Primitive Type f641.0.0 [−]
The 64-bit floating point type.
Methods
impl f64[src]
impl f64pub fn is_nan(self) -> bool[src]
pub fn is_nan(self) -> boolReturns true if this value is NaN and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());Run
pub fn is_infinite(self) -> bool[src]
pub fn is_infinite(self) -> boolReturns true if this value is positive infinity or negative infinity and
false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run
pub fn is_finite(self) -> bool[src]
pub fn is_finite(self) -> boolReturns true if this number is neither infinite nor NaN.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run
pub fn is_normal(self) -> bool[src]
pub fn is_normal(self) -> boolReturns true if the number is neither zero, infinite,
subnormal, or NaN.
use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run
pub fn classify(self) -> FpCategory[src]
pub fn classify(self) -> FpCategoryReturns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run
pub fn floor(self) -> f64[src]
pub fn floor(self) -> f64Returns the largest integer less than or equal to a number.
let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);Run
pub fn ceil(self) -> f64[src]
pub fn ceil(self) -> f64Returns the smallest integer greater than or equal to a number.
let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run
pub fn round(self) -> f64[src]
pub fn round(self) -> f64Returns the nearest integer to a number. Round half-way cases away from
0.0.
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run
pub fn trunc(self) -> f64[src]
pub fn trunc(self) -> f64Returns the integer part of a number.
let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);Run
pub fn fract(self) -> f64[src]
pub fn fract(self) -> f64Returns the fractional part of a number.
let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
pub fn abs(self) -> f64[src]
pub fn abs(self) -> f64Computes the absolute value of self. Returns NAN if the
number is NAN.
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());Run
pub fn signum(self) -> f64[src]
pub fn signum(self) -> f64Returns a number that represents the sign of self.
1.0if the number is positive,+0.0orINFINITY-1.0if the number is negative,-0.0orNEG_INFINITYNANif the number isNAN
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());Run
pub fn is_sign_positive(self) -> bool[src]
pub fn is_sign_positive(self) -> boolReturns true if and only if self has a positive sign, including +0.0, NaNs with
positive sign bit and positive infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());Run
pub fn is_positive(self) -> bool[src]
pub fn is_positive(self) -> bool: renamed to is_sign_positive
pub fn is_sign_negative(self) -> bool[src]
pub fn is_sign_negative(self) -> boolReturns true if and only if self has a negative sign, including -0.0, NaNs with
negative sign bit and negative infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());Run
pub fn is_negative(self) -> bool[src]
pub fn is_negative(self) -> bool: renamed to is_sign_negative
pub fn mul_add(self, a: f64, b: f64) -> f64[src]
pub fn mul_add(self, a: f64, b: f64) -> f64Fused multiply-add. Computes (self * a) + b with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);Run
pub fn recip(self) -> f64[src]
pub fn recip(self) -> f64Takes the reciprocal (inverse) of a number, 1/x.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);Run
pub fn powi(self, n: i32) -> f64[src]
pub fn powi(self, n: i32) -> f64Raises a number to an integer power.
Using this function is generally faster than using powf
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);Run
pub fn powf(self, n: f64) -> f64[src]
pub fn powf(self, n: f64) -> f64Raises a number to a floating point power.
let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);Run
pub fn sqrt(self) -> f64[src]
pub fn sqrt(self) -> f64Takes the square root of a number.
Returns NaN if self is a negative number.
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());Run
pub fn exp(self) -> f64[src]
pub fn exp(self) -> f64Returns e^(self), (the exponential function).
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn exp2(self) -> f64[src]
pub fn exp2(self) -> f64Returns 2^(self).
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn ln(self) -> f64[src]
pub fn ln(self) -> f64Returns the natural logarithm of the number.
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log(self, base: f64) -> f64[src]
pub fn log(self, base: f64) -> f64Returns the logarithm of the number with respect to an arbitrary base.
The result may not be correctly rounded owing to implementation details;
self.log2() can produce more accurate results for base 2, and
self.log10() can produce more accurate results for base 10.
let five = 5.0_f64; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log2(self) -> f64[src]
pub fn log2(self) -> f64Returns the base 2 logarithm of the number.
let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log10(self) -> f64[src]
pub fn log10(self) -> f64Returns the base 10 logarithm of the number.
let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn to_degrees(self) -> f64[src]
pub fn to_degrees(self) -> f64Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn to_radians(self) -> f64[src]
pub fn to_radians(self) -> f64Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);Run
pub fn max(self, other: f64) -> f64[src]
pub fn max(self, other: f64) -> f64Returns the maximum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn min(self, other: f64) -> f64[src]
pub fn min(self, other: f64) -> f64Returns the minimum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn abs_sub(self, other: f64) -> f64[src]
pub fn abs_sub(self, other: f64) -> f64: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other:0:0 - Else:
self - other
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
pub fn cbrt(self) -> f64[src]
pub fn cbrt(self) -> f64Takes the cubic root of a number.
let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn hypot(self, other: f64) -> f64[src]
pub fn hypot(self, other: f64) -> f64Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x and y.
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);Run
pub fn sin(self) -> f64[src]
pub fn sin(self) -> f64Computes the sine of a number (in radians).
use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn cos(self) -> f64[src]
pub fn cos(self) -> f64Computes the cosine of a number (in radians).
use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn tan(self) -> f64[src]
pub fn tan(self) -> f64Computes the tangent of a number (in radians).
use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);Run
pub fn asin(self) -> f64[src]
pub fn asin(self) -> f64Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn acos(self) -> f64[src]
pub fn acos(self) -> f64Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn atan(self) -> f64[src]
pub fn atan(self) -> f64Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn atan2(self, other: f64) -> f64[src]
pub fn atan2(self, other: f64) -> f64Computes the four quadrant arctangent of self (y) and other (x) in radians.
x = 0,y = 0:0x >= 0:arctan(y/x)->[-pi/2, pi/2]y >= 0:arctan(y/x) + pi->(pi/2, pi]y < 0:arctan(y/x) - pi->(-pi, -pi/2)
use std::f64; let pi = f64::consts::PI; // Positive angles measured counter-clockwise // from positive x axis // -pi/4 radians (45 deg clockwise) let x1 = 3.0_f64; let y1 = -3.0_f64; // 3pi/4 radians (135 deg counter-clockwise) let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);Run
pub fn sin_cos(self) -> (f64, f64)[src]
pub fn sin_cos(self) -> (f64, f64)Simultaneously computes the sine and cosine of the number, x. Returns
(sin(x), cos(x)).
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);Run
pub fn exp_m1(self) -> f64[src]
pub fn exp_m1(self) -> f64Returns e^(self) - 1 in a way that is accurate even if the
number is close to zero.
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn ln_1p(self) -> f64[src]
pub fn ln_1p(self) -> f64Returns ln(1+n) (natural logarithm) more accurately than if
the operations were performed separately.
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn sinh(self) -> f64[src]
pub fn sinh(self) -> f64Hyperbolic sine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);Run
pub fn cosh(self) -> f64[src]
pub fn cosh(self) -> f64Hyperbolic cosine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);Run
pub fn tanh(self) -> f64[src]
pub fn tanh(self) -> f64Hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn asinh(self) -> f64[src]
pub fn asinh(self) -> f64Inverse hyperbolic sine function.
let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn acosh(self) -> f64[src]
pub fn acosh(self) -> f64Inverse hyperbolic cosine function.
let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn atanh(self) -> f64[src]
pub fn atanh(self) -> f64Inverse hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn to_bits(self) -> u641.20.0[src]
pub fn to_bits(self) -> u64Raw transmutation to u64.
This is currently identical to transmute::<f64, u64>(self) on all platforms.
See from_bits for some discussion of the portability of this operation
(there are almost no issues).
Note that this function is distinct from as casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! assert_eq!((12.5f64).to_bits(), 0x4029000000000000); Run
pub fn from_bits(v: u64) -> Self1.20.0[src]
pub fn from_bits(v: u64) -> SelfRaw transmutation from u64.
This is currently identical to transmute::<u64, f64>(v) on all platforms.
It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favours preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn't NaN, then there is no portability concern.
If you don't care about signalingness (very likely), then there is no portability concern.
Note that this function is distinct from as casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
use std::f64; let v = f64::from_bits(0x4029000000000000); let difference = (v - 12.5).abs(); assert!(difference <= 1e-5);Run
Trait Implementations
impl LowerExp for f64[src]
impl LowerExp for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter.
impl From<u8> for f641.6.0[src]
impl From<u8> for f64impl From<f32> for f641.6.0[src]
impl From<f32> for f64impl From<i8> for f641.6.0[src]
impl From<i8> for f64impl From<u16> for f641.6.0[src]
impl From<u16> for f64impl From<i16> for f641.6.0[src]
impl From<i16> for f64impl From<i32> for f641.6.0[src]
impl From<i32> for f64impl From<u32> for f641.6.0[src]
impl From<u32> for f64impl PartialEq<f64> for f64[src]
impl PartialEq<f64> for f64fn eq(&self, other: &f64) -> bool[src]
fn eq(&self, other: &f64) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &f64) -> bool[src]
fn ne(&self, other: &f64) -> boolThis method tests for !=.
impl<'a> Sub<&'a f64> for f64[src]
impl<'a> Sub<&'a f64> for f64type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the - operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output[src]
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::OutputPerforms the - operation.
impl Sub<f64> for f64[src]
impl Sub<f64> for f64type Output = f64
The resulting type after applying the - operator.
fn sub(self, other: f64) -> f64[src]
fn sub(self, other: f64) -> f64Performs the - operation.
impl<'a, 'b> Sub<&'a f64> for &'b f64[src]
impl<'a, 'b> Sub<&'a f64> for &'b f64type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the - operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output[src]
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::OutputPerforms the - operation.
impl<'a> Sub<f64> for &'a f64[src]
impl<'a> Sub<f64> for &'a f64type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the - operator.
fn sub(self, other: f64) -> <f64 as Sub<f64>>::Output[src]
fn sub(self, other: f64) -> <f64 as Sub<f64>>::OutputPerforms the - operation.
impl PartialOrd<f64> for f64[src]
impl PartialOrd<f64> for f64fn partial_cmp(&self, other: &f64) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &f64) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &f64) -> bool[src]
fn lt(&self, other: &f64) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &f64) -> bool[src]
fn le(&self, other: &f64) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn ge(&self, other: &f64) -> bool[src]
fn ge(&self, other: &f64) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
fn gt(&self, other: &f64) -> bool[src]
fn gt(&self, other: &f64) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
impl Default for f64[src]
impl Default for f64impl<'a> Neg for &'a f64[src]
impl<'a> Neg for &'a f64type Output = <f64 as Neg>::Output
The resulting type after applying the - operator.
fn neg(self) -> <f64 as Neg>::Output[src]
fn neg(self) -> <f64 as Neg>::OutputPerforms the unary - operation.
impl Neg for f64[src]
impl Neg for f64type Output = f64
The resulting type after applying the - operator.
fn neg(self) -> f64[src]
fn neg(self) -> f64Performs the unary - operation.
impl SubAssign<f64> for f641.8.0[src]
impl SubAssign<f64> for f64fn sub_assign(&mut self, other: f64)[src]
fn sub_assign(&mut self, other: f64)Performs the -= operation.
impl<'a> SubAssign<&'a f64> for f641.22.0[src]
impl<'a> SubAssign<&'a f64> for f64fn sub_assign(&mut self, other: &'a f64)[src]
fn sub_assign(&mut self, other: &'a f64)Performs the -= operation.
impl RemAssign<f64> for f641.8.0[src]
impl RemAssign<f64> for f64fn rem_assign(&mut self, other: f64)[src]
fn rem_assign(&mut self, other: f64)Performs the %= operation.
impl<'a> RemAssign<&'a f64> for f641.22.0[src]
impl<'a> RemAssign<&'a f64> for f64fn rem_assign(&mut self, other: &'a f64)[src]
fn rem_assign(&mut self, other: &'a f64)Performs the %= operation.
impl<'a> Div<f64> for &'a f64[src]
impl<'a> Div<f64> for &'a f64type Output = <f64 as Div<f64>>::Output
The resulting type after applying the / operator.
fn div(self, other: f64) -> <f64 as Div<f64>>::Output[src]
fn div(self, other: f64) -> <f64 as Div<f64>>::OutputPerforms the / operation.
impl<'a, 'b> Div<&'a f64> for &'b f64[src]
impl<'a, 'b> Div<&'a f64> for &'b f64type Output = <f64 as Div<f64>>::Output
The resulting type after applying the / operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output[src]
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::OutputPerforms the / operation.
impl<'a> Div<&'a f64> for f64[src]
impl<'a> Div<&'a f64> for f64type Output = <f64 as Div<f64>>::Output
The resulting type after applying the / operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output[src]
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::OutputPerforms the / operation.
impl Div<f64> for f64[src]
impl Div<f64> for f64type Output = f64
The resulting type after applying the / operator.
fn div(self, other: f64) -> f64[src]
fn div(self, other: f64) -> f64Performs the / operation.
impl Display for f64[src]
impl Display for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter. Read more
impl FromStr for f64[src]
impl FromStr for f64type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f64, ParseFloatError>[src]
fn from_str(src: &str) -> Result<f64, ParseFloatError>Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Arguments
- src - A string
Return value
Err(ParseFloatError) if the string did not represent a valid
number. Otherwise, Ok(n) where n is the floating-point
number represented by src.
impl AddAssign<f64> for f641.8.0[src]
impl AddAssign<f64> for f64fn add_assign(&mut self, other: f64)[src]
fn add_assign(&mut self, other: f64)Performs the += operation.
impl<'a> AddAssign<&'a f64> for f641.22.0[src]
impl<'a> AddAssign<&'a f64> for f64fn add_assign(&mut self, other: &'a f64)[src]
fn add_assign(&mut self, other: &'a f64)Performs the += operation.
impl DivAssign<f64> for f641.8.0[src]
impl DivAssign<f64> for f64fn div_assign(&mut self, other: f64)[src]
fn div_assign(&mut self, other: f64)Performs the /= operation.
impl<'a> DivAssign<&'a f64> for f641.22.0[src]
impl<'a> DivAssign<&'a f64> for f64fn div_assign(&mut self, other: &'a f64)[src]
fn div_assign(&mut self, other: &'a f64)Performs the /= operation.
impl Add<f64> for f64[src]
impl Add<f64> for f64type Output = f64
The resulting type after applying the + operator.
fn add(self, other: f64) -> f64[src]
fn add(self, other: f64) -> f64Performs the + operation.
impl<'a> Add<&'a f64> for f64[src]
impl<'a> Add<&'a f64> for f64type Output = <f64 as Add<f64>>::Output
The resulting type after applying the + operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output[src]
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::OutputPerforms the + operation.
impl<'a, 'b> Add<&'a f64> for &'b f64[src]
impl<'a, 'b> Add<&'a f64> for &'b f64type Output = <f64 as Add<f64>>::Output
The resulting type after applying the + operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output[src]
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::OutputPerforms the + operation.
impl<'a> Add<f64> for &'a f64[src]
impl<'a> Add<f64> for &'a f64type Output = <f64 as Add<f64>>::Output
The resulting type after applying the + operator.
fn add(self, other: f64) -> <f64 as Add<f64>>::Output[src]
fn add(self, other: f64) -> <f64 as Add<f64>>::OutputPerforms the + operation.
impl Debug for f64[src]
impl Debug for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter. Read more
impl<'a> Product<&'a f64> for f641.12.0[src]
impl<'a> Product<&'a f64> for f64fn product<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, [src]
fn product<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, Method which takes an iterator and generates Self from the elements by multiplying the items. Read more
impl Product<f64> for f641.12.0[src]
impl Product<f64> for f64fn product<I>(iter: I) -> f64 where
I: Iterator<Item = f64>, [src]
fn product<I>(iter: I) -> f64 where
I: Iterator<Item = f64>, Method which takes an iterator and generates Self from the elements by multiplying the items. Read more
impl<'a, 'b> Mul<&'a f64> for &'b f64[src]
impl<'a, 'b> Mul<&'a f64> for &'b f64type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the * operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output[src]
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::OutputPerforms the * operation.
impl<'a> Mul<f64> for &'a f64[src]
impl<'a> Mul<f64> for &'a f64type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the * operator.
fn mul(self, other: f64) -> <f64 as Mul<f64>>::Output[src]
fn mul(self, other: f64) -> <f64 as Mul<f64>>::OutputPerforms the * operation.
impl<'a> Mul<&'a f64> for f64[src]
impl<'a> Mul<&'a f64> for f64type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the * operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output[src]
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::OutputPerforms the * operation.
impl Mul<f64> for f64[src]
impl Mul<f64> for f64type Output = f64
The resulting type after applying the * operator.
fn mul(self, other: f64) -> f64[src]
fn mul(self, other: f64) -> f64Performs the * operation.
impl<'a, 'b> Rem<&'a f64> for &'b f64[src]
impl<'a, 'b> Rem<&'a f64> for &'b f64type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the % operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output[src]
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::OutputPerforms the % operation.
impl Rem<f64> for f64[src]
impl Rem<f64> for f64type Output = f64
The resulting type after applying the % operator.
fn rem(self, other: f64) -> f64[src]
fn rem(self, other: f64) -> f64Performs the % operation.
impl<'a> Rem<f64> for &'a f64[src]
impl<'a> Rem<f64> for &'a f64type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the % operator.
fn rem(self, other: f64) -> <f64 as Rem<f64>>::Output[src]
fn rem(self, other: f64) -> <f64 as Rem<f64>>::OutputPerforms the % operation.
impl<'a> Rem<&'a f64> for f64[src]
impl<'a> Rem<&'a f64> for f64type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the % operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output[src]
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::OutputPerforms the % operation.
impl UpperExp for f64[src]
impl UpperExp for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter.
impl<'a> MulAssign<&'a f64> for f641.22.0[src]
impl<'a> MulAssign<&'a f64> for f64fn mul_assign(&mut self, other: &'a f64)[src]
fn mul_assign(&mut self, other: &'a f64)Performs the *= operation.
impl MulAssign<f64> for f641.8.0[src]
impl MulAssign<f64> for f64fn mul_assign(&mut self, other: f64)[src]
fn mul_assign(&mut self, other: f64)Performs the *= operation.
impl<'a> Sum<&'a f64> for f641.12.0[src]
impl<'a> Sum<&'a f64> for f64fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, [src]
fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more
impl Sum<f64> for f641.12.0[src]
impl Sum<f64> for f64