriptor file: “i vy-1. 0. xm ”.

The primary “jar” artifact for the Java component: “pr oj ect 1- 1. 0. j ar ".

The source “jar” artifact that has been explicitly configured: “pr oj ect 1- 1. 0- sour ce. j ar”.

When pr oj ect 1 is published, the module descriptor (i.e. the i vy. xm file) that is produced will look like:

Tip: Note that «PUBLI CATI ON- TI ME- STAMP» in this example Ivy module descriptor will be the

timestamp of when the descriptor was generated.

Example 254. Example generated ivy.xml

out put -i vy. xn
<?xm version="1.0" encodi ng="UTF-8"?>
<i vy-nodul e version="2.0">
<i nfo organi sati on="org. gradl e. sanpl e" nodul e="proj ect1" revision="1.0" status:
<description>The first project</description>
</i nf o>
<confi gurations>
<conf nanme="conpile" visibility="public"/>
<conf name="default" visibility="public" extends="conpile,runtine"/>
<conf name="runtine" visibility="public"/>
</ configurati ons>
<publ i cati ons>
<artifact name="projectl" type="jar" ext="jar" conf="conpile"/>
<artifact name="projectl" type="source" ext="jar" conf="conpile" mclassifie
</ publicati ons>
<dependenci es>
<dependency org="junit" nanme="junit" rev="4.12" conf="conpile->defaul t"/>
<dependency org="org. gradl e. sanpl e" name="project2" rev="1. 0" conf="conpil e-.
</ dependenci es>
</i vy-nodul e>

8

Future features

The “i vy- publ i sh” plugin functionality as described above is incomplete, as the feature is still incubating.
In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

Convenient customization of module attributes (modul e, or gani sat i on etc.)

Page 302 of 717

Convenient customization of dependencies reported in nodul e descri ptor.

Multiple discrete publications per project

Page 303 of 717

Maven Publishing (new)

Note: This chapter describes the new incubating Maven publishing support provided by the “naven- pu
" plugin. Eventually this new publishing support will replace publishing via the Upl oad task.

Note: Signing the generated POM file generated by this plugin is currently not supported. Future
versions of Gradle might add this functionality. Please use the Maven plugin for the purpose of
publishing your artifacts to Maven Central.

If you are looking for documentation on the original Maven publishing support using the Upl oad
task please see Publishing artifacts.

This chapter describes how to publish build artifacts to an Apache Maven Repository. A module published to
a Maven repository can be consumed by Maven, Gradle (see Declaring Dependencies) and other tools that
understand the Maven repository format.

8
The “maven- publ i sh” Plugin
The ability to publish in the Maven format is provided by the “naven- publ i sh” plugin.

The “publ i shing” plugin creates an extension on the project named “publi shing” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “maven- publ i sh” plugin works with MavenPubl i cati on publications and
MavenArti f act Reposi t ory repositories.

Example 255. Applying the 'maven-publish’ plugin

bui I d. gradl e
apply plugin:

maven- publ i sh’

Applying the “maven- publ i sh” plugin does the following:
Applies the “publ i shi ng” plugin

Establishes a rule to automatically create a Gener at eMavenPomtask for each MavenPubl i cat i on added
(see the section called “Publications”).

Establishes a rule to automatically create a Publ i shTolVavenReposi t ory task for the combination of

Page 304 of 717

http://maven.apache.org/
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

each MavenPublication added (see the section called “Publications”), with each
MavenArti fact Repository added (see the section called “Repositories”).

Establishes a rule to automatically create a Publ i shToMavenlLocal task for each MavenPubl i cati on
added (seethe section called “Publications™).

8
Publications

Note: If you are not familiar with project artifacts and configurations, you should read the Publishing
artifacts that introduces these concepts. This chapter also describes “publishing artifacts” using a
different mechanism than what is described in this chapter. The publishing functionality described
here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the

Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a uniqgue name within the

project.

For the “maven- publ i sh” plugin to have any effect, a MavenPubl i cati on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details included
in the associated POM file. A publication can be configured by adding components, customizing artifacts,
and by modifying the generated POM file directly.

8
Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 29. Software Components

ame Provided By Artifacts Dependencies
ava The Java Plugin Generated jar file Dependencies from 'runtime' configuration
2b The War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is
added by the Java PI ugi n.

Page 305 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/component/SoftwareComponent.html

Example 256. Adding a MavenPublication for a Java component

buil d. gradl e
publi shing {
publications {
mavenJava(MavenPubl i cation) {
from conmponents. j ava

8
Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied as raw files, or as instances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the ext ensi on and cl assi fi er values to use for
publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts
must have a unique classifier/extension combination.

Configure custom artifacts as follows:
Example 257. Adding additional artifact to a MavenPublication
buil d. gradl e

task sourcelar(type: Jar) {
from sourceSets. main. all Java

}
publ i shing {
publications {
mavenJava(MavenPubl i cati on) ({
from conmponents. j ava
artifact sourcedar {
classifier "sources"
}
}
}
}

See the MavenPubl i cat i on class in the APl documentation for more information about how artifacts can

be customized.

Page 306 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html

8
Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following project
properties:

groupl d - Proj ect. get Goup()
artifactld-Project.getNane()
version - Proj ect. get Versi on()

Overriding the default identity values is easy: simply specify the groupl d, artifactld or version
attributes when configuring the MavenPubl i cat i on.

Example 258. customizing the publication identity

bui I d. gradl e
publ i shing {
publications {
maven(MavenPubl i cation) {
groupld 'org. gradle. sanpl e'
artifactld 'projectl-sanple'
version '1.1'

from conponents. j ava

Tip: Certain repositories will not be able to handle all supported characters. For example, the "'
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Maven restricts 'groupld' and 'artifactld’ to a limited character set ([A-Za-z0-9 \\-.]+) and Gradle
enforces this restriction. For 'version' (as well as artifact 'extension’ and 'classifier'), Gradle will handle any
valid Unicode character.

The only Unicode values that are explicitly prohibited are ‘\’, // * and any ISO control character. Supplied
values are validated early in publication.

§
Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “maven- publ i sh” plugin provides
a hook to allow such modification.

Page 307 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version

Example 259. Modifying the POM file

buil d. gradl e
publications {
mavenCust on(MavenPubl i cati on) {
pom wi t hXm {
asNode() . appendNode(' descri ption',
" A denonstration of nmaven POM custom zation')

In this example we are adding a 'description’ element for the generated POM. With this hook, you can modify
any aspect of the POM. For example, you could replace the version range for a dependency with the actual
version used to produce the build.

See MavenPom wi t hXm (org. gradl e. api . Acti on) inthe APl documentation for more information.

It is possible to modify virtually any aspect of the created POM. This means that it is also possible to modify
the POM in such a way that it is no longer a valid Maven POM, so care must be taken when using this
feature.

The identifier (groupld, artifactld, version) of the published module is an exception; these values cannot be
modified in the POM using the wi t hXM. hook.

8
Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle
subproject. An example is publishing a separate API and implementation jar for your library. With Gradle this
is simple:

Page 308 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)

Example 260. Publishing multiple modules from a single project

buil d. gradl e

task apiJar(type: Jar) {
baseNane "publishing-api"
from sourceSet s. mai n. out put
exclude " **/inmpl/**'

publi shing {
publications {
i mpl (MavenPubl i cation) {
groupld 'org.gradl e.sanpl e.inpl"'
artifactld 'project2-inpl
version '2. 3

from conponents. j ava

}
api (MavenPubl i cation) {

groupld 'org.gradl e.sanpl e
artifactld 'project2-api
version '2'

artifact apiJar

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

8§
Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Example 261. Declaring repositories to publish to

buil d. gradl e
publi shing {
repositories {
maven {

url "$buil dDir/repo"

Page 309 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to
consume dependencies from, Reposi t or yHandl er . However, in the context of Maven publication only
MavenArti fact Reposi tory repositories can be used for publication.

8§
Performing a publish

The “maven- publ i sh” plugin automatically creates a Publ i shToMavenRepository task for each
MavenPubl i cati on and MavenArti fact Reposit ory combination in the publ i shi ng. publ i cati ons
and publ i shi ng. reposi t ori es containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cat i onTo« REPONAME»Reposi t ory”.

Page 310 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Example 262. Publishing a project to a Maven repository

buil d. gradl e

apply plugin: 'java'
apply plugin: 'maven-publish’

group = 'org.gradle.sanmpl e’
version = '1.0
publi shing {

publications {
mavenJava(MavenPubl i cation) {
from conmponents. j ava

}
}
}
publi shing {
repositories {
maven {
url "$buil dDir/repo"
}
}
}

Output of gr adl e publ i sh

> gradl e publish

: gener at ePonti | eFor MavenJavaPubl i cati on

: conpi | eJava

> processResour ces NO SOURCE

: cl asses

) ar

: publ i shMavenJavaPubl i cati onToMavenReposi t ory
: publish

BU LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

In this example, a task named “publ i shMavenJavaPubl i cati onToMavenReposi tory” is created,

which is of type Publ i shToMavenRepository. This task is wired into the publ i sh lifecycle task.

Executing “gradl e publ i sh” builds the POM file and all of the artifacts to be published, and transfers

them to the repository.

Page 311 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

8§
Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the local .m2
repository. In Maven parlance, this is referred to as 'installing' the module. The “maven- publ i sh” plugin
makes this easy to do by automatically creating a PublishToMavenLocal task for each
MavenPubl i cati on in the publ i shi ng. publ i cati ons container. Each of these tasks is wired into the p
lifecycle task. You do not need to have mavenLocal inyour publ i shi ng. repositori es section.

The created task is named “publ i sh« PUBNAME»Publ i cati onToMavenLocal .
Example 263. Publish a project to the Maven local repository

Output of gr adl e publ i shToMavenLocal

> gradl e publishToMavenLocal

: gener at ePonFi | eFor MavenJavaPubl i cati on
:conpi | eJava

> processResour ces NO SOURCE

: cl asses

) ar

: publ i shvavenJavaPubl i cat i onToMavenLocal
: publ i shToMavenLocal

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

The resulting task in this example is named “publ i shMavenJavaPubl i cati onToMavenLocal ". This task
is wired into the publ i shToMavenLocal lifecycle task. Executing “gr adl e publi shToMavenLocal ”

builds the POM file and all of the artifacts to be published, and “installs” them into the local Maven repository.

8§
Generating the POM file without publishing

At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM
generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type Gener at eMavenPom and it is given a name based on the
name of the publication: “gener at ePonFi | eFor « PUBNAME»Publ i cati on”. So in the example below,
where the publication is named “mavenCust onf, the task will be named “gener at ePonFi | eFor MavenCust

Page 312 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html

Example 264. Generate a POM file without publishing

buil d. gradl e
nodel {
t asks. gener at ePonti | eFor MavenCust onPubl i cati on {
destination = file("$buildDir/generated-pomxm")

Output of gr adl e gener at ePonti | eFor MavenCust onPubl i cati on
> gradl e generat ePonti | eFor MavenCust onPubl i cati on
: gener at ePonti | eFor MavenCust onPubl i cati on

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

All details of the publishing model are still considered in POM generation, including conponent s, custom ar

, and any modifications made via pom wi t hXm .

Note: The “maven- publish” plugin leverages some experimental support for late plugin
configuration, and any Gener at eMavenPom tasks will not be constructed until the publishing
extension is configured. The simplest way to ensure that the publishing plugin is configured when
you attempt to access the Gener at eMavenPomtask is to place the access inside a nodel block,

as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shToMavenReposi t ory. These tasks should be referenced from within a nodel block.

Page 313 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

The Distribution Plugin

Note: The distribution plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution
archives typically contain the executable application and other supporting files, such as documentation.

8§

Usage
To use the distribution plugin, include the following in your build script:
Example 265. Using the distribution plugin

bui I d. gradl e
apply plugin: "distribution’

The plugin adds an extension named “di stri buti ons” of type Di stri buti onCont ai ner to the project.
It also creates a single distribution in the distributions container extension named “rmai n”. If your build only
produces one distribution you only need to configure this distribution (or use the defaults).

You can run “gr adl e di st Zi p” to package the main distribution as a ZIP, or “gr adl e di st Tar " to create
a TAR file. To build both types of archives just run gr adl e assenbl eDi st . The files will be created at “$bt

You can run “gr adl e i nstal | Di st”to assemble the uncompressed distribution into “$bui | dDi r /i nst a

8
Tasks

The Distribution plugin adds the following tasks to the project:

Page 314 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.distribution.DistributionContainer.html

Table 30. Distribution plugin - tasks

ask name Depends on Type Description
IstZip - Zi p Creates a ZIP archive of the distribution contents
| st Tar - Tar Creates a TAR archive of the distribution contents

ssenbl eDi st distTar,distZip Task Creates ZIP and TAR archives with the distribution contents

nstal |l D st - Sync Assembles the distribution content and installs it on the current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:
Table 31. Multiple distributions - tasks

ask name Depends on Type Description

))) ! .) Creates a ZIP archive of the
{distribution.name} DistZp - Zip
distribution contents

{distributi }DistT Creates a TAR archive of the
i stribution.nanme st Tar -
distribution contents

ssenbl e${di stribution. name. capi t e${di stri bution. nane} Di st Tar, ${Task Asserhbles.ailadiefiBudrzahives

Assembles the distribution content
nstal | ${di stribution. name. capital- ze()} D st Sync and installs it on the current
machine

Example 266. Adding extra distributions

buil d. gradl e
apply plugin: "distribution'

version = '1.2'

di stributions {
custom {}

This will add following tasks to the project:
customDistZip

customDistTar

Page 315 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Sync.html

assembleCustomDist
installCustomDist

Given that the project name is “nmypr oj ect ” and version “1. 2", running “gr adl e cust onDi st Zi p” will
produce a ZIP file named “nypr oj ect - cust om 1. 2. zi p”.

Running “gradl e i nst al | Cust onDi st ” will install the distribution contents into “$bui | dDir /i nstal | / ¢

8
Distribution contents

All of the files in the “src/ $di stri buti on. nane/ di st” directory will automatically be included in the
distribution. You can add additional files by configuring the Di stri buti on object that is part of the
container.

Example 267. Configuring the main distribution

bui | d. gradl e
apply plugin: "distribution’

di stributions {

mai n {
baseNane = ' soneNane'
contents {
from{ 'src/readne' }
}
}

apply plugin:' maven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sonmel/repo")

In the example above, the content of the “sr ¢/ r eadne” directory will be included in the distribution (along
with the files in the “sr ¢/ mai n/ di st " directory which are added by default).

The “baseNane” property has also been changed. This will cause the distribution archives to be created with
a different name.

Page 316 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/distribution/Distribution.html

8§
Publishing distributions

The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the ma
plugin applied the distribution zip file will be published when running uploadArchives if no other default
artifact is configured

Example 268. publish main distribution

buil d. gradl e
apply plugin:' naven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sone/repo")

Page 317 of 717

The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following
notification systems are supported:

Twitter
notify-send (Ubuntu)
Snarl (Windows)
Growl (macOS)
8§
Usage
To use the announce plugin, apply it to your build script:
Example 269. Applying the announce plugin

bui I d. gradl e
apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are
available):

Example 270. Configure the announce plugin

bui I d. gradl e
announce {
username = 'nyld'
password = ' nyPassword'
}

Finally, send announcements with the announce method:

Page 318 of 717

http://twitter.com
http://manpages.ubuntu.com/manpages/zesty/en/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 271. Using the announce plugin

buil d. gradl e
task hellowrld {
doLast {
println "Hello, world!"
}
}
hel | owbr | d. doLast ({
announce. announce("hel oWorl d conpleted!", "twitter")
announce. announce(" hel | oWrl d conpl eted!", "local")

The announce method takes two String arguments: The message to be sent, and the natification service to
be used. The following table lists supported notification services and their configuration properties.

Table 32. Announce Plugin Notification Services

otification . Configuration .
) Operating System) Further Information
ervice Properties
. username,
litter Any
password
rarl Windows
owl macOS

. Requires the notify-send package to be installed. Use sudo apt - get i nstal
otify-send Ubuntu

to install it.
| Windows, Automatically chooses between snarl, growl, and notify-send depending on
cal
macOS, Ubuntu the current operating system.
8§
Configuration

See the AnnouncePl ugi nExt ensi on class in the APl documentation.

Page 319 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

The Build Announcements Plugin

Note: The build announcements plugin is currently incubating. Please be aware that the DSL and
other configuration may change in later Gradle versions.

The build announcements plugin uses the announce plugin to send local announcements on important
events in the build.

8§

Usage
To use the build announcements plugin, include the following in your build script:
Example 272. Using the build announcements plugin

bui I d. gradl e
apply plugin: 'build-announcenents

That's it. If you want to tweak where the announcements go, you can configure the announce plugin to
change the local announcer.

You can also apply the plugin from an init script:
Example 273. Using the build announcements plugin from an init script
init.gradle

root Proj ect {
apply plugin: 'build-announcenents’

Page 320 of 717

Dependency management

Introduction to Dependency Management

Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering
first-class dependency management that is both easy to understand and compatible with a wide variety of
approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn
that Gradle is fully compatible with both approaches in addition to being flexible enough to support
fully-customized approaches.

Here are the major highlights of Gradle’s support for dependency management:
Transitive dependency management: Gradle gives you full control of your project’s dependency tree.

Support for non-managed dependencies: If your dependencies are simply files in version control or a shared
drive, Gradle provides powerful functionality to support this.

Support for custom dependency definitions.: Gradle’s Module Dependencies give you the ability to describe
the dependency hierarchy in the build script.

A fully customizable approach to Dependency Resolution: Gradle provides you with the ability to customize
resolution rules making dependency substitution easy.

Full Compatibility with Maven and Ivy: If you have defined dependencies in a Maven POM or an lvy file,
Gradle provides seamless integration with a range of popular build tools.

Integration with existing dependency management infrastructure: Gradle is compatible with both Maven and
Ivy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all repository
formats.

With hundreds of thousands of interdependent open source components each with a range of versions and
incompatibilities, dependency management has a habit of causing problems as builds grow in complexity.
When a build’s dependency tree becomes unwieldy, your build tool shouldn’t force you to adopt a single,
inflexible approach to dependency management. A proper build system has to be designed to be flexible,
and Gradle can handle any situation.

Page 322 of 717

8§
Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to
another. If you are migrating from a tool like Ant or Maven to Gradle, you may be faced with some difficult
situations. For example, one common pattern is an Ant project with version-less jar files stored in the
filesystem. Other build systems require a wholesale replacement of this approach before migrating. With
Gradle, you can adapt your new build to any existing source of dependencies or dependency metadata. This
makes incremental migration to Gradle much easier than the alternative. On most large projects, build
migrations and any change to development process is incremental because most organizations can't afford
to stop everything and migrate to a build tool’s idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse
.classpath file as master data for dependency management, it is very easy to write a Gradle plugin to use
this data in Gradle. For migration purposes this is a common technique with Gradle. (But, once you've
migrated, it might be a good idea to move away from a .classpath file and use Gradle’'s dependency
management features directly.)

8§
Dependency management and Java

It is ironic that in a language known for its rich library of open source components that Java has no concept
of libraries or versions. In Java, there is no standard way to tell the JVM that you are using version 3.0.5 of
Hibernate, and there is no standard way to say that f 0o- 1. 0. j ar depends on bar - 2. 0. j ar . This has led
to external solutions often based on build tools. The most popular ones at the moment are Maven and Ivy.
While Maven provides a complete build system, lvy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular jar.
Both also use repositories where the actual jars are placed together with their descriptor files, and both offer
resolution for conflicting jar versions in one form or the other. Both have emerged as standards for solving
dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency management.
Gradle has replaced this direct dependency on Ivy with a native Gradle dependency resolution engine which
supports a range of approaches to dependency resolution including both POM and Ivy descriptor files.

8§
How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below is a brief outline of how this process
works.

Given a required dependency, Gradle first attempts to resolve the module for that dependency. Each
repository is inspected in order, searching first for a module descriptor file (POM or Ivy file) that indicates the
presence of that module. If no module descriptor is found, Gradle will search for the presence of the primary

Page 323 of 717

module artifact file indicating that the module exists in the repository.

If the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the newest
available static version (like 1. 2) in the repository. For Maven repositories, this is done using the maven- net
file, while for Ivy repositories this is done by directory listing.

If the module descriptor is a POM file that has a parent POM declared, Gradle will recursively attempt to
resolve each of the parent modules for the POM.

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is
done using the following criteria:

For a dynamic version, a 'higher' static version is preferred over a 'lower' version.

Modules declared by a module descriptor file (lvy or POM file) are preferred over modules that have an
artifact file only.

Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a static version and a module descriptor file is found in a repository,
there is no need to continue searching later repositories and the remainder of the process is short-circuited.

All of the artifacts for the module are then requested from the same repository that was chosen in the
process above.

§
The dependency cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the
number of remote requests made in dependency resolution, while striving to guarantee that the results of
dependency resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded meta-data
like POM files and Ivy files. The storage path for a downloaded artifact includes the SHA1 checksum,
meaning that 2 artifacts with the same name but different content can easily be cached.

A binary store of resolved module meta-data, including the results of resolving dynamic versions, module
descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very
powerful things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult
to debug behavior that has been a challenge with many build tools. This new behavior is implemented in a
bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

Page 324 of 717

8
Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache.
The information stored in the metadata cache includes:

The result of resolving a dynamic version (e.g. 1. +) to a concrete version (e.g. 1. 2).

The resolved module metadata for a particular module, including module artifacts and module
dependencies.

The resolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

The absence of a particular module or artifact in a particular repository, eliminating repeated attempts to
access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well
as a timestamp that can be used for cache expiry.

§
Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its
URL, type and layout. If a module or artifact has not been previously resolved from this repository, Gradle
will attempt to resolve the module against the repository. This will always involve a remote lookup on the
repository, however in many cases no download will be required (see the section called “Artifact reuse”,
below).

Dependency resolution will fail if the required artifacts are not available in any repository specified by the
build, even if the local cache has a copy of this artifact which was retrieved from a different repository.
Repository independence allows builds to be isolated from each other in an advanced way that no build tool
has done before. This is a key feature to create builds that are reliable and reproducible in any environment.

8
Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not
downloaded if an artifact already exists with the same id and checksum. If the checksum cannot be retrieved
from the remote server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse
artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle
will use this artifact if it can be verified to match the checksum declared by the remote server.

Page 325 of 717

8
Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact
identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact which
is republished without changing its identifier. By caching artifacts based on their SHA1 checksum, Gradle is
able to maintain multiple versions of the same artifact. This means that when resolving against one
repository Gradle will never overwrite the cached artifact file from a different repository. This is done without
requiring a separate artifact file store per repository.

8
Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple
Gradle processes concurrently. The lock is held whenever the binary meta-data store is being read or
written, but is released for slow operations such as downloading remote artifacts.

Page 326 of 717

Declaring Dependencies

Gradle builds can declare dependencies on external binaries, raw files and other Gradle projects. You can
find examples for common scenarios in this section. For more information, see the full reference on all types
of dependencies.

8§
Declaring a binary dependency

Modern software projects rarely build code in isolation. Projects reference external libraries for the purpose
of reusing existing and proven functionality, so-called binary dependencies. Upon resolution binary
dependencies are downloaded from dedicated repositories and stored in a cache to avoid unnecessary
network traffic.

Figure 6. Resolving binary dependencies from remote repositories

download Maven

artifacts / Repository

Gradle
—
Build
\ lvy
store access Repository
artifacts artifacts

Gradle
Cache

Page 327 of 717

8
Declaring a concrete version of a binary dependency

A typical example for such a library in a Java project is the Spring framework. The following code snippet
declares a compile-time dependency on the Spring web module by its coordinates: or g. spri ngf r amewor k
. Gradle resolves the dependency including its transitive dependencies from the Maven Central repository
and uses it to compile Java source code. The version attribute of the dependency coordinates points to a
concrete version indicating that the underlying artifacts don’t change over time. The use of concrete versions
ensures reproducibility for the aspect of dependency resolution.

Example 274. Declaring a binary dependencies with a concrete version

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i npl ementation 'org. springframework: spring-web: 5. 0. 2. RELEASE'

A Gradle project can define other types of repositories hosting binary dependencies. You can learn more
about the syntax and API in the section on declaring repositories. Refer to The Java Plugin for a deep dive
on declaring dependencies for a Java project. The resolution behavior for binary dependencies declarations
is highly customizable.

8
Declaring a dynamic version of a binary dependency

Projects might adopt a more aggressive approach for consuming binary dependencies. For example you
might want to always integrate the latest version of a dependency to consume cutting edge features at any
given time. A dynamic version allows for resolving the latest version or the latest version of a version range
for a given dependency.

Note: Using dynamic versions in a build bears the risk of potentially breaking it. As soon as a new
version of the dependency is released that contains an incompatible APl change your source code
might stop compiling.

Page 328 of 717

https://projects.spring.io/spring-framework/
https://search.maven.org/

Example 275. Declaring a binary dependencies with a dynamic version

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i mpl ementation 'org. springframework: spring-web: 5. +

A build scan can effectively visualize dynamic dependency versions and their respective, selected versions.

Figure 7. Dynamic dependencies in build scan

compileClasspath
org.springframework:spring-web:5.+ 5.0.2.RELEASE
org.springframework:spring-beans:5.0.2.RELEASE
org.springframework:spring-core:5.0.2.RELEASE
org.springframework:spring-jcl:5.0.2.RELEASE
org.springframework:spring-core:5.0.2.RELEASE
org.springframework:spring-jcl:5.0.2.RELEASE

By default, Gradle caches dynamic versions of dependencies for 24 hours. The threshold can be configured
as needed for example if you want to resolve new versions earlier.

8
Declaring a changing version of a binary dependency

A team might decide to implement a series of features before releasing a new version of the application or
library. A common strategy to allow consumers to integrate an unfinished version of their artifacts early and
often is to release a so-called changing version. A changing version indicates that the feature set is still
under active development and hasn't released a stable version for general availability yet.

In Maven repositories, changing versions are commonly referred to as snapshot versions. Snapshot versions
contain the suffix - SNAPSHOT. The following example demonstrates how to declare a snapshot version on

the Spring dependency.

Page 329 of 717

https://scans.gradle.com/
https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version

Example 276. Declaring a binary dependencies with a changing version

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()
maven {
url "https://repo.spring.iol/snapshot/

dependenci es {
i npl ement ati on ' org. springframework: spring-web: 5. 0. 3. BUl LD- SNAPSHOT'

By default, Gradle caches changing versions of dependencies for 24 hours. The threshold can be configured
as needed for example if you want to resolve new snapshot versions earlier.

Gradle is flexible enough to treat any version as changing version. All you need to do is to set the property
Ext er nal Modul eDependency. set Changi ng(bool ean) totrue.

8§
Declaring a file dependency

Projects sometimes do not rely on a binary repository product e.g. JFrog Artifactory or Sonatype Nexus for
hosting and resolving external dependencies. It's common practice to host those dependencies on a shared
drive or check them into version control alongside the project source code. Those dependencies are referred
to as file dependencies, the reason being that they represent a files without any metadata (like information
about transitive dependencies, the origin or its author) attached to them.

Page 330 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-

Figure 8. Resolving file dependencies from the local file system and a shared drive

Local File
System
access
artifacts access
artifacts
Gradle Shared
_ —_—
Build Drive
store access
artifacts artifacts
Gradle
Cache

The following example resolves file dependencies from the directories ant , | i bs and t ool s.

Example 277. Declaring multiple file dependencies

buil d. gradl e
configurations {
ant Contrib

ext ernal Li bs
depl oynent Tool s

dependenci es {
antContrib files('ant/antcontrib.jar")
external Libs files('libs/comons-lang.jar', 'libs/log4j.jar")
depl oynent Tools fileTree(dir: '"tools', include: '*.exe')

As you can see in the code example, every dependency has to define its exact location in the file system.
The most prominent methods for creating a file reference are Proj ect . fil es(java. |l ang. Cbject[])
and Proj ect.fileTree(java.lang. Ooj ect) . Alternatively, you can also define the source directory of
one or many file dependencies in the form of a flat directory repository.

Page 331 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

8§
Declaring a project dependency

Software projects often break up software components into modules to improve maintainability and prevent
strong coupling. Modules can define dependencies between each other to reuse code within the same
project.

Gradle can model dependencies between modules. Those dependencies are called project dependencies
because each module is represented by a Gradle project. At runtime, the build automatically ensures that
project dependencies are built in the correct order and added to the classpath for compilation. The chapter
Authoring Multi-Project Builds discusses how to set up and configure multi-project builds in more detail.

Figure 9. Dependencies between projects

Gradle Multi-Project Build

depends

on
Project A | Project B

depends depends
on on

Project C

The following example declares the dependencies on the uti | s and api project from the web- servi ce
project. The method Project.project(]java.lang. String) creates a reference to a specific
subproject by path.

Example 278. Declaring project dependencies

buil d. gradl e
project(':web-service') {
dependenci es {
i mpl ementation project(':utils")
i mpl ementation project(':api')

Page 332 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

8§
Defining the scope of a dependency with configurations

8
What is a configuration?

Every dependency declared for a Gradle project applies to a specific scope. For example some
dependencies should be used for compiling source code whereas others only need to be available at
runtime. Gradle represents the scope of a dependency with the help of a Conf i gur ati on.

Many Gradle plugins add pre-defined configurations to your project. The Java plugin, for example, adds
configurations to represent the various classpaths it needs for source code compilation, executing tests and
the like. See the Java plugin chapter for an example. The sections above demonstrate how to declare
dependencies for different use cases.

Figure 10. Configurations use declared dependencies for specific purposes

compile Gradle Build

source file

resolve

| F—\ - - dependencies
| |implementation| | P

configuration \
Bin
Repo
| | | testRuntime / I

4+ . . “
configuration resolve

dependencies

execute
tests

8
Defining custom configurations

You can also define configurations yourself, so-called custom configurations. A custom configuration is
useful for separating the scope of dependencies needed for a dedicated purpose.

Let's say you wanted to declare a dependency on the Jasper Ant task for the purpose of pre-compiling JSP
files that should not end up in the classpath for compiling your source code. It's fairly simply to achieve that
goal by introducing a custom configuration and using it in a task.

Page 333 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.Configuration.html
https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html

Example 279. Declaring and using a custom configuration

buil d. gradl e

configurations {
j asper

}

repositories {
mavenCentral ()

dependenci es {
j asper 'org.apache.tontat. enbed: tontat - enbed-j asper: 9.0. 2’

task preConpil eJsps {
doLast {
ant . t askdef (cl assnane: 'org. apache. jasper.JspC ,
nane: 'jasper',
cl asspath: configurations.jasper.asPath)
ant . j asper(validateXm : false,
uriroot: file('src/min/webapp'),
outputDir: file("$buildbDir/conpiled-jsps"))

A project’s configurations are managed by a conf i gur at i ons object. Configurations have a name and can
extend each other. To learn more about this API have a look at Conf i gur at i onCont ai ner .

8§
Resolving specific artifacts from a module dependency

Whenever Gradle tries to resolve a dependency from a Maven or lvy repository, it looks for a metadata file
and the default artifact file, a JAR. The build fails if none of these artifact files can be resolved. Under certain
conditions, you might want to tweak the way Gradle resolves artifacts for a dependency.

The dependency only provides a non-standard artifact without any metadata e.g. a ZIP file.
The dependency metadata declares more than one artifact e.g. as part of an Ivy dependency descriptor.

You only want to download a specific artifact without any of the transitive dependencies declared in the
metadata.

Gradle is a polyglot build tool and not limited to just resolving Java libraries. Let's assume you wanted to
build a web application using JavaScript as the client technology. Most projects check in external JavaScript
libraries into version control. An external JavaScript library is no different than a reusable Java library so why
not download it from a repository instead?

Page 334 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Google Hosted Libraries is a distribution platform for popular, open-source JavaScript libraries. With the help
of the artifact-only notation you can download a JavaScript library file e.g. JQuery. The @ character
separates the dependency’s coordinates from the artifact’s file extension.

Example 280. Resolving a JavaScript artifact for a declared dependency

bui I d. gradl e
repositories {
ivy {

url '"https://ajax.googl eapis.conlfajax/|ibs'
| ayout 'pattern', {
artifact '[organization]/[revision]/[nodule].[ext]"

configurations {
is

dependenci es {
is 'jquery:jquery:3.2.1@s'

Some dependencies ship different "flavors" of the same artifact or they publish multiple artifacts that belong
to a specific version of the dependency but have a different purpose. It's common for a Java library to
publish the artifact with the compiled class files, another one with just the source code in it and a third one
containing the Javadocs.

In JavaScript, a library may exist as uncompressed or minified artifact. In Gradle, a specific artifact identifier
is called classifier, a term generally used in Maven and lvy dependency management.

Let's say we wanted to download the minified artifact of the JQuery library instead of the uncompressed file.
You can provide the classifier m n as part of the dependency declaration.

Page 335 of 717

https://developers.google.com/speed/libraries/

Example 281. Resolving a JavaScript artifact with classifier for a declared dependency

buil d. gradl e
repositories {
ivy {

url '"https://ajax.googl eapi s.conf aj ax/|ibs
| ayout 'pattern', {
artifact '[organization]/[revision]/[nodule](.[classifier]).[ext]

configurations {
js

dependenci es {
js 'jquery:jquery:3.2.1:mn@s'

Page 336 of 717

Declaring Repositories

Gradle can resolve external dependencies from one or many repositories based on Maven, lvy or flat
directory directory formats. Check out the full reference on all types of repositories for more information.

8§
Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and consume
open source dependencies. Popular public repositories include Maven Central, Bintray JCenter and the
Google Android repository. Gradle provides built-in shortcut methods for the most widely-used repositories.

Figure 11. Declaring a repository with the help of shortcut methods

Maven
Central
mavenCentral ()
Gradle Jeenter O | Bintray
Build > JCenter
google () Google
Android

To declare JCenter as repository, add this code to your build script:

Page 337 of 717

Example 282. Declaring JCenter repository as source for resolving dependencies

buil d. gradl e
repositories {

jcenter()
}

Under the covers Gradle resolves dependencies from the respective URL of the public repository defined by
the shortcut method. All shortcut methods are available via the Reposi t or yHandl er APIL. Alternatively,
you can spell out the URL of the repository for more fine-grained control.

8§
Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house repositories
enable teams to publish internal binaries, setup user management and security measure and ensure uptime
and availability. Specifying a custom URL is also helpful if you want to declare a less popular, but
publicly-available repository.

Add the following code to declare an in-house repository for your build reachable through a custom URL.

Example 283. Declaring a custom repository by URL

bui | d. gradl e
repositories {
maven {

url "http://repo. myconmpany. com maven2"

Repositories with custom URLS can be specified as Maven or lvy repositories by calling the corresponding
methods available on the Reposi t or yHandl er API. Gradle supports other protocols than htt p or htt ps
as part of the custom URL e.g. file, sftp or s3. For a full coverage see the reference manual on
supported transport protocols.

§
Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple repositories is
helpful if some dependencies are only available in one repository but not the other. You can mix any type of
repository described in the reference section.

This example demonstrates how to declare various shortcut and custom URL repositories for a project:

Page 338 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Example 284. Declaring multiple repositories

buil d. gradl e
repositories {
jcenter()
maven {
url "https://maven. springfranmework. org/rel ease"

}

maven {
url "https://maven.restlet.org"

Note: The order of declaration determines how Gradle will check for dependencies at runtime. If
Gradle finds a module descriptor in a particular repository, it will attempt to download all of the
artifacts for that module from the same repository. You can learn more about Gradle’s resolution
mechanism in the dedicated section

Page 339 of 717

Inspecting Dependencies

Gradle provides sufficient tooling to navigate large dependency graphs and mitigate situations that can lead
to dependency hell. Users can chose to render the full graph of dependencies as well as identify the
selection reason and origin for a dependency. The origin of a dependency can be a declared dependency in
the build script or a transitive dependency in graph plus their corresponding configuration. Gradle offers both
capabilities through visual representation via build scans and as command line tooling.

8§
Listing dependencies in a project

A project can declare one or more dependencies. Gradle can visualize the whole dependency tree for every
configuration available in the project.

Rendering the dependency tree is particularly useful if you'd like to identify which dependencies have been
resolved at runtime. It also provides you with information about any dependency conflict resolution that
occurred in the process and clearly indicates the selected version. The dependency report always contains
declared and transitive dependencies.

Let's say you'd want to create tasks for your project that use the JGit library to execute SCM operations e.g.
to model a release process. You can declare dependencies for any external tooling with the help of a custom
configuration so that it doesn’t doesn’'t pollute other contexts like the compilation classpath for your
production source code.

Example 285. Declaring the JGit dependency with a custom configuration

buil d. gradl e
repositories {

jcenter()
}

configurations {
scm

dependenci es {
scm ' org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"

Page 340 of 717

https://en.wikipedia.org/wiki/Dependency_hell
https://www.eclipse.org/jgit/

A build scan can visualize dependencies as a navigable, searchable tree. Additional context information can
be rendered by clicking on a specific dependency in the graph.

Figure 12. Dependency tree in a build scan

8 dependencies resolved in 1 project across 1 configuration

scm
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6
commons-codec:commons-codec:1.6
commons-logging:commons-logging:1.1.3
org.apache.httpcomponents:httpcore:4.3.3
org.slf4j:slf4j-api:1.7.2

Every Gradle project provides the task dependenci es to render the so-called dependency report from the
command line. By default the dependency report renders dependencies for all configurations. To pair down
on the information provide the optional parameter - - confi gur ati on.

Example 286. Rendering the dependency report for a custom configuration

Output of gradl e - g dependenci es --configuration scm
> gradl e -q dependencies --configuration scm

scm
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
+--- comjcraft:jsch:0.1.54
+--- com googl ecode. j avaewah: JavaEWAH: 1. 1. 6

+--- org.apache. httpconponents: httpclient:4.3.6

| +--- org.apache. htt pconponents: httpcore: 4. 3.3
[+--- commons- | oggi ng: commons- | oggi ng: 1. 1.3

[\--- commons- codec: conmpns- codec: 1. 6

\--- org.slf4j:slf4j-api:1.7.2

The dependencies report provides detailed information about the dependencies available in the graph. Any

Page 341 of 717

https://scans.gradle.com/

dependency that could not be resolved is marked with FAI LED in red color. Dependencies with the same
coordinates that can occur multiple times in the graph are omitted and indicated by an asterisk.
Dependencies that had to undergo conflict resolution render the requested and selected version separated
by a right arrow character.

8§
Identifying which dependency version was selected and why

Large software projects inevitably deal with an increased number of dependencies either through direct or
transitive dependencies. The dependencies report provides you with the raw list of dependencies but does
not explain why they have been selected or which dependency is responsible for pulling them into the
graph.

Let's have a look at a concrete example. A project may request two different versions of the same
dependency either as direct or transitive dependency. Gradle applies version conflict resolution to ensure
that only one version of the dependency exists in the dependency graph. In this example the conflicting
dependency is represented by conmons- codec: commons- codec.

Example 287. Declaring the JGit dependency and a conflicting dependency

buil d. gradl e
repositories {

jcenter()
}

configurations {
scm

dependenci es {
scm'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"
scm ' commbns- codec: commons- codec: 1. 7

The dependency tree in a build scan renders the selection reason (conflict resolution) as well as the origin of
a dependency if you click on a dependency and select the "Required By" tab.

Page 342 of 717

https://scans.gradle.com/

Figure 13. Dependency insight capabilities in a build scan

8 dependencies resolved in 1 project across 1 configuration

commons-codec:commons-codec:1.7
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6
commons-codec:commons-codec:1.6 1.7

~ 1 . - 1 . 3 . .
commons-logging:commons-logging:1.1.3 Dependencies Required By
org.apache.httpcomponents:httpcore:4.3.3

org.slf4j:sif4j-api:1.7.2 commons-codec:commons-codec:1.6 1.7

org.apache.httpcomponents:httpclient:4.3.6
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
:scm

Every Gradle project provides the task dependencyl nsi ght to render the so-called dependency insight
report from the command line. Given a dependency in the dependency graph you can identify the selection
reason and track down the origin of the dependency selection. You can think of the dependency insight
report as the inverse representation of the dependency report for a given dependency. When executing the
task you have to provide the mandatory parameter - - dependency to specify the coordinates of the
dependency under inspection. The parameter - - confi gurati on is optional but helps with filtering the

output.
Example 288. Using the dependency insight report for a given dependency

Output of gradl e -g dependencyl nsi ght --dependency conmnobns-codec --configuration

scm
> gradl e -q dependencyl nsi ght --dependency conmons-codec --configuration scm
conmmons- codec: compns-codec: 1.7 (conflict resol ution)

\--- scm

commons- codec: comons-codec: 1.6 -> 1.7
\--- org.apache. htt pconmponents: httpclient:4.3.6
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
\--- scm

Page 343 of 717

Managing Transitive Dependencies

Resolution behavior for transitive dependencies can be customized to a high degree to meet enterprise
requirements.

8§
Excluding transitive module dependencies

Declared dependencies in a build script can pull in a lot of transitive dependencies. You might decide that
you do not want a particular transitive dependency as part of the dependency graph for a good reason.

The dependency is undesired due to licensing constraints.

The dependency is not available in any of the declared repositories.

The metadata for the dependency exists but the artifact does not.

The metadata provides incorrect coordinates for a transitive dependency.

Transitive dependencies can be excluded on the level of a declared dependency or a configuration. Let's
demonstrate both use cases. In the following two examples the build script declares a dependency on
Log4J, a popular logging framework in the Java world. The metadata of the particular version of Log4J also
defines transitive dependencies.

Example 289. Unresolved artifacts for transitive dependencies

buil d. gradl e
apply plugin: 'java

repositories {
mavenCentral ()

dependenci es {
i mpl ementation 'log4j:log4j:1.2.15

If resolved from Maven Central some of the transitive dependencies provide metadata but not the
corresponding binary artifact. As a result any task requiring the binary files will fail e.g. a compilation task.

Page 344 of 717

> gradle -q conpil eJava

* What went w ong:
Could not resolve all files for configuration
> Could not find jns.jar (javax.jms:jns:1.1).
Searched in the follow ng | ocations:
htt ps://repo. maven. apache. or g/ maven2/javax/jms/jns/ 1. 1/jnms-1.1.jar
> Could not find jnxtools.jar (comsun.jdnk:jnxtools:1.2. 1).
Searched in the follow ng | ocations:
htt ps://repo. maven. apache. or g/ maven2/ conf sun/j dnk/j nxt ool s/ 1. 2. 1/ j nxt ool s-
> Could not find jnxri.jar (comsun.jnx:jnmxri:1.2.1).
Searched in the followi ng | ocations:
htt ps://repo. maven. apache. or g/ maven2/ comi sun/jmx/jmxri /1. 2. 1/jmxri-1.2.1.ji

:conpi |l eCl asspat h' .

The situation can be fixed by adding a repository containing those dependencies. In the given example
project, the source code does not actually use any of Log4J’s functionality that require the JMS (e.g. JVBApp
) or IMX libraries. It's safe to exclude them from the dependency declaration.

Exclusions need to spelled out as a key/value pair via the attributes gr oup and/or nodul e. For more
information, refer to Modul eDependency. excl ude(j ava. util . Map).

Example 290. Excluding transitive dependency for a particular dependency declaration

bui | d. gradl e
dependenci es {
i mpl ementation('log4j:log4j:1.2.15") {

exclude group: 'javax.jns', nodule: 'jns
exclude group: 'com sun.jdnk', nodule: 'jnxtools'
exclude group: 'comsun.jnx', nodule: "jnxri'

You may find that other dependencies will want to pull in the same transitive dependency that misses the
artifacts. Alternatively, you can exclude the transitive dependencies for a particular configuration by calling
the method Confi gurati on. excl ude(j ava. util . Map).

Page 345 of 717

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ModuleDependency.html#exclude-java.util.Map-
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:exclude(java.util.Map)

Example 291. Excluding transitive dependency for a particular configuration

buil d. gradl e
configurations {
i npl ementation {

exclude group: 'javax.jns', nodule: 'jns'
excl ude group: 'comsun.jdnk', nodule: 'jnxtools'
exclude group: 'comsun.jnx', mnodule: 'jnxri'

dependenci es {
i mpl ementation 'log4j:log4j:1.2.15

Note: As a build script author you often times know that you want to exclude a dependency for all
configurations available in the project. You can wuse the method
Domai nhj ect Col | ection. al |l (org. gradl e. api . Acti on) to define a global rule.

You might encounter other use cases that don't quite fit the bill of an exclude rule. For example you want to
automatically select a version for a dependency with a specific requested version or you want to select a
different group for a requested dependency to react to a relocation. Those use cases are better solved by
the Resol utionStrategy APl Some of these use cases are covered in Customizing Dependency
Resolution Behavior.

8§
Enforcing a particular dependency version

Gradle resolves any dependency version conflicts by selecting the latest version found in the dependency
graph. Some projects might need to divert from the default behavior and enforce an earlier version of a
dependency e.g. if the source code of the project depends on an older API of a dependency than some of
the external libraries.

Note: Enforcing a version of a dependency requires a conscious decision. Changing the version of
a transitive dependency might lead to runtime errors if external libraries do not properly function
without them. Consider upgrading your source code to use a newer version of the library as an
alternative approach.

Let's say a project uses the HttpClient library for performing HTTP calls. HttpClient pulls in Commons Codec
as transitive dependency with version 1.10. However, the production source code of the project requires an
API from Commons Codec 1.9 which is not available in 1.10 anymore. A dependency version can be
enforced by declaring it in the build script and setting Ext er nal Dependency. set For ce(bool ean) totrt

Page 346 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://hc.apache.org/httpcomponents-client-ga/
https://commons.apache.org/proper/commons-codec/
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ExternalDependency.html#setForce-boolean-

Example 292. Enforcing a dependency version

buil d. gradl e
dependenci es {
i npl ement ati on 'org. apache. htt pconponents: httpclient:4.5.4
i mpl emrent ati on(' conmons- codec: conmmons- codec: 1. 9") {
force = true

If the project requires a specific version of a dependency on a configuration-level then it can be achieved by
calling the method Resol uti onStrat egy. force(java. |l ang. Object[]).

Example 293. Enforcing a dependency version on the configuration-level

bui | d. gradl e
configurations {
conpi | eCl asspat h {
resol utionStrategy.force ' conmons-codec: cormons- codec: 1. 9'

dependenci es {
i npl ement ati on ' org. apache. htt pconponents: httpclient:4.5.4

8§
Disabling resolution of transitive dependencies

By default Gradle resolves all transitive dependencies specified by the dependency metadata. Sometimes
this behavior may not be desirable e.g. if the metadata is incorrect or defines a large graph of transitive
dependencies. You can tell Gradle to disable transitive dependency management for a dependency by
setting Mbdul eDependency. set Transi ti ve(bool ean) to true. As a result only the main artifact will
be resolved for the declared dependency.

Example 294. Disabling transitive dependency resolution for a declared dependency

bui I d. gradl e
dependenci es {
i mpl ement ati on(' com googl e. guava: guava: 23.0") {
transitive = fal se

Note: Disabling transitive dependency resolution will likely require you to declare the necessary
runtime dependencies in your build script which otherwise would have been resolved automatically.
Not doing so might lead to runtime classpath issues.

Page 347 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:force(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ModuleDependency.html#setTransitive-boolean-

A project can decide to disable transitive dependency resolution completely. You either don’t want to rely on
the metadata published to the consumed repositories or you want to gain full control over the dependencies
in your graph. For more information, see Conf i gur ati on. set Transi ti ve(bool ean).

Example 295. Disabling transitive dependency resolution on the configuration-level

buil d. gradl e
configurations.all ({
transitive = fal se

dependenci es {
i mpl ementati on ' com googl e. guava: guava: 23. 0

Page 348 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/Configuration.html#setTransitive-boolean-

Working with Dependencies

For the examples below we have the following dependencies setup:

Example 296. Configuration.copy

bui | d. gradl e
configurations {
sealife
alllife
}
dependenci es {
sealife "sea.manmal s: orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife configurations.sealife
alllife "air.birds: al batross: 1. 0"

The dependencies have the following transitive dependencies:
shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

You can use the configuration to access the declared dependencies or a subset of those:

Page 349 of 717

Example 297. Accessing declared dependencies

buil d. gradl e
task dependencies {
doLast {
configurations.alllife.dependencies.each { dep -> println dep.nane }
println()
configurations.alllife.all Dependenci es. each { dep -> println dep. nane }
println()
configurations.alllife.allDependencies.findAll { dep -> dep.name != "orci
.each { dep -> println dep.nanme }
}
}

Output of gr adl e - g dependenci es
> gradl e -q dependenci es
al batross

al batross
orca
shar k
t una

al batr oss

shar k
t una

The dependenci es task returns only the dependencies belonging explicitly to the configuration. The al | De
task includes the dependencies from extended configurations.

To get the library files of the configuration dependencies you can do:

Page 350 of 717

Example 298. Configuration.files

buil d. gradl e
task allFiles {
doLast {

configurations.sealife.files.each { file ->
println file.nane

Outputofgradle -q all Files
> gradle -q allFiles
orca-1.0.jar

shark-1.0.jar

tuna-1.0.jar

seal -2.0.jar
herring-1.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Example 299. Configuration.files with spec

bui I d. gradl e

task files {

doLast {
configurations.sealife.files { dep -> dep.nane == 'orca' }.each { file -:

println file.nane

Outputofgradle -q files
> gradle -q files
orca-1.0.jar

seal -2.0.jar

The Confi guration. fil es method always retrieves all artifacts of the whole configuration. It then filters
the retrieved files by specified dependencies. As you can see in the example, transitive dependencies are
included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the
original configuration should be copied. The copying methods come in two flavors. The copy method copies
only the dependencies belonging explicitly to the configuration. The copyRecur si ve method copies all the

dependencies, including the dependencies from extended configurations.

Page 351 of 717

Example 300. Configuration.copy

buil d. gradl e
task copy {
doLast {
configurations.alllife.copyRecursive { dep -> dep.nanme != "orca' }
. al | Dependenci es. each { dep -> println dep. nane }
println()
configurations.alllife.copy().all Dependenci es
.each { dep -> println dep.nanme }
}
}

Outputof gradl e -qgq copy
> gradl e -q copy

al batr oss

shar k

t una

al batr oss

It is important to note that the returned files of the copied configuration are often but not always the same
than the returned files of the dependency subset of the original configuration. In case of version conflicts
between dependencies of the subset and dependencies not belonging to the subset the resolve result might
be different.

Example 301. Configuration.copy vs. Configuration.files

bui | d. gradl e
task copyVsFiles {
doLast {
configurations. sealife.copyRecursive { dep -> dep.nanme == 'orca' }
.each { file -> println file.name }
println()
configurations.sealife.files { dep -> dep.nane == 'orca' }
.each { file -> println file.name }
}
}

Output of gradl e -qg copyVsFil es
> gradle -q copyVsFil es
orca-1.0.jar

seal -1.0.jar

orca-1.0.jar
seal -2.0.jar

In the example above, or ca has a dependency on seal - 1. 0 whereas shar k has a dependency on seal -

Page 352 of 717

. The original configuration has therefore a version conflict which is resolved to the newer seal -2. 0
version. The fi | es method therefore returns seal - 2. 0 as a transitive dependency of or ca. The copied
configuration only has or ca as a dependency and therefore there is no version conflict and seal -1. 0 is
returned as a transitive dependency.

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies
will cause an exception. You can always copy a resolved configuration. The copied configuration is in the
unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the APl documentation: Conf i gur at i on.

Page 353 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.Configuration.html

Customizing Dependency Resolution
Behavior

In most cases, Gradle’s default dependency management will resolve the dependencies that you want in
your build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your
build receives exactly the right dependencies.

There are a number of ways that you can influence how Gradle resolves dependencies.

8§
Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. This feature is incubating,
but currently offers the ability to change the group, name and/or version of a requested dependency,
allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and
can be used to implement all sorts of advanced patterns in dependency management. Some of these
patterns are outlined below. For more information and code samples see the Resol uti onSt r at egy class
in the APl documentation.

8§
Modelling releasable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested
and published together. These libraries form a 'releasable unit', designed and intended to be used as a
whole. It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:
nmodul e- a depends onr el easabl e-unit:part-one: 1.0
nmodul e- b depends onrel easabl e-unit:part-two: 1.1

A build depending on both nodul e- a and nmodul e- b will obtain different versions of libraries within the
releasable unit.

Page 354 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a releasable
unit defined by all libraries that have 'org.gradle’ group. We can force all of these libraries to use a consistent
version:

Example 302. Forcing consistent version for a group of libraries

buil d. gradl e
configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.gradle') {
details.useVersion '1.4'

§
Implementing a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is
maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

In the build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: ' def aul t' .

The 'default’ version is resolved to a specific version via a dependency resolve rule, which looks up the
version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all builds
within the organisation.

Example 303. Using a custom versioning scheme

buil d. gradl e
configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested.group, d
detail s. useVersi on version

def findDefaultVersionlnCatal og(String group, String nane) {

"1.0"

Page 355 of 717

8
Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing a replacement version. This can be useful if a certain dependency version is broken and should
not be used, where a dependency resolve rule causes this version to be replaced with a known good
version. One example of a broken module is one that declares a dependency on a library that cannot be
found in any of the public repositories, but there are many other reasons why a particular module version is
unwanted and a different version is preferred.

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preference to 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that this is different from a forced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy would
still select version 1. 3 if this version was also pulled transitively.

Example 304. Blacklisting a version with a replacement

buil d. gradl e
configurations.all ({
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && details.requested. nane

detail s.useVersion '1.2.1'

8
Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examples include using ' gr oovy' in place of ' gr oovy-al | ', orusing ' | og4j - over-sl f4j' instead of"
. Starting with Gradle 1.5 you can make these substitutions using dependency resolve rules:

Page 356 of 717

Example 305. Changing dependency group and/or name at the resolution

buil d. gradl e
configurations.all ({
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
i f (details.requested. nane == 'groovy-all"') {

detail s. useTarget group: details.requested.group, nane: 'groovy', vel

}
if (details.requested. na == "log4j') {

detail s.useTarget "org.slf4j:1og4j-over-slif4j:1.7.10"

8§
Dependency Substitution Rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of
dependency resolve rules can be implemented with dependency substitution rules. They allow project and
module dependencies to be transparently substituted with specified replacements. Unlike dependency
resolve rules, dependency substitution rules allow project and module dependencies to be substituted
interchangeably.

Adding a dependency substitution rule to a configuration changes the timing of when that configuration is
resolved. Instead of being resolved on first use, the configuration is instead resolved when the task graph is
being constructed. This can have unexpected consequences if the configuration is being further modified
during task execution, or if the configuration relies on modules that are published during execution of another
task.

To explain:

A Confi guration can be declared as an input to any Task, and that configuration can include project
dependencies when it is resolved.

If a project dependency is an input to a Task (via a configuration), then tasks to build the project artifacts
must be added to the task dependencies.

In order to determine the project dependencies that are inputs to a task, Gradle needs to resolve the Confi g

inputs.

Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to perform this
resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency will

Page 357 of 717

never transitively reference a project dependency. This makes it easy to determine the full set of project
dependencies for a configuration through simple graph traversal. With this functionality, Gradle can no
longer make this assumption, and must perform a full resolve in order to determine the project
dependencies.

§
Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one
that is downloaded from an external repository. This could be useful for testing a local, patched version of a
dependency.

The module to be replaced can be declared with or without a version specified.
Example 306. Substituting a module with a project

buil d. gradl e
configurations.all ({
resol uti onStrat egy. dependencySubstitution {
substitute modul e("org.utils:api") with project(":api")
substitute modul e("org.utils:util:2.5") with project(":util")

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).
Dependency substitution rules take care of replacing the module dependency with the project dependency
and wiring up any task dependencies, but do not implicitly include the project in the build.

8
Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project
build. This can be useful to speed up development with a large multi-project build, by allowing a subset of
the project dependencies to be downloaded from a repository rather than being built.

The module to be used as a replacement must be declared with a version specified.
Example 307. Substituting a project with a module

buil d. gradl e
configurations.all {
resol uti onStrat egy. dependencySubstitution {
substitute project(":api") with nodule("org.utils:api:1.3")

When a project dependency has been replaced with a module dependency, that project is still included in the
overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to

Page 358 of 717

build the resolve the depending Conf i gur ati on.

§
Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a
multi-project build. This can be useful for developing a local, patched version of an external dependency or
for building a subset of the modules within a large multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the
group "org.example”, but only if a local project matching the dependency name can be located.

Example 308. Conditionally substituting a dependency

bui I d. gradl e
configurations.all {
resol uti onStrat egy. dependencySubstitution.all { DependencySubstitution depeni
i f (dependency. requested i nstanceof Mdul eConponent Sel ector && dependenc
def targetProject = findProject(": ${dependency. request ed. nodul e}")
if (targetProject !'= null) {
dependency. useTar get target Project

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).
Dependency substitution rules take care of replacing the module dependency with the project dependency,
but do not implicitly include the project in the build.

8§
Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set
for the configuration. A primary use case of this functionality is for developing plugins that make use of
versioned tools that the user might override. By specifying default dependencies, the plugin can use a
default version of the tool only if the user has not specified a particular version to use.

Example 309. Specifying default dependencies on a configuration

buil d. gradl e
configurations {
pl ugi nTool {

def aul t Dependenci es { dependencies ->
dependenci es. add(t hi s. proj ect. dependenci es. create("org. gradl e: ny-uti |

Page 359 of 717

8§
Enabling Ivy dynamic resolve mode

Gradle’s Ivy repository implementations support the equivalent to Ivy’'s dynamic resolve mode. Normally,
Gradle will use the r ev attribute for each dependency definition included in an i vy. xni file. In dynamic
resolve mode, Gradle will instead prefer the r evConst r ai nt attribute over the r ev attribute for a given
dependency definition. If the r evConst r ai nt attribute is not present, the r ev attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A
couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle’s Ivy
repositories. It is not available for Maven repositories, or custom lvy DependencyResol ver
implementations.

Example 310. Enabling dynamic resolve mode

bui | d. gradl e

repositories {
vy {
url "http://repo. nyconpany. com r epo"
resol ve. dynam cMde = true

repositories.wthType(lvyArtifactRepository) {
resol ve. dynam cvbde = true

8§
Component metadata rules

Each module (also called component) has metadata associated with it, such as its group, name, version,
dependencies, and so on. This metadata typically originates in the module’s descriptor. Metadata rules allow
certain parts of a module’s metadata to be manipulated from within the build script. They take effect after a
module’s descriptor has been downloaded, but before it has been selected among all candidate versions.
This makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module’s status scheme. This concept, also
known from Ivy, models the different levels of maturity that a module transitions through over time. The
default status scheme, ordered from least to most mature status, is i nt egrati on, m | est one, r el ease.
Apart from a status scheme, a module also has a (current) status, which must be one of the values in its
status scheme. If not specified in the (Ivy) descriptor, the status defaults to i nt egr ati on for lvy modules
and Maven snapshot modules, and r el ease for Maven modules that aren’t snapshots.

Page 360 of 717

A module’s status and status scheme are taken into consideration when a | at est version selector is
resolved. Specifically, | at est. someSt at us will resolve to the highest module version that has status sone
or a more mature status. For example, with the default status scheme in place, | at est . i nt egr ati on will
select the highest module version regardless of its status (because i nt egrati on is the least mature
status), whereas | at est . r el ease will select the highest module version with status r el ease. Here is
what this looks like in code:

Example 311. 'Latest’ version selector

buil d. gradl e
dependenci es {
configl "org.sanple:client:latest.integration"

config2 "org.sample:client:|atest.rel ease”
}
task listConfigs {
doLast ({
configurations.configl.each { println it.name }
println()

configurations.config2.each { println it.name }

Outputofgradl e -qg |istConfigs
> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates | at est selectors based on a custom status scheme declared in a
component metadata rule that applies to all modules:

Example 312. Custom status scheme

bui I d. gradl e
dependenci es {
config3 "org.sanple:api:latest.silver"
components {
all { Conponent Met adat aDetails details ->
if (details.id.group == "org.sanple" && details.id.nanme == "api ") {
detail s. statusSchene = ["bronze", "silver", "gold", "platinuni]

Component metadata rules can be applied to a specified module. Modules must be specified in the form of
"group:module”.

Page 361 of 717

Example 313. Custom status scheme by module

buil d. gradl e
dependenci es {
configd4 "org.sanple:lib:latest. prod"
components {
wi t hModul e(' org. sanple:lib") { Conponent Met adataDetails details ->
details.statusSchene = ["int", "rc", "prod"]

Gradle can also create component metadata rules utilizing Ivy-specific metadata for modules resolved from
an lvy repository. Values from the lvy descriptor are made available via the | vyModul eDescri pt or

interface.
Example 314. lvy component metadata rule

buil d. gradl e
dependenci es {
configb "org.sample:lib:latest.rc"
components {
wi t hMbdul e("org. sanpl e: i b") { Conponent Met adat aDetails details, |vyMdu
if (ivyModul e.branch == "testing') {

details.status = "rc

Note that any rule that declares specific arguments must always include a Conponent Met adat aDet ai | s
argument as the first argument. The second Ivy metadata argument is optional.

Component metadata rules can also be defined using a rule source object. A rule source object is any object
that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:
must return void.
must have Conponent Met adat aDet ai | s as the first argument.

may have an additional parameter of type | vyModul eDescri pt or.

Page 362 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 315. Rule source component metadata rule

buil d. gradl e
dependenci es {
configb "org.sanpl e: api : | atest. gol d"
components {
wi t hModul e(' org. sanpl e: api ', new Custonft at usRul e())

}
}
cl ass CustonttatusRul e {
@ut at e
voi d set St at usSchene(Conponent Met adat aDetails details) {
detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]
}
}
8§

Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple
versions are available that match a version selector. Rules are applied against every available version and
allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that
does not satisfy conditions set by the rule. Examples include:

For a dynamic version like '1.+' certain versions may be explicitly rejected from selection

For a static version like '1.4" an instance may be rejected based on extra component metadata such as the
Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the Conponent Sel ecti onRul es object. Each rule configured will be called with a
Conponent Sel ecti on object as an argument which contains information about the candidate version
being considered. Calling Conponent Sel ection.reject(]ava.lang. String) causes the given
candidate version to be explicitly rejected, in which case the candidate will not be considered for the
selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic
version to choose the next best candidate.

Page 363 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 316. Component selection rule

buil d. gradl e
configurations {
rejectConfig {
resol utionStrategy {
conponent Sel ecti on {

all { Component Sel ection selection ->
if (selection.candidate.group == 'org.sanple' && selection.ci
sel ection.reject("version 1.5 is broken for 'org.sanple:i

dependenci es {
rejectConfig "org.sanple:api:1.+"

Note that version selection is applied starting with the highest version first. The version selected will be the
first version found that all component selection rules accept. A version is considered accepted no rule
explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
"group:module”.

Example 317. Component selection rule with module target

buil d. gradl e
configurations {
target Config {
resol utionStrategy {
conponent Sel ecti on {
wi t hModul e(" org. sanpl e: api ") { Conponent Sel ecti on sel ection ->
if (selection.candidate.version == "1.5") {
sel ection.reject("version 1.5 is broken for 'org.sanple:

Component selection rules can also consider component metadata when selecting a version. Possible
metadata arguments that can be considered are Conponent Met adat a and | vyModul eDescri pt or.

Page 364 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 318. Component selection rule with metadata

buil d. gradl e
configurations {
nmet adat aRul esConfi g {
resol utionStrategy {
conponent Sel ecti on {

all { Component Sel ection sel ection, Conponent Met adata netadata -:
if (selection.candidate.group == 'org.sanple'" && metadata. st
sel ection.reject("don't use experinental candidates from

wi t hModul e(' org. sanpl e: api ') { Conponent Sel ecti on sel ection, vyl
if (descriptor.branch !'= "rel ease" && netadata.status !="m|
sel ection.reject("' org.sanpl e:api' nust have testing bral

Note that a Conponent Sel ect i on argument is always required as the first parameter when declaring a
component selection rule with additional vy metadata parameters, but the metadata parameters can be
declared in any order.

Lastly, component selection rules can also be defined using a rule source object. A rule source object is any
object that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:
must return void.
must have Conmponent Sel ect i on as the first argument.

may have additional parameters of type Conponent Vet adat a and/or | vyNMbdul eDescri ptor.

Page 365 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 319. Component selection rule using a rule source object

buil d. gradl e
cl ass Reject TestBranch {
@t at e
voi d eval uat eRul e(Conponent Sel ecti on sel ection, |vyMdul eDescriptor ivy) {
if (ivy.branch == "test") {

selection.reject("reject test branch")

configurations {
rul eSourceConfig {
resol utionStrategy {
component Sel ecti on {
all new Rej ect Test Branch()

8§
Module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A
good example when a new library replaced a legacy one is the "google-collections” -> "guava" migration.
The team that created google-collections decided to change the module name from
"com.google.collections:google-collections" into "com.google.guava:guava". This is a legal scenario in the
industry: teams need to be able to change the names of products they maintain, including the module
coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the "google-collections" -> "guava" scenario. It
may happen that both libraries are pulled into the same dependency graph. For example, "our" project
depends on guava but some of our dependencies pull in a legacy version of google-collections. This can
cause runtime errors, for example during test or application execution. Gradle does not automatically resolve
the google-collections VS guava conflict because it is not considered as a "version conflict”. It's because the
module coordinates for both libraries are completely different and conflict resolution is activated when
"group” and "name" coordinates are the same but there are different versions available in the dependency
graph (for more info, refer to the section on conflict resolution). Traditional remedies to this problem are:

Declare exclusion rule to avoid pulling in "google-collections” to graph. It is probably the most popular
approach.

Avoid dependencies that pull in legacy libraries.

Page 366 of 717

Upgrade the dependency version if the new version no longer pulls in a legacy library.
Downgrade to "google-collections”. It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve
the google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is
possible to declare that certain module was replaced by other. This enables organisations to include the
information about module replacement in the corporate plugin suite and resolve the problem holistically for
all Gradle-powered projects in the enterprise.

Example 320. Declaring module replacement

buil d. gradl e
dependenci es {
nmodul es {

nmodul e(" com googl e. col | ecti ons: googl e-col | ections") {
r epl acedBy("com googl e. guava: guava")

For more examples and detailed API, refer to the DSL reference for Conponent Vet adat aHandl er .

What happens when we declare that "google-collections" are replaced by "guava"? Gradle can use this
information for conflict resolution. Gradle will consider every version of "guava" newer/better than any
version of "google-collections". Also, Gradle will ensure that only guava jar is present in the classpath /
resolved file list. Note that if only "google-collections" appears in the dependency graph (e.g. no "guava")
Gradle will not eagerly replace it with "guava". Module replacement is an information that Gradle uses for
resolving conflicts. If there is no conflict (e.g. only "google-collections" or only "guava" in the graph) the
replacement information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is
possible to declare that multiple modules are replaced by a single module.

Page 367 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

Troubleshooting Dependency Resolution

Managing large dependency graphs can be challenging. This section describes techniques for
troubleshooting issues you might encounter in your project.

8§
Putting the version in the filename (version the jar)

The version of a library must be part of the filename. While the version of a jar is usually in the Manifest file,
it isn’'t readily apparent when you are inspecting a project. If someone asks you to look at a collection of 20
jar files, which would you prefer? A collection of files with names like conmons- beanutil s-1.3.jar ora
collection of files with names like spri ng. j ar ? If dependencies have file names with version numbers you

can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might
be a project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of
Hibernate on her machine to fix a critical security bug but forgets to notify others in the team of this change.
She may address the security bug successfully, but she also may have introduced subtle bugs into a
codebase that was using a how-deprecated feature from Hibernate. Weeks later there is an exception on the
integration machine which can’t be reproduced on anyone’s machine. Multiple developers then spend days
on this issue only finally realising that the error would have been easy to uncover if they knew that Hibernate
had been upgraded from 2.5 to 3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This
practice also reduces the potential for error.

8§
Resolving version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you
don't use transitive dependency management, version conflicts are undetected and the often accidental
order of the classpath will determine what version of a dependency will win. On a large project with many
developers changing dependencies, successful builds will be few and far between as the order of
dependencies may directly affect whether a build succeeds or fails (or whether a bug appears or disappears
in production).

If you haven’t had to deal with the curse of conflicting versions of jars on a classpath, here is a small
anecdote of the fun that awaits you. In a large project with 30 submodules, adding a dependency to a

Page 368 of 717

subproject changed the order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build
continued to work, developers were starting to notice all sorts of surprising (and surprisingly awful) bugs in
production. Worse yet, this unintentional downgrade of Spring introduced several security vulnerabilities into
the system, which now required a full security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You
might also want to learn where conflicting versions are used and consolidate on a particular version of a
dependency across your organization. With a good conflict reporting tool like Gradle, that information can be
used to communicate with the entire organization and standardize on a single version. If you think version
conflicts don’t happen to you, think again. It is very common for different first-level dependencies to rely on a
range of different overlapping versions for other dependencies, and the JVM doesn't yet offer an easy way to
have different versions of the same jar in the classpath (see the section called “Dependency management
and Java”).

Gradle offers the following conflict resolution strategies:

Newest: The newest version of the dependency is used. This is Gradle’s default strategy, and is often an
appropriate choice as long as versions are backwards-compatible.

Fail: A version conflict results in a build failure. This strategy requires all version conflicts to be resolved
explicitly in the build script. See Resol uti onStrat egy for details on how to explicitly choose a particular

version.

While the strategies introduced above are usually enough to solve most conflicts, Gradle provides more
fine-grained mechanisms to resolve version conflicts:

Configuring a first level dependency as forced. This approach is useful if the dependency in conflict is
already a first level dependency. See examples in DependencyHandl er .

Configuring any dependency (transitive or not) as forced. This approach is useful if the dependency in
conflict is a transitive dependency. It also can be used to force versions of first level dependencies. See
examples in Resol uti onStrat egy.

Configuring dependency resolution to prefer modules that are part of your build (transitive or not). This
approach is useful if your build contains custom forks of modules (as part of Authoring Multi-Project Builds or
as include in Composite builds). See examples in Resol ut i onSt r at egy.

Dependency resolve rules are an incubating feature give you fine-grained control over the version selected
for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such
reports are another feature of dependency management.

Page 369 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

8§
Using dynamic versions and changing modules

There are many situations when you want to use the latest version of a particular dependency, or the latest
in a range of versions. This can be a requirement during development, or you may be developing a library
that is designed to work with a range of dependency versions. You can easily depend on these constantly
changing dependencies by using a dynamic version. A dynamic version can be either a version range (e.g. 2
) or it can be a placeholder for the latest version available (e.g. | at est . i nt egrati on).

Alternatively, sometimes the module you request can change over time, even for the same version. An
example of this type of changing module is a Maven SNAPSHOT module, which always points at the latest
artifact published. In other words, a standard Maven snapshot is a module that never stands still so to speak,
it is a “changing module”.

The main difference between a dynamic version and a changing module is that when you resolve a
dynamic version, you'll get the real, static version as the module name. When you resolve a changing
module, the artifacts are named using the version you requested, but the underlying artifacts may change
over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the
default cache modes using command line options. You can also change the cache expiry times in your build
programmatically using the resolution strategy.

§
Controlling dependency caching programmatically
You can fine-tune certain aspects of caching using the Resol uti onSt r at egy for a configuration.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for a dynamic version, use:

Example 321. Dynamic version cache control

buil d. gradl e
configurations.all {
resol uti onStrat egy. cacheDynani cVer si onsFor 10, 'ninutes'

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:

Example 322. Changing module cache control

bui I d. gradl e
configurations.all {
resol uti onStrat egy. cacheChangi ngModul esFor 4, 'hours'

Page 370 of 717

For more details, take a look at the API documentation for Resol uti onStrat egy.

8§
Controlling dependency caching from the command line

8
Avoiding network access with offline mode

The - - of fI i ne command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never attempt to
access the network to perform dependency resolution. If required modules are not present in the
dependency cache, build execution will fail.

§
Forcing all dependencies to be re-resolved

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured
repositories. Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was
published incorrectly. To refresh all dependencies in the dependency cache, use the - - r ef r esh- depender

option on the command line.

The - -refresh-dependenci es option tells Gradle to ignore all cached entries for resolved modules and
artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions
recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the
previously downloaded artifacts are valid before downloading again. This is done by comparing published
SHAL1 values in the repository with the SHAL values for existing downloaded artifacts.

Page 371 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Extending the build

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an
action closure. We have seen these in Build Script Basics. For this type of task, the action closure
determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build
script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides
some properties which you can use to configure the behaviour. We have seen these in Authoring Tasks.
Most Gradle plugins use enhanced tasks. With enhanced tasks, you don’t need to implement the task
behaviour as you do with simple tasks. You simply declare the task and configure the task using its
properties. In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly
across different builds.

The behaviour and properties of an enhanced task is defined by the task’s class. When you declare an
enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in
pretty much any language you like, provided it ends up compiled to bytecode. In our examples, we are going
to use Groovy as the implementation language. Groovy, Java or Kotlin are all good choices as the language
to use to implement a task class, as the Gradle API has been designed to work well with these languages. In
general, a task implemented using Java or Kotlin, which are statically typed, will perform better than the
same task implemented using Groovy.

8§
Packaging a task class

There are several places where you can put the source for the task class.

Build script
You can include the task class directly in the build script. This has the benefit that the task class is
automatically compiled and included in the classpath of the build script without you having to do anything.
However, the task class is not visible outside the build script, and so you cannot reuse the task class
outside the build script it is defined in.

bui | dSr c project
You can put the source for the task class in the root ProjectDi r/ buil dSrc/ src/ mai n/ groovy
directory. Gradle will take care of compiling and testing the task class and making it available on the
classpath of the build script. The task class is visible to every build script used by the build. However, it is

Page 373 of 717

not visible outside the build, and so you cannot reuse the task class outside the build it is defined in.

Using the bui | dSr ¢ project approach separates the task declaration - that is, what the task should do -

from the task implementation - that is, how the task does it.

See Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR which

you can then use in multiple builds and share with others. Generally, this JAR might include some

custom plugins, or bundle several related task classes into a single library. Or some combination of the

two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we will look

at creating a standalone project.

8§
Writing a simple task class

To implement a custom task class, you extend Def aul t Task.

Example 323. Defining a custom task

bui | d. gradl e
cl ass GeetingTask extends Default Task {

}

This task doesn’t do anything useful, so let's add some behaviour. To do so, we add a method to the task

and mark it with the TaskAct i on annotation. Gradle will call the method when the task executes. You don’t

have to use a method to define the behaviour for the task. You could, for instance, call doFi r st () or doLas

with a closure in the task constructor to add behaviour.

Example 324. A hello world task

bui | d. gradl e
cl ass GeetingTask extends Default Task {
@askAction

def greet() {
println "hello from G eetingTask’

task hello(type: G eetingTask)

Outputofgradl e -q hello
> gradle -q hello
hell o from Greeti ngTask

Page 374 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskAction.html

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a
task, you can set the properties or call methods on the task object. Here we add a gr eet i ng property, and
set the value when we declare the gr eet i ng task.

Example 325. A customizable hello world task

bui I d. gradl e
cl ass GreetingTask extends Defaul t Task {
String greeting = 'hello from G eetingTask'

@askAction
def greet() {
println greeting

task hello(type: GreetingTask)

task greeting(type: GeetingTask) {
greeting = 'greetings from G eeti ngTask’

Outputofgradl e -g hell o greeting
> gradle -q hello greeting

hell o from Greeti ngTask
greetings from G eetingTask

8§
A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others. This project
is simply a Groovy project that produces a JAR containing the task class. Here is a simple build script for the
project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 326. A build for a custom task

buil d. gradl e
apply plugin: 'groovy'

dependenci es {

conpi l e gradl eApi ()
conpi |l e | ocal Groovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the ‘“-all’
distribution of Gradle.

Page 375 of 717

We just follow the convention for where the source for the task class should go.

Example 327. A custom task

src/ mai n/ gr oovy/ or g/ gradl e/ Gr eeti ngTask. gr oovy
package org.gradle

i mport org.gradl e. api. Defaul t Task
i nport org.gradle.api.tasks. TaskAction

class G eetingTask extends Defaul t Task {
String greeting = "hello from G eetingTask’

@askActi on
def greet() {
println greeting

8
Using your task class in another project

To use a task class in a build script, you need to add the class to the build script’'s classpath. To do this, you

use a bui l dscript { } block, as described in the section called “External dependencies for the build

script”. The following example shows how you might do this when the JAR containing the task class has

been published to a local repository:
Example 328. Using a custom task in another project

bui | d. gradl e
bui | dscri pt {
repositories {
maven {
url uri('../repo")

}

dependenci es {

classpath group: 'org.gradle', nanme: 'custonPlugin',

version: '1.0- SNAPSHOT

task greeting(type: org.gradle. GeetingTask) {
greeting = ' howdy!'

Page 376 of 717

8
Writing tests for your task class

You can use the Proj ect Bui | der class to create Proj ect instances to use when you test your task
class.

Example 329. Testing a custom task

src/test/groovy/org/gradl e/ GeetingTaskTest. groovy
cl ass GreetingTaskTest {

@est

public void canAddTaskToProject () {
Project project = ProjectBuilder.builder().build()
def task = project.task('greeting', type: G eetingTask)
assert True(task i nstanceof G eetingTask)

8
Incremental tasks

Note: Incremental tasks are an incubating feature.

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),
discussions within the Gradle community have produced superior ideas for exposing the information
about changes to task implementors to what is described below. As such, the API for this feature will
almost certainly change in upcoming releases. However, please do experiment with the current
implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see Appendix C), exists
for this purpose of ensuring high quality final implementations through incorporation of early user
feedback.

With Gradle, it's very simple to implement a task that is skipped when all of its inputs and outputs are up to
date (see the section called “Up-to-date checks (AKA Incremental Build)”). However, there are times when
only a few input files have changed since the last execution, and you'd like to avoid reprocessing all of the
unchanged inputs. This can be particularly useful for a transformer task, that converts input files to output
files on a 1:1 basis.

If you'd like to optimise your build so that only out-of-date inputs are processed, you can do so with an
incremental task.

Page 377 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html

8
Implementing an incremental task

For a task to process inputs incrementally, that task must contain an incremental task action. This is a task
action method that contains a single | ncr enent al Taskl nput s parameter, which indicates to Gradle that
the action will process the changed inputs only.

The incremental task action may supply an
I ncrenment al Taskl nputs. out Of Dat e(org. gradl e. api . Acti on) action for processing any input file
that is out-of-date, and a | ncrenent al Taskl nputs. renoved(org. gradl e. api . Acti on) action that

executes for any input file that has been removed since the previous execution.
Example 330. Defining an incremental task action

buil d. gradl e

cl ass I ncrenment al ReverseTask extends Defaul t Task {
@nputDirectory
def File inputDir

@ut put Di rectory
def File outputDr

@ nput
def inputProperty

@askActi on
voi d execut e(l ncrenental Taskl nputs inputs) {
println inputs.increnental ? ' CHANGED i nputs consi dered out of date'
"ALL inputs considered out of date'
if (Yinputs.increnental)
project.delete(outputDir.listFiles())

i nputs. out O Date { change ->
println "out of date: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFile.text = change.file.text.reverse()

i nputs.removed { change ->
println "renoved: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFil e. del ete()

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ i ncrenent al Task
in the ‘-all’ distribution of Gradle.

Page 378 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

If for some reason the task is not run incremental, e.g. by running with - - r er un-t asks, only the outOfDate
action is executed, even if there were deleted input files. You should consider handling this case at the
beginning, as is done in the example above.

For a simple transformer task like this, the task action simply needs to generate output files for any
out-of-date inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

8
Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context
since that execution are to input files, then Gradle is able to determine which input files need to be
reprocessed by the task. In this case, the

I ncrement al Taskl nput s. out Of Dat e(or g. gr adl e. api . Acti on) action will be executed for any
input file that was added or modified, and the

I ncrenent al Taskl nputs. renoved(org. gradl e. api . Action) action will be executed for any

removed input file.

However, there are many cases where Gradle is unable to determine which input files need to be
reprocessed. Examples include:

There is no history available from a previous execution.

You are building with a different version of Gradle. Currently, Gradle does not use task history from a
different version.

An upToDat eWhen criteria added to the task returns f al se.
An input property has changed since the previous execution.
One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider all of the input files to be out Of Date. The
I ncr enent al Taskl nput s. out Of Dat e(or g. gradl e. api . Acti on) action will be executed for every
input file, and the | ncrenent al Taskl nput s. renoved(org. gradl e. api . Acti on) action will not be

executed at all.

You can check if Gradle was able to determine the incremental changes to input files with
I ncrenment al Taskl nputs.islncrenmental ().

8§
An incremental task in action

Given the incremental task implementation above, we can explore the various change scenarios by
example. Note that the various mutation tasks (‘updatelnputs’, 'removelnput’, etc) are only present for
demonstration purposes: these would not normally be part of your build script.

Page 379 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

First, consider the | ncr enent al Rever seTask executed against a set of inputs for the first time. In this
case, all inputs will be considered “out of date”:

Example 331. Running the incremental task for the first time

bui I d. gradl e
task increnmental Reverse(type: |ncrenental ReverseTask) {
inputDir = file('inputs")
outputDir = file("$buildDi r/outputs")
i nput Property = project.properties['tasklnputProperty'] ?: 'original’

Build layout
i ncrenent al Task/
bui | d. gradl e
i nput s/
1.txt
2. txt
3. txt

Output of gradl e -qg i ncrenent al Rever se
> gradl e -q increnental Reverse

ALL inputs considered out of date
out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are
reported to the task action:

Example 332. Running the incremental task with unchanged inputs

Outputof gradl e -qg i ncrenent al Reverse
> gradle -q increnental Reverse

When an input file is modified in some way or a new input file is added, then re-executing the task results in
those files being reported to | ncr enent al Taskl nput s. out O Dat e(or g. gr adl e. api . Acti on):

Page 380 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)

Example 333. Running the incremental task with updated input files

buil d. gradl e
task updatel nputs() {
doLast {
file("inputs/1l.txt"').text = 'Changed content for existing file 1.
file("inputs/4.txt').text = 'Content for new file 4.'
}
}

Output of gradl e -g updat el nputs i ncrenent al Reverse
> gradl e -q updatel nputs increnental Reverse
CHANGED i nputs consi dered out of date

out of date: 1.txt

out of date: 4.txt

When an existing input file is removed, then re-executing the task results in that file being reported to
I ncrenment al Taskl nput s. renmoved(org. gradl e. api . Acti on):

Example 334. Running the incremental task with an input file removed

buil d. gradl e
task renovel nput () {
doLast {

file("inputs/3.txt').delete()

Output of gradl e -qg renovel nput increnental Reverse
> gradl e -q renovel nput increnental Reverse
CHANGED i nputs consi dered out of date

removed: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of
date. In this case, all input files are reported to the
I ncrement al Taskl nput s. out Of Dat e(or g. gradl e. api . Acti on) action, and no input files are

reported to the | ncr enent al Taskl nput s. renoved(org. gradl e. api . Acti on) action:

Page 381 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Example 335. Running the incremental task with an output file removed

buil d. gradl e
task renoveQut put () {
doLast {

file("$buildDir/outputs/1.txt").delete()

Outputof gradl e -g renoveCQut put increnental Reverse
> gradl e -q renoveCQut put increnental Reverse

ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted the task
outputs, so all input files are assumed to be out of date. So similar to the changed output file example, all
input files are reported to the | ncrenent al Taskl nputs. out Of Dat e(or g. gradl e. api . Acti on)
action, and no input files are reported to the

I ncr enent al Taskl nput s. renmoved(or g. gradl e. api . Acti on) action:

Example 336. Running the incremental task with an input property changed

Output of gradl e -qg - Pt askl nput Property=changed i ncrenent al Rever se
> gradl e -q -Ptaskl nput Property=changed i ncrenent al Rever se

ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

8
Storing incremental state for cached tasks

Using Gradle’s | ncr errent al Taskl nput s is not the only way to create tasks that only works on changes
since the last execution. Tools like the Kotlin compiler provide incrementality as a built-in feature. The way
this is typically implemented is that the tool stores some analysis data about the state of the previous
execution in some file. If such state files are relocatable, then they can be declared as outputs of the task.
This way when the task’s results are loaded from cache, the next execution can already use the analysis
data loaded from cache, too.

However, if the state files are non-relocatable, then they can’t be shared via the build cache. Indeed, when
the task is loaded from cache, any such state files must be cleaned up to prevent stale state to confuse the
tool during the next execution. Gradle can ensure such stale files are removed if they are declared via t ask.
or a property is marked with the @.ocal St at e annotation.

Page 382 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

8
The Worker API

Note: The Worker API is an incubating feature.

As can be seen from the discussion of incremental tasks, the work that a task performs can be viewed as
discrete units (i.e. a subset of inputs that are transformed to a certain subset of outputs). Many times, these
units of work are highly independent of each other, meaning they can be performed in any order and simply
aggregated together to form the overall action of the task. In a single threaded execution, these units of work
would execute in sequence, however if we have multiple processors, it would be desirable to perform
independent units of work concurrently. By doing so, we can fully utilize the available resources at build time
and complete the activity of the task faster.

The Worker API provides a mechanism for doing exactly this. It allows for safe, concurrent execution of
multiple items of work during a task action. But the benefits of the Worker API are not confined to
parallelizing the work of a task. You can also configure a desired level of isolation such that work can be
executed in an isolated classloader or even in an isolated process. Furthermore, the benefits extend beyond
even the execution of a single task. Using the Worker API, Gradle can begin to execute tasks in parallel by
default. In other words, once a task has submitted its work to be executed asynchronously, and has exited
the task action, Gradle can then begin the execution of other independent tasks in parallel, even if those
tasks are in the same project.

8§
Using the Worker API

In order to submit work to the Worker API, two things must be provided: an implementation of the unit of
work, and a configuration for the unit of work. The implementation is simply a class that extends j ava. | ang.
. This class should have a constructor that is annotated with j avax. i nject.|nject and accepts
parameters that configure the class for a single unit of work. When a unit of work is submitted to the
Wor ker Execut or, an instance of this class will be created and the parameters configured for the unit of
work will be passed to the constructor.

Page 383 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html

Example 337. Creating a unit of work implementation
buil d. gradl e

i mport org.gradl e. workers. Wr ker Execut or

i mport javax.inject.lnject

cl ass ReverseFile inplenents Runnable {
File fil eToReverse
File destinationFile

@ nj ect

public ReverseFile(File fileToReverse, File destinationFile) {
this.fileToReverse = fil eToReverse
this.destinationFile = destinationFile

@verride
public void run() {
destinationFile.text = fil eToReverse.text.reverse()

The configuration of the worker is represented by a \WWor ker Conf i gur ati on and is set by configuring an
instance of this object at the time of submission. However, in order to submit the unit of work, it is necessary
to first acquire the Vr ker Execut or . To do this, a constructor should be provided that is annotated with j a\
and accepts a VWr ker Execut or parameter. Gradle will inject the instance of \\r ker Execut or at runtime

when the task is created.

Page 384 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html

Example 338. Submitting a unit of work for execution

buil d. gradl e
cl ass ReverseFil es extends SourceTask {
final Worker Execut or wor ker Execut or

@out put Di rectory
File outputDr

@ nj ect
public ReverseFil es(Wrker Execut or wor ker Execut or) {
t hi s. wor ker Execut or = wor ker Execut or

@askActi on
voi d reverseFiles() {

source.files.each { file ->
wor ker Execut or . subm t (ReverseFi |l e. cl ass) { Wirker Configuration confi

config.isolationMbde = |sol ati onivbde. NONE

config.parans file, project.file("${outputDir}/${file.nanme}")

Note that one element of the \Wor ker Conf i gur at i on is the par anms property. These are the parameters
passed to the constructor of the unit of work implementation for each item of work submitted. Any
parameters provided to the unit of work must be j ava. i 0. Seri al i zabl e.

Once all of the work for a task action has been submitted, it is safe to exit the task action. The work will be
executed asynchronously and in parallel (up to the setting of max- wor ker s). Of course, any tasks that are
dependent on this task (and any subsequent task actions of this task) will not begin executing until all of the
asynchronous work completes. However, other independent tasks that have no relationship to this task can

begin executing immediately.

If any failures occur while executing the asynchronous work, the task will fail and a
Wor ker Execut i onExcepti on will be thrown detailing the failure for each failed work item. This will be

treated like any failure during task execution and will prevent any dependent tasks from executing.

In some cases, however, it might be desirable to wait for work to complete before exiting the task action.
This is possible using the Wor ker Execut or . awai t () method. As in the case of allowing the work to
complete asynchronously, any failures that occur while executing an item of work will be surfaced as a
Wor ker Execut i onExcept i on thrown from the Wor ker Execut or . awai t () method.

Page 385 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html#await--

Note: Note that Gradle will only begin running other independent tasks in parallel when a task has
exited a task action and returned control of execution to Gradle. When
Wor ker Execut or. awal t () is used, execution does not leave the task action. This means that
Gradle will not allow other tasks to begin executing and will wait for the task action to complete
before doing so.

Example 339. Waiting for asynchronous work to complete

buil d. gradl e

source.files.each { file ->
wor ker Execut or . submi t (ReverseFil e. class) { config ->
config.isolati onMbde = |sol ati onbde. NONE

config.paranms file, project.file("${outputDir}/${file.nanme}")

wor ker Execut or . awai t ()
| ogger.lifecycle("Created ${outputDir.listFiles().size()} reversed files in ${pri

8§
Isolation Modes

Gradle provides three isolation modes that can be configured on a unit of work and are specified using the
| sol ati onMbde enum:

IsolationMode.NONE
This states that the work should be run in a thread with a minimum of isolation. For instance, it will share
the same classloader that the task is loaded from. This is the fastest level of isolation.

IsolationMode.CLASSLOADER
This states that the work should be run in a thread with an isolated classloader. The classloader will have
the classpath from the classloader that the unit of work implementation class was loaded from as well as
any additional classpath entries added through
Wor ker Confi gurati on. cl asspat h(j ava. |l ang. I terabl e).

IsolationMode.PROCESS

This states that the work should be run with a maximum level of isolation by executing the work in a
separate process. The classloader of the process will use the classpath from the classloader that the unit
of work was loaded from as well as any additional classpath entries added through
Wor ker Configuration.classpath(java.lang.|terable). Furthermore, the process will be a
Worker Daemon which will stay alive and can be reused for future work items that may have the same
requirements. This process can be configured with different settings than the Gradle JVM using
Wor ker Confi guration. forkOptions(org.gradl e. api.Action).

Page 386 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

8§
Worker Daemons

When using | sol at i onMbde. PROCESS, gradle will start a long-lived Worker Daemon process that can be
reused for future work items.

Example 340. Submitting an item of work to run in a worker daemon

buil d. gradl e
wor ker Execut or . submi t (ReverseFi |l e. cl ass) { WrkerConfiguration config ->

config.isolationMbde = | sol ati onMbde. PROCESS

config.forkOptions { JavaForkOptions options ->
opti ons. maxHeapSi ze = "512nf
options. systenProperty "org.gradl e. sanpl e. showri | eSi ze", "true"

config.parans file, project.file("${outputDir}/${file.nane}")

When a unit of work for a Worker Daemon is submitted, Gradle will first look to see if a compatible, idle
daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as busy. If not, it will
start a new daemon. When evaluating compatibility, Gradle looks at a number of criteria, all of which can be
controlled through Wor ker Conf i gurati on. f or kOpti ons(org. gradl e. api . Action).

executable
A daemon is considered compatible only if it uses the same java executable.

classpath
A daemon is considered compatible if its classpath contains all of the classpath entries requested. Note
that a daemon is considered compatible if it has more classpath entries in addition to those requested.

heap settings
A daemon is considered compatible if it has at least the same heap size settings as requested. In other
words, a daemon that has higher heap settings than requested would be considered compatible.

jvm arguments
A daemon is considered compatible if it has set all of the jvm arguments requested. Note that a daemon
is considered compatible if it has additional jym arguments beyond those requested (except for
arguments treated specially such as heap settings, assertions, debug, etc).

system properties
A daemon is considered compatible if it has set all of the system properties requested with the same
values. Note that a daemon is considered compatible if it has additional system properties beyond those
requested.

Page 387 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

environment variables
A daemon is considered compatible if it has set all of the environment variables requested with the same
values. Note that a daemon is considered compatible if it has more environment variables in addition to
those requested.

bootstrap classpath
A daemon is considered compatible if it contains all of the bootstrap classpath entries requested. Note
that a daemon is considered compatible if it has more bootstrap classpath entries in addition to those
requested.

debug
A daemon is considered compatible only if debug is set to the same value as requested (true or false).

enable assertions
A daemon is considered compatible only if enable assertions is set to the same value as requested (true
or false).

default character encoding
A daemon is considered compatible only if the default character encoding is set to the same value as
requested.

Worker daemons will remain running until either the build daemon that started them is stopped, or system
memory becomes scarce. When available system memory is low, Gradle will begin stopping worker
daemons in an attempt to minimize memory consumption.

8§
Re-using logic between task classes

There are different ways to re-use logic between task classes. The easiest case is when you can extract the
logic you want to share in a separate method or class and then use the extracted piece of code in your
tasks. For example, the Copy task re-uses the logic of the Proj ect . copy(org. gradl e. api . Acti on)
method. Another option is to add a task dependency on the task which outputs you want to re-use. Other
options include using task rules or the worker API.

Page 388 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different
projects and builds. Gradle allows you to implement your own plugins, so you can reuse your build logic, and
share it with others.

You can implement a Gradle plugin in any language you like, provided the implementation ends up compiled
as bytecode. In our examples, we are going to use Groovy as the implementation language. Groovy, Java or
Kotlin are all good choices as the language to use to implement a plugin, as the Gradle APl has been
designed to work well with these languages. In general, a plugin implemented using Java or Kotlin, which
are statically typed, will perform better than the same plugin implemented using Groovy.

8§
Packaging a plugin

There are several places where you can put the source for the plugin.

Build script
You can include the source for the plugin directly in the build script. This has the benefit that the plugin is
automatically compiled and included in the classpath of the build script without you having to do anything.
However, the plugin is not visible outside the build script, and so you cannot reuse the plugin outside the
build script it is defined in.

bui | dSr c project
You can put the source for the plugin in the root ProjectDir/buil dSrc/src/min/groovy
directory. Gradle will take care of compiling and testing the plugin and making it available on the
classpath of the build script. The plugin is visible to every build script used by the build. However, it is not
visible outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone project
You can create a separate project for your plugin. This project produces and publishes a JAR which you
can then use in multiple builds and share with others. Generally, this JAR might include some plugins, or
bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at
creating a standalone project.

Page 389 of 717

8
Writing a simple plugin

To create a Gradle plugin, you need to write a class that implements the Pl ugi n interface. When the plugin
is applied to a project, Gradle creates an instance of the plugin class and calls the instance’s
Pl ugi n. appl y(T) method. The project object is passed as a parameter, which the plugin can use to
configure the project however it needs to. The following sample contains a greeting plugin, which adds a hel
task to the project.

Example 341. A custom plugin

bui | d. gradl e
class GreetingPlugin inplenents Plugin<Project> {
voi d appl y(Project project) {
project.task(' hello") {
doLast {
println "Hello fromthe G eetingPlugin'

apply plugin: GeetingPlugin

Outputofgradl e -q hello
> gradle -q hello
Hello fromthe G eetingPlugin

One thing to note is that a new instance of a plugin is created for each project it is applied to. Also note that
the Pl ugi n class is a generic type. This example has it receiving the Pr o] ect type as a type parameter. A
plugin can instead receive a parameter of type Setti ngs, in which case the plugin can be applied in a
settings script, or a parameter of type G- adl e, in which case the plugin can be applied in an initialization

script.

8§
Making the plugin configurable

Most plugins need to obtain some configuration from the build script. One method for doing this is to use
extension objects. The Gradle Proj ect has an associated Ext ensi onCont ai ner object that contains all
the settings and properties for the plugins that have been applied to the project. You can provide
configuration for your plugin by adding an extension object to this container. An extension object is simply a
Java Bean compliant class. Groovy is a good language choice to implement an extension object because
plain old Groovy objects contain all the getter and setter methods that a Java Bean requires. Java and Kotlin
are other good choices.

Page 390 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Let's add a simple extension object to the project. Here we add a gr eet i ng extension object to the project,

which allows you to configure the greeting.

Example 342. A custom plugin extension

buil d. gradl e
cl ass GreetingPl ugi nExt ensi on {

String message = 'Hello from G eetingPl ugin'
}

class GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {

def extension = project.extensions.create(' greeting' , GeetingPluginExtel

project.task(' hello") {
doLast {
println extension. nessage

apply plugin: GeetingPlugin

greeting. nessage = 'H from G adl e’

Outputofgradl e -q hello
> gradle -q hello
H from Gadle

In this example, Gr eet i ngPl ugi nExt ensi on is a plain old Groovy object with a property called nessage.
The extension object is added to the plugin list with the name greeti ng. This object then becomes
available as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a
configuration closure block for each extension object, so you can group settings together. The following
example shows you how this works.

Page 391 of 717

Example 343. A custom plugin with configuration closure

buil d. gradl e

cl ass GreetingPl ugi nExt ensi on {
String nessage
String greeter

class GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
def extension = project.extensions.create(' greeting', GeetingPluginExtel
project.task(' hello") {
doLast {
println "${extension. nessage} from ${extension.greeter}"

apply plugin: GeetingPlugin

greeting {
message = 'H'
greeter = 'Gadle
}

Outputofgradl e -q hello
> gradle -q hello
H from Gadle

In this example, several settings can be grouped together within the gr eeti ng closure. The name of the
closure block in the build script (gr eet i ng) needs to match the extension object name. Then, when the
closure is executed, the fields on the extension object will be mapped to the variables within the closure
based on the standard Groovy closure delegate feature.

8§
Working with files in custom tasks and plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input
configuration for file locations. To do this, you can leverage the Project.file(]ava.lang. Ooj ect)
method to resolve values to files as late as possible.

Page 392 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 344. Evaluating file properties lazily

buil d. gradl e
class G eetingToFil eTask extends Defaul t Task {

def destination

File getDestination() {
project.fil e(destination)

@askActi on

def greet() {
def file = getDestination()
file.parentFile.nkdirs()
file.wite 'Hello!’

task greet(type: GeetingToFileTask) ({
destination = { project.greetingFile }

task sayG eeting(dependsOn: greet) {
doLast {
println file(greetingFile).text

ext.greetingFile = "$buildDir/hello.txt"

Outputofgradl e -gq sayGreeting
> gradle -q sayGeeting
Hel | o!

In this example, we configure the gr eet task desti nati on property as a closure, which is evaluated with
the Project.file(java.lang. Obj ect) method to turn the return value of the closure into a Fil e
object at the last minute. You will notice that in the example above we specify the gr eet i ngFi | e property
value after we have configured to use it for the task. This kind of lazy evaluation is a key benefit of accepting
any value when setting a file property, then resolving that value when reading the property.

8§
Mapping extension properties to task properties

Capturing user input from the build script through an extension and mapping it to input/output properties of a
custom task is considered a best practice. The end user only interacts with the exposed DSL defined by the
extension. The imperative logic is hidden in the plugin implementation.

Page 393 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

The extension declaration in the build script as well as the mapping between extension properties and
custom task properties occurs during Gradle’s configuration phase of the build lifecycle. To avoid evaluation
order issues, the actual value of a mapped property has to be resolved during the execution phase. For
more information please see the section called “Build phases”. Gradle’s API offers types for representing a

property that should be lazily evaluated e.g. during execution time. Refer to Lazy Configuration for more
information.

The following demonstrates the usage of the type for mapping an extension property to a task property:

Example 345. Mapping extension properties to task properties

bui I d. gradl e

Page 394 of 717

class G eetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
def extension = project.extensions.create(' greeting' , GeetingPluginExtel
proj ect.tasks.create(' hello', Geeting) {
nmessage = extension. message
outputFil es = extension.outputFiles

cl ass G eetingPl ugi nExt ensi on {
final Property<String> nessage
final ConfigurableFileCollection outputFiles

Gr eet i ngPl ugi nExt ensi on(Proj ect project) {
nmessage = project.objects. property(String)
message. set (' Hello from GreetingPl ugin')
outputFiles = project.files()

voi d setQutputFiles(FileCollection outputFiles) {
this.outputFiles.setFron{outputFiles)

class Greeting extends DefaultTask {

final Property<String> nmessage = project.objects. property(String)
final ConfigurableFileCollection outputFiles = project.files()

voi d setQutputFiles(FileCollection outputFiles) {
this.outputFiles.setFron{outputFiles)

@askAction
voi d printMessage() {
out put Fi | es. each {

| ogger.quiet "Witing nessage 'H from Gadle' to file"
it.text = nessage. get ()

apply plugin: GeetingPlugin

greeting {
message = 'H from G adl e
outputFiles = files('a.txt', "b.txt")
}

Page 395 of 717

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ mapExt ensi onPr of
in the *-all’ distribution of Gradle.

Outputofgradle -q hello

> gradle -q hello

Witing nessage 'H from Gadle' to file
Witing nessage 'H fromGadle' to file

§
A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others. This
project is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build
script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 346. A build for a custom plugin

buil d. gradl e
apply plugin: 'groovy'

dependenci es {

conpi l e gradl eApi ()
conpi |l e | ocal Groovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the *-all’
distribution of Gradle.

So how does Gradle find the Pl ugi n implementation? The answer is you need to provide a properties file in
the jar's META- | NF/ gr adl e- pl ugi ns directory that matches the id of your plugin.

Example 347. Wiring for a custom plugin

src/ mai n/ resour ces/ META- | NF/ gr adl e- pl ugi ns/ org. sanpl es. greeti ng. properties
i mpl enent ati on-cl ass=org. gradl e. G eeti ngPl ugi n

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the i
property identifies the Pl ugi n implementation class.

§
Creating a plugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps
to avoid collisions and provides a way to group plugins with similar ownership.

Page 396 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you
or your organization) and the name of the plugin it provides. For example if you had a Github account named
"foo" and your plugin was named "bar", a suitable plugin id might be com gi t hub. f co. bar. Similarly, if
the plugin was developed at the baz organization, the plugin id might be or g. baz. bar .

Plugin ids should conform to the following:

May contain any alphanumeric character, '.", and '-'.

Must contain at least one "' character separating the namespace from the name of the plugin.
Conventionally use a lowercase reverse domain name convention for the namespace.
Conventionally use only lowercase characters in the name.

org. gradl e and com gr adl ewar e namespaces may not be used.

Cannot start or end with a '." character.

Cannot contain consecutive '.' characters (i.e. "..").

Although there are conventional similarities between plugin ids and package names, package names are
generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add
"gradle" as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would
be superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a
good plugin id.

§
Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any other
code artifact. See the ivy and maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it
to the Gradle plugin portal. This site provides the ability to search for and gather information about plugins
contributed by the Gradle community. See the instructions here on how to make your plugin available on this
site.

§
Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script’'s classpath. To do this,
you use a “buildscript { }" block, as described in the section called “Applying plugins with the buildscript
block”. The following example shows how you might do this when the JAR containing the plugin has been
published to a local repository:

Page 397 of 717

http://plugins.gradle.org
http://plugins.gradle.org/docs/submit

Example 348. Using a custom plugin in another project

buil d. gradl e
bui I dscri pt {
repositories {
maven {
url wuri('../repo")

}
dependenci es {
cl asspath group: 'org.gradle', nane: 'custonPlugin',
version: '1.0- SNAPSHOT'

}
apply plugin: 'org.sanples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see the

section called “Applying plugins with the plugins DSL”) to apply the plugin:

Example 349. Applying a community plugin with the plugins DSL

buil d. gradl e
pl ugi ns {
id 'comjfrog.bintray' version '0.4.1
}
8

Writing tests for your plugin

You can use the Proj ect Bui | der class to create Proj ect instances to use when you test your plugin

implementation.
Example 350. Testing a custom plugin

src/test/groovy/org/gradl e/ GeetingPl ugi nTest. groovy
cl ass GreetingPlugi nTest {
@est
public void greeterPlugi nAddsG eeti ngTaskToProject() {
Project project = ProjectBuilder. builder().build()
proj ect. pl ugi nManager. apply 'org. sanpl es. greeting'

assert True(project.tasks. hello instanceof G eetingTask)

Page 398 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html

8
Using the Java Gradle Plugin development plugin

You can use the incubating Java Gradle Plugin development plugin to eliminate some of the boilerplate
declarations in your build script and provide some basic validations of plugin metadata. This plugin will
automatically apply the Java plugin, add the gr adl eApi () dependency to the compile configuration, and
perform plugin metadata validations as part of the j ar task execution.

Example 351. Using the Java Gradle Plugin Development plugin

buil d. gradl e

pl ugi ns {
id'java-gradl e-plugin'

When publishing plugins to custom plugin repositories using the ivy or maven publish plugins, the Java
Gradle Plugin development plugin will also generate plugin marker artifacts named based on the plugin id
which depend on the plugin’s implementation artifact.

8§
Providing a configuration DSL for the plugin

As we saw above, you can use an extension object to provide configuration for your plugin. Using an
extension object also extends the Gradle DSL to add a project property and DSL block for the plugin. An
extension object is simply a regular object, and so you can provide DSL elements nested inside this block by
adding properties and methods to the extension object.

Gradle provides several conveniences to help create a well-behaved DSL for your plugin.

8
Nested DSL elements

When Gradle creates a task or extension object, Gradle decorates the implementation class to mix in DSL
support. To create a nested DSL element you can use the Cbj ect Fact ory type to create objects that are
similarly decorated. These decorated objects can then be made visible to the DSL through properties and
methods of the plugin’s extension:

Page 399 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html

Example 352. Nested DSL elements

buil d. gradl e
class Person {
String nane

cl ass G eetingPl ugi nExt ensi on {
String nessage
final Person greeter

@ avax.inject.|nject
Greeti ngPl ugi nExt ensi on(Obj ect Fact ory obj ect Factory) {

greeter = objectFactory. new nst ance(Person)

voi d greeter(Action<? super Person> action) {
action. execut e(greeter)

class G eetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {

def extension = project.extensions.create(' greeting', GeetingPluginExtel
project.task(' hello") {
doLast {
println "${extension. nessage} from ${extension. greeter.nane}"

apply plugin: GeetingPlugin

greeting {
message = 'H'
greeter {
nane = ' G adl e’
}
}

Outputofgradl e -q hello
> gradle -q hello
H from Gadle

In this example, the plugin passes the project’'s Obj ect Fact ory to the extension object through its
constructor. The constructor uses this to create a nested object and makes this object available to the DSL

Page 400 of 717

through the gr eet er property.

§
Configuring a collection of objects

Gradle provides some utility classes for maintaining collections of objects, intended to work well with the
Gradle DSL.

Example 353. Managing a collection of objects

bui | d. gradl e

Page 401 of 717

cl ass Book {
final String nane
File sourceFile

Book(String name) {
this.name = nane

cl ass DocunentationPlugin inplenents Plugi n<Project> {
voi d appl y(Project project) {

def books = project.contai ner(Book)
books. al | {
sourceFile = project.file("src/docs/ $nane")

pr oj ect . ext ensi ons. books = books

apply plugin: DocumentationPl ugin

books {
qui ckStart {
sourceFile = file('src/docs/quick-start')

}
user Gui de {

}
devel oper Gui de {

task books {
doLast {
books. each { book ->
println "$book. name -> $book. sourceFil e"

Output of gradl e -g books

> gradl e -q books

devel oper Gui de -> / hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi c/ cust onPl
qui ckStart -> /hone/user/gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi
user Qui de -> /hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi n'

Page 402 of 717

The Proj ect.contai ner(java. |l ang. Cl ass) methods create instances of
NanmedDomai nObj ect Cont ai ner, that have many useful methods for managing and configuring the
objects. In order to use a type with any of the pr oj ect . cont ai ner methods, it MUST expose a property
named “name” as the unique, and constant, name for the object. The proj ect. cont ai ner (Cl ass)
variant of the container method creates new instances by attempting to invoke the constructor of the class
that takes a single string argument, which is the desired name of the object. See the above link for pr oj ect .
method variants that allow custom instantiation strategies.

Page 403 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.NamedDomainObjectContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.NamedDomainObjectContainer.html

Gradle Plugin Development Plugin

Note: The Java Gradle plugin development plugin is currently incubating. Please be aware that the
DSL and other configuration may change in later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It
automatically applies the Java plugin, adds the gr adl eApi () dependency to the compile configuration and

performs validation of plugin metadata during j ar task execution.

The plugin also integrates with TestKit, a library that aids in writing and executing functional tests for plugin
code. It automatically adds the gradl eTest Ki t () dependency to the test compile configuration and
generates a plugin classpath manifest file consumed by a G adl eRunner instance if found. Please refer to
the section called “Automatic injection with the Java Gradle Plugin Development plugin” for more on its
usage, configuration options and samples.

8§
Usage
To use the Java Gradle Plugin Development plugin, include the following in your build script:
Example 354. Using the Java Gradle Plugin Development plugin
buil d. gradl e

pl ugi ns {
id'java-gradl e-plugin’

Applying the plugin automatically applies the Java plugin and adds the gr adl eApi () dependency to the

compile configuration. It also adds some validations to the build.

The following validations are performed:

There is a plugin descriptor defined for the plugin.

The plugin descriptor contains an i npl ement at i on- cl ass property.

The i npl enent at i on- cl ass property references a valid class file in the jar.

Each property getter or the corresponding field must be annotated with a property annotation like @ nput Fi |

Page 404 of 717

and @t put Di r ect ory. Properties that don't participate in up-to-date checks should be annotated with @

Any failed validations will result in a warning message.
For each plugin you are developing, add an entry to the gr adl ePl ugi n {} script block:

Example 355. Using the gradlePlugin {} block.

buil d. gradl e
gradl ePl ugin {
pl ugi ns {

si mpl ePl ugi n {
id = "org.gradl e. sanpl e. si npl e-pl ugi n'
i npl ementati onC ass = 'org. gradl e. sanpl e. Si npl ePl ugi n'

The gr adl ePl ugi n {} block defines the plugins being built by the project including the i d and i npl enent
of the plugin. From this data about the plugins being developed, Gradle can automatically:

Generate the plugin descriptor in the j ar file’s META- | NF directory.

Configure the Maven or Ivy publishing plugins to publish a Plugin Marker Artifact for each plugin.

Page 405 of 717

Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in
the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a
method. If multiple projects of a multi-project build share some logic you can define this method in the parent
project. If the build logic gets too complex for being properly modeled by methods then you likely should
implement your logic with classes to encapsulate your logic.'¥ Gradle makes this very easy. Just drop your
classes in a certain directory and Gradle automatically compiles them and puts them in the classpath of your
build script.

Here is a summary of the ways you can organise your build logic:

POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The build
script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to organize code.

Inherited properties and methods. In a multi-project build, sub-projects inherit the properties and methods of
their parent project.

Configuration injection. In a multi-project build, a project (usually the root project) can inject properties and
methods into another project.

bui | dSrc project. Drop the source for your build classes into a certain directory and Gradle automatically
compiles them and includes them in the classpath of your build script.

Shared scripts. Define common configuration in an external build, and apply the script to multiple projects,
possibly across different builds.

Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects. The
plugin must be in the classpath of your build script. You can achieve this either by using bui | d sour ces or
by adding an external library that contains the plugin.

Execute an external build. Execute another Gradle build from the current build.

External libraries. Use external libraries directly in your build file.

Page 406 of 717

8§
Inherited properties and methods

Any method or property defined in a project build script is also visible to all the sub-projects. You can use
this to define common configurations, and to extract build logic into methods which can be reused by the
sub-projects.

Example 356. Using inherited properties and methods

buil d. gradl e

ext.srcDirName = 'src/java'

def getSrcDir(project) {
return project.file(srcDi rNane)

child/build.gradle
task show {
doLast ({

println 'srcDi rNane: + srcDi r Namre

File srcDir = getSrcDir(project)
println "srcDir: ' + rootProject.relativePath(srcDir)

Output of gradl e -gq show
> gradl e -g show

srcDi rNanme: src/java
srcDir: child/src/java

8§
Injected configuration

You can use the configuration injection technique discussed in the section called “Cross project
configuration” and the section called “Subproject configuration” to inject properties and methods into various
projects. This is generally a better option than inheritance, for a number of reasons: The injection is explicit
in the build script, You can inject different logic into different projects, And you can inject any kind of
configuration such as repositories, plug-ins, tasks, and so on. The following sample shows how this works.

Page 407 of 717

Example 357. Using injected properties and methods

buil d. gradl e

subprojects {

ext.srcDirName = 'src/java'

ext.srcDir = { file(srcD rNane) }

task show {

doLast {

println "project: ' + project.path

println "srcDirNane: ' + srcDirNanme

File srcDir = srcDir()

println "srcDir: ' + rootProject.relativePath(srcDir)
}

project(':child2") {
ext.srcDirName = "$srcDi r Nane/ | egacy”

chil d1/buil d. gradl e

srcDirNane = 'java'
def dir = srchir()

Output of gradl e -gq show

> gradle -g show

project: :childl

srcDi rNane: java

srcDir: childl/java

project: :child2

srcDi r Nanme: src/javal/l egacy
srcDir: child2/src/javall egacy

§
Configuring the project using an external build script

You can configure the current project using an external build script. All of the Gradle build language is
available in the external script. You can even apply other scripts from the external script.

Build scripts can be local files or remotely accessible files downloaded via a URL.

Page 408 of 717

Remote files will be cached and made available when Gradle runs offline. On each build, Gradle will check if
the remote file has changed and will only download the build script file again if it has changed. URLs that
contain query strings will not be cached.

Example 358. Configuring the project using an external build script

buil d. gradl e
apply from 'other.gradle'

ot her. gradl e
println "configuring $project"
task hello {
doLast {
println "hello from other script'

Outputofgradl e -q hello

> gradle -q hello

configuring root project 'configureProjectUsingScript'
hell o from ot her script

§
Build sources in the bui | dSr ¢ project

When you run Gradle, it checks for the existence of a directory called bui | dSr c. Gradle then automatically
compiles and tests this code and puts it in the classpath of your build script. You don’t need to provide any
further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one bui | dSr c directory, which has to be in the root project
directory.

Listed below is the default build script that Gradle applies to the bui | dSr c project:
Default buildSrc build script.
apply plugin: 'groovy'

dependenci es {

conpi | e gradl eApi ()
conpi |l e | ocal Goovy()

This means that you can just put your build source code in this directory and stick to the layout convention
for a Java/Groovy project (see Table 36).

If you need more flexibility, you can provide your own bui | d. gr adl e. Gradle applies the default build script
regardless of whether there is one specified. This means you only need to declare the extra things you need.

Page 409 of 717

Below is an example. Notice that this example does not need to declare a dependency on the Gradle API, as
this is done by the default build script:

Example 359. Custom buildSrc build script

bui | dSrc/ bui |l d. gradl e
repositories {
mavenCentral ()

dependenci es {
testConpile "junit:junit:4.12

The bui | dSr ¢ project can be a multi-project build, just like any other regular multi-project build. However,
all of the projects that should be on the classpath of the actual build must be r unt i e dependencies of the
root project in bui | dSrc. You can do this by adding this to the configuration of each project you wish to
export:

Example 360. Adding subprojects to the root buildSrc project

bui | dSrc/ bui |l d. gradl e
r oot Proj ect. dependenci es {
runti me project(path)

Note: The code for this example can be found at sanpl es/ mul ti Proj ect Bui | dSr ¢ in the ‘*-all’
distribution of Gradle.

8§
Running another Gradle build from a build

You can use the G adl eBui | d task. You can use either of the di r or bui | dFi | e properties to specify
which build to execute, and the t asks property to specify which tasks to execute.

Page 410 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.GradleBuild.html

Example 361. Running another build from a build

buil d. gradl e

task build(type: GadleBuild) {
buildFile = 'other.gradl e
tasks = ['hello']

other.gradl e

task hello {

doLast {
println "hello fromthe other build."

Outputofgradle -q build
> gradle -q build
hello fromthe other build.

8§
External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script’s classpath in the build
script itself. You do this using the bui | dscri pt () method, passing in a closure which declares the build
script classpath.

Example 362. Declaring external dependencies for the build script

bui I d. gradl e
bui I dscript {
repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'commons-codec', name: 'commons-codec', version: '1.2

The closure passed to the bui | dscri pt () method configures a Scri pt Handl er instance. You declare
the build script classpath by adding dependencies to the cl asspat h configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
described in the section called “Dependency types”, except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would any
other classes on the classpath. The following example adds to the previous example, and uses classes from
the build script classpath.

Page 411 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 363. A build script with external dependencies

buil d. gradl e
i nport org.apache. commons. codec. bi nary. Base64

bui I dscri pt {
repositories {
mavenCentral ()

dependenci es {
cl asspath group: 'commons-codec', name: 'conmons-codec', version: '1.2'

task encode {
doLast ({
def byte[] encodedString = new Base64().encode(' hello world\n'.getBytes(:
println new String(encodedString)

Output of gradl e -g encode
> gradle -q encode
aGVsbh&EBgd29ybGXK

For multi-project builds, the dependencies declared with a project’s bui | dscri pt () method are available
to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult Using Gradle Plugins for more information
on Gradle plugins.

Every project automatically has a bui | dEnvi r onnment task of type Bui | dEnvi r onnent Report Task that
can be invoked to report on the resolution of the build script dependencies.

8§
Ant optional dependencies

For reasons we don'’t fully understand yet, external dependencies are not picked up by Ant’s optional tasks.
But you can easily do it in another way.[1%]

Page 412 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

Example 364. Ant optional dependencies

buil d. gradl e

configurations {
ft pAnt Task

}

dependenci es {
ft pAnt Task(" or g. apache. ant : ant - cormons-net: 1. 9. 9") {
nodul e(" commons-net: conmmons-net: 1.4.1") {
dependencies "oro:oro:2.0.8:jar"

}
}
}
task ftp {
doLast {
ant {
t askdef (name: 'ftp',
cl assname: 'org. apache.tool s. ant.taskdefs. optional.net.FTP,
cl asspath: configurations. ftpAnt Task. asPat h)
ftp(server: "ftp.apache.org", userid: "anonynous", password: "ne@ryol
fileset(dir: "htdocs/ manual")
}
}
}
}

This is also a good example for the usage of client modules. The POM file in Maven Central for the
ant-commons-net task does not provide the right information for this use case.

§
Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your
domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to
maintain code base. It is our experience that even very complex custom build logic is rarely shared between
different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle
spares you this unnecessary overhead and indirection.

[14] Which might range from a single class to something very complex.

[15] In fact, we think this is a better solution. Only if your buildscript and Ant's optional task need the same
library would you have to define it twice. In such a case it would be nice if Ant's optional task would
automatically pick up the classpath defined in the “gr adl e. setti ngs” file.

Page 413 of 717

Lazy Configuration

As a build grows in complexity, knowing when and where a particular value is configured can become
difficult to reason about. Gradle provides several ways to manage this complexity using lazy configuration.

8§
Lazy properties

Note: The Provider API is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

Gradle provides lazy properties, which delay the calculation of a property’s value until it's absolutely
required. Lazy types are faster, more understandable and better instrumented than the internal convention
mapping mechanisms. This provides two main benefits to build script and plugin authors:

Build authors can wire together Gradle models without worrying when a particular property’s value will be
known. For example, when you want to map properties in an extension to task properties but the values
aren’t known until the build script configures them.

Build authors can avoid resource intensive work during the configuration phase, which can have a direct
impact on maximum build performance. For example, when a property value comes from parsing a file.

Gradle represents lazy properties with two interfaces:

Provi der are properties that can only be queried and cannot be changed.
Properties with these types are read-only.

The method Pr ovi der . get () returns the current value of the property.

A Provi der can be created by the factory method

Provi der Fact ory. provi der(java. util.concurrent. Call able).
Property are properties that can be queried and overwritten.

Properties with these types are configurable.

Pr operty implements the Pr ovi der interface.

The method Property. set (T) specifies a value for the property, overwriting whatever value may have

Page 414 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html#get--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html#set-T-

been present.

The method Property. set (org.gradle.api.provider.Provider) specifies a Provi der for the
value for the property, overwriting whatever value may have been present. This allows you to wire together Pi
and Pr oper t y instances before the values are configured.

A Pr operty can be created by the factory method Obj ect Fact ory. property(j ava. | ang. Cl ass) .

Neither of these types nor their subtypes are intended to be implemented by a build script or plugin author.
Gradle provides several factory methods to create instances of these types. See the Quick Reference for all
of the types and factories available.

Lazy properties are intended to be passed around and only evaluated when required (usually, during the
execution phase). For more information about the Gradle build phases, please see the section called “Build
phases”.

The following demonstrates a task with a read-only property and a configurable property:
Example 365. Using a read-only and configurable property

bui | d. gradl e
class Greeting extends DefaultTask {

@ nput
final Property<String> nmessage = project.objects. property(String)

@ nt er nal
final Provider<String> full Message = nessage.map { it + " from Gadle" }
@askActi on

voi d printMessage() {
| ogger. qui et (ful | Message. get())

task greeting(type: Geeting) {
message = 'H '

Output of gradl e greeting

> gradl e greeting

:greeting

H from G adl e

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 415 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

The Gr eet i ng task has a Propert y<St ri ng> for the mutable part of the message and a Pr ovi der <Stri
for the calculated, read-only, message.

Note: Note that Groovy Gradle DSL will generate setter methods for each Pr opert y-typed property
in a task implementation. These setter methods allow you to configure the property using the
assignment (=) operator as a convenience.

8§
Creating a Property or Provider

If provider types are not intended to be implemented directly by build script or plugin authors, how do you
create a new one? Gradle provides various factory APIs to create new instances of both Provi der and
Property:

Provi der Fact ory. provi der (java. util.concurrent. Cal | abl e) instantiates a new Provi der.
An instance of the Pr ovi der Fact ory can be referenced from Proj ect . get Provi der s() or by injecting
Pr ovi der Fact ory through a constructor or method.

bj ect Factory. property(java. |l ang. Cl ass) instantiates a new Property. An instance of the
bj ect Fact ory can be referenced from Proj ect. get Obj ect s() or by injecting Obj ect Factory
through a constructor or method.

Note: Proj ect does not provide a specific method signature for creating a provider from a gr oovy. | ¢
. When writing a plugin with Groovy, you can use the method signature accepting aj ava. util . conct
parameter. Groovy's Closure to type coercion will take care of the rest.

8§
Working with files and Providers
In Working With Files, we introduced four collection types for Fi | e-like objects:

Table 33. Collection of files recap

ead-only Type Configurable Type
| eCol | ection Confi gurabl eFi | eCol | ecti on
| eTree Confi gurabl eFi | eTree

All of these types are also considered Pr ovi der types.

In this section, we are going to introduce more strongly typed models for a Fi | eSyst enlocat i on:
Di rectory and Regul ar Fi | e. These types shouldn’t be confused with the standard Java java.io.File type
as they tell Gradle to expect more specific values (a directory or a non-directory, regular file).

Page 416 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/ProviderFactory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Project.html#getProviders--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Project.html#getObjects--
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html
http://docs.groovy-lang.org/next/html/documentation/core-semantics.html#_assigning_a_closure_to_a_sam_type
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ConfigurableFileTree.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileSystemLocation.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Gradle provides two specialized Pr oper t y subtypes for dealing with these types: Regul ar Fi | eProperty
and DirectoryProperty. ProjectLayout has methods to create these:
Proj ect Layout . fil eProperty() and Proj ect Layout . di rect oryProperty().

A DirectoryProperty can also be used to create a lazily evaluated Pr ovi der for a Di r ect ory and Reg
via DirectoryProperty.dir(java.lang. String) and
DirectoryProperty.file(]java.lang. String) respectively. These methods create paths that are
relative to the location set for the original Di r ect or yProperty.

Page 417 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

Example 366. Using file and directory property

buil d. gradl e

cl ass FooExt ension {
final DirectoryProperty soneDirectory
final RegularFileProperty soneFile
final Configurabl eFileCollection soneFiles

FooExt ensi on(Proj ect project) {
someDirectory = project.|ayout.directoryProperty()
sonmeFile = project.layout.fil eProperty()
soneFiles = project.files()

proj ect. extensions.create(' foo', FooExtension, project)

foo {
sonmeDirectory = project.layout.projectDirectory.dir(' sone-directory')
someFile = project.|layout.buildDi rectory.file(' sonme-file")
sonmeFil es.fromproject.files(soneDirectory, someFile)

}
task print {
doLast {
def soneDirectory = project.foo.soneDirectory.get().asFile
| ogger. quiet("foo.soneDirectory =" + soneDirectory)

| ogger. qui et ("foo.soneFiles contains soneDirectory? " + project.foo.sonel

def soneFile = project.foo.soneFile.get().asFile

| ogger. qui et("foo.soneFile = + soneFil e)
| ogger. qui et ("foo.sonmeFiles contains soneFile? " + project.foo.soneFiles.

Output of gr adl e pri nt

> gradl e print

Sprint

foo. soneDi rectory = /hone/ user/ gradl e/ sanpl es/ provi ders/fil eAndDi rect oryProperty:
f0oo. soneFi |l es contains soneDirectory? true

foo. soneFil e = /hone/ user/ gradl e/ sanpl es/ provi ders/fil eAndDi rect oryProperty/ buil
f oo. soneFi |l es contains sonmeFile? true

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

This example shows how Provi der types can be used inside an extension. Lazy values for
Project.getBuildDir() and Project.getProjectDir() can be accessed through
Proj ect . get Layout () with Proj ect Layout . getBui |l dDi rectory() and

Page 418 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:projectDir
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Project.html#getLayout--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Project.html#getLayout--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--

Proj ect Layout . get ProjectDirectory().

8§
Working with task dependencies and Providers

Many builds have several tasks that depend on each other. This usually means that one task processes the
outputs of another task as an input. For these outputs and inputs, we need to know their locations on the file
system and appropriately configure each task to know where to look. This can be cumbersome if any of
these values are configurable by a user or configured by multiple plugins.

To make this easier, Gradle offers convenient APIs for defining files or directories as task inputs and outputs
in a descriptive way. As an example consider the following plugin with a producer and consumer task, which
are wired together via inputs and outputs:

Example 367. Implicit task dependency

buil d. gradl e

Page 419 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--

cl ass Producer extends DefaultTask {
@ut putFile
final RegularFileProperty outputFile = newQutputFile()

@askAction
voi d produce() {
String nessage = 'Hello, Wrld!
def output = outputFile.get().asFile
out put.text = nessage
| ogger. quiet("Wote ' ${nessage}' to ${output}")

cl ass Consuner extends DefaultTask {
@nputFile
final RegularFileProperty inputFile = new nputFile()

@askAction

voi d consume() {
def input = inputFile.get().asFile
def nessage = input.text

| ogger. qui et ("Read ' ${nessage}' from ${input}")

task producer(type: Producer)
task consumner (type: Consumer)

consuner.inputFile = producer.outputFile

producer.outputFile = layout.buildDirectory.file('file.txt")

buildDir = ' out put

Output of gr adl e consuner

> gradl e consuner

. producer

Wote 'Hello, Wrld!'" to /home/user/gradl e/ sanpl es/ provi ders/inplicitTaskDepende
: consuner

Read 'Hello, World!'" from/hone/user/gradl e/ sanpl es/ providers/inplicitTaskDepend

BUI LD SUCCESSFUL i n Os
2 actionabl e tasks: 2 executed

Page 420 of 717

In the example above, the task outputs and inputs are connected before any location is defined. This is
possible because the input and output properties use the Pr ovi der API. The output property is created with
Def aul t Task. newQut put Fi | e() and the input property is created with
Def aul t Task. newl nput Fi | e() . Values are only resolved when they are needed during execution. The
setters can be called at any time before the task is executed and the change will automatically affect all
related input and output properties.

Another thing to note is the absence of any explicit task dependency. Properties created via newQut put Fi | «
and newCut put Di rect or y() bring knowledge about which task is generating them, so using them as task
input will implicitly link tasks together.

8§
Working with collection Providers

In this section, we are going to explore lazy collections. They work exactly like any other Pr ovi der and, just
like Fi | eSyst enlLocat i on providers, they have additional modeling around them. There are two provider
interfaces available, one for Li st values and another for Set values:

For Li st values the interface is called Li st Property. You can create a new Li st Property using
Obj ect Factory. listProperty(]java.lang. Cl ass) and specifying the element’s type.

For Set values the interface is called Set Property. You can create a new Set Property using
Ohj ect Factory. set Property(java. | ang. C ass) and specifying the element’s type.

This type of property allows you to overwrite the entire collection value with
HasMul ti pl eVal ues. set (java.l ang. lterabl e) and
HasMul ti pl eVal ues. set (org. gradl e. api . provi der. Provi der) or add new elements through the

various add methods:
HasMul ti pl eVal ues. add(T) : Add a single concrete element to the collection

HasMul ti pl eVal ues. add(org. gradl e. api . provi der. Provi der): Add a lazily evaluated element

to the collection

HasMul ti pl eVal ues. addAl | (org. gradl e. api . provi der. Provider): Add a lazily evaluated
collection of elements to the list

Just like every Provi der, the collection is calculated when Provi der. get () is called. The following
example show the Li st Property in action:

Page 421 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/ListProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/SetProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html#get--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/ListProperty.html

Example 368. List property

buil d. gradl e
task print {
doLast {

Li st Property<String> list = project.objects.|istProperty(String)

/'l Resolve the |ist
| ogger.quiet(' The list contains: ' + list.get())

/1 Add elenents to the enpty |ist

list.add(project.provider { '"elenment-1' }) // Add a provider elenent
list.add('elenment-2") /1l Add a concrete el enent

/'l Resolve the |i st
| ogger.quiet(' The list contains: ' + list.get())

/[l Overwrite the entire list with a new |ist
list.set(['elenent-3", '"elenent-4'])

/'l Resolve the |ist
| ogger.quiet(' The list contains: ' + list.get())

/1 Add nore elenents through a |ist provider
list.addAll (project.provider { ['elenent-5", "elenent-6"] })

/'l Resolve the |ist
| ogger.quiet(' The list contains: ' + list.get())

Output of gr adl e print

> gradle print

D print

The list contains: []

The list contains: [elenent-1, elenent-2]

The list contains: [elenment-3, elenent-4]

The list contains: [elenment-3, elenent-4, elenment-5, elenent-6]

BUI LD SUCCESSFUL i n Os
1 actionable task: 1 executed

Page 422 of 717

8
Guidelines

This section will introduce guidelines to be successful with the Provider API. To see those guidelines in
action, have a look at gradle-site-plugin, a Gradle plugin demonstrating established techniques and practices
for plugin development.

The Property and Provi der types have all of the overloads you need to query or configure a value. For
this reason, you should follow the following guidelines:

For configurable properties, expose the Pr oper t vy directly through a single getter.
For non-configurable properties, expose an Pr ovi der directly through a single getter.

Avoid simplifying calls like obj . get Property(). get () and obj . get Property().set(T) inyour code
by introducing additional getters and setters.

When migrating your plugin to use providers, follow these guidelines:
If it's a new property, expose it as a Property or Provi der using a single getter.
If it's incubating, change it to use a Pr oper ty or Provi der using a single getter.

If it's a stable property, add a new Pr operty or Provi der and deprecate the old one. You should wire the
old getter/setters into the new property as appropriate.

8§
Future development

Going forward, new properties will use the Provider APIl. The Groovy Gradle DSL adds convenience
methods to make the use of Providers mostly transparent in build scripts. Existing tasks will have their
existing "raw" properties replaced by Providers as needed and in a backwards compatible way. New tasks
will be designed with the Provider API.

The Provider API is incubating. Please create new issues at gradle/gradle to report bugs or to submit use
cases for new features.

Page 423 of 717

https://github.com/gradle-guides/gradle-site-plugin
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
https://github.com/gradle/gradle/issues/new

8§
Provider APl Quick Reference

Table 34. Lazy properties summary

escription Read-only Configurable

file onProvider<)
) Regul ar Fi | eProperty
sk Regul ar Fi | e>

file used .
Provi der <

5 a task

) Regul ar Fi | eProperty
Regul ar Fi | e>

put/output

directory Provi der <

Di rect oryPropert
1 disk . . .

Directory>

directory

sed as aProvider<]
Di rectoryProperty

ask Directory>
put/output
ollection of _) . : .
Fi | eCol | ecti on Confi gurabl eFil eCol | ection
es
ierarchy of _ . .
FileTree Confi gurabl eFi | eTr ee
es

st of anyProvider)
. Li st Property
pe <List<T>>

et of anyProvider
Set Property
pe <Set<T>>

ny other

Provi der <T> Property<T>
pe

Factory

Proj ect Layout . fil eProperty()

Directory.file(java.lang. String)

DirectoryProperty.file(java.lang. String)

Def aul t Task. newl nput Fi | e()

Def aul t Task. newQut put Fi | e()

Proj ect Layout . di rect oryProperty()
Directory.dir(java.lang. String)

Di rectoryProperty.dir(java.lang. String)

Def aul t Task. newl nput Di rect ory()

Def aul t Task. newQut put Di rect ory()

Project.files(java.lang. Ooject[])

Project.fil eTree(java.l ang. Obj ect)

Obj ect Factory. | istProperty(java.lang. Cl ass)

bj ect Factory. set Property(java.lang. C ass)

bj ect Factory. property(java. |l ang. d ass)

Page 424 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html#file-java.lang.String-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html#dir-java.lang.String-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DefaultTask.html#newInputDirectory--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/ConfigurableFileTree.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/ListProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/SetProperty.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current environment.
This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “i ni t ” task provided by the “bui | d-i ni t ” incubating plugin
(see Build Init Plugin).

§
Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scripts in Gradle. These scripts, however, are run
before the build starts. Here are several possible uses:

Set up enterprise-wide configuration, such as where to find custom plugins.

Set up properties based on the current environment, such as a developer’'s machine vs. a continuous
integration server.

Supply personal information about the user that is required by the build, such as repository or database
authentication credentials.

Define machine specific details, such as where JDKs are installed.
Register build listeners. External tools that wish to listen to Gradle events might find this useful.
Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the bui | dSrc project (see the
section called “Build sources in the bui | dSr ¢ project” for details of this feature).

8§
Using an init script
There are several ways to use an init script:

Specify a file on the command line. The command line optionis -1 or--i ni t-scri pt followed by the path
to the script. The command line option can appear more than once, each time adding another init script.

Put a file called i ni t. gr adl e in the USER_HOVE/ . gr adl e/ directory.

Page 425 of 717

Put a file that ends with . gr adl e in the USER_HOVE/ . gradl e/ i ni t. d/ directory.

Put a file that ends with . gr adl e in the GRADLE_HOVE/ i ni t . d/ directory, in the Gradle distribution. This
allows you to package up a custom Gradle distribution containing some custom build logic and plugins. You
can combine this with the Gradle wrapper as a way to make custom logic available to all builds in your

enterprise.

If more than one init script is found they will all be executed, in the order specified above. Scripts in a given
directory are executed in alphabetical order. This allows, for example, a tool to specify an init script on the
command line and the user to put one in their home directory for defining the environment and both scripts
will run when Gradle is executed.

§
Writing an init script
Similar to a Gradle build script, an init script is a Groovy script. Each init script has a Gr adl e instance

associated with it. Any property reference and method call in the init script will delegate to this Gr adl e

instance.
Each init script also implements the Scri pt interface.

§
Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring
projects in a multi-project build. The following sample shows how to perform extra configuration from an init
script before the projects are evaluated. This sample uses this feature to configure an extra repository to be
used only for certain environments.

Page 426 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Script.html

Example 369. Using init script to perform extra configuration before projects are evaluated

buil d. gradl e
repositories {
mavenCentral ()

t ask showRepos {
doLast {
println "Al repos:"
println repositories.collect { it.name }

init.gradle
all projects {
repositories {
mavenLocal ()

Outputofgradle --init-script init.gradle -gq showRepos
> gradle --init-script init.gradle -q showRepos

Al'l repos:

[MavenLocal , MavenRepo]

8§
External dependencies for the init script

In the section called “External dependencies for the build script” it was explained how to add external

dependencies to a build script. Init scripts can also declare dependencies. You do this with the i ni t scri pt (

method, passing in a closure which declares the init script classpath.
Example 370. Declaring external dependencies for an init script

init.gradle
initscript {
repositories {
mavenCentral ()

}

dependenci es {

cl asspath group: 'org.apache. commons', name: 'conmons-nmath', version:

2

The closure passed to the i ni t scri pt () method configures a Scr i pt Handl er instance. You declare the

Page 427 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

init script classpath by adding dependencies to the cl asspat h configuration. This is the same way you

declare, for example, the Java compilation classpath. You can use any of the dependency types described in

the section called “Declaring dependencies”, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the

init script classpath.
Example 371. An init script with external dependencies

init.gradle
i nport org.apache. commons. nat h. fracti on. Fracti on

initscript {
repositories {
mavenCentral ()

}

dependenci es {

cl asspath group: 'org.apache.comons', nane: 'conmons-nath'

println Fraction. ONE_FI FTH. nul ti pl y(2)
Outputofgradl e --init-script init.gradle -g doNothing

> gradle --init-script init.gradle -g doNothing
2/ 5

8§
Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Example 372. Using plugins in init scripts

version: '2

Page 428 of 717

init.gradle
apply plugin: EnterpriseRepositoryPl ugin
class EnterpriseRepositoryPlugin inplenments Plugin<G adl e> {
private static String ENTERPRI SE_REPCSI TORY_URL = "https://repo.gradle.org/g
voi d apply(Gadle gradle) {
gradl e. al | proj ects{ project ->

project.repositories {

all { ArtifactRepository repo ->
if (!'(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRI SE_REPOSI TORY_URL) {

project.logger.lifecycle "Repository ${repo.url} renoved
renove repo

}
}
maven {
name " STANDARD_ENTERPRI SE_REPO'
url ENTERPRI SE_REPOSI TORY_URL
}
}
}
}
}
buil d. gradl e

repositories{
mavenCentral ()

task showRepositories {
doLast {
repositories.each {
println "repository: ${it.name} ('"${it.url}")"

}
}
}
Outputofgradl e -q -1 init.gradle showRepositories
> gradle -q -1 init.gradl e showRepositories

repository: STANDARD ENTERPRI SE_REPO (' https://repo. gradl e.org/gradl e/repo')

Page 429 of 717

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance’s
Pl ugi n. appl y(T) method. The gr adl e object is passed as a parameter, which can be used to configure

all aspects of a build. Of course, the applied plugin can be resolved as an external dependency as described
in the section called “External dependencies for the init script”

Page 430 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html#apply-T-

Testing Build Logic with TestKit

Note: The Gradle TestKit is currently incubating. Please be aware that its APl and other
characteristics may change in later Gradle versions.

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At this time, it is focused on functional testing. That is, testing build logic by exercising it as part of
a programmatically executed build. Over time, the TestKit will likely expand to facilitate other kinds of tests.

§

Usage
To use the TestKit, include the following in your plugin’s build:
Example 373. Declaring the TestKit dependency

buil d. gradl e
dependenci es {
test Conpil e gradl eTestKit ()

The gradl eTest Ki t () encompasses the classes of the TestKit, as well as the Gradle Tooling API client. It
does not include a version of JUnit, TestNG, or any other test execution framework. Such a dependency
must be explicitly declared.

Example 374. Declaring the JUnit dependency
buil d. gradl e

dependenci es {
testConpile "junit:junit:4.12

8§
Functional testing with the Gradle runner

The G adl eRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the “logic under
test”. The build can then be executed, potentially in a variety of ways (e.g. different combinations of tasks

Page 431 of 717

http://junit.org
http://testng.org
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html

and arguments). The correctness of the logic can then be verified by asserting the following, potentially in
combination:

The build’s output;
The build’s logging (i.e. console output);
The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
Gradl eRunner . bui I d() or Gradl eRunner . bui | dAndFai | () methods depending on the anticipated
outcome.

The following demonstrates the usage of Gradle runner in a Java JUnit test:
Example 375. Using GradleRunner with JUnit

Bui | dLogi cFuncti onal Test . java

inmport org.gradle.testkit.runner.Buil dResult;

i mport org.gradle.testkit.runner. G adl eRunner;
i mport org.junit.Before;

i mport org.junit.Rule;

inmport org.junit. Test;

i mport org.junit.rules. TenporaryFol der;

i mport java.io.BufferedWiter;
import java.io.File;

inmport java.io.FileWiter;

i mport java.io.l OException;
import java.util.Collections;

import static org.junit.Assert.assertEqual s;
import static org.junit.Assert.assertTrue;

import static org.gradle.testkit.runner. TaskQut cone. *;

public class BuildLogi cFuncti onal Test {
@l e public final TenporaryFol der testProjectDir = new TenporaryFol der();
private File buildFile;

@ef or e
public void setup() throws | OException {
buildFile = testProjectDir.newFile("build.gradle");

@est
public void testHell oWwrldTask() throws | OException {
String buildFileContent = "task hellowrld {" +
" doLast {" +
" println "Hello world!"" +

Page 432 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

"
witeFile(buildFile, buildFileContent);

Bui | dResult result = G adl eRunner.create()
.withProjectDir(testProjectDir.getRoot())
.wi t hArgunment s(" hel | oWor | d")
Cbuild();

assertTrue(result.getQutput().contains("Hello world!"));
assert Equal s(SUCCESS, result.task(":helloWrld").getQutcone());

private void witeFile(File destination, String content) throws |COException -
Buf feredWiter output = null
try {
output = new BufferedWiter(new FileWiter(destination));
output.wite(content);
} finally {
if (output !'= null) {
out put. cl ose();

Page 433 of 717

Any test execution framework can be used.

As Gradle build scripts are written in the Groovy programming language, and as many plugins are
implemented in Groovy, it is often a productive choice to write Gradle functional tests in Groovy.
Furthermore, it is recommended to use the (Groovy based) Spock test execution framework as it offers
many compelling features over the use of JUnit.

The following demonstrates the usage of Gradle runner in a Groovy Spock test:

Page 434 of 717

https://code.google.com/p/spock/

Example 376. Using GradleRunner with Spock

Bui | dLogi cFuncti onal Test . groovy

i mport
i nport
i mport
i nport
i mport

org.gradle.testkit.runner. G adl eRunner

static org.gradle.testkit.runner. TaskQutcone. *
org.junit.Rule

org.junit.rul es. TemporaryFol der

spock. | ang. Speci fi cati on

cl ass Buil dLogi cFuncti onal Test extends Specification {
@rul e final TenporaryFol der testProjectDir = new TenporaryFol der ()

Fi l

def

def

e buildFile

setup() {
buildFile = testProjectDir.newFile(' build.gradle")

"hello world task prints hello world"() {
gi ven:
buildFile << """
task helloWorld {
doLast {
println '"Hello world!

when:

def result = G adl eRunner.create()
.withProjectDir(testProjectDir.root)
.wi t hArgunment s(' hel | oWorl d")
. bui 1 d()

t hen:
result.output.contains('Hello world!")
result.task(": hell owrld"). outcome == SUCCESS

It is a common practice to implement any custom build logic (like plugins and task types) that is more

complex

in nature as external classes in a standalone project. The main driver behind this approach is

bundle the compiled code into a JAR file, publish it to a binary repository and reuse it across various

projects.

Page 435 of 717

8§
Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, the test build
does not share the same classpath or classloaders as the test process and the code under test is not
implicitly available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test into the
test build.

For earlier versions of Gradle (before 2.13), it is possible to manually make the code under test available via
some extra configuration. The following example demonstrates having the build generate a file containing
the implementation classpath of the code under test, and making it available at test runtime.

Example 377. Making the code under test classpath available to the tests

bui | d. gradl e

task created asspat hMani fest {
def outputDir = file("$buil dD r/ $nane")

inputs.files sourceSets. main.runtinmeC asspath
outputs.dir outputDir

doLast {
out put Di r. nkdirs()
file("$outputDir/plugin-classpath.txt").text = sourceSets. main.runti med i

dependenci es {
testRuntime fil es(createC asspat hMani f est)

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ manual C ass
in the *-all’ distribution of Gradle.

The tests can then read this value, and inject the classpath into the test build by using the method
Gradl eRunner . wi t hPl ugi nCl asspat h(j ava. | ang. | terabl e). This classpath is then available to
use to locate plugins in a test build via the plugins DSL (seeUsing Gradle Plugins). Applying plugins with the
plugins DSL requires the definition of a plugin identifier. The following is an example (in Groovy) of doing this
from within a Spock Framework set up() method, which is analogous to a JUnit @ef or e method.

Page 436 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

Example 378. Injecting the code under test classes into test builds

src/test/ groovy/ org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy
Li st<Fi | e> pl ugi nCl asspat h

def setup() {
buildFile = testProjectDir.newFile(' build.gradle")

def plugi nCl asspat hResource = getd ass().cl assLoader. fi ndResource("pl ugi n-cl
i f (pluginC asspat hResource == null) {
throw new I Il egal StateException("Did not find plugin classpath resource,

pl ugi nC asspath = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)

def "hello world task prints hello world"() {
gi ven:
buildFile << """
pl ugi ns {
id 'org.gradle.sanple. helloworld

when:

def result = Gradl eRunner.create()
.wWithProjectDi r(testProjectDir.root)
. Wi t hArgunent s(' hel |l oWorl d")
. W t hPl ugi nCl asspat h(pl ugi nd asspat h)
. bui 1d()

t hen:
result.output.contains('Hello world!")
result.task(": hell owrld"). outcome == SUCCESS

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ manual C ass
in the ‘-all’ distribution of Gradle.

This approach works well when executing the functional tests as part of the Gradle build. When executing
the functional tests from an IDE, there are extra considerations. Namely, the classpath manifest file points to
the class files etc. generated by Gradle and not the IDE. This means that after making a change to the
source of the code under test, the source must be recompiled by Gradle. Similarly, if the effective classpath
of the code under test changes, the manifest must be regenerated. In either case, executing the t est Cl ass:
task of the build will ensure that things are up to date.

Some IDEs provide a convenience option to delegate the "test classpath generation and execution" to the
build. In Intellid you can find this option under Preferences... > Build, Execution, Deployment > Build Tools >

Page 437 of 717

Gradle > Runner > Delegate IDE build/run actions to gradle. Please consult the documentation of your IDE
for more information.

8§
Working with Gradle versions prior to 2.8

The G adl eRunner.w t hPl ugi nCl asspat h(j ava. | ang. | terabl e) method will not work when
executing the build with a Gradle version earlier than 2.8 (see:the section called “The Gradle version used to
test”), as this feature is not supported on such Gradle versions.

Instead, the code must be injected via the build script itself. The following sample demonstrates how this can
be done.

Page 438 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

Example 379. Injecting the code under test classes into test builds for Gradle versions prior to 2.8

src/test/ groovy/ org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy
Li st<Fi | e> pl ugi nCl asspat h

def setup() {
buildFile = testProjectDir.newFile(' build.gradle")

def plugi nCl asspat hResource = getd ass().cl assLoader. fi ndResource("pl ugi n-cl

i f (pluginC asspat hResource == null) {
throw new I Il egal StateException("Did not find plugin classpath resource,
}
pl ugi nC asspath = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)
}
def "hello world task prints hello world with pre Gadle 2.8"() {
gi ven:
def classpathString = plugi nC asspath
.collect { it.absolutePath.replace('\\', "\\\\") }
.collect { ""®it'" }
.join(", ")

buildFile << """
bui l dscri pt {
dependenci es {
classpath files($cl asspathString)

}
apply plugin: "org.gradl e.sanpl e. hel | owor| d"

when:

def result = G adl eRunner.create()
.withProjectDir(testProjectDir.root)
. Wi t hArgunent s(' hel | oWor | d")
.wWi thG adl eVersion("2.7")
bui 1 d()

t hen:

result.output.contains('Hello world!")
result.task(": hell owrld"). outcome == SUCCESS

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ manual C ass
in the ‘-all’ distribution of Gradle.

Page 439 of 717

8
Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins.
Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit. When applied to a
project, the plugin automatically adds the gr adl eTest Ki t () dependency to the test compile configuration.
Furthermore, it automatically generates the classpath for the code under test and injects it via

Gradl eRunner. wi t hPl ugi nCl asspat h() for any Gradl eRunner instance created by the user. It's
important to note that the mechanism currently only works if the plugin under test is applied using the

plugins DSL. If the target Gradle version is prior to 2.8, automatic plugin classpath injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the classpath:
Source set containing code under test: sour ceSet s. mai n
Source set used for injecting the plugin classpath: sour ceSet s. t est

Any of these conventions can be reconfigured with the help of the class
G adl ePl ugi nDevel opnent Ext ensi on.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath by using
the standard conventions applied by the Java Gradle Plugin Development plugin.

Example 380. Using the Java Gradle Development plugin for generating the plugin metadata
buil d. gradl e

apply plugin: 'groovy'

apply plugin: 'java-gradl e-plugin'

dependenci es {
t est Conpi | e(' or g. spockf ranmewor k: spock-core: 1. 0-groovy-2.4") {
excl ude nodul e: ' groovy-all

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut omat i cC
in the ‘-all’ distribution of Gradle.

Page 440 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

Example 381. Automatically injecting the code under test classes into test builds

src/test/ groovy/ org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy
def "hello world task prints hello world"() {

gi ven:
buildFile << """
pl ugi ns {
id 'org.gradle.sanple.helloworld
}
when:

def result = Gradl eRunner.create()
.withProjectDir(testProjectDir.root)
. Wi t hArgunent s(' hel | oWorl d")
.w t hPl ugi nCl asspat h()
. bui 1d()

t hen:

result.output.contains('Hello world!")
result.task(": hell owrld").outcome == SUCCESS

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut omati cC
in the ‘-all’ distribution of Gradle.

The following build script demonstrates how to reconfigure the conventions provided by the Java Gradle
Plugin Development plugin for a project that uses a custom Test source set.

Page 441 of 717

Example 382. Reconfiguring the classpath generation conventions of the Java Gradle Development pl

buil d. gradl e

apply plugin: 'groovy'
apply plugin: 'java-gradl e-plugin'

sourceSets {
functional Test {

groovy {
srcDir file('src/functional Test/groovy')

}
resources {
srcDir file('src/functional Test/resources')

}

conpi | eCl asspath += sourceSets. nmai n. out put + configurations.testRuntine
runti meC asspath += output + conpil eC asspath

task functional Test(type: Test) {
testCl assesDirs = sourceSets. functional Test. out put.classesDirs
cl asspath = sourceSets. functional Test.runti ned asspath

check. dependsOn functi onal Test
gradl ePl ugin {

t est SourceSet s sourceSets. functi onal Test

dependenci es {
functi onal Test Conpi | e(' org. spockf ramewor k: spock-core: 1. 0-groovy-2.4") {
excl ude nodul e: ' groovy-all

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut onati cC
in the ‘-all’ distribution of Gradle.

Page 442 of 717

8§
Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working directory"
in a directory inside the JVM’s temp directory (i.e. the location specified by the j ava. i 0.t npdi r system
property, typically / t np). Any configuration in the default Gradle user home directory (e.g. ~/ . gr adl e/ gr ac
) is not used for test execution. The TestKit does not expose a mechanism for fine grained control of
environment variables etc. Future versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

8
The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not depend
on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the Gr adl eRunner class
was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as is the case
when using the gr adl eTest Ki t () dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the t est task of a plugin
project), the same distribution used to execute the tests will be used by the runner. When using the runner
as part of tests being executed by an IDE, the same distribution of Gradle that was used when importing the
project will be used. This means that the plugin will effectively be tested with the same version of Gradle that
it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the following G ¢
methods:

Gradl eRunner. wi t hGradl eVer si on(j ava. |l ang. Stri ng)
G adl eRunner.wi t hG adl el nstallation(java.io.File)
Gradl eRunner. wi t hGradl eDi stri bution(java. net.URl)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Page 443 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

Example 383. Specifying a Gradle version for test execution

Bui | dLogi cFuncti onal Test . groovy

i mport
i nport
i mport
i nport
i mport
i nport

cl ass Buil dLogi cFunctional Test extends Specification {

org.gradle.testkit.runner. G adl eRunner

static org.gradle.testkit.runner. TaskQutcone. *
org.junit.Rule

org.junit.rul es. TemporaryFol der

spock. | ang. Speci fi cati on

spock. | ang. Unr ol

@wul e final TenporaryFol der testProjectDir = new TenporaryFol der ()

Fi l

def

e buildFile

setup() {

buildFile = testProjectDir.newkile(' build.gradle")

@nr ol |
"can execute hello world task with G adle version #gradl eVersion"() {

def

gi ven:
buildrile << """
task helloWrld {
doLast {
| ogger.quiet 'Hello world!

when:

def result = G adl eRunner.create()
. Wi t hGradl eVer si on(gradl eVer si on)
.withProjectDir(testProjectDir.root)
. Wi t hArgunment s(' hel |l oWorl d")
. bui 1d()

t hen:
result.output.contains('Hello world!")
result.task(":hellowrld"). outconme == SUCCESS

wher e:
gradl eVersion << ['2.6', '2.7"]

Page 444 of 717

8
Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some runner
features are not supported on earlier versions. In such cases, the runner will throw an exception when
attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.
Table 35. Gradle version compatibility

Minimum o
sature . Description
Version

link>Inspecting
) Inspecting the executed tasks, using Bui | dResul t . get Tasks() and similar methods.
xecuted tasks</link>

lugin classpath28 Injecting the code under test via
jection ' G adl eRunner. wi t hPl ugi nCl asspat h(j ava. |l ang. | terabl e).
ispecting build output2 9 Inspecting the build’s text output when run in debug mode, using
debug mode ' Bui | dResul t. get Qut put ().
. . Injecting the code under test automatically via
utomatic plugin) . . .
2.13 Gradl eRunner . wi t hPl ugi nCl asspat h() by applying the Java Gradle Plugin

asspath injection)
Development plugin.

8§
Debugging build logic

The runner uses the Tooling API to execute builds. An implication of this is that the builds are executed in a
separate process (i.e. not the same process executing the tests). Therefore, executing your tests in debug
mode does not allow you to debug your build logic as you may expect. Any breakpoints set in your IDE will
be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

Setting “or g. gradl e. t est ki t. debug” system property to t r ue for the JVM using the Gr adl eRunner

(i.e. not the build being executed with the runner);
Calling the G- adl eRunner . wi t hDebug(bool ean) method.

The system property approach can be used when it is desirable to enable debugging support without making
an adhoc change to the runner configuration. Most IDEs offer the capability to set JVM system properties for
test execution, and such a feature can be used to set this system property.

Page 445 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-

8§
Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the - - bui | d- cache argument to G- adl eRunner or
use one of the other methods described in the section called “Enable the Build Cache”. You can then check
for the task outcome TaskQut cone. FROM CACHE when your plugin’s custom task is cached. This outcome
is only valid for Gradle 3.5 and newer.

Example 384. Testing cacheable tasks

Bui | dLogi cFuncti onal Test. gr oovy
def "cacheabl eTask is | oaded from cache"() {

gi ven:
buildFile << """
pl ugi ns {
id "org.gradle.sanple.helloworld
}
when:
def result = runner()
.wi t hArguments('--build-cache', 'cacheabl eTask')
Lbui 1 d()
t hen:

result.task(": cacheabl eTask"). out cone == SUCCESS

when:
new File(testProjectDir.root, '"build).deletebDir()
result = runner()
.W t hArguments('--build-cache', 'cacheabl eTask')
. bui 1d()

t hen:
result.task(": cacheabl eTask"). out cone == FROM CACHE

Page 446 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/GradleRunner.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE

Building JVM projects

Java Quickstart

§
The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to
implement in your build script. Out-of-the-box, however, it doesn’t build anything unless you add code to your
build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run
some unit tests, and create a JAR file containing your classes. It would be nice if you didn’t have to code all
this up for every project. Luckily, you don’t have to. Gradle solves this problem through the use of plugins. A
plugin is an extension to Gradle which configures your project in some way, typically by adding some
pre-configured tasks which together do something useful. Gradle ships with a number of plugins, and you
can easily write your own and share them with others. One such plugin is the Java plugin. This plugin adds
some tasks to your project which will compile and unit test your Java source code, and bundle it into a JAR
file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of
the project, such as where the Java source files are located. If you follow the convention in your project, you
generally don’t need to do much in your build script to get a useful build. Gradle allows you to customize
your project if you don’t want to or cannot follow the convention in some way. In fact, because support for
Java projects is implemented as a plugin, you don’t have to use the plugin at all to build a Java project, if you
don’t want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and
multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the Java
plugin to build a Java project.

8§
A basic Java project

Let’s look at a simple example. To use the Java plugin, add the following to your build file:

Page 448 of 717

Example 385. Using the Java plugin

buil d. gradl e
apply plugin: 'java

Note: The code for this example can be found at sanpl es/j aval/ qui ckstart in the ‘-all’

distribution of Gradle.

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a

number of tasks to your project.

What tasks are available?

You can use gradl e tasks to list the tasks of a project. This will let you see the tasks that the

Java plugin has added to your project.

Gradle expects to find your production source code under src/ mai n/j ava and your test source code

under sr c/ test/j ava. In addition, any files under sr ¢/ nmai n/ r esour ces will be included in the JAR file

as resources, and any files under src/t est/resour ces will be included in the classpath used to run the

tests. All output files are created under the bui | d directory, with the JAR file ending up in the bui | d/ | i bs

directory.

§
Building the project

The Java plugin adds quite a few tasks to your project. However, there are only a handful of tasks that you

will need to use to build the project. The most commonly used task is the bui | d task, which does a full build

of the project. When you run gr adl e bui | d, Gradle will compile and test your code, and create a JAR file

containing your main classes and resources:

Example 386. Building a Java project

Output of gradl e buil d
> gradle build
:conpi | eJava

: processResour ces

: cl asses

tjar

:assenbl e

: conpi | eTest Java

. processTest Resour ces
:testd asses

‘test

: check

tbuild

BUI LD SUCCESSFUL in Os
6 actionabl e tasks: 6 executed

Page 449 of 717

Some other useful tasks are:

clean
Deletes the bui | d directory, removing all built files.

assemble
Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.
For example, if you use the War plugin, this task will also build the WAR file for your project.

check
Compiles and tests your code. Other plugins add more checks to this task. For example, if you use the ch
plugin, this task will also run Checkstyle against your source code.

§
External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in
the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a
repository. A repository can be used for fetching the dependencies of a project, or for publishing the artifacts
of a project, or both. For this example, we will use the public Maven repository:

Example 387. Adding Maven repository

buil d. gradl e
repositories {
mavenCentral ()

Let's add some dependencies. Here, we will declare that our production classes have a compile-time
dependency on commons collections, and that our test classes have a compile-time dependency on junit:

Example 388. Adding dependencies

bui | d. gradl e

dependenci es {
conpi l e group: 'comons-col l ections', name: 'conmons-collections', version
testConpile group: "junit', name: '"junit', version: '4.+

You can find out more in Dependency Management for Java Projects.

Page 450 of 717

8
Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are
usually sufficient to get started. It's easy to change these values if they don’t suit. Let’s look at this for our
sample. Here we will specify the version number for our Java project, along with the Java version our source
is written in. We also add some attributes to the JAR manifest.

Example 389. Customization of MANIFEST.MF

bui I d. gradl e
sourceConpatibility = 1.7
version = '1.0
jar {
mani f est {
attributes 'Inplenentation-Title': 'Gadle Quickstart',
"I npl enentati on-Version': version

What properties are available?

You can use gradl e properti es to list the properties of a project. This will allow you to see the
properties added by the Java plugin, and their default values.

The tasks which the Java plugin adds are regular tasks, exactly the same as if they were declared in the
build file. This means you can use any of the mechanisms shown in earlier chapters to customize these
tasks. For example, you can set the properties of a task, add behaviour to a task, change the dependencies
of a task, or replace a task entirely. In our sample, we will configure the t est task, which is of type Test , to
add a system property when the tests are executed:

Example 390. Adding a test system property

buil d. gradl e
test {
systenProperties 'property': 'value
}
8

Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish
the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will
publish to a local directory. You can also publish to a remote location, or multiple locations.

Page 451 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html

Example 391. Publishing the JAR file

buil d. gradl e
upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos'

To publish the JAR file, run gr adl e upl oadAr chi ves.

8
Creating an Eclipse project

To create the Eclipse-specific descriptor files, like . pr oj ect, you need to add another plugin to your build
file:

Example 392. Eclipse plugin

bui I d. gradl e
apply plugin: '"eclipse

Now execute gr adl e ecl i pse command to generate Eclipse project files. More information about the ecl i
task can be found in The Eclipse Plugins.

8
Summary

Here’s the complete build file for our sample:

Page 452 of 717

Example 393. Java example - complete build file

buil d. gradl e

apply plugin: 'java'
apply plugin: '"eclipse

sourceConpatibility = 1.7
version = '1.0
jar {
mani f est {
attributes 'Inplenentation-Title': 'Gadle Quickstart',
"I npl enentati on-Version': version

repositories {
mavenCentral ()

dependenci es {
conpi l e group: 'comons-col | ections', name: 'conmons-collections', version

testConpile group: "junit', nanme: 'junit', version: '4.+
}
test {

systenProperties 'property': 'value
}

upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos'

8§
Multi-project Java build

Now let’s look at a typical multi-project build. Below is the layout for the project:

Page 453 of 717

Example 394. Multi-project build - hierarchical layout

Build layout

mul ti project/
api /
servi ces/ webservi ce/
shar ed/
servi ces/ shar ed/

Note: The code for this example can be found at sanpl es/j ava/ mul ti proj ect in the ‘-all’
distribution of Gradle.

Here we have four projects. Project api produces a JAR file which is shipped to the client to provide them a
Java client for your XML webservice. Project webser vi ce is a webapp which returns XML. Project shar ed
contains code used both by api and webser vi ce. Project servi ces/ shar ed has code that depends on
the shar ed project.

§
Defining a multi-project build

To define a multi-project build, you need to create a settings file. The settings file lives in the root directory of
the source tree, and specifies which projects to include in the build. It must be called setti ngs. gradl e.
For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 395. Multi-project build - settings.gradle file

settings.gradle
i ncl ude "shared",

api ", "services:webservice", "services:shared"

You can find out more about the settings file in Authoring Multi-Project Builds.

§
Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample, we
will define this common configuration in the root project, using a technique called configuration injection.
Here, the root project is like a container and the subpr oj ect s method iterates over the elements of this
container - the projects in this instance - and injects the specified configuration. This way we can easily
define the manifest content for all archives, and some common dependencies:

Page 454 of 717

Example 396. Multi-project build - common configuration

buil d. gradl e
subprojects {
apply plugin: 'java'
apply plugin: "eclipse-wp

repositories {

mavenCentral ()

dependenci es {
testConpile "junit:junit:4.12

}
version = '1.0'
jar {
mani fest.attri butes provider: 'gradle'
}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration
properties we have seen in the previous section are available in each subproject. So, you can compile, test,
and JAR all the projects by running gr adl e bui | d from the root project directory.

Also note that these plugins are only applied within the subpr oj ect s section, not at the root level, so the

root build will not expect to find Java source files in the root project, only in the subprojects.

8
Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one
project is used to compile another project. In the api build file we will add a dependency on the shar ed
project. Due to this dependency, Gradle will ensure that project shar ed always gets built before project api .

Example 397. Multi-project build - dependencies between projects
api / buil d. gradl e

dependenci es {
compil e project(':shared')

See the section called “Disabling the build of dependency projects” for how to disable this functionality.

Page 455 of 717

8
Creating a distribution

We also add a distribution, that gets shipped to the client:
Example 398. Multi-project build - distribution file

api / buil d. gradl e
task dist(type: Zip) {
dependsOn spi Jar
from'src/dist'
into('libs") {
from spi Jar. archi vePat h
from configurations. runtine

artifacts {
archi ves di st

8
Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java based
project. This chapter is not exhaustive, and there are many other things you can do with Java projects in
Gradle. You can find out more about the Java plugin in The Java Plugin, and you can find more sample Java
projects in the sanpl es/ j ava directory in the Gradle distribution.

Otherwise, continue on to Dependency Management for Java Projects.

Page 456 of 717

The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as
the basis for many of the other Gradle plugins.

8§
Usage
To use the Java plugin, include the following in your build script:
Example 399. Using the Java plugin
buil d. gradl e

apply plugin: 'java'

8
Source sets

The Java plugin introduces the concept of a source set. A source set is simply a group of source files which
are compiled and executed together. These source files may include Java source files and resource files.
Other plugins add the ability to include Groovy and Scala source files in a source set. A source set has an
associated compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For
example, you might use a source set to define an integration test suite, or you might use separate source
sets to define the API and implementation classes of your project.

The Java plugin defines two standard source sets, called nai n and t est. The nmai n source set contains
your production source code, which is compiled and assembled into a JAR file. The t est source set
contains your test source code, which is compiled and executed using JUnit or TestNG. These can be unit
tests, integration tests, acceptance tests, or any combination that is useful to you.

8
Tasks

The Java plugin adds a number of tasks to your project, as shown below.

conpi | eJava(type: JavaConpil e)

Page 457 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Compiles production Java source files using javac. Depends on all tasks which produce the compile
classpath. This includes the j ar task for project dependencies included in the conpi | e configuration.

processResour ces(type: Copy)
Copies production resources into the production resources directory.

cl asses(type: Task)
Assembles the production classes and resources directories.

conpi | eTest Java(type: JavaConpil e)
Compiles test Java source files using javac. Depends on conpi | e, plus all tasks which produce the test
compile classpath.

processTest Resour ces(type: Copy)
Copies test resources into the test resources directory.

test O asses(type: Task)
Assembles the test classes and resources directories. Depends on conpi | eTest Java task and pr oces
task. Some plugins add additional test compilation tasks.

jar(type: Jar)
Assembles the JAR file. Depends on conpi | e.

j avadoc(type: Javadoc)
Generates APl documentation for the production Java source, using Javadoc. Depends on conpi | e.

test(type: Test)
Runs the unit tests using JUnit or TestNG. Depends on conpi | e, conpi | eTest, plus all tasks which
produce the test runtime classpath.

upl oadAr chi ves(type: Upl oad)
Uploads artifacts in the ar chi ves configuration, including the JAR file. Depends on the tasks which
produce the artifacts in the ar chi ves configuration, including j ar .

clean(type: Del ete)
Deletes the project build directory.

cl eanTaskNane(type: Del ete)
Deletes files created by specified task. cl eanJar will delete the JAR file created by the j ar task, and cl
will delete the test results created by the t est task.

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Page 458 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html

8§
SourceSet Tasks

conpi | eSour ceSet Java(type: JavaConpil e)
Compiles the given source set’'s Java source files using javac. Depends on all tasks which produce the
source set’s compile classpath.

processSour ceSet Resour ces(type: Copy)
Copies the given source set’s resources into the resources directory.

sour ceSet Cl asses(type: Task)
Assembles the given source set’s classes and resources directories. Depends on the conpi | e Sour ceSi
task and the pr ocess Sour ceSet Resour ces task. Some plugins add additional compilation tasks for
the source set.

8
Lifecycle Tasks

The Java plugin also adds a number of tasks which form a lifecycle for the project:

assenbl e(type: Task)
Assembles all the archives in the project. Depends on all archive tasks in the project, including j ar .
Some plugins add additional archive tasks to the project.

check(type: Task)
Performs all verification tasks in the project. Depends on all verification tasks in the project, including t es
. Some plugins add additional verification tasks to the project.

bui l d(type: Task)
Performs a full build of the project. Depends on check and assenbl e.

bui | dNeeded(type: Task)
Performs a full build of the project and all projects it depends on. Depends on bui | d and bui | dNeeded
tasks in all project lib dependencies of the t est Runt i ne configuration.

bui | dDependent s(type: Task)
Performs a full build of the project and all projects which depend on it. Depends on bui | d and bui | dDeg
tasks in all projects with a project lib dependency on this project in a t est Runt i me configuration.

bui | dConfi gName(type: Task)
Assembles the artifacts in the specified configuration. The task is added by the Base plugin which is
implicitly applied by the Java plugin. Depends on the tasks which produce the artifacts in configuration
ConfigName.

upl oadConfi gName(type: Upl oad)
Assembles and uploads the artifacts in the specified configuration. The task is added by the Base plugin

Page 459 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Upload.html

which is implicitly applied by the Java plugin. Depends on the tasks which uploads the artifacts in
configuration ConfigName.

The following diagram shows the relationships between these tasks.

Figure 14. Java plugin - tasks

m

compileTestJava

processTestResources |‘

compileJava

processResources

classes

test]-4—[check

lestClasses

uploadArchives

assemble 14

clean

1

Project layout

The Java plugin assumes the project layout shown below. None of these directories need to exist or have
anything in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 36. Java plugin - default project layout

irectory Meaning

rc/ mai n/java Production Java source

rc/ mai n/ resour ces Production resources
rc/test/java Test Java source
rc/test/resources Test resources

rc/ sourceSet /java Java source for the given source set
rc/ sourceSet / resour ces Resources for the given source set
8

Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in more detail in
the following sections. Here is a brief example which changes the main Java and resource source
directories.

Page 460 of 717

Example 400. Custom Java source layout

buil d. gradl e
sourceSets {
mai n {
java {
srcDirs = ['src/java']
}

resources {
srchDirs = ['src/resources']

8§
Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns
those configurations to tasks such as conpi | eJava and t est .

Page 461 of 717

8
Dependency configurations

conpile

Compile time dependencies.

conpi l eOnly
Compile time only dependencies, not used at runtime.

conpi | eCl asspat h extends conpi l e, conpil eOnly
Compile classpath, used when compiling source. Used by task conpi | eJava.

runti me extends conpil e
Runtime dependencies.

t est Conpi | e extends conpi | e
Additional dependencies for compiling tests.

t est Conpi | eOnly
Additional dependencies only for compiling tests, not used at runtime.

t est Conpi | ed asspat h extends t est Conpi |l e, test Conpil eOnly
Test compile classpath, used when compiling test sources. Used by task conpi | eTest Java.

test Runti nme extends runti me, testConpile
Additional dependencies for running tests only. Used by task t est .

archi ves
Artifacts (e.g. jars) produced by this project. Used by tasks upl oadAr chi ves.

def aul t extends runti ne
The default configuration used by a project dependency on this project. Contains the artifacts and
dependencies required by this project at runtime.

Figure 15. Java plugin - dependency configurations

uploadArchives task F————-trptoatds——— compileOnly -] compileClasspath

s jar”

jar task used by

hh'a'dﬁi'-jiﬁ,\

o)
————ti5edy-—— test task
testCompile

default compileJava task

testCompileOnly

/A

testRuntime

used by

testCompileClasspath F--——-———————— compileT estJava task

I
|

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Page 462 of 717

8
SourceSet dependency configurations

sour ceSet Conpi | e

Compile time dependencies for the given source set.

sour ceSet Conpi | eOnl y

Compile time only dependencies for the given source set, not used at runtime.

sour ceSet Conpi | eC asspat h extends conpi | eSour ceSet Java
Compile classpath, used when compiling source. Used by sour ceSet Comnpi | e, sour ceSet Conpi | eC

sour ceSet Runti ne

Runtime dependencies for the given source set. Used by sour ceSet Conpi | e.

8§
Convention properties

The Java plugin adds a number of convention properties to the project, shown below. You can use these
properties in your build script as though they were properties of the project object.

Page 463 of 717

8
Directory properties

String reportsDirName

The name of the directory to generate reports into, relative to the build directory. Default value: r eport s

(read-only) File reportsDir
The directory to generate reports into. Default value: bui | dDi r / r epor t sDi r Narre

String testResultsDi r Name
The name of the directory to generate test result .xml files into, relative to the build directory. Default
value:test-results

(read-only) File testResultsDir
The directory to generate test result .xml files into. Default value: bui | dDi r / t est Resul t sDi r Nane

String testReportDirNane
The name of the directory to generate the test report into, relative to the reports directory. Default value: t

(read-only) File testReportDir
The directory to generate the test report into. Default value: report sDi r/ t est Report Di r Nane

String |ibsDirNanme
The name of the directory to generate libraries into, relative to the build directory. Default value: | i bs

(read-only) File libsDr

The directory to generate libraries into. Default value: bui | dDi r / | i bsDi r Name

String di stsbhirNane
The name of the directory to generate distributions into, relative to the build directory. Default value: di st

(read-only) File distsDir
The directory to generate distributions into. Default value: bui | dDi r / di st sDi r Nane

String docsDi r Nanme: :_The name of the directory to generate documentation into, relative to the build
directory. Default value: docs

(read-only) File docsDir

The directory to generate documentation into. Default value: bui | dDi r / docsDi r Nane

String dependencyCacheDi r Nane
The name of the directory to use to cache source dependency information, relative to the build directory.
Default value: dependency- cache

Page 464 of 717

8
Other convention properties

(read-only) SourceSet Contai ner sourceSets

Contains the project’s source sets. Default value: Not null Sour ceSet Cont ai ner

JavaVer si on sourceConpatibility
Java version compatibility to use when compiling Java source. Default value: version of the current JVM
in use JavaVer si on. Can also set using a String or a Number, e.g. ' 1. 5" or 1. 5.

JavaVersion target Conpatibility
Java version to generate classes for. Default value: sour ceConpati bility. Can also set using a
String or Number, e.g." 1. 5" or 1. 5.

String archi vesBaseNane
The basename to use for archives, such as JAR or ZIP files. Default value: pr oj ect Name

Mani f est mani f est
The manifest to include in all JAR files. Default value: an empty manifest.

These properties are provided by convention objects of type JavaPl ugi nConvention, and

BasePl ugi nConventi on.

8§
Working with source sets

You can access the source sets of a project using the sour ceSet s property. This is a container for the
project’s source sets, of type Sour ceSet Cont ai ner . There is also a sourceSets { } script block, which
you can pass a closure to configure the source set container. The source set container works pretty much
the same way as other containers, such as t asks.

Page 465 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/SourceSetContainer.html

Example 401. Accessing a source set

buil d. gradl e

println sourceSets. main.output.classesDirs
println sourceSets[' nain'].output.classesDirs
sourceSets {

println main.output.classesDirs

}
sourceSets {
mai n {
println output.classesDirs
}
}

sourceSets. all {
println nane

To configure an existing source set, you simply use one of the above access methods to set the properties
of the source set. The properties are described below. Here is an example which configures the main Java
and resources directories:

Example 402. Configuring the source directories of a source set

bui | d. gradl e
sourceSets {
mai n {
java {
srcDirs = ['src/java']
}

resources {
srcDirs = ['src/resources']

8
Source set properties

The following table lists some of the important properties of a source set. You can find more details in the
APl documentation for Sour ceSet .

(read-only) String name
The name of the source set, used to identify it. Default value: Not null

(read-only) SourceSet Cut put out put

Page 466 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.SourceSetOutput.html

The output files of the source set, containing its compiled classes and resources. Default value: Not null

FileCol l ection output.classesDirs
The directories to generate the classes of this source set into. Default value: Not null

File output.resourcesDir
The directory to generate the resources of this source set into. Default value: bui | dDi r / r esour ces/ n

FileCol | ection conpil ed asspath
The classpath to use when compiling the source files of this source set. Default value: conpi | e Sour ce€
configuration.

FileCol l ection runtimed asspath
The classpath to use when executing the classes of this source set. Default value: out put + runti nme Sc
configuration.

(read-only) SourceDirectorySet java
The Java source files of this source set. Contains only . j ava files found in the Java source directories,
and excludes all other files. Default value: Not null

Set<File> java.srcDirs
The source directories containing the Java source files of this source set. Default value: [proj ectDir /¢
. Can set using anything described in the section called “Specifying a set of input files”.

File java. outputDir
The directory to generate compiled Java sources into. Default value: bui | dDi r / cl asses/j ava/ sour «
. Can set using anything described in the section called “Locating files”.

(read-only) SourceDirectorySet resources
The resources of this source set. Contains only resources, and excludes any . j ava files found in the
resource source directories. Other plugins, such as the Groovy plugin, exclude additional types of files
from this collection. Default value: Not null

Set<Fil e> resources.srcDirs
The source directories containing the resources of this source set. Default value: [pr oj ect Di r / sr ¢/ ni
. Can set using anything described in the section called “Specifying a set of input files”.

(read-only) SourceDirectorySet allJava
All . j ava files of this source set. Some plugins, such as the Groovy plugin, add additional Java source
files to this collection. Default value: j ava

(read-only) SourcebDirectorySet all Source
All source files of this source set. This include all resource files and all Java source files. Some plugins,
such as the Groovy plugin, add additional source files to this collection. Default value: r esources + ja

Page 467 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.file.SourceDirectorySet.html

8
Defining new source sets

To define a new source set, you simply reference it in the sour ceSet s { } block. Here’s an example:

Example 403. Defining a source set

bui I d. gradl e
sourceSets {

i nt Test
}

When you define a new source set, the Java plugin adds some dependency configurations for the source
set, as shown in the section called “SourceSet dependency configurations”. You can use these
configurations to define the compile and runtime dependencies of the source set.

Example 404. Defining source set dependencies

buil d. gradl e
sourceSets {

i nt Test
}

dependenci es {
intTestConpile "junit:junit:4. 12
i nt TestRuntime 'org.ow2.asmasmall: 4.0

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in the
section called “SourceSet Tasks”. For example, for a source set called i nt Test, compiling the classes for
this source set is done by running gr adl e i nt Test Cl asses.

Example 405. Compiling a source set

Output of gradl e i nt Test d asses
> gradl e intTestd asses
:conpi | el nt Test Java

. processl nt Test Resour ces
tintTestd asses

BU LD SUCCESSFUL in Os
2 actionable tasks: 2 executed

8
Some source set examples

Adding a JAR containing the classes of a source set:

Page 468 of 717

Example 406. Assembling a JAR for a source set

buil d. gradl e
task intTestJar(type: Jar) {
from sourceSets. i nt Test. out put

Generating Javadoc for a source set:
Example 407. Generating the Javadoc for a source set

buil d. gradl e
task intTestJavadoc(type: Javadoc) {
source sourceSets.intTest.allJava

Adding a test suite to run the tests in a source set:
Example 408. Running tests in a source set

buil d. gradl e
task intTest(type: Test) {

testCl assesDirs = sourceSets.intTest.output.classesDirs
classpath = sourceSets.intTest.runtineC asspath

8
Javadoc

The j avadoc task is an instance of Javadoc. It supports the core Javadoc options and the options of the

standard doclet described in the reference documentation of the Javadoc executable. For a complete list of

supported Javadoc options consult the APl documentation of the following classes: Cor eJavadocOpt i ons

and St andar dJavadocDocl et Opti ons.

Page 469 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

8
Javadoc properties

FileCol lection classpath

Default value: sour ceSet s. mai n. out put + sour ceSet s. mai n. conpi | eCl asspat h

Fil eTree source
Default value: sour ceSets. mai n. al | Java. Can set using anything described in the section called
“Specifying a set of input files”.

File destinationDr
Default value: docsDi r / j avadoc

String title
Default value: The name and version of the project

8
Clean

The cl ean task is an instance of Del et e. It simply removes the directory denoted by its di r property.

§
Clean properties

File dir
Default value: bui | dDi r
8§
Resources

The Java plugin uses the Copy task for resource handling. It adds an instance for each source set in the

project. You can find out more about the copy task in the section called “Copying files”.

§
ProcessResources properties

oj ect srchirs
Default value: sourceSet .resources. Can set using anything described in the section called

“Specifying a set of input files”.

Fil e destinationDir
Default value: sour ceSet . out put . resour cesDi r. Can set using anything described in the section
called “Locating files”.

Page 470 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html

8§
CompileJava

The Java plugin adds a JavaConpi | e instance for each source set in the project. Some of the most

common configuration options are shown below.

§
Compile properties

FileCol l ection classpath
Default value: sour ceSet . conpi | e asspat h

Fi |l eTree source
Default value: sour ceSet . j ava. Can set using anything described in the section called “Specifying a
set of input files”.

File destinationDir
Default value: sour ceSet . j ava. out put Di r

By default, the Java compiler runs in the Gradle process. Setting options.fork to true causes
compilation to occur in a separate process. In the case of the Ant javac task, this means that a new process
will be forked for each compile task, which can slow down compilation. Conversely, Gradle's direct compiler
integration (see above) will reuse the same compiler process as much as possible. In both cases, all fork
options specified with opt i ons. f or kOpt i ons will be honored.

8§
Incremental Java compilation

Starting with Gradle 2.1, it is possible to compile Java incrementally. See the JavaConpi | e task for

information on how to enable it.
Main goals for incremental compilations are:

Avoid wasting time compiling source classes that don't have to be compiled. This means faster builds,
especially when a change to a source class or a jar does not incur recompilation of many source classes that
depend on the changed input.

Change as few output classes as possible. Classes that don’t need to be recompiled remain unchanged in
the output directory. An example scenario when this is really useful is using JRebel - the fewer output
classes are changed the quicker the JVM can use refreshed classes.

The incremental compilation at a high level:

The detection of the correct set of stale classes is reliable at some expense of speed. The algorithm uses
bytecode analysis and deals gracefully with compiler optimizations (inlining of non-private constants),

Page 471 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

transitive class dependencies, etc. Example: When a class with a public constant changes, we eagerly
compile classes that use the same constants to avoid problems with constants inlined by the compiler.

To make incremental compilation fast, we cache class analysis results and jar snapshots. The initial
incremental compilation can be slower due to the cold caches.

8
Known issues

If a compile task fails due to a compile error, it will do a full compilation again the next time it is invoked.

Because of type erasure, the incremental compiler is not able to recognize when a type is only used in a
type parameter, and never actually used in the code. For example, imagine that you have the following code:
Li st<? extends A> list = Lists.newArraylist(); butthat no member of Ais in practice used in
the code, then changes to A will not trigger recompilation of the class. In practice, this should very rarely be

an issue.

8§
Compile avoidance

If a dependent project has changed in an ABI-compatible way (only its private API has changed), then Java
compilation tasks will be up-to-date. This means that if project A depends on project B and a class in B is
changed in an ABI-compatible way (typically, changing only the body of a method), then Gradle won't
recompile A.

Some of the types of changes that do not affect the public APl and are ignored:
Changing a method body

Changing a comment

Adding, removing or changing private methods, fields, or inner classes

Adding, removing or changing a resource

Changing the name of jars or directories in the classpath

Renaming a parameter

Compile-avoidance is deactivated if annotation processors are found on the compile classpath, because for
annotation processors the implementation details matter. To better separate these concerns, it's
recommended to declare annotation processors separately: the Conpi | eOpt i ons for the JavaConpi | e
task type define a annot ati onProcessor Pat h property that can be used to declare annotation
processors. It's recommended to use a distinct configuration for annotation processors:

Page 472 of 717

https://en.wikipedia.org/wiki/Application_binary_interface
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.CompileOptions.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 409. Declaring annotation processors

buil d. gradl e

configurations {
apt

}

dependenci es {

apt 'com googl e. dagger: dagger-conpil er: 2. 8’

i mpl ement ati on ' com googl e. dagger : dagger: 2. 8'

conpi | eJava {
options. annot ati onProcessor Path = confi gurations. apt

8
Test

The t est task is an instance of Test . It automatically detects and executes all unit tests in the t est source
set. It also generates a report once test execution is complete. JUnit and TestNG are both supported. Have
alook at Test for the complete API.

§
Test execution

Tests are executed in a separate JVM, isolated from the main build process. The Test task’s API allows you
some control over how this happens.

There are a number of properties which control how the test process is launched. This includes things such
as system properties, JVM arguments, and the Java executable to use.

You can specify whether or not to execute your tests in parallel. Gradle provides parallel test execution by
running multiple test processes concurrently. Each test process executes only a single test at a time, so you
generally don't need to do anything special to your tests to take advantage of this. The maxPar al | el For ks
property specifies the maximum number of test processes to run at any given time. The default is 1, that is,
do not execute the tests in parallel.

The test process sets the org. gradl e. t est. wor ker system property to a unique identifier for that test

process, which you can use, for example, in files names or other resource identifiers.

You can specify that test processes should be restarted after it has executed a certain number of test
classes. This can be a useful alternative to giving your test process a very large heap. The f or kEvery
property specifies the maximum number of test classes to execute in a test process. The default is to

Page 473 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html

execute an unlimited number of tests in each test process.

The task has an i gnor eFai | ur es property to control the behavior when tests fail. The Test task always
executes every test that it detects. It stops the build afterwards if i gnor eFai | ur es is false and there are
failing tests. The default value of i gnor eFai | ur es is false.

The t est Loggi ng property allows you to configure which test events are going to be logged and at which
detail level. By default, a concise message will be logged for every failed test. See
Test Loggi ngCont ai ner for how to tune test logging to your preferences.

8
Debugging

The test task provides a Test . get Debug() property that can be set to launch to make the JVM wait for a

debugger to attach to port 5005 before proceeding with test execution.
This can also be enabled at invocation time via the - - debug- j vmtask option (since Gradle 1.12).

8
Test filtering

Starting with Gradle 1.10, it is possible to include only specific tests, based on the test name pattern.
Filtering is a different mechanism than test class inclusion / exclusion that will be described in the next few
paragraphs (- Dt est . si ngl e, t est. i ncl ude and friends). The latter is based on files, e.g. the physical
location of the test implementation class. File-level test selection does not support many interesting
scenarios that are possible with test-level filtering. Some of them Gradle handles now and some will be
satisfied in future releases:

Filtering at the level of specific test methods; executing a single test method
Filtering based on custom annotations (future)
Filtering based on test hierarchy; executing all tests that extend a certain base class (future)

Filtering based on some custom runtime rule, e.g. particular value of a system property or some static state
(future)

Test filtering feature has following characteristic:

Fully qualified class name or fully qualified method name is supported, e.g. “org.gradle.SomeTest",
“org.gradle.SomeTest.someMethod”

Wildcard *" is supported for matching any characters

Command line option “--tests” is provided to conveniently extend the test filter for an individual Gradle

execution. This is especially useful for the classic 'single test method execution' use case. When the

Page 474 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

command line option is used, the inclusions declared in the build script are still honored. That is, the

command line filters are always applied on top of the filter definition in the build script. It is possible to supply

multiple “--tests” options and tests matching any of those patterns will be included.

Gradle tries to filter the tests given the limitations of the test framework APIl. Some advanced, synthetic tests

may not be fully compatible with filtering. However, the vast majority of tests and use cases should be

handled neatly.

Test filtering supersedes the file-based test selection. The latter may be completely replaced in future. We

will grow the test filtering API and add more kinds of filters.
Example 410. Filtering tests in the build script

buil d. gradl e
test {
filter {

i ncl udeTest shvat ching "*U Check"

i ncl udeTestsMatching "org.gradle.internal.*"

i ncl udeTest sMat ching "*IntegTest"

For more details and examples please see the Test Fi | t er reference.
Some examples of using the command line option:

gradle test --tests org.gradle. SomeTest. soneSpeci fi cFeature
gradle test --tests *SoneTest.soneSpecificFeature
gradle test --tests *SoneSpecificTest

gradle test --tests *SoneSpecificTestSuite

gradle test --tests all.in.specific.package*

gradle test --tests *IntegTest

gradle test --tests *IntegTest*ui*

gradle test --tests "com exanpl e. MyTest Suite"

gradle test --tests "com exanpl e. Paraneteri zedTest"

gradle test --tests "*ParaneterizedTest.foo*"

Page 475 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/testing/TestFilter.html

gradle test --tests "*ParaneterizedTest.*[2]"
gradl e soneTest Task --tests *Ui Test someQt her Test Task --tests *WebTest\ *ui

This is something you can combine with continuous build using - - conti nuous (or -t, for short) to
re-execute a subset of tests immediately after every change.

gradle test --continuous --tests "com mypackage. foo. *"

§
Single test execution via System Properties

Note: This mechanism has been superseded by 'Test Filtering', described above.

Setting a system property of taskName.single = testNamePattern will only execute tests that match the
specified testNamePattern. The taskName can be a full multi-project path like “:subl:sub2:test” or just the
task name. The testNamePattern will be used to form an include pattern of “**/testNamePattern*.class”. If no
tests with this pattern can be found, an exception is thrown. This is to shield you from false security. If tests
of more than one subproject are executed, the pattern is applied to each subproject. An exception is thrown
if no tests can be found for a particular subproject. In such a case you can use the path notation of the
pattern, so that the pattern is applied only to the test task of a specific subproject. Alternatively you can
specify the fully qualified task name to be executed. You can also specify multiple patterns. Examples:

gradl e -Dtest. singl e=Thi sUni quel yNanedTest test

gradl e -Dtest.single=al/b/ test

gradl e -Di ntegTest.single=*IntegrationTest integTest
gradle -D:proj 1:test. singl e=Custoner build

gradle -D:projl:integTest. single=c/d/

8§
Test detection

The Test task detects which classes are test classes by inspecting the compiled test classes. By default it
scans all . cl ass files. You can set custom includes / excludes, only those classes will be scanned.
Depending on the test framework used (JUnit / TestNG) the test class detection uses different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the
class is considered to be a JUnit test class:

Class or a super class extends Test Case or G oovyTest Case
Class or a super class is annotated with @RunW t h

Class or a super class contain a method annotated with @est

Page 476 of 717

When using TestNG, we scan for methods annotated with @est .

Note that abstract classes are not executed. Gradle also scans up the inheritance tree into jar files on the
test classpath.

If you don’t want to use test class detection, you can disable it by setting scanFor Test Cl asses to false.
This will make the test task only use includes / excludes to find test classes. If scanFor Test C asses is
false and no include / exclude patterns are specified, the defaults are “**/ * Test s. cl ass”, “**/ *Test . cl ¢
"and “**/ Abstract *. cl ass” for include and exclude, respectively.

8
Test grouping

JUnit and TestNG allows sophisticated groupings of test methods.

For grouping JUnit test classes and methods JUnit 4.8 introduces the concept of categories.[*®! The t est
task allows the specification of the JUnit categories you want to include and exclude.

Example 411. JUnit Categories

buil d. gradl e
test {
useJUnit {
i ncl udeCat egories 'org.gradle.junit.CategoryA
excl udeCat egories 'org.gradle.junit.CategoryB

The TestNG framework has a quite similar concept. In TestNG you can specify different test groups.[*”] The
test groups that should be included or excluded from the test execution can be configured in the test task.

Example 412. Grouping TestNG tests

buil d. gradl e
test {
useTest NG {
excludeG oups 'integrationTests'
i ncl udeGroups 'unitTests'

8§
Test execution order in TestNG

TestNG allows explicit control of the execution order of tests.
The preserveOr der property controls whether tests are executed in deterministic order. Preserving the

order guarantees that the complete test (including @ef or eXXX and @Af t er XXX) is run in a test thread

Page 477 of 717

before the next test is run. While preserving the order of tests is the default behavior when directly working
with t est ng. xm files, the TestNG API, that is used for running tests programmatically, as well as Gradle’'s
TestNG integration execute tests in unpredictable order by default.[!®] Preserving the order of tests was
introduced with TestNG version 5.14.5. Setting the pr eser veOr der property to t r ue for an older TestNG
version will cause the build to fail.

Example 413. Preserving order of TestNG tests

bui I d. gradl e
test {
useTest NG {
preserveOrder true

The groupByl nst ance property controls whether tests should be grouped by instances. Grouping by
instances will result in resolving test method dependencies for each instance instead of running the
dependees of all instances before running the dependants. The default behavior is not to group tests by
instances.[*®] Grouping tests by instances was introduced with TestNG version 6.1. Setting the gr oupBy| nsi
property to t r ue for an older TestNG version will cause the build to fail.

Example 414. Grouping TestNG tests by instances

buil d. gradl e
test {
useTest NG {
groupByl nst ances true
}
}
§

Test reporting
The Test task generates the following results by default.
An HTML test report.

The results in an XML format that is compatible with the Ant JUnit report task. This format is supported by
many other tools, such as ClI servers.

Results in an efficient binary format. The task generates the other results from these binary results.

There is also a stand-alone Test Repor t task type which can generate the HTML test report from the binary
results generated by one or more Test task instances. To use this task type, you need to define a dest i nat
and the test results to include in the report. Here is a sample which generates a combined report for the unit
tests from subprojects:

Page 478 of 717

https://jitpack.io/com/github/cbeust/testng/master/javadoc/org/testng/TestNG.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.TestReport.html

Example 415. Creating a unit test report for subprojects

buil d. gradl e
subproj ects {
apply plugin: 'java'

test {
reports. htnl.enabled = fal se

task testReport(type: TestReport) {
destinationDir = file("$buildDir/reports/all Tests")

report On subproj ects*.test

You should note that the Test Report type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by multiple
test tasks, then the test report will include executions of that class, but it can be hard to distinguish individual
executions of that class and their output.

§
TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed multiple
times with different inputs. Gradle includes the parameter values in its reporting of the test method
execution.

Given a parameterized test method named aTest Met hod that takes two parameters, it will be reported with
the name: aTest Met hod(toStri ngVal ueO Paraml, toStringVal ued ParanR). This makes
identifying the parameter values for a particular iteration easy.

8
Test convention values

File testd assesDirs
Default value: sour ceSet s. t est. out put. cl assesDirs

Fil eCol l ection classpath
Default value: sour ceSets. test. runti neCl asspath

File testResultsDir
Default value: t est Resul t sDi r

File test ReportDir
Default value: t est ReportDi r

Page 479 of 717

http://testng.org/doc/documentation-main.html#parameters
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html

8§
Jar

The j ar task creates a JAR file containing the class files and resources of the project. The JAR file is
declared as an artifact in the ar chi ves dependency configuration. This means that the JAR is available in
the classpath of a dependent project. If you upload your project into a repository, this JAR is declared as part
of the dependency descriptor. You can learn more about how to work with archives in the section called
“Creating archives” and artifact configurations in Publishing artifacts.

§
Manifest

Each jar or war object has a mani f est property with a separate instance of Vani f est . When the archive is
generated, a corresponding MANI FEST. M- file is written into the archive.

Example 416. Customization of MANIFEST.MF

buil d. gradl e
jar {
mani f est {
attributes("lnplenentation-Title": "G adle",
"I npl ement ati on- Versi on": version)
}
}

You can create stand-alone instances of a Mani f est. You can use that for example, to share manifest
information between jars.

Example 417. Creating a manifest object.

bui | d. gradl e
ext . sharedMani fest = manifest {
attributes("lInplenentation-Title": "G adle",
"I npl emrent ati on- Versi on": version)
}

task fooJdar(type: Jar) {
mani f est = project. manifest {
from shar edMani f est

You can merge other manifests into any Mani f est object. The other manifests might be either described by
a file path or, like in the example above, by a reference to another Mani f est object.

Page 480 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/java/archives/Manifest.html

Example 418. Separate MANIFEST.MF for a particular archive

buil d. gradl e
task barJar (type: Jar) {
mani f est {

attributes keyl: 'val uel
from sharedMani fest, 'src/config/basemanifest.txt'
from(' src/config/javabasenmani fest.txt',
"src/config/libbasemanifest.txt') ({
eachEntry { details ->
if (details.baseValue != details.nergeVal ue) {
detail s. val ue = baseVal ue

}
if (details.key == "foo") {
detai | s. excl ude()

Manifests are merged in the order they are declared by the f r omstatement. If the base manifest and the
merged manifest both define values for the same key, the merged manifest wins by default. You can fully
customize the merge behavior by adding eachEntry actions in which you have access to a

Mani f est Mer geDet ai | s instance for each entry of the resulting manifest. The merge is not immediately
triggered by the from statement. It is done lazily, either when generating the jar, or by calling wri t eTo or ef f

You can easily write a manifest to disk.
Example 419. Saving a MANIFEST.MF to disk

bui I d. gradl e
jar.mani fest.witeTo("$buildD r/ nymanifest.nf")

8§

Uploading
How to upload your archives is described in Publishing artifacts.
8§

Compiling and testing Java 6/7

Gradle can only run on Java version 7 or higher. However, support for running Gradle on Java 7 has been
deprecated and is scheduled to be removed in Gradle 5.0. There are two reasons for deprecating support for
Java 7:

Java 7 reached end of life. Therefore, Oracle ceased public availability of security fixes and upgrades for

Page 481 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.oracle.com/technetwork/java/javase/eol-135779.html

Java 7 as of April 2015.

Once support for Java 7 has ceased (likely with Gradle 5.0), Gradle’s implementation can start to use Java 8
APIs optimized for performance and usability.

Gradle still supports compiling, testing, generating Javadoc and executing applications for Java 6 and Java
7. Java 5 is not supported.

To use Java 6 or Java 7, the following tasks need to be configured:
JavaConpi | e task to fork and use the correct Java home
Javadoc task to use the correct j avadoc executable

Test and the JavaExec task to use the correct j ava executable.

The following sample shows how the bui | d. gr adl e needs to be adjusted. In order to be able to make the
build machine-independent, the location of the old Java home and target version should be configured in GRA
[20] in the user's home directory on each developer machine, as shown in the example.

Page 482 of 717

Example 420. Configure Java 6 build

gradl e. properties

in $HOVE/ . gradl e/ gradl e. properties

j avaHome=/ Li br ary/ Java/ JavaVi r t ual Machi nes/ 1. 7. 0. j dk/ Cont ent s/ Hone
t arget JavaVer si on=1.7

buil d. gradl e
assert hasProperty('javaHone'): "Set the property 'javaHone' in your your gradle.
assert hasProperty('targetJavaVersion'): "Set the property 'targetJavaVersion' i

sourceConpatibility = targetJavaVersion

def javaExecutabl esPath = new Fil e(javaHorme, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPat h, execNane)
assert executable.exists(): "There is no ${execNane} executable in ${javaExe:
execut abl e
}
tasks. wi t hType(Abstract Conpile) {
options.with {
fork = true
forkOptions.javaHone = file(javaHone)

}
}
tasks. w t hType(Javadoc) {

execut abl e = javaExecut abl es. j avadoc
}
tasks. wi t hType(Test) {

execut abl e = javaExecut abl es. j ava
}
tasks. wi t hType(JavaExec) {

execut abl e = javaExecut abl es. j ava
}

[16] The JUnit wiki contains a detailed description on how to work with JUnit categories:

https://github.com/junit-team/junit/wiki/Categories.
[17] The TestNG documentation contains more details about test groups:
http://testng.org/doc/documentation-main.html#test-groups.

[18] The TestNG documentation contains more details about test ordering when working with t est ng. xni
files: http://testng.org/doc/documentation-main.html#testng-xml.

[19] The TestNG documentation contains more details about grouping tests by instances:
http://testng.org/doc/documentation-main.html#dependencies-with-annotations.

Page 483 of 717

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#dependencies-with-annotations

[20] For more details on gr adl e. properti es see the section called “Gradle properties”

Page 484 of 717

The Java Library Plugin

The Java Library plugin expands the capabilities of the Java plugin by providing specific knowledge about
Java libraries. In particular, a Java library exposes an API to consumers (i.e., other projects using the Java
or the Java Library plugin). All the source sets, tasks and configurations exposed by the Java plugin are
implicitly available when using this plugin.

§
Usage

To use the Java Library plugin, include the following in your build script:
Example 421. Using the Java Library plugin

buil d. gradl e
apply plugin: "java-library

8§
APl and implementation separation

The key difference between the standard Java plugin and the Java Library plugin is that the latter introduces
the concept of an API exposed to consumers. A library is a Java component meant to be consumed by other
components. It's a very common use case in multi-project builds, but also as soon as you have external
dependencies.

The plugin exposes two configurations that can be used to declare dependencies: api andi npl enentati o
. The api configuration should be used to declare dependencies which are exported by the library API,
whereas the i npl enent at i on configuration should be used to declare dependencies which are internal to
the component.

Example 422. Declaring APl and implementation dependencies

buil d. gradl e
dependenci es {
api ' commons-httpclient:comons-httpclient: 3.1
i npl ement ati on ' org. apache. cormons: commons- | ang3: 3. 5'

Page 485 of 717

Dependencies appearing in the api configurations will be transitively exposed to consumers of the library,
and as such will appear on the compile classpath of consumers. Dependencies found in the i npl enent at i «
configuration will, on the other hand, not be exposed to consumers, and therefore not leak into the
consumers' compile classpath. This comes with several benefits:

dependencies do not leak into the compile classpath of consumers anymore, so you will never accidentally
depend on a transitive dependency

faster compilation thanks to reduced classpath size

less recompilations when implementation dependencies change: consumers would not need to be
recompiled

cleaner publishing: when used in conjunction with the new maven- publ i sh plugin, Java libraries produce
POM files that distinguish exactly between what is required to compile against the library and what is
required to use the library at runtime (in other words, don’t mix what is needed to compile the library itself
and what is needed to compile against the library).

Note: The conpi | e configuration still exists but should not be used as it will not offer the
guarantees that the api and i npl enent at i on configurations provide.

8§
Recognizing APl and implementation dependencies

This section will help you spot APl and Implementation dependencies in your code using simple rules of
thumb. Basically, an APl dependency is a type that is exposed in the library binary interface, often referred to
ABI (Application Binary Interface). This includes, but is not limited to:

types used in super classes or interfaces

types used in public method parameters, including generic parameter types (where public is something that
is visible to compilers. l.e. , public, protected and package private members in the Java world)

types used in public fields
public annotation types

In opposition, any type that is used in the following list is irrelevant to the ABI, and therefore should be
declared as i npl enent at i on dependency:

types exclusively used in method bodies
types exclusively used in private members

types exclusively found in internal classes (future versions of Gradle will let you declare which packages
belong to the public API)

In the following sample, we can make the difference between an API dependency and an implementation

Page 486 of 717

dependency:
Example 423. Making the difference between APl and implementation

src/ main/javal org/gradl e/ Ht pdient Wapper.java

/1 The follow ng types can appear anywhere in the code
/1l but say nothing about APl or inplenentation usage

i nport org.apache. commons. httpclient.*;

i nport org.apache. commons. httpclient. met hods. *;

i mport org.apache. conmons. | ang3. excepti on. ExceptionUtil s;
i nport java.io.| OException;

i mport java.io.UnsupportedEncodi ngExcepti on;

public class HtpdientWapper {

private final HtpCdient client; // private nmenber: inplenentation details

[l HtpCient is used as a paraneter of a public nethod

/1l so "leaks" into the public APl of this conponent

public HtpdientWapper(HtpCdient client) {
this.client = client;

[l public nmethods bel ongs to your API
public byte[] doRawGet(String url) ({
Get Met hod net hod = new Get Met hod(url);
try {
int statusCode = doCet (nethod);
return nethod. get ResponseBody() ;

} catch (Exception e) {
ExceptionUtils.rethrowe); // this dependency is internal only

} finally {
met hod. r el easeConnection();

}

return null;

/[l GetMethod is used in a private nethod, so doesn't belong to the API
private int doGet(GetMethod nethod) throws Exception {
int statusCode = client.execut eMet hod(et hod);
if (statusCode != HttpStatus.SC OK) {
Systemerr.println("Method failed: " + nethod. getStatusLine());

}

return statusCode;

We can see that our class imports third party classes, but imports alone won't tell us if a dependency is an

Page 487 of 717

API or implementation dependency. For this, we need to look at the methods. The public constructor of Ht t p
uses Ht t pCl i ent as a parameter, so it exposed to consumers and therefore belongs to the API.

On the other hand, the Excepti onUti | s type, coming from the commons- | ang library, is only used in a
method body, so it's an implementation dependency.

Therefore, we can deduce that commons- ht t pcl i ent is an API dependency, whereas conmons- | ang is
an implementation dependency, which directly translates into the build file:

Example 424. Declaring APl and implementation dependencies

buil d. gradl e
dependenci es {
api 'commons-httpclient:comobns-httpclient: 3.1
i mpl ement ati on ' org. apache. cormons: commons-| ang3: 3. 5'

As a guideline, you should prefer the i npl enent at i on configuration first: leakage of implementation types
to consumers would then directly lead to a compile error of consumers, which would be solved either by
removing the type from the public API, or promoting the dependency as an API dependency instead.

8
The Java Library plugin configurations

The following graph describes the main configurations setup when the Java Library plugin is in use.

api
apiElements(C) compileOnly(C, R) implementati
compileClasspath(R) runtimeEleme;

The configurations in green are the ones a user should use to declare dependencies
The configurations in pink are the ones used when a component compiles, or runs against the library
The configurations in blue are internal to the component, for its own use

The configurations in white are configurations inherited from the Java plugin

Page 488 of 717

And the next graph describes the test configurations setup:

testCompileOnly(C, R)

testCompileClasspath(R) te

Note: The compile, testCompile, runtime and testRuntime configurations inherited from the Java
plugin are still available but are deprecated. You should avoid using them, as they are only kept for
backwards compatibility.

The role of each configuration is described in the following tables:

Page 489 of 717

Table 37. Java Library plugin - configurations used to declare dependencies

onfiguration Canbe Canbe .
Role Description
ame consumed resolved
. Declaring API This is where you should declare dependencies which are transitively
Ji no no
dependencies exported to consumers, for compile.
Declaring o . .
. . . This is where you should declare dependencies which are purely
plementation implementation no no .
. internal and not meant to be exposed to consumers.
dependencies
Declari This is where you should declare dependencies which are only
eclarin
)] ¢ required at compile time, but should not leak into the runtime. This
xmpileOnly compile only yes yes
. typically includes dependencies which are shaded when found at
dependencies)
runtime.
Declaring L . .
. . This is where you should declare dependencies which are only
IntimeOnly runtime no no . . o
. required at runtime, and not at compile time.
dependencies
. Test This is where you should declare dependencies which are used to
'stimplementation . no)
dependencies compile tests.
. This is where you should declare dependencies which are only
Declaring test) o] . .
. . required at test compile time, but should not leak into the runtime. This
'stCompileOnly compile only yes yes
. typically includes dependencies which are shaded when found at
dependencies]
runtime.
Declaring test o . .
. . This is where you should declare dependencies which are only
'stRuntimeOnly runtime no no

dependencies

required at test runtime, and not at test compile time.

Table 38. Java Library plugin - configurations used by consumers

onfiguration Role Canbe Canbe
ame consumed resolved
For
. compiling
JiElements . . yes no
against this
library
For
intimeElements executing yes no
this library

Description

This configuration is meant to be used by consumers, to retrieve all the
elements necessary to compile against this library. Unlike the def aul t
configuration, this doesn’t leak implementation or runtime dependencies.

This configuration is meant to be used by consumers, to retrieve all the
elements necessary to run against this library.

Page 490 of 717

Table 39. Java Library plugin - configurations used by the library itself

Can be
consumed resolved

onfiguration name Role

. For compiling this
ympileClasspath . no
library

) For executing this
intimeClasspath . no
library

. For compiling the
'stCompileClasspath o no
tests of this library

. For executing
'stRuntimeClasspath L no
tests of this library

8
Known issues

8§
Compatibility with other plugins

Can be

yes

yes

yes

yes

Description

This configuration contains the compile classpath of this library,
and is therefore used when invoking the java compiler to compile
it.

This configuration contains the runtime classpath of this library

This configuration contains the test compile classpath of this
library.

This configuration contains the test runtime classpath of this
library

At the moment the Java Library plugin is only wired to behave correctly with the j ava plugin. Other plugins,

such as the Groovy plugin, may not behave correctly. In particular, if the Groovy plugin is used in addition to

the j ava- i brary plugin, then consumers may not get the Groovy classes when they consume the library.

To workaround this, you need to explicitly wire the Groovy compile dependency, like this:

Example 425. Configuring the Groovy plugin to work with Java Library

a/ build.gradle
configurations {
api El enents {

out goi ng. vari ants. get ByNane(' cl asses').artifact(
file: conpileG oovy.destinationDir,
type: ArtifactTypeDefinition.JVM CLASS DI RECTORY,

bui It By: conpil eGroovy)

Page 491 of 717

§
Increased memory usage for consumers

When a project uses the Java Library plugin, consumers will use the output classes directory of this project
directly on their compile classpath, instead of the jar file if the project uses the Java plugin. An indirect
consequence is that up-to-date checking will require more memory, because Gradle will snapshot individual
class files instead of a single jar. This may lead to increased memory consumption for large projects.

Page 492 of 717

Web Application Quickstart

Note: This chapter is a work in progress.

This chapter introduces the Gradle support for web applications. Gradle recommends two plugins for web
application development: the War plugin and the Gretty plugin. The War plugin extends the Java plugin to
build a WAR file for your project. The Gretty plugin allows you to deploy your web application to an
embedded Jetty web container.

§
Building a WAR file

To build a WAR file, you apply the War plugin to your project:
Example 426. War plugin

buil d. gradl e
apply plugin: 'war'

Note: The code for this example can be found at sanpl es/ webAppl i cati on/ qui ckstart in
the ‘-all’ distribution of Gradle.

This also applies the Java plugin to your project. Running gr adl e bui | d will compile, test and WAR your
project. Gradle will look for the source files to include in the WAR file in sr ¢/ mai n/ webapp. Your compiled
classes and their runtime dependencies are also included in the WAR file, in the VEEB- | NF/ cl asses and V\E
directories, respectively.

Groovy web applications

You can combine multiple plugins in a single project, so you can use the War and Groovy plugins
together to build a Groovy based web application. The appropriate Groovy libraries will be added to
the WAR file for you.

8§
Running your web application

To run your web application, you apply the Gretty plugin to your project:

Page 493 of 717

https://plugins.gradle.org/plugin/org.akhikhl.gretty

Example 427. Running web application with Gretty plugin

buil d. gradl e
bui I dscri pt {
repositories {
jcenter()

}
dependenci es {
cl asspath 'org. akhi khl .gretty:gretty:2.0.0'

}
apply plugin: '"org.akhikhl.gretty'

This also applies the War plugin to your project. Running gr adl e appRun will run your web application in
an embedded servlet container. Running gr adl e appRunWar will build the WAR file, and then run it in an
embedded web container.

8§
Summary

You can find out more about the War plugin in The War Plugin. You can find more sample Java projects in
the sanpl es/ webAppl i cat i on directory in the Gradle distribution.

Page 494 of 717

The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It disables
the default JAR archive generation of the Java plugin and adds a default WAR archive task.

8§

Usage
To use the War plugin, include the following in your build script:
Example 428. Using the War plugin

buil d. gradl e
apply plugin: "war'

8
Tasks

The War plugin adds the following tasks to the project.
Table 40. War plugin - tasks

ask name Depends on Type Description

ar conpil e Nar Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 41. War plugin - additional task dependencies
ask name Depends on

ssemble war

Page 495 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.War.html

Figure 16. War plugin - tasks

classes H war]‘—[assemble

8§
Project layout

Table 42. War plugin - project layout

irectory Meaning
rc/ mai n/ webapp Web application sources
8§

Dependency management

The War plugin adds two dependency configurations named pr ovi dedConpi | e and provi dedRunt i ne.
Those two configurations have the same scope as the respective conpi | e and runt i me configurations,
except that they are not added to the WAR archive. It is important to note that those provi ded
configurations work transitively. Let's say you add cormons- htt pcl i ent: conmons-httpclient: 3.0to
any of the provided configurations. This dependency has a dependency on commobns- codec. Because this
is a “provided” configuration, this means that neither of these dependencies will be added to your WAR,
even if the commons- codec library is an explicit dependency of your conpi | e configuration. If you don't

want this transitive behavior, simply declare your pr ovi ded dependencies like commons- htt pcli ent: cor

8§
Convention properties

Table 43. War plugin - directory properties
roperty name Type Default value Description

The name of the web application source directory, relative to the

2bAppDi r Narme Stri ng src/ mai n/ webapp . .
project directory.
. File . } ! — .
2bAppDi r proj ect Di r / webAppDi r Rageveb application source directory.
(read-only)

These properties are provided by a \\ar Pl ugi nConvent i on convention object.

Page 496 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.WarPluginConvention.html

8§
War

The default behavior of the War task is to copy the content of sr ¢/ mai n/ webapp to the root of the archive.
Your webapp directory may of course contain a V\EB- | NF sub-directory, which may contain a web. xni file.
Your compiled classes are compiled to WEB- | NF/ cl asses. All the dependencies of the runti me [21]
configuration are copied to \EB- | NF/ | i b.

The War class in the APl documentation has additional useful information.

§
Customizing

Here is an example with the most important customization options:

Page 497 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.War.html

Example 429. Customization of war plugin

buil d. gradl e
configurations {
nor eLi bs

repositories {
flatDir { dirs "lib" }
jcenter()

dependenci es {
conpil e nmodul e(":conmpile:1.0") {
dependency ":conpile-transitive-1.0@ar"
dependency ": provi dedConpile-transitive: 1. 0@ ar

}

provi dedConpi | e "j avax. servl et: servl et-api:2.5"
provi dedConpi | e nodul e(": provi dedConpi | e: 1. 0") {
dependency ": provi dedConpile-transitive: 1. 0@ ar

}

runtime ":runtine:1.0"

provi dedRuntime ": providedRuntine: 1. 0@ ar"
testConpile "junit:junit:4. 12"

nor eLi bs ":otherLib:1.0"

of the archive

}

war {
from'src/rootContent' // adds a file-set to the root
webl nf { from'src/additional WebInf' } // adds a file-set to the VEB-INF dir
classpath fileTree(' additional Libs'") // adds a file-set to the VEB-INF/|ib di
classpath configurations.noreLibs // adds a configuration to the VEB-INF|ib
webXm = file('src/someWeb.xm ') // copies a file to WEB-1NF/ web. xm

}

Of course one can configure the different file-sets with a closure to define excludes and includes.

[21] The runt i e configuration extends the conpi | e configuration.

Page 498 of 717

The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task. It
doesn't require the Java plugin, but for projects that also use the Java plugin it disables the default JAR
archive generation.

8§

Usage
To use the Ear plugin, include the following in your build script:
Example 430. Using the Ear plugin

bui I d. gradl e
apply plugin:

ear

8
Tasks

The Ear plugin adds the following tasks to the project.

Table 44. Ear plugin - tasks
ask name Depends on Type Description

ar conpi | e (only if the Java plugin is also applied) Ear Assembles the application EAR file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.
Table 45. Ear plugin - additional task dependencies

ask name Depends on

ssemble ear

Page 499 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ear.Ear.html

8§
Project layout

Table 46. Ear plugin - project layout

irectory Meaning
rc/ mai n/ application Ear resources, such as a META-INF directory
8§

Dependency management

The Ear plugin adds two dependency configurations: depl oy and ear | i b. All dependencies in the depl oy
configuration are placed in the root of the EAR archive, and are not transitive. All dependencies in the ear | i
configuration are placed in the 'lib' directory in the EAR archive and are transitive.

8§
Convention properties

Table 47. Ear plugin - directory properties

roperty name Type Default value Description

. The name of the application source
opDi r Nane String src/ mai n/ application . . .
directory, relative to the project directory.

! . . The name of the lib directory inside the
| bDi r Nane String lib
generated EAR.

Metadata to generate a deployment

) descriptor file, e.g. application.xm . If
A deployment descriptor o !
)) . . this file already exists in the appDi r Narme/ ME
2pl oynent Descri pt or org. gradl e. pl ugi ns. eavithlessangibler . Defhwysrent Descri pfor .
. . then the existing file contents will be used
named appl i cati on. xm o) o
and the explicit configuration in the ear . depl

will be ignored.

These properties are provided by a Ear Pl ugi nConvent i on convention object.

Page 500 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ear.EarPluginConvention.html

8
Ear

The default behavior of the Ear task is to copy the content of src/ mai n/ appl i cati on to the root of the
archive. If your appli cati on directory doesn’'t contain a META-1 NF/ appl i cati on. xm deployment
descriptor then one will be generated for you.

The Ear class in the APl documentation has additional useful information.

8§
Customizing

Here is an example with the most important customization options:

Page 501 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ear.Ear.html

Example 431. Customization of ear plugin

bui | d. gradl e
apply plugin: 'ear
apply plugin: 'java'

repositories { mavenCentral () }

dependenci es {
/1l The follow ng dependencies will be the ear nodul es and
/1 will be placed in the ear root
depl oy project(path: ':war', configuration: 'archives")

/1 The foll ow ng dependencies will becone ear libs and will
/'l be placed in a dir configured via the |ibDi rNane property
earlib group: 'log4j', nane: 'log4j', version: '1.2.15 , ext:

j ar

ear {
appDirName 'src/main/app' // use application nmetadata found in this fol der
/] put dependent libraries into APP-INF/lib inside the generated EAR
i bDi rName ' APP-1NF/ 11 b’
depl oynment Descriptor { // customentries for application.xmn:
/1 fileNane = "application.xm™ // same as the default val ue
/1l version = "6" // same as the default val ue
applicationNanme = "custonear"
initializelnOder = true
di spl ayNane = "Custom Ear" // defaults to project.nane
/1 defaults to project.description if not set
description = "My custoni zed EAR for the G adl e docunentation”
/1 libraryDirectory = "APP-INF/lib" // not needed, above |ibDirNanme settini
/1l nmodul e("ny.jar", "java") [// won't deploy as ny.jar isn't deploy depende
/1 webModul e("nmy.war", "/") // won't deploy as ny.war isn't depl oy depende
securityRol e "adm n"
securityRol e "superadm n"
withXm { provider -> // add a custom node to the XM
provi der. asNode() . appendNode(" dat a- source", "ny/data/source")

You can also use customization options that the Ear task provides, such as f r omand et al nf .

Page 502 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ear.Ear.html

8§
Using custom descriptor file

You may already have appropriate settings in a appl i cation. xm file and want to use that instead of
configuring the ear . depl oynment Descr i pt or section of the build script. To accommodate that goal, place
the META- | NF/ application. xm in the right place inside your source folders (see the appDi r Nane
property). The file contents will be used and the explicit configuration in the ear . depl oynment Descri pt or

will be ignored.

Page 503 of 717

The Jetty Plugin

Note: This plugin has been removed as of Gradle 4.0. We recommend using the Gretty plugin
instead.

Page 504 of 717

https://github.com/akhikhl/gretty

The Application Plugin

The Application plugin facilitates creating an executable JVM application. It makes it easy to start the
application locally during development, and to package the application as a TAR and/or ZIP including
operating system specific start scripts.

Applying the Application plugin also implicitly applies the Java plugin. The mai n source set is effectively the
“application”.

Applying the Application plugin also implicitly applies the Distribution plugin. A mai n distribution is created
that packages up the application, including code dependencies and generated start scripts.

8§

Usage
To use the application plugin, include the following in your build script:
Example 432. Using the application plugin

buil d. gradl e
apply plugin: '"application'

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry point) of the
application.

Example 433. Configure the application main class

buil d. gradl e
mai nCl assNanme = "org. gradl e. sanpl e. Mai n"

You can run the application by executing the r un task (type: JavaExec). This will compile the main source
set, and launch a new JVM with its classes (along with all runtime dependencies) as the classpath and using
the specified main class. You can launch the application in debug mode with gradl e run --debug-j v
(see JavaExec. set Debug(bool ean)).

If your application requires a specific set of JVM settings or system properties, you can configure the appl i ¢
property. These JVM arguments are applied to the r un task and also considered in the generated start

scripts of your distribution.

Page 505 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug-boolean-

Example 434. Configure default JVM settings

buil d. gradl e
applicationDefaul t JvmArgs = ["-Dgreeting. | anguage=en"]

If your application’s start scripts should be in a different directory than bi n, you can configure the execut abl

property.

Example 435. Configure custom directory for start scripts

buil d. gradl e
executableDir = "custombin_dir"
8

The distribution

A distribution of the application can be created, by way of the Distribution plugin (which is automatically
applied). A mai n distribution is created with the following content:

Table 48. Distribution content

Jcation Content

oot dir) src/ di st

'b All runtime dependencies and main source set class files.
n Start scripts (generated by cr eat eSt art Scri pt s task).

Static files to be added to the distribution can be simply added to sr ¢/ di st . More advanced customization

can be done by configuring the Copy Spec exposed by the main distribution.

Page 506 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/CopySpec.html

Example 436. Include output from other tasks in the application distribution

buil d. gradl e
task createDocs {
def docs = file("$buildD r/docs")
out puts.dir docs
doLast {
docs. nkdi rs()
new Fil e(docs, "readne.txt").wite("Read ne!")

}
}
di stributions {
mai n {
contents {
from(createDocs) {
into "docs"
}
}
}

By specifying that the distribution should include the task’s output files (see the section called “Task inputs
and outputs”), Gradle knows that the task that produces the files must be invoked before the distribution can
be assembled and will take care of this for you.

Example 437. Automatically creating files for distribution

Output of gradl e di stZip

> gradle distZp

: createDocs

:conpi | eJava

: processResour ces NO SOURCE
: cl asses

tjar

;startScripts

cdistZip

BU LD SUCCESSFUL in Os
5 actionabl e tasks: 5 executed

Youcanrungradl e install D st to create an image of the application in bui | d/i nstal | / proj ect Na

. You can run gr adl e di st Zi p to create a ZIP containing the distribution, gr adl e di st Tar to create an
application TAR or gr adl e assenbl e to build both.

Page 507 of 717

8
Customizing start script generation

The application plugin can generate Unix (suitable for Linux, macOS etc.) and Windows start scripts out of
the box. The start scripts launch a JVM with the specified settings defined as part of the original build and
runtime environment (e.g. JAVA_OPTS env var). The default script templates are based on the same scripts
used to launch Gradle itself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of Creat eSt art Scri pts
for more details and customization examples.

8
Tasks

The Application plugin adds the following tasks to the project.

Table 49. Application plugin - tasks

ask name Depends on Type Description

un cl asses JavaExec Starts the application.

tartScriptsjar CreateStart Scri pts Creates OS specific scripts to run the project as a JVM application.
nstal | Dist jar,startScrifSync Installs the application into a specified directory.

Creates a full distribution ZIP archive including runtime libraries

IstZip jar,startScriZip N)
and OS specific scripts.
.) Creates a full distribution TAR archive including runtime libraries
| st Tar jar,startScrifTar -)
and OS specific scripts.
8§

Convention properties

The application plugin adds some properties to the project, which you can use to configure its behaviour.
See the Pr oj ect class in the API documentation.

Page 508 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html

The Java Library Distribution Plugin

Note: The Java library distribution plugin is currently incubating. Please be aware that the DSL and
other configuration may change in later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library. The
distribution contains the JAR file for the library and its dependencies.

8§

Usage
To use the Java library distribution plugin, include the following in your build script:
Example 438. Using the Java library distribution plugin

bui I d. gradl e
apply plugin: 'java-library-distribution

To define the name for the distribution you have to set the baseNane property as shown below:

Example 439. Configure the distribution name

buil d. gradl e
di stributions {
mai n{
baseName = ' ny- nane'
}
}

The plugin builds a distribution for your library. The distribution will package up the runtime dependencies of
the library. All files stored in src/ mai n/ di st will be added to the root of the archive distribution. You can
run “gr adl e di st Zi p”to create a ZIP file containing the distribution.

8
Tasks

The Java library distribution plugin adds the following tasks to the project.

Page 509 of 717

Table 50. Java library distribution plugin - tasks

ask name Depends on Type Description

IstZip jar Zi p Creates a full distribution ZIP archive including runtime libraries.

8§
Including other resources in the distribution

All of the files from the sr ¢/ di st directory are copied. To include any static files in the distribution, simply
arrange them in the sr ¢/ di st directory, or add them to the content of the distribution.

Example 440. Include files in the distribution

buil d. gradl e
di stributions {
mai n {
baseNanme = ' ny-nane'
contents {

from{ '"src/dist" }

Page 510 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html

Groovy Quickstart

To build a Groovy project, you use the Groovy plugin. This plugin extends the Java plugin to add Groovy
compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or
a mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have
already seen in Java Quickstart.

8§
A basic Groovy project

Let's look at an example. To use the Groovy plugin, add the following to your build file:
Example 441. Groovy plugin

buil d. gradl e
apply plugin: 'groovy'

Note: The code for this example can be found at sanpl es/ gr oovy/ qui ckstart in the *-all’
distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin
extends the conpi | e task to look for source files in directory sr c/ mai n/ gr oovy, and the conpi | eTest
task to look for test source files in directory src/t est/ gr oovy. The compile tasks use joint compilation for
these directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the
Groovy libraries. You do this by adding a dependency to the groovy configuration. The conpil e
configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling
Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Page 511 of 717

Example 442. Dependency on Groovy
buil d. gradl e

repositories {
mavenCentral ()

dependenci es {
conpi l e ' org. codehaus. groovy: groovy-all:2.4.10

Here is our complete build file:
Example 443. Groovy example - complete build file

buil d. gradl e
apply plugin: 'eclipse
apply plugin: 'groovy'

repositories {
mavenCentral ()

dependenci es {
conpil e 'org. codehaus. groovy: groovy-all:2.4. 10
testConpile "junit:junit:4.12'

Running gr adl e bui | d will compile, test and JAR your project.

8
Summary

This chapter describes a very simple Groovy project. Usually, a real project will require more than this.

Because a Groovy project is a Java project, whatever you can do with a Java project, you can also do with a

Groovy project.

You can find out more about the Groovy plugin in The Groovy Plugin, and you can find more sample Groovy

projects in the sanpl es/ gr oovy directory in the Gradle distribution.

Page 512 of 717

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy code,
mixed Groovy and Java code, and even pure Java code (although we don’t necessarily recommend to use it
for the latter). The plugin supports joint compilation, which allows you to freely mix and match Groovy and
Java code, with dependencies in both directions. For example, a Groovy class can extend a Java class that
in turn extends a Groovy class. This makes it possible to use the best language for the job, and to rewrite
any class in the other language if needed.

§

Usage
To use the Groovy plugin, include the following in your build script:
Example 444. Using the Groovy plugin

bui | d. gradl e
apply plugin: 'groovy'

8
Tasks

The Groovy plugin adds the following tasks to the project.

Table 51. Groovy plugin - tasks
ask name Depends on Type Description

onpi | eG oovy conpi | eJava G oovyConpi | e Compiles production Groovy source files.
onpi | eTest G oovy conpil eTest Java G oovyConpi | e Compiles test Groovy source files.
onpi | eSour ceSet Gr occonpi | e Sour ceSet JaG oovyConpi | e Compiles the given source set's Groovy source files.

Generates API documentation for the production Groovy
roovydoc - G oovydoc)
source files.

Page 513 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 52. Groovy plugin - additional task dependencies

ask name Depends on

| asses conpi | eG oovy

ast Cl asses conpi | eTest G oovy

our ceSet d asses conpi | e Sour ceSet Gr oovy

Figure 17. Groovy plugin - tasks

processTestResources

CompileTestGroovy I '

testClasses

[processResources classes

compileGroovy

.
compileTestJava

8§
Project layout

The Groovy plugin assumes the project layout shown in Table 53. All the Groovy source directories can
contain Groovy and Java code. The Java source directories may only contain Java source code.[??] None of
these directories need to exist or have anything in them; the Groovy plugin will simply compile whatever it
finds.

Page 514 of 717

Table 53. Groovy plugin - project layout

irectory Meaning

rc/ mai n/java Production Java source

rc/ mai n/ resour ces Production resources

rc/ mai n/ gr oovy Production Groovy sources. May also contain Java sources for joint compilation.
rc/test/java Test Java source

rc/test/resources Test resources

rc/test/groovy Test Groovy sources. May also contain Java sources for joint compilation.

rc/ sourceSet /j ava Java source for the given source set

rc/ sourceSet / resour ces Resources for the given source set

rc/ sourceSet / gr oovy Groovy sources for the given source set. May also contain Java sources for joint compilation.

§
Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production
and test sources.

Example 445. Custom Groovy source layout

bui | d. gradl e
sourceSets {
mai n {
groovy {
srcDirs = ['src/groovy']

test {

groovy {
srcDirs

['test/groovy']

Page 515 of 717

8§
Dependency management

Because Gradle's build language is based on Groovy, and parts of Gradle are implemented in Groovy,
Gradle already ships with a Groovy library. Nevertheless, Groovy projects need to explicitly declare a Groovy
dependency. This dependency will then be used on compile and runtime class paths. It will also be used to
get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the conpile

configuration:
Example 446. Configuration of Groovy dependency
buil d. gradl e

repositories {
mavenCentral ()

dependenci es {
conpil e 'org. codehaus. groovy: groovy-all:2.4.10

If Groovy is only used for test code, the Groovy dependency should be added to the t est Conpil e
configuration:

Example 447. Configuration of Groovy test dependency

buil d. gradl e
dependenci es {
test Conpi |l e ' org. codehaus. groovy: groovy-al |l : 2. 4. 10’

To use the Groovy library that ships with Gradle, declare a | ocal G oovy() dependency. Note that different
Gradle versions ship with different Groovy versions; as such, using | ocal Groovy() is less safe then
declaring a regular Groovy dependency.

Example 448. Configuration of bundled Groovy dependency

buil d. gradl e
dependenci es {
conpi |l e | ocal Groovy()

The Groovy library doesn’t necessarily have to come from a remote repository. It could also come from a
local | i b directory, perhaps checked in to source control:

Page 516 of 717

Example 449. Configuration of Groovy file dependency

buil d. gradl e
repositories {
flatDir { dirs '"lib" }

dependenci es {
conpi | e nodul e(' org. codehaus. groovy: groovy: 2. 4.10") {
dependency(' org. ow2. asmasntall:5.0.3")
dependency('antlr:antlr:2.7.7")
dependency(' conmons-cli:conmons-cli:1.2")
modul e(' org. apache.ant:ant:1.9.4") {
dependenci es(' org. apache.ant:ant-junit:1.9.4@ar"',
'org.apache. ant: ant -l auncher:1.9.4")

8§
Automatic configuration of groovyClasspath

The Gr oovyConpi | e and G- oovydoc tasks consume Groovy code in two ways: on their cl asspat h, and
on their gr oovyCl asspat h. The former is used to locate classes referenced by the source code, and will
typically contain the Groovy library along with other libraries. The latter is used to load and execute the
Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its
dependencies.

Unless a task’s gr oovyC asspat h is configured explicitly, the Groovy (base) plugin will try to infer it from
the task’s cl asspat h. This is done as follows:

Ifagroovy-all (-indy) Jarisfound on cl asspat h, that jar will be added to gr oovyC asspat h.

If a groovy(-indy) jaris found on cl asspat h, and the project has at least one repository declared, a
corresponding gr oovy(- i ndy) repository dependency will be added to gr oovyCl asspat h.

Otherwise, execution of the task will fail with a message saying that gr oovyC asspat h could not be
inferred.

Note that the “- i ndy” variation of each jar refers to the version with i nvokedynani ¢ support.

8§
Convention properties

The Groovy plugin does not add any convention properties to the project.

Page 517 of 717

8§
Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. You can use
these properties in your build script as though they were properties of the source set object.

Table 54. Groovy plugin - source set properties

roperty name Type Default value Description

) The Groovy source files of this source set. Contains all . gr
Sour ceDi rect or ySet .) .))
roovy Not null and . j ava files found in the Groovy source directories,
(read-only) .
and excludes all other types of files.

Set<File>. Can set using) . o
) .) . The source directories containing the Groovy source
anything described in the section

roovy.srcDirs o) [proj ect Di rfiles of tEssbgrooegl. May also contain Java source
called “Specifying a set of input . . o
. files for joint compilation.
files”.
All Groovy source files of this source set. Contains only
'l G oovy Fi | eTr ee (read-only) Not null the .groovy files found in the Groovy source

directories.

These properties are provided by a convention object of type G oovy Sour ceSet .
The Groovy plugin also modifies some source set properties:

Table 55. Groovy plugin - source set properties

roperty name Change

[l Java Adds all . j ava files found in the Groovy source directories.
'l Sour ce Adds all source files found in the Groovy source directories.
8§

GroovyCompile

The Groovy plugin adds a G oovyConpi | e task for each source set in the project. The task type extends
the JavaConpi | e task (see the section called “CompileJava”). The G- oovyConpi | e task supports most
configuration options of the official Groovy compiler.

Page 518 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.GroovySourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html

Table 56. Groovy plugin - GroovyCompile properties
ask Property Type Default Value

lasspath Fi |l eCol | ection sour ceSet . conpi | eCl asspath

Fi |l eTree. Can set using anything described in the
ource) .)) sour ceSet . gr oovy
section called “Specifying a set of input files”.

astinationDir File. sour ceSet . groovy. out put Di r

)) groovy configuration if non-empty; Groovy
roovyCd asspath Fi | eCol | ection i)
library found on cl asspat h otherwise

§
Compiling and testing for Java 6 or Java 7

The Groovy compiler will always be executed with the same version of Java that was used to start Gradle.
You should set sour ceConpatibility and target Conpatibility to 1.6 or 1. 7. If you also have
Java sources, you can follow the same steps as for the Java plugin to ensure the correct Java compiler is
used.

Page 519 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileCollection.html

Example 450. Configure Java 6 build for Groovy

gradl e. properties
in $HOVE/ . gradl e/ gradl e. properties
j ava6Hone=/ Li brary/ Java/ JavaVi rt ual Machi nes/ 1. 6. 0. j dk/ Cont ent s/ Hone

buil d. gradl e

sourceConpatibility = 1.6

target Conpatibility = 1.6

assert hasProperty('java6Hone') : "Set the property 'java6Hone' in your your gral

def javaExecutabl esPath = new Fil e(java6Hone, 'bin")
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPat h, execNane)
assert executable.exists() : "There is no ${execNane} executable in ${javaEx
execut abl e
}
tasks. wi t hType(Abstract Conpile) {
options.with {
fork = true
forkOptions.javaHone = fil e(javabHone)

}
}
tasks. w t hType(Javadoc) {

execut abl e = javaExecut abl es. j avadoc
}
tasks. wi t hType(Test) {

execut abl e = javaExecut abl es. j ava
}
tasks. wi t hType(JavaExec) {

execut abl e = javaExecut abl es. j ava
}

[22] We are using the same conventions as introduced by Russel Winder’'s Gant tool (https://gant.github.io/).

Page 520 of 717

https://gant.github.io/

The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code,
mixed Scala and Java code, and even pure Java code (although we don’t necessarily recommend to use it
for the latter). The plugin supports joint compilation, which allows you to freely mix and match Scala and
Java code, with dependencies in both directions. For example, a Scala class can extend a Java class that in
turn extends a Scala class. This makes it possible to use the best language for the job, and to rewrite any
class in the other language if needed.

§

Usage
To use the Scala plugin, include the following in your build script:
Example 451. Using the Scala plugin

bui | d. gradl e
apply plugin: 'scala'

8

Tasks

The Scala plugin adds the following tasks to the project.

Table 57. Scala plugin - tasks

ask name Depends on Type Description
onpi | eScal a conpi | eJava Scal aConpi | e Compiles production Scala source files.
onpi | eTest Scal a conpi | eTest Java Scal aConpi | e Compiles test Scala source files.

onpi | eSour ceSet Scalconpi | e Sour ceSet JaxScal aConpi | e Compiles the given source set’s Scala source files.

Generates APl documentation for the production Scala
cal adoc - Scal aDoc)
source files.

Page 521 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Table 58. Scala plugin - additional task dependencies

ask name Depends on

| asses conpi | eScal a

ast Cl asses conpi | eTest Scal a

our ceSet d asses conpi | eSour ceSet Scal a

Figure 18. Scala plugin - tasks

processTestResources

compileTestScala I '

testClasses

[processResources classes

compileScala

compileTestJava

scaladoc

8§
Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can contain
Scala and Java code. The Java source directories may only contain Java source code. None of these
directories need to exist or have anything in them; the Scala plugin will simply compile whatever it finds.

Page 522 of 717

Table 59. Scala plugin - project layout

irectory Meaning

rc/ mai n/java Production Java source

rc/ mai n/ resour ces Production resources

rc/ mai n/ scal a Production Scala sources. May also contain Java sources for joint compilation.
rc/test/java Test Java source

rc/test/resources Test resources

rc/test/scal a Test Scala sources. May also contain Java sources for joint compilation.

rc/ sourceSet /j ava Java source for the given source set

rc/ sourceSet / resour ces Resources for the given source set

rc/ sourceSet /scal a Scala sources for the given source set. May also contain Java sources for joint compilation.

§
Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and
test sources.

Example 452. Custom Scala source layout

bui | d. gradl e
sourceSets {
mai n {
scal a {
srcDirs = ['src/scala']
}
}
test {
scal a {

srcDirs = ['test/scala']

Page 523 of 717

8§
Dependency management

Scala projects need to declare a scal a-1i brary dependency. This dependency will then be used on
compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc tool,
respectively.[??]

If Scala is used for production code, the scal a-1i brary dependency should be added to the conpi |l e

configuration:
Example 453. Declaring a Scala dependency for production code

buil d. gradl e
repositories {
mavenCentral ()

dependenci es {
compile 'org.scal a-lang: scala-library:2.11.8
testConpil e 'org.scal atest:scalatest 2.11:3.0.0'
testConpile "junit:junit:4.12

If Scala is only used for test code, the scal a-1i brary dependency should be added to the t est Conpi | e

configuration:
Example 454. Declaring a Scala dependency for test code

buil d. gradl e
dependenci es {
test Conpil e "org.scal a-1ang: scal a-library:2.11. 1"

8§
Automatic configuration of scalaClasspath

The Scal aConpi | e and Scal aDoc tasks consume Scala code in two ways: on their cl asspat h, and on
their scal aCl asspat h. The former is used to locate classes referenced by the source code, and will
typically contain scal a- | i br ary along with other libraries. The latter is used to load and execute the Scala
compiler and Scaladoc tool, respectively, and should only contain the scal a- conpi | er library and its
dependencies.

Unless a task’s scal aCl asspat h is configured explicitly, the Scala (base) plugin will try to infer it from the

task’s cl asspat h. This is done as follows:

If a scal a-1ibrary jar is found on cl asspat h, and the project has at least one repository declared, a

Page 524 of 717

corresponding scal a- conpi | er repository dependency will be added to scal aCl asspat h.

Otherwise, execution of the task will fail with a message saying that scal aCl asspat h could not be
inferred.

8§
Configuring the Zinc compiler

The Scala plugin uses a configuration named zi nc to resolve the Zinc compiler and its dependencies.
Gradle will provide a default version of Zinc, but if you need to use a particular Zinc version, you can add an
explicit dependency like “com t ypesaf e. zi nc: zi nc: 0. 3. 6” to the zi nc configuration. Gradle supports
version 0.3.0 of Zinc and above; however, due to a regression in the Zinc compiler, versions 0.3.2 through
0.3.5.2 cannot be used.

Example 455. Declaring a version of the Zinc compiler to use

bui I d. gradl e
dependenci es {
zinc 'comtypesafe.zinc:zinc:0.3.9

Note: It is important to take care when declaring your scal a-1i brary dependency. The Zinc
compiler itself needs a compatible version of scal a-1i brary that may be different from the
version required by your application. Gradle takes care of adding a compatible version of scal a- | i br
for you, but over-broad dependency resolution rules could force an incompatible version to be used
instead.

For example, using conf i gur ati ons. al | to force a particular version of scal a-1i brary would
also override the version used by the Zinc compiler:

Example 456. Forcing a scala-library dependency for all configurations

Note: bui | d. gradl e
configurations.all ({
resol utionStrategy.force "org.scal a-1ang: scal a-library:2.11. 7"

The best way to avoid this problem is to be more selective when configuring the scal a-1i brary
dependency (such as not using a confi gurati on. al | rule or using a conditional to prevent the
rule from being applied to the zi nc configuration). Sometimes this rule may come from a plugin or
other code that you do not have control over. In such a case, you can force a correct version of the
library on the zi nc configuration only:

Page 525 of 717

https://github.com/typesafehub/zinc

Example 457. Forcing a scala-library dependency for the zinc configuration

Note: bui | d. gradl e
configurations.zinc {
resol utionStrategy.force "org.scal a-1ang: scal a-1ibrary: 2.10. 5"

You can diagnose problems with the version of the Zinc compiler selected by running
dependencylnsight for the zi nc configuration.

8§
Convention properties

The Scala plugin does not add any convention properties to the project.

8§
Source set properties

The Scala plugin adds the following convention properties to each source set in the project. You can use
these properties in your build script as though they were properties of the source set object.

Table 60. Scala plugin - source set properties
roperty name Type Default value Description

The Scala source files of this source set. Contains all . scal
cala Sour ceDi rect orySet (read-only) Not null and . j ava files found in the Scala source directories,
and excludes all other types of files.

Set <Fi | e>. Can set using anything The source directories containing the Scala source files
cal a. srcDirs described in the section called[proj ect Di rofghis/soane/ setaMaly also contain Java source files for
“Specifying a set of input files”. joint compilation.

All Scala source files of this source set. Contains only

'l Scal a Fi | eTr ee (read-only) Not null
the . scal a files found in the Scala source directories.

These convention properties are provided by a convention object of type Scal aSour ceSet .

The Scala plugin also modifies some source set properties:

Page 526 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.ScalaSourceSet.html

Table 61. Scala plugin - source set properties

roperty name Change
[l Java Adds all . j ava files found in the Scala source directories.
Il Source Adds all source files found in the Scala source directories.

Compiling in external process

Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the JVM. To adjust memory settings,
configure the scal aConpi | eOpti ons. f or kOpt i ons property as needed:

Example 458. Adjusting memory settings

bui I d. gradl e
tasks. wi t hType(Scal aConpi |l e) {
confi gure(scal aConpi | eOpti ons. forkOptions) {
menor yMaxi muntSi ze = ' 1g'
jvmArgs = [' - XX: MaxPer nfSi ze=512m]

8§
Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and classes
affected by these changes, incremental compilation can significantly reduce Scala compilation time. It is
particularly effective when frequently compiling small code increments, as is often done at development time.

The Scala plugin defaults to incremental compilation by integrating with Zinc, a standalone version of sbt's
incremental Scala compiler. If you want to disable the incremental compilation, set f orce = true in your
build file:

Example 459. Forcing all code to be compiled

buil d. gradl e
tasks. wi t hType(Scal aConpi |l e) {
scal aConpi | eOpti ons.with {
force = true

Page 527 of 717

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt

Note: This will only cause all classes to be recompiled if at least one input source file has changed. If there
are no changes to the source files, the conpi | eScal a task will still be considered UP- TO- DATE as usual.

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all Java and
Scala code under sr c/ mai n/ scal a will participate in joint compilation. Even Java code will be compiled
incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are
stored in the file designated by scal aConpi | eOpti ons. i ncr enent al Opti ons. anal ysi sFi | e (which
has a sensible default). In a multi-project build, analysis files are passed on to downstream Scal aConpi | e
tasks to enable incremental compilation across project boundaries. For Scal aConpi | e tasks added by the
Scala plugin, no configuration is necessary to make this work. For other Scal aConpi | e tasks that you
might add, the property scal aConpi | eOpti ons. i ncrenment al Opti ons. publ i shedCode needs to be
configured to point to the classes folder or Jar archive by which the code is passed on to compile class paths
of downstream Scal aConpi | e tasks. Note that if publ i shedCode is not set correctly, downstream tasks
may not recompile code affected by upstream changes, leading to incorrect compilation results.

Note that Zinc's Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle’s own
compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. This is expected
to yield another significant speedup for Scala compilation.

8§
Compiling and testing for Java 6 or Java 7

The Scala compiler ignores Gradle’s t ar get Conpati bility and sourceConpati bility settings. In
Scala 2.11, the Scala compiler always compiles to Java 6 compatible bytecode. In Scala 2.12, the Scala
compiler always compiles to Java 8 compatible bytecode. If you also have Java sources, you can follow the
same steps as for the Java plugin to ensure the correct Java compiler is used.

Page 528 of 717

Example 460. Configure Java 6 build for Scala

gradl e. properties
in $HOVE/ . gradl e/ gradl e. properties
j ava6Hone=/ Li brary/ Java/ JavaVi rt ual Machi nes/ 1. 6. 0. j dk/ Cont ent s/ Hone

buil d. gradl e
sourceConpatibility = 1.6

assert hasProperty('java6Honme') : "Set the property 'java6Hone' in your your gra
def javaExecutabl esPath = new Fil e(java6Hone, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPat h, execNane)
assert executable.exists() : "There is no ${execNane} executable in ${javaEx
execut abl e

tasks. wi t hType(Abstract Conpile) {
options.with {
fork = true
forkOptions.javaHone = fil e(javabHone)

}
}
tasks.wi thType(Test) {

execut abl e = javaExecut abl es. j ava
}
tasks. w t hType(JavaExec) ({

execut abl e = javaExecut abl es. j ava
}
tasks. wi t hType(Javadoc) {

execut abl e = javaExecut abl es. j avadoc
}
8§

Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project work
with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and dependency container.

Page 529 of 717

8§
IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work
with IDEA out of the box. Specifically, the plugin adds a Scala SDK (IntelliJ IDEA 14+) and a Scala compiler
library that matches the Scala version on the project’s class path. The Scala plugin is backwards compatible
with earlier versions of IntelliJ IDEA and it is possible to add a Scala facet instead of the default Scala SDK
by configuring t ar get Ver si on on | dealbdel .

Example 461. Explicitly specify a target IntelliJ IDEA version
buil d. gradl e

i dea {
target Version = "13"

[23] See the section called “Automatic configuration of scalaClasspath”.

Page 530 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html

The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsers using ANTLR.

Note: The ANTLR plugin supports ANTLR version 2, 3 and 4.

8§

Usage
To use the ANTLR plugin, include the following in your build script:
Example 462. Using the ANTLR plugin

buil d. gradl e
apply plugin: "antlr'

8
Tasks

The ANTLR plugin adds a number of tasks to your project, as shown below.

Table 62. ANTLR plugin - tasks

Depends .
ask name on Type Description
2ner at eG ammar Sour ce - Ant | r Task Generates the source files for all production ANTLR grammars.
2ner at eTest G- ammar Sour ce - Ant | r Task Generates the source files for all test ANTLR grammars.
Generates the source files for all ANTLR grammars for the given
2ner at eSour ceSet G ammar Sour ce Ant | r Task

source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

Page 531 of 717

http://www.antlr.org/
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Table 63. ANTLR plugin - additional task dependencies

ask name Depends on

onpi | eJava gener at eG ammar Sour ce

onpi | eTest Java gener at eTest G ammar Sour ce

onpi | eSour ceSet Java gener at e Sour ceSet Gr anmar Sour ce

Project layout

Table 64. ANTLR plugin - project layout
irectory Meaning

Production ANTLR grammar files. If the ANTLR grammar is organized in packages, the structure in the antlr
rc/ mai n/ ant | r folder should reflect the package structure. This ensures that the generated sources end up in the correct
target subfolder.

rc/test/antlr Test ANTLR grammar files.

rc/ sour ceSet / &NTULR grammar files for the given source set.

§
Dependency management

The ANTLR plugin adds an ant | r dependency configuration which provides the ANTLR implementation to
use. The following example shows how to use ANTLR version 3.

Example 463. Declare ANTLR version
buil d. gradl e

repositories {
mavenCentral ()

dependenci es {
antlr "org.antlr:antlr:3.5.2"

Page 532 of 717

If no dependency is declared, ant | r:antlr: 2. 7.7 will be used as the default. To use a different ANTLR
version add the appropriate dependency to the ant | r dependency configuration as above.

8§
Convention properties

The ANTLR plugin does not add any convention properties.

§
Source set properties

The ANTLR plugin adds the following properties to each source set in the project.
Table 65. ANTLR plugin - source set properties

roperty name Type Default value Description

The ANTLR grammar files of this source set. Contains
ntlr Sour ceDi rectorySet (read-only) Not null all .g or .g4 files found in the ANTLR source
directories, and excludes all other types of files.

Set <Fi | e>. Can set using anything
. The source directaries containing the ANTLR grammar
ntlr.srcDirs described in the section called[projectDi r/src/ name/ant|r
o files of this source sef.
“Specifying a set of input files”.

8§
Controlling the ANTLR generator process

The ANTLR tool is executed in a forked process. This allows fine grained control over memory settings for
the ANTLR process. To set the heap size of an ANTLR process, the maxHeapSi ze property of Ant | r Task
can be used. To pass additional command-line arguments, append to the ar gunents property of
Ant | r Task.

Example 464. setting custom max heap size and extra arguments for ANTLR

buil d. gradl e
gener at eG ammar Sour ce {
maxHeapSi ze = "64nt
argunents += ["-visitor", "-long-nessages"]

Page 533 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project's Java source files using Checkstyle and
generates reports from these checks.

8§

Usage
To use the Checkstyle plugin, include the following in your build script:
Example 465. Using the Checkstyle plugin

buil d. gradl e
apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Checkstyle will run with the same Java version used to run Gradle.

8
Tasks

The Checkstyle plugin adds the following tasks to the project:

Table 66. Checkstyle plugin - tasks

ask name Depends on Type Description
neckstyl eMai n cl asses Checkst yl e Runs Checkstyle against the production Java source files.
neckstyl eTest test C asses Checkst yl e Runs Checkstyle against the test Java source files.

Runs Checkstyle against the given source set's Java source
neckstyl eSour ceSet sourceSet d asses Checkstyl e i
iles

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

Page 534 of 717

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Table 67. Checkstyle plugin - additional task dependencies

ask name Depends on
neck All Checkstyle tasks, including checkst yl eMai n and checkst yl eTest .
8§

Project layout

By default, the Checkstyle plugin expects the following project layout, but this can be changed:

Table 68. Checkstyle plugin - project layout

lle Meaning

onfi g/ checkstyl e Other Checkstyle configuration files (e.g., suppr essi ons. xm)
onfi g/ checkstyl e/ checkstyl e. xm Checkstyle configuration file

8§

Dependency management

The Checkstyle plugin adds the following dependency configurations:

Table 69. Checkstyle plugin - dependency configurations

ame Meaning
neckstyl e The Checkstyle libraries to use
8§

Configuration

See the Checkst yl eExt ensi on class in the API documentation.

8§
Built-in variables

The Checkstyle plugin defines a confi g _| oc property that can be used in Checkstyle configuration files to
define paths to other configuration files like suppr essi ons. xni .

Page 535 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html

Example 466. Using the config_loc property

confi g/ checkstyl e/ checkstyl e. xnl
<nmodul e nane="Suppressi onFilter">

<property name="file" value="${config_ | oc}/suppressions.xm"/>
</ nodul e>

8§
Customizing the HTML report

The HTML report generated by the Checkstyl e task can be customized using a XSLT stylesheet, for

example to highlight specific errors or change its appearance:

Example 467. Customizing the HTML report

buil d. gradl e
tasks. wi t hType(Checkstyle) {
reports {

xm . enabl ed fal se
htm . enabl ed true
ht m . styl esheet resources.text.fronFile(' config/xsl/checkstyl e-custom xsl|

View a sample Checkstyle stylesheet.

Page 536 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://github.com/checkstyle/contribution/tree/master/xsl

The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project's Groovy source files using CodeNarc and
generates reports from these checks.

8§

Usage
To use the CodeNarc plugin, include the following in your build script:
Example 468. Using the CodeNarc plugin

buil d. gradl e
apply plugin: 'codenarc’

The plugin adds a number of tasks to the project that perform the quality checks when used with the Groovy
Plugin. You can execute the checks by running gr adl e check.

8

Tasks

The CodeNarc plugin adds the following tasks to the project:

Table 70. CodeNarc plugin - tasks

ask name Depends on Type Description

odenar cMai n - CodeNar ¢ Runs CodeNarc against the production Groovy source files.
odenar cTest - CodeNar ¢ Runs CodeNarc against the test Groovy source files.

odenar c Sour ceSet - CodeNar ¢ Runs CodeNarc against the given source set’s Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

Page 537 of 717

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Table 71. CodeNarc plugin - additional task dependencies

ask name Depends on
neck All CodeNarc tasks, including codenar cMai n and codenar cTest .
8§

Project layout

The CodeNarc plugin expects the following project layout:

Table 72. CodeNarc plugin - project layout

lle Meaning
onfi g/ codenar c/ codenar c. xm CodeNarc configuration file
8

Dependency management

The CodeNarc plugin adds the following dependency configurations:

Table 73. CodeNarc plugin - dependency configurations

ame Meaning
odenar ¢ The CodeNarc libraries to use
8§

Configuration

See the CodeNar cExt ensi on class in the APl documentation.

Page 538 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

The FindBugs Plugin

The FindBugs plugin performs quality checks on your project’'s Java source files using FindBugs and
generates reports from these checks.

8§

Usage
To use the FindBugs plugin, include the following in your build script:
Example 469. Using the FindBugs plugin

buil d. gradl e
apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Findbugs will run with the same Java version used to run Gradle.

8
Tasks

The FindBugs plugin adds the following tasks to the project:

Table 74. FindBugs plugin - tasks

ask name Depends on Type Description
' ndbugsMai n cl asses Fi ndBugs Runs FindBugs against the production Java source files.
I ndbugsTest test C asses Fi ndBugs Runs FindBugs against the test Java source files.

' ndbugs Sour ceSet sourceSet d asses Fi ndBugs Runs FindBugs against the given source set’s Java source files.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

Page 539 of 717

http://findbugs.sourceforge.net
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.FindBugs.html

Table 75. FindBugs plugin - additional task dependencies

ask name Depends on
neck All FindBugs tasks, including f i ndbugsMai n and f i ndbugsTest .
8§

Dependency management

The FindBugs plugin adds the following dependency configurations:

Table 76. FindBugs plugin - dependency configurations

ame Meaning
I ndbugs The FindBugs libraries to use
8

Configuration

See the Fi ndBugsExt ensi on class in the APl documentation.

8§
Customizing the HTML report

The HTML report generated by the Fi ndBugs task can be customized using a XSLT stylesheet, for example
to highlight specific errors or change its appearance:

Example 470. Customizing the HTML report

bui I d. gradl e
tasks. wi t hType(Fi ndBugs) {
reports {

xm . enabl ed fal se
ht m . enabl ed true
htm . styl esheet resources.text.fronFile(' config/xsl/findbugs-custom xsl"'’

View a sample FindBugs stylesheet.

Page 540 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.FindBugs.html
https://github.com/findbugsproject/findbugs/tree/master/findbugs/src/xsl

The JDepend Plugin

The JDepend plugin performs quality checks on your project’s source files using JDepend and generates
reports from these checks.

8§

Usage
To use the JDepend plugin, include the following in your build script:
Example 471. Using the JDepend plugin

buil d. gradl e
apply plugin: 'jdepend

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that JDepend will run with the same Java version used to run Gradle.

8
Tasks

The JDepend plugin adds the following tasks to the project:

Table 77. JDepend plugin - tasks

ask name Depends on Type Description
dependMai n cl asses JDepend Runs JDepend against the production Java source files.
dependTest test d asses JDepend Runs JDepend against the test Java source files.

dependSourceSet sourceSet O asses JDepend Runs JDepend against the given source set’s Java source files.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

Page 541 of 717

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.JDepend.html

Table 78. JDepend plugin - additional task dependencies

ask name Depends on
neck All JDepend tasks, including j dependMai n and j dependTest .
8§

Dependency management

The JDepend plugin adds the following dependency configurations:

Table 79. JDepend plugin - dependency configurations

ame Meaning
depend The JDepend libraries to use
8§

Configuration

See the JDependExt ensi on class in the APl documentation.

Page 542 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.JDependExtension.html

The PMD Plugin

The PMD plugin performs quality checks on your project’'s Java source files using PMD and generates
reports from these checks.

8§

Usage
To use the PMD plugin, include the following in your build script:
Example 472. Using the PMD plugin

buil d. gradl e
apply plugin: 'pnd

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that PMD will run with the same Java version used to run Gradle.

8
Tasks

The PMD plugin adds the following tasks to the project:

Table 80. PMD plugin - tasks

ask name Depends on Type Description

mdMai n - Pnd Runs PMD against the production Java source files.
mdTest - Pnd Runs PMD against the test Java source files.

md Sour ceSet - Pnd Runs PMD against the given source set’s Java source files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Page 543 of 717

http://pmd.sourceforge.net
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.Pmd.html

Table 81. PMD plugin - additional task dependencies

ask name Depends on
neck All PMD tasks, including pmdMai n and pndTest .
8§

Dependency management

The PMD plugin adds the following dependency configurations:

Table 82. PMD plugin - dependency configurations

ame Meaning
md The PMD libraries to use
8

Configuration

See the PnExt ensi on class in the APl documentation.

Page 544 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.quality.PmdExtension.html

The JaCoCo Plugin

Note: The JaCoCo plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code via integration with JaCoCo.

8§
Getting Started

To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.
Example 473. Applying the JaCoCo plugin

buil d. gradl e
apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named j acocoTest Report is created that
depends on the t est task. The report is available at $bui | dDi r / report s/ j acoco/ t est. By default, a
HTML report is generated.

8§
Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named j acoco of type JacocoPl ugi nExt ensi on, which
allows configuring defaults for JaCoCo usage in your build.

Example 474. Configuring JaCoCo plugin settings

buil d. gradl e
jacoco {
tool Version = "0.7.9"

reportsDir = file("$buil dDir/custonlacocoReportDir")

Page 545 of 717

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Table 83. Gradle defaults for JaCoCo properties

roperty Gradle default
portsDir $bui 1 dDir /reports/jacoco
8§

JaCoCo Report configuration

The JacocoReport task can be used to generate code coverage reports in different formats. It implements
the standard Gradle type Repor t i ng and exposes a report container of type JacocoRepor t sCont ai ner.

Example 475. Configuring test task

buil d. gradl e
j acocoTest Report {
reports {

xm . enabl ed fal se
csv. enabl ed fal se
htm .destination file("${buildDir}/jacocoHt m ")

..El ae guickstart
j quickstart.

=k quickstart

quickstart

Element Missed Instructions= Cov. - Missed Branches+ Cov.” Missed Cxty Missed * Lines

org.gradle 100% n/a 0 5 0 7
Total 0of17 100% 0of0 n/a 0 5 0 7

8§
Enforcing code coverage metrics

Note: This feature requires the use of JaCoCo version 0.6.3 or higher.

The JacocoCoverageVeri ficati on task can be used to verify if code coverage metrics are met based
on configured rules. Its API exposes the method
JacocoCoverageVerification.violationRul es(org. gradl e. api.Action) which is used as

Page 546 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules-org.gradle.api.Action-
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules-org.gradle.api.Action-

main entry point for configuring rules. Invoking any of those methods returns an instance of
JacocoVi ol ati onRul esCont ai ner providing extensive configuration options. The build fails if any of the
configured rules are not met. JaCoCo only reports the first violated rule.

Code coverage requirements can be specified for a project as a whole, for individual files, and for particular
JaCoCo-specific types of coverage, e.g., lines covered or branches covered. The following example
describes the syntax.

Example 476. Configuring violation rules

buil d. gradl e
j acocoTest Cover ageVerification {
viol ati onRul es {

rule {
limt {
mnimm= 0.5
}
}
rule {

enabl ed = fal se
el enent = ' CLASS'
includes = ['org.gradle.*"]

limt {
counter = "LINE
val ue = ' TOTALCOUNT"
maxi mum = 0. 3

Note: The code for this example can be found at sanpl es/testi ng/jacoco/ qui ckstart in
the ‘-all’ distribution of Gradle.

The JacocoCoverageVeri ficati on task is not a task dependency of the check task provided by the
Java plugin. There is a good reason for it. The task is currently not incremental as it doesn’t declare any
outputs. Any violation of the declared rules would automatically result in a failed build when executing the che
task. This behavior might not be desirable for all users. Future versions of Gradle might change the
behavior.

8§
JaCoCo specific task configuration

The JaCoCo plugin adds a JacocoTaskExt ensi on extension to all tasks of type Test. This extension
allows the configuration of the JaCoCo specific properties of the test task.

Page 547 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html

Example 477. Configuring test task

buil d. gradl e
test {
jacoco {

append = fal se

destinationFile = file("$buildDir/jacoco/]jacocoTest.exec")
classDumpDir = file("$buil dDir/jacoco/cl asspat hdunps")

Table 84. Default values of the JaCoCo Task extension

roperty

1abled

astPath

Jpend

cludes

xcludes

xcludeClassLoaders

cludeNoLocationClasses

assionid

ImpOnEXxit

Jtput

idress

ot

assDumpPath

X

Gradle default

true

$bui | dDi r / j acoco

true

false

aut o- gener at ed

true

CQut put . FI LE

fal se

Page 548 of 717

While all tasks of type Test are automatically enhanced to provide coverage information when the j ava
plugin has been applied, any task that implements JavaFor kOpt i ons can be enhanced by the JaCoCo
plugin. That is, any task that forks Java processes can be used to generate coverage information.

For example you can configure your build to generate code coverage using the appl i cat i on plugin.

Example 478. Using application plugin to generate code coverage data

bui | d. gradl e
apply plugin: "application"
apply plugin: "jacoco"

mai nCl assNane = "org. gradl e. MyMai n"
jacoco {

appl yTo run

task appli cati onCodeCoverageReport (type: JacocoReport){
executionData run
sourceSets sourceSets. nmain

Note: The code for this example can be found at sanpl es/testi ng/j acoco/ applicati on in
the *-all’ distribution of Gradle.

Example 479. Coverage reports generated by applicationCodeCoverageReport

Build layout
application/
bui | d/
j acoco/
run. exec
reports/jacoco/ applicati onCodeCover ageReport/htm/
i ndex. ht n
§
Tasks

For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Page 549 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/process/JavaForkOptions.html

Table 85. JaCoCo plugin - tasks

Depends .
ask name Type Description
on
Generates code coverage report for the
acocoTest Report - JacocoReport
test task.
. . L) Verifies code coverage metrics based
acocoTest CoverageVerification - JacocoCoverageVerification -
on specified rules for the test task.

Dependency management
The JaCoCo plugin adds the following dependency configurations:

Table 86. JaCoCo plugin - dependency configurations

ame Meaning

- The JaCoCo Ant library used for running the JacocoReport, JacocoMer ge and JacocoCover ageVeri fi cati
acoco
tasks.

acocoAgent The JaCoCo agent library used for instrumenting the code under test.

Page 550 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html

The OSGi Plugin

The OSGi plugin provides a factory method to create an Osgi Vani f est object. Osgi Mani f est extends
Mani f est. To learn more about generic manifest handling, see the section called “Manifest”. If the Java
plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an Gsgi Mani f est
object. The replaced manifest is merged into the new one.

Note: The OSGi plugin makes heavy use of the BND tool. A separate plugin implementation is
maintained by the BND authors that has more advanced features.

8§

Usage
To use the OSGi plugin, include the following in your build script:
Example 480. Using the OSGi plugin

buil d. gradl e
apply plugin: 'osgi'

8§
Implicitly applied plugins

Applies the Java base plugin.

8
Tasks

The OSGi plugin adds the following tasks to the project:

Table 87. OSGi plugin - tasks
ask name Depends on Type Description

5gi C asses cl asses Sync Copies all classes from the main source set to a single directory that is processed by BND.

Page 551 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/java/archives/Manifest.html
http://bnd.bndtools.org/
https://github.com/bndtools/bnd/blob/master/biz.aQute.bnd.gradle/README.md
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Sync.html

8§
Convention object

The OSGi plugin adds the following convention object: Gsgi Pl ugi nConventi on

§
Convention properties

The OSGi plugin does not add any convention properties to the project.

8§
Convention methods

The OSGi plugin adds the following methods. For more details, see the API documentation of the convention
object.

Table 88. OSGi methods

ethod Return Type Description
sgiManifest() Osgi Mani f est Returns an OsgiManifest object.
sgiManifest(Closure cl) Osgi Mani f est Returns an OsgiManifest object configured by the closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they
expose. Based on this the Import-Package and the Export-Package values of the OSGi Manifest are
calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to specify
version information for the Import-Package value. Beside the explicit properties of the Gsgi Mani f est
object you can add instructions.

Page 552 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html

Example 481. Configuration of OSGi MANIFEST.MF file

buil d. gradl e
jar {
mani fest { // the manifest of the default jar is of type Osgi Mani fest
nane = 'overwittenSpecial Osgi Nange'

i nstruction 'Private-Package',
'org. myconp. packagel',
' or g. myconp. package?2'
i nstruction 'Bundl e-Vendor', 'MConpany'
i nstruction 'Bundl e-Description', 'PlatfornR: Metrics 2 Measures Franewol
i nstruction 'Bundl e-DocURL', 'http://ww. myconpany.com

}
task fooJdar(type: Jar) {

mani f est = osgi Mani fest {
i nstruction 'Bundl e-Vendor', 'MConpany'

The first argument of the instruction call is the key of the property. The other arguments form the value. To
learn more about the available instructions have a look at the BND tool.

Page 553 of 717

http://bnd.bndtools.org/

The Eclipse Plugins

The Eclipse plugins generate files that are used by the Eclipse IDE, thus making it possible to import the
project into Eclipse (Fil e - I mport ..- Exi sting Projects into Wrkspace).

The ecl i pse-wt p is automatically applied whenever the ecl i pse plugin is applied to a War or Ear project.
For utility projects (i.e. Java projects used by other web projects), you need to apply the ecl i pse-wtp
plugin explicitly.

What exactly the ecl i pse plugin generates depends on which other plugins are used:

Table 89. Eclipse plugin behavior
lugin Description

one Generates minimal . pr oj ect file.

va Adds Java configuration to . pr oj ect . Generates . cl asspat h and JDT settings file.
roovy Adds Groovy configuration to . pr oj ect file.

cala Adds Scala support to . proj ect and . cl asspat h files.

far Adds web application support to . pr oj ect file.

ar Adds ear application support to . pr oj ect file.

The ecl i pse-w p plugin generates all WTP settings files and enhances the . pr oj ect file. If a Java or
War is applied, . cl asspat h will be extended to get a proper packaging structure for this utility library or
web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and
removing content from the generated files.

Page 554 of 717

http://eclipse.org

8§

Usage
To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:
Example 482. Using the Eclipse plugin

bui I d. gradl e
apply plugin: '"eclipse

Example 483. Using the Eclipse WTP plugin

buil d. gradl e
apply plugin: 'eclipse-wp'

Note: Internally, the ecl i pse-wt p plugin also applies the ecl i pse plugin so you don’t need to apply both.

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use are the ecl i ps
and cl eanEcl i pse tasks.

8
Tasks

The Eclipse plugins add the tasks shown below to a project.

Page 555 of 717

Table 90. Eclipse plugin - tasks
ask name Depends on Type Description

all Eclipse
) configuration)) o
cli pse . . Task Generates all Eclipse configuration files
file generation

tasks

all Eclipse
| eanEcl i pse configuration Delete Removes all Eclipse configuration files
file clean tasks

| eanEcl i pseProj ect

Del ete Removes the . pr oj ect file.

| eanEcl i psed asspat h - Del ete Removes the . cl asspat h file.

Removes the . settings/org. eclipse.jdt.cc

| eanEcl i pseJdt = Del ete)
file.
cl i pseProj ect - Cener at eEcl i pseProj ect Generates the . proj ect file.
cl i psed asspat h - Cener at eEcl | pseCl asspat h Generates the . cl asspat h file.
. . Generates the . settings/org. eclipse.jdt.c
cli pseddt - CGener at eEcl i pseJdt i
ile.
Table 91. Eclipse WTP plugin - additional tasks
Depends o
ask name Type Description
on
. Removes the .settings/org.eclipse.ws
| eanEcl i pseW pConponent - Del ete i
ile.
. Removes the . settings/org. eclipse. wst. «
| eanEcl i pseW pFacet - Del et e i
ile.
) _ Generates the .settings/org.eclipse.ws
cl i pseW pConponent - Gener at eEcl i pseW pConponent i
ile.
)) Generates the . settings/org. eclipse. wst.
cl i pseW pFacet - Gener at eEcl i pseW pFacet

file.

Page 556 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html

8§
Configuration

Table 92. Configuration of the Eclipse plugins
odel Reference name Description

Top level element that enables configuration of the Eclipse plugin in a

2l T pseNbdel eclipse DSL-friendly fashion.

cl i pseProj ect ecl i pse. proj ect Allows configuring project information

cli psed asspat h ecl i pse. cl asspath Allows configuring classpath information.

cli pseJdt eclipse.jdt Allows configuring jdt information (source/target Java compatibility).

. . Allows configuring wtp component information only if ecl i pse-wt p
cl i pseW pConponent ecl i pse. wt p. conponent . .
plugin was applied.

) . Allows configuring wtp facet information only if ecl i pse-wt p plugin
cli pseW pFacet eclipse. wtp. facet)
was applied.

8§
Customizing the generated files

The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL for
configuring model objects that model the Eclipse view of the project. These model objects are then merged
with the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide
lower level hooks for working with domain objects representing the file content before and after merging with
the model configuration. They also provide a very low level hook for working directly with the raw XML for
adjustment before it is persisted, for fine tuning and configuration that the Eclipse and Eclipse WTP plugins
do not model.

§
Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

Page 557 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

§
Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation
task, like “gradl e cl eanEcl i pse ecli pse” (in that order). If you want to make this the default behavior,
add “t asks. ecl i pse. dependsOn(cl eanEcl i pse) ” to your build script. This makes it unnecessary to
execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be

done for the “. cl asspat h” file with “gr adl e cl eanEcl i pseC asspath ecli psed asspat h”.

§
Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle.
The generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist
The bef or eMer ged hook is executed with a domain object representing the existing file

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in
the eclipse DSL

The whenMer ged hook is executed with a domain object representing contents of the file to be persisted
The wi t hXm hook is executed with a raw representation of the XML that will be persisted

The final XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 93. Advanced configuration hooks

bef oreMerged { arg -> } whenMerged { arg -> } withXml { arg -> } withPropertie

odel argument type argument type argument type argument type
cli pseProj ect Proj ect Proj ect Xm Provi der -

cli psed asspat h Cl asspat h Cl asspat h Xm Provi der -

cli pseJdt Jdt Jdt - java.util.Pro
cl i pseW pConponent W pConponent W pConponent Xm Provi der -

cli pseW pFacet W pFacet W pFacet Xm Provi der -

Page 558 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/XmlProvider.html

§
Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes made directly
in the IDE. Alternatively, the bef or eMer ged hook makes it possible to overwrite just certain parts of the
existing content. The following example removes all existing dependencies from the Cl asspat h domain
object:

Example 484. Partial Overwrite for Classpath

bui I d. gradl e
eclipse.classpath.file {
bef oreMerged { classpath ->
cl asspath.entries.removeAll { entry -> entry.kind == "1ib" || entry.kind

The resulting . cl asspat h file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency entries, this
is also the default behavior.) Other sections of the . cl asspat h file will be either left as-is or merged. The

same could be done for the natures in the . pr oj ect file:
Example 485. Partial Overwrite for Project

buil d. gradl e
eclipse.project.file.beforeMerged { project ->
proj ect.natures.clear ()

§
Modifying the fully populated domain objects

The whenMer ged hook allows to manipulate the fully populated domain objects. Often this is the preferred
way to customize Eclipse files. Here is how you would export all the dependencies of an Eclipse project:

Example 486. Export Classpath Entries

buil d. gradl e
eclipse.classpath.file {
whenMer ged { classpath ->
classpath.entries.findAll { entry -> entry.kind == "lib" }*.exported = fi

Page 559 of 717

§
Modifying the XML representation

The wi t hXm hook allows to manipulate the in-memory XML representation just before the file gets written
to disk. Although Groovy’'s XML support makes up for a lot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections
not modeled by the domain objects.

Example 487. Customizing the XML

bui | d. gradl e
apply plugin: '"eclipse-wp'

eclipse.wp.facet.file.withXm { provider ->
provi der.asNode().fixed.find { it. @acet == 'jst.java' }.@acet = "jst2. java

Page 560 of 717

The IDEA Plugin

The IDEA plugin generates files that are used by IntelliJ IDEA, thus making it possible to open the project
from IDEA (Fi | e - Open Proj ect). Both external dependencies (including associated source and Javadoc
files) and project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:
Table 94. IDEA plugin behavior
lugin Description

one Generates an IDEA module file. Also generates an IDEA project and workspace file if the project is the root project.

ava Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of
hooks for adding and removing content from the generated files.

§
Usage

To use the IDEA plugin, include this in your build script:
Example 488. Using the IDEA plugin

bui | d. gradl e
apply pl ugin:

i dea’

The IDEA plugin adds a number of tasks to your project. The main tasks that you will use are the i dea and c
tasks.

8
Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the cl ean task does not depend on
the cl eanl deaWbr kspace task. This is because the workspace typically contains a lot of user specific
temporary data and it is not desirable to manipulate it outside IDEA.

Page 561 of 717

http://www.jetbrains.com/idea/

Table 95. IDEA plugin - Tasks

ask name Depends on Type Description
dea i deaPr oj ect, i deaMbdul e, i deaWr kspace Generates all IDEA configuration files
| eanl dea cl eanl deaPr oj ect, cl eanl deehel et e Removes all IDEA configuration files

| eanl deaPr oj ect - Del ete Removes the IDEA project file
| eanl deaModul e - Del ete Removes the IDEA module file
| eanl deaWor kspace - Del ete Removes the IDEA workspace file

)) Generates the . i pr file. This task is
deaPr oj ect - Gener at el deaPr oj ect)
only added to the root project.

JdeaMbdul e - Cener at el deavbdul e Generates the . i ml file

Generates the . i ws file. This task is
JdeaWbr kspace - Gener at el deaWr kspace)
only added to the root project.

§
Configuration

Table 96. Configuration of the idea plugin

odel Reference name Description

deaModel i dea Top level element that enables configuration of the idea plugin in a DSL-friendly fashion
deaPr oj ect i dea. proj ect Allows configuring project information

deaMbdul e i dea. modul e Allows configuring module information

deaVr kspace i dea. wor kspace Allows configuring the workspace XML

Page 562 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

8§
Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file
can effectively only be manipulated via the wi t hXml hook because its corresponding domain object is
essentially empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

§
Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

§
Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation
task, like “gr adl e cl eanl dea i dea” (in that order). If you want to make this the default behavior, add “t a¢
" to your build script. This makes it unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be
done for the “. i m " file with “gr adl e cl eanl deaModul e i deaModul e”.

§
Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The
generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist
The bef or eMer ged hook is executed with a domain object representing the existing file

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in
the eclipse DSL

The whenMer ged hook is executed with a domain object representing contents of the file to be persisted
The wi t hXm hook is executed with a raw representation of the XML that will be persisted

The final XML is persisted The following table lists the domain object used for each of the model types:

Page 563 of 717

Table 97. Idea plugin hooks

bef oreMerged { arg } argumentwhenMerged { arg } argument withXm { arg } argument

odel

type type type
JdeaPr oj ect Pr oj ect Pr oj ect Xm Provi der
deaModul e Modul e Modul e Xm Provi der
deaWr kspace Wr kspace Wor kspace Xm Provi der
§

Partial rewrite of existing content

A complete rewrite causes all existing content to be discarded, thereby losing any changes made directly in
the IDE. The bef or eMer ged hook makes it possible to overwrite just certain parts of the existing content.
The following example removes all existing dependencies from the Modul e domain object:

Example 489. Partial Rewrite for Module

buil d. gradl e
i dea. modul e.im {
bef oreMerged { nodule ->
nodul e. dependenci es. cl ear ()

The resulting module file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency entries, this
is also the default behavior.) Other sections of the module file will be either left as-is or merged. The same
could be done for the module paths in the project file:

Example 490. Partial Rewrite for Project

buil d. gradl e
i dea. project.ipr {
bef oreMerged { project ->
pr oj ect. nodul ePat hs. cl ear ()

§
Modifying the fully populated domain objects

The whenMer ged hook allows you to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export all the dependencies of an IDEA
module:

Page 564 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/XmlProvider.html

Example 491. Export Dependencies

buil d. gradl e
i dea. nodul e.im {
whenMerged { nodule ->
nmodul e. dependenci es*. exported = true

8§
Modifying the XML representation

The wi t hXm hook allows you to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy’'s XML support makes up for a lot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections
not modeled by the domain objects.

Example 492. Customizing the XML

buil d. gradl e
i dea. project.ipr {
withXm { provider ->
provi der. node. conponent
.find { it.@ame == 'VcsDirectoryMappi ngs' }
. mappi ng. @cs = 'Gt'

8§
Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable
pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths
with this path variable. you can configure this path variable via the “i dea. pat hVari abl es” property, so
that it can do a proper merge without creating duplicates.

Page 565 of 717

The Software model

Rule based model configuration

Note: Support for rule based configuration is currently incubating. Please be aware that the DSL,
APIs and other configuration may change in later Gradle versions.

Rule based model configuration enables configuration logic to itself have dependencies on other elements
of configuration, and to make use of the resolved states of those other elements of configuration while
performing its own configuration.

8§
Background

Rule based model configuration facilitates easier domain modelling: communicating intent (i.e. the what)
over mechanics (i.e. the how). Domain modelling is a core tenet of Gradle and provides Gradle with several
advantages over prior generation build tools such as Apache Ant that focus on the execution model. It allows
humans to understand builds at a level that is meaningful to them.

As well as helping humans, a strong domain model also helps the dutiful machines. Plugins can more
effectively collaborate around a strong domain model (e.g. plugins can say something about Java
applications, such as providing conventions). Very importantly, by having a model of the what instead of the
how Gradle can make intelligent choices on just how to do the how.

Gradle's support for building native software and Play Framework applications already uses this
configuration model. Gradle also includes some initial support for building Java libraries using this
configuration model.

8§
Motivations for change

Domain modelling in Gradle isn't new. The Java plugin’s Sour ceSet concept is an example of domain
modelling, as is the modelling of Nat i veBi nary in the native plugin suite.

A distinguishing characteristic of Gradle compared to other build tools that also embrace modelling is that
Gradle’s model is open and collaborative. Gradle is fundamentally a tool for modelling software construction
and then realizing the model, via tasks such as compilation etc. Different domain plugins (e.g. Java, C++,
Android) provide models that other plugins can collaborate with and build upon.

While Gradle has long employed sophisticated techniques when it comes to realizing the model (i.e. what we

Page 567 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinary.html

know as building code), the next generation of Gradle builds will employ some of the same techniques to
creation of the model itself. By defining build tasks as effectively a graph of dependent functions with explicit
inputs and outputs, Gradle is able to order, cache, parallelize and apply other optimizations to the work.
Using a “graph of tasks” for the production of software is a long established idea, and necessary given the
complexity of software production. The task graph effectively defines the rules of execution that Gradle must
follow. The term “Rule based model configuration” refers to applying the same concepts to building the
model that builds the task graph.

Another key motivation is performance and scale. Aspects of the current approach that Gradle takes to
modelling the build reduce parallelism opportunities and limit scalability. The software model is being
designed with the requirements of modern software delivery in mind, where immediate responsiveness is
critical for projects large and small.

8§
Basic Concepts

§
The “model space”

The term “model space” is used to refer to the formal model, which can be read and modified by rules.

A counterpart to the model space is the “project space”, which should be familiar to readers. The “project
space” is a graph of objects (e.g proj ect.repositories, project.tasks etc.) having a Proj ect as
its root. A build script is effectively adding and configuring objects of this graph. For the most part, the
“project space” is opaque to Gradle. It is an arbitrary graph of objects that Gradle only partially understands.

Each project also has its own model space, which is distinct from the project space. A key characteristic of
the “model space” is that Gradle knows much more about it (which is knowledge that can be put to good
use). The objects in the model space are “managed”, to a greater extent than objects in the project space.
The origin, structure, state, collaborators and relationships of objects in the model space are first class
constructs. This is effectively the characteristic that functionally distinguishes the model space from the
project space: the objects of the model space are defined in ways that Gradle can understand them
intimately, as opposed to an object that is the result of running relatively opaque code. A “rule” is effectively
a building block of this definition.

The model space will eventually replace the project space, becoming the only “space”.

8
Rules

The model space is defined by “rules”. A rule is just a function (in the abstract sense) that either produces a
model element, or acts upon a model element. Every rule has a single subject and zero or more inputs. Only
the subject can be changed by a rule, while the inputs are effectively immutable.

Gradle guarantees that all inputs are fully “realized” before the rule executes. The process of “realizing” a
model element is effectively executing all the rules for which it is the subject, transitioning it to its final state.

Page 568 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html

There is a strong analogy here to Gradle’s task graph and task execution model. Just as tasks depend on
each other and Gradle ensures that dependencies are satisfied before executing a task, rules effectively
depend on each other (i.e. a rule depends on all rules whose subject is one of the inputs) and Gradle
ensures that all dependencies are satisfied before executing the rule.

Model elements are very often defined in terms of other model elements. For example, a compile task’s
configuration can be defined in terms of the configuration of the source set that it is compiling. In this
scenario, the compile task would be the subject of a rule and the source set an input. Such a rule could
configure the task subject based on the source set input without concern for how it was configured, who it
was configured by or when the configuration was specified.

There are several ways to declare rules, and in several forms.

8
Rule sources

One way to define rules is via a Rul eSour ce subclass. If an object extends RuleSource and contains any
methods annotated by '@Mutate’, then each such method defines a rule. For each such method, the first
argument is the subject, and zero or more subsequent arguments may follow and are inputs of the rule.

Page 569 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html

Example 493. applying a rule source plugin

buil d. gradl e

@managed

interface Person {
voi d setFirstName(String nane)
String getFirstName()

voi d setLast Name(String nane)
String getlLast Nane()

cl ass PersonRul es extends Rul eSource {
@bdel void person(Person p) {}

@MUt ate voi d setFirstNane(Person p) {
p.firstName = "John"

@MUt ate voi d createHel | oTask(Model Map<Task> t asks, Person p) {
tasks.create("hello") {
doLast {
println "Hello $p.firstNane $p.| ast Nane!"

apply plugin: PersonRul es

Output of gradl e hel |l o
> gradle hello
chello

Hel l o John Smith!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Each of the different methods of the rule source are discrete, independent rules. Their order, or the fact that
they belong to the same class, do not affect their behavior.

Example 494. a model creation rule

buil d. gradl e
@bdel voi d person(Person p) {}

This rule declares that there is a model element at path " per son" (defined by the method name), of type Pe

Page 570 of 717

. This is the form of the Model type rule for Vanaged types. Here, the person object is the rule subject. The
method could potentially have a body, that mutated the person instance. It could also potentially have more
parameters, which would be the rule inputs.

Example 495. a model mutation rule

buil d. gradl e

@utate voi d setFirstNanme(Person p) {
p.firstName = "John"

This Mut at e rule mutates the person object. The first parameter to the method is the subject. Here, a
by-type reference is used as no Pat h annotation is present on the parameter. It could also potentially have
more parameters, that would be the rule inputs.

Example 496. creating a task

buil d. gradl e

@MUt ate voi d createHel | oTask(Model Map<Task> tasks, Person p) {
tasks.create("hello") {
doLast {
println "Hello $p.firstNane $p. | ast Nane! "

This Mut at e rule effectively adds a task, by mutating the tasks collection. The subject here is the "t asks™
node, which is available as a Model Map of Task. The only input is our person element. As the person is
being used as an input here, it will have been realised before executing this rule. That is, the task container
effectively depends on the person element. If there are other configuration rules for the person element,
potentially specified in a build script or other plugin, they will also be guaranteed to have been executed.

As Per son is a Managed type in this example, any attempt to modify the person parameter in this method
would result in an exception being thrown. Managed objects enforce immutability at the appropriate point in
their lifecycle.

Rule source plugins can be packaged and distributed in the same manner as other types of plugins (see
Writing Custom Plugins). They also may be applied in the same manner (to project objects) as Pl ugi n

implementations (i.e. via Pr o] ect . appl y(] ava. util . NMap)).

Please see the documentation for Rul eSour ce for more information on constraints on how rule sources
must be implemented and for more types of rules.

Page 571 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Model.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Path.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html

8§
Advanced Concepts

8
Model paths

A model path identifies the location of an element relative to the root of its model space. A common
representation is a period-delimited set of names. For example, the model path "t asks" is the path to the
element that is the task container. Assuming a task whose name is hel | o, the path "t asks. hel | 0" is the
path to this task.

8
Managed model elements

Currently, any kind of Java object can be part of the model space. However, there is a difference between
“managed” and “unmanaged” objects.

A “managed” object is transparent and enforces immutability once realized. Being transparent means that its
structure is understood by the rule infrastructure and as such each of its properties are also individual
elements in the model space.

An “unmanaged” object is opaque to the model space and does not enforce immutability. Over time, more
mechanisms will be available for defining managed model elements culminating in all model elements being
managed in some way.

Managed models can be defined by attaching the @/anaged annotation to an interface:
Example 497. a managed type

buil d. gradl e

@/managed

interface Person {
voi d setFirstName(String nane)
String getFirstNane()

voi d setLast Nane(String nane)
String getlLast Nane()

By defining a getter/setter pair, you are effectively declaring a managed property. A managed property is a
property for which Gradle will enforce semantics such as immutability when a node of the model is not the
subject of a rule. Therefore, this example declares properties named firstName and lastName on the
managed type Person. These properties will only be writable when the view is mutable, that is to say when
the Person is the subject of a Rul e (see below the explanation for rules).

Managed properties can be of any scalar type. In addition, properties can also be of any type which is itself
managed:

Page 572 of 717

Property type Nullable

String Yes

File Yes

I nt eger, Bool ean, Byt e, Short, Fieat

, Long, Doubl e

i nt, bool ean, byt e, short, fl oat No

, | ong, doubl e
Another managed type. Only if read/write
An enumeration type. Yes

A ManagedSet. A managed set Only if read/write
supports the creation of new named

model elements, but not their

removal.

A Set or Li st of scalar types. All Only if read/write
classic operations on collections are
supported: add, remove, clear...

Example

Example 498. a String property

bui | d. gradl e
voi d setFirstName(String nane)
String getFirstName()

Example 499. a File property

bui l d. gradl e
voi d setHoneDirectory(File honeDir)
Fil e get HoneDirectory()

Example 500. a Long property
bui | d. gradl e

voi d setld(Long id)
Long getld()

Example 501. a boolean property

bui | d. gradl e
voi d set Enpl oyed(bool ean i sEnpl oyed)
bool ean i sEnpl oyed()

Example 502. an int property
bui | d. gradl e

voi d set Age(i nt age)
int getAge()

Example 503. a managed property

bui | d. gradl e
voi d set Mot her (Per son not her)
Per son get Mot her ()

Example 504. an enumeration type property

bui | d. gradl e
voi d setMarital Status(Marital Status stal
Marital Status get Marital Status()

Example 505. a managed set

bui | d. gradl e
Mbdel Set <Per son> get Chi | dren()

Page 573 of 717

Example 506. a scalar collection

bui | d. gradl e
voi d set User Groups(List<String> groups)
Li st<String> getUser G oups()

If the type of a property is itself a managed type, it is possible to declare only a getter, in which case you are
declaring a read-only property. A read-only property will be instantiated by Gradle, and cannot be replaced
with another object of the same type (for example calling a setter). However, the properties of that property
can potentially be changed, if, and only if, the property is the subject of a rule. If it's not the case, the
property is immutable, like any classic read/write managed property, and properties of the property cannot
be changed at all.

Managed types can be defined out of interfaces or abstract classes and are usually defined in plugins, which
are written either in Java or Groovy. Please see the Managed annotation for more information on creating
managed model objects.

§
Model element types

There are particular types (language types) supported by the model space and can be generalised as
follows:

Table 98. Type definitions

ype Definition

A scalar type is one of the following:
® a primitive type (e.g. i nt) or its boxed type (e.g | nt eger)

® aBiglnteger orBi gDeci nal

calar
® astring
® aFile
® an enumeration type
calar Collection A java.util.List or java.util.Set containing one of the scalar types
anaged type Any class which is a valid managed model (i.e.annotated with @Vanaged)
anaged collection A Model Map or Mbdel Set

There are various contexts in which these types can be used:

Page 574 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelSet.html

Table 99. Model type support

ontext Supported types

®* Any managed type

reating top level mod.el

Functi onal Sour ceSet (when the LanguageBaseP| ugi n plugin has been applied)
ements

® Subtypes of LanguageSour ceSet which have been registered via Conponent Type

The properties (attributes) of a managed model elements may be one or more of the following:
* A managed type
® A type which is annotated with @Unnmanaged

roperties of managed mod®l A Scalar Collection

ements
®* A Managed collection containing managed types
®* A Managed collection containing Functional SourceSet's (when the
LanguageBasePl ugi n plugin has been applied)
® Subtypes of LanguageSour ceSet which have been registered via Conponent Type
8

Language source sets

Functional Sour ceSet s and subtypes of LanguageSour ceSet (which have been registered via
Conponent Type) can be added to the model space via rules or via the model DSL.

Page 575 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Unmanaged.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentType.html

Example 507. strongly modelling sources sets

buil d. gradl e
apply plugin: 'java-Ilang

cl ass LanguageSour ceSet Rul es extends Rul eSource {

@mbdel
voi d mySour ceSet (JavaSour ceSet javaSource) {
j avaSour ce. source.srchir("src/ main/ny")

}
apply plugin: LanguageSour ceSet Rul es

nodel {
anot her (JavaSour ceSet) {
source {
srcDir "src/main/anot her"
}
}
}
@managed

interface SourceBundl e {
Functi onal Sour ceSet get FreeSour ces()
Functi onal Sour ceSet get Pai dSour ces()

}
nodel {
sour ceBundl e(Sour ceBundl e) {
freeSources. create("nmai n", JavaSourceSet)
freeSources. create("resources", JvnmResourceSet)
pai dSour ces. create("nmai n", JavaSourceSet)
pai dSour ces. create("resources”, JvimResourceSet)
}
}

Note: The code for this example can be found at sanpl es/ nodel Rul es/ | anguage- support in

the ‘-all’ distribution of Gradle.

Output of gradl e hel p
> gradle help
:help

Page 576 of 717

8
References, binding and scopes

As previously mentioned, a rule has a subject and zero or more inputs. The rule’s subject and inputs are
declared as “references” and are “bound” to model elements before execution by Gradle. Each rule must
effectively forward declare the subject and inputs as references. Precisely how this is done depends on the
form of the rule. For example, the rules provided by a Rul eSour ce declare references as method

parameters.
A reference is either “by-path” or “by-type”.

A “by-type” reference identifies a particular model element by its type. For example, a reference to the
TaskCont ai ner effectively identifies the "t asks" element in the project model space. The model space is
not exhaustively searched for candidates for by-type binding; rather, a rule is given a scope (discussed later)
that determines the search space for a by-type binding.

A "by-path” reference identifies a particular model element by its path in model space. By-path references
are always relative to the rule scope; there is currently no way to path “out” of the scope. All by-path
references also have an associated type, but this does not influence what the reference binds to. The
element identified by the path must however by type compatible with the reference, or a fatal “binding failure”
will occur.

§
Binding scope

Rules are bound within a “scope”, which determines how references bind. Most rules are bound at the
project scope (i.e. the root of the model graph for the project). However, rules can be scoped to a node
within the graph. The Model Map. naned(j ava. |l ang. String, |ava.lang.Cl ass) method is an
example of a mechanism for applying scoped rules. Rules declared in the build script using the nodel {}
block, or via a Rul eSour ce applied as a plugin use the root of the model space as the scope. This can be
considered the default scope.

By-path references are always relative to the rule scope. When the scope is the root, this effectively allows
binding to any element in the graph. When it is not, then only the children of the scope can be referenced
using "by-path” notation.

When binding by-type references, the following elements are considered:
The scope element itself.

The immediate children of the scope element.

The immediate children of the model space (i.e. project space) root.

For the common case, where the rule is effectively scoped to the root, only the immediate children of the root
need to be considered.

Page 577 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelMap.html#named-java.lang.String, java.lang.Class-

§
Binding to all elements in a scope matching type

Mutating or validating all elements of a given type in some scope is a common use-case. To accommodate
this, rules can be applied via the @ach annotation.

In the example below, a @ef aul t s rule is applied to each Fi | el t emin the model setting a default file size
of "1024". Another rule applies a Rul eSour ce to every Di r ect or yl t emthat makes sure all file sizes are
positive and divisible by "16".

Example 508. a DSL example applying a rule to every element in a scope

buil d. gradl e

Page 578 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html

@managed interface Item extends Named {}
@managed interface Fileltemextends Item {
voi d setSize(int size)
int getSize()
}
@mnaged interface Directoryltem extends Item {
Model Map<I t e get Chi | dren()

class PluginRul es extends Rul eSource {
@efaults void setDefaultFil eSi ze(@ach Fileltemfile) {
file.size = 1024

@rul es voi d appl yVval i dat eRul es(Val i dateRul es rules, @ach Directoryltemdire

}
apply plugin: PluginRul es

abstract class ValidateRul es extends Rul eSource {
@/al i dat e
voi d val i dat eSi zel sPosi tive(Mdel Map<Fileltenr files) {
files.each { file ->
assert file.size > 0

@val i dat e
voi d val i dat eSi zeDi vi si bl eBySi xt een(Mbdel Map<Fileltent files) {
files.each { file ->
assert file.size %16 ==

}
}
}
nodel {
root(Directorylten) {
children {
dir(Directoryltem {
children {
filel(Fileltem
file2(Fileltem) { size = 2048 }
}
}
file3(Fileltem
}
}
}

Page 579 of 717

Note: The code for this example can be found at sanpl es/ nodel Rul es/ r ul eSour cePl ugi nEach
in the *-all’ distribution of Gradle.

8§
The model DSL

In addition to using a RuleSource, it is also possible to declare a model and rules directly in a build script
using the “model DSL".

Tip: The model DSL makes heavy use of various Groovy DSL features. Please have a read of the
section called “Some Groovy basics” for an introduction to these Groovy features.

The general form of the model DSL is:

nodel {
«rul e-definitions»

All rules are nested inside a nodel block. There may be any number of rule definitions inside each nodel
block, and there may be any number of nodel blocks in a build script. You can also use a nodel block in
build scripts that are applied using apply from 3$uri.

There are currently 2 kinds of rule that you can define using the model DSL: configuration rules, and creation
rules.

8
Configuration rules

You can define a rule that configures a particular model element. A configuration rule has the following form:

nodel {
«nodel - pat h-t 0- subj ect » {
«configuration code»

Continuing with the example so far of the model element " per son" of type Per son being present, the
following DSL snippet adds a configuration rule for the person that sets its | ast Name property.

Page 580 of 717

Example 509. DSL configuration rule

buil d. gradl e
nodel {
person {

| ast Name = "Smth"

A configuration rule specifies a path to the subject that should be configured and a closure containing the
code to run when the subject is configured. The closure is executed with the subject passed as the closure
delegate. Exactly what code you can provide in the closure depends on the type of the subject. This is
discussed below.

You should note that the configuration code is not executed immediately but is instead executed only when
the subject is required. This is an important behaviour of model rules and allows Gradle to configure only
those elements that are required for the build, which helps reduce build time. For example, let’'s run a task
that uses the "person” object:

Example 510. Configuration run when required

buil d. gradl e
nodel {
person {

println "configuring person”
| astNane = "Smith"

Output of gr adl e showPer son
> gradl e showPer son
configuring person

: showPer son

Hell o John Snmith!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You can see that before the task is run, the "person" element is configured by running the rule closure. Now
let’s run a task that does not require the "person” element:

Page 581 of 717

Example 511. Configuration not run when not required

Output of gr adl e sonet hi ngEl se
> gradl e sonet hi ngEl se

: sonet hi ngEl se

Not using person

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

In this instance, you can see that the "person" element is not configured at all.

8
Creation rules

It is also possible to create model elements at the root level. The general form of a creation rule is:

nmodel {
«el ement - name»(«el ement -type») {
«initialization code»

The following model rule creates the " per son" element:
Example 512. DSL creation rule

buil d. gradl e
nodel {
per son(Person) {
firstName = "John"

A creation rule definition specifies the path of the element to create, plus its public type, represented as a
Java interface or class. Only certain types of model elements can be created.

A creation rule may also provide a closure containing the initialization code to run when the element is
created. The closure is executed with the element passed as the closure delegate. Exactly what code you
can provide in the closure depends on the type of the subject. This is discussed below.

The initialization closure is optional and can be omitted, for example:
Example 513. DSL creation rule without initialization

buil d. gradl e
nodel {
bar ry(Per son)

Page 582 of 717

You should note that the initialization code is not executed immediately but is instead executed only when
the element is required. The initialization code is executed before any configuration rules are run. For
example:

Example 514. Initialization before configuration

buil d. gradl e
nodel {
person {

println "configuring person”
println "last nanme is $lastName, should be Smythe"
| ast Name = " Snyt he"

}

per son(Person) {
println "creating person"
firstName = "John"
| ast Name = "Smith"

Output of gr adl e showPer son

> gradl e showPer son

creating person

configuring person

last nane is Smith, should be Smythe
: showPer son

Hel I o John Snyt he!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Notice that the creation rule appears in the build script after the configuration rule, but its code runs before
the code of the configuration rule. Gradle collects up all the rules for a particular subject before running any
of them, then runs the rules in the appropriate order.

8§
Model rule closures

Most DSL rules take a closure containing some code to run to configure the subject. The code you can use
in this closure depends on the type of the subject of the rule.

Tip: You can use the model report to determine the type of a particular model element.

In general, a rule closure may contain arbitrary code, mixed with some type specific DSL syntax.

Page 583 of 717

§
Model Map<T> subject

A NModel Map is basically a map of model elements, indexed by some name. When a Model Map is used as
the subject of a DSL rule, the rule closure can use any of the methods defined on the Mbdel MVap interface.

A rule closure with Model Map as a subject can also include nested creation or configuration rules. These
behave in a similar way to the creation and configuration rules that appear directly under the nodel block.

Here is an example of a nested creation rule:

Example 515. Nested DSL creation rule

buil d. gradl e
nodel {
peopl e {

j ohn(Person) {
firstName = "John"

As before, a nested creation rule defines a name and public type for the element, and optionally, a closure
containing code to use to initialize the element. The code is run only when the element is required in the
build.

Here is an example of a nested configuration rule:

Example 516. Nested DSL configuration rule

buil d. gradl e
nodel {
peopl e {
john {
| ast Name = "Smith"
}
}
}

As before, a nested configuration rule defines the name of the element to configure and a closure containing
code to use to configure the element. The code is run only when the element is required in the build.

Model Map introduces several other kinds of rules. For example, you can define a rule that targets each of
the elements in the map. The code in the rule closure is executed once for each element in the map, when
that element is required. Let’s run a task that requires all of the children of the "people" element:

Page 584 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelMap.html

Example 517. DSL configuration rule for each element in a map

buil d. gradl e
nodel {
peopl e {

j ohn(Person) {
println "creating $it"
firstName = "John"
| ast Name = "Smith"

}
all {

println "configuring $it"
}

barry(Person) {
println "creating $it"
firstName = "Barry"
| ast Name = "Barry"

Outputof gradl e |i st Peopl e

> gradle |istPeople

creating Person 'people.barry'
configuring Person 'people.barry’
creating Person 'people.john'
configuring Person 'people.john
:1istPeople

Hello Barry Barry!

Hell o John Smith!

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Any method on Model Map that accepts an Acti on as its last parameter can also be used to define a
nested rule.

§
@managed type subject

When a managed type is used as the subject of a DSL rule, the rule closure can use any of the methods
defined on the managed type interface.

A rule closure can also configure the properties of the element using nested closures. For example:

Page 585 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Action.html

Example 518. Nested DSL property configuration

buil d. gradl e
nodel {
person {
address {
city = "Mel bourne"
}
}
}
Note: Currently, the nested closures do not define rules and are executed immediately. Please be
aware that this behaviour will change in a future Gradle release.
§

All other subjects

For all other types, the rule closure can use any of the methods defined by the type. There is no special DSL

defined for these elements.

8§
Automatic type coercion

Scalar properties in managed types can be assigned Char Sequence values (e.g. Stri ng, GStri ng, etc.)

and they will be converted to the actual property type for you. This works for all scalar types including “File's,

which will be resolved relative to the current project.
Example 519. a DSL example showing type conversions

buil d. gradl e

enum Tenperature {
TOO_HOT,
TOO_COLD,
JUST_RI GHT

@managed

interface Item{
voi d setName(String n); String getNane()
voi d setQuantity(int q); int getQuantity()

voi d setPrice(float p); float getPrice()

voi d set Tenperature(Tenperature t)
Tenper at ure get Tenperat ure()

void setDataFile(File f); File getDataFile()

Page 586 of 717

class ItenRul es extends Rul eSource {
@mbdel
void itemltemitem {

def data = itemdataFile.text.trim)
def (name, quantity, price, tenp)

item nane = nane
itemquantity = quantity
itemprice = price
itemtenperature = tenp

}

@ef aul ts

void setDefaults(ltemitem {
itemdataFile = 'data.csv'

}

@t at e

voi d creat eDat aTask(Model Map<Task> t asks,

tasks. create(' showbData') ({
doLast {
println
[tem ' $item nane'
quantity: $item quantity
price: $itemprice
tenperature: $itemtenperature""”

}

apply plugin: ItenRul es

nodel {
item{

price = "${price * (quantity < 10 ? 2 :

= data.split(',")

Itemiten) {

0.5)}"

Page 587 of 717

Note: The code for this example can be found at sanpl es/ nodel Rul es/ nodel Dsl Coer ci on in
the *-all’ distribution of Gradle.

In the above example, an | t emis created and is initialized in set Def aul t s() by providing the path to the
data file. Inthe i t em() method the resolved Fi | e is parsed to extract and set the data. In the DSL block at
the end, the price is adjusted based on the quantity; if there are fewer than 10 remaining the price is
doubled, otherwise it is reduced by 50%. The GSt ri ng expression is a valid value since it resolves to a f | oz
value in string form.

Finally, in cr eat eDat aTask() we add the showDat a task to display all of the configured values.

§
Declaring input dependencies

Rules declared in the DSL may depend on other model elements through the use of a special syntax, which
is of the form:

$. «pat h-t o- nodel - el enent »

Paths are a period separated list of identifiers. To directly depend on the fi r st Nane of the person, the
following could be used:

$. person. firstNanme

Example 520. a DSL rule using inputs

buil d. gradl e
nodel {
tasks {

hel | o(Task) {
def p = $. person
doLast {
println "Hello $p.firstNanme $p.|astNane!"

Note: The code for this example can be found at sanpl es/ nodel Rul es/ nodel Dsl in the ‘-all’
distribution of Gradle.

In the above snippet, the $. per son construct is an input reference. The construct returns the value of the
model element at the specified path, as its default type (i.e. the type advertised by the Model Report). It may
appear anywhere in the rule that an expression may normally appear. It is not limited to the right hand side

Page 588 of 717

of variable assignments.

The input element is guaranteed to be fully configured before the rule executes. That is, all of the rules that
mutate the element are guaranteed to have been previously executed, leaving the target element in its final,
immutable, state.

Most model elements enforce immutability when being used as inputs. Any attempt to mutate such an
element will result in a runtime error. However, some legacy type objects do not currently implement such
checks. Regardless, it is always invalid to attempt to mutate an input to a rule.

§
Using Model Map<T> as an input

When you use a Mbdel Map as input, each item in the map is made available as a property.

8§
The model report

The built-in Model Report task displays a hierarchical view of the elements in the model space. Each item
prefixed with a + on the model report is a model element and the visual nesting of these elements correlates
to the model path (e.g. t asks. hel p). The model report displays the following details about each model
element:

Table 100. Model report - model element details
etail Description

ype This is the underlying type of the model element and is typically a fully qualified class name.
alue Is conditionally displayed on the report when a model element can be represented as a string.

‘ Every model element has a creator. A creator signifies the origin of the model element (i.e. what created the model
reator
element).

Is a listing of the rules, excluding the creator rule, which are executed for a given model element. The order in which
the rules are displayed reflects the order in which they are executed.

Example 521. model task output

Output of gr adl e nodel
> gradl e nodel
: model

Page 589 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.reporting.model.ModelReport.html

+ person

| Type:

| Creator:

| Rules:
person {

Per son
Per sonRul es#per son(Per son)

} @build.gradle line 59, colum 3

Per sonRul es#set Fi r st Name(Per son)

age

Type:
Val ue:

| Creator:

chil dren
| Type:

| Creator:

enpl oyed

| Type:
| Val ue:

| Creator:

f at her

| Type:
| Val ue:

| Creator:

firstNanme

| Type:
| Val ue:

| Creator:

honeDi rectory

| Type:
| Val ue:

| Creator:

| Type:
| Val ue:

| Creator:

| ast Name

| Type:
| Val ue:

| Creator:

mari t al St at us
| Type:

| Creator:

not her

| Type:
| Val ue:

| Creator:

user G oups

| Type:
| Val ue:

| Creator:
+ tasks

i nt
0
Per sonRul es#per son(Per son)

org. gradl e. nodel . Mbdel Set <Per son>

Per sonRul es#per son(Per son)

bool ean
fal se
Per sonRul es#per son(Per son)

Per son
nul |
Per sonRul es#per son(Per son)

java.lang. String
John
Per sonRul es#per son(Per son)

java.io.File
nul |
Per sonRul es#per son(Per son)

java.l ang. Long
nul |
Per sonRul es#per son(Per son)

java.lang. String
Smth
Per sonRul es#per son(Per son)

Marital St atus
Per sonRul es#per son(Per son)

Per son
nul |
Per sonRul es#per son(Person)

java.util.List<java.lang. String>

nul |
Per sonRul es#per son(Person)

Page 590 of 717

| Type: org. gradl e. nodel . Model Map<or g. gr adl e. api . Task>
| Creator: Proj ect.<init> tasks()
| Rules:
Per sonRul es#cr eat eHel | oTask(Mbdel Map<Task>, Person)
bui | dEnvi r onnent

| Type: org. gradl e. api . t asks. di agnosti cs. Bui | dEnvi ronnent Report T
| Val ue: task ':buil dEnvi r onment

| Creator: t asks. addPl acehol der Acti on(bui | dEnvi ronment)

| Rules:

copyToTaskCont ai ner
conponent s

| Type: org.gradl e. api . reporting. conponents. Conponent Report
| Val ue: task ':conmponents

| Creator: t asks. addPl acehol der Acti on(conponent s)

| Rules:

copyToTaskCont ai ner
dependenci es

| Type: org. gradl e. api .t asks. di agnosti cs. DependencyReport Task
| Val ue: task ':dependenci es'

| Creator: t asks. addPl acehol der Acti on(dependenci es)

| Rules:

copyToTaskCont ai ner
dependencyl nsi ght

| Type: org. gradl e. api .t asks. di agnosti cs. Dependencyl nsi ght Report
| Val ue: task ':dependencyl nsi ght

| Creator: t asks. addPl acehol der Acti on(dependencyl nsi ght)

| Rules:

Hel pTasksPl ugi n. Rul es#addDef aul t Dependenci esReport Confi gur ati on(De
copyToTaskCont ai ner
dependent Conponent s

| Type: org. gradl e. api .reporting. dependent s. Dependent Conmponent sR
| Val ue: task ':dependent Conponents
| Creator: t asks. addPl acehol der Acti on(dependent Conrponent s)
| Rules:
copyToTaskCont ai ner
hel | o
| Type: org. gradl e. api . Task
| Val ue: task ':hello
| Creator: Per sonRul es#cr eat eHel | oTask(Mbdel Map<Task>, Person) > c
| Rules:
copyToTaskCont ai ner
hel p
| Type: org. gradl e. configuration. Hel p
| Val ue: task ':help’
| Creator: t asks. addPl acehol der Acti on(hel p)
| Rules:
copyToTaskCont ai ner
init
| Type: org.gradle.buildinit.tasks.InitBuild

Page 591 of 717

+

+

+

+

Val ue: task ':init'

| Creator: t asks. addPl acehol der Acti on(i nit)
| Rules:
copyToTaskCont ai ner
nodel
| Type: org. gradl e. api . reporting. nodel . Model Report
| Val ue: task ':nodel’
| Creator: t asks. addPl acehol der Acti on(nodel)
| Rules:
copyToTaskCont ai ner
proj ects
| Type: org. gradl e. api .t asks. di agnosti cs. Proj ect Report Task
| Val ue: task ':projects’
| Creator: t asks. addPl acehol der Acti on(proj ects)
| Rules:
copyToTaskCont ai ner
properties

| Type: org. gradl e. api .t asks. di agnosti cs. Propert yReport Task
| Val ue: task ':properties'
| Creator: t asks. addPl acehol der Acti on(properti es)
| Rules:
copyToTaskCont ai ner
t asks
| Type: org. gradl e. api .t asks. di agnosti cs. TaskReport Task
| Val ue: task ':tasks'
| Creator: t asks. addPl acehol der Acti on(t asks)
| Rules:
copyToTaskCont ai ner
wr apper
| Type: org. gradl e. api . t asks. wr apper. W apper
| Val ue: task ':wapper'
| Creator: t asks. addPl acehol der Acti on(wr apper)

Page 592 of 717

| Rules:
copyToTaskCont ai ner

8
Limitations and future direction

Rule based model configuration is the future of Gradle. This area is fledgling, but under very active
development. Early experiments have demonstrated that this approach is more efficient, able to provide
richer diagnostics and authoring assistance and is more extensible. However, there are currently many
limitations.

The majority of the development to date has been focused on proving the efficacy of the approach, and
building the internal rule execution engine and model graph mechanics. The user facing aspects (e.g the
DSL, rule source classes) are yet to be optimized for conciseness and general usability. Likewise, many
necessary configuration patterns and constructs are not yet able to be expressed via the API.

In conjunction with the addition of better syntax, a richer toolkit of configuration constructs and generally
more expressive power, more tooling will be added that will enable build engineers and users alike to
comprehend, modify and extend builds in new ways.

Due to the inherent nature of the rule based approach, it is more efficient at constructing the build model
than today’s Gradle. However, in the future Gradle will also leverage the parallelism that this approach
enables both at configuration and execution time. Moreover, due to increased transparency of the model
Gradle will be able to further reduce build times by caching and pre-computing the build model. Beyond
improved general build performance, this will greatly improve the experience when using Gradle from tools
such as IDEs.

As this area of Gradle is under active development, it will be changing rapidly. Please be sure to consult the
documentation of Gradle corresponding to the version you are using and to watch for changes announced in
the release notes for future versions.

Page 593 of 717

Software model concepts

Note: Support for the software model is currently incubating. Please be aware that the DSL, APIs
and other configuration may change in later Gradle versions.

The software model describes how a piece of software is built and how the components of the software
relate to each other. The software model is organized around some key concepts:

A component is a general concept that represents some logical piece of software. Examples of components
are a command-line application, a web application or a library. A component is often composed of other
components. Most Gradle builds will produce at least one component.

A library is a reusable component that is linked into or combined into some other component. In the Java
ecosystem, a library is often built as a Jar file, and then later bundled into an application of some kind. In the
native ecosystem, a library may be built as a shared library or static library, or both.

A source set represents a logical group of source files. Most components are built from source sets of
various languages. Some source sets contain source that is written by hand, and some source sets may
contain source that is generated from something else.

A binary represents some output that is built for a component. A component may produce multiple different
output binaries. For example, for a C++ library, both a shared library and a static library binary may be
produced. Each binary is initially configured to be built from the component sources, but additional source
sets can be added to specific binary variants.

A variant represents some mutually exclusive binary of a component. A library, for example, might target
Java 7 and Java 8, effectively producing two distinct binaries: a Java 7 Jar and a Java 8 Jar. These are
different variants of the library.

The API of a library represents the artifacts and dependencies that are required to compile against that
library. The API typically consists of a binary together with a set of dependencies.

Page 594 of 717

Implementing model rules in a plugin

A plugin can define rules by extending Rul eSour ce and adding methods that define the rules. The plugin
class can either extend Rul eSour ce directly or can implement Pl ugi n and include a nested Rul eSour ce
subclass.

Refer to the API docs for Rul eSour ce for more details.

8§
Applying additional rules

A rule method annotated with Rul es can apply a Rul eSour ce to a target model element.

Page 595 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/Rules.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/model/RuleSource.html

Building Java Libraries

Note: Support for building Java libraries using the software model is currently incubating. Please be
aware that the DSL, APIs and other configuration may change in later Gradle versions.

The Java software plugins are intended to replace the Java plugin, and leverage the Gradle software model
to achieve the best performance, improved expressiveness and support for variant-aware dependency
management.

8§
Features

The Java software plugins provide:

Support for building Java libraries and other components that run on the JVM.

Support for several source languages.

Support for building different variants of the same software, for different Java versions, or for any purpose.
Build time definition and enforcement of Java library API.

Compile avoidance.

Dependency management between Java software components.

8
Java Software Model

The Java software plugins provide a software model that describes Java based software and how it should
be built. This Java software model extends the base Gradle software model, to add support for building JVM
libraries. A JVM library is a kind of library that is built for and runs on the JVM. It may be built from Java
source, or from various other languages. All JVM libraries provide an API of some kind.

8
Usage

To use the Java software plugins, include the following in your build script:

Page 596 of 717

Example 522. Using the Java software plugins

buil d. gradl e

pl ugi ns {
id'jvmconponent'
id'java-lang'

8§
Creating a library

A library is created by declaring a Jvnii br ar ySpec under the conponent s element of the nodel :

Example 523. Creating a java library

buil d. gradl e
nodel {
conponents {
mai n(Jvnli brarySpec)

Output of gradl e build

> gradle build

: conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
: creat eMai nJar

: mai nApi Jar

: mai nJar

cassenbl e

: check UP-TO DATE

tbuild

BU LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

This example creates a library named mai n, which will implicitly create a JavaSour ceSet named j ava.

The conventions of the legacy Java plugin are observed, where Java sources are expected to be found in sr
, While resources are expected to be found in sr c/ mai n/ r esour ces.

Page 597 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/JavaSourceSet.html

8
Source Sets

Source sets represent logical groupings of source files in a library. A library can define multiple source sets
and all sources will be compiled and included in the resulting binaries. When a library is added to a build, the
following source sets are added by default.

Table 101. Java plugin - default source sets

ource Set Type Directory
va JavaSour ceSet src/${library.name}/java
'sources JvnResour ceSet src/${library.name}/resources

It is possible to configure an existing source set through the sour ces container:

Example 524. Configuring a source set

buil d. gradl e
components {
mai n {
sources {
java {
}
}
}
}

It is also possible to create an additional source set, using the JavaSour ceSet type:

Example 525. Creating a new source set

bui | d. gradl e
conmponent s {
mai n {
sources {

mySour ceSet (JavaSour ceSet) {

Page 598 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/JavaSourceSet.html

8
Tasks

By default, when the plugins above are applied, no new tasks are added to the build. However, when
libraries are defined, conventional tasks are added which build and package each binary of the library.

For each binary of a library, a single lifecycle task is created which executes all tasks associated with
building the binary. To build all binaries, the standard bui | d lifecycle task can be used.

Table 102. Java plugin - lifecycle tasks
omponent Type Binary Type Lifecycle Task

viLi br ar ySpec JvnBi nar ySpec ${library.name}${binary.name}

For each source set added to a library, tasks are added to compile or process the source files for each
binary.

Table 103. Java plugin - source set tasks

ource Set Type Task name Type Descriptior

Compiles
the
avaSour ceSet compile${library.name}${binary.name}${library.name}${sourceset.name} Pl at f or rdavaConpi | e sources o
a giver
source set.

Copies the
resources
in the
given
vimResour ceSet process${library.name}${binary.name}${library.name}${sourceset.name} Pr ocessResour ces source se
to the
classes
output
directory.

For each binary in a library, a packaging task is added to create the jar for that binary.
Table 104. Java plugin - packaging tasks

inary Type Task name Depends on Type Description

all Pl atformlavaConpil e and Packages the compiled
vBi nar ySpec create${library.name}${binary.name} Pr ocessResour ces tasks Jar classes and processed
associated with the binary resources of the binary.

Page 599 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JvmBinarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JvmBinarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.jvm.tasks.Jar.html

8§
Finding out more about your project

Gradle provides a report that you can run from the command-line that shows details about the components

and binaries that your project produces. To use this report, just run gradl e conponents. Below is an

example of running this report for one of the sample projects:
Example 526. The components report

Output of gr adl e conmponent s
> gradl e conponents
: conmponent s

Source sets
Java source 'nmain:java'
srcDir: src/main/java
Java source ' main: mySourceSet'
srcDir: src/ main/ mySour ceSet
JVM r esour ces ' mai n: resources'
srcDir: src/main/resources

Bi nari es
Jar 'main:jar'
build using task: :mainJar
target platform java7
tool chain: JDK 7 (1.7)
classes dir: build/classes/nain/jar
resources dir: build/resources/ main/jar

APl Jar file: build/jars/main/jar/api/min.jar

Jar file: build/jars/ min/jar/main.jar

Note: currently not all plugins register their conponents,

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

SO sone conponents ma

Page 600 of 717

8§
Dependencies

A component in the Java software model can declare dependencies on other Java libraries. If component nai
depends on library uti |, this means that the APl of uti | is required when compiling the sources of mai n,
and the runtime of util is required when running or testing mai n. The terms 'API' and 'runtime' are
examples of usages of a Java library.

8
Library usage

The 'API' usage of a Java library consists of:
Artifact(s): the Jar file(s) containing the public classes of that library
Dependencies: the set of other libraries that are required to compile against that library

When library mai n is compiled with a dependency on uti | , the 'API' dependencies of 'util' are resolved
transitively, resulting in the complete set of libraries required to compile. For each of these libraries (including
‘util’), the 'API" artifacts will be included in the compile classpath.

Similarly, the 'runtime’' usage of a Java library consists of artifacts and dependencies. When a Java
component is tested or bundled into an application, the runtime usage of any runtime dependencies will be
resolved transitively into the set of libraries required at runtime. The runtime artifacts of these libraries will
then be included in the testing or runtime classpath.

8
Dependency types

Two types of Java library dependencies can be declared:

Dependencies on a library defined in a local Gradle project

Dependencies on a library published to a Maven repository

Dependencies onto libraries published to an Ivy repository are not yet supported.

§
Declaring dependencies

Dependencies may be declared for a specific JavaSour ceSet , for an entire JvirLi br ar ySpec or as part
of the JvnApi Spec of a component:

Page 601 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JvmApiSpec.html

Example 527. Declaring a dependency onto a library

buil d. gradl e
nodel {
conponents {
server (Jvnli brarySpec) {
sources {
java {
dependenci es {
library 'core

core(Jvnli brarySpec) {
dependenci es {
l'ibrary ' commons

commons(JvnLi brarySpec) {
api {
dependenci es {
library 'collections

col | ecti ons(Jvnii brarySpec)

Output of gr adl e server Jar

> gradl e serverJar

: conpi | eCol | ecti onsJar Col | ecti onsJava
. col |l ectionsApi Jar

: conpi | eCommonsJar ConmonsJava
: conmonsApi Jar

: conpi | eCor eJar CoreJava

: processCor eJar Cor eResour ces
: coreApi Jar

: conpi | eServer Jar Server Java

i createServerJar
:server Api Jar

:serverJar

BUI LD SUCCESSFUL in Os
10 actionabl e tasks: 10 executed

Page 602 of 717

Dependencies declared for a source set will only be used for compiling that particular source set.
Dependencies declared for a component will be used when compiling all source sets for the component.

Dependencies declared for the component api are used for compiling all source sets for the component,
and are also exported as part of the component’s APIl. See Enforcing API boundaries at compile time for
more details.

The previous example declares a dependency for the j ava source set of the ser ver library onto the cor e
library of the same project. However, it is possible to create a dependency on a library in a different project
as well:

Example 528. Declaring a dependency onto a project with an explicit library

buil d. gradl e
client(Jvnii brarySpec) {
sources {
java {
dependenci es {
project ':util' library 'main'
}
}
}
}

Output of gradl e cli entJar

> gradle clientJar
;util:conpil eMai nJar Mai nJava
sutil:mai nApi Jar

:conpil edientJardientJava
:clientApi Jar
:createdientJar

:clientJar

BU LD SUCCESSFUL in Os
5 actionabl e tasks: 5 executed

When the target project defines a single library, the | i br ar y selector can be omitted altogether:
Example 529. Declaring a dependency onto a project with an implicit library
bui I d. gradl e

dependenci es {
project ':util'

Dependencies onto libraries published to Maven repositories can be declared via nodul e identifiers
consisting of a gr oup nane, a nodul e nane plus an optional ver si on sel ect or:

Page 603 of 717

Example 530. Declaring a dependency onto a library published to a Maven repository

buil d. gradl e
verifier(Jvnli brarySpec) {
dependenci es {
modul e ' asni group 'org.ow2.asnm version '5.0.4
nmodul e ' asnmranal ysis' group 'org.ow2. asni

Output of gradl e verifierJar

> gradl e verifierJar

:conpi |l eVerifierJarVerifierJava
:createVerifierJar
sverifierApiJar

sverifierJdar

BU LD SUCCESSFUL in Os
3 actionabl e tasks: 3 executed

A shorthand notation for module identifiers can also be used:
Example 531. Declaring a module dependency using shorthand notation

buil d. gradl e

dependenci es {
nmodul e ' org. ow2. asmasm 5. 0. 4
nmodul e ' org. ow2. asm asm anal ysi s'

Module dependencies will be resolved against the configured repositories as usual:
Example 532. Configuring repositories for dependency resolution
bui | d. gradl e

repositories {
mavenCentral ()

The DependencySpecCont al ner class provides a complete reference of the dependencies DSL.
8
Defining a Library API

Every library has an API, which consists of artifacts and dependencies that are required to compile against
the library. The library may be explicitly declared for a component, or may be implied based on other
component metadata.

Page 604 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/DependencySpecContainer.html

By default, all publ i ¢ types of a library are considered to be part of its API. In many cases this is not ideal,;
a library will contain many public types that intended for internal use within that library. By explicitly declaring
an API for a Java library, Gradle can provide compile-time encapsulation of these internal-but-public types.
The types to include in a library API are declared at the package level. Packages containing API types are
considered to be exported.

By default, dependencies of a library are not considered to be part of its API. By explicitly declaring a
dependency as part of the library API, this dependency will then be made available to consumers when
compiling. Dependencies declared this way are considered to be exported, and are known as 'API
dependencies'.

Note: JDK 9 will introduce Jigsaw, the reference implementation of the Java Module System.
Jigsaw will provide both compile-time and run-time enforcement of API encapsulation.

Gradle anticipates the arrival of JDK 9 and the Java Module System with an approach to specifying
and enforcing API encapsulation at compile-time. This allows Gradle users to leverage the many
benefits of strong encapsulation, and prepare their software projects for migration to JDK 9.

8
Some terminology

An API is a set of classes, interfaces, methods that are exposed to a consumer.

An API specification is the specification of classes, interfaces or methods that belong to an API, together
with the set of dependencies that are part of the API. It can be found in various forms, like nodul e-i nfo.j a
in Jigsaw, or the api { ...} block that Gradle defines as part of those stories. Usually, we can simplify this

to a list of packages, called exported packages.

A runtime jar consists of API classes and non-API classes used at execution time. There can be multiple
runtime jars depending on combinations of the variant dimensions: target platform, hardware infrastructure,
target application server, ...

API classes are classes of a variant which match the API specification
Non-API classes are classes of a variant which do not match the API specification.

A stubbed API class is an API class for which its implementation and non public members have been
removed. It is meant to be used when a consumer is going to be compiled against an API.

An APl jar is a collection of API classes. There can be multiple API jars depending on the combinations of
variant dimensions.

A stubbed API jar is a collection of stubbed API classes. There can be multiple stubbed API jars depending
on the combinations of variant dimensions.

An ABI (application binary interface) corresponds to the public signature of an API, that is to say the set of
stubbed API classes that it exposes (and their API visible members).

Page 605 of 717

We avoid the use of the term implementation because it is too vague: both API classes and Non-API
classes can have an implementation. For example, an API class can be an interface, but also a concrete
class. Implementation is an overloaded term in the Java ecosystem, and often refers to a class implementing
an interface. This is not the case here: a concrete class can be member of an API, but to compile against an
API, you don'’t need the implementation of the class: all you need is the signatures.

§
Specifying API classes

Example 533. Specifying api packages

buil d. gradl e
nodel {
components {
mai n(Jvnli brarySpec) {
api {
exports 'org.gradle'
exports 'org.gradle.utils’

8
Specifying API dependencies

Example 534. Specifying api dependencies

buil d. gradl e
commons(Jvnli brarySpec) {
api {

dependenci es {
library 'collections'

§
Compile avoidance

When you define an API for your library, Gradle enforces the usage of that API at compile-time. This comes
with 3 direct consequences:

Trying to use a non-API class in a dependency will now result in a compilation error.

Changing the implementation of an API class will not result in recompilation of consumers if the ABI doesn’t
change (that is to say, all public methods have the same signature but not necessarily the same body).

Page 606 of 717

Changing the implementation of a non-API class will not result in recompilation of consumers. This means
that changes to non-API classes will not trigger recompilation of downstream dependencies, because the
ABI of the component doesn’t change.

Given a main component that exports or g. gr adl e, or g. gr adl e. uti | s and defines those classes:
Example 535. Main sources

src/ mai n/ j aval/ or g/ gr adl e/ Per son. j ava
package org. gradl e;

public class Person {
private final String nane;

public Person(String nane) {

this. name = name;

public String getName() {
return namg;

src/ mai n/javal/ org/ gradl e/internal /Personlnternal.java
package org.gradle.internal;

i mport org.gradl e. Person;
public class Personlnternal extends Person {

public Personlnternal (String nane) ({
super (name) ;

src/ main/javal/org/gradle/utils/StringUtils.java
package org.gradle.utils;

public abstract class StringUils {

Compiling a component client that declares a dependency onto main will succeed:

Page 607 of 717

Example 536. Client component

buil d. gradl e
nodel {
conponents {
client(Jvnii brarySpec) {
sources {
java {
dependenci es {
[ibrary 'main

src/client/javal/org/gradle/dient.java
package org. gradl e;

public class dient {
private Person person;

public void setPerson(Person p) { this.person = p; }
public Person getPerson() { return person; }

Outputof gradl e :clientJar

> gradle :clientJar

: conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
:mai nApi Jar
.conpiledientJardientJava
:clientApi Jar
:createdientJar

:clientJar

BU LD SUCCESSFUL in Os
6 actionabl e tasks: 6 executed

But trying to compile a component brokenclient that declares a dependency onto main but uses an non-API
class of main will result in a compile-time error:

Page 608 of 717

Example 537. Broken client component

src/ brokenclient/javal/org/gradle/Client.java
package org. gradl e;

i nport org.gradle.internal.Personlnternal;

public class dient {
private Personlnternal person;

public void setPerson(Personlinternal p) { this.person = p; }
public Personlnternal getPerson() { return person; }

Output of gr adl e : br okencl i ent Jar

> gradl e : brokenclientJar

: conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces

: mai nApi Jar

: conpi | eBr okencl i ent Jar Br okencl i ent Java FAI LED
4 actionabl e tasks: 4 executed

On the other hand, if Person.java in client is updated and its APl hasn’'t changed, client will not be
recompiled.

Example 538. Making non-APl implementation-only change

src/ mai n/ j aval/ or g/ gr adl e/ Per son. j ava
package org. gradl e;

public class Person {
private final String nane;

public Person(String nane) {

this. name = name.t oUpper Case();

public String getName() {
return name;

This is in particular important for incremental builds of large projects, where we can avoid the compilation of
dependencies in chain, and then dramatically reduce build duration:

Page 609 of 717

Example 539. Recompiling the client

Outputof gradl e :clientJar

> gradle :clientJar

: conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces UP- TO- DATE
: mai nApi Jar

:conpil eCientJardientJava UP- TO DATE
:clientApi Jar UP- TO DATE
:createdientJar UP-TO DATE

:clientJar UP-TO DATE

BUI LD SUCCESSFUL in Os
6 actionable tasks: 2 executed, 4 up-to-date

Page 610 of 717

8§
Platform aware dependency management

8
Specifying the target platform

The software model extracts the target platform as a core concept. In the Java world, this means that a
library can be built, or resolved, against a specific version of Java. For example, if you compile a library for
Java 5, we know that such a library can be consumed by a library built for Java 6, but the opposite is not
true. Gradle lets you define which platforms a library targets, and will take care of:

generating a binary for each target platform (eg, a Java 5 jar as well as a Java 6 jar)
resolving dependencies against a matching platform

The t ar get Pl at f or mDSL defines which platforms a library should be built against:
Example 540. Declaring target platforms

core/ build.gradle
nodel {
components {
mai n(Jvnli brarySpec) {
targetPlatform'javab'
targetPlatform'java6'

Outputof gradl e : core: build

> gradle :core:build

: core: conpi | eMai nJavab5Jar Mai nJava

: core: processhMi nJavabJar Mai nResour ces
. core: createMai nJavabJar

: core: mai nJavabApi Jar

: core: mai nJavabJar

. core: conpi | eMai nJava6Jar Mai nJava

: core: conpi | eMai nJava6Jar Mai nJava6Jar Java
. core:; processMii nJava6Jar Mai nResour ces
:core: createMai nJava6Jar

: core: mai nJava6Api Jar
:core: mai nJava6Jar

:core: assenbl e

:core: check UP-TO DATE

:core:build

BUI LD SUCCESSFUL in Os
9 actionabl e tasks: 9 executed

Page 611 of 717

When building the application, Gradle generates two binaries: j ava5Mai nJar and j ava6Mai nJar
corresponding to the target versions of Java. These artifacts will participate in dependency resolution as
described here.

§
Binary specific source sets

For each Jvnii brarySpec it is possible to define additional source sets for each binary. A common use
case for this is having specific dependencies for each variant and source sets that conform to those
dependencies. The example below configures a j ava6 source set on the mai n. j ava6Jar binary:

Example 541. Declaring binary specific sources

core/ buil d.gradl e

mai n {
bi nari es.java6Jar {
sources {
j ava(JavaSourceSet) {
source.srcDir 'src/main/java6
}
}
}
}

Output of gradl e cl ean : core: mai nJava6Jar

> gradl e clean :core: mai nJava6Jar

:core: cl ean UP- TO DATE

:server:cl ean UP- TO DATE

: core: conpi | eMai nJava6Jar Mai nJava

:core: conpi | eMai nJava6Jar Mai nJava6Jar Java
: core: processMai nJava6Jar Mai nResour ces
:core: createMai nJava6Jar

: core: mai nJava6Api Jar

: core: mai nJava6Jar

BUI LD SUCCESSFUL in Os
7 actionable tasks: 5 executed, 2 up-to-date

8
Dependency resolution

When a library targets multiple versions of Java and depends on another library, Gradle will make its best
effort to resolve the dependency to the most appropriate version of the dependency library. In practice, this
means that Gradle chooses the highest compatible version:

for a binary B built for Java n

for a dependency binary D built for Java m

Page 612 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JvmLibrarySpec.html

Dis compatible with B if m<=n

for multiple compatible binaries D(j ava 5), D(java 6), ..D(java m, choose the compatible D binary
with the highest Java version

Example 542. Declaring target platforms

server/buil d. gradl e
nodel {
conmponents {
mai n(Jvnli brarySpec) {
targetPlatform'javab
targetPlatform'java6

sources {
java {
dependenci es {
project ':core' library 'main
}
}
}

Output of gradl e cl ean :server:build

> gradl e clean :server:build
:core:clean UP- TO DATE

:server:cl ean UP-TO DATE

: core: conpi | eMai nJava5Jar Mai nJava

: core: processhMi nJava5Jar Mai nResour ces
: core: mai nJavabApi Jar

. server: conpi | eMai nJavab5Jar Mai nJava
:server:creat eMai nJavabJar

: server: mai nJava5Api Jar
:server: mai nJavabJar

. core: conpi | eMai nJava6Jar Mai nJava

: core: conpi | eMai nJava6Jar Mai nJava6Jar Java
. core: processMai nJava6Jar Mai nResour ces
: core: mai nJava6Api Jar

. server: conpi | eMai nJava6Jar Mai nJava
:server:createMai nJava6Jar
:server: mai nJava6Api Jar
:server: mai nJava6Jar

. server: assenbl e

:server: check UP-TO DATE

:server:build

BUI LD SUCCESSFUL in Os
15 actionabl e tasks: 13 executed, 2 up-to-date

Page 613 of 717

In the example above, Gradle automatically chooses the Java 6 variant of the dependency for the Java 6
variant of the ser ver component, and chooses the Java 5 version of the dependency for the Java 5 variant
of the ser ver component.

8

Custom variant resolution

The Java plugin, in addition to the target platform resolution, supports resolution of custom variants. Custom
variants can be defined on custom binary types, as long as they extend Jar Bi nar ySpec. Users interested
in testing this incubating feature can check out the documentation of the VVar i ant annotation.

Page 614 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/JarBinarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/Variant.html

8§
Testing Java libraries

8§
Standalone JUnit test suites

The Java software model supports defining standalone JUnit test suites as components of the model.
Standalone test suite are components that are self contained, in the sense that there is no component under
test: everything being tested must belong to the test suite sources.

A test suite is declared by creating a component of type JUni t Test Sui t eSpec, which is available when
you apply the j uni t - t est - sui t e plugin:

Example 543. Using the JUnit plugin

buil d. gradl e

pl ugi ns {
id'jvmconponent'
id'java-lang'
id 'junit-test-suite'

}
nodel {
testSuites {
test (JUnit Test Sui t eSpec) {
jUnitVersion '4.12
}
}
}

In the example above, t est is the name of our test suite. By convention, Gradle will create two source sets
for the test suite, based on the name of the component: one for Java sources, and the other for resources: sr
and src/test/resources. If the component was named i nt egTest , then sources and resources would
have been found respectively in src/ i ntegTest/javaandsrc/integTest/resources.

Once the component is created, the test suite can be executed running the <<t est suite name>>Bi nary

task:

Page 615 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/jvm/test/JUnitTestSuiteSpec.html

Example 544. Executing the test suite

src/test/javal org/ gradl e/ MyTest . java
package org. gradl e;

import org.junit. Test;
inmport static org.junit. Assert.*;

public class MyTest ({

@rest
public void nyTest Met hod() {

assert Equal s(4, "test".length());

Output of gr adl e t est Bi naryTest

> gradl e testBinaryTest

: conpi | eTest Bi naryTest Java

. processTest Bi nar yTest Resour ces
:test Bi naryTest

BU LD SUCCESSFUL in Os
3 actionabl e tasks: 3 executed

It is possible to configure source sets in a similar way as libraries.
A test suite being a component can also declare dependencies onto other components.

A test suite can also contain resources, in which case it is possible to configure the resource processing
task:

Example 545. Executing the test suite

buil d. gradl e
nodel {
t asks. processTest Bi nar yTest Resour ces {

filter { String line ->
line.replaceAll ("<!-- (.+4?) -->", "$1')

8
Testing JVM libraries with JUnit

It is likely that you will want to test another JVM component. The Java software model supports it exactly like
standalone test suites, by just declaring an additional component under test:

Page 616 of 717

Example 546. Declaring a component under test

buil d. gradl e
nodel {
conponents {
mai n(Jvnli brarySpec)
}

testSuites {
test (JUnit Test Sui t eSpec) {
jUnitVersion '4.12'
testing $.conponents. main

Output of gr adl e t est Mai nJar Bi nar yTest
> gradl e testMi nJarBi naryTest

: conpi | eMai nJar Mai nJava

. processMai nJar Mai nResour ces

: conpi | eTest Mai nJar Bi nar yTest Java

:t est Mai nJar Bi nar yTest

BU LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

Note that the syntax to choose the component under test is a reference ($.). You can select any JvnConpor
as the component under test. It's also worth noting that when you declare a component under test, a test
suite is created for each binary of the component under test (for example, if the component under test has a
Java 7 and Java 8 version, 2 different test suite binaries would be automatically created).

8§
Declaring Java toolchains

You can declare the list of local JVM installations using the j aval nst al | ati ons model block. Gradle will
use this information to locate your JVMs and probe their versions. Please note that this information is not yet
used by Gradle to select the appropriate JDK or JRE when compiling your Java sources, or when executing
Java applications. A local Java installation can be declared using the Local Java type, independently of the
fact they are a JDK or a JRE:

Page 617 of 717

Example 547. Declaring local Java installations

buil d. gradl e
nodel {
javal nstallations {
openJdk6(Local Java) ({
path '/usr/lib/jvmjdkl. 6.0-and64
}
oracl eJre7(Local Java) {
path '"/usr/lib/jvmjrel. 7.0
}
i bmidk8(Local Java) {
path '/usr/lib/jvmjdkl.8.0

Page 618 of 717

Building Play applications

Note: Support for building Play applications is currently incubating. Please be aware that the DSL,
APIs and other configuration may change in later Gradle versions.

Play is a modern web application framework. The Play plugin adds support for building, testing and running
Play applications with Gradle.

The Play plugin makes use of the Gradle software model.
§

Usage

To use the Play plugin, include the following in your build script to apply the pl ay plugin and add the
Lightbend repositories:

Example 548. Using the Play plugin

bui | d. gradl e
pl ugi ns {
id'play
}
repositories {
jcenter()
maven {
name "l i ght bend-maven-rel ease"
url "https://repo.lightbend. conflightbend/ maven-rel eases”
}
ivy {
nane "lightbend-ivy-rel ease"
url "https://repo.!lightbend. conllightbend/ivy-rel eases"
| ayout "ivy"
}

Note that defining the Lightbend repositories is necessary. In future versions of Gradle, this will be replaced
with a more convenient syntax.

Page 619 of 717

https://www.playframework.com/

8
Limitations

The Play plugin currently has a few limitations.
Gradle does not yet support aggregate reverse routes introduced in Play 2.4.x.

A given project may only define a single Play application. This means that a single project cannot build more
than one Play application. However, a multi-project build can have many projects that each define their own
Play application.

Play applications can only target a single “platform” (combination of Play, Scala and Java version) at a time.
This means that it is currently not possible to define multiple variants of a Play application that, for example,
produce jars for both Scala 2.10 and 2.11. This limitation may be lifted in future Gradle versions.

Support for generating IDE configurations for Play applications is limited to IDEA.

8
Software Model

The Play plugin uses a software model to describe a Play application and how to build it. The Play software
model extends the base Gradle software model to add support for building Play applications. A Play
application is represented by a Pl ayAppl i cat i onSpec component type. The plugin automatically creates
a single Pl ayAppl i cat i onBi nar ySpec instance when it is applied. Additional Play components cannot
be added to a project.

Figure 19. Play plugin - software model

PlayApplicationSpec

Target Platform I I 3 I Scala Source Set
binaries
sources
T ‘ - } Java Source 5et
[PlayApplicationBinarySpec W A I Fesources Source 5et
Compiled Assets
Compiled Source L _
Target Platform Javascript Source 5et

Page 620 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PlayApplicationBinarySpec.html

8
The Play application component

A Play application component describes the application to be built and consists of several configuration
elements. One type of element that describes the application are the source sets that define where the
application controller, route, template and model class source files should be found. These source sets are
logical groupings of files of a particular type and a default source set for each type is created when the pl ay
plugin is applied.

Table 105. Default Play source sets

ource Set Type Directory Filters

va JavaSour ceSet app **[* java

sala Scal aLanguageSour ceSet app **[* scala

utes Rout esSour ceSet conf routes, *.routes
JdrlTemplates Twi r| Sour ceSet app **[* scala.*
vaScript JavaScri pt Sour ceSet app/assets *[* js

These source sets can be configured or additional source sets can be added to the Play component. See
Configuring Play for further information.

Another element of configuring a Play application is the platform. To build a Play application, Gradle needs
to understand which versions of Play, Scala and Java to use. The Play component specifies this requirement
as a Pl ayPl at f or m If these values are not configured, a default version of Play, Scala and Java will be
used. See Targeting a certain version of Play for information on configuring the Play platform.

Note that only a single platform can be specified for a given Play component. This means that only a single
version of Play, Scala and Java can be used to build a Play component. In other words, a Play component
can only produce one set of outputs, and those outputs will be built using the versions specified by the
platform configured on the component.

8
The Play application binary

A Play application component is compiled and packaged to produce a set of outputs which are represented
by a Pl ayAppl i cati onBi narySpec. The Play binary specifies the jar files produced by building the
component as well as providing elements by which additional content can be added to those jar files. It also
exposes the tasks involved in building the component and creating the binary.

See Configuring Play for examples of configuring the Play binary.

Page 621 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/scala/ScalaLanguageSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.routes.RoutesSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.javascript.JavaScriptSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PlayApplicationBinarySpec.html

8§
Project Layout

The Play plugin follows the typical Play application layout. You can configure source sets to include
additional directories or change the defaults.

app Appl i cation source code.
assets Assets that require conpilation.
javascripts JavaScript source code to be mnified.
controllers Application controller source code.
nodel s Appl i cation busi ness source code.
Vi ews Application U tenpl ates.
bui I d. gradl e Your project's build script.
conf Mai n application configuration file and routes files.
public Publ i c assets.
i mges Application inage files.
javascripts Typi cal ly JavaScri pt source code.
styl esheets Typically CSS source code.
t est Test source code.
§
Tasks

The Play plugin hooks into the normal Gradle lifecycle tasks such as assenbl e, check and bui | d, but it

also adds several additional tasks which form the lifecycle of a Play project:

Table 106. Play plugin - lifecycle tasks

ask name Depends on Type Description

. . o Performs a build of just the Play
| 'ayBi nary All compile tasks for source sets added to the Play application. Task

application.
I st creat ePl ayBi naryZi pDi st, creat ePl ayBi nar yTar Di st Task Assembles the Play distribution.
tage st agePl ayBi naryDi st Task Stages the Play distribution.

The plugin also provides tasks for running, testing and packaging your Play application:

Page 622 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html

Table 107. Play plugin - running and testing tasks

ask name Depends on Type Description

) . . L Runs the Play application for local development.
unPl ayBi nary pl ayBi nary to build Play application. Pl ayRun) i) i
See how this works with continuous build.

pl ayBi nary to build Play application and cogni It ePl aF¥Bi naryTests
es

ast Pl ayBi nary uns JUnit/TestNG tests for the Play application.

For the different types of sources in a Play application, the plugin adds the following compilation tasks:

Table 108. Play plugin - source set tasks

Source

ask name Type Description
Type yp p
) . Scala and . Compiles all Scala and Java sources
onpi | ePl ayBi naryScal a Pl at f or nScal aConpile o
Java defined by the Play application.

Compiles Twirl templates with the Twirl
compiler. Gradle supports all of the
. . . Twirl)) built-in Twirl template formats (HTML,
onpi | ePl ayBi naryPl ayTwi r | Tenpl at es Twi r| Conpi | e])
templates XML, TXT and JavaScript). Twirl
templates need to match the pattern *. sci

Play . . .
. .) Compiles routes files into Scala
onpi | ePl ayBi nar yPl ayRout es Route Rout esConpi | e
' sources.
files
. . . JavaScript)) Minifies JavaScript files with the Google
I ni fyPl ayBi naryJavaScri pt . JavaScriptMnify .
files Closure compiler.

8§
Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the
components and binaries that your project produces. To use this report, just run gr adl e conponents.

Below is an example of running this report for one of the sample projects:

Page 623 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.TwirlCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.JavaScriptMinify.html

Example 549. The components report

Output of gr adl e conponent s
> gradl e conponents
: conponent s

Source sets
Java source 'play:java'
srcDir: app
i ncludes: **/*.java
JavaScript source 'play:javaScript'
srcDir: app/assets
i ncludes: **/*.js
JVM resources 'play:resources
srcDir: conf
Rout es source 'play:routes
srcDir: conf
i ncludes: routes, *.routes
Scal a source 'play:scal a'
srcDir: app
i ncludes: **/* scala
Twirl tenplate source 'play:twrl Tenpl at es
srcDir: app
i ncludes: **/*.scala.*

Bi nari es

Play Application Jar 'play:binary'
build using task: :playBinary
target platform Play Platform (Play 2.3.10, Scala: 2.11, Java: Java SE !
tool chain: Default Play Tool chain
cl asses dir: build/playBinary/cl asses
resources dir: buil d/playBi nary/resources
JAR file: build/ playBinary/lib/basic.jar

Note: currently not all plugins register their conponents, so some conmponents na

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 624 of 717

8§
Running a Play application

The runPl ayBi nary task starts the Play application under development. During development it is
beneficial to execute this task as a continuous build. Continuous build is a generic feature that supports
automatically re-running a build when inputs change. The runPl ayBi nary task is “continuous build
aware” in that it behaves differently when run as part of a continuous build.

When not run as part of a continuous build, the runPl ayBi nary task will block the build. That is, the task
will not complete as long as the application is running. When running as part of a continuous build, the task
will start the application if not running and otherwise propagate any changes to the code of the application to
the running instance. This is useful for quickly iterating on your Play application with an
edit->rebuild->refresh cycle. Changes to your application will not take affect until the end of the overall build.

To enable continuous build, run Gradle with -t runPl ayBi nary or - - conti nuous runPl ayBi nary.

Users of Play used to such a workflow with Play’s default build system should note that compile errors are
handled differently. If a build failure occurs during a continuous build, the Play application will not be
reloaded. Instead, you will be presented with an exception message. The exception message will only
contain the overall cause of the build failure. More detailed information will only be available from the
console.

Page 625 of 717

8§
Configuring a Play application

8
Targeting a certain version of Play

By default, Gradle uses Play 2.3.10, Scala 2.11 and the version of Java used to start the build. A Play
application can select a different version by specifying a target
Pl ayApplicationSpec. platforn(java.l ang. Obj ect) on the Play application component.

Example 550. Selecting a version of the Play Framework

buil d. gradl e
nodel {
conponents {
play {

platformplay: '2.5. 18", scala: '2.11', java: '1.8'
i nj ect edRout esCGenerator = true

The following versions of Play and Scala are supported:

Table 109. Play supported versions

lay Scala Java

6.X 211 and 2.12 1.8

5.x 2.11 1.8

4.x 2.10and 2.11 1.8

3.xX 2.10and 2.11 1.6,1.7and 1.8
8

Adding dependencies

You can add compile, test and runtime dependencies to a Play application through Confi gurati on
created by the Play plugin.

If you are coming from SBT, the Play SBT plugin provides short names for common dependencies. For
instance, if your project has a dependency on ws, you will need to add a dependency to com t ypesaf e. pl i
where 2. 11 is your Scala version and 2. 3. 9 is your Play framework version.

Page 626 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.Configuration.html

Other dependencies that have short names, such as j acksons may actually be multiple dependencies. For
those dependencies, you will need to work out the dependency coordinates from a dependency report.

pl ay is used for compile time dependencies.

pl ayTest is used for test compile time dependencies.

pl ayRun is used for run time dependencies.

Example 551. Adding dependencies to a Play application
buil d. gradl e

dependenci es {
pl ay "commons-| ang: cormons-| ang: 2. 6"

}

Note: Play 2.6 has a more modular architecture and, because of that, you may need to add some
dependencies manually. For example, Guice support was moved to a separated module.
Considering the following definition for a Play 2.6 project:
Example 552. A Play 2.6 project
Note: bui | d. gradl e
nodel {

components {

play {
platformplay: '2.6.7, scala: '2.12', java: '1.8
i nj ect edRout esCGenerator = true
}

}
}
You can add Guice dependency like:
Example 553. Adding Guice dependency in Play 2.6 project
Note: bui | d. gradl e
dependenci es {

play "comtypesafe.play:play-guice 2.12:2.6.7"
}
Of course, pay attention to keep Play version and Scala version for the dependency consistent with
the platform versions.

§

Configuring the default source sets

You can further configure the default source sets to do things like add new directories, add filters, etc.

Page 627 of 717

https://playframework.com/documentation/2.6.x/Migration26#Guice-DI-support-moved-to-separate-module

Example 554. Configuring extra source sets to a Play application

buil d. gradl e
nodel {
conponents {
play {
sources {
java {
source.srcDir "additional/java"
}
javaScript {
source {
srcDir "additional/javascript"
exclude "**/old *.js"
}
}
}
}
}
}
§

Adding extra source sets

If your Play application has additional sources that exist in non-standard directories, you can add extra
source sets that Gradle will automatically add to the appropriate compile tasks.

Example 555. Adding extra source sets to a Play application

bui I d. gradl e
nodel {
components {
play {
sources {
extraJava(JavaSour ceSet) {
source.srcDir "extral/java"
}
extraTwi rl (Twi rl SourceSet) {
source.srcDir "extra/twirl"
}
ext raRout es(Rout esSourceSet) {
source.srcDir "extral/routes"”
}
}
}
}
}

Page 628 of 717

8
Configuring compiler options

If your Play application requires additional Scala compiler flags, you can add these arguments directly to the
Scala compiler task.

Example 556. Configuring Scala compiler options

buil d. gradl e
nodel {
component s {
play {

bi naries.all {
tasks. wi t hType(Pl at f or nScal aConpi |l) {
scal aConpi | eOpti ons. addi ti onal Paraneters = ["-feature", "-lal

8
Configuring routes style

Note: The injected router is only supported in Play Framework 2.4 or better.

If your Play application’s router uses dependency injection to access your controllers, you'll need to
configure your application to not use the default static router. Under the covers, the Play plugin is using the |
instead of the default St at i cRout esGener at or to generate the router classes.

Example 557. Configuring routes style

buil d. gradl e
nodel {
components {
play {
i nj ect edRout esCGenerator = true
}
}
}
8§

Configuring Twirl templates

A custom Twirl template format can be configured independently for each Twirl source set. See the
Twi r| Sour ceSet for an example.

Page 629 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.twirl.TwirlSourceSet.html

8
Injecting a custom asset pipeline

Gradle Play support comes with a simplistic asset processing pipeline that minifies JavaScript assets.
However, many organizations have their own custom pipeline for processing assets. You can easily hook the
results of your pipeline into the Play binary by utilizing the Publ i cAsset s property on the binary.

Example 558. Configuring a custom asset pipeline

buil d. gradl e
nodel {
conponents {
play {

binaries.all { binary ->
t asks. creat e("addCopyri ght ToPl ay${ bi nary. nane. capital i ze()}Asset:
source "raw assets”
copyrightFile = project.file(' copyright.txt')
destinationDir = project.file("${buildDir}/play${binary. nane.

bi nary. assets. addAsset Dir destinationDir
bi nary. assets. bui | t By copyri ght Task

cl ass AddCopyri ghts extends SourceTask {
@nputFile
File copyrightFile

@out put Di rectory
File destinationDir

@askActi on
voi d generat eAssets() {
String copyright = copyrightFile.text
get Source().files.each { File file ->
File outputFile = new Fil e(destinationDir, file.nane)
outputFile.text = "${copyright}\n${file.text}"

Page 630 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PublicAssets.html

8§
Multi-project Play applications

Play applications can be built in multi-project builds as well. Simply apply the pl ay plugin in the appropriate
subprojects and create any project dependencies on the pl ay configuration.

Example 559. Configuring dependencies on Play subprojects

bui | d. gradl e

dependenci es {
play project(":adnmn")
pl ay project(":user")
play project(":util")

See the pl ay/ nul ti proj ect sample provided in the Gradle distribution for a working example.

§
Packaging a Play application for distribution

Gradle provides the capability to package your Play application so that it can easily be distributed and run in
a target environment. The distribution package (zip file) contains the Play binary jars, all dependencies, and
generated scripts that set up the classpath and run the application in a Play-specific Netty container.

The distribution can be created by running the di st lifecycle task and places the distribution in the $bui | dD
directory. Alternatively, one can validate the contents by running the st age lifecycle task which copies the
files to the $bui | dDi r / st age directory using the layout of the distribution package.

Page 631 of 717

http://netty.io

Table 110. Play distribution tasks

ask name Depends on Type Description

Generates scripts to run
reatePl ayBi naryStart Scripts - CreateStartScriptsthe Play application
distribution.

Copies all jar files,

. . . . - . dependencies and
tagePl ayBi naryDi st pl ayBi nary, creat ePl ayBi nar yStCopyscri pts . .)
scripts into a staging
directory.
Bundles the Play
. N . application as a
reat ePl ayBi naryZi pDi st Zip o
standalone distribution
packaged as a zip.
Bundles the Play
. " application as a
reat ePl ayBi naryTar Di st Tar o
standalone distribution
packaged as a tar.
)) Lifecycle task for staging
tage st agePl ayBi naryDi st Task -
a Play distribution.
Lifecycle task for
| st creat ePl ayBi naryZi pDi st, creatTaskiyBi naryTar Di st creating a Play
distribution.
8

Adding additional files to your Play application distribution

You can add additional files to the distribution package using the Di st ri buti on API.

Page 632 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/distribution/Distribution.html

Example 560. Add extra files to a Play application distribution

buil d. gradl e
nodel {
di stributions {
pl ayBi nary {
contents {
from(" READMVE. nd")
from"scripts") {
into "bin"
}
}
}
}
}
8§

Building a Play application with an IDE

If you want to generate IDE metadata configuration for your Play project, you need to apply the appropriate
IDE plugin. Gradle supports generating IDE metadata for IDEA only for Play projects at this time.

To generate IDEA’s metadata, apply the i dea plugin along with the pl ay plugin.

Example 561. Applying both the Play and IDEA plugins

buil d. gradl e
pl ugi ns {
id ' play'
id'idea'
}

Source code generated by routes and Twirl templates cannot be generated by IDEA directly, so changes
made to those files will not affect compilation until the next Gradle build. You can run the Play application
with Gradle in continuous build to automatically rebuild and reload the application whenever something
changes.

8

Resources

For additional information about developing Play applications:
Play types in the Gradle DSL Guide:

Pl ayAppl i cat i onBi nar ySpec

Page 633 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PlayApplicationBinarySpec.html

Pl ayAppl i cati onSpec

Pl ayPl at f orm

Jvn(Cl asses

Publ i cAsset s

Pl ayDi stri buti onCont ai ner
JavaScri pt M nify

Pl ayRun

Rout esConpi | e

Twi r| Conpi |l e

Play Framework Documentation.

Page 634 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.JvmClasses.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.PublicAssets.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.distribution.PlayDistributionContainer.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.JavaScriptMinify.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.play.tasks.TwirlCompile.html
https://www.playframework.com/documentation

Building native software

Note: Support for building native software is currently incubating. Please be aware that the DSL,
APIs and other configuration may change in later Gradle versions.

The native software plugins add support for building native software components, such as executables or
shared libraries, from code written in C++, C and other languages. While many excellent build tools exist for
this space of software development, Gradle offers developers its trademark power and flexibility together
with dependency management practices more traditionally found in the JVM development space.

The native software plugins make use of the Gradle software model.

8§
Features

The native software plugins provide:
Support for building native libraries and applications on Windows, Linux, macOS and other platforms.
Support for several source languages.

Support for building different variants of the same software, for different architectures, operating systems, or
for any purpose.

Incremental parallel compilation, precompiled headers.
Dependency management between native software components.
Unit test execution.
Generate Visual studio solution and project files.
Deep integration with various tool chain, including discovery of installed tool chains.
8§
Supported languages
The following source languages are currently supported:

Cc

Page 635 of 717

C++
Objective-C
Objective-C++

Assembly

Windows resources

8

Tool chain support

Gradle offers the ability to execute the same build using different tool chains. When you build a native binary,

Gradle will attempt to locate a tool chain installed on your machine that can build the binary. You can fine
tune exactly how this works, see the section called “Tool chains” for details.

The following tool chains are supported:

Operating System

Linux

Linux

macOS

Windows

Windows

Windows

Tool Chain

GCC

Clang

XCode

Visual C++

GCC with Cygwin 32

GCC with MinGW

Notes

Uses the Clang tool chain bundled with
XCode.

Windows XP and later, Visual C++
2010/2012/2013/2015/2017.

Windows XP and later.

Windows XP and later. Mingw-w64 is
currently not supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested

continuously:
Operating System

macOS

macOS

Windows

Tool Chain

GCC from Macports

Clang from Macports

GCC with Cygwin 64

Notes

Windows XP and later.

Page 636 of 717

http://gcc.gnu.org/
http://clang.llvm.org
http://www.microsoft.com/visualstudio/en-us
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com

UNIX-like GCC

UNIX-like Clang

8
Tool chain installation

Note: Note that if you are using GCC then you currently need to install support for C++, even if you
are not building from C++ source. This restriction will be removed in a future Gradle version.

To build native software, you will need to have a compatible tool chain installed:

8§
Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover the Visual
Studio installations and select the latest version. There is no need to mess around with environment
variables or batch scripts. This works fine from a Cygwin shell or the Windows command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

8
macOS

To build on macOS, you should install XCode. The native plugins will discover the XCode installation using
the system PATH.

The native plugins also work with GCC and Clang bundled with Macports. To use one of the Macports tool
chains, you will need to make the tool chain the default using the port sel ect command and add
Macports to the system PATH.

8§
Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover GCC or
Clang using the system PATH.

8
Native software model

The native software model builds on the base Gradle software model.

To build native software using Gradle, your project should define one or more native components. Each
component represents either an executable or a library that Gradle should build. A project can define any
number of components. Gradle does not define any components by default.

Page 637 of 717

http://gcc.gnu.org/
http://clang.llvm.org

For each component, Gradle defines a source set for each language that the component can be built from.
A source set is essentially just a set of source directories containing source files. For example, when you
apply the ¢ plugin and define a library called hel | owor | d, Gradle will define, by default, a source set
containing the C source files in the sr c/ hel | owor | d/ ¢ directory. It will use these source files to build the h
library. This is described in more detail below.

For each component, Gradle defines one or more binaries as output. To build a binary, Gradle will take the
source files defined for the component, compile them as appropriate for the source language, and link the
result into a binary file. For an executable component, Gradle can produce executable binary files. For a
library component, Gradle can produce both static and shared library binary files. For example, when you
define a library called hel | owor | d and build on Linux, Gradle will, by default, produce | i bhel | owor | d. sc
and | i bhel | owor | d. a binaries.

In many cases, more than one binary can be produced for a component. These binaries may vary based on
the tool chain used to build, the compiler/linker flags supplied, the dependencies provided, or additional
source files provided. Each native binary produced for a component is referred to as a variant. Binary
variants are discussed in detail below.

8§
Parallel Compilation

Gradle uses the single build worker pool to concurrently compile and link native components, by default. No
special configuration is required to enable concurrent building.

By default, the worker pool size is determined by the number of available processors on the build machine
(as reported to the build JVM). To explicitly set the number of workers use the --nmax-workers
command-line option or org. gradl e. wor ker s. max system property. There is generally no need to
change this setting from its default.

The build worker pool is shared across all build tasks. This means that when using parallel project execution,
the maximum number of concurrent individual compilation operations does not increase. For example, if the
build machine has 4 processing cores and 10 projects are compiling in parallel, Gradle will only use 4 total
workers, not 40.

8
Building a library

To build either a static or shared native library, you define a library component in the conponents
container. The following sample defines a library called hel | o:

Page 638 of 717

Example 562. Defining a library component

buil d. gradl e
nodel {
conponents {
hel | o(Nati veLi brarySpec)

A library component is represented using Nat i velLi brarySpec. Each library component can produce at
least one shared library binary (Shar edLi braryBi nar ySpec) and at least one static library binary (
St ati cLi braryBi nar ySpec).

8§
Building an executable

To build a native executable, you define an executable component in the conponent s container. The
following sample defines an executable called nmai n:

Example 563. Defining executable components

buil d. gradl e
nodel {
conmponent s {
mai n(Nat i veExecut abl eSpec) {
sources {
c.lib library: "hello"

An executable component is represented using Nat i veExecut abl eSpec. Each executable component
can produce at least one executable binary (Nat i veExecut abl eBi nar ySpec).

For each component defined, Gradle adds a Funct i onal Sour ceSet with the same name. Each of these
functional source sets will contain a language-specific source set for each of the languages supported by the
project.

Page 639 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/language/base/FunctionalSourceSet.html

8§
Assembling or building dependents

Sometimes, you may need to assemble (compile and link) or build (compile, link and test) a component or
binary and its dependents (things that depend upon the component or binary). The native software model
provides tasks that enable this capability. First, the dependent components report gives insight about the
relationships between each component. Second, the build and assemble dependents tasks allow you to
assemble or build a component and its dependents in one step.

In the following example, the build file defines OpenSSL as a dependency of i bUti|l andlibUil as a
dependency of Li nuxApp and W ndows App. Test suites are treated similarly. Dependents can be thought
of as reverse dependencies.

Figure 20. Dependent Components Example

Gradle Component O penSSL [CUnit]

Prebuilt Library

Non-buildable component %
ﬁ’l

LinuxApp libUtilTest

Windows App]

Note: By following the dependencies backwards, you can see Li nuxApp and W ndowsApp are
dependents of | i bUti | . WhenlibUtil ischanged, Gradle will need to recompile or relink Li nuxAp|
and W ndows App.

When you assemble dependents of a component, the component and all of its dependents are compiled
and linked, including any test suite binaries. Gradle’s up-to-date checks are used to only compile or link if
something has changed. For instance, if you have changed source files in a way that do not affect the
headers of your project, Gradle will be able to skip compilation for dependent components and only need to
re-link with the new library. Tests are not run when assembling a component.

When you build dependents of a component, the component and all of its dependent binaries are compiled,

Page 640 of 717

linked and checked. Checking components means running any check task including executing any test
suites, so tests are run when building a component.

In the following sections, we will demonstrate the usage of the assenbl eDependent s*, bui | dDependent
and dependent Conponent s tasks with a sample build that contains a CUnit test suite. The build script for
the sample is the following:

Example 564. Sample build
buil d. gradl e

apply plugin: "c
apply plugin: 'cunit-test-suite'

nodel {
flavors {
passi ng
failing
}
platforns {
x86 {
architecture "x86"

}

conponents {
operat or s(Nati velLi brarySpec) {
target Pl atform " x86"

}

testSuites {
oper at or sTest (CUni t Test Sui t eSpec) {
testing $.conponents.operators

}
}
}
Note: The code for this example can be found at sanpl es/ nati ve-bi nari es/ cuni t in the *-all’
distribution of Gradle.
8

Dependent components report

Gradle provides a report that you can run from the command-line that shows a graph of components in your
project and components that depend upon them. The following is an example of running gr adl e dependen
on the sample project:

Page 641 of 717

Example 565. Dependent components report

Output of gr adl e dependent Conponent s
> gradl e dependent Conponent s
: dependent Conponent s

operators - Conponents that depend on native library 'operators'

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
+--- operators: passi ngShar edLi brary
\--- operators:passingStaticLibrary

Sone test suites were not shown, use --test-suites or --all to show them

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note: See Dependent Conponent sReport APl documentation for more details.

By default, non-buildable binaries and test suites are hidden from the report. The dependent Conponent s
task provides options that allow you to see all dependents by using the - - al | option:

Page 642 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.reporting.dependents.DependentComponentsReport.html

Example 566. Dependent components report

Output of gr adl e dependent Conponents --al
> gradl e dependent Conponents --al
: dependent Conponent s

operators - Conponents that depend on native |library 'operators

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
| \--- operatorsTest:failingCunitExe (t)
+--- operators: passi ngShar edLi brary
\--- operators:passingStaticLibrary
\--- operatorsTest: passi ngCuUnit Exe (t)

operatorsTest - Conponents that depend on Cunit test suite 'operatorsTest
+--- operatorsTest:failingCUnitExe (t)
\--- operatorsTest: passi ngCuUnit Exe (t)

(t) - Test suite binary

BUI LD SUCCESSFUL i n Os
1 actionable task: 1 executed

Here is the corresponding report for the oper at or s component, showing dependents of all its binaries:
Example 567. Report of components that depends on the operators component

Output of gr adl e dependent Conponents --conponent operators
> gradl e dependent Conponents --conponent operators
: dependent Conponent s

operators - Conponents that depend on native library 'operators

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
+--- operators: passi ngShar edLi brary
\--- operators:passingStaticLibrary

Sone test suites were not shown, use --test-suites or --all to show them

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 643 of 717

Here is the corresponding report for the oper at or s component, showing dependents of all its binaries,
including test suites:

Example 568. Report of components that depends on the operators component, including test suites

Output of gr adl e dependent Conponents --test-suites --conponent operators
> gradl e dependent Conponents --test-suites --conponent operators
: dependent Conponent s

operators - Conponents that depend on native |library 'operators'

+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
| \--- operatorsTest:failingCUnitExe (t)
+--- operators: passi ngShar edLi brary
\--- operators:passingStaticLibrary
\--- operatorsTest: passi ngCUnit Exe (t)

(t) - Test suite binary

BUI LD SUCCESSFUL i n Os
1 actionable task: 1 executed

§
Assembling dependents

For each Nat i veBi nar ySpec, Gradle will create a task named assenbl eDependent s ${ conponent . nai
that assembles (compile and link) the binary and all of its dependent binaries.

For each Nat | veConponent Spec, Gradle will create a task named assenbl eDependent s ${ conponent .
that assembles all the binaries of the component and all of their dependent binaries.

For example, to assemble the dependents of the "passing" flavor of the "static" library binary of the
"operators" component, you would run the assenbl eDependent sOper at or sPassi ngSt ati cLi brary
task:

Page 644 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeComponentSpec.html

Example 569. Assemble components that depends on the passing/static binary of the operators comg.

Output of gr adl e assenbl eDependent sOper at or sPassi ngSt ati cLi brary --nmax-workers=1
> gradl e assenbl eDependent sOper at or sPassi ngSt ati cLi brary --max-workers=1
: conpi | eOper at or sTest Passi ngCUni t ExeOper at or sC

: oper at or sTest CuUni t Launcher

: conpi | eOper at or sTest Passi ngCUni t ExeOper at or sTest C

: conpi | eOper at or sTest Passi ngCUni t ExeOper at or sTest Cuni t Launcher

:1i nkOper at or sTest Passi ngCUni t Exe

. oper at or sTest Passi ngCUni t Exe

. assenbl eDependent sQper at or sTest Passi ngCUni t Exe

: conpi | eOper at or sPassi ngSt ati cLi braryQperat orsC

: creat eQperat orsPassi ngStati cLi brary

:oper at or sPassi ngStati cLi brary

: assenbl eDependent sQper at or sPassi ngSt ati cLi brary

BUI LD SUCCESSFUL in Os
7 actionabl e tasks: 7 executed

In the output above, the targeted binary gets assembled as well as the test suite binary that depends on it.

You can also assemble all of the dependents of a component (i.e. of all its binaries/variants) using the
corresponding component task, e.g. assenbl eDependent sOper at or s. This is useful if you have many
combinations of build types, flavors and platforms and want to assemble all of them.

8
Building dependents

For each Nat i veBi nar ySpec, Gradle will create a task named bui | dDependent s ${ conponent . nane} !

that builds (compile, link and check) the binary and all of its dependent binaries.

For each Nat i veConponent Spec, Gradle will create a task named bui | dDependent s ${ conponent . nai
that builds all the binaries of the component and all of their dependent binaries.

For example, to build the dependents of the "passing" flavor of the "static" library binary of the "operators"
component, you would run the bui | dDependent sOper at or sPassi ngSt ati cLi brary task:

Page 645 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeComponentSpec.html

Example 570. Build components that depends on the passing/static binary of the operators componel

Output of gr adl e bui | dDependent sOper at or sPassi ngSt ati cLi brary --nmax-workers=1
> gradl e buil dDependent sOper at or sPassi ngStati cLi brary --nmax-workers=1
: conpi | eOper at or sTest Passi ngCUni t ExeOper at or sC

: oper at or sTest CuUni t Launcher

: conpi | eOper at or sTest Passi ngCUni t ExeOper at or sTest C

: conpi | eOper at or sTest Passi ngCUni t ExeOper at or sTest Cuni t Launcher

:1i nkOper at or sTest Passi ngCUni t Exe

. oper at or sTest Passi ngCUni t Exe

;instal | Operat or sTest Passi ngCUni t Exe

: runQper at or sTest Passi ngCUni t Exe

: checkQper at or sTest Passi ngCUni t Exe

: bui | dDependent sOper at or sTest Passi ngCUni t Exe

: conpi | eOper at or sPassi ngSt ati cLi braryQperat orsC

: creat eOper at or sPassi ngSt ati cLi brary

: operat orsPassi ngStaticLi brary

: bui | dDependent sOper at or sPassi ngSt ati cLi brary

BU LD SUCCESSFUL in Os
9 actionable tasks: 9 executed

In the output above, the targeted binary as well as the test suite binary that depends on it are built and the
test suite has run.

You can also build all of the dependents of a component (i.e. of all its binaries/variants) using the
corresponding component task, e.g. bui | dDependent sOper at or s.

8
Tasks

For each Nat i veBi nar ySpec that can be produced by a build, a single lifecycle task is constructed that
can be used to create that binary, together with a set of other tasks that do the actual work of compiling,
linking or assembling the binary.

Component Type Native Binary Type Lifecycle task Location of created binary

Nat i veExecut abl eSpec Nat i veExecut abl eBi nar ySpec ${conponent . nane} Execu${ proj ect. bui | dDi r} / exu

Nat i veLi br ar ySpec Shar edLi br ar yBi nar ySpec ${ conmponent . nane} Share${project.buildDir}/lil

Nat i veLi br ar ySpec St ati cLi braryBi narySpec ${ component . nane} Stati ${project.buildDir}/lil

Page 646 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

8§
Check tasks

For each Nat i veBi nar ySpec that can be produced by a build, a single check task is constructed that can
be used to assemble and check that binary.

Component Type Native Binary Type Check task

Nat i veExecut abl eSpec Nat i veExecut abl eBi nar ySpec check ${ conponent . nanme} Execut abl ¢
Nat i veLi br ar ySpec Shar edLi br ar yBi nar ySpec check ${ conponent . nane} Shar edLi br
Nat i veLi br arySpec St ati cLi braryBi narySpec check${conponent . nane} Stati cLi br

The built-in check task depends on all the check tasks for binaries in the project. Without either CUnit or
GoogleTest plugins, the binary check task only depends on the lifecycle task that assembles the binary, see
the section called “Tasks".

When the CUnit or GoogleTest plugins are applied, the task that executes the test suites for a component
are automatically wired to the appropriate check task.

You can also add custom check tasks as follows:

Page 647 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Example 571. Adding a custom check task

buil d. gradl e
apply plugin: "cpp"

apply plugin: TestingMdel BasePl ugi n
task myCust onCheck {

doLast {
println 'Executing ny custom check’

}
}
nodel {
conmponents {
hel | o(Nati veLi brarySpec) {
binaries.all {
checkedBy $.tasks. nyCust ontCheck
}
}
}
}

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ cust om check
in the *-all’ distribution of Gradle.

Now, running check or any of the check tasks for the hel | o binaries will run the custom check task:
Example 572. Running checks for a given binary

Output of gr adl e checkHel | oShar edLi brary
> gradl e checkHel | oShar edLi brary

: myCust onCheck

Executing ny custom check

: checkHel | oShar edLi brary

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

8
Working with shared libraries

For each executable binary produced, the cpp plugin provides an i nst al | ${ bi nary. nane} task, which
creates a development install of the executable, along with the shared libraries it requires. This allows you to
run the executable without needing to install the shared libraries in their final locations.

Page 648 of 717

8§
Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the
components and binaries that your project produces. To use this report, just run gradl e conmponents.
Below is an example of running this report for one of the sample projects:

Example 573. The components report

Output of gr adl e conponent s
> gradl e conponents
: conponent s

Source sets
C++ source 'hell o: cpp'
srcDir: src/hello/cpp

Bi nari es
Shared library 'hello:sharedLi brary'
buil d using task: :helloSharedLibrary
build type: build type 'debug'
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang (d ang)
shared library file: build/libs/hello/shared/l|ibhello.dylib
Static library 'hello:staticLibrary'
build using task: :helloStaticLibrary
build type: build type 'debug'
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang (C ang)
static library file: build/libs/hello/static/libhello.a

Nati ve executable 'nmain'

Source sets
C++ source 'main:cpp'
srcDir: src/main/cpp

Bi nari es

Page 649 of 717

Not e:

Execut abl e ' mai n: execut abl e’
buil d using task: :mai nExecutabl e
install using task: :install MainExecutable
build type: build type 'debug'

flavor: flavor

"defaul t'

target platform platform'current'

tool chain: Tool
executable file:

currently not all

chain 'clang" (d ang)
bui | d/ exe/ mai n/ mai n

pl ugi ns regi ster their conmponents,

SO sone conponents ma

Page 650 of 717

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

8§
Language support

Presently, Gradle supports building native software from any combination of source languages listed below.
A native binary project will contain one or more named Funct i onal Sour ceSet instances (eg 'main’, 'test’,
etc), each of which can contain LanguageSour ceSet s containing source files, one for each language.

Cc

C++

Objective-C
Objective-C++
Assembly

Windows resources

8
C++ sources

C++ language support is provided by means of the ' cpp' plugin.
Example 574. The 'cpp’ plugin

buil d. gradl e
apply plugin: 'cpp'

C++ sources to be included in a native binary are provided via a CppSour ceSet , which defines a set of C++

source files and optionally a set of exported header files (for a library). By default, for any named component
the CppSour ceSet contains . cpp source files in src/ ${ nane}/ cpp, and header files in sr c/ ${ nane}/ h

While the cpp plugin defines these default locations for each CppSour ceSet , it is possible to extend or
override these defaults to allow for a different project layout.

Page 651 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.cpp.CppSourceSet.html

Example 575. C++ source set

buil d. gradl e
sources {
cpp {
source {

srcDir "src/source"
i nclude "**/*. cpp"

For a library named 'main’, header files in sr ¢/ mai n/ header s are considered the "public" or "exported"”
headers. Header files that should not be exported should be placed inside the sr c/ mai n/ cpp directory
(though be aware that such header files should always be referenced in a manner relative to the file
including them).

8§
C sources

C language support is provided by means of the ' ¢' plugin.
Example 576. The 'c' plugin

bui | d. gradl e
apply pl ugin:

C

C sources to be included in a native binary are provided via a CSour ceSet , which defines a set of C source
files and optionally a set of exported header files (for a library). By default, for any named component the
CSour ceSet contains . ¢ source files in src/ ${ name}/ c, and header files in sr ¢/ ${ nane}/ headers.

While the ¢ plugin defines these default locations for each CSour ceSet , it is possible to extend or override
these defaults to allow for a different project layout.

Example 577. C source set

bui | d. gradl e
sources {
c {
source {

srcDir "src/source"
include "**/* c"

}
export edHeaders {

srcDir "src/include"

Page 652 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.c.CSourceSet.html

For a library named 'main’, header files in sr ¢/ mai n/ header s are considered the "public" or "exported"”
headers. Header files that should not be exported should be placed inside the src/ nai n/ ¢ directory
(though be aware that such header files should always be referenced in a manner relative to the file
including them).

8§
Assembler sources

Assembly language support is provided by means of the ' assenbl er' plugin.
Example 578. The 'assembler’ plugin

bui | d. gradl e
apply plugin: '"assenbler’

Assembler sources to be included in a native binary are provided via a Assenbl er Sour ceSet , which
defines a set of Assembler source files. By default, for any named component the Assenbl er Sour ceSet
contains . s source files under sr c/ ${ nane}/ asm

8
Objective-C sources

Objective-C language support is provided by means of the ' obj ecti ve-c' plugin.
Example 579. The 'objective-c' plugin

buil d. gradl e
apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided via a Obj ect i veCSour ceSet , which
defines a set of Objective-C source files. By default, for any named component the
Obj ecti veCSour ceSet contains . msource files under sr c/ ${ nane}/ obj ecti veC.

8§
Objective-C++ sources

Objective-C++ language support is provided by means of the ' obj ecti ve- cpp' plugin.
Example 580. The 'objective-cpp’ plugin

bui | d. gradl e
apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided via a Obj ect i veCppSour ceSet ,
which defines a set of Objective-C++ source files. By default, for any named component the
Obj ecti veCppSour ceSet contains . mnmsource files under sr ¢/ ${ nanme}/ obj ect i veCpp.

Page 653 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html

8§
Configuring the compiler, assembler and linker

Each binary to be produced is associated with a set of compiler and linker settings, which include
command-line arguments as well as macro definitions. These settings can be applied to all binaries, an
individual binary, or selectively to a group of binaries based on some criteria.

Example 581. Settings that apply to all binaries

buil d. gradl e
nodel {
bi naries {
all {

cppConpi | er. def i ne " NDEBUG'

i f (toolChain in Gec) {
cppConpil er.args "-@2", "-fno-access-control”
l'inker.args "-Xinker", "-S"

}
i f (tool Chain in Visual Cpp) {

cppConpi l er.args "/ zZi"
|'i nker.args "/ DEBUG'

Each binary is associated with a particular Nat i veTool Chai n, allowing settings to be targeted based on

this value.

It is easy to apply settings to all binaries of a particular type:

Page 654 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Example 582. Settings that apply to all shared libraries

buil d. gradl e
nodel {
bi naries {

wi t hType(Shar edLi br ar yBi nar ySpec) {
if (tool Chain in Visual Cpp) {
cCompiler.args "/zZ"
cConpi |l er. define "DLL_ EXPORT"

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular execut abl e
or | i brary component:

Example 583. Settings that apply to all binaries produced for the 'main' executable component

bui I d. gradl e
nodel {
components {
mai n(Nat i veExecut abl eSpec) {
target Pl atform "x86"
binaries.all {
if (tool Chain in Visual Cop) {
sources {
pl at f or MAsm(Assenbl er Sour ceSet) {
source.srcDir "src/main/asm.i 386_masni

}

}

assenbl er.args "/zZi "

} else {

sources {

pl at f or mMAsn{ Assenbl er Sour ceSet) {
source.srchDir "src/nmain/asm.i 386 _gcc"

}

}

assenbler.args "-g

The example above will apply the supplied configuration to all execut abl e binaries built.

Page 655 of 717

Similarly, settings can be specified to target binaries for a component that are of a particular type: eg all
shared libraries for the main library component.

Example 584. Settings that apply only to shared libraries produced for the 'main’ library component

buil d. gradl e
nodel {
components {
mai n(Nat i veLi brarySpec) {
bi nari es. wi t hType(Shar edLi br ar yBi narySpec) ({

cppConpi | er. defi ne "DLL_EXPORT"

8
Windows Resources

When using the Vi sual Cpp tool chain, Gradle is able to compile Window Resource (r ¢) files and link them
into a native binary. This functionality is provided by the ' wi ndows- r esour ces' plugin.

Example 585. The 'windows-resources’ plugin

bui I d. gradl e
apply plugin: 'w ndows-resources'

Windows resources to be included in a native binary are provided via a W ndowsResour ceSet , which
defines a set of Windows Resource source files. By default, for any named component the
W ndowsResour ceSet contains . r ¢ source files under src/ ${ nane}/ rc.

As with other source types, you can configure the location of the windows resources that should be included
in the binary.

Example 586. Configuring the location of Windows resource sources

bui | d-resource-only-dl|.gradle

sources {
rc {
source {
srcDirs "src/hello/rc"
}

export edHeaders {
srcDirs "src/ hell ol headers"

Page 656 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.rc.WindowsResourceSet.html

You are able to construct a resource-only library by providing Windows Resource sources with no other
language sources, and configure the linker as appropriate:

Example 587. Building a resource-only dll

bui |l d-resource-only-dl|.gradle
nodel {
components {
hel | oRes(Nati veLi brarySpec) {
binaries.all {
rcCompiler.args "/v"

linker.args "/noentry", "/machine: x86"
}
sources {
rc {
source {
srchDirs "src/hello/rc"
}
export edHeaders {
srcDirs "src/hell o/ headers"
}
}
}

The example above also demonstrates the mechanism of passing extra command-line arguments to the
resource compiler. The r cConpi | er extension is of type Pr epr ocessi ngTool .

8§
Library Dependencies

Dependencies for native components are binary libraries that export header files. The header files are used
during compilation, with the compiled binary dependency being used during linking and execution. Header
files should be organized into subdirectories to prevent clashes of commonly named headers. For instance,
if your myl i b project has a | oggi ng. h header, it will make it less likely the wrong header is used if you
include itas " nyl i b/ | oggi ng. h" instead of "| oggi ng. h".

§
Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the same project.
A common example is a native executable component that uses functions provided by a separate native
library component.

Page 657 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.PreprocessingTool.html

Such a library dependency can be added to a source set associated with the execut abl e component:

Example 588. Providing a library dependency to the source set

bui I d. gradl e
sources {
cpp {

lib library: "hello"

Alternatively, a library dependency can be provided directly to the Nat i veExecut abl eBi nar ySpec for the
execut abl e.

Example 589. Providing a library dependency to the binary

bui | d. gradl e
nodel {
components {
hel | o(Nati veLi brarySpec) {

sources {
c {
source {
srcDir "src/source"
i nclude "**/* c"
}

export edHeaders {
srcDir "src/include"

}
}
}
}
mai n(Nat i veExecut abl eSpec) {
sources {
cpp {
source {
srcDir "src/source"
i nclude "**/* cpp"
}
}
}
binaries.all {
lib library: "hello', linkage: 'static'
}
}

Page 658 of 717

8
Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Example 590. Declaring project dependencies

bui I d. gradl e
project(":1ib") {
apply plugin: "cpp"
nodel {
component s {
mai n(Nat i veLi br arySpec)

}
bi nari es {
wi t hType(Shar edLi brar yBi narySpec) {
if (tool Chain in Visual Cop) {
cppConpi | er. define "DLL_EXPORT"
}
}
}

project(":exe") {
apply plugin: "cpp"

nodel {
conmponents {
mai n(Nat i veExecut abl eSpec) {

sources {
cpp {
lib project: ":lib", library:
}
}

Page 659 of 717

8§
Precompiled Headers

Precompiled headers are a performance optimization that reduces the cost of compiling widely used headers
multiple times. This feature precompiles a header such that the compiled object file can be reused when
compiling each source file rather than recompiling the header each time. This support is available for C,
C++, Objective-C, and Objective-C++ builds.

To configure a precompiled header, first a header file needs to be defined that includes all of the headers
that should be precompiled. It must be specified as the first included header in every source file where the
precompiled header should be used. It is assumed that this header file, and any headers it contains, make
use of header guards so that they can be included in an idempotent manner. If header guards are not used
in a header file, it is possible the header could be compiled more than once and could potentially lead to a
broken build.

Example 591. Creating a precompiled header file

src/ hel | o/ header s/ pch. h
#i f ndef PCH H

#define PCH H

#i ncl ude <i ostreanp

#i nclude "hell o. h"
#endi f

Example 592. Including a precompiled header file in a source file

src/ hel | o/ cpp/ hel | 0. cpp
#i ncl ude "pch. h"

void LIB FUNC Greeter::hello () {
std::cout << "Hello world!" << std::endl;

Precompiled headers are specified on a source set. Only one precompiled header file can be specified on a
given source set and will be applied to all source files that declare it as the first include. If a source files does
not include this header file as the first header, the file will be compiled in the normal manner (without making
use of the precompiled header object file). The string provided should be the same as that which is used in
the "#include" directive in the source files.

Page 660 of 717

Example 593. Configuring a precompiled header

buil d. gradl e
nodel {
conponents {
hel I o(Nati veLi brarySpec) {
sources {

cpp {
pr eConpi | edHeader "pch. h"

A precompiled header must be included in the same way for all files that use it. Usually, this means the
header file should exist in the source set "headers" directory or in a directory included on the compiler
include path.

8§
Native Binary Variants

For each executable or library defined, Gradle is able to build a number of different native binary variants.
Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries, and binaries
produced with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on build type, platform, and flavor. For each of these
'variant dimensions', it is possible to specify a set of available values as well as target each component at
one, some or all of these. For example, a plugin may define a range of support platforms, but you may
choose to only target Windows-x86 for a particular component.

8
Build types

A bui I d type determines various non-functional aspects of a binary, such as whether debug information is
included, or what optimisation level the binary is compiled with. Typical build types are 'debug' and 'release’,
but a project is free to define any set of build types.

Example 594. Defining build types

buil d. gradl e
nodel {
bui | dTypes {
debug
rel ease
}
}

Page 661 of 717

If no build types are defined in a project, then a single, default build type called 'debug' is added.
For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example 595. Configuring debug binaries

buil d. gradl e
nodel {
bi naries {
all {
if (toolChain in Gcc && buil dType == buil dTypes. debug) {
cppConpi l er.args "-g"
}
if (tool Chain in Visual Copp && buil dType == buil dTypes. debug) {
cppConpil er.args '/ Zi
cppComnpi | er. defi ne ' DEBUG
|'i nker.args '/ DEBUG
}
}
}
}

Note: At this stage, it is completely up to the build script to configure the relevant compiler/linker
flags for each build type. Future versions of Gradle will automatically include the appropriate debug
flags for any 'debug' build type, and may be aware of various levels of optimisation as well.

8
Platform

An executable or library can be built to run on different operating systems and cpu architectures, with a
variant being produced for each platform. Gradle defines each OS/architecture combination as a
Nat i vePl at f or m and a project may define any number of platforms. If no platforms are defined in a

project, then a single, default platform 'current’ is added.

Note: Presently, a Pl at f or m consists of a defined operating system and architecture. As we
continue to develop the native binary support in Gradle, the concept of Platform will be extended to
include things like C-runtime version, Windows SDK, ABI, etc. Sophisticated builds may use the
extensibility of Gradle to apply additional attributes to each platform, which can then be queried to
specify particular includes, preprocessor macros or compiler arguments for a native binary.

Page 662 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.platform.NativePlatform.html

Example 596. Defining platforms

buil d. gradl e
nodel {
platforns {
x86 {

architecture "x86"

}
x64 {

architecture "x86_64"

}

i tani um {
architecture "ia-64"

For a given variant, Gradle will attempt to find a Nat i veTool Chai n that is able to build for the target

platform. Available tool chains are searched in the order defined. See the tool chains section below for more

details.

8
Flavor

Each component can have a set of named f | avor s, and a separate binary variant can be produced for

each flavor. While the bui | d type and t ar get pl at f or mvariant dimensions have a defined meaning in

Gradle, each project is free to define any number of flavors and apply meaning to them in any way.

An example of component flavors might differentiate between ‘demo’, 'paid’' and 'enterprise’ editions of the

component, where the same set of sources is used to produce binaries with different functions.

Example 597. Defining flavors

bui | d. gradl e
nodel {
flavors {
engli sh
french
}

components {

hel | o(Nati veLi brarySpec) {
binaries.all {

if (flavor == flavors.french) {
cppConpi | er. defi ne " FRENCH'

Page 663 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

In the example above, a library is defined with a 'english' and 'french' flavor. When compiling the 'french'’
variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default’ is used.

8
Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every
combination of bui |l dType and fl avor defined for the project. It is possible to override this on a
per-component basis, by specifying the set of t ar get Bui | dTypes and/or t ar get Fl avor s. By default,
Gradle will build for the default platform, see above, unless specified explicitly on a per-component basis by
specifying a set of t ar get Pl at f or ns.

Example 598. Targeting a component at particular platforms

bui I d. gradl e
nodel {
components {
hel | o(Nati veLi brarySpec) {
target Pl atform "x86"
target Pl atform "x64"

}
mai n(Nat i veExecut abl eSpec) {

target Pl atform "x86"
target Pl atform "x64"
sources {
cpp.lib library: "hello', linkage: 'static'

Here you can see that the TargetedNati veConponent.targetPlatforn(java.lang. String)
method is used to specify a platform that the Nat i veExecut abl eSpec named mai n should be built for.

A similar mechanism exists for selecting
Tar get edNat i veConponent . t arget Bui | dTypes(j ava. |l ang. String[]) and
Tar get edNat i veConponent . t arget Fl avors(j ava.l ang. String[]).

§
Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a Nat i veBi nar ySpec
model element is created for every possible combination of these. However, in many cases it is not possible
to build a particular variant, perhaps because no tool chain is available to build for a particular platform.

Page 664 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html

If a binary variant cannot be built for any reason, then the Nat i veBi nar ySpec associated with that variant
will not be bui | dabl e. It is possible to use this property to create a task to generate all possible variants on

a particular machine.

Example 599. Building all possible variants

buil d. gradl e
nodel {
tasks {

bui | dAl | Execut abl es(Task) {
dependsOn $.binaries.findAll { it.buildable }

8
Tool chains

A single build may utilize different tool chains to build variants for different platforms. To this end, the core
‘'native-binary' plugins will attempt to locate and make available supported tool chains. However, the set of
tool chains for a project may also be explicitly defined, allowing additional cross-compilers to be configured
as well as allowing the install directories to be specified.

§
Defining tool chains

The supported tool chain types are:
Ccce

d ang

Vi sual Cpp

Page 665 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.toolchain.Clang.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Example 600. Defining tool chains

buil d. gradl e
nodel {
t ool Chai ns {

vi sual Cpp(Vi sual Cpp) {

}
gec(Gee) {

}
cl ang(d ang)

Each tool chain implementation allows for a certain degree of configuration (see the APl documentation for
more details).

§
Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given variant,
Gradle will attempt to locate a Nat i veTool Chai n that is able to build for the target platform. Available tool
chains are searched in the order defined.

Note: When a platform does not define an architecture or operating system, the default target of the
tool chain is assumed. So if a platform does not define a value for oper ati ngSyst em Gradle will
find the first available tool chain that can build for the specified ar chi t ect ur e.

The core Gradle tool chains are able to target the following architectures out of the box. In each case, the
tool chain will target the current operating system. See the next section for information on cross-compiling for
other operating systems.

Tool Chain Architectures
GCC x86, x86_64
Clang x86, x86_64
Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64'. For GCC
running on Windows via Cygwin, platforms 'windows/x86' and 'windows/x86_64" are supported. (The Cygwin
POSIX runtime is not yet modelled as part of the platform, but will be in the future.)

Page 666 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

If no target platforms are defined for a project, then all binaries are built to target a default platform named
‘current’. This default platform does not specify any ar chi t ect ure or oper ati ngSyst emvalue, hence
using the default values of the first available tool chain.

Gradle provides a hook that allows the build author to control the exact set of arguments passed to a tool
chain executable. This enables the build author to work around any limitations in Gradle, or assumptions that
Gradle makes. The arguments hook should be seen as a 'last-resort’ mechanism, with preference given to
truly modelling the underlying domain.

Example 601. Reconfigure tool arguments

bui | d. gradl e
nodel {
t ool Chai ns {
vi sual Cpp(Vi sual Cpp) {
eachPl at f orm {
cppConpi |l er.wi t hArgunents { args ->
args << "- DFRENCH'

}
cl ang(d ang) {
eachPl atform {
cCompi l er. wi t hArgunents { args ->
Col I ections. replaceAl |l (args, "CUSTOM', "-DFRENCH")
}

i nker.w thArguments { args ->
args. renmove " CUSTOM'

}

staticLi bArchi ver.w t hArgunments { args ->
args. renmove " CUSTOM'

8§
Cross-compiling with GCC

Cross-compiling is possible with the Gcc and Cl ang tool chains, by adding support for additional target
platforms. This is done by specifying a target platform for a toolchain. For each target platform a custom
configuration can be specified.

Page 667 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.toolchain.Clang.html

Example 602. Defining target platforms

buil d. gradl e
nodel {
t ool Chai ns {
gee(Gee) {

target ("arm){
cppConpi |l er.wi t hArgunments { args ->
args << "-nB2"

}
| inker.w thArguments { args ->
args << "-nd2"
}
}
target ("sparc")
}
}
pl atforns {
arm {
architecture "arnt
}
sparc {
architecture "sparc"
}
}

conponents {
mai n(Nat i veExecut abl eSpec) {
targetPlatform "arni
target Pl atform "sparc"

8§
Visual Studio IDE integration

Gradle has the ability to generate Visual Studio project and solution files for the native components defined
in your build. This ability is added by the vi sual - st udi o plugin. For a multi-project build, all projects with

native components should have this plugin applied.

When the vi sual - st udi o plugin is applied, a task name ${ conponent . nane} Vi sual St udi o is created
for each defined component. This task will generate a Visual Studio Solution file for the named component.
This solution will include a Visual Studio Project for that component, as well as linking to project files for each
depended-on binary.

The content of the generated visual studio files can be modified via API hooks, provided by the vi sual St ud

Page 668 of 717

extension. Take a look at the 'visual-studio' sample, or see Vi sual St udi oExt ensi on. get Proj ect s()
and Vi sual St udi oExt ensi on. get Sol uti ons() inthe APl documentation for more details.

8§
CUnit support

The Gradle cuni t plugin provides support for compiling and executing CUnit tests in your native-binary
project. For each Nat i veExecut abl eSpec and Nat i veli br ar ySpec defined in your project, Gradle will
create a matching CUni t Test Sui t eSpec component, named ${ conponent . nane} Test .

8§
CUnit sources

Gradle will create a CSour ceSet named 'cunit’ for each CUni t Test Sui t eSpec component in the project.
This source set should contain the cunit test files for the component under test. Source files can be located
in the conventional location (sr c/ ${ conponent . nane} Test/ cuni t) or can be configured like any other
source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit launcher
sources. Gradle will expect and call a function with the signature voi d gradl e_cunit _register() that
you can use to configure the actual CUnit suites and tests to execute.

Example 603. Registering CUnit tests

suite_operators.c

#i ncl ude <CuUni t/Basic. h>

#i nclude "gradl e _cunit_register.h"
#i nclude "test operators.h"

int suite init(void) {
return O;

int suite clean(void) {
return O;

void gradle_cunit_register() {
CU pSuite pSuiteMath = CU add_suite("operator tests”, suite_init, suite_cleal
CU add_test(pSuiteMath, "test plus", test plus);
CU add_test(pSuiteMath, "test_m nus", test_m nus);

Note: Due to this mechanism, your CUnit sources may not contain a mai n method since this will
clash with the method provided by Gradle.

Page 669 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html

8
Building CUnit executables

A CUnitTestSuiteSpec component has an associated NativeExecutabl eSpec or
Nat i veli brarySpec component. For each Nat i veBi nar ySpec configured for the main component, a
matching CUni t Test Sui t eBi nar ySpec will be configured on the test suite component. These test suite
binaries can be configured in a similar way to any other binary instance:

Example 604. Configuring CUnit tests

buil d. gradl e
nodel {
bi naries {
wi t hType(CUni t Test Sui t eBi narySpec) {
lib library: "cunit", linkage: "static"
if (flavor == flavors.failing) {
cConpi | er. define "PLUS BROKEN'
}
}
}
}

Note: Both the CUnit sources provided by your project and the generated launcher require the core
CUnit headers and libraries. Presently, this library dependency must be provided by your project for
each CUni t Test Sui t eBi nar ySpec.

8
Running CUnit tests

For each CUni t Test Sui t eBi nar ySpec, Gradle will create a task to execute this binary, which will run all
of the registered CUnit tests. Test results will be found in the ${bui | d. dir}/test-resul ts directory.

Example 605. Running CUnit tests

bui I d. gradl e

Page 670 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html

apply plugin: "c"
apply plugin: 'cunit-test-suite'

nodel {
flavors {
passi ng
failing
}
pl atforns {
x86 {
architecture "x86"

}
repositories {
i bs(PrebuiltLibraries) {
cunit {
headers.srcDir "libs/cunit/2.1-2/include"
binaries.w thType(StaticLibraryBinary) ({
staticLibraryFile =
file("libs/cunit/2.1-2/1ib/" +
findCUnitLibForPlatforn(targetPl atform)

}

component s {
operat ors(Nati velLi brarySpec) {
target Pl atform " x86"

}

testSuites {
oper at or sTest (CUni t Test Sui t eSpec) {
testing $.conponents.operators

}
}
}
nodel {
bi naries {

w t hType(CUni t Test Sui t eBi narySpec) {
lib library: "cunit", linkage: "static"
if (flavor == flavors.failing) {

cConpi | er. defi ne "PLUS BROKEN'
}
}
}
}

Page 671 of 717

Note: The code for this example can be found at sanpl es/ nati ve-bi nari es/ cuni t in the *-all’
distribution of Gradle.

Output of gradl e -g runQper at or sTest Fai | i ngCUni t Exe
> gradl e -q runQperat orsTest Fai | i ngCUni t Exe

There were test failures:
1. /hone/user/gradl e/ sanpl es/ nati ve-bi nari es/cunit/src/operatorsTest/c/test_pli
2. | hone/user/gradl e/ sanpl es/ nati ve-bi nari es/cunit/src/operatorsTest/c/test pli

Note: The current support for CUnit is quite rudimentary. Plans for future integration include:
®* Note: Allow tests to be declared with Javadoc-style annotations.
®* Note: Improved HTML reporting, similar to that available for JUnit.
®* Note: Real-time feedback for test execution.

® Note: Support for additional test frameworks.

8§
GoogleTest support

The Gradle googl e-t est plugin provides support for compiling and executing GoogleTest tests in your
native-binary project. For each Nati veExecut abl eSpec and Nati veli brarySpec defined in your

project, Gradle will create a matching Coogl eTest Test Sui t eSpec component, named ${ conponent . na

8
GoogleTest sources

Gradle will create a CppSour ceSet named 'cpp’ for each GCoogl eTest Test Sui t eSpec component in the
project. This source set should contain the GoogleTest test files for the component under test. Source files
can be located in the conventional location (sr ¢/ ${ conponent . nanme} Test / cpp) or can be configured
like any other source set.

§
Building GoogleTest executables

A Coogl eTest Test Sui t eSpec component has an associated NativeExecut abl eSpec or
Nat i velLi brarySpec component. For each Nat i veBi nar ySpec configured for the main component, a
matching Googl eTest Test Sui t eBi nar ySpec will be configured on the test suite component. These test
suite binaries can be configured in a similar way to any other binary instance:

Page 672 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html

Example 606. Registering GoogleTest tests

buil d. gradl e
nodel {
bi naries {
wi t hType(Googl eTest Test Sui t eBi narySpec) {
lib library: "googleTest", |inkage: "static"
if (flavor == flavors.failing) {
cppConpi | er. defi ne "PLUS BROKEN'
}
if (targetPlatformoperatingSystemlinux) {
cppConpi l er.args ' -pthread
|l'inker.args '-pthread'
}
}
}
}

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ googl e-t est in
the ‘-all’ distribution of Gradle.

Note: The GoogleTest sources provided by your project require the core GoogleTest headers and
libraries. Presently, this library dependency must be provided by your project for each
Googl eTest Test Sui t eBi nar ySpec.

8
Running GoogleTest tests

For each Googl eTest Test Sui t eBi nar ySpec, Gradle will create a task to execute this binary, which will
run all of the registered GoogleTest tests. Test results will be found in the ${bui l d. dir}/test-results
directory.

Note: The current support for GoogleTest is quite rudimentary. Plans for future integration include:
® Note: Improved HTML reporting, similar to that available for JUnit.
* Note: Real-time feedback for test execution.

®* Note: Support for additional test frameworks.

Page 673 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html

Extending the software model

Note: Support for the software model is currently incubating. Please be aware that the DSL, APIs
and other configuration may change in later Gradle versions.

One of the strengths of Gradle has always been its extensibility, and its adaptability to new domains. The
software model takes this extensibility to a new level, enabling the deep modeling of specific domains via
richly typed DSLs. The following chapter describes how the model and the corresponding DSLs can be
extended to support domains like Java, Play Framework or native software development. Before reading this
you should be familiar with the Gradle software model rule based configuration and concepts.

The following build script is an example of using a custom software model for building Markdown based
documentation:

Example 607. an example of using a custom software model

bui I d. gradl e

i mport sanpl e. docunent at i on. Docunent at i onConponent
i nport sanpl e. docunent ati on. Text Sour ceSet

i mport sanpl e. mar kdown. Mar kdownSour ceSet

apply plugin: sanpl e. docunent ati on. Docunent at i onPl ugi n
apply pl ugin: sanpl e. mar kdown. Mar kdownPI ugi n

nodel {
conmponents {
docs(Docunent at i onConmponent) {
sources {
ref erence(Text Sour ceSet)
user gui de(Mar kdownSour ceSet) {
generat el ndex = true
smart Quotes = true

Note: The code for this example can be found at sanpl es/ cust onivbdel /| anguageType/ in
the ‘-all’ distribution of Gradle.

Page 674 of 717

The rest of this chapter is dedicated to explaining what is going on behind this build script.

8
Concepts

A custom software model type has a public type, a base interface and internal views. Multiple such types
then collaborate to define a custom software model.

§
Public type and base interfaces

Extended types declare a public type that extends a base interface:
Components extend the Conponent Spec base interface

Binaries extend the Bi nar ySpec base interface

Source sets extend the LanguageSour ceSet base interface

The public type is exposed to build logic.

8§
Internal views

Adding internal views to your model type, you can make some data visible to build logic via a public type,
while hiding the rest of the data behind the internal view types. This is covered in a dedicated section below.

8§
Components all the way down

Components are composed of other components. A source set is just a special kind of component
representing sources. It might be that the sources are provided, or generated. Similarly, some components
are composed of different binaries, which are built by tasks. All buildable components are built by tasks. In
the software model, you will write rules to generate both binaries from components and tasks from binaries.

8§
Components

To declare a custom component type one must extend Conponent Spec, or one of the following, depending
on the use case:

Sour ceConponent Spec represents a component which has sources

Var i ant Conponent Spec represents a component which generates different binaries based on context
(target platforms, build flavors, ...). Such a component generally produces multiple binaries.

CGener al Conponent Spec is a convenient base interface for components that are built from sources and

Page 675 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/SourceComponentSpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.platform.base.VariantComponentSpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/GeneralComponentSpec.html

variant-aware. This is the typical case for a lot of software components, and therefore it should be in most of
the cases the base type to be extended.

The core software model includes more types that can be used as base for extension. For example:
Li brarySpec and Appl i cati onSpec can also be extended in this manner. Theses are no-op extensions
of Gener al Conponent Spec used to describe a software model better by distinguishing libraries and
applications components. Test Sui t eSpec should be used for all components that describe a test suite.

Example 608. Declare a custom component
Docunent at i onConponent . gr oovy

@managed
interface Docurent ati onConponent extends General Component Spec {}

Types extending Conponent Spec are registered via a rule annotated with Conponent Type:
Example 609. Register a custom component

Docunent ati onPl ugi n. gr oovy
cl ass DocunentationPl ugi n extends Rul eSource {

@Conponent Type
voi d regi st erConponent (TypeBui | der <Docunent at i onConponent > bui | der) {}

8

Binaries
To declare a custom binary type one must extend Bi nar ySpec.
Example 610. Declare a custom binary
Docunent at i onBi nary. gr oovy
@managed
interface DocunentationBi nary extends Bi narySpec {

File getQutputDir()
void setQutputDir(File outputDir)

Types extending Bi nar ySpec are registered via a rule annotated with Conponent Type:
Example 611. Register a custom binary

Docunent ati onPl ugi n. gr oovy
cl ass DocunentationPl ugi n extends Rul eSource {
@Conponent Type
voi d regi sterBinary(TypeBuil der <Docunent ati onBi nary> buil der) {}

Page 676 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ApplicationSpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/testing/base/TestSuiteSpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentType.html

8§
Source sets
To declare a custom source set type one must extend LanguageSour ceSet .
Example 612. Declare a custom source set
Mar kdownSour ceSet . gr oovy
@managed
i nterface MarkdownSour ceSet extends LanguageSourceSet {

bool ean i sCGenerat el ndex()
voi d set Gener at el ndex(bool ean gener at el ndex)

bool ean i sSmart Quot es()
voi d set Smart Quot es(bool ean smart Quot es)

Types extending LanguageSour ceSet are registered via a rule annotated with Conponent Type:
Example 613. Register a custom source set

Mar kdownPl ugi n. gr oovy
cl ass MarkdownPl ugi n ext ends Rul eSource {

@Conponent Type
voi d regi st er Mar kdownLanguage(TypeBui | der <ivar kdownSour ceSet > bui | der) {}

Setting the language name is mandatory.

Page 677 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentType.html

8§
Putting it all together

8
Generating binaries from components

Binaries generation from components is done via rules annotated with Conponent Bi nari es. This rule
generates a Docunent at i onBi nary named expl oded for each Docunent at i onConponent and sets its
out put Di r property:

Example 614. Generates documentation binaries

Docunent at i onPl ugi n. gr oovy
cl ass Docunent ationPl ugi n extends Rul eSource {
@Conponent Bi nari es
voi d gener at eDocBi nari es(Model Map<Docunent ati onBi nary> bi naries, Vari ant Conpi
bi nari es. create("expl oded") { binary ->
outputDir = new File(buildDir, "${conponent.nane}/${binary.name}")

8
Generating tasks from binaries

Tasks generation from binaries is done via rules annotated with Bi nar yTasks. This rule generates a Copy
task for each Text Sour ceSet of each Docunent ati onBi nary:

Example 615. Generates tasks for text source sets

Docunent at i onPl ugi n. gr oovy
cl ass Document ati onPl ugi n ext ends Rul eSource ({
@i nar yTasks
voi d gener at eText Tasks(Mbdel Map<Task> tasks, final DocumentationBi nary binar®
bi nary. i nputs.wi thType(Text SourceSet) { textSourceSet ->
def taskName = binary.tasks.taskNane("conpile", textSourceSet.nane)
def outputDir = new File(binary.outputDir, textSourceSet.nane)
tasks. creat e(taskNanme, Copy) {
from t ext Sour ceSet . source
destinationDir = outputDir

This rule generates a Mar kdownConpi | eTask task for each Mar kdownSour ceSet of each Docunent at i

Page 678 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/ComponentBinaries.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/platform/base/BinaryTasks.html

Example 616. Register a custom source set

Mar kdownPl ugi n. gr oovy
cl ass MarkdownPl ugi n extends Rul eSource {
@Bi nar yTasks
voi d processMar kdownDocunent at i on(Model Map<Task> tasks, final Docurentati onBi
bi nary. i nputs. wi t hType(Mar kdownSour ceSet) { nar kdownSourceSet ->
def taskName = binary.tasks.taskNane("conpile", markdownSourceSet. nal
def outputDir = new File(binary. outputDi r, mnmarkdownSourceSet. nane)
t asks. creat e(t askNanme, Mar kdownHt m Conpile) { conpil eTask ->
conpi | eTask. source = mar kdownSour ceSet . source
conpi | eTask. destinationDir = outputbDir
conpi | eTask. smart Quot es = mar kdownSour ceSet . smart Quot es
compi | eTask. gener at el ndex = mar kdownSour ceSet . gener at el ndex

See the sample source for more on the Mar kdownConpi | eTask task.

8
Using your custom model

This build script demonstrate usage of the custom model defined in the sections above:

Page 679 of 717

Example 617. an example of using a custom software model

buil d. gradl e

i nport sanpl e. docunment at i on. Docunent ati onConponent
i nport sanpl e. docunent ati on. Text Sour ceSet

i nport sanpl e. mar kdown. Mar kdownSour ceSet

appl y plugin: sanpl e. docunent ati on. Docunent at i onPl ugi n
apply pl ugin: sanpl e. mar kdown. Mar kdownPI ugi n

nodel {
conponents {
docs(Docunent ati onConponent) {
sources {
r ef er ence(Text Sour ceSet)
user gui de(Mar kdownSour ceSet) {
gener at el ndex = true
smart Quotes = true

Note: The code for this example can be found at sanpl es/ cust onivbdel / | anguageType/ in

the ‘-all’ distribution of Gradle.

And in the components reports for such a build script we can see our model types properly registered:

Page 680 of 717

Example 618. components report

Output of gradl e -g conponents
> gradl e -q conponents

Docunent at i onConponent ' docs'

Source sets
Mar kdown source 'docs: usergui de'
srcDir: src/docs/userguide
Text source 'docs:reference'
srcDir: src/docs/reference

Bi nari es
Docunent ati onBi nary ' docs: expl oded'
buil d using task: :docsExpl oded

Note: currently not all plugins register their conponents, so some conmponents na

8
About internal views

Internal views can be added to an already registered type or to a new custom type. In other words, using
internal views, you can attach extra properties to already registered components, binaries and source sets
types like Jvnii br ar ySpec, Jar Bi nar ySpec or JavaSour ceSet and to the custom types you write.

Let’s start with a simple component public type and its internal view declarations:
Example 619. public type and internal view declaration

buil d. gradl e

@managed i nterface MyConponent extends Conponent Spec {
String getPublicbData()
voi d setPublicData(String data)

}

@managed i nterface MyConponentlnternal extends MyConmponent {
String getlnternal Dat a()
voi d setinternal Data(String internal)

The type registration is as follows:

Page 681 of 717

Example 620. type registration

buil d. gradl e
class MyPlugin extends Rul eSource {
@Conponent Type

voi d regi ster MyConponent (TypeBui | der <MyConponent > bui | der) {
bui | der. i nt er nal Vi em(MyConponent | nt er nal)

The i nt er nal Vi ew(t ype) method of the type builder can be called several times. This is how you would
add several internal views to a type.

Now, let’'s mutate both public and internal data using some rule:

Example 621. public and internal data mutation

buil d. gradl e
class MyPlugin extends Rul eSource {
@aut at e

voi d mut at eMyConrponent s(Model Map<MyConponent | nt er nal > conmponents) {
conmponents.all { conponent ->
component . publ i cData = " Sonme PUBLI C dat a"
conponent.internal Data = "Sone | NTERNAL dat a"

Our i nt er nal Dat a property should not be exposed to build logic. Let's check this using the nodel task on
the following build file:

Example 622. example build script and model report output
buil d. gradl e
apply plugin: MyPlugin

nodel {
components {

my (MyConponent)

Output of gr adl e -g nodel
> gradl e -q nodel

+ conponent s

Page 682 of 717

| Type: org. gradl e. pl at f or m base. Conponent SpecCont ai ner

| Creator: Conponent BasePl ugi n. Pl ugi nRul es#conmponent s(Conponent SpecCont
| Rules:
conmponents { ... } @build.gradle line 42, colum 5
My Pl ugi n#mut at eMyConponent s(Model Map<MyConponent | nt er nal >)
+ny
| Type: My Conponent
| Creator: conponents { ... } @build.gradle line 42, colum 5 > ¢
| Rules:

My Pl ugi n#mut at eMyConponent s(Mbdel Map<MyConponent I nternal >) > all ()
+ publi cDat a

| Type: java.lang. String
| Val ue: Sone PUBLI C data
| Creator: conponents { ... } @build.gradle line 42, colum 5
+ tasks
| Type: org. gradl e. nodel . Model Map<or g. gr adl e. api . Task>
| Creator: Project.<init> tasks()
+ assenbl e
| Type: org. gradl e. api . Def aul t Task
| Val ue: task ':assenbl e’
| Creator: t asks. addPl acehol der Acti on(assenbl e)
| Rules:
copyToTaskCont ai ner
+ build
| Type: org. gradl e. api . Def aul t Task
| Val ue: task ':build
| Creator: t asks. addPl acehol der Acti on(bui | d)
| Rules:

copyToTaskCont ai ner
+ bui | dEnvi r onnent

| Type: org.gradl e. api . t asks. di agnosti cs. Bui | dEnvi ronment Report T
| Val ue: task ':buil dEnvironnent
| Creator: t asks. addPl acehol der Acti on(bui | dEnvi r onment)
| Rules:
copyToTaskCont ai ner
+ check
| Type: org. gradl e. api . Def aul t Task
| Val ue: task ':check’
| Creator: t asks. addPl acehol der Acti on(check)
| Rules:
copyToTaskCont ai ner
+ cl ean
| Type: org. gradl e. api .tasks. Del ete
| Val ue: task ':clean'
| Creator: t asks. addPl acehol der Acti on(cl ean)
| Rules:

copyToTaskCont ai ner
+ conponents
| Type: org. gradl e. api . reporting. conponents. Conponent Report

Page 683 of 717

| Val ue: task ':conponents
| Creator: t asks. addPl acehol der Acti on(conponent s)
| Rules:
copyToTaskCont ai ner
dependenci es

| Type: org. gradl e. api .t asks. di agnosti cs. DependencyReport Task
| Val ue: task ':dependenci es’

| Creator: t asks. addPl acehol der Acti on(dependenci es)

| Rules:

copyToTaskCont ai ner
dependencyl nsi ght

| Type: org. gradl e. api . t asks. di agnosti cs. Dependencyl nsi ght Report
| Val ue: task ':dependencyl nsi ght

| Creator: t asks. addPl acehol der Acti on(dependencyl nsi ght)

| Rules:

Hel pTasksPl ugi n. Rul es#addDef aul t Dependenci esReport Confi gur ati on(De
copyToTaskCont ai ner
dependent Conponent s

| Type: org. gradl e. api . reporting. dependent s. Dependent Conponent sR
| Val ue: task ':dependent Conponent s
| Creator: t asks. addPl acehol der Acti on(dependent Conrponent s)
| Rules:
copyToTaskCont ai ner
hel p
| Type: org. gradl e. configuration. Hel p
| Val ue: task ': hel p'
| Creator: t asks. addPl acehol der Acti on(hel p)
| Rules:
copyToTaskCont ai ner
init
| Type: org.gradle.buildinit.tasks.InitBuild
| Val ue: task ':init’
| Creator: t asks. addPl acehol der Acti on(i nit)
| Rules:
copyToTaskCont ai ner
nodel
| Type: org. gradl e. api . reporting. nodel . Model Report
| Val ue: task ':nodel’
| Creator: t asks. addPl acehol der Act i on(nmodel)
| Rules:
copyToTaskCont ai ner
proj ects
| Type: org. gradl e. api .t asks. di agnosti cs. Proj ect Report Task
| Val ue: task ':projects'
| Creator: t asks. addPl acehol der Acti on(proj ects)
| Rules:

copyToTaskCont ai ner
properties
| Type: org. gradl e. api . t asks. di agnosti cs. Propert yReport Task

Page 684 of 717

| Val ue: task ':properties'

| Creator: t asks. addPl acehol der Acti on(properti es)
| Rules:
copyToTaskCont ai ner
+ tasks
| Type: org. gradl e. api . t asks. di agnosti cs. TaskReport Task
| Val ue: task ':tasks’
| Creator: t asks. addPl acehol der Acti on(t asks)
| Rules:
copyToTaskCont ai ner
+ wr apper
| Type: org. gradl e. api . t asks. w apper. W apper
| Val ue: task ':wapper’
| Creator: t asks. addPl acehol der Acti on(wr apper)

Page 685 of 717

| Rules:
copyToTaskCont ai ner

We can see in this report that publ i cDat a is present and that i nt er nal Dat a is not.

Page 686 of 717

Glossary

Page 687 of 717

Dependency Types

§
External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external
repository.

Example 623. Module dependencies

bui I d. gradl e
dependenci es {
runtime group: 'org.springframework', name: 'spring-core', version: '2. 5
runtime 'org.springfranmework:spring-core:2.5",
"org. springfranework: spring-aop:2.5
runti me(
[group: 'org.springfranework', name: 'spring-core', version: '2.5],
[group: 'org.springfranework', name: 'spring-aop', version: '2.5']
)
runti me(' org. hi bernate: hibernate:3.0.5") {
transitive = true

}

runtime group: 'org.hibernate', name: 'hibernate', version: '3.0.5, transiti
runti me(group: 'org. hibernate', nanme: 'hibernate', version: '3.0.5") {
transitive = true

See the DependencyHandl er class in the APl documentation for more examples and a complete

reference.

Gradle provides different notations for module dependencies. There is a string notation and a map notation.
A module dependency has an APl which allows further configuration. Have a look at
Ext er nal Modul eDependency to learn all about the API. This API provides properties and configuration
methods. Via the string notation you can define a subset of the properties. With the map notation you can
define all properties. To have access to the complete API, either with the map or with the string notation, you
can assign a single dependency to a configuration together with a closure.

Note: If you declare a module dependency, Gradle looks for a module descriptor file (pom xm ori vy.

Page 688 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

) in the repositories. If such a module descriptor file exists, it is parsed and the artifacts of this
module (e.g. hi bernat e-3. 0. 5. j ar) as well as its dependencies (e.g. cglib) are downloaded. If
no such module descriptor file exists, Gradle looks for a file called hi bernate-3.0.5.jar to
retrieve. In Maven, a module can have one and only one artifact. In Gradle and lvy, a module can
have multiple artifacts. Each artifact can have a different set of dependencies.

8§
File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a
repository. This can be useful if you cannot, or do not want to, place certain files in a repository. Or if you do
not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a file collection as a dependency:

Example 624. File dependencies

buil d. gradl e
dependenci es {
runtime files('libs/a.jar', "libs/b.jar")
runtime fileTree(dir: 'libs', include: "*.jar")
}

File dependencies are not included in the published dependency descriptor for your project. However, file
dependencies are included in transitive project dependencies within the same build. This means they cannot
be used outside the current build, but they can be used with the same build.

You can declare which tasks produce the files for a file dependency. You might do this when, for example,
the files are generated by the build.

Page 689 of 717

Example 625. Generated file dependencies

buil d. gradl e
dependenci es {
conpile files("$buildDir/classes") {
builtBy 'conpil e’

task conpile {
doLast {
println 'conpiling classes'

task |ist(dependsOn: configurations.conmpile) {
doLast {
println "classpath = ${configurations.conpile.collect { File file -> fili

Outputofgradle -qg |i st
> gradle -q list

conpi ling cl asses
classpath = [cl asses]

8§
Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the
same multi-project build. For the latter you can declare Project Dependencies.

Example 626. Project dependencies
buil d. gradl e

dependenci es {
conpil e project(':shared")

For more information see the APl documentation for Pr o] ect Dependency.

Multi-project builds are discussed in Authoring Multi-Project Builds.

Page 690 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/artifacts/ProjectDependency.html

8§
Gradle distribution-specific dependencies

8
Gradle API dependency

You can declare a dependency on the API of the current version of Gradle by using the
DependencyHandl er. gradl eApi () method. This is useful when you are developing custom Gradle
tasks or plugins.

Example 627. Gradle APl dependencies

buil d. gradl e
dependenci es {
conpi | e gradl eApi ()

8
Gradle TestKit dependency

You can declare a dependency on the TestKit APl of the current version of Gradle by using the
DependencyHandl er. gradl eTest Ki t () method. This is useful for writing and executing functional tests
for Gradle plugins and build scripts.

Example 628. Gradle TestKit dependencies

bui | d. gradl e
dependenci es {
test Conpil e gradl eTestKit ()

Testing Build Logic with TestKit explains the use of TestKit by example.

8
Local Groovy dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandl er . | ocal Groovy() method. This is useful when you are developing custom Gradle
tasks or plugins in Groovy.

Example 629. Gradle's Groovy dependencies

buil d. gradl e
dependenci es {
conpi |l e | ocal Groovy()

Page 691 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

Repository Types

§
Flat directory repository

Some projects might prefer to store dependencies on a shared drive or as part of the project source code
instead of a binary repository product. If you want to use a (flat) filesystem directory as a repository, simply

type:

Example 630. Flat repository resolver

bui | d. gradl e
repositories {
flatDir {
dirs '"lib
}
flatDir {
dirs "libl", "lib2
}
}

This adds repositories which look into one or more directories for finding dependencies. Note that this type of
repository does not support any meta-data formats like lvy XML or Maven POM files. Instead, Gradle will
dynamically generate a module descriptor (without any dependency information) based on the presence of
artifacts. However, as Gradle prefers to use modules whose descriptor has been created from real
meta-data rather than being generated, flat directory repositories cannot be used to override artifacts with
real meta-data from other repositories. For example, if Gradle finds only jnxri-1.2.1.jar in a flat
directory repository, but j nxri - 1. 2. 1. pomin another repository that supports meta-data, it will use the

second repository to provide the module.

For the use case of overriding remote artifacts with local ones consider using an Ivy or Maven repository
instead whose URL points to a local directory. If you only work with flat directory repositories you don’t need
to set all attributes of a dependency.

8§
Maven Central repository

Maven Central is a popular repository hosting open source libraries for consumption by Java projects.

Page 692 of 717

To declare the central Maven repository for your build add this to your script:
Example 631. Adding central Maven repository
buil d. gradl e

repositories {
mavenCentral ()

8§
JCenter Maven repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts published
directly to Bintray.

To declare the JCenter Maven repository add this to your build script:

Example 632. Adding Bintray's JCenter Maven repository

buil d. gradl e

repositories {
jcenter()

}

8§

Google Maven repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage examples, see
the relevant documentation.

To declare the Google Maven repository add this to your build script:

Example 633. Adding Google Maven repository

bui I d. gradl e

repositories {
googl e()

}

8

Local Maven repository

Gradle can consume dependencies available in the local Maven repository. Declaring this repository is
beneficial for teams that publish to the local Maven repository with one project and consume the artifacts by
Gradle in another project.

Page 693 of 717

https://repo.maven.apache.org/maven2/
http://bintray.com
https://jcenter.bintray.com
https://developer.android.com/studio/build/dependencies.html#google-maven
https://dl.google.com/dl/android/maven2/
https://maven.apache.org/guides/introduction/introduction-to-repositories.html

Note: Gradle stores resolved dependencies in its own cache. A build does not need to declare the
local Maven repository even if you resolve dependencies from a Maven-based, remote repository.

To declare the local Maven cache as a repository add this to your build script:
Example 634. Adding the local Maven cache as a repository
buil d. gradl e

repositories {
mavenLocal ()

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local repository
location is defined in a set t i ngs. xm , this location will be used. The setti ngs. xm in USER_HOVE/ . n2
takes precedence over the settings. xm in M2_HOVE/ conf . If no settings. xm is available, Gradle
uses the default location USER_HOVE/ . n2/ r eposi t ory.

8§
Custom Maven repositories

Many organizations host dependencies in an in-house Maven repository only accessible within the
company’s network. Gradle can declare Maven repositories by URL.

For adding a custom Maven repository you can do:

Example 635. Adding custom Maven repository

bui | d. gradl e
repositories {
maven {

url "http://repo. nyconpany. com nmaven2"

Sometimes a repository will have the POMs published to one location, and the JARs and other artifacts
published at another location. To define such a repository, you can do:

Page 694 of 717

Example 636. Adding additional Maven repositories for JAR files

buil d. gradl e
repositories {
maven {

url "http://repo2. myconpany. conml naven2"

artifactUrls "http://repo. nyconpany. contjars"
artifactUrls "http://repo. myconpany. coni j ars2"

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact URLS
are used to look for JARs.

8
Accessing password-protected Maven repositories

You can specify credentials for Maven repositories secured by basic authentication.

Example 637. Accessing password-protected Maven repository

buil d. gradl e
repositories {
maven {

url "http://repo. nyconpany. com maven2"
credentials {

user name "user"

password "password"

8§
Custom Ivy repositories

Organizations might decide to host dependencies in an in-house Ivy repository. Gradle can declare lvy
repositories by URL.

8
Defining an Ivy repository with a standard layout

To declare an Ivy repository using the standard layout no additional customization is needed. You just
declare the URL.

Page 695 of 717

Example 638. lvy repository

buil d. gradl e
repositories {
ivy {
url "http://repo. nyconpany. com r epo"
}
}
8

Defining a named layout for an lvy repository
You can specify that your repository conforms to the Ivy or Maven default layout by using a named layout.

Example 639. lvy repository with named layout

buil d. gradl e
repositories {
ivy {

url "http://repo. nyconpany. com r epo"
| ayout "maven"

Valid named layout values are ' gradl e' (the default), ' maven', 'ivy' and 'pattern'. See
I vyArtifact Repository.layout(java.lang. String, groovy.lang.C osure) in the API
documentation for details of these named layouts.

§
Defining custom pattern layout for an Ivy repository

To define an lvy repository with a non-standard layout, you can define a ' pattern' layout for the
repository:

Example 640. Ivy repository with pattern layout

bui | d. gradl e
repositories {
ivy {

url "http://repo. nyconpany. com r epo”
| ayout "pattern", {
artifact "[nodule]/[revision]/[type]/[artifact].[ext]"

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can define

Page 696 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

separate patterns to use to locate the lvy files and artifacts:

Each arti fact ori vy specified for a repository adds an additional pattern to use. The patterns are used
in the order that they are defined.

Example 641. vy repository with multiple custom patterns

bui | d. gradl e
repositories {
vy {

url "http://repo. nyconpany. com r epo”

| ayout "pattern", {
artifact "3rd-party-artifacts/[organisation]/[nodule]/[revision]/[art
artifact "conpany-artifacts/[organisation]/[nodule]/[revision]/[artil
ivy "ivy-files/[organisation]/[nodule]/[revision]/ivy.xm"

Optionally, a repository with pattern layout can have its ' or gani sati on' part laid out in Maven style, with
forward slashes replacing dots as separators. For example, the organisation ny. conpany would then be
represented as ny/ conpany.

Example 642. Ivy repository with Maven compatible layout

buil d. gradl e
repositories {
ivy {

url "http://repo. nyconpany. com r epo"

| ayout "pattern", {
artifact "[organisation]/[nodule]/[revision]/[artifact]-[revision].][t
nm2conpati ble = true

§
Accessing password-protected Ivy repositories

You can specify credentials for Ivy repositories secured by basic authentication.

Page 697 of 717

Example 643. lvy repository with authentication

buil d. gradl e
repositories {

8

ivy {

url "http://repo. myconpany. cont
credentials {

user nanme "user"

password "password"

Supported repository transport protocols

Maven and lvy repositories support the use of various transport protocols. At the moment the following

protocols are supported:

Table 111. Repository transport protocols

ype

e

ttp

'tps

ftp

Credential types

none

username/password

username/password

username/password

access key/secret key/session token or Environment variables

default application credentials sourced from well known files, Environment variables etc.

Note: Username and password should never be checked in plain text into version control as part of
your build file. You can store the credentials in a local gr adl e. properti es file and use one of the
open source Gradle plugins for encrypting and consuming credentials e.g. the credentials plugin.

The transport protocol is part of the URL definition for a repository. The following build script demonstrates

how to create a HTTP-based Maven and Ivy repository:

Page 698 of 717

https://developers.google.com/identity/protocols/application-default-credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

Example 644. Declaring a Maven and Ivy repository

buil d. gradl e
repositories {
maven {
url "http://repo. nyconpany. com maven2"
}
ivy {
url "http://repo. myconpany. com repo”
}

The following example shows how to declare SFTP repositories:

Example 645. Using the SFTP protocol for a repository

buil d. gradl e
repositories {
maven {

url "sftp://repo. nyconpany. com 22/ maven2"
credentials {

user name "user"

password "password"

}
}
ivy {
url "sftp://repo. nyconpany. com 22/ r epo”
credentials {
user name "user"
password "password"
}
}

When using an AWS S3 backed repository you need to authenticate using AwsCr edent i al s, providing

access-key and a private-key. The following example shows how to declare a S3 backed repository and
providing AWS credentials:

Page 699 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.api.credentials.AwsCredentials.html

Example 646. Declaring a S3 backed Maven and lvy repository

buil d. gradl e
repositories {
maven {

url "s3://nmyConpanyBucket/ maven2"
credenti al s(AnsCredential s) {
accessKey "soneKey"
secret Key "soneSecret"
/' optional
sessi onToken "sonmeSTSToken"

}
}
vy {
url "s3://nyConmpanyBucket /i vyrepo"
credenti al s(AnsCredential s) {
accessKey "sonmeKey"
secret Key "soneSecret"”
/1 optional
sessi onToken "soneSTSToken"
}
}

You can also delegate all credentials to the AWS sdk by using the AwslimAuthentication. The following

example shows how:

Example 647. Declaring a S3 backed Maven and Ivy repository using IAM

buil d. gradl e
repositories {
maven {

url "s3://nmyConpanyBucket/ maven2"
aut henti cation {

aws| n(Awsl mAut hentication) // load from EC2 role or

}
}
ivy {
url "s3://nmyConpanyBucket/ivyrepo"
aut henti cation {
aws| m{ Aws| mAut henti cati on)
}
}

env var

When using a Google Cloud Storage backed repository default application credentials will be used with no

further configuration required:

Page 700 of 717

Example 648. Declaring a Google Cloud Storage backed Maven and Ivy repository using default applit

buil d. gradl e
repositories {
maven {
url "gcs:// myConpanyBucket/ maven2"
}
ivy {
url "gcs:// nyConpanyBucket/ivyrepo"
}
}
8

S3 configuration properties
The following system properties can be used to configure the interactions with s3 repositories:
Table 112. S3 configuration properties

roperty Description

. Used to override the AWS S3 endpoint when using a non AWS, S3 API compatible, storage
‘g.gradle.s3.endpoint .
service.

Specifies the maximum number of times to retry a request in the event that the S3 server
‘g.gradle.s3.maxErrorRetry . - .
responds with a HTTP 5xx status code. When not specified a default value of 3 is used.

8§
S3 URL formats

S3 URL'’s are ‘virtual-hosted-style' and must be in the following format s3: / / <bucket Nane>[. <r egi onSpe
e.g.s3:// myBucket. s3. eu-central - 1. anazonaws. com nmaven/ r el ease

nyBucket is the AWS S3 bucket name.

s3. eu-central - 1. amazonaws. comis the optional region specific endpoint.

/ maven/ r el ease is the AWS S3 key (unique identifier for an object within a bucket)

§
S3 proxy settings

A proxy for S3 can be configured using the following system properties:

ht t ps. pr oxyHost

Page 701 of 717

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

htt ps. proxyPort

htt ps. proxyUser

ht t ps. pr oxyPasswor d
htt p. nonPr oxyHost s

If the 'org.gradle.s3.endpoint' property has been specified with a http (not https) URI the following system
proxy settings can be used:

htt p. pr oxyHost
htt p. proxyPort
htt p. proxyUser
htt p. pr oxyPasswor d
htt p. nonPr oxyHost s

8
AWS S3 V4 Signatures (AWS4-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS’s signature version 4. It is recommended to specify S3 URL’s containing the region
specific endpoint when using buckets that require V4 signatures. e.g. s3: // sonebucket . s3. eu- centr al

Note: When a region-specific endpoint is not specified for buckets requiring V4 Signatures, Gradle
will use the default AWS region (us-east-1) and the following warning will appear on the console:

Attempting to re-send the request to with AWS V4 authentication. To avoid this warning in the
future, use region-specific endpoint to access buckets located in regions that require V4 signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures means:
® Note: 3 round-trips to AW5, as opposed to one, for every file upload and downl
®* Note: Dependi ng on | ocation - increased network | atencies and sl ower builds.

®* Note: I ncreased |ikelihood of transm ssion fail ures.

8
Google Cloud Storage configuration properties

The following system properties can be used to configure the interactions with Google Cloud Storage
repositories:

Page 702 of 717

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://cloud.google.com/storage/

Table 113. Google Cloud Storage configuration properties

roperty Description

. Used to override the Google Cloud Storage endpoint when using a non-Google Cloud Platform,
"g.gradle.gcs.endpoint . .
Google Cloud Storage API compatible, storage service.

. Used to override the Google Cloud Storage root service path which the Google Cloud Storage client
‘g.gradle.gcs.servicePath
builds requests from, defaults to / .

§
Google Cloud Storage URL formats

Google Cloud Storage URL's are 'virtual-hosted-style' and must be in the following format gcs: / / <bucket N
e.g. gcs: // myBucket / maven/rel ease

myBucket is the Google Cloud Storage bucket name.

/ maven/ r el ease is the Google Cloud Storage key (unique identifier for an object within a bucket)

§
Configuring HTTP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication schemes
are available. By default, Gradle will attempt to use all schemes that are supported by the Apache HttpClient
library, documented here. In some cases, it may be preferable to explicitly specify which authentication
schemes should be used when exchanging credentials with a remote server. When explicitly declared, only
those schemes are used when authenticating to a remote repository. The following example show how to
configure a repository to use only digest authentication:

Example 649. Configure repository to use only digest authentication

bui I d. gradl e
repositories {
maven {

url '"https://repo. myconpany. conl maven2'
credentials {
user nanme "user"
password "password"
}
aut henti cation {
di gest (Di gest Aut henti cati on)

Page 703 of 717

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625

Currently supported authentication schemes are:
Table 114. Authentication schemes

ype Description

))) Basic access authentication over HTTP. When using this scheme, credentials are sent
asi cAut henti cati on)
preemptively.

gest Aut hent i cat i on Digest access authentication over HTTP.

§
Using preemptive authentication

Gradle’s default behavior is to only submit credentials when a server responds with an authentication
challenge in the form of a HTTP 401 response. In some cases, the server will respond with a different code
(ex. for repositories hosted on GitHub a 404 is returned) causing dependency resolution to fail. To get
around this behavior, credentials may be sent to the server preemptively. To enable preemptive
authentication simply configure your repository to explicitly use the Basi cAut hent i cat i on scheme:

Example 650. Configure repository to use preemptive authentication

buil d. gradl e
repositories {
maven {

url "https://repo.nyconpany. com nmaven2
credentials {
user name "user"
password "password"
}
aut henti cation {
basi c(Basi cAut henti cati on)

Page 704 of 717

http://www.gradle.org/docs/4.5.1/dsl/org.gradle.authentication.http.BasicAuthentication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.authentication.http.DigestAuthentication.html
http://www.gradle.org/docs/4.5.1/dsl/org.gradle.authentication.http.BasicAuthentication.html

Appendix

A

Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can find

these samples in the GRADLE_HOVE/ sanpl es directory of the distribution.

Table A.1. Samples included in the distribution

ample

nnounce

oplication

ui I dCache/ bui | d-src

ui | dCache/ confi gure-built-in-caches

ui | dCache/ devel oper-ci - set up

ui | dCache/ htt p- bui | d-cache

ui | dDashboard

odeQual ity

ust onBui | dLanguage

ustonDi stribution

ust onPl ugi n

Description

A project which uses the announce plugin

A project which uses the application plugin

Configure the build cache consistently for bui | dSr ¢ and the main build

Configuration options for the build cache

Recommended cache configuration: Developer push to a local build cache
and pull from local and remote build cache, continuous integration server
pushes to and pulls from the remote cache.

Use a remote HTTP build cache

A project which uses the build-dashboard plugin

A project which uses the various code quality plugins.

This sample demonstrates how to add some custom elements to the build
DSL. It also demonstrates the use of custom plug-ins to organize build logic.

This sample demonstrates how to create a custom Gradle distribution and
use it with the Gradle wrapper.

A set of projects that show how to implement, test, publish and use a custom
plugin and task.

Page 706 of 717

ar/ ear Cust om zed/ ear

ar/ ear Wt hWar

roovy/ crossConpi | ati on

roovy/ cust om zedLayout

roovy/ m xedJavaAndGr oovy

roovy/ mul ti project

roovy/ qui ckstart

ava-library/ mltiproject

ava- | i brary/ qui ckstart

ava/ base

aval/ crossConpi | ati on

ava/ cust om zedLayout

ava/ nul ti proj ect

ava/ qui ckstart

ava/wi t hl nt egrationTests

avaG adl ePl ugi n

aven/ pontGener ati on

Web application ear project with customized contents

Web application ear project

A project doing cross compilation for a Groovy Project to Java 6

Groovy project with a custom source layout

Project containing a mix of Java and Groovy source

Build made up of multiple Groovy projects. Also demonstrates how to exclude
certain source files, and the use of a custom Groovy AST transformation.

Groovy quickstart sample

Java Library multiproject

Java Library quickstart project

Java base project

A project doing cross compilation to Java 6

Java project with a custom source layout

This sample demonstrates how an application can be composed using
multiple Java projects.

Java quickstart project

This sample demonstrates how to use a source set to add an integration test
suite to a Java project.

This example demonstrates the use of the java gradle plugin development
plugin. By applying the plugin, the java plugin is automatically applied as well
as the gradleApi() dependency. Furthermore, validations are performed
against the plugin metadata during jar execution.

Demonstrates how to deploy and install to a Maven repository. Also
demonstrates how to deploy a javadoc JAR along with the main JAR, how to
customize the contents of the generated POM, and how to deploy snapshots
and releases to different repositories.

Page 707 of 717

aven/ qui ckst art

ugi ns

roviders/fil eAndDirectoryProperty

rovi ders/inplicitTaskDependency

roviders/listProperty

rovi der s/ propertyAndProvi der

cal a/ crossConpi | ati on

cal a/ cust oni zedLayout

cal a/force

cal a/ m xedJavaAndScal a

cal a/ qui ckstart

cal a/ zi nc

asting/testReport

o0l i ngApi / cust onmvbdel

ool i ngApi / ecl i pse

ool i ngApi /i dea

ool i ngApi / nodel

Demonstrates how to deploy and install artifacts to a Maven repository.

A project which builds an OSGi bundle

A set of projects that show how to implement, test, publish and use a custom
plugins with the latest technology.

A set of examples using the Provider API for File-like properties

An example project using the Provider APl to model the relationship between
a producer and consumer task.

A set of examples using the Provider API for collection properties

An example of using the Provider API with the Groovy Gradle DSL

A project doing cross compilation for a Scala project to Java 6

Scala project with a custom source layout

Scala quickstart project

A project containing a mix of Java and Scala source.

Scala quickstart project

Scala project using the Zinc based Scala compiler.

Generates an HTML test report that includes the test results from all
subprojects.

A sample of how a plugin can expose its own custom tooling model to tooling
API clients.

An application that uses the tooling API to build the Eclipse model for a
project.

An application that uses the tooling API to extract information needed by
IntelliJ IDEA.

An application that uses the tooling API to build the model for a Gradle build.

Page 708 of 717

o0l i ngApi /runBui | d An application that uses the tooling API to run a Gradle task.

sergui de/ di stribution A project which uses the distribution plugin

sergui de/j avali braryDi stri bution A project which uses the Java library distribution plugin

2bAppl i cati on/ custom zed Web application with customized WAR contents.
2bAppl i cati on/ qui ckst art Web application quickstart project
8§

Sample cust onBui | dLanguage

This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use
of custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second
represents a product module. Each product includes one or more product modules, and each product
module may be included in multiple products. That is, there is a many-to-many relationship between these
products and product modules. For each product, the build produces a ZIP containing the runtime classpath
for each product module included in the product. The ZIP also contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basi cEdi ti on/ k

). Notice that the build script uses the pr oduct { } element. This is a custom element.

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2 custom
plug-ins found in bui | dSr ¢/ sr ¢/ mai n/ gr oovy.

8§

Sample cust onDi stri buti on
This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.
This sample contains the following projects:

The pl ugi n directory contains the project that implements a custom plugin, and bundles the plugin into a
custom Gradle distribution.

The consuner directory contains the project that uses the custom distribution.

Page 709 of 717

8§
Sample cust onPl ugi n

A set of projects that show how to implement, test, publish and use a custom plugin and task.
This sample contains the following projects:
The pl ugi n directory contains the project that implements and publishes the plugin.
The consun®er directory contains the project that uses the plugin.
8§
Sample j ava/ nul ti proj ect
This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP
which includes an API JAR, which a 3rd party application would compile against, and a client runtime. Then,
there is a server WAR which provides a web service.

8§
Sample pl ugi ns

A set of projects that show how to implement, test, publish and use a custom plugins with the latest
technology.

This sample contains the following projects:
The bui | dscri pt directory contains a project that uses the old bui | dscri pt syntax for using plugins.
The dsl directory contains the a project that uses the new pl ugi ns syntax for using plugins.

The publ i shi ng directory contains a complete example of the modern publishing plugins working with the
java-gradle-plugin to produce two plugins shipped in the same jar and being published to both an ivy and
maven repository.

The consumi ng directory contains an example of resolving plugins from custom repositories instead the
Gradle Plugin Portal.

Page 710 of 717

B

Potential Traps

8§
Groovy script variables

For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types
of script variables. One with a local scope and one with a script-wide scope.

Page 711 of 717

Example B.1. Variables scope: local and script wide

scope. gr oovy

String | ocal Scopel = 'l ocal Scopel'
def | ocal Scope2 = '| ocal Scope?2'
scri pt Scope = 'script Scope

println | ocal Scopel
println | ocal Scope2
println scriptScope

closure = {
println | ocal Scopel
println | ocal Scope2
println scriptScope

def nethod() {
try {
| ocal Scopel
} catch (M ssingPropertyException e) {
println 'l ocal ScopelNot Avai | abl e
}

try {
| ocal Scope2

} catch(M ssi ngPropertyException e) {
println 'l ocal Scope2Not Avai | abl e’

}
println scriptScope

closure.call ()
met hod()

Output of gr oovy scope. gr oovy
> groovy scope. groovy

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal ScopelNot Avai | abl e
| ocal Scope2Not Avai | abl e
scri pt Scope

Variables which are declared with a type modifier are visible within closures but not visible within methods.

Page 712 of 717

8§
Configuration and execution phase

It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Build
Lifecycle).

Example B.2. Distinct configuration and execution phase

buil d. gradl e
def classesDir = file('build/classes')
cl assesDir. nkdirs()
task clean(type: Delete) {
delete '"build

}
task conpil e(dependsOn: "clean') {
doLast {
if ('classesDir.isDirectory()) {
println 'The class directory does not exist. | can not operate'
}
}
}

Outputofgradl e -qg conpile
> gradle -q conpile
The class directory does not exist. | can not operate

As the creation of the directory happens during the configuration phase, the cl ean task removes the

directory during the execution phase.

Page 713 of 717

C

The Feature Lifecycle

Gradle is under constant development and improvement. New versions are delivered on a regular and
frequent basis (approximately every 6 weeks). Continuous improvement combined with frequent delivery
allows new features to be made available to users early and for invaluable real world feedback to be
incorporated into the development process. Getting new functionality into the hands of users regularly is a
core value of the Gradle platform. At the same time, APl and feature stability is taken very seriously and is
also considered a core value of the Gradle platform. This is something that is engineered into the
development process by design choices and automated testing, and is formalised by the section called
“Backwards Compatibility Policy”.

The Gradle feature lifecycle has been designed to meet these goals. It also serves to clearly communicate
to users of Gradle what the state of a feature is. The term feature typically means an API or DSL method or
property in this context, but it is not restricted to this definition. Command line arguments and modes of
execution (e.g. the Build Daemon) are two examples of other kinds of features.

8§
States
Features can be in one of 4 states:
Internal
Incubating
Public
Deprecated

8§
Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself. They can
change in any way at any point in time without any notice. Therefore, we recommend avoiding the use of
such features. Internal features are not documented. If it appears in this User Guide, the DSL Reference or
the API Reference documentation then the feature is not internal.

Internal features may evolve into public features.

Page 714 of 717

8
Incubating

Features are introduced in the incubating state to allow real world feedback to be incorporated into the
feature before it is made public and locked down to provide backwards compatibility. It also gives users who
are willing to accept potential future changes early access to the feature so they can put it into use
immediately.

A feature in an incubating state may change in future Gradle versions until it is no longer incubating.
Changes to incubating features for a Gradle release will be highlighted in the release notes for that release.
The incubation period for new features varies depending on the scope, complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all methods/properties/classes that
are incubating are annotated with | ncubat i ng, which is also used to specially mark them in the DSL and
API references. If an incubating feature is discussed in this User Guide, it will be explicitly said to be in the
incubating state.

8§
Public

The default state for a non-internal feature is public. Anything that is documented in the User Guide, DSL
Reference or API references that is not explicitly said to be incubating or deprecated is considered public.
Features are said to be promoted from an incubating state to public. The release notes for each release
indicate which previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation. All public
features are subject to the backwards compatibility policy.

8
Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such features
will eventually be removed from Gradle after being deprecated. A deprecated feature will never be changed,
until it is finally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, all methods/properties/classes that
are deprecated are annotated with “@ ava. | ang. Depr ecat ed” which is reflected in the DSL and API
references. In most cases, there is a replacement for the deprecated element, and this will be described in
the documentation. Using a deprecated feature will also result in a runtime warning in Gradle’s output.

Use of deprecated features should be avoided. The release notes for each release indicate any features that
are being deprecated by the release.

Page 715 of 717

http://www.gradle.org/docs/4.5.1/javadoc/org/gradle/api/Incubating.html

8§
Backwards Compatibility Policy

Gradle provides backwards compatibility across major versions (e.g. 1. x, 2. X, etc.). Once a public feature
is introduced or promoted in a Gradle release it will remain indefinitely or until it is deprecated. Once
deprecated, it may be removed in the next major release. Deprecated features may be supported across
major releases, but this is not guaranteed.

Page 716 of 717

D

Documentation licenses

8
Gradle Documentation

Copyright © 2007-2016 Gradle, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do
not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

8
Header link icon

Copyright © 2011-2013 VisualEditor team.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

The Software is provided "as is", without warranty of any kind, express or implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other liability, whether in an action of
contract, tort or otherwise, arising from, out of or in connection with the Software or the use or other dealings
in the Software.

Page 717 of 717

https://commons.wikimedia.org/wiki/File:VisualEditor_-_Icon_-_Link.svg

