
Gradle User Manual

Version 4.7

Copyright © 2007-2018 Hans Dockter, Adam Murdoch

Gradle build tool source code is open and licensed under the . Gradle user manual andApache License 2.0

DSL references are licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0

.International License

https://github.com/gradle/gradle/blob/master/LICENSE
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Table of Contents

About Gradle

Introduction
Overview

Working with existing builds

Installing Gradle
Command-Line Interface
The Gradle Wrapper
The Gradle Daemon
Dependency Management for Java Projects
Executing Multi-Project Builds
Composite builds
Build Environment
Troubleshooting
Embedding Gradle using the Tooling API
Build Cache

Writing Gradle build scripts

Build Script Basics
Build Init Plugin
Writing Build Scripts
Authoring Tasks
Working With Files
Using Ant from Gradle
Build Lifecycle
Logging
Authoring Multi-Project Builds
Using Gradle Plugins
Standard Gradle plugins
The Project Report Plugin
The Build Dashboard Plugin
Comparing Builds
Publishing artifacts
The Maven Plugin
The Signing Plugin
Ivy Publishing (new)
Maven Publishing (new)
The Distribution Plugin
The Announce Plugin
The Build Announcements Plugin

Dependency management

Introduction to Dependency Management
Declaring Dependencies
Managing Dependency Configurations
Declaring Repositories
Inspecting Dependencies
Managing Transitive Dependencies
Working with Dependencies
Customizing Dependency Resolution Behavior
Troubleshooting Dependency Resolution

Extending the build

Writing Custom Task Classes
Writing Custom Plugins
Gradle Plugin Development Plugin
Organizing Build Logic
Lazy Configuration
Initialization Scripts
Testing Build Logic with TestKit

Building JVM projects

Java Quickstart
Building Java & JVM projects
Testing in Java & JVM projects
The Base Plugin
The Java Plugin
The Java Library Plugin
Web Application Quickstart
The War Plugin
The Ear Plugin
The Jetty Plugin
The Application Plugin
The Java Library Distribution Plugin
Groovy Quickstart
The Groovy Plugin
The Scala Plugin
The ANTLR Plugin
The Checkstyle Plugin
The CodeNarc Plugin
The FindBugs Plugin
The JDepend Plugin
The PMD Plugin
The JaCoCo Plugin
The OSGi Plugin
The Eclipse Plugins
The IDEA Plugin

Best practices

Authoring Maintainable Build Scripts
Organizing Build Logic

The Software model

Rule based model configuration
Software model concepts
Implementing model rules in a plugin
Building Play applications
Building native software
Extending the software model

Glossary

Dependency Management Terminology
Dependency Types
Repository Types
The Dependency Cache

Appendix

A. Gradle Samples

B. Potential Traps
C. The Feature Lifecycle
D. Documentation licenses

List of Examples

1. Excluding tasks

2. Abbreviated camel case task name

3. Obtaining detailed help for tasks

4. Information about properties

5. Running the Wrapper task

6. The generated distribution URL

7. Providing options to Wrapper task

8. The generated distribution URL

9. Executing the build with the Wrapper batch file

10. Upgrading the Wrapper version

11. Checking the Wrapper version after upgrading

12. Customizing the Wrapper task

13. The generated distribution URL

14. Specifying the HTTP Basic Authentication credentials using system properties

15. Specifying the HTTP Basic Authentication credentials in distributionUrl

16. Configuring SHA-256 checksum verification

17. Dependency declarations for a Java-based project

18. Definition of a module dependency

19. Usage of Maven central repository

20. Usage of a local Ivy directory

21. Publishing to a Maven repository

22. Listing the projects in a build

23. Dependencies of my-app

24. Declaring a command-line composite

25. Declaring a separate composite

26. Depending on task from included build

27. Build that does not declare group attribute

28. Declaring the substitutions for an included build

29. Depending on a single task from an included build

30. Depending on a tasks with path in all included builds

31. Setting properties with a gradle.properties file

32. Specifying system properties in gradle.properties

33. Setting a project property via gradle.properties

34. Setting a project property via environment variable

35. Changing JVM settings for Gradle client JVM

36. Changing JVM settings for forked Gradle JVMs

37. Set Java compile options for tasksJavaCompile

38. Prevent releasing outside of CI

39. Configuring an HTTP proxy using gradle.properties

40. Configuring an HTTPS proxy using gradle.properties

41. Using the tooling API

42. Configure the local cache

43. Pull from HttpBuildCache

44. Configure remote HTTP cache

45. Allow untrusted SSL certificate for HttpBuildCache

46. Recommended setup for CI push use case

47. Consistent setup for buildSrc and main build

48. Init script to configure the build cache

49. Your first build script

50. Execution of a build script

51. A task definition shortcut

52. Using Groovy in Gradle's tasks

53. Using Groovy in Gradle's tasks

54. Declaration of task that depends on other task

55. Lazy dependsOn - the other task does not exist (yet)

56. Dynamic creation of a task

57. Accessing a task via API - adding a dependency

58. Accessing a task via API - adding behaviour

59. Accessing task as a property of the build script

60. Adding extra properties to a task

61. Using AntBuilder to execute ant.loadfile target

62. Using methods to organize your build logic

63. Defining a default task

64. Different outcomes of build depending on chosen tasks

65. Accessing property of the Project object

66. Using local variables

67. Using extra properties

68. Configuring arbitrary objects

69. Configuring arbitrary objects using a script

70. Groovy JDK methods

71. Property accessors

72. Method call without parentheses

73. List and map literals

74. Closure as method parameter

75. Closure delegates

76. Defining tasks

77. Defining tasks - using strings for task names

78. Defining tasks with alternative syntax

79. Accessing tasks as properties

80. Accessing tasks via tasks collection

81. Accessing tasks by path

82. Creating a copy task

83. Configuring a task - various ways

84. Configuring a task - with closure

85. Defining a task with closure

86. Adding dependency on task from another project

87. Adding dependency using task object

88. Adding dependency using closure

89. Adding a 'must run after' task ordering

90. Adding a 'should run after' task ordering

91. Task ordering does not imply task execution

92. A 'should run after' task ordering is ignored if it introduces an ordering cycle

93. Adding a description to a task

94. Overwriting a task

95. Skipping a task using a predicate

96. Skipping tasks with StopExecutionException

97. Enabling and disabling tasks

98. Custom task class

99. Ad-hoc task

100. Ad-hoc task declaring a destroyable

101. Using runtime API with custom task type

102. Using skipWhenEmpty() via the runtime API

103. Inferred task dependency via task outputs

104. Inferred task dependency via a task argument

105. Declaring a method to add task inputs

106. Declaring a method to add a task as an input

107. Failed attempt at setting up an inferred task dependency

108. Setting up an inferred task dependency between output dir and input files

109. Setting up an inferred task dependency with files()

110. Setting up an inferred task dependency with builtBy()

111. Ignoring up-to-date checks

112. Runtime classpath normalization

113. Task rule

114. Dependency on rule based tasks

115. Adding a task finalizer

116. Task finalizer for a failing task

117. How to copy a single file

118. Using implicit string paths

119. Prefer task/project properties over hard-coded paths

120. Using multiple arguments with from()

121. Using a flat filter

122. Using a deep filter

123. Copying an entire directory

124. Copying an entire directory, including itself

125. Archiving a directory as a ZIP

126. Using the Base Plugin for its archive name convention

127. Unpacking a ZIP file

128. Creating a Java uber or fat JAR

129. Manually creating a directory

130. Moving a directory using the Ant task

131. Renaming files as they are copied

132. Truncating filenames as they are copied

133. Deleting a directory

134. Deleting files matching a specific pattern

135. How to minimize the number of hard-coded paths in your build

136. Locating files

137. Creating a path relative to a parent project

138. Creating a file collection

139. Implementing a file collection

140. Using a file collection

141. Filtering a file collection

142. Creating a file tree

143. Changing Ant default exclusions for a copy task

144. Using a file tree

145. Using an archive as a file tree

146. Specifying a set of files

147. Appending a set of files

148. Specifying copy task source files and destination directory

149. Selecting the files to copy

150. Renaming files as they are copied

151. Filtering files as they are copied

152. Sharing copy specifications

153. Sharing copy patterns only

154. Nested copy specs

155. Copying files using the copy() method without up-to-date check

156. Copying files using the copy() method with up-to-date check

157. Using the Sync task to copy dependencies

158. Archiving a directory as a ZIP

159. Creation of ZIP archive

160. Configuration of archive task - custom archive name

161. Configuration of archive task - appendix & classifier

162. Activating reproducible archives

163. Using an Ant task

164. Passing nested text to an Ant task

165. Passing nested elements to an Ant task

166. Using an Ant type

167. Using a custom Ant task

168. Declaring the classpath for a custom Ant task

169. Using a custom Ant task and dependency management together

170. Importing an Ant build

171. Task that depends on Ant target

172. Adding behaviour to an Ant target

173. Ant target that depends on Gradle task

174. Renaming imported Ant targets

175. Setting an Ant property

176. Getting an Ant property

177. Setting an Ant reference

178. Getting an Ant reference

179. Fine tuning Ant logging

180. Single project build

181. Hierarchical layout

182. Flat layout

183. Lookup of elements of the project tree

184. Modification of elements of the project tree

185. Adding of test task to each project which has certain property set

186. Notifications

187. Setting of certain property to all tasks

188. Logging of start and end of each task execution

189. Using stdout to write log messages

190. Writing your own log messages

191. Writing a log message with placeholder

192. Using SLF4J to write log messages

193. Configuring standard output capture

194. Configuring standard output capture for a task

195. Customizing what Gradle logs

196. Multi-project tree - water & bluewhale projects

197. Build script of water (parent) project

198. Multi-project tree - water, bluewhale & krill projects

199. Water project build script

200. Defining common behavior of all projects and subprojects

201. Defining specific behaviour for particular project

202. Defining specific behaviour for project krill

203. Adding custom behaviour to some projects (filtered by project name)

204. Adding custom behaviour to some projects (filtered by project properties)

205. Running build from subproject

206. Evaluation and execution of projects

207. Evaluation and execution of projects

208. Running tasks by their absolute path

209. Dependencies and execution order

210. Dependencies and execution order

211. Dependencies and execution order

212. Declaring dependencies

213. Declaring dependencies

214. Cross project task dependencies

215. Configuration time dependencies

216. Configuration time dependencies - evaluationDependsOn

217. Configuration time dependencies

218. Dependencies - real life example - crossproject configuration

219. Project lib dependencies

220. Project lib dependencies

221. Fine grained control over dependencies

222. Build and Test Single Project

223. Partial Build and Test Single Project

224. Build and Test Depended On Projects

225. Build and Test Dependent Projects

226. Applying a script plugin

227. Applying a core plugin

228. Applying a community plugin

229. Applying plugins only on certain subprojects.

230. Using plugins from custom plugin repositories.

231. Plugin resolution strategy.

232. Complete Plugin Publishing Sample

233. Applying a binary plugin

234. Applying a binary plugin by type

235. Applying a plugin with the buildscript block

236. Using the Build Dashboard plugin

237. Defining an artifact using an archive task

238. Defining an artifact using a file

239. Customizing an artifact

240. Map syntax for defining an artifact using a file

241. Configuration of the upload task

242. Using the Maven plugin

243. Creating a standalone pom.

244. Upload of file to remote Maven repository

245. Upload of file via SSH

246. Customization of pom

247. Builder style customization of pom

248. Modifying auto-generated content

249. Customization of Maven installer

250. Generation of multiple poms

251. Accessing a mapping configuration

252. Using the Signing plugin

253. Sign with GnuPG

254. Configure the GnupgSignatory

255. Signing a configuration

256. Signing a configuration output

257. Signing a task

258. Signing a task output

259. Conditional signing

260. Signing a POM for deployment

261. Applying the “ivy-publish” plugin

262. Publishing a Java module to Ivy

263. Publishing additional artifact to Ivy

264. customizing the publication identity

265. Customizing the module descriptor file

266. Publishing multiple modules from a single project

267. Declaring repositories to publish to

268. Choosing a particular publication to publish

269. Publishing all publications via the “publish” lifecycle task

270. Generating the Ivy module descriptor file

271. Publishing a Java module

272. Example generated ivy.xml

273. Applying the 'maven-publish' plugin

274. Adding a MavenPublication for a Java component

275. Adding additional artifact to a MavenPublication

276. customizing the publication identity

277. Modifying the POM file

278. Publishing multiple modules from a single project

279. Declaring repositories to publish to

280. Publishing a project to a Maven repository

281. Publish a project to the Maven local repository

282. Generate a POM file without publishing

283. Using the distribution plugin

284. Adding extra distributions

285. Configuring the main distribution

286. publish main distribution

287. Applying the announce plugin

288. Configure the announce plugin

289. Using the announce plugin

290. Using the build announcements plugin

291. Using the build announcements plugin from an init script

292. Declaring a dependency with a concrete version

293. Declaring a dependency without version

294. Declaring a dependency with a dynamic version

295. Declaring a dependencies with a changing version

296. Declaring multiple file dependencies

297. Declaring project dependencies

298. Resolving a JavaScript artifact for a declared dependency

299. Resolving a JavaScript artifact with classifier for a declared dependency

300. Declaring and using a custom configuration

301. Extending a configuration from another configuration

302. Declaring JCenter repository as source for resolving dependencies

303. Declaring a custom repository by URL

304. Declaring multiple repositories

305. Declaring the JGit dependency with a custom configuration

306. Rendering the dependency report for a custom configuration

307. Declaring the JGit dependency and a conflicting dependency

308. Using the dependency insight report for a given dependency

309. Giving a reason for choosing a certain module version in a dependency declaration

310. Using the dependency insight report with custom reasons

311. Define dependency constraints

312. Unresolved artifacts for transitive dependencies

313. Excluding transitive dependency for a particular dependency declaration

314. Excluding transitive dependency for a particular configuration

315. Enforcing a dependency version

316. Enforcing a dependency version on the configuration-level

317. Disabling transitive dependency resolution for a declared dependency

318. Disabling transitive dependency resolution on the configuration-level

319. Depending on a BOM to import its dependency constraints

320. Iterating over the dependencies assigned to a configuration

321. Iterating over the artifacts resolved for a module

322. Walking the resolved and unresolved dependencies of a configuration

323. Accessing a Maven module's metadata artifact

324. Forcing a consistent version for a group of libraries

325. Using a custom versioning scheme

326. Blacklisting a version with a replacement

327. Changing dependency group and/or name during resolution

328. Substituting a module with a project

329. Substituting a project with a module

330. Conditionally substituting a dependency

331. 'Latest' version selector

332. Custom status scheme

333. Custom status scheme by module

334. Ivy component metadata rule

335. Rule source component metadata rule

336. Component selection rule

337. Component selection rule with module target

338. Component selection rule with metadata

339. Component selection rule using a rule source object

340. Declaring a module replacement

341. Specifying default dependencies on a configuration

342. Enabling dynamic resolve mode

343. Dynamic version cache control

344. Changing module cache control

345. Defining a custom task

346. A hello world task

347. A customizable hello world task

348. A build for a custom task

349. A custom task

350. Using a custom task in another project

351. Testing a custom task

352. Defining an incremental task action

353. Running the incremental task for the first time

354. Running the incremental task with unchanged inputs

355. Running the incremental task with updated input files

356. Running the incremental task with an input file removed

357. Running the incremental task with an output file removed

358. Running the incremental task with an input property changed

359. Declaring a command line option

360. Using a command line option

361. Declaring available values for an option

362. Listing available values for option

363. Creating a unit of work implementation

364. Submitting a unit of work for execution

365. Waiting for asynchronous work to complete

366. Submitting an item of work to run in a worker daemon

367. A custom plugin

368. A custom plugin extension

369. A custom plugin with configuration closure

370. Evaluating file properties lazily

371. Mapping extension properties to task properties

372. A build for a custom plugin

373. Wiring for a custom plugin

374. Using a custom plugin in another project

375. Applying a community plugin with the plugins DSL

376. Testing a custom plugin

377. Using the Java Gradle Plugin Development plugin

378. Nested DSL elements

379. Managing a collection of objects

380. Using the Java Gradle Plugin Development plugin

381. Using the gradlePlugin {} block.

382. Using inherited properties and methods

383. Using injected properties and methods

384. Configuring the project using an external build script

385. Custom buildSrc build script

386. Adding subprojects to the root buildSrc project

387. Running another build from a build

388. Declaring external dependencies for the build script

389. A build script with external dependencies

390. Ant optional dependencies

391. Using a read-only and configurable property

392. Using file and directory property

393. Implicit task dependency

394. List property

395. Using init script to perform extra configuration before projects are evaluated

396. Declaring external dependencies for an init script

397. An init script with external dependencies

398. Using plugins in init scripts

399. Declaring the TestKit dependency

400. Declaring the JUnit dependency

401. Using GradleRunner with JUnit

402. Using GradleRunner with Spock

403. Making the code under test classpath available to the tests

404. Injecting the code under test classes into test builds

405. Injecting the code under test classes into test builds for Gradle versions prior to 2.8

406. Using the Java Gradle Development plugin for generating the plugin metadata

407. Automatically injecting the code under test classes into test builds

408. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

409. Specifying a Gradle version for test execution

410. Testing cacheable tasks

411. Clean build cache between tests

412. Using the Java plugin

413. Building a Java project

414. Adding Maven repository

415. Adding dependencies

416. Customization of MANIFEST.MF

417. Adding a test system property

418. Publishing the JAR file

419. Eclipse plugin

420. Java example - complete build file

421. Multi-project build - hierarchical layout

422. Multi-project build - settings.gradle file

423. Multi-project build - common configuration

424. Multi-project build - dependencies between projects

425. Multi-project build - distribution file

426. Applying the Java Plugin

427. Declaring dependencies

428. Declaring custom source directories

429. Declaring custom source directories additively

430. Setting Java compiler options

431. Configure Java 6 build

432. Defining a custom task to create a 'sources' JAR

433. Creating a Java uber or fat JAR

434. Customization of MANIFEST.MF

435. Creating a manifest object.

436. Separate MANIFEST.MF for a particular archive

437. Saving a MANIFEST.MF to disk

438. Using a custom doclet with Javadoc

439. Defining a custom Javadoc task

440. Filtering tests in the build script

441. Changing the default test report and results directories

442. Creating a unit test report for subprojects

443. JUnit Categories

444. JUnit Platform Tags

445. Grouping TestNG tests

446. Enabling JUnit Platform to run your tests

447. JUnit Jupiter dependencies

448. JUnit Vintage dependencies

449. Filter specific engines

450. Preserving order of TestNG tests

451. Grouping TestNG tests by instances

452. Setting up working integration tests

453. Defining a working integration test task

454. Applying the Base Plugin

455. Using the Java plugin

456. Custom Java source layout

457. Assembling a JAR for a source set

458. Generating the Javadoc for a source set

459. Running tests in a source set

460. Registering incremental annotation processors

461. An isolated annotation processor

462. An aggregating annotation processor

463. Declaring annotation processors

464. Customization of MANIFEST.MF

465. Creating a manifest object.

466. Separate MANIFEST.MF for a particular archive

467. Saving a MANIFEST.MF to disk

468. Using the Java Library plugin

469. Declaring API and implementation dependencies

470. Making the difference between API and implementation

471. Declaring API and implementation dependencies

472. Configuring the Groovy plugin to work with Java Library

473. War plugin

474. Running web application with Gretty plugin

475. Using the War plugin

476. Customization of war plugin

477. Using the Ear plugin

478. Customization of ear plugin

479. Using the application plugin

480. Configure the application main class

481. Configure default JVM settings

482. Configure custom directory for start scripts

483. Include output from other tasks in the application distribution

484. Automatically creating files for distribution

485. Using the Java library distribution plugin

486. Configure the distribution name

487. Include files in the distribution

488. Groovy plugin

489. Dependency on Groovy

490. Groovy example - complete build file

491. Using the Groovy plugin

492. Custom Groovy source layout

493. Configuration of Groovy dependency

494. Configuration of Groovy test dependency

495. Configuration of bundled Groovy dependency

496. Configuration of Groovy file dependency

497. Configure Java 6 build for Groovy

498. Using the Scala plugin

499. Custom Scala source layout

500. Declaring a Scala dependency for production code

501. Declaring a Scala dependency for test code

502. Declaring a version of the Zinc compiler to use

503. Forcing a scala-library dependency for all configurations

504. Forcing a scala-library dependency for the zinc configuration

505. Adjusting memory settings

506. Forcing all code to be compiled

507. Configure Java 6 build for Scala

508. Explicitly specify a target IntelliJ IDEA version

509. Using the ANTLR plugin

510. Declare ANTLR version

511. setting custom max heap size and extra arguments for ANTLR

512. Using the Checkstyle plugin

513. Using the config_loc property

514. Customizing the HTML report

515. Using the CodeNarc plugin

516. Using the FindBugs plugin

517. Customizing the HTML report

518. Using the JDepend plugin

519. Using the PMD plugin

520. Applying the JaCoCo plugin

521. Configuring JaCoCo plugin settings

522. Configuring test task

523. Configuring violation rules

524. Configuring test task

525. Using application plugin to generate code coverage data

526. Coverage reports generated by applicationCodeCoverageReport

527. Using the OSGi plugin

528. Configuration of OSGi MANIFEST.MF file

529. Using the Eclipse plugin

530. Using the Eclipse WTP plugin

531. Partial Overwrite for Classpath

532. Partial Overwrite for Project

533. Export Classpath Entries

534. Customizing the XML

535. Using the IDEA plugin

536. Partial Rewrite for Module

537. Partial Rewrite for Project

538. Export Dependencies

539. Customizing the XML

540. A task declaring the group and description

541. Executing logic during configuration should be avoided

542. Executing logic during execution phase is preferred

543. A build script using conditional logic to create a task

544. A binary plugin implementing imperative logic

545. A build script applying a plugin that encapsulates imperative logic

546. Using inherited properties and methods

547. Using injected properties and methods

548. Configuring the project using an external build script

549. Custom buildSrc build script

550. Adding subprojects to the root buildSrc project

551. Running another build from a build

552. Declaring external dependencies for the build script

553. A build script with external dependencies

554. Ant optional dependencies

555. applying a rule source plugin

556. a model creation rule

557. a model mutation rule

558. creating a task

559. a managed type

560. a String property

561. a File property

562. a Long property

563. a boolean property

564. an int property

565. a managed property

566. an enumeration type property

567. a managed set

568. a scalar collection

569. strongly modelling sources sets

570. a DSL example applying a rule to every element in a scope

571. DSL configuration rule

572. Configuration run when required

573. Configuration not run when not required

574. DSL creation rule

575. DSL creation rule without initialization

576. Initialization before configuration

577. Nested DSL creation rule

578. Nested DSL configuration rule

579. DSL configuration rule for each element in a map

580. Nested DSL property configuration

581. a DSL example showing type conversions

582. a DSL rule using inputs

583. model task output

584. Using the Play plugin

585. The components report

586. Selecting a version of the Play Framework

587. Adding dependencies to a Play application

588. A Play 2.6 project

589. Adding Guice dependency in Play 2.6 project

590. Configuring extra source sets to a Play application

591. Adding extra source sets to a Play application

592. Configuring Scala compiler options

593. Configuring routes style

594. Configuring a custom asset pipeline

595. Configuring dependencies on Play subprojects

596. Add extra files to a Play application distribution

597. Applying both the Play and IDEA plugins

598. Defining a library component

599. Defining executable components

600. Sample build

601. Dependent components report

602. Dependent components report

603. Report of components that depends on the operators component

604. Report of components that depends on the operators component, including test suites

605. Assemble components that depends on the passing/static binary of the operators component

606. Build components that depends on the passing/static binary of the operators component

607. Adding a custom check task

608. Running checks for a given binary

609. The components report

610. The 'cpp' plugin

611. C++ source set

612. The 'c' plugin

613. C source set

614. The 'assembler' plugin

615. The 'objective-c' plugin

616. The 'objective-cpp' plugin

617. Settings that apply to all binaries

618. Settings that apply to all shared libraries

619. Settings that apply to all binaries produced for the 'main' executable component

620. Settings that apply only to shared libraries produced for the 'main' library component

621. The 'windows-resources' plugin

622. Configuring the location of Windows resource sources

623. Building a resource-only dll

624. Providing a library dependency to the source set

625. Providing a library dependency to the binary

626. Declaring project dependencies

627. Creating a precompiled header file

628. Including a precompiled header file in a source file

629. Configuring a precompiled header

630. Defining build types

631. Configuring debug binaries

632. Defining platforms

633. Defining flavors

634. Targeting a component at particular platforms

635. Building all possible variants

636. Defining tool chains

637. Reconfigure tool arguments

638. Defining target platforms

639. Registering CUnit tests

640. Configuring CUnit tests

641. Running CUnit tests

642. Registering GoogleTest tests

643. an example of using a custom software model

644. Declare a custom component

645. Register a custom component

646. Declare a custom binary

647. Register a custom binary

648. Declare a custom source set

649. Register a custom source set

650. Generates documentation binaries

651. Generates tasks for text source sets

652. Register a custom source set

653. an example of using a custom software model

654. components report

655. public type and internal view declaration

656. type registration

657. public and internal data mutation

658. example build script and model report output

659. Module dependencies

660. File dependencies

661. Generated file dependencies

662. Project dependencies

663. Gradle API dependencies

664. Gradle TestKit dependencies

665. Gradle's Groovy dependencies

666. Flat repository resolver

667. Adding central Maven repository

668. Adding Bintray's JCenter Maven repository

669. Adding Google Maven repository

670. Adding the local Maven cache as a repository

671. Adding custom Maven repository

672. Adding additional Maven repositories for JAR files

673. Accessing password-protected Maven repository

674. Ivy repository

675. Ivy repository with named layout

676. Ivy repository with pattern layout

677. Ivy repository with multiple custom patterns

678. Ivy repository with Maven compatible layout

679. Ivy repository with authentication

680. Maven repository that supports artifacts without metadata

681. Declaring a Maven and Ivy repository

682. Using the SFTP protocol for a repository

683. Declaring a S3 backed Maven and Ivy repository

684. Declaring a S3 backed Maven and Ivy repository using IAM

685. Declaring a Google Cloud Storage backed Maven and Ivy repository using default application

credentials

686. Configure repository to use only digest authentication

687. Configure repository to use preemptive authentication

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

About Gradle

Page 21 of 777

Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology

in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!

Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or and pom.xml ivy.xml

files.

Ant tasks and builds as first class citizens.

Groovy build scripts.

A rich domain model for describing your build.

In you will find a detailed overview of Gradle. Otherwise, the are waiting, have fun :)Overview guides

§

About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren’t

documented as completely as they need to be. Some of the content presented won’t be entirely clear or will

assume that you know more about Gradle than you do. We need your help to improve this user guide. You

can find out more about contributing to the documentation at the .Gradle web site

Throughout the user guide, you will find some diagrams that represent dependency relationships between

Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow

from one task to the task that the first task depends on.

https://guides.gradle.org
http://www.gradle.org/contribute

Page 22 of 777

Overview

§

Features

Here is a list of some of Gradle’s features.

Declarative builds and build-by-convention

At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle

pushes declarative builds to the next level by providing declarative language elements that you can

assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,

Web and Scala projects. Even more, this declarative language is extensible. Add your own new language

elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming

The declarative language lies on top of a general purpose task graph, which you can fully leverage in

your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build

The suppleness and richness of Gradle finally allows you to apply common design principles to your

build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff

where unnecessary indirections would be inappropriate. Don’t be forced to tear apart what belongs

together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn

your build into a maintenance nightmare. At last you can create a well structured, easily maintained,

comprehensible build.

Deep API

From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build

execution, Gradle allows you to monitor and customize its configuration and execution behavior to its

very core.

Gradle scales

Gradle scales very well. It significantly increases your productivity, from simple single project builds up to

huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental

build function, this is also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds

Gradle’s support for multi-project build is outstanding. Project dependencies are first class citizens. We

allow you to model the project relationships in a multi-project build as they really are for your problem

Page 23 of 777

domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the

subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a

particular subproject. Together with incremental builds this is a big time saver for larger builds.

Many ways to manage your dependencies

Different teams prefer different ways to manage their external dependencies. Gradle provides convenient

support for any strategy. From transitive dependency management with remote Maven and Ivy

repositories to jars or directories on the local file system.

Gradle is the first build integration tool

Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.

Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime.

You can depend on them from Gradle, you can enhance them from Gradle, you can even declare

dependencies on Gradle tasks in your build.xml. The same integration is provided for properties, paths,

etc …

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving

dependencies. Gradle also provides a converter for turning a Maven into a Gradle script.pom.xml

Runtime imports of Maven projects will come soon.

Ease of migration

Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the

same branch where your production build lives and both can evolve in parallel. We usually recommend to

write tests that make sure that the produced artifacts are similar. That way migration is as less disruptive

and as reliable as possible. This is following the best-practices for refactoring by applying baby steps.

Groovy

Gradle’s build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply

exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to

maintain build. The whole design of Gradle is oriented towards being used as a language, not as a rigid

framework. And Groovy is our glue that allows you to tell your individual story with the abstractions

Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.

This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy

support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an

enjoyable and productive experience.

The Gradle wrapper

The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. This

is useful for example for some continuous integration servers. It is also useful for an open source project

to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is a zero

administration approach for the client machines. It also enforces the usage of a particular Gradle version

thus minimizing support issues.

Free and open source

Gradle is an open source project, and is licensed under the .ASL

http://www.gradle.org/license

Page 24 of 777

§

Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when

used in . There are a couple of dynamic languages out there. Why Groovy? The answer lies inbuild scripts

the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus

are Java projects. In such projects the team members will be very familiar with Java. We think a build should

be as transparent as possible to team members.all

In that case, you might argue why we don’t just use Java as the language for build scripts. We think this is a

valid question. It would have the highest transparency for your team and the lowest learning curve, but

because of the limitations of Java, such a build language would not be as nice, expressive and powerful as it

could be. Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as

it offers by far the greatest transparency for Java people. Its base syntax is the same as Java’s as well as its

type system, its package structure and other things. Groovy provides much more on top of that, but with the

common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don’t

apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just

doesn’t have the highest priority for us at the moment. We happily support any community effort to create

additional build script engines.

[] At you find an interesting article comparing Ant, XML, Javahttp://www.defmacro.org/ramblings/lisp.html

and Lisp. It’s funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

[]1

[] 1

http://www.defmacro.org/ramblings/lisp.html

Working with existing builds

Page 26 of 777

Installing Gradle

You can install the Gradle build tool on Linux, macOS, or Windows. This document covers installing using a

package manager like SDKMAN!, Homebrew, or Scoop, as well as manual installation.

To upgrade Gradle, use of the is the recommended.Gradle Wrapper

You can find all releases and their checksums on the .releases page

§

Prerequisites

Gradle runs on all major operating systems and requires only a version 7 or higher to run. ToJava JDK

check, run . You should see something like this:java -version

 java -version

java version "1.8.0_151"

Java(TM) SE Runtime Environment (build 1.8.0_151-b12)

Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing

Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the environmentJAVA_HOME

variable to point to the installation directory of the desired JDK.

§

Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most

Unix-based systems.

 sdk install gradle 4.6

Homebrew is "the missing package manager for macOS".

 brew install gradle

Scoop is a command-line installer for Windows inspired by Homebrew.

https://gradle.org/releases
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sdkman.io
http://brew.sh
http://scoop.sh

Page 27 of 777

 scoop install gradle

Chocolatey is "the package manager for Windows".

 choco install gradle

MacPorts is a system for managing tools on macOS:

 sudo port install gradle

 Proceed to next steps

§

Installing manually

§

Step 1. the latest Gradle distributionDownload

The distribution ZIP file comes in two flavors:

Binary-only (bin)

Complete (all) with docs and sources

Need to work with an older version? See the .releases page

§

Step 2. Unpack the distribution

§

Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing, e.g.:

 mkdir /opt/gradle

 unzip -d /opt/gradle gradle-4.6-bin.zip

 ls /opt/gradle/gradle-4.6

LICENSE NOTICE bin getting-started.html init.d lib media

§

Microsoft Windows users

Create a new directory with .C:\Gradle File Explorer

Open a second window and go to the directory where the Gradle distribution was downloaded.File Explorer

Double-click the ZIP archive to expose the content. Drag the content folder to your newlygradle-4.6

created folder.C:\Gradle

Alternatively you can unpack the Gradle distribution ZIP into using an archiver tool of yourC:\Gradle

choice.

https://chocolatey.org
https://www.macports.org
https://gradle.org/releases
https://gradle.org/releases

Page 28 of 777

§

Step 3. Configure your system environment

For running Gradle, firstly add the environment variable . This should point to the unpackedGRADLE_HOME

files from the Gradle website. Next add to your environment variable. Usually,/binGRADLE_HOME PATH

this is sufficient to run Gradle.

§

Linux & MacOS users

Configure your environment variable to include the directory of the unzipped distribution, e.g.:PATH bin

 export PATH=$PATH:/opt/gradle/gradle-4.6/bin

§

Microsoft Windows users

In right-click on the (or) icon, then click File Explorer This PC Computer Properties Advanced System Settings

 .Environmental Variables

Under select , then click . Add an entry for System Variables Path Edit C:\Gradle\gradle-4.6\bin

. Click OK to save.

 Proceed to next steps

§

Verifying installation

Open a console (or a Windows command prompt) and run to run gradle and display the version,gradle -v

e.g.:

 gradle -v

--

Gradle 4.6

--

Build time: 2018-02-21 15:28:42 UTC

Revision: 819e0059da49f469d3e9b2896dc4e72537c4847d

Groovy: 2.4.12

Ant: Apache Ant(TM) version 1.9.9 compiled on February 2 2017

JVM: 1.8.0_151 (Oracle Corporation 25.151-b12)

OS: Mac OS X 10.13.3 x86_64

If you run into any trouble, see the .section on troubleshooting installation

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available from the

Page 29 of 777

) and following these .releases page verification instructions

§

Next steps

Now that you have Gradle installed, use these resources for getting started:

Create your first Gradle project by following the tutorial.Creating New Gradle Builds

Sign up for a with a core engineer.live introductory Gradle training

Learn how to achieve common tasks through the .command-line interface

Configure Gradle execution, such as use of an HTTP proxy for downloading dependencies.

Subscribe to the for monthly release and community updates.Gradle Newsletter

https://gradle.org/releases
https://guides.gradle.org/creating-new-gradle-builds/
https://gradle.org/training/intro-to-gradle/
https://newsletter.gradle.com/

Page 30 of 777

Command-Line Interface

The command-line interface is one of the primary methods of interacting with Gradle. The following serves

as a reference of executing and customizing Gradle use of a command-line or when writing scripts or

configuring continuous integration.

Use of the is highly encouraged. You should substitute or for Gradle Wrapper ./gradlew gradlew.bat gradle

in all following examples when using the Wrapper.

Executing Gradle on the command-line conforms to the following structure. Options are allowed before and

after task names.

gradle [taskName...] [--option-name...]

If multiple tasks are specified, they should be separated with a space.

Options that accept values can be specified with or without between the option and argument; however,=

use of is recommended.=

--console=plain

Options that enable behavior have long-form options with inverses specified with . The following are--no-

opposites.

--build-cache

--no-build-cache

Many long-form options, have short option equivalents. The following are equivalent:

--help

-h

Note: Many command-line flags can be specified in to avoid needing to begradle.properties

typed. See the for details.configuring build environment guide

The following sections describe use of the Gradle command-line interface, grouped roughly by user goal.

Some plugins also add their own command line options, for example . For for Java test filtering--tests

more information on exposing command line options for your own tasks, see the section called “Declaring

.and Using Command Line Options”

Executing tasks

Page 31 of 777

§

Executing tasks

You can run a task and all of its .dependencies

 gradle myTask

You can learn about what projects and tasks are available in the .project reporting section

§

Executing tasks in multi-project builds

In a , subproject tasks can be executed with ":" separating subproject name and taskmulti-project build

name. The following are equivalent .when run from the root project

 gradle :mySubproject:taskName

 gradle mySubproject:taskName

You can also run a task for all subprojects using the task name only. For example, this will run the "test" task

for all subprojects when invoked from the root project directory.

 gradle test

When invoking Gradle from within a subproject, the project name should be omitted:

 cd mySubproject

 gradle taskName

Note: When executing the Gradle Wrapper from subprojects, one must reference gradlew

relatively. For example: . The community aims to make this../gradlew taskName gdub project

more convenient.

§

Executing multiple tasks

You can also specify multiple tasks. For example, the following will execute the and tasks intest deploy

the order that they are listed on the command-line and will also execute the dependencies for each task.

 gradle test deploy

§

Excluding tasks from execution

You can exclude a task from being executed using the or command-line option and-x --exclude-task

providing the name of the task to exclude.

http://www.gdub.rocks/

Page 32 of 777

Figure 1. Example Task Graph

Example 1. Excluding tasks

Output of gradle dist --exclude-task test

> gradle dist --exclude-task test

> Task :compile

compiling source

> Task :dist

building the distribution

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

You can see that the task is not executed, even though it is a dependency of the task. The test dist test

task’s dependencies such as are not executed either. Those dependencies of that arecompileTest test

required by another task, such as , are still executed.compile

§

Forcing tasks to execute

You can force Gradle to execute all tasks ignoring using the option:up-to-date checks --rerun-tasks

 gradle test --rerun-tasks

This will force and task dependencies of to execute. It’s a little like running test all test gradle clean test

, but without the build’s generated output being deleted.

§

Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to

complete sooner, but hides other failures that would have occurred. In order to discover as many failures as

possible in a single build execution, you can use the option.--continue

 gradle test --continue

When executed with , Gradle will execute task to be executed where all of the--continue every

dependencies for that task completed without failure, instead of stopping as soon as the first failure is

encountered. Each of the encountered failures will be reported at the end of the build.

Page 33 of 777

If a task fails, any subsequent tasks that were depending on it will not be executed. For example, tests will

not run if there is a compilation failure in the code under test; because the test task will depend on the

compilation task (either directly or indirectly).

§

Task name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task. You only

need to provide enough of the task name to uniquely identify the task. For example, it’s likely gradle che

is enough for Gradle to identify the task.check

You can also abbreviate each word in a camel case task name. For example, you can execute task compileTest

by running or even .gradle compTest gradle cT

Example 2. Abbreviated camel case task name

Output of gradle cT

> gradle cT

> Task :compile

compiling source

> Task :compileTest

compiling unit tests

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

You can also use these abbreviations with the -x command-line option.

§

Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

§

Computing all outputs

It is common in Gradle builds for the task to designate assembling all outputs and running all checks.build

 gradle build

§

Running applications

It is common for applications to be run with the task, which assembles the application and executesrun

some script or binary.

Page 34 of 777

 gradle run

§

Running all checks

It is common for verification tasks, including tests and linting, to be executed using the task.all check

 gradle check

§

Cleaning outputs

You can delete the contents of the build directory using the task, though doing so will causeclean

pre-computed outputs to be lost, causing significant additional build time for the subsequent task execution.

 gradle clean

§

Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be useful for

understanding the structure and dependencies of your build, and for debugging problems.

You can get basic help about available reporting options using .gradle help

§

Listing projects

Running gives you a list of the sub-projects of the selected project, displayed in agradle projects

hierarchy.

 gradle projects

You also get a project report within build scans. Learn more about .creating build scans

§

Listing tasks

Running gives you a list of the main tasks of the selected project. This report shows thegradle tasks

default tasks for the project, if any, and a description for each task.

 gradle tasks

By default, this report shows only those tasks which have been assigned to a task group. You can obtain

more information in the task listing using the option.--all

 gradle tasks --all

Show task usage details

https://guides.gradle.org/creating-build-scans/

Page 35 of 777

§

Show task usage details

Running gives you detailed information about a specific task.gradle help --task someTask

Example 3. Obtaining detailed help for tasks

Output of gradle -q help --task libs

> gradle -q help --task libs

Detailed task information for libs

Paths

 :api:libs

 :webapp:libs

Type

 Task (org.gradle.api.Task)

Description

 Builds the JAR

Group

 build

This information includes the full task path, the task type, possible command line options and the description

of the given task.

§

Reporting dependencies

Build scans give a full, visual report of what dependencies exist on which configurations, transitive

dependencies, and dependency version selection.

 gradle myTask --scan

This will give you a link to a web-based report, where you can find dependency information like this.

Page 36 of 777

Learn more in .Inspecting Dependencies

§

Listing project dependencies

Running gives you a list of the dependencies of the selected project, broken downgradle dependencies

by configuration. For each configuration, the direct and transitive dependencies of that configuration are

shown in a tree. Below is an example of this report:

 gradle dependencies

Concrete examples of build scripts and output available in the .Inspecting Dependencies

Running visualises the buildscript dependencies of the selected project,gradle buildEnvironment

similarly to how visualizes the dependencies of the software being built.gradle dependencies

 gradle buildEnvironment

Running gives you an insight into a particular dependency (orgradle dependencyInsight

dependencies) that match specified input.

 gradle dependencyInsight

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.

Page 37 of 777

This is achieved with the optional parameter:--configuration

§

Listing project properties

Running gives you a list of the properties of the selected project.gradle properties

Example 4. Information about properties

Output of gradle -q api:properties

> gradle -q api:properties

--

Project :api - The shared API for the application

--

allprojects: [project ':api']

ant: org.gradle.api.internal.project.DefaultAntBuilder@12345

antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345

artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler_Decorated@12345

asDynamicObject: DynamicObject for project ':api'

baseClassLoaderScope: org.gradle.api.internal.initialization.DefaultClassLoaderScope@12345

buildDir: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build

buildFile: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build.gradle

§

Software Model reports

You can get a hierarchical view of elements for projects using the task:software model model

 gradle model

Learn more about in the software model documentation.the model report

§

Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties through

, installed separately.gradle-completion

https://github.com/gradle/gradle-completion

Page 38 of 777

Figure 2. Gradle Completion

Debugging options

Page 39 of 777

§

Debugging options

, , -? -h --help

Shows a help message with all available CLI options.

, -v --version

Prints Gradle, Groovy, Ant, JVM, and operating system version information.

, -S --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See also .logging options

, -s --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See also .logging options

--scan

Create a with fine-grained information about all aspects of your Gradle build.build scan

-Dorg.gradle.debug=true

Debug Gradle client (non-Daemon) process. Gradle will wait for you to attach a debugger at localhost:5005

by default.

-Dorg.gradle.daemon.debug=true

Debug process.Gradle Daemon

§

Performance options

Try these options when optimizing build performance. Learn more about improving performance of Gradle

.builds here

Many of these options can be specified in so command-line flags are not necessary.gradle.properties

See the .configuring build environment guide

, --build-cache --no-build-cache

Toggles the . Gradle will try to reuse outputs from previous builds. .Gradle build cache Default is off

, --configure-on-demand --no-configure-on-demand

Toggles . Only relevant projects are configured in this build run. .Configure-on-demand Default is off

--max-workers

Sets maximum number of workers that Gradle may use. .Default is number of processors

, --parallel --no-parallel

Build projects in parallel. For limitations of this option please see the section called “Parallel project

. .execution” Default is off

https://gradle.com/build-scans
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/

Page 40 of 777

--profile

Generates a high-level performance report in the directory. is$buildDir/reports/profile --scan

preferred.

--scan

Generate a build scan with detailed performance diagnostics.

§

Gradle daemon options

You can manage the through the following command line options.Gradle Daemon

, --daemon --no-daemon

Use the to run the build. Starts the daemon if not running or existing daemon busy. Gradle Daemon

.Default is on

--foreground

Starts the Gradle Daemon in a foreground process.

 (Standalone command)--status

Run to list running and recently stopped Gradle daemons. Only displays daemons ofgradle --status

Page 41 of 777

the same Gradle version.

 (Standalone command)--stop

Run to stop all Gradle Daemons of the same version.gradle --stop

-Dorg.gradle.daemon.idletimeout=(number of milliseconds)

Gradle Daemon will stop itself after this number of milliseconds of idle time. (3Default is 10800000

hours).

§

Logging options

§

Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least verbose to

most verbose. Learn more in the .logging documentation

-Dorg.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

Set logging level via Gradle properties.

, -q --quiet

Log errors only.

, -w --warn

Set log level to warn.

, -i --info

Set log level to info.

, -d --debug

Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

§

Customizing log format

You can control the use of rich output (colors and font variants) by specifying the "console" mode in the

following ways:

-Dorg.gradle.console=(auto,plain,rich,verbose)

Specify console mode via Gradle properties. Different modes described immediately below.

--console=(auto,plain,rich,verbose)

Specifies which type of console output to generate.

Set to to generate plain text only. This option disables all color and other rich output in theplain

Page 42 of 777

console output. This is the default when Gradle is attached to a terminal.not

Set to (the default) to enable color and other rich output in the console output when the buildauto

process is attached to a console, or to generate plain text only when not attached to a console. This is

the default when Gradle is attached to a terminal.

Set to to enable color and other rich output in the console output, regardless of whether the buildrich

process is not attached to a console. When not attached to a console, the build output will use ANSI

control characters to generate the rich output.

Set to to enable color and other rich output like the , but output task names and outcomesverbose rich

at the lifecycle log level, as is done by default in Gradle 3.5 and earlier.

§

Showing or hiding warnings

By default, Gradle won’t display all warnings (e.g. deprecation warnings). Instead, Gradle will collect them

and render a summary at the end of the build like:

Deprecated Gradle features were used in this build, making it incompatible with Gradle 5.0.

You can control the verbosity of warnings on the console with the following options:

-Dorg.gradle.warning.mode=(all,none,summary)

Specify warning mode via . Different modes described immediately below.Gradle properties

--warning-mode=(all,none,summary)

Specifies how to log warnings. Default is .summary

Set to to log all warnings.all

Set to to suppress all warnings and log a summary at the end of the build.summary

Set to to suppress all warnings, including the summary at the end of the build.none

§

Rich Console

Gradle’s rich console displays extra information while builds are running.

Page 43 of 777

Features:

Progress bar and timer visually describe overall status

Parallel work-in-progress lines below describe what is happening now

Colors and fonts are used to highlight important output and errors

§

Execution options

The following options affect how builds are executed, by changing what is built or how dependencies are

resolved.

--include-build

Run the build as a composite, including the specified build. See .Composite Builds

--offline

Specifies that the build should operate without accessing network resources. Learn more about options

.to override dependency caching

Page 44 of 777

--refresh-dependencies

Refresh the state of dependencies. Learn more about how to use this in the dependency management

.docs

--dry-run

Run Gradle with all task actions disabled. Use this to show which task would have executed.

§

Environment options

You can customize many aspects about where build scripts, settings, caches, and so on through the options

below. Learn more about customizing your .build environment

, -b --build-file

Specifies the build file. For example: . The default is gradle --build-file=foo.gradle build.gradle

, then , then .build.gradle.kts myProjectName.gradle

, -c --settings-file

Specifies the settings file. For example: gradle --settings-file=somewhere/else/settings.gradle

, -g --gradle-user-home

Specifies the Gradle user home directory. The default is the directory in the user’s home.gradle

directory.

, -p --project-dir

Specifies the start directory for Gradle. Defaults to current directory.

--project-cache-dir

Specifies the project-specific cache directory. Default value is in the root project directory..gradle

, (deprecated)-u --no-search-upward

Don’t search in parent directories for a file.settings.gradle

, -D --system-prop

Sets a system property of the JVM, for example . See -Dmyprop=myvalue the section called “System

.properties”

, -I --init-script

Specifies an initialization script. See .Initialization Scripts

, -P --project-prop

Sets a project property of the root project, for example . See -Pmyprop=myvalue the section called

.“Project properties”

-Dorg.gradle.jvmargs

Set JVM arguments.

Page 45 of 777

-Dorg.gradle.java.home

Set JDK home dir.

§

Bootstrapping new projects

§

Creating new Gradle builds

Use the built-in task to create a new Gradle builds, with new or existing projects.gradle init

 gradle init

Most of the time you’ll want to specify a project type. Available types include (default), basic java-library

, , and more. See for details.java-application init plugin documentation

 gradle init --type java-library

§

Standardize and provision Gradle

The built-in task generates a script, , that invokes a declared version of Gradle,gradle wrapper gradlew

downloading it beforehand if necessary.

 gradle wrapper --gradle-version=4.4

You can also specify , , --distribution-type=(bin|all) --gradle-distribution-url --gradle-distribution-sha256-sum

in addition to . Full details on how to use these options are documented in the --gradle-version Gradle

.wrapper section

§

Continuous Build

Continuous Build allows you to automatically re-execute the requested tasks when task inputs change.

For example, you can continuously run the task and all dependent tasks by running:test

 gradle test --continuous

Gradle will behave as if you ran after a change to sources or tests that contribute to thegradle test

requested tasks. This means that unrelated changes (such as changes to build scripts) will not trigger a

rebuild. In order to incorporate build logic changes, the continuous build must be restarted manually.

Terminating Continuous Build

Page 46 of 777

§

Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be exited by

pressing (On Microsoft Windows, it is required to also press or after). IfCTRL-D ENTER RETURN CTRL-D

Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process

must be terminated (e.g. using the command or similar). If the build is being executed via the Toolingkill

API, the build can be cancelled using the Tooling API’s cancellation mechanism.

§

Limitations and quirks

Note: Continuous build is an feature.incubating

There are several issues to be aware with the current implementation of continuous build. These are likely to

be addressed in future Gradle releases.

§

Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while

executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs

are modified again, the build will be triggered again. This isn’t unique to continuous build. A task that

modifies its own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files reported

changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a task

that has that file as an input. In some cases, it may be obvious (e.g., a Java file is compiled with compileJava

). In other cases, you can use logging to find the task that is out-of-date due to the identified files.--info

§

Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific

options, which means that:

On macOS, Gradle will poll for file changes every 10 seconds instead of every 2 seconds.

On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause continuous

build to no longer work on very large projects.

§

Performance and stability

The JDK file watching facility relies on inefficient file system polling on macOS (see:). This canJDK-7133447

significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under load on macOS (see:). Thisheavy JDK-8079620

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620

Page 47 of 777

will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit continuous

build and start again.

On Linux, OpenJDK’s implementation of the file watch service can sometimes miss file system events (see:

).JDK-8145981

§

Changes to symbolic links

Creating or removing symbolic link to files will initiate a build.

Modifying the target of a symbolic link will not cause a rebuild.

Creating or removing symbolic links to directories will not cause rebuilds.

Creating new files in the target directory of a symbolic link will not cause a rebuild.

Deleting the target directory will not cause a rebuild.

§

Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that

changes to task configuration, or any other change to the build model, are effectively ignored.

https://bugs.openjdk.java.net/browse/JDK-8145981

Page 48 of 777

The Gradle Wrapper

The recommended way to execute any Gradle build is with the help of the Gradle Wrapper (in short just

“Wrapper”). The Wrapper is a script that invokes a declared version of Gradle, downloading it beforehand if

necessary. As a result, developers can get up and running with a Gradle project quickly without having to

follow manual installation processes saving your company time and money.

Figure 3. The Wrapper workflow

In a nutshell you gain the following benefits:

Standardizes a project on a given Gradle version, leading to more reliable and robust builds.

Provisioning a new Gradle version to different users and execution environment (e.g. IDEs or Continuous

Integration servers) is as simple as changing the Wrapper definition.

So how does it work? For a user there are typically three different workflows:

You set up a new Gradle project and want to to it.add the Wrapper

You want to that already provides it.run a project with the Wrapper

Page 49 of 777

You want to to a new version of Gradle.upgrade the Wrapper

The following sections explain each of these use cases in more detail.

§

Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine as

described in . Thankfully, generating the initial Wrapper files is a one-time process.Installing Gradle

Every vanilla Gradle build comes with a built-in task called . You’ll be able to find the task listedwrapper

under the group "Build Setup tasks" when . Executing the task generates thelisting the tasks wrapper

necessary Wrapper files in the project directory.

Example 5. Running the Wrapper task

Output of gradle wrapper

> gradle wrapper

> Task :wrapper

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Note: To make the Wrapper files available to other developers and execution environments you’ll

need to check them into version control. All Wrapper files including the JAR file are very small in

size. Adding the JAR file to version control is expected. Some organizations do not allow projects to

submit binary files to version control. At the moment there are no alternative options to the

approach.

The generated Wrapper properties file, , stores thegradle/wrapper/gradle-wrapper.properties

information about the Gradle distribution.

The server hosting the Gradle distribution.

The type of Gradle distribution. By default that’s the distribution containing only the runtime but no-bin

sample code and documentation.

The Gradle version used for executing the build. By default the task picks the exact same Gradlewrapper

version that was used to generate the Wrapper files.

Example 6. The generated distribution URL

. gradle/wrapper/gradle-wrapper.properties

distributionUrl=https\://services.gradle.org/distributions/gradle-4.3.1-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the following

Page 50 of 777

command line options.

--gradle-version

The Gradle version used for downloading and executing the Wrapper.

--distribution-type

The Gradle distribution type used for the Wrapper. Available options are and . The default valuebin all

is .bin

--gradle-distribution-url

The full URL pointing to Gradle distribution ZIP file. Using this option makes and --gradle-version --distribution-type

obsolete as the URL already contains this information. This option is extremely valuable if you want to

host the Gradle distribution inside your company’s network.

--gradle-distribution-sha256-sum

The SHA256 hash sum used for .verifying the downloaded Gradle distribution

Let’s assume the following use case to illustrate the use of the command line options. You would like to

generate the Wrapper with version 4.0 and use the distribution to enable your IDE to enable-all

code-completion and being able to navigate to the Gradle source code. Those requirements are captured by

the following command line execution:

Example 7. Providing options to Wrapper task

Output of gradle wrapper --gradle-version 4.0 --distribution-type all

> gradle wrapper --gradle-version 4.0 --distribution-type all

> Task :wrapper

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

As a result you can find the desired information in the Wrapper properties file.

Example 8. The generated distribution URL

. gradle/wrapper/gradle-wrapper.properties

distributionUrl=https\://services.gradle.org/distributions/gradle-4.0-all.zip

Let’s have a look at the following project layout to illustrate the expected Wrapper files:

Page 51 of 777

.

 build.gradle

 settings.gradle

 gradle

 wrapper

 gradle-wrapper.jar

 gradle-wrapper.properties

 gradlew

 gradlew.bat

A Gradle project typically provides a and a file. The Wrapper files livebuild.gradle settings.gradle

alongside in the directory and the root directory of the project. The following list explains theirgradle

purpose.

gradle-wrapper.jar

The Wrapper JAR file containing code for downloading the Gradle distribution.

gradle-wrapper.properties

A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle version

compatible with this version.

, gradlew gradlew.bat

A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and without having to install the Gradle runtime. If theexecute the build with the Wrapper

project you are working on does not contain those Wrapper files then you’ll need to .generate them

§

Using the Gradle Wrapper

It is recommended to always execute a build with the Wrapper to ensure a reliable, controlled and

standardized execution of the build. Using the Wrapper looks almost exactly like running the build with a

Gradle installation. Depending on the operating system you either run or instead ofgradlew gradlew.bat

the command. The following console output demonstrate the use of the Wrapper on a Windowsgradle

machine for a Java-based project.

Example 9. Executing the build with the Wrapper batch file

Output of gradlew.bat build

> gradlew.bat build

Downloading https://services.gradle.org/distributions/gradle-4.0-all.zip

...

Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-4.0-all\ac27o8rbd0ic8ih41or9l32mv\gradle-4.0-all.zip to C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-4.0-al\ac27o8rbd0ic8ih41or9l32mv

Set executable permissions for: C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-4.0-all\ac27o8rbd0ic8ih41or9l32mv\gradle-4.0\bin\gradle

BUILD SUCCESSFUL in 12s

1 actionable task: 1 executed

Page 52 of 777

In case the Gradle distribution is not available on the machine, the Wrapper will download it and store in the

local file system. Any subsequent build invocation is going to reuse the existing local distribution as long as

the distribution URL in the Gradle properties doesn’t change.

Note: The Wrapper shell script and batch file reside in the root directory of a single or multi-project

Gradle build. You will need to reference the correct path to those files in case you want to execute

the build from a subproject directory e.g. .../../gradlew tasks

§

Upgrading the Gradle Wrapper

Projects will typically want to keep up with the times and upgrade their Gradle version to benefit from new

features and improvements. One way to upgrade the Gradle version is manually change the distributionUrl

property in the Wrapper property file. The better and recommended option is to run the task andwrapper

provide the target Gradle version as described in . Using the the section called “Adding the Gradle Wrapper” wrapper

task ensures that any optimizations made to the Wrapper shell script or batch file with that specific Gradle

version are applied to the project. As usual you’d commit the changes to the Wrapper files to version control.

Use the Gradle task to generate the wrapper, specifying a version. The default is the currentwrapper

version, which you can check by executing ../gradlew --version

Example 10. Upgrading the Wrapper version

Output of ./gradlew wrapper --gradle-version 4.2.1

> ./gradlew wrapper --gradle-version 4.2.1

BUILD SUCCESSFUL in 4s

1 actionable task: 1 executed

Page 53 of 777

Example 11. Checking the Wrapper version after upgrading

Output of ./gradlew -v

> ./gradlew -v

Downloading https://services.gradle.org/distributions/gradle-4.2.1-bin.zip

...

Unzipping /Users/claudia/.gradle/wrapper/dists/gradle-4.2.1-bin/dajvke9o8kmaxbu0kc5gcgeju/gradle-4.2.1-bin.zip to /Users/claudia/.gradle/wrapper/dists/gradle-4.2.1-bin/dajvke9o8kmaxbu0kc5gcgeju

Set executable permissions for: /Users/claudia/.gradle/wrapper/dists/gradle-4.2.1-bin/dajvke9o8kmaxbu0kc5gcgeju/gradle-4.2.1/bin/gradle

--

Gradle 4.2.1

--

Build time: 2017-10-02 15:36:21 UTC

Revision: a88ebd6be7840c2e59ae4782eb0f27fbe3405ddf

Groovy: 2.4.12

Ant: Apache Ant(TM) version 1.9.6 compiled on June 29 2015

JVM: 1.8.0_60 (Oracle Corporation 25.60-b23)

OS: Mac OS X 10.13.1 x86_64

§

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However, organizational

policies, security constraints or personal preferences might require you to dive deeper into customizing the

Wrapper. Thankfully, the built-in task exposes numerous options to bend the runtime behavior towrapper

your needs. Most configuration options are exposed by the underlying task type .Wrapper

Let’s assume you grew tired of defining the distribution type on the command line every time you-all

upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the task.wrapper

Example 12. Customizing the Wrapper task

build.gradle

wrapper {

 distributionType = Wrapper.DistributionType.ALL

}

With the configuration in place running is enough to./gradlew wrapper --gradle-version 4.1

produce a value in the Wrapper properties file that will request the distribution.distributionUrl -all

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 54 of 777

Example 13. The generated distribution URL

. gradle/wrapper/gradle-wrapper.properties

distributionUrl=https\://services.gradle.org/distributions/gradle-4.1-all.zip

Check out the API documentation for more detail descriptions of the available configuration options. You can

also find various samples for configuring the Wrapper in the Gradle distribution.

§

Authenticated Gradle distribution download

The Gradle can download Gradle distributions from servers using HTTP Basic Authentication. ThisWrapper

enables you to host the Gradle distribution on a private protected server. You can specify a username and

password in two different ways depending on your use case: as system properties or directly embedded in

the . Credentials in system properties take precedence over the ones embedded in distributionUrl distributionUrl

.

Security Warning

HTTP Basic Authentication should only be used with URLs and not plain ones. WithHTTPS HTTP

Basic Authentication, the user credentials are sent in clear text.

Using system properties can be done in the file in the user’s home.gradle/gradle.properties

directory, or by other means, see .the section called “Gradle properties”

Example 14. Specifying the HTTP Basic Authentication credentials using system properties

. gradle.properties

systemProp.gradle.wrapperUser=username

systemProp.gradle.wrapperPassword=password

Embedding credentials in the in the distributionUrl gradle/wrapper/gradle-wrapper.properties

file also works. Please note that this file is to be committed into your source control system. Shared

credentials embedded in should only be used in a controlled environment.distributionUrl

Example 15. Specifying the HTTP Basic Authentication credentials in distributionUrl

. gradle/wrapper/gradle-wrapper.properties

distributionUrl=https://username:password@somehost/path/to/gradle-distribution.zip

This can be used in conjunction with a proxy, authenticated or not. See the section called “Accessing the

 for more information on how to configure the to use a proxy.web through a HTTP proxy” Wrapper

Verification of downloaded Gradle distributions

Page 55 of 777

§

Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256 hash sum

comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker

from tampering with the downloaded Gradle distribution.

To enable this feature, download the file associated with the Gradle distribution you want to verify..sha256

§

Downloading the SHA-256 file

You can download the file from the or . The.sha256 stable releases release candidate and nightly releases

format of the file is a single line of text that is the SHA-256 hash of the corresponding zip file.

§

Configuring checksum verification

Add the downloaded hash sum to using the gradle-wrapper.properties distributionSha256Sum

property or use on the command-line.--gradle-distribution-sha256-sum

Example 16. Configuring SHA-256 checksum verification

. gradle/wrapper/gradle-wrapper.properties

distributionSha256Sum=371cb9fbebbe9880d147f59bab36d61eee122854ef8c9ee1ecf12b82368bcf10

Gradle will report a build failure in case the configured checksum does not match the checksum found on the

server for hosting the distribution. Checksum Verification is only performed if the configured Wrapper

distribution hasn’t been downloaded yet.

https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/

Page 56 of 777

The Gradle Daemon

From Wikipedia…

A daemon is a computer program that runs as a background process, rather than being under

the direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a

non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution to this

problem is the Gradle : a long-lived background process that executes your builds much moreDaemon

quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping

process as well as leveraging caching, by keeping data about your project in memory. Running Gradle builds

with the Daemon is no different than without. Simply configure whether you want to use it or not - everything

else is handled transparently by Gradle.

§

Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for every build,

but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the

benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We

recommend profiling your build by using to get a sense of how much impact the Gradle Daemon--profile

can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything to

benefit from it.

If you run CI builds in ephemeral environments (such as containers) that do not reuse any processes, use of

the Daemon will slightly decrease performance (due to caching additional information) for no benefit, and

may be disabled.

§

Running Daemon Status

To get a list of running Gradle Daemons and their statuses use the command.--status

Sample output:

Page 57 of 777

 PID VERSION STATUS

28411 3.0 IDLE

34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status

output will only show Daemons for the version of Gradle being invoked and not for any other versions.

Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of

Gradle.

§

Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. There are several ways to

disable the Daemon, but the most common one is to add the line

org.gradle.daemon=false

to the file , where is your home directory.«USER_HOME»/.gradle/gradle.properties «USER_HOME»

That’s typically one of the following, depending on your platform:

C:\Users\<username> (Windows Vista & 7+)

/Users/<username> (macOS)

/home/<username> (Linux)

If that file doesn’t exist, just create it using a text editor. You can find details of other ways to disable (and

enable) the Daemon in further down. That section also contains more detailedthe section called “FAQ”

information on how the Daemon works.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost, regardless of

the version of Gradle a particular build uses.

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both developers'

machines and Continuous Integration servers. However, if you suspect that Daemon makes your CI

builds unstable, you can disable it to use a fresh runtime for each build since the runtime is

 isolated from any previous builds.completely

§

Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle

processes on your machine, though. Every Daemon monitors its memory usage compared to total system

memory and will stop itself if idle when available system memory is low. If you want to explicitly stop running

Daemon processes for any reason, just use the command .gradle --stop

Page 58 of 777

This will terminate all Daemon processes that were started with the same version of Gradle used to execute

the command. If you have the Java Development Kit (JDK) installed, you can easily verify that a Daemon

has stopped by running the command. You’ll see any running Daemons listed with the name jps GradleDaemon

.

§

FAQ

§

How do I disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

Via environment variables: add the flag to the environment-Dorg.gradle.daemon=false GRADLE_OPTS

variable

Via properties file: add to the org.gradle.daemon=false «GRADLE_USER_HOME»/gradle.properties

file

Note: Note, defaults to , where is«GRADLE_USER_HOME» «USER_HOME»/.gradle «USER_HOME»

the home directory of the current user. This location can be configured via the and -g --gradle-user-home

command line switches, as well as by the environment variable and GRADLE_USER_HOME org.gradle.user.home

JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users

choose the second option and add the entry to the user file.gradle.properties

On Windows, this command will disable the Daemon for the current user:

(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo. >> "%USERPROFILE%/.gradle/gradle.properties" && echo org.gradle.daemon=false >> "%USERPROFILE%/.gradle/gradle.properties")

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the current

user:

mkdir -p ~/.gradle && echo "org.gradle.daemon=false" >> ~/.gradle/gradle.properties

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started

unless explicitly requested using the option.--daemon

The and command line options enable and disable usage of the Daemon for--daemon --no-daemon

individual build invocations when using the Gradle command line interface. These command line options

have the precedence when considering the build environment. Typically, it is more convenient tohighest

enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without

requiring to remember to supply the option.--daemon

Why is there more than one Daemon process on my machine?

Page 59 of 777

§

Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is already

running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible

Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don’t have to

worry about cleaning them up manually.

idle

An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible

A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build

environment. The Java runtime used to execute the build is an example aspect of the build environment.

Another example is the set of JVM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running

with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible

and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the

JVM has started. For example, it is not possible to change the memory allocation (e.g.), default-Xmx1024m

text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.

Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.

See for details on how to specify and control the build environment.Build Environment

The following JVM system properties are effectively immutable. If the requested build environment requires

any of these properties, with a different value than a Daemon’s JVM has for this property, the Daemon is not

compatible.

file.encoding

user.language

user.country

user.variant

java.io.tmpdir

javax.net.ssl.keyStore

javax.net.ssl.keyStorePassword

javax.net.ssl.keyStoreType

javax.net.ssl.trustStore

javax.net.ssl.trustStorePassword

Page 60 of 777

javax.net.ssl.trustStoreType

com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The

corresponding attributes of the requested build environment and the Daemon’s environment must match

exactly in order for a Daemon to be compatible.

The maximum heap size (i.e. the -Xmx JVM argument)

The minimum heap size (i.e. the -Xms JVM argument)

The boot classpath (i.e. the -Xbootclasspath argument)

The “assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are

coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different

Gradle versions is a common reason for having more than one running Daemon process.

§

How much memory does the Daemon use and can I give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB of

heap. It will use the JVM’s default minimum heap size. 1GB is more than enough for most builds. Larger

builds with hundreds of subprojects, lots of configuration, and source code may require, or perform better,

with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the

requested build environment. Please see for details.Build Environment

§

How can I stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to

stop a Daemon process before this, you can either kill the process via your operating system or run the gradle --stop

command. The switch causes Gradle to request that running Daemon processes, --stop all of the same

, terminate themselves.Gradle version used to run the command

§

What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive

during day to day development. However, Daemon processes can occasionally be corrupted or exhausted.

A Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily

tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process

through defects such as memory leaks or global state corruption.

Page 61 of 777

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do not

release resources correctly. This is a particularly poignant problem when using Microsoft Windows as it is

less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the available

heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running

build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be

disabled by setting the system property toorg.gradle.daemon.performance.enable-monitoring

false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the --no-daemon

switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or

not the Daemon is actually the culprit of a problem.

§

Tools & IDEs

The Gradle Tooling API (see), that is used by IDEs and other toolsEmbedding Gradle using the Tooling API

to integrate with Gradle, use the Gradle Daemon to execute builds. If you are executing Gradlealways

builds from within you’re IDE you are using the Gradle Daemon and do not need to enable it for your

environment.

§

How does the Gradle Daemon make builds faster?

The Gradle Daemon is a build process. In between builds it waits idly for the next build. This haslong lived

the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed to

once for each build. This in itself is a significant performance optimization, but that’s not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For example,

HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK) applies

optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the

code is progressively optimized during execution which means that subsequent builds can be faster purely

due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5

and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and

the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed

by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can

maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for

incremental building.

Page 62 of 777

Dependency Management for Java Projects

This chapter explains how to apply basic dependency management concepts to Java-based projects. For a

detailed introduction to dependency management, see .Introduction to Dependency Management

§

Dissecting a typical build script

Let’s have a look at a very simple build script for a Java-based project. It applies the Java Library plugin

which automatically introduces a standard project layout, provides tasks for performing typical work and

adequate support for dependency management.

Example 17. Dependency declarations for a Java-based project

build.gradle

apply plugin: 'java-library'

repositories {

 mavenCentral()

}

dependencies {

 implementation 'org.hibernate:hibernate-core:3.6.7.Final'

 api 'com.google.guava:guava:23.0'

 testImplementation 'junit:junit:4.+'

}

The code block declares that Hibernate core 3.6.7.Final is required to compileProject.dependencies{}

the project’s production source code. It also states that junit >= 4.0 is required to compile the project’s tests.

All dependencies are supposed to be looked up in the Maven Central repository as defined by

. The following sections explain each aspect in more detail.Project.repositories{}

Declaring module dependencies

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

Page 63 of 777

§

Declaring module dependencies

There are various that you can declare. One such type is a . A types of dependencies module dependency

 represents a dependency on a module with a specific version built outside the currentmodule dependency

build. Modules are usually stored in a repository, such as Maven Central, a corporate Maven or Ivy

repository, or a directory in the local file system.

To define an module dependency, you add it to a :dependency configuration

Example 18. Definition of a module dependency

build.gradle

dependencies {

 implementation 'org.hibernate:hibernate-core:3.6.7.Final'

}

To find out more about defining dependencies, have a look at .Declaring Dependencies

§

Using dependency configurations

A is a named set of dependencies and artifacts. There are three main purposes for a Configuration

:configuration

Declaring dependencies

A plugin uses configurations to make it easy for build authors to declare what other subprojects or

external artifacts are needed for various purposes during the execution of tasks defined by the plugin. For

example a plugin may need the Spring web framework dependency to compile the source code.

Resolving dependencies

A plugin uses configurations to find (and possibly download) inputs to the tasks it defines. For example

Gradle needs to download Spring web framework JAR files from Maven Central.

Exposing artifacts for consumption

A plugin uses configurations to define what it generates for other projects to consume. Forartifacts

example the project would like to publish its compiled source code packaged in the JAR file to an

in-house Artifactory repository.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined by the

.Java Library Plugin

implementation

The dependencies required to compile the production source of the project which part of the APIare not

exposed by the project. For example the project uses Hibernate for its internal persistence layer

implementation.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html

Page 64 of 777

api

The dependencies required to compile the production source of the project which part of the APIare

exposed by the project. For example the project uses Guava and exposes public interfaces with Guava

classes in their method signatures.

testImplementation

The dependencies required to compile and run the test source of the project. For example the project

decided to write test code with the test framework JUnit.

Various plugins add further standard configurations. You can also define your own custom configurations in

your build via . See for the details ofProject.configurations{} Managing Dependency Configurations

defining and customizing dependency configurations.

§

Declaring common Java repositories

How does Gradle know where to find the files for external dependencies? Gradle looks for them in a

. A repository is a collection of modules, organized by , and . Gradlerepository group name version

understands different , such as Maven and Ivy, and supports various ways of accessing therepository types

repository via HTTP or other protocols.

By default, Gradle does not define any repositories. You need to define at least one with the help of

 before you can use module dependencies. One option is use the MavenProject.repositories{}

Central repository:

Example 19. Usage of Maven central repository

build.gradle

repositories {

 mavenCentral()

}

You can also have repositories on the local file system. This works for both Maven and Ivy repositories.

Example 20. Usage of a local Ivy directory

build.gradle

repositories {

 ivy {

 // URL can refer to a local directory

 url "../local-repo"

 }

}

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order

they are specified, stopping at the first repository that contains the requested module.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

Page 65 of 777

To find out more about defining repositories, have a look at .Declaring Repositories

§

Publishing artifacts

Dependency configurations are also used to publish files. Gradle calls these files , orpublication artifacts

usually just . As a user you will need to tell Gradle where to publish the artifacts. You do this byartifacts

declaring repositories for the task. Here’s an example of publishing to a MavenuploadArchives

repository:

Example 21. Publishing to a Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {

 repositories {

 mavenDeployer {

 repository(url:)"file://localhost/tmp/myRepo/"

 }

 }

}

Now, when you run , Gradle will build the JAR file, generate a file andgradle uploadArchives .pom

upload the artifacts.

To learn more about publishing artifacts, have a look at .Publishing artifacts

Page 66 of 777

Executing Multi-Project Builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,

monolithic application. It’s often much easier to digest and understand a project that has been split into

smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you typically

want to link the modules together through a single build.

Gradle supports this scenario through builds.multi-project

§

Structure of a multi-project build

Such builds come in all shapes and sizes, but they do have some common characteristics:

A file in the root or directory of the projectsettings.gradle master

A file in the root or directorybuild.gradle master

Child directories that have their own build files (some multi-project builds may omit child project*.gradle

build scripts)

The file tells Gradle how the project and subprojects are structured. Fortunately, yousettings.gradle

don’t have to read this file simply to learn what the project structure is as you can run the command gradle projects

. Here’s the output from using that command on the Java build in the Gradle samples:multiproject

Page 67 of 777

Example 22. Listing the projects in a build

Output of gradle -q projects

> gradle -q projects

--

Root project

--

Root project 'multiproject'

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared'

| \--- Project ':services:webservice'

\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks

For example, try running gradle :api:tasks

This tells you that has three immediate child projects: , and . The multiproject api services shared services

project then has its own children, and . These map to the directory structure, so it’s easyshared webservice

to find them. For example, you can find in .webservice <root>/services/webservice

By default, Gradle uses the name of the directory it finds the as the name of the rootsettings.gradle

project. This usually doesn’t cause problems since all developers check out the same directory name when

working on a project. On Continuous Integration servers, like Jenkins, the directory name may be

auto-generated and not match the name in your VCS. For that reason, it’s recommended that you always set

the root project name to something predictable, even in single project builds. You can configure the root

project name by setting .rootProject.name

Each project will usually have its own build file, but that’s not necessarily the case. In the above example, the

 project is just a container or grouping of other subprojects. There is no build file in theservices

corresponding directory. However, does have one for the root project.multiproject

The root is often used to share common configuration between the child projects, forbuild.gradle

example by applying the same sets of plugins and dependencies to all the child projects. It can also be used

to configure individual subprojects when it is preferable to have all the configuration in one place. This

means you should always check the root build file when discovering how a particular subproject is being

configured.

Another thing to bear in mind is that the build files might not be called . Many projects willbuild.gradle

name the build files after the subproject names, such as and from theapi.gradle services.gradle

previous example. Such an approach helps a lot in IDEs because it’s tough to work out which build.gradle

file out of twenty possibilities is the one you want to open. This little piece of magic is handled by the settings.gradle

file, but as a build user you don’t need to know the details of how it’s done. Just have a look through the child

project directories to find the files with the suffix..gradle

Page 68 of 777

Once you know what subprojects are available, the key question for a build user is how to execute the tasks

within the project.

§

Executing a multi-project build

From a user’s perspective, multi-project builds are still collections of tasks you can run. The difference is that

you may want to control project’s tasks get executed. You have two options here:which

Change to the directory corresponding to the subproject you’re interested in and just execute gradle <task>

as normal.

Use a qualified task name from any directory, although this is usually done from the root. For example: gradle :services:webservice:build

will build the subproject and any subprojects it depends on.webservice

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case of

a multi-project build. The command will execute the task in any subprojects, relative togradle test test

the current working directory, that have that task. So if you run the command from the root project directory,

you’ll run in , , and . If you run the command from thetest api shared services:shared services:webservice

services project directory, you’ll only execute the task in and .services:shared services:webservice

For more control over what gets executed, use qualified names (the second approach mentioned). These

are paths just like directory paths, but use ‘:’ instead of ‘/’ or ‘\’. If the path begins with a ‘:’, then the path is

resolved relative to the root project. In other words, the leading ‘:’ represents the root project itself. All other

colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use

the task, e.g. .tasks gradle :services:webservice:tasks

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects

that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you’re

interested in how this is configured, you can read about writing multi-project builds .later in the user guide

There’s one last thing to note. When you’re using the Gradle wrapper, the first approach doesn’t work well

because you have to specify the path to the wrapper script if you’re not in the project root. For example, if

you’re in the subproject directory, you would have to run .webservice ../../gradlew build

That’s all you really need to know about multi-project builds as a build user. You can now identify whether a

build is a multi-project one and you can discover its structure. And finally, you can execute tasks within

specific subprojects.

Page 69 of 777

Composite builds

Note: Composite build is an feature. While useful for many use cases, there are bugs toincubating

be discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

§

What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to a

Gradle multi-project build, except that instead of including single , complete are included.projects builds

Composite builds allow you to:

combine builds that are usually developed independently, for instance when trying out a bug fix in a library

that your application uses

decompose a large multi-project build into smaller, more isolated chunks that can be worked in

independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build". Included

builds do not share any configuration with the composite build, or the other included builds. Each included

build is configured and executed in isolation.

Included builds interact with other builds via . If any build in the compositedependency substitution

has a dependency that can be satisfied by the included build, then that dependency will be replaced by a

project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.

However for more flexibility, it is possible to explicitly declare these substitutions if the default ones

determined by Gradle are not correct for the composite. See the section called “Declaring the dependencies

.substituted by an included build”

As well as consuming outputs via project dependencies, a composite build can directly declare task

dependencies on included builds. Included builds are isolated, and are not able to declare task

dependencies on the composite build or on other included builds. See the section called “Depending on

.tasks in an included build”

Defining a composite build

Page 70 of 777

§

Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed

separately can be combined into a composite build. For these examples, the multi-project buildmy-utils

produces 2 different java libraries (and), and the build producesnumber-utils string-utils my-app

an executable using functions from those libraries.

The build does not have direct dependencies on . Instead, it declares binarymy-app my-utils

dependencies on the libraries produced by .my-utils

Example 23. Dependencies of my-app

my-app/build.gradle

apply plugin: 'java'

apply plugin: 'application'

apply plugin: 'idea'

group "org.sample"

version "1.0"

mainClassName = "org.sample.myapp.Main"

dependencies {

 compile "org.sample:number-utils:1.0"

 compile "org.sample:string-utils:1.0"

}

repositories {

 jcenter()

}

Note: The code for this example can be found at in the ‘-all’samples/compositeBuilds/basic

distribution of Gradle.

§

Defining a composite build via --include-build

The command-line argument turns the executed build into a composite, substituting--include-build

dependencies from the included build into the executed build.

Page 71 of 777

Example 24. Declaring a command-line composite

Output of gradle --include-build ../my-utils run

> gradle --include-build ../my-utils run

> Task :processResources NO-SOURCE

> Task :my-utils:string-utils:compileJava

> Task :my-utils:string-utils:processResources NO-SOURCE

> Task :my-utils:string-utils:classes

> Task :my-utils:string-utils:jar

> Task :my-utils:number-utils:compileJava

> Task :my-utils:number-utils:processResources NO-SOURCE

> Task :my-utils:number-utils:classes

> Task :my-utils:number-utils:jar

> Task :compileJava

> Task :classes

> Task :run

The answer is 42

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

§

Defining a composite build via settings.gradle

It’s possible to make the above arrangement persistent, by using

 to declare the included build in the Settings.includeBuild(java.lang.Object) settings.gradle

file. The file can be used to add subprojects and included builds at the same time.settings.gradle

Included builds are added by location. See the examples below for more details.

§

Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less

useful as a standalone build. One way to avoid this is to define a separate composite build, whose only

purpose is to combine otherwise separate builds.

Example 25. Declaring a separate composite

settings.gradle

rootProject.name='adhoc'

includeBuild '../my-app'

includeBuild '../my-utils'

In this scenario, the 'main' build that is executed is the composite, and it doesn’t define any useful tasks to

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

Page 72 of 777

execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build must define a

delegating task.

Example 26. Depending on task from included build

build.gradle

task run {

 dependsOn gradle.includedBuild().task()'my-app' ':run'

}

More details tasks that depend on included build tasks below.

§

Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.

Every included build:

must have a file.settings.gradle

must not itself be a composite build.

must not have a the same as another included build.rootProject.name

must not have a the same as a top-level project of the composite build.rootProject.name

must not have a the same as the composite build .rootProject.name rootProject.name

§

Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build. Tasks can be

executed, tests can be run, and builds can be imported into the IDE.

§

Executing tasks

Tasks from the composite build can be executed from the command line, or from you IDE. Executing a task

will result in direct task dependencies being executed, as well as those tasks required to build dependency

artifacts from included builds.

Note: There is not (yet) any means to directly execute a task from an included build via the

command line. Included build tasks are automatically executed in order to generate required

dependency artifacts, or the including build can declare a dependency on a task from an included

.build

Importing into the IDE

Page 73 of 777

§

Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the or pluginidea eclipse

to your build, it is possible to generate a single IDEA or Eclipse project that permits all builds in the

composite to be developed together.

In addition to these Gradle plugins, recent versions of and support directIntelliJ IDEA Eclipse Buildship

import of a composite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed together.

For every included build, each sub-project is included as an IDEA Module or Eclipse Project. Source

dependencies are configured, providing cross-build navigation and refactoring.

§

Declaring the dependencies substituted by an included build

By default, Gradle will configure each included build in order to determine the dependencies it can provide.

The algorithm for doing this is very simple: Gradle will inspect the group and name for the projects in the

included build, and substitute project dependencies for any external dependency matching ${project.group}:${project.name}

.

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not

correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an

included build. Take for example a single-project build 'unpublished', that produces a java utility library but

does not declare a value for the group attribute:

Example 27. Build that does not declare group attribute

build.gradle

apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module

"undefined:unpublished" ("undefined" being the default value for , and 'unpublished' beingproject.group

the root project name). Clearly this isn’t going to be very useful in a composite build. To use the unpublished

library unmodified in a composite build, the composing build can explicitly declare the substitutions that it

provides:

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

Page 74 of 777

Example 28. Declaring the substitutions for an included build

settings.gradle

rootProject.name = 'app'

includeBuild() {'../anonymous-library'

 dependencySubstitution {

 substitute module() with project()'org.sample:number-utils' ':'

 }

}

With this configuration, the "my-app" composite build will substitute any dependency on org.sample:number-utils

with a dependency on the root project of "unpublished".

§

Cases where included build substitutions must be declared

Many builds that use the task to publish artifacts will function automatically as anuploadArchives

included build, without declared substitutions. Here are some common cases where declared substitutions

are required:

When the property is used to set the name of the published artifact.archivesBaseName

When a configuration other than is published: this usually means a task other than default uploadArchives

is used.

When the is used to publish artifacts that don’t match the project name.MavenPom.addFilter()

When the or plugins are used for publishing, and the publicationmaven-publish ivy-publish

coordinates don’t match .${project.group}:${project.name}

§

Cases where composite build substitutions won’t work

Some builds won’t function correctly when included in a composite, even when dependency substitutions are

explicitly declared. This limitation is due to the fact that a project dependency that is substituted will always

point to the configuration of the target project. Any time that the artifacts and dependenciesdefault

specified for the default configuration of a project don’t match what is actually published to a repository, then

the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default

configuration:

When a configuration other than is published.default

When the or plugins are used.maven-publish ivy-publish

When the or file is tweaked as part of publication.POM ivy.xml

Page 75 of 777

Builds using these features function incorrectly when included in a composite build. We plan to improve this

in the future.

§

Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite

build is able to declare task dependencies on its included builds. The included builds are accessed using

 or , and a taskGradle.getIncludedBuilds() Gradle.includedBuild(java.lang.String)

reference is obtained via the method.IncludedBuild.task(java.lang.String)

Using these APIs, it is possible to declare a dependency on a task in a particular included build, or tasks with

a certain path in all or some of the included builds.

Example 29. Depending on a single task from an included build

build.gradle

task run {

 dependsOn gradle.includedBuild().task()'my-app' ':run'

}

Example 30. Depending on a tasks with path in all included builds

build.gradle

task publishDeps {

 dependsOn gradle.includedBuilds*.task()':uploadArchives'

}

§

Current limitations and future plans for composite builds

We think composite builds are pretty useful already. However, there are some things that don’t yet work the

way we’d like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

No support for included builds that have publications that don’t mirror the project default configuration. See

.the section called “Cases where composite build substitutions won’t work”

Native builds are not supported. (Binary dependencies are not yet supported for native builds).

Substituting plugins only works with the block but not with the block.buildscript plugins

Improvements we have planned for upcoming releases include:

Better detection of dependency substitution, for build that publish with custom coordinates, builds that

produce multiple components, etc. This will reduce the cases where dependency substitution needs to be

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

Page 76 of 777

explicitly declared for an included build.

The ability to target a task or tasks in an included build directly from the command line. We are currently

exploring syntax options for allowing this functionality, which will remove many cases where a delegating

task is required in the composite.

Making the implicit project an included build.buildSrc

Supporting composite-of-composite builds.

Page 77 of 777

Build Environment

Gradle provides multiple mechanisms for configuring behavior of Gradle itself and specific projects. The

following is a reference for using these mechanisms.

When configuring Gradle behavior you can use these methods, listed in order of highest to lowest

precedence (first one wins):

Command-line flags such as . These have precedence over properties and environment--build-cache

variables.

System properties such as stored in a systemProp.http.proxyHost=somehost.org gradle.properties

file.

Gradle properties such as that are typically stored in a org.gradle.caching=true gradle.properties

file in a project root directory or environment variable.GRADLE_USER_HOME

Environment variables such as sourced by the environment that executes Gradle.GRADLE_OPTS

Aside from configuring the build environment, you can configure a given project build using Project

 such as .properties -PreleaseType=final

§

Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute

your build. While it’s possible to configure these in your local environment via or ,GRADLE_OPTS JAVA_OPTS

it is useful to store certain settings like JVM memory configuration and Java home location in version control

so that an entire team can work with a consistent environment.

Setting up a consistent environment for your build is as simple as placing these settings into a gradle.properties

file. The configuration is applied in following order (if an option is configured in multiple locations the last one

):wins

gradle.properties in project root directory.

gradle.properties in directory.GRADLE_USER_HOME

system properties, e.g. when is set on the command line.-Dgradle.user.home

Page 78 of 777

The following properties can be used to configure the Gradle build environment:

org.gradle.caching=(true,false)

When set to true, Gradle will reuse task outputs from any previous build, when possible, resulting is much

faster builds. Learn more about .using the build cache

org.gradle.caching.debug=(true,false)

When set to true, individual input property hashes and the build cache key for each task are logged on

the console. Learn more about .task output caching

org.gradle.configureondemand=(true,false)

Enables incubating , where Gradle will attempt to configure only necessaryconfiguration on demand

projects.

org.gradle.console=(auto,plain,rich,verbose)

Customize console output coloring or verbosity. Default depends on how Gradle is invoked. See

 for additional details.command-line logging

org.gradle.daemon=(true,false)

When set to the is used to run the build. Default is .true Gradle Daemon true

org.gradle.daemon.idletimeout=(# of idle millis)

Gradle Daemon will terminate itself after specified number of idle milliseconds. Default is (310800000

hours).

org.gradle.debug=(true,false)

When set to , Gradle will run the build with remote debugging enabled, listening on port 5005. Notetrue

that this is the equivalent of adding -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005

to the JVM command line and will suspend the virtual machine until a debugger is attached. Default is false

.

org.gradle.java.home=(path to JDK home)

Specifies the Java home for the Gradle build process. The value can be set to either a or jdk jre

location, however, depending on what your build does, using a JDK is safer. A reasonable default is used

if the setting is unspecified.

org.gradle.jvmargs=(JVM arguments)

Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for

 for build performance.configuring JVM memory settings

org.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are not case

sensitive. The level is the default. See .lifecycle the section called “Choosing a log level”

org.gradle.parallel=(true,false)

When configured, Gradle will fork up to JVMs to execute projects inorg.gradle.workers.max

parallel. To learn more about parallel task execution, see .the Gradle performance guide

https://guides.gradle.org/performance/#parallel_execution

Page 79 of 777

org.gradle.warning.mode=(all,none,summary)

When set to , or , Gradle will use different warning type display. See all summary none the section

 for details.called “Logging options”

org.gradle.workers.max=(max # of worker processes)

When configured, Gradle will use a maximum of the given number of workers. Default is number of CPU

processors. See also .performance command-line options

The following example demonstrates usage of various properties.

Example 31. Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue

sysProp=shouldBeOverWrittenBySysProp

envProjectProp=shouldBeOverWrittenByEnvProp

systemProp.system=systemValue

build.gradle

task printProps {

 doLast {

 println commandLineProjectProp

 println gradlePropertiesProp

 println systemProjectProp

 println envProjectProp

 println System.properties[]'system'

 }

}

Output of gradle -q -PcommandLineProjectProp=commandLineProjectPropValue

-Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps

> gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps

commandLineProjectPropValue

gradlePropertiesValue

systemPropertyValue

envPropertyValue

systemValue

§

System properties

Using the command-line option, you can pass a system property to the JVM which runs Gradle. The -D -D

option of the command has the same effect as the option of the command.gradle -D java

You can also set system properties in files with the prefix gradle.properties systemProp.

Page 80 of 777

Example 32. Specifying system properties in gradle.properties

systemProp.gradle.wrapperUser=myuser

systemProp.gradle.wrapperPassword=mypassword

The following system properties are available. Note that command-line options take precedence over system

properties.

gradle.wrapperUser=(myuser)

Specify user name to download Gradle distributions from servers using HTTP Basic Authentication.

Learn more in .the section called “Authenticated Gradle distribution download”

gradle.wrapperPassword=(mypassword)

Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradle.user.home=(path to directory)

Specify the Gradle user home directory.

In a multi project build, “ ” properties set in any project except the root will be ignored. That is,systemProp.

only the root project’s file will be checked for properties that begin with the “gradle.properties systemProp.

” prefix.

§

Environment variables

The following environment variables are available for the command. Note that command-linegradle

options and system properties take precedence over environment variables.

GRADLE_OPTS

Specifies to use when starting the Gradle client. This can be useful for settingcommand-line arguments

the properties to use when running Gradle.

GRADLE_USER_HOME

Specifies the Gradle user home directory (which defaults to if not set).$USER_HOME/.gradle

JAVA_HOME

Specifies the JDK installation directory to use.

§

Project properties

You can add properties directly to your object via the command line option.Project -P

Gradle can also set project properties when it sees specially-named system properties or environment

variables. If the environment variable name looks like , thenORG_GRADLE_PROJECT =somevalue_prop

Gradle will set a property on your project object, with the value of . Gradle also supportsprop somevalue

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Page 81 of 777

this for system properties, but with a different naming pattern, which looks like org.gradle.project.prop

. Both of the following will set the property on your Project object to .foo "bar"

Example 33. Setting a project property via gradle.properties

org.gradle.project.foo=bar

Example 34. Setting a project property via environment variable

ORG_GRADLE_PROJECT_foo=bar

Note: The properties file in the user’s home directory has precedence over property files in the

project directories.

This feature is very useful when you don’t have admin rights to a continuous integration server and you need

to set property values that should not be easily visible. Since you cannot use the option in that scenario,-P

nor change the system-level configuration files, the correct strategy is to change the configuration of your

continuous integration build job, adding an environment variable setting that matches an expected pattern.

This won’t be visible to normal users on the system.

You can access a project property in your build script simply by using its name as you would use a variable.

Note: If a project property is referenced but does not exist, an exception will be thrown and the build

will fail.

You should check for existence of optional project properties before you access them using the

 method.Project.hasProperty(java.lang.String)

§

Configuring JVM memory

Gradle defaults to 1024 megabytes maximum heap per JVM process (), however, that may be-Xmx1024m

too much or too little depending on the size of your project. There are many JVM options (this blog post on

 and may be helpful).Java performance tuning this reference

You can adjust JVM options for Gradle in the following ways:

The environment variable is used for the Gradle client, but not forked JVMs.JAVA_OPTS

Example 35. Changing JVM settings for Gradle client JVM

JAVA_OPTS="-Xmx2g -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8"

You need to use the Gradle property to configure JVM settings for the org.gradle.jvmargs Gradle

.Daemon

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
https://dzone.com/articles/java-performance-tuning
https://dzone.com/articles/java-performance-tuning
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Page 82 of 777

Example 36. Changing JVM settings for forked Gradle JVMs

org.gradle.jvmargs=-Xmx2g -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8

Note: Many settings (like the Java version and maximum heap size) can only be specified when

launching a new JVM for the build process. This means that Gradle must launch a separate JVM

process to execute the build after parsing the various files.gradle.properties

When running with the , a JVM with the correct parameters is started once andGradle Daemon

reused for each daemon build execution. When Gradle is executed without the daemon, then a new

JVM must be launched for every build execution, unless the JVM launched by the Gradle start script

happens to have the same parameters.

Certain tasks in Gradle also fork additional JVM processes, like the task when using test

 for JUnit or TestNG tests. You must configure these through theTest.setMaxParallelForks(int)

tasks themselves.

Example 37. Set Java compile options for tasksJavaCompile

apply plugin: "java"

tasks.withType(JavaCompile) {

 options.compilerArgs += ["-Xdoclint:none", "-Xlint:none", "-nowarn"]

}

See other examples in the API documentation and .Test test execution in the Java plugin reference

Build scans will tell you information about the JVM that executed the build when you use the option.--scan

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com

Page 83 of 777

§

Configuring a task using project properties

It’s possible to change the behavior of a task based on project properties specified at invocation time.

Suppose you’d like to ensure release builds are only triggered by CI. A simple way to handle this is through

an project property.isCI

https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

Page 84 of 777

Example 38. Prevent releasing outside of CI

build.gradle

task performRelease {

 doLast {

 (project.hasProperty()) {if "isCI"

 println()"Performing release actions"

 } {else

 InvalidUserDataException()throw new "Cannot perform release outside of CI"

 }

 }

}

Output of gradle performRelease -PisCI=true --quiet

> gradle performRelease -PisCI=true --quiet

Performing release actions

§

Accessing the web through a HTTP proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard

JVM system properties. These properties can be set directly in the build script; for example, setting the

HTTP proxy host would be done with System.setProperty('http.proxyHost', 'www.somehost.org')

. Alternatively, the properties can be .specified in gradle.properties

Example 39. Configuring an HTTP proxy using gradle.properties

systemProp.http.proxyHost=www.somehost.org

systemProp.http.proxyPort=8080

systemProp.http.proxyUser=userid

systemProp.http.proxyPassword=password

systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

There are separate settings for HTTPS.

Example 40. Configuring an HTTPS proxy using gradle.properties

systemProp.https.proxyHost=www.somehost.org

systemProp.https.proxyPort=8080

systemProp.https.proxyUser=userid

systemProp.https.proxyPassword=password

systemProp.https.nonProxyHosts=*.nonproxyrepos.com|localhost

You may need to set other properties to access other networks. Here are 2 references that may be helpful:

ProxySetup.java in the Ant codebase

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD

Page 85 of 777

JDK 7 Networking Properties

§

NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as

the username and password. There are 2 ways that you can provide the domain for authenticating to a

NTLM proxy:

Set the system property to a value like .http.proxyUser /domain username

Provide the authentication domain via the system property.http.auth.ntlm.domain

http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Page 86 of 777

Troubleshooting

The following is a collection of common issues and suggestions for addressing them. You can get other tips

and search the and answers, as well as Gradle documentation from Gradle forums StackOverflow #gradle

.help.gradle.org

§

Troubleshooting Gradle installation

If you followed the , and aren’t able to execute your Gradle build, here are some tipsinstallation instructions

that may help.

If you installed Gradle outside of just invoking the , you can check your Gradle installation byGradle Wrapper

running in a terminal.gradle --version

You should see something like this:

 gradle --version

Gradle 4.6

--

Build time: 2018-02-21 15:28:42 UTC

Revision: 819e0059da49f469d3e9b2896dc4e72537c4847d

Groovy: 2.4.12

Ant: Apache Ant(TM) version 1.9.9 compiled on February 2 2017

JVM: 1.8.0_151 (Oracle Corporation 25.151-b12)

OS: Mac OS X 10.13.3 x86_64

If not, here are some things you might see instead.

§

Command not found: gradle

If you get "command not found: gradle", you need to ensure that Gradle is properly added to your .PATH

JAVA_HOME is set to an invalid directory

https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle
https://help.gradle.org/

Page 87 of 777

§

JAVA_HOME is set to an invalid directory

If you get something like:

ERROR: JAVA_HOME is set to an invalid directory

Please set the JAVA_HOME variable in your environment to match the location of your Java installation.

You’ll need to ensure that a version 7 or higher is , the Java Development Kit properly installed JAVA_HOME

environment variable is set, and .Java is added to your PATH

§

Permission denied

If you get "permission denied", that means that Gradle likely exists in the correct place, but it is not

executable. You can fix this using on *nix-based systems.chmod +x path/to/executable

§

Other installation failures

If works, but all of your builds fail with the same error, it is possible there is a problemgradle --version

with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running which executes configurationgradle help

scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If not, then the problem

exists within the execution of one or more of the requested tasks (Gradle executes configuration scripts first,

and then executes build steps).

§

Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in Troubleshooting

.Dependency Resolution

You can see a dependency tree and see which resolved dependency versions differed from what was

requested by clicking the view and using the search functionality, specifying the resolutionDependencies

reason.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml

Page 88 of 777

Figure 4. Debugging dependency conflicts with build scans

The with filtering criteria is available for exploration.actual build scan

§

Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see the guide to Improving the Performance of

.Gradle Builds

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up Your

. Many tips are also covered in the Android Studio user guide Android Gradle Builds on optimizing build

.speed

Debugging build logic

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/
https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

Page 89 of 777

§

Debugging build logic

§

Attaching a debugger to your build

You can set breakpoints and debug in your Gradle build itself by setting the buildSrc and standalone plugins org.gradle.debug

property to “true” and then attaching a remote debugger to port 5005.

 gradle help -Dorg.gradle.debug=true --no-daemon

In addition, if you’ve adopted the Kotlin DSL, you can also debug build scripts themselves.

The following video demonstrates how to debug an example build using IntelliJ IDEA.

Figure 5. Interactive debugging of a build script

Note: You must either stop running Gradle Daemons or run with when using debug--no-daemon

mode.

Adding and changing logging

Page 90 of 777

§

Adding and changing logging

In addition to , you can also control display of task outcomes (e.g.controlling logging verbosity

“UP-TO-DATE”) in lifecycle logging using the . flag--console=verbose

You can also replace much of Gradle’s logging with your own by registering various event listeners. One

example of a . You can also custom event logger is explained in the logging documentation control logging

, making them more verbose in order to debug their execution.from external tools

Note: Additional logs from the can be found under Gradle Daemon GRADLE_USER_HOME/daemon/<gradle-version>/

.

§

Task executed when it should have been UP-TO-DATE

--info logs explain why a task was executed, though build scans do this is searchable, visual way by going

to the view and clicking on the task you want to inspect.Timeline

Figure 6. Debugging incremental build with a build scan

You can learn what the task outcomes mean from .this listing

Debugging IDE integration

Page 91 of 777

§

Debugging IDE integration

Many infrequent errors within IDEs can be solved by "refreshing" Gradle. See also more documentation on

working with Gradle and .in IntelliJ IDEA in Eclipse

§

Refreshing IntelliJ IDEA

NOTE: This only works for Gradle projects .linked to IntelliJ

From the main menu, go to > > . Then click on the icon.View Tool Windows Gradle Refresh

Figure 7. Refreshing a Gradle project in IntelliJ IDEA

§

Refreshing Eclipse (using Buildship)

If you’re using for the Eclipse IDE, you can re-synchronize your Gradle build by opening theBuildship

"Gradle Tasks" view and clicking the "Refresh" icon, or by executing the > Gradle Refresh Gradle Project

command from the context menu while editing a Gradle script.

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project
https://projects.eclipse.org/projects/tools.buildship

Page 92 of 777

Figure 8. Refreshing a Gradle project in Eclipse Buildship

§

Getting additional help

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the orhelp forum

search relevant developer resources using .help.gradle.org

If you believe you’ve found a bug in Gradle, please on GitHub.file an issue

https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

Page 93 of 777

Embedding Gradle using the Tooling API

§

Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into

your own software. This API allows you to execute and monitor builds and to query Gradle about the details

of a build. The main audience for this API is IDE, CI server, other UI authors; however, the API is open for

anyone who needs to embed Gradle in their application.

Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.

Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.

IntelliJ IDEA uses the Tooling API for importing your Gradle project and running tasks.

§

Tooling API Features

A fundamental characteristic of the Tooling API is that it operates in a version independent way. This means

that you can use the same API to work with builds that use different versions of Gradle, including versions

that are newer or older than the version of the Tooling API that you are using. The Tooling API is Gradle

wrapper aware and, by default, uses the same Gradle version as that used by the wrapper-powered build.

Some features that the Tooling API provides:

Query the details of a build, including the project hierarchy and the project dependencies, external

dependencies (including source and Javadoc jars), source directories and tasks of each project.

Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages shown in

the 'status bar' when you run on the command line).

Execute a specific test class or test method.

Receive interesting events as a build executes, such as project configuration, task execution or test

execution.

Cancel a build that is running.

Combine multiple separate Gradle builds into a single composite build.

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

Page 94 of 777

The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved

library, and makes no assumptions about your classloader structure or logging configuration. This makes the

API easy to embed in your application.

§

Tooling API and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it

model building requests or task executing requests will be executed in the same long-living process. The

 contains more details about the daemon, specifically information on situations when newGradle Daemon

daemons are forked.

§

Quickstart

As the Tooling API is an interface for developers, the Javadoc is the main documentation for it. We provide

several that live in in your Gradle distribution. These samples specify all ofsamples samples/toolingApi

the required dependencies for the Tooling API with examples for querying information from Gradle builds

and executing tasks from the Tooling API.

To use the Tooling API, add the following repository and dependency declarations to your build script:

Example 41. Using the tooling API

build.gradle

repositories {

 maven { url }'https://repo.gradle.org/gradle/libs-releases'

}

dependencies {

 compile "org.gradle:gradle-tooling-api:${toolingApiVersion}"

 // The tooling API need an SLF4J implementation available at runtime, replace this with any other implementation

 runtime 'org.slf4j:slf4j-simple:1.7.10'

}

The main entry point to the Tooling API is the . You can navigate from there to find codeGradleConnector

samples and explore the available Tooling API models. You can use toGradleConnector.connect()

create a . A connects to a single Gradle project. Using theProjectConnection ProjectConnection

connection you can execute tasks, tests and retrieve models relative to this project.

Gradle version and Java version compatibility

http://www.gradle.org/docs/4.7/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/tooling/GradleConnector.html#connect--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/tooling/ProjectConnection.html

Page 95 of 777

§

Gradle version and Java version compatibility

§

Provider side

The current version of Tooling API supports running builds using Gradle versions 1.2 and later. However,

support for running builds with Gradle versions older than 2.6 is deprecated and will be removed in Tooling

API version 5.0.

§

Consumer side

The current version of Gradle supports running builds via Tooling API versions 2.0 and later. However,

support for running builds via Tooling API versions older than 3.0 is deprecated and will be removed in

Gradle 5.0.

You should note that not all features of the Tooling API are available for all versions of Gradle. For example,

build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the documentation for

each class and method for more details.

§

Java version

The Tooling API requires Java 8 or later. Java 7 is currently still supported but will be removed in Gradle 5.0.

The Gradle version used by builds may have additional Java version requirements.

Page 96 of 777

Build Cache

Note: The build cache feature described here is different from the .Android plugin build cache

§

Overview

The Gradle is a cache mechanism that aims to save time by reusing outputs produced by otherbuild cache

builds. The build cache works by storing (locally or remotely) build outputs and allowing builds to fetch these

outputs from the cache when it is determined that inputs have not changed, avoiding the expensive work of

regenerating them.

A first feature using the build cache is . Essentially, task output caching leverages thetask output caching

same intelligence as that Gradle uses to avoid work when a previous local build hasup-to-date checks

already produced a set of task outputs. But instead of being limited to the previous build in the same

workspace, task output caching allows Gradle to reuse task outputs from any earlier build in any location on

the local machine. When using a shared build cache for task output caching this even works across

developer machines and build agents.

Apart from task output caching, we expect other features to use the build cache in the future.

Note: A complete guide is available about . It covers the different scenariosusing the build cache

caching can improve, and detailed discussions of the different caveats you need to be aware of

when enabling caching for a build.

§

Enable the Build Cache

By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with on the command-line--build-cache

Gradle will use the build cache for this build only.

Put in your org.gradle.caching=true gradle.properties

Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled with --no-build-cache

.

When the build cache is enabled, it will store build outputs in the Gradle user home. For configuring this

https://developer.android.com/studio/build/build-cache.html
https://guides.gradle.org/using-build-cache/

Page 97 of 777

directory or different kinds of build caches see .the section called “Configure the Build Cache”

§

Task Output Caching

Beyond incremental builds described in ,the section called “Up-to-date checks (AKA Incremental Build)”

Gradle can save time by reusing outputs from previous executions of a task by matching inputs to the task.

Task outputs can be reused between builds on one computer or even between builds running on different

computers via a build cache.

We have focused on the use case where users have an organization-wide remote build cache that is

populated regularly by continuous integration builds. Developers and other continuous integration agents

should pull cache entries from the remote build cache. We expect that developers will not be allowed to

populate the remote build cache, and all continuous integration builds populate the build cache after running

the task.clean

For your build to play well with task output caching it must work well with the feature. Forincremental build

example, when running your build twice in a row all tasks with outputs should be . You cannotUP-TO-DATE

expect faster builds or correct builds when enabling task output caching when this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see the section called

.“Enable the Build Cache”

§

What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build the first

time.

$> gradle --build-cache compileJava

:compileJava

:processResources

:classes

:jar

:assemble

BUILD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the same as

without the build cache. Let’s clean and run the build again.

$> gradle clean

:clean

BUILD SUCCESSFUL

Page 98 of 777

$> gradle --build-cache assemble

:compileJava FROM-CACHE

:processResources

:classes

:jar

:assemble

BUILD SUCCESSFUL

Now we see that, instead of executing the task, the outputs of the task have been loaded:compileJava

from the build cache. The other tasks have not been loaded from the build cache since they are not

cacheable. This is due to and being and and :classes :assemble lifecycle tasks :processResources :jar

being Copy-like tasks which are not cacheable since it is generally faster to execute them.

§

Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a that uniquelybuild cache key

defines the task’s outputs based on its inputs. That build cache key is used to request previous outputs from

a build cache or push new outputs to the build cache. If the previous build is already populated by someone

else, e.g. your continuous integration server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for up-to-date

:checks

The task type and its classpath

The names of the output properties

The names and values of properties annotated as described in the section called “Custom task types”

The names and values of properties added by the DSL via TaskInputs

The classpath of the Gradle distribution, buildSrc and plugins

The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the annotation. Note that @CacheableTask @CacheableTask

is not inherited by subclasses. Custom task types are cacheable by default.not

§

Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:

Java toolchain: , JavaCompile Javadoc

Groovy toolchain: , GroovyCompile Groovydoc

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Page 99 of 777

Scala toolchain: , , ScalaCompile PlatformScalaCompile ScalaDoc

Native toolchain: , , CppCompile CCompile SwiftCompile

Testing: Test

Code quality tasks: , , , , Checkstyle CodeNarc FindBugs JDepend Pmd

JaCoCo: , JacocoMerge JacocoReport

Other tasks: , , AntlrTask ValidateTaskProperties WriteProperties

All other built-in tasks are currently not cacheable.

Some tasks, like or , usually do not make sense to make cacheable because Gradle is onlyCopy Jar

copying files from one location to another. It also doesn’t make sense to make tasks cacheable that do not

produce outputs or have no task actions.

§

Third party plugins

There are third party plugins that work well with the build cache. The most prominent examples are the

 and the . For other third party plugins, check their documentation toAndroid plugin 3.1+ Kotlin plugin 1.2.21+

find out whether they support the build cache.

§

Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that the results

from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical because

the same cache key is used by both executions. Missing task outputs can cause build failures if Gradle does

not completely capture all outputs for a given task. Wrongly declared task inputs can lead to cache misses

especially when containing volatile data or absolute paths. (See the section called “Task inputs and outputs”

on what should be declared as inputs and outputs.)

Note: The task path is an input to the build cache key. This means that tasks with different tasknot

paths can re-use each other’s outputs as long as Gradle determines that executing them yields the

same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for example using

TestKit) to check that a task produces the same outputs for identical inputs and captures all output files for

the task. We suggest adding tests to ensure that the task inputs are relocatable, i.e. that the task can be

loaded from the cache into a different build directory (see).@PathSensitive

In order to handle volatile inputs for your tasks consider .configuring input normalization

Configure the Build Cache

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.cpp.tasks.CppCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.c.tasks.CCompile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.WriteProperties.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://blog.gradle.org/kotlin-build-cache-use
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/PathSensitive.html

Page 100 of 777

§

Configure the Build Cache

You can configure the build cache by using the Settings.buildCache(org.gradle.api.Action)

block in .settings.gradle

Gradle supports a and a build cache that can be configured separately. When both buildlocal remote

caches are enabled, Gradle tries to load build outputs from the local build cache first, and then tries the

remote build cache if no build outputs are found. If outputs are found in the remote cache, they are also

stored in the local cache, so next time they will be found locally. Gradle pushes build outputs to any build

cache that is enabled and has set to .BuildCache.isPush() true

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a and enabled by default. TheDirectoryBuildCache

remote build cache can be configured by specifying the type of build cache to connect to (

).BuildCacheConfiguration.remote(java.lang.Class)

§

Built-in local build cache

The built-in local build cache, , uses a directory to store build cache artifacts. ByDirectoryBuildCache

default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory by removing entries that have not been used

recently to conserve disk space.

For more details on the configuration options refer to the DSL documentation of .DirectoryBuildCache

Here is an example of the configuration.

Example 42. Configure the local cache

settings.gradle

buildCache {

 local(DirectoryBuildCache) {

 directory = File(rootDir,)new 'build-cache'

 removeUnusedEntriesAfterDays = 30

 }

}

§

Remote HTTP build cache

Gradle has built-in support for connecting to a remote build cache backend via HTTP. For more details on

what the protocol looks like see . Note that by using the following configuration the localHttpBuildCache

build cache will be used for storing build outputs while the local and the remote build cache will be used for

retrieving build outputs.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush--
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html

Page 101 of 777

Example 43. Pull from HttpBuildCache

settings.gradle

buildCache {

 remote(HttpBuildCache) {

 url = 'https://example.com:8123/cache/'

 }

}

You can configure the credentials the uses to access the build cache server as shown inHttpBuildCache

the following example.

Example 44. Configure remote HTTP cache

settings.gradle

buildCache {

 remote(HttpBuildCache) {

 url = 'http://example.com:8123/cache/'

 credentials {

 username = 'build-cache-user'

 password = 'some-complicated-password'

 }

 }

}

Note: You may encounter problems with an untrusted SSL certificate when you try to use a build

cache backend with an HTTPS URL. The ideal solution is for someone to add a valid SSL certificate

to the build cache backend, but we recognize that you may not be able to do that. In that case, set

 to :HttpBuildCache.isAllowUntrustedServer() true

Example 45. Allow untrusted SSL certificate for HttpBuildCache

Note: settings.gradle
buildCache {

 remote(HttpBuildCache) {

 url = 'https://example.com:8123/cache/'

 allowUntrustedServer = true

 }

}

This is a convenient workaround, but you shouldn’t use it as a long-term solution.

§

Configuration use cases

The recommended use case for the build cache is that your continuous integration server populates the

remote build cache with clean builds while developers pull from the remote build cache and push to a local

build cache. The configuration would then look as follows.

http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer

Page 102 of 777

Example 46. Recommended setup for CI push use case

settings.gradle

ext.isCiServer = System.getenv().containsKey()"CI"

buildCache {

 local {

 enabled = !isCiServer

 }

 remote(HttpBuildCache) {

 url = 'https://example.com:8123/cache/'

 push = isCiServer

 }

}

If you use a directory, you should make sure that it uses the same build cache configuration asbuildSrc

the main build. This can be achieved by applying the same script to and buildSrc/settings.gradle settings.gradle

as shown in the following example.

Example 47. Consistent setup for buildSrc and main build

settings.gradle

apply from: File(settingsDir,)new 'gradle/buildCacheSettings.gradle'

buildSrc/settings.gradle

apply from: File(settingsDir,)new '../gradle/buildCacheSettings.gradle'

gradle/buildCacheSettings.gradle

ext.isCiServer = System.getenv().containsKey()"CI"

buildCache {

 local {

 enabled = !isCiServer

 }

 remote(HttpBuildCache) {

 url = 'https://example.com:8123/cache/'

 push = isCiServer

 }

}

It is also possible to configure the build cache from an , which can be used from the command line,init script

added to your Gradle user home or be a part of your custom Gradle distribution.

Page 103 of 777

Example 48. Init script to configure the build cache

init.gradle

gradle.settingsEvaluated { settings ->

 settings.buildCache {

 // vvv Your custom configuration goes here

 remote(HttpBuildCache) {

 url = 'https://example.com:8123/cache/'

 }

 // ^^^ Your custom configuration goes here

 }

}

§

Build cache and composite builds

Gradle’s allows including other complete Gradle builds into another. Such includedcomposite build feature

builds will inherit the build cache configuration from the top level build, regardless of whether the included

builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the top level

build’s configuration. This also applies to any projects of any included builds.buildSrc

§

How to set up an HTTP build cache backend

Gradle provides a Docker image for a , which can connect with Gradle Enterprise forbuild cache node

centralized management. The cache node can also be used without a Gradle Enterprise installation with

restricted functionality.

§

Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in support for

connecting to an HTTP backend) requires implementing your own logic for connecting to your custom build

cache backend. To this end, custom build cache types can be registered via

BuildCacheConfiguration.registerBuildCacheService(java.lang.Class,

. For an example of what this could look like see the .java.lang.Class) Gradle Hazelcast plugin

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache backend.

https://hub.docker.com/r/gradle/build-cache-node/
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
https://github.com/gradle/gradle-hazelcast-plugin
https://gradle.com/build-cache

Writing Gradle build scripts

Page 105 of 777

Build Script Basics

§

Projects and tasks

Everything in Gradle sits on top of two basic concepts: and .projects tasks

Every Gradle build is made up of one or more . What a project represents depends on what it is thatprojects

you are doing with Gradle. For example, a project might represent a library JAR or a web application. It

might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not

necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your

application to staging or production environments. Don’t worry if this seems a little vague for now. Gradle’s

build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more . A task represents some atomic piece of work which a buildtasks

performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some

archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at

working with multiple projects and more about working with projects and tasks.

§

Hello world

You run a Gradle build using the command. The command looks for a file called gradle gradle build.gradle

in the current directory. We call this file a , although strictly speaking it is abuild.gradle build script

build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named .build.gradle

Example 49. Your first build script

build.gradle

task hello {

 doLast {

 println 'Hello world!'

 }

}

[]2

Page 106 of 777

In a command-line shell, move to the containing directory and execute the build script with gradle -q hello

:

What does do?-q

Most of the examples in this user guide are run with the command-line option. This suppresses-q

Gradle’s log messages, so that only the output of the tasks is shown. This keeps the example output

in this user guide a little clearer. You don’t need to use this option if you don’t want to. See Logging

for more details about the command-line options which affect Gradle’s output.

Example 50. Execution of a build script

Output of gradle -q hello

> gradle -q hello

Hello world!

What’s going on here? This build script defines a single task, called , and adds an action to it. Whenhello

you run , Gradle executes the task, which in turn executes the action you’vegradle hello hello

provided. The action is simply a closure containing some Groovy code to execute.

If you think this looks similar to Ant’s targets, you would be right. Gradle tasks are the equivalent to Ant

targets, but as you will see, they are much more powerful. We have used a different terminology than Ant as

we think the word is more expressive than the word . Unfortunately this introduces a terminologytask target

clash with Ant, as Ant calls its commands, such as or , tasks. So when we talk about tasks, we javac copy

 mean Gradle tasks, which are the equivalent to Ant’s targets. If we talk about Ant tasks (Antalways

commands), we explicitly say .Ant task

§

A shortcut task definition

Note: This functionality is deprecated and will be removed in Gradle 5.0 without replacement. Use

the methods and Task.doFirst(org.gradle.api.Action)

 to define an action instead, as demonstrated by theTask.doLast(org.gradle.api.Action)

rest of the examples in this chapter.

There is a shorthand way to define a task like our task above, which is more concise.hello

Example 51. A task definition shortcut

build.gradle

task hello << {

 println 'Hello world!'

}

Again, this defines a task called with a single closure to execute. The operator is simply an aliashello <<

for .doLast

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

Page 107 of 777

§

Build scripts are code

Gradle’s build scripts give you the full power of Groovy. As an appetizer, have a look at this:

Example 52. Using Groovy in Gradle's tasks

build.gradle

task upper {

 doLast {

 String someString = 'mY_nAmE'

 println + someString"Original: "

 println + someString.toUpperCase()"Upper case: "

 }

}

Output of gradle -q upper

> gradle -q upper

Original: mY_nAmE

Upper case: MY_NAME

or

Example 53. Using Groovy in Gradle's tasks

build.gradle

task count {

 doLast {

 4.times { print }"$it "

 }

}

Output of gradle -q count

> gradle -q count

0 1 2 3

§

Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

Page 108 of 777

Example 54. Declaration of task that depends on other task

build.gradle

task hello {

 doLast {

 println 'Hello world!'

 }

}

task intro(dependsOn: hello) {

 doLast {

 println "I'm Gradle"

 }

}

Output of gradle -q intro

> gradle -q intro

Hello world!

I'm Gradle

To add a dependency, the corresponding task does not need to exist.

Example 55. Lazy dependsOn - the other task does not exist (yet)

build.gradle

task taskX(dependsOn:) {'taskY'

 doLast {

 println 'taskX'

 }

}

task taskY {

 doLast {

 println 'taskY'

 }

}

Output of gradle -q taskX

> gradle -q taskX

taskY

taskX

The dependency of to is declared before is defined. This is very important fortaskX taskY taskY

multi-project builds. Task dependencies are discussed in more detail in the section called “Adding

.dependencies to a task”

Please notice that you can’t use shortcut notation (see) when referringthe section called “Shortcut notations”

to a task that is not yet defined.

Dynamic tasks

Page 109 of 777

§

Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it

to dynamically create tasks.

Example 56. Dynamic creation of a task

build.gradle

4.times { counter ->

 task {"task$counter"

 doLast {

 println "I'm task number $counter"

 }

 }

}

Output of gradle -q task1

> gradle -q task1

I'm task number 1

§

Manipulating existing tasks

Once tasks are created they can be accessed via an . For instance, you could use this to dynamicallyAPI

add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example 57. Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->

 task {"task$counter"

 doLast {

 println "I'm task number $counter"

 }

 }

}

task0.dependsOn task2, task3

Output of gradle -q task0

> gradle -q task0

I'm task number 2

I'm task number 3

I'm task number 0

Or you can add behavior to an existing task.

Page 110 of 777

Example 58. Accessing a task via API - adding behaviour

build.gradle

task hello {

 doLast {

 println 'Hello Earth'

 }

}

hello.doFirst {

 println 'Hello Venus'

}

hello.doLast {

 println 'Hello Mars'

}

hello {

 doLast {

 println 'Hello Jupiter'

 }

}

Output of gradle -q hello

> gradle -q hello

Hello Venus

Hello Earth

Hello Mars

Hello Jupiter

The calls and can be executed multiple times. They add an action to the beginning or thedoFirst doLast

end of the task’s actions list. When the task executes, the actions in the action list are executed in order.

§

Shortcut notations

There is a convenient notation for accessing an task. Each task is available as a property of theexisting

build script:

Page 111 of 777

Example 59. Accessing task as a property of the build script

build.gradle

task hello {

 doLast {

 println 'Hello world!'

 }

}

hello.doLast {

 println "Greetings from the $hello.name task."

}

Output of gradle -q hello

> gradle -q hello

Hello world!

Greetings from the hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the compile

task.

§

Extra task properties

You can add your own properties to a task. To add a property named , set myProperty ext.myProperty

to an initial value. From that point on, the property can be read and set like a predefined task property.

Example 60. Adding extra properties to a task

build.gradle

task myTask {

 ext.myProperty = "myValue"

}

task printTaskProperties {

 doLast {

 println myTask.myProperty

 }

}

Output of gradle -q printTaskProperties

> gradle -q printTaskProperties

myValue

Extra properties aren’t limited to tasks. You can read more about them in the section called “Extra

.properties”

Using Ant Tasks

Page 112 of 777

§

Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply

relying on Groovy. Groovy is shipped with the fantastic . Using Ant tasks from Gradle is asAntBuilder

convenient and more powerful than using Ant tasks from a file. From the example below, youbuild.xml

can learn how to execute Ant tasks and how to access Ant properties:

Example 61. Using AntBuilder to execute ant.loadfile target

build.gradle

task loadfile {

 doLast {

 def files = file().listFiles().sort()'../antLoadfileResources'

 files.each { File file ->

 (file.isFile()) {if

 ant.loadfile(srcFile: file, property: file.name)

 println " *** $file.name ***"

 println "${ant.properties[file.name]}"

 }

 }

 }

}

Output of gradle -q loadfile

> gradle -q loadfile

 *** agile.manifesto.txt ***

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 *** gradle.manifesto.txt ***

Make the impossible possible, make the possible easy and make the easy elegant.

(inspired by Moshe Feldenkrais)

There is lots more you can do with Ant in your build scripts. You can find out more in .Using Ant from Gradle

§

Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the

example above, is extracting a method.

Page 113 of 777

Example 62. Using methods to organize your build logic

build.gradle

task checksum {

 doLast {

 fileList().each { File file ->'../antLoadfileResources'

 ant.checksum(file: file, property:)"cs_$file.name"

 println cs_$file.name"$file.name Checksum: ${ant.properties[" "]}"

 }

 }

}

task loadfile {

 doLast {

 fileList().each { File file ->'../antLoadfileResources'

 ant.loadfile(srcFile: file, property: file.name)

 println "I'm fond of $file.name"

 }

 }

}

File[] fileList(String dir) {

 file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()

}

Output of gradle -q loadfile

> gradle -q loadfile

I'm fond of agile.manifesto.txt

I'm fond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build

logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted

a whole chapter to this. See .Organizing Build Logic

§

Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 114 of 777

Example 63. Defining a default task

build.gradle

defaultTasks , 'clean' 'run'

task clean {

 doLast {

 println 'Default Cleaning!'

 }

}

task run {

 doLast {

 println 'Default Running!'

 }

}

task other {

 doLast {

 println "I'm not a default task!"

 }

}

Output of gradle -q

> gradle -q

Default Cleaning!

Default Running!

This is equivalent to running . In a multi-project build every subproject can have its owngradle clean run

specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project

are used (if defined).

§

Configure by DAG

As we later describe in full detail (see), Gradle has a configuration phase and an executionBuild Lifecycle

phase. After the configuration phase, Gradle knows all tasks that should be executed. Gradle offers you a

hook to make use of this information. A use-case for this would be to check if the release task is among the

tasks to be executed. Depending on this, you can assign different values to some variables.

In the following example, execution of the and tasks results in different value ofdistribution release

the variable.version

Page 115 of 777

Example 64. Different outcomes of build depending on chosen tasks

build.gradle

task distribution {

 doLast {

 println "We build the zip with version=$version"

 }

}

task release(dependsOn:) {'distribution'

 doLast {

 println 'We release now'

 }

}

gradle.taskGraph.whenReady {taskGraph ->

 (taskGraph.hasTask(release)) {if

 version = '1.0'

 } {else

 version = '1.0-SNAPSHOT'

 }

}

Output of gradle -q distribution

> gradle -q distribution

We build the zip with version=1.0-SNAPSHOT

Output of gradle -q release

> gradle -q release

We build the zip with version=1.0

We release now

The important thing is that affects the release task the release task is executed. ThiswhenReady before

works even when the release task is not the task (i.e., the task passed to the command).primary gradle

§

Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to

jump into more of the details, have a look at .Authoring Tasks

Otherwise, continue on to the tutorials in and .Java Quickstart Dependency Management for Java Projects

[] There are command line switches to change this behavior. See)Command-Line Interface[] 2

Page 116 of 777

Build Init Plugin

Note: The Build Init plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports

creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven

build) to be Gradle builds.

Gradle plugins typically need to be to a project before they can be used (see applied the section called

). The Build Init plugin is an automatically applied plugin, which means you do not need to“Using plugins”

apply it explicitly. To use the plugin, simply execute the task named where you would like to create theinit

Gradle build. There is no need to create a “stub” file in order to apply the plugin.build.gradle

It also leverages the task to for the project.wrapper generate the Gradle Wrapper files

§

Tasks

The plugin adds the following tasks to the project:

Table 1. Build Init plugin - tasks

Task name Depends on Type Description

init wrapper InitBuild Generates a Gradle project.

wrapper - Wrapper Generates Gradle wrapper files.

§

What to set up

The supports different build setup . The type is specified by supplying a argument value.init types --type

For example, to create a Java library project simply execute: .gradle init --type java-library

If a parameter is not supplied, Gradle will attempt to infer the type from the environment. For--type

example, it will infer a type value of “ ” if it finds a to convert to a Gradle build.pom pom.xml

http://www.gradle.org/docs/4.7/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 117 of 777

If the type could not be inferred, the type “ ” will be used.basic

The plugin also supports generating build scripts using either the Gradle Groovy DSL or the Gradleinit

Kotlin DSL. The build script DSL to use defaults to the Groovy DSL and is specified by supplying a --dsl

argument value. For example, to create a Java library project with Kotlin DSL build scripts simply execute: gradle init --type java-library --dsl kotlin

.

All build setup types include the setup of the Gradle Wrapper.

Note that the migration from Maven builds only supports the Groovy DSL for generated build scripts.

§

Build init types

Note: As this plugin is currently , only a few build init types are currently supported. Moreincubating

types will be added in future Gradle releases.

§

“ ” (Maven conversion)pom

The “ ” type can be used to convert an Apache Maven build to a Gradle build. This works by convertingpom

the POM to one or more Gradle files. It is only able to be used if there is a valid “ ” file in thepom.xml

directory that the task is invoked in or, if invoked via the “-p” , in the specifiedinit command line option

project directory. This “ ” type will be automatically inferred if such a file exists.pom

The Maven conversion implementation was inspired by the that was originally developedmaven2gradle tool

by Gradle community members.

The conversion process has the following features:

Uses effective POM and effective settings (support for POM inheritance, dependency management,

properties)

Supports both single module and multimodule projects

Supports custom module names (that differ from directory names)

Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)

Generates download repositories (inc. local Maven repository)

Adjusts Java compiler settings

https://github.com/jbaruch/maven2gradle

Page 118 of 777

Supports packaging of sources and tests

Supports TestNG runner

Generates global exclusions from Maven enforcer plugin settings

§

“ ”java-application

The “ ” build init type is not inferable. It must be explicitly specified.java-application

It has the following features:

Uses the “ ” plugin to produce a command-line application implemented using Javaapplication

Uses the “ ” dependency repositoryjcenter

Uses for testingJUnit

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a argument value. To use a--test-framework

different test framework, execute one of the following commands:

gradle init --type java-application --test-framework spock: Uses for testingSpock

instead of JUnit

gradle init --type java-application --test-framework testng: Uses for testingTestNG

instead of JUnit

§

“ ”java-library

The “ ” build init type is not inferable. It must be explicitly specified.java-library

It has the following features:

Uses the “ ” plugin to produce a library Jarjava

Uses the “ ” dependency repositoryjcenter

Uses for testingJUnit

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a argument value. To use a--test-framework

http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://junit.org

Page 119 of 777

different test framework, execute one of the following commands:

gradle init --type java-library --test-framework spock: Uses for testing instead ofSpock

JUnit

gradle init --type java-library --test-framework testng: Uses for testing insteadTestNG

of JUnit

§

“ ”scala-library

The “ ” build init type is not inferable. It must be explicitly specified.scala-library

It has the following features:

Uses the “ ” plugin to produce a library Jarscala

Uses the “ ” dependency repositoryjcenter

Uses Scala 2.10

Uses for testingScalaTest

Has directories in the conventional locations for source code

Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test

files

Uses the Zinc Scala compiler by default

§

“ ”groovy-library

The “ ” build init type is not inferable. It must be explicitly specified.groovy-library

It has the following features:

Uses the “ ” plugin to produce a library Jargroovy

Uses the “ ” dependency repositoryjcenter

Uses Groovy 2.x

Uses for testingSpock testing framework

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or

test files

“ ”groovy-application

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org
http://spockframework.org

Page 120 of 777

§

“ ”groovy-application

The “ ” build init type is not inferable. It must be explicitly specified.groovy-application

It has the following features:

Uses the “ ” plugingroovy

Uses the “ ” plugin to produce a command-line application implemented using Groovyapplication

Uses the “ ” dependency repositoryjcenter

Uses Groovy 2.x

Uses for testingSpock testing framework

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or

test files

§

“basic”

The “ ” build init type is useful for creating a fresh new Gradle project. It creates a sample basic build.gradle

file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

http://spockframework.org

Page 121 of 777

Writing Build Scripts

This chapter looks at some of the details of writing a build script.

§

The Gradle build language

Gradle provides a , or DSL, for describing builds. This build language is based ondomain specific language

Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element. Gradle assumes that each build script is encoded

using UTF-8.

§

The Project API

In the tutorial in we used, for example, the method. Where does this method comeJava Quickstart apply()

from? We said earlier that the build script defines a project in Gradle. For each project in the build, Gradle

creates an object of type and associates this object with the build script. As the buildProject Project

script executes, it configures this object:Project

Getting help writing build scripts

Don’t forget that your build script is simply Groovy code that drives the Gradle API. And the

 interface is your starting point for accessing everything in the Gradle API. So, if you’reProject

wondering what 'tags' are available in your build script, you can start with the documentation for the Project

interface.

Any method you call in your build script which in the build script, is delegated to the is not defined Project

object.

Any property you access in your build script, which in the build script, is delegated to the is not defined Project

object.

Let’s try this out and try to access the property of the object.name Project

[]3

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Page 122 of 777

Example 65. Accessing property of the Project object

build.gradle

println name

println project.name

Output of gradle -q check

> gradle -q check

projectApi

projectApi

Both statements print out the same property. The first uses auto-delegation to the println Project

object, for properties not defined in the build script. The other statement uses the propertyproject

available to any build script, which returns the associated object. Only if you define a property or aProject

method which has the same name as a member of the object, would you need to use the Project project

property.

§

Standard project properties

The object provides some standard properties, which are available in your build script. TheProject

following table lists a few of the commonly used ones.

Table 2. Project Properties

Name Type Default Value

project Project The instanceProject

name String The name of the project directory.

path String The absolute path of the project.

description String A description for the project.

projectDir File The directory containing the build script.

buildDir File /buildprojectDir

group Object unspecified

version Object unspecified

ant AntBuilder An instanceAntBuilder

The Script API

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html

Page 123 of 777

§

The Script API

When Gradle executes a script, it compiles the script into a class which implements . This meansScript

that all of the properties and methods declared by the interface are available in your script.Script

§

Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra properties.

§

Local variables

Local variables are declared with the keyword. They are only visible in the scope where they have beendef

declared. Local variables are a feature of the underlying Groovy language.

Example 66. Using local variables

build.gradle

def dest = "dest"

task copy(type: Copy) {

 from "source"

 into dest

}

§

Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This includes, but is

not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning

object’s property. Alternatively, an block can be used to add multiple properties at once.ext ext

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Script.html

Page 124 of 777

Example 67. Using extra properties

build.gradle

apply plugin: "java"

ext {

 springVersion = "3.1.0.RELEASE"

 emailNotification = "build@master.org"

}

sourceSets.all { ext.purpose = null }

sourceSets {

 main {

 purpose = "production"

 }

 test {

 purpose = "test"

 }

 plugin {

 purpose = "production"

 }

}

task printProperties {

 doLast {

 println springVersion

 println emailNotification

 sourceSets.matching { it.purpose == }.each { println it.name }"production"

 }

}

Output of gradle -q printProperties

> gradle -q printProperties

3.1.0.RELEASE

build@master.org

main

plugin

In this example, an block adds two extra properties to the object. Additionally, a propertyext project

named is added to each source set by setting to (is a permissiblepurpose ext.purpose null null

value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a

(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be

accessed from anywhere their owning object can be accessed, giving them a wider scope than local

variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the class in theExtraPropertiesExtension

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Page 125 of 777

API documentation.

§

Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

Example 68. Configuring arbitrary objects

build.gradle

task configure {

 doLast {

 def pos = configure(java.text.FieldPosition()) {new 10

 beginIndex = 1

 endIndex = 5

 }

 println pos.beginIndex

 println pos.endIndex

 }

}

Output of gradle -q configure

> gradle -q configure

1

5

§

Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

Page 126 of 777

Example 69. Configuring arbitrary objects using a script

build.gradle

task configure {

 doLast {

 def pos = java.text.FieldPosition()new 10

 // Apply the script

 apply from: , to: pos'other.gradle'

 println pos.beginIndex

 println pos.endIndex

 }

}

other.gradle

// Set properties.

beginIndex = 1

endIndex = 5

Output of gradle -q configure

> gradle -q configure

1

5

§

Some Groovy basics

The provides plenty of features for creating DSLs, and the Gradle build language takesGroovy language

advantage of these. Understanding how the build language works will help you when you write your build

script, and in particular, when you start to write custom plugins and tasks.

§

Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, gets an Iterable each

method, which iterates over the elements of the :Iterable

Example 70. Groovy JDK methods

build.gradle

// Iterable gets an each() method

configurations.runtime.each { File f -> println f }

Have a look at for more details.http://groovy-lang.org/gdk.html

Property accessors

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

Page 127 of 777

§

Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 71. Property accessors

build.gradle

// Using a getter method

println project.buildDir

println getProject().getBuildDir()

// Using a setter method

project.buildDir = 'target'

getProject().setBuildDir()'target'

§

Optional parentheses on method calls

Parentheses are optional for method calls.

Example 72. Method call without parentheses

build.gradle

test.systemProperty , 'some.prop' 'value'

test.systemProperty(,)'some.prop' 'value'

§

List and map literals

Groovy provides some shortcuts for defining and instances. Both kinds of literals areList Map

straightforward, but map literals have some interesting twists.

For instance, the “ ” method (where you typically apply plugins) actually takes a map parameter.apply

However, when you have a line like “ ”, you aren’t actually using a map literal,apply plugin:'java'

you’re actually using “named parameters”, which have almost exactly the same syntax as a map literal

(without the wrapping brackets). That named parameter list gets converted to a map when the method is

called, but it doesn’t start out as a map.

Page 128 of 777

Example 73. List and map literals

build.gradle

// List literal

test.includes = [,]'org/gradle/api/**' 'org/gradle/internal/**'

List<String> list = ArrayList<String>()new

list.add()'org/gradle/api/**'

list.add()'org/gradle/internal/**'

test.includes = list

// Map literal.

Map<String, String> map = [key1: , key2:]'value1' 'value2'

// Groovy will coerce named arguments

// into a single map argument

apply plugin: 'java'

§

Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures . When the lasthere

parameter of a method is a closure, you can place the closure after the method call:

Example 74. Closure as method parameter

build.gradle

repositories {

 println "in a closure"

}

repositories() { println }"in a closure"

repositories({ println })"in a closure"

§

Closure delegate

Each closure has a object, which Groovy uses to look up variable and method references whichdelegate

are not local variables or parameters of the closure. Gradle uses this for , where the configuration closures delegate

object is set to the object to be configured.

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Page 129 of 777

Example 75. Closure delegates

build.gradle

dependencies {

 assert delegate == project.dependencies

 testCompile()'junit:junit:4.12'

 delegate.testCompile()'junit:junit:4.12'

}

§

Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle

scripts. This means that instead of using throw new org.gradle.api.tasks.StopExecutionException()

you can just type instead.throw new StopExecutionException()

Listed below are the imports added to each script:

Gradle default imports.

import org.gradle.*

import org.gradle.api.*

import org.gradle.api.artifacts.*

import org.gradle.api.artifacts.component.*

import org.gradle.api.artifacts.dsl.*

import org.gradle.api.artifacts.ivy.*

import org.gradle.api.artifacts.maven.*

import org.gradle.api.artifacts.query.*

import org.gradle.api.artifacts.repositories.*

import org.gradle.api.artifacts.result.*

import org.gradle.api.artifacts.transform.*

import org.gradle.api.artifacts.type.*

import org.gradle.api.attributes.*

import org.gradle.api.capabilities.*

import org.gradle.api.component.*

import org.gradle.api.credentials.*

import org.gradle.api.distribution.*

import org.gradle.api.distribution.plugins.*

import org.gradle.api.dsl.*

import org.gradle.api.execution.*

import org.gradle.api.file.*

import org.gradle.api.initialization.*

import org.gradle.api.initialization.definition.*

import org.gradle.api.initialization.dsl.*

import org.gradle.api.invocation.*

import org.gradle.api.java.archives.*

import org.gradle.api.logging.*

Page 130 of 777

import org.gradle.api.logging.configuration.*

import org.gradle.api.model.*

import org.gradle.api.plugins.*

import org.gradle.api.plugins.announce.*

import org.gradle.api.plugins.antlr.*

import org.gradle.api.plugins.buildcomparison.gradle.*

import org.gradle.api.plugins.osgi.*

import org.gradle.api.plugins.quality.*

import org.gradle.api.plugins.scala.*

import org.gradle.api.provider.*

import org.gradle.api.publish.*

import org.gradle.api.publish.ivy.*

import org.gradle.api.publish.ivy.plugins.*

import org.gradle.api.publish.ivy.tasks.*

import org.gradle.api.publish.maven.*

import org.gradle.api.publish.maven.plugins.*

import org.gradle.api.publish.maven.tasks.*

import org.gradle.api.publish.plugins.*

import org.gradle.api.publish.tasks.*

import org.gradle.api.reflect.*

import org.gradle.api.reporting.*

import org.gradle.api.reporting.components.*

import org.gradle.api.reporting.dependencies.*

import org.gradle.api.reporting.dependents.*

import org.gradle.api.reporting.model.*

import org.gradle.api.reporting.plugins.*

import org.gradle.api.resources.*

import org.gradle.api.specs.*

import org.gradle.api.tasks.*

import org.gradle.api.tasks.ant.*

import org.gradle.api.tasks.application.*

import org.gradle.api.tasks.bundling.*

import org.gradle.api.tasks.compile.*

import org.gradle.api.tasks.diagnostics.*

import org.gradle.api.tasks.incremental.*

import org.gradle.api.tasks.javadoc.*

import org.gradle.api.tasks.options.*

import org.gradle.api.tasks.scala.*

import org.gradle.api.tasks.testing.*

import org.gradle.api.tasks.testing.junit.*

import org.gradle.api.tasks.testing.junitplatform.*

import org.gradle.api.tasks.testing.testng.*

import org.gradle.api.tasks.util.*

import org.gradle.api.tasks.wrapper.*

import org.gradle.authentication.*

import org.gradle.authentication.aws.*

import org.gradle.authentication.http.*

import org.gradle.buildinit.plugins.*

import org.gradle.buildinit.tasks.*

Page 131 of 777

import org.gradle.caching.*

import org.gradle.caching.configuration.*

import org.gradle.caching.http.*

import org.gradle.caching.local.*

import org.gradle.concurrent.*

import org.gradle.external.javadoc.*

import org.gradle.ide.visualstudio.*

import org.gradle.ide.visualstudio.plugins.*

import org.gradle.ide.visualstudio.tasks.*

import org.gradle.ide.xcode.*

import org.gradle.ide.xcode.plugins.*

import org.gradle.ide.xcode.tasks.*

import org.gradle.ivy.*

import org.gradle.jvm.*

import org.gradle.jvm.application.scripts.*

import org.gradle.jvm.application.tasks.*

import org.gradle.jvm.platform.*

import org.gradle.jvm.plugins.*

import org.gradle.jvm.tasks.*

import org.gradle.jvm.tasks.api.*

import org.gradle.jvm.test.*

import org.gradle.jvm.toolchain.*

import org.gradle.language.*

import org.gradle.language.assembler.*

import org.gradle.language.assembler.plugins.*

import org.gradle.language.assembler.tasks.*

import org.gradle.language.base.*

import org.gradle.language.base.artifact.*

import org.gradle.language.base.compile.*

import org.gradle.language.base.plugins.*

import org.gradle.language.base.sources.*

import org.gradle.language.c.*

import org.gradle.language.c.plugins.*

import org.gradle.language.c.tasks.*

import org.gradle.language.coffeescript.*

import org.gradle.language.cpp.*

import org.gradle.language.cpp.plugins.*

import org.gradle.language.cpp.tasks.*

import org.gradle.language.java.*

import org.gradle.language.java.artifact.*

import org.gradle.language.java.plugins.*

import org.gradle.language.java.tasks.*

import org.gradle.language.javascript.*

import org.gradle.language.jvm.*

import org.gradle.language.jvm.plugins.*

import org.gradle.language.jvm.tasks.*

import org.gradle.language.nativeplatform.*

import org.gradle.language.nativeplatform.tasks.*

import org.gradle.language.objectivec.*

Page 132 of 777

import org.gradle.language.objectivec.plugins.*

import org.gradle.language.objectivec.tasks.*

import org.gradle.language.objectivecpp.*

import org.gradle.language.objectivecpp.plugins.*

import org.gradle.language.objectivecpp.tasks.*

import org.gradle.language.plugins.*

import org.gradle.language.rc.*

import org.gradle.language.rc.plugins.*

import org.gradle.language.rc.tasks.*

import org.gradle.language.routes.*

import org.gradle.language.scala.*

import org.gradle.language.scala.plugins.*

import org.gradle.language.scala.tasks.*

import org.gradle.language.scala.toolchain.*

import org.gradle.language.swift.*

import org.gradle.language.swift.plugins.*

import org.gradle.language.swift.tasks.*

import org.gradle.language.twirl.*

import org.gradle.maven.*

import org.gradle.model.*

import org.gradle.nativeplatform.*

import org.gradle.nativeplatform.platform.*

import org.gradle.nativeplatform.plugins.*

import org.gradle.nativeplatform.tasks.*

import org.gradle.nativeplatform.test.*

import org.gradle.nativeplatform.test.cpp.*

import org.gradle.nativeplatform.test.cpp.plugins.*

import org.gradle.nativeplatform.test.cunit.*

import org.gradle.nativeplatform.test.cunit.plugins.*

import org.gradle.nativeplatform.test.cunit.tasks.*

import org.gradle.nativeplatform.test.googletest.*

import org.gradle.nativeplatform.test.googletest.plugins.*

import org.gradle.nativeplatform.test.plugins.*

import org.gradle.nativeplatform.test.tasks.*

import org.gradle.nativeplatform.test.xctest.*

import org.gradle.nativeplatform.test.xctest.plugins.*

import org.gradle.nativeplatform.test.xctest.tasks.*

import org.gradle.nativeplatform.toolchain.*

import org.gradle.nativeplatform.toolchain.plugins.*

import org.gradle.normalization.*

import org.gradle.platform.base.*

import org.gradle.platform.base.binary.*

import org.gradle.platform.base.component.*

import org.gradle.platform.base.plugins.*

import org.gradle.play.*

import org.gradle.play.distribution.*

import org.gradle.play.platform.*

import org.gradle.play.plugins.*

import org.gradle.play.plugins.ide.*

Page 133 of 777

import org.gradle.play.tasks.*

import org.gradle.play.toolchain.*

import org.gradle.plugin.devel.*

import org.gradle.plugin.devel.plugins.*

import org.gradle.plugin.devel.tasks.*

import org.gradle.plugin.management.*

import org.gradle.plugin.use.*

import org.gradle.plugins.ear.*

import org.gradle.plugins.ear.descriptor.*

import org.gradle.plugins.ide.*

import org.gradle.plugins.ide.api.*

import org.gradle.plugins.ide.eclipse.*

import org.gradle.plugins.ide.idea.*

import org.gradle.plugins.javascript.base.*

import org.gradle.plugins.javascript.coffeescript.*

import org.gradle.plugins.javascript.envjs.*

import org.gradle.plugins.javascript.envjs.browser.*

import org.gradle.plugins.javascript.envjs.http.*

import org.gradle.plugins.javascript.envjs.http.simple.*

import org.gradle.plugins.javascript.jshint.*

import org.gradle.plugins.javascript.rhino.*

import org.gradle.plugins.signing.*

import org.gradle.plugins.signing.signatory.*

import org.gradle.plugins.signing.signatory.pgp.*

import org.gradle.plugins.signing.type.*

import org.gradle.plugins.signing.type.pgp.*

import org.gradle.process.*

import org.gradle.swiftpm.*

import org.gradle.swiftpm.plugins.*

import org.gradle.swiftpm.tasks.*

import org.gradle.testing.base.*

import org.gradle.testing.base.plugins.*

import org.gradle.testing.jacoco.plugins.*

import org.gradle.testing.jacoco.tasks.*

import org.gradle.testing.jacoco.tasks.rules.*

import org.gradle.testkit.runner.*

Page 134 of 777

import org.gradle.vcs.*

import org.gradle.vcs.git.*

import org.gradle.workers.*

[] Any language element except for statement labels.[] 3

Page 135 of 777

Authoring Tasks

In the introductory tutorial () you learned how to create simple tasks. You also learnedBuild Script Basics

how to add additional behavior to these tasks later on, and you learned how to create dependencies

between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle

supports , which are tasks that have their own properties and methods. This is reallyenhanced tasks

different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or built

into Gradle.

§

Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console UI and via the

Tooling API (see). These labels are based on if a task has actionsEmbedding Gradle using the Tooling API

to execute, if it should execute those actions, if it did execute those actions and if those actions made any

changes.

Page 136 of 777

Table 3. Details about task outcomes

Outcome

label
Description of outcome Situations that have this outcome

(no label)

or EXECUTED
Task executed its actions.

Used whenever a task has actions and Gradle has determined they should be

executed as part of a build.

Used whenever a task has no actions and some dependencies, and any of the

dependencies are executed. See also .the section called “Lifecycle tasks”

UP-TO-DATE
Task’s outputs did not

change.

Used when a task has outputs and inputs and they have not changed. See the

.section called “Up-to-date checks (AKA Incremental Build)”

Used when a task has actions, but the task tells Gradle it did not change its outputs.

Used when a task has no actions and some dependencies, but all of the

dependencies are up-to-date, skipped or from cache. See also the section called

.“Lifecycle tasks”

Used when a task has no actions and no dependencies.

FROM-CACHE

Task’s outputs could be

found from a previous

execution.

Used when a task has outputs restored from the build cache. See .Build Cache

SKIPPED
Task did not execute its

actions.

Used when a task has been explicitly excluded from the command-line. See the

.section called “Excluding tasks from execution”

Used when a task has an predicate return false. See onlyIf the section called

.“Using a predicate”

NO-SOURCE
Task did not need to

execute its actions.

Used when a task has inputs and outputs, but . For example, source filesno sources

are files for ..java JavaCompile

§

Defining tasks

We have already seen how to define tasks using a keyword style in . There are a fewBuild Script Basics

variations on this style, which you may need to use in certain situations. For example, the keyword style

does not work in expressions.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Page 137 of 777

Example 76. Defining tasks

build.gradle

task(hello) {

 doLast {

 println "hello"

 }

}

task(copy, type: Copy) {

 from(file())'srcDir'

 into(buildDir)

}

You can also use strings for the task names:

Example 77. Defining tasks - using strings for task names

build.gradle

task() {'hello'

 doLast {

 println "hello"

 }

}

task(, type: Copy) {'copy'

 from(file())'srcDir'

 into(buildDir)

}

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 78. Defining tasks with alternative syntax

build.gradle

tasks.create(name:) {'hello'

 doLast {

 println "hello"

 }

}

tasks.create(name: , type: Copy) {'copy'

 from(file())'srcDir'

 into(buildDir)

}

Here we add tasks to the collection. Have a look at for more variations of the tasks TaskContainer create()

method.

Locating tasks

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html

Page 138 of 777

§

Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure them or

use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a

property of the project, using the task name as the property name:

Example 79. Accessing tasks as properties

build.gradle

task hello

println hello.name

println project.hello.name

Tasks are also available through the collection.tasks

Example 80. Accessing tasks via tasks collection

build.gradle

task hello

println tasks.hello.name

println tasks[].name'hello'

You can access tasks from any project using the task’s path using the method. Youtasks.getByPath()

can call the method with a task name, or a relative path, or an absolute path.getByPath()

Example 81. Accessing tasks by path

build.gradle

project() {':projectA'

 task hello

}

task hello

println tasks.getByPath().path'hello'

println tasks.getByPath().path':hello'

println tasks.getByPath().path'projectA:hello'

println tasks.getByPath().path':projectA:hello'

Output of gradle -q hello

> gradle -q hello

:hello

:hello

:projectA:hello

:projectA:hello

Page 139 of 777

Have a look at for more options for locating tasks.TaskContainer

§

Configuring tasks

As an example, let’s look at the task provided by Gradle. To create a task for your build, you canCopy Copy

declare in your build script:

Example 82. Creating a copy task

build.gradle

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see). TheCopy

following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “ ”, but it is of “ ”. You can havemyCopy type Copy

multiple tasks of the same , but with different names. You’ll find this gives you a lot of power totype

implement cross-cutting concerns across all tasks of a particular type.

Example 83. Configuring a task - various ways

build.gradle

Copy myCopy = task(myCopy, type: Copy)

myCopy.from 'resources'

myCopy.into 'target'

myCopy.include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'

This is similar to the way we would configure objects in Java. You have to repeat the context () in themyCopy

configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable.

It is usually our favorite.

Example 84. Configuring a task - with closure

build.gradle

task myCopy(type: Copy)

myCopy {

 from 'resources'

 into 'target'

 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'

}

This works for task. Line 3 of the example is just a shortcut for the method. It isany tasks.getByName()

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html

Page 140 of 777

important to note that if you pass a closure to the method, this closure is applied to getByName() configure

the task, not when the task executes.

You can also use a configuration closure when you define a task.

Example 85. Defining a task with closure

build.gradle

task copy(type: Copy) {

 from 'resources'

 into 'target'

 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'

}

Don’t forget about the build phases

A task has both configuration and actions. When using the , you are simply using a shortcutdoLast

to define an action. Code defined in the configuration section of your task will get executed during

the configuration phase of the build regardless of what task was targeted. See forBuild Lifecycle

more details about the build lifecycle.

§

Adding dependencies to a task

There are several ways you can define the dependencies of a task. In the section called “Task

 you were introduced to defining dependencies using task names. Task names can refer todependencies”

tasks in the same project as the task, or to tasks in other projects. To refer to a task in another project, you

prefix the name of the task with the path of the project it belongs to. The following is an example which adds

a dependency from to :projectA:taskX projectB:taskY

Page 141 of 777

Example 86. Adding dependency on task from another project

build.gradle

project() {'projectA'

 task taskX(dependsOn:) {':projectB:taskY'

 doLast {

 println 'taskX'

 }

 }

}

project() {'projectB'

 task taskY {

 doLast {

 println 'taskY'

 }

 }

}

Output of gradle -q taskX

> gradle -q taskX

taskY

taskX

Instead of using a task name, you can define a dependency using a object, as shown in this example:Task

Example 87. Adding dependency using task object

build.gradle

task taskX {

 doLast {

 println 'taskX'

 }

}

task taskY {

 doLast {

 println 'taskY'

 }

}

taskX.dependsOn taskY

Output of gradle -q taskX

> gradle -q taskX

taskY

taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

Page 142 of 777

passed the task whose dependencies are being calculated. The closure should return a single orTask

collection of objects, which are then treated as dependencies of the task. The following example addsTask

a dependency from to all the tasks in the project whose name starts with :taskX lib

Example 88. Adding dependency using closure

build.gradle

task taskX {

 doLast {

 println 'taskX'

 }

}

taskX.dependsOn {

 tasks.findAll { task -> task.name.startsWith() }'lib'

}

task lib1 {

 doLast {

 println 'lib1'

 }

}

task lib2 {

 doLast {

 println 'lib2'

 }

}

task notALib {

 doLast {

 println 'notALib'

 }

}

Output of gradle -q taskX

> gradle -q taskX

lib1

lib2

taskX

For more information about task dependencies, see the API.Task

§

Ordering tasks

Note: Task ordering is an feature. Please be aware that this feature may change in laterincubating

Gradle versions.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html

Page 143 of 777

In some cases it is useful to control the in which 2 tasks will execute, without introducing an explicitorder

dependency between those tasks. The primary difference between a task and a task ordering dependency

is that an ordering rule does not influence which tasks will be executed, only the order in which they will be

executed.

Task ordering can be useful in a number of scenarios:

Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

Run build validations early in the build: e.g. validate I have the correct credentials before starting the work for

a release build.

Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests should

run before integration tests.

A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the outputs

of all executed test tasks.

There are two ordering rules available: “ ” and “ ”.must run after should run after

When you use the “must run after” ordering rule you specify that must always run after ,taskB taskA

whenever both and will be run. This is expressed as . ThetaskA taskB taskB.mustRunAfter(taskA)

“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using

that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a

task have been satisfied apart from the “should run after” task, then this task will be run regardless of

whether its “should run after” dependencies have been run or not. You should use “should run after” where

the ordering is helpful but not strictly required.

With these rules present it is still possible to execute without and vice-versa.taskA taskB

Page 144 of 777

Example 89. Adding a 'must run after' task ordering

build.gradle

task taskX {

 doLast {

 println 'taskX'

 }

}

task taskY {

 doLast {

 println 'taskY'

 }

}

taskY.mustRunAfter taskX

Output of gradle -q taskY taskX

> gradle -q taskY taskX

taskX

taskY

Example 90. Adding a 'should run after' task ordering

build.gradle

task taskX {

 doLast {

 println 'taskX'

 }

}

task taskY {

 doLast {

 println 'taskY'

 }

}

taskY.shouldRunAfter taskX

Output of gradle -q taskY taskX

> gradle -q taskY taskX

taskX

taskY

In the examples above, it is still possible to execute without causing to run:taskY taskX

Example 91. Task ordering does not imply task execution

Output of gradle -q taskY

> gradle -q taskY

taskY

Page 145 of 777

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the

 and Task.mustRunAfter(java.lang.Object[]) Task.shouldRunAfter(java.lang.Object[])

methods. These methods accept a task instance, a task name or any other input accepted by

.Task.dependsOn(java.lang.Object[])

Note that “ ” or “ ” does not imply any execution dependencyB.mustRunAfter(A) B.shouldRunAfter(A)

between the tasks:

It is possible to execute tasks and independently. The ordering rule only has an effect when both tasksA B

are scheduled for execution.

When run with , it is possible for to execute in the event that fails.--continue B A

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Example 92. A 'should run after' task ordering is ignored if it introduces an ordering cycle

build.gradle

task taskX {

 doLast {

 println 'taskX'

 }

}

task taskY {

 doLast {

 println 'taskY'

 }

}

task taskZ {

 doLast {

 println 'taskZ'

 }

}

taskX.dependsOn taskY

taskY.dependsOn taskZ

taskZ.shouldRunAfter taskX

Output of gradle -q taskX

> gradle -q taskX

taskZ

taskY

taskX

§

Adding a description to a task

You can add a description to your task. This description is displayed when executing .gradle tasks

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object[]-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Page 146 of 777

Example 93. Adding a description to a task

build.gradle

task copy(type: Copy) {

 description 'Copies the resource directory to the target directory.'

 from 'resources'

 into 'target'

 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'

}

§

Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java

plugin with a custom task of a different type. You can achieve this with:

Example 94. Overwriting a task

build.gradle

task copy(type: Copy)

task copy(overwrite: true) {

 doLast {

 println()'I am the new one.'

 }

}

Output of gradle -q copy

> gradle -q copy

I am the new one.

This will replace a task of type with the task you’ve defined, because it uses the same name. WhenCopy

you define the new task, you have to set the property to true. Otherwise Gradle throws anoverwrite

exception, saying that a task with that name already exists.

§

Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

Using a predicate

Page 147 of 777

§

Using a predicate

You can use the method to attach a predicate to a task. The task’s actions are only executed ifonlyIf()

the predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as

a parameter, and should return true if the task should execute and false if the task should be skipped. The

predicate is evaluated just before the task is due to be executed.

Example 95. Skipping a task using a predicate

build.gradle

task hello {

 doLast {

 println 'hello world'

 }

}

hello.onlyIf { !project.hasProperty() }'skipHello'

Output of gradle hello -PskipHello

> gradle hello -PskipHello

> Task :hello SKIPPED

BUILD SUCCESSFUL in 0s

§

Using StopExecutionException

If the logic for skipping a task can’t be expressed with a predicate, you can use the

. If this exception is thrown by an action, the further execution of this action asStopExecutionException

well as the execution of any following action of this task is skipped. The build continues with executing the

next task.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/StopExecutionException.html

Page 148 of 777

Example 96. Skipping tasks with StopExecutionException

build.gradle

task compile {

 doLast {

 println 'We are doing the compile.'

 }

}

compile.doFirst {

 // Here you would put arbitrary conditions in real life.

 // But this is used in an integration test so we want defined behavior.

 (true) { StopExecutionException() }if throw new

}

task myTask(dependsOn:) {'compile'

 doLast {

 println 'I am not affected'

 }

}

Output of gradle -q myTask

> gradle -q myTask

I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add execution ofconditional

the built-in actions of such a task.[]

§

Enabling and disabling tasks

Every task has an flag which defaults to . Setting it to prevents the execution of any ofenabled true false

the task’s actions. A disabled task will be labelled SKIPPED.

Example 97. Enabling and disabling tasks

build.gradle

task disableMe {

 doLast {

 println 'This should not be printed if the task is disabled.'

 }

}

disableMe.enabled = false

Output of gradle disableMe

> gradle disableMe

> Task :disableMe SKIPPED

BUILD SUCCESSFUL in 0s

Up-to-date checks (AKA Incremental Build)

[]4

Page 149 of 777

§

Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done. Consider the

process of compilation. Once your source files have been compiled, there should be no need to recompile

them unless something has changed that affects the output, such as the modification of a source file or the

removal of an output file. And compilation can take a significant amount of time, so skipping the step when

it’s not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have almost

certainly already seen it in action: it’s active nearly every time the text appears next to theUP-TO-DATE

name of a task when you run a build. Task outcomes are described in .the section called “Task outcomes”

How does incremental build work? And what does it take to make use of it in your own tasks? Let’s take a

look.

§

Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the compilation

example from earlier, we can see that the source files are the inputs and, in the case of Java, the generated

class files are the outputs. Other inputs might include things like whether debug information should be

included.

Figure 9. Example task inputs and outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from the

previous figure. Different bytecode is generated depending on the content of the source files and the

minimum version of the Java runtime you want to run the code on. That makes them task inputs. But

Page 150 of 777

1.

2.

whether compilation has 500MB or 600MB of maximum memory available, determined by the memoryMaximumSize

property, has no impact on what bytecode gets generated. In Gradle terminology, ismemoryMaximumSize

just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed since the

last build. If they haven’t, Gradle can consider the task up to date and therefore skip executing its actions.

Also note that incremental build won’t work unless a task has at least one task output, although tasks usually

have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are inputs and

which are outputs. If a task property affects the output, be sure to register it as an input, otherwise the task

will be considered up to date when it’s not. Conversely, don’t register properties as inputs if they don’t affect

the output, otherwise the task will potentially execute when it doesn’t need to. Also be careful of

non-deterministic tasks that may generate different output for exactly the same inputs: these should not be

configured for incremental build as the up-to-date checks won’t work.

Let’s now look at how you can register task properties as inputs and outputs.

§

Custom task types

If you’re implementing a custom task as a class, then it takes just two steps to make it work with incremental

build:

Create typed properties (via getter methods) for each of your task inputs and outputs

Add the appropriate annotation to each of those properties

Note: Annotations must be placed on getters or on Groovy properties. Annotations placed on

setters, or on a Java field without a corresponding annotated getter are ignored.

Gradle supports three main categories of inputs and outputs:

Simple values

Things like strings and numbers. More generally, a simple value can have any type that implements Serializable

.

Filesystem types

These consist of the standard class but also derivatives of Gradle’s type andFile FileCollection

anything else that can be passed to either the method - for singleProject.file(java.lang.Object)

file/directory properties - or the method.Project.files(java.lang.Object[])

Nested values

Custom types that don’t conform to the other two categories but have their own properties that are inputs or

outputs. In effect, the task inputs or outputs are nested inside these custom types.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Page 151 of 777

As an example, imagine you have a task that processes templates of varying types, such as FreeMarker,

Velocity, Moustache, etc. It takes template source files and combines them with some model data to

generate populated versions of the template files.

This task will have three inputs and one output:

Template source files

Model data

Template engine

Where the output files are written

When you’re writing a custom task class, it’s easy to register properties as inputs or outputs via annotations.

To demonstrate, here is a skeleton task implementation with some suitable inputs and outputs, along with

their annotations:

Example 98. Custom task class

buildSrc/src/main/java/org/example/ProcessTemplates.java

Page 152 of 777

package org.example;

 java.io.File;import

 java.util.HashMap;import

 org.gradle.api.*;import

 org.gradle.api.file.*;import

 org.gradle.api.tasks.*;import

 ProcessTemplates DefaultTask {public class extends

 TemplateEngineType templateEngine;private

 FileCollection sourceFiles;private

 TemplateData templateData;private

 File outputDir;private

 @Input

 TemplateEngineType getTemplateEngine() {public

 .templateEngine;return this

 }

 @InputFiles

 FileCollection getSourceFiles() {public

 .sourceFiles;return this

 }

 @Nested

 TemplateData getTemplateData() {public

 .templateData;return this

 }

 @OutputDirectory

 File getOutputDir() { .outputDir; }public return this

 // + setter methods for the above - assume we’ve defined them

 @TaskAction

 processTemplates() {public void

 // ...

 }

}

buildSrc/src/main/java/org/example/TemplateData.java

Page 153 of 777

package org.example;

 java.util.HashMap;import

 java.util.Map;import

 org.gradle.api.tasks.Input;import

 TemplateData {public class

 String name;private

 Map<String, String> variables;private

 TemplateData(String name, Map<String, String> variables) {public

 .name = name;this

 .variables = HashMap<>(variables);this new

 }

 @Input

 String getName() { .name; }public return this

 @Input

 Map<String, String> getVariables() {public

 .variables;return this

 }

}

Output of gradle processTemplates

> gradle processTemplates

> Task :processTemplates

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Output of gradle processTemplates

> gradle processTemplates

> Task :processTemplates UP-TO-DATE

BUILD SUCCESSFUL in 0s

1 actionable task: 1 up-to-date

There’s plenty to talk about in this example, so let’s work through each of the input and output properties in

turn:

templateEngine

Represents which engine to use when processing the source templates, e.g. FreeMarker, Velocity, etc. You

could implement this as a string, but in this case we have gone for a custom enum as it provides greater type

information and safety. Since enums implement automatically, we can treat this as a simpleSerializable

value and use the annotation, just as we would with a property.@Input String

Page 154 of 777

sourceFiles

The source templates that the task will be processing. Single files and collections of files need their own

special annotations. In this case, we’re dealing with a collection of input files and so we use the @InputFiles

annotation. You’ll see more file-oriented annotations in a table later.

templateData

For this example, we’re using a custom class to represent the model data. However, it does not implement Serializable

, so we can’t use the annotation. That’s not a problem as the properties within - a@Input TemplateData

string and a hash map with serializable type parameters - are serializable and can be annotated with @Input

. We use on to let Gradle know that this is a value with nested input properties.@Nested templateData

outputDir

The directory where the generated files go. As with input files, there are several annotations for output files

and directories. A property representing a single directory requires . You’ll learn about@OutputDirectory

the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template engine,

model data or generated files have changed since the previous time Gradle executed the task. This will often

save a significant amount of time. You can learn how Gradle detects .changes later

This example is particularly interesting because it works with collections of source files. What happens if only

one source file changes? Does the task process all the source files again or just the modified one? That

depends on the task implementation. If the latter, then the task itself is incremental, but that’s a different

feature to the one we’re discussing here. Gradle does help task implementers with this via its incremental

 feature.task inputs

Now that you have seen some of the input and output annotations in practice, let’s take a look at all the

annotations available to you and when you should use them. The table below lists the available annotations

and the corresponding property type you can use with each one.

Table 4. Incremental build property type annotations

Annotation
Expected property

type
Description

@Input Any serializable type A simple input value

@InputFile File* A single input file (not directory)

@InputDirectory File* A single input directory (not file)

@InputFiles Iterable<File>* An iterable of input files and directories

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Input.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputDirectory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputFiles.html

Page 155 of 777

@Classpath Iterable<File>*

An iterable of input files and directories that represent a Java classpath. This

allows the task to ignore irrelevant changes to the property, such as different

names for the same files. It is similar to annotating the property @PathSensitive(RELATIVE)

but it will ignore the names of JAR files directly added to the classpath, and it

will consider changes in the order of the files as a change in the classpath.

Gradle will inspect the contents of jar files on the classpath and ignore changes

that do not affect the semantics of the classpath (such as file dates and entry

order). See also .the section called “Using the classpath annotations”

Note: The annotation was introduced in Gradle 3.2. To@Classpath

stay compatible with earlier Gradle versions, classpath properties

should also be annotated with .@InputFiles

@CompileClasspath Iterable<File>*

An iterable of input files and directories that represent a Java compile

classpath. This allows the task to ignore irrelevant changes that do not affect

the API of the classes in classpath. See also the section called “Using the

.classpath annotations”

The following kinds of changes to the classpath will be ignored:

Changes to the path of jar or top level directories.

Changes to timestamps and the order of entries in Jars.

Changes to resources and Jar manifests, including adding or removing

resources.

Changes to private class elements, such as private fields, methods and inner

classes.

Changes to code, such as method bodies, static initializers and field initializers

(except for constants).

Changes to debug information, for example when a change to a comment

affects the line numbers in class debug information.

Changes to directories, including directory entries in Jars.

Note: The annotation was introduced in Gradle@CompileClasspath

3.4. To stay compatible with Gradle 3.3 and 3.2, compile classpath

properties should also be annotated with . For@Classpath

compatibility with Gradle versions before 3.2 the property should also

be annotated with .@InputFiles

@OutputFile File* A single output file (not directory)

@OutputDirectory File* A single output directory (not file)

@OutputFiles

Map<String, File>

** or Iterable<File>

*

An iterable of output files (no directories). The task outputs can only be cached

if a is provided.Map

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CompileClasspath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputDirectory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputFiles.html

Page 156 of 777

@OutputDirectories

Map<String, File>

** or Iterable<File>

*

An iterable of output directories (no files). The task outputs can only be cached

if a is provided.Map

@Destroys
File or Iterable<File>

*

Specifies one or more files that are removed by this task. Note that a task can

define either inputs/outputs or destroyables, but not both.

@LocalState
File or Iterable<File>

*

Specifies one or more files that represent the . These fileslocal state of the task

are removed when the task is loaded from cache.

@Nested Any custom type

A custom type that may not implement but does have at leastSerializable

one field or property marked with one of the annotations in this table. It could

even be another .@Nested

@Console Any type

Indicates that the property is neither an input nor an output. It simply affects the

console output of the task in some way, such as increasing or decreasing the

verbosity of the task.

@Internal Any type
Indicates that the property is used internally but is neither an input nor an

output.

*

In fact, can be any type accepted by and File Project.file(java.lang.Object) Iterable<File>

can be any type accepted by . This includes instances of Project.files(java.lang.Object[]) Callable

, such as closures, allowing for lazy evaluation of the property values. Be aware that the types FileCollection

and are s.FileTree Iterable<File>

**

Similar to the above, can be any type accepted by . The File Project.file(java.lang.Object) Map

itself can be wrapped in s, such as closures.Callable

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputDirectories.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Destroys.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/LocalState.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 157 of 777

Table 5. Additional annotations used to further qualifying property type annotations

Annotation Description

@SkipWhenEmpty

Used with or to tell Gradle to skip the task if the corresponding files or@InputFiles @InputDirectory

directory are empty, along with all other input files declared with this annotation. Tasks that have been

skipped due to all of their input files that were declared with this annotation being empty will result in a

distinct “no source” outcome. For example, will be emitted in the console output.NO-SOURCE

@Optional
Used with any of the property type annotations listed in the API documentation. This annotationOptional

disables validation checks on the corresponding property. See for more details.the section on validation

@PathSensitive

Used with any input file property to tell Gradle to only consider the given part of the file paths as important.

For example, if a property is annotated with , then@PathSensitive(PathSensitivity.NAME_ONLY)

moving the files around without changing their contents will not make the task out-of-date.

Annotations are inherited from all parent types including implemented interfaces. Property type annotations

override any other property type annotation declared in a parent type. This way an property@InputFile

can be turned into an property in a child task type.@InputDirectory

Annotations on a property declared in a type override similar annotations declared by the superclass and in

any implemented interfaces. Superclass annotations take precedence over annotations declared in

implemented interfaces.

The and annotations in the table are special cases as they don’t declare either taskConsole Internal

inputs or task outputs. So why use them? It’s so that you can take advantage of the Java Gradle Plugin

 to help you develop and publish your own plugins. This plugin checks whether anyDevelopment plugin

properties of your custom task classes lack an incremental build annotation. This protects you from

forgetting to add an appropriate annotation during development.

§

Using the classpath annotations

Besides , for JVM-related tasks Gradle understands the concept of classpath inputs. Both@InputFiles

runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with , for classpath properties the order of the@InputFiles

entries in the file collection matter. On the other hand, the names and paths of the directories and jar files on

the classpath itself are ignored. Timestamps and the order of class files and resources inside jar files on a

classpath are ignored, too, thus recreating a jar file with different file dates will not make the task out of date.

Runtime classpaths are marked with , and they offer further customization via @Classpath classpath

.normalization

Input properties annotated with are considered Java compile classpaths. Additionally@CompileClasspath

to the aforementioned general classpath rules, compile classpaths ignore changes to everything but class

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CompileClasspath.html

Page 158 of 777

files. Gradle uses the same class analysis described in to furtherthe section called “Compile avoidance”

filter changes that don’t affect the class' ABIs. This means that changes which only touch the implementation

of classes do not make the task out of date.

§

Nested inputs

When analyzing task properties for declared input and output sub-properties Gradle uses the type@Nested

of the actual value. Hence it can discover all sub-properties declared by a runtime sub-type.

When adding to a , the value of the is treated as a nested input.@Nested @Provider Provider

When adding to an iterable, each element is treated as a separate nested input. Each nested input@Nested

in the iterable is assigned a name, which by default is the dollar sign followed by the index in the iterable,

e.g. . If an element of the iterable implements , then the name is used as property name. The$2 Named

ordering of the elements in the iterable is crucial for for reliable up-to-date checks and caching if not all of the

elements implement . Multiple elements which have the same name are not allowed.Named

When adding to a map, then for each value a nested input is added, using the key as name.@Nested

The type and classpath of nested inputs is tracked, too. This ensures that changes to the implementation of

a nested input causes the build to be out of date. By this it is also possible to add user provided code as an

input, e.g. by annotating an property with . Note that any inputs to such actions should be@Action @Nested

tracked, either by annotated properties on the action or by manually registering them with the task.

Using nested inputs allows richer modeling and extensibility for tasks, as e.g. shown by Test.getJvmArgumentProviders()

.

This allows us to , thus declaring the necessary JVM arguments and providingmodel the JaCoCo Java agent

the inputs and outputs to Gradle:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Named.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Named.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://github.com/gradle/gradle/blob/7b047c7cbb4932743243a76123f5347be6d07856/subprojects/jacoco/src/main/java/org/gradle/testing/jacoco/plugins/JacocoPluginExtension.java#L138-L157

Page 159 of 777

class JacocoAgent implements CommandLineArgumentProvider {

 private final JacocoTaskExtension jacoco;

 public JacocoAgent(JacocoTaskExtension jacoco) {

 this.jacoco = jacoco;

 }

 @Nested

 @Optional

 public JacocoTaskExtension getJacoco() {

 return jacoco.isEnabled() ? jacoco : null;

 }

 @Override

 public Iterable<String> asArguments() {

 return jacoco.isEnabled() ? ImmutableList.of(jacoco.getAsJvmArg()) : Collections.<String>emptyList();

 }

}

test.getJvmArgumentProviders().add(new JacocoAgent(extension))

For this to work, needs to have the correct input and output annotations.JacocoTaskExtension

The approach works for Test JVM arguments, since is an Test.getJvmArgumentProviders() Iterable

annotated with .@Nested

There are other task types where this kind of nested inputs are available:

JavaExec.getArgumentProviders() - model e.g. custom tools

JavaExec.getJvmArgumentProviders() - used for Jacoco Java agent

CompileOptions.getCompilerArgumentProviders() - model e.g annotation processors

Exec.getArgumentProviders() - model e.g custom tools

In the same way, this kind of modelling is available to custom tasks.

§

Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental build, but

you don’t always have that option. That’s why Gradle also provides an alternative API that can be used with

any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the

annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for scenarios

just like that. It can also be used for ad-hoc tasks, as you’ll see next.

Using it for ad-hoc tasks

http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:argumentProviders
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:jvmArgumentProviders
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Exec.html#org.gradle.api.tasks.Exec:argumentProviders

Page 160 of 777

§

Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on every Gradle

task:

Task.getInputs() of type TaskInputs

Task.getOutputs() of type TaskOutputs

Task.getDestroyables() of type TaskDestroyables

These objects have methods that allow you to specify files, directories and values which constitute the task’s

inputs and outputs. In fact, the runtime API has almost feature parity with the annotations. All it lacks is

validation of whether declared files are actually files and declared directories are directories. Nor will it create

output directories if they don’t exist. But that’s it.

Let’s take the template processing example from before and see how it would look as an ad-hoc task that

uses the runtime API:

Example 99. Ad-hoc task

build.gradle

task processTemplatesAdHoc {

 inputs.property(, TemplateEngineType.FREEMARKER)"engine"

 inputs.files(fileTree())"src/templates"

 inputs.property(,)"templateData.name" "docs"

 inputs.property(, [year:])"templateData.variables" 2013

 outputs.dir()"$buildDir/genOutput2"

 doLast {

 // Process the templates here

 }

}

Output of gradle processTemplatesAdHoc

> gradle processTemplatesAdHoc

> Task :processTemplatesAdHoc

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for this as

it’s a non-trivial implementation that has several configuration options. In this case, there are no task

properties to store the root source folder, the location of the output directory or any of the other settings.

That’s deliberate to highlight the fact that the runtime API doesn’t require the task to have any state. In terms

of incremental build, the above ad-hoc task will behave the same as the custom task class.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskDestroyables.html

Page 161 of 777

All the input and output definitions are done through the methods on and , such as inputs outputs property()

, , and . Gradle performs up-to-date checks on the argument values to determine whetherfiles() dir()

the task needs to run again or not. Each method corresponds to one of the incremental build annotations, for

example maps to and maps to . Theinputs.property() @Input outputs.dir() @OutputDirectory

only difference is that the , , and methods don’t validate the type of filefile() files() dir() dirs()

object at the given path (file or directory), unlike the annotations.

The files that a task removes can be specified through .destroyables.register()

Example 100. Ad-hoc task declaring a destroyable

build.gradle

task removeTempDir {

 destroyables.register()"$projectDir/tmpDir"

 doLast {

 delete()"$projectDir/tmpDir"

 }

}

One notable difference between the runtime API and the annotations is the lack of a method that

corresponds directly to . That’s why the example uses two declarations for the@Nested property()

template data, one for each property. You should utilize the same technique when using theTemplateData

runtime API with nested values. Any given task can either declare destroyables or inputs/outputs, but cannot

declare both.

§

Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task class that

lacks the requisite annotations. For example, imagine that the task is provided by aProcessTemplates

plugin and that it’s missing the incremental build annotations. In order to make up for that deficiency, you can

use the runtime API:

Page 162 of 777

Example 101. Using runtime API with custom task type

build.gradle

task processTemplatesRuntime(type: ProcessTemplatesNoAnnotations) {

 templateEngine = TemplateEngineType.FREEMARKER

 sourceFiles = fileTree()"src/templates"

 templateData = TemplateData(, [year:])new "test" 2014

 outputDir = file()"$buildDir/genOutput3"

 inputs.property(,templateEngine)"engine"

 inputs.files(sourceFiles)

 inputs.property(, templateData.name)"templateData.name"

 inputs.property(, templateData.variables)"templateData.variables"

 outputs.dir(outputDir)

}

Output of gradle processTemplatesRuntime

> gradle processTemplatesRuntime

> Task :processTemplatesRuntime

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Output of gradle processTemplatesRuntime

> gradle processTemplatesRuntime

> Task :processTemplatesRuntime UP-TO-DATE

BUILD SUCCESSFUL in 0s

1 actionable task: 1 up-to-date

As you can see, we can both configure the tasks properties and use those properties as arguments to the

incremental build runtime API. Using the runtime API like this is a little like using and doLast() doFirst()

to attach extra actions to a task, except in this case we’re attaching information about inputs and outputs.

Note that if the task type is already using the incremental build annotations, the runtime API will add inputs

and outputs rather than replace them.

§

Fine-grained configuration

The runtime API methods only allow you to declare your inputs and outputs in themselves. However, the

file-oriented ones return a builder - of type - that lets you provideTaskInputFilePropertyBuilder

additional information about those inputs and outputs.

You can learn about all the options provided by the builder in its API documentation, but we’ll show you a

simple example here to give you an idea of what you can do.

Let’s say we don’t want to run the task if there are no source files, regardless ofprocessTemplates

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

Page 163 of 777

whether it’s a clean build or not. After all, if there are no source files, there’s nothing for the task to do. The

builder allows us to configure this like so:

Example 102. Using skipWhenEmpty() via the runtime API

build.gradle

task processTemplatesRuntimeConf(type: ProcessTemplatesNoAnnotations) {

 // ...

 sourceFiles = fileTree() {"src/templates"

 include "**/*.fm"

 }

 inputs.files(sourceFiles).skipWhenEmpty()

 // ...

}

Output of gradle clean processTemplatesRuntimeConf

> gradle clean processTemplatesRuntimeConf

> Task :processTemplatesRuntimeConf NO-SOURCE

BUILD SUCCESSFUL in 0s

1 actionable task: 1 up-to-date

The method returns a builder that has a method. Invoking thisTaskInputs.files() skipWhenEmpty()

method is equivalent to annotating to the property with .@SkipWhenEmpty

Prior to Gradle 3.0, you had to use the and TaskInputs.source() TaskInputs.sourceDir()

methods to get the same behavior as with . These methods are now deprecated andskipWhenEmpty()

should not be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which API you

should be using. Our recommendation is to use the annotations wherever possible, and it’s sometimes worth

creating a custom task class just so that you can make use of them. The runtime API is more for situations in

which you can’t use the annotations.

§

Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those properties.

For example, if an input of one task is set to the output of another, that means the first task depends on the

second, right? Gradle knows this and can act upon it.

We’ll look at this feature next and also some other features that come from Gradle knowing things about

inputs and outputs.

Inferred task dependencies

Page 164 of 777

§

Inferred task dependencies

Consider an archive task that packages the output of the task. A build author will seeprocessTemplates

that the archive task obviously requires to run first and so may add an explicit processTemplates dependsOn

. However, if you define the archive task like so:

Example 103. Inferred task dependency via task outputs

build.gradle

task packageFiles(type: Zip) {

 from processTemplates.outputs

}

Output of gradle clean packageFiles

> gradle clean packageFiles

> Task :processTemplates

> Task :packageFiles

BUILD SUCCESSFUL in 0s

3 actionable tasks: 2 executed, 1 up-to-date

Gradle will automatically make depend on . It can do this because it’spackageFiles processTemplates

aware that one of the inputs of packageFiles requires the output of the processTemplates task. We call this

an inferred task dependency.

The above example can also be written as

Example 104. Inferred task dependency via a task argument

build.gradle

task packageFiles2(type: Zip) {

 from processTemplates

}

Output of gradle clean packageFiles2

> gradle clean packageFiles2

> Task :processTemplates

> Task :packageFiles2

BUILD SUCCESSFUL in 0s

3 actionable tasks: 2 executed, 1 up-to-date

This is because the method can accept a task object as an argument. Behind the scenes, from() from()

uses the method to wrap the argument, which in turn exposes the task’s formal outputsproject.files()

as a file collection. In other words, it’s a special case!

Input and output validation

Page 165 of 777

§

Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic validation

on the annotated properties. In particular, it does the following for each property before the task executes:

@InputFile - verifies that the property has a value and that the path corresponds to a file (not a directory)

that exists.

@InputDirectory - same as for , except the path must correspond to a directory.@InputFile

@OutputDirectory - verifies that the path doesn’t match a file and also creates the directory if it doesn’t

already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to inputs and

outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may validly not

exist. That’s why Gradle provides the annotation: you use it to tell Gradle that a particular input@Optional

is optional and therefore the build should not fail if the corresponding file or directory doesn’t exist.

§

Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what files a task

depends on, it can automatically run a task again if any of its inputs change. By activating continuous build

when you run Gradle - through the or options - you will put Gradle into a state in which it--continuous -t

continually checks for changes and executes the requested tasks when it encounters such changes.

You can find out more about this feature in .the section called “Continuous Build”

§

Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make decisions

about how to run tasks when the "--parallel" option is used. For instance, Gradle will inspect the outputs of

tasks when selecting the next task to run and will avoid concurrent execution of tasks that write to the same

output directory. Similarly, Gradle will use the information about what files a task destroys (e.g. specified by

the annotation) and avoid running a task that removes a set of files while another task is runningDestroys

that consumes or creates those same files (and vice versa). It can also determine that a task that creates a

set of files has already run and that a task that consumes those files has yet to run and will avoid running a

task that removes those files in between. By providing task input and output information in this way, Gradle

can infer creation/consumption/destruction relationships between tasks and can ensure that task execution

does not violate those relationships.

How does it work?

Page 166 of 777

§

How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the

paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task

completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output

files and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is

executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If

the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date

and skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for

the next time the task is executed.

Gradle also considers the of the task as part of the inputs to the task. When a task, its actions, or itscode

dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When comparing

the snapshot of such a property, even a change in the order of the files will result in the task becoming

out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last time it was

executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an

output directory without interfering with each other. If this is not the behaviour you want for some reason,

consider using TaskOutputs.upToDateWhen(groovy.lang.Closure)

The inputs for the task are also used to calculate the key used to load task outputs whenbuild cache

enabled. For more details see .the section called “Task Output Caching”

§

Advanced techniques

Everything you’ve seen so far in this section will cover most of the use cases you’ll encounter, but there are

some scenarios that need special treatment. We’ll present a few of those next with the appropriate solutions.

§

Adding your own cached input/output methods

Have you ever wondered how the method of the task works? It’s not annotated with from() Copy @InputFiles

and yet any files passed to it are treated as formal inputs of the task. What’s happening?

The implementation is quite simple and you can use the same technique for your own tasks to improve their

APIs. Write your methods so that they add files directly to the appropriate annotated property. As an

example, here’s how to add a method to the custom class we introducedsources() ProcessTemplates

earlier:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

Page 167 of 777

Example 105. Declaring a method to add task inputs

buildSrc/src/main/java/org/example/ProcessTemplates.java

public ProcessTemplates DefaultTask {class extends

 // ...

 FileCollection sourceFiles = getProject().files();private

 @SkipWhenEmpty

 @InputFiles

 @PathSensitive(PathSensitivity.NONE)

 FileCollection getSourceFiles() {public

 .sourceFiles;return this

 }

 sources(FileCollection sourceFiles) {public void

 .sourceFiles = .sourceFiles.plus(sourceFiles);this this

 }

 // ...

}

build.gradle

task processTemplates(type: ProcessTemplates) {

 templateEngine = TemplateEngineType.FREEMARKER

 templateData = TemplateData(, [year:])new "test" 2012

 outputDir = file()"$buildDir/genOutput"

 sources fileTree()"src/templates"

}

Output of gradle processTemplates

> gradle processTemplates

> Task :processTemplates

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

In other words, as long as you add values and files to formal task inputs and outputs during the configuration

phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use the project.files()

method like so:

Page 168 of 777

Example 106. Declaring a method to add a task as an input

buildSrc/src/main/java/org/example/ProcessTemplates.java

// ...

 sources(Task inputTask) {public void

 .sourceFiles = .sourceFiles.plus(getProject().files(inputTask));this this

}

// ...

build.gradle

task copyTemplates(type: Copy) {

 into "$buildDir/tmp"

 from "src/templates"

}

task processTemplates2(type: ProcessTemplates) {

 // ...

 sources copyTemplates

}

Output of gradle processTemplates2

> gradle processTemplates2

> Task :copyTemplates

> Task :processTemplates2

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

This technique can make your custom task easier to use and result in cleaner build files. As an added

benefit, our use of means that our custom method can set up an inferred taskgetProject().files()

dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs, like this

example, consider using the built-in . It will save you having to implement some of the plumbingSourceTask

that we put into .ProcessTemplates

§

Linking an to an @OutputDirectory @InputFiles

When you want to link the output of one task to the input of another, the types often match and a simple

property assignment will provide that link. For example, a output property can be assigned to a File File

input.

Unfortunately, this approach breaks down when you want the files in a task’s (of type @OutputDirectory File

) to become the source for another task’s property (of type). Since the@InputFiles FileCollection

two have different types, property assignment won’t work.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceTask.html

Page 169 of 777

As an example, imagine you want to use the output of a Java compilation task - via the destinationDir

property - as the input of a custom task that instruments a set of files containing Java bytecode. This custom

task, which we’ll call , has a property annotated with . You mightInstrument classFiles @InputFiles

initially try to configure the task like so:

Example 107. Failed attempt at setting up an inferred task dependency

build.gradle

apply plugin: "java"

task badInstrumentClasses(type: Instrument) {

 classFiles = fileTree(compileJava.destinationDir)

 destinationDir = file()"$buildDir/instrumented"

}

Output of gradle clean badInstrumentClasses

> gradle clean badInstrumentClasses

> Task :clean UP-TO-DATE

> Task :badInstrumentClasses NO-SOURCE

BUILD SUCCESSFUL in 0s

1 actionable task: 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the compilation

task is missing. In this case you would need to add an explicit task dependency between instrumentClasses

and via . The use of means that Gradle can’t infer the taskcompileJava dependsOn fileTree()

dependency itself.

One solution is to use the property, as demonstrated by the following example:TaskOutputs.files

Example 108. Setting up an inferred task dependency between output dir and input files

build.gradle

task instrumentClasses(type: Instrument) {

 classFiles = compileJava.outputs.files

 destinationDir = file()"$buildDir/instrumented"

}

Output of gradle clean instrumentClasses

> gradle clean instrumentClasses

> Task :clean UP-TO-DATE

> Task :compileJava

> Task :instrumentClasses

BUILD SUCCESSFUL in 0s

3 actionable tasks: 2 executed, 1 up-to-date

Page 170 of 777

Alternatively, you can get Gradle to access the appropriate property itself by using the project.files()

method in place of :project.fileTree()

Example 109. Setting up an inferred task dependency with files()

build.gradle

task instrumentClasses2(type: Instrument) {

 classFiles = files(compileJava)

 destinationDir = file()"$buildDir/instrumented"

}

Output of gradle clean instrumentClasses2

> gradle clean instrumentClasses2

> Task :clean UP-TO-DATE

> Task :compileJava

> Task :instrumentClasses2

BUILD SUCCESSFUL in 0s

3 actionable tasks: 2 executed, 1 up-to-date

Remember that can take tasks as arguments, whereas cannot.files() fileTree()

The downside of this approach is that all file outputs of the source task become the input files of the target - instrumentClasses

in this case. That’s fine as long as the source task only has a single file-based output, like the JavaCompile

task. But if you have to link just one output property among several, then you need to explicitly tell Gradle

which task generates the input files using the method:builtBy

Example 110. Setting up an inferred task dependency with builtBy()

build.gradle

task instrumentClassesBuiltBy(type: Instrument) {

 classFiles = fileTree(compileJava.destinationDir) {

 builtBy compileJava

 }

 destinationDir = file()"$buildDir/instrumented"

}

Output of gradle clean instrumentClassesBuiltBy

> gradle clean instrumentClassesBuiltBy

> Task :clean UP-TO-DATE

> Task :compileJava

> Task :instrumentClassesBuiltBy

BUILD SUCCESSFUL in 0s

3 actionable tasks: 2 executed, 1 up-to-date

Page 171 of 777

You can of course just add an explicit task dependency via , but the above approach providesdependsOn

more semantic meaning, explaining why has to run beforehand.compileJava

§

Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task output is

something else entirely? Perhaps it’s an update to a web service or a database table. Gradle has no way of

knowing how to check whether the task is up to date in such cases.

That’s where the method on comes in. This takes a predicate functionupToDateWhen() TaskOutputs

that is used to determine whether a task is up to date or not. One use case is to disable up-to-date checks

completely for a task, like so:

Example 111. Ignoring up-to-date checks

build.gradle

task alwaysInstrumentClasses(type: Instrument) {

 classFiles = files(compileJava)

 destinationDir = file()"$buildDir/instrumented"

 outputs.upToDateWhen { false }

}

Output of gradle clean alwaysInstrumentClasses

> gradle clean alwaysInstrumentClasses

> Task :compileJava

> Task :alwaysInstrumentClasses

BUILD SUCCESSFUL in 0s

3 actionable tasks: 2 executed, 1 up-to-date

Output of gradle alwaysInstrumentClasses

> gradle alwaysInstrumentClasses

> Task :compileJava UP-TO-DATE

> Task :alwaysInstrumentClasses

BUILD SUCCESSFUL in 0s

2 actionable tasks: 1 executed, 1 up-to-date

The closure ensures that will always perform the copy, irrespective of{ false } copyResources

whether there is no change in the inputs or outputs.

You can of course put more complex logic into the closure. You could check whether a particular record in a

database table exists or has changed for example. Just be aware that up-to-date checks should yousave

Page 172 of 777

time. Don’t add checks that cost as much or more time than the standard execution of the task. In fact, if a

task ends up running frequently anyway, because it’s rarely up to date, then it may not be worth having an

up-to-date check at all. Remember that your checks will always run if the task is in the execution task graph.

One common mistake is to use instead of . If you want to skip a task onupToDateWhen() Task.onlyIf()

the basis of some condition unrelated to the task inputs and outputs, then you should use . ForonlyIf()

example, in cases where you want to skip a task when a particular property is set or not set.

§

Configure input normalization

For up to date checks and the Gradle needs to determine if two task input properties have thebuild cache

same value. In order to do so, Gradle first normalizes both inputs and then compares the result. For

example, for a compile classpath, Gradle extracts the ABI signature from the classes on the classpath and

then compares signatures between the last Gradle run and the current Gradle run as described in the

.section called “Compile avoidance”

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs annotated

with are considered to be runtime classpaths.@Classpath

Let’s say you want to add a file to all your produced jar files which containsbuild-info.properties

information about the build, e.g. the timestamp when the build started or some ID to identify the CI job that

published the artifact. This file is only for auditing purposes, and has no effect on the outcome of running

tests. Nonetheless, this file is part of the runtime classpath for the task and changes on every buildtest

invocation. Therefore, the would be never up-to-date or pulled from the build cache. In order to benefittest

from incremental builds again, you are able tell Gradle to ignore this file on the runtime classpath at the

project level by using :Project.normalization(org.gradle.api.Action)

Example 112. Runtime classpath normalization

build.gradle

normalization {

 runtimeClasspath {

 ignore 'build-info.properties'

 }

}

The effect of this configuration would be that changes to would be ignored forbuild-info.properties

up-to-date checks and key calculations. Note that this will not change the runtime behavior of thebuild cache

 task - i.e. any test is still able to load and the runtime classpath is still thetest build-info.properties

same as before.

Stale task outputs

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

Page 173 of 777

§

Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older versions of

Gradle need to be removed to ensure that the newest version of the tasks are starting from a known clean

state.

Note: Automatic clean-up of stale output directories has only been implemented for the output of

source sets (Java/Groovy/Scala compilation).

§

Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of

parameters. A very nice and expressive way to provide such tasks are task rules:

Example 113. Task rule

build.gradle

tasks.addRule() { String taskName ->"Pattern: ping<ID>"

 (taskName.startsWith()) {if "ping"

 task(taskName) {

 doLast {

 println + (taskName -)"Pinging: " 'ping'

 }

 }

 }

}

Output of gradle -q pingServer1

> gradle -q pingServer1

Pinging: Server1

The String parameter is used as a description for the rule, which is shown with .gradle tasks

Rules are not only used when calling tasks from the command line. You can also create dependsOn

relations on rule based tasks:

Page 174 of 777

Example 114. Dependency on rule based tasks

build.gradle

tasks.addRule() { String taskName ->"Pattern: ping<ID>"

 (taskName.startsWith()) {if "ping"

 task(taskName) {

 doLast {

 println + (taskName -)"Pinging: " 'ping'

 }

 }

 }

}

task groupPing {

 dependsOn pingServer1, pingServer2

}

Output of gradle -q groupPing

> gradle -q groupPing

Pinging: Server1

Pinging: Server2

If you run “ ” you won’t find a task named “ ” or “ ”, but thisgradle -q tasks pingServer1 pingServer2

script is executing logic based on the request to run those tasks.

§

Finalizer tasks

Note: Finalizers tasks are an feature (see).incubating the section called “Incubating”

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Page 175 of 777

Example 115. Adding a task finalizer

build.gradle

task taskX {

 doLast {

 println 'taskX'

 }

}

task taskY {

 doLast {

 println 'taskY'

 }

}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX

taskX

taskY

Finalizer tasks will be executed even if the finalized task fails.

Example 116. Task finalizer for a failing task

build.gradle

task taskX {

 doLast {

 println 'taskX'

 RuntimeException()throw new

 }

}

task taskY {

 doLast {

 println 'taskY'

 }

}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX

taskX

taskY

BUILD FAILED in 0s

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for example if it is

considered up to date or if a dependent task fails.

Page 176 of 777

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up

regardless of the build failing or succeeding. An example of such a resource is a web container that is

started before an integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the method. ThisTask.finalizedBy(java.lang.Object[])

method accepts a task instance, a task name, or any other input accepted by

.Task.dependsOn(java.lang.Object[])

§

Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task actions.

Lifecycle tasks can represent several concepts:

a work-flow step (e.g., run all checks with)check

a buildable thing (e.g., create a debug 32-bit executable for native components with debug32MainExecutable

)

a convenience task to execute many of the same logical tasks (e.g., run all compilation tasks with compileAll

)

Many Gradle plug-ins define their own lifecycle tasks to make it convenient to do specific things. When

developing your own plugins, you should consider using your own lifecycle tasks or hooking into some of the

tasks already provided by Gradle. See the Java plugin for an example.the section called “Tasks”

Unless a lifecycle task has actions, its outcome is determined by its dependencies. If any of the task’s

dependencies are executed, the lifecycle task will be considered executed. If all of the task’s dependencies

are up-to-date, skipped or from cache, the lifecycle task will be considered up-to-date.

§

Summary

If you are coming from Ant, an enhanced Gradle task like seems like a cross between an Ant targetCopy

and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle combines these notions

into a single entity. Simple Gradle tasks are like Ant’s targets, but enhanced Gradle tasks also include

aspects of Ant tasks. All of Gradle’s tasks share a common API and you can create dependencies between

them. These tasks are much easier to configure than an Ant task. They make full use of the type system,

and are more expressive and easier to maintain.

[] You might be wondering why there is neither an import for the nor do weStopExecutionException

access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script

(see).the section called “Default imports”

[] 4

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Page 177 of 777

Working With Files

Almost every Gradle build interacts with files in some way: think source files, file dependencies, reports and

so on. That’s why Gradle comes with a comprehensive API that makes it simple to perform the file

operations you need.

The API has two parts to it:

Specifying which files and directories to process

Specifying what to do with them

The section covers the first of these in detail, while subsequent sections, like File paths in depth File

, cover the second. To begin with, we’ll show you examples of the most common scenarioscopying in depth

that users encounter.

§

Copying a single file

You copy a file by creating an instance of Gradle’s builtin task and configuring it with the location of theCopy

file and where you want to put it. This example mimics copying a generated report into a directory that will be

packed into an archive, such as a ZIP or TAR:

Example 117. How to copy a single file

build.gradle

task copyReport(type: Copy) {

 from file()"${buildDir}/reports/my-report.pdf"

 into file()"${buildDir}/toArchive"

}

The method is used to create a file or directory path relative to theProject.file(java.lang.Object)

current project and is a common way to make build scripts work regardless of the project path. The file and

directory paths are then used to specify what file to copy using andCopy.from(java.lang.Object[])

which directory to copy it to using .Copy.into(java.lang.Object)

You can even use the path directly without the method, as explained early in the section file() File

:copying in depth

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

Page 178 of 777

Example 118. Using implicit string paths

build.gradle

task copyReport2(type: Copy) {

 from "${buildDir}/reports/my-report.pdf"

 into "${buildDir}/toArchive"

}

Although hard-coded paths make for simple examples, they also make the build brittle. It’s better to use a

reliable, single source of truth, such as a task or shared project property. In the following modified example,

we use a report task defined elsewhere that has the report’s location stored in its property:outputFile

Example 119. Prefer task/project properties over hard-coded paths

build.gradle

task copyReport3(type: Copy) {

 from myReportTask.outputFile

 into archiveReportsTask.dirToArchive

}

We have also assumed that the reports will be archived by , which provides us witharchiveReportsTask

the directory that will be archived and hence where we want to put the copies of the reports.

§

Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments to from()

:

Example 120. Using multiple arguments with from()

build.gradle

task copyReportsForArchiving(type: Copy) {

 from , "${buildDir}/reports/my-report.pdf" "src/docs/manual.pdf"

 into "${buildDir}/toArchive"

}

Two files are now copied into the archive directory. You can also use multiple statements to do thefrom()

same thing, as shown in the first example of the section .File copying in depth

Now consider another example: what if you want to copy all the PDFs in a directory without having to specify

each one? To do this, attach inclusion and/or exclusion patterns to the copy specification. Here we use a

string pattern to include PDFs only:

Page 179 of 777

Example 121. Using a flat filter

build.gradle

task copyPdfReportsForArchiving(type: Copy) {

 from "${buildDir}/reports"

 include "*.pdf"

 into "${buildDir}/toArchive"

}

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside directly in the reports

directory are copied:

Figure 10. The effect of a flat filter on copying

You can include files in subdirectories by using an Ant-style glob pattern (), as done in this updated**/*

example:

Example 122. Using a deep filter

build.gradle

task copyAllPdfReportsForArchiving(type: Copy) {

 from "${buildDir}/reports"

 include "**/*.pdf"

 into "${buildDir}/toArchive"

}

This task has the following effect:

Figure 11. The effect of a deep filter on copying

One thing to bear in mind is that a deep filter like this has the side effect of copying the directory structure

Page 180 of 777

below as well as the files. If you just want to copy the files without the directory structure, you needreports

to use an explicit expression. We talk more about the differencefileTree() { }.filesdir includes

between file trees and file collections in the section.File trees

This is just one of the variations in behavior you’re likely to come across when dealing with file operations in

Gradle builds. Fortunately, Gradle provides elegant solutions to almost all those use cases. Read the

 sections later in the chapter for more detail on how the file operations work in Gradle and whatin-depth

options you have for configuring them.

§

Copying directory hierarchies

You may have a need to copy not just files, but the directory structure they reside in as well. This is the

default behavior when you specify a directory as the argument, as demonstrated by the followingfrom()

example that copies everything in the directory, including all its subdirectories, to the destination:reports

Example 123. Copying an entire directory

build.gradle

task copyReportsDirForArchiving(type: Copy) {

 from "${buildDir}/reports"

 into "${buildDir}/toArchive"

}

The key aspect that users struggle with is controlling how much of the directory structure goes to the

destination. In the above example, do you get a directory or does everything in toArchive/reports reports

go straight into ? The answer is the latter. If a directory is part of the path, then it toArchive from() won’t

appear in the destination.

So how do you ensure that itself is copied across, but not any other directory in ? Thereports $buildDir

answer is to add it as an include pattern:

Example 124. Copying an entire directory, including itself

build.gradle

task copyReportsDirForArchiving2(type: Copy) {

 from() {"${buildDir}"

 include "reports/**"

 }

 into "${buildDir}/toArchive"

}

You’ll get the same behavior as before except with one extra level of directory in the destination, i.e. toArchive/reports

.

One thing to note is how the directive applies only to the , whereas the directive in theinclude() from()

previous section applied to the whole task. These different levels of granularity in the copy specification allow

Page 181 of 777

you to easily handle most requirements that you will come across. You can learn more about this in the

section on .child specifications

§

Creating archives (zip, tar, etc.)

From the perspective of Gradle, packing files into an archive is effectively a copy in which the destination is

the archive file rather than a directory on the file system. This means that creating archives looks a lot like

copying, with all of the same features!

The simplest case involves archiving the entire contents of a directory, which this example demonstrates by

creating a ZIP of the directory:toArchive

Example 125. Archiving a directory as a ZIP

build.gradle

task packageDistribution(type: Zip) {

 archiveName = "my-distribution.zip"

 destinationDir = file()"${buildDir}/dist"

 from "${buildDir}/toArchive"

}

Notice how we specify the destination and name of the archive instead of an : both are required. Youinto()

often won’t see them explicitly set, because most projects apply the . It provides someBase Plugin

conventional values for those properties. The next example demonstrates this and you can learn more about

the conventions in the section.archive naming

Each type of archive has its own task type, the most common ones being , and . They all shareZip Tar Jar

most of the configuration options of , including filtering and renaming.Copy

One of the most common scenarios involves copying files into specified subdirectories of the archive. For

example, let’s say you want to package all PDFs into a directory in the root of the archive. This docs docs

directory doesn’t exist in the source location, so you have to create it as part of the archive. You do this by

adding an declaration for just the PDFs:into()

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html

Page 182 of 777

Example 126. Using the Base Plugin for its archive name convention

build.gradle

plugins {

 id 'base'

}

version = "1.0.0"

task packageDistribution(type: Zip) {

 from() {"${buildDir}/toArchive"

 exclude "**/*.pdf"

 }

 from() {"${buildDir}/toArchive"

 include "**/*.pdf"

 into "docs"

 }

}

As you can see, you can have multiple declarations in a copy specification, each with its ownfrom()

configuration. See for more information on this feature.the section called “Using child specifications”

§

Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files from

that file system onto the local file system — or even into another archive. Gradle enables this by providing

some wrapper functions that make archives available as hierarchical collections of files ().file trees

The two functions of interest are and Project.zipTree(java.lang.Object)

, which produce a from a corresponding archive file.Project.tarTree(java.lang.Object) FileTree

That file tree can then be used in a specification, like so:from()

Example 127. Unpacking a ZIP file

build.gradle

task unpackFiles(type: Copy) {

 from zipTree()"src/resources/thirdPartyResources.zip"

 into "${buildDir}/resources"

}

As with a normal copy, you can control which files are unpacked via filters and even rename files as they are

unpacked.

If you’re a Java developer and are wondering why there is no method, that’s because jarTree() zipTree()

works perfectly well for JARs, WARs and EARs.

Creating "uber" or "fat" JARs

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html

Page 183 of 777

§

Creating "uber" or "fat" JARs

In the Java space, applications and their dependencies typically used to be packaged as separate JARs

within a single distribution archive. That still happens, but there is another approach that is now common:

placing the classes and resources of the dependencies directly into the application JAR, creating what is

known as an uber or fat JAR.

Gradle makes this approach easy to accomplish. Consider the aim: to copy the contents of other JAR files

into the application JAR. All you need for this is the methodProject.zipTree(java.lang.Object)

and the task, as demonstrated by the task in the following example:Jar uberJar

Example 128. Creating a Java uber or fat JAR

build.gradle

plugins {

 id 'java'

}

version = '1.0.0'

repositories {

 mavenCentral()

}

dependencies {

 implementation 'commons-io:commons-io:2.6'

}

task uberJar(type: Jar) {

 appendix = 'uber'

 from sourceSets.main.output

 from configurations.runtimeClasspath.files.

 findAll { it.name.endsWith() }.'jar'

 collect { zipTree(it) }

}

In this case, we’re taking the runtime dependencies of the project — configurations.runtimeClasspath.files

— and wrapping each of the JAR files with the method. The result is a collection of ZIP filezipTree()

trees, the contents of which are copied into the uber JAR alongside the application classes.

Creating directories

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html

Page 184 of 777

§

Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle automatically

manages this aspect of tasks when they explicitly define file and directory outputs. You can learn about this

feature in the section of the user guide. All core Gradle tasks ensure that any outputincremental build

directories they need are created if necessary using this mechanism.

In cases where you need to create a directory manually, you can use the

 method from within your build scripts or custom taskProject.mkdir(java.lang.Object)

implementations. Here’s a simple example that creates a single directory in the project folder:images

Example 129. Manually creating a directory

build.gradle

task ensureDirectory {

 doLast {

 mkdir "images"

 }

}

As described in the , the task will automatically create all necessary directories inApache Ant manual mkdir

the given path and will do nothing if the directory already exists.

§

Moving files and directories

Gradle has no API for moving files and directories around, but you can use the toApache Ant integration

easily do that, as shown in this example:

Example 130. Moving a directory using the Ant task

build.gradle

task moveReports {

 doLast {

 ant.move file: ,"${buildDir}/reports"

 todir: "${buildDir}/toArchive"

 }

}

This is not a common requirement and should be used sparingly as you lose information and can easily

break a build. It’s generally preferable to copy directories and files instead.

Renaming files on copy

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)
https://ant.apache.org/manual/Tasks/mkdir.html

Page 185 of 777

§

Renaming files on copy

The files used and generated by your builds sometimes don’t have names that suit, in which case you want

to rename those files as you copy them. Gradle allows you to do this as part of a copy specification using the

 configuration.rename()

The following example removes the "-staging-" marker from the names of any files that have it:

Example 131. Renaming files as they are copied

build.gradle

task copyFromStaging(type: Copy) {

 from "src/main/webapp"

 into "${buildDir}/explodedWar"

 rename , '(.+)-staging(.+)' '$1$2'

}

You can use regular expressions for this, as in the above example, or closures that use more complex logic

to determine the target filename. For example, the following task truncates filenames:

Example 132. Truncating filenames as they are copied

build.gradle

task copyWithTruncate(type: Copy) {

 from "${buildDir}/reports"

 rename { String filename ->

 (filename.size() >) {if 10

 filename[.] + + filename.size()return 0. 7 "~"

 }

 filenameelse return

 }

 into "${buildDir}/toArchive"

}

As with filtering, you can also apply renaming to a subset of files by configuring it as part of a child

specification on a .from()

§

Deleting files and directories

You can easily delete files and directories using either the task or the Delete

 method. In both cases, you specify which files andProject.delete(org.gradle.api.Action)

directories to delete in a way supported by the method.Project.files(java.lang.Object[])

For example, the following task deletes the entire contents of a build’s output directory:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Page 186 of 777

Example 133. Deleting a directory

build.gradle

task myClean(type: Delete) {

 delete buildDir

}

If you want more control over which files are deleted, you can’t use inclusions and exclusions in the same

way as for copying files. Instead, you have to use the builtin filtering mechanisms of and files() fileTree()

. The following example does just that to clear out temporary files from a source directory:

Example 134. Deleting files matching a specific pattern

build.gradle

task cleanTempFiles(type: Delete) {

 delete fileTree().matching {"src"

 include "**/*.tmp"

 }

}

You’ll learn more about file collections and file trees in the next section.

§

File paths in depth

In order to perform some action on a file, you need to know where it is, and that’s the information provided

by file paths. Gradle builds on the standard Java class, which represents the location of a single file,File

and provides new APIs for dealing with collections of paths. This section shows you how to use the Gradle

APIs to specify file paths for use in tasks and file operations.

But first, an important note on using hard-coded file paths in your builds.

§

On hard-coded file paths

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to understand,

but it’s not good practice for real builds. The problem is that paths often change and the more places you

need to change them, the more likely you are to miss one and break the build.

Where possible, you should use tasks, task properties, and — in that order of preferenceproject properties

— to configure file paths. For example, if you were to create a task that packages the compiled classes of a

Java application, you should aim for something like this:

https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Page 187 of 777

Example 135. How to minimize the number of hard-coded paths in your build

build.gradle

ext {

 archivesDirPath = "${buildDir}/archives"

}

task packageClasses(type: Zip) {

 appendix = "classes"

 destinationDir = file(archivesDirPath)

 from compileJava

}

See how we’re using the task as the source of the files to package and we’ve created acompileJava

project property to store the location where we put archives, on the basis we’re likely toarchivesDirPath

use it elsewhere in the build.

Using a task directly as an argument like this relies on it having , so it won’t always bedefined outputs

possible. In addition, this example could be improved further by relying on the Java plugin’s convention for destinationDir

rather than overriding it, but it does demonstrate the use of project properties.

§

Single file paths

One of the great quandaries when developing a build is how to specify file locations when the build may be

executed from an arbitrary directory — not necessarily in the project — and may be run on any number of

different systems with incompatible directory layouts. The standard Java mechanism for specifying a file path

runs into trouble in these situations:

new File(relative path) generates a path relative to the current working directory, which could be

anywhere

new File(absolute path) will fail if the file system doesn’t have the requisite path.

Gradle solves this problem by providing the method, whichProject.file(java.lang.Object)

generates a path relative to the directory (unless the given path is absolute, in which case it is usedproject

as is). Here are some examples of using the method with different types of argument:file()

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 188 of 777

Example 136. Locating files

build.gradle

// Using a relative path

File configFile = file()'src/config.xml'

// Using an absolute path

configFile = file(configFile.absolutePath)

// Using a File object with a relative path

configFile = file(File())new 'src/config.xml'

// Using a java.nio.file.Path object with a relative path

configFile = file(Paths.get(,))'src' 'config.xml'

// Using an absolute java.nio.file.Path object

configFile = file(Paths.get(System.getProperty()).resolve())'user.home' 'global-config.xml'

As you can see, you can pass strings, instances and instances to the method, all ofFile Path file()

which result in an absolute object. You can find other options for argument types in the referenceFile

guide, linked in the previous paragraph.

What happens in the case of multi-project builds? The method will always turn relative paths intofile()

paths that are relative to the current project directory, which may be a child project. If you want to use a path

that’s relative to the directory, then you need to use the special root project Project.getRootDir()

property to construct an absolute path, like so:

Example 137. Creating a path relative to a parent project

build.gradle

File configFile = file()"${rootDir}/shared/config.xml"

Let’s say you’re working on a multi-project build in a directory. You use thedev/projects/AcmeHealth

above example in the build of the library you’re fixing — at AcmeHealth/subprojects/AcmePatientRecordLib/build.gradle

. The file path will resolve to the absolute version of .dev/projects/AcmeHealth/shared/config.xml

The method can be used to configure any task that has a property of type . Many tasks,file() File

though, work on multiple files, so we look at how to specify sets of files next.

§

File collections

A is simply a set of file paths that’s represented by the interface. filefile collection FileCollection Any

paths. It’s important to understand that the file paths don’t have to be related in any way, so they don’t have

to be in the same directory or even have a shared parent directory. You will also find that many parts of the

Gradle API use , such as the copying API discussed later in this chapter and FileCollection dependency

.configurations

https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html

Page 189 of 777

The recommended way to specify a collection of files is to use the

 method, which returns a instance. ThisProject.files(java.lang.Object[]) FileCollection

method is very flexible and allows you to pass multiple strings, instances, collections of strings,File

collections of s, and more. You can even pass in tasks as arguments if they have .File defined outputs

Learn about all the supported argument types in the reference guide.

As with the method covered in the , all relativeProject.file(java.lang.Object) previous section

paths are evaluated relative to the current project directory. The following example demonstrates some of

the variety of argument types you can use — strings, instances, a list and a :File Path

Example 138. Creating a file collection

build.gradle

FileCollection collection = files(,'src/file1.txt'

 File(),new 'src/file2.txt'

 [,],'src/file3.csv' 'src/file4.csv'

 Paths.get(,))'src' 'file5.txt'

File collections have some important attributes in Gradle. They can be:

created lazily

iterated over

filtered

combined

Lazy creation of a file collection is useful when you need to evaluate the files that make up a collection at the

time a build runs. In the following example, we query the file system to find out what files exist in a particular

directory and then make those into a file collection:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html

Page 190 of 777

Example 139. Implementing a file collection

build.gradle

task list {

 doLast {

 File srcDir

 // Create a file collection using a closure

 collection = files { srcDir.listFiles() }

 srcDir = file()'src'

 println "Contents of $srcDir.name"

 collection.collect { relativePath(it) }.sort().each { println it }

 srcDir = file()'src2'

 println "Contents of $srcDir.name"

 collection.collect { relativePath(it) }.sort().each { println it }

 }

}

Output of gradle -q list

> gradle -q list

Contents of src

src/dir1

src/file1.txt

Contents of src2

src2/dir1

src2/dir2

The key to lazy creation is passing a closure to the method. Your closure simply needs to return afiles()

value of a type accepted by , such as , , , etc.files() List<File> String FileCollection

Iterating over a file collection can be done through the method on the collection or using theeach()

collection in a loop. In both approaches, the file collection is treated as a set of instances, i.e. yourfor File

iteration variable will be of type .File

The following example demonstrates such iteration as well as how you can convert file collections to other

types using the operator or supported properties:as

Page 191 of 777

Example 140. Using a file collection

build.gradle

// Iterate over the files in the collection

collection.each { File file ->

 println file.name

}

// Convert the collection to various types

Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = collection.asPath

File file = collection.singleFile

File file2 = collection as File

// Add and subtract collections

def union = collection + files()'src/file2.txt'

def different = collection - files()'src/file2.txt'

You can also see at the end of the example using the and operators tohow to combine file collections + -

merge and subtract them. An important feature of the resulting file collections is that they are . In otherlive

words, when you combine file collections in this way, the result always reflects what’s currently in the source

file collections, even if they change during the build.

For example, imagine in the above example gains an extra file or two after is created.collection union

As long as you use after those files are added to , will also contain thoseunion collection union

additional files. The same goes for the file collection.different

Live collections are also important when it comes to . If you want to use a subset of a file collection,filtering

you can take advantage of the method toFileCollection.filter(org.gradle.api.specs.Spec)

determine which files to "keep". In the following example, we create a new collection that consists of only the

files that end with .txt in the source collection:

Example 141. Filtering a file collection

build.gradle

FileCollection textFiles = collection.filter { File f ->

 f.name.endsWith()".txt"

}

Output of gradle -q filterTextFiles

> gradle -q filterTextFiles

src/file1.txt

src/file2.txt

src/file5.txt

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-

Page 192 of 777

If changes at any time, either by adding or removing files from itself, then willcollection textFiles

immediately reflect the change because it is also a live collection. Note that the closure you pass to filter()

takes a as an argument and should return a boolean.File

§

File trees

A is a file collection that retains the directory structure of the files it contains and has the type file tree

. This means that all the paths in a file tree must have a shared parent directory. The followingFileTree

diagram highlights the distinction between file trees and file collections in the common case of copying files:

Figure 12. The differences in how file trees and file collections behave when copying files

Note: Although extends (an is-a relationship), their behaviors doFileTree FileCollection

differ. In other words, you can use a file tree wherever a file collection is required, but remember: a

file collection is a flat list/set of files, while a file tree is a file and directory hierarchy. To convert a file

tree to a flat collection, use the property.FileTree.getFiles()

The simplest way to create a file tree is to pass a file or directory path to the

 method. This will create a tree of all the files and directories inProject.fileTree(java.lang.Object)

that base directory (but not the base directory itself). The following example demonstrates how to use the

basic method and, in addition, how to filter the files and directories using Ant-style patterns:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html#getFiles--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

Page 193 of 777

Example 142. Creating a file tree

build.gradle

// Create a file tree with a base directory

FileTree tree = fileTree(dir:)'src/main'

// Add include and exclude patterns to the tree

tree.include '**/*.java'

tree.exclude '**/Abstract*'

// Create a tree using path

tree = fileTree().include()'src' '**/*.java'

// Create a tree using closure

tree = fileTree() {'src'

 include '**/*.java'

}

// Create a tree using a map

tree = fileTree(dir: , include:)'src' '**/*.java'

tree = fileTree(dir: , includes: [,])'src' '**/*.java' '**/*.xml'

tree = fileTree(dir: , include: , exclude:)'src' '**/*.java' '**/*test*/**'

You can see more examples of supported patterns in the API docs for . Also, see thePatternFilterable

API documentation for to see what types you can pass as the base directory.fileTree()

Note: By default, returns a instance that applies some default exclusionfileTree() FileTree

patterns for convenience — the same defaults as Ant in fact. For the complete default exclusion list,

see .the Ant manual

If those default exclusions prove problematic, you can workaround the issue by using the defaultexcludes

, as demonstrated in this example:Ant task

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
https://ant.apache.org/manual/Tasks/defaultexcludes.html
https://ant.apache.org/manual/Tasks/defaultexcludes.html

Page 194 of 777

Example 143. Changing Ant default exclusions for a copy task

Note: build.gradle
task forcedCopy(type: Copy) {

 into "${buildDir}/inPlaceApp"

 from 'src/main/webapp'

 doFirst {

 ant.defaultexcludes remove: "**/.git"

 ant.defaultexcludes remove: "**/.git/**"

 ant.defaultexcludes remove: "**/*~"

 }

 doLast {

 ant.defaultexcludes : truedefault

 }

}

In general, it’s best to ensure that the default exclusions are reset whenever you change them as

modifications are visible to the entire build. The above example is performing such a reset in its doLast

action.

You can do many of the same things with file trees that you can with file collections:

iterate over them (depth first)

filter them (using and Ant-style patterns)FileTree.matching(org.gradle.api.Action)

merge them

You can also traverse file trees using the method. All ofFileTree.visit(org.gradle.api.Action)

these techniques are demonstrated in the following example:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

Page 195 of 777

Example 144. Using a file tree

build.gradle

// Iterate over the contents of a tree

tree.each {File file ->

 println file

}

// Filter a tree

FileTree filtered = tree.matching {

 include 'org/gradle/api/**'

}

// Add trees together

FileTree sum = tree + fileTree(dir:)'src/test'

// Visit the elements of the tree

tree.visit {element ->

 println "$element.relativePath => $element.file"

}

We’ve discussed how to create your own file trees and file collections, but it’s also worth bearing in mind that

many Gradle plugins provide their own instances of file trees, such as . These can beJava’s source sets

used and manipulated in exactly the same way as the file trees you create yourself.

Another specific type of file tree that users commonly need is the archive, i.e. ZIP files, TAR files, etc. We

look at those next.

§

Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it’s a special case of a file

tree, and that’s exactly how Gradle treats archives. Instead of using the method, which onlyfileTree()

works on normal file systems, you use the and Project.zipTree(java.lang.Object)

 methods to wrap archive files of the corresponding type (noteProject.tarTree(java.lang.Object)

that JAR, WAR and EAR files are ZIPs). Both methods return instances that you can then use inFileTree

the same way as normal file trees. For example, you can extract some or all of the files of an archive by

copying its contents to some directory on the file system. Or you can merge one archive into another.

Here are some simple examples of creating archive-based file trees:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Page 196 of 777

Example 145. Using an archive as a file tree

build.gradle

// Create a ZIP file tree using path

FileTree zip = zipTree()'someFile.zip'

// Create a TAR file tree using path

FileTree tar = tarTree()'someFile.tar'

//tar tree attempts to guess the compression based on the file extension

//however if you must specify the compression explicitly you can:

FileTree someTar = tarTree(resources.gzip())'someTar.ext'

You can see a practical example of extracting an archive file we cover.in among the common scenarios

§

Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the JavaCompile

task has a property that defines the source files to compile. You can set the value of this propertysource

using any of the types supported by the method, as mentioned in the api docs. This means you can,files()

for example, set the property to a , , collection, or even a closure.File String FileCollection

This is a feature of specific tasks! That means implicit conversion will not happen for just any task that has

a or property. If you want to know whether implicit conversion happens in aFileCollection FileTree

particular situation, you will need to read the relevant documentation, such as the corresponding task’s API

docs. Alternatively, you can remove all doubt by explicitly using Project.files(java.lang.Object[])

in your build.

Here are some examples of the different types of arguments that the property can take:source

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Page 197 of 777

Example 146. Specifying a set of files

build.gradle

task compile(type: JavaCompile)

// Use a File object to specify the source directory

compile {

 source = file()'src/main/java'

}

// Use a String path to specify the source directory

compile {

 source = 'src/main/java'

}

// Use a collection to specify multiple source directories

compile {

 source = [,]'src/main/java' '../shared/java'

}

// Use a FileCollection (or FileTree in this case) to specify the source files

compile {

 source = fileTree(dir:).matching { include }'src/main/java' 'org/gradle/api/**'

}

// Using a closure to specify the source files.

compile {

 source = {

 // Use the contents of each zip file in the src dir

 file().listFiles().findAll {it.name.endsWith()}.collect { zipTree(it) }'src' '.zip'

 }

}

One other thing to note is that properties like have corresponding methods in core Gradle tasks.source

Those methods follow the convention of to collections of values rather than replacing them.appending

Again, this method accepts any of the types supported by the method, as shown here:files()

Page 198 of 777

Example 147. Appending a set of files

build.gradle

compile {

 // Add some source directories use String paths

 source , 'src/main/java' 'src/main/groovy'

 // Add a source directory using a File object

 source file()'../shared/java'

 // Add some source directories using a closure

 source { file().listFiles() }'src/test/'

}

As this is a common convention, we recommend that you follow it in your own custom tasks. Specifically, if

you plan to add a method to configure a collection-based property, make sure the method appends rather

than replaces values.

§

File copying in depth

The basic process of copying files in Gradle is a simple one:

Define a task of type Copy

Specify which files (and potentially directories) to copy

Specify a destination for the copied files

But this apparent simplicity hides a rich API that allows fine-grained control of which files are copied, where

they go, and what happens to them as they are copied — renaming of the files and token substitution of file

content are both possibilities, for example.

Let’s start with the last two items on the list, which form what is known as a . This iscopy specification

formally based on the interface, which the task implements, and offers:CopySpec Copy

A method to define what to copyCopySpec.from(java.lang.Object[])

An method to define the destinationCopySpec.into(java.lang.Object)

CopySpec has several additional methods that allow you to control the copying process, but these two are

the only required ones. is straightforward, requiring a directory path as its argument in any forminto()

supported by the method. The configuration is far moreProject.file(java.lang.Object) from()

flexible.

Not only does accept multiple arguments, it also allows several different types of argument. Forfrom()

example, some of the most common types are:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 199 of 777

A — treated as a file path or, if it starts with "file://", a file URIString

A — used as a file pathFile

A or — all files in the collection are included in the copyFileCollection FileTree

A task — the files or directories that form a task’s are includeddefined outputs

In fact, accepts all the same arguments as , so seefrom() Project.files(java.lang.Object[])

that method for a more detailed list of acceptable types.

Something else to consider is what type of thing a file path refers to:

A file — the file is copied as is

A directory — this is effectively treated as a file tree: everything in it, including subdirectories, is copied.

However, the directory itself is not included in the copy.

A non-existent file — the path is ignored

Here is an example that uses multiple specifications, each with a different argument type. You willfrom()

probably also notice that is configured lazily using a closure — a technique that also works with into() from()

:

Example 148. Specifying copy task source files and destination directory

build.gradle

task anotherCopyTask(type: Copy) {

 // Copy everything under src/main/webapp

 from 'src/main/webapp'

 // Copy a single file

 from 'src/staging/index.html'

 // Copy the output of a task

 from copyTask

 // Copy the output of a task using Task outputs explicitly.

 from copyTaskWithPatterns.outputs

 // Copy the contents of a Zip file

 from zipTree()'src/main/assets.zip'

 // Determine the destination directory later

 into { getDestDir() }

}

Note that the lazy configuration of is different from a , even though the syntax isinto() child specification

similar. Keep an eye on the number of arguments to distinguish between them.

Filtering files

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Page 200 of 777

§

Filtering files

You’ve already seen that you can filter file collections and file trees directly in a task, but you can alsoCopy

apply filtering in any copy specification through the and CopySpec.include(java.lang.String[])

 methods.CopySpec.exclude(java.lang.String[])

Both of these methods are normally used with Ant-style include or exclude patterns, as described in

. You can also perform more complex logic by using a closure that takes a PatternFilterable

 and returns if the file should be included or otherwise. The followingFileTreeElement true false

example demonstrates both forms, ensuring that only .html and .jsp files are copied, except for those .html

files with the word "DRAFT" in their content:

Example 149. Selecting the files to copy

build.gradle

task copyTaskWithPatterns(type: Copy) {

 from 'src/main/webapp'

 into "${buildDir}/explodedWar"

 include '**/*.html'

 include '**/*.jsp'

 exclude { FileTreeElement details ->

 details.file.name.endsWith() &&'.html'

 details.file.text.contains()'DRAFT'

 }

}

A question you may ask yourself at this point is what happens when inclusion and exclusion patterns

overlap? Which pattern wins? Here are the basic rules:

If there are no explicit inclusions or exclusions, everything is included

If at least one inclusion is specified, only files and directories matching the patterns are included

Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one exclusion

pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that you end up

with the exact behavior you want.

Note that the inclusions and exclusions in the above example will apply to configurations. If youall from()

want to apply filtering to a subset of the copied files, you’ll need to use .child specifications

§

Renaming files

The gives you most of the information you need to perform thisexample of how to rename files on copy

operation. It demonstrates the two options for renaming:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTreeElement.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTreeElement.html

Page 201 of 777

1.

2.

Using a regular expression

Using a closure

Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex groups that

allow you to remove and replaces parts of the source filename. The following example shows how you can

remove the string "-staging-" from any filename that contains it using a simple regular expression:

Example 150. Renaming files as they are copied

build.gradle

task rename(type: Copy) {

 from 'src/main/webapp'

 into "${buildDir}/explodedWar"

 // Use a closure to convert all file names to upper case

 rename { String fileName ->

 fileName.toUpperCase()

 }

 // Use a regular expression to map the file name

 rename , '(.+)-staging-(.+)' '$1$2'

 rename(/(.+)-staging-(.+)/,)'$1$2'

}

You can use any regular expression supported by the Java class and the substitution string (thePattern

second argument of works on the same principles as the rename() Matcher.appendReplacement()

method.

Regular expressions in Groovy build scripts

There are two common issues people come across when using regular expressions in this context:

Note: If you use a slashy string (those delimited by '/') for the first argument, you include themust

parentheses for as shown in the above example.rename()

Note: It’s safest to use single quotes for the second argument, otherwise you need to escape the '$'

in group substitutions, i.e. "\$1\$2"

The first is a minor inconvenience, but slashy strings have the advantage that you don’t have to

escape backslash ('\') characters in the regular expression. The second issue stems from Groovy’s

support for embedded expressions using syntax in double-quoted and slashy strings.${ }

The closure syntax for is straightforward and can be used for any requirements that simplerename()

regular expressions can’t handle. You’re given the name of a file and you return a new name for that file, or null

if you don’t want to change the name. Do be aware that the closure will be executed for every file that’s

copied, so try to avoid expensive operations where possible.

Filtering file content (token substitution, templating, etc.)

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#appendReplacement-java.lang.StringBuffer-java.lang.String-

Page 202 of 777

§

Filtering file content (token substitution, templating, etc.)

Not to be confused with filtering which files are copied, allows you to transform thefile content filtering

content of files while they are being copied. This can involve basic templating that uses token substitution,

removal of lines of text, or even more complex filtering using a full-blown template engine.

The following example demonstrates several forms of filtering, including token substitution using the

 method and another using CopySpec.expand(java.util.Map)

 with an :CopySpec.filter(java.lang.Class) Ant filter

Example 151. Filtering files as they are copied

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter

 org.apache.tools.ant.filters.ReplaceTokensimport

task filter(type: Copy) {

 from 'src/main/webapp'

 into "${buildDir}/explodedWar"

 // Substitute property tokens in files

 expand(copyright: , version:)'2009' '2.3.1'

 expand(project.properties)

 // Use some of the filters provided by Ant

 filter(FixCrLfFilter)

 filter(ReplaceTokens, tokens: [copyright: , version:])'2009' '2.3.1'

 // Use a closure to filter each line

 filter { String line ->

 "[$line]"

 }

 // Use a closure to remove lines

 filter { String line ->

 line.startsWith() ? null : line'-'

 }

 filteringCharset = 'UTF-8'

}

The method has two variants, which behave differently:filter()

one takes a and is designed to work with Ant filters, such as FilterReader ReplaceTokens

one takes a closure or that defines the transformation for each line of the source fileTransformer

Note that both variants assume the source files are text based. When you use the classReplaceTokens

with , the result is a template engine that replaces tokens of the form (the Ant-stylefilter() @tokenName@

token) with values that you define.

The method treats the source files as , which evaluate and expand expressionsexpand() Groovy templates

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html
https://docs.oracle.com/javase/7/docs/api/java/io/FilterReader.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Transformer.html
http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

Page 203 of 777

1.

2.

of the form . You can pass in property names and values that are then expanded in the${expression}

source files. allows for more than basic token substitution as the embedded expressions areexpand()

full-blown Groovy expressions.

Note: It’s good practice to specify the character set when reading and writing the file, otherwise the

transformations won’t work properly for non-ASCII text. You configure the character set with the

 property. If it’s not specified, the JVM default character setCopySpec.getFilteringCharset()

is used, which is likely to be different from the one you want.

§

Using the classCopySpec

A copy specification (or copy spec for short) determines what gets copied to where, and what happens to

files during the copy. You’ve alread seen many examples in the form of configuration for and archivingCopy

tasks. But copy specs have two attributes that are worth covering in more detail:

They can be independent of tasks

They are hierarchical

The first of these attributes allows you to . The second provides fine-grainedshare copy specs within a build

control within the overall copy specification.

§

Sharing copy specs

Consider a build that has several tasks that copy a project’s static website resources or add them to an

archive. One task might copy the resources to a folder for a local HTTP server and another might package

them into a distribution. You could manually specify the file locations and appropriate inclusions each time

they are needed, but human error is more likely to creep in, resulting in inconsistencies between tasks.

One solution Gradle provides is the method. ThisProject.copySpec(org.gradle.api.Action)

allows you to create a copy spec outside of a task, which can then be attached to an appropriate task using

the method. The following exampleCopySpec.with(org.gradle.api.file.CopySpec[])

demonstrates how this is done:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec[]-

Page 204 of 777

Example 152. Sharing copy specifications

build.gradle

CopySpec webAssetsSpec = copySpec {

 from 'src/main/webapp'

 include , , '**/*.html' '**/*.png' '**/*.jpg'

 rename , '(.+)-staging(.+)' '$1$2'

}

task copyAssets(type: Copy) {

 into "${buildDir}/inPlaceApp"

 with webAssetsSpec

}

task distApp(type: Zip) {

 archiveName = 'my-app-dist.zip'

 destinationDir = file()"${buildDir}/dists"

 from appClasses

 with webAssetsSpec

}

Both the and tasks will process the static resources under , ascopyAssets distApp src/main/webapp

specified by .webAssetsSpec

Note: The configuration defined by will apply to the app classes included bywebAssetsSpec not

the task. That’s because is its own child specification independent of distApp from appClasses with webAssetsSpec

.

This can be confusing to understand, so it’s probably best to treat as an extra with() from()

specification in the task. Hence it doesn’t make sense to define a standalone copy spec without at

least one defined.from()

If you encounter a scenario in which you want to apply the same copy configuration to sets of files,different

then you can share the configuration block directly without using . Here’s an example that hascopySpec()

two independent tasks that happen to want to process image files only:

Page 205 of 777

Example 153. Sharing copy patterns only

build.gradle

def webAssetPatterns = {

 include , , '**/*.html' '**/*.png' '**/*.jpg'

}

task copyAppAssets(type: Copy) {

 into "${buildDir}/inPlaceApp"

 from , webAssetPatterns'src/main/webapp'

}

task archiveDistAssets(type: Zip) {

 archiveName = 'distribution-assets.zip'

 destinationDir = file()"${buildDir}/dists"

 from , webAssetPatterns'distResources'

}

In this case, we assign the copy configuration to its own variable and apply it to whatever from()

specification we want. This doesn’t just work for inclusions, but also exclusions, file renaming, and file

content filtering.

§

Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to the files that are copied.all

Sometimes this is what you want, but not always. Consider the following example that copies files into a

directory structure that can be used by a Java Servlet container to deliver a website:

Figure 13. Creating an exploded WAR for a Servlet container

Page 206 of 777

This is not a straightforward copy as the directory and its subdirectories don’t exist within theWEB-INF

project, so they must be created during the copy. In addition, we only want HTML and image files going

directly into the root folder — — and only JavaScript files going into the directory.build/explodedWar js

So we need separate filter patterns for those two sets of files.

The solution is to use , which can be applied to both and declarations.child specifications from() into()

The following task definition does the necessary work:

Example 154. Nested copy specs

build.gradle

task nestedSpecs(type: Copy) {

 into "${buildDir}/explodedWar"

 exclude '**/*staging*'

 from() {'src/dist'

 include , , '**/*.html' '**/*.png' '**/*.jpg'

 }

 from(sourceSets.main.output) {

 into 'WEB-INF/classes'

 }

 into() {'WEB-INF/lib'

 from configurations.runtimeClasspath

 }

}

Notice how the configuration has a nested inclusion specification: that’s the child copy spec. Yousrc/dist

can of course add content filtering and renaming here as required. A child copy spec is still a copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination either by

using a child on a or a child on an . Both approaches are acceptable, butinto() from() from() into()

you may want to create and follow a convention to ensure consistency across your build files.

Note: Don’t get your specifications mixed up! For a normal copy — one to the filesysteminto()

rather than an archive — there should always be "root" that simply specifies the overallone into()

destination directory of the copy. Any other should have a child spec attached and its pathinto()

will be relative to the root .into()

One final thing to be aware of is that a child copy spec inherits its destination path, include patterns, exclude

patterns, copy actions, name mappings and filters from its parent. So be careful where you place your

configuration.

Copying files in your own tasks

Page 207 of 777

1.

2.

§

Copying files in your own tasks

There might be occasions when you want to copy files or directories as of a task. For example, apart

custom archiving task based on an unsupported archive format might want to copy files to a temporary

directory before they are then archived. You still want to take advantage of Gradle’s copy API, but without

introducing an extra task.Copy

The solution is to use the method. It works the same way asProject.copy(org.gradle.api.Action)

the task by configuring it with a copy spec. Here’s a trivial example:Copy

Example 155. Copying files using the copy() method without up-to-date check

build.gradle

task copyMethod {

 doLast {

 copy {

 from 'src/main/webapp'

 into "${buildDir}/explodedWar"

 include '**/*.html'

 include '**/*.jsp'

 }

 }

}

The above example demonstrates the basic syntax and also highlights two major limitations of using the copy()

method:

The method is not . The example’s task will execute because itcopy() incremental copyMethod always

has no information about what files make up the task’s inputs. You have to manually define the task inputs

and outputs.

Using a task as a copy source, i.e. as an argument to , won’t set up an automatic task dependencyfrom()

between your task and that copy source. As such, if you are using the method as part of a taskcopy()

action, you must explicitly declare all inputs and outputs in order to get the correct behavior.

The following example shows you how to workaround these limitations by using the dynamic API for task

:inputs and outputs

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Page 208 of 777

Example 156. Copying files using the copy() method with up-to-date check

build.gradle

task copyMethodWithExplicitDependencies{

 // up-to-date check for inputs, plus add copyTask as dependency

 inputs.files copyTask

 outputs.dir 'some-dir' // up-to-date check for outputs

 doLast{

 copy {

 // Copy the output of copyTask

 from copyTask

 into 'some-dir'

 }

 }

}

These limitations make it preferable to use the task wherever possible, because of its builtin supportCopy

for incremental building and task dependency inference. That is why the method is intended for usecopy()

by that need to copy files as part of their function. Custom tasks that use the methodcustom tasks copy()

should declare the necessary inputs and outputs relevant to the copy action.

§

Mirroring directories and file collections with the taskSync

The task, which extends the task, copies the source files into the destination directory and thenSync Copy

removes any files from the destination directory which it did not copy. In other words, it synchronizes the

contents of a directory with its source. This can be useful for doing things such as installing your application,

creating an exploded copy of your archives, or maintaining a copy of the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the build/libs

directory.

Example 157. Using the Sync task to copy dependencies

build.gradle

task libs(type: Sync) {

 from configurations.runtime

 into "${buildDir}/libs"

}

You can also perform the same function in your own tasks with the

 method.Project.sync(org.gradle.api.Action)

Archive creation in depth

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)

Page 209 of 777

§

Archive creation in depth

Archives are essentially self-contained file systems and Gradle treats them as such. This is why working with

archives is very similar to working with files and directories, including such things as file permissions.

Out of the box, Gradle supports creation of both ZIP and TAR archives, and by extension Java’s JAR, WAR

and EAR formats — Java’s archive formats are all ZIPs. Each of these formats has a corresponding task

type to create them: , , , , and . These all work the same way and are based on copyZip Tar Jar War Ear

specifications, just like the task.Copy

Creating an archive file is essentially a file copy in which the destination is implicit, i.e. the archive file itself.

Here’s a basic example that specifies the path and name of the target archive file:

Example 158. Archiving a directory as a ZIP

build.gradle

task packageDistribution(type: Zip) {

 archiveName = "my-distribution.zip"

 destinationDir = file()"${buildDir}/dist"

 from "${buildDir}/toArchive"

}

In the next section you’ll learn about convention-based archive names, which can save you from always

configuring the destination directory and archive name.

The full power of copy specifications are available to you when creating archives, which means you can do

content filtering, file renaming or anything else that is covered in the previous section. A particularly common

requirement is copying files into subdirectories of the archive that don’t exist in the source folders, something

that can be achieved with .into() child specifications

Gradle does of course allow you create as many archive tasks as you want, but it’s worth bearing in mind

that many convention-based plugins provide their own. For example, the Java plugin adds a task forjar

packaging a project’s compiled classes and resources in a JAR. Many of these plugins provide sensible

conventions for the names of archives as well as the copy specifications used. We recommend you use

these tasks wherever you can, rather than overriding them with your own.

§

Archive naming

Gradle has several conventions around the naming of archives and where they are created based on the

plugins your project uses. The main convention is provided by the , which defaults to creatingBase Plugin

archives in the directory and typically uses archive names of the form $buildDir/distributions

.[projectName]-[version].[type]

The following example comes from a project named 'zipProject', hence the task creates an archivemyZip

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

Page 210 of 777

named 'zipProject-1.0.zip':

Example 159. Creation of ZIP archive

build.gradle

plugins {

 id 'base'

}

version = 1.0

task myZip(type: Zip) {

 from 'somedir'

 doLast {

 println archiveName

 println relativePath(destinationDir)

 println relativePath(archivePath)

 }

}

Output of gradle -q myZip

> gradle -q myZip

zipProject-1.0.zip

build/distributions

build/distributions/zipProject-1.0.zip

Note that the name of the archive does derive from the name of the task that creates it.not

If you want to change the name and location of a generated archive file, you can provide values for the archiveName

and properties of the corresponding task. These override any conventions that woulddestinationDir

otherwise apply.

Alternatively, you can make use of the default archive name pattern provided by

: .AbstractArchiveTask.getArchiveName() [baseName]-[appendix]-[version]-[classifier].[extension]

You can set each of these properties on the task separately if you wish. Note that the Base Plugin uses the

convention of project name for , project version for and the archive type for . ItbaseName version extension

does not provide values for the other properties.

This example — from the same project as the one above — configures just the property,baseName

overriding the default value of the project name:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveName
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveName

Page 211 of 777

Example 160. Configuration of archive task - custom archive name

build.gradle

task myCustomZip(type: Zip) {

 baseName = 'customName'

 from 'somedir'

 doLast {

 println archiveName

 }

}

Output of gradle -q myCustomZip

> gradle -q myCustomZip

customName-1.0.zip

You can also override the default value for the archive tasks in your build by using the baseName all project

property , as demonstrated by the following example:archivesBaseName

Page 212 of 777

Example 161. Configuration of archive task - appendix & classifier

build.gradle

plugins {

 id 'base'

}

version = 1.0

archivesBaseName = "gradle"

task myZip(type: Zip) {

 from 'somedir'

}

task myOtherZip(type: Zip) {

 appendix = 'wrapper'

 classifier = 'src'

 from 'somedir'

}

task echoNames {

 doLast {

 println "Project name: ${project.name}"

 println myZip.archiveName

 println myOtherZip.archiveName

 }

}

Output of gradle -q echoNames

> gradle -q echoNames

Project name: zipProject

gradle-1.0.zip

gradle-wrapper-1.0-src.zip

You can find all the possible archive task properties in the API documentation for ,AbstractArchiveTask

but we have also summarized the main ones here:

 — , default: archiveName String - - - .baseName appendix version classifier extension

The complete file name of the generated archive. If any of the properties in the default value are empty,

their '-' separator is dropped.

 — , , default: archivePath File read-only /destinationDir archiveName

The absolute file path of the generated archive.

 — , default: depends on archive typedestinationDir File

The target directory in which to put the generated archive. By default, JARs and WARs go into $buildDir/libs

. ZIPs and TARs go into .$buildDir/distributions

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

Page 213 of 777

 — , default: baseName String project.name

The base name portion of the archive file name, typically a project name or some other descriptive name

for what it contains.

 — , default: appendix String null

The appendix portion of the archive file name that comes immediately after the base name. It is typically

used to distinguish between different forms of content, such as code and docs, or a minimal distribution

versus a full or complete one.

 — , default: version String project.version

The version portion of the archive file name, typically in the form of a normal project or product version.

 — , default: classifier String null

The classifier portion of the archive file name. Often used to distinguish between archives that target

different platforms.

 — , default: depends on archive type and compression typeextension String

The filename extension for the archive. By default, this is set based on the archive task type and the

compression type (if you’re creating a TAR). Will be one of: , , , , or . You canzip jar war tar tgz tbz2

of course set this to a custom extension if you wish.

§

Sharing content between multiple archives

As described earlier, you can use the method to shareProject.copySpec(org.gradle.api.Action)

content between archives.

§

Reproducible archives

Sometimes it’s desirable to recreate archives exactly the same, byte for byte, on different machines. You

want to be sure that building an artifact from source code produces the same result no matter when and

where it is built. This is necessary for projects like .reproducible-builds.org

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an archive

is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built from source,

the order of the files inside the archive may change. Files that only have a different timestamp also causes

differences in archives from build to build. All (e.g. Jar, Zip) tasks shipped withAbstractArchiveTask

Gradle include support producing reproducible archives.incubating

For example, to make a task reproducible you need to set to Zip Zip.isReproducibleFileOrder() true

and to . In order to make all archive tasks in your buildZip.isPreserveFileTimestamps() false

reproducible, consider adding the following configuration to your build file:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps

Page 214 of 777

Example 162. Activating reproducible archives

build.gradle

tasks.withType(AbstractArchiveTask) {

 preserveFileTimestamps = false

 reproducibleFileOrder = true

}

Often you will want to publish an archive, so that it is usable from another project. This process is described

in Publishing artifacts

Page 215 of 777

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your

Gradle builds. In fact, you will find that it’s far easier and more powerful using Ant tasks in a Gradle build

script, than it is to use Ant’s XML format. You could even use Gradle simply as a powerful Ant task scripting

tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the build.xml

file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything

except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant build.xml

directly into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like , or . For this layer Gradlejavac copy jar

provides integration simply by relying on Groovy, and the fantastic .AntBuilder

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.

Your build script may contain statements like: ."ant clean compile".execute() []

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For example, you

could start by importing your existing Ant build. Then you could move your dependency declarations from the

Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with

some of Gradle’s plugins. This process can be done in parts over time, and you can have a working Gradle

build during the entire process.

§

Using Ant tasks and types in your build

In your build script, a property called is provided by Gradle. This is a reference to an ant AntBuilder

instance. This is used to access Ant tasks, types and properties from your build script. ThereAntBuilder

is a very simple mapping from Ant’s format to Groovy, which is explained below.build.xml

You execute an Ant task by calling a method on the instance. You use the task name as theAntBuilder

method name. For example, you execute the Ant task by calling the method. Theecho ant.echo()

attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo

task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

[]5

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html

Page 216 of 777

Example 163. Using an Ant task

build.gradle

task hello {

 doLast {

 String greeting = 'hello from Ant'

 ant.echo(message: greeting)

 }

}

Output of gradle hello

> gradle hello

> Task :hello

[ant:echo] hello from Ant

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we

pass the message for the task as nested text:echo

Example 164. Passing nested text to an Ant task

build.gradle

task hello {

 doLast {

 ant.echo()'hello from Ant'

 }

}

Output of gradle hello

> gradle hello

> Task :hello

[ant:echo] hello from Ant

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as

tasks, by calling a method with the same name as the element we want to define.

Page 217 of 777

Example 165. Passing nested elements to an Ant task

build.gradle

task zip {

 doLast {

 ant.zip(destfile:) {'archive.zip'

 fileset(dir:) {'src'

 include(name:)'**.xml'

 exclude(name:)'**.java'

 }

 }

 }

}

You can access Ant types in the same way that you access tasks, using the name of the type as the method

name. The method call returns the Ant data type, which you can then use directly in your build script. In the

following example, we create an Ant object, then iterate over the contents of it.path

Example 166. Using an Ant type

build.gradle

task list {

 doLast {

 def path = ant.path {

 fileset(dir: , includes:)'libs' '*.jar'

 }

 path.list().each {

 println it

 }

 }

}

More information about can be found in 'Groovy in Action' 8.4 or at the AntBuilder Groovy Wiki

§

Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the (usually easier) or Anttaskdef typedef

task, just as you would in a file. You can then refer to the custom Ant task as you would abuild.xml

built-in Ant task.

http://groovy-lang.org/scripting-ant.html

Page 218 of 777

Example 167. Using a custom Ant task

build.gradle

task check {

 doLast {

 ant.taskdef(resource:) {'checkstyletask.properties'

 classpath {

 fileset(dir: , includes:)'libs' '*.jar'

 }

 }

 ant.checkstyle(config:) {'checkstyle.xml'

 fileset(dir:)'src'

 }

 }

}

You can use Gradle’s dependency management to assemble the classpath to use for the custom tasks. To

do this, you need to define a custom configuration for the classpath, then add some dependencies to the

configuration. This is described in more detail in .Declaring Dependencies

Example 168. Declaring the classpath for a custom Ant task

build.gradle

configurations {

 pmd

}

dependencies {

 pmd group: , name: , version: 'pmd' 'pmd' '4.2.5'

}

To use the classpath configuration, use the property of the custom configuration.asPath

Example 169. Using a custom Ant task and dependency management together

build.gradle

task check {

 doLast {

 ant.taskdef(name: ,'pmd'

 classname: ,'net.sourceforge.pmd.ant.PMDTask'

 classpath: configurations.pmd.asPath)

 ant.pmd(shortFilenames: ,'true'

 failonruleviolation: ,'true'

 rulesetfiles: file().toURI().toString()) {'pmd-rules.xml'

 formatter(type: , toConsole:)'text' 'true'

 fileset(dir:)'src'

 }

 }

}

Page 219 of 777

§

Importing an Ant build

You can use the method to import an Ant build into your Gradle project. When youant.importBuild()

import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute

the Ant targets in exactly the same way as Gradle tasks.

Example 170. Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>

 =<target name "hello">

 Hello, from Ant<echo> </echo>

 </target>

</project>

Output of gradle hello

> gradle hello

> Task :hello

[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Page 220 of 777

Example 171. Task that depends on Ant target

build.gradle

ant.importBuild 'build.xml'

task intro(dependsOn: hello) {

 doLast {

 println 'Hello, from Gradle'

 }

}

Output of gradle intro

> gradle intro

> Task :hello

[ant:echo] Hello, from Ant

> Task :intro

Hello, from Gradle

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

Or, you can add behaviour to an Ant target:

Example 172. Adding behaviour to an Ant target

build.gradle

ant.importBuild 'build.xml'

hello {

 doLast {

 println 'Hello, from Gradle'

 }

}

Output of gradle hello

> gradle hello

> Task :hello

[ant:echo] Hello, from Ant

Hello, from Gradle

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Page 221 of 777

Example 173. Ant target that depends on Gradle task

build.gradle

ant.importBuild 'build.xml'

task intro {

 doLast {

 println 'Hello, from Gradle'

 }

}

build.xml

<project>

 = =<target name "hello" depends "intro">

 Hello, from Ant<echo> </echo>

 </target>

</project>

Output of gradle hello

> gradle hello

> Task :intro

Hello, from Gradle

> Task :hello

[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision

with existing Gradle tasks. To do this, use the AntBuilder.importBuild(java.lang.Object,

 method.org.gradle.api.Transformer)

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-

Page 222 of 777

Example 174. Renaming imported Ant targets

build.gradle

ant.importBuild() { antTargetName ->'build.xml'

 + antTargetName'a-'

}

build.xml

<project>

 =<target name "hello">

 Hello, from Ant<echo> </echo>

 </target>

</project>

Output of gradle a-hello

> gradle a-hello

> Task :a-hello

[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Note that while the second argument to this method should be a , when programming inTransformer

Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy’s

.support for automatically coercing closures to single-abstract-method types

§

Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set

the property directly on the instance. The Ant properties are also available as a Map which youAntBuilder

can change. You can also use the Ant task. Below are some examples of how to do this.property

Example 175. Setting an Ant property

build.gradle

ant.buildDir = buildDir

ant.properties.buildDir = buildDir

ant.properties[] = buildDir'buildDir'

ant.property(name: , location: buildDir)'buildDir'

build.xml

<echo>buildDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these

properties. You can get the property directly from the instance. The Ant properties are alsoAntBuilder

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Page 223 of 777

available as a Map. Below are some examples.

Example 176. Getting an Ant property

build.xml

<property = =name "antProp" value "a property defined in an Ant build"/>

build.gradle

println ant.antProp

println ant.properties.antProp

println ant.properties[]'antProp'

There are several ways to set an Ant reference:

Example 177. Setting an Ant reference

build.gradle

ant.path(id: , location:)'classpath' 'libs'

ant.references.classpath = ant.path(location:)'libs'

ant.references[] = ant.path(location:)'classpath' 'libs'

build.xml

<path =refid "classpath"/>

There are several ways to get an Ant reference:

Example 178. Getting an Ant reference

build.xml

<path = =id "antPath" location "libs"/>

build.gradle

println ant.references.antPath

println ant.references[]'antPath'

§

Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the

Gradle output. By default, these are mapped as follows:

Page 224 of 777

Table 6. Ant message priority mapping

Ant Message Priority Gradle Log Level

VERBOSE DEBUG

DEBUG DEBUG

INFO INFO

WARN WARN

ERROR ERROR

§

Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For

example, there is no message priority that maps directly to the log level, which is the default forLIFECYCLE

Gradle. Many Ant tasks log messages at the priority, which means to expose those messages fromINFO

Gradle, a build would have to be run with the log level set to , potentially logging much more outputINFO

than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would require

the build to be run at a higher log level, such as . However, this could result in other, desirable outputQUIET

being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message

priority to Gradle log level. This is done by setting the priority that should map to the default Gradle LIFECYCLE

log level using the method. When thisAntBuilder.setLifecycleLogLevel(java.lang.String)

value is set, any Ant message logged at the configured priority or above will be logged at least at LIFECYCLE

. Any Ant message logged below this priority will be logged at most at .INFO

For example, the following changes the mapping such that Ant priority messages are exposed at the INFO LIFECYCLE

log level.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

Page 225 of 777

Example 179. Fine tuning Ant logging

build.gradle

ant.lifecycleLogLevel = "INFO"

task hello {

 doLast {

 ant.echo(level: , message:)"info" "hello from info priority!"

 }

}

Output of gradle hello

> gradle hello

> Task :hello

[ant:echo] hello from info priority!

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

On the other hand, if the was set to , Ant messages logged at the lifecycleLogLevel ERROR WARN

priority would no longer be logged at the log level. They would now be logged at the level andWARN INFO

would be suppressed by default.

§

API

The Ant integration is provided by .AntBuilder

[] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have

a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

[] 5

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html

Page 226 of 777

Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms

this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks

are executed in the order of their dependencies, and that each task is executed only once. These tasks form

a . There are build tools that build up such a dependency graph as they execute theirDirected Acyclic Graph

tasks. Gradle builds the complete dependency graph any task is executed. This lies at the heart ofbefore

Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration

.scripts

§

Build phases

A Gradle build has three distinct phases.

Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which

projects are going to take part in the build, and creates a instance for each of these projects.Project

Configuration

During this phase the project objects are configured. The build scripts of projects which are part of theall

build are executed. Gradle 1.4 introduced an opt-in feature called . Inincubating configuration on demand

this mode, Gradle configures only relevant projects (see).the section called “Configuration on demand”

Execution

Gradle determines the subset of the tasks, created and configured during the configuration phase, to be

executed. The subset is determined by the task name arguments passed to the command andgradle

the current directory. Gradle then executes each of the selected tasks.

§

Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a

naming convention. The default name for this file is . Later in this chapter we explainsettings.gradle

how Gradle looks for a settings file.

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Page 227 of 777

The settings file is executed during the initialization phase. A multiproject build must have a settings.gradle

file in the root project of the multiproject hierarchy. It is required because the settings file defines which

projects are taking part in the multi-project build (see). For a single-projectAuthoring Multi-Project Builds

build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to

your build script classpath (see). Let’s first do some introspection with a single projectOrganizing Build Logic

build:

Page 228 of 777

Example 180. Single project build

settings.gradle

println 'This is executed during the initialization phase.'

build.gradle

println 'This is executed during the configuration phase.'

task configured {

 println 'This is also executed during the configuration phase.'

}

task test {

 doLast {

 println 'This is executed during the execution phase.'

 }

}

task testBoth {

 doFirst {

 println 'This is executed first during the execution phase.'

 }

 doLast {

 println 'This is executed last during the execution phase.'

 }

 println 'This is executed during the configuration phase as well.'

}

Output of gradle test testBoth

> gradle test testBoth

This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is also executed during the configuration phase.

This is executed during the configuration phase as well.

> Task :test

This is executed during the execution phase.

> Task :testBoth

This is executed first during the execution phase.

This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

For a build script, the property access and method calls are delegated to a project object. Similarly property

access and method calls within the settings file is delegated to a settings object. Look at the Settings

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html

Page 229 of 777

class in the API documentation for more information.

§

Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.

You have to declare the projects taking part in the multiproject build in the settings file. There is much more

to say about multi-project builds in the chapter dedicated to this topic (see).Authoring Multi-Project Builds

§

Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents

a project. A project has a path which denotes the position of the project in the multi-project build tree. In most

cases the project path is consistent with the physical location of the project in the file system. However, this

behavior is configurable. The project tree is created in the file. By default it is assumedsettings.gradle

that the location of the settings file is also the location of the root project. But you can redefine the location of

the root project in the settings file.

§

Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical

layouts get special support.

§

Hierarchical layouts

Example 181. Hierarchical layout

settings.gradle

include , , 'project1' 'project2:child' 'project3:child1'

The method takes project paths as arguments. The project path is assumed to be equal to theinclude

relative physical file system path. For example, a path 'services:api' is mapped by default to a folder

'services/api' (relative from the project root). You only need to specify the leaves of the tree. This means that

the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and

'services:hotels:api'. More examples of how to work with the project path can be found in the DSL

documentation of .Settings.include(java.lang.String[])

§

Flat layouts

Example 182. Flat layout

settings.gradle

includeFlat , 'project3' 'project4'

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Page 230 of 777

The method takes directory names as an argument. These directories need to exist asincludeFlat

siblings of the root project directory. The location of these directories are considered as child projects of the

root project in the multi-project tree.

§

Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called . You can modifyproject descriptors

these descriptors in the settings file at any time. To access a descriptor you can do:

Example 183. Lookup of elements of the project tree

settings.gradle

println rootProject.name

println project().name':projectA'

Using this descriptor you can change the name, project directory and build file of a project.

Example 184. Modification of elements of the project tree

settings.gradle

rootProject.name = 'main'

project().projectDir = File(settingsDir,)':projectA' new '../my-project-a'

project().buildFileName = ':projectA' 'projectA.gradle'

Look at the class in the API documentation for more information.ProjectDescriptor

§

Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from a

directory with a settings file, things are easy. But Gradle also allows you to execute the build from within any

subproject taking part in the build. If you execute Gradle from within a project with no settings.gradle

file, Gradle looks for a file in the following way:settings.gradle

It looks in a directory called which has the same nesting level as the current dir.master

If not found yet, it searches parent directories.

If not found yet, the build is executed as a single project build.

If a file is found, Gradle checks if the current project is part of the multiproject hierarchysettings.gradle

defined in the found file. If not, the build is executed as a single project build. Otherwisesettings.gradle

a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a

subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent

[]6

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

Page 231 of 777

projects are built, but Gradle needs to create the build configuration for the whole multiproject build (see

). You can use the command line option to tell Gradle not to look in theAuthoring Multi-Project Builds -u

parent hierarchy for a file. The current project is then always built as a single projectsettings.gradle

build. If the current project contains a file, the option has no meaning. Such a buildsettings.gradle -u

is always executed as:

a single project build, if the file does not define a multiproject hierarchysettings.gradle

a multiproject build, if the file does define a multiproject hierarchy.settings.gradle

The automatic search for a file only works for multi-project builds with a physicalsettings.gradle

hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described

above (“ ”). Gradle supports arbitrary physical layouts for a multiproject build, but for such arbitrarymaster

layouts you need to execute the build from the directory where the settings file is located. For information on

how to run partial builds from the root see .the section called “Running tasks by their absolute path”

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are

the projects specified in the Settings object (plus the root project). Each project object has by default a name

equal to the name of its top level directory, and every project except the root project has a parent project.

Any project may have child projects.

§

Configuration and execution of a single project build

For a single project build, the workflow of the phases are pretty simple. The build script isafter initialization

executed against the project object that was created during the initialization phase. Then Gradle looks for

tasks with names equal to those passed as command line arguments. If these task names exist, they are

executed as a separate build in the order you have passed them. The configuration and execution for

multi-project builds is discussed in .Authoring Multi-Project Builds

§

Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These notifications

generally take two forms: You can either implement a particular listener interface, or you can provide a

closure to execute when the notification is fired. The examples below use closures. For details on how to use

the listener interfaces, refer to the API documentation.

§

Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do

things like performing additional configuration once all the definitions in a build script have been applied, or

for some custom logging or profiling.

Below is an example which adds a task to each project which has a property value of true.test hasTests

Page 232 of 777

Example 185. Adding of test task to each project which has certain property set

build.gradle

allprojects {

 afterEvaluate { project ->

 (project.hasTests) {if

 println "Adding test task to $project"

 project.task() {'test'

 doLast {

 println "Running tests for $project"

 }

 }

 }

 }

}

projectA.gradle

hasTests = true

Output of gradle -q test

> gradle -q test

Adding test task to project ':projectA'

Running tests for project ':projectA'

This example uses method to add a closure which is executed after theProject.afterEvaluate()

project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some

custom logging of project evaluation. Notice that the notification is received regardless ofafterProject

whether the project evaluates successfully or fails with an exception.

Example 186. Notifications

build.gradle

gradle.afterProject {project, projectState ->

 (projectState.failure) {if

 println "Evaluation of $project FAILED"

 } {else

 println "Evaluation of $project succeeded"

 }

}

Output of gradle -q test

> gradle -q test

Evaluation of root project 'buildProjectEvaluateEvents' succeeded

Evaluation of project ':projectA' succeeded

Evaluation of project ':projectB' FAILED

BUILD FAILED in 0s

Page 233 of 777

You can also add a to the to receive these events.ProjectEvaluationListener Gradle

§

Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some

default values or add behaviour before the task is made available in the build file.

The following example sets the property of each task as it is created.srcDir

Example 187. Setting of certain property to all tasks

build.gradle

tasks.whenTaskAdded { task ->

 task.ext.srcDir = 'src/main/java'

}

task a

println "source dir is $a.srcDir"

Output of gradle -q a

> gradle -q a

source dir is src/main/java

You can also add an to a to receive these events.Action TaskContainer

§

Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have

seen this already in .the section called “Configure by DAG”

You can also add a to the to receive theseTaskExecutionGraphListener TaskExecutionGraph

events.

§

Task execution

You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the notificationafterTask

is received regardless of whether the task completes successfully or fails with an exception.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Page 234 of 777

Example 188. Logging of start and end of each task execution

build.gradle

task ok

task broken(dependsOn: ok) {

 doLast {

 RuntimeException()throw new 'broken'

 }

}

gradle.taskGraph.beforeTask { Task task ->

 println "executing $task ..."

}

gradle.taskGraph.afterTask { Task task, TaskState state ->

 (state.failure) {if

 println "FAILED"

 }

 {else

 println "done"

 }

}

Output of gradle -q broken

> gradle -q broken

executing task ':ok' ...

done

executing task ':broken' ...

FAILED

BUILD FAILED in 0s

You can also use a to the to receive these events.TaskExecutionListener TaskExecutionGraph

[] Gradle supports partial multiproject builds (see).Authoring Multi-Project Builds[] 6

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Page 235 of 777

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by

this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle

defines 6 log levels, as shown in . There are two Gradle-specific log levels, in addition to the onesTable 7

you might normally see. Those levels are and . The latter is the default, and is used toQUIET LIFECYCLE

report build progress.

Table 7. Log levels

Level Used for

ERROR Error messages

QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages

INFO Information messages

DEBUG Debug messages

Note: The rich components of the console (build status and work in progress area) are displayed

regardless of the log level used. Before Gradle 4.0 those rich components were only displayed at

log level or below.LIFECYCLE

§

Choosing a log level

You can use the command line switches shown in to choose different log levels. You can alsoTable 8

configure the log level using gradle.properties, see . In you findthe section called “Gradle properties” Table 9

the command line switches which affect stacktrace logging.

Page 236 of 777

Table 8. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

-q or --quiet QUIET and higher

-w or --warn WARN and higher

-i or --info INFO and higher

-d or --debug DEBUG and higher (that is, all log messages)

Table 9. Stacktrace command-line options

Option Meaning

No stacktrace options

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in case of

internal exceptions will stacktraces be printed. If the log level is chosen, truncated stacktracesDEBUG

are always printed.

-s or --stacktrace

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full stacktraces

are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet they usually do not

contain relevant information for what has gone wrong in code.) This option renders stacktraces foryour

deprecation warnings.

-S or --full-stacktraceThe full stacktraces are printed out. This option renders stacktraces for deprecation warnings.

§

Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects

anything written to standard output to its logging system at the log level.QUIET

Example 189. Using stdout to write log messages

build.gradle

println 'A message which is logged at QUIET level'

Gradle also provides a property to a build script, which is an instance of . This interfacelogger Logger

extends the SLF4J interface and adds a few Gradle specific methods to it. Below is an example ofLogger

how this is used in the build script:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/Logger.html

Page 237 of 777

Example 190. Writing your own log messages

build.gradle

logger.quiet()'An info log message which is always logged.'

logger.error()'An error log message.'

logger.warn()'A warning log message.'

logger.lifecycle()'A lifecycle info log message.'

logger.info()'An info log message.'

logger.debug()'A debug log message.'

logger.trace()'A trace log message.'

Use the to replace a placeholder with an actual value as part of the log message.typical SLF4J pattern

Example 191. Writing a log message with placeholder

build.gradle

logger.info(,)'A {} log message' 'info'

You can also hook into Gradle’s logging system from within other classes used in the build (classes from the buildSrc

directory for example). Simply use an SLF4J logger. You can use this logger the same way as you use the

provided logger in the build script.

Example 192. Using SLF4J to write log messages

build.gradle

import org.slf4j.Logger

 org.slf4j.LoggerFactoryimport

Logger slf4jLogger = LoggerFactory.getLogger()'some-logger'

slf4jLogger.info()'An info log message logged using SLF4j'

§

Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging output

into the Gradle logging system. There is a 1:1 mapping from the Ant/Ivy log levels to the Gradle log levels,

except the Ant/Ivy log level, which is mapped to Gradle log level. This means the defaultTRACE DEBUG

Gradle log level will not show any Ant/Ivy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects

standard output to the log level and standard error to the level. This behavior is configurable.QUIET ERROR

The project object provides a , which allows you to change the log levels that standardLoggingManager

out or error are redirected to when your build script is evaluated.

https://www.slf4j.org/manual.html#typical_usage
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/LoggingManager.html

Page 238 of 777

Example 193. Configuring standard output capture

build.gradle

logging.captureStandardOutput LogLevel.INFO

println 'A message which is logged at INFO level'

To change the log level for standard out or error during task execution, tasks also provide a

.LoggingManager

Example 194. Configuring standard output capture for a task

build.gradle

task logInfo {

 logging.captureStandardOutput LogLevel.INFO

 doFirst {

 println 'A task message which is logged at INFO level'

 }

}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging

toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to

Gradle’s logging system.

§

Changing what Gradle logs

You can replace much of Gradle’s logging UI with your own. You might do this, for example, if you want to

customize the UI in some way - to log more or less information, or to change the formatting. You replace the

logging using the method. This is accessible from a buildGradle.useLogger(java.lang.Object)

script, or an init script, or via the embedding API. Note that this completely disables Gradle’s default output.

Below is an example init script which changes how task execution and build completion is logged.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Page 239 of 777

Example 195. Customizing what Gradle logs

init.gradle

useLogger(CustomEventLogger())new

 CustomEventLogger BuildAdapter TaskExecutionListener {class extends implements

 beforeExecute(Task task) {public void

 println "[$task.name]"

 }

 afterExecute(Task task, TaskState state) {public void

 println()

 }

 buildFinished(BuildResult result) {public void

 println 'build completed'

 (result.failure != null) {if

 result.failure.printStackTrace()

 }

 }

}

Output of gradle -I init.gradle build

> gradle -I init.gradle build

> Task :compile

[compile]

compiling source

> Task :testCompile

[testCompile]

compiling test source

> Task :test

[test]

running unit tests

> Task :build

[build]

build completed

3 actionable tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the

logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.

Page 240 of 777

You can find out more about the listener interfaces in the section called “Responding to the lifecycle in the

.build script”

BuildListener

ProjectEvaluationListener

TaskExecutionGraphListener

TaskExecutionListener

TaskActionListener

http://www.gradle.org/docs/4.7/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskActionListener.html

Page 241 of 777

Authoring Multi-Project Builds

The powerful support for multi-project builds is one of Gradle’s unique selling points. This topic is also the

most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have

subprojects.

§

Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that

subprojects share common traits. It is then usually preferable to share configurations among projects, so the

same configuration affects several subprojects.

Let’s start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the

projects don’t have to be Java projects. Our first examples are about marine life.

§

Configuration and execution

the section called “Build phases” describes the phases of every Gradle build. Let’s zoom into the

configuration and execution phases of a multi-project build. Configuration here means executing the build.gradle

file of a project, which implies e.g. downloading all plugins that were declared using ‘ ’. Byapply plugin

default, the configuration of all projects happens before any task is executed. This means that when a single

task, from a single project is requested, projects of multi-project build are configured first. The reasonall

every project needs to be configured is to support the flexibility of accessing and changing any part of the

Gradle project model.

§

Configuration on demand

The feature and access to the complete project model are possible because everyConfiguration injection

project is configured before the execution phase. Yet, this approach may not be the most efficient in a very

large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The

configuration time of huge multi-project builds may become noticeable. Scalability is an important

requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode is

introduced.

Page 242 of 777

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.

it only executes the file of projects that are participating in the build. This way, thebuild.gradle

configuration time of a large multi-project build can be reduced. In the long term, this mode will become the

default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is

incubating so not every build is guaranteed to work correctly. The feature should work very well for

multi-project builds that have decoupled projects (). In “configurationthe section called “Decoupled Projects”

on demand” mode, projects are configured as follows:

The root project is always configured. This way the typical common configuration is supported (allprojects or

subprojects script blocks).

The project in the directory where the build is executed is also configured, but only when Gradle is executed

without any tasks. This way the default tasks behave correctly when projects are configured on demand.

The standard project dependencies are supported and makes relevant projects configured. If project A has a

compile dependency on project B then building A causes configuration of both projects.

The task dependencies declared via task path are supported and cause relevant projects to be configured.

Example: someTask.dependsOn(":someOtherProject:someOtherTask")

A task requested via task path from the command line (or Tooling API) causes the relevant project to be

configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see the section called

. To configure on demand just for a given build, see “Gradle properties” the section called “Performance

.options”

§

Defining common behavior

Let’s look at some examples with the following project tree. This is a multi-project build with a root project

named and a subproject named .water bluewhale

Example 196. Multi-project tree - water & bluewhale projects

Build layout

water/

 build.gradle

 settings.gradle

 bluewhale/

Note: The code for this example can be found at samples/userguide/multiproject/firstExample/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include 'bluewhale'

And where is the build script for the project? In Gradle build scripts are optional. Obviously for abluewhale

Page 243 of 777

single project build, a project without a build script doesn’t make much sense. For multiproject builds the

situation is different. Let’s look at the build script for the project and execute it:water

Example 197. Build script of water (parent) project

build.gradle

Closure cl = { task -> println }"I'm $task.project.name"

task().doLast(cl)'hello'

project() {':bluewhale'

 task().doLast(cl)'hello'

}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

Gradle allows you to access any project of the multi-project build from any build script. The Project API

provides a method called , which takes a path as an argument and returns the Project object forproject()

this path. The capability to configure a project build from any build script we call .cross project configuration

Gradle implements this via .configuration injection

We are not that happy with the build script of the project. It is inconvenient to add the task explicitlywater

for every project. We can do better. Let’s first add another project called to our multi-project build.krill

Example 198. Multi-project tree - water, bluewhale & krill projects

Build layout

water/

 build.gradle

 settings.gradle

 bluewhale/

 krill/

Note: The code for this example can be found at samples/userguide/multiproject/addKrill/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'bluewhale' 'krill'

Now we rewrite the build script and boil it down to a single line.water

Page 244 of 777

Example 199. Water project build script

build.gradle

allprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

I'm krill

Is this cool or is this cool? And how does this work? The Project API provides a property allprojects

which returns a list with the current project and all its subprojects underneath it. If you call allprojects

with a closure, the statements of the closure are delegated to the projects associated with .allprojects

You could also do an iteration via , but that would be more verbose.allprojects.each

Other build systems use inheritance as the primary means for defining common behavior. We also offer

inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of

defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject

builds.

Another possibility for sharing configuration is to use a common external script. See the section called

 for more information.“Configuring the project using an external build script”

§

Subproject configuration

The Project API also provides a property for accessing the subprojects only.

Defining common behavior

Page 245 of 777

§

Defining common behavior

Example 200. Defining common behavior of all projects and subprojects

build.gradle

allprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

subprojects {

 hello {

 doLast {

 println "- I depend on water"

 }

 }

}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

I'm krill

- I depend on water

You may notice that there are two code snippets referencing the “ ” task. The first one, which uses thehello

“ ” keyword, constructs the task and provides it’s base configuration. The second piece doesn’t use the “task task

” keyword, as it is further configuring the existing “ ” task. You may only construct a task once in ahello

project, but you may add any number of code blocks providing additional configuration.

§

Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior

in the build script of the project where we want to apply this specific behavior. But as we have already seen,

we don’t have to do it this way. We could add project specific behavior for the project like this:bluewhale

Page 246 of 777

Example 201. Defining specific behaviour for particular project

build.gradle

allprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

subprojects {

 hello {

 doLast {

 println "- I depend on water"

 }

 }

}

project().hello {':bluewhale'

 doLast {

 println "- I'm the largest animal that has ever lived on this planet."

 }

}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.

I'm krill

- I depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let’s

refactor and also add some project specific behavior to the project.krill

Example 202. Defining specific behaviour for project krill

Build layout

water/

 build.gradle

 settings.gradle

 bluewhale/

 build.gradle

 krill/

 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/spreadSpecifics/water

in the ‘-all’ distribution of Gradle.

Page 247 of 777

settings.gradle

include , 'bluewhale' 'krill'

bluewhale/build.gradle

hello.doLast {

 println "- I'm the largest animal that has ever lived on this planet."

}

krill/build.gradle

hello.doLast {

 println "- The weight of my species in summer is twice as heavy as all human beings."

}

build.gradle

allprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

subprojects {

 hello {

 doLast {

 println "- I depend on water"

 }

 }

}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.

I'm krill

- I depend on water

- The weight of my species in summer is twice as heavy as all human beings.

§

Project filtering

To show more of the power of configuration injection, let’s add another project called andtropicalFish

add more behavior to the build via the build script of the project.water

Filtering by name

Page 248 of 777

§

Filtering by name

Example 203. Adding custom behaviour to some projects (filtered by project name)

Build layout

water/

 build.gradle

 settings.gradle

 bluewhale/

 build.gradle

 krill/

 build.gradle

 tropicalFish/

Note: The code for this example can be found at samples/userguide/multiproject/addTropical/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

build.gradle

allprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

subprojects {

 hello {

 doLast {

 println "- I depend on water"

 }

 }

}

configure(subprojects.findAll {it.name != }) {'tropicalFish'

 hello {

 doLast {

 println '- I love to spend time in the arctic waters.'

 }

 }

}

Output of gradle -q hello

Page 249 of 777

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

- I love to spend time in the arctic waters.

- I'm the largest animal that has ever lived on this planet.

I'm krill

- I depend on water

- I love to spend time in the arctic waters.

- The weight of my species in summer is twice as heavy as all human beings.

I'm tropicalFish

- I depend on water

The method takes a list as an argument and applies the configuration to the projects in thisconfigure()

list.

§

Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See the section

 for more information on extra properties.)called “Extra properties”

Example 204. Adding custom behaviour to some projects (filtered by project properties)

Build layout

water/

 build.gradle

 settings.gradle

 bluewhale/

 build.gradle

 krill/

 build.gradle

 tropicalFish/

 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/tropicalWithProperties/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

bluewhale/build.gradle

ext.arctic = true

hello.doLast {

 println "- I'm the largest animal that has ever lived on this planet."

}

Page 250 of 777

krill/build.gradle

ext.arctic = true

hello.doLast {

 println "- The weight of my species in summer is twice as heavy as all human beings."

}

tropicalFish/build.gradle

ext.arctic = false

build.gradle

allprojects {

 task hello {

 doLast { task ->

 println "I'm $task.project.name"

 }

 }

}

subprojects {

 hello {

 doLast {println }"- I depend on water"

 afterEvaluate { Project project ->

 (project.arctic) { doLast {if

 println }'- I love to spend time in the arctic waters.'

 }

 }

 }

}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.

- I love to spend time in the arctic waters.

I'm krill

- I depend on water

- The weight of my species in summer is twice as heavy as all human beings.

- I love to spend time in the arctic waters.

I'm tropicalFish

- I depend on water

In the build file of the project we use an notification. This means that the closurewater afterEvaluate

we are passing gets evaluated the build scripts of the subproject are evaluated. As the property after arctic

is set in those build scripts, we have to do it this way. You will find more on this topic in the section called

“Dependencies - Which dependencies?”

Execution rules for multi-project builds

Page 251 of 777

§

Execution rules for multi-project builds

When we executed the task from the root project dir, things behaved in an intuitive way. All the hello hello

tasks of the different projects were executed. Let’s switch to the dir and see what happens if webluewhale

execute Gradle from there.

Example 205. Running build from subproject

Output of gradle -q hello

> gradle -q hello

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.

- I love to spend time in the arctic waters.

The basic rule behind Gradle’s behavior is simple. Gradle looks down the hierarchy, starting with the current

, for tasks with the name and executes them. One thing is very important to note. Gradle dir hello always

evaluates project of the multi-project build and creates all existing task objects. Then, according to theevery

task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of

Gradle’s cross project configuration project has to be evaluated before task gets executed. Weevery any

will have a closer look at this in the next section. Let’s now have our last marine example. Let’s add a task to

 and .bluewhale krill

Page 252 of 777

Example 206. Evaluation and execution of projects

bluewhale/build.gradle

ext.arctic = true

hello {

 doLast {

 println "- I'm the largest animal that has ever lived on this planet."

 }

}

task distanceToIceberg {

 doLast {

 println '20 nautical miles'

 }

}

krill/build.gradle

ext.arctic = true

hello {

 doLast {

 println "- The weight of my species in summer is twice as heavy as all human beings."

 }

}

task distanceToIceberg {

 doLast {

 println '5 nautical miles'

 }

}

Output of gradle -q distanceToIceberg

> gradle -q distanceToIceberg

20 nautical miles

5 nautical miles

Here’s the output without the option:-q

Page 253 of 777

Example 207. Evaluation and execution of projects

Output of gradle distanceToIceberg

> gradle distanceToIceberg

> Task :bluewhale:distanceToIceberg

20 nautical miles

> Task :krill:distanceToIceberg

5 nautical miles

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

The build is executed from the project. Neither nor have a task with thewater water tropicalFish

name . Gradle does not care. The simple rule mentioned already above is: ExecutedistanceToIceberg

all tasks down the hierarchy which have this name. Only complain if there is such task!no

§

Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from

there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle

also offers to execute tasks by their absolute path (see also):the section called “Project and task paths”

Example 208. Running tasks by their absolute path

Output of gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

I'm water

I'm krill

- I depend on water

- The weight of my species in summer is twice as heavy as all human beings.

- I love to spend time in the arctic waters.

I'm tropicalFish

- I depend on water

The build is executed from the project. We execute the tasks of the , the tropicalFish hello water krill

and the project. The first two tasks are specified by their absolute path, the last task istropicalFish

executed using the name matching mechanism described above.

Project and task paths

Page 254 of 777

§

Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The

root project is the only project in a path that is not specified by its name. The rest of a project path is a

colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of a task is simply its project path plus the task name, like “ ”. Within a project:bluewhale:hello

you can address a task of the same project just by its name. This is interpreted as a relative path.

§

Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no . They hadExecution Dependencies

only . The following sections illustrate the differences between these two typesConfiguration Dependencies

of dependencies.

Execution dependencies

Page 255 of 777

§

Execution dependencies

§

Dependencies and execution order

Example 209. Dependencies and execution order

Build layout

messages/

 build.gradle

 settings.gradle

 consumer/

 build.gradle

 producer/

 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/firstMessages/messages

in the ‘-all’ distribution of Gradle.

build.gradle

ext.producerMessage = null

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action {

 doLast {

 println()"Consuming message: ${rootProject.producerMessage}"

 }

}

producer/build.gradle

task action {

 doLast {

 println "Producing message:"

 rootProject.producerMessage = 'Watch the order of execution.'

 }

}

Output of gradle -q action

> gradle -q action

Consuming message: null

Producing message:

This didn’t quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric order.

Therefore, Gradle will execute “ ” before “ ”. Let’s try to solve this:consumer:action :producer:action

with a hack and rename the producer project to “ ”.aProducer

Page 256 of 777

Example 210. Dependencies and execution order

Build layout

messages/

 build.gradle

 settings.gradle

 aProducer/

 build.gradle

 consumer/

 build.gradle

build.gradle

ext.producerMessage = null

settings.gradle

include , 'consumer' 'aProducer'

aProducer/build.gradle

task action {

 doLast {

 println "Producing message:"

 rootProject.producerMessage = 'Watch the order of execution.'

 }

}

consumer/build.gradle

task action {

 doLast {

 println()"Consuming message: ${rootProject.producerMessage}"

 }

}

Output of gradle -q action

> gradle -q action

Producing message:

Consuming message: Watch the order of execution.

We can show where this hack doesn’t work if we now switch to the dir and execute the build.consumer

Example 211. Dependencies and execution order

Output of gradle -q action

> gradle -q action

Consuming message: null

The problem is that the two “ ” tasks are unrelated. If you execute the build from the “ ”action messages

project Gradle executes them both because they have the same name and they are down the hierarchy. In

the last example only one “ ” task was down the hierarchy and therefore it was the only task that wasaction

Page 257 of 777

executed. We need something better than this hack.

§

Declaring dependencies

Example 212. Declaring dependencies

Build layout

messages/

 build.gradle

 settings.gradle

 consumer/

 build.gradle

 producer/

 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/messagesWithDependencies/messages

in the ‘-all’ distribution of Gradle.

build.gradle

ext.producerMessage = null

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action(dependsOn:) {":producer:action"

 doLast {

 println()"Consuming message: ${rootProject.producerMessage}"

 }

}

producer/build.gradle

task action {

 doLast {

 println "Producing message:"

 rootProject.producerMessage = 'Watch the order of execution.'

 }

}

Output of gradle -q action

> gradle -q action

Producing message:

Consuming message: Watch the order of execution.

Running this from the directory gives:consumer

Page 258 of 777

Example 213. Declaring dependencies

Output of gradle -q action

> gradle -q action

Producing message:

Consuming message: Watch the order of execution.

This is now working better because we have declared that the “ ” task in the “ ” project hasaction consumer

an on the “ ” task in the “ ” project.execution dependency action producer

§

The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let’s

change the naming of our tasks and execute the build.

Example 214. Cross project task dependencies

consumer/build.gradle

task consume(dependsOn:) {':producer:produce'

 doLast {

 println()"Consuming message: ${rootProject.producerMessage}"

 }

}

producer/build.gradle

task produce {

 doLast {

 println "Producing message:"

 rootProject.producerMessage = 'Watch the order of execution.'

 }

}

Output of gradle -q consume

> gradle -q consume

Producing message:

Consuming message: Watch the order of execution.

§

Configuration time dependencies

Let’s see one more example with our producer-consumer build before we enter land. We add aJava

property to the “ ” project and create a configuration time dependency from “ ” to “producer consumer producer

”.

Page 259 of 777

Example 215. Configuration time dependencies

consumer/build.gradle

def message = rootProject.producerMessage

task consume {

 doLast {

 println(+ message)"Consuming message: "

 }

}

producer/build.gradle

rootProject.producerMessage = 'Watch the order of evaluation.'

Output of gradle -q consume

> gradle -q consume

Consuming message: null

The default order of projects is alphanumeric (for the same nesting level). Therefore the “evaluation consumer

” project is evaluated before the “ ” project and the “ ” value is set it isproducer producerMessage after

read by the “ ” project. Gradle offers a solution for this.consumer

Example 216. Configuration time dependencies - evaluationDependsOn

consumer/build.gradle

evaluationDependsOn()':producer'

def message = rootProject.producerMessage

task consume {

 doLast {

 println(+ message)"Consuming message: "

 }

}

Output of gradle -q consume

> gradle -q consume

Consuming message: Watch the order of evaluation.

The use of the “ ” command results in the evaluation of the “ ” project evaluationDependsOn producer

 the “ ” project is evaluated. This example is a bit contrived to show the mechanism. In before consumer this

case there would be an easier solution by reading the key property at execution time.

Page 260 of 777

Example 217. Configuration time dependencies

consumer/build.gradle

task consume {

 doLast {

 println()"Consuming message: ${rootProject.producerMessage}"

 }

}

Output of gradle -q consume

> gradle -q consume

Consuming message: Watch the order of evaluation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies

are between projects whereas execution dependencies are always resolved to task dependencies. Also note

that all projects are always configured, even when you start the build from a subproject. The default

configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “ ”evaluationDependsOnChildren()

method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common

use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).

If you declare with an between different projects, the default behavior ofdependsOn execution dependency

this method is to also create a dependency between the two projects. Therefore it is likely thatconfiguration

you don’t have to define configuration dependencies explicitly.

§

Real life examples

Gradle’s multi-project features are driven by real life use cases. One good example consists of two web

application projects and a parent project that creates a distribution including the two web applications. For

the example we use only one build script and do .cross project configuration

[]7

Page 261 of 777

Example 218. Dependencies - real life example - crossproject configuration

Build layout

webDist/

 settings.gradle

 build.gradle

 date/

 src/main/java/

 org/gradle/sample/

 DateServlet.java

 hello/

 src/main/java/

 org/gradle/sample/

 HelloServlet.java

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/webDist

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'date' 'hello'

build.gradle

allprojects {

 apply plugin: 'java'

 group = 'org.gradle.sample'

 version = '1.0'

}

subprojects {

 apply plugin: 'war'

 repositories {

 mavenCentral()

 }

 dependencies {

 compile "javax.servlet:servlet-api:2.5"

 }

}

task explodedDist(type: Copy) {

 into "$buildDir/explodedDist"

 subprojects {

 from tasks.withType(War)

 }

}

We have an interesting set of dependencies. Obviously the and projects have a date hello configuration

dependency on , as all the build logic for the webapp projects is injected by . The webDist webDist

 dependency is in the other direction, as depends on the build artifacts of and execution webDist date hello

Page 262 of 777

. There is even a third dependency. has a dependency on and webDist configuration date hello

because it needs to know the . But it asks for this information at . Therefore wearchivePath execution time

have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system

does not support these patterns, you either can’t solve your problem or you need to do ugly hacks which are

hard to maintain and massively impair your productivity as a build master.

§

Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also

the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project

builds. As already mentioned in , Gradle offers project libthe section called “Project dependencies”

dependencies for this.

Example 219. Project lib dependencies

Build layout

java/

 settings.gradle

 build.gradle

 api/

 src/main/java/

 org/gradle/sample/

 api/

 Person.java

 apiImpl/

 PersonImpl.java

 services/personService/

 src/

 main/java/

 org/gradle/sample/services/

 PersonService.java

 test/java/

 org/gradle/sample/services/

 PersonServiceTest.java

 shared/

 src/main/java/

 org/gradle/sample/shared/

 Helper.java

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/java

in the ‘-all’ distribution of Gradle.

We have the projects “ ”, “ ” and “ ”. The “ ” project has a libshared api personService personService

dependency on the other two projects. The “ ” project has a lib dependency on the “ ” project. “api shared services

Page 263 of 777

” is also a project, but we use it just as a container. It has no build script and gets nothing injected by another

build script. We use the separator to define a project path. Consult the DSL documentation of :

 for more information about defining project paths.Settings.include(java.lang.String[])

Example 220. Project lib dependencies

settings.gradle

include , , 'api' 'shared' 'services:personService'

build.gradle

subprojects {

 apply plugin: 'java'

 group = 'org.gradle.sample'

 version = '1.0'

 repositories {

 mavenCentral()

 }

 dependencies {

 testCompile "junit:junit:4.12"

 }

}

project() {':api'

 dependencies {

 compile project()':shared'

 }

}

project() {':services:personService'

 dependencies {

 compile project(), project()':shared' ':api'

 }

}

All the build logic is in the “ ” file of the root project. A “ ” dependency is a special form ofbuild.gradle lib

an execution dependency. It causes the other project to be built first and adds the jar with the classes of the

other project to the classpath. It also adds the dependencies of the other project to the classpath. So you

can enter the “ ” directory and trigger a “ ”. First the “ ” project is built and thenapi gradle compile shared

the “ ” project is built. Project dependencies enable partial multi-project builds.api

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers this to you:

[]8

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Page 264 of 777

Example 221. Fine grained control over dependencies

build.gradle

subprojects {

 apply plugin: 'java'

 group = 'org.gradle.sample'

 version = '1.0'

}

project() {':api'

 configurations {

 spi

 }

 dependencies {

 compile project()':shared'

 }

 task spiJar(type: Jar) {

 baseName = 'api-spi'

 from sourceSets.main.output

 include()'org/gradle/sample/api/**'

 }

 artifacts {

 spi spiJar

 }

}

project() {':services:personService'

 dependencies {

 compile project()':shared'

 compile project(path: , configuration:)':api' 'spi'

 testCompile , project()"junit:junit:4.12" ':api'

 }

}

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example

we create an library containing only the interfaces of the “ ” project. We assign this library to aadditional api

new . For the person service we declare that the project should be compiled onlydependency configuration

against the “ ” interfaces but tested with all classes from “ ”.api api

§

Disabling the build of dependency projects

Sometimes you don’t want depended on projects to be built when doing a partial build. To disable the build

of the depended on projects you can run Gradle with the option.-a

Parallel project execution

Page 265 of 777

§

Parallel project execution

With more and more CPU cores available on developer desktops and CI servers, it is important that Gradle

is able to fully utilise these processing resources. More specifically, parallel execution attempts to:

Reduce total build time for a multi-project build where execution is IO bound or otherwise does not consume

all available CPU resources.

Provide faster feedback for execution of small projects without awaiting completion of other projects.

Although Gradle already offers parallel test execution via the featureTest.setMaxParallelForks(int)

described in this section is parallel execution at a project level. Parallel execution is an incubating feature.

Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in

parallel (see also:). While parallel execution does not strictly requirethe section called “Decoupled Projects”

decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be

available for fully decoupled projects. Such features include:

the section called “Configuration on demand”.

Configuration of projects in parallel.

Re-use of configuration for unchanged projects.

Project-level up-to-date checks.

Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use the --parallel

 or configure your build environment (). Unlesscommand line argument the section called “Gradle properties”

you provide a specific number of parallel threads, Gradle attempts to choose the right number based on

available CPU cores. Every parallel worker exclusively owns a given project while executing a task. Task

dependencies are fully supported and parallel workers will start executing upstream tasks first. Bear in mind

that the alphabetical ordering of decoupled tasks, as can be seen during sequential execution, is not

guaranteed in parallel mode. In other words, in parallel mode tasks will run as soon as their dependencies

complete , which may be earlier than they would start during aand a task worker is available to run them

sequential build. You should make sure that task dependencies and task inputs/outputs are declared

correctly to avoid ordering issues.

Decoupled Projects

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-

Page 266 of 777

§

Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution phases.

While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that

Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly

building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built

artifact in place of a project dependency.

Two projects are said to be if they do not directly access each other’s project model. Decoupleddecoupled

projects may only interact in terms of declared dependencies: project dependencies (the section called

) and/or task dependencies (). Any other form“Project dependencies” the section called “Task dependencies”

of project interaction (i.e. by modifying another project object or by reading a value from another project

object) causes the projects to be coupled. The consequence of coupling during the configuration phase is

that if gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in

several ways. The consequence of coupling during execution phase is that if gradle is invoked with the

parallel option, one project task runs too late to influence a task of a project building in parallel. Gradle does

not attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (the section called “Cross

). It may not be immediately apparent, but using key Gradle features like the project configuration” allprojects

and keywords automatically cause your projects to be coupled. This is because thesesubprojects

keywords are used in a file, which defines a project. Often this is a “root project” that doesbuild.gradle

nothing more than define common configuration, but as far as Gradle is concerned this root project is still a

fully-fledged project, and by using that project is effectively coupled to all other projects.allprojects

Coupling of the root project to subprojects does not impact 'configuration on demand', but using the allprojects

and in any subproject’s file will have an impact.subprojects build.gradle

This means that using any form of shared build script logic or configuration injection (, allprojects subprojects

, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide

features that take advantage of decoupled projects, we will also introduce new features to help you to solve

common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and

'configuration on demand' options, follow these recommendations:

Avoid a subproject’s referencing other subprojects; preferring cross configuration from thebuild.gradle

root project.

Avoid changing the configuration of other projects at execution time.

Multi-Project Building and Testing

Page 267 of 777

§

Multi-Project Building and Testing

The task of the Java plugin is typically used to compile, test, and perform code style checks (if thebuild

CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these

tasks across a range of projects. The and tasks can help with this.buildNeeded buildDependents

Look at . In this example, the “ ” project depends on both the “Example 220 :services:personservice :api

” and “ ” projects. The “ ” project also depends on the “ ” project.:shared :api :shared

Assume you are working on a single project, the “ ” project. You have been making changes, but have:api

not built the entire project since performing a clean. You want to build any necessary supporting jars, but

only perform code quality and unit tests on the project you have changed. The task does this.build

Example 222. Build and Test Single Project

Output of gradle :api:build

> gradle :api:build

> Task :shared:compileJava

> Task :shared:processResources

> Task :shared:classes

> Task :shared:jar

> Task :api:compileJava

> Task :api:processResources

> Task :api:classes

> Task :api:jar

> Task :api:assemble

> Task :api:compileTestJava

> Task :api:processTestResources

> Task :api:testClasses

> Task :api:test

> Task :api:check

> Task :api:build

BUILD SUCCESSFUL in 0s

9 actionable tasks: 9 executed

While you are working in a typical development cycle repeatedly building and testing changes to the “ ”:api

project (knowing that you are only changing files in this one project), you may not want to even suffer the

expense of building “ ” to see what has changed in the “ ” project. Adding the “:shared:compile :shared -a

” option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to re-build

the depended on projects.

Page 268 of 777

Example 223. Partial Build and Test Single Project

Output of gradle -a :api:build

> gradle -a :api:build

> Task :api:compileJava

> Task :api:processResources

> Task :api:classes

> Task :api:jar

> Task :api:assemble

> Task :api:compileTestJava

> Task :api:processTestResources

> Task :api:testClasses

> Task :api:test

> Task :api:check

> Task :api:build

BUILD SUCCESSFUL in 0s

6 actionable tasks: 6 executed

If you have just gotten the latest version of source from your version control system which included changes

in other projects that “ ” depends on, you might want to not only build all the projects you depend on, but:api

test them as well. The task also tests all the projects from the project lib dependencies of thebuildNeeded

testRuntime configuration.

Page 269 of 777

Example 224. Build and Test Depended On Projects

Output of gradle :api:buildNeeded

> gradle :api:buildNeeded

> Task :shared:compileJava

> Task :shared:processResources

> Task :shared:classes

> Task :shared:jar

> Task :api:compileJava

> Task :api:processResources

> Task :api:classes

> Task :api:jar

> Task :api:assemble

> Task :api:compileTestJava

> Task :api:processTestResources

> Task :api:testClasses

> Task :api:test

> Task :api:check

> Task :api:build

> Task :shared:assemble

> Task :shared:compileTestJava

> Task :shared:processTestResources

> Task :shared:testClasses

> Task :shared:test

> Task :shared:check

> Task :shared:build

> Task :shared:buildNeeded

> Task :api:buildNeeded

BUILD SUCCESSFUL in 0s

12 actionable tasks: 12 executed

You also might want to refactor some part of the “ ” project that is used in other projects. If you make:api

these types of changes, it is not sufficient to test just the “ ” project, you also need to test all projects:api

that depend on the “ ” project. The task also tests all the projects that have a:api buildDependents

project lib dependency (in the testRuntime configuration) on the specified project.

Page 270 of 777

Example 225. Build and Test Dependent Projects

Output of gradle :api:buildDependents

> gradle :api:buildDependents

> Task :shared:compileJava

> Task :shared:processResources

> Task :shared:classes

> Task :shared:jar

> Task :api:compileJava

> Task :api:processResources

> Task :api:classes

> Task :api:jar

> Task :api:assemble

> Task :api:compileTestJava

> Task :api:processTestResources

> Task :api:testClasses

> Task :api:test

> Task :api:check

> Task :api:build

> Task :services:personService:compileJava

> Task :services:personService:processResources

> Task :services:personService:classes

> Task :services:personService:jar

> Task :services:personService:assemble

> Task :services:personService:compileTestJava

> Task :services:personService:processTestResources

> Task :services:personService:testClasses

> Task :services:personService:test

> Task :services:personService:check

> Task :services:personService:build

> Task :services:personService:buildDependents

> Task :api:buildDependents

BUILD SUCCESSFUL in 0s

17 actionable tasks: 17 executed

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder

will cause that same named task to be run on all the children. So you can just run “ ” to buildgradle build

and test all projects.

§

Multi Project and buildSrc

the section called “Build sources in the project”buildSrc tells us that we can place build logic to be

compiled and tested in the special directory. In a multi project build, there can only be one buildSrc buildSrc

directory which must be located in the root directory.

Property and method inheritance

Page 271 of 777

§

Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to

configuration injection. But we think that the model of inheritance does not reflect the problem space of

multi-project builds very well. In a future edition of this user guide we might write more about this.

Method inheritance might be interesting to use as Gradle’s does not support methodsConfiguration Injection

yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don’t like that much. One reason

is that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like

to offer our users a choice.

§

Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for

this chapter is that multi-project builds with Gradle are usually difficult. There are five elements you neednot

to remember: , , , allprojects subprojects evaluationDependsOn evaluationDependsOnChildren

and project lib dependencies. With those elements, and keeping in mind that Gradle has a distinct

configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory

Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[] The real use case we had, was using , where you need a separate war forhttp://lucene.apache.org/solr

each index you are accessing. That was one reason why we have created a distribution of webapps. The

Resin servlet container allows us, to let such a distribution point to a base installation of the servlet

container.

[] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the build

script of the respective projects.

[] So we are well in the range of the :)7 plus 2 Rule

[]9

[] 7

[] 8

[] 9

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Page 272 of 777

Using Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the

ability to compile Java code, are added by . Plugins add new tasks (e.g.), domainplugins JavaCompile

objects (e.g.), conventions (e.g. Java source is located at) as well asSourceSet src/main/java

extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

§

What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things such as:

Extend the Gradle model (e.g. add new DSL elements that can be configured)

Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)

Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.

Applying plugins:

Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects

Allows a higher degree of modularization, enhancing comprehensibility and organization

Encapsulates imperative logic and allows build scripts to be as declarative as possible

§

Types of plugins

There are two general types of plugins in Gradle, plugins and plugins. Script plugins arescript binary

additional build scripts that further configure the build and usually implement a declarative approach to

manipulating the build. They are typically used within a build although they can be externalized and

accessed from a remote location. Binary plugins are classes that implement the interface and adoptPlugin

a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the

project hierarchy or externally in a plugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html

Page 273 of 777

more valuable, it’s migrated to a binary plugin that can be easily tested and shared between multiple projects

or organizations.

§

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to resolve

the plugin, and then it needs to the plugin to the target, usually a .apply Project

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it

the script classpath. Once a plugin is resolved, its API can be used in a build script. Script plugins are

self-resolving in that they are resolved from the specific file path or URL provided when applying them. Core

binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin’s on the Project you want toPlugin.apply(T)

enhance with the plugin. Applying plugins is . That is, you can safely apply any plugin multipleidempotent

times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current project.

Since this is such a common use case, it’s recommended that build authors use the to bothplugins DSL

resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and should

be used by most users.

§

Script plugins

Example 226. Applying a script plugin

build.gradle

apply from: 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a

remote location. Filesystem locations are relative to the project directory, while remote script locations are

specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

§

Binary plugins

You apply plugins by their , which is a globally unique identifier, or name, for plugins. Core Gradleplugin id

plugins are special in that they provide short names, such as for the core . All other'java' JavaPlugin

binary plugins must use the fully qualified form of the plugin id (e.g.), althoughcom.github.foo.bar

some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id depends on

whether you are using the or the plugins DSL buildscript block.

Locations of binary plugins

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/JavaPlugin.html

Page 274 of 777

§

Locations of binary plugins

A plugin is simply any class that implements the interface. Gradle provides the core plugins (e.g. Plugin JavaPlugin

) as part of its distribution which means they are automatically resolved. However, non-core binary plugins

need to be resolved before they can be applied. This can be achieved in a number of ways:

Including the plugin from the plugin portal or a using the plugins DSL (see custom repository the section

).called “Applying plugins with the plugins DSL”

Including the plugin from an external jar defined as a buildscript dependency (see the section called

).“Applying plugins with the buildscript block”

Defining the plugin as a source file under the buildSrc directory in the project (see the section called “Build

).sources in the project”buildSrc

Defining the plugin as an inline class declaration inside a build script.

For more on defining your own plugins, see .Writing Custom Plugins

§

Applying plugins with the plugins DSL

Note: The plugins DSL is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with

the to provide easy access to both core and community plugins. The plugins DSL blockGradle plugin portal

configures an instance of .PluginDependenciesSpec

To apply a core plugin, the short name can be used:

Example 227. Applying a core plugin

build.gradle

plugins {

 id 'java'

}

To apply a community plugin from the portal, the fully qualified plugin id must be used:

Example 228. Applying a community plugin

build.gradle

plugins {

 id version 'com.jfrog.bintray' '0.4.1'

}

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://plugins.gradle.org
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Page 275 of 777

See for more information on using the Plugin DSL.PluginDependenciesSpec

§

Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is

processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This

allows Gradle to do smart things such as:

Optimize the loading and reuse of plugin classes.

Allow different plugins to use different versions of dependencies.

Provide editors detailed information about the potential properties and values in the buildscript for editing

assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing

the rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” methodapply()

mechanism. There are also some constraints, some of which are temporary limitations while the mechanism

is still being developed and some are inherent to the new approach.

§

Constrained Syntax

The new block does not support arbitrary Groovy code. It is constrained, in order to beplugins {}

idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any

time).

The form is:

plugins {

 id «plugin id» version «plugin version» [apply «false»]

}

Where and must be constant, literal, strings and the statement«plugin version» «plugin id» apply

with a can be used to disable the default behavior of applying the plugin immediately (e.g. youboolean

want to apply it only in). No other statements are allowed; their presence will cause asubprojects

compilation error.

The block must also be a top level statement in the buildscript. It cannot be nested insideplugins {}

another construct (e.g. an if-statement or for-loop).

§

Can only be used in build scripts

The block can currently only be used in a project’s build script. It cannot be used in scriptplugins {}

plugins, the settings.gradle file or init scripts.

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Page 276 of 777

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins using the

.buildscript {} block

§

Applying plugins to subprojects

If you have a , you probably want to apply plugins to some or all of the subprojects in yourmulti-project build

build, but not to the or project. The default behavior of the block is toroot master plugins {}

immediately the plugins. But, you can use the syntax to tell Gradle notresolve and apply apply false

to apply the plugin to the current project and then use in the apply plugin: «plugin id» subprojects

block:

Example 229. Applying plugins only on certain subprojects.

settings.gradle

include 'helloA'

include 'helloB'

include 'goodbyeC'

build.gradle

plugins {

 id version apply false"org.gradle.sample.hello" "1.0.0"

 id version apply false"org.gradle.sample.goodbye" "1.0.0"

}

subprojects { subproject ->

 (subproject.name.startsWith()) {if "hello"

 apply plugin: 'org.gradle.sample.hello'

 }

 (subproject.name.startsWith()) {if "goodbye"

 apply plugin: 'org.gradle.sample.goodbye'

 }

}

If you then run you’ll see that only the helloA and helloB subprojects had the hello plugingradle hello

applied.

gradle/subprojects/docs/src/samples/plugins/multiproject $> gradle hello

Parallel execution is an incubating feature.

:helloA:hello

:helloB:hello

Hello!

Hello!

BUILD SUCCEEDED

Plugin Management

Page 277 of 777

§

Plugin Management

Note: The DSL is currently . Please be aware that the DSL andpluginManagement {} incubating

other configuration may change in later Gradle versions.

§

Custom Plugin Repositories

By default, the DSL resolves plugins from the public Many build authorsplugins {} Gradle Plugin Portal.

would also like to resolve plugins from private Maven or Ivy repositories because the plugins contain

proprietary implementation details, or just to have more control over what plugins are available to their

builds.

To specify custom plugin repositories, use the block inside inrepositories {} pluginManagement {}

the file:settings.gradle

Example 230. Using plugins from custom plugin repositories.

settings.gradle

pluginManagement {

 repositories {

 maven {

 url 'maven-repo'

 }

 gradlePluginPortal()

 ivy {

 url 'ivy-repo'

 }

 }

}

This tells Gradle to first look in the Maven repository at when resolving plugins and then tomaven-repo

check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don’t want the

Gradle Plugin Portal to be searched, omit the line. Finally, the Ivy repository at gradlePluginPortal() ivy-repo

will be checked.

§

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in blocks, e.g. changing theplugins {}

requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the inside the block:resolutionStrategy {} pluginManagement {}

https://plugins.gradle.org

Page 278 of 777

Example 231. Plugin resolution strategy.

settings.gradle

pluginManagement {

 resolutionStrategy {

 eachPlugin {

 (requested.id.namespace ==) {if 'org.gradle.sample'

 useModule()'org.gradle.sample:sample-plugins:1.0.0'

 }

 }

 }

 repositories {

 maven {

 url 'maven-repo'

 }

 gradlePluginPortal()

 ivy {

 url 'ivy-repo'

 }

 }

}

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in default

mapping from plugin ID to Maven/Ivy coordinates.

The block may only appear in the file, and must be the firstpluginManagement {} settings.gradle

block in the file. Custom Maven and Ivy plugin repositories must contain in addition toplugin marker artifacts

the artifacts which actually implement the plugin. For more information on publishing plugins to custom

repositories read .Gradle Plugin Development Plugin

See for complete documentation for using the block.PluginManagementSpec pluginManagement {}

§

Plugin Marker Artifacts

Since the DSL block only allows for declaring plugins by their globally unique plugin and plugins {} id version

properties, Gradle needs a way to look up the coordinates of the plugin implementation artifact. To do so,

Gradle will look for a Plugin Marker Artifact with the coordinates plugin.id:plugin.id.gradle.plugin:plugin.version

. This marker needs to have a dependency on the actual plugin implementation. Publishing these markers is

automated by the .java-gradle-plugin

For example, the following complete sample from the project shows how to publish a sample-plugins org.gradle.sample.hello

plugin and a plugin to both an Ivy and Maven repository using theorg.gradle.sample.goodbye

combination of the , the plugin, and the plugin.java-gradle-plugin maven-publish ivy-publish

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugin.management.PluginManagementSpec.html

Page 279 of 777

Example 232. Complete Plugin Publishing Sample

build.gradle

plugins {

 id 'java-gradle-plugin'

 id 'maven-publish'

 id 'ivy-publish'

}

group 'org.gradle.sample'

version '1.0.0'

gradlePlugin {

 plugins {

 hello {

 id = "org.gradle.sample.hello"

 implementationClass = "org.gradle.sample.hello.HelloPlugin"

 }

 goodbye {

 id = "org.gradle.sample.goodbye"

 implementationClass = "org.gradle.sample.goodbye.GoodbyePlugin"

 }

 }

}

publishing {

 repositories {

 maven {

 url "../consuming/maven-repo"

 }

 ivy {

 url "../consuming/ivy-repo"

 }

 }

}

Running in the sample directory causes the following repo layouts to exist:gradle publish

Page 280 of 777

§

Legacy Plugin Application

With the introduction of the , users should have little reason to use the legacy method ofplugins DSL

applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions

in how it currently works.

§

Applying Binary Plugins

Example 233. Applying a binary plugin

build.gradle

apply plugin: 'java'

Plugins can be applied using a . In the above case, we are using the short name ‘ ’ to apply theplugin id java

.JavaPlugin

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the plugin:

Example 234. Applying a binary plugin by type

build.gradle

apply plugin: JavaPlugin

The symbol in the above sample refers to the . This class does not strictly needJavaPlugin JavaPlugin

to be imported as the package is automatically imported in all build scriptsorg.gradle.api.plugins

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/JavaPlugin.html

Page 281 of 777

(see). Furthermore, it is not necessary to append to identify athe section called “Default imports” .class

class literal in Groovy as it is in Java.

§

Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin

to the build script classpath and then applying the plugin. External jars can be added to the build script

classpath using the block as described in buildscript {} the section called “External dependencies for

.the build script”

Example 235. Applying a plugin with the buildscript block

build.gradle

buildscript {

 repositories {

 jcenter()

 }

 dependencies {

 classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:0.4.1"

 }

}

apply plugin: "com.jfrog.bintray"

§

Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.

The Gradle provides an interface for searching and exploring community plugins.plugin portal

§

More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more

information on the inner workings of plugins, see .Writing Custom Plugins

http://plugins.gradle.org

Page 282 of 777

Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

§

Language plugins

These plugins add support for various languages which can be compiled for and executed in the JVM.

Table 10. Language plugins

Plugin

Id

Automatically

applies

Works

with
Description

java java-base -
Adds Java compilation, testing and bundling capabilities to a project. It serves as the basis for

many of the other Gradle plugins. See also .Java Quickstart

groovy java, groovy-base- Adds support for building Groovy projects. See also .Groovy Quickstart

scala java, scala-base- Adds support for building Scala projects.

antlr java - Adds support for generating parsers using .Antlr

§

Incubating language plugins

These plugins add support for various languages:

http://www.antlr.org/

Page 283 of 777

Table 11. Language plugins

Plugin Id Automatically applies Works with Description

assembler - - Adds native assembly language capabilities to a project.

- - Adds C source compilation capabilities to a project.

cpp - - Adds C++ source compilation capabilities to a project.

objective-c - - Adds Objective-C source compilation capabilities to a project.

objective-cpp - - Adds Objective-C++ source compilation capabilities to a project.

windows-resources - - Adds support for including Windows resources in native binaries.

§

Integration plugins

These plugins provide some integration with various runtime technologies.

Table 12. Integration plugins

Plugin Id
Automatically

applies

Works

with
Description

application java, distribution-
Adds tasks for running and bundling a Java project as a command-line

application.

ear - java Adds support for building J2EE applications.

maven - java, warAdds support for publishing artifacts to Maven repositories.

osgi java-base java Adds support for building OSGi bundles.

war java -
Adds support for assembling web application WAR files. See also Web

.Application Quickstart

Incubating integration plugins

Page 284 of 777

§

Incubating integration plugins

These plugins provide some integration with various runtime technologies.

Table 13. Incubating integration plugins

Plugin Id
Automatically

applies

Works

with
Description

distribution - - Adds support for building ZIP and TAR distributions.

java-library-distribution java, distribution-
Adds support for building ZIP and TAR distributions for a Java

library.

ivy-publish -
java,

war

This plugin provides a new DSL to support publishing artifacts to Ivy

repositories, which improves on the existing DSL.

maven-publish -
java,

war

This plugin provides a new DSL to support publishing artifacts to

Maven repositories, which improves on the existing DSL.

§

Software development plugins

These plugins provide help with your software development process.

Page 285 of 777

Table 14. Software development plugins

Plugin Id
Automatically

applies

Works

with
Description

announce - - Publish messages to your favourite platforms, such as Twitter or Growl.

build-announcements announce -
Sends local announcements to your desktop about interesting events in

the build lifecycle.

checkstyle java-base -
Performs quality checks on your project’s Java source files using

 and generates reports from these checks.Checkstyle

codenarc groovy-base -
Performs quality checks on your project’s Groovy source files using

 and generates reports from these checks.CodeNarc

eclipse -
java,groovy

, scala

Generates files that are used by , thus making it possible toEclipse IDE

import the project into Eclipse. See also .Java Quickstart

eclipse-wtp - ear, war

Does the same as the eclipse plugin plus generates eclipse WTP (Web

Tools Platform) configuration files. After importing to eclipse your

war/ear projects should be configured to work with WTP. See also Java

.Quickstart

findbugs java-base -
Performs quality checks on your project’s Java source files using

 and generates reports from these checks.FindBugs

idea - java
Generates files that are used by , thus making itIntellij IDEA IDE

possible to import the project into IDEA.

jdepend java-base -
Performs quality checks on your project’s source files using JDepend

and generates reports from these checks.

pmd java-base -
Performs quality checks on your project’s Java source files using PMD

and generates reports from these checks.

project-report reporting-base - Generates reports containing useful information about your Gradle build.

signing base - Adds the ability to digitally sign built files and artifacts.

Incubating software development plugins

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

Page 286 of 777

§

Incubating software development plugins

These plugins provide help with your software development process.

Table 15. Software development plugins

Plugin Id
Automatically

applies
Works with Description

build-dashboard reporting-base - Generates build dashboard report.

cunit - - Adds support for running tests.CUnit

jacoco reporting-base java Provides integration with the code coverage library for Java.JaCoCo

visual-studio -

n a t i v e

language

plugins

Adds integration with Visual Studio.

java-gradle-plugin java
Assists with development of Gradle plugins by providing standard

plugin build configuration and validation.

§

Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are available

for you to use in your build files, and are listed here for completeness. However, be aware that they are not

yet considered part of Gradle’s public API. As such, these plugins are not documented in the user guide.

You might refer to their API documentation to learn more about them.

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/

Page 287 of 777

Table 16. Base plugins

Plugin Id Description

base

Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

adds build tasks. Those tasks assemble the artifacts belonging to the specifiedConfigurationName

configuration.

adds upload tasks. Those tasks assemble and upload the artifacts belonging to theConfigurationName

specified configuration.

configures reasonable default values for all archive tasks (e.g. tasks that inherit from).AbstractArchiveTask

For example, the archive tasks are tasks of types: , , . Specifically, , Jar Tar Zip destinationDir baseName

and properties of the archive tasks are preconfigured with defaults. This is extremely useful because itversion

drives consistency across projects; the consistency regarding naming conventions of archives and their location

after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.

groovy-base Adds the Groovy source sets concept to the project.

scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

§

Third party plugins

You can find a list of external plugins at the .Gradle Plugins site

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

Page 288 of 777

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful

information about your build. These tasks generate the same content that you get by executing the , tasks dependencies

, and tasks from the command line (see). In contrast toproperties the section called “Project reporting”

the command line reports, the report plugin generates the reports into a file. There is also an aggregating

task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

§

Usage

To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report'

§

Tasks

The project report plugin defines the following tasks:

Page 289 of 777

Table 17. Project report plugin - tasks

Task name Depends on Type Description

dependencyReport - DependencyReportTask
Generates the project

dependency report.

htmlDependencyReport - HtmlDependencyReportTask

Generates an HTML

dependency and

dependency insight report

for the project or a set of

projects.

propertyReport - PropertyReportTask
Generates the project

property report.

taskReport - TaskReportTask
Generates the project task

report.

projectReport
dependencyReport, propertyReport

, , taskReport htmlDependencyReport
Task

Generates all project

reports.

§

Project layout

The project report plugin does not require any particular project layout.

§

Dependency management

The project report plugin does not define any dependency configurations.

§

Convention properties

The project report defines the following convention properties:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html

Page 290 of 777

Table 18. Project report plugin - convention properties

Property name Type Default value Description

reportsDirName String reports
The name of the directory to generate reports

into, relative to the build directory.

reportsDir
F i l e

(read-only)
/buildDir reportsDirName The directory to generate reports into.

projects Set<Project>

A one element set with the

project the plugin was applied

to.

The projects to generate the reports for.

projectReportDirName String project
The name of the directory to generate the project

report into, relative to the reports directory.

projectReportDir
F i l e

(read-only)
/reportsDir projectReportDirNameThe directory to generate the project report into.

These convention properties are provided by a convention object of type

.ProjectReportsPluginConvention

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

Page 291 of 777

The Build Dashboard Plugin

Note: The build dashboard plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point

of access to all of the reports generated by a build.

§

Usage

To use the Build Dashboard plugin, include the following in your build script:

Example 236. Using the Build Dashboard plugin

build.gradle

apply plugin: 'build-dashboard'

Applying the plugin adds the task to your project. The task aggregates the reports for allbuildDashboard

tasks that implement the interface from in the build. It is typically only applied to theReporting all projects

root project.

The task does not depend on any other tasks. It will only aggregate the reporting tasksbuildDashboard

that are independently being executed as part of the build run. To generate the build dashboard, simply

include this task in the list of tasks to execute. For example, “ ” willgradle buildDashboard build

generate a dashboard for all of the reporting tasks that are dependents of the task.build

§

Tasks

The Build Dashboard plugin adds the following task to the project:

Table 19. Build Dashboard plugin - tasks

Task name Depends on Type Description

buildDashboard - GenerateBuildDashboard Generates build dashboard report.

Project layout

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html

Page 292 of 777

§

Project layout

The Build Dashboard plugin does not require any particular project layout.

§

Dependency management

The Build Dashboard plugin does not define any dependency configurations.

§

Configuration

You can influence the location of build dashboard plugin generation via .ReportingExtension

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.ReportingExtension.html

Page 293 of 777

Comparing Builds

Note: Build comparison support is an feature. This means that it is incomplete and notincubating

yet at regular Gradle production quality. This also means that this Gradle User Guide chapter is a

work in progress.

Gradle provides support for comparing the (e.g. the produced binary archives) of two builds.outcomes

There are several reasons why you may want to compare the outcomes of two builds. You may want to

compare:

A build with a newer version of Gradle than it’s currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something else

(i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build

changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,

migration to Gradle or build change by understanding the differences in the outcomes. The comparison

process produces a HTML report outlining which outcomes were found to be identical and identifying the

differences between non-identical outcomes.

§

Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”

In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable

“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a

Gradle build.

“Build Outcome”

Something that happens in an observable manner during a build, such as the creation of a zip file or test

execution. These are the things that are compared.

“Source Build”

The build that comparisons are being made against, typically the build in its “current” state. In other

Page 294 of 777

words, the left hand side of the comparison.

“Target Build”

The build that is being compared to the source build, typically the “proposed” build. In other words, the

right hand side of the comparison.

“Host Build”

The Gradle build that executes the comparison process. It may be the same project as either the “target”

or “source” build or may be a completely separate project. It does not need to be the same Gradle

version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”

Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are

therefore meaningfully comparable.

“Uncompared Build Outcome”

A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build

produces a zip file that the other build does not).

“Unknown Build Outcome”

A build outcome that cannot be understood by the host build. This can occur when the source or target

build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.

Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent to

an unknown build outcome in the other build, but no meaningful comparison of what the build outcome

actually is can be performed. Using the latest Gradle version for the host build will avoid encountering

unknown build outcomes.

§

Current Capabilities

As this is an feature, a limited set of the eventual functionality has been implemented at this time.incubating

§

Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must

execute with Gradle newer or equal to version . The host build must be at least version . If the host1.0 1.2

build is run with version or newer, source and target builds must be at least version . If the host3.0 1.2

build is run with a version older than , source and target builds must be older than version . So if you2.0 3.0

for example want to compare a build under version with a build under version , you have to execute1.1 3.0

the host build with a version.2.x

Future versions will provide support for executing builds from other build systems such as Apache Ant or

Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

Supported build outcomes

Page 295 of 777

§

Supported build outcomes

Only support for comparing build outcomes that are archives is supported at this time. This includes zip jar

, and archives.war ear

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were

executed, which tests failed, etc.)

§

Comparing Gradle Builds

The plugin can be used to facilitate a comparison between two Gradle builds.compare-gradle-builds

The plugin adds a task named “ ” to the project. TheCompareGradleBuilds compareGradleBuilds

configuration of this task specifies what is to be compared. By default, it is configured to compare the current

build with itself using the current Gradle version by executing the tasks: “ ”.clean assemble

apply plugin: 'compare-gradle-builds'

This task can be configured to change what is compared.

compareGradleBuilds {

 sourceBuild {

 projectDir "/projects/project-a"

 gradleVersion "1.1"

 }

 targetBuild {

 projectDir "/projects/project-b"

 gradleVersion "1.2"

 }

}

The example above specifies a comparison between two different projects using two different Gradle

versions.

§

Trying Gradle upgrades

You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the ofbuild.gradle

the .root project

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

Page 296 of 777

apply plugin: 'compare-gradle-builds'

compareGradleBuilds {

 targetBuild.gradleVersion = "«gradle version»"

}

Then simply execute the task. You will see the console output of the “source” andcompareGradleBuilds

“target” builds as they are executing.

§

The comparison “result”

If there are any differences between the , the task will fail. The location of the HTMLcompared outcomes

report providing insight into the comparison will be given. If all compared outcomes are found to be identical,

and there are no uncompared outcomes, and there are no unknown build outcomes, the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the ignoreFailures

property to true.

compareGradleBuilds {

 ignoreFailures = true

}

§

Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives

configuration. Take a look at for more information on how to configure and add artifacts.Publishing artifacts

The archive must also have been produced by a , , , task. Future versions of Gradle willZip Jar War Ear

support increased flexibility in this area.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

Page 297 of 777

Publishing artifacts

Note: This chapter describes the publishing mechanism available in Gradle 1.0: in Gradleoriginal

1.3 a new mechanism for publishing was introduced. While this new mechanism is andincubating

not yet complete, it introduces some new concepts and features that do (and will) make Gradle

publishing even more powerful.

You can read about the new publishing plugins in and .Ivy Publishing (new) Maven Publishing (new)

Please try them out and give us feedback.

§

Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.

upload them). We define the artifacts of the projects as the files the project provides to the outside world.

This might be a library or a ZIP distribution or any other file. A project can publish as many artifacts as it

wants.

§

Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts

and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks and uploadConfigurationName buildConfigurationName

. Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

the section called “Dependency configurations” shows the configurations added by the Java plugin. Two of

the configurations are relevant for the usage with artifacts. The configuration is the standardarchives

configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this

configuration. We will talk more about the configuration in runtime the section called “More about project

. As with dependencies, you can declare as many custom configurations as you like and assignlibraries”

artifacts to them.

Declaring artifacts

[]10

Page 298 of 777

§

Declaring artifacts

§

Archive task artifacts

You can use an archive task to define an artifact:

Example 237. Defining an artifact using an archive task

build.gradle

task myJar(type: Jar)

artifacts {

 archives myJar

}

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

§

File artifacts

You can also use a file to define an artifact:

Example 238. Defining an artifact using a file

build.gradle

def someFile = file()'build/somefile.txt'

artifacts {

 archives someFile

}

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these

properties:

Page 299 of 777

Example 239. Customizing an artifact

build.gradle

task myTask(type: MyTaskType) {

 destFile = file()'build/somefile.txt'

}

artifacts {

 archives(myTask.destFile) {

 name 'my-artifact'

 type 'text'

 builtBy myTask

 }

}

There is a map-based syntax for defining an artifact using a file. The map must include a entry thatfile

defines the file. The map may include other artifact properties:

Example 240. Map syntax for defining an artifact using a file

build.gradle

task generate(type: MyTaskType) {

 destFile = file()'build/somefile.txt'

}

artifacts {

 archives file: generate.destFile, name: , type: , builtBy: generate'my-artifact' 'text'

}

§

Publishing artifacts

We have said that there is a specific upload task for each configuration. Before you can do an upload, you

have to configure the upload task and define where to publish the artifacts to. The repositories you have

defined (as described in) are not automatically used for uploading. In fact, some ofDeclaring Repositories

those repositories only allow downloading artifacts, not uploading. Here is an example of how you can

configure the upload task of a configuration:

Page 300 of 777

Example 241. Configuration of the upload task

build.gradle

repositories {

 flatDir {

 name "fileRepo"

 dirs "repo"

 }

}

uploadArchives {

 repositories {

 add project.repositories.fileRepo

 ivy {

 credentials {

 username "username"

 password "pw"

 }

 url "http://repo.mycompany.com"

 }

 }

}

As you can see, you can either use a reference to an existing repository or create a new repository.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading

each file. By default, Gradle will upload to the pattern defined by the parameter, combined with theurl

optional parameter. If no parameter is supplied, then Gradle will use the first defined layout url artifactPattern

for uploading, or the first defined for uploading Ivy files, if this is set.ivyPattern

Uploading to a Maven repository is described in .the section called “Interacting with Maven repositories”

§

More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this library and

what are the dependencies of these artifacts. The Java plugin adds a configuration for thisruntime

purpose, with the implicit assumption that the dependencies are the dependencies of the artifactruntime

you want to publish. Of course this is fully customizable. You can add your own custom configuration or let

the existing configurations extend from other configurations. You might have a different group of artifacts

which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the

dependency to depend on. A Gradle dependency offers the property to declare this. If thisconfiguration

is not specified, the configuration is used (see). Using yourdefault Managing Dependency Configurations

project as a library can either happen from within a multi-project build or by retrieving your project from a

repository. In the latter case, an descriptor in the repository is supposed to contain all theivy.xml

Page 301 of 777

necessary information. If you work with Maven repositories you don’t have the flexibility as described above.

For how to publish to a Maven repository, see the section the section called “Interacting with Maven

.repositories”

[] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the

Java plugin.

[] 10

Page 302 of 777

The Maven Plugin

Note: This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

§

Usage

To use the Maven plugin, include the following in your build script:

Example 242. Using the Maven plugin

build.gradle

apply plugin: 'maven'

§

Tasks

The Maven plugin defines the following tasks:

Table 20. Maven plugin - tasks

Task

name
Depends on Type Description

install

All tasks

that build

t h e

associated

archives.

Upload

Installs the associated artifacts to the local Maven cache, including Maven metadata

generation. By default the install task is associated with the configuration. Thisarchives

configuration has by default only the default jar as an element. To learn more about installing to

the local repository, see: the section called “Installing to the local repository”

§

Dependency management

The Maven plugin does not define any dependency configurations.

Convention properties

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Upload.html

Page 303 of 777

§

Convention properties

The Maven plugin defines the following convention properties:

Table 21. Maven plugin - properties

Property name Type Default value Description

mavenPomDir File /poms${project.buildDir}
The directory where the generated

POMs are written to.

conf2ScopeMappings Conf2ScopeMappingContainer n/a

Instructions for mapping Gradle

configurations to Maven scopes. See

the section called “Dependency

.mapping”

These properties are provided by a convention object.MavenPluginConvention

§

Convention methods

The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without

the context of uploading to a Maven repo.

Example 243. Creating a standalone pom.

build.gradle

task writeNewPom {

 doLast {

 pom {

 project {

 inceptionYear '2008'

 licenses {

 license {

 name 'The Apache Software License, Version 2.0'

 url 'http://www.apache.org/licenses/LICENSE-2.0.txt'

 distribution 'repo'

 }

 }

 }

 }.writeTo()"$buildDir/newpom.xml"

 }

}

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the

Gradle Maven POM object, see . See also: MavenPom MavenPluginConvention

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.MavenPluginConvention.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Page 304 of 777

§

Interacting with Maven repositories

§

Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This

includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle’s

deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don’t have a POM. Fortunately Gradle can

generate this POM for you using the dependency information it has.

§

Deploying to a Maven repository

Let’s assume your project produces just the default jar file. Now you want to deploy this jar file to a remote

Maven repository.

Example 244. Upload of file to remote Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {

 repositories {

 mavenDeployer {

 repository(url:)"file://localhost/tmp/myRepo/"

 }

 }

}

That is all. Calling the task will generate the POM and deploys the artifact and the POMuploadArchives

to the specified repository.

There is more work to do if you need support for protocols other than . In this case the native Mavenfile

code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you

plan to use. The available protocols and the corresponding libraries are listed in (those librariesTable 22

have transitive dependencies which have transitive dependencies). For example, to use the ssh protocol

you can do:

[]11

Page 305 of 777

Example 245. Upload of file via SSH

build.gradle

configurations {

 deployerJars

}

repositories {

 mavenCentral()

}

dependencies {

 deployerJars "org.apache.maven.wagon:wagon-ssh:2.2"

}

uploadArchives {

 repositories.mavenDeployer {

 configuration = configurations.deployerJars

 repository(url:) {"scp://repos.mycompany.com/releases"

 authentication(userName: , password:)"me" "myPassword"

 }

 }

}

There are many configuration options for the Maven deployer. The configuration is done via a Groovy

builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to

the bean elements. To add bean elements to its parent, you use a closure. In the example above repository

and are such bean elements. lists the available bean elements and a link to theauthentication Table 23

Javadoc of the corresponding class. In the Javadoc you can see the possible attributes you can set for a

particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is

defined, releases and snapshots are both deployed to the element. Otherwise snapshots arerepository

deployed to the element.snapshotRepository

Page 306 of 777

Table 22. Protocol jars for Maven deployment

Protocol Library

http org.apache.maven.wagon:wagon-http:2.2

ssh org.apache.maven.wagon:wagon-ssh:2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external:2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2

webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2

file -

Table 23. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDeployer

repository org.apache.maven.artifact.ant.RemoteRepository

authentication org.apache.maven.artifact.ant.Authentication

releases org.apache.maven.artifact.ant.RepositoryPolicy

snapshots org.apache.maven.artifact.ant.RepositoryPolicy

proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

§

Installing to the local repository

The Maven plugin adds an task to your project. This task depends on all the archives task of the install archives

configuration. It installs those archives to your local Maven repository. If the default location for the local

repository is redefined in a Maven , this is considered by this task.settings.xml

Maven POM generation

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

Page 307 of 777

§

Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The groupId

, , and elements used for the POM default to the values shown in theartifactId version packaging

table below. The elements are created from the project’s dependency declarations.dependency

Table 24. Default Values for Maven POM generation

Maven Element Default Value

groupId project.group

artifactId uploadTask.repositories.mavenDeployer.pom.artifactId (if set) or archiveTask.baseName.

version project.version

packaging archiveTask.extension

Here, and refer to the tasks used for uploading and generating the archive,uploadTask archiveTask

respectively (for example and). defaults to uploadArchives jar archiveTask.baseName project.archivesBaseName

which in turn defaults to .project.name

Note: When you set the “ ” property to a value other than the default,archiveTask.baseName

you’ll also have to set to theuploadTask.repositories.mavenDeployer.pom.artifactId

same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from

generated POMs for other projects in the same build.

Generated POMs can be found in . They can be further customized via the <buildDir>/poms MavenPom

API. For example, you might want the artifact deployed to the Maven repository to have a different version or

name than the artifact generated by Gradle. To customize these you can do:

Example 246. Customization of pom

build.gradle

uploadArchives {

 repositories {

 mavenDeployer {

 repository(url:)"file://localhost/tmp/myRepo/"

 pom.version = '1.0Maven'

 pom.artifactId = 'myMavenName'

 }

 }

}

To add additional content to the POM, the builder can be used. With this builder, any elementpom.project

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenPom.html

Page 308 of 777

listed in the can be added.Maven POM reference

Example 247. Builder style customization of pom

build.gradle

uploadArchives {

 repositories {

 mavenDeployer {

 repository(url:)"file://localhost/tmp/myRepo/"

 pom.project {

 licenses {

 license {

 name 'The Apache Software License, Version 2.0'

 url 'http://www.apache.org/licenses/LICENSE-2.0.txt'

 distribution 'repo'

 }

 }

 }

 }

 }

}

Note: , , , and should always be set directly on the object.groupId artifactId version packaging pom

Example 248. Modifying auto-generated content

build.gradle

def installer = install.repositories.mavenInstaller

def deployer = uploadArchives.repositories.mavenDeployer

[installer, deployer]*.pom*.whenConfigured {pom ->

 pom.dependencies.find {dep -> dep.groupId == && dep.artifactId == }.optional = true'group3' 'runtime'

}

If you have more than one artifact to publish, things work a little bit differently. See the section called

.“Multiple artifacts per project”

To customize the settings for the Maven installer (see),the section called “Installing to the local repository”

you can do:

Example 249. Customization of Maven installer

build.gradle

install {

 repositories.mavenInstaller {

 pom.version = '1.0Maven'

 pom.artifactId = 'myName'

 }

}

http://maven.apache.org/pom.html

Page 309 of 777

§

Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We

think there are many situations where it makes sense to have more than one artifact per project. In such a

case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you

want to publish to a Maven repository. The and the MavenInstaller both provide an API forMavenDeployer

this:

Example 250. Generation of multiple poms

build.gradle

uploadArchives {

 repositories {

 mavenDeployer {

 repository(url:)"file://localhost/tmp/myRepo/"

 addFilter() {artifact, file ->'api'

 artifact.name == 'api'

 }

 addFilter() {artifact, file ->'service'

 artifact.name == 'service'

 }

 pom().version = 'api' 'mySpecialMavenVersion'

 }

 }

}

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for

which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn

more about this have a look at and its associated classes.PomFilterContainer

§

Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and

War plugin and the Maven scopes. Most of the time you don’t need to touch this and you can safely skip this

section. The mapping works like the following. You can map a configuration to one and only one scope.

Different configurations can be mapped to one or different scopes. You can also assign a priority to a

particular configuration-to-scope mapping. Have a look at to learn more.Conf2ScopeMappingContainer

To access the mapping configuration you can say:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Page 310 of 777

Example 251. Accessing a mapping configuration

build.gradle

task mappings {

 doLast {

 println conf2ScopeMappings.mappings

 }

}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the

Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to

Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[] It is planned for a future release to provide out-of-the-box support for this[] 11

Page 311 of 777

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then

be used to prove who built the artifact the signature is attached to as well as other information such as when

the signature was generated.

The signing plugin currently only provides support for generating (which is theOpenPGP signatures

signature format).required for publication to the Maven Central Repository

§

Usage

To use the Signing plugin, include the following in your build script:

Example 252. Using the Signing plugin

build.gradle

apply plugin: 'signing'

§

Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using

the can be found in the). You need to provide the signing plugin with yourGnuPG tools GnuPG HOWTOs

key information, which means three things:

The public key ID (The last 8 symbols of the keyId. You can use to get it).gpg -K

The absolute path to the secret key ring file containing your private key. (Since gpg 2.1, you need to export

the keys with command gpg --keyring secring.gpg --export-secret-keys > ~/.gnupg/secring.gpg

).

The passphrase used to protect your private key.

These items must be supplied as the values of properties , signing.keyId signing.secretKeyRingFile

, and respectively. Given the personal and private nature of these values, a goodsigning.password

practice is to store them in the user file (described in gradle.properties the section called “System

).properties”

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

Page 312 of 777

signing.keyId=24875D73

signing.password=secret

signing.secretKeyRingFile=/Users/me/.gnupg/secring.gpg

If specifying this information (especially) in the user file is notsigning.password gradle.properties

feasible for your environment, you can source the information however you need to and set the project

properties manually.

import org.gradle.plugins.signing.Sign

gradle.taskGraph.whenReady { taskGraph ->

 if (taskGraph.allTasks.any { it instanceof Sign }) {

 // Use Java 6's console to read from the console (no good for

 // a CI environment)

 Console console = System.console()

 console.printf "\n\nWe have to sign some things in this build." +

 "\n\nPlease enter your signing details.\n\n"

 def id = console.readLine("PGP Key Id: ")

 def file = console.readLine("PGP Secret Key Ring File (absolute path): ")

 def password = console.readPassword("PGP Private Key Password: ")

 allprojects { ext."signing.keyId" = id }

 allprojects { ext."signing.secretKeyRingFile" = file }

 allprojects { ext."signing.password" = password }

 console.printf "\nThanks.\n\n"

 }

}

Note that the presence of a null value for any these three properties will cause an exception.

§

Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they’re bound to a master key pair. One

feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key

management easier. A practical case study of how subkeys can be leveraged in software development can

be read on the .Debian wiki

The signing plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID as the value in the signing.keyId

property.

Using gpg-agent

https://wiki.debian.org/Subkeys

Page 313 of 777

§

Using gpg-agent

By default the signing plugin uses a Java-based implementation of PGP for signing. This implementation

cannot use the gpg-agent program for managing private keys, though. If you want to use the gpg-agent, you

can change the signatory implementation used by the signing plugin:

Example 253. Sign with GnuPG

build.gradle

signing {

 useGpgCmd()

 sign configurations.archives

}

This tells the signing plugin to use the instead of the default . The GnupgSignatory PgpSignatory GnupgSignatory

relies on the gpg2 program to sign the artifacts. Of course, this requires that GnuPG is installed.

Without any further configuration the (on Windows:) executable found on the will begpg2 gpg2.exe PATH

used. The password is supplied by the and the default key is used for signing.gpg-agent

§

Gnupg signatory configuration

The supports a number of configuration options for controlling how gpg is invoked. TheseGnupgSignatory

are typically set in gradle.properties:

Example 254. Configure the GnupgSignatory

gradle.properties

signing.gnupg.executable=gpg

signing.gnupg.useLegacyGpg=true

signing.gnupg.homeDir=gnupg-home

signing.gnupg.optionsFile=gnupg-home/gpg.conf

signing.gnupg.keyName=24875D73

signing.gnupg.passphrase=gradle

signing.gnupg.executable

The gpg executable that is invoked for signing. The default value of this property depends on useLegacyGpg

. If that is then the default value of executable is "gpg" otherwise it is "gpg2".true

signing.gnupg.useLegacyGpg

Must be if GnuPG version 1 is used and otherwise. The default value of the property is true false false

.

signing.gnupg.homeDir

Sets the home directory for GnuPG. If not given the default home directory of GnuPG is used.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/signing/signatory/pgp/PgpSignatory.html

Page 314 of 777

signing.gnupg.optionsFile

Sets a custom options file for GnuPG. If not given GnuPG’s default configuration file is used.

signing.gnupg.keyName

The id of the key that should be used for signing. If not given then the default key configured in GnuPG

will be used.

signing.gnupg.passphrase

The passphrase for unlocking the secret key. If not given then the gpg-agent program is used for getting

the passphrase.

All configuration properties are optional.

§

Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify

what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or

configurations that should be signed.

§

Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the configures a jar toJava plugin

build and this jar artifact is added to the configuration. Using the Signing DSL, you can specifyarchives

that all of the artifacts of this configuration should be signed.

Example 255. Signing a configuration

build.gradle

signing {

 sign configurations.archives

}

This will create a task (of type) in your project named “ ”, that will build any Sign signArchives archives

artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the

artifacts being signed.

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.Sign.html

Page 315 of 777

Example 256. Signing a configuration output

Output of gradle signArchives

> gradle signArchives

> Task :compileJava

> Task :processResources

> Task :classes

> Task :jar

> Task :signArchives

BUILD SUCCESSFUL in 0s

4 actionable tasks: 4 executed

§

Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can

directly sign the task that produces the artifact to sign.

Example 257. Signing a task

build.gradle

task stuffZip (type: Zip) {

 baseName = "stuff"

 from "src/stuff"

}

signing {

 sign stuffZip

}

This will create a task (of type) in your project named “ ”, that will build the input task’sSign signStuffZip

archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.

Example 258. Signing a task output

Output of gradle signStuffZip

> gradle signStuffZip

> Task :stuffZip

> Task :signStuffZip

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the , , Tar Zip

, and tasks.Jar War Ear

Conditional Signing

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

Page 316 of 777

§

Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not

wish to sign artifacts for non-release versions. To achieve this, you can specify that signing is only required

under certain conditions.

Example 259. Conditional signing

build.gradle

version = '1.0-SNAPSHOT'

ext.isReleaseVersion = !version.endsWith()"SNAPSHOT"

signing {

 required { isReleaseVersion && gradle.taskGraph.hasTask() }"uploadArchives"

 sign configurations.archives

}

In this example, we only want to require signing if we are building a release version and we are going to

publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must

set the property to a closure to defer the evaluation. See signing.required

 for more information.SigningExtension.setRequired(java.lang.Object)

§

Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically

added to the and dependency configurations. This means that if you want tosignatures archives

upload your signatures to your distribution repository along with the artifacts you simply execute the uploadArchives

task as normal.

§

Signing POM files

Note: Signing the generated POM file generated by the is currently notMaven Publishing plugin

supported. Future versions of Gradle might add this functionality.

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published

POM file. The signing plugin adds a (see: signing.signPom()

SigningExtension.signPom(org.gradle.api.artifacts.maven.MavenDeployment,

) method that can be used in the block in your uploadgroovy.lang.Closure) beforeDeployment()

task configuration.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

Page 317 of 777

Example 260. Signing a POM for deployment

build.gradle

uploadArchives {

 repositories {

 mavenDeployer {

 beforeDeployment { MavenDeployment deployment -> signing.signPom(deployment) }

 }

 }

}

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no

credentials for signing) then the method will silently do nothing.signPom()

Page 318 of 777

Ivy Publishing (new)

Note: This chapter describes the new Ivy publishing support provided by the “incubating ivy-publish

” plugin. Eventually this new publishing support will replace publishing via the task.Upload

If you are looking for documentation on the original Ivy publishing support using the taskUpload

please see .Publishing artifacts

This chapter describes how to publish build artifacts in the format, usually to a repository forApache Ivy

consumption by other builds or projects. What is published is one or more artifacts created by the build, and

an Ivy (normally) that describes the artifacts and the dependencies of themodule descriptor ivy.xml

artifacts, if any.

A published Ivy module can be consumed by Gradle (see) and other tools thatDeclaring Dependencies

understand the Ivy format.

§

The “ ” Pluginivy-publish

The ability to publish in the Ivy format is provided by the “ ” plugin.ivy-publish

The “ ” plugin creates an extension on the project named “ ” of type publishing publishing

. This extension provides a container of named publications and a container ofPublishingExtension

named repositories. The “ ” plugin works with publications and ivy-publish IvyPublication

 repositories.IvyArtifactRepository

Example 261. Applying the “ivy-publish” plugin

build.gradle

apply plugin: 'ivy-publish'

Applying the “ ” plugin does the following:ivy-publish

Applies the “ ” pluginpublishing

Establishes a rule to automatically create a task for each GenerateIvyDescriptor IvyPublication

added (see).the section called “Publications”

Establishes a rule to automatically create a task for the combination of each PublishToIvyRepository

http://ant.apache.org/ivy/
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Page 319 of 777

 added (see), with each IvyPublication the section called “Publications” IvyArtifactRepository

added (see).the section called “Repositories”

§

Publications

Note: If you are not familiar with project artifacts and configurations, you should read Publishing

, which introduces these concepts. This chapter also describes “publishing artifacts” using aartifacts

different mechanism than what is described in this chapter. The publishing functionality described

here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are

published to repositories via tasks, and the configuration of the publication object determines exactly what is

published. All of the publications of a project are defined in the

 container. Each publication has a unique name within thePublishingExtension.getPublications()

project.

For the “ ” plugin to have any effect, an must be added to the set ofivy-publish IvyPublication

publications. This publication determines which artifacts are actually published as well as the details included

in the associated Ivy module descriptor file. A publication can be configured by adding components,

customizing artifacts, and by modifying the generated module descriptor file directly.

§

Publishing a Software Component

The simplest way to publish a Gradle project to an Ivy repository is to specify a toSoftwareComponent

publish. The components presently available for publication are:

Table 25. Software Components

Name Provided By Artifacts Dependencies

java Java Plugin Generated jar file Dependencies from 'runtime' configuration

web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the component, which isjava

added by the .Java Plugin

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/component/SoftwareComponent.html

Page 320 of 777

Example 262. Publishing a Java module to Ivy

build.gradle

publications {

 ivyJava(IvyPublication) {

 from components.java

 }

}

§

Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly

supplied as raw files, or as instances of (e.g. Jar, Zip).AbstractArchiveTask

For each custom artifact, it is possible to specify the , , , and name extension type classifier conf

values to use for publication. Note that each artifacts must have a unique name/classifier/extension

combination.

Configure custom artifacts as follows:

Example 263. Publishing additional artifact to Ivy

build.gradle

task sourceJar(type: Jar) {

 from sourceSets.main.java

 classifier "source"

}

publishing {

 publications {

 ivy(IvyPublication) {

 from components.java

 artifact(sourceJar) {

 type "source"

 conf "compile"

 }

 }

 }

}

See the class in the API documentation for more detailed information on how artifactsIvyPublication

can be customized.

Identity values for the published project

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Page 321 of 777

§

Identity values for the published project

The generated Ivy module descriptor file contains an element that identifies the module. The default<info>

identity values are derived from the following:

organisation - Project.getGroup()

module - Project.getName()

revision - Project.getVersion()

status - Project.getStatus()

branch - (not set)

Overriding the default identity values is easy: simply specify the , or organisation module revision

attributes when configuring the . The and attributes can be set via the IvyPublication status branch descriptor

property (see). The property can also be used to addIvyModuleDescriptorSpec descriptor

additional custom elements as children of the element.<info>

Example 264. customizing the publication identity

build.gradle

publishing {

 publications {

 ivy(IvyPublication) {

 organisation 'org.gradle.sample'

 module 'project1-sample'

 revision '1.1'

 descriptor.status = 'milestone'

 descriptor.branch = 'testing'

 descriptor.extraInfo , , 'http://my.namespace' 'myElement' 'Some value'

 from components.java

 }

 }

}

Tip: Certain repositories are not able to handle all supported characters. For example, the ':'

character cannot be used as an identifier when publishing to a filesystem-backed repository on

Windows.

Gradle will handle any valid Unicode character for organisation, module and revision (as well as artifact

name, extension and classifier). The only values that are explicitly prohibited are ‘ ’, ‘ ’ and any ISO control\ /

character. The supplied values are validated early during publication.

Modifying the generated module descriptor

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Page 322 of 777

§

Modifying the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked before

publishing. The “ ” plugin provides a hook to allow such modification.ivy-publish

Example 265. Customizing the module descriptor file

build.gradle

publications {

 ivyCustom(IvyPublication) {

 descriptor.withXml {

 asNode().info[].appendNode(,0 'description'

)'A demonstration of ivy descriptor customization'

 }

 }

}

In this example we are simply adding a 'description' element to the generated Ivy dependency descriptor, but

this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the

version range for a dependency with the actual version used to produce the build.

See in the API documentation forIvyModuleDescriptorSpec.withXml(org.gradle.api.Action)

more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it is

also possible to modify the descriptor in such a way that it is no longer a valid Ivy module descriptor, so care

must be taken when using this feature.

The identifier (organisation, module, revision) of the published module is an exception; these values cannot

be modified in the descriptor using the hook.withXML

§

Publishing multiple modules

Sometimes it’s useful to publish multiple modules from your Gradle build, without creating a separate Gradle

subproject. An example is publishing a separate API and implementation jar for your library. With Gradle this

is simple:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

Page 323 of 777

Example 266. Publishing multiple modules from a single project

build.gradle

task apiJar(type: Jar) {

 baseName "publishing-api"

 from sourceSets.main.output

 exclude '**/impl/**'

}

publishing {

 publications {

 impl(IvyPublication) {

 organisation 'org.gradle.sample.impl'

 module 'project2-impl'

 revision '2.3'

 from components.java

 }

 api(IvyPublication) {

 organisation 'org.gradle.sample'

 module 'project2-api'

 revision '2'

 }

 }

}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.

Each publication must be given a unique identity as described above.

§

Repositories

Publications are published to repositories. The repositories to publish to are defined by the

 container.PublishingExtension.getRepositories()

Example 267. Declaring repositories to publish to

build.gradle

repositories {

 ivy {

 // change to point to your repo, e.g. http://my.org/repo

 url "$buildDir/repo"

 }

}

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for

dependencies (). However, in the context of Ivy publication only the repositoriesRepositoryHandler

created by the methods can be used as publication destinations. You cannot publish an ivy() IvyPublication

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Page 324 of 777

to a Maven repository for example.

§

Performing a publish

The “ ” plugin automatically creates a task for each ivy-publish PublishToIvyRepository

 and combination in the and IvyPublication IvyArtifactRepository publishing.publications publishing.repositories

containers respectively.

The created task is named “ ”, which is “publish« »PublicationTo« »RepositoryPUBNAME REPONAME publishIvyJavaPublicationToIvyRepository

” for this example. This task is of type .PublishToIvyRepository

Example 268. Choosing a particular publication to publish

build.gradle

apply plugin: 'java'

apply plugin: 'ivy-publish'

group = 'org.gradle.sample'

version = '1.0'

publishing {

 publications {

 ivyJava(IvyPublication) {

 from components.java

 }

 }

 repositories {

 ivy {

 // change to point to your repo, e.g. http://my.org/repo

 url "$buildDir/repo"

 }

 }

}

Output of gradle publishIvyJavaPublicationToIvyRepository

> gradle publishIvyJavaPublicationToIvyRepository

> Task :generateDescriptorFileForIvyJavaPublication

> Task :compileJava NO-SOURCE

> Task :processResources NO-SOURCE

> Task :classes UP-TO-DATE

> Task :jar

> Task :publishIvyJavaPublicationToIvyRepository

BUILD SUCCESSFUL in 0s

3 actionable tasks: 3 executed

The “ ” lifecycle taskpublish

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Page 325 of 777

§

The “ ” lifecycle taskpublish

The “ ” plugin (that the “ ” plugin implicitly applies) adds a lifecycle task that can bepublish ivy-publish

used to publish all publications to all applicable repositories named “ ”.publish

In more concrete terms, executing this task will execute all tasks in thePublishToIvyRepository

project. This is usually the most convenient way to perform a publish.

Example 269. Publishing all publications via the “publish” lifecycle task

Output of gradle publish

> gradle publish

> Task :generateDescriptorFileForIvyJavaPublication

> Task :compileJava NO-SOURCE

> Task :processResources NO-SOURCE

> Task :classes UP-TO-DATE

> Task :jar

> Task :publishIvyJavaPublicationToIvyRepository

> Task :publish

BUILD SUCCESSFUL in 0s

3 actionable tasks: 3 executed

§

Generating the Ivy module descriptor file without publishing

At times it is useful to generate the Ivy module descriptor file (normally) without publishing yourivy.xml

module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very

easy to do.

The “ ” plugin creates one task for each registered ivy-publish GenerateIvyDescriptor

, named “ ”, which will be “IvyPublication generateDescriptorFileFor« »PublicationPUBNAME generateDescriptorFileForIvyJavaPublication

” for the previous example of the “ ” publication.ivyJava

You can specify where the generated Ivy file will be located by setting the property on thedestination

generated task. By default this file is written to “ ”.build/publications/« »/ivy.xmlPUBNAME

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Page 326 of 777

Example 270. Generating the Ivy module descriptor file

build.gradle

model {

 tasks.generateDescriptorFileForIvyCustomPublication {

 destination = file()"$buildDir/generated-ivy.xml"

 }

}

Output of gradle generateDescriptorFileForIvyCustomPublication

> gradle generateDescriptorFileForIvyCustomPublication

> Task :generateDescriptorFileForIvyCustomPublication

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Note: The “ ” plugin leverages some experimental support for late pluginivy-publish

configuration, and the task will not be constructed until the publishingGenerateIvyDescriptor

extension is configured. The simplest way to ensure that the publishing plugin is configured when

you attempt to access the task is to place the access inside a GenerateIvyDescriptor model

block, as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like

. These tasks should be referenced from within a block.PublishToIvyRepository model

§

Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java

component and a configured additional source artifact. The descriptor file is customized to include the

project description for each project.

Example 271. Publishing a Java module

build.gradle

subprojects {

 apply plugin: 'java'

 apply plugin: 'ivy-publish'

 version = '1.0'

 group = 'org.gradle.sample'

 repositories {

 mavenCentral()

 }

 task sourceJar(type: Jar) {

 from sourceSets.main.java

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Page 327 of 777

 classifier "source"

 }

}

project() {":project1"

 description = "The first project"

 dependencies {

 compile , project()'junit:junit:4.12' ':project2'

 }

}

project() {":project2"

 description = "The second project"

 dependencies {

 compile 'commons-collections:commons-collections:3.2.2'

 }

}

subprojects {

 publishing {

 repositories {

 ivy {

 // change to point to your repo, e.g. http://my.org/repo

 url "${rootProject.buildDir}/repo"

 }

 }

 publications {

 ivy(IvyPublication) {

 from components.java

 artifact(sourceJar) {

 type "source"

 conf "compile"

 }

 descriptor.withXml {

 asNode().info[].appendNode(, description)0 'description'

 }

 }

 }

Page 328 of 777

 }

}

The result is that the following artifacts will be published for each project:

The Ivy module descriptor file: “ ”.ivy-1.0.xml

The primary “jar” artifact for the Java component: “ ”.project1-1.0.jar

The source “jar” artifact that has been explicitly configured: “ ”.project1-1.0-source.jar

When is published, the module descriptor (i.e. the file) that is produced will look like:project1 ivy.xml

Tip: Note that in this example Ivy module descriptor will be the«PUBLICATION-TIME-STAMP»

timestamp of when the descriptor was generated.

Example 272. Example generated ivy.xml

output-ivy.xml

<?xml version="1.0" encoding="UTF-8"?>

 =<ivy-module version "2.0">

 = = = = =<info organisation "org.gradle.sample" module "project1" revision "1.0" status "integration" publication "«PUBLICATION-TIME-STAMP»">

 The first project<description> </description>

 </info>

 <configurations>

 = =<conf name "compile" visibility "public"/>

 = = =<conf name "default" visibility "public" extends "compile,runtime"/>

 = =<conf name "runtime" visibility "public"/>

 </configurations>

 <publications>

 = = = =<artifact name "project1" type "jar" ext "jar" conf "compile"/>

 = = = = = =<artifact name "project1" type "source" ext "jar" conf "compile" m:classifier "source" xmlns:m "http://ant.apache.org/ivy/maven"/>

 </publications>

 <dependencies>

 = = = =<dependency org "junit" name "junit" rev "4.12" conf "compile->default"/>

 = = = =<dependency org "org.gradle.sample" name "project2" rev "1.0" conf "compile->default"/>

 </dependencies>

</ivy-module>

§

Future features

The “ ” plugin functionality as described above is incomplete, as the feature is still .ivy-publish incubating

In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

Convenient customization of module attributes (, etc.)module organisation

Page 329 of 777

Convenient customization of dependencies reported in .module descriptor

Multiple discrete publications per project

Page 330 of 777

Maven Publishing (new)

Note: This chapter describes the new Maven publishing support provided by the “incubating maven-publish

” plugin. Eventually this new publishing support will replace publishing via the task.Upload

Note: Signing the generated POM file generated by this plugin is currently not supported. Future

versions of Gradle might add this functionality. Please use the for the purpose ofMaven plugin

publishing your artifacts to Maven Central.

If you are looking for documentation on the original Maven publishing support using the Upload

task please see .Publishing artifacts

This chapter describes how to publish build artifacts to an Repository. A module published toApache Maven

a Maven repository can be consumed by Maven, Gradle (see) and other tools thatDeclaring Dependencies

understand the Maven repository format.

§

The “ ” Pluginmaven-publish

The ability to publish in the Maven format is provided by the “ ” plugin.maven-publish

The “ ” plugin creates an extension on the project named “ ” of type publishing publishing

. This extension provides a container of named publications and a container ofPublishingExtension

named repositories. The “ ” plugin works with publications and maven-publish MavenPublication

 repositories.MavenArtifactRepository

Example 273. Applying the 'maven-publish' plugin

build.gradle

apply plugin: 'maven-publish'

Applying the “ ” plugin does the following:maven-publish

Applies the “ ” pluginpublishing

Establishes a rule to automatically create a task for each addedGenerateMavenPom MavenPublication

(see).the section called “Publications”

Establishes a rule to automatically create a task for the combination ofPublishToMavenRepository

http://maven.apache.org/
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

Page 331 of 777

each added (see), with each MavenPublication the section called “Publications”

 added (see).MavenArtifactRepository the section called “Repositories”

Establishes a rule to automatically create a task for each PublishToMavenLocal MavenPublication

added (see).the section called “Publications”

§

Publications

Note: If you are not familiar with project artifacts and configurations, you should read the Publishing

 that introduces these concepts. This chapter also describes “publishing artifacts” using aartifacts

different mechanism than what is described in this chapter. The publishing functionality described

here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are

published to repositories via tasks, and the configuration of the publication object determines exactly what is

published. All of the publications of a project are defined in the

 container. Each publication has a unique name within thePublishingExtension.getPublications()

project.

For the “ ” plugin to have any effect, a must be added to the set ofmaven-publish MavenPublication

publications. This publication determines which artifacts are actually published as well as the details included

in the associated POM file. A publication can be configured by adding components, customizing artifacts,

and by modifying the generated POM file directly.

§

Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a toSoftwareComponent

publish. The components presently available for publication are:

Table 26. Software Components

Name Provided By Artifacts Dependencies

java The Java Plugin Generated jar file Dependencies from 'runtime' configuration

web The War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the component, which isjava

added by the .Java Plugin

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/component/SoftwareComponent.html

Page 332 of 777

Example 274. Adding a MavenPublication for a Java component

build.gradle

publishing {

 publications {

 mavenJava(MavenPublication) {

 from components.java

 }

 }

}

§

Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly

supplied as raw files, or as instances of (e.g. Jar, Zip).AbstractArchiveTask

For each custom artifact, it is possible to specify the and values to use forextension classifier

publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts

must have a unique classifier/extension combination.

Configure custom artifacts as follows:

Example 275. Adding additional artifact to a MavenPublication

build.gradle

task sourceJar(type: Jar) {

 from sourceSets.main.allJava

}

publishing {

 publications {

 mavenJava(MavenPublication) {

 from components.java

 artifact sourceJar {

 classifier "sources"

 }

 }

 }

}

See the class in the API documentation for more information about how artifacts canMavenPublication

be customized.

Identity values in the generated POM

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html

Page 333 of 777

§

Identity values in the generated POM

The attributes of the generated file will contain identity values derived from the following projectPOM

properties:

groupId - Project.getGroup()

artifactId - Project.getName()

version - Project.getVersion()

Overriding the default identity values is easy: simply specify the , or groupId artifactId version

attributes when configuring the .MavenPublication

Example 276. customizing the publication identity

build.gradle

publishing {

 publications {

 maven(MavenPublication) {

 groupId 'org.gradle.sample'

 artifactId 'project1-sample'

 version '1.1'

 from components.java

 }

 }

}

Tip: Certain repositories will not be able to handle all supported characters. For example, the ':'

character cannot be used as an identifier when publishing to a filesystem-backed repository on

Windows.

Maven restricts 'groupId' and 'artifactId' to a limited character set () and Gradle[A-Za-z0-9_\\-.]+

enforces this restriction. For 'version' (as well as artifact 'extension' and 'classifier'), Gradle will handle any

valid Unicode character.

The only Unicode values that are explicitly prohibited are ‘ ’, ‘ ’ and any ISO control character. Supplied\ /

values are validated early in publication.

§

Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “ ” plugin providesmaven-publish

a hook to allow such modification.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version

Page 334 of 777

Example 277. Modifying the POM file

build.gradle

publications {

 mavenCustom(MavenPublication) {

 pom.withXml {

 asNode().appendNode(,'description'

)'A demonstration of maven POM customization'

 }

 }

}

In this example we are adding a 'description' element for the generated POM. With this hook, you can modify

any aspect of the POM. For example, you could replace the version range for a dependency with the actual

version used to produce the build.

See in the API documentation for more information.MavenPom.withXml(org.gradle.api.Action)

It is possible to modify virtually any aspect of the created POM. This means that it is also possible to modify

the POM in such a way that it is no longer a valid Maven POM, so care must be taken when using this

feature.

The identifier (groupId, artifactId, version) of the published module is an exception; these values cannot be

modified in the POM using the hook.withXML

§

Publishing multiple modules

Sometimes it’s useful to publish multiple modules from your Gradle build, without creating a separate Gradle

subproject. An example is publishing a separate API and implementation jar for your library. With Gradle this

is simple:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)

Page 335 of 777

Example 278. Publishing multiple modules from a single project

build.gradle

task apiJar(type: Jar) {

 baseName "publishing-api"

 from sourceSets.main.output

 exclude '**/impl/**'

}

publishing {

 publications {

 impl(MavenPublication) {

 groupId 'org.gradle.sample.impl'

 artifactId 'project2-impl'

 version '2.3'

 from components.java

 }

 api(MavenPublication) {

 groupId 'org.gradle.sample'

 artifactId 'project2-api'

 version '2'

 artifact apiJar

 }

 }

}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.

Each publication must be given a unique identity as described above.

§

Repositories

Publications are published to repositories. The repositories to publish to are defined by the

 container.PublishingExtension.getRepositories()

Example 279. Declaring repositories to publish to

build.gradle

publishing {

 repositories {

 maven {

 // change to point to your repo, e.g. http://my.org/repo

 url "$buildDir/repo"

 }

 }

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Page 336 of 777

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to

consume dependencies from, . However, in the context of Maven publication only RepositoryHandler

 repositories can be used for publication.MavenArtifactRepository

§

Performing a publish

The “ ” plugin automatically creates a task for each maven-publish PublishToMavenRepository

 and combination in the MavenPublication MavenArtifactRepository publishing.publications

and containers respectively.publishing.repositories

The created task is named “ ”.publish« »PublicationTo« »RepositoryPUBNAME REPONAME

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Page 337 of 777

Example 280. Publishing a project to a Maven repository

build.gradle

apply plugin: 'java'

apply plugin: 'maven-publish'

group = 'org.gradle.sample'

version = '1.0'

publishing {

 publications {

 mavenJava(MavenPublication) {

 from components.java

 }

 }

}

publishing {

 repositories {

 maven {

 // change to point to your repo, e.g. http://my.org/repo

 url "$buildDir/repo"

 }

 }

}

Output of gradle publish

> gradle publish

> Task :generatePomFileForMavenJavaPublication

> Task :compileJava

> Task :processResources NO-SOURCE

> Task :classes

> Task :jar

> Task :publishMavenJavaPublicationToMavenRepository

> Task :publish

BUILD SUCCESSFUL in 0s

4 actionable tasks: 4 executed

In this example, a task named “ ” is created,publishMavenJavaPublicationToMavenRepository

which is of type . This task is wired into the lifecycle task.PublishToMavenRepository publish

Executing “ ” builds the POM file and all of the artifacts to be published, and transfersgradle publish

them to the repository.

Publishing to Maven Local

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

Page 338 of 777

§

Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the local .m2

repository. In Maven parlance, this is referred to as 'installing' the module. The “ ” pluginmaven-publish

makes this easy to do by automatically creating a task for each PublishToMavenLocal

 in the container. Each of these tasks is wired into the MavenPublication publishing.publications publishToMavenLocal

lifecycle task. You do not need to have in your section.mavenLocal publishing.repositories

The created task is named “ ”.publish« »PublicationToMavenLocalPUBNAME

Example 281. Publish a project to the Maven local repository

Output of gradle publishToMavenLocal

> gradle publishToMavenLocal

> Task :generatePomFileForMavenJavaPublication

> Task :compileJava

> Task :processResources NO-SOURCE

> Task :classes

> Task :jar

> Task :publishMavenJavaPublicationToMavenLocal

> Task :publishToMavenLocal

BUILD SUCCESSFUL in 0s

4 actionable tasks: 4 executed

The resulting task in this example is named “ ”. This taskpublishMavenJavaPublicationToMavenLocal

is wired into the lifecycle task. Executing “ ”publishToMavenLocal gradle publishToMavenLocal

builds the POM file and all of the artifacts to be published, and “installs” them into the local Maven repository.

§

Generating the POM file without publishing

At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM

generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type , and it is given a name based on theGenerateMavenPom

name of the publication: “ ”. So in the example below,generatePomFileFor« »PublicationPUBNAME

where the publication is named “ ”, the task will be named “mavenCustom generatePomFileForMavenCustomPublication

”.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html

Page 339 of 777

Example 282. Generate a POM file without publishing

build.gradle

model {

 tasks.generatePomFileForMavenCustomPublication {

 destination = file()"$buildDir/generated-pom.xml"

 }

}

Output of gradle generatePomFileForMavenCustomPublication

> gradle generatePomFileForMavenCustomPublication

> Task :generatePomFileForMavenCustomPublication

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

All details of the publishing model are still considered in POM generation, including , custom components artifacts

, and any modifications made via .pom.withXml

Note: The “ ” plugin leverages some experimental support for late pluginmaven-publish

configuration, and any tasks will not be constructed until the publishingGenerateMavenPom

extension is configured. The simplest way to ensure that the publishing plugin is configured when

you attempt to access the task is to place the access inside a block,GenerateMavenPom model

as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like

. These tasks should be referenced from within a block.PublishToMavenRepository model

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

Page 340 of 777

The Distribution Plugin

Note: The distribution plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution

archives typically contain the executable application and other supporting files, such as documentation.

§

Usage

To use the distribution plugin, include the following in your build script:

Example 283. Using the distribution plugin

build.gradle

apply plugin: 'distribution'

The plugin adds an extension named “ ” of type to the project.distributions DistributionContainer

It also creates a single distribution in the distributions container extension named “ ”. If your build onlymain

produces one distribution you only need to configure this distribution (or use the defaults).

You can run “ ” to package the main distribution as a ZIP, or “ ” to creategradle distZip gradle distTar

a TAR file. To build both types of archives just run . The files will be created at “gradle assembleDist /distributions/ - .$buildDir $project.name $project.version «ext»

”.

You can run “ ” to assemble the uncompressed distribution into “gradle installDist /install/$buildDir main

”.

§

Tasks

The Distribution plugin adds the following tasks to the project:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.distribution.DistributionContainer.html

Page 341 of 777

Table 27. Distribution plugin - tasks

Task name Depends on Type Description

distZip - Zip Creates a ZIP archive of the distribution contents

distTar - Tar Creates a TAR archive of the distribution contents

assembleDist distTar, distZip Task Creates ZIP and TAR archives with the distribution contents

installDist - Sync Assembles the distribution content and installs it on the current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:

Table 28. Multiple distributions - tasks

Task name Depends on Type Description

DistZip${distribution.name} - Zip
Creates a ZIP archive of the

distribution contents

DistTar${distribution.name} - Tar
Creates a TAR archive of the

distribution contents

assemble Dist${distribution.name.capitalize()} DistTar${distribution.name} , DistZip${distribution.name}Task Assembles all distribution archives

install Dist${distribution.name.capitalize()}- Sync

Assembles the distribution content

and installs it on the current

machine

Example 284. Adding extra distributions

build.gradle

apply plugin: 'distribution'

version = '1.2'

distributions {

 custom {}

}

This will add following tasks to the project:

customDistZip

customDistTar

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html

Page 342 of 777

assembleCustomDist

installCustomDist

Given that the project name is “ ” and version “ ”, running “ ” willmyproject 1.2 gradle customDistZip

produce a ZIP file named “ ”.myproject-custom-1.2.zip

Running “ ” will install the distribution contents into “gradle installCustomDist /install/custom$buildDir

”.

§

Distribution contents

All of the files in the “ ” directory will automatically be included in thesrc/ /dist$distribution.name

distribution. You can add additional files by configuring the object that is part of theDistribution

container.

Example 285. Configuring the main distribution

build.gradle

apply plugin: 'distribution'

distributions {

 main {

 baseName = 'someName'

 contents {

 from { }'src/readme'

 }

 }

}

apply plugin:'maven'

uploadArchives {

 repositories {

 mavenDeployer {

 repository(url:)"file://some/repo"

 }

 }

}

In the example above, the content of the “ ” directory will be included in the distribution (alongsrc/readme

with the files in the “ ” directory which are added by default).src/main/dist

The “ ” property has also been changed. This will cause the distribution archives to be created withbaseName

a different name.

Publishing distributions

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/distribution/Distribution.html

Page 343 of 777

§

Publishing distributions

The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the maven

plugin applied the distribution zip file will be published when running uploadArchives if no other default

artifact is configured

Example 286. publish main distribution

build.gradle

apply plugin:'maven'

uploadArchives {

 repositories {

 mavenDeployer {

 repository(url:)"file://some/repo"

 }

 }

}

Page 344 of 777

The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following

notification systems are supported:

Twitter

notify-send (Ubuntu)

Snarl (Windows)

Growl (macOS)

§

Usage

To use the announce plugin, apply it to your build script:

Example 287. Applying the announce plugin

build.gradle

apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are

available):

Example 288. Configure the announce plugin

build.gradle

announce {

 username = 'myId'

 password = 'myPassword'

}

Finally, send announcements with the method:announce

http://twitter.com
http://manpages.ubuntu.com/manpages/zesty/en/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Page 345 of 777

Example 289. Using the announce plugin

build.gradle

task helloWorld {

 doLast {

 println "Hello, world!"

 }

}

helloWorld.doLast {

 announce.announce(,)"helloWorld completed!" "twitter"

 announce.announce(,)"helloWorld completed!" "local"

}

The method takes two String arguments: The message to be sent, and the notification service toannounce

be used. The following table lists supported notification services and their configuration properties.

Table 29. Announce Plugin Notification Services

Notification

Service
Operating System

Configuration

Properties
Further Information

twitter Any
username,

password

snarl Windows

growl macOS

notify-send Ubuntu
Requires the notify-send package to be installed. Use sudo apt-get install libnotify-bin

to install it.

local
Windows,

macOS, Ubuntu

Automatically chooses between snarl, growl, and notify-send depending on

the current operating system.

§

Configuration

See the class in the API documentation.AnnouncePluginExtension

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

Page 346 of 777

The Build Announcements Plugin

Note: The build announcements plugin is currently . Please be aware that the DSL andincubating

other configuration may change in later Gradle versions.

The build announcements plugin uses the plugin to send local announcements on importantannounce

events in the build.

§

Usage

To use the build announcements plugin, include the following in your build script:

Example 290. Using the build announcements plugin

build.gradle

apply plugin: 'build-announcements'

That’s it. If you want to tweak where the announcements go, you can configure the plugin toannounce

change the local announcer.

You can also apply the plugin from an init script:

Example 291. Using the build announcements plugin from an init script

init.gradle

rootProject {

 apply plugin: 'build-announcements'

}

Dependency management

Page 348 of 777

Introduction to Dependency Management

§

What is dependency management?

Software projects rarely work in isolation. In most cases, a project relies on reusable functionality in the form

of libraries or is broken up into individual components to compose a modularized system. Dependency

management is a technique for declaring, resolving and using dependencies required by the project in an

automated fashion.

Note: For a general overview on the terms used throughout the user guide, refer to Dependency

.Management Terminology

§

Dependency management in Gradle

Gradle has built-in support for dependency management and lives up the task of fulfilling typical scenarios

encountered in modern software projects. We’ll explore the main concepts with the help of an example

project. The illustration below should give you an rough overview on all the moving parts.

Page 349 of 777

Figure 14. Dependency management big picture

The example project builds Java source code. Some of the Java source files import classes from Google

, a open-source library providing a wealth of utility functionality. In addition to Guava, the projectGuava

needs the libraries for compiling and executing test code.JUnit

Guava and JUnit represent the of this project. A build script developer can dependencies declare

 for different scopes e.g. just for compilation of source code or for executing tests. In Gradle,dependencies

the is called a . For a full overview, see the reference material on scope of a dependency configuration

.dependency types

Often times dependencies come in the form of . You’ll need to tell Gradle where to find thosemodules

modules so they can be consumed by the build. The location for storing modules is called a . By repository

 for a build, Gradle will know how to find and retrieve modules. Repositories can comedeclaring repositories

in different forms: as local directory or a remote repository. The reference on provides arepository types

broad coverage on this topic.

At runtime, Gradle will locate the declared dependencies if needed for operating a specific task. The

dependencies might need to be downloaded from a remote repository, retrieved from a local directory or

requires another project to be built in a multi-project setting. This process is called .dependency resolution

You can find a detailed discussion in .the section called “How dependency resolution works”

Once resolved, the resolution mechanism , alsostores the underlying files of a dependency in a local cache

referred to as the . Future builds reuse the files stored in the cache to avoid unnecessarydependency cache

network calls.

Modules can provide additional metadata. Metadata is the data that describes the module in more detail e.g.

the coordinates for finding it in a repository, information about the project, or its authors. As part of the

https://github.com/google/guava
https://github.com/google/guava
http://junit.org/junit5/

Page 350 of 777

metadata, a module can define that other modules are needed for it to work properly. For example, the JUnit

5 platform module also requires the platform commons module. Gradle automatically resolves those

additional modules, so called . If needed, you can transitive dependencies customize the behavior the

 to your project’s requirements.handling of transitive dependencies

Projects with tens or hundreds of declared dependencies can easily suffer from dependency hell. Gradle

provides sufficient tooling to visualize, navigate and analyze the dependency graph of a project either with

the help of a or built-in tasks. Learn more in .build scan Inspecting Dependencies

Figure 15. Build scan dependencies report

§

How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your

dependencies by a process called . Below is a brief outline of how this processdependency resolution

works.

Given a required dependency, Gradle attempts to resolve the dependency by searching for the module the

dependency points at. Each repository is inspected in order. Depending on the type of repository, Gradle

looks for metadata files describing the module (, or file) or directly for artifact files..module .pom ivy.xml

If the dependency is declared as a dynamic version (like), Gradle will resolve this to the highest1.+

available concrete version (like) in the repository. For Maven repositories, this is done using the 1.2 maven-metadata.xml

https://scans.gradle.com/get-started

Page 351 of 777

file, while for Ivy repositories this is done by directory listing.

If the module metadata is a POM file that has a parent POM declared, Gradle will recursively attempt to

resolve each of the parent modules for the POM.

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is

done using the following criteria:

For a dynamic version, a 'higher' concrete version is preferred over a 'lower' version.

Modules declared by a module metadata file (, or file) are preferred over modules.module .pom ivy.xml

that have an artifact file only.

Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a concrete version and a module metadata file is found in a repository,

there is no need to continue searching later repositories and the remainder of the process is short-circuited.

All of the artifacts for the module are then requested from the that was chosen in thesame repository

process above.

The dependency resolution process is highly customizable to meet enterprise requirements. For more

information, see the chapter on .Customizing Dependency Resolution Behavior

Page 352 of 777

Declaring Dependencies

Gradle builds can declare dependencies on modules hosted in repositories, files and other Gradle projects.

You can find examples for common scenarios in this section. For more information, see the full reference on

.all types of dependencies

Every dependency needs to be assigned to a configuration when declared in a build script. For more

information on the purpose and syntax of configurations, see .Managing Dependency Configurations

§

Declaring a dependency to a module

Modern software projects rarely build code in isolation. Projects reference modules for the purpose of

reusing existing and proven functionality. Upon resolution, selected versions of modules are downloaded

from dedicated repositories and stored in the to avoid unnecessary network traffic.dependency cache

Figure 16. Resolving dependencies from remote repositories

Declaring a concrete version of a dependency

Page 353 of 777

§

Declaring a concrete version of a dependency

A typical example for such a library in a Java project is the . The following code snippetSpring framework

declares a compile-time dependency on the Spring web module by its coordinates: org.springframework:spring-web:5.0.2.RELEASE

. Gradle resolves the module including its transitive dependencies from the andMaven Central repository

uses it to compile Java source code. The version attribute of the dependency coordinates points to a

 indicating that the underlying artifacts do not change over time. The use of concreteconcrete version

versions ensure reproducibility for the aspect of dependency resolution.

Example 292. Declaring a dependency with a concrete version

build.gradle

apply plugin: 'java-library'

repositories {

 mavenCentral()

}

dependencies {

 implementation 'org.springframework:spring-web:5.0.2.RELEASE'

}

A Gradle project can define other types of repositories hosting modules. You can learn more about the

syntax and API in the section on . Refer to for a deep dive ondeclaring repositories The Java Plugin

declaring dependencies for a Java project. The resolution behavior for dependencies is .highly customizable

§

Declaring a dependency without version

A recommended practice for larger projects is to declare dependencies without versions and use

 for version declaration. The advantage is that dependency constrains allow you todependency constraints

manage versions of all dependencies, including transitive ones, in one place.

Example 293. Declaring a dependency without version

build.gradle

dependencies {

 implementation 'org.springframework:spring-web'

}

dependencies {

 constraints {

 implementation 'org.springframework:spring-web:5.0.2.RELEASE'

 }

}

Declaring a dynamic version

https://projects.spring.io/spring-framework/
https://search.maven.org/

Page 354 of 777

§

Declaring a dynamic version

Projects might adopt a more aggressive approach for consuming dependencies to modules. For example

you might want to always integrate the latest version of a dependency to consume cutting edge features at

any given time. A allows for resolving the latest version or the latest version of a versiondynamic version

range for a given module.

Note: Using dynamic versions in a build bears the risk of potentially breaking it. As soon as a new

version of the dependency is released that contains an incompatible API change your source code

might stop compiling.

Example 294. Declaring a dependency with a dynamic version

build.gradle

apply plugin: 'java-library'

repositories {

 mavenCentral()

}

dependencies {

 implementation 'org.springframework:spring-web:5.+'

}

A can effectively visualize dynamic dependency versions and their respective, selected versions.build scan

Figure 17. Dynamic dependencies in build scan

By default, Gradle caches dynamic versions of dependencies for 24 hours. Within this time frame, Gradle

does not try to resolve newer versions from the declared repositories. The asthreshold can be configured

needed for example if you want to resolve new versions earlier.

Declaring a changing version

https://scans.gradle.com/

Page 355 of 777

§

Declaring a changing version

A team might decide to implement a series of features before releasing a new version of the application or

library. A common strategy to allow consumers to integrate an unfinished version of their artifacts early and

often is to release a module with a so-called . A changing version indicates that the featurechanging version

set is still under active development and hasn’t released a stable version for general availability yet.

In Maven repositories, changing versions are commonly referred to as . Snapshot versionssnapshot versions

contain the suffix . The following example demonstrates how to declare a snapshot version on-SNAPSHOT

the Spring dependency.

Example 295. Declaring a dependencies with a changing version

build.gradle

apply plugin: 'java-library'

repositories {

 mavenCentral()

 maven {

 url 'https://repo.spring.io/snapshot/'

 }

}

dependencies {

 implementation 'org.springframework:spring-web:5.0.3.BUILD-SNAPSHOT'

}

By default, Gradle caches changing versions of dependencies for 24 hours. Within this time frame, Gradle

does not try to resolve newer versions from the declared repositories. The asthreshold can be configured

needed for example if you want to resolve new snapshot versions earlier.

Gradle is flexible enough to treat any version as changing version e.g. if you wanted to model snapshot

behavior for an Ivy module. All you need to do is to set the property

 to .ExternalModuleDependency.setChanging(boolean) true

§

Declaring a file dependency

Projects sometimes do not rely on a binary repository product e.g. JFrog Artifactory or Sonatype Nexus for

hosting and resolving external dependencies. It’s common practice to host those dependencies on a shared

drive or check them into version control alongside the project source code. Those dependencies are referred

to as , the reason being that they represent a file without any (like informationfile dependencies metadata

about transitive dependencies, the origin or its author) attached to them.

https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-

Page 356 of 777

Figure 18. Resolving file dependencies from the local file system and a shared drive

The following example resolves file dependencies from the directories , and .ant libs tools

Example 296. Declaring multiple file dependencies

build.gradle

configurations {

 antContrib

 externalLibs

 deploymentTools

}

dependencies {

 antContrib files()'ant/antcontrib.jar'

 externalLibs files(,)'libs/commons-lang.jar' 'libs/log4j.jar'

 deploymentTools fileTree(dir: , include:)'tools' '*.exe'

}

As you can see in the code example, every dependency has to define its exact location in the file system.

The most prominent methods for creating a file reference are Project.files(java.lang.Object[])

and . Alternatively, you can also define the source directory ofProject.fileTree(java.lang.Object)

one or many file dependencies in the form of a .flat directory repository

Declaring a project dependency

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

Page 357 of 777

§

Declaring a project dependency

Software projects often break up software components into modules to improve maintainability and prevent

strong coupling. Modules can define dependencies between each other to reuse code within the same

project.

Gradle can model dependencies between modules. Those dependencies are called project dependencies

because each module is represented by a Gradle project. At runtime, the build automatically ensures that

project dependencies are built in the correct order and added to the classpath for compilation. The chapter

 discusses how to set up and configure multi-project builds in more detail.Authoring Multi-Project Builds

Figure 19. Dependencies between projects

The following example declares the dependencies on the and project from the utils api web-service

project. The method creates a reference to a specificProject.project(java.lang.String)

subproject by path.

Example 297. Declaring project dependencies

build.gradle

project() {':web-service'

 dependencies {

 implementation project()':utils'

 implementation project()':api'

 }

}

Resolving specific artifacts from a module dependency

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

Page 358 of 777

§

Resolving specific artifacts from a module dependency

Whenever Gradle tries to resolve a module from a Maven or Ivy repository, it looks for a metadata file and

the default artifact file, a JAR. The build fails if none of these artifact files can be resolved. Under certain

conditions, you might want to tweak the way Gradle resolves artifacts for a dependency.

The dependency only provides a non-standard artifact without any metadata e.g. a ZIP file.

The module metadata declares more than one artifact e.g. as part of an Ivy dependency descriptor.

You only want to download a specific artifact without any of the transitive dependencies declared in the

metadata.

Gradle is a polyglot build tool and not limited to just resolving Java libraries. Let’s assume you wanted to

build a web application using JavaScript as the client technology. Most projects check in external JavaScript

libraries into version control. An external JavaScript library is no different than a reusable Java library so why

not download it from a repository instead?

Google Hosted Libraries is a distribution platform for popular, open-source JavaScript libraries. With the help

of the artifact-only notation you can download a JavaScript library file e.g. JQuery. The character@

separates the dependency’s coordinates from the artifact’s file extension.

Example 298. Resolving a JavaScript artifact for a declared dependency

build.gradle

repositories {

 ivy {

 url 'https://ajax.googleapis.com/ajax/libs'

 layout , {'pattern'

 artifact '[organization]/[revision]/[module].[ext]'

 }

 }

}

configurations {

 js

}

dependencies {

 js 'jquery:jquery:3.2.1@js'

}

Some modules ship different "flavors" of the same artifact or they publish multiple artifacts that belong to a

specific module version but have a different purpose. It’s common for a Java library to publish the artifact

with the compiled class files, another one with just the source code in it and a third one containing the

Javadocs.

https://developers.google.com/speed/libraries/

Page 359 of 777

In JavaScript, a library may exist as uncompressed or minified artifact. In Gradle, a specific artifact identifier

is called , a term generally used in Maven and Ivy dependency management.classifier

Let’s say we wanted to download the minified artifact of the JQuery library instead of the uncompressed file.

You can provide the classifier as part of the dependency declaration.min

Example 299. Resolving a JavaScript artifact with classifier for a declared dependency

build.gradle

repositories {

 ivy {

 url 'https://ajax.googleapis.com/ajax/libs'

 layout , {'pattern'

 artifact '[organization]/[revision]/[module](.[classifier]).[ext]'

 }

 }

}

configurations {

 js

}

dependencies {

 js 'jquery:jquery:3.2.1:min@js'

}

Page 360 of 777

Managing Dependency Configurations

§

What is a configuration?

Every dependency declared for a Gradle project applies to a specific scope. For example some

dependencies should be used for compiling source code whereas others only need to be available at

runtime. Gradle represents the scope of a dependency with the help of a . EveryConfiguration

configuration can be identified by a unique name.

Many Gradle plugins add pre-defined configurations to your project. The Java plugin, for example, adds

configurations to represent the various classpaths it needs for source code compilation, executing tests and

the like. See for an example. The sections above demonstrate how to the Java plugin chapter declare

 for different use cases.dependencies

Figure 20. Configurations use declared dependencies for specific purposes

For more examples on the usage of configurations to navigate, inspect and post-process metadata and

artifacts of assigned dependencies, see .Working with Dependencies

Defining custom configurations

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html

Page 361 of 777

§

Defining custom configurations

You can define configurations yourself, so-called . A custom configuration is useful forcustom configurations

separating the scope of dependencies needed for a dedicated purpose.

Let’s say you wanted to declare a dependency on the for the purpose of pre-compiling JSPJasper Ant task

files that should end up in the classpath for compiling your source code. It’s fairly simple to achieve thatnot

goal by introducing a custom configuration and using it in a task.

Example 300. Declaring and using a custom configuration

build.gradle

configurations {

 jasper

}

repositories {

 mavenCentral()

}

dependencies {

 jasper 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.2'

}

task preCompileJsps {

 doLast {

 ant.taskdef(classname: ,'org.apache.jasper.JspC'

 name: ,'jasper'

 classpath: configurations.jasper.asPath)

 ant.jasper(validateXml: false,

 uriroot: file(),'src/main/webapp'

 outputDir: file())"$buildDir/compiled-jsps"

 }

}

A project’s configurations are managed by a object. Configurations have a name and canconfigurations

extend each other. To learn more about this API have a look at .ConfigurationContainer

§

Inheriting dependencies from other configurations

A configuration can extend other configurations to form an inheritance hierarchy. Child configurations inherit

the whole set of dependencies declared for any of its superconfigurations.

Configuration inheritance is heavily used by Gradle core plugins like the . For example the Java plugin testImplementation

configuration extends the configuration. The configuration hierarchy has a practicalimplementation

https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Page 362 of 777

purpose: compiling tests requires the dependencies of the source code under test on top of the

dependencies needed write the test class. A Java project that uses JUnit to write and execute test code also

needs Guava if its classes are imported in the production source code.

Figure 21. Configuration inheritance provided by the Java plugin

Under the covers the and configurations form an inheritancetestImplementation implementation

h i e r a r c h y b y c a l l i n g t h e m e t h o d

. A configurationConfiguration.extendsFrom(org.gradle.api.artifacts.Configuration[])

can extend any other configuration irrespective of its definition in the build script or a plugin.

Let’s say you wanted to write a suite of smoke tests. Each smoke test makes a HTTP call to verify a web

service endpoint. As the underlying test framework the project already uses JUnit. You can define a new

configuration named that extends from the configuration to reuse thesmokeTest testImplementation

existing test framework dependency.

Example 301. Extending a configuration from another configuration

build.gradle

configurations {

 smokeTest.extendsFrom testImplementation

}

dependencies {

 testImplementation 'junit:junit:4.12'

 smokeTest 'org.apache.httpcomponents:httpclient:4.5.5'

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])

Page 363 of 777

Declaring Repositories

Gradle can resolve dependencies from one or many repositories based on Maven, Ivy or flat directory

formats. Check out the for more information.full reference on all types of repositories

§

Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and consume

open source dependencies. Popular public repositories include Maven Central, Bintray JCenter and the

Google Android repository. Gradle provides built-in shortcut methods for the most widely-used repositories.

Figure 22. Declaring a repository with the help of shortcut methods

To declare JCenter as repository, add this code to your build script:

Page 364 of 777

Example 302. Declaring JCenter repository as source for resolving dependencies

build.gradle

repositories {

 jcenter()

}

Under the covers Gradle resolves dependencies from the respective URL of the public repository defined by

the shortcut method. All shortcut methods are available via the API. Alternatively,RepositoryHandler

you can for more fine-grained control.spell out the URL of the repository

§

Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house repositories

enable teams to publish internal binaries, setup user management and security measure and ensure uptime

and availability. Specifying a custom URL is also helpful if you want to declare a less popular, but

publicly-available repository.

Add the following code to declare an in-house repository for your build reachable through a custom URL.

Example 303. Declaring a custom repository by URL

build.gradle

repositories {

 maven {

 url "http://repo.mycompany.com/maven2"

 }

}

Repositories with custom URLs can be specified as Maven or Ivy repositories by calling the corresponding

methods available on the API. Gradle supports other protocols than or RepositoryHandler http https

as part of the custom URL e.g. , or . For a full coverage see the file sftp s3 reference manual on

.supported transport protocols

You can also by using repositories as they are very flexible indefine your own repository layout ivy { }

terms of how modules are organised in a repository.

§

Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple repositories is

helpful if some dependencies are only available in one repository but not the other. You can mix any type of

repository described in the .reference section

This example demonstrates how to declare various shortcut and custom URL repositories for a project:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Page 365 of 777

Example 304. Declaring multiple repositories

build.gradle

repositories {

 jcenter()

 maven {

 url "https://maven.springframework.org/release"

 }

 maven {

 url "https://maven.restlet.org"

 }

}

Note: The order of declaration determines how Gradle will check for dependencies at runtime. If

Gradle finds a module descriptor in a particular repository, it will attempt to download all of the

artifacts for that module from . You can learn more about the inner workings of the same repository

.Gradle’s resolution mechanism

Page 366 of 777

Inspecting Dependencies

Gradle provides sufficient tooling to navigate large dependency graphs and mitigate situations that can lead

to . Users can chose to render the full graph of dependencies as well as identify thedependency hell

selection reason and origin for a dependency. The origin of a dependency can be a declared dependency in

the build script or a transitive dependency in graph plus their corresponding configuration. Gradle offers both

capabilities through visual representation via build scans and as command line tooling.

§

Listing dependencies in a project

A project can declare one or more dependencies. Gradle can visualize the whole dependency tree for every

 available in the project.configuration

Rendering the dependency tree is particularly useful if you’d like to identify which dependencies have been

resolved at runtime. It also provides you with information about any dependency conflict resolution that

occurred in the process and clearly indicates the selected version. The dependency report always contains

declared and transitive dependencies.

Let’s say you’d want to create tasks for your project that use the to execute SCM operations e.g.JGit library

to model a release process. You can declare dependencies for any external tooling with the help of a custom

 so that it doesn’t doesn’t pollute other contexts like the compilation classpath for yourconfiguration

production source code.

Example 305. Declaring the JGit dependency with a custom configuration

build.gradle

repositories {

 jcenter()

}

configurations {

 scm

}

dependencies {

 scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r'

}

https://en.wikipedia.org/wiki/Dependency_hell
https://www.eclipse.org/jgit/

Page 367 of 777

A can visualize dependencies as a navigable, searchable tree. Additional context information canbuild scan

be rendered by clicking on a specific dependency in the graph.

Figure 23. Dependency tree in a build scan

Every Gradle project provides the task to render the so-called from thedependencies dependency report

command line. By default the dependency report renders dependencies for all configurations. To pair down

on the information provide the optional parameter .--configuration

Example 306. Rendering the dependency report for a custom configuration

Output of gradle -q dependencies --configuration scm

> gradle -q dependencies --configuration scm

--

Root project

--

scm

\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r

 +--- com.jcraft:jsch:0.1.54

 +--- com.googlecode.javaewah:JavaEWAH:1.1.6

 +--- org.apache.httpcomponents:httpclient:4.3.6

 | +--- org.apache.httpcomponents:httpcore:4.3.3

 | +--- commons-logging:commons-logging:1.1.3

 | \--- commons-codec:commons-codec:1.6

 \--- org.slf4j:slf4j-api:1.7.2

A web-based, searchable dependency report is available by adding the --scan option.

https://scans.gradle.com/

Page 368 of 777

The dependencies report provides detailed information about the dependencies available in the graph. Any

dependency that could not be resolved is marked with in red color. Dependencies with the sameFAILED

coordinates that can occur multiple times in the graph are omitted and indicated by an asterisk.

Dependencies that had to undergo conflict resolution render the requested and selected version separated

by a right arrow character.

§

Identifying which dependency version was selected and why

Large software projects inevitably deal with an increased number of dependencies either through direct or

transitive dependencies. The provides you with the raw list of dependencies but doesdependencies report

not explain they have been selected or dependency is responsible for pulling them into thewhy which

graph.

Let’s have a look at a concrete example. A project may request two different versions of the same

dependency either as direct or transitive dependency. Gradle applies version conflict resolution to ensure

that only one version of the dependency exists in the dependency graph. In this example the conflicting

dependency is represented by .commons-codec:commons-codec

Example 307. Declaring the JGit dependency and a conflicting dependency

build.gradle

repositories {

 jcenter()

}

configurations {

 scm

}

dependencies {

 scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r'

 scm 'commons-codec:commons-codec:1.7'

}

The dependency tree in a renders the selection reason (conflict resolution) as well as the origin ofbuild scan

a dependency if you click on a dependency and select the "Required By" tab.

https://scans.gradle.com/

Page 369 of 777

Figure 24. Dependency insight capabilities in a build scan

Every Gradle project provides the task to render the so-called dependencyInsight dependency insight

 from the command line. Given a dependency in the dependency graph you can identify the selectionreport

reason and track down the origin of the dependency selection. You can think of the dependency insight

report as the inverse representation of the dependency report for a given dependency. When executing the

task you have to provide the mandatory parameter to specify the coordinates of the--dependency

dependency under inspection. The parameter is optional but helps with filtering the--configuration

output.

Example 308. Using the dependency insight report for a given dependency

Output of gradle -q dependencyInsight --dependency commons-codec --configuration

scm

> gradle -q dependencyInsight --dependency commons-codec --configuration scm

commons-codec:commons-codec:1.7 (conflict resolution)

 variant "default+runtime"

\--- scm

commons-codec:commons-codec:1.6 -> 1.7

 variant "default+runtime"

\--- org.apache.httpcomponents:httpclient:4.3.6

 \--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r

 \--- scm

A web-based, searchable dependency report is available by adding the --scan option.

§

Justifying dependency declarations with custom reasons

When you declare a or a , you can provide a custom reason for thedependency dependency constraint

declaration. This makes the dependency declarations in your build script and the dependency insight report

easier to interpret.

Page 370 of 777

Example 309. Giving a reason for choosing a certain module version in a dependency declaration

build.gradle

apply plugin: 'java-library'

repositories {

 jcenter()

}

dependencies {

 implementation() {'org.ow2.asm:asm:6.0'

 because 'we require a JDK 9 compatible bytecode generator'

 }

}

Example 310. Using the dependency insight report with custom reasons

Output of gradle -q dependencyInsight --dependency asm

> gradle -q dependencyInsight --dependency asm

org.ow2.asm:asm:6.0 (we require a JDK 9 compatible bytecode generator)

 variant "compile" [

 org.gradle.usage = java-api

]

\--- compileClasspath

A web-based, searchable dependency report is available by adding the --scan option.

Page 371 of 777

Managing Transitive Dependencies

Resolution behavior for transitive dependencies can be customized to a high degree to meet enterprise

requirements.

§

Managing versions of transitive dependencies with dependency

constraints

Dependency constraints allow you to define the version or the version range of both dependencies declared

in the build script and transitive dependencies. It is the preferred method to express constraints that should

be applied to all dependencies of a configuration. When Gradle attempts to resolve a dependency to a

module version, all , all transitive dependencies and all dependencydependency declarations with version

constraints for that module are taken into consideration. The highest version that matches all conditions is

selected. If no such version is found, Gradle fails with an error showing the conflicting declarations. If this

happens you can adjust your dependencies or dependency constraints declarations, or make other

 if needed. Similar to dependency declarations, dependencyadjustments to the transitive dependencies

constraint declarations are and can therefore be selectively defined for parts of ascoped by configurations

build. If a dependency constraint influenced the resolution result, any type of maydependency resolve rules

still be applied afterwards.

Example 311. Define dependency constraints

build.gradle

dependencies {

 implementation 'org.apache.httpcomponents:httpclient'

 constraints {

 implementation() {'org.apache.httpcomponents:httpclient:4.5.3'

 because 'previous versions have a bug impacting this application'

 }

 implementation() {'commons-codec:commons-codec:1.11'

 because 'version 1.9 pulled from httpclient has bugs affecting this application'

 }

 }

}

In the example, all versions are omitted from the dependency declaration. Instead, the versions are defined

in the constraints block. The version definition for is only taken into account if commons-codec:1.11 commons-codec

Page 372 of 777

is brought in as transitive dependency, since is not defined as dependency in the project.commons-codec

Otherwise, the constraint has no effect.

Note: Dependency constraints are not yet published, but that will be added in a future release. This

means that their use currently only targets builds that do not publish artifacts to maven or ivy

repositories.

Dependency constraints themselves can also be added transitively. If a modules’s metadata is defined in a .pom

file that contains dependency entries with , Gradle will create a<optional>true</optional>

dependency constraint for each of these so-called . This leads to a similar resolutionoptional dependencies

behavior as provided by Maven: if the corresponding module is brought in by another, non-optional

dependency declaration, then the constraint will apply when choosing the version for that module (e.g., if the

optional dependency defines a higher version, that one is chosen).

Note: Support for from pom files is active by default with Gradle 5.0+. Foroptional dependencies

using it in Gradle 4.6+, you need to activate it by adding enableFeaturePreview('IMPROVED_POM_SUPPORT')

in .settings.gradle

§

Excluding transitive module dependencies

Declared dependencies in a build script can pull in a lot of transitive dependencies. You might decide that

you do not want a particular transitive dependency as part of the dependency graph for a good reason.

The dependency is undesired due to licensing constraints.

The dependency is not available in any of the declared repositories.

The metadata for the dependency exists but the artifact does not.

The metadata provides incorrect coordinates for a transitive dependency.

Transitive dependencies can be excluded on the level of a declared dependency or a configuration. Let’s

demonstrate both use cases. In the following two examples the build script declares a dependency on

Log4J, a popular logging framework in the Java world. The metadata of the particular version of Log4J also

defines transitive dependencies.

Page 373 of 777

Example 312. Unresolved artifacts for transitive dependencies

build.gradle

apply plugin: 'java'

repositories {

 mavenCentral()

}

dependencies {

 implementation 'log4j:log4j:1.2.15'

}

If resolved from Maven Central some of the transitive dependencies provide metadata but not the

corresponding binary artifact. As a result any task requiring the binary files will fail e.g. a compilation task.

> gradle -q compileJava

* What went wrong:

Could not resolve all files for configuration ':compileClasspath'.

> Could not find jms.jar (javax.jms:jms:1.1).

 Searched in the following locations:

 https://repo.maven.apache.org/maven2/javax/jms/jms/1.1/jms-1.1.jar

> Could not find jmxtools.jar (com.sun.jdmk:jmxtools:1.2.1).

 Searched in the following locations:

 https://repo.maven.apache.org/maven2/com/sun/jdmk/jmxtools/1.2.1/jmxtools-1.2.1.jar

> Could not find jmxri.jar (com.sun.jmx:jmxri:1.2.1).

 Searched in the following locations:

 https://repo.maven.apache.org/maven2/com/sun/jmx/jmxri/1.2.1/jmxri-1.2.1.jar

The situation can be fixed by adding a repository containing those dependencies. In the given example

project, the source code does not actually use any of Log4J’s functionality that require the JMS (e.g. JMSAppender

) or JMX libraries. It’s safe to exclude them from the dependency declaration.

Exclusions need to spelled out as a key/value pair via the attributes and/or . For moregroup module

information, refer to .ModuleDependency.exclude(java.util.Map)

Example 313. Excluding transitive dependency for a particular dependency declaration

build.gradle

dependencies {

 implementation() {'log4j:log4j:1.2.15'

 exclude group: , module: 'javax.jms' 'jms'

 exclude group: , module: 'com.sun.jdmk' 'jmxtools'

 exclude group: , module: 'com.sun.jmx' 'jmxri'

 }

}

You may find that other dependencies will want to pull in the same transitive dependency that misses the

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ModuleDependency.html#exclude-java.util.Map-

Page 374 of 777

artifacts. Alternatively, you can exclude the transitive dependencies for a particular configuration by calling

the method .Configuration.exclude(java.util.Map)

Example 314. Excluding transitive dependency for a particular configuration

build.gradle

configurations {

 implementation {

 exclude group: , module: 'javax.jms' 'jms'

 exclude group: , module: 'com.sun.jdmk' 'jmxtools'

 exclude group: , module: 'com.sun.jmx' 'jmxri'

 }

}

dependencies {

 implementation 'log4j:log4j:1.2.15'

}

Note: As a build script author you often times know that you want to exclude a dependency for all

configurations available in the project. You can use the method

 to define a global rule.DomainObjectCollection.all(org.gradle.api.Action)

You might encounter other use cases that don’t quite fit the bill of an exclude rule. For example you want to

automatically select a version for a dependency with a specific requested version or you want to select a

different group for a requested dependency to react to a relocation. Those use cases are better solved by

the API. Some of these use cases are covered in ResolutionStrategy Customizing Dependency

.Resolution Behavior

§

Enforcing a particular dependency version

Gradle resolves any dependency version conflicts by selecting the latest version found in the dependency

graph. Some projects might need to divert from the default behavior and enforce an earlier version of a

dependency e.g. if the source code of the project depends on an older API of a dependency than some of

the external libraries.

Note: Enforcing a version of a dependency requires a conscious decision. Changing the version of

a transitive dependency might lead to runtime errors if external libraries do not properly function

without them. Consider upgrading your source code to use a newer version of the library as an

alternative approach.

Let’s say a project uses the for performing HTTP calls. HttpClient pulls in HttpClient library Commons Codec

as transitive dependency with version 1.10. However, the production source code of the project requires an

API from Commons Codec 1.9 which is not available in 1.10 anymore. A dependency version can be

enforced by declaring it in the build script and setting to ExternalDependency.setForce(boolean) true

.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:exclude(java.util.Map)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://hc.apache.org/httpcomponents-client-ga/
https://commons.apache.org/proper/commons-codec/
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalDependency.html#setForce-boolean-

Page 375 of 777

Example 315. Enforcing a dependency version

build.gradle

dependencies {

 implementation 'org.apache.httpcomponents:httpclient:4.5.4'

 implementation() {'commons-codec:commons-codec:1.9'

 force = true

 }

}

If the project requires a specific version of a dependency on a configuration-level then it can be achieved by

calling the method .ResolutionStrategy.force(java.lang.Object[])

Example 316. Enforcing a dependency version on the configuration-level

build.gradle

configurations {

 compileClasspath {

 resolutionStrategy.force 'commons-codec:commons-codec:1.9'

 }

}

dependencies {

 implementation 'org.apache.httpcomponents:httpclient:4.5.4'

}

§

Disabling resolution of transitive dependencies

By default Gradle resolves all transitive dependencies specified by the dependency metadata. Sometimes

this behavior may not be desirable e.g. if the metadata is incorrect or defines a large graph of transitive

dependencies. You can tell Gradle to disable transitive dependency management for a dependency by

setting to . As a result only the main artifact willModuleDependency.setTransitive(boolean) true

be resolved for the declared dependency.

Example 317. Disabling transitive dependency resolution for a declared dependency

build.gradle

dependencies {

 implementation() {'com.google.guava:guava:23.0'

 transitive = false

 }

}

Note: Disabling transitive dependency resolution will likely require you to declare the necessary

runtime dependencies in your build script which otherwise would have been resolved automatically.

Not doing so might lead to runtime classpath issues.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:force(java.lang.Object[])
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ModuleDependency.html#setTransitive-boolean-

Page 376 of 777

A project can decide to disable transitive dependency resolution completely. You either don’t want to rely on

the metadata published to the consumed repositories or you want to gain full control over the dependencies

in your graph. For more information, see .Configuration.setTransitive(boolean)

Example 318. Disabling transitive dependency resolution on the configuration-level

build.gradle

configurations.all {

 transitive = false

}

dependencies {

 implementation 'com.google.guava:guava:23.0'

}

§

Importing version recommendations from a Maven BOM

Gradle provides support for importing , which are effectively files that use bill of materials (BOM) files .pom <dependencyManagement>

to control the dependency versions of direct and transitive dependencies. The BOM support in Gradle works

similar to using when depending on a BOM in Maven. In Gradle however, it is<scope>import</scope>

done via a regular dependency declaration on the BOM:

Example 319. Depending on a BOM to import its dependency constraints

build.gradle

dependencies {

 // import a BOM

 implementation 'org.springframework.boot:spring-boot-dependencies:1.5.8.RELEASE'

 // define dependencies without versions

 implementation 'com.google.code.gson:gson'

 implementation 'dom4j:dom4j'

}

In the example, the versions of and are provided by the Spring Boot BOM. This way, if you aregson dom4j

developing for a platform like Spring Boot, you do not have to declare any versions yourself but can rely on

the versions the platform provides.

Gradle treats all entries in the block of a BOM similar to <dependencyManagement> Gradle’s dependency

. This means that any version defined in the block can impact theconstraints <dependencyManagement>

dependency resolution result. In order to qualify as a BOM, a file needs to have .pom <packaging>pom</packaging>

set.

Note: Importing dependency constraints from Maven BOMs is active by default with Gradle 5.0+.

For using it in Gradle 4.6+, you need to activate it by adding enableFeaturePreview('IMPROVED_POM_SUPPORT')

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/Configuration.html#setTransitive-boolean-
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Importing_Dependencies

Page 377 of 777

in .settings.gradle

Page 378 of 777

Working with Dependencies

Gradle provides an extensive API for navigating, inspecting and post-processing metadata and artifacts of

resolved dependencies.

The main entry point for this functionality is the API. To learn more about the fundamentalsConfiguration

of configurations, see .Managing Dependency Configurations

§

Iterating over dependencies assigned to a configuration

Sometimes you’ll want to implement logic based on the dependencies declared in the build script of a project

e.g. to inspect them in a Gradle plugin. You can iterate over the set of dependencies assigned to a

configuration with the help of the method . Alternatively, you canConfiguration.getDependencies()

also use to include the dependencies declared in Configuration.getAllDependencies()

. These APIs only return the declared dependencies and do not trigger superconfigurations dependency

. Therefore, the dependency sets do not include transitive dependencies. Calling the APIs duringresolution

the does not result in a significant performance impact.configuration phase of the build lifecycle

Example 320. Iterating over the dependencies assigned to a configuration

build.gradle

task iterateDeclaredDependencies {

 doLast {

 DependencySet dependencySet = configurations.scm.dependencies

 dependencySet.each {

 logger.quiet "$it.group:$it.name:$it.version"

 }

 }

}

§

Iterating over artifacts resolved for a module

None of the helps you with inspecting or further processing the underlying, resolveddependency reporting

artifacts of a module. A typical use case for accessing the artifacts is to copy them into a specific directory or

filter out files of interest based on a specific file extension.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:dependencies
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:allDependencies

Page 379 of 777

You can iterate over the complete set of artifacts resolved for a module with the help of the method

. Every file instance returned from the method points to its location in the FileCollection.getFiles()

. Using this method on a instance is possible as the interface extends dependency cache Configuration FileCollection

.

Example 321. Iterating over the artifacts resolved for a module

build.gradle

task iterateResolvedArtifacts {

 dependsOn configurations.scm

 doLast {

 Set<File> files = configurations.scm.files

 files.each {

 logger.quiet it.absolutePath

 }

 }

}

Note: Iterating over the artifacts of a module automatically resolves the configuration. A resolved

configuration becomes immutable and cannot add or remove dependencies. If needed you can copy

a configuration for further modification via .Configuration.copy()

§

Navigating the dependency graph

As a plugin developer, you may want to navigate the full graph of dependencies assigned to a configuration

e.g. for turning the dependency graph into a visualization. You can access the full graph of dependencies for

a configuration with the help of the .ResolutionResult

The resolution result provides various methods for accessing the resolved and unresolved dependencies.

For demonstration purposes the sample code uses to access the rootResolutionResult.getRoot()

node the resolved dependency graph. Each dependency of this component returns an instance of

 or providing detailed information aboutResolvedDependencyResult UnresolvedDependencyResult

the node.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html#getFiles--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html#getFiles--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:copy()
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html#getRoot--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolvedDependencyResult.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolvedDependencyResult.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/UnresolvedDependencyResult.html

Page 380 of 777

Example 322. Walking the resolved and unresolved dependencies of a configuration

build.gradle

task walkDependencyGraph(type: DependencyGraphWalk) {

 dependsOn configurations.scm

}

 DependencyGraphWalk DefaultTask {class extends

 @TaskAction

 walk() {void

 Configuration configuration = project.configurations.scm

 ResolutionResult resolutionResult = configuration.incoming.resolutionResult

 ResolvedComponentResult root = resolutionResult.root

 logger.quiet configuration.name

 traverseDependencies(, root.dependencies)0

 }

 traverseDependencies(level, Set<? DependencyResult> results) {private void int extends

 (DependencyResult result : results) {for

 (result ResolvedDependencyResult) {if instanceof

 ResolvedComponentResult componentResult = result.selected

 ComponentIdentifier componentIdentifier = componentResult.id

 String node = calculateIndentation(level) + "- $componentIdentifier.displayName ($componentResult.selectionReason)"

 logger.quiet node

 traverseDependencies(level + , componentResult.dependencies)1

 } (result UnresolvedDependencyResult) {else if instanceof

 ComponentSelector componentSelector = result.attempted

 String node = calculateIndentation(level) + "- $componentSelector.displayName (failed)"

 logger.quiet node

 }

 }

 }

 String calculateIndentation(level) {private int

 * level' '

 }

}

§

Accessing a module’s metadata file

As part of the dependency resolution process, Gradle downloads the metadata file of a module and stores it

in the dependency cache. Some organizations enforce strong restrictions on accessing repositories outside

of internal network. Instead of downloading artifacts, those organizations prefer to provide an "installable"

Gradle cache with all artifacts contained in it to fulfill the build’s dependency requirements.

The artifact query API provides access to the raw files of a module. Currently, it allows getting a handle to

Page 381 of 777

the metadata file and some selected, additional artifacts (e.g. a JVM-based module’s source and Javadoc

files). The main API entry point is .ArtifactResolutionQuery

Let’s say you wanted to post-process the metadata file of a Maven module. The group, name and version of

the module component serve as input to the artifact resolution query. After executing the query, you get a

handle to all components that match the criteria and their underlying files. Additionally, it’s very easy to

post-process the metadata file. The example code uses Groovy’s to ask for POM elementXmlSlurper

values.

Example 323. Accessing a Maven module's metadata artifact

build.gradle

apply plugin: 'java-library'

repositories {

 mavenCentral()

}

dependencies {

 implementation 'com.google.guava:guava:18.0'

}

task printGuavaMetadata {

 dependsOn configurations.compileClasspath

 doLast {

 ArtifactResolutionQuery query = dependencies.createArtifactResolutionQuery()

 .forModule(, ,)'com.google.guava' 'guava' '18.0'

 .withArtifacts(MavenModule, MavenPomArtifact)

 ArtifactResolutionResult result = query.execute()

 (component in result.resolvedComponents) {for

 Set<ArtifactResult> mavenPomArtifacts = component.getArtifacts(MavenPomArtifact)

 ArtifactResult guavaPomArtifact = mavenPomArtifacts.find { it.file.name == }'guava-18.0.pom'

 def xml = XmlSlurper().parse(guavaPomArtifact.file)new

 println guavaPomArtifact.file

 println xml.name

 println xml.description

 }

 }

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.query.ArtifactResolutionQuery.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html

Page 382 of 777

Customizing Dependency Resolution

Behavior

There are a number of ways that you can influence how Gradle resolves dependencies. All of these

mechanisms offer an API to define a reason for why they are used. Providing reasons makes dependency

resolution results more understandable. If any customization influenced the resolution result, the provided

reason will show up in report.dependency insight

§

Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for

manipulating a requested dependency prior to that dependency being resolved. The feature currently offers

the ability to change the group, name and/or version of a requested dependency, allowing a dependency to

be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and

can be used to implement all sorts of advanced patterns in dependency management. Some of these

patterns are outlined below. For more information and code samples see the classResolutionStrategy

in the API documentation.

§

Modelling releasable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested

and published together. These libraries form a "releasable unit", designed and intended to be used as a

whole. It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

module-a depends on releasable-unit:part-one:1.0

module-b depends on releasable-unit:part-two:1.1

A build depending on both and will obtain different versions of libraries within themodule-a module-b

releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a releasable

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Page 383 of 777

unit defined by all libraries that have group. We can force all of these libraries to use aorg.gradle

consistent version:

Example 324. Forcing a consistent version for a group of libraries

build.gradle

configurations.all {

 resolutionStrategy.eachDependency { DependencyResolveDetails details ->

 (details.requested.group ==) {if 'org.gradle'

 details.useVersion '1.4'

 details.because 'API breakage in higher versions'

 }

 }

}

§

Implementing a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is

maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

In the build script, the developer declares dependencies with the module group and name, but uses a

placeholder version, for example: .default

The version is resolved to a specific version via a dependency resolve rule, which looks up thedefault

version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all builds

within the organisation.

Example 325. Using a custom versioning scheme

build.gradle

configurations.all {

 resolutionStrategy.eachDependency { DependencyResolveDetails details ->

 (details.requested.version ==) {if 'default'

 def version = findDefaultVersionInCatalog(details.requested.group, details.requested.name)

 details.useVersion version.version

 details.because version.because

 }

 }

}

def findDefaultVersionInCatalog(String group, String name) {

 //some custom logic that resolves the default version into a specific version

 [version: , because:]"1.0" 'tested by QA'

}

Blacklisting a particular version with a replacement

Page 384 of 777

§

Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and

providing a replacement version. This can be useful if a certain dependency version is broken and should

not be used, where a dependency resolve rule causes this version to be replaced with a known good

version. One example of a broken module is one that declares a dependency on a library that cannot be

found in any of the public repositories, but there are many other reasons why a particular module version is

unwanted and a different version is preferred.

In example below, imagine that version contains important fixes and should always be used in1.2.1

preference to . The rule provided will enforce just this: any time version is encountered it will be1.2 1.2

replaced with . Note that this is different from a forced version as described above, in that any other1.2.1

versions of this module would not be affected. This means that the 'newest' conflict resolution strategy would

still select version if this version was also pulled transitively.1.3

Example 326. Blacklisting a version with a replacement

build.gradle

configurations.all {

 resolutionStrategy.eachDependency { DependencyResolveDetails details ->

 (details.requested.group == && details.requested.name == && details.requested.version ==) {if 'org.software' 'some-library' '1.2'

 details.useVersion '1.2.1'

 details.because 'fixes critical bug in 1.2'

 }

 }

}

§

Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.

Examples include using in place of , or using instead of .groovy groovy-all log4j-over-slf4j log4j

You can perform these substitutions using dependency resolve rules:

Page 385 of 777

Example 327. Changing dependency group and/or name during resolution

build.gradle

configurations.all {

 resolutionStrategy.eachDependency { DependencyResolveDetails details ->

 (details.requested.name ==) {if 'groovy-all'

 details.useTarget group: details.requested.group, name: , version: details.requested.version'groovy'

 details.because "prefer 'groovy' over 'groovy-all'"

 }

 (details.requested.name ==) {if 'log4j'

 details.useTarget "org.slf4j:log4j-over-slf4j:1.7.10"

 details.because "prefer 'log4j-over-slf4j' 1.7.10 over any version of 'log4j'"

 }

 }

}

§

Using dependency substitution rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of

dependency resolve rules can be implemented with dependency substitution rules. They allow project and

module dependencies to be transparently substituted with specified replacements. Unlike dependency

resolve rules, dependency substitution rules allow project and module dependencies to be substituted

interchangeably.

Adding a dependency substitution rule to a configuration changes the timing of when that configuration is

resolved. Instead of being resolved on first use, the configuration is instead resolved when the task graph is

being constructed. This can have unexpected consequences if the configuration is being further modified

during task execution, or if the configuration relies on modules that are published during execution of another

task.

To explain:

A can be declared as an input to any Task, and that configuration can include projectConfiguration

dependencies when it is resolved.

If a project dependency is an input to a Task (via a configuration), then tasks to build the project artifacts

must be added to the task dependencies.

In order to determine the project dependencies that are inputs to a task, Gradle needs to resolve the Configuration

inputs.

Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to perform this

resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency will

Page 386 of 777

never transitively reference a project dependency. This makes it easy to determine the full set of project

dependencies for a configuration through simple graph traversal. With this functionality, Gradle can no

longer make this assumption, and must perform a full resolve in order to determine the project

dependencies.

§

Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one

that is downloaded from an external repository. This could be useful for testing a local, patched version of a

dependency.

The module to be replaced can be declared with or without a version specified.

Example 328. Substituting a module with a project

build.gradle

configurations.all {

 resolutionStrategy.dependencySubstitution {

 substitute module() with project() because "org.utils:api" ":api" "we work with the unreleased development version"

 substitute module() with project()"org.utils:util:2.5" ":util"

 }

}

Note that a project that is substituted must be included in the multi-project build (via).settings.gradle

Dependency substitution rules take care of replacing the module dependency with the project dependency

and wiring up any task dependencies, but do not implicitly include the project in the build.

§

Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project

build. This can be useful to speed up development with a large multi-project build, by allowing a subset of

the project dependencies to be downloaded from a repository rather than being built.

The module to be used as a replacement must be declared with a version specified.

Example 329. Substituting a project with a module

build.gradle

configurations.all {

 resolutionStrategy.dependencySubstitution {

 substitute project() with module() because ":api" "org.utils:api:1.3" "we use a stable version of utils"

 }

}

When a project dependency has been replaced with a module dependency, that project is still included in the

overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to

Page 387 of 777

build the resolve the depending .Configuration

§

Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a

multi-project build. This can be useful for developing a local, patched version of an external dependency or

for building a subset of the modules within a large multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the

group , but only if a local project matching the dependency name can be located.org.example

Example 330. Conditionally substituting a dependency

build.gradle

configurations.all {

 resolutionStrategy.dependencySubstitution.all { DependencySubstitution dependency ->

 (dependency.requested ModuleComponentSelector && dependency.requested.group ==) {if instanceof "org.example"

 def targetProject = findProject()":${dependency.requested.module}"

 (targetProject != null) {if

 dependency.useTarget targetProject

 }

 }

 }

}

Note that a project that is substituted must be included in the multi-project build (via).settings.gradle

Dependency substitution rules take care of replacing the module dependency with the project dependency,

but do not implicitly include the project in the build

§

Using component metadata rules

Each module has metadata associated with it, such as its group, name, version, dependencies, and so on.

This metadata typically originates in the module’s descriptor. Metadata rules allow certain parts of a

module’s metadata to be manipulated from within the build script. They take effect after a module’s

descriptor has been downloaded, but before it has been selected among all candidate versions. This makes

metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module’s . This concept, alsostatus scheme

known from Ivy, models the different levels of maturity that a module transitions through over time. The

default status scheme, ordered from least to most mature status, is , , .integration milestone release

Apart from a status scheme, a module also has a (current) , which must be one of the values in itsstatus

status scheme. If not specified in the (Ivy) descriptor, the status defaults to for Ivy modulesintegration

and Maven snapshot modules, and for Maven modules that aren’t snapshots.release

A module’s status and status scheme are taken into consideration when a version selector islatest

Page 388 of 777

resolved. Specifically, will resolve to the highest module version that has status latest.someStatus someStatus

or a more mature status. For example, with the default status scheme in place, willlatest.integration

select the highest module version regardless of its status (because is the least matureintegration

status), whereas will select the highest module version with status . Here islatest.release release

what this looks like in code:

Example 331. 'Latest' version selector

build.gradle

dependencies {

 config1 "org.sample:client:latest.integration"

 config2 "org.sample:client:latest.release"

}

task listConfigs {

 doLast {

 configurations.config1.each { println it.name }

 println()

 configurations.config2.each { println it.name }

 }

}

Output of gradle -q listConfigs

> gradle -q listConfigs

client-1.5.jar

client-1.4.jar

The next example demonstrates selectors based on a custom status scheme declared in alatest

component metadata rule that applies to all modules:

Example 332. Custom status scheme

build.gradle

dependencies {

 config3 "org.sample:api:latest.silver"

 components {

 all { ComponentMetadataDetails details ->

 (details.id.group == && details.id.name ==) {if "org.sample" "api"

 details.statusScheme = [, , ,]"bronze" "silver" "gold" "platinum"

 }

 }

 }

}

Component metadata rules can be applied to a specified module. Modules must be specified in the form of group:module

.

Page 389 of 777

Example 333. Custom status scheme by module

build.gradle

dependencies {

 config4 "org.sample:lib:latest.prod"

 components {

 withModule() { ComponentMetadataDetails details ->'org.sample:lib'

 details.statusScheme = [, ,]"int" "rc" "prod"

 }

 }

}

Gradle can also create component metadata rules utilizing Ivy-specific metadata for modules resolved from

an Ivy repository. Values from the Ivy descriptor are made available via the IvyModuleDescriptor

interface.

Example 334. Ivy component metadata rule

build.gradle

dependencies {

 config6 "org.sample:lib:latest.rc"

 components {

 withModule() { ComponentMetadataDetails details, IvyModuleDescriptor ivyModule ->"org.sample:lib"

 (ivyModule.branch ==) {if 'testing'

 details.status = "rc"

 }

 }

 }

}

Note that any rule that declares specific arguments must include a always ComponentMetadataDetails

argument as the first argument. The second Ivy metadata argument is optional.

Component metadata rules can also be defined using a object. A rule source object is any objectrule source

that contains exactly one method that defines the rule action and is annotated with .@Mutate

This method:

must return void.

must have as the first argument.ComponentMetadataDetails

may have an additional parameter of type .IvyModuleDescriptor

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Page 390 of 777

Example 335. Rule source component metadata rule

build.gradle

dependencies {

 config5 "org.sample:api:latest.gold"

 components {

 withModule(, CustomStatusRule())'org.sample:api' new

 }

}

 CustomStatusRule {class

 @Mutate

 setStatusScheme(ComponentMetadataDetails details) {void

 details.statusScheme = [, , ,]"bronze" "silver" "gold" "platinum"

 }

}

§

Using component selection rules

Component selection rules may influence which component instance should be selected when multiple

versions are available that match a version selector. Rules are applied against every available version and

allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that

does not satisfy conditions set by the rule. Examples include:

For a dynamic version like certain versions may be explicitly rejected from selection.1.+

For a static version like an instance may be rejected based on extra component metadata such as the1.4

Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the object. Each rule configured will be called with aComponentSelectionRules

 object as an argument which contains information about the candidate versionComponentSelection

being considered. Calling causes the givenComponentSelection.reject(java.lang.String)

candidate version to be explicitly rejected, in which case the candidate will not be considered for the

selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic

version to choose the next best candidate.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Page 391 of 777

Example 336. Component selection rule

build.gradle

configurations {

 rejectConfig {

 resolutionStrategy {

 componentSelection {

 // Accept the highest version matching the requested version that isn't '1.5'

 all { ComponentSelection selection ->

 (selection.candidate.group == && selection.candidate.module == && selection.candidate.version ==) {if 'org.sample' 'api' '1.5'

 selection.reject()"version 1.5 is broken for 'org.sample:api'"

 }

 }

 }

 }

 }

}

dependencies {

 rejectConfig "org.sample:api:1.+"

}

Note that version selection is applied starting with the highest version first. The version selected will be the

first version found that all component selection rules accept. A version is considered accepted if no rule

explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of group:module

.

Example 337. Component selection rule with module target

build.gradle

configurations {

 targetConfig {

 resolutionStrategy {

 componentSelection {

 withModule() { ComponentSelection selection ->"org.sample:api"

 (selection.candidate.version ==) {if "1.5"

 selection.reject()"version 1.5 is broken for 'org.sample:api'"

 }

 }

 }

 }

 }

}

Component selection rules can also consider component metadata when selecting a version. Possible

metadata arguments that can be considered are and .ComponentMetadata IvyModuleDescriptor

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Page 392 of 777

Example 338. Component selection rule with metadata

build.gradle

configurations {

 metadataRulesConfig {

 resolutionStrategy {

 componentSelection {

 // Reject any versions with a status of 'experimental'

 all { ComponentSelection selection, ComponentMetadata metadata ->

 (selection.candidate.group == && metadata.status ==) {if 'org.sample' 'experimental'

 selection.reject()"don't use experimental candidates from 'org.sample'"

 }

 }

 // Accept the highest version with either a "release" branch or a status of 'milestone'

 withModule() { ComponentSelection selection, IvyModuleDescriptor descriptor, ComponentMetadata metadata ->'org.sample:api'

 (descriptor.branch != && metadata.status !=) {if "release" 'milestone'

 selection.reject()"'org.sample:api' must have testing branch or milestone status"

 }

 }

 }

 }

 }

}

Note that a argument is required as the first parameter when declaring aComponentSelection always

component selection rule with additional Ivy metadata parameters, but the metadata parameters can be

declared in any order.

Lastly, component selection rules can also be defined using a object. A rule source object is anyrule source

object that contains exactly one method that defines the rule action and is annotated with .@Mutate

This method:

must return void.

must have as the first argument.ComponentSelection

may have additional parameters of type and/or .ComponentMetadata IvyModuleDescriptor

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Page 393 of 777

Example 339. Component selection rule using a rule source object

build.gradle

class RejectTestBranch {

 @Mutate

 evaluateRule(ComponentSelection selection, IvyModuleDescriptor ivy) {void

 (ivy.branch ==) {if "test"

 selection.reject()"reject test branch"

 }

 }

}

configurations {

 ruleSourceConfig {

 resolutionStrategy {

 componentSelection {

 all RejectTestBranch()new

 }

 }

 }

}

§

Using module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A

good example when a new library replaced a legacy one is the -> migration.google-collections guava

The team that created google-collections decided to change the module name from com.google.collections:google-collections

into . This is a legal scenario in the industry: teams need to be able to changecom.google.guava:guava

the names of products they maintain, including the module coordinates. Renaming of the module

coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let’s consider the -> scenario. Itgoogle-collections guava

may happen that both libraries are pulled into the same dependency graph. For example, our project

depends on but some of pull in a legacy version of . Thisguava our dependencies google-collections

can cause runtime errors, for example during test or application execution. Gradle does not automatically

resolve the -> conflict because it is not considered as a . It’sgoogle-collections guava version conflict

because the module coordinates for both libraries are completely different and conflict resolution is activated

when and coordinates are the same but there are different versions available in thegroup module

dependency graph (for more info, refer to the section on conflict resolution). Traditional remedies to this

problem are:

Declare exclusion rule to avoid pulling in to graph. It is probably the most populargoogle-collections

approach.

Page 394 of 777

Avoid dependencies that pull in legacy libraries.

Upgrade the dependency version if the new version no longer pulls in a legacy library.

Downgrade to . It’s not recommended, just mentioned for completeness.google-collections

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve

the -> conflict resolution problem in all projects. Starting from Gradle 2.2 it isgoogle-collections guava

possible to declare that certain module was replaced by other. This enables organisations to include the

information about module replacement in the corporate plugin suite and resolve the problem holistically for

all Gradle-powered projects in the enterprise.

Example 340. Declaring a module replacement

build.gradle

dependencies {

 modules {

 module() {"com.google.collections:google-collections"

 replacedBy(,)"com.google.guava:guava" "google-collections is now part of Guava"

 }

 }

}

For more examples and detailed API, refer to the DSL reference for .ComponentMetadataHandler

What happens when we declare that is replaced by ? Gradle can use thisgoogle-collections guava

information for conflict resolution. Gradle will consider every version of newer/better than any versionguava

of . Also, Gradle will ensure that only guava jar is present in the classpath / resolvedgoogle-collections

file list. Note that if only appears in the dependency graph (e.g. no) Gradlegoogle-collections guava

will not eagerly replace it with . Module replacement is an information that Gradle uses for resolvingguava

conflicts. If there is no conflict (e.g. only or only in the graph) thegoogle-collections guava

replacement information is not used.

Currently it is not possible to declare that a given module is replaced by a set of modules. However, it is

possible to declare that multiple modules are replaced by a single module.

§

Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set

for the configuration. A primary use case of this functionality is for developing plugins that make use of

versioned tools that the user might override. By specifying default dependencies, the plugin can use a

default version of the tool only if the user has not specified a particular version to use.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

Page 395 of 777

Example 341. Specifying default dependencies on a configuration

build.gradle

configurations {

 pluginTool {

 defaultDependencies { dependencies ->

 dependencies.add(project.dependencies.create())"org.gradle:my-util:1.0"

 }

 }

}

§

Enabling Ivy dynamic resolve mode

Gradle’s Ivy repository implementations support the equivalent to Ivy’s dynamic resolve mode. Normally,

Gradle will use the attribute for each dependency definition included in an file. In dynamicrev ivy.xml

resolve mode, Gradle will instead prefer the attribute over the attribute for a givenrevConstraint rev

dependency definition. If the attribute is not present, the attribute is used instead.revConstraint rev

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A

couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle’s Ivy

repositories. It is not available for Maven repositories, or custom Ivy DependencyResolver

implementations.

Example 342. Enabling dynamic resolve mode

build.gradle

// Can enable dynamic resolve mode when you define the repository

repositories {

 ivy {

 url "http://repo.mycompany.com/repo"

 resolve.dynamicMode = true

 }

}

// Can use a rule instead to enable (or disable) dynamic resolve mode for all repositories

repositories.withType(IvyArtifactRepository) {

 resolve.dynamicMode = true

}

Page 396 of 777

Troubleshooting Dependency Resolution

Managing dependencies in a project can be challenging. This chapter describes techniques for

troubleshooting issues you might encounter in your project as well as best practices for avoiding common

problems.

§

Resolving version conflicts

Gradle resolves version conflicts by picking the highest version of a module. and the Build scans

 are immensely helpful in identifying why a specific version was selected. If thedependency insight report

resolution result is not satisfying (e.g. the selected version of a module is too high) or it fails (because you

configured) you have the following possibilities toResolutionStrategy.failOnVersionConflict()

fix it.

Configuring any dependency (transitive or not) as . This approach is useful if the dependency inforced

conflict is a transitive dependency. See forthe section called “Enforcing a particular dependency version”

examples.

Configuring dependency resolution to (transitive or not). Thisprefer modules that are part of your build

approach is useful if your build contains custom forks of modules (as part of or as includemulti-project builds

in). See for more information.composite builds ResolutionStrategy.preferProjectModules()

Using for fine-grained control over the version selected for a particulardependency resolve rules

dependency.

§

Using dynamic versions and changing modules

There are many situations when you want to use the latest version of a particular module dependency, or the

latest in a range of versions. This can be a requirement during development, or you may be developing a

library that is designed to work with a range of dependency versions. You can easily depend on these

constantly changing dependencies by using a . A can be either a versiondynamic version dynamic version

range (e.g.) or it can be a placeholder for the latest version available e.g. .2.+ latest.integration

Alternatively, the module you request can change over time even for the same version, a so-called changing

. An example of this type of is a Maven module, which always points atversion changing module SNAPSHOT

the latest artifact published. In other words, a standard Maven snapshot is a module that is continually

https://scans.gradle.com/get-started
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:failOnVersionConflict()
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:preferProjectModules()

Page 397 of 777

evolving, it is a "changing module".

Note: Using dynamic versions and changing modules can lead to unreproducible builds. As new

versions of a particular module are published, its API may become incompatible with your source

code. Use this feature with caution!

By default, Gradle caches dynamic versions and changing modules for 24 hours. During that time frame

Gradle does not contact any of the declared, remote repositories for new versions. If you want Gradle to

check the remote repository more frequently or with every execution of your build, then you will need to

change the time to live (TTL) threshold.

Note: Using a short TTL threshold for dynamic or changing versions may result in longer build times

due to the increased number of HTTP(s) calls.

You can override the default cache modes using . You can also command line options change the cache

 using the resolution strategy.expiry times in your build programmatically

§

Controlling dependency caching programmatically

You can fine-tune certain aspects of caching programmatically using the for aResolutionStrategy

configuration. The programmatic approach is useful if you would like to change the settings permanently.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the

resolved version for a dynamic version, use:

Example 343. Dynamic version cache control

build.gradle

configurations.all {

 resolutionStrategy.cacheDynamicVersionsFor , 10 'minutes'

}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the

meta-data and artifacts for a changing module, use:

Example 344. Changing module cache control

build.gradle

configurations.all {

 resolutionStrategy.cacheChangingModulesFor , 4 'hours'

}

Controlling dependency caching from the command line

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Page 398 of 777

§

Controlling dependency caching from the command line

You can control the behavior of dependency caching for a distinct build invocation from the command line.

Command line options are helpful for making a selective, ad-hoc choice for a single execution of the build.

§

Avoiding network access with offline mode

The command line switch tells Gradle to always use dependency modules from the cache,--offline

regardless if they are due to be checked again. When running with offline, Gradle will never attempt to

access the network to perform dependency resolution. If required modules are not present in the

dependency cache, build execution will fail.

§

Forcing all dependencies to be re-resolved

At times, the Gradle Dependency Cache can become out of sync with the actual state of the configured

repositories. Perhaps a repository was initially misconfigured, or perhaps a "non-changing" module was

published incorrectly. To refresh all dependencies in the dependency cache, use the --refresh-dependencies

option on the command line.

The option tells Gradle to ignore all cached entries for resolved modules and--refresh-dependencies

artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions

recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the

previously downloaded artifacts are valid before downloading again. This is done by comparing published

SHA1 values in the repository with the SHA1 values for existing downloaded artifacts.

§

Locking dependency versions

The use of in a build is convenient. The user does not need to know the latestdynamic dependencies

version of a dependency and Gradle automatically uses new versions once they are published. However,

dynamic dependencies make builds non-reproducible, as they can resolve to a different version at a later

point in time. This makes it hard to reproduce old builds when debugging a problem. It can also disrupt

development if a new, but incompatible version is selected. In the best case the CI build catches the problem

and someone needs to investigate. In the worst case, the problem makes it to production unnoticed.

In the Gradle ecosystem, the currently solves this problem. The user can run a taskdependency lock plugin

that writes a file containing the resolved versions for every module dependency. This file is then checked in

and the versions in it are used on all subsequent runs until the lock is updated or removed again.

Versioning of file dependencies

https://github.com/nebula-plugins/gradle-dependency-lock-plugin

Page 399 of 777

§

Versioning of file dependencies

Legacy projects sometimes prefer to consume instead of . Filefile dependencies module dependencies

dependencies can point to any file in the filesystem and do not need to adhere a specific naming convention.

It is recommended to clearly express the intention and a concrete version for file dependencies. File

dependencies are not considered by Gradle’s . Therefore, it is extremely importantversion conflict resolution

to assign a version to the file name to indicate the distinct set of changes shipped with it. For example commons-beanutils-1.3.jar

lets you track the changes of the library by the release notes.

As a result, the dependencies of the project are easier to maintain and organize. It’s much easier to uncover

potential API incompatibilities by the assigned version.

Extending the build

Page 401 of 777

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an

action closure. We have seen these in . For this type of task, the action closureBuild Script Basics

determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build

script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides

some properties which you can use to configure the behaviour. We have seen these in .Authoring Tasks

Most Gradle plugins use enhanced tasks. With enhanced tasks, you don’t need to implement the task

behaviour as you do with simple tasks. You simply declare the task and configure the task using its

properties. In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly

across different builds.

The behaviour and properties of an enhanced task is defined by the task’s class. When you declare an

enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in

pretty much any language you like, provided it ends up compiled to bytecode. In our examples, we are going

to use Groovy as the implementation language. Groovy, Java or Kotlin are all good choices as the language

to use to implement a task class, as the Gradle API has been designed to work well with these languages. In

general, a task implemented using Java or Kotlin, which are statically typed, will perform better than the

same task implemented using Groovy.

§

Packaging a task class

There are several places where you can put the source for the task class.

Build script

You can include the task class directly in the build script. This has the benefit that the task class is

automatically compiled and included in the classpath of the build script without you having to do anything.

However, the task class is not visible outside the build script, and so you cannot reuse the task class

outside the build script it is defined in.

 projectbuildSrc

You can put the source for the task class in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the task class and making it available on the

classpath of the build script. The task class is visible to every build script used by the build. However, it is

Page 402 of 777

not visible outside the build, and so you cannot reuse the task class outside the build it is defined in.

Using the project approach separates the task declaration - that is, what the task should do -buildSrc

from the task implementation - that is, how the task does it.

See for more details about the project.Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR which

you can then use in multiple builds and share with others. Generally, this JAR might include some

custom plugins, or bundle several related task classes into a single library. Or some combination of the

two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we will look

at creating a standalone project.

§

Writing a simple task class

To implement a custom task class, you extend .DefaultTask

Example 345. Defining a custom task

build.gradle

class GreetingTask DefaultTask {extends

}

This task doesn’t do anything useful, so let’s add some behaviour. To do so, we add a method to the task

and mark it with the annotation. Gradle will call the method when the task executes. You don’tTaskAction

have to use a method to define the behaviour for the task. You could, for instance, call or doFirst() doLast()

with a closure in the task constructor to add behaviour.

Example 346. A hello world task

build.gradle

class GreetingTask DefaultTask {extends

 @TaskAction

 def greet() {

 println 'hello from GreetingTask'

 }

}

// Create a task using the task type

task hello(type: GreetingTask)

Output of gradle -q hello

> gradle -q hello

hello from GreetingTask

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskAction.html

Page 403 of 777

Let’s add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a

task, you can set the properties or call methods on the task object. Here we add a property, andgreeting

set the value when we declare the task.greeting

Example 347. A customizable hello world task

build.gradle

class GreetingTask DefaultTask {extends

 String greeting = 'hello from GreetingTask'

 @TaskAction

 def greet() {

 println greeting

 }

}

// Use the default greeting

task hello(type: GreetingTask)

// Customize the greeting

task greeting(type: GreetingTask) {

 greeting = 'greetings from GreetingTask'

}

Output of gradle -q hello greeting

> gradle -q hello greeting

hello from GreetingTask

greetings from GreetingTask

§

A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others. This project

is simply a Groovy project that produces a JAR containing the task class. Here is a simple build script for the

project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 348. A build for a custom task

build.gradle

apply plugin: 'groovy'

dependencies {

 compile gradleApi()

 compile localGroovy()

}

Note: The code for this example can be found at in the ‘-all’samples/customPlugin/plugin

distribution of Gradle.

Page 404 of 777

We just follow the convention for where the source for the task class should go.

Example 349. A custom task

src/main/groovy/org/gradle/GreetingTask.groovy

package org.gradle

 org.gradle.api.DefaultTaskimport

 org.gradle.api.tasks.TaskActionimport

 GreetingTask DefaultTask {class extends

 String greeting = 'hello from GreetingTask'

 @TaskAction

 def greet() {

 println greeting

 }

}

§

Using your task class in another project

To use a task class in a build script, you need to add the class to the build script’s classpath. To do this, you

use a block, as described in buildscript { } the section called “External dependencies for the build

. The following example shows how you might do this when the JAR containing the task class hasscript”

been published to a local repository:

Example 350. Using a custom task in another project

build.gradle

buildscript {

 repositories {

 maven {

 url uri()'../repo'

 }

 }

 dependencies {

 classpath group: , name: ,'org.gradle' 'customPlugin'

 version: '1.0-SNAPSHOT'

 }

}

task greeting(type: org.gradle.GreetingTask) {

 greeting = 'howdy!'

}

Writing tests for your task class

Page 405 of 777

§

Writing tests for your task class

You can use the class to create instances to use when you test your taskProjectBuilder Project

class.

Example 351. Testing a custom task

src/test/groovy/org/gradle/GreetingTaskTest.groovy

class GreetingTaskTest {

 @Test

 canAddTaskToProject() {public void

 Project project = ProjectBuilder.builder().build()

 def task = project.task(, type: GreetingTask)'greeting'

 assertTrue(task GreetingTask)instanceof

 }

}

§

Incremental tasks

Note: Incremental tasks are an feature.incubating

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),

discussions within the Gradle community have produced superior ideas for exposing the information

about changes to task implementors to what is described below. As such, the API for this feature will

almost certainly change in upcoming releases. However, please do experiment with the current

implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see), existsAppendix C

for this purpose of ensuring high quality final implementations through incorporation of early user

feedback.

With Gradle, it’s very simple to implement a task that is skipped when all of its inputs and outputs are up to

date (see). However, there are times whenthe section called “Up-to-date checks (AKA Incremental Build)”

only a few input files have changed since the last execution, and you’d like to avoid reprocessing all of the

unchanged inputs. This can be particularly useful for a transformer task, that converts input files to output

files on a 1:1 basis.

If you’d like to optimise your build so that only out-of-date inputs are processed, you can do so with an

.incremental task

Implementing an incremental task

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Page 406 of 777

§

Implementing an incremental task

For a task to process inputs incrementally, that task must contain an . This is a taskincremental task action

action method that contains a single parameter, which indicates to Gradle thatIncrementalTaskInputs

the action will process the changed inputs only.

T h e i n c r e m e n t a l t a s k a c t i o n m a y s u p p l y a n

 action for processing any input fileIncrementalTaskInputs.outOfDate(org.gradle.api.Action)

that is out-of-date, and a action thatIncrementalTaskInputs.removed(org.gradle.api.Action)

executes for any input file that has been removed since the previous execution.

Example 352. Defining an incremental task action

build.gradle

class IncrementalReverseTask DefaultTask {extends

 @InputDirectory

 def File inputDir

 @OutputDirectory

 def File outputDir

 @Input

 def inputProperty

 @TaskAction

 execute(IncrementalTaskInputs inputs) {void

 println inputs.incremental ? 'CHANGED inputs considered out of date'

 : 'ALL inputs considered out of date'

 (!inputs.incremental)if

 project.delete(outputDir.listFiles())

 inputs.outOfDate { change ->

 println "out of date: ${change.file.name}"

 def targetFile = File(outputDir, change.file.name)new

 targetFile.text = change.file.text.reverse()

 }

 inputs.removed { change ->

 println "removed: ${change.file.name}"

 def targetFile = File(outputDir, change.file.name)new

 targetFile.delete()

 }

 }

}

Note: The code for this example can be found at samples/userguide/tasks/incrementalTask

in the ‘-all’ distribution of Gradle.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Page 407 of 777

If for some reason the task is not run incremental, e.g. by running with , only the outOfDate--rerun-tasks

action is executed, even if there were deleted input files. You should consider handling this case at the

beginning, as is done in the example above.

For a simple transformer task like this, the task action simply needs to generate output files for any

out-of-date inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

§

Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context

since that execution are to input files, then Gradle is able to determine which input files need to be

r e p r o c e s s e d b y t h e t a s k . I n t h i s c a s e , t h e

 action will be executed for anyIncrementalTaskInputs.outOfDate(org.gradle.api.Action)

i n p u t f i l e t h a t w a s o r , a n d t h e a d d e d m o d i f i e d

 action will be executed for any IncrementalTaskInputs.removed(org.gradle.api.Action)

 input file.removed

However, there are many cases where Gradle is unable to determine which input files need to be

reprocessed. Examples include:

There is no history available from a previous execution.

You are building with a different version of Gradle. Currently, Gradle does not use task history from a

different version.

An criteria added to the task returns .upToDateWhen false

An input property has changed since the previous execution.

One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider all of the input files to be . The outOfDate

 action will be executed for everyIncrementalTaskInputs.outOfDate(org.gradle.api.Action)

input file, and the action will not beIncrementalTaskInputs.removed(org.gradle.api.Action)

executed at all.

You can check if Gradle was able to determine the incremental changes to input files with

.IncrementalTaskInputs.isIncremental()

§

An incremental task in action

Given the incremental task implementation , we can explore the various change scenarios byabove

example. Note that the various mutation tasks ('updateInputs', 'removeInput', etc) are only present for

demonstration purposes: these would not normally be part of your build script.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

Page 408 of 777

First, consider the executed against a set of inputs for the first time. In thisIncrementalReverseTask

case, all inputs will be considered “out of date”:

Example 353. Running the incremental task for the first time

build.gradle

task incrementalReverse(type: IncrementalReverseTask) {

 inputDir = file()'inputs'

 outputDir = file()"$buildDir/outputs"

 inputProperty = project.properties[] ?: 'taskInputProperty' 'original'

}

Build layout

incrementalTask/

 build.gradle

 inputs/

 1.txt

 2.txt

 3.txt

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse

ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are

reported to the task action:

Example 354. Running the incremental task with unchanged inputs

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse

When an input file is modified in some way or a new input file is added, then re-executing the task results in

those files being reported to :IncrementalTaskInputs.outOfDate(org.gradle.api.Action)

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)

Page 409 of 777

Example 355. Running the incremental task with updated input files

build.gradle

task updateInputs() {

 doLast {

 file().text = 'inputs/1.txt' 'Changed content for existing file 1.'

 file().text = 'inputs/4.txt' 'Content for new file 4.'

 }

}

Output of gradle -q updateInputs incrementalReverse

> gradle -q updateInputs incrementalReverse

CHANGED inputs considered out of date

out of date: 1.txt

out of date: 4.txt

When an existing input file is removed, then re-executing the task results in that file being reported to

:IncrementalTaskInputs.removed(org.gradle.api.Action)

Example 356. Running the incremental task with an input file removed

build.gradle

task removeInput() {

 doLast {

 file().delete()'inputs/3.txt'

 }

}

Output of gradle -q removeInput incrementalReverse

> gradle -q removeInput incrementalReverse

CHANGED inputs considered out of date

removed: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of

date . In th is case, input f i les are repor ted to the al l

 action, and no input files areIncrementalTaskInputs.outOfDate(org.gradle.api.Action)

reported to the action:IncrementalTaskInputs.removed(org.gradle.api.Action)

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Page 410 of 777

Example 357. Running the incremental task with an output file removed

build.gradle

task removeOutput() {

 doLast {

 file().delete()"$buildDir/outputs/1.txt"

 }

}

Output of gradle -q removeOutput incrementalReverse

> gradle -q removeOutput incrementalReverse

ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted the task

outputs, so all input files are assumed to be out of date. So similar to the changed output file example, all

input files are reported to the IncrementalTaskInputs.outOfDate(org.gradle.api.Action)

a c t i o n , a n d n o i n p u t f i l e s a r e r e p o r t e d t o t h e

 action:IncrementalTaskInputs.removed(org.gradle.api.Action)

Example 358. Running the incremental task with an input property changed

Output of gradle -q -PtaskInputProperty=changed incrementalReverse

> gradle -q -PtaskInputProperty=changed incrementalReverse

ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

§

Storing incremental state for cached tasks

Using Gradle’s is not the only way to create tasks that only works on changesIncrementalTaskInputs

since the last execution. Tools like the Kotlin compiler provide incrementality as a built-in feature. The way

this is typically implemented is that the tool stores some analysis data about the state of the previous

execution in some file. If such state files are , then they can be declared as outputs of the task.relocatable

This way when the task’s results are loaded from cache, the next execution can already use the analysis

data loaded from cache, too.

However, if the state files are non-relocatable, then they can’t be shared via the build cache. Indeed, when

the task is loaded from cache, any such state files must be cleaned up to prevent stale state to confuse the

tool during the next execution. Gradle can ensure such stale files are removed if they are declared via task.localState.register()

or a property is marked with the annotation.@LocalState

Declaring and Using Command Line Options

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Page 411 of 777

§

Declaring and Using Command Line Options

Note: The API for exposing command line options is an feature.incubating

Sometimes a user wants to declare the value of an exposed task property on the command line instead of

the build script. Being able to pass in property values on the command line is particularly helpful if they

change more frequently. The task API supports a mechanism for marking a property to automatically

generate a corresponding command line parameter with a specific name at runtime.

§

Declaring a command-line option

Exposing a new command line option for a task property is straightforward. You just have to annotate the

corresponding setter method of a property with . An option requires a mandatory identifier.Option

Additionally, you can provide an optional description. A task can expose as many command line options as

properties available in the class.

Let’s have a look at an example to illustrate the functionality. The custom task verifies whether aUrlVerify

given URL can be resolved by making a HTTP call and checking the response code. The URL to be verified

is configurable through the property . The setter method for the property is annotated with .url Option

Example 359. Declaring a command line option

UrlVerify.java

import org.gradle.api.tasks.options.Option;

 UrlVerify DefaultTask {public class extends

 String url;private

 @Option(option = "url", description = "Configures the URL to be verified.")

 setUrl(String url) {public void

 .url = url;this

 }

 @Input

 String getUrl() {public

 url;return

 }

 @TaskAction

 verify() {public void

 getLogger().quiet(, url);"Verifying URL '{}'"

 // verify URL by making a HTTP call

 }

}

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/Option.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/Option.html

Page 412 of 777

All options declared for a task can be by running the task and the rendered as console output help --task

option.

§

Using an option on the command line

Using an option on the command line has to adhere to the following rules:

The option uses a double-dash as prefix e.g. . A single dash does not qualify as valid syntax for a task--url

option.

The option argument follows directly after the task declaration e.g. verifyUrl --url=http://www.google.com/

.

Multiple options of a task can be declared in any order on the command line following the task name.

Getting back to the previous example, the build script creates a task instance of type andUrlVerify

provides a value from the command line through the exposed option.

Example 360. Using a command line option

build.gradle

task verifyUrl(type: UrlVerify)

Output of gradle -q verifyUrl --url=http://www.google.com/

> gradle -q verifyUrl --url=http://www.google.com/

Verifying URL 'http://www.google.com/'

§

Supported data types for options

Gradle limits the set of data types that can be used for declaring command line options. The use on the

command line differ per type.

, boolean Boolean

Describes an option with the value or . Passing the option on the command line does nottrue false

require assigning a value. For example equates to . The absence of the option uses--enabled true

the default values assign to the property; that is for and for the complex data type.false boolean null

String

Describes an option with an arbitrary String value. Passing the option on the command line requires a

key-value pair of option and value separated by an equals sign e.g. .--containerId=2x94held

enum

Describes an option as enum. The enum has to be passed on the command line as key-value pair similar

to the String type e.g. . The provided value is not case sensitive.--log-level=DEBUG

, List<String> List<enum>

Page 413 of 777

Describes an option that can takes multiple values of a given type. The values for the option have to be

provided as distinct declarations e.g. . Other notations like--imageId=123 --imageId=456

comma-separated lists or multiple values separated by a space character are currently not supported.

§

Documenting available values for an option

In theory, an option for a property type or can accept any arbitrary value. ExpectedString List<String>

values for such an option can be documented programmatically with the help of the annotation

. This annotation may be assigned to any method that returns a of one of theOptionValues List

supported data types. In addition, you have to provide the option identifier to indicate the relationship

between option and available values.

Note: Passing a value on the command line that is not supported by the option does not fail the

build or throw an exception. You’ll have to implement custom logic for such behavior in the task

action.

This example demonstrates the use of multiple options for a single task. The task implementation provides a

list of available values for the option .output-type

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/OptionValues.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/OptionValues.html

Page 414 of 777

Example 361. Declaring available values for an option

UrlProcess.java

import org.gradle.api.tasks.options.Option;

 org.gradle.api.tasks.options.OptionValues;import

 UrlProcess DefaultTask {public class extends

 String url;private

 OutputType outputType;private

 @Option(option = "url", description = "Configures the URL to be write to the output.")

 setUrl(String url) {public void

 .url = url;this

 }

 @Input

 String getUrl() {public

 url;return

 }

 @Option(option = "output-type", description = "Configures the output type.")

 setOutputType(OutputType outputType) {public void

 .outputType = outputType;this

 }

 @OptionValues("output-type")

 List<OutputType> getAvailableOutputTypes() {public

 ArrayList<OutputType>(Arrays.asList(OutputType.values()));return new

 }

 @Input

 OutputType getOutputType() {public

 outputType;return

 }

 @TaskAction

 process() {public void

 getLogger().quiet(, url, outputType);"Writing out the URL reponse from '{}' to '{}'"

 // retrieve content from URL and write to output

 }

 enum OutputType {private static

 CONSOLE, FILE

 }

}

Listing command line options

Page 415 of 777

§

Listing command line options

Command line options using the annotations and are self-documenting. You willOption OptionValues

see and their reflected in the console output of the task. The outputdeclared options available values help

renders options in alphabetical order.

Example 362. Listing available values for option

Output of gradle -q help --task processUrl

> gradle -q help --task processUrl

Detailed task information for processUrl

Path

 :processUrl

Type

 UrlProcess (UrlProcess)

Options

 --output-type Configures the output type.

 Available values are:

 CONSOLE

 FILE

 --url Configures the URL to be write to the output.

Description

 -

Group

 -

§

Limitations

Support for declaring command line options currently comes with a few limitations.

Command line options can only be declared for custom tasks via annotation. There’s no programmatic

equivalent for defining options.

Options cannot be declared globally e.g. on a project-level or as part of a plugin.

When assigning an option on the command line then the task exposing the option needs to be spelled out

explicitly e.g. does not work even though the task depends on the gradle check --tests abc check test

task.

The Worker API

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/Option.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/OptionValues.html

Page 416 of 777

§

The Worker API

Note: The Worker API is an feature.incubating

As can be seen from the discussion of , the work that a task performs can be viewed asincremental tasks

discrete units (i.e. a subset of inputs that are transformed to a certain subset of outputs). Many times, these

units of work are highly independent of each other, meaning they can be performed in any order and simply

aggregated together to form the overall action of the task. In a single threaded execution, these units of work

would execute in sequence, however if we have multiple processors, it would be desirable to perform

independent units of work concurrently. By doing so, we can fully utilize the available resources at build time

and complete the activity of the task faster.

The Worker API provides a mechanism for doing exactly this. It allows for safe, concurrent execution of

multiple items of work during a task action. But the benefits of the Worker API are not confined to

parallelizing the work of a task. You can also configure a desired level of isolation such that work can be

executed in an isolated classloader or even in an isolated process. Furthermore, the benefits extend beyond

even the execution of a single task. Using the Worker API, Gradle can begin to execute tasks in parallel by

default. In other words, once a task has submitted its work to be executed asynchronously, and has exited

the task action, Gradle can then begin the execution of other independent tasks in parallel, even if those

tasks are in the same project.

§

Using the Worker API

In order to submit work to the Worker API, two things must be provided: an implementation of the unit of

work, and a configuration for the unit of work. The implementation is simply a class that extends java.lang.Runnable

. This class should have a constructor that is annotated with and acceptsjavax.inject.Inject

parameters that configure the class for a single unit of work. When a unit of work is submitted to the

, an instance of this class will be created and the parameters configured for the unit ofWorkerExecutor

work will be passed to the constructor.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html

Page 417 of 777

Example 363. Creating a unit of work implementation

build.gradle

 org.gradle.workers.WorkerExecutorimport

 javax.inject.Injectimport

// The implementation of a single unit of work

 ReverseFile Runnable {class implements

 File fileToReverse

 File destinationFile

 @Inject

 ReverseFile(File fileToReverse, File destinationFile) {public

 .fileToReverse = fileToReversethis

 .destinationFile = destinationFilethis

 }

 @Override

 run() {public void

 destinationFile.text = fileToReverse.text.reverse()

 }

}

The configuration of the worker is represented by a and is set by configuring anWorkerConfiguration

instance of this object at the time of submission. However, in order to submit the unit of work, it is necessary

to first acquire the . To do this, a constructor should be provided that is annotated with WorkerExecutor javax.inject.Inject

and accepts a parameter. Gradle will inject the instance of at runtimeWorkerExecutor WorkerExecutor

when the task is created.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html

Page 418 of 777

Example 364. Submitting a unit of work for execution

build.gradle

class ReverseFiles SourceTask {extends

 WorkerExecutor workerExecutorfinal

 @OutputDirectory

 File outputDir

 // The WorkerExecutor will be injected by Gradle at runtime

 @Inject

 ReverseFiles(WorkerExecutor workerExecutor) {public

 .workerExecutor = workerExecutorthis

 }

 @TaskAction

 reverseFiles() {void

 // Create and submit a unit of work for each file

 source.files.each { file ->

 workerExecutor.submit(ReverseFile.) { WorkerConfiguration config ->class

 // Use the minimum level of isolation

 config.isolationMode = IsolationMode.NONE

 // Constructor parameters for the unit of work implementation

 config.params file, project.file()"${outputDir}/${file.name}"

 }

 }

 }

}

Note that one element of the is the property. These are the parametersWorkerConfiguration params

passed to the constructor of the unit of work implementation for each item of work submitted. Any

parameters provided to the unit of work be .must java.io.Serializable

Once all of the work for a task action has been submitted, it is safe to exit the task action. The work will be

executed asynchronously and in parallel (up to the setting of). Of course, any tasks that aremax-workers

dependent on this task (and any subsequent task actions of this task) will not begin executing until all of the

asynchronous work completes. However, other independent tasks that have no relationship to this task can

begin executing immediately.

If any failures occur while executing the asynchronous work, the task will fail and a

 will be thrown detailing the failure for each failed work item. This will beWorkerExecutionException

treated like any failure during task execution and will prevent any dependent tasks from executing.

In some cases, however, it might be desirable to wait for work to complete before exiting the task action.

This is possible using the method. As in the case of allowing the work toWorkerExecutor.await()

complete asynchronously, any failures that occur while executing an item of work will be surfaced as a

 thrown from the method.WorkerExecutionException WorkerExecutor.await()

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--

Page 419 of 777

Note: Note that Gradle will only begin running other independent tasks in parallel when a task has

exited a task action and returned control of execution to Gradle. When

 is used, execution does not leave the task action. This means thatWorkerExecutor.await()

Gradle will not allow other tasks to begin executing and will wait for the task action to complete

before doing so.

Example 365. Waiting for asynchronous work to complete

build.gradle

// Create and submit a unit of work for each file

source.files.each { file ->

 workerExecutor.submit(ReverseFile.) { config ->class

 config.isolationMode = IsolationMode.NONE

 // Constructor parameters for the unit of work implementation

 config.params file, project.file()"${outputDir}/${file.name}"

 }

}

// Wait for all asynchronous work to complete before continuing

workerExecutor.await()

logger.lifecycle()"Created ${outputDir.listFiles().size()} reversed files in ${project.relativePath(outputDir)}"

§

Isolation Modes

Gradle provides three isolation modes that can be configured on a unit of work and are specified using the

 enum:IsolationMode

IsolationMode.NONE

This states that the work should be run in a thread with a minimum of isolation. For instance, it will share

the same classloader that the task is loaded from. This is the fastest level of isolation.

IsolationMode.CLASSLOADER

This states that the work should be run in a thread with an isolated classloader. The classloader will have

the classpath from the classloader that the unit of work implementation class was loaded from as well as

any add i t i ona l c lasspa th en t r i es added th rough

.WorkerConfiguration.classpath(java.lang.Iterable)

IsolationMode.PROCESS

This states that the work should be run with a maximum level of isolation by executing the work in a

separate process. The classloader of the process will use the classpath from the classloader that the unit

of work was loaded from as well as any additional classpath entries added through

. Furthermore, the process will be a WorkerConfiguration.classpath(java.lang.Iterable)

 which will stay alive and can be reused for future work items that may have the sameWorker Daemon

requirements. This process can be configured with different settings than the Gradle JVM using

.WorkerConfiguration.forkOptions(org.gradle.api.Action)

Worker Daemons

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

Page 420 of 777

§

Worker Daemons

When using , gradle will start a long-lived process that can beIsolationMode.PROCESS Worker Daemon

reused for future work items.

Example 366. Submitting an item of work to run in a worker daemon

build.gradle

workerExecutor.submit(ReverseFile.) { WorkerConfiguration config ->class

 // Run this work in an isolated process

 config.isolationMode = IsolationMode.PROCESS

 // Configure the options for the forked process

 config.forkOptions { JavaForkOptions options ->

 options.maxHeapSize = "512m"

 options.systemProperty , "org.gradle.sample.showFileSize" "true"

 }

 // Constructor parameters for the unit of work implementation

 config.params file, project.file()"${outputDir}/${file.name}"

}

When a unit of work for a Worker Daemon is submitted, Gradle will first look to see if a compatible, idle

daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as busy. If not, it will

start a new daemon. When evaluating compatibility, Gradle looks at a number of criteria, all of which can be

controlled through .WorkerConfiguration.forkOptions(org.gradle.api.Action)

executable

A daemon is considered compatible only if it uses the same java executable.

classpath

A daemon is considered compatible if its classpath contains all of the classpath entries requested. Note

that a daemon is considered compatible if it has more classpath entries in addition to those requested.

heap settings

A daemon is considered compatible if it has at least the same heap size settings as requested. In other

words, a daemon that has higher heap settings than requested would be considered compatible.

jvm arguments

A daemon is considered compatible if it has set all of the jvm arguments requested. Note that a daemon

is considered compatible if it has additional jvm arguments beyond those requested (except for

arguments treated specially such as heap settings, assertions, debug, etc).

system properties

A daemon is considered compatible if it has set all of the system properties requested with the same

values. Note that a daemon is considered compatible if it has additional system properties beyond those

requested.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

Page 421 of 777

environment variables

A daemon is considered compatible if it has set all of the environment variables requested with the same

values. Note that a daemon is considered compatible if it has more environment variables in addition to

those requested.

bootstrap classpath

A daemon is considered compatible if it contains all of the bootstrap classpath entries requested. Note

that a daemon is considered compatible if it has more bootstrap classpath entries in addition to those

requested.

debug

A daemon is considered compatible only if debug is set to the same value as requested (true or false).

enable assertions

A daemon is considered compatible only if enable assertions is set to the same value as requested (true

or false).

default character encoding

A daemon is considered compatible only if the default character encoding is set to the same value as

requested.

Worker daemons will remain running until either the build daemon that started them is stopped, or system

memory becomes scarce. When available system memory is low, Gradle will begin stopping worker

daemons in an attempt to minimize memory consumption.

§

Re-using logic between task classes

There are different ways to re-use logic between task classes. The easiest case is when you can extract the

logic you want to share in a separate method or class and then use the extracted piece of code in your

tasks. For example, the task re-uses the logic of the Copy Project.copy(org.gradle.api.Action)

method. Another option is to add a task dependency on the task which outputs you want to re-use. Other

options include using or the .task rules worker API

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Page 422 of 777

Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different

projects and builds. Gradle allows you to implement your own plugins, so you can reuse your build logic, and

share it with others.

You can implement a Gradle plugin in any language you like, provided the implementation ends up compiled

as bytecode. In our examples, we are going to use Groovy as the implementation language. Groovy, Java or

Kotlin are all good choices as the language to use to implement a plugin, as the Gradle API has been

designed to work well with these languages. In general, a plugin implemented using Java or Kotlin, which

are statically typed, will perform better than the same plugin implemented using Groovy.

§

Packaging a plugin

There are several places where you can put the source for the plugin.

Build script

You can include the source for the plugin directly in the build script. This has the benefit that the plugin is

automatically compiled and included in the classpath of the build script without you having to do anything.

However, the plugin is not visible outside the build script, and so you cannot reuse the plugin outside the

build script it is defined in.

 projectbuildSrc

You can put the source for the plugin in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the plugin and making it available on the

classpath of the build script. The plugin is visible to every build script used by the build. However, it is not

visible outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See for more details about the project.Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your plugin. This project produces and publishes a JAR which you

can then use in multiple builds and share with others. Generally, this JAR might include some plugins, or

bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at

creating a standalone project.

Writing a simple plugin

Page 423 of 777

§

Writing a simple plugin

To create a Gradle plugin, you need to write a class that implements the interface. When the pluginPlugin

is applied to a project, Gradle creates an instance of the plugin class and calls the instance’s

 method. The project object is passed as a parameter, which the plugin can use toPlugin.apply(T)

configure the project however it needs to. The following sample contains a greeting plugin, which adds a hello

task to the project.

Example 367. A custom plugin

build.gradle

class GreetingPlugin Plugin<Project> {implements

 apply(Project project) {void

 project.task() {'hello'

 doLast {

 println 'Hello from the GreetingPlugin'

 }

 }

 }

}

// Apply the plugin

apply plugin: GreetingPlugin

Output of gradle -q hello

> gradle -q hello

Hello from the GreetingPlugin

One thing to note is that a new instance of a plugin is created for each project it is applied to. Also note that

the class is a generic type. This example has it receiving the type as a type parameter. APlugin Project

plugin can instead receive a parameter of type , in which case the plugin can be applied in aSettings

settings script, or a parameter of type , in which case the plugin can be applied in an initializationGradle

script.

§

Making the plugin configurable

Most plugins need to obtain some configuration from the build script. One method for doing this is to use

. The Gradle has an associated object that contains allextension objects Project ExtensionContainer

the settings and properties for the plugins that have been applied to the project. You can provide

configuration for your plugin by adding an extension object to this container. An extension object is simply a

Java Bean compliant class. Groovy is a good language choice to implement an extension object because

plain old Groovy objects contain all the getter and setter methods that a Java Bean requires. Java and Kotlin

are other good choices.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Page 424 of 777

Let’s add a simple extension object to the project. Here we add a extension object to the project,greeting

which allows you to configure the greeting.

Example 368. A custom plugin extension

build.gradle

class GreetingPluginExtension {

 String message = 'Hello from GreetingPlugin'

}

 GreetingPlugin Plugin<Project> {class implements

 apply(Project project) {void

 // Add the 'greeting' extension object

 def extension = project.extensions.create(, GreetingPluginExtension)'greeting'

 // Add a task that uses configuration from the extension object

 project.task() {'hello'

 doLast {

 println extension.message

 }

 }

 }

}

apply plugin: GreetingPlugin

// Configure the extension

greeting.message = 'Hi from Gradle'

Output of gradle -q hello

> gradle -q hello

Hi from Gradle

In this example, is a plain old Groovy object with a property called .GreetingPluginExtension message

The extension object is added to the plugin list with the name . This object then becomesgreeting

available as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a

configuration closure block for each extension object, so you can group settings together. The following

example shows you how this works.

Page 425 of 777

Example 369. A custom plugin with configuration closure

build.gradle

class GreetingPluginExtension {

 String message

 String greeter

}

 GreetingPlugin Plugin<Project> {class implements

 apply(Project project) {void

 def extension = project.extensions.create(, GreetingPluginExtension)'greeting'

 project.task() {'hello'

 doLast {

 println "${extension.message} from ${extension.greeter}"

 }

 }

 }

}

apply plugin: GreetingPlugin

// Configure the extension using a DSL block

greeting {

 message = 'Hi'

 greeter = 'Gradle'

}

Output of gradle -q hello

> gradle -q hello

Hi from Gradle

In this example, several settings can be grouped together within the closure. The name of thegreeting

closure block in the build script () needs to match the extension object name. Then, when thegreeting

closure is executed, the fields on the extension object will be mapped to the variables within the closure

based on the standard Groovy closure delegate feature.

§

Working with files in custom tasks and plugins

When developing custom tasks and plugins, it’s a good idea to be very flexible when accepting input

configuration for file locations. To do this, you can leverage the Project.file(java.lang.Object)

method to resolve values to files as late as possible.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 426 of 777

Example 370. Evaluating file properties lazily

build.gradle

class GreetingToFileTask DefaultTask {extends

 def destination

 File getDestination() {

 project.file(destination)

 }

 @TaskAction

 def greet() {

 def file = getDestination()

 file.parentFile.mkdirs()

 file.write 'Hello!'

 }

}

task greet(type: GreetingToFileTask) {

 destination = { project.greetingFile }

}

task sayGreeting(dependsOn: greet) {

 doLast {

 println file(greetingFile).text

 }

}

ext.greetingFile = "$buildDir/hello.txt"

Output of gradle -q sayGreeting

> gradle -q sayGreeting

Hello!

In this example, we configure the task property as a closure, which is evaluated withgreet destination

the method to turn the return value of the closure into a Project.file(java.lang.Object) File

object at the last minute. You will notice that in the example above we specify the propertygreetingFile

value after we have configured to use it for the task. This kind of lazy evaluation is a key benefit of accepting

any value when setting a file property, then resolving that value when reading the property.

§

Mapping extension properties to task properties

Capturing user input from the build script through an extension and mapping it to input/output properties of a

custom task is considered a best practice. The end user only interacts with the exposed DSL defined by the

extension. The imperative logic is hidden in the plugin implementation.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 427 of 777

The extension declaration in the build script as well as the mapping between extension properties and

custom task properties occurs during Gradle’s configuration phase of the build lifecycle. To avoid evaluation

order issues, the actual value of a mapped property has to be resolved during the execution phase. For

more information please see . Gradle’s API offers types for representing athe section called “Build phases”

property that should be lazily evaluated e.g. during execution time. Refer to for moreLazy Configuration

information.

The following demonstrates the usage of the type for mapping an extension property to a task property:

Example 371. Mapping extension properties to task properties

build.gradle

Page 428 of 777

class GreetingPlugin Plugin<Project> {implements

 apply(Project project) {void

 def extension = project.extensions.create(, GreetingPluginExtension, project)'greeting'

 project.tasks.create(, Greeting) {'hello'

 message = extension.message

 outputFiles = extension.outputFiles

 }

 }

}

 GreetingPluginExtension {class

 Property<String> messagefinal

 ConfigurableFileCollection outputFilesfinal

 GreetingPluginExtension(Project project) {

 message = project.objects.property(String)

 message.set()'Hello from GreetingPlugin'

 outputFiles = project.files()

 }

 setOutputFiles(FileCollection outputFiles) {void

 .outputFiles.setFrom(outputFiles)this

 }

}

 Greeting DefaultTask {class extends

 Property<String> message = project.objects.property(String)final

 ConfigurableFileCollection outputFiles = project.files()final

 setOutputFiles(FileCollection outputFiles) {void

 .outputFiles.setFrom(outputFiles)this

 }

 @TaskAction

 printMessage() {void

 outputFiles.each {

 logger.quiet "Writing message 'Hi from Gradle' to file"

 it.text = message.get()

 }

 }

}

apply plugin: GreetingPlugin

greeting {

 message = 'Hi from Gradle'

 outputFiles = files(,)'a.txt' 'b.txt'

}

Page 429 of 777

Note: The code for this example can be found at samples/userguide/tasks/mapExtensionPropertiesToTaskProperties

in the ‘-all’ distribution of Gradle.

Output of gradle -q hello

> gradle -q hello

Writing message 'Hi from Gradle' to file

Writing message 'Hi from Gradle' to file

§

A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others. This

project is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build

script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 372. A build for a custom plugin

build.gradle

apply plugin: 'groovy'

dependencies {

 compile gradleApi()

 compile localGroovy()

}

Note: The code for this example can be found at in the ‘-all’samples/customPlugin/plugin

distribution of Gradle.

So how does Gradle find the implementation? The answer is you need to provide a properties file inPlugin

the jar’s directory that matches the id of your plugin.META-INF/gradle-plugins

Example 373. Wiring for a custom plugin

src/main/resources/META-INF/gradle-plugins/org.samples.greeting.properties

implementation-class=org.gradle.GreetingPlugin

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the implementation-class

property identifies the implementation class.Plugin

§

Creating a plugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps

to avoid collisions and provides a way to group plugins with similar ownership.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html

Page 430 of 777

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you

or your organization) and the name of the plugin it provides. For example if you had a Github account named

"foo" and your plugin was named "bar", a suitable plugin id might be . Similarly, ifcom.github.foo.bar

the plugin was developed at the baz organization, the plugin id might be .org.baz.bar

Plugin ids should conform to the following:

May contain any alphanumeric character, '.', and '-'.

Must contain at least one '.' character separating the namespace from the name of the plugin.

Conventionally use a lowercase reverse domain name convention for the namespace.

Conventionally use only lowercase characters in the name.

org.gradle and namespaces may not be used.com.gradleware

Cannot start or end with a '.' character.

Cannot contain consecutive '.' characters (i.e. '..').

Although there are conventional similarities between plugin ids and package names, package names are

generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add

"gradle" as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would

be superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a

good plugin id.

§

Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any other

code artifact. See the and chapters on publishing artifacts.ivy maven

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it

to the . This site provides the ability to search for and gather information about pluginsGradle plugin portal

contributed by the Gradle community. See the instructions on how to make your plugin available on thishere

site.

§

Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script’s classpath. To do this,

you use a “buildscript { }” block, as described in the section called “Applying plugins with the buildscript

. The following example shows how you might do this when the JAR containing the plugin has beenblock”

published to a local repository:

http://plugins.gradle.org
http://plugins.gradle.org/docs/submit

Page 431 of 777

Example 374. Using a custom plugin in another project

build.gradle

buildscript {

 repositories {

 maven {

 url uri()'../repo'

 }

 }

 dependencies {

 classpath group: , name: ,'org.gradle' 'customPlugin'

 version: '1.0-SNAPSHOT'

 }

}

apply plugin: 'org.samples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see the

) to apply the plugin:section called “Applying plugins with the plugins DSL”

Example 375. Applying a community plugin with the plugins DSL

build.gradle

plugins {

 id version 'com.jfrog.bintray' '0.4.1'

}

§

Writing tests for your plugin

You can use the class to create instances to use when you test your pluginProjectBuilder Project

implementation.

Example 376. Testing a custom plugin

src/test/groovy/org/gradle/GreetingPluginTest.groovy

class GreetingPluginTest {

 @Test

 greeterPluginAddsGreetingTaskToProject() {public void

 Project project = ProjectBuilder.builder().build()

 project.pluginManager.apply 'org.samples.greeting'

 assertTrue(project.tasks.hello GreetingTask)instanceof

 }

}

Using the Java Gradle Plugin development plugin

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Page 432 of 777

§

Using the Java Gradle Plugin development plugin

You can use the incubating to eliminate some of the boilerplateJava Gradle Plugin development plugin

declarations in your build script and provide some basic validations of plugin metadata. This plugin will

automatically apply the , add the dependency to the compile configuration, andJava plugin gradleApi()

perform plugin metadata validations as part of the task execution.jar

Example 377. Using the Java Gradle Plugin Development plugin

build.gradle

plugins {

 id 'java-gradle-plugin'

}

When publishing plugins to custom plugin repositories using the or publish plugins, the ivy maven Java

 will also generate plugin marker artifacts named based on the plugin idGradle Plugin development plugin

which depend on the plugin’s implementation artifact.

§

Providing a configuration DSL for the plugin

As we saw above, you can use an extension object to provide configuration for your plugin. Using an

extension object also extends the Gradle DSL to add a project property and DSL block for the plugin. An

extension object is simply a regular object, and so you can provide DSL elements nested inside this block by

adding properties and methods to the extension object.

Gradle provides several conveniences to help create a well-behaved DSL for your plugin.

§

Nested DSL elements

When Gradle creates a task or extension object, Gradle the implementation class to mix in DSLdecorates

support. To create a nested DSL element you can use the type to create objects that areObjectFactory

similarly decorated. These decorated objects can then be made visible to the DSL through properties and

methods of the plugin’s extension:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html

Page 433 of 777

Example 378. Nested DSL elements

build.gradle

class Person {

 String name

}

 GreetingPluginExtension {class

 String message

 Person greeterfinal

 @javax.inject.Inject

 GreetingPluginExtension(ObjectFactory objectFactory) {

 // Create a Person instance

 greeter = objectFactory.newInstance(Person)

 }

 greeter(Action<? Person> action) {void super

 action.execute(greeter)

 }

}

 GreetingPlugin Plugin<Project> {class implements

 apply(Project project) {void

 // Create the extension, passing in an ObjectFactory for it to use

 def extension = project.extensions.create(, GreetingPluginExtension, project.objects)'greeting'

 project.task() {'hello'

 doLast {

 println "${extension.message} from ${extension.greeter.name}"

 }

 }

 }

}

apply plugin: GreetingPlugin

greeting {

 message = 'Hi'

 greeter {

 name = 'Gradle'

 }

}

Output of gradle -q hello

> gradle -q hello

Hi from Gradle

In this example, the plugin passes the project’s to the extension object through itsObjectFactory

constructor. The constructor uses this to create a nested object and makes this object available to the DSL

Page 434 of 777

through the property.greeter

§

Configuring a collection of objects

Gradle provides some utility classes for maintaining collections of objects, intended to work well with the

Gradle DSL.

Example 379. Managing a collection of objects

build.gradle

Page 435 of 777

class Book {

 String namefinal

 File sourceFile

 Book(String name) {

 .name = namethis

 }

}

 DocumentationPlugin Plugin<Project> {class implements

 apply(Project project) {void

 // Create a container of Book instances

 def books = project.container(Book)

 books.all {

 sourceFile = project.file()"src/docs/$name"

 }

 // Add the container as an extension object

 project.extensions.books = books

 }

}

apply plugin: DocumentationPlugin

// Configure the container

books {

 quickStart {

 sourceFile = file()'src/docs/quick-start'

 }

 userGuide {

 }

 developerGuide {

 }

}

task books {

 doLast {

 books.each { book ->

 println "$book.name -> $book.sourceFile"

 }

 }

}

Output of gradle -q books

> gradle -q books

developerGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/developerGuide

quickStart -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/quick-start

userGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/userGuide

Page 436 of 777

The methods create instances of Project.container(java.lang.Class)

, that have many useful methods for managing and configuring theNamedDomainObjectContainer

objects. In order to use a type with any of the methods, it MUST expose a propertyproject.container

named “name” as the unique, and constant, name for the object. The project.container(Class)

variant of the container method creates new instances by attempting to invoke the constructor of the class

that takes a single string argument, which is the desired name of the object. See the above link for project.container

method variants that allow custom instantiation strategies.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.NamedDomainObjectContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.NamedDomainObjectContainer.html

Page 437 of 777

Gradle Plugin Development Plugin

Note: The Java Gradle plugin development plugin is currently . Please be aware that theincubating

DSL and other configuration may change in later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It

automatically applies the plugin, adds the dependency to the compile configuration andJava gradleApi()

performs validation of plugin metadata during task execution.jar

The plugin also integrates with , a library that aids in writing and executing functional tests for pluginTestKit

code. It automatically adds the dependency to the test compile configuration andgradleTestKit()

generates a plugin classpath manifest file consumed by a instance if found. Please refer to GradleRunner

 for more on itsthe section called “Automatic injection with the Java Gradle Plugin Development plugin”

usage, configuration options and samples.

§

Usage

To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example 380. Using the Java Gradle Plugin Development plugin

build.gradle

plugins {

 id 'java-gradle-plugin'

}

Applying the plugin automatically applies the plugin and adds the dependency to theJava gradleApi()

compile configuration. It also adds some validations to the build.

The following validations are performed:

There is a plugin descriptor defined for the plugin.

The plugin descriptor contains an property.implementation-class

The property references a valid class file in the jar.implementation-class

Each property getter or the corresponding field must be annotated with a property annotation like @InputFile

Page 438 of 777

and . Properties that don’t participate in up-to-date checks should be annotated with @OutputDirectory @Internal

.

Any failed validations will result in a warning message.

For each plugin you are developing, add an entry to the script block:gradlePlugin {}

Example 381. Using the gradlePlugin {} block.

build.gradle

gradlePlugin {

 plugins {

 simplePlugin {

 id = 'org.gradle.sample.simple-plugin'

 implementationClass = 'org.gradle.sample.SimplePlugin'

 }

 }

}

The block defines the plugins being built by the project including the and gradlePlugin {} id implementationClass

of the plugin. From this data about the plugins being developed, Gradle can automatically:

Generate the plugin descriptor in the file’s directory.jar META-INF

Configure the or publishing plugins to publish a for each plugin.Maven Ivy Plugin Marker Artifact

Page 439 of 777

Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in

the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a

method. If multiple projects of a multi-project build share some logic you can define this method in the parent

project. If the build logic gets too complex for being properly modeled by methods then you likely should

implement your logic with classes to encapsulate your logic. Gradle makes this very easy. Just drop your

classes in a certain directory and Gradle automatically compiles them and puts them in the classpath of your

build script.

Here is a summary of the ways you can organise your build logic:

POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The build

script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to organize code.

Inherited properties and methods. In a multi-project build, sub-projects inherit the properties and methods of

their parent project.

Configuration injection. In a multi-project build, a project (usually the root project) can inject properties and

methods into another project.

 projectbuildSrc . Drop the source for your build classes into a certain directory and Gradle automatically

compiles them and includes them in the classpath of your build script.

Shared scripts. Define common configuration in an external build, and apply the script to multiple projects,

possibly across different builds.

Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects. The

plugin must be in the classpath of your build script. You can achieve this either by using orbuild sources

by adding an that contains the plugin.external library

Execute an external build. Execute another Gradle build from the current build.

External libraries. Use external libraries directly in your build file.

Inherited properties and methods

[]12

Page 440 of 777

§

Inherited properties and methods

Any method or property defined in a project build script is also visible to all the sub-projects. You can use

this to define common configurations, and to extract build logic into methods which can be reused by the

sub-projects.

Example 382. Using inherited properties and methods

build.gradle

// Define an extra property

ext.srcDirName = 'src/java'

// Define a method

def getSrcDir(project) {

 project.file(srcDirName)return

}

child/build.gradle

task show {

 doLast {

 // Use inherited property

 println + srcDirName'srcDirName: '

 // Use inherited method

 File srcDir = getSrcDir(project)

 println + rootProject.relativePath(srcDir)'srcDir: '

 }

}

Output of gradle -q show

> gradle -q show

srcDirName: src/java

srcDir: child/src/java

§

Injected configuration

You can use the configuration injection technique discussed in the section called “Cross project

 and to inject properties and methods into variousconfiguration” the section called “Subproject configuration”

projects. This is generally a better option than inheritance, for a number of reasons: The injection is explicit

in the build script, You can inject different logic into different projects, And you can inject any kind of

configuration such as repositories, plug-ins, tasks, and so on. The following sample shows how this works.

Page 441 of 777

Example 383. Using injected properties and methods

build.gradle

subprojects {

 // Define a new property

 ext.srcDirName = 'src/java'

 // Define a method using a closure as the method body

 ext.srcDir = { file(srcDirName) }

 // Define a task

 task show {

 doLast {

 println + project.path'project: '

 println + srcDirName'srcDirName: '

 File srcDir = srcDir()

 println + rootProject.relativePath(srcDir)'srcDir: '

 }

 }

}

// Inject special case configuration into a particular project

project() {':child2'

 ext.srcDirName = "$srcDirName/legacy"

}

child1/build.gradle

// Use injected property and method. Here, we override the injected value

srcDirName = 'java'

def dir = srcDir()

Output of gradle -q show

> gradle -q show

project: :child1

srcDirName: java

srcDir: child1/java

project: :child2

srcDirName: src/java/legacy

srcDir: child2/src/java/legacy

§

Configuring the project using an external build script

You can configure the current project using an external build script. All of the Gradle build language is

available in the external script. You can even apply other scripts from the external script.

Build scripts can be local files or remotely accessible files downloaded via a URL.

Page 442 of 777

Remote files will be cached and made available when Gradle runs offline. On each build, Gradle will check if

the remote file has changed and will only download the build script file again if it has changed. URLs that

contain query strings will not be cached.

Example 384. Configuring the project using an external build script

build.gradle

apply from: 'other.gradle'

other.gradle

println "configuring $project"

task hello {

 doLast {

 println 'hello from other script'

 }

}

Output of gradle -q hello

> gradle -q hello

configuring root project 'configureProjectUsingScript'

hello from other script

§

Build sources in the projectbuildSrc

When you run Gradle, it checks for the existence of a directory called . Gradle then automaticallybuildSrc

compiles and tests this code and puts it in the classpath of your build script. You don’t need to provide any

further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one directory, which has to be in the root projectbuildSrc

directory.

Listed below is the default build script that Gradle applies to the project:buildSrc

Default buildSrc build script.

apply plugin: 'groovy'

dependencies {

 compile gradleApi()

 compile localGroovy()

}

This means that you can just put your build source code in this directory and stick to the layout convention

for a Java/Groovy project (see).Table 33

If you need more flexibility, you can provide your own . Gradle applies the default build scriptbuild.gradle

regardless of whether there is one specified. This means you only need to declare the extra things you need.

Page 443 of 777

Below is an example. Notice that this example does not need to declare a dependency on the Gradle API, as

this is done by the default build script:

Example 385. Custom buildSrc build script

buildSrc/build.gradle

repositories {

 mavenCentral()

}

dependencies {

 testCompile 'junit:junit:4.12'

}

The project can be a multi-project build, just like any other regular multi-project build. However,buildSrc

all of the projects that should be on the classpath of the actual build must be dependencies of theruntime

root project in . You can do this by adding this to the configuration of each project you wish tobuildSrc

export:

Example 386. Adding subprojects to the root buildSrc project

buildSrc/build.gradle

rootProject.dependencies {

 runtime project(path)

}

Note: The code for this example can be found at in the ‘-all’samples/multiProjectBuildSrc

distribution of Gradle.

§

Running another Gradle build from a build

You can use the task. You can use either of the or properties to specifyGradleBuild dir buildFile

which build to execute, and the property to specify which tasks to execute.tasks

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.GradleBuild.html

Page 444 of 777

Example 387. Running another build from a build

build.gradle

task build(type: GradleBuild) {

 buildFile = 'other.gradle'

 tasks = []'hello'

}

other.gradle

task hello {

 doLast {

 println "hello from the other build."

 }

}

Output of gradle -q build

> gradle -q build

hello from the other build.

§

External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script’s classpath in the build

script itself. You do this using the method, passing in a closure which declares the buildbuildscript()

script classpath.

Example 388. Declaring external dependencies for the build script

build.gradle

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'

 }

}

The closure passed to the method configures a instance. You declarebuildscript() ScriptHandler

the build script classpath by adding dependencies to the configuration. This is the same wayclasspath

you declare, for example, the Java compilation classpath. You can use any of the dependency types

described in , except project dependencies.Dependency Types

Having declared the build script classpath, you can use the classes in your build script as you would any

other classes on the classpath. The following example adds to the previous example, and uses classes from

the build script classpath.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 445 of 777

Example 389. A build script with external dependencies

build.gradle

import org.apache.commons.codec.binary.Base64

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'

 }

}

task encode {

 doLast {

 def [] encodedString = Base6 ().encode(.getBytes())byte new 4 'hello world\n'

 println String(encodedString)new

 }

}

Output of gradle -q encode

> gradle -q encode

aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared with a project’s method are availablebuildscript()

to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult for more informationUsing Gradle Plugins

on Gradle plugins.

Every project automatically has a task of type thatbuildEnvironment BuildEnvironmentReportTask

can be invoked to report on the resolution of the build script dependencies.

§

Ant optional dependencies

For reasons we don’t fully understand yet, external dependencies are not picked up by Ant’s optional tasks.

But you can easily do it in another way.[][]13

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

Page 446 of 777

Example 390. Ant optional dependencies

build.gradle

configurations {

 ftpAntTask

}

dependencies {

 ftpAntTask() {"org.apache.ant:ant-commons-net:1.9.9"

 module() {"commons-net:commons-net:1.4.1"

 dependencies "oro:oro:2.0.8:jar"

 }

 }

}

task ftp {

 doLast {

 ant {

 taskdef(name: ,'ftp'

 classname: ,'org.apache.tools.ant.taskdefs.optional.net.FTP'

 classpath: configurations.ftpAntTask.asPath)

 ftp(server: , userid: , password:) {"ftp.apache.org" "anonymous" "me@myorg.com"

 fileset(dir:)"htdocs/manual"

 }

 }

 }

}

This is also a good example for the usage of client modules. The POM file in Maven Central for the

ant-commons-net task does not provide the right information for this use case.

§

Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your

domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to

maintain code base. It is our experience that even very complex custom build logic is rarely shared between

different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle

spares you this unnecessary overhead and indirection.

[] Which might range from a single class to something very complex.

[] In fact, we think this is a better solution. Only if your buildscript and Ant’s optional task need the same

library would you have to define it twice. In such a case it would be nice if Ant’s optional task would

automatically pick up the classpath defined in the “ ” file.gradle.settings

[] 12

[] 13

Page 447 of 777

1.

2.

Lazy Configuration

As a build grows in complexity, knowing when and where a particular value is configured can become

difficult to reason about. Gradle provides several ways to manage this complexity using .lazy configuration

§

Lazy properties

Note: The Provider API is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

Gradle provides lazy properties, which delay the calculation of a property’s value until it’s absolutely

required. Lazy types are faster, more understandable and better instrumented than the internal convention

mapping mechanisms. This provides two main benefits to build script and plugin authors:

Build authors can wire together Gradle models without worrying when a particular property’s value will be

known. For example, when you want to map properties in an extension to task properties but the values

aren’t known until the build script configures them.

Build authors can avoid resource intensive work during the configuration phase, which can have a direct

impact on maximum build performance. For example, when a property value comes from parsing a file.

Gradle represents lazy properties with two interfaces:

Provider are properties that can only be queried and cannot be changed.

Properties with these types are read-only.

The method returns the current value of the property.Provider.get()

A can be c rea ted by t he fac to ry me thod Provider

.ProviderFactory.provider(java.util.concurrent.Callable)

Property are properties that can be queried and overwritten.

Properties with these types are configurable.

Property implements the interface.Provider

The method specifies a value for the property, overwriting whatever value may haveProperty.set(T)

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html#get--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html#set-T-

Page 448 of 777

been present.

The method specifies a for theProperty.set(org.gradle.api.provider.Provider) Provider

value for the property, overwriting whatever value may have been present. This allows you to wire together Provider

and instances before the values are configured.Property

A can be created by the factory method .Property ObjectFactory.property(java.lang.Class)

Neither of these types nor their subtypes are intended to be implemented by a build script or plugin author.

Gradle provides several factory methods to create instances of these types. See the for allQuick Reference

of the types and factories available.

Lazy properties are intended to be passed around and only evaluated when required (usually, during the

execution phase). For more information about the Gradle build phases, please see the section called “Build

.phases”

The following demonstrates a task with a read-only property and a configurable property:

Example 391. Using a read-only and configurable property

build.gradle

class Greeting DefaultTask {extends

 // Configurable by the user

 @Input

 Property<String> message = project.objects.property(String)final

 // Read-only property calculated from the message

 @Internal

 Provider<String> fullMessage = message.map { it + }final " from Gradle"

 @TaskAction

 printMessage() {void

 logger.quiet(fullMessage.get())

 }

}

task greeting(type: Greeting) {

 // Note that this is effectively calling Property.set()

 message = 'Hi'

}

Output of gradle greeting

> gradle greeting

> Task :greeting

Hi from Gradle

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Page 449 of 777

The task has a for the mutable part of the message and a Greeting Property<String> Provider<String>

for the calculated, read-only, message.

Note: Note that Groovy Gradle DSL will generate setter methods for each -typed propertyProperty

in a task implementation. These setter methods allow you to configure the property using the

assignment () operator as a convenience.=

§

Creating a Property or Provider

If provider types are not intended to be implemented directly by build script or plugin authors, how do you

create a new one? Gradle provides various factory APIs to create new instances of both and Provider

:Property

ProviderFactory.provider(java.util.concurrent.Callable) instantiates a new .Provider

An instance of the can be referenced from or by injectingProviderFactory Project.getProviders()

 through a constructor or method.ProviderFactory

ObjectFactory.property(java.lang.Class) instantiates a new . An instance of the Property

 can be referenced from or by injecting ObjectFactory Project.getObjects() ObjectFactory

through a constructor or method.

Note: Project does not provide a specific method signature for creating a provider from a groovy.lang.Closure

. When writing a plugin with Groovy, you can use the method signature accepting a java.util.concurrent.Callable

parameter. Groovy’s will take care of the rest.Closure to type coercion

§

Working with files and Providers

In , we introduced four collection types for -like objects:Working With Files File

Table 30. Collection of files recap

Read-only Type Configurable Type

FileCollection ConfigurableFileCollection

FileTree ConfigurableFileTree

All of these types are also considered types.Provider

In this section, we are going to introduce more strongly typed models for a : FileSystemLocation

 and . These types shouldn’t be confused with the standard Java typeDirectory RegularFile java.io.File

as they tell Gradle to expect more specific values (a directory or a non-directory, regular file).

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getProviders--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getObjects--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://docs.groovy-lang.org/next/html/documentation/core-semantics.html#_assigning_a_closure_to_a_sam_type
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileSystemLocation.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Page 450 of 777

Gradle provides two specialized subtypes for dealing with these types: Property RegularFileProperty

and . has methods to create these: DirectoryProperty ProjectLayout

 and .ProjectLayout.fileProperty() ProjectLayout.directoryProperty()

A can also be used to create a lazily evaluated for a and DirectoryProperty Provider Directory RegularFile

via and DirectoryProperty.dir(java.lang.String)

 respectively. These methods create paths that areDirectoryProperty.file(java.lang.String)

relative to the location set for the original .DirectoryProperty

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

Page 451 of 777

Example 392. Using file and directory property

build.gradle

class FooExtension {

 DirectoryProperty someDirectoryfinal

 RegularFileProperty someFilefinal

 ConfigurableFileCollection someFilesfinal

 FooExtension(Project project) {

 someDirectory = project.layout.directoryProperty()

 someFile = project.layout.fileProperty()

 someFiles = project.files()

 }

}

project.extensions.create(, FooExtension, project)'foo'

foo {

 someDirectory = project.layout.projectDirectory.dir()'some-directory'

 someFile = project.layout.buildDirectory.file()'some-file'

 someFiles.from project.files(someDirectory, someFile)

}

task print {

 doLast {

 def someDirectory = project.foo.someDirectory.get().asFile

 logger.quiet(+ someDirectory)"foo.someDirectory = "

 logger.quiet(+ project.foo.someFiles.contains(someDirectory))"foo.someFiles contains someDirectory? "

 def someFile = project.foo.someFile.get().asFile

 logger.quiet(+ someFile)"foo.someFile = "

 logger.quiet(+ project.foo.someFiles.contains(someFile))"foo.someFiles contains someFile? "

 }

}

Output of gradle print

> gradle print

> Task :print

foo.someDirectory = /home/user/gradle/samples/providers/fileAndDirectoryProperty/some-directory

foo.someFiles contains someDirectory? true

foo.someFile = /home/user/gradle/samples/providers/fileAndDirectoryProperty/build/some-file

foo.someFiles contains someFile? true

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

This example shows how types can be used inside an extension. Lazy values for Provider

 and can be accessed through Project.getBuildDir() Project.getProjectDir()

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:projectDir
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getLayout--

Page 452 of 777

 with and Project.getLayout() ProjectLayout.getBuildDirectory()

.ProjectLayout.getProjectDirectory()

§

Working with task dependencies and Providers

Many builds have several tasks that depend on each other. This usually means that one task processes the

outputs of another task as an input. For these outputs and inputs, we need to know their locations on the file

system and appropriately configure each task to know where to look. This can be cumbersome if any of

these values are configurable by a user or configured by multiple plugins.

To make this easier, Gradle offers convenient APIs for defining files or directories as task inputs and outputs

in a descriptive way. As an example consider the following plugin with a producer and consumer task, which

are wired together via inputs and outputs:

Example 393. Implicit task dependency

build.gradle

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getLayout--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--

Page 453 of 777

 Producer DefaultTask {class extends

 @OutputFile

 RegularFileProperty outputFile = newOutputFile()final

 @TaskAction

 produce() {void

 String message = 'Hello, World!'

 def output = outputFile.get().asFile

 output.text = message

 logger.quiet()"Wrote '${message}' to ${output}"

 }

}

 Consumer DefaultTask {class extends

 @InputFile

 RegularFileProperty inputFile = newInputFile()final

 @TaskAction

 consume() {void

 def input = inputFile.get().asFile

 def message = input.text

 logger.quiet()"Read '${message}' from ${input}"

 }

}

task producer(type: Producer)

task consumer(type: Consumer)

// Wire property from producer to consumer task

consumer.inputFile = producer.outputFile

// Set values for the producer lazily

// Note that the consumer does not need to be changed again.

producer.outputFile = layout.buildDirectory.file()'file.txt'

// Change the base output directory.

// Note that this automatically changes producer.outputFile and consumer.inputFile

buildDir = 'output'

Output of gradle consumer

Page 454 of 777

> gradle consumer

> Task :producer

Wrote 'Hello, World!' to /home/user/gradle/samples/providers/implicitTaskDependency/output/file.txt

> Task :consumer

Read 'Hello, World!' from /home/user/gradle/samples/providers/implicitTaskDependency/output/file.txt

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

In the example above, the task outputs and inputs are connected before any location is defined. This is

possible because the input and output properties use the API. The output property is created withProvider

 and the input property is created with DefaultTask.newOutputFile()

. Values are only resolved when they are needed during execution. TheDefaultTask.newInputFile()

setters can be called at any time before the task is executed and the change will automatically affect all

related input and output properties.

Another thing to note is the absence of any explicit task dependency. Properties created via newOutputFile()

and bring knowledge about which task is generating them, so using them as tasknewOutputDirectory()

input will implicitly link tasks together.

§

Working with collection Providers

In this section, we are going to explore lazy collections. They work exactly like any other and, justProvider

like providers, they have additional modeling around them. There are two providerFileSystemLocation

interfaces available, one for values and another for values:List Set

For values the interface is called . You can create a new using List ListProperty ListProperty

 and specifying the element’s type.ObjectFactory.listProperty(java.lang.Class)

For values the interface is called . You can create a new using Set SetProperty SetProperty

 and specifying the element’s type.ObjectFactory.setProperty(java.lang.Class)

This type of property allows you to overwrite the entire collection value with

 and HasMultipleValues.set(java.lang.Iterable)

 or add new elements through theHasMultipleValues.set(org.gradle.api.provider.Provider)

various methods:add

HasMultipleValues.add(T): Add a single concrete element to the collection

HasMultipleValues.add(org.gradle.api.provider.Provider): Add a lazily evaluated element

to the collection

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ListProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/SetProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-

Page 455 of 777

HasMultipleValues.addAll(org.gradle.api.provider.Provider): Add a lazily evaluated

collection of elements to the list

Just like every , the collection is calculated when is called. The followingProvider Provider.get()

example show the in action:ListProperty

Example 394. List property

build.gradle

task print {

 doLast {

 ListProperty<String> list = project.objects.listProperty(String)

 // Resolve the list

 logger.quiet(+ list.get())'The list contains: '

 // Add elements to the empty list

 list.add(project.provider { }) 'element-1' // Add a provider element

 list.add() 'element-2' // Add a concrete element

 // Resolve the list

 logger.quiet(+ list.get())'The list contains: '

 // Overwrite the entire list with a new list

 list.set([,])'element-3' 'element-4'

 // Resolve the list

 logger.quiet(+ list.get())'The list contains: '

 // Add more elements through a list provider

 list.addAll(project.provider { [,] })'element-5' 'element-6'

 // Resolve the list

 logger.quiet(+ list.get())'The list contains: '

 }

}

Output of gradle print

> gradle print

> Task :print

The list contains: []

The list contains: [element-1, element-2]

The list contains: [element-3, element-4]

The list contains: [element-3, element-4, element-5, element-6]

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Guidelines

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html#get--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ListProperty.html

Page 456 of 777

§

Guidelines

This section will introduce guidelines to be successful with the Provider API. To see those guidelines in

action, have a look at , a Gradle plugin demonstrating established techniques and practicesgradle-site-plugin

for plugin development.

The and types have all of the overloads you need to query or configure a value. ForProperty Provider

this reason, you should follow the following guidelines:

For configurable properties, expose the directly through a single getter.Property

For non-configurable properties, expose an directly through a single getter.Provider

Avoid simplifying calls like and in your codeobj.getProperty().get() obj.getProperty().set(T)

by introducing additional getters and setters.

When migrating your plugin to use providers, follow these guidelines:

If it’s a new property, expose it as a or using a single getter.Property Provider

If it’s incubating, change it to use a or using a single getter.Property Provider

If it’s a stable property, add a new or and deprecate the old one. You should wire theProperty Provider

old getter/setters into the new property as appropriate.

§

Future development

Going forward, new properties will use the Provider API. The Groovy Gradle DSL adds convenience

methods to make the use of Providers mostly transparent in build scripts. Existing tasks will have their

existing "raw" properties replaced by Providers as needed and in a backwards compatible way. New tasks

will be designed with the Provider API.

The Provider API is . Please create new issues at to report bugs or to submit useincubating gradle/gradle

cases for new features.

Provider API Quick Reference

https://github.com/gradle-guides/gradle-site-plugin
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
https://github.com/gradle/gradle/issues/new

Page 457 of 777

§

Provider API Quick Reference

Table 31. Lazy properties summary

Description Read-only Configurable Factory

A file on

disk

Provider<

>RegularFile
RegularFileProperty

ProjectLayout.fileProperty()

Directory.file(java.lang.String)

DirectoryProperty.file(java.lang.String)

A file used

as a task

input/output

Provider<

>RegularFile
RegularFileProperty

DefaultTask.newInputFile()

DefaultTask.newOutputFile()

A directory

on disk

Provider<

>Directory
DirectoryProperty

ProjectLayout.directoryProperty()

Directory.dir(java.lang.String)

DirectoryProperty.dir(java.lang.String)

A directory

used as a

t a s k

input/output

Provider<

>Directory
DirectoryProperty

DefaultTask.newInputDirectory()

DefaultTask.newOutputDirectory()

Collection of

files
FileCollection ConfigurableFileCollection Project.files(java.lang.Object[])

Hierarchy of

files
FileTree ConfigurableFileTree Project.fileTree(java.lang.Object)

List of any

type

Provider

<List<T>>
ListProperty ObjectFactory.listProperty(java.lang.Class)

Set of any

type

Provider

<Set<T>>
SetProperty ObjectFactory.setProperty(java.lang.Class)

Any other

type
Provider<T> Property<T> ObjectFactory.property(java.lang.Class)

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html#file-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html#dir-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileTree.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ListProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/SetProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Page 458 of 777

Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current environment.

This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “ ” task provided by the “ ” incubating plugininit build-init

(see).Build Init Plugin

§

Basic usage

Initialization scripts (a.k.a.) are similar to other scripts in Gradle. These scripts, however, are runinit scripts

before the build starts. Here are several possible uses:

Set up enterprise-wide configuration, such as where to find custom plugins.

Set up properties based on the current environment, such as a developer’s machine vs. a continuous

integration server.

Supply personal information about the user that is required by the build, such as repository or database

authentication credentials.

Define machine specific details, such as where JDKs are installed.

Register build listeners. External tools that wish to listen to Gradle events might find this useful.

Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the project (see buildSrc the

 for details of this feature).section called “Build sources in the project”buildSrc

§

Using an init script

There are several ways to use an init script:

Specify a file on the command line. The command line option is or followed by the path-I --init-script

to the script. The command line option can appear more than once, each time adding another init script.

Put a file called in the directory.init.gradle /.gradle/USER_HOME

Page 459 of 777

Put a file that ends with in the directory..gradle /.gradle/init.d/USER_HOME

Put a file that ends with in the directory, in the Gradle distribution. This.gradle /init.d/GRADLE_HOME

allows you to package up a custom Gradle distribution containing some custom build logic and plugins. You

can combine this with the as a way to make custom logic available to all builds in yourGradle wrapper

enterprise.

If more than one init script is found they will all be executed, in the order specified above. Scripts in a given

directory are executed in alphabetical order. This allows, for example, a tool to specify an init script on the

command line and the user to put one in their home directory for defining the environment and both scripts

will run when Gradle is executed.

§

Writing an init script

Similar to a Gradle build script, an init script is a Groovy script. Each init script has a instanceGradle

associated with it. Any property reference and method call in the init script will delegate to this Gradle

instance.

Each init script also implements the interface.Script

§

Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring

projects in a multi-project build. The following sample shows how to perform extra configuration from an init

script the projects are evaluated. This sample uses this feature to configure an extra repository to bebefore

used only for certain environments.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Script.html

Page 460 of 777

Example 395. Using init script to perform extra configuration before projects are evaluated

build.gradle

repositories {

 mavenCentral()

}

task showRepos {

 doLast {

 println "All repos:"

 println repositories.collect { it.name }

 }

}

init.gradle

allprojects {

 repositories {

 mavenLocal()

 }

}

Output of gradle --init-script init.gradle -q showRepos

> gradle --init-script init.gradle -q showRepos

All repos:

[MavenLocal, MavenRepo]

§

External dependencies for the init script

In it was explained how to add externalthe section called “External dependencies for the build script”

dependencies to a build script. Init scripts can also declare dependencies. You do this with the initscript()

method, passing in a closure which declares the init script classpath.

Example 396. Declaring external dependencies for an init script

init.gradle

initscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'

 }

}

The closure passed to the method configures a instance. You declare theinitscript() ScriptHandler

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 461 of 777

init script classpath by adding dependencies to the configuration. This is the same way youclasspath

declare, for example, the Java compilation classpath. You can use any of the dependency types described in

, except project dependencies.Declaring Dependencies

Having declared the init script classpath, you can use the classes in your init script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the

init script classpath.

Example 397. An init script with external dependencies

init.gradle

import org.apache.commons.math.fraction.Fraction

initscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'

 }

}

println Fraction.ONE_FIFTH.multiply()2

Output of gradle --init-script init.gradle -q doNothing

> gradle --init-script init.gradle -q doNothing

2 / 5

§

Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Example 398. Using plugins in init scripts

Page 462 of 777

init.gradle

apply plugin:EnterpriseRepositoryPlugin

 EnterpriseRepositoryPlugin Plugin<Gradle> {class implements

 String ENTERPRISE_REPOSITORY_URL = private static "https://repo.gradle.org/gradle/repo"

 apply(Gradle gradle) {void

 // ONLY USE ENTERPRISE REPO FOR DEPENDENCIES

 gradle.allprojects{ project ->

 project.repositories {

 // Remove all repositories not pointing to the enterprise repository url

 all { ArtifactRepository repo ->

 (!(repo MavenArtifactRepository) ||if instanceof

 repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {

 project.logger.lifecycle "Repository ${repo.url} removed. Only $ENTERPRISE_REPOSITORY_URL is allowed"

 remove repo

 }

 }

 // add the enterprise repository

 maven {

 name "STANDARD_ENTERPRISE_REPO"

 url ENTERPRISE_REPOSITORY_URL

 }

 }

 }

 }

}

build.gradle

repositories{

 mavenCentral()

}

 task showRepositories {

 doLast {

 repositories.each {

 println "repository: ${it.name} ('${it.url}')"

 }

 }

}

Output of gradle -q -I init.gradle showRepositories

> gradle -q -I init.gradle showRepositories

repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')

Page 463 of 777

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance’s

 method. The object is passed as a parameter, which can be used to configurePlugin.apply(T) gradle

all aspects of a build. Of course, the applied plugin can be resolved as an external dependency as described

in the section called “External dependencies for the init script”

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-

Page 464 of 777

Testing Build Logic with TestKit

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic

generally. At this time, it is focused on testing. That is, testing build logic by exercising it as part offunctional

a programmatically executed build. Over time, the TestKit will likely expand to facilitate other kinds of tests.

§

Usage

To use the TestKit, include the following in your plugin’s build:

Example 399. Declaring the TestKit dependency

build.gradle

dependencies {

 testCompile gradleTestKit()

}

The encompasses the classes of the TestKit, as well as the . ItgradleTestKit() Gradle Tooling API client

does not include a version of , , or any other test execution framework. Such a dependencyJUnit TestNG

must be explicitly declared.

Example 400. Declaring the JUnit dependency

build.gradle

dependencies {

 testCompile 'junit:junit:4.12'

}

§

Functional testing with the Gradle runner

The facilitates programmatically executing Gradle builds, and inspecting the result.GradleRunner

A contrived build can be created (e.g. programmatically, or from a template) that exercises the “logic under

test”. The build can then be executed, potentially in a variety of ways (e.g. different combinations of tasks

and arguments). The correctness of the logic can then be verified by asserting the following, potentially in

combination:

http://junit.org
http://testng.org
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html

Page 465 of 777

The build’s output;

The build’s logging (i.e. console output);

The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the

 or methods depending on the anticipatedGradleRunner.build() GradleRunner.buildAndFail()

outcome.

The following demonstrates the usage of Gradle runner in a Java JUnit test:

Example 401. Using GradleRunner with JUnit

BuildLogicFunctionalTest.java

import org.gradle.testkit.runner.BuildResult;

 org.gradle.testkit.runner.GradleRunner;import

 org.junit.Before;import

 org.junit.Rule;import

 org.junit.Test;import

 org.junit.rules.TemporaryFolder;import

 java.io.BufferedWriter;import

 java.io.File;import

 java.io.FileWriter;import

 java.io.IOException;import

 java.util.Collections;import

 org.junit.Assert.assertEquals;import static

 org.junit.Assert.assertTrue;import static

 org.gradle.testkit.runner.TaskOutcome.*;import static

 BuildLogicFunctionalTest {public class

 TemporaryFolder testProjectDir = TemporaryFolder();@Rule public final new

 File buildFile;private

 @Before

 setup() IOException {public void throws

 buildFile = testProjectDir.newFile();"build.gradle"

 }

 @Test

 testHelloWorldTask() IOException {public void throws

 String buildFileContent = +"task helloWorld {"

 +" doLast {"

 +" println 'Hello world!'"

 +" }"

 ;"}"

 writeFile(buildFile, buildFileContent);

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

Page 466 of 777

 BuildResult result = GradleRunner.create()

 .withProjectDir(testProjectDir.getRoot())

 .withArguments()"helloWorld"

 .build();

 assertTrue(result.getOutput().contains());"Hello world!"

 assertEquals(SUCCESS, result.task().getOutcome());":helloWorld"

 }

 writeFile(File destination, String content) IOException {private void throws

 BufferedWriter output = null;

 {try

 output = BufferedWriter(FileWriter(destination));new new

 output.write(content);

 } {finally

 (output != null) {if

 output.close();

 }

 }

Page 467 of 777

 }

}

Any test execution framework can be used.

As Gradle build scripts are written in the Groovy programming language, and as many plugins are

implemented in Groovy, it is often a productive choice to write Gradle functional tests in Groovy.

Furthermore, it is recommended to use the (Groovy based) as it offersSpock test execution framework

many compelling features over the use of JUnit.

The following demonstrates the usage of Gradle runner in a Groovy Spock test:

https://code.google.com/p/spock/

Page 468 of 777

Example 402. Using GradleRunner with Spock

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

 org.gradle.testkit.runner.TaskOutcome.*import static

 org.junit.Ruleimport

 org.junit.rules.TemporaryFolderimport

 spock.lang.Specificationimport

 BuildLogicFunctionalTest Specification {class extends

 TemporaryFolder testProjectDir = TemporaryFolder()@Rule final new

 File buildFile

 def setup() {

 buildFile = testProjectDir.newFile()'build.gradle'

 }

 def () {"hello world task prints hello world"

 given:

 buildFile << """

 task helloWorld {

 doLast {

 println 'Hello world!'

 }

 }

 """

 when:

 def result = GradleRunner.create()

 .withProjectDir(testProjectDir.root)

 .withArguments()'helloWorld'

 .build()

 then:

 result.output.contains()'Hello world!'

 result.task().outcome == SUCCESS":helloWorld"

 }

}

It is a common practice to implement any custom build logic (like plugins and task types) that is more

complex in nature as external classes in a standalone project. The main driver behind this approach is

bundle the compiled code into a JAR file, publish it to a binary repository and reuse it across various

projects.

Getting the plugin-under-test into the test build

Page 469 of 777

§

Getting the plugin-under-test into the test build

The GradleRunner uses the to execute builds. An implication of this is that the builds areTooling API

executed in a separate process (i.e. not the same process executing the tests). Therefore, the test build

does not share the same classpath or classloaders as the test process and the code under test is not

implicitly available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test into the

.test build

For earlier versions of Gradle (before 2.13), it is possible to manually make the code under test available via

some extra configuration. The following example demonstrates having the build generate a file containing

the implementation classpath of the code under test, and making it available at test runtime.

Example 403. Making the code under test classpath available to the tests

build.gradle

// Write the plugin's classpath to a file to share with the tests

task createClasspathManifest {

 def outputDir = file()"$buildDir/$name"

 inputs.files sourceSets.main.runtimeClasspath

 outputs.dir outputDir

 doLast {

 outputDir.mkdirs()

 file().text = sourceSets.main.runtimeClasspath.join()"$outputDir/plugin-classpath.txt" "\n"

 }

}

// Add the classpath file to the test runtime classpath

dependencies {

 testRuntime files(createClasspathManifest)

}

Note: The code for this example can be found at samples/testKit/gradleRunner/manualClasspathInjection

in the ‘-all’ distribution of Gradle.

The tests can then read this value, and inject the classpath into the test build by using the method

. This classpath is then available toGradleRunner.withPluginClasspath(java.lang.Iterable)

use to locate plugins in a test build via the plugins DSL (see). Applying plugins with theUsing Gradle Plugins

plugins DSL requires the definition of a plugin identifier. The following is an example (in Groovy) of doing this

from within a Spock Framework method, which is analogous to a JUnit method.setup() @Before

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

Page 470 of 777

Example 404. Injecting the code under test classes into test builds

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

List<File> pluginClasspath

def setup() {

 buildFile = testProjectDir.newFile()'build.gradle'

 def pluginClasspathResource = getClass().classLoader.findResource()"plugin-classpath.txt"

 (pluginClasspathResource == null) {if

 IllegalStateException()throw new "Did not find plugin classpath resource, run `testClasses` build task."

 }

 pluginClasspath = pluginClasspathResource.readLines().collect { File(it) }new

}

def () {"hello world task prints hello world"

 given:

 buildFile << """

 plugins {

 id 'org.gradle.sample.helloworld'

 }

 """

 when:

 def result = GradleRunner.create()

 .withProjectDir(testProjectDir.root)

 .withArguments()'helloWorld'

 .withPluginClasspath(pluginClasspath)

 .build()

 then:

 result.output.contains()'Hello world!'

 result.task().outcome == SUCCESS":helloWorld"

}

Note: The code for this example can be found at samples/testKit/gradleRunner/manualClasspathInjection

in the ‘-all’ distribution of Gradle.

This approach works well when executing the functional tests as part of the Gradle build. When executing

the functional tests from an IDE, there are extra considerations. Namely, the classpath manifest file points to

the class files etc. generated by Gradle and not the IDE. This means that after making a change to the

source of the code under test, the source must be recompiled by Gradle. Similarly, if the effective classpath

of the code under test changes, the manifest must be regenerated. In either case, executing the testClasses

task of the build will ensure that things are up to date.

Some IDEs provide a convenience option to delegate the "test classpath generation and execution" to the

build. In IntelliJ you can find this option under Preferences… > Build, Execution, Deployment > Build Tools >

Page 471 of 777

Gradle > Runner > Delegate IDE build/run actions to gradle. Please consult the documentation of your IDE

for more information.

§

Working with Gradle versions prior to 2.8

The method will not work whenGradleRunner.withPluginClasspath(java.lang.Iterable)

executing the build with a Gradle version earlier than 2.8 (see:the section called “The Gradle version used to

), as this feature is not supported on such Gradle versions.test”

Instead, the code must be injected via the build script itself. The following sample demonstrates how this can

be done.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

Page 472 of 777

Example 405. Injecting the code under test classes into test builds for Gradle versions prior to 2.8

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

List<File> pluginClasspath

def setup() {

 buildFile = testProjectDir.newFile()'build.gradle'

 def pluginClasspathResource = getClass().classLoader.findResource()"plugin-classpath.txt"

 (pluginClasspathResource == null) {if

 IllegalStateException()throw new "Did not find plugin classpath resource, run `testClasses` build task."

 }

 pluginClasspath = pluginClasspathResource.readLines().collect { File(it) }new

}

def () {"hello world task prints hello world with pre Gradle 2.8"

 given:

 def classpathString = pluginClasspath

 .collect { it.absolutePath.replace(,) } '\\' '\\\\' // escape backslashes in Windows paths

 .collect { }"'$it'"

 .join()", "

 buildFile << """

 buildscript {

 dependencies {

 classpath files($classpathString)

 }

 }

 apply plugin: "org.gradle.sample.helloworld"

 """

 when:

 def result = GradleRunner.create()

 .withProjectDir(testProjectDir.root)

 .withArguments()'helloWorld'

 .withGradleVersion()"2.7"

 .build()

 then:

 result.output.contains()'Hello world!'

 result.task().outcome == SUCCESS":helloWorld"

}

Note: The code for this example can be found at samples/testKit/gradleRunner/manualClasspathInjection

in the ‘-all’ distribution of Gradle.

Automatic injection with the Java Gradle Plugin Development plugin

Page 473 of 777

§

Automatic injection with the Java Gradle Plugin Development plugin

The can be used to assist in the development of Gradle plugins.Java Gradle Plugin development plugin

Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit. When applied to a

project, the plugin automatically adds the dependency to the test compile configuration.gradleTestKit()

Furthermore, it automatically generates the classpath for the code under test and injects it via

 for any instance created by the user. It’sGradleRunner.withPluginClasspath() GradleRunner

important to note that the mechanism currently works if the plugin under test is applied using the only

. If the is prior to 2.8, automatic plugin classpath injection is not performed.plugins DSL target Gradle version

The plugin uses the following conventions for applying the TestKit dependency and injecting the classpath:

Source set containing code under test: sourceSets.main

Source set used for injecting the plugin classpath: sourceSets.test

Any of these conventions can be reconfigured with the help of the class

.GradlePluginDevelopmentExtension

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath by using

the standard conventions applied by the Java Gradle Plugin Development plugin.

Example 406. Using the Java Gradle Development plugin for generating the plugin metadata

build.gradle

apply plugin: 'groovy'

apply plugin: 'java-gradle-plugin'

dependencies {

 testCompile() {'org.spockframework:spock-core:1.0-groovy-2.4'

 exclude module: 'groovy-all'

 }

}

Note: The code for this example can be found at samples/testKit/gradleRunner/automaticClasspathInjectionQuickstart

in the ‘-all’ distribution of Gradle.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

Page 474 of 777

Example 407. Automatically injecting the code under test classes into test builds

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

def () {"hello world task prints hello world"

 given:

 buildFile << """

 plugins {

 id 'org.gradle.sample.helloworld'

 }

 """

 when:

 def result = GradleRunner.create()

 .withProjectDir(testProjectDir.root)

 .withArguments()'helloWorld'

 .withPluginClasspath()

 .build()

 then:

 result.output.contains()'Hello world!'

 result.task().outcome == SUCCESS":helloWorld"

}

Note: The code for this example can be found at samples/testKit/gradleRunner/automaticClasspathInjectionQuickstart

in the ‘-all’ distribution of Gradle.

The following build script demonstrates how to reconfigure the conventions provided by the Java Gradle

Plugin Development plugin for a project that uses a custom source set.Test

Page 475 of 777

Example 408. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

build.gradle

apply plugin: 'groovy'

apply plugin: 'java-gradle-plugin'

sourceSets {

 functionalTest {

 groovy {

 srcDir file()'src/functionalTest/groovy'

 }

 resources {

 srcDir file()'src/functionalTest/resources'

 }

 compileClasspath += sourceSets.main.output + configurations.testRuntime

 runtimeClasspath += output + compileClasspath

 }

}

task functionalTest(type: Test) {

 testClassesDirs = sourceSets.functionalTest.output.classesDirs

 classpath = sourceSets.functionalTest.runtimeClasspath

}

check.dependsOn functionalTest

gradlePlugin {

 testSourceSets sourceSets.functionalTest

}

dependencies {

 functionalTestCompile() {'org.spockframework:spock-core:1.0-groovy-2.4'

 exclude module: 'groovy-all'

 }

}

Note: The code for this example can be found at samples/testKit/gradleRunner/automaticClasspathInjectionCustomTestSourceSet

in the ‘-all’ distribution of Gradle.

Controlling the build environment

Page 476 of 777

§

Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working directory"

in a directory inside the JVM’s temp directory (i.e. the location specified by the systemjava.io.tmpdir

property, typically). Any configuration in the default Gradle user home directory (e.g. /tmp ~/.gradle/gradle.properties

) is not used for test execution. The TestKit does not expose a mechanism for fine grained control of

environment variables etc. Future versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

§

The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not depend

on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the classGradleRunner

was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as is the case

when using the dependency declaration.gradleTestKit()

When using the runner as part of tests (e.g. executing the task of a pluginbeing executed by Gradle test

project), the same distribution used to execute the tests will be used by the runner. When using the runner

as part of tests , the same distribution of Gradle that was used when importing thebeing executed by an IDE

project will be used. This means that the plugin will effectively be tested with the same version of Gradle that

it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the following GradleRunner

methods:

GradleRunner.withGradleVersion(java.lang.String)

GradleRunner.withGradleInstallation(java.io.File)

GradleRunner.withGradleDistribution(java.net.URI)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a

cross-version compatibility test written as Groovy Spock test:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

Page 477 of 777

Example 409. Specifying a Gradle version for test execution

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

 org.gradle.testkit.runner.TaskOutcome.*import static

 org.junit.Ruleimport

 org.junit.rules.TemporaryFolderimport

 spock.lang.Specificationimport

 spock.lang.Unrollimport

 BuildLogicFunctionalTest Specification {class extends

 TemporaryFolder testProjectDir = TemporaryFolder()@Rule final new

 File buildFile

 def setup() {

 buildFile = testProjectDir.newFile()'build.gradle'

 }

 @Unroll

 def () {"can execute hello world task with Gradle version #gradleVersion"

 given:

 buildFile << """

 task helloWorld {

 doLast {

 logger.quiet 'Hello world!'

 }

 }

 """

 when:

 def result = GradleRunner.create()

 .withGradleVersion(gradleVersion)

 .withProjectDir(testProjectDir.root)

 .withArguments()'helloWorld'

 .build()

 then:

 result.output.contains()'Hello world!'

 result.task().outcome == SUCCESS":helloWorld"

 where:

 gradleVersion << [,]'2.6' '2.7'

 }

}

Feature support when testing with different Gradle versions

Page 478 of 777

§

Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some runner

features are not supported on earlier versions. In such cases, the runner will throw an exception when

attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Table 32. Gradle version compatibility

Feature
Minimum

Version
Description

Inspecting executed

tasks
2.5 Inspecting the executed tasks, using and similar methods.BuildResult.getTasks()

Plugin classpath

injection
2.8

I n j e c t i n g t h e c o d e u n d e r t e s t v i a

.GradleRunner.withPluginClasspath(java.lang.Iterable)

Inspecting build output

in debug mode
2.9

Inspecting the build’s text output when run in debug mode, using

.BuildResult.getOutput()

Automatic plugin

classpath injection
2.13

Inject ing the code under test automat ical ly v ia

 by applying the Java Gradle PluginGradleRunner.withPluginClasspath()

Development plugin.

§

Debugging build logic

The runner uses the to execute builds. An implication of this is that the builds are executed in aTooling API

separate process (i.e. not the same process executing the tests). Therefore, executing your in debugtests

mode does not allow you to debug your build logic as you may expect. Any breakpoints set in your IDE will

be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

Setting “ ” system property to for the JVM the org.gradle.testkit.debug true using GradleRunner

(i.e. not the build being executed with the runner);

Calling the method.GradleRunner.withDebug(boolean)

The system property approach can be used when it is desirable to enable debugging support without making

an adhoc change to the runner configuration. Most IDEs offer the capability to set JVM system properties for

test execution, and such a feature can be used to set this system property.

Testing with the Build Cache

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-

Page 479 of 777

§

Testing with the Build Cache

To enable the in your tests, you can pass the argument to orBuild Cache --build-cache GradleRunner

use one of the other methods described in . You can then checkthe section called “Enable the Build Cache”

for the task outcome when your plugin’s custom task is cached. This outcomeTaskOutcome.FROM_CACHE

is only valid for Gradle 3.5 and newer.

Example 410. Testing cacheable tasks

BuildLogicFunctionalTest.groovy

def () {"cacheableTask is loaded from cache"

 given:

 buildFile << """

 plugins {

 id 'org.gradle.sample.helloworld'

 }

 """

 when:

 def result = runner()

 .withArguments(,)'--build-cache' 'cacheableTask'

 .build()

 then:

 result.task().outcome == SUCCESS":cacheableTask"

 when:

 File(testProjectDir.root,).deleteDir()new 'build'

 result = runner()

 .withArguments(,)'--build-cache' 'cacheableTask'

 .build()

 then:

 result.task().outcome == FROM_CACHE":cacheableTask"

}

Note that TestKit re-uses a Gradle user home between tests (see

) which contains the default location for the localGradleRunner.withTestKitDir(java.io.File)

build cache. For testing with the build cache, the build cache directory should be cleaned between tests. The

easiest way to accomplish this is to configure the local build cache to us a temporary directory.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

Page 480 of 777

Example 411. Clean build cache between tests

BuildLogicFunctionalTest.groovy

@Rule TemporaryFolder testProjectDir = TemporaryFolder()final new

File buildFile

File localBuildCacheDirectory

def setup() {

 localBuildCacheDirectory = testProjectDir.newFolder()'local-cache'

 testProjectDir.newFile() << 'settings.gradle' """

 buildCache {

 local {

 directory '${localBuildCacheDirectory.toURI()}'

 }

 }

 """

 buildFile = testProjectDir.newFile()'build.gradle'

}

Building JVM projects

Page 482 of 777

Java Quickstart

§

The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to

implement in your build script. Out-of-the-box, however, it doesn’t build anything unless you add code to your

build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run

some unit tests, and create a JAR file containing your classes. It would be nice if you didn’t have to code all

this up for every project. Luckily, you don’t have to. Gradle solves this problem through the use of . Aplugins

plugin is an extension to Gradle which configures your project in some way, typically by adding some

pre-configured tasks which together do something useful. Gradle ships with a number of plugins, and you

can easily write your own and share them with others. One such plugin is the . This plugin addsJava plugin

some tasks to your project which will compile and unit test your Java source code, and bundle it into a JAR

file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of

the project, such as where the Java source files are located. If you follow the convention in your project, you

generally don’t need to do much in your build script to get a useful build. Gradle allows you to customize

your project if you don’t want to or cannot follow the convention in some way. In fact, because support for

Java projects is implemented as a plugin, you don’t have to use the plugin at all to build a Java project, if you

don’t want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and

multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the Java

plugin to build a Java project.

§

A basic Java project

Let’s look at a simple example. To use the Java plugin, add the following to your build file:

Page 483 of 777

Example 412. Using the Java plugin

build.gradle

apply plugin: 'java'

Note: The code for this example can be found at in the ‘-all’samples/java/quickstart

distribution of Gradle.

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a

number of tasks to your project.

What tasks are available?

You can use to list the tasks of a project. This will let you see the tasks that thegradle tasks

Java plugin has added to your project.

Gradle expects to find your production source code under and your test source codesrc/main/java

under . In addition, any files under will be included in the JAR filesrc/test/java src/main/resources

as resources, and any files under will be included in the classpath used to run thesrc/test/resources

tests. All output files are created under the directory, with the JAR file ending up in the build build/libs

directory.

§

Building the project

The Java plugin adds quite a few tasks to your project. However, there are only a handful of tasks that you

will need to use to build the project. The most commonly used task is the task, which does a full buildbuild

of the project. When you run , Gradle will compile and test your code, and create a JAR filegradle build

containing your main classes and resources:

Example 413. Building a Java project

Output of gradle build

> gradle build

> Task :compileJava

> Task :processResources

> Task :classes

> Task :jar

> Task :assemble

> Task :compileTestJava

> Task :processTestResources

> Task :testClasses

> Task :test

> Task :check

> Task :build

BUILD SUCCESSFUL in 0s

6 actionable tasks: 6 executed

Page 484 of 777

Some other useful tasks are:

clean

Deletes the directory, removing all built files.build

assemble

Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.

For example, if you use the War plugin, this task will also build the WAR file for your project.

check

Compiles and tests your code. Other plugins add more checks to this task. For example, if you use the checkstyle

plugin, this task will also run Checkstyle against your source code.

§

External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in

the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a

. A repository can be used for fetching the dependencies of a project, or for publishing the artifactsrepository

of a project, or both. For this example, we will use the public Maven repository:

Example 414. Adding Maven repository

build.gradle

repositories {

 mavenCentral()

}

Let’s add some dependencies. Here, we will declare that our production classes have a compile-time

dependency on commons collections, and that our test classes have a compile-time dependency on junit:

Example 415. Adding dependencies

build.gradle

dependencies {

 compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2.2'

 testCompile group: , name: , version: 'junit' 'junit' '4.+'

}

You can find out more in .Dependency Management for Java Projects

Customizing the project

Page 485 of 777

§

Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are

usually sufficient to get started. It’s easy to change these values if they don’t suit. Let’s look at this for our

sample. Here we will specify the version number for our Java project, along with some attributes to the JAR

manifest.

Example 416. Customization of MANIFEST.MF

build.gradle

version = '1.0'

jar {

 manifest {

 attributes : ,'Implementation-Title' 'Gradle Quickstart'

 : version'Implementation-Version'

 }

}

What properties are available?

You can use to list the properties of a project. This will allow you to see thegradle properties

properties added by the Java plugin, and their default values.

The tasks which the Java plugin adds are regular tasks, exactly the same as if they were declared in the

build file. This means you can use any of the mechanisms shown in earlier chapters to customize these

tasks. For example, you can set the properties of a task, add behaviour to a task, change the dependencies

of a task, or replace a task entirely. In our sample, we will configure the task, which is of type , totest Test

add a system property when the tests are executed:

Example 417. Adding a test system property

build.gradle

test {

 systemProperties : 'property' 'value'

}

§

Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish

the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will

publish to a local directory. You can also publish to a remote location, or multiple locations.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html

Page 486 of 777

Example 418. Publishing the JAR file

build.gradle

uploadArchives {

 repositories {

 flatDir {

 dirs 'repos'

 }

 }

}

To publish the JAR file, run .gradle uploadArchives

§

Creating an Eclipse project

To create the Eclipse-specific descriptor files, like , you need to add another plugin to your build.project

file:

Example 419. Eclipse plugin

build.gradle

apply plugin: 'eclipse'

Now execute command to generate Eclipse project files. More information about the gradle eclipse eclipse

task can be found in .The Eclipse Plugins

§

Summary

Here’s the complete build file for our sample:

Page 487 of 777

Example 420. Java example - complete build file

build.gradle

apply plugin: 'java'

apply plugin: 'eclipse'

version = '1.0'

jar {

 manifest {

 attributes : ,'Implementation-Title' 'Gradle Quickstart'

 : version'Implementation-Version'

 }

}

repositories {

 mavenCentral()

}

dependencies {

 compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2.2'

 testCompile group: , name: , version: 'junit' 'junit' '4.+'

}

test {

 systemProperties : 'property' 'value'

}

uploadArchives {

 repositories {

 flatDir {

 dirs 'repos'

 }

 }

}

§

Multi-project Java build

Now let’s look at a typical multi-project build. Below is the layout for the project:

Page 488 of 777

Example 421. Multi-project build - hierarchical layout

Build layout

multiproject/

 api/

 services/webservice/

 shared/

 services/shared/

Note: The code for this example can be found at in the ‘-all’samples/java/multiproject

distribution of Gradle.

Here we have four projects. Project produces a JAR file which is shipped to the client to provide them aapi

Java client for your XML webservice. Project is a webapp which returns XML. Project webservice shared

contains code used both by and . Project has code that depends onapi webservice services/shared

the project.shared

§

Defining a multi-project build

To define a multi-project build, you need to create a . The settings file lives in the root directory ofsettings file

the source tree, and specifies which projects to include in the build. It must be called .settings.gradle

For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 422. Multi-project build - settings.gradle file

settings.gradle

include , , , "shared" "api" "services:webservice" "services:shared"

You can find out more about the settings file in .Authoring Multi-Project Builds

§

Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample, we

will define this common configuration in the root project, using a technique called .configuration injection

Here, the root project is like a container and the method iterates over the elements of thissubprojects

container - the projects in this instance - and injects the specified configuration. This way we can easily

define the manifest content for all archives, and some common dependencies:

Page 489 of 777

Example 423. Multi-project build - common configuration

build.gradle

subprojects {

 apply plugin: 'java'

 apply plugin: 'eclipse-wtp'

 repositories {

 mavenCentral()

 }

 dependencies {

 testCompile 'junit:junit:4.12'

 }

 version = '1.0'

 jar {

 manifest.attributes provider: 'gradle'

 }

}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration

properties we have seen in the previous section are available in each subproject. So, you can compile, test,

and JAR all the projects by running from the root project directory.gradle build

Also note that these plugins are only applied within the section, not at the root level, so thesubprojects

root build will not expect to find Java source files in the root project, only in the subprojects.

§

Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one

project is used to compile another project. In the build file we will add a dependency on the api shared

project. Due to this dependency, Gradle will ensure that project always gets built before project .shared api

Example 424. Multi-project build - dependencies between projects

api/build.gradle

dependencies {

 compile project()':shared'

}

See for how to disable this functionality.the section called “Disabling the build of dependency projects”

Creating a distribution

Page 490 of 777

§

Creating a distribution

We also add a distribution, that gets shipped to the client:

Example 425. Multi-project build - distribution file

api/build.gradle

task dist(type: Zip) {

 dependsOn spiJar

 from 'src/dist'

 into() {'libs'

 from spiJar.archivePath

 from configurations.runtime

 }

}

artifacts {

 archives dist

}

§

Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java based

project. This chapter is not exhaustive, and there are many other things you can do with Java projects in

Gradle. You can find out more about the Java plugin in , and you can find more sample JavaThe Java Plugin

projects in the directory in the Gradle distribution.samples/java

Otherwise, continue on to .Dependency Management for Java Projects

Page 491 of 777

Building Java & JVM projects

Gradle uses a convention-over-configuration approach to building JVM-based projects that borrows several

conventions from Apache Maven. In particular, it uses the same directory structure for source files and

resources, and it works with Maven-compatible repositories.

We will look at Java projects in detail in this chapter, but most of the topics apply to other supported JVM

languages as well, such as , and . If you don’t have much experience with buildingKotlin Groovy Scala

JVM-based projects with Gradle, take a look at the first as it will give you a good overview ofJava Quickstart

the basics.

§

Introduction

The simplest build script for a Java project applies the and optionally sets the project versionJava Plugin

and Java compatibility versions:

Example 426. Applying the Java Plugin

build.gradle

plugins {

 id 'java'

}

sourceCompatibility = '1.8'

targetCompatibility = '1.8'

version = '1.2.1'

By applying the Java Plugin, you get a whole host of features:

A task that compiles all the Java source files under compileJava src/main/java

A task for source files under compileTestJava src/test/java

A task that runs the unit tests from test src/test/java

A task that packages the compiled classes and resources from into a singlejar main src/main/resources

JAR named <project>-<version>.jar

A task that generates Javadoc for the classesjavadoc main

https://guides.gradle.org/building-kotlin-jvm-libraries/

Page 492 of 777

This isn’t sufficient to build any non-trivial Java project — at the very least, you’ll probably have some file

dependencies. But it means that your build script only needs the information that is specific to project.your

Note: Although the properties in the example are optional, we recommend that you specify them in

your projects. The compatibility options mitigate against problems with the project being built with

different Java compiler versions, and the version string is important for tracking the progression of

the project. The project version is also used in archive names by default.

The Java Plugin also integrates the above tasks into the standard :Base Plugin lifecycle tasks

jar is attached to assemble []

test is attached to check

The rest of the chapter explains the different avenues for customizing the build to your requirements. You

will also see later how to adjust the build for libraries, applications, web apps and enterprise apps.

§

Declaring your source files via source sets

Gradle’s Java support was the first to introduce a new concept for building source-based projects: source

. The main idea is that source files and resources are often logically grouped by type, such assets

application code, unit tests and integration tests. Each logical group typically has its own sets of file

dependencies, classpaths, and more. Significantly, the files that form a source set don’t have to be located

!in the same directory

Source sets are a powerful concept that tie together several aspects of compilation:

the source files and where they’re located

the compilation classpath, including any required dependencies

where the compiled class files are placed

You can see how these relate to one another in this diagram:

[]14

Page 493 of 777

Figure 25. Source sets and Java compilation

The shaded boxes represent properties of the source set itself. On top of that, the Java Plugin automatically

creates a compilation task for every source set you or a plugin defines — named compile JavaSourceSet

— and several .dependency configurations

The source setmain

Most language plugins, Java included, automatically create a source set called , which is usedmain

for the project’s production code. This source set is special in that its name is not included in the

names of the configurations and tasks, hence why you have just a task and compileJava compileOnly

and configurations rather than , and implementation compileMainJava mainCompileOnly mainImplementation

respectively.

Java projects typically include resources other than source files, such as properties files, that may need

processing — for example by replacing tokens within the files — and packaging within the final JAR. The

Java Plugin handles this by automatically creating a dedicated task for each defined source set called process ResourcesSourceSet

(or for the source set). The following diagram shows how the source set fits inprocessResources main

with this task:

Figure 26. Processing non-source files for a source set

As before, the shaded boxes represent properties of the source set, which in this case comprises the

locations of the resource files and where they are copied to.

Page 494 of 777

In addition to the source set, the Java Plugin defines a source set that represents the project’smain test

tests. This source set is used by the task, which runs the tests. You can learn more about this task andtest

related topics in the chapter.Java testing

Projects typically use this source set for unit tests, but you can also use it for integration, acceptance and

other types of test if you wish. That said, most projects for those other test typesdefine new source sets

because they require special setup or classpaths.

You’ll learn more about source sets and the features they provide in:

Customizing file and directory locations

Configuring Java integration tests

We also discuss when and how to .create your own custom source sets

§

Managing your dependencies

The vast majority of Java projects rely on libraries, so managing a project’s dependencies is an important

part of building a Java project. Dependency management is a big topic, so we will focus on the basics for

Java projects here. If you’d like to dive into the detail, check out the introduction to dependency management

.

Specifying the dependencies for your Java project requires just three pieces of information:

Which dependency you need, such as a name and version

What it’s needed for, e.g. compilation or running

Where to look for it

The first two are specified in a block and the second in a block.dependencies {} repositories {}

For example, to tell Gradle that your project requires version 3.6.7 of Core to compile and run yourHibernate

production code, and that you want to download the library from the Maven Central repository, you can use

the following fragment:

Example 427. Declaring dependencies

build.gradle

repositories {

 mavenCentral()

}

dependencies {

 implementation 'org.hibernate:hibernate-core:3.6.7.Final'

}

http://hibernate.org/

Page 495 of 777

The Gradle terminology for the three elements is as follows:

Repository (ex:) — where to look for the modules you declare as dependenciesmavenCentral()

Configuration (ex:) - a named collection of dependencies, grouped together for a specificimplementation

goal such as compiling or running a module — a more flexible form of Maven scopes

Module coordinate (ex:) — the ID of the dependency,org.hibernate:hibernate-core-3.6.7.Final

usually in the form ' : : ' (or ' : : ' in Maven<group> <module> <version> <groupId> <artifactId> <version>

terminology)

You can find a more comprehensive glossary of dependency management terms .here

As far as configurations go, the main ones of interest are:

compileOnly — for dependencies that are necessary to compile your production code but shouldn’t be

part of the runtime classpath

implementation (supersedes) — used for compilation and runtimecompile

runtimeOnly (supersedes) — only used at runtime, not for compilationruntime

testCompileOnly — same as except it’s for the testscompileOnly

testImplementation — test equivalent of implementation

testRuntimeOnly — test equivalent of runtimeOnly

You can learn more about these and how they relate to one another in the .plugin reference chapter

Be aware that the creates an additional configuration — — for dependencies thatJava Library Plugin api

are required for compiling both the module and any modules that depend on it.

Why no configuration?compile

The Java Plugin has historically used the configuration for dependencies that are requiredcompile

to both compile and run a project’s production code. It is now deprecated — although it won’t be

going away any time soon — because it doesn’t distinguish between dependencies that impact the

public API of a Java library project and those that don’t. You can learn more about the importance of

this distinction in .Building Java libraries

We have only scratched the surface here, so we recommend that you read the dedicated dependency

management chapters once you’re comfortable with the basics of building Java projects with Gradle. Some

common scenarios that require further reading include:

Defining a custom or repositoryMaven- Ivy-compatible

Using dependencies from a local filesystem directory

Page 496 of 777

1.

2.

3.

4.

5.

Declaring dependencies with (e.g. SNAPSHOT) and (range) versionschanging dynamic

Declaring a sibling project as a dependency

Controlling transitive dependencies and their versions

Testing your fixes to a 3rd-party dependency via (a better alternative to publishing to andcomposite builds

consuming from)Maven Local

You’ll discover that Gradle has a rich API for working with dependencies — one that takes time to master,

but is straightforward to use for common scenarios.

§

Compiling your code

Compiling both your production and test code can be trivially easy if you follow the conventions:

Put your production source code under the directorysrc/main/java

Put your test source code under src/test/java

Declare your production compile dependencies in the or configurationscompileOnly implementation

(see previous section)

Declare your test compile dependencies in the or testCompileOnly testImplementation

configurations

Run the task for the production code and for the testscompileJava compileTestJava

Other JVM language plugins, such as the one for , follow the same pattern of conventions. WeGroovy

recommend that you follow these conventions wherever possible, but you don’t have to. There are several

options for customization, as you’ll see next.

§

Customizing file and directory locations

Imagine you have a legacy project that uses an directory for the production code and for the testsrc test

code. The conventional directory structure won’t work, so you need to tell Gradle where to find the source

files. You do that via source set configuration.

Each source set defines where its source code resides, along with the resources and the output directory for

the class files. You can override the convention values by using the following syntax:

Page 497 of 777

Example 428. Declaring custom source directories

build.gradle

sourceSets {

 main {

 java {

 srcDirs = []'src'

 }

 }

 test {

 java {

 srcDirs = []'test'

 }

 }

}

Now Gradle will only search directly in and for the respective source code. What if you don’t want tosrc test

override the convention, but simply want to an extra source directory, perhaps one that contains someadd

third-party source code you want to keep separate? The syntax is similar:

Example 429. Declaring custom source directories additively

build.gradle

sourceSets {

 main {

 java {

 srcDir 'thirdParty/src/main/java'

 }

 }

}

Crucially, we’re using the here to append a directory path, whereas setting the method srcDir() srcDirs

property replaces any existing values. This is a common convention in Gradle: setting a property replaces

values, while the corresponding method appends values.

You can see all the properties and methods available on source sets in the DSL reference for SourceSet

and . Note that and are both on .SourceDirectorySet srcDirs srcDir() SourceDirectorySet

§

Changing compiler options

Most of the compiler options are accessible through the corresponding task, such as and compileJava compileTestJava

. These tasks are of type , so read the task reference for an up-to-date and comprehensiveJavaCompile

list of the options.

For example, if you want to use , use a separate JVM process for the compiler andincremental compilation

prevent compilation failures from failing the build, you can use this configuration:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Page 498 of 777

Example 430. Setting Java compiler options

build.gradle

compileJava {

 options.incremental = true

 options.fork = true

 options.failOnError = false

}

That’s also how you can change the verbosity of the compiler, disable debug output in the byte code and

configure where the compiler can find annotation processors.

Two common options for the Java compiler are defined at the project level:

sourceCompatibility

Defines which language version of Java your source files should be treated as.

targetCompatibility

Defines the minimum JVM version your code should run on, i.e. it determines the version of byte code

the compiler generates.

If you need or want more than one compilation task for any reason, you can either create a new source set

or simply define a new task of type . We look at setting up a new source set next.JavaCompile

§

Compiling and testing Java 6/7

Gradle can only run on Java version 7 or higher. However, support for running Gradle on Java 7 has been

deprecated and is scheduled to be removed in Gradle 5.0. There are two reasons for deprecating support for

Java 7:

Java 7 reached . Therefore, Oracle ceased public availability of security fixes and upgrades forend of life

Java 7 as of April 2015.

Once support for Java 7 has ceased (likely with Gradle 5.0), Gradle’s implementation can start to use Java 8

APIs optimized for performance and usability.

Gradle still supports compiling, testing, generating Javadoc and executing applications for Java 6 and Java

7. Java 5 is not supported.

To use Java 6 or Java 7, the following tasks need to be configured:

JavaCompile task to fork and use the correct Java home

Javadoc task to use the correct executablejavadoc

Test and the task to use the correct executable.JavaExec java

The following sample shows how the needs to be adjusted. In order to be able to make thebuild.gradle

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.oracle.com/technetwork/java/javase/eol-135779.html

Page 499 of 777

build machine-independent, the location of the old Java home and target version should be configured in GRADLE_USER_HOME/gradle.properties

 in the user’s home directory on each developer machine, as shown in the example.

Example 431. Configure Java 6 build

gradle.properties

in $HOME/.gradle/gradle.properties

javaHome=/Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home

targetJavaVersion=1.7

build.gradle

assert hasProperty(): 'javaHome' "Set the property 'javaHome' in your your gradle.properties pointing to a Java 6 or 7 installation"

assert hasProperty(): 'targetJavaVersion' "Set the property 'targetJavaVersion' in your your gradle.properties to '1.6' or '1.7'"

sourceCompatibility = targetJavaVersion

def javaExecutablesPath = File(javaHome,)new 'bin'

def javaExecutables = [:].withDefault { execName ->

 def executable = File(javaExecutablesPath, execName)new

 assert executable.exists(): "There is no ${execName} executable in ${javaExecutablesPath}"

 executable

}

tasks.withType(AbstractCompile) {

 options.with {

 fork = true

 forkOptions.javaHome = file(javaHome)

 }

}

tasks.withType(Javadoc) {

 executable = javaExecutables.javadoc

}

tasks.withType(Test) {

 executable = javaExecutables.java

}

tasks.withType(JavaExec) {

 executable = javaExecutables.java

}

§

Compiling independent sources separately

Most projects have at least two independent sets of sources: the production code and the test code. Gradle

already makes this scenario part of its Java convention, but what if you have other sets of sources? One of

the most common scenarios is when you have separate integration tests of some form or other. In that case,

a custom source set may be just what you need.

You can see a complete example for setting up integration tests in the . You can set upJava testing chapter

other source sets that fulfil different roles in the same way. The question then becomes: when should you

[]15

Page 500 of 777

1.

2.

3.

define a custom source set?

To answer that question, consider whether the sources:

Need to be compiled with a unique classpath

Generate classes that are handled differently from the and onesmain test

Form a natural part of the project

If your answer to both 3 and either one of the others is yes, then a custom source set is probably the right

approach. For example, integration tests are typically part of the project because they test the code in .main

In addition, they often have either their own dependencies independent of the source set or they needtest

to be run with a custom task.Test

Other common scenarios are less clear cut and may have better solutions. For example:

Separate API and implementation JARs — it may make sense to have these as separate projects,

particularly if you already have a multi-project build

Generated sources — if the resulting sources should be compiled with the production code, add their path(s)

to the source set and make sure that the task depends on the task that generates themain compileJava

sources

If you’re unsure whether to create a custom source set or not, then go ahead and do so. It should be

straightforward and if it’s not, then it’s probably not the right tool for the job.

§

Managing resources

Many Java projects make use of resources beyond source files, such as images, configuration files and

localization data. Sometimes these files simply need to be packaged unchanged and sometimes they need

to be processed as template files or in some other way. Either way, the Java Plugin adds a specific Copy

task for each source set that handles the processing of its associated resources.

The task’s name follows the convention of — or forprocess ResourcesSourceSet processResources

the source set — and it will automatically copy any files in to a directory thatmain src/[sourceSet]/resources

will be included in the production JAR. This target directory will also be included in the runtime classpath of

the tests.

Since is an instance of the task, you can perform any of the processingprocessResources Copy

described in the chapter.Working With Files

§

Java properties files and reproducible builds

You can easily create Java properties files via the task, which fixes a well-knownWriteProperties

problem with that can reduce the usefulness of .Properties.store() incremental builds

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.WriteProperties.html

Page 501 of 777

The standard Java API for writing properties files produces a unique file every time, even when the same

properties and values are used, because it includes a timestamp in the comments. Gradle’s WriteProperties

task generates exactly the same output byte-for-byte if none of the properties have changed. This is

achieved by a few tweaks to how a properties file is generated:

no timestamp comment is added to the output

the line separator is system independent, but can be configured explicitly (it defaults to)'\n'

the properties are sorted alphabetically

Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. You want to

be sure that building an artifact from source code produces the same result, byte for byte, no matter when

and where it is built. This is necessary for projects like reproducible-builds.org.

These tweaks not only lead to better incremental build integration, but they also help with reproducible builds

. In essence, reproducible builds guarantee that you will see the same results from a build execution —

including test results and production binaries — no matter when or on what system you run it.

§

Running tests

Alongside providing automatic compilation of unit tests in , the Java Plugin has native supportsrc/test/java

for running tests that use JUnit 3, 4 & 5 (JUnit 5 support) and TestNG. You get:came in Gradle 4.6

An automatic task of type , using the source settest Test test

An HTML test report that includes the results from tasks that runall Test

Easy filtering of which tests to run

Fine-grained control over how the tests are run

The opportunity to create your own test execution and test reporting tasks

You do get a task for every source set you declare, since not every source set represents tests!not Test

That’s why you typically need to for things like integration and acceptance testscreate your own tasksTest

if they can’t be included with the source set.test

As there is a lot to cover when it comes to testing, the topic has its in which we look at:own chapter

How tests are run

How to run a subset of tests via filtering

How Gradle discovers tests

How to configure test reporting and add your own reporting tasks

https://reproducible-builds.org
https://docs.gradle.org/4.6/release-notes.html#junit-5-support
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html

Page 502 of 777

How to make use of specific JUnit and TestNG features

You can also learn more about configuring tests in the DSL reference for .Test

§

Packaging and publishing

How you package and potentially publish your Java project depends on what type of project it is. Libraries,

applications, web applications and enterprise applications all have differing requirements. In this section, we

will focus on the bare bones provided by the Java Plugin.

The one and only packaging feature provided by the Java Plugin directly is a task that packages all thejar

compiled production classes and resources into a single JAR. This JAR is then added as an artifact — as

opposed to a dependency — in the configuration, hence why it is automatically built by the archives assemble

task.

If you want any other JAR or alternative archive built, you either have to apply an appropriate plugin or

create the task manually. For example, if you want a task that generates a 'sources' JAR, define your own Jar

task like so:

Example 432. Defining a custom task to create a 'sources' JAR

build.gradle

task sourcesJar(type: Jar) {

 classifier = 'sources'

 from sourceSets.main.allJava

}

See for more details on the configuration options available to you. And note that you need to use Jar classifier

rather than here for correct publication of the JAR.appendix

If you instead want to create an 'uber' (AKA 'fat') JAR, then you can use a task definition like this:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html

Page 503 of 777

Example 433. Creating a Java uber or fat JAR

build.gradle

plugins {

 id 'java'

}

version = '1.0.0'

repositories {

 mavenCentral()

}

dependencies {

 implementation 'commons-io:commons-io:2.6'

}

task uberJar(type: Jar) {

 appendix = 'uber'

 from sourceSets.main.output

 from configurations.runtimeClasspath.files.

 findAll { it.name.endsWith() }.'jar'

 collect { zipTree(it) }

}

There are several options for publishing a JAR once it has been created:

the task — the — which works with both Ivy and (if youuploadArchives original publishing mechansim

apply the) MavenMaven Plugin

the Maven Publish Plugin

the Ivy Publish Plugin

The latter two "Publish" plugins are the preferred options you need to sign POMs, for example whenunless

publishing to Maven Central. In that case, you need to use the original mechanism with the Maven Plugin.

§

Modifying the JAR manifest

Each instance of the , and tasks has a property that allows you to customize the Jar War Ear manifest

 file that goes into the corresponding archive. The following example demonstrates how toMANIFEST.MF

set attributes in the JAR’s manifest:

Page 504 of 777

Example 434. Customization of MANIFEST.MF

build.gradle

jar {

 manifest {

 attributes(: ,"Implementation-Title" "Gradle"

 : version)"Implementation-Version"

 }

}

See for the configuration options it provides.Manifest

You can also create standalone instances of . One reason for doing so is to share manifestManifest

information between JARs. The following example demonstrates how to share common attributes between

JARs:

Example 435. Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {

 attributes(: ,"Implementation-Title" "Gradle"

 : version)"Implementation-Version"

}

task fooJar(type: Jar) {

 manifest = project.manifest {

 from sharedManifest

 }

}

Another option available to you is to merge manifests into a single object. Those sourceManifest

manifests can take the form of a text for or another object. In the following example, the sourceManifest

manifests are all text files except for , which is the object from the previoussharedManifest Manifest

example:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/Manifest.html

Page 505 of 777

Example 436. Separate MANIFEST.MF for a particular archive

build.gradle

task barJar(type: Jar) {

 manifest {

 attributes key1: 'value1'

 from sharedManifest, 'src/config/basemanifest.txt'

 from(,'src/config/javabasemanifest.txt'

) {'src/config/libbasemanifest.txt'

 eachEntry { details ->

 (details.baseValue != details.mergeValue) {if

 details.value = baseValue

 }

 (details.key ==) {if 'foo'

 details.exclude()

 }

 }

 }

 }

}

Manifests are merged in the order they are declared in the statement. If the base manifest and thefrom

merged manifest both define values for the same key, the merged manifest wins by default. You can fully

customize the merge behavior by adding actions in which you have access to a eachEntry

 instance for each entry of the resulting manifest. Note that the merge is doneManifestMergeDetails

lazily, either when generating the JAR or when or Manifest.writeTo() Manifest.getEffectiveManifest()

are called.

Speaking of , you can use that to easily write a manifest to disk at any time, like so:writeTo()

Example 437. Saving a MANIFEST.MF to disk

build.gradle

jar.manifest.writeTo()"$buildDir/mymanifest.mf"

§

Generating API documentation

The Java Plugin provides a task of type , that will generate standard Javadocs for alljavadoc Javadoc

your production code, i.e. whatever source is in the source set. The task supports the core Javadocmain

and standard doclet options described in the . See Javadoc reference documentation

 and for a complete list of those options.CoreJavadocOptions StandardJavadocDocletOptions

As an example of what you can do, imagine you want to use Asciidoc syntax in your Javadoc comments. To

do this, you need to add Asciidoclet to Javadoc’s doclet path. Here’s an example that does just that:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#options
http://www.gradle.org/docs/4.7/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

Page 506 of 777

Example 438. Using a custom doclet with Javadoc

build.gradle

configurations {

 asciidoclet

}

dependencies {

 asciidoclet 'org.asciidoctor:asciidoclet:1.+'

}

javadoc {

 options.docletpath = configurations.asciidoclet.files.toList()

 options.doclet = 'org.asciidoctor.Asciidoclet'

}

You don’t have to create a configuration for this, but it’s an elegant way to handle dependencies that are

required for a unique purpose.

You might also want to create your own Javadoc tasks, for example to generate API docs for the tests:

Example 439. Defining a custom Javadoc task

build.gradle

task testJavadoc(type: Javadoc) {

 source = sourceSets.test.allJava

}

These are just two non-trivial but common customizations that you might come across.

§

Cleaning the build

The Java Plugin adds a task to your project by virtue of applying the . This task simplyclean Base Plugin

deletes everything in the directory, hence why you should always put files generated by the$buildDir

build in there. The task is an instance of and you can change what directory it deletes by setting its Delete dir

property.

§

Building Java libraries

The unique aspect of library projects is that they are used (or "consumed") by other Java projects. That

means the dependency metadata published with the JAR file — usually in the form of a Maven POM — is

crucial. In particular, consumers of your library should be able to distinguish between two different types of

dependencies: those that are only required to compile your library and those that are also required to

compile the consumer.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html

Page 507 of 777

Gradle manages this distinction via the , which introduces an configuration in additionJava Library Plugin api

to the one covered in this chapter. If the types from a dependency appear in public fields orimplementation

methods of your library’s public classes, then that dependency is exposed via your library’s public API and

should therefore be added to the configuration. Otherwise, the dependency is an internal implementationapi

detail and should be added to .implementation

Note: that the Java Library Plugin automatically applies the standard Java Plugin as well.

You can learn more about these configurations and other aspects of building Java libraries in the plugin’s

chapter. In addition, you can see a basic, practical example of building a Java library in the corresponding

.guide

§

Building Java applications

Java applications packaged as a JAR aren’t set up for easy launching from the command line or a desktop

environment. The solves the command line aspect by creating a distribution that includesApplication Plugin

the production JAR, its dependencies and launch scripts Unix-like and Windows systems.

See the plugin’s chapter for more details, but here’s a quick summary of what you get:

assemble creates ZIP and TAR distributions of the application containing everything needed to run it

A task that starts the application from the build (for easy testing)run

Shell and Windows Batch scripts to start the application

Note that you will need to explicitly apply the Java Plugin in your build script.

You can see a basic example of building a Java application in the corresponding .guide

§

Building Java web applications

Java web applications can be packaged and deployed in a number of ways depending on the technology

you use. For example, you might use with a fat JAR or a -based system running on Spring Boot Reactive

. Whatever technology you use, Gradle and its large community of plugins will satisfy your needs. CoreNetty

Gradle, though, only directly supports traditional Servlet-based web applications deployed as WAR files.

That support comes via the , which automatically applies the Java Plugin and adds an extraWar Plugin

packaging step that does the following:

Copies static resources from into the root of the WARsrc/main/webapp

Copies the compiled production classes into a subdirectory of the WARWEB-INF/classes

Copies the library dependencies into a subdirectory of the WARWEB-INF/lib

https://guides.gradle.org/building-java-libraries/
https://guides.gradle.org/building-java-libraries/
https://guides.gradle.org/building-java-applications/
https://projects.spring.io/spring-boot/
https://www.reactivemanifesto.org/
https://netty.io/

Page 508 of 777

This is done by the task, which effectively replaces the task — although that task remains — and iswar jar

attached to the lifecycle task. See the plugin’s chapter for more details and configuration options.assemble

There is no core support for running your web application directly from the build, but we do recommend that

you try the community plugin, which provides an embedded Servlet container.Gretty

§

Building Java enterprise applications

Java enterprise systems have changed a lot over the years, but if you’re still deploying to JEE application

servers, you can make use of the . This adds conventions and a task for building EAR files. TheEar Plugin

plugin’s chapter has more details.

[] In fact, any artifact added to the configuration will be built by archives assemble

[] For more details on see gradle.properties the section called “Gradle properties”

[] 14

[] 15

https://plugins.gradle.org/plugin/org.gretty

Page 509 of 777

Testing in Java & JVM projects

Testing on the JVM is a rich subject matter. There are many different testing libraries and frameworks, as

well as many different types of test. All need to be part of the build, whether they are executed frequently or

infrequently. This chapter is dedicated to explaining how Gradle handles differing requirements between and

within builds, with significant coverage of how it integrates with the two most common testing frameworks:

 and .JUnit TestNG

§

Test execution

Gradle executes tests in a separate ('forked') JVM, isolated from the main build process. This prevents

classpath pollution and excessive memory consumption for the build process. It also allows you to run the

tests with different JVM arguments than the build is using.

You can control how the test process is launched via several properties on the task, including theTest

following:

 — default: 1maxParallelForks

You can run your tests in parallel by setting this property to a value greater than 1. This may make your

test suites complete faster, particularly if you run them on a multi-core CPU. When using parallel test

execution, make sure your tests are properly isolated from one another. Tests that interact with the

filesystem are particularly prone to conflict, causing intermittent test failures.

Your tests can distinguish between parallel test processes by using the value of the org.gradle.test.worker

property, which is unique for each process. You can use this for anything you want, but it’s particularly

useful for filenames and other resource identifiers to prevent the kind of conflict we just mentioned.

 - default: 0 (no maximum)forkEvery

This property specifies the maximum number of test classes that Gradle should run on a test process

before its disposed of and a fresh one created. This is mainly used as a way to manage leaky tests or

frameworks that have static state that can’t be cleared or reset between tests.

Warning: a low value (other than 0) can severely hurt the performance of the tests

 — default: falseignoreFailures

If this property is , Gradle will continue with the project’s build once the tests have completed, eventrue

if some of them have failed. Note that, by default, the task always executes every test that itTest

detects, irrespective of this setting.

https://junit.org/
https://testng.org/

Page 510 of 777

 — (since Gradle 4.6) default: falsefailFast

Set this to if you want the build to fail and finish as soon as one of your tests fails. This can save atrue

lot of time when you have a long-running test suite and is particularly useful when running the build on

continuous integration servers. When a build fails before all tests have run, the test reports only include

the results of the tests that have completed, successfully or not.

You can also enable this behavior by using the command line option.--fail-fast

 — default: testLogging not set

This property represents a set of options that control which test events are logged and at what level. You

can also configure other logging behavior via this property. See for moreTestLoggingContainer

detail.

See for details on all the available configuration options.Test

Note: The test process can exit unexpectedly if configured incorrectly. For instance, if the Java

executable does not exist or an invalid JVM argument is provided, the test process will fail to start.

Similarly, if a test makes programmatic changes to the test process, this can also cause unexpected

failures.

For example, issues may occur if a is modified in a test because Gradle’sSecurityManager

internal messaging depends on reflection and socket communication, which may be disrupted if the

permissions on the security manager change. In this particular case, you should restore the original SecurityManager

after the test so that the gradle test worker process can continue to function.

§

Debugging when running tests

On the few occasions that you want to debug your code while the tests are running, it can be helpful if you

can attach a debugger at that point. You can either set the property to or use the Test.getDebug() true --debug-jvm

command line option.

When debugging for tests is enabled, Gradle will start the test process suspended and listening on port

5005.

§

Test filtering

It’s a common requirement to run subsets of a test suite, such as when you’re fixing a bug or developing a

new test case. Gradle provides two mechanisms to do this:

Filtering (the preferred option)

Test inclusion/exclusion (based on , and friends)-Dtest.single test.include

Filtering supersedes the inclusion/exclusionmechanism, but you may still come across the latter in the wild.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

Page 511 of 777

With Gradle’s test filtering you can select tests to run based on:

A fully-qualified class name or fully qualified method name, e.g. , org.gradle.SomeTest org.gradle.SomeTest.someMethod

A simple class name or method name if the pattern starts with an upper-case letter, e.g. , SomeTest SomeTest.someMethod

(since Gradle 4.7)

'*' wildcard matching

You can enable filtering either in the build or via the command line option. Here’s an example of--tests

some filters that are applied every time the build runs:

Example 440. Filtering tests in the build script

build.gradle

test {

 filter {

 //include specific method in any of the tests

 includeTestsMatching "*UiCheck"

 //include all tests from package

 includeTestsMatching "org.gradle.internal.*"

 //include all integration tests

 includeTestsMatching "*IntegTest"

 }

}

For more details and examples of declaring filters in the build script, please see the reference.TestFilter

The command line option is especially useful for the classic single test method execution use case. When

you use , be aware that the inclusions declared in the build script are still honored. Also note that it--tests

is possible to supply multiple options, all of whose patterns will take effect. The following sections--tests

have several examples of using the command line option.

Note: Not all test frameworks play well with filtering. Some advanced, synthetic tests may not be

fully compatible. However, the vast majority of tests and use cases work perfectly well with Gradle’s

filtering mechanism.

The following two sections look at the specific cases of simple class/method names and fully-qualified

names.

§

Simple name pattern

Since 4.7, Gradle has treated a pattern starting with an uppercase letter as a simple class name, or a class

name + method name. For example, the following command lines run either all or exactly one of the tests in

the test case, regardless of what package it’s in:SomeTestClass

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/TestFilter.html

Page 512 of 777

Executes all tests in SomeTestClass

gradle test --tests SomeTestClass

Executes a single specified test in SomeTestClass

gradle test --tests SomeTestClass.someSpecificMethod

gradle test --tests SomeTestClass.*someMethod*

§

Fully-qualified name pattern

Prior to 4.7 or if the pattern doesn’t start with an uppercase letter, Gradle treats the pattern as fully-qualified.

So if you want to use the test class name irrespective of its package, you would use --tests *.SomeTestClass

. Here are some more examples:

specific class

gradle test --tests org.gradle.SomeTestClass

specific class and method

gradle test --tests org.gradle.SomeTestClass.someSpecificMethod

method name containing spaces

gradle test --tests "org.gradle.SomeTestClass.some method containing spaces"

all classes at specific package (recursively)

gradle test --tests 'all.in.specific.package*'

specific method at specific package (recursively)

gradle test --tests 'all.in.specific.package*.someSpecificMethod'

gradle test --tests '*IntegTest'

gradle test --tests '*IntegTest*ui*'

gradle test --tests '*ParameterizedTest.foo*'

the second iteration of a parameterized test

gradle test --tests '*ParameterizedTest.*[2]'

Note that the wildcard '*' has no special understanding of the '.' package separator. It’s purely text based. So --tests *.SomeTestClass

will match any package, regardless of its 'depth'.

You can also combine filters defined at the command line with to re-execute a subset ofcontinuous build

tests immediately after every change to a production or test source file. The following executes all tests in

the 'com.mypackage.foo' package or subpackages whenever a change triggers the tests to run:

gradle test --continuous --tests "com.mypackage.foo.*"

Single test execution via System Properties

Page 513 of 777

§

Single test execution via System Properties

Note: This mechanism has been superseded by 'Test Filtering', described above. We only include it

in case you encounter it in online forums and blogs.

Test inclusions/exclusions are a file-based — as opposed to a class name-based — mechanism for

selecting tests to run. It’s activated when you use the option on the-D .single=taskName <pattern>

command line, e.g. .-Dtest.single=MyTest

§

Test reporting

The task generates the following results by default:Test

An HTML test report

XML test results in a format compatible with the Ant JUnit report task — one that is supported by many other

tools, such as CI servers

An efficient binary format of the results used by the task to generate the other formatsTest

In most cases, you’ll work with the standard HTML report, which automatically includes the results from all

your tasks, even the ones you explicitly add to the build yourself. For example, if you add a taskTest Test

for integration tests, the report will include the results of both the unit tests and the integration tests if both

tasks are run.

Unlike with many of the testing configuration options, there are several project-level convention properties

. For example, you can change the destination of the test results and reports likethat affect the test reports

so:

Page 514 of 777

Example 441. Changing the default test report and results directories

build.gradle

reporting.baseDir = "my-reports"

testResultsDirName = "$buildDir/my-test-results"

task showDirs {

 doLast {

 logger.quiet(rootDir.toPath().relativize(project.reportsDir.toPath()).toString())

 logger.quiet(rootDir.toPath().relativize(project.testResultsDir.toPath()).toString())

 }

}

Output of gradle -q showDirs

> gradle -q showDirs

my-reports

build/my-test-results

Follow the link to the convention properties for more details.

There is also a standalone task type that you can use to generate a custom HTML test report.TestReport

All it requires are a value for and the test results you want included in the report. Here isdestinationDir

a sample which generates a combined report for the unit tests from all subprojects:

Example 442. Creating a unit test report for subprojects

build.gradle

subprojects {

 apply plugin: 'java'

 // Disable the test report for the individual test task

 test {

 reports.html.enabled = false

 }

}

task testReport(type: TestReport) {

 destinationDir = file()"$buildDir/reports/allTests"

 // Include the results from the `test` task in all subprojects

 reportOn subprojects*.test

}

You should note that the type combines the results from multiple test tasks and needs toTestReport

aggregate the results of individual test classes. This means that if a given test class is executed by multiple

test tasks, then the test report will include executions of that class, but it can be hard to distinguish individual

executions of that class and their output.

Test detection

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.TestReport.html

Page 515 of 777

§

Test detection

By default, Gradle will run all tests that it detects, which it does by inspecting the compiled test classes. This

detection uses different criteria depending on the test framework used.

For , Gradle scans for both JUnit 3 and 4 test classes. A class is considered to be a JUnit test if it:JUnit

Ultimately inherits from or TestCase GroovyTestCase

Is annotated with @RunWith

Contains a method annotated with or a super class does@Test

For , Gradle scans for methods annotated with .TestNG @Test

Note that abstract classes are not executed. In addition, be aware that Gradle scans up the inheritance tree

into jar files on the test classpath. So if those JARs contain test classes, they will also be run.

If you don’t want to use test class detection, you can disable it by setting the scanForTestClasses

property on to . When you do that, the test task uses only the and Test false includes excludes

properties to find test classes.

If is false and no include or exclude patterns are specified, Gradle defaults toscanForTestClasses

running any class that matches the patterns and , excluding those**/*Tests.class **/*Test.class

that match .**/Abstract*.class

Note: With , only and are used to filter test classes — JUnit Platform includes excludes scanForTestClasses

has no effect.

§

Test grouping

JUnit, JUnit Platform and TestNG allow sophisticated groupings of test methods.

JUnit 4.8 introduced the concept of categories for grouping JUnit 4 tests classes and methods.

 allows you to specify the JUnit categories you want toTest.useJUnit(org.gradle.api.Action)

include and exclude. For example, the following configuration includes tests in and excludesCategoryA

those in for the task:CategoryB test

[]16

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://junit.org/junit5/docs/current/user-guide
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useJUnit(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useJUnit(org.gradle.api.Action)

Page 516 of 777

Example 443. JUnit Categories

build.gradle

test {

 useJUnit {

 includeCategories 'org.gradle.junit.CategoryA'

 excludeCategories 'org.gradle.junit.CategoryB'

 }

}

JUnit Platform introduced to replace categories. You can specify the included/excluded tags via tagging

, as follows:Test.useJUnitPlatform(org.gradle.api.Action)

Example 444. JUnit Platform Tags

build.gradle

test {

 useJUnitPlatform {

 includeTags 'fast'

 excludeTags 'slow'

 }

}

The TestNG framework uses the concept of test groups for a similar effect. You can configure which test

groups to include or exclude during the test execution via the

 setting, as seen here:Test.useTestNG(org.gradle.api.Action)

Example 445. Grouping TestNG tests

build.gradle

test {

 useTestNG {

 excludeGroups 'integrationTests'

 includeGroups 'unitTests'

 }

}

§

Using JUnit 5

JUnit 5 is the latest version of the well-known JUnit test framework. Unlike its predecessor, JUnit 5 is

modularized and composed of several modules:

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage

The JUnit Platform serves as a foundation for launching testing frameworks on the JVM. JUnit Jupiter is the

combination of the new and for writing tests and extensions in JUnit 5.programming model extension model

[]17

http://junit.org/junit5/docs/current/user-guide
http://junit.org/junit5/docs/current/user-guide/#writing-tests-tagging-and-filtering
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useTestNG(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useTestNG(org.gradle.api.Action)
http://junit.org/junit5
http://junit.org/junit5/docs/current/user-guide/#writing-tests
http://junit.org/junit5/docs/current/user-guide/#extensions

Page 517 of 777

JUnit Vintage provides a for running JUnit 3 and JUnit 4 based tests on the platform.TestEngine

The following code enables JUnit Platform support in :build.gradle

Example 446. Enabling JUnit Platform to run your tests

build.gradle

test {

 useJUnitPlatform()

}

See for more details.Test.useJUnitPlatform()

Note: There are some known limitations of using JUnit 5 with Gradle, for example that tests in static

nested classes won’t be discovered and classes are still displayed by their class name instead of @DisplayName

. These will be fixed in future version of Gradle. If you find more, please tell us at

https://github.com/gradle/gradle/issues/new

§

Compiling and executing JUnit Jupiter tests

To enable JUnit Jupiter support in Gradle, all you need to do is add the following dependencies:

Example 447. JUnit Jupiter dependencies

build.gradle

dependencies {

 testImplementation 'org.junit.jupiter:junit-jupiter-api:5.1.0'

 testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.1.0'

}

You can then put your test cases into as normal and execute them with .src/test/java gradle test

§

Executing legacy tests with JUnit Vintage

If you want to run JUnit 3/4 tests on JUnit Platform, or even mix them with Jupiter tests, you should add extra

JUnit Vintage Engine dependencies:

Example 448. JUnit Vintage dependencies

build.gradle

dependencies {

 testImplementation 'org.junit.jupiter:junit-jupiter-api:5.1.0'

 testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.1.0'

 testCompileOnly 'junit:junit:4.12'

 testRuntimeOnly 'org.junit.vintage:junit-vintage-engine:5.1.0'

}

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform--
https://github.com/gradle/gradle/issues/new

Page 518 of 777

In this way, you can use to test JUnit 3/4 tests on JUnit Platform, without the need to rewritegradle test

them.

A sample of mixed tests can be found at in the '-all' distributionsamples/testing/junitplatform/mix

of Gradle.

§

Filtering test engine

JUnit Platform allows you to use different test engines. JUnit currently provides two TestEngine

implementations out of the box: and . You can also write and plug injunit-jupiter-engine junit-vintage-engine

your own implementation as documented .TestEngine here

By default, all test engines on the test runtime classpath will be used. To control specific test engine

implementations explicitly, you can add the following setting to your build script:

Example 449. Filter specific engines

build.gradle

test {

 useJUnitPlatform {

 includeEngines 'junit-vintage'

 // excludeEngines 'junit-jupiter'

 }

}

A test engine filtering sample can be found at in the '-all'samples/testing/junitplatform/engine

distribution of Gradle.

§

Test execution order in TestNG

TestNG allows explicit control of the execution order of tests when you use a file. Without such atestng.xml

file — or an equivalent one configured by — you can’t specifyTestNGOptions.getSuiteXmlBuilder()

the test execution order. However, what you do is control whether all aspects of a test — including itscan

associated and methods, such as those annotated with @BeforeXXX @AfterXXX @Before/AfterClass

and — are executed before the next test starts. You do this by setting the @Before/AfterMethod

 property to . If you set it to , you may encounterTestNGOptions.getPreserveOrder() true false

scenarios in which the execution order is something like: TestA.doBeforeClass() TestB.doBeforeClass()

 tests.TestA

While preserving the order of tests is the default behavior when directly working with files, the testng.xml

 that is used by Gradle’s TestNG integration executes tests in unpredictable order by default.TestNG API

The ability to preserve test execution order was introduced with TestNG version 5.14.5. Setting the preserveOrder

property to for an older TestNG version will cause the build to fail.true

[]18

https://junit.org/junit5/docs/current/api/org/junit/jupiter/engine/package-summary.html
https://junit.org/junit5/docs/current/api/org/junit/vintage/engine/package-summary.html
https://junit.org/junit5/docs/current/user-guide/#launcher-api-engines-custom
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getSuiteXmlBuilder--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getPreserveOrder--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getPreserveOrder--
https://jitpack.io/com/github/cbeust/testng/master/javadoc/org/testng/TestNG.html

Page 519 of 777

1.

Example 450. Preserving order of TestNG tests

build.gradle

test {

 useTestNG {

 preserveOrder true

 }

}

The property controls whether tests should be grouped by instance rather than bygroupByInstance

class. The explains the difference in more detail, but essentially, if you have a testTestNG documentation

method that depends on , grouping by instance ensures that each A-B pairing, e.g. - , isA() B() B(1) A(1)

executed before the next pairing. With group by class, all methods are run and then all ones.B() A()

Note that you typically only have more than one instance of a test if you’re using a data provider to

parameterize it. Also, grouping tests by instances was introduced with TestNG version 6.1. Setting the groupByInstances

property to for an older TestNG version will cause the build to fail.true

Example 451. Grouping TestNG tests by instances

build.gradle

test {

 useTestNG {

 groupByInstances true

 }

}

§

TestNG parameterized methods and reporting

TestNG supports , allowing a particular test method to be executed multipleparameterizing test methods

times with different inputs. Gradle includes the parameter values in its reporting of the test method

execution.

Given a parameterized test method named that takes two parameters, it will be reported withaTestMethod

the name . This makes it easyaTestMethod(toStringValueOfParam1, toStringValueOfParam2)

to identify the parameter values for a particular iteration.

§

Configuring integration tests

A common requirement for projects is to incorporate integration tests in one form or another. Their aim is to

verify that the various parts of the project are working together properly. This often means that they require

special execution setup and dependencies compared to unit tests.

The simplest way to add integration tests to your build is by taking these steps:

http://testng.org/doc/documentation-main.html#dependencies-with-annotations
http://testng.org/doc/documentation-main.html#parameters

Page 520 of 777

1.

2.

3.

Create a new source set for them

Add the required dependencies to the appropriate configurations for that source set

Configure the compilation and runtime classpaths for that source set

You may also need to perform some additional configuration depending on what form the integration tests

take. We will discuss those as we go.

Here’s a practical example that implements the above steps in a build script:

Example 452. Setting up working integration tests

build.gradle

sourceSets {

 intTest {

 java.srcDir file()'src/intTest/java'

 resources.srcDir file()'src/intTest/resources'

 compileClasspath += sourceSets.main.output + configurations.testRuntime

 runtimeClasspath += output + compileClasspath

 }

}

configurations {

 intTestImplementation.extendsFrom implementation

}

dependencies {

 intTestImplementation 'junit:junit:4.12'

}

This will set up a new source set called that automatically creates:intTest

intTestImplementation, , configurations (and intTestCompileOnly intTestRuntimeOnly a few

 that are less commonly needed)others

A task that will compile all the source files under compileIntTestJava src/intTest/java

The example also does the following:

Adds the production classes from the source set to the compilation and runtime classpaths of themain

integration tests — is a of all the directories containing compiledsourceSets.main.output file collection

production classes and resources

Makes the configuration extend from , which means that allintTestImplementation implementation

the declared dependencies of the production code also become dependencies of the integration tests

Another common step is to attach all the unit test dependencies to the integration tests as well — via intTestImplementation.extendsFrom testImplementation

— but that only makes sense if the integration tests require all the dependencies that the unit tests have.

Page 521 of 777

There are a couple of other facets of the example you should take note of:

+= allows you to append paths and collections of pAths to and compileClasspath runtimeClasspath

instead of overwriting them

If you want to use the convention-based configurations, such as , you intTestImplementation must

declare the dependencies the new source setafter

Creating and configuring a source set automatically sets up the compilation stage, but it does nothing with

respect to running the integration tests. So the last piece of the puzzle is a custom test task that uses the

information from the new source set to configure its runtime classpath and the test classes:

Example 453. Defining a working integration test task

build.gradle

task integrationTest(type: Test) {

 description = 'Runs integration tests.'

 group = 'verification'

 testClassesDirs = sourceSets.intTest.output.classesDirs

 classpath = sourceSets.intTest.runtimeClasspath

 mustRunAfter test

}

check.dependsOn integrationTest

Again, we’re accessing a source set to get the relevant information, i.e. where the compiled test classes are

— the property — and what needs to be on the classpath when running them — testClassesDir classpath

.

[] The JUnit wiki contains a detailed description on how to work with JUnit categories:

.https://github.com/junit-team/junit/wiki/Categories

[] The TestNG documentation contains more details about test groups:

.http://testng.org/doc/documentation-main.html#test-groups

[] The TestNG documentation contains more details about test ordering when working with testng.xml

files: .http://testng.org/doc/documentation-main.html#testng-xml

[] 16

[] 17

[] 18

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#testng-xml

Page 522 of 777

The Base Plugin

The Base Plugin provides some tasks and conventions that are common to most builds and adds a structure

to the build that promotes consistency in how they are run. Its most significant contribution is a set of

 that act as an umbrella for the more specific tasks provided by other plugins and build taskslifecycle

authors.

§

Usage

Example 454. Applying the Base Plugin

build.gradle

plugins {

 id 'base'

}

Tasks

Page 523 of 777

§

Tasks

 — type: clean Delete

Deletes the build directory and everything in it, i.e. the path specified by the Project.getBuildDir()

project property.

 — check lifecycle task

Plugins and build authors should attach their verification tasks, such as ones that run tests, to this

lifecycle task using .check.dependsOn()task

 — assemble lifecycle task

Plugins and build authors should attach tasks that produce distributions and other consumable artifacts to

this lifecycle task. For example, produces the consumable artifact for Java libraries. Attach tasks tojar

this lifecycle task using .assemble.dependsOn()task

 — build lifecycle task

(Depends on and) Intended to build everything, including running all tests, producingassemble check

the production artifacts and generating documentation. You will probably rarely attach concrete tasks

directly to as and are typically more appropriate.build assemble check

 — task rulebuildConfiguration

Assembles those artifacts attached to the named configuration. For example, willbuildArchives

execute any task that is required to create any artifact attached to the configuration.archives

 — task ruleuploadConfiguration

Does the same as , but also uploads all the artifacts attached to the givenbuildConfiguration

configuration.

 — task rulecleanTask

Removes the of a task, e.g. will delete the JAR file produced by the taskdefined outputs cleanJar jar

of the Java Plugin.

§

Dependency management

The Base Plugin adds no , but it does add the following configurations for configurations for dependencies

:artifacts

default

A fallback configuration used by consumer projects. Let’s say you have project B with a project

 on project A. Gradle uses some internal logic to determine which of project A’s artifacts anddependency

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir

Page 524 of 777

dependencies are added to the specified configuration of project B. If no other factors apply — you don’t

need to worry what these are — then Gradle falls back to using everything in project A’s default

configuration.

New builds and plugins should not be using the configuration!default It remains for the reason of

backwards compatibility.

archives

A standard configuration for the production artifacts of a project. This results in an uploadArchives

task for publishing artifacts attached to the configuration.archives

Note that the task generates all artifacts that are attached to the configuration.assemble archives

§

Conventions

The Base Plugin only adds conventions related to the creation of archives, such as ZIPs, TARs and JARs.

Specifically, it provides the following project properties that you can set:

 — default: archivesBaseName $project.name

Provides the default for archive tasks.AbstractArchiveTask.getBaseName()

 — default: distsDirName distributions

Default name of the directory in which distribution archives, i.e. non-JARs, are created.

 — default: libsDirName libs

Default name of the directory in which library archives, i.e. JARs, are created.

The plugin also provides default values for the following properties on any task that extends

:AbstractArchiveTask

destinationDir

Defaults to for non-JAR archives and for/$buildDir $distsDirName /$buildDir $libsDirName

JARs and derivatives of JAR, such as WARs.

version

Defaults to or 'unspecified' if the project has no version.$project.version

baseName

Defaults to .$archivesBaseName

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:baseName
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

Page 525 of 777

The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as

the basis for many of the other Gradle plugins.

§

Usage

To use the Java plugin, include the following in your build script:

Example 455. Using the Java plugin

build.gradle

apply plugin: 'java'

§

Project layout

The Java plugin assumes the project layout shown below. None of these directories need to exist or have

anything in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 33. Java plugin - default project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/test/java Test Java source

src/test/resources Test resources

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

Changing the project layout

Page 526 of 777

§

Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in more detail in

the following sections. Here is a brief example which changes the main Java and resource source

directories.

Example 456. Custom Java source layout

build.gradle

sourceSets {

 main {

 java {

 srcDirs = []'src/java'

 }

 resources {

 srcDirs = []'src/resources'

 }

 }

}

§

Source sets

The plugin adds the following :source sets

main

Contains the production source code of the project, which is compiled and assembled into a JAR.

test

Contains your test source code, which is compiled and executed using JUnit or TestNG. These are

typically unit tests, but you can include any test in this source set as long as they all share the same

compilation and runtime classpaths.

§

Source set properties

The following table lists some of the important properties of a source set. You can find more details in the

API documentation for .SourceSet

(read-only) String name

The name of the source set, used to identify it. Default value: Not null

(read-only) outputSourceSetOutput

The output files of the source set, containing its compiled classes and resources. Default value: Not null

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceSetOutput.html

Page 527 of 777

 output.classesDirsFileCollection

The directories to generate the classes of this source set into. Default value: Not null

File output.resourcesDir

The directory to generate the resources of this source set into. Default value: /resources/buildDir name

 compileClasspathFileCollection

The classpath to use when compiling the source files of this source set. Default value: CompileClasspathsourceSet

configuration.

 annotationProcessorPathFileCollection

The processor path to use when compiling the source files of this source set. Default value: AnnotationProcessorsourceSet

configuration.

 runtimeClasspathFileCollection

The classpath to use when executing the classes of this source set. Default value: + output RuntimeClasspathsourceSet

configuration.

(read-only) javaSourceDirectorySet

The Java source files of this source set. Contains only files found in the Java source directories,.java

and excludes all other files. Default value: Not null

Set<File> java.srcDirs

The source directories containing the Java source files of this source set. Default value: [/src/ /java]projectDir name

. Can set using anything described in the section called “Understanding implicit conversion to file

.collections”

File java.outputDir

The directory to generate compiled Java sources into. Default value: /classes/java/buildDir sourceSetName

. Can set using anything described in .the section called “File paths in depth”

(read-only) resourcesSourceDirectorySet

The resources of this source set. Contains only resources, and excludes any files found in the.java

resource source directories. Other plugins, such as the Groovy plugin, exclude additional types of files

from this collection. Default value: Not null

Set<File> resources.srcDirs

The source directories containing the resources of this source set. Default value: [/src/ /resources]projectDir name

. Can set using anything described in the section called “Understanding implicit conversion to file

.collections”

(read-only) allJavaSourceDirectorySet

All files of this source set. Some plugins, such as the Groovy plugin, add additional Java source.java

files to this collection. Default value: java

(read-only) allSourceSourceDirectorySet

All source files of this source set. This include all resource files and all Java source files. Some plugins,

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html

Page 528 of 777

such as the Groovy plugin, add additional source files to this collection. Default value: resources + java

§

Defining new source sets

See the in the chapter.integration test example Testing in Java & JVM projects

§

Some other simple source set examples

Adding a JAR containing the classes of a source set:

Example 457. Assembling a JAR for a source set

build.gradle

task intTestJar(type: Jar) {

 from sourceSets.intTest.output

}

Generating Javadoc for a source set:

Example 458. Generating the Javadoc for a source set

build.gradle

task intTestJavadoc(type: Javadoc) {

 source sourceSets.intTest.allJava

}

Adding a test suite to run the tests in a source set:

Example 459. Running tests in a source set

build.gradle

task intTest(type: Test) {

 testClassesDirs = sourceSets.intTest.output.classesDirs

 classpath = sourceSets.intTest.runtimeClasspath

}

§

Tasks

The Java plugin adds a number of tasks to your project, as shown below.

compileJava(type:)JavaCompile

Compiles production Java source files using javac. Depends on all tasks which produce the compile

classpath. This includes the task for project dependencies included in the configuration.jar compile

processResources(type:)Copy

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html

Page 529 of 777

Copies production resources into the production resources directory.

classes(type:)Task

Assembles the production classes and resources directories.

compileTestJava(type:)JavaCompile

Compiles test Java source files using javac. Depends on , plus all tasks which produce the testcompile

compile classpath.

processTestResources(type:)Copy

Copies test resources into the test resources directory.

testClasses(type:)Task

Assembles the test classes and resources directories. Depends on task and compileTestJava processTestResources

task. Some plugins add additional test compilation tasks.

jar(type:)Jar

Assembles the JAR file. Depends on .compile

javadoc(type:)Javadoc

Generates API documentation for the production Java source, using Javadoc . Depends on .compile

test(type:)Test

Runs the unit tests using JUnit or TestNG. Depends on , , plus all tasks whichcompile compileTest

produce the test runtime classpath.

uploadArchives(type:)Upload

Uploads artifacts in the configuration, including the JAR file.archives Depends on the tasks which

produce the artifacts in the configuration, including .archives jar

clean(type:)Delete

Deletes the project build directory.

clean (type:)TaskName Delete

Deletes files created by specified task. will delete the JAR file created by the task, and cleanJar jar cleanTest

will delete the test results created by the task.test

For each source set you add to the project, the Java plugin adds the following compilation tasks:

SourceSet Tasks

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html

Page 530 of 777

§

SourceSet Tasks

compile Java(type:)SourceSet JavaCompile

Compiles the given source set’s Java source files using javac. Depends on all tasks which produce the

source set’s compile classpath.

process Resources(type:)SourceSet Copy

Copies the given source set’s resources into the resources directory.

Classes(type:)sourceSet Task

Assembles the given source set’s classes and resources directories. Depends on the compile JavaSourceSet

task and the task. Some plugins add additional compilation tasks forprocess ResourcesSourceSet

the source set.

§

Lifecycle Tasks

The Java plugin also adds a number of tasks which form a lifecycle for the project:

assemble(type:)Task

Assembles all the archives in the project. Depends on all archive tasks in the project, including .jar

Some plugins add additional archive tasks to the project.

check(type:)Task

Performs all verification tasks in the project. Depends on all verification tasks in the project, including test

. Some plugins add additional verification tasks to the project.

build(type:)Task

Performs a full build of the project. Depends on and .check assemble

buildNeeded(type:)Task

Performs a full build of the project and all projects it depends on. Depends on and build buildNeeded

tasks in all project lib dependencies of the configuration.testRuntime

buildDependents(type:)Task

Performs a full build of the project and all projects which depend on it. Depends on and build buildDependents

tasks in all projects with a project lib dependency on this project in a configuration.testRuntime

build (type:)ConfigName Task

Assembles the artifacts in the specified configuration. The task is added by the Base plugin which is

implicitly applied by the Java plugin. Depends on the tasks which produce the artifacts in configuration

.ConfigName

upload (type:)ConfigName Upload

Assembles and uploads the artifacts in the specified configuration. The task is added by the Base plugin

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Upload.html

Page 531 of 777

which is implicitly applied by the Java plugin. Depends on the tasks which uploads the artifacts in

configuration .ConfigName

The following diagram shows the relationships between these tasks.

Figure 27. Java plugin - tasks

§

Dependency management

The Java plugin adds a number of to your project, as shown below. It assignsdependency configurations

those configurations to tasks such as and .compileJava test

§

Dependency configurations

Note: To find information on the configuration, please consult the referenceapi Java Library Plugin

documentation and the .Dependency Management Tutorial

(Deprecated)compile

Compile time dependencies. Superseded by .implementation

 extends implementation compile

Implementation only dependencies.

compileOnly

Compile time only dependencies, not used at runtime.

 extends compileClasspath compile, compileOnly, implementation

Compile classpath, used when compiling source. Used by task .compileJava

annotationProcessor

Annotation processors used during compilation.

(Deprecated) extends runtime compile

Runtime dependencies. Superseded by .runtimeOnly

runtimeOnly

Page 532 of 777

Runtime only dependencies.

 extends runtimeClasspath runtimeOnly, runtime, implementation

Runtime classpath contains elements of the implementation, as well as runtime only elements.

(Deprecated) extends testCompile compile

Additional dependencies for compiling tests. Superseded by .testImplementation

 extends testImplementation testCompile, implementation

Implementation only dependencies for tests.

testCompileOnly

Additional dependencies only for compiling tests, not used at runtime.

 extends testCompileClasspath testCompile, testCompileOnly, testImplementation

Test compile classpath, used when compiling test sources. Used by task .compileTestJava

(Deprecated) extends testRuntime runtime, testCompile

Additional dependencies for running tests only. Used by task . Superseded by .test testRuntimeOnly

 extends testRuntimeOnly runtimeOnly

Runtime only dependencies for running tests. Used by task .test

 extends testRuntimeClasspath testRuntimeOnly, testRuntime, testImplementation

Runtime classpath for running tests.

archives

Artifacts (e.g. jars) produced by this project. Used by tasks .uploadArchives

 extends default runtime

The default configuration used by a project dependency on this project. Contains the artifacts and

dependencies required by this project at runtime.

Figure 28. Java plugin - dependency configurations

For each source set you add to the project, the Java plugins adds the following dependency configurations:

SourceSet dependency configurations

Page 533 of 777

§

SourceSet dependency configurations

(Deprecated)CompilesourceSet

Compile time dependencies for the given source set. Superseded by .ImplementationsourceSet

 extends ImplementationsourceSet CompilesourceSet

Compile time dependencies for the given source set. Used by CompileClasspath, RuntimeClasspathsourceSet sourceSet

.

CompileOnlysourceSet

Compile time only dependencies for the given source set, not used at runtime.

 extends CompileClasspathsourceSet compile JavaSourceSet

Compile classpath, used when compiling source. Used by Compile, CompileOnly, ImplementationsourceSet sourceSet sourceSet

.

AnnotationProcessorsourceSet

Annotation processors used during compilation of this source set.

(Deprecated)RuntimesourceSet

Runtime dependencies for the given source set. Used by . Superseded by CompilesourceSet RuntimeOnlysourceSet

.

RuntimeOnlysourceSet

Runtime only dependencies for the given source set.

 extends RuntimeClasspathsourceSet RuntimeOnly, Runtime, ImplementationsourceSet sourceSet sourceSet

Runtime classpath contains elements of the implementation, as well as runtime only elements.

§

Convention properties

The Java plugin adds a number of convention properties to the project, shown below. You can use these

properties in your build script as though they were properties of the project object.

Directory properties

Page 534 of 777

§

Directory properties

String reporting.baseDir

The name of the directory to generate reports into, relative to the build directory. Default value: reports

(read-only) File reportsDir

The directory to generate reports into. Default value: /buildDir reporting.baseDir

String testResultsDirName

The name of the directory to generate test result .xml files into, relative to the build directory. Default

value: test-results

(read-only) File testResultsDir

The directory to generate test result .xml files into. Default value: /buildDir testResultsDirName

String testReportDirName

The name of the directory to generate the test report into, relative to the reports directory. Default value: tests

(read-only) File testReportDir

The directory to generate the test report into. Default value: /testReportDirNamereportsDir

String libsDirName

The name of the directory to generate libraries into, relative to the build directory. Default value: libs

(read-only) File libsDir

The directory to generate libraries into. Default value: /buildDir libsDirName

String distsDirName

The name of the directory to generate distributions into, relative to the build directory. Default value: distributions

(read-only) File distsDir

The directory to generate distributions into. Default value: /buildDir distsDirName

String docsDirName: :_The name of the directory to generate documentation into, relative to the build

directory._ Default value: docs

(read-only) File docsDir

The directory to generate documentation into. Default value: /buildDir docsDirName

String dependencyCacheDirName

The name of the directory to use to cache source dependency information, relative to the build directory.

Default value: dependency-cache

Other convention properties

Page 535 of 777

§

Other convention properties

(read-only) sourceSetsSourceSetContainer

Contains the project’s source sets. Default value: Not null SourceSetContainer

 sourceCompatibilityJavaVersion

Java version compatibility to use when compiling Java source. Default value: version of the current JVM

in use . Can also set using a String or a Number, e.g. or .JavaVersion '1.5' 1.5

 targetCompatibilityJavaVersion

Java version to generate classes for. Default value: . Can also set using asourceCompatibility

String or Number, e.g. or .'1.5' 1.5

String archivesBaseName

The basename to use for archives, such as JAR or ZIP files. Default value: projectName

 manifestManifest

The manifest to include in all JAR files. Default value: an empty manifest.

These properties are provided by convention objects of type , and JavaPluginConvention

.BasePluginConvention

§

Javadoc

The task is an instance of . It supports the core Javadoc options and the options of thejavadoc Javadoc

standard doclet described in the of the Javadoc executable. For a complete list ofreference documentation

supported Javadoc options consult the API documentation of the following classes: CoreJavadocOptions

and .StandardJavadocDocletOptions

Javadoc properties

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

Page 536 of 777

§

Javadoc properties

 classpathFileCollection

Default value: + sourceSets.main.output sourceSets.main.compileClasspath

 sourceFileTree

Default value: . Can set using anything described in sourceSets.main.allJava the section called

.“Understanding implicit conversion to file collections”

File destinationDir

Default value: /javadocdocsDir

String title

Default value: The name and version of the project

§

Clean

The task is an instance of . It simply removes the directory denoted by its property.clean Delete dir

§

Clean properties

File dir

Default value: buildDir

§

Resources

The Java plugin uses the task for resource handling. It adds an instance for each source set in theCopy

project. You can find out more about the copy task in .the section called “File copying in depth”

§

ProcessResources properties

Object srcDirs

Default value: . Can set using anything described in .resourcessourceSet the section called

.“Understanding implicit conversion to file collections”

File destinationDir

Default value: . Can set using anything described in .output.resourcesDirsourceSet the section

.called “File paths in depth”

CompileJava

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html

Page 537 of 777

§

CompileJava

The Java plugin adds a instance for each source set in the project. Some of the mostJavaCompile

common configuration options are shown below.

§

Compile properties

 classpathFileCollection

Default value: .compileClasspathsourceSet

 sourceFileTree

Default value: . Can set using anything described in .javasourceSet the section called “Understanding

.implicit conversion to file collections”

File destinationDir

Default value: .java.outputDirsourceSet

By default, the Java compiler runs in the Gradle process. Setting to causesoptions.fork true

compilation to occur in a separate process. In the case of the Ant javac task, this means that a new process

will be forked for each compile task, which can slow down compilation. Conversely, Gradle’s direct compiler

integration (see above) will reuse the same compiler process as much as possible. In both cases, all fork

options specified with will be honored.options.forkOptions

§

Incremental Java compilation

Starting with Gradle 2.1, it is possible to compile Java incrementally. See the task forJavaCompile

information on how to enable it.

Main goals for incremental compilations are:

Avoid wasting time compiling source classes that don’t have to be compiled. This means faster builds,

especially when a change to a source class or a jar does not incur recompilation of many source classes that

depend on the changed input.

Change as few output classes as possible. Classes that don’t need to be recompiled remain unchanged in

the output directory. An example scenario when this is really useful is using JRebel - the fewer output

classes are changed the quicker the JVM can use refreshed classes.

The incremental compilation at a high level:

The stale class detection favors reliability over speed. The algorithm uses bytecode analysis and deals

gracefully with compiler optimizations (inlining of non-private constants), transitive class dependencies, etc.

Example: When a class with a public constant changes, we eagerly compile classes that use the same

constants to avoid problems with constants inlined by the compiler.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Page 538 of 777

To make incremental compilation fast, we cache class analysis results and jar snapshots. The initial

incremental compilation can be slower due to the cold caches.

§

Known issues

If a compile task fails due to a compile error, it will do a full compilation again the next time it is invoked.

Because of type erasure, the incremental compiler is not able to recognize when a type is only used in a

type parameter, and never actually used in the code. For example, imagine that you have the following code:

 but that no member of is in practice used inList<? extends A> list = Lists.newArrayList(); A

the code, then changes to will not trigger recompilation of the class. In practice, this should very rarely beA

an issue.

§

Incremental annotation processing

Starting with Gradle 4.7, the incremental compiler also supports incremental annotation processing.

Annotation processors need to opt in to this feature, otherwise they will trigger a full recompilation.

As a user you can see which annotation processors are triggering full recompilations in the log.--info

Incremental annotation processing will be deactivated if a custom or is configuredexecutable javaHome

on the compile task.

§

Making an annotation processor incremental

Gradle supports incremental compilation for two common categories of annotation processors: "Isolating"

and "Aggregating". As a processor author, please consult the information below to decide which category fits

your processor. You can then register it for incremental compilation in its META-INF folder. The format is

one line per processor, with the qualified name of the processor and its category separated by a comma.

Example 460. Registering incremental annotation processors

processor/src/main/resources/META-INF/gradle/incremental.annotation.processors

EntityProcessor,isolating

ServiceRegistryProcessor,aggregating

Processors that don’t fit these categories will result in full recompilation. This includes processors that use java.io

instead of the API and processors that need to read or write resource files.Filer

§

Isolating annotation processors

These look at each annotated element in isolation, creating generated files or validation messages for it. For

instance an could create a for each type annotated with EntityProcessor <TypeName>Repository @Entity

.

Page 539 of 777

Example 461. An isolated annotation processor

processor/src/main/java/EntityProcessor.java

Set<? Element> entities = roundEnv.getElementsAnnotatedWith(entityAnnotation);extends

 (Element entity : entities) {for

 createRepository((TypeElement) entity);

}

Isolating processors have the following limitations:

Can’t read resources

Can’t write resources

Can’t have any side effects except for using the and APIsFiler Messager

Can’t depend on compiler-specific APIs like com.sun.source.util.Trees

Must provide exactly one originating element for each file generated with the APIFiler

Must make all decisions about an element based on information reachable from its AST. For instance it can

query the super class, method return types etc, but can’t look at other, unrelated elements.

Gradle will recompile the generated file whenever the source file is affected. If the source file is deleted, the

generated file is deleted.

§

Aggregating annotation processors

These aggregate several source files into one ore more output files or validation messages. For instance, a ServiceRegistryProcessor

could create a single with one method for each type annotated with ServiceRegistry @Service

Example 462. An aggregating annotation processor

processor/src/main/java/ServiceRegistryProcessor.java

JavaFileObject serviceRegistry = filer.createSourceFile();"ServiceRegistry"

Writer writer = serviceRegistry.openWriter();

writer.write();"public class ServiceRegistry {"

 (Element service : roundEnv.getElementsAnnotatedWith(serviceAnnotation)) {for

 addServiceCreationMethod(writer, (TypeElement) service);

}

writer.write();"}"

writer.close();

Aggregating processors have the following limitations:

Its annotations need to have or retentionCLASS RUNTIME

Can’t read resources (this may change in the future)

Page 540 of 777

Can’t write resources (this may change in the future)

Can’t have any side effects except for using the and APIsFiler Messager

Can’t depend on compiler-specific APIs like com.sun.source.util.Trees

Can’t depend on information only available from source files (See comment on parameter names below)

Gradle will always reprocess (but not recompile) all annotated files that the processor was registered for. If

your aggregating processor requires access to parameter names, you need to instruct users to add the -parameters

compiler argument. Gradle will always recompile any files the processor generates.

§

Compile avoidance

If a dependent project has changed in an -compatible way (only its private API has changed), then JavaABI

compilation tasks will be up-to-date. This means that if project depends on project and a class in isA B B

changed in an ABI-compatible way (typically, changing only the body of a method), then Gradle won’t

recompile .A

Some of the types of changes that do not affect the public API and are ignored:

Changing a method body

Changing a comment

Adding, removing or changing private methods, fields, or inner classes

Adding, removing or changing a resource

Changing the name of jars or directories in the classpath

Renaming a parameter

Compile-avoidance is deactivated if annotation processors are found on the compile classpath, because for

annotation processors the implementation details matter. Annotation processors should be declared on the

annotation processor path instead. Gradle 5.0 will ignore processors on the compile classpath.

Example 463. Declaring annotation processors

build.gradle

dependencies {

 // The dagger compiler and its transitive dependencies will only be found on annotation processing classpath

 annotationProcessor 'com.google.dagger:dagger-compiler:2.8'

 // And we still need the Dagger library on the compile classpath itself

 implementation 'com.google.dagger:dagger:2.8'

}

Test

https://en.wikipedia.org/wiki/Application_binary_interface

Page 541 of 777

§

Test

The task is an instance of . It automatically detects and executes all unit tests in the sourcetest Test test

set. It also generates a report once test execution is complete. JUnit and TestNG are both supported. Have

a look at for the complete API.Test

See the chapter for more details.Testing in Java & JVM projects

§

Jar

The task creates a JAR file containing the class files and resources of the project. The JAR file isjar

declared as an artifact in the dependency configuration. This means that the JAR is available inarchives

the classpath of a dependent project. If you upload your project into a repository, this JAR is declared as part

of the dependency descriptor. You can learn more about how to work with archives in the section called

 and artifact configurations in .“Archive creation in depth” Publishing artifacts

§

Manifest

Each jar or war object has a property with a separate instance of . When the archive ismanifest Manifest

generated, a corresponding file is written into the archive.MANIFEST.MF

Example 464. Customization of MANIFEST.MF

build.gradle

jar {

 manifest {

 attributes(: ,"Implementation-Title" "Gradle"

 : version)"Implementation-Version"

 }

}

You can create stand-alone instances of a . You can use that for example, to share manifestManifest

information between jars.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/Manifest.html

Page 542 of 777

Example 465. Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {

 attributes(: ,"Implementation-Title" "Gradle"

 : version)"Implementation-Version"

}

task fooJar(type: Jar) {

 manifest = project.manifest {

 from sharedManifest

 }

}

You can merge other manifests into any object. The other manifests might be either described byManifest

a file path or, like in the example above, by a reference to another object.Manifest

Example 466. Separate MANIFEST.MF for a particular archive

build.gradle

task barJar(type: Jar) {

 manifest {

 attributes key1: 'value1'

 from sharedManifest, 'src/config/basemanifest.txt'

 from(,'src/config/javabasemanifest.txt'

) {'src/config/libbasemanifest.txt'

 eachEntry { details ->

 (details.baseValue != details.mergeValue) {if

 details.value = baseValue

 }

 (details.key ==) {if 'foo'

 details.exclude()

 }

 }

 }

 }

}

Manifests are merged in the order they are declared by the statement. If the base manifest and thefrom

merged manifest both define values for the same key, the merged manifest wins by default. You can fully

customize the merge behavior by adding actions in which you have access to a eachEntry

 instance for each entry of the resulting manifest. The merge is not immediatelyManifestMergeDetails

triggered by the from statement. It is done lazily, either when generating the jar, or by calling or writeTo effectiveManifest

You can easily write a manifest to disk.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

Page 543 of 777

Example 467. Saving a MANIFEST.MF to disk

build.gradle

jar.manifest.writeTo()"$buildDir/mymanifest.mf"

Page 544 of 777

The Java Library Plugin

The Java Library plugin expands the capabilities of the Java plugin by providing specific knowledge about

Java libraries. In particular, a Java library exposes an API to consumers (i.e., other projects using the Java

or the Java Library plugin). All the source sets, tasks and configurations exposed by the Java plugin are

implicitly available when using this plugin.

§

Usage

To use the Java Library plugin, include the following in your build script:

Example 468. Using the Java Library plugin

build.gradle

apply plugin: 'java-library'

§

API and implementation separation

The key difference between the standard Java plugin and the Java Library plugin is that the latter introduces

the concept of an exposed to consumers. A library is a Java component meant to be consumed by otherAPI

components. It’s a very common use case in multi-project builds, but also as soon as you have external

dependencies.

The plugin exposes two that can be used to declare dependencies: and configurations api implementation

. The configuration should be used to declare dependencies which are exported by the library API,api

whereas the configuration should be used to declare dependencies which are internal toimplementation

the component.

Example 469. Declaring API and implementation dependencies

build.gradle

dependencies {

 api 'commons-httpclient:commons-httpclient:3.1'

 implementation 'org.apache.commons:commons-lang3:3.5'

}

Page 545 of 777

Dependencies appearing in the configurations will be transitively exposed to consumers of the library,api

and as such will appear on the compile classpath of consumers. Dependencies found in the implementation

configuration will, on the other hand, not be exposed to consumers, and therefore not leak into the

consumers' compile classpath. This comes with several benefits:

dependencies do not leak into the compile classpath of consumers anymore, so you will never accidentally

depend on a transitive dependency

faster compilation thanks to reduced classpath size

less recompilations when implementation dependencies change: consumers would not need to be

recompiled

cleaner publishing: when used in conjunction with the new plugin, Java libraries producemaven-publish

POM files that distinguish exactly between what is required to compile against the library and what is

required to use the library at runtime (in other words, don’t mix what is needed to compile the library itself

and what is needed to compile against the library).

Note: The configuration still exists but should not be used as it will not offer thecompile

guarantees that the and configurations provide.api implementation

If your build consumes a published module with POM metadata, the Java and Java Library plugins both

honor api and implementation separation through the scopes used in the pom. Meaning that the compile

classpath only includes scoped dependencies, while the runtime classpath adds the compile runtime

scoped dependencies as well.

This often does not have an effect on modules published with Maven, where the POM that defines the

project is directly published as metadata. There, the compile scope includes both dependencies that were

required to compile the project (i.e. implementation dependencies) and dependencies required to compile

against the published library (i.e. API dependencies). For most published libraries, this means that all

dependencies belong to the compile scope. However, as mentioned above, if the library is published with

Gradle, the produced POM file only puts dependencies into the compile scope and the remaining api implementation

dependencies into the runtime scope.

Note: Separating compile and runtime scope of modules is active by default in Gradle 5.0+. In

Gradle 4.6+, you need to activate it by adding enableFeaturePreview('IMPROVED_POM_SUPPORT')

in .settings.gradle

§

Recognizing API and implementation dependencies

This section will help you spot API and Implementation dependencies in your code using simple rules of

thumb. Basically, an API dependency is a type that is exposed in the library binary interface, often referred to

ABI (Application Binary Interface). This includes, but is not limited to:

types used in super classes or interfaces

Page 546 of 777

types used in public method parameters, including generic parameter types (where is something thatpublic

is visible to compilers. I.e. , , and members in the Java world)public protected package private

types used in public fields

public annotation types

In opposition, any type that is used in the following list is irrelevant to the ABI, and therefore should be

declared as dependency:implementation

types exclusively used in method bodies

types exclusively used in private members

types exclusively found in internal classes (future versions of Gradle will let you declare which packages

belong to the public API)

In the following sample, we can make the difference between an API dependency and an implementation

dependency:

Page 547 of 777

Example 470. Making the difference between API and implementation

src/main/java/org/gradle/HttpClientWrapper.java

// The following types can appear anywhere in the code

// but say nothing about API or implementation usage

 org.apache.commons.httpclient.*;import

 org.apache.commons.httpclient.methods.*;import

 org.apache.commons.lang3.exception.ExceptionUtils;import

 java.io.IOException;import

 java.io.UnsupportedEncodingException;import

 HttpClientWrapper {public class

 HttpClient client; private final // private member: implementation details

 // HttpClient is used as a parameter of a public method

 // so "leaks" into the public API of this component

 HttpClientWrapper(HttpClient client) {public

 .client = client;this

 }

 // public methods belongs to your API

 [] doRawGet(String url) {public byte

 GetMethod method = GetMethod(url);new

 {try

 statusCode = doGet(method);int

 method.getResponseBody();return

 } (Exception e) {catch

 ExceptionUtils.rethrow(e); // this dependency is internal only

 } {finally

 method.releaseConnection();

 }

 null;return

 }

 // GetMethod is used in a private method, so doesn't belong to the API

 doGet(GetMethod method) Exception {private int throws

 statusCode = client.executeMethod(method);int

 (statusCode != HttpStatus.SC_OK) {if

 System.err.println(+ method.getStatusLine());"Method failed: "

 }

 statusCode;return

 }

}

We can see that our class imports third party classes, but imports alone won’t tell us if a dependency is an

API or implementation dependency. For this, we need to look at the methods. The public constructor of HttpClientWrapper

uses as a parameter, so it exposed to consumers and therefore belongs to the API.HttpClient

Page 548 of 777

On the other hand, the type, coming from the library, is only used in aExceptionUtils commons-lang

method body, so it’s an implementation dependency.

Therefore, we can deduce that is an API dependency, whereas iscommons-httpclient commons-lang

an implementation dependency, which directly translates into the build file:

Example 471. Declaring API and implementation dependencies

build.gradle

dependencies {

 api 'commons-httpclient:commons-httpclient:3.1'

 implementation 'org.apache.commons:commons-lang3:3.5'

}

As a guideline, you should prefer the configuration first: leakage of implementation typesimplementation

to consumers would then directly lead to a compile error of consumers, which would be solved either by

removing the type from the public API, or promoting the dependency as an API dependency instead.

§

The Java Library plugin configurations

The following graph describes the main configurations setup when the Java Library plugin is in use.

The configurations in are the ones a user should use to declare dependenciesgreen

The configurations in are the ones used when a component compiles, or runs against the librarypink

The configurations in are internal to the component, for its own useblue

The configurations in are configurations inherited from the Java pluginwhite

And the next graph describes the test configurations setup:

Page 549 of 777

Note: The , , and configurations inherited from the Javacompile testCompile runtime testRuntime

plugin are still available but are deprecated. You should avoid using them, as they are only kept for

backwards compatibility.

The role of each configuration is described in the following tables:

Page 550 of 777

Table 34. Java Library plugin - configurations used to declare dependencies

Configuration

name
Role

Can be

consumed

Can be

resolved
Description

api
Declaring API

dependencies
no no

This is where you should declare dependencies which are transitively

exported to consumers, for compile.

implementation

Declaring

implementation

dependencies

no no
This is where you should declare dependencies which are purely

internal and not meant to be exposed to consumers.

compileOnly

Declaring

compile only

dependencies

yes yes

This is where you should declare dependencies which are only

required at compile time, but should not leak into the runtime. This

typically includes dependencies which are shaded when found at

runtime.

runtimeOnly

Declaring

runt ime

dependencies

no no
This is where you should declare dependencies which are only

required at runtime, and not at compile time.

testImplementation
T e s t

dependencies
no no

This is where you should declare dependencies which are used to

compile tests.

testCompileOnly

Declaring test

compile only

dependencies

yes yes

This is where you should declare dependencies which are only

required at test compile time, but should not leak into the runtime. This

typically includes dependencies which are shaded when found at

runtime.

testRuntimeOnly

Declaring test

runt ime

dependencies

no no
This is where you should declare dependencies which are only

required at test runtime, and not at test compile time.

Table 35. Java Library plugin - configurations used by consumers

Configuration

name
Role

Can be

consumed

Can be

resolved
Description

apiElements

F o r

compiling

against this

library

yes no

This configuration is meant to be used by consumers, to retrieve all the

elements necessary to compile against this library. Unlike the default

configuration, this doesn’t leak implementation or runtime dependencies.

runtimeElements

F o r

executing

this library

yes no
This configuration is meant to be used by consumers, to retrieve all the

elements necessary to run against this library.

Page 551 of 777

Table 36. Java Library plugin - configurations used by the library itself

Configuration name Role
Can be

consumed

Can be

resolved
Description

compileClasspath
For compiling this

library
no yes

This configuration contains the compile classpath of this library,

and is therefore used when invoking the java compiler to compile

it.

runtimeClasspath
For executing this

library
no yes This configuration contains the runtime classpath of this library

testCompileClasspath
For compiling the

tests of this library
no yes

This configuration contains the test compile classpath of this

library.

testRuntimeClasspath
For executing

tests of this library
no yes

This configuration contains the test runtime classpath of this

library

§

Known issues

§

Compatibility with other plugins

At the moment the Java Library plugin is only wired to behave correctly with the plugin. Other plugins,java

such as the Groovy plugin, may not behave correctly. In particular, if the Groovy plugin is used in addition to

the plugin, then consumers may not get the Groovy classes when they consume the library.java-library

To workaround this, you need to explicitly wire the Groovy compile dependency, like this:

Example 472. Configuring the Groovy plugin to work with Java Library

a/build.gradle

configurations {

 apiElements {

 outgoing.variants.getByName().artifact('classes'

 file: compileGroovy.destinationDir,

 type: ArtifactTypeDefinition.JVM_CLASS_DIRECTORY,

 builtBy: compileGroovy)

 }

}

Increased memory usage for consumers

Page 552 of 777

§

Increased memory usage for consumers

When a project uses the Java Library plugin, consumers will use the output classes directory of this project

directly on their compile classpath, instead of the jar file if the project uses the Java plugin. An indirect

consequence is that up-to-date checking will require more memory, because Gradle will snapshot individual

class files instead of a single jar. This may lead to increased memory consumption for large projects.

Page 553 of 777

Web Application Quickstart

Note: This chapter is a work in progress.

This chapter introduces the Gradle support for web applications. Gradle recommends two plugins for web

application development: the and the . The War plugin extends the Java plugin toWar plugin Gretty plugin

build a WAR file for your project. The Gretty plugin allows you to deploy your web application to an

embedded Jetty web container.

§

Building a WAR file

To build a WAR file, you apply the War plugin to your project:

Example 473. War plugin

build.gradle

apply plugin: 'war'

Note: The code for this example can be found at insamples/webApplication/quickstart

the ‘-all’ distribution of Gradle.

This also applies the Java plugin to your project. Running will compile, test and WAR yourgradle build

project. Gradle will look for the source files to include in the WAR file in . Your compiledsrc/main/webapp

classes and their runtime dependencies are also included in the WAR file, in the and WEB-INF/classes WEB-INF/lib

directories, respectively.

Groovy web applications

You can combine multiple plugins in a single project, so you can use the War and Groovy plugins

together to build a Groovy based web application. The appropriate Groovy libraries will be added to

the WAR file for you.

§

Running your web application

To run your web application, you apply the Gretty plugin to your project:

https://plugins.gradle.org/plugin/org.akhikhl.gretty

Page 554 of 777

Example 474. Running web application with Gretty plugin

build.gradle

buildscript {

 repositories {

 jcenter()

 }

 dependencies {

 classpath 'org.akhikhl.gretty:gretty:2.0.0'

 }

}

apply plugin: 'org.akhikhl.gretty'

This also applies the War plugin to your project. Running will run your web application ingradle appRun

an embedded servlet container. Running will build the WAR file, and then run it in angradle appRunWar

embedded web container.

§

Summary

You can find out more about the War plugin in . You can find more sample Java projects inThe War Plugin

the directory in the Gradle distribution.samples/webApplication

Page 555 of 777

The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It disables

the default JAR archive generation of the Java plugin and adds a default WAR archive task.

§

Usage

To use the War plugin, include the following in your build script:

Example 475. Using the War plugin

build.gradle

apply plugin: 'war'

§

Tasks

The War plugin adds the following tasks to the project.

Table 37. War plugin - tasks

Task name Depends on Type Description

war compile War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 38. War plugin - additional task dependencies

Task name Depends on

assemble war

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html

Page 556 of 777

Figure 29. War plugin - tasks

§

Project layout

Table 39. War plugin - project layout

Directory Meaning

src/main/webapp Web application sources

§

Dependency management

The War plugin adds two dependency configurations named and .providedCompile providedRuntime

Those two configurations have the same scope as the respective and configurations,compile runtime

except that they are not added to the WAR archive. It is important to note that those provided

configurations work transitively. Let’s say you add tocommons-httpclient:commons-httpclient:3.0

any of the provided configurations. This dependency has a dependency on . Because thiscommons-codec

is a “provided” configuration, this means that neither of these dependencies will be added to your WAR,

even if the library is an explicit dependency of your configuration. If you don’tcommons-codec compile

want this transitive behavior, simply declare your dependencies like provided commons-httpclient:commons-httpclient:3.0@jar

.

§

Convention properties

Table 40. War plugin - directory properties

Property name Type Default value Description

webAppDirName String src/main/webapp
The name of the web application source directory, relative to the

project directory.

webAppDir
F i l e

(read-only)
/projectDir webAppDirNameThe web application source directory.

These properties are provided by a convention object.WarPluginConvention

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.WarPluginConvention.html

Page 557 of 777

§

War

The default behavior of the War task is to copy the content of to the root of the archive.src/main/webapp

Your directory may of course contain a sub-directory, which may contain a file.webapp WEB-INF web.xml

Your compiled classes are compiled to . All the dependencies of the WEB-INF/classes runtime

configuration are copied to .WEB-INF/lib

The class in the API documentation has additional useful information.War

§

Customizing

Here is an example with the most important customization options:

[]19

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html

Page 558 of 777

Example 476. Customization of war plugin

build.gradle

configurations {

 moreLibs

}

repositories {

 flatDir { dirs }"lib"

 jcenter()

}

dependencies {

 compile module() {":compile:1.0"

 dependency ":compile-transitive-1.0@jar"

 dependency ":providedCompile-transitive:1.0@jar"

 }

 providedCompile "javax.servlet:servlet-api:2.5"

 providedCompile module() {":providedCompile:1.0"

 dependency ":providedCompile-transitive:1.0@jar"

 }

 runtime ":runtime:1.0"

 providedRuntime ":providedRuntime:1.0@jar"

 testCompile "junit:junit:4.12"

 moreLibs ":otherLib:1.0"

}

war {

 from 'src/rootContent' // adds a file-set to the root of the archive

 webInf { from } 'src/additionalWebInf' // adds a file-set to the WEB-INF dir.

 classpath fileTree() 'additionalLibs' // adds a file-set to the WEB-INF/lib dir.

 classpath configurations.moreLibs // adds a configuration to the WEB-INF/lib dir.

 webXml = file() 'src/someWeb.xml' // copies a file to WEB-INF/web.xml

}

Of course one can configure the different file-sets with a closure to define excludes and includes.

[] The configuration extends the configuration.runtime compile[] 19

Page 559 of 777

The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task. It

doesn’t require the Java plugin, but for projects that also use the Java plugin it disables the default JAR

archive generation.

§

Usage

To use the Ear plugin, include the following in your build script:

Example 477. Using the Ear plugin

build.gradle

apply plugin: 'ear'

§

Tasks

The Ear plugin adds the following tasks to the project.

Table 41. Ear plugin - tasks

Task name Depends on Type Description

ear compile (only if the Java plugin is also applied) Ear Assembles the application EAR file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table 42. Ear plugin - additional task dependencies

Task name Depends on

assemble ear

Project layout

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

Page 560 of 777

§

Project layout

Table 43. Ear plugin - project layout

Directory Meaning

src/main/application Ear resources, such as a META-INF directory

§

Dependency management

The Ear plugin adds two dependency configurations: and . All dependencies in the deploy earlib deploy

configuration are placed in the root of the EAR archive, and are transitive. All dependencies in the not earlib

configuration are placed in the 'lib' directory in the EAR archive and transitive.are

§

Convention properties

Table 44. Ear plugin - directory properties

Property name Type Default value Description

appDirName String src/main/application
The name of the application source

directory, relative to the project directory.

libDirName String lib
The name of the lib directory inside the

generated EAR.

deploymentDescriptor org.gradle.plugins. DeploymentDescriptorear.descriptor.

A deployment descriptor

with sensible defaults

named application.xml

Metadata to generate a deployment

descriptor file, e.g. . Ifapplication.xml

this file already exists in the appDirName/META-INF

then the existing file contents will be used

and the explicit configuration in the ear.deploymentDescriptor

will be ignored.

These properties are provided by a convention object.EarPluginConvention

Ear

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.EarPluginConvention.html

Page 561 of 777

§

Ear

The default behavior of the Ear task is to copy the content of to the root of thesrc/main/application

archive. If your directory doesn’t contain a deploymentapplication META-INF/application.xml

descriptor then one will be generated for you.

The class in the API documentation has additional useful information.Ear

§

Customizing

Here is an example with the most important customization options:

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

Page 562 of 777

Example 478. Customization of ear plugin

build.gradle

apply plugin: 'ear'

apply plugin: 'java'

repositories { mavenCentral() }

dependencies {

 // The following dependencies will be the ear modules and

 // will be placed in the ear root

 deploy project(path: , configuration:)':war' 'archives'

 // The following dependencies will become ear libs and will

 // be placed in a dir configured via the libDirName property

 earlib group: , name: , version: , ext: 'log4j' 'log4j' '1.2.15' 'jar'

}

ear {

 appDirName 'src/main/app' // use application metadata found in this folder

 // put dependent libraries into APP-INF/lib inside the generated EAR

 libDirName 'APP-INF/lib'

 deploymentDescriptor { // custom entries for application.xml:

// fileName = "application.xml" // same as the default value

// version = "6" // same as the default value

 applicationName = "customear"

 initializeInOrder = true

 displayName = "Custom Ear" // defaults to project.name

 // defaults to project.description if not set

 description = "My customized EAR for the Gradle documentation"

// libraryDirectory = "APP-INF/lib" // not needed, above libDirName setting does this

// module("my.jar", "java") // won't deploy as my.jar isn't deploy dependency

// webModule("my.war", "/") // won't deploy as my.war isn't deploy dependency

 securityRole "admin"

 securityRole "superadmin"

 withXml { provider -> // add a custom node to the XML

 provider.asNode().appendNode(,)"data-source" "my/data/source"

 }

 }

}

You can also use customization options that the task provides, such as and .Ear from metaInf

Using custom descriptor file

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

Page 563 of 777

§

Using custom descriptor file

You may already have appropriate settings in a file and want to use that instead ofapplication.xml

configuring the section of the build script. To accommodate that goal, placeear.deploymentDescriptor

the in the right place inside your source folders (see the META-INF/application.xml appDirName

property). The file contents will be used and the explicit configuration in the ear.deploymentDescriptor

will be ignored.

Page 564 of 777

The Jetty Plugin

Note: This plugin has been removed as of Gradle 4.0. We recommend using the Gretty plugin

instead.

https://github.com/akhikhl/gretty

Page 565 of 777

The Application Plugin

The Application plugin facilitates creating an executable JVM application. It makes it easy to start the

application locally during development, and to package the application as a TAR and/or ZIP including

operating system specific start scripts.

Applying the Application plugin also implicitly applies the . The source set is effectively theJava plugin main

“application”.

Applying the Application plugin also implicitly applies the . A distribution is createdDistribution plugin main

that packages up the application, including code dependencies and generated start scripts.

§

Usage

To use the application plugin, include the following in your build script:

Example 479. Using the application plugin

build.gradle

apply plugin: 'application'

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry point) of the

application.

Example 480. Configure the application main class

build.gradle

mainClassName = "org.gradle.sample.Main"

You can run the application by executing the task (type:). This will compile the main sourcerun JavaExec

set, and launch a new JVM with its classes (along with all runtime dependencies) as the classpath and using

the specified main class. You can launch the application in debug mode with gradle run --debug-jvm

(see).JavaExec.setDebug(boolean)

If your application requires a specific set of JVM settings or system properties, you can configure the applicationDefaultJvmArgs

property. These JVM arguments are applied to the task and also considered in the generated startrun

scripts of your distribution.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug-boolean-

Page 566 of 777

Example 481. Configure default JVM settings

build.gradle

applicationDefaultJvmArgs = []"-Dgreeting.language=en"

If your application’s start scripts should be in a different directory than , you can configure the bin executableDir

property.

Example 482. Configure custom directory for start scripts

build.gradle

executableDir = "custom_bin_dir"

§

The distribution

A distribution of the application can be created, by way of the (which is automaticallyDistribution plugin

applied). A distribution is created with the following content:main

Table 45. Distribution content

Location Content

(root dir) src/dist

lib All runtime dependencies and main source set class files.

bin Start scripts (generated by task).createStartScripts

Static files to be added to the distribution can be simply added to . More advanced customizationsrc/dist

can be done by configuring the exposed by the main distribution.CopySpec

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html

Page 567 of 777

Example 483. Include output from other tasks in the application distribution

build.gradle

task createDocs {

 def docs = file()"$buildDir/docs"

 outputs.dir docs

 doLast {

 docs.mkdirs()

 File(docs,).write()new "readme.txt" "Read me!"

 }

}

distributions {

 main {

 contents {

 from(createDocs) {

 into "docs"

 }

 }

 }

}

By specifying that the distribution should include the task’s output files (see the section called “Task inputs

), Gradle knows that the task that produces the files must be invoked before the distribution canand outputs”

be assembled and will take care of this for you.

Example 484. Automatically creating files for distribution

Output of gradle distZip

> gradle distZip

> Task :createDocs

> Task :compileJava

> Task :processResources NO-SOURCE

> Task :classes

> Task :jar

> Task :startScripts

> Task :distZip

BUILD SUCCESSFUL in 0s

5 actionable tasks: 5 executed

You can run to create an image of the application in gradle installDist build/install/projectName

. You can run to create a ZIP containing the distribution, to create angradle distZip gradle distTar

application TAR or to build both.gradle assemble

Customizing start script generation

Page 568 of 777

§

Customizing start script generation

The application plugin can generate Unix (suitable for Linux, macOS etc.) and Windows start scripts out of

the box. The start scripts launch a JVM with the specified settings defined as part of the original build and

runtime environment (e.g. env var). The default script templates are based on the same scriptsJAVA_OPTS

used to launch Gradle itself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of CreateStartScripts

for more details and customization examples.

§

Tasks

The Application plugin adds the following tasks to the project.

Table 46. Application plugin - tasks

Task name Depends on Type Description

run classes JavaExec Starts the application.

startScripts jar CreateStartScripts Creates OS specific scripts to run the project as a JVM application.

installDist jar, startScriptsSync Installs the application into a specified directory.

distZip jar, startScriptsZip
Creates a full distribution ZIP archive including runtime libraries

and OS specific scripts.

distTar jar, startScriptsTar
Creates a full distribution TAR archive including runtime libraries

and OS specific scripts.

§

Convention properties

The application plugin adds some properties to the project, which you can use to configure its behaviour.

See the class in the API documentation.Project

http://www.gradle.org/docs/4.7/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Page 569 of 777

The Java Library Distribution Plugin

Note: The Java library distribution plugin is currently . Please be aware that the DSL andincubating

other configuration may change in later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library. The

distribution contains the JAR file for the library and its dependencies.

§

Usage

To use the Java library distribution plugin, include the following in your build script:

Example 485. Using the Java library distribution plugin

build.gradle

apply plugin: 'java-library-distribution'

To define the name for the distribution you have to set the property as shown below:baseName

Example 486. Configure the distribution name

build.gradle

distributions {

 main{

 baseName = 'my-name'

 }

}

The plugin builds a distribution for your library. The distribution will package up the runtime dependencies of

the library. All files stored in will be added to the root of the archive distribution. You cansrc/main/dist

run “ ” to create a ZIP file containing the distribution.gradle distZip

§

Tasks

The Java library distribution plugin adds the following tasks to the project.

Page 570 of 777

Table 47. Java library distribution plugin - tasks

Task name Depends on Type Description

distZip jar Zip Creates a full distribution ZIP archive including runtime libraries.

§

Including other resources in the distribution

All of the files from the directory are copied. To include any static files in the distribution, simplysrc/dist

arrange them in the directory, or add them to the content of the distribution.src/dist

Example 487. Include files in the distribution

build.gradle

distributions {

 main {

 baseName = 'my-name'

 contents {

 from { }'src/dist'

 }

 }

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html

Page 571 of 777

Groovy Quickstart

To build a Groovy project, you use the . This plugin extends the Java plugin to add GroovyGroovy plugin

compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or

a mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have

already seen in .Java Quickstart

§

A basic Groovy project

Let’s look at an example. To use the Groovy plugin, add the following to your build file:

Example 488. Groovy plugin

build.gradle

apply plugin: 'groovy'

Note: The code for this example can be found at in the ‘-all’samples/groovy/quickstart

distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin

extends the task to look for source files in directory , and the compile src/main/groovy compileTest

task to look for test source files in directory . The compile tasks use joint compilation forsrc/test/groovy

these directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the

Groovy libraries. You do this by adding a dependency to the configuration. The groovy compile

configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling

Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Page 572 of 777

Example 489. Dependency on Groovy

build.gradle

repositories {

 mavenCentral()

}

dependencies {

 compile 'org.codehaus.groovy:groovy-all:2.4.10'

}

Here is our complete build file:

Example 490. Groovy example - complete build file

build.gradle

apply plugin: 'eclipse'

apply plugin: 'groovy'

repositories {

 mavenCentral()

}

dependencies {

 compile 'org.codehaus.groovy:groovy-all:2.4.10'

 testCompile 'junit:junit:4.12'

}

Running will compile, test and JAR your project.gradle build

§

Summary

This chapter describes a very simple Groovy project. Usually, a real project will require more than this.

Because a Groovy project a Java project, whatever you can do with a Java project, you can also do with ais

Groovy project.

You can find out more about the Groovy plugin in , and you can find more sample GroovyThe Groovy Plugin

projects in the directory in the Gradle distribution.samples/groovy

Page 573 of 777

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy code,

mixed Groovy and Java code, and even pure Java code (although we don’t necessarily recommend to use it

for the latter). The plugin supports , which allows you to freely mix and match Groovy andjoint compilation

Java code, with dependencies in both directions. For example, a Groovy class can extend a Java class that

in turn extends a Groovy class. This makes it possible to use the best language for the job, and to rewrite

any class in the other language if needed.

§

Usage

To use the Groovy plugin, include the following in your build script:

Example 491. Using the Groovy plugin

build.gradle

apply plugin: 'groovy'

§

Tasks

The Groovy plugin adds the following tasks to the project.

Table 48. Groovy plugin - tasks

Task name Depends on Type Description

compileGroovy compileJava GroovyCompile Compiles production Groovy source files.

compileTestGroovy compileTestJava GroovyCompile Compiles test Groovy source files.

compile GroovySourceSet compile JavaSourceSet GroovyCompile Compiles the given source set’s Groovy source files.

groovydoc - Groovydoc
Generates API documentation for the production Groovy

source files.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Page 574 of 777

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 49. Groovy plugin - additional task dependencies

Task name Depends on

classes compileGroovy

testClasses compileTestGroovy

ClassessourceSet compile GroovySourceSet

Figure 30. Groovy plugin - tasks

§

Project layout

The Groovy plugin assumes the project layout shown in . All the Groovy source directories canTable 50

contain Groovy Java code. The Java source directories may only contain Java source code. None ofand

these directories need to exist or have anything in them; the Groovy plugin will simply compile whatever it

finds.

[]20

Page 575 of 777

Table 50. Groovy plugin - project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/main/groovy Production Groovy sources. May also contain Java sources for joint compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/groovy Test Groovy sources. May also contain Java sources for joint compilation.

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

src/ /groovysourceSet Groovy sources for the given source set. May also contain Java sources for joint compilation.

§

Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production

and test sources.

Example 492. Custom Groovy source layout

build.gradle

sourceSets {

 main {

 groovy {

 srcDirs = []'src/groovy'

 }

 }

 test {

 groovy {

 srcDirs = []'test/groovy'

 }

 }

}

Dependency management

Page 576 of 777

§

Dependency management

Because Gradle’s build language is based on Groovy, and parts of Gradle are implemented in Groovy,

Gradle already ships with a Groovy library. Nevertheless, Groovy projects need to explicitly declare a Groovy

dependency. This dependency will then be used on compile and runtime class paths. It will also be used to

get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the compile

configuration:

Example 493. Configuration of Groovy dependency

build.gradle

repositories {

 mavenCentral()

}

dependencies {

 compile 'org.codehaus.groovy:groovy-all:2.4.10'

}

If Groovy is only used for test code, the Groovy dependency should be added to the testCompile

configuration:

Example 494. Configuration of Groovy test dependency

build.gradle

dependencies {

 testCompile 'org.codehaus.groovy:groovy-all:2.4.10'

}

To use the Groovy library that ships with Gradle, declare a dependency. Note that differentlocalGroovy()

Gradle versions ship with different Groovy versions; as such, using is less safe thenlocalGroovy()

declaring a regular Groovy dependency.

Example 495. Configuration of bundled Groovy dependency

build.gradle

dependencies {

 compile localGroovy()

}

The Groovy library doesn’t necessarily have to come from a remote repository. It could also come from a

local directory, perhaps checked in to source control:lib

Page 577 of 777

Example 496. Configuration of Groovy file dependency

build.gradle

repositories {

 flatDir { dirs }'lib'

}

dependencies {

 compile module() {'org.codehaus.groovy:groovy:2.4.10'

 dependency()'org.ow2.asm:asm-all:5.0.3'

 dependency()'antlr:antlr:2.7.7'

 dependency()'commons-cli:commons-cli:1.2'

 module() {'org.apache.ant:ant:1.9.4'

 dependencies(,'org.apache.ant:ant-junit:1.9.4@jar'

)'org.apache.ant:ant-launcher:1.9.4'

 }

 }

}

§

Automatic configuration of groovyClasspath

The and tasks consume Groovy code in two ways: on their , andGroovyCompile Groovydoc classpath

on their . The former is used to locate classes referenced by the source code, and willgroovyClasspath

typically contain the Groovy library along with other libraries. The latter is used to load and execute the

Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its

dependencies.

Unless a task’s is configured explicitly, the Groovy (base) plugin will try to infer it fromgroovyClasspath

the task’s . This is done as follows:classpath

If a Jar is found on , that jar will be added to .groovy-all(-indy) classpath groovyClasspath

If a jar is found on , and the project has at least one repository declared, agroovy(-indy) classpath

corresponding repository dependency will be added to .groovy(-indy) groovyClasspath

Otherwise, execution of the task will fail with a message saying that could not begroovyClasspath

inferred.

Note that the “ ” variation of each jar refers to the version with support.-indy invokedynamic

§

Convention properties

The Groovy plugin does not add any convention properties to the project.

Source set properties

Page 578 of 777

§

Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. You can use

these properties in your build script as though they were properties of the source set object.

Table 51. Groovy plugin - source set properties

Property name Type Default value Description

groovy SourceDirectorySet (read-only) Not null

The Groovy source files of this source set. Contains

all and files found in the Groovy.groovy .java

source directories, and excludes all other types of

files.

groovy.srcDirs

Set<File>. Can set using anything

described in the section called

“Understanding implicit conversion to file

.collections”

[/src/ /groovy]projectDir name

The source directories containing the Groovy

source files of this source set. May also contain

Java source files for joint compilation.

allGroovy FileTree (read-only) Not null

All Groovy source files of this source set. Contains

only the files found in the Groovy source.groovy

directories.

These properties are provided by a convention object of type .GroovySourceSet

The Groovy plugin also modifies some source set properties:

Table 52. Groovy plugin - source set properties

Property name Change

allJava Adds all files found in the Groovy source directories..java

allSource Adds all source files found in the Groovy source directories.

§

GroovyCompile

The Groovy plugin adds a task for each source set in the project. The task type extendsGroovyCompile

the task (see). The task supportsJavaCompile the section called “Compiling your code” GroovyCompile

most configuration options of the official Groovy compiler.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.GroovySourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.GroovyCompile.html

Page 579 of 777

Table 53. Groovy plugin - GroovyCompile properties

Task Property Type Default Value

classpath FileCollection .compileClasspathsourceSet

source
FileTree. Can set using anything described in the section

.called “Understanding implicit conversion to file collections”
.groovysourceSet

destinationDir File. .groovy.outputDirsourceSet

groovyClasspath FileCollection

groovy configuration if non-empty;

Groovy library found on classpath

otherwise

§

Compiling and testing for Java 6 or Java 7

The Groovy compiler will always be executed with the same version of Java that was used to start Gradle.

You should set and to or . If you also havesourceCompatibility targetCompatibility 1.6 1.7

Java sources, you can follow the same steps as for the to ensure the correct Java compiler isJava plugin

used.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html

Page 580 of 777

Example 497. Configure Java 6 build for Groovy

gradle.properties

in $HOME/.gradle/gradle.properties

java6Home=/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

build.gradle

sourceCompatibility = 1.6

targetCompatibility = 1.6

assert hasProperty() : 'java6Home' "Set the property 'java6Home' in your your gradle.properties pointing to a Java 6 installation"

def javaExecutablesPath = File(java6Home,)new 'bin'

def javaExecutables = [:].withDefault { execName ->

 def executable = File(javaExecutablesPath, execName)new

 assert executable.exists() : "There is no ${execName} executable in ${javaExecutablesPath}"

 executable

}

tasks.withType(AbstractCompile) {

 options.with {

 fork = true

 forkOptions.javaHome = file(java6Home)

 }

}

tasks.withType(Javadoc) {

 executable = javaExecutables.javadoc

}

tasks.withType(Test) {

 executable = javaExecutables.java

}

tasks.withType(JavaExec) {

 executable = javaExecutables.java

}

[] We are using the same conventions as introduced by Russel Winder’s Gant tool ().https://gant.github.io/[] 20

https://gant.github.io/

Page 581 of 777

The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code,

mixed Scala and Java code, and even pure Java code (although we don’t necessarily recommend to use it

for the latter). The plugin supports , which allows you to freely mix and match Scala andjoint compilation

Java code, with dependencies in both directions. For example, a Scala class can extend a Java class that in

turn extends a Scala class. This makes it possible to use the best language for the job, and to rewrite any

class in the other language if needed.

§

Usage

To use the Scala plugin, include the following in your build script:

Example 498. Using the Scala plugin

build.gradle

apply plugin: 'scala'

§

Tasks

The Scala plugin adds the following tasks to the project.

Table 54. Scala plugin - tasks

Task name Depends on Type Description

compileScala compileJava ScalaCompile Compiles production Scala source files.

compileTestScala compileTestJava ScalaCompile Compiles test Scala source files.

compile ScalaSourceSet compile JavaSourceSet ScalaCompile Compiles the given source set’s Scala source files.

scaladoc - ScalaDoc
Generates API documentation for the production Scala

source files.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Page 582 of 777

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Table 55. Scala plugin - additional task dependencies

Task name Depends on

classes compileScala

testClasses compileTestScala

ClassessourceSet compile ScalaSourceSet

Figure 31. Scala plugin - tasks

§

Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can contain

Scala Java code. The Java source directories may only contain Java source code. None of theseand

directories need to exist or have anything in them; the Scala plugin will simply compile whatever it finds.

Page 583 of 777

Table 56. Scala plugin - project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/main/scala Production Scala sources. May also contain Java sources for joint compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/scala Test Scala sources. May also contain Java sources for joint compilation.

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

src/ /scalasourceSet Scala sources for the given source set. May also contain Java sources for joint compilation.

§

Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and

test sources.

Example 499. Custom Scala source layout

build.gradle

sourceSets {

 main {

 scala {

 srcDirs = []'src/scala'

 }

 }

 test {

 scala {

 srcDirs = []'test/scala'

 }

 }

}

Dependency management

Page 584 of 777

§

Dependency management

Scala projects need to declare a dependency. This dependency will then be used onscala-library

compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc tool,

respectively.[]

If Scala is used for production code, the dependency should be added to the scala-library compile

configuration:

Example 500. Declaring a Scala dependency for production code

build.gradle

repositories {

 mavenCentral()

}

dependencies {

 compile 'org.scala-lang:scala-library:2.11.8'

 testCompile 'org.scalatest:scalatest_2.11:3.0.0'

 testCompile 'junit:junit:4.12'

}

If Scala is only used for test code, the dependency should be added to the scala-library testCompile

configuration:

Example 501. Declaring a Scala dependency for test code

build.gradle

dependencies {

 testCompile "org.scala-lang:scala-library:2.11.1"

}

§

Automatic configuration of scalaClasspath

The and tasks consume Scala code in two ways: on their , and onScalaCompile ScalaDoc classpath

their . The former is used to locate classes referenced by the source code, and willscalaClasspath

typically contain along with other libraries. The latter is used to load and execute the Scalascala-library

compiler and Scaladoc tool, respectively, and should only contain the library and itsscala-compiler

dependencies.

Unless a task’s is configured explicitly, the Scala (base) plugin will try to infer it from thescalaClasspath

task’s . This is done as follows:classpath

If a jar is found on , and the project has at least one repository declared, ascala-library classpath

[]21

Page 585 of 777

corresponding repository dependency will be added to .scala-compiler scalaClasspath

Otherwise, execution of the task will fail with a message saying that could not bescalaClasspath

inferred.

§

Configuring the Zinc compiler

The Scala plugin uses a configuration named to resolve the and its dependencies.zinc Zinc compiler

Gradle will provide a default version of Zinc, but if you need to use a particular Zinc version, you can add an

explicit dependency like to the configuration. Gradle supports“com.typesafe.zinc:zinc:0.3.6” zinc

version 0.3.0 of Zinc and above; however, due to a regression in the Zinc compiler, versions 0.3.2 through

0.3.5.2 cannot be used.

Example 502. Declaring a version of the Zinc compiler to use

build.gradle

dependencies {

 zinc 'com.typesafe.zinc:zinc:0.3.9'

}

Note: It is important to take care when declaring your dependency. The Zincscala-library

compiler itself needs a compatible version of that may be different from thescala-library

version required by your application. Gradle takes care of adding a compatible version of scala-library

for you, but over-broad dependency resolution rules could force an incompatible version to be used

instead.

For example, using to force a particular version of wouldconfigurations.all scala-library

also override the version used by the Zinc compiler:

Example 503. Forcing a scala-library dependency for all configurations

Note: build.gradle
configurations.all {

 resolutionStrategy.force "org.scala-lang:scala-library:2.11.7"

}

The best way to avoid this problem is to be more selective when configuring the scala-library

dependency (such as not using a rule or using a conditional to prevent theconfiguration.all

rule from being applied to the configuration). Sometimes this rule may come from a plugin orzinc

other code that you do not have control over. In such a case, you can force a correct version of the

library on the configuration only:zinc

https://github.com/typesafehub/zinc

Page 586 of 777

Example 504. Forcing a scala-library dependency for the zinc configuration

Note: build.gradle
configurations.zinc {

 resolutionStrategy.force "org.scala-lang:scala-library:2.10.5"

}

You can diagnose problems with the version of the Zinc compiler selected by running

 for the configuration.dependencyInsight zinc

§

Convention properties

The Scala plugin does not add any convention properties to the project.

§

Source set properties

The Scala plugin adds the following convention properties to each source set in the project. You can use

these properties in your build script as though they were properties of the source set object.

Table 57. Scala plugin - source set properties

Property name Type Default value Description

scala SourceDirectorySet (read-only) Not null

The Scala source files of this source set. Contains

all and files found in the Scala.scala .java

source directories, and excludes all other types of

files.

scala.srcDirs

Set<File>. Can set using anything

described in the section called

“Understanding implicit conversion to file

.collections”

[/src/ /scala]projectDir name

The source directories containing the Scala source

files of this source set. May also contain Java

source files for joint compilation.

allScala FileTree (read-only) Not null

All Scala source files of this source set. Contains

only the files found in the Scala source.scala

directories.

These convention properties are provided by a convention object of type .ScalaSourceSet

The Scala plugin also modifies some source set properties:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.ScalaSourceSet.html

Page 587 of 777

Table 58. Scala plugin - source set properties

Property name Change

allJava Adds all files found in the Scala source directories..java

allSource Adds all source files found in the Scala source directories.

§

Compiling in external process

Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the JVM. To adjust memory settings,

configure the property as needed:scalaCompileOptions.forkOptions

Example 505. Adjusting memory settings

build.gradle

tasks.withType(ScalaCompile) {

 configure(scalaCompileOptions.forkOptions) {

 memoryMaximumSize = '1g'

 jvmArgs = []'-XX:MaxPermSize=512m'

 }

}

§

Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and classes

affected by these changes, incremental compilation can significantly reduce Scala compilation time. It is

particularly effective when frequently compiling small code increments, as is often done at development time.

The Scala plugin defaults to incremental compilation by integrating with , a standalone version of 'sZinc sbt

incremental Scala compiler. If you want to disable the incremental compilation, set in yourforce = true

build file:

Example 506. Forcing all code to be compiled

build.gradle

tasks.withType(ScalaCompile) {

 scalaCompileOptions.with {

 force = true

 }

}

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt

Page 588 of 777

Note: This will only cause all classes to be recompiled if at least one input source file has changed. If there

are no changes to the source files, the task will still be considered as usual.compileScala UP-TO-DATE

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all Java and

Scala code under will participate in joint compilation. Even Java code will be compiledsrc/main/scala

incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are

stored in the file designated by (whichscalaCompileOptions.incrementalOptions.analysisFile

has a sensible default). In a multi-project build, analysis files are passed on to downstream ScalaCompile

tasks to enable incremental compilation across project boundaries. For tasks added by theScalaCompile

Scala plugin, no configuration is necessary to make this work. For other tasks that youScalaCompile

might add, the property needs to bescalaCompileOptions.incrementalOptions.publishedCode

configured to point to the classes folder or Jar archive by which the code is passed on to compile class paths

of downstream tasks. Note that if is not set correctly, downstream tasksScalaCompile publishedCode

may not recompile code affected by upstream changes, leading to incorrect compilation results.

Note that Zinc’s Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle’s own

compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. This is expected

to yield another significant speedup for Scala compilation.

§

Compiling and testing for Java 6 or Java 7

The Scala compiler ignores Gradle’s and settings. IntargetCompatibility sourceCompatibility

Scala 2.11, the Scala compiler always compiles to Java 6 compatible bytecode. In Scala 2.12, the Scala

compiler always compiles to Java 8 compatible bytecode. If you also have Java sources, you can follow the

same steps as for the to ensure the correct Java compiler is used.Java plugin

Page 589 of 777

Example 507. Configure Java 6 build for Scala

gradle.properties

in $HOME/.gradle/gradle.properties

java6Home=/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

build.gradle

sourceCompatibility = 1.6

assert hasProperty() : 'java6Home' "Set the property 'java6Home' in your your gradle.properties pointing to a Java 6 installation"

def javaExecutablesPath = File(java6Home,)new 'bin'

def javaExecutables = [:].withDefault { execName ->

 def executable = File(javaExecutablesPath, execName)new

 assert executable.exists() : "There is no ${execName} executable in ${javaExecutablesPath}"

 executable

}

tasks.withType(AbstractCompile) {

 options.with {

 fork = true

 forkOptions.javaHome = file(java6Home)

 }

}

tasks.withType(Test) {

 executable = javaExecutables.java

}

tasks.withType(JavaExec) {

 executable = javaExecutables.java

}

tasks.withType(Javadoc) {

 executable = javaExecutables.javadoc

}

§

Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project work

with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and dependency container.

IntelliJ IDEA Integration

Page 590 of 777

§

IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work

with IDEA out of the box. Specifically, the plugin adds a Scala SDK (IntelliJ IDEA 14+) and a Scala compiler

library that matches the Scala version on the project’s class path. The Scala plugin is backwards compatible

with earlier versions of IntelliJ IDEA and it is possible to add a Scala facet instead of the default Scala SDK

by configuring on .targetVersion IdeaModel

Example 508. Explicitly specify a target IntelliJ IDEA version

build.gradle

idea {

 targetVersion = "13"

}

[] See .the section called “Automatic configuration of scalaClasspath”[] 21

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html

Page 591 of 777

The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsers using .ANTLR

Note: The ANTLR plugin supports ANTLR version 2, 3 and 4.

§

Usage

To use the ANTLR plugin, include the following in your build script:

Example 509. Using the ANTLR plugin

build.gradle

apply plugin: 'antlr'

§

Tasks

The ANTLR plugin adds a number of tasks to your project, as shown below.

Table 59. ANTLR plugin - tasks

Task name
Depends

on
Type Description

generateGrammarSource - AntlrTask Generates the source files for all production ANTLR grammars.

generateTestGrammarSource - AntlrTask Generates the source files for all test ANTLR grammars.

generate GrammarSourceSourceSet - AntlrTask
Generates the source files for all ANTLR grammars for the given

source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

http://www.antlr.org/
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Page 592 of 777

Table 60. ANTLR plugin - additional task dependencies

Task name Depends on

compileJava generateGrammarSource

compileTestJava generateTestGrammarSource

compile JavaSourceSet generate GrammarSourceSourceSet

§

Project layout

Table 61. ANTLR plugin - project layout

Directory Meaning

src/main/antlr

Production ANTLR grammar files. If the ANTLR grammar is organized in packages, the structure in the antlr

folder should reflect the package structure. This ensures that the generated sources end up in the correct

target subfolder.

src/test/antlr Test ANTLR grammar files.

src/ /antlrsourceSet ANTLR grammar files for the given source set.

§

Dependency management

The ANTLR plugin adds an dependency configuration which provides the ANTLR implementation toantlr

use. The following example shows how to use ANTLR version 3.

Example 510. Declare ANTLR version

build.gradle

repositories {

 mavenCentral()

}

dependencies {

 antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3

 // antlr "org.antlr:antlr4:4.5" // use ANTLR version 4

}

Page 593 of 777

If no dependency is declared, will be used as the default. To use a different ANTLRantlr:antlr:2.7.7

version add the appropriate dependency to the dependency configuration as above.antlr

§

Convention properties

The ANTLR plugin does not add any convention properties.

§

Source set properties

The ANTLR plugin adds the following properties to each source set in the project.

Table 62. ANTLR plugin - source set properties

Property name Type Default value Description

antlr SourceDirectorySet (read-only) Not null

The ANTLR grammar files of this source set.

Contains all or files found in the ANTLR.g .g4

source directories, and excludes all other types of

files.

antlr.srcDirs

Set<File>. Can set using anything

described in the section called

“Understanding implicit conversion to file

.collections”

[/src/ /antlr]projectDir name
The source directories containing the ANTLR

grammar files of this source set.

§

Controlling the ANTLR generator process

The ANTLR tool is executed in a forked process. This allows fine grained control over memory settings for

the ANTLR process. To set the heap size of an ANTLR process, the property of maxHeapSize AntlrTask

can be used. To pass additional command-line arguments, append to the property of arguments

.AntlrTask

Example 511. setting custom max heap size and extra arguments for ANTLR

build.gradle

generateGrammarSource {

 maxHeapSize = "64m"

 arguments += [,]"-visitor" "-long-messages"

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Page 594 of 777

The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project’s Java source files using andCheckstyle

generates reports from these checks.

§

Usage

To use the Checkstyle plugin, include the following in your build script:

Example 512. Using the Checkstyle plugin

build.gradle

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

Note that Checkstyle will run with the same Java version used to run Gradle.

§

Tasks

The Checkstyle plugin adds the following tasks to the project:

Table 63. Checkstyle plugin - tasks

Task name Depends on Type Description

checkstyleMain classes Checkstyle Runs Checkstyle against the production Java source files.

checkstyleTest testClasses Checkstyle Runs Checkstyle against the test Java source files.

checkstyleSourceSet ClassessourceSet Checkstyle
Runs Checkstyle against the given source set’s Java source

files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Page 595 of 777

Table 64. Checkstyle plugin - additional task dependencies

Task name Depends on

check All Checkstyle tasks, including and .checkstyleMain checkstyleTest

§

Project layout

By default, the Checkstyle plugin expects configuration files to be placed in the root project, but this can be

changed.

Table 65. Checkstyle plugin - root project layout

File Meaning

config/checkstyle Other Checkstyle configuration files (e.g.,)suppressions.xml

config/checkstyle/checkstyle.xml Checkstyle configuration file

§

Dependency management

The Checkstyle plugin adds the following dependency configurations:

Table 66. Checkstyle plugin - dependency configurations

Name Meaning

checkstyle The Checkstyle libraries to use

§

Configuration

See the class in the API documentation.CheckstyleExtension

§

Built-in variables

The Checkstyle plugin defines a property that can be used in Checkstyle configuration files toconfig_loc

define paths to other configuration files like .suppressions.xml

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html

Page 596 of 777

Example 513. Using the config_loc property

config/checkstyle/checkstyle.xml

<module =name "SuppressionFilter">

 = =<property name "file" value "${config_loc}/suppressions.xml"/>

</module>

§

Customizing the HTML report

The HTML report generated by the task can be customized using a XSLT stylesheet, forCheckstyle

example to highlight specific errors or change its appearance:

Example 514. Customizing the HTML report

build.gradle

tasks.withType(Checkstyle) {

 reports {

 xml.enabled false

 html.enabled true

 html.stylesheet resources.text.fromFile()'config/xsl/checkstyle-custom.xsl'

 }

}

View a sample Checkstyle stylesheet.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://github.com/checkstyle/contribution/tree/master/xsl

Page 597 of 777

The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project’s Groovy source files using andCodeNarc

generates reports from these checks.

§

Usage

To use the CodeNarc plugin, include the following in your build script:

Example 515. Using the CodeNarc plugin

build.gradle

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks when used with the Groovy

. You can execute the checks by running .Plugin gradle check

§

Tasks

The CodeNarc plugin adds the following tasks to the project:

Table 67. CodeNarc plugin - tasks

Task name Depends on Type Description

codenarcMain - CodeNarc Runs CodeNarc against the production Groovy source files.

codenarcTest - CodeNarc Runs CodeNarc against the test Groovy source files.

codenarcSourceSet - CodeNarc Runs CodeNarc against the given source set’s Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Page 598 of 777

Table 68. CodeNarc plugin - additional task dependencies

Task name Depends on

check All CodeNarc tasks, including and .codenarcMain codenarcTest

§

Project layout

The CodeNarc plugin expects the following project layout:

Table 69. CodeNarc plugin - project layout

File Meaning

config/codenarc/codenarc.xml CodeNarc configuration file

§

Dependency management

The CodeNarc plugin adds the following dependency configurations:

Table 70. CodeNarc plugin - dependency configurations

Name Meaning

codenarc The CodeNarc libraries to use

§

Configuration

See the class in the API documentation.CodeNarcExtension

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

Page 599 of 777

The FindBugs Plugin

The FindBugs plugin performs quality checks on your project’s Java source files using andFindBugs

generates reports from these checks.

§

Usage

To use the FindBugs plugin, include the following in your build script:

Example 516. Using the FindBugs plugin

build.gradle

apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

Note that Findbugs will run with the same Java version used to run Gradle.

§

Tasks

The FindBugs plugin adds the following tasks to the project:

Table 71. FindBugs plugin - tasks

Task name Depends on Type Description

findbugsMain classes FindBugs Runs FindBugs against the production Java source files.

findbugsTest testClasses FindBugs Runs FindBugs against the test Java source files.

findbugsSourceSet ClassessourceSet FindBugs Runs FindBugs against the given source set’s Java source files.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

http://findbugs.sourceforge.net
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.FindBugs.html

Page 600 of 777

Table 72. FindBugs plugin - additional task dependencies

Task name Depends on

check All FindBugs tasks, including and .findbugsMain findbugsTest

§

Dependency management

The FindBugs plugin adds the following dependency configurations:

Table 73. FindBugs plugin - dependency configurations

Name Meaning

findbugs The FindBugs libraries to use

§

Configuration

See the class in the API documentation.FindBugsExtension

§

Customizing the HTML report

The HTML report generated by the task can be customized using a XSLT stylesheet, for exampleFindBugs

to highlight specific errors or change its appearance:

Example 517. Customizing the HTML report

build.gradle

tasks.withType(FindBugs) {

 reports {

 xml.enabled false

 html.enabled true

 html.stylesheet resources.text.fromFile()'config/xsl/findbugs-custom.xsl'

 }

}

View a sample FindBugs stylesheet.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.FindBugs.html
https://github.com/findbugsproject/findbugs/tree/master/findbugs/src/xsl

Page 601 of 777

The JDepend Plugin

The JDepend plugin performs quality checks on your project’s source files using and generatesJDepend

reports from these checks.

§

Usage

To use the JDepend plugin, include the following in your build script:

Example 518. Using the JDepend plugin

build.gradle

apply plugin: 'jdepend'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

Note that JDepend will run with the same Java version used to run Gradle.

§

Tasks

The JDepend plugin adds the following tasks to the project:

Table 74. JDepend plugin - tasks

Task name Depends on Type Description

jdependMain classes JDepend Runs JDepend against the production Java source files.

jdependTest testClasses JDepend Runs JDepend against the test Java source files.

jdependSourceSet ClassessourceSet JDepend Runs JDepend against the given source set’s Java source files.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.JDepend.html

Page 602 of 777

Table 75. JDepend plugin - additional task dependencies

Task name Depends on

check All JDepend tasks, including and .jdependMain jdependTest

§

Dependency management

The JDepend plugin adds the following dependency configurations:

Table 76. JDepend plugin - dependency configurations

Name Meaning

jdepend The JDepend libraries to use

§

Configuration

See the class in the API documentation.JDependExtension

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.JDependExtension.html

Page 603 of 777

The PMD Plugin

The PMD plugin performs quality checks on your project’s Java source files using and generatesPMD

reports from these checks.

§

Usage

To use the PMD plugin, include the following in your build script:

Example 519. Using the PMD plugin

build.gradle

apply plugin: 'pmd'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

Note that PMD will run with the same Java version used to run Gradle.

§

Tasks

The PMD plugin adds the following tasks to the project:

Table 77. PMD plugin - tasks

Task name Depends on Type Description

pmdMain - Pmd Runs PMD against the production Java source files.

pmdTest - Pmd Runs PMD against the test Java source files.

pmdSourceSet - Pmd Runs PMD against the given source set’s Java source files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

http://pmd.sourceforge.net
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Pmd.html

Page 604 of 777

Table 78. PMD plugin - additional task dependencies

Task name Depends on

check All PMD tasks, including and .pmdMain pmdTest

§

Dependency management

The PMD plugin adds the following dependency configurations:

Table 79. PMD plugin - dependency configurations

Name Meaning

pmd The PMD libraries to use

§

Configuration

See the class in the API documentation.PmdExtension

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.PmdExtension.html

Page 605 of 777

The JaCoCo Plugin

Note: The JaCoCo plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code via integration with .JaCoCo

§

Getting Started

To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.

Example 520. Applying the JaCoCo plugin

build.gradle

apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named is created thatjacocoTestReport

depends on the task. The report is available at . By default, atest /reports/jacoco/test$buildDir

HTML report is generated.

§

Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named of type , whichjacoco JacocoPluginExtension

allows configuring defaults for JaCoCo usage in your build.

Example 521. Configuring JaCoCo plugin settings

build.gradle

jacoco {

 toolVersion = "0.8.1"

 reportsDir = file()"$buildDir/customJacocoReportDir"

}

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Page 606 of 777

Table 80. Gradle defaults for JaCoCo properties

Property Gradle default

reportsDir /reports/jacoco$buildDir

§

JaCoCo Report configuration

The task can be used to generate code coverage reports in different formats. It implementsJacocoReport

the standard Gradle type and exposes a report container of type .Reporting JacocoReportsContainer

Example 522. Configuring test task

build.gradle

jacocoTestReport {

 reports {

 xml.enabled false

 csv.enabled false

 html.destination file()"${buildDir}/jacocoHtml"

 }

}

§

Enforcing code coverage metrics

Note: This feature requires the use of JaCoCo version 0.6.3 or higher.

The task can be used to verify if code coverage metrics are met basedJacocoCoverageVerification

on con f i gu red ru l es . I t s AP I exposes t he me thod

 which is used asJacocoCoverageVerification.violationRules(org.gradle.api.Action)

http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules-org.gradle.api.Action-

Page 607 of 777

main entry point for configuring rules. Invoking any of those methods returns an instance of

 providing extensive configuration options. The build fails if any of theJacocoViolationRulesContainer

configured rules are not met. JaCoCo only reports the first violated rule.

Code coverage requirements can be specified for a project as a whole, for individual files, and for particular

JaCoCo-specific types of coverage, e.g., lines covered or branches covered. The following example

describes the syntax.

Example 523. Configuring violation rules

build.gradle

jacocoTestCoverageVerification {

 violationRules {

 rule {

 limit {

 minimum = 0.5

 }

 }

 rule {

 enabled = false

 element = 'CLASS'

 includes = []'org.gradle.*'

 limit {

 counter = 'LINE'

 value = 'TOTALCOUNT'

 maximum = 0.3

 }

 }

 }

}

Note: The code for this example can be found at insamples/testing/jacoco/quickstart

the ‘-all’ distribution of Gradle.

The task is not a task dependency of the task provided by theJacocoCoverageVerification check

Java plugin. There is a good reason for it. The task is currently not incremental as it doesn’t declare any

outputs. Any violation of the declared rules would automatically result in a failed build when executing the check

task. This behavior might not be desirable for all users. Future versions of Gradle might change the

behavior.

§

JaCoCo specific task configuration

The JaCoCo plugin adds a extension to all tasks of type . This extensionJacocoTaskExtension Test

allows the configuration of the JaCoCo specific properties of the test task.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html

Page 608 of 777

Example 524. Configuring test task

build.gradle

test {

 jacoco {

 append = false

 destinationFile = file()"$buildDir/jacoco/jacocoTest.exec"

 classDumpDir = file()"$buildDir/jacoco/classpathdumps"

 }

}

Note: Using the configuration (the default) causes the JaCoCo agent to append toappend = true

a shared output file that may be left over from a different test execution. If , Gradleappend = true

disables caching for the Test task since it cannot guarantee the same results each time.

Page 609 of 777

Table 81. Default values of the JaCoCo Task extension

Property Gradle default

enabled true

destPath /jacoco$buildDir

append true

includes []

excludes []

excludeClassLoaders []

includeNoLocationClasses false

sessionId auto-generated

dumpOnExit true

output Output.FILE

address -

port -

classDumpPath -

jmx false

While all tasks of type are automatically enhanced to provide coverage information when the Test java

plugin has been applied, any task that implements can be enhanced by the JaCoCoJavaForkOptions

plugin. That is, any task that forks Java processes can be used to generate coverage information.

For example you can configure your build to generate code coverage using the plugin.application

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/process/JavaForkOptions.html

Page 610 of 777

Example 525. Using application plugin to generate code coverage data

build.gradle

apply plugin: "application"

apply plugin: "jacoco"

mainClassName = "org.gradle.MyMain"

jacoco {

 applyTo run

}

task applicationCodeCoverageReport(type:JacocoReport){

 executionData run

 sourceSets sourceSets.main

}

Note: The code for this example can be found at insamples/testing/jacoco/application

the ‘-all’ distribution of Gradle.

Example 526. Coverage reports generated by applicationCodeCoverageReport

Build layout

application/

 build/

 jacoco/

 run.exec

 reports/jacoco/applicationCodeCoverageReport/html/

 index.html

§

Tasks

For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Table 82. JaCoCo plugin - tasks

Task name
Depends

on
Type Description

jacocoTestReport - JacocoReport
Generates code coverage report for the

test task.

jacocoTestCoverageVerification - JacocoCoverageVerification
Verifies code coverage metrics based

on specified rules for the test task.

Dependency management

http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html

Page 611 of 777

§

Dependency management

The JaCoCo plugin adds the following dependency configurations:

Table 83. JaCoCo plugin - dependency configurations

Name Meaning

jacocoAnt
The JaCoCo Ant library used for running the , and JacocoReport JacocoMerge JacocoCoverageVerification

tasks.

jacocoAgent The JaCoCo agent library used for instrumenting the code under test.

Page 612 of 777

The OSGi Plugin

The OSGi plugin provides a factory method to create an object. extends OsgiManifest OsgiManifest

. To learn more about generic manifest handling, see . If the JavaManifest the section called “Manifest”

plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an OsgiManifest

object. The replaced manifest is merged into the new one.

Note: The OSGi plugin makes heavy use of the . A separate isBND tool plugin implementation

maintained by the BND authors that has more advanced features.

§

Usage

To use the OSGi plugin, include the following in your build script:

Example 527. Using the OSGi plugin

build.gradle

apply plugin: 'osgi'

§

Implicitly applied plugins

Applies the Java base plugin.

§

Tasks

The OSGi plugin adds the following tasks to the project:

Table 84. OSGi plugin - tasks

Task name Depends on Type Description

osgiClasses classes Sync Copies all classes from the main source set to a single directory that is processed by BND.

Convention object

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/java/archives/Manifest.html
http://bnd.bndtools.org/
https://github.com/bndtools/bnd/blob/master/biz.aQute.bnd.gradle/README.md
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html

Page 613 of 777

§

Convention object

The OSGi plugin adds the following convention object: OsgiPluginConvention

§

Convention properties

The OSGi plugin does not add any convention properties to the project.

§

Convention methods

The OSGi plugin adds the following methods. For more details, see the API documentation of the convention

object.

Table 85. OSGi methods

Method Return Type Description

osgiManifest() OsgiManifest Returns an OsgiManifest object.

osgiManifest(Closure cl) OsgiManifest Returns an OsgiManifest object configured by the closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they

expose. Based on this the and the values of the OSGi Manifest areImport-Package Export-Package

calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to specify

version information for the value. Beside the explicit properties of the Import-Package OsgiManifest

object you can add instructions.

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html

Page 614 of 777

Example 528. Configuration of OSGi MANIFEST.MF file

build.gradle

jar {

 manifest { // the manifest of the default jar is of type OsgiManifest

 name = 'overwrittenSpecialOsgiName'

 instruction ,'Private-Package'

 ,'org.mycomp.package1'

 'org.mycomp.package2'

 instruction , 'Bundle-Vendor' 'MyCompany'

 instruction , 'Bundle-Description' 'Platform2: Metrics 2 Measures Framework'

 instruction , 'Bundle-DocURL' 'http://www.mycompany.com'

 }

}

task fooJar(type: Jar) {

 manifest = osgiManifest {

 instruction , 'Bundle-Vendor' 'MyCompany'

 }

}

The first argument of the instruction call is the key of the property. The other arguments form the value. To

learn more about the available instructions have a look at the .BND tool

http://bnd.bndtools.org/

Page 615 of 777

The Eclipse Plugins

The Eclipse plugins generate files that are used by the , thus making it possible to import theEclipse IDE

project into Eclipse (- -).File Import… Existing Projects into Workspace

The is automatically applied whenever the plugin is applied to a or project.eclipse-wtp eclipse War Ear

For utility projects (i.e. projects used by other web projects), you need to apply the Java eclipse-wtp

plugin explicitly.

What exactly the plugin generates depends on which other plugins are used:eclipse

Table 86. Eclipse plugin behavior

Plugin Description

None Generates minimal file..project

Java Adds Java configuration to . Generates and JDT settings file..project .classpath

Groovy Adds Groovy configuration to file..project

Scala Adds Scala support to and files..project .classpath

War Adds web application support to file..project

Ear Adds ear application support to file..project

The plugin generates all WTP settings files and enhances the file. If a or eclipse-wtp .project Java

 is applied, will be extended to get a proper packaging structure for this utility library orWar .classpath

web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and

removing content from the generated files.

Usage

http://eclipse.org

Page 616 of 777

§

Usage

To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:

Example 529. Using the Eclipse plugin

build.gradle

apply plugin: 'eclipse'

Example 530. Using the Eclipse WTP plugin

build.gradle

apply plugin: 'eclipse-wtp'

Note: Internally, the plugin also applies the plugin so you don’t need to apply both.eclipse-wtp eclipse

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use are the eclipse

and tasks.cleanEclipse

§

Tasks

The Eclipse plugins add the tasks shown below to a project.

Page 617 of 777

Table 87. Eclipse plugin - tasks

Task name Depends on Type Description

eclipse

all Eclipse

configuration

file generation

tasks

Task Generates all Eclipse configuration files

cleanEclipse

all Eclipse

configuration

file clean tasks

Delete Removes all Eclipse configuration files

cleanEclipseProject - Delete Removes the file..project

cleanEclipseClasspath - Delete Removes the file..classpath

cleanEclipseJdt - Delete
Removes the .settings/org.eclipse.jdt.core.prefs

file.

eclipseProject - GenerateEclipseProject Generates the file..project

eclipseClasspath - GenerateEclipseClasspath Generates the file..classpath

eclipseJdt - GenerateEclipseJdt
Generates the .settings/org.eclipse.jdt.core.prefs

file.

Table 88. Eclipse WTP plugin - additional tasks

Task name
Depends

on
Type Description

cleanEclipseWtpComponent - Delete
Removes the .settings/org.eclipse.wst.common.component

file.

cleanEclipseWtpFacet - Delete
Removes the .settings/org.eclipse.wst.common.project.facet.core.xml

file.

eclipseWtpComponent - GenerateEclipseWtpComponent
Generates the .settings/org.eclipse.wst.common.component

file.

eclipseWtpFacet - GenerateEclipseWtpFacet
Generates the .settings/org.eclipse.wst.common.project.facet.core.xml

file.

Configuration

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html

Page 618 of 777

§

Configuration

Table 89. Configuration of the Eclipse plugins

Model Reference name Description

EclipseModel eclipse
Top level element that enables configuration of the Eclipse plugin in a

DSL-friendly fashion.

EclipseProject eclipse.project Allows configuring project information

EclipseClasspath eclipse.classpath Allows configuring classpath information.

EclipseJdt eclipse.jdt Allows configuring jdt information (source/target Java compatibility).

EclipseWtpComponent eclipse.wtp.component
Allows configuring wtp component information only if eclipse-wtp

plugin was applied.

EclipseWtpFacet eclipse.wtp.facet
Allows configuring wtp facet information only if plugineclipse-wtp

was applied.

§

Customizing the generated files

The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL for

configuring model objects that model the Eclipse view of the project. These model objects are then merged

with the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide

lower level hooks for working with domain objects representing the file content before and after merging with

the model configuration. They also provide a very low level hook for working directly with the raw XML for

adjustment before it is persisted, for fine tuning and configuration that the Eclipse and Eclipse WTP plugins

do not model.

§

Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or overwritten,

depending on the particular section. The remaining sections will be left as-is.

Disabling merging with a complete rewrite

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

Page 619 of 777

1.

2.

3.

4.

5.

6.

§

Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation

task, like “ ” (in that order). If you want to make this the default behavior,gradle cleanEclipse eclipse

add “ ” to your build script. This makes it unnecessary totasks.eclipse.dependsOn(cleanEclipse)

execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be

done for the “ ” file with “ ”..classpath gradle cleanEclipseClasspath eclipseClasspath

§

Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle.

The generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in

the eclipse DSL

The hook is executed with a domain object representing contents of the file to be persistedwhenMerged

The hook is executed with a raw representation of the XML that will be persistedwithXml

The final XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 90. Advanced configuration hooks

Model
beforeMerged { arg -> }

argument type

whenMerged { arg -> }

argument type

withXml { arg -> }

argument type

withProperties { arg -> }

argument type

EclipseProject Project Project XmlProvider -

EclipseClasspath Classpath Classpath XmlProvider -

EclipseJdt Jdt Jdt - java.util.Properties

EclipseWtpComponent WtpComponent WtpComponent XmlProvider -

EclipseWtpFacet WtpFacet WtpFacet XmlProvider -

Partial overwrite of existing content

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/XmlProvider.html

Page 620 of 777

§

Partial overwrite of existing content

A causes all existing content to be discarded, thereby losing any changes made directlycomplete overwrite

in the IDE. Alternatively, the hook makes it possible to overwrite just certain parts of thebeforeMerged

existing content. The following example removes all existing dependencies from the domainClasspath

object:

Example 531. Partial Overwrite for Classpath

build.gradle

eclipse.classpath.file {

 beforeMerged { classpath ->

 classpath.entries.removeAll { entry -> entry.kind == || entry.kind == }'lib' 'var'

 }

}

The resulting file will only contain Gradle-generated dependency entries, but not any other.classpath

dependency entries that may have been present in the original file. (In the case of dependency entries, this

is also the default behavior.) Other sections of the file will be either left as-is or merged. The.classpath

same could be done for the natures in the file:.project

Example 532. Partial Overwrite for Project

build.gradle

eclipse.project.file.beforeMerged { project ->

 project.natures.clear()

}

§

Modifying the fully populated domain objects

The hook allows to manipulate the fully populated domain objects. Often this is the preferredwhenMerged

way to customize Eclipse files. Here is how you would export all the dependencies of an Eclipse project:

Example 533. Export Classpath Entries

build.gradle

eclipse.classpath.file {

 whenMerged { classpath ->

 classpath.entries.findAll { entry -> entry.kind == }*.exported = false'lib'

 }

}

Modifying the XML representation

Page 621 of 777

§

Modifying the XML representation

The hook allows to manipulate the in-memory XML representation just before the file gets writtenwithXml

to disk. Although Groovy’s XML support makes up for a lot, this approach is less convenient than

manipulating the domain objects. In return, you get total control over the generated file, including sections

not modeled by the domain objects.

Example 534. Customizing the XML

build.gradle

apply plugin: 'eclipse-wtp'

eclipse.wtp.facet.file.withXml { provider ->

 provider.asNode().fixed.find { it. == }. = @facet 'jst.java' @facet 'jst2.java'

}

Page 622 of 777

The IDEA Plugin

The IDEA plugin generates files that are used by , thus making it possible to open the projectIntelliJ IDEA

from IDEA (-). Both external dependencies (including associated source and JavadocFile Open Project

files) and project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 91. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace file if the project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of

hooks for adding and removing content from the generated files.

§

Usage

To use the IDEA plugin, include this in your build script:

Example 535. Using the IDEA plugin

build.gradle

apply plugin: 'idea'

The IDEA plugin adds a number of tasks to your project. The task generates an IDEA module file foridea

the project. When the project is the root project, the task also generates an IDEA project andidea

workspace. The IDEA project includes modules for each of the projects in the Gradle build.

The IDEA plugin also adds an task when the project is the root project. This task generates theopenIdea

IDEA configuration files and opens the result in IDEA. This means you can simply run ./gradlew openIdea

from the root project to generate and open the IDEA project in one convenient step.

The IDEA plugin also adds a task to the project. This task deletes the generated files, if present.cleanIdea

Tasks

http://www.jetbrains.com/idea/

Page 623 of 777

§

Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the task does not depend onclean

the task. This is because the workspace typically contains a lot of user specificcleanIdeaWorkspace

temporary data and it is not desirable to manipulate it outside IDEA.

Table 92. IDEA plugin - Tasks

Task name Depends on Type Description

idea ideaProject, , ideaModule ideaWorkspace- Generates all IDEA configuration files

openIdea idea -
Generates all IDEA configuration files

and opens the project in IDEA

cleanIdea cleanIdeaProject, cleanIdeaModuleDelete Removes all IDEA configuration files

cleanIdeaProject - Delete Removes the IDEA project file

cleanIdeaModule - Delete Removes the IDEA module file

cleanIdeaWorkspace - Delete Removes the IDEA workspace file

ideaProject - GenerateIdeaProject
Generates the file. This task is.ipr

only added to the root project.

ideaModule - GenerateIdeaModule Generates the file.iml

ideaWorkspace - GenerateIdeaWorkspace
Generates the file. This task is.iws

only added to the root project.

Configuration

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

Page 624 of 777

§

Configuration

Table 93. Configuration of the idea plugin

Model Reference name Description

IdeaModel idea Top level element that enables configuration of the idea plugin in a DSL-friendly fashion

IdeaProject idea.project Allows configuring project information

IdeaModule idea.module Allows configuring module information

IdeaWorkspace idea.workspace Allows configuring the workspace XML

§

Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file

can effectively only be manipulated via the hook because its corresponding domain object iswithXml

essentially empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

§

Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,

depending on the particular section. The remaining sections will be left as-is.

§

Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation

task, like “ ” (in that order). If you want to make this the default behavior, add “gradle cleanIdea idea tasks.idea.dependsOn(cleanIdea)

” to your build script. This makes it unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be

done for the “ ” file with “ ”..iml gradle cleanIdeaModule ideaModule

Hooking into the generation lifecycle

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

Page 625 of 777

1.

2.

3.

4.

5.

6.

§

Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The

generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in

the eclipse DSL

The hook is executed with a domain object representing contents of the file to be persistedwhenMerged

The hook is executed with a raw representation of the XML that will be persistedwithXml

The final XML is persisted The following table lists the domain object used for each of the model types:

Table 94. Idea plugin hooks

Model
beforeMerged { arg } argument

type

whenMerged { arg } argument

type

withXml { arg } argument

type

IdeaProject Project Project XmlProvider

IdeaModule Module Module XmlProvider

IdeaWorkspace Workspace Workspace XmlProvider

§

Partial rewrite of existing content

A causes all existing content to be discarded, thereby losing any changes made directly incomplete rewrite

the IDE. The hook makes it possible to overwrite just certain parts of the existing content.beforeMerged

The following example removes all existing dependencies from the domain object:Module

Example 536. Partial Rewrite for Module

build.gradle

idea.module.iml {

 beforeMerged { module ->

 module.dependencies.clear()

 }

}

The resulting module file will only contain Gradle-generated dependency entries, but not any other

dependency entries that may have been present in the original file. (In the case of dependency entries, this

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/XmlProvider.html

Page 626 of 777

is also the default behavior.) Other sections of the module file will be either left as-is or merged. The same

could be done for the module paths in the project file:

Example 537. Partial Rewrite for Project

build.gradle

idea.project.ipr {

 beforeMerged { project ->

 project.modulePaths.clear()

 }

}

§

Modifying the fully populated domain objects

The hook allows you to manipulate the fully populated domain objects. Often this is thewhenMerged

preferred way to customize IDEA files. Here is how you would export all the dependencies of an IDEA

module:

Example 538. Export Dependencies

build.gradle

idea.module.iml {

 whenMerged { module ->

 module.dependencies*.exported = true

 }

}

§

Modifying the XML representation

The hook allows you to manipulate the in-memory XML representation just before the file getswithXml

written to disk. Although Groovy’s XML support makes up for a lot, this approach is less convenient than

manipulating the domain objects. In return, you get total control over the generated file, including sections

not modeled by the domain objects.

Example 539. Customizing the XML

build.gradle

idea.project.ipr {

 withXml { provider ->

 provider.node.component

 .find { it. == }@name 'VcsDirectoryMappings'

 .mapping. = @vcs 'Git'

 }

}

Further things to consider

Page 627 of 777

§

Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable

pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths

with this path variable. you can configure this path variable via the “ ” property, soidea.pathVariables

that it can do a proper merge without creating duplicates.

Best practices

Page 629 of 777

Authoring Maintainable Build Scripts

Gradle build scripts combine the qualities of declarative build logic, expressiveness as well as flexibility and

rigidity as needed. As a build script author it is easy to fall into the trap of striking the wrong balance or

applying poor coding habits. This chapter describes best practices for writing your build script in a

meaningful, yet flexible and efficient way.

Note: The third-party helps with enforcing a desired code style in a build script ifGradle lint plugin

you are looking for appropriate linting automation.

§

Avoiding Gradle internal APIs

Use of Gradle internal APIs in plugins and build scripts has the potential to break builds when either Gradle

or plugins change.

The following packages are listed in the , with the exception of any subpackageGradle public API definition

with in the name:internal

https://github.com/nebula-plugins/gradle-lint-plugin
https://github.com/gradle/gradle/blob/180b9d3fa84b91768364c603380e82947437eda1/buildSrc/subprojects/configuration/src/main/kotlin/org/gradle/gradlebuild/public-api.kt

Page 630 of 777

org/gradle/*

org/gradle/api/**

org/gradle/authentication/**

org/gradle/buildinit/**

org/gradle/caching/**

org/gradle/concurrent/**

org/gradle/deployment/**

org/gradle/external/javadoc/**

org/gradle/ide/**

org/gradle/includedbuild/**

org/gradle/ivy/**

org/gradle/jvm/**

org/gradle/language/**

org/gradle/maven/**

org/gradle/nativeplatform/**

org/gradle/normalization/**

org/gradle/platform/**

org/gradle/play/**

org/gradle/plugin/devel/**

org/gradle/plugin/repository/*

org/gradle/plugin/use/*

org/gradle/plugin/management/*

org/gradle/plugins/**

org/gradle/process/**

org/gradle/testfixtures/**

org/gradle/testing/jacoco/**

org/gradle/tooling/**

org/gradle/swiftpm/**

org/gradle/model/**

org/gradle/testkit/**

org/gradle/testing/**

org/gradle/vcs/**

org/gradle/workers/**

§

Alternatives for oft-used internal APIs

To provide a nested DSL for your custom task, don’t use org.gradle.internal.reflect.Instantiator

; use instead. It may also be helpful to read .ObjectFactory Lazy Configuration

Don’t use . Use and/or . Youorg.gradle.api.internal.ConventionMapping Provider Property

can find an example for capturing user input to configure runtime behavior in the .implementing plugins guide

Instead of , use another method to detect operatingorg.gradle.internal.os.OperatingSystem

system, such as or .Apache commons-lang SystemUtils System.getProperty("os.name")

Use other collections or I/O frameworks instead of , org.gradle.util.CollectionUtils org.gradle.util.GFileUtils

, and other classes under .org.gradle.util.*

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
https://guides.gradle.org/implementing-gradle-plugins/#capturing_user_input_to_configure_plugin_runtime_behavior
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/SystemUtils.html

Page 631 of 777

Gradle plugin authors may find the Designing Gradle Plugins subsection on restricting the plugin

 helpful.implementation to Gradle’s public API

§

Improving task discoverability

Even new users to a build should to be able to find crucial information quickly and effortlessly. In Gradle you

can declare a and a Task.setGroup(java.lang.String)

 for any task of the build. The uses theTask.setDescription(java.lang.String) tasks report

assigned values to organize and render the task for easy discoverability. Assigning a group and description

is most helpful for any task that you expect build users to invoke.

The example task generates documentation for a project in the form of HTML pages. ThegenerateDocs

task should be organized underneath the bucket . The description should express its intent.Documentation

Example 540. A task declaring the group and description

build.gradle

task generateDocs {

 group = 'Documentation'

 description = 'Generates the HTML documentation for this project.'

 doLast {

 // action implementation

 }

}

The output of the tasks report reflects the assigned values.

$ gradle tasks

> Task :tasks

Documentation tasks

generateDocs - Generates the HTML documentation for this project.

Minimize logic executed during the configuration phase

https://guides.gradle.org/designing-gradle-plugins/#restricting_the_plugin_implementation_to_gradle_s_public_api
https://guides.gradle.org/designing-gradle-plugins/#restricting_the_plugin_implementation_to_gradle_s_public_api
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Task.html#setGroup-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Task.html#setDescription-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Task.html#setDescription-java.lang.String-

Page 632 of 777

§

Minimize logic executed during the configuration phase

It’s important for every build script developer to understand the different phases of the andbuild lifecycle

their implications on performance and evaluation order of build logic. During the configuration phase the

project and its domain objects should be , whereas the execution phase only executes the actionsconfigured

of the task(s) requested on the command line plus their dependencies. Be aware that any code that is not

part of a task action will be executed with of the build. A can help you withevery single run build scan

identifying the time spent during each of the lifecycle phases. It’s an invaluable tool for diagnosing common

performance issues.

Let’s consider the following incantation of the anti-pattern described above. In the build script you can see

that the dependencies assigned to the configuration are resolved outside of theprintArtifactNames

task action.

Example 541. Executing logic during configuration should be avoided

build.gradle

apply plugin: 'java-library'

repositories {

 jcenter()

}

dependencies {

 implementation 'log4j:log4j:1.2.17'

}

task printArtifactNames {

 // always executed

 def libraryNames = configurations.compileClasspath.collect { it.name }

 doLast {

 logger.quiet libraryNames

 }

}

The code for resolving the dependencies should be moved into the task action to avoid the performance

impact of resolving the dependencies before they are actually needed.

https://scans.gradle.com/get-started

Page 633 of 777

Example 542. Executing logic during execution phase is preferred

build.gradle

apply plugin: 'java-library'

repositories {

 jcenter()

}

dependencies {

 implementation 'log4j:log4j:1.2.17'

}

task printArtifactNames {

 doLast {

 def libraryNames = configurations.compileClasspath.collect { it.name }

 logger.quiet libraryNames

 }

}

§

Avoiding imperative logic in scripts

The Gradle runtime does not enforce a specific style for build logic. For that very reason, it’s easy to end up

with a build script that mixes declarative DSL elements with imperative, procedural code. Let’s talk about

some concrete examples.

Declarative code: Built-in, language-agnostic DSL elements (e.g. or Project.dependencies{}

) or DSLs exposed by pluginsProject.repositories{}

Imperative code: Conditional logic or very complex task action implementations

The end goal of every build script should be to only contain declarative language elements which makes the

code easier to understand and maintain. Imperative logic should live in binary plugins and which in turn is

applied to the build script. As a side product, you automatically enable your team to reuse the plugin logic in

 if you publish the artifact to a binary repository.other projects

The following sample build shows a negative example of using conditional logic directly in the build script.

While this code snippet is small, it is easy to imagine a full-blown build script using numerous procedural

statements and the impact it would have on readability and maintainability. By moving the code into a class

 also becomes a valid option.testability

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
https://guides.gradle.org/designing-gradle-plugins/#reusable_logic_should_be_written_as_binary_plugin
https://guides.gradle.org/designing-gradle-plugins/#reusable_logic_should_be_written_as_binary_plugin
https://guides.gradle.org/testing-gradle-plugins/

Page 634 of 777

Example 543. A build script using conditional logic to create a task

build.gradle

if (project.findProperty()) {'releaseEngineer'

 task release {

 doLast {

 logger.quiet 'Releasing to production...'

 // release the artifact to production

 }

 }

}

Let’s compare the build script with the same logic implemented as a binary plugin. The code might look more

involved at first but clearly looks more like typical application code. This particular plugin class lives in the buildSrc

 which makes it available to the build script automatically.directory

Example 544. A binary plugin implementing imperative logic

ReleasePlugin.java

package com.enterprise;

 org.gradle.api.Action;import

 org.gradle.api.Plugin;import

 org.gradle.api.Project;import

 org.gradle.api.Task;import

 ReleasePlugin Plugin<Project> {public class implements

 String RELEASE_ENG_ROLE_PROP = ;private static final "releaseEngineer"

 String RELEASE_TASK_NAME = ;private static final "release"

 @Override

 apply(Project project) {public void

 (project.findProperty(RELEASE_ENG_ROLE_PROP) != null) {if

 Task task = project.getTasks().create(RELEASE_TASK_NAME);

 task.doLast(Action<Task>() {new

 @Override

 execute(Task task) {public void

 task.getLogger().quiet();"Releasing to production..."

 // release the artifact to production

 }

 });

 }

 }

}

Now that the build logic has been translated into a plugin, you can apply it in the build script. The build script

Page 635 of 777

has been shrunk from 8 lines of code to a one liner.

Example 545. A build script applying a plugin that encapsulates imperative logic

build.gradle

apply plugin: 'com.enterprise.release'

§

Avoiding passwords in plain text

Most builds need to consume one or many passwords. The reasons for this need may vary. Some builds

need a password for publishing artifacts to a secured binary repository, other builds need a password for

downloading binary files. Passwords should always kept safe to prevent fraud. Under no circumstance

should you add the password to the build script as property in plain text or declare it in a gradle.properties

. Those files usually live in a version control repository and can be viewed by anyone that has access to it.

Passwords should be stored in encrypted fashion. At the moment Gradle does not provide a built-in

mechanism for encrypting, storing and accessing passwords. A good solution for solving this problem is the

.Gradle Credentials plugin

https://github.com/etiennestuder/gradle-credentials-plugin

Page 636 of 777

Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in

the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a

method. If multiple projects of a multi-project build share some logic you can define this method in the parent

project. If the build logic gets too complex for being properly modeled by methods then you likely should

implement your logic with classes to encapsulate your logic. Gradle makes this very easy. Just drop your

classes in a certain directory and Gradle automatically compiles them and puts them in the classpath of your

build script.

Here is a summary of the ways you can organise your build logic:

POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The build

script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to organize code.

Inherited properties and methods. In a multi-project build, sub-projects inherit the properties and methods of

their parent project.

Configuration injection. In a multi-project build, a project (usually the root project) can inject properties and

methods into another project.

 projectbuildSrc . Drop the source for your build classes into a certain directory and Gradle automatically

compiles them and includes them in the classpath of your build script.

Shared scripts. Define common configuration in an external build, and apply the script to multiple projects,

possibly across different builds.

Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects. The

plugin must be in the classpath of your build script. You can achieve this either by using orbuild sources

by adding an that contains the plugin.external library

Execute an external build. Execute another Gradle build from the current build.

External libraries. Use external libraries directly in your build file.

Inherited properties and methods

[]22

Page 637 of 777

§

Inherited properties and methods

Any method or property defined in a project build script is also visible to all the sub-projects. You can use

this to define common configurations, and to extract build logic into methods which can be reused by the

sub-projects.

Example 546. Using inherited properties and methods

build.gradle

// Define an extra property

ext.srcDirName = 'src/java'

// Define a method

def getSrcDir(project) {

 project.file(srcDirName)return

}

child/build.gradle

task show {

 doLast {

 // Use inherited property

 println + srcDirName'srcDirName: '

 // Use inherited method

 File srcDir = getSrcDir(project)

 println + rootProject.relativePath(srcDir)'srcDir: '

 }

}

Output of gradle -q show

> gradle -q show

srcDirName: src/java

srcDir: child/src/java

§

Injected configuration

You can use the configuration injection technique discussed in the section called “Cross project

 and to inject properties and methods into variousconfiguration” the section called “Subproject configuration”

projects. This is generally a better option than inheritance, for a number of reasons: The injection is explicit

in the build script, You can inject different logic into different projects, And you can inject any kind of

configuration such as repositories, plug-ins, tasks, and so on. The following sample shows how this works.

Page 638 of 777

Example 547. Using injected properties and methods

build.gradle

subprojects {

 // Define a new property

 ext.srcDirName = 'src/java'

 // Define a method using a closure as the method body

 ext.srcDir = { file(srcDirName) }

 // Define a task

 task show {

 doLast {

 println + project.path'project: '

 println + srcDirName'srcDirName: '

 File srcDir = srcDir()

 println + rootProject.relativePath(srcDir)'srcDir: '

 }

 }

}

// Inject special case configuration into a particular project

project() {':child2'

 ext.srcDirName = "$srcDirName/legacy"

}

child1/build.gradle

// Use injected property and method. Here, we override the injected value

srcDirName = 'java'

def dir = srcDir()

Output of gradle -q show

> gradle -q show

project: :child1

srcDirName: java

srcDir: child1/java

project: :child2

srcDirName: src/java/legacy

srcDir: child2/src/java/legacy

§

Configuring the project using an external build script

You can configure the current project using an external build script. All of the Gradle build language is

available in the external script. You can even apply other scripts from the external script.

Build scripts can be local files or remotely accessible files downloaded via a URL.

Page 639 of 777

Remote files will be cached and made available when Gradle runs offline. On each build, Gradle will check if

the remote file has changed and will only download the build script file again if it has changed. URLs that

contain query strings will not be cached.

Example 548. Configuring the project using an external build script

build.gradle

apply from: 'other.gradle'

other.gradle

println "configuring $project"

task hello {

 doLast {

 println 'hello from other script'

 }

}

Output of gradle -q hello

> gradle -q hello

configuring root project 'configureProjectUsingScript'

hello from other script

§

Build sources in the projectbuildSrc

When you run Gradle, it checks for the existence of a directory called . Gradle then automaticallybuildSrc

compiles and tests this code and puts it in the classpath of your build script. You don’t need to provide any

further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one directory, which has to be in the root projectbuildSrc

directory.

Listed below is the default build script that Gradle applies to the project:buildSrc

Default buildSrc build script.

apply plugin: 'groovy'

dependencies {

 compile gradleApi()

 compile localGroovy()

}

This means that you can just put your build source code in this directory and stick to the layout convention

for a Java/Groovy project (see).Table 33

If you need more flexibility, you can provide your own . Gradle applies the default build scriptbuild.gradle

regardless of whether there is one specified. This means you only need to declare the extra things you need.

Page 640 of 777

Below is an example. Notice that this example does not need to declare a dependency on the Gradle API, as

this is done by the default build script:

Example 549. Custom buildSrc build script

buildSrc/build.gradle

repositories {

 mavenCentral()

}

dependencies {

 testCompile 'junit:junit:4.12'

}

The project can be a multi-project build, just like any other regular multi-project build. However,buildSrc

all of the projects that should be on the classpath of the actual build must be dependencies of theruntime

root project in . You can do this by adding this to the configuration of each project you wish tobuildSrc

export:

Example 550. Adding subprojects to the root buildSrc project

buildSrc/build.gradle

rootProject.dependencies {

 runtime project(path)

}

Note: The code for this example can be found at in the ‘-all’samples/multiProjectBuildSrc

distribution of Gradle.

§

Running another Gradle build from a build

You can use the task. You can use either of the or properties to specifyGradleBuild dir buildFile

which build to execute, and the property to specify which tasks to execute.tasks

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.GradleBuild.html

Page 641 of 777

Example 551. Running another build from a build

build.gradle

task build(type: GradleBuild) {

 buildFile = 'other.gradle'

 tasks = []'hello'

}

other.gradle

task hello {

 doLast {

 println "hello from the other build."

 }

}

Output of gradle -q build

> gradle -q build

hello from the other build.

§

External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script’s classpath in the build

script itself. You do this using the method, passing in a closure which declares the buildbuildscript()

script classpath.

Example 552. Declaring external dependencies for the build script

build.gradle

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'

 }

}

The closure passed to the method configures a instance. You declarebuildscript() ScriptHandler

the build script classpath by adding dependencies to the configuration. This is the same wayclasspath

you declare, for example, the Java compilation classpath. You can use any of the dependency types

described in , except project dependencies.Dependency Types

Having declared the build script classpath, you can use the classes in your build script as you would any

other classes on the classpath. The following example adds to the previous example, and uses classes from

the build script classpath.

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 642 of 777

Example 553. A build script with external dependencies

build.gradle

import org.apache.commons.codec.binary.Base64

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'

 }

}

task encode {

 doLast {

 def [] encodedString = Base6 ().encode(.getBytes())byte new 4 'hello world\n'

 println String(encodedString)new

 }

}

Output of gradle -q encode

> gradle -q encode

aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared with a project’s method are availablebuildscript()

to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult for more informationUsing Gradle Plugins

on Gradle plugins.

Every project automatically has a task of type thatbuildEnvironment BuildEnvironmentReportTask

can be invoked to report on the resolution of the build script dependencies.

§

Ant optional dependencies

For reasons we don’t fully understand yet, external dependencies are not picked up by Ant’s optional tasks.

But you can easily do it in another way.[][]23

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

Page 643 of 777

Example 554. Ant optional dependencies

build.gradle

configurations {

 ftpAntTask

}

dependencies {

 ftpAntTask() {"org.apache.ant:ant-commons-net:1.9.9"

 module() {"commons-net:commons-net:1.4.1"

 dependencies "oro:oro:2.0.8:jar"

 }

 }

}

task ftp {

 doLast {

 ant {

 taskdef(name: ,'ftp'

 classname: ,'org.apache.tools.ant.taskdefs.optional.net.FTP'

 classpath: configurations.ftpAntTask.asPath)

 ftp(server: , userid: , password:) {"ftp.apache.org" "anonymous" "me@myorg.com"

 fileset(dir:)"htdocs/manual"

 }

 }

 }

}

This is also a good example for the usage of client modules. The POM file in Maven Central for the

ant-commons-net task does not provide the right information for this use case.

§

Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your

domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to

maintain code base. It is our experience that even very complex custom build logic is rarely shared between

different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle

spares you this unnecessary overhead and indirection.

[] Which might range from a single class to something very complex.

[] In fact, we think this is a better solution. Only if your buildscript and Ant’s optional task need the same

library would you have to define it twice. In such a case it would be nice if Ant’s optional task would

automatically pick up the classpath defined in the “ ” file.gradle.settings

[] 22

[] 23

The Software model

Page 645 of 777

Rule based model configuration

Note: Rule based configuration will be deprecated. New plugins should not use this concept.

Rule based model configuration enables on other elementsconfiguration logic to itself have dependencies

of configuration, and to make use of the resolved states of those other elements of configuration while

performing its own configuration.

§

Background

In a nutshell, the Software Model is a very declarative way to describe how a piece of software is built and

the other components it needs as dependencies in the process. It also provides a new, rule-based engine for

configuring a Gradle build. When we started to implement the software model we set ourselves the following

goals:

Improve configuration and execution time performance.

Make customizations of builds with complex tool chains easier.

Provide a richer, more standardized way to model different software ecosystems.

Gradle drastically improved configuration performance through other measures. There is no longer any need

for a drastic, incompatible change in how Gradle builds are configured. Gradle’s support for building native

 and still use the configuration model.software Play Framework applications

Basic Concepts

Page 646 of 777

§

Basic Concepts

§

The “model space”

The term “model space” is used to refer to the formal model, which can be read and modified by rules.

A counterpart to the model space is the “project space”, which should be familiar to readers. The “project

space” is a graph of objects (e.g , etc.) having a asproject.repositories project.tasks Project

its root. A build script is effectively adding and configuring objects of this graph. For the most part, the

“project space” is opaque to Gradle. It is an arbitrary graph of objects that Gradle only partially understands.

Each project also has its own model space, which is distinct from the project space. A key characteristic of

the “model space” is that Gradle knows much more about it (which is knowledge that can be put to good

use). The objects in the model space are “managed”, to a greater extent than objects in the project space.

The origin, structure, state, collaborators and relationships of objects in the model space are first class

constructs. This is effectively the characteristic that functionally distinguishes the model space from the

project space: the objects of the model space are defined in ways that Gradle can understand them

intimately, as opposed to an object that is the result of running relatively opaque code. A “rule” is effectively

a building block of this definition.

The model space will eventually replace the project space, becoming the only “space”.

§

Rules

The model space is defined by “rules”. A rule is just a function (in the abstract sense) that either produces a

model element, or acts upon a model element. Every rule has a single subject and zero or more inputs. Only

the subject can be changed by a rule, while the inputs are effectively immutable.

Gradle guarantees that all inputs are fully “realized“ before the rule executes. The process of “realizing” a

model element is effectively executing all the rules for which it is the subject, transitioning it to its final state.

There is a strong analogy here to Gradle’s task graph and task execution model. Just as tasks depend on

each other and Gradle ensures that dependencies are satisfied before executing a task, rules effectively

depend on each other (i.e. a rule depends on all rules whose subject is one of the inputs) and Gradle

ensures that all dependencies are satisfied before executing the rule.

Model elements are very often defined in terms of other model elements. For example, a compile task’s

configuration can be defined in terms of the configuration of the source set that it is compiling. In this

scenario, the compile task would be the subject of a rule and the source set an input. Such a rule could

configure the task subject based on the source set input without concern for how it was configured, who it

was configured by or when the configuration was specified.

There are several ways to declare rules, and in several forms.

Rule sources

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Page 647 of 777

§

Rule sources

One way to define rules is via a subclass. If an object extends RuleSource and contains anyRuleSource

methods annotated by '@Mutate', then each such method defines a rule. For each such method, the first

argument is the subject, and zero or more subsequent arguments may follow and are inputs of the rule.

Example 555. applying a rule source plugin

build.gradle

@Managed

 Person {interface

 setFirstName(String name)void

 String getFirstName()

 setLastName(String name)void

 String getLastName()

}

 PersonRules RuleSource {class extends

 person(Person p) {}@Model void

 //Create a rule that modifies a Person and takes no other inputs

 setFirstName(Person p) {@Mutate void

 p.firstName = "John"

 }

 //Create a rule that modifies a ModelMap<Task> and takes as input a Person

 createHelloTask(ModelMap<Task> tasks, Person p) {@Mutate void

 tasks.create() {"hello"

 doLast {

 println "Hello $p.firstName $p.lastName!"

 }

 }

 }

}

apply plugin: PersonRules

Output of gradle hello

> gradle hello

> Task :hello

Hello John Smith!

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html

Page 648 of 777

Each of the different methods of the rule source are discrete, independent rules. Their order, or the fact that

they belong to the same class, do not affect their behavior.

Example 556. a model creation rule

build.gradle

@Model person(Person p) {}void

This rule declares that there is a model element at path (defined by the method name), of type "person" Person

. This is the form of the type rule for types. Here, the person object is the rule subject. TheModel Managed

method could potentially have a body, that mutated the person instance. It could also potentially have more

parameters, which would be the rule inputs.

Example 557. a model mutation rule

build.gradle

//Create a rule that modifies a Person and takes no other inputs

 setFirstName(Person p) {@Mutate void

 p.firstName = "John"

}

This rule mutates the person object. The first parameter to the method is the subject. Here, aMutate

by-type reference is used as no annotation is present on the parameter. It could also potentially havePath

more parameters, that would be the rule inputs.

Example 558. creating a task

build.gradle

//Create a rule that modifies a ModelMap<Task> and takes as input a Person

 createHelloTask(ModelMap<Task> tasks, Person p) {@Mutate void

 tasks.create() {"hello"

 doLast {

 println "Hello $p.firstName $p.lastName!"

 }

 }

}

This rule effectively adds a task, by mutating the tasks collection. The subject here is the Mutate "tasks"

node, which is available as a of . The only input is our person element. As the person isModelMap Task

being used as an input here, it will have been realised before executing this rule. That is, the task container

effectively the person element. If there are other configuration rules for the person element,depends on

potentially specified in a build script or other plugin, they will also be guaranteed to have been executed.

As is a type in this example, any attempt to modify the person parameter in this methodPerson Managed

would result in an exception being thrown. Managed objects enforce immutability at the appropriate point in

their lifecycle.

Rule source plugins can be packaged and distributed in the same manner as other types of plugins (see

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Model.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Path.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Managed.html

Page 649 of 777

). They also may be applied in the same manner (to project objects) as Writing Custom Plugins Plugin

implementations (i.e. via).Project.apply(java.util.Map)

Please see the documentation for for more information on constraints on how rule sourcesRuleSource

must be implemented and for more types of rules.

§

Advanced Concepts

§

Model paths

A model path identifies the location of an element relative to the root of its model space. A common

representation is a period-delimited set of names. For example, the model path is the path to the"tasks"

element that is the task container. Assuming a task whose name is , the path is thehello "tasks.hello"

path to this task.

§

Managed model elements

Currently, any kind of Java object can be part of the model space. However, there is a difference between

“managed” and “unmanaged” objects.

A “managed” object is transparent and enforces immutability once realized. Being transparent means that its

structure is understood by the rule infrastructure and as such each of its properties are also individual

elements in the model space.

An “unmanaged” object is opaque to the model space and does not enforce immutability. Over time, more

mechanisms will be available for defining managed model elements culminating in all model elements being

managed in some way.

Managed models can be defined by attaching the annotation to an interface:@Managed

Example 559. a managed type

build.gradle

@Managed

 Person {interface

 setFirstName(String name)void

 String getFirstName()

 setLastName(String name)void

 String getLastName()

}

By defining a getter/setter pair, you are effectively declaring a managed property. A managed property is a

property for which Gradle will enforce semantics such as immutability when a node of the model is not the

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html

Page 650 of 777

subject of a rule. Therefore, this example declares properties named and on thefirstName lastName

managed type . These properties will only be writable when the view is mutable, that is to say whenPerson

the is the subject of a (see below the explanation for rules).Person Rule

Managed properties can be of any scalar type. In addition, properties can also be of any type which is itself

managed:

Property type Nullable Example

String Yes
Example 560. a String property

build.gradle

void setFirstName(String name)

String getFirstName()

File Yes
Example 561. a File property

build.gradle

void setHomeDirectory(File homeDir)

File getHomeDirectory()

Integer, , , , Boolean Byte Short Float

, , Long Double

Yes
Example 562. a Long property

build.gradle

void setId(Long id)

Long getId()

int, , , , boolean byte short float

, , long double

No
Example 563. a boolean property

build.gradle

void setEmployed(isEmployed)boolean

 isEmployed()boolean

Example 564. an int property

build.gradle

void setAge(age)int

 getAge()int

Another type.managed Only if read/write
Example 565. a managed property

build.gradle

void setMother(Person mother)

Person getMother()

An type.enumeration Yes
Example 566. an enumeration type property

build.gradle

void setMaritalStatus(MaritalStatus status)

MaritalStatus getMaritalStatus()

A . A managed setManagedSet

supports the creation of new named

model elements, but not their

Only if read/write

Page 651 of 777

removal. Example 567. a managed set

build.gradle

ModelSet<Person> getChildren()

A or of scalar types. AllSet List

classic operations on collections are

supported: add, remove, clear…

Only if read/write
Example 568. a scalar collection

build.gradle

void setUserGroups(List<String> groups)

List<String> getUserGroups()

If the type of a property is itself a managed type, it is possible to declare only a getter, in which case you are

declaring a read-only property. A read-only property will be instantiated by Gradle, and cannot be replaced

with another object of the same type (for example calling a setter). However, the properties of that property

can potentially be changed, if, and only if, the property is the subject of a rule. If it’s not the case, the

property is immutable, like any classic read/write managed property, and properties of the property cannot

be changed at all.

Managed types can be defined out of interfaces or abstract classes and are usually defined in plugins, which

are written either in Java or Groovy. Please see the annotation for more information on creatingManaged

managed model objects.

§

Model element types

There are particular types (language types) supported by the model space and can be generalised as

follows:

Table 95. Type definitions

Type Definition

Scalar

A scalar type is one of the following:

a primitive type (e.g.) or its boxed type (e.g)int Integer

a or BigInteger BigDecimal

a String

a File

an enumeration type

Scalar Collection A java.util.List or java.util.Set containing one of the scalar types

Managed type Any class which is a valid managed model (i.e.annotated with @)Managed

Managed collection A or ModelMap ModelSet

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelSet.html

Page 652 of 777

There are various contexts in which these types can be used:

Table 96. Model type support

Context Supported types

Creating top level model

elements

Any managed type

FunctionalSourceSet (when the plugin has been applied)LanguageBasePlugin

Subtypes of which have been registered via LanguageSourceSet ComponentType

Properties of managed model

elements

The properties (attributes) of a managed model elements may be one or more of the following:

A managed type

A type which is annotated with @Unmanaged

A Scalar Collection

A Managed collection containing managed types

A Managed collection containing 's (when the FunctionalSourceSet

 plugin has been applied)LanguageBasePlugin

Subtypes of which have been registered via LanguageSourceSet ComponentType

§

Language source sets

FunctionalSourceSets and subtypes of (which have been registered via LanguageSourceSet

) can be added to the model space via rules or via the model DSL.ComponentType

http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Unmanaged.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentType.html

Page 653 of 777

Example 569. strongly modelling sources sets

build.gradle

apply plugin: 'java-lang'

//Creating LanguageSourceSets via rules

 LanguageSourceSetRules RuleSource {class extends

 @Model

 mySourceSet(JavaSourceSet javaSource) {void

 javaSource.source.srcDir()"src/main/my"

 }

}

apply plugin: LanguageSourceSetRules

//Creating LanguageSourceSets via the model DSL

model {

 another(JavaSourceSet) {

 source {

 srcDir "src/main/another"

 }

 }

}

//Using FunctionalSourceSets

@Managed

 SourceBundle {interface

 FunctionalSourceSet getFreeSources()

 FunctionalSourceSet getPaidSources()

}

model {

 sourceBundle(SourceBundle) {

 freeSources.create(, JavaSourceSet)"main"

 freeSources.create(, JvmResourceSet)"resources"

 paidSources.create(, JavaSourceSet)"main"

 paidSources.create(, JvmResourceSet)"resources"

 }

}

Note: The code for this example can be found at insamples/modelRules/language-support

the ‘-all’ distribution of Gradle.

Output of gradle help

> gradle help

> Task :help

References, binding and scopes

Page 654 of 777

§

References, binding and scopes

As previously mentioned, a rule has a subject and zero or more inputs. The rule’s subject and inputs are

declared as “references” and are “bound” to model elements before execution by Gradle. Each rule must

effectively forward declare the subject and inputs as references. Precisely how this is done depends on the

form of the rule. For example, the rules provided by a declare references as methodRuleSource

parameters.

A reference is either “by-path” or “by-type”.

A “by-type” reference identifies a particular model element by its type. For example, a reference to the

 effectively identifies the element in the project model space. The model space isTaskContainer "tasks"

not exhaustively searched for candidates for by-type binding; rather, a rule is given a scope (discussed later)

that determines the search space for a by-type binding.

A “by-path” reference identifies a particular model element by its path in model space. By-path references

are always relative to the rule scope; there is currently no way to path “out” of the scope. All by-path

references also have an associated type, but this does not influence what the reference binds to. The

element identified by the path must however by type compatible with the reference, or a fatal “binding failure”

will occur.

§

Binding scope

Rules are bound within a “scope”, which determines how references bind. Most rules are bound at the

project scope (i.e. the root of the model graph for the project). However, rules can be scoped to a node

within the graph. The method is anModelMap.named(java.lang.String, java.lang.Class)

example of a mechanism for applying scoped rules. Rules declared in the build script using the model {}

block, or via a applied as a plugin use the root of the model space as the scope. This can beRuleSource

considered the default scope.

By-path references are always relative to the rule scope. When the scope is the root, this effectively allows

binding to any element in the graph. When it is not, then only the children of the scope can be referenced

using "by-path" notation.

When binding by-type references, the following elements are considered:

The scope element itself.

The immediate children of the scope element.

The immediate children of the model space (i.e. project space) root.

For the common case, where the rule is effectively scoped to the root, only the immediate children of the root

need to be considered.

Binding to all elements in a scope matching type

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelMap.html#named-java.lang.String, java.lang.Class-

Page 655 of 777

§

Binding to all elements in a scope matching type

Mutating or validating all elements of a given type in some scope is a common use-case. To accommodate

this, rules can be applied via the annotation.@Each

In the example below, a rule is applied to each in the model setting a default file size@Defaults FileItem

of "1024". Another rule applies a to every that makes sure all file sizes areRuleSource DirectoryItem

positive and divisible by "16".

Example 570. a DSL example applying a rule to every element in a scope

build.gradle

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html

Page 656 of 777

@Managed Item Named {}interface extends

 FileItem Item {@Managed interface extends

 setSize(size)void int

 getSize()int

}

 DirectoryItem Item {@Managed interface extends

 ModelMap<Item> getChildren()

}

 PluginRules RuleSource {class extends

 setDefaultFileSize(FileItem file) {@Defaults void @Each

 file.size = 1024

 }

 applyValidateRules(ValidateRules rules, DirectoryItem directory) {}@Rules void @Each

}

apply plugin: PluginRules

 ValidateRules RuleSource {abstract class extends

 @Validate

 validateSizeIsPositive(ModelMap<FileItem> files) {void

 files.each { file ->

 assert file.size > 0

 }

 }

 @Validate

 validateSizeDivisibleBySixteen(ModelMap<FileItem> files) {void

 files.each { file ->

 assert file.size % == 16 0

 }

 }

}

model {

 root(DirectoryItem) {

 children {

 dir(DirectoryItem) {

 children {

 file1(FileItem)

 file2(FileItem) { size = }2048

 }

 }

 file3(FileItem)

 }

 }

}

Page 657 of 777

Note: The code for this example can be found at samples/modelRules/ruleSourcePluginEach

in the ‘-all’ distribution of Gradle.

§

The model DSL

In addition to using a RuleSource, it is also possible to declare a model and rules directly in a build script

using the “model DSL”.

Tip: The model DSL makes heavy use of various Groovy DSL features. Please have a read of the

 for an introduction to these Groovy features.section called “Some Groovy basics”

The general form of the model DSL is:

model {

 «rule-definitions»

}

All rules are nested inside a block. There may be any number of rule definitions inside each model model

block, and there may be any number of blocks in a build script. You can also use a block inmodel model

build scripts that are applied using .apply from: $uri

There are currently 2 kinds of rule that you can define using the model DSL: configuration rules, and creation

rules.

§

Configuration rules

You can define a rule that configures a particular model element. A configuration rule has the following form:

model {

 «model-path-to-subject» {

 «configuration code»

 }

}

Continuing with the example so far of the model element of type being present, the"person" Person

following DSL snippet adds a configuration rule for the person that sets its property.lastName

Page 658 of 777

Example 571. DSL configuration rule

build.gradle

model {

 person {

 lastName = "Smith"

 }

}

A configuration rule specifies a path to the subject that should be configured and a closure containing the

code to run when the subject is configured. The closure is executed with the subject passed as the closure

delegate. Exactly what code you can provide in the closure depends on the type of the subject. This is

discussed below.

You should note that the configuration code is not executed immediately but is instead executed only when

the subject is required. This is an important behaviour of model rules and allows Gradle to configure only

those elements that are required for the build, which helps reduce build time. For example, let’s run a task

that uses the "person" object:

Example 572. Configuration run when required

build.gradle

model {

 person {

 println "configuring person"

 lastName = "Smith"

 }

}

Output of gradle showPerson

> gradle showPerson

configuring person

> Task :showPerson

Hello John Smith!

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

You can see that before the task is run, the "person" element is configured by running the rule closure. Now

let’s run a task that does not require the "person" element:

Page 659 of 777

Example 573. Configuration not run when not required

Output of gradle somethingElse

> gradle somethingElse

> Task :somethingElse

Not using person

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

In this instance, you can see that the "person" element is not configured at all.

§

Creation rules

It is also possible to create model elements at the root level. The general form of a creation rule is:

model {

 «element-name»(«element-type») {

 «initialization code»

 }

}

The following model rule creates the element:"person"

Example 574. DSL creation rule

build.gradle

model {

 person(Person) {

 firstName = "John"

 }

}

A creation rule definition specifies the path of the element to create, plus its public type, represented as a

Java interface or class. Only certain types of model elements can be created.

A creation rule may also provide a closure containing the initialization code to run when the element is

created. The closure is executed with the element passed as the closure delegate. Exactly what code you

can provide in the closure depends on the type of the subject. This is discussed below.

The initialization closure is optional and can be omitted, for example:

Page 660 of 777

Example 575. DSL creation rule without initialization

build.gradle

model {

 barry(Person)

}

You should note that the initialization code is not executed immediately but is instead executed only when

the element is required. The initialization code is executed before any configuration rules are run. For

example:

Example 576. Initialization before configuration

build.gradle

model {

 person {

 println "configuring person"

 println "last name is $lastName, should be Smythe"

 lastName = "Smythe"

 }

 person(Person) {

 println "creating person"

 firstName = "John"

 lastName = "Smith"

 }

}

Output of gradle showPerson

> gradle showPerson

creating person

configuring person

last name is Smith, should be Smythe

> Task :showPerson

Hello John Smythe!

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Notice that the creation rule appears in the build script the configuration rule, but its code runs beforeafter

the code of the configuration rule. Gradle collects up all the rules for a particular subject before running any

of them, then runs the rules in the appropriate order.

§

Model rule closures

Most DSL rules take a closure containing some code to run to configure the subject. The code you can use

in this closure depends on the type of the subject of the rule.

Page 661 of 777

Tip: You can use the to determine the type of a particular model element.model report

In general, a rule closure may contain arbitrary code, mixed with some type specific DSL syntax.

§

ModelMap<T> subject

A is basically a map of model elements, indexed by some name. When a is used asModelMap ModelMap

the subject of a DSL rule, the rule closure can use any of the methods defined on the interface.ModelMap

A rule closure with as a subject can also include nested creation or configuration rules. TheseModelMap

behave in a similar way to the creation and configuration rules that appear directly under the block.model

Here is an example of a nested creation rule:

Example 577. Nested DSL creation rule

build.gradle

model {

 people {

 john(Person) {

 firstName = "John"

 }

 }

}

As before, a nested creation rule defines a name and public type for the element, and optionally, a closure

containing code to use to initialize the element. The code is run only when the element is required in the

build.

Here is an example of a nested configuration rule:

Example 578. Nested DSL configuration rule

build.gradle

model {

 people {

 john {

 lastName = "Smith"

 }

 }

}

As before, a nested configuration rule defines the name of the element to configure and a closure containing

code to use to configure the element. The code is run only when the element is required in the build.

ModelMap introduces several other kinds of rules. For example, you can define a rule that targets each of

the elements in the map. The code in the rule closure is executed once for each element in the map, when

that element is required. Let’s run a task that requires all of the children of the "people" element:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelMap.html

Page 662 of 777

Example 579. DSL configuration rule for each element in a map

build.gradle

model {

 people {

 john(Person) {

 println "creating $it"

 firstName = "John"

 lastName = "Smith"

 }

 all {

 println "configuring $it"

 }

 barry(Person) {

 println "creating $it"

 firstName = "Barry"

 lastName = "Barry"

 }

 }

}

Output of gradle listPeople

> gradle listPeople

creating Person 'people.barry'

configuring Person 'people.barry'

creating Person 'people.john'

configuring Person 'people.john'

> Task :listPeople

Hello Barry Barry!

Hello John Smith!

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Any method on that accepts an as its last parameter can also be used to define aModelMap Action

nested rule.

§

@Managed type subject

When a managed type is used as the subject of a DSL rule, the rule closure can use any of the methods

defined on the managed type interface.

A rule closure can also configure the properties of the element using nested closures. For example:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Action.html

Page 663 of 777

Example 580. Nested DSL property configuration

build.gradle

model {

 person {

 address {

 city = "Melbourne"

 }

 }

}

Note: Currently, the nested closures do not define rules and are executed immediately. Please be

aware that this behaviour will change in a future Gradle release.

§

All other subjects

For all other types, the rule closure can use any of the methods defined by the type. There is no special DSL

defined for these elements.

§

Automatic type coercion

Scalar properties in managed types can be assigned values (e.g. , , etc.)CharSequence String GString

and they will be converted to the actual property type for you. This works for all scalar types including `File`s,

which will be resolved relative to the current project.

Example 581. a DSL example showing type conversions

build.gradle

enum Temperature {

 TOO_HOT,

 TOO_COLD,

 JUST_RIGHT

}

@Managed

 Item {interface

 setName(String n); String getName()void

 setQuantity(q); getQuantity()void int int

 setPrice(p); getPrice()void float float

 setTemperature(Temperature t)void

 Temperature getTemperature()

 setDataFile(File f); File getDataFile()void

}

Page 664 of 777

 ItemRules RuleSource {class extends

 @Model

 item(Item item) {void

 def data = item.dataFile.text.trim()

 def (name, quantity, price, temp) = data.split()','

 item.name = name

 item.quantity = quantity

 item.price = price

 item.temperature = temp

 }

 @Defaults

 setDefaults(Item item) {void

 item.dataFile = 'data.csv'

 }

 @Mutate

 createDataTask(ModelMap<Task> tasks, Item item) {void

 tasks.create() {'showData'

 doLast {

 println """

Item '$item.name'

 quantity: $item.quantity

 price: $item.price

 temperature: $item.temperature"""

 }

 }

 }

}

apply plugin: ItemRules

model {

 item {

 price = "${price * (quantity < 10 ? 2 : 0.5)}"

Page 665 of 777

 }

}

Note: The code for this example can be found at insamples/modelRules/modelDslCoercion

the ‘-all’ distribution of Gradle.

In the above example, an is created and is initialized in by providing the path to theItem setDefaults()

data file. In the method the resolved is parsed to extract and set the data. In the DSL block atitem() File

the end, the price is adjusted based on the quantity; if there are fewer than 10 remaining the price is

doubled, otherwise it is reduced by 50%. The expression is a valid value since it resolves to a GString float

value in string form.

Finally, in we add the task to display all of the configured values.createDataTask() showData

§

Declaring input dependencies

Rules declared in the DSL may on other model elements through the use of a special syntax, whichdepend

is of the form:

$.«path-to-model-element»

Paths are a period separated list of identifiers. To directly depend on the of the person, thefirstName

following could be used:

$.person.firstName

Example 582. a DSL rule using inputs

build.gradle

model {

 tasks {

 hello(Task) {

 def p = $.person

 doLast {

 println "Hello $p.firstName $p.lastName!"

 }

 }

 }

}

Note: The code for this example can be found at in the ‘-all’samples/modelRules/modelDsl

distribution of Gradle.

In the above snippet, the construct is an input reference. The construct returns the value of the$.person

model element at the specified path, as its default type (i.e. the type advertised by the). It mayModel Report

appear anywhere in the rule that an expression may normally appear. It is not limited to the right hand side

Page 666 of 777

of variable assignments.

The input element is guaranteed to be fully configured before the rule executes. That is, all of the rules that

mutate the element are guaranteed to have been previously executed, leaving the target element in its final,

immutable, state.

Most model elements enforce immutability when being used as inputs. Any attempt to mutate such an

element will result in a runtime error. However, some legacy type objects do not currently implement such

checks. Regardless, it is always invalid to attempt to mutate an input to a rule.

§

Using as an inputModelMap<T>

When you use a as input, each item in the map is made available as a property.ModelMap

§

The model report

The built-in task displays a hierarchical view of the elements in the model space. Each itemModelReport

prefixed with a on the model report is a model element and the visual nesting of these elements correlates+

to the model path (e.g.). The model report displays the following details about each modeltasks.help

element:

Table 97. Model report - model element details

Detail Description

Type This is the underlying type of the model element and is typically a fully qualified class name.

Value Is conditionally displayed on the report when a model element can be represented as a string.

Creator
Every model element has a creator. A creator signifies the origin of the model element (i.e. what created the model

element).

Rules
Is a listing of the rules, excluding the creator rule, which are executed for a given model element. The order in which

the rules are displayed reflects the order in which they are executed.

Example 583. model task output

Output of gradle model

> gradle model

> Task :model

--

Root project

--

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.model.ModelReport.html

Page 667 of 777

+ person

 | Type: Person

 | Creator: PersonRules#person(Person)

 | Rules:

 person { ... } @ build.gradle line 59, column 3

 PersonRules#setFirstName(Person)

 + age

 | Type: int

 | Value: 0

 | Creator: PersonRules#person(Person)

 + children

 | Type: org.gradle.model.ModelSet<Person>

 | Creator: PersonRules#person(Person)

 + employed

 | Type: boolean

 | Value: false

 | Creator: PersonRules#person(Person)

 + father

 | Type: Person

 | Value: null

 | Creator: PersonRules#person(Person)

 + firstName

 | Type: java.lang.String

 | Value: John

 | Creator: PersonRules#person(Person)

 + homeDirectory

 | Type: java.io.File

 | Value: null

 | Creator: PersonRules#person(Person)

 + id

 | Type: java.lang.Long

 | Value: null

 | Creator: PersonRules#person(Person)

 + lastName

 | Type: java.lang.String

 | Value: Smith

 | Creator: PersonRules#person(Person)

 + maritalStatus

 | Type: MaritalStatus

 | Creator: PersonRules#person(Person)

 + mother

 | Type: Person

 | Value: null

 | Creator: PersonRules#person(Person)

 + userGroups

 | Type: java.util.List<java.lang.String>

 | Value: null

 | Creator: PersonRules#person(Person)

Page 668 of 777

+ tasks

 | Type: org.gradle.model.ModelMap<org.gradle.api.Task>

 | Creator: Project.<init>.tasks()

 | Rules:

 PersonRules#createHelloTask(ModelMap<Task>, Person)

 + buildEnvironment

 | Type: org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask

 | Value: task ':buildEnvironment'

 | Creator: tasks.addPlaceholderAction(buildEnvironment)

 | Rules:

 copyToTaskContainer

 + components

 | Type: org.gradle.api.reporting.components.ComponentReport

 | Value: task ':components'

 | Creator: tasks.addPlaceholderAction(components)

 | Rules:

 copyToTaskContainer

 + dependencies

 | Type: org.gradle.api.tasks.diagnostics.DependencyReportTask

 | Value: task ':dependencies'

 | Creator: tasks.addPlaceholderAction(dependencies)

 | Rules:

 copyToTaskContainer

 + dependencyInsight

 | Type: org.gradle.api.tasks.diagnostics.DependencyInsightReportTask

 | Value: task ':dependencyInsight'

 | Creator: tasks.addPlaceholderAction(dependencyInsight)

 | Rules:

 HelpTasksPlugin.Rules#addDefaultDependenciesReportConfiguration(DependencyInsightReportTask, ServiceRegistry)

 copyToTaskContainer

 + dependentComponents

 | Type: org.gradle.api.reporting.dependents.DependentComponentsReport

 | Value: task ':dependentComponents'

 | Creator: tasks.addPlaceholderAction(dependentComponents)

 | Rules:

 copyToTaskContainer

 + hello

 | Type: org.gradle.api.Task

 | Value: task ':hello'

 | Creator: PersonRules#createHelloTask(ModelMap<Task>, Person) > create(hello)

 | Rules:

 copyToTaskContainer

 + help

 | Type: org.gradle.configuration.Help

 | Value: task ':help'

 | Creator: tasks.addPlaceholderAction(help)

 | Rules:

 copyToTaskContainer

 + init

Page 669 of 777

 | Type: org.gradle.buildinit.tasks.InitBuild

 | Value: task ':init'

 | Creator: tasks.addPlaceholderAction(init)

 | Rules:

 copyToTaskContainer

 + model

 | Type: org.gradle.api.reporting.model.ModelReport

 | Value: task ':model'

 | Creator: tasks.addPlaceholderAction(model)

 | Rules:

 copyToTaskContainer

 + projects

 | Type: org.gradle.api.tasks.diagnostics.ProjectReportTask

 | Value: task ':projects'

 | Creator: tasks.addPlaceholderAction(projects)

 | Rules:

 copyToTaskContainer

 + properties

 | Type: org.gradle.api.tasks.diagnostics.PropertyReportTask

 | Value: task ':properties'

 | Creator: tasks.addPlaceholderAction(properties)

 | Rules:

 copyToTaskContainer

 + tasks

 | Type: org.gradle.api.tasks.diagnostics.TaskReportTask

 | Value: task ':tasks'

 | Creator: tasks.addPlaceholderAction(tasks)

 | Rules:

 copyToTaskContainer

 + wrapper

 | Type: org.gradle.api.tasks.wrapper.Wrapper

 | Value: task ':wrapper'

 | Creator: tasks.addPlaceholderAction(wrapper)

Page 670 of 777

 | Rules:

 copyToTaskContainer

§

Limitations and future direction

The rule engine that was part of the Software Model will be deprecated. Everything under the model block

will be ported as extensions to the current model. Native users will no longer have a separate extension

model compared to the rest of the Gradle community, and they will be able to make use of the new variant

aware dependency management. For more information, see the on the state and future of theblog post

software model.

https://blog.gradle.org/state-and-future-of-the-gradle-software-model

Page 671 of 777

Software model concepts

Note: Support for the software model is currently . Please be aware that the DSL, APIsincubating

and other configuration may change in later Gradle versions.

The software model describes how a piece of software is built and how the components of the software

relate to each other. The software model is organized around some key concepts:

A is a general concept that represents some logical piece of software. Examples of componentscomponent

are a command-line application, a web application or a library. A component is often composed of other

components. Most Gradle builds will produce at least one component.

A is a reusable component that is linked into or combined into some other component. In the Javalibrary

ecosystem, a library is often built as a Jar file, and then later bundled into an application of some kind. In the

native ecosystem, a library may be built as a shared library or static library, or both.

A represents a logical group of source files. Most components are built from source sets ofsource set

various languages. Some source sets contain source that is written by hand, and some source sets may

contain source that is generated from something else.

A represents some output that is built for a component. A component may produce multiple differentbinary

output binaries. For example, for a C++ library, both a shared library and a static library binary may be

produced. Each binary is initially configured to be built from the component sources, but additional source

sets can be added to specific binary variants.

A represents some mutually exclusive binary of a component. A library, for example, might targetvariant

Java 7 and Java 8, effectively producing two distinct binaries: a Java 7 Jar and a Java 8 Jar. These are

different variants of the library.

The of a library represents the artifacts and dependencies that are required to compile against thatAPI

library. The API typically consists of a binary together with a set of dependencies.

Page 672 of 777

Implementing model rules in a plugin

A plugin can define rules by extending and adding methods that define the rules. The pluginRuleSource

class can either extend directly or can implement and include a nested RuleSource Plugin RuleSource

subclass.

Refer to the API docs for for more details.RuleSource

§

Applying additional rules

A rule method annotated with can apply a to a target model element.Rules RuleSource

http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/Rules.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/model/RuleSource.html

Page 673 of 777

Building Play applications

Note: Support for building Play applications is currently . Please be aware that the DSL,incubating

APIs and other configuration may change in later Gradle versions.

Play is a modern web application framework. The Play plugin adds support for building, testing and running

Play applications with Gradle.

The Play plugin makes use of the Gradle .software model

§

Usage

To use the Play plugin, include the following in your build script to apply the plugin and add theplay

Lightbend repositories:

Example 584. Using the Play plugin

build.gradle

plugins {

 id 'play'

}

repositories {

 jcenter()

 maven {

 name "lightbend-maven-release"

 url "https://repo.lightbend.com/lightbend/maven-releases"

 }

 ivy {

 name "lightbend-ivy-release"

 url "https://repo.lightbend.com/lightbend/ivy-releases"

 layout "ivy"

 }

}

Note that defining the Lightbend repositories is necessary. In future versions of Gradle, this will be replaced

with a more convenient syntax.

Limitations

https://www.playframework.com/

Page 674 of 777

§

Limitations

The Play plugin currently has a few limitations.

Gradle does not yet support aggregate reverse routes introduced in Play 2.4.x.

A given project may only define a single Play application. This means that a single project cannot build more

than one Play application. However, a multi-project build can have many projects that each define their own

Play application.

Play applications can only target a single “platform” (combination of Play, Scala and Java version) at a time.

This means that it is currently not possible to define multiple variants of a Play application that, for example,

produce jars for both Scala 2.10 and 2.11. This limitation may be lifted in future Gradle versions.

Support for generating IDE configurations for Play applications is limited to .IDEA

§

Software Model

The Play plugin uses a to describe a Play application and how to build it. The Play softwaresoftware model

model extends the base Gradle to add support for building Play applications. A Playsoftware model

application is represented by a component type. The plugin automatically createsPlayApplicationSpec

a single instance when it is applied. Additional Play components cannotPlayApplicationBinarySpec

be added to a project.

Figure 32. Play plugin - software model

The Play application component

http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PlayApplicationBinarySpec.html

Page 675 of 777

§

The Play application component

A Play application component describes the application to be built and consists of several configuration

elements. One type of element that describes the application are the source sets that define where the

application controller, route, template and model class source files should be found. These source sets are

logical groupings of files of a particular type and a default source set for each type is created when the play

plugin is applied.

Table 98. Default Play source sets

Source Set Type Directory Filters

java JavaSourceSet app **/*.java

scala ScalaLanguageSourceSet app **/*.scala

routes RoutesSourceSet conf routes, *.routes

twirlTemplates TwirlSourceSet app **/*.scala.*

javaScript JavaScriptSourceSet app/assets **/*.js

These source sets can be configured or additional source sets can be added to the Play component. See

 for further information.Configuring Play

Another element of configuring a Play application is the . To build a Play application, Gradle needsplatform

to understand which versions of Play, Scala and Java to use. The Play component specifies this requirement

as a . If these values are not configured, a default version of Play, Scala and Java will bePlayPlatform

used. See for information on configuring the Play platform.Targeting a certain version of Play

Note that only a single platform can be specified for a given Play component. This means that only a single

version of Play, Scala and Java can be used to build a Play component. In other words, a Play component

can only produce one set of outputs, and those outputs will be built using the versions specified by the

platform configured on the component.

§

The Play application binary

A Play application component is compiled and packaged to produce a set of outputs which are represented

by a . The Play binary specifies the jar files produced by building thePlayApplicationBinarySpec

component as well as providing elements by which additional content can be added to those jar files. It also

exposes the tasks involved in building the component and creating the binary.

See for examples of configuring the Play binary.Configuring Play

Project Layout

http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/scala/ScalaLanguageSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.routes.RoutesSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.javascript.JavaScriptSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PlayApplicationBinarySpec.html

Page 676 of 777

§

Project Layout

The Play plugin follows the typical Play application layout. You can to includeconfigure source sets

additional directories or change the defaults.

 app Application source code.

 assets Assets that require compilation.

 javascripts JavaScript source code to be minified.

 controllers Application controller source code.

 models Application business source code.

 views Application UI templates.

 build.gradle Your project's build script.

 conf Main application configuration file and routes files.

 public Public assets.

 images Application image files.

 javascripts Typically JavaScript source code.

 stylesheets Typically CSS source code.

 test Test source code.

§

Tasks

The Play plugin hooks into the normal Gradle lifecycle tasks such as , and , but itassemble check build

also adds several additional tasks which form the lifecycle of a Play project:

Table 99. Play plugin - lifecycle tasks

Task name Depends on Type Description

playBinary All compile tasks for source sets added to the Play application. Task
Performs a build of just the Play

application.

dist createPlayBinaryZipDist, createPlayBinaryTarDistTask Assembles the Play distribution.

stage stagePlayBinaryDist Task Stages the Play distribution.

The plugin also provides tasks for running, testing and packaging your Play application:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html

Page 677 of 777

Table 100. Play plugin - running and testing tasks

Task name Depends on Type Description

runPlayBinary playBinary to build Play application. PlayRun
Runs the Play application for local development.

See how this works with continuous build.

testPlayBinary
playBinary to build Play application and compilePlayBinaryTests

.
Test Runs JUnit/TestNG tests for the Play application.

For the different types of sources in a Play application, the plugin adds the following compilation tasks:

Table 101. Play plugin - source set tasks

Task name
Source

Type
Type Description

compilePlayBinaryScala
Scala and

Java
PlatformScalaCompile

Compiles all Scala and Java sources

defined by the Play application.

compilePlayBinaryPlayTwirlTemplates
Twi r l

templates
TwirlCompile

Compiles Twirl templates with the Twirl

compiler. Gradle supports all of the

built-in Twirl template formats (HTML,

XML, TXT and JavaScript). Twirl

templates need to match the pattern *.scala.*

.

compilePlayBinaryPlayRoutes

P l a y

Route

files

RoutesCompile
Compiles routes files into Scala

sources.

minifyPlayBinaryJavaScript
JavaScript

files
JavaScriptMinify

Minifies JavaScript files with the Google

Closure compiler.

§

Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the

components and binaries that your project produces. To use this report, just run .gradle components

Below is an example of running this report for one of the sample projects:

http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.TwirlCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.JavaScriptMinify.html

Page 678 of 777

Example 585. The components report

Output of gradle components

> gradle components

> Task :components

--

Root project

--

Play Application 'play'

Source sets

 Java source 'play:java'

 srcDir: app

 includes: **/*.java

 JavaScript source 'play:javaScript'

 srcDir: app/assets

 includes: **/*.js

 JVM resources 'play:resources'

 srcDir: conf

 Routes source 'play:routes'

 srcDir: conf

 includes: routes, *.routes

 Scala source 'play:scala'

 srcDir: app

 includes: **/*.scala

 Twirl template source 'play:twirlTemplates'

 srcDir: app

 includes: **/*.scala.*

Binaries

 Play Application Jar 'play:binary'

 build using task: :playBinary

 target platform: Play Platform (Play 2.3.10, Scala: 2.11, Java: Java SE 8)

 toolchain: Default Play Toolchain

 classes dir: build/playBinary/classes

 resources dir: build/playBinary/resources

 JAR file: build/playBinary/lib/basic.jar

Note: currently not all plugins register their components, so some components may not be visible here.

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Running a Play application

Page 679 of 777

§

Running a Play application

The task starts the Play application under development. During development it isrunPlayBinary

beneficial to execute this task as a . Continuous build is a generic feature that supportscontinuous build

automatically re-running a build when inputs change. The task is “continuous buildrunPlayBinary

aware” in that it behaves differently when run as part of a continuous build.

When not run as part of a continuous build, the task will the build. That is, the taskrunPlayBinary block

will not complete as long as the application is running. When running as part of a continuous build, the task

will start the application if not running and otherwise propagate any changes to the code of the application to

the running instance. This is useful for quickly iterating on your Play application with an

edit->rebuild->refresh cycle. Changes to your application will not take affect until the end of the overall build.

To enable continuous build, run Gradle with or .-t runPlayBinary --continuous runPlayBinary

Users of Play used to such a workflow with Play’s default build system should note that compile errors are

handled differently. If a build failure occurs during a continuous build, the Play application will not be

reloaded. Instead, you will be presented with an exception message. The exception message will only

contain the overall cause of the build failure. More detailed information will only be available from the

console.

Configuring a Play application

Page 680 of 777

§

Configuring a Play application

§

Targeting a certain version of Play

By default, Gradle uses Play 2.3.10, Scala 2.11 and the version of Java used to start the build. A Play

application can select a different version by specifying a target

 on the Play application component.PlayApplicationSpec.platform(java.lang.Object)

Example 586. Selecting a version of the Play Framework

build.gradle

model {

 components {

 play {

 platform play: , scala: , java: '2.5.18' '2.11' '1.8'

 injectedRoutesGenerator = true

 }

 }

}

The following versions of Play and Scala are supported:

Table 102. Play supported versions

Play Scala Java

2.6.x 2.11 and 2.12 1.8

2.5.x 2.11 1.8

2.4.x 2.10 and 2.11 1.8

2.3.x 2.10 and 2.11 1.6, 1.7 and 1.8

§

Adding dependencies

You can add compile, test and runtime dependencies to a Play application through Configuration

created by the Play plugin.

If you are coming from SBT, the Play SBT plugin provides short names for common dependencies. For

instance, if your project has a dependency on , you will need to add a dependency to ws com.typesafe.play:play-ws_2.11:2.3.9

where is your Scala version and is your Play framework version.2.11 2.3.9

http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html

Page 681 of 777

Other dependencies that have short names, such as may actually be multiple dependencies. Forjacksons

those dependencies, you will need to work out the dependency coordinates from a dependency report.

play is used for compile time dependencies.

playTest is used for test compile time dependencies.

playRun is used for run time dependencies.

Example 587. Adding dependencies to a Play application

build.gradle

dependencies {

 play "commons-lang:commons-lang:2.6"

}

Note: Play 2.6 has a more modular architecture and, because of that, you may need to add some

dependencies manually. For example, .Guice support was moved to a separated module

Considering the following definition for a Play 2.6 project:

Example 588. A Play 2.6 project

Note: build.gradle
model {

 components {

 play {

 platform play: , scala: , java: '2.6.7' '2.12' '1.8'

 injectedRoutesGenerator = true

 }

 }

}

You can add Guice dependency like:

Example 589. Adding Guice dependency in Play 2.6 project

Note: build.gradle
dependencies {

 play "com.typesafe.play:play-guice_2.12:2.6.7"

}

Of course, pay attention to keep Play version and Scala version for the dependency consistent with

the platform versions.

§

Configuring the default source sets

You can further configure the default source sets to do things like add new directories, add filters, etc.

https://playframework.com/documentation/2.6.x/Migration26#Guice-DI-support-moved-to-separate-module

Page 682 of 777

Example 590. Configuring extra source sets to a Play application

build.gradle

model {

 components {

 play {

 sources {

 java {

 source.srcDir "additional/java"

 }

 javaScript {

 source {

 srcDir "additional/javascript"

 exclude "**/old_*.js"

 }

 }

 }

 }

 }

}

§

Adding extra source sets

If your Play application has additional sources that exist in non-standard directories, you can add extra

source sets that Gradle will automatically add to the appropriate compile tasks.

Example 591. Adding extra source sets to a Play application

build.gradle

model {

 components {

 play {

 sources {

 extraJava(JavaSourceSet) {

 source.srcDir "extra/java"

 }

 extraTwirl(TwirlSourceSet) {

 source.srcDir "extra/twirl"

 }

 extraRoutes(RoutesSourceSet) {

 source.srcDir "extra/routes"

 }

 }

 }

 }

}

Configuring compiler options

Page 683 of 777

§

Configuring compiler options

If your Play application requires additional Scala compiler flags, you can add these arguments directly to the

Scala compiler task.

Example 592. Configuring Scala compiler options

build.gradle

model {

 components {

 play {

 binaries.all {

 tasks.withType(PlatformScalaCompile) {

 scalaCompileOptions.additionalParameters = [,]"-feature" "-language:implicitConversions"

 }

 }

 }

 }

}

§

Configuring routes style

Note: The injected router is only supported in Play Framework 2.4 or better.

If your Play application’s router uses dependency injection to access your controllers, you’ll need to

configure your application to use the default static router. Under the covers, the Play plugin is using the not InjectedRoutesGenerator

instead of the default to generate the router classes.StaticRoutesGenerator

Example 593. Configuring routes style

build.gradle

model {

 components {

 play {

 injectedRoutesGenerator = true

 }

 }

}

§

Configuring Twirl templates

A custom Twirl template format can be configured independently for each Twirl source set. See the

 for an example.TwirlSourceSet

Injecting a custom asset pipeline

http://www.gradle.org/docs/4.7/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.twirl.TwirlSourceSet.html

Page 684 of 777

§

Injecting a custom asset pipeline

Gradle Play support comes with a simplistic asset processing pipeline that minifies JavaScript assets.

However, many organizations have their own custom pipeline for processing assets. You can easily hook the

results of your pipeline into the Play binary by utilizing the property on the binary.PublicAssets

Example 594. Configuring a custom asset pipeline

build.gradle

model {

 components {

 play {

 binaries.all { binary ->

 tasks.create(, AddCopyrights) { copyrightTask ->"addCopyrightToPlay${binary.name.capitalize()}Assets"

 source "raw-assets"

 copyrightFile = project.file()'copyright.txt'

 destinationDir = project.file()"${buildDir}/play${binary.name.capitalize()}/addCopyRights"

 // Hook this task into the binary

 binary.assets.addAssetDir destinationDir

 binary.assets.builtBy copyrightTask

 }

 }

 }

 }

}

 AddCopyrights SourceTask {class extends

 @InputFile

 File copyrightFile

 @OutputDirectory

 File destinationDir

 @TaskAction

 generateAssets() {void

 String copyright = copyrightFile.text

 getSource().files.each { File file ->

 File outputFile = File(destinationDir, file.name)new

 outputFile.text = "${copyright}\n${file.text}"

 }

 }

}

Multi-project Play applications

http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PublicAssets.html

Page 685 of 777

§

Multi-project Play applications

Play applications can be built in multi-project builds as well. Simply apply the plugin in the appropriateplay

subprojects and create any project dependencies on the configuration.play

Example 595. Configuring dependencies on Play subprojects

build.gradle

dependencies {

 play project()":admin"

 play project()":user"

 play project()":util"

}

See the sample provided in the Gradle distribution for a working example.play/multiproject

§

Packaging a Play application for distribution

Gradle provides the capability to package your Play application so that it can easily be distributed and run in

a target environment. The distribution package (zip file) contains the Play binary jars, all dependencies, and

generated scripts that set up the classpath and run the application in a Play-specific container.Netty

The distribution can be created by running the lifecycle task and places the distribution in the dist $buildDir/distributions

directory. Alternatively, one can validate the contents by running the lifecycle task which copies thestage

files to the directory using the layout of the distribution package.$buildDir/stage

http://netty.io

Page 686 of 777

Table 103. Play distribution tasks

Task name Depends on Type Description

createPlayBinaryStartScripts - CreateStartScripts

Generates scripts to run

the Play application

distribution.

stagePlayBinaryDist playBinary, createPlayBinaryStartScriptsCopy

Copies all jar files,

dependencies and

scripts into a staging

directory.

createPlayBinaryZipDist Zip

Bundles the Play

application as a

standalone distribution

packaged as a zip.

createPlayBinaryTarDist Tar

Bundles the Play

application as a

standalone distribution

packaged as a tar.

stage stagePlayBinaryDist Task
Lifecycle task for staging

a Play distribution.

dist createPlayBinaryZipDist, createPlayBinaryTarDistTask

Lifecycle task for

creating a Play

distribution.

§

Adding additional files to your Play application distribution

You can add additional files to the distribution package using the API.Distribution

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/distribution/Distribution.html

Page 687 of 777

Example 596. Add extra files to a Play application distribution

build.gradle

model {

 distributions {

 playBinary {

 contents {

 from()"README.md"

 from() {"scripts"

 into "bin"

 }

 }

 }

 }

}

§

Building a Play application with an IDE

If you want to generate IDE metadata configuration for your Play project, you need to apply the appropriate

IDE plugin. Gradle supports generating IDE metadata for IDEA only for Play projects at this time.

To generate IDEA’s metadata, apply the plugin along with the plugin.idea play

Example 597. Applying both the Play and IDEA plugins

build.gradle

plugins {

 id 'play'

 id 'idea'

}

Source code generated by routes and Twirl templates cannot be generated by IDEA directly, so changes

made to those files will not affect compilation until the next Gradle build. You can run the Play application

with Gradle in to automatically rebuild and reload the application whenever somethingcontinuous build

changes.

§

Resources

For additional information about developing Play applications:

Play types in the Gradle DSL Guide:

PlayApplicationBinarySpec

http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PlayApplicationBinarySpec.html

Page 688 of 777

PlayApplicationSpec

PlayPlatform

JvmClasses

PublicAssets

PlayDistributionContainer

JavaScriptMinify

PlayRun

RoutesCompile

TwirlCompile

Play Framework Documentation.

http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.JvmClasses.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.PublicAssets.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.distribution.PlayDistributionContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.JavaScriptMinify.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.play.tasks.TwirlCompile.html
https://www.playframework.com/documentation

Page 689 of 777

Building native software

Note: Support for building native software is currently . Please be aware that the DSL,incubating

APIs and other configuration may change in later Gradle versions.

The native software plugins add support for building native software components, such as executables or

shared libraries, from code written in C++, C and other languages. While many excellent build tools exist for

this space of software development, Gradle offers developers its trademark power and flexibility together

with dependency management practices more traditionally found in the JVM development space.

The native software plugins make use of the Gradle .software model

§

Features

The native software plugins provide:

Support for building native libraries and applications on Windows, Linux, macOS and other platforms.

Support for several source languages.

Support for building different variants of the same software, for different architectures, operating systems, or

for any purpose.

Incremental parallel compilation, precompiled headers.

Dependency management between native software components.

Unit test execution.

Generate Visual studio solution and project files.

Deep integration with various tool chain, including discovery of installed tool chains.

§

Supported languages

The following source languages are currently supported:

C

Page 690 of 777

C++

Objective-C

Objective-C++

Assembly

Windows resources

§

Tool chain support

Gradle offers the ability to execute the same build using different tool chains. When you build a native binary,

Gradle will attempt to locate a tool chain installed on your machine that can build the binary. You can fine

tune exactly how this works, see for details.the section called “Tool chains”

The following tool chains are supported:

Operating System Tool Chain Notes

Linux GCC

Linux Clang

macOS XCode Uses the Clang tool chain bundled with

XCode.

Windows Visual C++ Windows XP and later, Visual C++

2010/2012/2013/2015/2017.

Windows GCC with Cygwin 32 Windows XP and later.

Windows GCC with MinGW Windows XP and later. isMingw-w64

currently not supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested

continuously:

Operating System Tool Chain Notes

macOS GCC from Macports

macOS Clang from Macports

Windows GCC with Cygwin 64 Windows XP and later.

http://gcc.gnu.org/
http://clang.llvm.org
http://www.microsoft.com/visualstudio/en-us
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com

Page 691 of 777

UNIX-like GCC

UNIX-like Clang

§

Tool chain installation

Note: Note that if you are using GCC then you currently need to install support for C++, even if you

are not building from C++ source. This restriction will be removed in a future Gradle version.

To build native software, you will need to have a compatible tool chain installed:

§

Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover the Visual

Studio installations and select the latest version. There is no need to mess around with environment

variables or batch scripts. This works fine from a Cygwin shell or the Windows command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

§

macOS

To build on macOS, you should install XCode. The native plugins will discover the XCode installation using

the system PATH.

The native plugins also work with GCC and Clang bundled with Macports. To use one of the Macports tool

chains, you will need to make the tool chain the default using the command and addport select

Macports to the system PATH.

§

Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover GCC or

Clang using the system PATH.

§

Native software model

The native software model builds on the base Gradle .software model

To build native software using Gradle, your project should define one or more . Eachnative components

component represents either an executable or a library that Gradle should build. A project can define any

number of components. Gradle does not define any components by default.

http://gcc.gnu.org/
http://clang.llvm.org

Page 692 of 777

For each component, Gradle defines a for each language that the component can be built from.source set

A source set is essentially just a set of source directories containing source files. For example, when you

apply the plugin and define a library called , Gradle will define, by default, a source setc helloworld

containing the C source files in the directory. It will use these source files to build the src/helloworld/c helloworld

library. This is described in more detail below.

For each component, Gradle defines one or more as output. To build a binary, Gradle will take thebinaries

source files defined for the component, compile them as appropriate for the source language, and link the

result into a binary file. For an executable component, Gradle can produce executable binary files. For a

library component, Gradle can produce both static and shared library binary files. For example, when you

define a library called and build on Linux, Gradle will, by default, produce helloworld libhelloworld.so

and binaries.libhelloworld.a

In many cases, more than one binary can be produced for a component. These binaries may vary based on

the tool chain used to build, the compiler/linker flags supplied, the dependencies provided, or additional

source files provided. Each native binary produced for a component is referred to as a . Binaryvariant

variants are discussed in detail below.

§

Parallel Compilation

Gradle uses the single build worker pool to concurrently compile and link native components, by default. No

special configuration is required to enable concurrent building.

By default, the worker pool size is determined by the number of available processors on the build machine

(as reported to the build JVM). To explicitly set the number of workers use the --max-workers

command-line option or system property. There is generally no need toorg.gradle.workers.max

change this setting from its default.

The build worker pool is shared across all build tasks. This means that when using ,parallel project execution

the maximum number of concurrent individual compilation operations does not increase. For example, if the

build machine has 4 processing cores and 10 projects are compiling in parallel, Gradle will only use 4 total

workers, not 40.

§

Building a library

To build either a static or shared native library, you define a library component in the components

container. The following sample defines a library called :hello

Page 693 of 777

Example 598. Defining a library component

build.gradle

model {

 components {

 hello(NativeLibrarySpec)

 }

}

A library component is represented using . Each library component can produce atNativeLibrarySpec

least one shared library binary () and at least one static library binary (SharedLibraryBinarySpec

).StaticLibraryBinarySpec

§

Building an executable

To build a native executable, you define an executable component in the container. Thecomponents

following sample defines an executable called :main

Example 599. Defining executable components

build.gradle

model {

 components {

 main(NativeExecutableSpec) {

 sources {

 c.lib library: "hello"

 }

 }

 }

}

An executable component is represented using . Each executable componentNativeExecutableSpec

can produce at least one executable binary ().NativeExecutableBinarySpec

For each component defined, Gradle adds a with the same name. Each of theseFunctionalSourceSet

functional source sets will contain a language-specific source set for each of the languages supported by the

project.

Assembling or building dependents

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/base/FunctionalSourceSet.html

Page 694 of 777

§

Assembling or building dependents

Sometimes, you may need to (compile and link) or (compile, link and test) a component orassemble build

binary and its (things that depend upon the component or binary). The native software modeldependents

provides tasks that enable this capability. First, the report gives insight about thedependent components

relationships between each component. Second, the tasks allow you tobuild and assemble dependents

assemble or build a component and its dependents in one step.

In the following example, the build file defines as a dependency of and as aOpenSSL libUtil libUtil

dependency of and . Test suites are treated similarly. Dependents can be thoughtLinuxApp WindowsApp

of as reverse dependencies.

Figure 33. Dependent Components Example

Note: By following the dependencies backwards, you can see and are LinuxApp WindowsApp

 of . When is changed, Gradle will need to recompile or relink dependents libUtil libUtil LinuxApp

and .WindowsApp

When you dependents of a component, the component and all of its dependents are compiledassemble

and linked, including any test suite binaries. Gradle’s up-to-date checks are used to only compile or link if

something has changed. For instance, if you have changed source files in a way that do not affect the

headers of your project, Gradle will be able to skip compilation for dependent components and only need to

re-link with the new library. Tests are not run when assembling a component.

When you dependents of a component, the component and all of its dependent binaries are compiled,build

Page 695 of 777

linked . Checking components means running any including executing any testand checked check task

suites, so tests run when building a component.are

In the following sections, we will demonstrate the usage of the , assembleDependents* buildDependents*

and tasks with a sample build that contains a CUnit test suite. The build script fordependentComponents

the sample is the following:

Example 600. Sample build

build.gradle

apply plugin: "c"

apply plugin: 'cunit-test-suite'

model {

 flavors {

 passing

 failing

 }

 platforms {

 x8 {6

 architecture "x86"

 }

 }

 components {

 operators(NativeLibrarySpec) {

 targetPlatform "x86"

 }

 }

 testSuites {

 operatorsTest(CUnitTestSuiteSpec) {

 testing $.components.operators

 }

 }

}

Note: The code for this example can be found at in the ‘-all’samples/native-binaries/cunit

distribution of Gradle.

§

Dependent components report

Gradle provides a report that you can run from the command-line that shows a graph of components in your

project and components that depend upon them. The following is an example of running gradle dependentComponents

on the sample project:

Page 696 of 777

Example 601. Dependent components report

Output of gradle dependentComponents

> gradle dependentComponents

> Task :dependentComponents

--

Root project

--

operators - Components that depend on native library 'operators'

+--- operators:failingSharedLibrary

+--- operators:failingStaticLibrary

+--- operators:passingSharedLibrary

\--- operators:passingStaticLibrary

Some test suites were not shown, use --test-suites or --all to show them.

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Note: See API documentation for more details.DependentComponentsReport

By default, non-buildable binaries and test suites are hidden from the report. The dependentComponents

task provides options that allow you to see all dependents by using the option:--all

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.dependents.DependentComponentsReport.html

Page 697 of 777

Example 602. Dependent components report

Output of gradle dependentComponents --all

> gradle dependentComponents --all

> Task :dependentComponents

--

Root project

--

operators - Components that depend on native library 'operators'

+--- operators:failingSharedLibrary

+--- operators:failingStaticLibrary

| \--- operatorsTest:failingCUnitExe (t)

+--- operators:passingSharedLibrary

\--- operators:passingStaticLibrary

 \--- operatorsTest:passingCUnitExe (t)

operatorsTest - Components that depend on Cunit test suite 'operatorsTest'

+--- operatorsTest:failingCUnitExe (t)

\--- operatorsTest:passingCUnitExe (t)

(t) - Test suite binary

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Here is the corresponding report for the component, showing dependents of all its binaries:operators

Page 698 of 777

Example 603. Report of components that depends on the operators component

Output of gradle dependentComponents --component operators

> gradle dependentComponents --component operators

> Task :dependentComponents

--

Root project

--

operators - Components that depend on native library 'operators'

+--- operators:failingSharedLibrary

+--- operators:failingStaticLibrary

+--- operators:passingSharedLibrary

\--- operators:passingStaticLibrary

Some test suites were not shown, use --test-suites or --all to show them.

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Here is the corresponding report for the component, showing dependents of all its binaries,operators

including test suites:

Example 604. Report of components that depends on the operators component, including test suites

Output of gradle dependentComponents --test-suites --component operators

> gradle dependentComponents --test-suites --component operators

> Task :dependentComponents

--

Root project

--

operators - Components that depend on native library 'operators'

+--- operators:failingSharedLibrary

+--- operators:failingStaticLibrary

| \--- operatorsTest:failingCUnitExe (t)

+--- operators:passingSharedLibrary

\--- operators:passingStaticLibrary

 \--- operatorsTest:passingCUnitExe (t)

(t) - Test suite binary

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

Assembling dependents

Page 699 of 777

§

Assembling dependents

For each , Gradle will create a task named NativeBinarySpec assembleDependents${component.name}${binary.variant}

that (compile and link) the binary and all of its dependent binaries.assembles

For each , Gradle will create a task named NativeComponentSpec assembleDependents${component.name}

that all the binaries of the component and all of their dependent binaries.assembles

For example, to assemble the dependents of the "passing" flavor of the "static" library binary of the

"operators" component, you would run the assembleDependentsOperatorsPassingStaticLibrary

task:

Example 605. Assemble components that depends on the passing/static binary of the operators component

Output of gradle assembleDependentsOperatorsPassingStaticLibrary --max-workers=1

> gradle assembleDependentsOperatorsPassingStaticLibrary --max-workers=1

> Task :compileOperatorsTestPassingCUnitExeOperatorsC

> Task :operatorsTestCUnitLauncher

> Task :compileOperatorsTestPassingCUnitExeOperatorsTestC

> Task :compileOperatorsTestPassingCUnitExeOperatorsTestCunitLauncher

> Task :linkOperatorsTestPassingCUnitExe

> Task :operatorsTestPassingCUnitExe

> Task :assembleDependentsOperatorsTestPassingCUnitExe

> Task :compileOperatorsPassingStaticLibraryOperatorsC

> Task :createOperatorsPassingStaticLibrary

> Task :operatorsPassingStaticLibrary

> Task :assembleDependentsOperatorsPassingStaticLibrary

BUILD SUCCESSFUL in 0s

7 actionable tasks: 7 executed

In the output above, the targeted binary gets assembled as well as the test suite binary that depends on it.

You can also assemble of the dependents of a component (i.e. of all its binaries/variants) using theall

corresponding component task, e.g. . This is useful if you have manyassembleDependentsOperators

combinations of build types, flavors and platforms and want to assemble all of them.

§

Building dependents

For each , Gradle will create a task named NativeBinarySpec buildDependents${component.name}${binary.variant}

that (compile, link and check) the binary and all of its dependent binaries.builds

For each , Gradle will create a task named NativeComponentSpec buildDependents${component.name}

that all the binaries of the component and all of their dependent binaries.builds

For example, to build the dependents of the "passing" flavor of the "static" library binary of the "operators"

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeComponentSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeComponentSpec.html

Page 700 of 777

component, you would run the task:buildDependentsOperatorsPassingStaticLibrary

Example 606. Build components that depends on the passing/static binary of the operators component

Output of gradle buildDependentsOperatorsPassingStaticLibrary --max-workers=1

> gradle buildDependentsOperatorsPassingStaticLibrary --max-workers=1

> Task :compileOperatorsTestPassingCUnitExeOperatorsC

> Task :operatorsTestCUnitLauncher

> Task :compileOperatorsTestPassingCUnitExeOperatorsTestC

> Task :compileOperatorsTestPassingCUnitExeOperatorsTestCunitLauncher

> Task :linkOperatorsTestPassingCUnitExe

> Task :operatorsTestPassingCUnitExe

> Task :installOperatorsTestPassingCUnitExe

> Task :runOperatorsTestPassingCUnitExe

> Task :checkOperatorsTestPassingCUnitExe

> Task :buildDependentsOperatorsTestPassingCUnitExe

> Task :compileOperatorsPassingStaticLibraryOperatorsC

> Task :createOperatorsPassingStaticLibrary

> Task :operatorsPassingStaticLibrary

> Task :buildDependentsOperatorsPassingStaticLibrary

BUILD SUCCESSFUL in 0s

9 actionable tasks: 9 executed

In the output above, the targeted binary as well as the test suite binary that depends on it are built and the

test suite has run.

You can also build of the dependents of a component (i.e. of all its binaries/variants) using theall

corresponding component task, e.g. .buildDependentsOperators

§

Tasks

For each that can be produced by a build, a single is constructed thatNativeBinarySpec lifecycle task

can be used to create that binary, together with a set of other tasks that do the actual work of compiling,

linking or assembling the binary.

Component Type Native Binary Type Lifecycle task Location of created binary

NativeExecutableSpec NativeExecutableBinarySpec Executable${component.name} /exe/ /${project.buildDir} ${component.name} ${component.name}

NativeLibrarySpec SharedLibraryBinarySpec SharedLibrary${component.name} /libs/ /shared/lib .so${project.buildDir} ${component.name} ${component.name}

NativeLibrarySpec StaticLibraryBinarySpec StaticLibrary${component.name} /libs/ /static/ .a${project.buildDir} ${component.name} ${component.name}

Check tasks

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Page 701 of 777

§

Check tasks

For each that can be produced by a build, a single is constructed that canNativeBinarySpec check task

be used to assemble and check that binary.

Component Type Native Binary Type Check task

NativeExecutableSpec NativeExecutableBinarySpec check Executable${component.name}

NativeLibrarySpec SharedLibraryBinarySpec check SharedLibrary${component.name}

NativeLibrarySpec StaticLibraryBinarySpec check StaticLibrary${component.name}

The built-in task depends on all the for binaries in the project. Without either or check check tasks CUnit

 plugins, the binary check task only depends on the that assembles the binary, see GoogleTest lifecycle task

.the section called “Tasks”

When the or plugins are applied, the task that executes the test suites for a componentCUnit GoogleTest

are automatically wired to the appropriate .check task

You can also add custom check tasks as follows:

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Page 702 of 777

Example 607. Adding a custom check task

build.gradle

apply plugin: "cpp"

// You don't need to apply the plugin below if you're already using CUnit or GoogleTest support

apply plugin: TestingModelBasePlugin

task myCustomCheck {

 doLast {

 println 'Executing my custom check'

 }

}

model {

 components {

 hello(NativeLibrarySpec) {

 binaries.all {

 // Register our custom check task to all binaries of this component

 checkedBy $.tasks.myCustomCheck

 }

 }

 }

}

Note: The code for this example can be found at samples/native-binaries/custom-check

in the ‘-all’ distribution of Gradle.

Now, running or any of the for the binaries will run the custom check task:check check tasks hello

Example 608. Running checks for a given binary

Output of gradle checkHelloSharedLibrary

> gradle checkHelloSharedLibrary

> Task :myCustomCheck

Executing my custom check

> Task :checkHelloSharedLibrary

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

§

Working with shared libraries

For each executable binary produced, the plugin provides an task, whichcpp install${binary.name}

creates a development install of the executable, along with the shared libraries it requires. This allows you to

run the executable without needing to install the shared libraries in their final locations.

Finding out more about your project

Page 703 of 777

§

Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the

components and binaries that your project produces. To use this report, just run .gradle components

Below is an example of running this report for one of the sample projects:

Example 609. The components report

Output of gradle components

> gradle components

> Task :components

--

Root project

--

Native library 'hello'

Source sets

 C++ source 'hello:cpp'

 srcDir: src/hello/cpp

Binaries

 Shared library 'hello:sharedLibrary'

 build using task: :helloSharedLibrary

 build type: build type 'debug'

 flavor: flavor 'default'

 target platform: platform 'current'

 tool chain: Tool chain 'clang' (Clang)

 shared library file: build/libs/hello/shared/libhello.dylib

 Static library 'hello:staticLibrary'

 build using task: :helloStaticLibrary

 build type: build type 'debug'

 flavor: flavor 'default'

 target platform: platform 'current'

 tool chain: Tool chain 'clang' (Clang)

 static library file: build/libs/hello/static/libhello.a

Native executable 'main'

Source sets

 C++ source 'main:cpp'

 srcDir: src/main/cpp

Page 704 of 777

Binaries

 Executable 'main:executable'

 build using task: :mainExecutable

 install using task: :installMainExecutable

 build type: build type 'debug'

 flavor: flavor 'default'

 target platform: platform 'current'

 tool chain: Tool chain 'clang' (Clang)

 executable file: build/exe/main/main

Note: currently not all plugins register their components, so some components may not be visible here.

Page 705 of 777

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

§

Language support

Presently, Gradle supports building native software from any combination of source languages listed below.

A native binary project will contain one or more named instances (eg 'main', 'test',FunctionalSourceSet

etc), each of which can contain s containing source files, one for each language.LanguageSourceSet

C

C++

Objective-C

Objective-C++

Assembly

Windows resources

§

C++ sources

C++ language support is provided by means of the plugin.'cpp'

Example 610. The 'cpp' plugin

build.gradle

apply plugin: 'cpp'

C++ sources to be included in a native binary are provided via a , which defines a set of C++CppSourceSet

source files and optionally a set of exported header files (for a library). By default, for any named component

the contains source files in , and header files in CppSourceSet .cpp src/${name}/cpp src/${name}/headers

.

While the plugin defines these default locations for each , it is possible to extend orcpp CppSourceSet

override these defaults to allow for a different project layout.

http://www.gradle.org/docs/4.7/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.cpp.CppSourceSet.html

Page 706 of 777

Example 611. C++ source set

build.gradle

sources {

 cpp {

 source {

 srcDir "src/source"

 include "**/*.cpp"

 }

 }

}

For a library named 'main', header files in are considered the "public" or "exported"src/main/headers

headers. Header files that should not be exported should be placed inside the directorysrc/main/cpp

(though be aware that such header files should always be referenced in a manner relative to the file

including them).

§

C sources

C language support is provided by means of the plugin.'c'

Example 612. The 'c' plugin

build.gradle

apply plugin: 'c'

C sources to be included in a native binary are provided via a , which defines a set of C sourceCSourceSet

files and optionally a set of exported header files (for a library). By default, for any named component the

 contains source files in , and header files in .CSourceSet .c src/${name}/c src/${name}/headers

While the plugin defines these default locations for each , it is possible to extend or overridec CSourceSet

these defaults to allow for a different project layout.

Example 613. C source set

build.gradle

sources {

 c {

 source {

 srcDir "src/source"

 include "**/*.c"

 }

 exportedHeaders {

 srcDir "src/include"

 }

 }

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.c.CSourceSet.html

Page 707 of 777

For a library named 'main', header files in are considered the "public" or "exported"src/main/headers

headers. Header files that should not be exported should be placed inside the directorysrc/main/c

(though be aware that such header files should always be referenced in a manner relative to the file

including them).

§

Assembler sources

Assembly language support is provided by means of the plugin.'assembler'

Example 614. The 'assembler' plugin

build.gradle

apply plugin: 'assembler'

Assembler sources to be included in a native binary are provided via a , whichAssemblerSourceSet

defines a set of Assembler source files. By default, for any named component the AssemblerSourceSet

contains source files under ..s src/${name}/asm

§

Objective-C sources

Objective-C language support is provided by means of the plugin.'objective-c'

Example 615. The 'objective-c' plugin

build.gradle

apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided via a , whichObjectiveCSourceSet

defines a set of Objective-C source files. By default, for any named component the

 contains source files under .ObjectiveCSourceSet .m src/${name}/objectiveC

§

Objective-C++ sources

Objective-C++ language support is provided by means of the plugin.'objective-cpp'

Example 616. The 'objective-cpp' plugin

build.gradle

apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided via a ,ObjectiveCppSourceSet

which defines a set of Objective-C++ source files. By default, for any named component the

 contains source files under .ObjectiveCppSourceSet .mm src/${name}/objectiveCpp

Configuring the compiler, assembler and linker

http://www.gradle.org/docs/4.7/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html

Page 708 of 777

§

Configuring the compiler, assembler and linker

Each binary to be produced is associated with a set of compiler and linker settings, which include

command-line arguments as well as macro definitions. These settings can be applied to all binaries, an

individual binary, or selectively to a group of binaries based on some criteria.

Example 617. Settings that apply to all binaries

build.gradle

model {

 binaries {

 all {

 // Define a preprocessor macro for every binary

 cppCompiler.define "NDEBUG"

 // Define toolchain-specific compiler and linker options

 (toolChain in Gcc) {if

 cppCompiler.args , "-O2" "-fno-access-control"

 linker.args , "-Xlinker" "-S"

 }

 (toolChain in VisualCpp) {if

 cppCompiler.args "/Zi"

 linker.args "/DEBUG"

 }

 }

 }

}

Each binary is associated with a particular , allowing settings to be targeted based onNativeToolChain

this value.

It is easy to apply settings to all binaries of a particular type:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Page 709 of 777

Example 618. Settings that apply to all shared libraries

build.gradle

// For any shared library binaries built with Visual C++,

// define the DLL_EXPORT macro

model {

 binaries {

 withType(SharedLibraryBinarySpec) {

 (toolChain in VisualCpp) {if

 cCompiler.args "/Zi"

 cCompiler.define "DLL_EXPORT"

 }

 }

 }

}

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular executable

or component:library

Example 619. Settings that apply to all binaries produced for the 'main' executable component

build.gradle

model {

 components {

 main(NativeExecutableSpec) {

 targetPlatform "x86"

 binaries.all {

 (toolChain in VisualCpp) {if

 sources {

 platformAsm(AssemblerSourceSet) {

 source.srcDir "src/main/asm_i386_masm"

 }

 }

 assembler.args "/Zi"

 } {else

 sources {

 platformAsm(AssemblerSourceSet) {

 source.srcDir "src/main/asm_i386_gcc"

 }

 }

 assembler.args "-g"

 }

 }

 }

 }

}

The example above will apply the supplied configuration to all binaries built.executable

Page 710 of 777

Similarly, settings can be specified to target binaries for a component that are of a particular type: eg all

shared libraries for the main library component.

Example 620. Settings that apply only to shared libraries produced for the 'main' library component

build.gradle

model {

 components {

 main(NativeLibrarySpec) {

 binaries.withType(SharedLibraryBinarySpec) {

 // Define a preprocessor macro that only applies to shared libraries

 cppCompiler.define "DLL_EXPORT"

 }

 }

 }

}

§

Windows Resources

When using the tool chain, Gradle is able to compile Window Resource () files and link themVisualCpp rc

into a native binary. This functionality is provided by the plugin.'windows-resources'

Example 621. The 'windows-resources' plugin

build.gradle

apply plugin: 'windows-resources'

Windows resources to be included in a native binary are provided via a , whichWindowsResourceSet

defines a set of Windows Resource source files. By default, for any named component the

 contains source files under .WindowsResourceSet .rc src/${name}/rc

As with other source types, you can configure the location of the windows resources that should be included

in the binary.

Example 622. Configuring the location of Windows resource sources

build-resource-only-dll.gradle

sources {

 rc {

 source {

 srcDirs "src/hello/rc"

 }

 exportedHeaders {

 srcDirs "src/hello/headers"

 }

 }

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.rc.WindowsResourceSet.html

Page 711 of 777

You are able to construct a resource-only library by providing Windows Resource sources with no other

language sources, and configure the linker as appropriate:

Example 623. Building a resource-only dll

build-resource-only-dll.gradle

model {

 components {

 helloRes(NativeLibrarySpec) {

 binaries.all {

 rcCompiler.args "/v"

 linker.args , "/noentry" "/machine:x86"

 }

 sources {

 rc {

 source {

 srcDirs "src/hello/rc"

 }

 exportedHeaders {

 srcDirs "src/hello/headers"

 }

 }

 }

 }

 }

}

The example above also demonstrates the mechanism of passing extra command-line arguments to the

resource compiler. The extension is of type .rcCompiler PreprocessingTool

§

Library Dependencies

Dependencies for native components are binary libraries that export header files. The header files are used

during compilation, with the compiled binary dependency being used during linking and execution. Header

files should be organized into subdirectories to prevent clashes of commonly named headers. For instance,

if your project has a header, it will make it less likely the wrong header is used if youmylib logging.h

include it as instead of ."mylib/logging.h" "logging.h"

§

Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the same project.

A common example is a native executable component that uses functions provided by a separate native

library component.

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.PreprocessingTool.html

Page 712 of 777

Such a library dependency can be added to a source set associated with the component:executable

Example 624. Providing a library dependency to the source set

build.gradle

sources {

 cpp {

 lib library: "hello"

 }

}

Alternatively, a library dependency can be provided directly to the for theNativeExecutableBinarySpec

.executable

Example 625. Providing a library dependency to the binary

build.gradle

model {

 components {

 hello(NativeLibrarySpec) {

 sources {

 c {

 source {

 srcDir "src/source"

 include "**/*.c"

 }

 exportedHeaders {

 srcDir "src/include"

 }

 }

 }

 }

 main(NativeExecutableSpec) {

 sources {

 cpp {

 source {

 srcDir "src/source"

 include "**/*.cpp"

 }

 }

 }

 binaries.all {

 // Each executable binary produced uses the 'hello' static library binary

 lib library: , linkage: 'hello' 'static'

 }

 }

 }

}

Project Dependencies

Page 713 of 777

§

Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Example 626. Declaring project dependencies

build.gradle

project() {":lib"

 apply plugin: "cpp"

 model {

 components {

 main(NativeLibrarySpec)

 }

 // For any shared library binaries built with Visual C++,

 // define the DLL_EXPORT macro

 binaries {

 withType(SharedLibraryBinarySpec) {

 (toolChain in VisualCpp) {if

 cppCompiler.define "DLL_EXPORT"

 }

 }

 }

 }

}

project() {":exe"

 apply plugin: "cpp"

 model {

 components {

 main(NativeExecutableSpec) {

 sources {

 cpp {

 lib project: , library: ':lib' 'main'

 }

 }

 }

 }

 }

}

Precompiled Headers

Page 714 of 777

§

Precompiled Headers

Precompiled headers are a performance optimization that reduces the cost of compiling widely used headers

multiple times. This feature a header such that the compiled object file can be reused whenprecompiles

compiling each source file rather than recompiling the header each time. This support is available for C,

C++, Objective-C, and Objective-C++ builds.

To configure a precompiled header, first a header file needs to be defined that includes all of the headers

that should be precompiled. It must be specified as the first included header in every source file where the

precompiled header should be used. It is assumed that this header file, and any headers it contains, make

use of header guards so that they can be included in an idempotent manner. If header guards are not used

in a header file, it is possible the header could be compiled more than once and could potentially lead to a

broken build.

Example 627. Creating a precompiled header file

src/hello/headers/pch.h

#ifndef PCH_H

#define PCH_H

#include <iostream>

#include "hello.h"

#endif

Example 628. Including a precompiled header file in a source file

src/hello/cpp/hello.cpp

#include "pch.h"

void LIB_FUNC Greeter::hello () {

 std::cout << "Hello world!" << std::endl;

}

Precompiled headers are specified on a source set. Only one precompiled header file can be specified on a

given source set and will be applied to all source files that declare it as the first include. If a source files does

not include this header file as the first header, the file will be compiled in the normal manner (without making

use of the precompiled header object file). The string provided should be the same as that which is used in

the "#include" directive in the source files.

Page 715 of 777

Example 629. Configuring a precompiled header

build.gradle

model {

 components {

 hello(NativeLibrarySpec) {

 sources {

 cpp {

 preCompiledHeader "pch.h"

 }

 }

 }

 }

}

A precompiled header must be included in the same way for all files that use it. Usually, this means the

header file should exist in the source set "headers" directory or in a directory included on the compiler

include path.

§

Native Binary Variants

For each executable or library defined, Gradle is able to build a number of different native binary variants.

Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries, and binaries

produced with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on , , and . For each of thesebuild type platform flavor

'variant dimensions', it is possible to specify a set of available values as well as target each component at

one, some or all of these. For example, a plugin may define a range of support platforms, but you may

choose to only target Windows-x86 for a particular component.

§

Build types

A determines various non-functional aspects of a binary, such as whether debug information isbuild type

included, or what optimisation level the binary is compiled with. Typical build types are 'debug' and 'release',

but a project is free to define any set of build types.

Example 630. Defining build types

build.gradle

model {

 buildTypes {

 debug

 release

 }

}

Page 716 of 777

If no build types are defined in a project, then a single, default build type called 'debug' is added.

For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example 631. Configuring debug binaries

build.gradle

model {

 binaries {

 all {

 (toolChain in Gcc && buildType == buildTypes.debug) {if

 cppCompiler.args "-g"

 }

 (toolChain in VisualCpp && buildType == buildTypes.debug) {if

 cppCompiler.args '/Zi'

 cppCompiler.define 'DEBUG'

 linker.args '/DEBUG'

 }

 }

 }

}

Note: At this stage, it is completely up to the build script to configure the relevant compiler/linker

flags for each build type. Future versions of Gradle will automatically include the appropriate debug

flags for any 'debug' build type, and may be aware of various levels of optimisation as well.

§

Platform

An executable or library can be built to run on different operating systems and cpu architectures, with a

variant being produced for each platform. Gradle defines each OS/architecture combination as a

, and a project may define any number of platforms. If no platforms are defined in aNativePlatform

project, then a single, default platform 'current' is added.

Note: Presently, a consists of a defined operating system and architecture. As wePlatform

continue to develop the native binary support in Gradle, the concept of Platform will be extended to

include things like C-runtime version, Windows SDK, ABI, etc. Sophisticated builds may use the

extensibility of Gradle to apply additional attributes to each platform, which can then be queried to

specify particular includes, preprocessor macros or compiler arguments for a native binary.

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.platform.NativePlatform.html

Page 717 of 777

Example 632. Defining platforms

build.gradle

model {

 platforms {

 x8 {6

 architecture "x86"

 }

 x6 {4

 architecture "x86_64"

 }

 itanium {

 architecture "ia-64"

 }

 }

}

For a given variant, Gradle will attempt to find a that is able to build for the targetNativeToolChain

platform. Available tool chains are searched in the order defined. See the section below for moretool chains

details.

§

Flavor

Each component can have a set of named , and a separate binary variant can be produced forflavors

each flavor. While the and variant dimensions have a defined meaning inbuild type target platform

Gradle, each project is free to define any number of flavors and apply meaning to them in any way.

An example of component flavors might differentiate between 'demo', 'paid' and 'enterprise' editions of the

component, where the same set of sources is used to produce binaries with different functions.

Example 633. Defining flavors

build.gradle

model {

 flavors {

 english

 french

 }

 components {

 hello(NativeLibrarySpec) {

 binaries.all {

 (flavor == flavors.french) {if

 cppCompiler.define "FRENCH"

 }

 }

 }

 }

}

http://www.gradle.org/docs/4.7/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Page 718 of 777

In the example above, a library is defined with a 'english' and 'french' flavor. When compiling the 'french'

variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default' is used.

§

Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every

combination of and defined for the project. It is possible to override this on abuildType flavor

per-component basis, by specifying the set of and/or . By default,targetBuildTypes targetFlavors

Gradle will build for the default platform, see , unless specified explicitly on a per-component basis byabove

specifying a set of .targetPlatforms

Example 634. Targeting a component at particular platforms

build.gradle

model {

 components {

 hello(NativeLibrarySpec) {

 targetPlatform "x86"

 targetPlatform "x64"

 }

 main(NativeExecutableSpec) {

 targetPlatform "x86"

 targetPlatform "x64"

 sources {

 cpp.lib library: , linkage: 'hello' 'static'

 }

 }

 }

}

Here you can see that the TargetedNativeComponent.targetPlatform(java.lang.String)

method is used to specify a platform that the named should be built for.NativeExecutableSpec main

A s i m i l a r m e c h a n i s m e x i s t s f o r s e l e c t i n g

 and TargetedNativeComponent.targetBuildTypes(java.lang.String[])

.TargetedNativeComponent.targetFlavors(java.lang.String[])

§

Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a NativeBinarySpec

model element is created for every possible combination of these. However, in many cases it is not possible

to build a particular variant, perhaps because no tool chain is available to build for a particular platform.

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html

Page 719 of 777

If a binary variant cannot be built for any reason, then the associated with that variantNativeBinarySpec

will not be . It is possible to use this property to create a task to generate all possible variants onbuildable

a particular machine.

Example 635. Building all possible variants

build.gradle

model {

 tasks {

 buildAllExecutables(Task) {

 dependsOn $.binaries.findAll { it.buildable }

 }

 }

}

§

Tool chains

A single build may utilize different tool chains to build variants for different platforms. To this end, the core

'native-binary' plugins will attempt to locate and make available supported tool chains. However, the set of

tool chains for a project may also be explicitly defined, allowing additional cross-compilers to be configured

as well as allowing the install directories to be specified.

§

Defining tool chains

The supported tool chain types are:

Gcc

Clang

VisualCpp

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.toolchain.Clang.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Page 720 of 777

Example 636. Defining tool chains

build.gradle

model {

 toolChains {

 visualCpp(VisualCpp) {

 // Specify the installDir if Visual Studio cannot be located

 // installDir "C:/Apps/Microsoft Visual Studio 10.0"

 }

 gcc(Gcc) {

 // Uncomment to use a GCC install that is not in the PATH

 // path "/usr/bin/gcc"

 }

 clang(Clang)

 }

}

Each tool chain implementation allows for a certain degree of configuration (see the API documentation for

more details).

§

Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given variant,

Gradle will attempt to locate a that is able to build for the target platform. Available toolNativeToolChain

chains are searched in the order defined.

Note: When a platform does not define an architecture or operating system, the default target of the

tool chain is assumed. So if a platform does not define a value for , Gradle willoperatingSystem

find the first available tool chain that can build for the specified .architecture

The core Gradle tool chains are able to target the following architectures out of the box. In each case, the

tool chain will target the current operating system. See the next section for information on cross-compiling for

other operating systems.

Tool Chain Architectures

GCC x86, x86_64

Clang x86, x86_64

Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64'. For GCC

running on Windows via Cygwin, platforms 'windows/x86' and 'windows/x86_64' are supported. (The Cygwin

POSIX runtime is not yet modelled as part of the platform, but will be in the future.)

http://www.gradle.org/docs/4.7/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Page 721 of 777

If no target platforms are defined for a project, then all binaries are built to target a default platform named

'current'. This default platform does not specify any or value, hencearchitecture operatingSystem

using the default values of the first available tool chain.

Gradle provides a that allows the build author to control the exact set of arguments passed to a toolhook

chain executable. This enables the build author to work around any limitations in Gradle, or assumptions that

Gradle makes. The arguments hook should be seen as a 'last-resort' mechanism, with preference given to

truly modelling the underlying domain.

Example 637. Reconfigure tool arguments

build.gradle

model {

 toolChains {

 visualCpp(VisualCpp) {

 eachPlatform {

 cppCompiler.withArguments { args ->

 args << "-DFRENCH"

 }

 }

 }

 clang(Clang) {

 eachPlatform {

 cCompiler.withArguments { args ->

 Collections.replaceAll(args, ,)"CUSTOM" "-DFRENCH"

 }

 linker.withArguments { args ->

 args.remove "CUSTOM"

 }

 staticLibArchiver.withArguments { args ->

 args.remove "CUSTOM"

 }

 }

 }

 }

}

§

Cross-compiling with GCC

Cross-compiling is possible with the and tool chains, by adding support for additional targetGcc Clang

platforms. This is done by specifying a target platform for a toolchain. For each target platform a custom

configuration can be specified.

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.toolchain.Clang.html

Page 722 of 777

Example 638. Defining target platforms

build.gradle

model {

 toolChains {

 gcc(Gcc) {

 target(){"arm"

 cppCompiler.withArguments { args ->

 args << "-m32"

 }

 linker.withArguments { args ->

 args << "-m32"

 }

 }

 target()"sparc"

 }

 }

 platforms {

 arm {

 architecture "arm"

 }

 sparc {

 architecture "sparc"

 }

 }

 components {

 main(NativeExecutableSpec) {

 targetPlatform "arm"

 targetPlatform "sparc"

 }

 }

}

§

Visual Studio IDE integration

Gradle has the ability to generate Visual Studio project and solution files for the native components defined

in your build. This ability is added by the plugin. For a multi-project build, all projects withvisual-studio

native components (and the root project) should have this plugin applied.

When the plugin is applied to the root project, a task named is created,visual-studio visualStudio

which will generate a Visual Studio solution file containing all components in the build. This solution will

include a Visual Studio project for each component, as well as configuring each component to build using

Gradle.

A task named is also created by the plugin when the project is theopenVisualStudio visual-studio

Page 723 of 777

root project. This task generates the Visual Studio solution and then opens the solution in Visual Studio. This

means you can simply run from the root project to generate and open thegradlew openVisualStudio

Visual Studio solution in one convenient step.

The content of the generated visual studio files can be modified via API hooks, provided by the visualStudio

extension. Take a look at the 'visual-studio' sample, or see VisualStudioExtension.getProjects()

and in the API documentation for more details.VisualStudioRootExtension.getSolution()

§

CUnit support

The Gradle plugin provides support for compiling and executing CUnit tests in your native-binarycunit

project. For each and defined in your project, Gradle willNativeExecutableSpec NativeLibrarySpec

create a matching component, named .CUnitTestSuiteSpec ${component.name}Test

§

CUnit sources

Gradle will create a named 'cunit' for each component in the project.CSourceSet CUnitTestSuiteSpec

This source set should contain the cunit test files for the component under test. Source files can be located

in the conventional location () or can be configured like any othersrc/${component.name}Test/cunit

source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit launcher

sources. Gradle will expect and call a function with the signature thatvoid gradle_cunit_register()

you can use to configure the actual CUnit suites and tests to execute.

Example 639. Registering CUnit tests

suite_operators.c

#include <CUnit/Basic.h>

#include "gradle_cunit_register.h"

#include "test_operators.h"

int suite_init(void) {

 return 0;

}

int suite_clean(void) {

 return 0;

}

void gradle_cunit_register() {

 CU_pSuite pSuiteMath = CU_add_suite("operator tests", suite_init, suite_clean);

 CU_add_test(pSuiteMath, "test_plus", test_plus);

 CU_add_test(pSuiteMath, "test_minus", test_minus);

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/4.7/dsl/org.gradle.ide.visualstudio.VisualStudioRootExtension.html#org.gradle.ide.visualstudio.VisualStudioRootExtension:solution
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html

Page 724 of 777

Note: Due to this mechanism, your CUnit sources may not contain a method since this willmain

clash with the method provided by Gradle.

§

Building CUnit executables

A component has an associated or CUnitTestSuiteSpec NativeExecutableSpec

 component. For each configured for the main component, aNativeLibrarySpec NativeBinarySpec

matching will be configured on the test suite component. These test suiteCUnitTestSuiteBinarySpec

binaries can be configured in a similar way to any other binary instance:

Example 640. Configuring CUnit tests

build.gradle

model {

 binaries {

 withType(CUnitTestSuiteBinarySpec) {

 lib library: , linkage: "cunit" "static"

 (flavor == flavors.failing) {if

 cCompiler.define "PLUS_BROKEN"

 }

 }

 }

}

Note: Both the CUnit sources provided by your project and the generated launcher require the core

CUnit headers and libraries. Presently, this library dependency must be provided by your project for

each .CUnitTestSuiteBinarySpec

§

Running CUnit tests

For each , Gradle will create a task to execute this binary, which will run allCUnitTestSuiteBinarySpec

of the registered CUnit tests. Test results will be found in the directory./test-results${build.dir}

Example 641. Running CUnit tests

build.gradle

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html

Page 725 of 777

apply plugin: "c"

apply plugin: 'cunit-test-suite'

model {

 flavors {

 passing

 failing

 }

 platforms {

 x8 {6

 architecture "x86"

 }

 }

 repositories {

 libs(PrebuiltLibraries) {

 cunit {

 headers.srcDir "libs/cunit/2.1-2/include"

 binaries.withType(StaticLibraryBinary) {

 staticLibraryFile =

 file(+"libs/cunit/2.1-2/lib/"

 findCUnitLibForPlatform(targetPlatform))

 }

 }

 }

 }

 components {

 operators(NativeLibrarySpec) {

 targetPlatform "x86"

 }

 }

 testSuites {

 operatorsTest(CUnitTestSuiteSpec) {

 testing $.components.operators

 }

 }

}

model {

 binaries {

 withType(CUnitTestSuiteBinarySpec) {

 lib library: , linkage: "cunit" "static"

 (flavor == flavors.failing) {if

 cCompiler.define "PLUS_BROKEN"

 }

 }

 }

}

Page 726 of 777

Note: The code for this example can be found at in the ‘-all’samples/native-binaries/cunit

distribution of Gradle.

Output of gradle -q runOperatorsTestFailingCUnitExe

> gradle -q runOperatorsTestFailingCUnitExe

There were test failures:

 1. /home/user/gradle/samples/native-binaries/cunit/src/operatorsTest/c/test_plus.c:6 - plus(0, -2) == -2

 2. /home/user/gradle/samples/native-binaries/cunit/src/operatorsTest/c/test_plus.c:7 - plus(2, 2) == 4

BUILD FAILED in 0s

Note: The current support for CUnit is quite rudimentary. Plans for future integration include:

Note: Allow tests to be declared with Javadoc-style annotations.

Note: Improved HTML reporting, similar to that available for JUnit.

Note: Real-time feedback for test execution.

Note: Support for additional test frameworks.

§

GoogleTest support

The Gradle plugin provides support for compiling and executing GoogleTest tests in yourgoogle-test

native-binary project. For each and defined in yourNativeExecutableSpec NativeLibrarySpec

project, Gradle will create a matching component, named GoogleTestTestSuiteSpec ${component.name}Test

.

§

GoogleTest sources

Gradle will create a named 'cpp' for each component in theCppSourceSet GoogleTestTestSuiteSpec

project. This source set should contain the GoogleTest test files for the component under test. Source files

can be located in the conventional location () or can be configuredsrc/${component.name}Test/cpp

like any other source set.

Building GoogleTest executables

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html

Page 727 of 777

§

Building GoogleTest executables

A component has an associated or GoogleTestTestSuiteSpec NativeExecutableSpec

 component. For each configured for the main component, aNativeLibrarySpec NativeBinarySpec

matching will be configured on the test suite component. These testGoogleTestTestSuiteBinarySpec

suite binaries can be configured in a similar way to any other binary instance:

Example 642. Registering GoogleTest tests

build.gradle

model {

 binaries {

 withType(GoogleTestTestSuiteBinarySpec) {

 lib library: , linkage: "googleTest" "static"

 (flavor == flavors.failing) {if

 cppCompiler.define "PLUS_BROKEN"

 }

 (targetPlatform.operatingSystem.linux) {if

 cppCompiler.args '-pthread'

 linker.args '-pthread'

 (toolChain Gcc || toolChain Clang) {if instanceof instanceof

 // Use C++03 with the old ABIs, as this is what the googletest binaries were built with

 cppCompiler.args , '-std=c++03' '-D_GLIBCXX_USE_CXX11_ABI=0'

 linker.args '-std=c++03'

 }

 }

 }

 }

}

Note: The code for this example can be found at insamples/native-binaries/google-test

the ‘-all’ distribution of Gradle.

Note: The GoogleTest sources provided by your project require the core GoogleTest headers and

libraries. Presently, this library dependency must be provided by your project for each

.GoogleTestTestSuiteBinarySpec

§

Running GoogleTest tests

For each , Gradle will create a task to execute this binary, which willGoogleTestTestSuiteBinarySpec

run all of the registered GoogleTest tests. Test results will be found in the /test-results${build.dir}

directory.

http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html

Page 728 of 777

Note: The current support for GoogleTest is quite rudimentary. Plans for future integration include:

Note: Improved HTML reporting, similar to that available for JUnit.

Note: Real-time feedback for test execution.

Note: Support for additional test frameworks.

Page 729 of 777

Extending the software model

Note: Support for the software model is currently . Please be aware that the DSL, APIsincubating

and other configuration may change in later Gradle versions.

One of the strengths of Gradle has always been its extensibility, and its adaptability to new domains. The

software model takes this extensibility to a new level, enabling the deep modeling of specific domains via

richly typed DSLs. The following chapter describes how the model and the corresponding DSLs can be

extended to support domains like the or . Before reading thisPlay Framework native software development

you should be familiar with the Gradle software model and .rule based configuration concepts

The following build script is an example of using a custom software model for building Markdown based

documentation:

Example 643. an example of using a custom software model

build.gradle

import sample.documentation.DocumentationComponent

 sample.documentation.TextSourceSetimport

 sample.markdown.MarkdownSourceSetimport

apply plugin:sample.documentation.DocumentationPlugin

apply plugin:sample.markdown.MarkdownPlugin

model {

 components {

 docs(DocumentationComponent) {

 sources {

 reference(TextSourceSet)

 userguide(MarkdownSourceSet) {

 generateIndex = true

 smartQuotes = true

 }

 }

 }

 }

}

Note: The code for this example can be found at insamples/customModel/languageType/

the ‘-all’ distribution of Gradle.

Page 730 of 777

The rest of this chapter is dedicated to explaining what is going on behind this build script.

§

Concepts

A custom software model type has a public type, a base interface and internal views. Multiple such types

then collaborate to define a custom software model.

§

Public type and base interfaces

Extended types declare a that extends a :public type base interface

Components extend the base interfaceComponentSpec

Binaries extend the base interfaceBinarySpec

Source sets extend the base interfaceLanguageSourceSet

The is exposed to build logic.public type

§

Internal views

Adding internal views to your model type, you can make some data visible to build logic via a public type,

while hiding the rest of the data behind the internal view types. This is covered in a below.dedicated section

§

Components all the way down

Components are composed of other components. A source set is just a special kind of component

representing sources. It might be that the sources are provided, or generated. Similarly, some components

are composed of different binaries, which are built by tasks. All buildable components are built by tasks. In

the software model, you will write rules to generate both binaries from components and tasks from binaries.

§

Components

To declare a custom component type one must extend , or one of the following, dependingComponentSpec

on the use case:

SourceComponentSpec represents a component which has sources

VariantComponentSpec represents a component which generates different binaries based on context

(target platforms, build flavors, …). Such a component generally produces multiple binaries.

GeneralComponentSpec is a convenient base interface for components that are built from sources and

http://www.gradle.org/docs/4.7/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/SourceComponentSpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.platform.base.VariantComponentSpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/GeneralComponentSpec.html

Page 731 of 777

variant-aware. This is the typical case for a lot of software components, and therefore it should be in most of

the cases the base type to be extended.

The core software model includes more types that can be used as base for extension. For example:

 and can also be extended in this manner. Theses are no-op extensionsLibrarySpec ApplicationSpec

of used to describe a software model better by distinguishing libraries andGeneralComponentSpec

applications components. should be used for all components that describe a test suite.TestSuiteSpec

Example 644. Declare a custom component

DocumentationComponent.groovy

@Managed

 DocumentationComponent GeneralComponentSpec {}interface extends

Types extending are registered via a rule annotated with :ComponentSpec ComponentType

Example 645. Register a custom component

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends

 @ComponentType

 registerComponent(TypeBuilder<DocumentationComponent> builder) {}void

}

§

Binaries

To declare a custom binary type one must extend .BinarySpec

Example 646. Declare a custom binary

DocumentationBinary.groovy

@Managed

 DocumentationBinary BinarySpec {interface extends

 File getOutputDir()

 setOutputDir(File outputDir)void

}

Types extending are registered via a rule annotated with :BinarySpec ComponentType

Example 647. Register a custom binary

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends

 @ComponentType

 registerBinary(TypeBuilder<DocumentationBinary> builder) {}void

}

Source sets

http://www.gradle.org/docs/4.7/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ApplicationSpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testing/base/TestSuiteSpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentType.html

Page 732 of 777

§

Source sets

To declare a custom source set type one must extend .LanguageSourceSet

Example 648. Declare a custom source set

MarkdownSourceSet.groovy

@Managed

 MarkdownSourceSet LanguageSourceSet {interface extends

 isGenerateIndex()boolean

 setGenerateIndex(generateIndex)void boolean

 isSmartQuotes()boolean

 setSmartQuotes(smartQuotes)void boolean

}

Types extending are registered via a rule annotated with :LanguageSourceSet ComponentType

Example 649. Register a custom source set

MarkdownPlugin.groovy

class MarkdownPlugin RuleSource {extends

 @ComponentType

 registerMarkdownLanguage(TypeBuilder<MarkdownSourceSet> builder) {}void

}

Setting the is mandatory.language name

Putting it all together

http://www.gradle.org/docs/4.7/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentType.html

Page 733 of 777

§

Putting it all together

§

Generating binaries from components

Binaries generation from components is done via rules annotated with . This ruleComponentBinaries

generates a named for each and sets itsDocumentationBinary exploded DocumentationComponent

 property:outputDir

Example 650. Generates documentation binaries

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends

 @ComponentBinaries

 generateDocBinaries(ModelMap<DocumentationBinary> binaries, VariantComponentSpec component, File buildDir) {void @Path("buildDir")

 binaries.create() { binary ->"exploded"

 outputDir = File(buildDir,)new "${component.name}/${binary.name}"

 }

 }

}

§

Generating tasks from binaries

Tasks generation from binaries is done via rules annotated with . This rule generates a BinaryTasks Copy

task for each of each :TextSourceSet DocumentationBinary

Example 651. Generates tasks for text source sets

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends

 @BinaryTasks

 generateTextTasks(ModelMap<Task> tasks, DocumentationBinary binary) {void final

 binary.inputs.withType(TextSourceSet) { textSourceSet ->

 def taskName = binary.tasks.taskName(, textSourceSet.name)"compile"

 def outputDir = File(binary.outputDir, textSourceSet.name)new

 tasks.create(taskName, Copy) {

 from textSourceSet.source

 destinationDir = outputDir

 }

 }

 }

}

This rule generates a task for each of each MarkdownCompileTask MarkdownSourceSet DocumentationBinary

:

http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/ComponentBinaries.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/platform/base/BinaryTasks.html

Page 734 of 777

Example 652. Register a custom source set

MarkdownPlugin.groovy

class MarkdownPlugin RuleSource {extends

 @BinaryTasks

 processMarkdownDocumentation(ModelMap<Task> tasks, DocumentationBinary binary) {void final

 binary.inputs.withType(MarkdownSourceSet) { markdownSourceSet ->

 def taskName = binary.tasks.taskName(, markdownSourceSet.name)"compile"

 def outputDir = File(binary.outputDir, markdownSourceSet.name)new

 tasks.create(taskName, MarkdownHtmlCompile) { compileTask ->

 compileTask.source = markdownSourceSet.source

 compileTask.destinationDir = outputDir

 compileTask.smartQuotes = markdownSourceSet.smartQuotes

 compileTask.generateIndex = markdownSourceSet.generateIndex

 }

 }

 }

}

See the sample source for more on the task.MarkdownCompileTask

§

Using your custom model

This build script demonstrate usage of the custom model defined in the sections above:

Page 735 of 777

Example 653. an example of using a custom software model

build.gradle

import sample.documentation.DocumentationComponent

 sample.documentation.TextSourceSetimport

 sample.markdown.MarkdownSourceSetimport

apply plugin:sample.documentation.DocumentationPlugin

apply plugin:sample.markdown.MarkdownPlugin

model {

 components {

 docs(DocumentationComponent) {

 sources {

 reference(TextSourceSet)

 userguide(MarkdownSourceSet) {

 generateIndex = true

 smartQuotes = true

 }

 }

 }

 }

}

Note: The code for this example can be found at insamples/customModel/languageType/

the ‘-all’ distribution of Gradle.

And in the components reports for such a build script we can see our model types properly registered:

Page 736 of 777

Example 654. components report

Output of gradle -q components

> gradle -q components

--

Root project

--

DocumentationComponent 'docs'

Source sets

 Markdown source 'docs:userguide'

 srcDir: src/docs/userguide

 Text source 'docs:reference'

 srcDir: src/docs/reference

Binaries

 DocumentationBinary 'docs:exploded'

 build using task: :docsExploded

Note: currently not all plugins register their components, so some components may not be visible here.

§

About internal views

Internal views can be added to an already registered type or to a new custom type. In other words, using

internal views, you can attach extra properties to already registered components, binaries and source sets

types like , or and to the custom types you write.JvmLibrarySpec JarBinarySpec JavaSourceSet

Let’s start with a simple component public type and its internal view declarations:

Example 655. public type and internal view declaration

build.gradle

@Managed MyComponent ComponentSpec {interface extends

 String getPublicData()

 setPublicData(String data)void

}

 MyComponentInternal MyComponent {@Managed interface extends

 String getInternalData()

 setInternalData(String internal)void

}

The type registration is as follows:

Page 737 of 777

Example 656. type registration

build.gradle

class MyPlugin RuleSource {extends

 @ComponentType

 registerMyComponent(TypeBuilder<MyComponent> builder) {void

 builder.internalView(MyComponentInternal)

 }

}

The method of the type builder can be called several times. This is how you wouldinternalView(type)

add several internal views to a type.

Now, let’s mutate both public and internal data using some rule:

Example 657. public and internal data mutation

build.gradle

class MyPlugin RuleSource {extends

 @Mutate

 mutateMyComponents(ModelMap<MyComponentInternal> components) {void

 components.all { component ->

 component.publicData = "Some PUBLIC data"

 component.internalData = "Some INTERNAL data"

 }

 }

}

Our property should not be exposed to build logic. Let’s check this using the task oninternalData model

the following build file:

Example 658. example build script and model report output

build.gradle

apply plugin: MyPlugin

model {

 components {

 my(MyComponent)

 }

}

Output of gradle -q model

> gradle -q model

--

Root project

--

+ components

Page 738 of 777

 | Type: org.gradle.platform.base.ComponentSpecContainer

 | Creator: ComponentBasePlugin.PluginRules#components(ComponentSpecContainer)

 | Rules:

 components { ... } @ build.gradle line 42, column 5

 MyPlugin#mutateMyComponents(ModelMap<MyComponentInternal>)

 + my

 | Type: MyComponent

 | Creator: components { ... } @ build.gradle line 42, column 5 > create(my)

 | Rules:

 MyPlugin#mutateMyComponents(ModelMap<MyComponentInternal>) > all()

 + publicData

 | Type: java.lang.String

 | Value: Some PUBLIC data

 | Creator: components { ... } @ build.gradle line 42, column 5 > create(my)

+ tasks

 | Type: org.gradle.model.ModelMap<org.gradle.api.Task>

 | Creator: Project.<init>.tasks()

 + assemble

 | Type: org.gradle.api.DefaultTask

 | Value: task ':assemble'

 | Creator: tasks.addPlaceholderAction(assemble)

 | Rules:

 copyToTaskContainer

 + build

 | Type: org.gradle.api.DefaultTask

 | Value: task ':build'

 | Creator: tasks.addPlaceholderAction(build)

 | Rules:

 copyToTaskContainer

 + buildEnvironment

 | Type: org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask

 | Value: task ':buildEnvironment'

 | Creator: tasks.addPlaceholderAction(buildEnvironment)

 | Rules:

 copyToTaskContainer

 + check

 | Type: org.gradle.api.DefaultTask

 | Value: task ':check'

 | Creator: tasks.addPlaceholderAction(check)

 | Rules:

 copyToTaskContainer

 + clean

 | Type: org.gradle.api.tasks.Delete

 | Value: task ':clean'

 | Creator: tasks.addPlaceholderAction(clean)

 | Rules:

 copyToTaskContainer

 + components

 | Type: org.gradle.api.reporting.components.ComponentReport

Page 739 of 777

 | Value: task ':components'

 | Creator: tasks.addPlaceholderAction(components)

 | Rules:

 copyToTaskContainer

 + dependencies

 | Type: org.gradle.api.tasks.diagnostics.DependencyReportTask

 | Value: task ':dependencies'

 | Creator: tasks.addPlaceholderAction(dependencies)

 | Rules:

 copyToTaskContainer

 + dependencyInsight

 | Type: org.gradle.api.tasks.diagnostics.DependencyInsightReportTask

 | Value: task ':dependencyInsight'

 | Creator: tasks.addPlaceholderAction(dependencyInsight)

 | Rules:

 HelpTasksPlugin.Rules#addDefaultDependenciesReportConfiguration(DependencyInsightReportTask, ServiceRegistry)

 copyToTaskContainer

 + dependentComponents

 | Type: org.gradle.api.reporting.dependents.DependentComponentsReport

 | Value: task ':dependentComponents'

 | Creator: tasks.addPlaceholderAction(dependentComponents)

 | Rules:

 copyToTaskContainer

 + help

 | Type: org.gradle.configuration.Help

 | Value: task ':help'

 | Creator: tasks.addPlaceholderAction(help)

 | Rules:

 copyToTaskContainer

 + init

 | Type: org.gradle.buildinit.tasks.InitBuild

 | Value: task ':init'

 | Creator: tasks.addPlaceholderAction(init)

 | Rules:

 copyToTaskContainer

 + model

 | Type: org.gradle.api.reporting.model.ModelReport

 | Value: task ':model'

 | Creator: tasks.addPlaceholderAction(model)

 | Rules:

 copyToTaskContainer

 + projects

 | Type: org.gradle.api.tasks.diagnostics.ProjectReportTask

 | Value: task ':projects'

 | Creator: tasks.addPlaceholderAction(projects)

 | Rules:

 copyToTaskContainer

 + properties

 | Type: org.gradle.api.tasks.diagnostics.PropertyReportTask

Page 740 of 777

 | Value: task ':properties'

 | Creator: tasks.addPlaceholderAction(properties)

 | Rules:

 copyToTaskContainer

 + tasks

 | Type: org.gradle.api.tasks.diagnostics.TaskReportTask

 | Value: task ':tasks'

 | Creator: tasks.addPlaceholderAction(tasks)

 | Rules:

 copyToTaskContainer

 + wrapper

 | Type: org.gradle.api.tasks.wrapper.Wrapper

 | Value: task ':wrapper'

 | Creator: tasks.addPlaceholderAction(wrapper)

Page 741 of 777

 | Rules:

 copyToTaskContainer

We can see in this report that is present and that is not.publicData internalData

Page 742 of 777

Glossary

Page 743 of 777

Dependency Management Terminology

Dependency management comes with a wealth of terminology. Here you can find the most commonly-used

terms including references to the user guide to learn about their practical application.

§

Configuration

A configuration is a named set of grouped together for a specific goal: For example the dependencies implementation

configuration represents the set of dependencies required to compile a project. Configurations provide

access to the underlying, resolved and their artifacts. For more information, see modules Managing

.Dependency Configurations

Note: The word "configuration" is an overloaded term and has a different meaning outside of the

context of dependency management.

§

Dependency

A dependency is a pointer to another piece of software required to build, test or run a . For moremodule

information, see .Declaring Dependencies

§

Dependency constraint

A dependency constraint defines requirements that need to be met by a module to make it a valid resolution

result for the dependency. For example, a dependency constraint can narrow down the set of supported

module versions. Dependency constraints can be used to express such requirements for transitive

dependencies. For more information, see the section called “Managing versions of transitive dependencies

.with dependency constraints”

§

Module

A piece of software that evolves over time e.g. . Every module has a name. Each release of aGoogle Guava

module is optimally represented by a . For convenient consumption, modules can be hostedmodule version

in a .repository

https://github.com/google/guava

Page 744 of 777

§

Module metadata

Releases of a can provide metadata. Metadata is the data that describes the module in more detailmodule

e.g. the coordinates for locating it in a repository, information about the project or required transitive

. In Maven the metadata file is called , in Ivy it is called .dependencies .pom ivy.xml

§

Module version

A module version represents a distinct set of changes of a released . For example representsmodule 18.0

the version of the module with the coordinates . In practice there’s no limitationcom.google:guava:18.0

to the scheme of the module version. Timestamps, numbers, special suffixes like are all allowed-GA

identifiers. The most widely-used versioning strategy is .semantic versioning

§

Repository

A repository hosts a set of , each of which may provide one or many releases indicated by a modules module

. The repository can be based on a binary repository product (e.g. Artifactory or Nexus) or a directoryversion

structure in the filesystem. For more information, see .Declaring Repositories

§

Resolution rule

A resolution rule influences the behavior of how a is resolved. Resolution rules are defined asdependency

part of the build logic. For more information, see .Customizing Dependency Resolution Behavior

§

Transitive dependency

A can have dependencies on other modules to work properly, so-called transitive dependencies.module

Releases of a module hosted on a can provide to declare those transitiverepository metadata

dependencies. By default, Gradle resolves transitive dependencies automatically. However, the behavior is

highly customizable. For more information, see .Managing Transitive Dependencies

https://semver.org/

Page 745 of 777

Dependency Types

§

Module dependencies

Module dependencies are the most common dependencies. They refer to a module in a repository.

Example 659. Module dependencies

build.gradle

dependencies {

 runtime group: , name: , version: 'org.springframework' 'spring-core' '2.5'

 runtime ,'org.springframework:spring-core:2.5'

 'org.springframework:spring-aop:2.5'

 runtime(

 [group: , name: , version:],'org.springframework' 'spring-core' '2.5'

 [group: , name: , version:]'org.springframework' 'spring-aop' '2.5'

)

 runtime() {'org.hibernate:hibernate:3.0.5'

 transitive = true

 }

 runtime group: , name: , version: , transitive: true'org.hibernate' 'hibernate' '3.0.5'

 runtime(group: , name: , version:) {'org.hibernate' 'hibernate' '3.0.5'

 transitive = true

 }

}

See the class in the API documentation for more examples and a completeDependencyHandler

reference.

Gradle provides different notations for module dependencies. There is a string notation and a map notation.

A module dependency has an API which allows further configuration. Have a look at

 to learn all about the API. This API provides properties and configurationExternalModuleDependency

methods. Via the string notation you can define a subset of the properties. With the map notation you can

define all properties. To have access to the complete API, either with the map or with the string notation, you

can assign a single dependency to a configuration together with a closure.

Note: If you declare a module dependency, Gradle looks for a module metadata file (, .module .pom

or) in the repositories. If such a module metadata file exists, it is parsed and the artifactsivy.xml

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

Page 746 of 777

of this module (e.g.) as well as its dependencies (e.g. cglib) arehibernate-3.0.5.jar

downloaded. If no such module metadata file exists, Gradle may look, depending on the metadata

, for an artifact file called directly. In Maven, a modulesources definitions hibernate-3.0.5.jar

can have one and only one artifact. In Gradle and Ivy, a module can have multiple artifacts. Each

artifact can have a different set of dependencies.

§

File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a

repository. This can be useful if you cannot, or do not want to, place certain files in a repository. Or if you do

not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a as a dependency:file collection

Example 660. File dependencies

build.gradle

dependencies {

 runtime files(,)'libs/a.jar' 'libs/b.jar'

 runtime fileTree(dir: , include:)'libs' '*.jar'

}

File dependencies are not included in the published dependency descriptor for your project. However, file

dependencies are included in transitive project dependencies within the same build. This means they cannot

be used outside the current build, but they can be used with the same build.

You can declare which tasks produce the files for a file dependency. You might do this when, for example,

the files are generated by the build.

Page 747 of 777

Example 661. Generated file dependencies

build.gradle

dependencies {

 compile files() {"$buildDir/classes"

 builtBy 'compile'

 }

}

task compile {

 doLast {

 println 'compiling classes'

 }

}

task list(dependsOn: configurations.compile) {

 doLast {

 println "classpath = ${configurations.compile.collect { File file -> file.name }}"

 }

}

Output of gradle -q list

> gradle -q list

compiling classes

classpath = [classes]

§

Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the

same multi-project build. For the latter you can declare .project dependencies

Example 662. Project dependencies

build.gradle

dependencies {

 compile project()':shared'

}

For more information see the API documentation for .ProjectDependency

Multi-project builds are discussed in .Authoring Multi-Project Builds

Gradle distribution-specific dependencies

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Page 748 of 777

§

Gradle distribution-specific dependencies

§

Gradle API dependency

You can declare a dependency on the API of the current version of Gradle by using the

 method. This is useful when you are developing custom GradleDependencyHandler.gradleApi()

tasks or plugins.

Example 663. Gradle API dependencies

build.gradle

dependencies {

 compile gradleApi()

}

§

Gradle TestKit dependency

You can declare a dependency on the TestKit API of the current version of Gradle by using the

 method. This is useful for writing and executing functional testsDependencyHandler.gradleTestKit()

for Gradle plugins and build scripts.

Example 664. Gradle TestKit dependencies

build.gradle

dependencies {

 testCompile gradleTestKit()

}

Testing Build Logic with TestKit explains the use of TestKit by example.

§

Local Groovy dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the

 method. This is useful when you are developing custom GradleDependencyHandler.localGroovy()

tasks or plugins in Groovy.

Example 665. Gradle's Groovy dependencies

build.gradle

dependencies {

 compile localGroovy()

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

Page 749 of 777

Repository Types

§

Flat directory repository

Some projects might prefer to store dependencies on a shared drive or as part of the project source code

instead of a binary repository product. If you want to use a (flat) filesystem directory as a repository, simply

type:

Example 666. Flat repository resolver

build.gradle

repositories {

 flatDir {

 dirs 'lib'

 }

 flatDir {

 dirs , 'lib1' 'lib2'

 }

}

This adds repositories which look into one or more directories for finding dependencies. Note that this type of

repository does not support any meta-data formats like Ivy XML or Maven POM files. Instead, Gradle will

dynamically generate a module descriptor (without any dependency information) based on the presence of

artifacts. However, as Gradle prefers to use modules whose descriptor has been created from real

meta-data rather than being generated, flat directory repositories cannot be used to override artifacts with

real meta-data from other repositories. For example, if Gradle finds only in a flatjmxri-1.2.1.jar

directory repository, but in another repository that supports meta-data, it will use thejmxri-1.2.1.pom

second repository to provide the module.

For the use case of overriding remote artifacts with local ones consider using an Ivy or Maven repository

instead whose URL points to a local directory. If you only work with flat directory repositories you don’t need

to set all attributes of a dependency.

§

Maven Central repository

Maven Central is a popular repository hosting open source libraries for consumption by Java projects.

Page 750 of 777

To declare the for your build add this to your script:central Maven repository

Example 667. Adding central Maven repository

build.gradle

repositories {

 mavenCentral()

}

§

JCenter Maven repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts published

directly to Bintray.

To declare the add this to your build script:JCenter Maven repository

Example 668. Adding Bintray's JCenter Maven repository

build.gradle

repositories {

 jcenter()

}

§

Google Maven repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage examples, see

the .relevant documentation

To declare the add this to your build script:Google Maven repository

Example 669. Adding Google Maven repository

build.gradle

repositories {

 google()

}

§

Local Maven repository

Gradle can consume dependencies available in the . Declaring this repository islocal Maven repository

beneficial for teams that publish to the local Maven repository with one project and consume the artifacts by

Gradle in another project.

https://repo.maven.apache.org/maven2/
http://bintray.com
https://jcenter.bintray.com
https://developer.android.com/studio/build/dependencies.html#google-maven
https://dl.google.com/dl/android/maven2/
https://maven.apache.org/guides/introduction/introduction-to-repositories.html

Page 751 of 777

Note: Gradle stores resolved dependencies in . A build does not need to declare theits own cache

local Maven repository even if you resolve dependencies from a Maven-based, remote repository.

To declare the local Maven cache as a repository add this to your build script:

Example 670. Adding the local Maven cache as a repository

build.gradle

repositories {

 mavenLocal()

}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local repository

location is defined in a , this location will be used. The in settings.xml settings.xml /.m2USER_HOME

takes precedence over the in . If no is available, Gradlesettings.xml /confM2_HOME settings.xml

uses the default location ./.m2/repositoryUSER_HOME

§

Custom Maven repositories

Many organizations host dependencies in an in-house Maven repository only accessible within the

company’s network. Gradle can declare Maven repositories by URL.

For adding a custom Maven repository you can do:

Example 671. Adding custom Maven repository

build.gradle

repositories {

 maven {

 url "http://repo.mycompany.com/maven2"

 }

}

Sometimes a repository will have the POMs published to one location, and the JARs and other artifacts

published at another location. To define such a repository, you can do:

Page 752 of 777

Example 672. Adding additional Maven repositories for JAR files

build.gradle

repositories {

 maven {

 // Look for POMs and artifacts, such as JARs, here

 url "http://repo2.mycompany.com/maven2"

 // Look for artifacts here if not found at the above location

 artifactUrls "http://repo.mycompany.com/jars"

 artifactUrls "http://repo.mycompany.com/jars2"

 }

}

Gradle will look at the first URL for the POM and the JAR. If the JAR can’t be found there, the artifact URLs

are used to look for JARs.

§

Accessing password-protected Maven repositories

You can specify credentials for Maven repositories secured by basic authentication.

Example 673. Accessing password-protected Maven repository

build.gradle

repositories {

 maven {

 url "http://repo.mycompany.com/maven2"

 credentials {

 username "user"

 password "password"

 }

 }

}

§

Custom Ivy repositories

Organizations might decide to host dependencies in an in-house Ivy repository. Gradle can declare Ivy

repositories by URL.

§

Defining an Ivy repository with a standard layout

To declare an Ivy repository using the standard layout no additional customization is needed. You just

declare the URL.

Page 753 of 777

Example 674. Ivy repository

build.gradle

repositories {

 ivy {

 url "http://repo.mycompany.com/repo"

 }

}

§

Defining a named layout for an Ivy repository

You can specify that your repository conforms to the Ivy or Maven default layout by using a named layout.

Example 675. Ivy repository with named layout

build.gradle

repositories {

 ivy {

 url "http://repo.mycompany.com/repo"

 layout "maven"

 }

}

Valid named layout values are (the default), , and . See 'gradle' 'maven' 'ivy' 'pattern'

 in the APIIvyArtifactRepository.layout(java.lang.String, groovy.lang.Closure)

documentation for details of these named layouts.

§

Defining custom pattern layout for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a layout for the'pattern'

repository:

Example 676. Ivy repository with pattern layout

build.gradle

repositories {

 ivy {

 url "http://repo.mycompany.com/repo"

 layout , {"pattern"

 artifact "[module]/[revision]/[type]/[artifact].[ext]"

 }

 }

}

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can define

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

Page 754 of 777

separate patterns to use to locate the Ivy files and artifacts:

Each or specified for a repository adds an pattern to use. The patterns are usedartifact ivy additional

in the order that they are defined.

Example 677. Ivy repository with multiple custom patterns

build.gradle

repositories {

 ivy {

 url "http://repo.mycompany.com/repo"

 layout , {"pattern"

 artifact "3rd-party-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"

 artifact "company-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"

 ivy "ivy-files/[organisation]/[module]/[revision]/ivy.xml"

 }

 }

}

Optionally, a repository with pattern layout can have its part laid out in Maven style, with'organisation'

forward slashes replacing dots as separators. For example, the organisation would then bemy.company

represented as .my/company

Example 678. Ivy repository with Maven compatible layout

build.gradle

repositories {

 ivy {

 url "http://repo.mycompany.com/repo"

 layout , {"pattern"

 artifact "[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"

 m2compatible = true

 }

 }

}

§

Accessing password-protected Ivy repositories

You can specify credentials for Ivy repositories secured by basic authentication.

Page 755 of 777

Example 679. Ivy repository with authentication

build.gradle

repositories {

 ivy {

 url "http://repo.mycompany.com"

 credentials {

 username "user"

 password "password"

 }

 }

}

§

Supported metadata sources

When searching for a module in a repository, Gradle, by default, checks for supported metadata file formats

in that repository. In a Maven repository, Gradle looks for a file, in an ivy repository it looks for an .pom ivy.xml

file and in a flat directory repository it looks directly for files as it does not expect any metadata..jar

Starting with 5.0, Gradle also looks for (Gradle module metadata) files..module

However, if you define a customized repository you might want to configure this behavior. For example, you

can define a Maven repository without files but only jars. To do so, you can configure .pom metadata

 for any repository.sources

Example 680. Maven repository that supports artifacts without metadata

build.gradle

repositories {

 maven {

 url "http://repo.mycompany.com/repo"

 metadataSources {

 mavenPom()

 artifact()

 }

 }

}

You can specify multiple sources to tell Gradle to keep looking if a file was not found. In that case, the order

of checking for sources is predefined.

The following metadata sources are supported:

Page 756 of 777

Table 104. Repository transport protocols

Metadata source Description Order Maven Ivy / flat dir

gradleMetadata() Look for Gradle files.module 1st yes yes

mavenPom() Look for Maven files.pom 2nd yes yes

ivyDescriptor() Look for filesivy.xml 2nd no yes

artifact() Look directly for artifact 3rd yes yes

Note: The defaults for Ivy and Maven repositories change with Gradle 5.0. Before 5.0, artifact()

was included in the defaults. Leading to some inefficiency when modules are missing completely. To

restore this behavior, for example, for Maven central you can use mavenCentral { mavenPom(); artifact() }

. In a similar way, you can opt into the new behavior in older Gradle verisions using mavenCentral { mavenPom() }

§

Supported repository transport protocols

Maven and Ivy repositories support the use of various transport protocols. At the moment the following

protocols are supported:

Table 105. Repository transport protocols

Type Credential types

file none

http username/password

https username/password

sftp username/password

s3 access key/secret key/session token or Environment variables

gcs default application credentials sourced from well known files, Environment variables etc.

Note: Username and password should never be checked in plain text into version control as part of

your build file. You can store the credentials in a local file and use one of thegradle.properties

open source Gradle plugins for encrypting and consuming credentials e.g. the .credentials plugin

https://developers.google.com/identity/protocols/application-default-credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

Page 757 of 777

The transport protocol is part of the URL definition for a repository. The following build script demonstrates

how to create a HTTP-based Maven and Ivy repository:

Example 681. Declaring a Maven and Ivy repository

build.gradle

repositories {

 maven {

 url "http://repo.mycompany.com/maven2"

 }

 ivy {

 url "http://repo.mycompany.com/repo"

 }

}

The following example shows how to declare SFTP repositories:

Example 682. Using the SFTP protocol for a repository

build.gradle

repositories {

 maven {

 url "sftp://repo.mycompany.com:22/maven2"

 credentials {

 username "user"

 password "password"

 }

 }

 ivy {

 url "sftp://repo.mycompany.com:22/repo"

 credentials {

 username "user"

 password "password"

 }

 }

}

When using an AWS S3 backed repository you need to authenticate using , providingAwsCredentials

access-key and a private-key. The following example shows how to declare a S3 backed repository and

providing AWS credentials:

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.credentials.AwsCredentials.html

Page 758 of 777

Example 683. Declaring a S3 backed Maven and Ivy repository

build.gradle

repositories {

 maven {

 url "s3://myCompanyBucket/maven2"

 credentials(AwsCredentials) {

 accessKey "someKey"

 secretKey "someSecret"

 // optional

 sessionToken "someSTSToken"

 }

 }

 ivy {

 url "s3://myCompanyBucket/ivyrepo"

 credentials(AwsCredentials) {

 accessKey "someKey"

 secretKey "someSecret"

 // optional

 sessionToken "someSTSToken"

 }

 }

}

You can also delegate all credentials to the AWS sdk by using the AwsImAuthentication. The following

example shows how:

Example 684. Declaring a S3 backed Maven and Ivy repository using IAM

build.gradle

repositories {

 maven {

 url "s3://myCompanyBucket/maven2"

 authentication {

 awsIm(AwsImAuthentication) // load from EC2 role or env var

 }

 }

 ivy {

 url "s3://myCompanyBucket/ivyrepo"

 authentication {

 awsIm(AwsImAuthentication)

 }

 }

}

When using a Google Cloud Storage backed repository default application credentials will be used with no

further configuration required:

Page 759 of 777

Example 685. Declaring a Google Cloud Storage backed Maven and Ivy repository using default application credentials

build.gradle

repositories {

 maven {

 url "gcs://myCompanyBucket/maven2"

 }

 ivy {

 url "gcs://myCompanyBucket/ivyrepo"

 }

}

§

S3 configuration properties

The following system properties can be used to configure the interactions with s3 repositories:

Table 106. S3 configuration properties

Property Description

org.gradle.s3.endpoint
Used to override the AWS S3 endpoint when using a non AWS, S3 API compatible, storage

service.

org.gradle.s3.maxErrorRetry
Specifies the maximum number of times to retry a request in the event that the S3 server

responds with a HTTP 5xx status code. When not specified a default value of 3 is used.

§

S3 URL formats

S3 URL’s are 'virtual-hosted-style' and must be in the following format s3://<bucketName>[.<regionSpecificEndpoint>]/<s3Key>

e.g. s3://myBucket.s3.eu-central-1.amazonaws.com/maven/release

myBucket is the AWS S3 bucket name.

s3.eu-central-1.amazonaws.com is the .optional region specific endpoint

/maven/release is the AWS S3 key (unique identifier for an object within a bucket)

§

S3 proxy settings

A proxy for S3 can be configured using the following system properties:

https.proxyHost

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Page 760 of 777

https.proxyPort

https.proxyUser

https.proxyPassword

http.nonProxyHosts

If the 'org.gradle.s3.endpoint' property has been specified with a http (not https) URI the following system

proxy settings can be used:

http.proxyHost

http.proxyPort

http.proxyUser

http.proxyPassword

http.nonProxyHosts

§

AWS S3 V4 Signatures (AWS4-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in

accordance with AWS’s . It is recommended to specify S3 URL’s containing the regionsignature version 4

specific endpoint when using buckets that require V4 signatures. e.g. s3://somebucket.s3.eu-central-1.amazonaws.com/maven/release

Note: When a region-specific endpoint is not specified for buckets requiring V4 Signatures, Gradle

will use the default AWS region (us-east-1) and the following warning will appear on the console:

Attempting to re-send the request to …. with AWS V4 authentication. To avoid this warning in the

future, use region-specific endpoint to access buckets located in regions that require V4 signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures means:

Note: 3 round-trips to AWS, as opposed to one, for every file upload and download.

Note: Depending on location - increased network latencies and slower builds.

Note: Increased likelihood of transmission failures.

§

Google Cloud Storage configuration properties

The following system properties can be used to configure the interactions with Google Cloud Storage

repositories:

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://cloud.google.com/storage/

Page 761 of 777

Table 107. Google Cloud Storage configuration properties

Property Description

org.gradle.gcs.endpoint
Used to override the Google Cloud Storage endpoint when using a non-Google Cloud Platform,

Google Cloud Storage API compatible, storage service.

org.gradle.gcs.servicePath
Used to override the Google Cloud Storage root service path which the Google Cloud Storage client

builds requests from, defaults to ./

§

Google Cloud Storage URL formats

Google Cloud Storage URL’s are 'virtual-hosted-style' and must be in the following format gcs://<bucketName>/<objectKey>

e.g. gcs://myBucket/maven/release

myBucket is the Google Cloud Storage bucket name.

/maven/release is the Google Cloud Storage key (unique identifier for an object within a bucket)

§

Configuring HTTP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication schemes

are available. By default, Gradle will attempt to use all schemes that are supported by the Apache HttpClient

library, . In some cases, it may be preferable to explicitly specify which authenticationdocumented here

schemes should be used when exchanging credentials with a remote server. When explicitly declared, only

those schemes are used when authenticating to a remote repository. The following example show how to

configure a repository to use only digest authentication:

Example 686. Configure repository to use only digest authentication

build.gradle

repositories {

 maven {

 url 'https://repo.mycompany.com/maven2'

 credentials {

 username "user"

 password "password"

 }

 authentication {

 digest(DigestAuthentication)

 }

 }

}

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625

Page 762 of 777

Currently supported authentication schemes are:

Table 108. Authentication schemes

Type Description

BasicAuthentication
Basic access authentication over HTTP. When using this scheme, credentials are sent

preemptively.

DigestAuthentication Digest access authentication over HTTP.

§

Using preemptive authentication

Gradle’s default behavior is to only submit credentials when a server responds with an authentication

challenge in the form of a HTTP 401 response. In some cases, the server will respond with a different code

(ex. for repositories hosted on GitHub a 404 is returned) causing dependency resolution to fail. To get

around this behavior, credentials may be sent to the server preemptively. To enable preemptive

authentication simply configure your repository to explicitly use the scheme:BasicAuthentication

Example 687. Configure repository to use preemptive authentication

build.gradle

repositories {

 maven {

 url 'https://repo.mycompany.com/maven2'

 credentials {

 username "user"

 password "password"

 }

 authentication {

 basic(BasicAuthentication)

 }

 }

}

http://www.gradle.org/docs/4.7/dsl/org.gradle.authentication.http.BasicAuthentication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.authentication.http.DigestAuthentication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.authentication.http.BasicAuthentication.html

Page 763 of 777

The Dependency Cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the

number of remote requests made in dependency resolution, while striving to guarantee that the results of

dependency resolution are correct and reproducible.

The Gradle dependency cache consists of two storage types located under :GRADLE_USER_HOME/caches

A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded meta-data

like POM files and Ivy files. The storage path for a downloaded artifact includes the SHA1 checksum,

meaning that 2 artifacts with the same name but different content can easily be cached.

A binary store of resolved module meta-data, including the results of resolving dynamic versions, module

descriptors, and artifacts.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult

to debug behavior. Gradle enables reliable and reproducible enterprise builds with a focus on bandwidth and

storage efficiency.

§

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache.

The information stored in the metadata cache includes:

The result of resolving a dynamic version (e.g.) to a concrete version (e.g.).1.+ 1.2

The resolved module metadata for a particular module, including module artifacts and module

dependencies.

The resolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

The of a particular module or artifact in a particular repository, eliminating repeated attempts toabsence

access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well

as a timestamp that can be used for cache expiry.

Repository caches are independent

Page 764 of 777

§

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its

URL, type and layout. If a module or artifact has not been previously resolved from , Gradlethis repository

will attempt to resolve the module against the repository. This will always involve a remote lookup on the

repository, however in many cases .no download will be required

Dependency resolution will fail if the required artifacts are not available in any repository specified by the

build, even if the local cache has a copy of this artifact which was retrieved from a different repository.

Repository independence allows builds to be isolated from each other in an advanced way that no build tool

has done before. This is a key feature to create builds that are reliable and reproducible in any environment.

§

Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by

downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not

downloaded if an artifact already exists with the same id and checksum. If the checksum cannot be retrieved

from the remote server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse

artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle

will use this artifact if it can be verified to match the checksum declared by the remote server.

§

Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact

identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact which

is republished without changing its identifier. By caching artifacts based on their SHA1 checksum, Gradle is

able to maintain multiple versions of the same artifact. This means that when resolving against one

repository Gradle will never overwrite the cached artifact file from a different repository. This is done without

requiring a separate artifact file store per repository.

§

Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple

Gradle processes concurrently. The lock is held whenever the binary meta-data store is being read or

written, but is released for slow operations such as downloading remote artifacts.

Appendix

Page 766 of 777

A

Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can find

these samples in the directory of the distribution./samplesGRADLE_HOME

Table A.1. Samples included in the distribution

Sample Description

announce A project which uses the announce plugin

application A project which uses the application plugin

buildCache/build-src Configure the build cache consistently for and the main buildbuildSrc

buildCache/configure-built-in-caches Configuration options for the build cache

buildCache/developer-ci-setup

Recommended cache configuration: Developer push to a local build cache

and pull from local and remote build cache, continuous integration server

pushes to and pulls from the remote cache.

buildCache/http-build-cache Use a remote HTTP build cache

buildDashboard A project which uses the build-dashboard plugin

codeQuality A project which uses the various code quality plugins.

customBuildLanguage
This sample demonstrates how to add some custom elements to the build

DSL. It also demonstrates the use of custom plug-ins to organize build logic.

customDistribution
This sample demonstrates how to create a custom Gradle distribution and

use it with the Gradle wrapper.

customPlugin
A set of projects that show how to implement, test, publish and use a custom

plugin and task.

Page 767 of 777

ear/earCustomized/ear Web application ear project with customized contents

ear/earWithWar Web application ear project

groovy/crossCompilation A project doing cross compilation for a Groovy Project to Java 6

groovy/customizedLayout Groovy project with a custom source layout

groovy/mixedJavaAndGroovy Project containing a mix of Java and Groovy source

groovy/multiproject
Build made up of multiple Groovy projects. Also demonstrates how to exclude

certain source files, and the use of a custom Groovy AST transformation.

groovy/quickstart Groovy quickstart sample

java-library/multiproject Java Library multiproject

java-library/quickstart Java Library quickstart project

java/base Java base project

java/crossCompilation A project doing cross compilation to Java 6

java/customizedLayout Java project with a custom source layout

java/multiproject
This sample demonstrates how an application can be composed using

multiple Java projects.

java/quickstart Java quickstart project

java/withIntegrationTests
This sample demonstrates how to use a source set to add an integration test

suite to a Java project.

javaGradlePlugin

This example demonstrates the use of the java gradle plugin development

plugin. By applying the plugin, the java plugin is automatically applied as well

as the gradleApi() dependency. Furthermore, validations are performed

against the plugin metadata during jar execution.

maven/pomGeneration

Demonstrates how to deploy and install to a Maven repository. Also

demonstrates how to deploy a javadoc JAR along with the main JAR, how to

customize the contents of the generated POM, and how to deploy snapshots

and releases to different repositories.

Page 768 of 777

maven/quickstart Demonstrates how to deploy and install artifacts to a Maven repository.

osgi A project which builds an OSGi bundle

plugins
A set of projects that show how to implement, test, publish and use a custom

plugins with the latest technology.

providers/fileAndDirectoryProperty A set of examples using the Provider API for File-like properties

providers/implicitTaskDependency
An example project using the Provider API to model the relationship between

a producer and consumer task.

providers/listProperty A set of examples using the Provider API for collection properties

providers/propertyAndProvider An example of using the Provider API with the Groovy Gradle DSL

scala/crossCompilation A project doing cross compilation for a Scala project to Java 6

scala/customizedLayout Scala project with a custom source layout

scala/force Scala quickstart project

scala/mixedJavaAndScala A project containing a mix of Java and Scala source.

scala/quickstart Scala quickstart project

scala/zinc Scala project using the Zinc based Scala compiler.

testing/testReport
Generates an HTML test report that includes the test results from all

subprojects.

toolingApi/customModel
A sample of how a plugin can expose its own custom tooling model to tooling

API clients.

toolingApi/eclipse
An application that uses the tooling API to build the Eclipse model for a

project.

toolingApi/idea
An application that uses the tooling API to extract information needed by

IntelliJ IDEA.

toolingApi/model An application that uses the tooling API to build the model for a Gradle build.

Page 769 of 777

toolingApi/runBuild An application that uses the tooling API to run a Gradle task.

userguide/distribution A project which uses the distribution plugin

userguide/javaLibraryDistribution A project which uses the Java library distribution plugin

webApplication/customized Web application with customized WAR contents.

webApplication/quickstart Web application quickstart project

§

Sample customBuildLanguage

This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use

of custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second

represents a product module. Each product includes one or more product modules, and each product

module may be included in multiple products. That is, there is a many-to-many relationship between these

products and product modules. For each product, the build produces a ZIP containing the runtime classpath

for each product module included in the product. The ZIP also contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basicEdition/build.gradle

). Notice that the build script uses the element. This is a custom element.product { }

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2 custom

plug-ins found in .buildSrc/src/main/groovy

§

Sample customDistribution

This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.

This sample contains the following projects:

The directory contains the project that implements a custom plugin, and bundles the plugin into aplugin

custom Gradle distribution.

The directory contains the project that uses the custom distribution.consumer

Sample customPlugin

Page 770 of 777

§

Sample customPlugin

A set of projects that show how to implement, test, publish and use a custom plugin and task.

This sample contains the following projects:

The directory contains the project that implements and publishes the plugin.plugin

The directory contains the project that uses the plugin.consumer

§

Sample java/multiproject

This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP

which includes an API JAR, which a 3rd party application would compile against, and a client runtime. Then,

there is a server WAR which provides a web service.

§

Sample plugins

A set of projects that show how to implement, test, publish and use a custom plugins with the latest

technology.

This sample contains the following projects:

The directory contains a project that uses the old syntax for using plugins.buildscript buildscript

The directory contains the a project that uses the new syntax for using plugins.dsl plugins

The directory contains a complete example of the modern publishing plugins working with thepublishing

java-gradle-plugin to produce two plugins shipped in the same jar and being published to both an ivy and

maven repository.

The directory contains an example of resolving plugins from custom repositories instead theconsuming

Gradle Plugin Portal.

Page 771 of 777

B

Potential Traps

§

Groovy script variables

For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types

of script variables. One with a local scope and one with a script-wide scope.

Page 772 of 777

Example B.1. Variables scope: local and script wide

scope.groovy

String localScope1 = 'localScope1'

def localScope2 = 'localScope2'

scriptScope = 'scriptScope'

println localScope1

println localScope2

println scriptScope

closure = {

 println localScope1

 println localScope2

 println scriptScope

}

def method() {

 {try

 localScope1

 } (MissingPropertyException e) {catch

 println 'localScope1NotAvailable'

 }

 {try

 localScope2

 } (MissingPropertyException e) {catch

 println 'localScope2NotAvailable'

 }

 println scriptScope

}

closure.call()

method()

Output of groovy scope.groovy

> groovy scope.groovy

localScope1

localScope2

scriptScope

localScope1

localScope2

scriptScope

localScope1NotAvailable

localScope2NotAvailable

scriptScope

Variables which are declared with a type modifier are visible within closures but not visible within methods.

Configuration and execution phase

Page 773 of 777

§

Configuration and execution phase

It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Build

).Lifecycle

Example B.2. Distinct configuration and execution phase

build.gradle

def classesDir = file()'build/classes'

classesDir.mkdirs()

task clean(type: Delete) {

 delete 'build'

}

task compile(dependsOn:) {'clean'

 doLast {

 (!classesDir.isDirectory()) {if

 println 'The class directory does not exist. I can not operate'

 // do something

 }

 // do something

 }

}

Output of gradle -q compile

> gradle -q compile

The class directory does not exist. I can not operate

As the creation of the directory happens during the configuration phase, the task removes theclean

directory during the execution phase.

Page 774 of 777

C

The Feature Lifecycle

Gradle is under constant development and improvement. New versions are delivered on a regular and

frequent basis (approximately every 6 weeks). Continuous improvement combined with frequent delivery

allows new features to be made available to users early and for invaluable real world feedback to be

incorporated into the development process. Getting new functionality into the hands of users regularly is a

core value of the Gradle platform. At the same time, API and feature stability is taken very seriously and is

also considered a core value of the Gradle platform. This is something that is engineered into the

development process by design choices and automated testing, and is formalised by the section called

.“Backwards Compatibility Policy”

The Gradle has been designed to meet these goals. It also serves to clearly communicatefeature lifecycle

to users of Gradle what the state of a feature is. The term typically means an API or DSL method orfeature

property in this context, but it is not restricted to this definition. Command line arguments and modes of

execution (e.g. the Build Daemon) are two examples of other kinds of features.

§

States

Features can be in one of 4 states:

Internal

Incubating

Public

Deprecated

§

Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself. They can

change in any way at any point in time without any notice. Therefore, we recommend avoiding the use of

such features. Internal features are not documented. If it appears in this User Guide, the DSL Reference or

the API Reference documentation then the feature is not internal.

Internal features may evolve into public features.

Incubating

Page 775 of 777

§

Incubating

Features are introduced in the state to allow real world feedback to be incorporated into theincubating

feature before it is made public and locked down to provide backwards compatibility. It also gives users who

are willing to accept potential future changes early access to the feature so they can put it into use

immediately.

A feature in an incubating state may change in future Gradle versions until it is no longer incubating.

Changes to incubating features for a Gradle release will be highlighted in the release notes for that release.

The incubation period for new features varies depending on the scope, complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all methods/properties/classes that

are incubating are annotated with , which is also used to specially mark them in the DSL andIncubating

API references. If an incubating feature is discussed in this User Guide, it will be explicitly said to be in the

incubating state.

§

Public

The default state for a non-internal feature is . Anything that is documented in the User Guide, DSLpublic

Reference or API references that is not explicitly said to be incubating or deprecated is considered public.

Features are said to be from an incubating state to public. The release notes for each releasepromoted

indicate which previously incubating features are being promoted by the release.

A public feature will be removed or intentionally changed without undergoing deprecation. All publicnever

features are subject to the backwards compatibility policy.

§

Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such features

will eventually be removed from Gradle after being . A deprecated feature will be changed,deprecated never

until it is finally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, all methods/properties/classes that

are deprecated are annotated with “ ” which is reflected in the DSL and API@java.lang.Deprecated

references. In most cases, there is a replacement for the deprecated element, and this will be described in

the documentation. Using a deprecated feature will also result in a runtime warning in Gradle’s output.

Use of deprecated features should be avoided. The release notes for each release indicate any features that

are being deprecated by the release.

Backwards Compatibility Policy

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Incubating.html

Page 776 of 777

§

Backwards Compatibility Policy

Gradle provides backwards compatibility across major versions (e.g. , , etc.). Once a public feature1.x 2.x

is introduced or promoted in a Gradle release it will remain indefinitely or until it is deprecated. Once

deprecated, it may be removed in the next major release. Deprecated features may be supported across

major releases, but this is not guaranteed.

Page 777 of 777

D

Documentation licenses

§

Gradle Documentation

Copyright © 2007-2016 Gradle, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do

not charge any fee for such copies and further provided that each copy contains this Copyright Notice,

whether distributed in print or electronically.

§

Header link icon

Copyright © 2011–2013 VisualEditor team.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and

to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions

of the Software.

The Software is provided "as is", without warranty of any kind, express or implied, including but not limited to

the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the

authors or copyright holders be liable for any claim, damages or other liability, whether in an action of

contract, tort or otherwise, arising from, out of or in connection with the Software or the use or other dealings

in the Software.

https://commons.wikimedia.org/wiki/File:VisualEditor_-_Icon_-_Link.svg

