Gradle User Manual

Version 4.7

Copyright © 2007-2018 Hans Dockter, Adam Murdoch

Gradle build tool source code is open and licensed under the Apache License 2.0. Gradle user manual and
DSL references are licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://github.com/gradle/gradle/blob/master/LICENSE
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Table of Contents

About Gradle

Introduction
Overview

Working with existing builds

Installing Gradle

Command-Line Interface

The Gradle Wrapper

The Gradle Daemon

Dependency Management for Java Projects
Executing Multi-Project Builds
Composite builds

Build Environment

Troubleshooting

Embedding Gradle using the Tooling API
Build Cache

Writing Gradle build scripts

Build Script Basics

Build Init Plugin

Writing Build Scripts
Authoring Tasks

Working With Files

Using Ant from Gradle

Build Lifecycle

Logging

Authoring Multi-Project Builds
Using Gradle Plugins
Standard Gradle plugins
The Project Report Plugin
The Build Dashboard Plugin
Comparing Builds
Publishing artifacts

The Maven Plugin

The Signing Plugin

Ivy Publishing (new)

Maven Publishing (new)
The Distribution Plugin

The Announce Plugin

The Build Announcements Plugin

Dependency management

Introduction to Dependency Management
Declaring Dependencies

Managing Dependency Configurations
Declaring Repositories

Inspecting Dependencies

Managing Transitive Dependencies

Working with Dependencies

Customizing Dependency Resolution Behavior
Troubleshooting Dependency Resolution

Extending the build

Writing Custom Task Classes
Writing Custom Plugins

Gradle Plugin Development Plugin
Organizing Build Logic

Lazy Configuration

Initialization Scripts

Testing Build Logic with TestKit

Building JVM projects

Java Quickstart

Building Java & JVM projects
Testing in Java & JVM projects
The Base Plugin

The Java Plugin

The Java Library Plugin

Web Application Quickstart
The War Plugin

The Ear Plugin

The Jetty Plugin

The Application Plugin

The Java Library Distribution Plugin
Groovy Quickstart

The Groovy Plugin

The Scala Plugin

The ANTLR Plugin

The Checkstyle Plugin

The CodeNarc Plugin

The FindBugs Plugin

The JDepend Plugin

The PMD Plugin

The JaCoCo Plugin

The OSGi Plugin

The Eclipse Plugins

The IDEA Plugin

Best practices

Authoring Maintainable Build Scripts
Organizing Build Logic

The Software model

Rule based model configuration
Software model concepts
Implementing model rules in a plugin
Building Play applications

Building native software

Extending the software model

Glossary
Dependency Management Terminology
Dependency Types
Repository Types
The Dependency Cache
Appendix

A. Gradle Samples

B. Potential Traps
C. The Feature Lifecycle
D. Documentation licenses

List of Examples

© 00 N O O~ WDN PP

B W W W W W W W W W WNDNDNDNDNDNDNDNDNDNNNMNDNNEREPERERRPRPERRPREPRPREPRPREPRPRPPER
O © 00 N O 0o W NP O © 0N O O WDNPFP O O 0 NO O W N - O

. Excluding tasks

. Abbreviated camel case task hame

. Obtaining detailed help for tasks

. Information about properties

. Running the Wrapper task

. The generated distribution URL

. Providing options to Wrapper task

. The generated distribution URL

. Executing the build with the Wrapper batch file

. Upgrading the Wrapper version

. Checking the Wrapper version after upgrading

. Customizing the Wrapper task

. The generated distribution URL

. Specifying the HTTP Basic Authentication credentials using system properties
. Specifying the HTTP Basic Authentication credentials in di st ri but i onUr |
. Configuring SHA-256 checksum verification

. Dependency declarations for a Java-based project

. Definition of a module dependency

. Usage of Maven central repository

. Usage of a local Ivy directory

. Publishing to a Maven repository

. Listing the projects in a build

. Dependencies of my-app

. Declaring a command-line composite

. Declaring a separate composite

. Depending on task from included build

. Build that does not declare group attribute

. Declaring the substitutions for an included build

. Depending on a single task from an included build

. Depending on a tasks with path in all included builds

. Setting properties with a gradle.properties file

. Specifying system properties in gr adl e. properties

. Setting a project property via gradle.properties

. Setting a project property via environment variable

. Changing JVM settings for Gradle client JVM

. Changing JVM settings for forked Gradle JVMs

. Set Java compile options for JavaConpi | e tasks

. Prevent releasing outside of Cl

. Configuring an HTTP proxy using gr adl e. properties
. Configuring an HTTPS proxy using gr adl e. properties

41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

Using the tooling API

Configure the local cache

Pull from HttpBuildCache

Configure remote HTTP cache

Allow untrusted SSL certificate for HttpBuildCache
Recommended setup for Cl push use case
Consistent setup for buildSrc and main build
Init script to configure the build cache

Your first build script

Execution of a build script

A task definition shortcut

Using Groovy in Gradle's tasks

Using Groovy in Gradle's tasks

Declaration of task that depends on other task
Lazy dependsOn - the other task does not exist (yet)
Dynamic creation of a task

Accessing a task via API - adding a dependency
Accessing a task via API - adding behaviour
Accessing task as a property of the build script
Adding extra properties to a task

Using AntBuilder to execute ant.loadfile target
Using methods to organize your build logic
Defining a default task

Different outcomes of build depending on chosen tasks
Accessing property of the Project object

Using local variables

Using extra properties

Configuring arbitrary objects

Configuring arbitrary objects using a script
Groovy JDK methods

Property accessors

Method call without parentheses

List and map literals

Closure as method parameter

Closure delegates

Defining tasks

Defining tasks - using strings for task names
Defining tasks with alternative syntax
Accessing tasks as properties

Accessing tasks via tasks collection

Accessing tasks by path

Creating a copy task

Configuring a task - various ways

Configuring a task - with closure

Defining a task with closure

86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
1065.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.

Adding dependency on task from another project
Adding dependency using task object

Adding dependency using closure

Adding a 'must run after' task ordering

Adding a 'should run after' task ordering

Task ordering does not imply task execution

A 'should run after' task ordering is ignored if it introduces an ordering cycle
Adding a description to a task

Overwriting a task

Skipping a task using a predicate

Skipping tasks with StopExecutionException

Enabling and disabling tasks

Custom task class

Ad-hoc task

Ad-hoc task declaring a destroyable

Using runtime API with custom task type

Using skipWhenEmpty() via the runtime API

Inferred task dependency via task outputs

Inferred task dependency via a task argument
Declaring a method to add task inputs

Declaring a method to add a task as an input

Failed attempt at setting up an inferred task dependency
Setting up an inferred task dependency between output dir and input files
Setting up an inferred task dependency with files()
Setting up an inferred task dependency with builtBy()
Ignoring up-to-date checks

Runtime classpath normalization

Task rule

Dependency on rule based tasks

Adding a task finalizer

Task finalizer for a failing task

How to copy a single file

Using implicit string paths

Prefer task/project properties over hard-coded paths
Using multiple arguments with from()

Using a flat filter

Using a deep filter

Copying an entire directory

Copying an entire directory, including itself

Archiving a directory as a ZIP

Using the Base Plugin for its archive name convention
Unpacking a ZIP file

Creating a Java uber or fat JAR

Manually creating a directory

Moving a directory using the Ant task

131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
1565.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.

Renaming files as they are copied

Truncating filenames as they are copied

Deleting a directory

Deleting files matching a specific pattern

How to minimize the number of hard-coded paths in your build
Locating files

Creating a path relative to a parent project

Creating a file collection

Implementing a file collection

Using a file collection

Filtering a file collection

Creating a file tree

Changing Ant default exclusions for a copy task

Using a file tree

Using an archive as a file tree

Specifying a set of files

Appending a set of files

Specifying copy task source files and destination directory
Selecting the files to copy

Renaming files as they are copied

Filtering files as they are copied

Sharing copy specifications

Sharing copy patterns only

Nested copy specs

Copying files using the copy() method without up-to-date check
Copying files using the copy() method with up-to-date check
Using the Sync task to copy dependencies

Archiving a directory as a ZIP

Creation of ZIP archive

Configuration of archive task - custom archive name
Configuration of archive task - appendix & classifier
Activating reproducible archives

Using an Ant task

Passing nested text to an Ant task

Passing nested elements to an Ant task

Using an Ant type

Using a custom Ant task

Declaring the classpath for a custom Ant task

Using a custom Ant task and dependency management together
Importing an Ant build

Task that depends on Ant target

Adding behaviour to an Ant target

Ant target that depends on Gradle task

Renaming imported Ant targets

Setting an Ant property

176. Getting an Ant property

177. Setting an Ant reference

178. Getting an Ant reference

179. Fine tuning Ant logging

180. Single project build

181. Hierarchical layout

182. Flat layout

183. Lookup of elements of the project tree

184. Modification of elements of the project tree

185. Adding of test task to each project which has certain property set
186. Notifications

187. Setting of certain property to all tasks

188. Logging of start and end of each task execution

189. Using stdout to write log messages

190. Writing your own log messages

191. Writing a log message with placeholder

192. Using SLF4J to write log messages

193. Configuring standard output capture

194. Configuring standard output capture for a task

195. Customizing what Gradle logs

196. Multi-project tree - water & bluewhale projects

197. Build script of water (parent) project

198. Multi-project tree - water, bluewhale & krill projects

199. Water project build script

200. Defining common behavior of all projects and subprojects
201. Defining specific behaviour for particular project

202. Defining specific behaviour for project krill

203. Adding custom behaviour to some projects (filtered by project name)
204. Adding custom behaviour to some projects (filtered by project properties)
205. Running build from subproject

206. Evaluation and execution of projects

207. Evaluation and execution of projects

208. Running tasks by their absolute path

209. Dependencies and execution order

210. Dependencies and execution order

211. Dependencies and execution order

212. Declaring dependencies

213. Declaring dependencies

214. Cross project task dependencies

215. Configuration time dependencies

216. Configuration time dependencies - evaluationDependsOn
217. Configuration time dependencies

218. Dependencies - real life example - crossproject configuration
219. Project lib dependencies

220. Project lib dependencies

221.
222.
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.

Fine grained control over dependencies
Build and Test Single Project

Partial Build and Test Single Project
Build and Test Depended On Projects
Build and Test Dependent Projects
Applying a script plugin

Applying a core plugin

Applying a community plugin

Applying plugins only on certain subprojects.
Using plugins from custom plugin repositories.
Plugin resolution strategy.

Complete Plugin Publishing Sample
Applying a binary plugin

Applying a binary plugin by type

Applying a plugin with the buildscript block
Using the Build Dashboard plugin
Defining an artifact using an archive task
Defining an artifact using a file
Customizing an artifact

Map syntax for defining an artifact using a file
Configuration of the upload task

Using the Maven plugin

Creating a standalone pom.

Upload of file to remote Maven repository
Upload of file via SSH

Customization of pom

Builder style customization of pom
Modifying auto-generated content
Customization of Maven installer
Generation of multiple poms

Accessing a mapping configuration

Using the Signing plugin

Sign with GnuPG

Configure the GnupgSignatory

Signing a configuration

Signing a configuration output

Signing a task

Signing a task output

Conditional signing

Signing a POM for deployment

Applying the “ivy-publish” plugin
Publishing a Java module to Ivy
Publishing additional artifact to lvy
customizing the publication identity
Customizing the module descriptor file

266. Publishing multiple modules from a single project

267. Declaring repositories to publish to

268. Choosing a particular publication to publish

269. Publishing all publications via the “publish” lifecycle task
270. Generating the lvy module descriptor file

271. Publishing a Java module

272. Example generated ivy.xml

273. Applying the 'maven-publish' plugin

274. Adding a MavenPublication for a Java component

275. Adding additional artifact to a MavenPublication

276. customizing the publication identity

277. Modifying the POM file

278. Publishing multiple modules from a single project

279. Declaring repositories to publish to

280. Publishing a project to a Maven repository

281. Publish a project to the Maven local repository

282. Generate a POM file without publishing

283. Using the distribution plugin

284. Adding extra distributions

285. Configuring the main distribution

286. publish main distribution

287. Applying the announce plugin

288. Configure the announce plugin

289. Using the announce plugin

290. Using the build announcements plugin

291. Using the build announcements plugin from an init script
292. Declaring a dependency with a concrete version

293. Declaring a dependency without version

294. Declaring a dependency with a dynamic version

295. Declaring a dependencies with a changing version

296. Declaring multiple file dependencies

297. Declaring project dependencies

298. Resolving a JavaScript artifact for a declared dependency
299. Resolving a JavaScript artifact with classifier for a declared dependency
300. Declaring and using a custom configuration

301. Extending a configuration from another configuration

302. Declaring JCenter repository as source for resolving dependencies
303. Declaring a custom repository by URL

304. Declaring multiple repositories

305. Declaring the JGit dependency with a custom configuration
306. Rendering the dependency report for a custom configuration
307. Declaring the JGit dependency and a conflicting dependency
308. Using the dependency insight report for a given dependency
309. Giving a reason for choosing a certain module version in a dependency declaration
310. Using the dependency insight report with custom reasons

311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.

Define dependency constraints

Unresolved artifacts for transitive dependencies

Excluding transitive dependency for a particular dependency declaration
Excluding transitive dependency for a particular configuration
Enforcing a dependency version

Enforcing a dependency version on the configuration-level
Disabling transitive dependency resolution for a declared dependency
Disabling transitive dependency resolution on the configuration-level
Depending on a BOM to import its dependency constraints
Iterating over the dependencies assigned to a configuration
Iterating over the artifacts resolved for a module

Walking the resolved and unresolved dependencies of a configuration
Accessing a Maven module's metadata artifact

Forcing a consistent version for a group of libraries

Using a custom versioning scheme

Blacklisting a version with a replacement

Changing dependency group and/or name during resolution
Substituting a module with a project

Substituting a project with a module

Conditionally substituting a dependency

'Latest' version selector

Custom status scheme

Custom status scheme by module

Ivy component metadata rule

Rule source component metadata rule

Component selection rule

Component selection rule with module target

Component selection rule with metadata

Component selection rule using a rule source object
Declaring a module replacement

Specifying default dependencies on a configuration

Enabling dynamic resolve mode

Dynamic version cache control

Changing module cache control

Defining a custom task

A hello world task

A customizable hello world task

A build for a custom task

A custom task

Using a custom task in another project

Testing a custom task

Defining an incremental task action

Running the incremental task for the first time

Running the incremental task with unchanged inputs
Running the incremental task with updated input files

356. Running the incremental task with an input file removed
357. Running the incremental task with an output file removed
358. Running the incremental task with an input property changed
359. Declaring a command line option

360. Using a command line option

361. Declaring available values for an option

362. Listing available values for option

363. Creating a unit of work implementation

364. Submitting a unit of work for execution

365. Waiting for asynchronous work to complete

366. Submitting an item of work to run in a worker daemon
367. A custom plugin

368. A custom plugin extension

369. A custom plugin with configuration closure

370. Evaluating file properties lazily

371. Mapping extension properties to task properties

372. A build for a custom plugin

373. Wiring for a custom plugin

374. Using a custom plugin in another project

375. Applying a community plugin with the plugins DSL
376. Testing a custom plugin

377. Using the Java Gradle Plugin Development plugin
378. Nested DSL elements

379. Managing a collection of objects

380. Using the Java Gradle Plugin Development plugin
381. Using the gradlePlugin {} block.

382. Using inherited properties and methods

383. Using injected properties and methods

384. Configuring the project using an external build script
385. Custom buildSrc build script

386. Adding subprojects to the root buildSrc project

387. Running another build from a build

388. Declaring external dependencies for the build script
389. A build script with external dependencies

390. Ant optional dependencies

391. Using a read-only and configurable property

392. Using file and directory property

393. Implicit task dependency

394. List property

395. Using init script to perform extra configuration before projects are evaluated
396. Declaring external dependencies for an init script
397. An init script with external dependencies

398. Using plugins in init scripts

399. Declaring the TestKit dependency

400. Declaring the JUnit dependency

401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
4186.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442,
443.
444,
445,

Using GradleRunner with JUnit

Using GradleRunner with Spock

Making the code under test classpath available to the tests
Injecting the code under test classes into test builds
Injecting the code under test classes into test builds for Gradle versions prior to 2.8
Using the Java Gradle Development plugin for generating the plugin metadata
Automatically injecting the code under test classes into test builds
Reconfiguring the classpath generation conventions of the Java Gradle Development plugin
Specifying a Gradle version for test execution

Testing cacheable tasks

Clean build cache between tests

Using the Java plugin

Building a Java project

Adding Maven repository

Adding dependencies

Customization of MANIFEST.MF

Adding a test system property

Publishing the JAR file

Eclipse plugin

Java example - complete build file

Multi-project build - hierarchical layout

Multi-project build - settings.gradle file

Multi-project build - common configuration

Multi-project build - dependencies between projects
Multi-project build - distribution file

Applying the Java Plugin

Declaring dependencies

Declaring custom source directories

Declaring custom source directories additively

Setting Java compiler options

Configure Java 6 build

Defining a custom task to create a 'sources' JAR

Creating a Java uber or fat JAR

Customization of MANIFEST.MF

Creating a manifest object.

Separate MANIFEST.MF for a particular archive

Saving a MANIFEST.MF to disk

Using a custom doclet with Javadoc

Defining a custom Javadoc task

Filtering tests in the build script

Changing the default test report and results directories
Creating a unit test report for subprojects

JUnit Categories

JUnit Platform Tags

Grouping TestNG tests

446. Enabling JUnit Platform to run your tests

447. JUnit Jupiter dependencies

448. JUnit Vintage dependencies

449. Filter specific engines

450. Preserving order of TestNG tests

451. Grouping TestNG tests by instances

452. Setting up working integration tests

453. Defining a working integration test task

454. Applying the Base Plugin

455. Using the Java plugin

456. Custom Java source layout

457. Assembling a JAR for a source set

458. Generating the Javadoc for a source set

459. Running tests in a source set

460. Registering incremental annotation processors
461. An isolated annotation processor

462. An aggregating annotation processor

463. Declaring annotation processors

464. Customization of MANIFEST.MF

465. Creating a manifest object.

466. Separate MANIFEST.MF for a particular archive
467. Saving a MANIFEST.MF to disk

468. Using the Java Library plugin

469. Declaring APl and implementation dependencies
470. Making the difference between API and implementation
471. Declaring API and implementation dependencies
472. Configuring the Groovy plugin to work with Java Library
473. War plugin

474. Running web application with Gretty plugin

475. Using the War plugin

476. Customization of war plugin

477. Using the Ear plugin

478. Customization of ear plugin

479. Using the application plugin

480. Configure the application main class

481. Configure default JVM settings

482. Configure custom directory for start scripts

483. Include output from other tasks in the application distribution
484. Automatically creating files for distribution

485. Using the Java library distribution plugin

486. Configure the distribution name

487. Include files in the distribution

488. Groovy plugin

489. Dependency on Groovy

490. Groovy example - complete build file

491.
492.
493.
494,
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.

Using the Groovy plugin

Custom Groovy source layout

Configuration of Groovy dependency

Configuration of Groovy test dependency

Configuration of bundled Groovy dependency
Configuration of Groovy file dependency

Configure Java 6 build for Groovy

Using the Scala plugin

Custom Scala source layout

Declaring a Scala dependency for production code
Declaring a Scala dependency for test code

Declaring a version of the Zinc compiler to use

Forcing a scala-library dependency for all configurations
Forcing a scala-library dependency for the zinc configuration
Adjusting memory settings

Forcing all code to be compiled

Configure Java 6 build for Scala

Explicitly specify a target IntelliJ IDEA version

Using the ANTLR plugin

Declare ANTLR version

setting custom max heap size and extra arguments for ANTLR
Using the Checkstyle plugin

Using the config_loc property

Customizing the HTML report

Using the CodeNarc plugin

Using the FindBugs plugin

Customizing the HTML report

Using the JDepend plugin

Using the PMD plugin

Applying the JaCoCo plugin

Configuring JaCoCo plugin settings

Configuring test task

Configuring violation rules

Configuring test task

Using application plugin to generate code coverage data
Coverage reports generated by applicationCodeCoverageReport
Using the OSGi plugin

Configuration of OSGi MANIFEST.MF file

Using the Eclipse plugin

Using the Eclipse WTP plugin

Partial Overwrite for Classpath

Partial Overwrite for Project

Export Classpath Entries

Customizing the XML

Using the IDEA plugin

536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.

Partial Rewrite for Module

Partial Rewrite for Project

Export Dependencies

Customizing the XML

A task declaring the group and description
Executing logic during configuration should be avoided
Executing logic during execution phase is preferred
A build script using conditional logic to create a task
A binary plugin implementing imperative logic

A build script applying a plugin that encapsulates imperative logic
Using inherited properties and methods

Using injected properties and methods

Configuring the project using an external build script
Custom buildSrc build script

Adding subprojects to the root buildSrc project
Running another build from a build

Declaring external dependencies for the build script
A build script with external dependencies

Ant optional dependencies

applying a rule source plugin

a model creation rule

a model mutation rule

creating a task

a managed type

a String property

a File property

a Long property

a boolean property

an int property

a managed property

an enumeration type property

a managed set

a scalar collection

strongly modelling sources sets

a DSL example applying a rule to every element in a scope
DSL configuration rule

Configuration run when required

Configuration not run when not required

DSL creation rule

DSL creation rule without initialization

Initialization before configuration

Nested DSL creation rule

Nested DSL configuration rule

DSL configuration rule for each element in a map
Nested DSL property configuration

581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.

a DSL example showing type conversions

a DSL rule using inputs

model task output

Using the Play plugin

The components report

Selecting a version of the Play Framework

Adding dependencies to a Play application

A Play 2.6 project

Adding Guice dependency in Play 2.6 project

Configuring extra source sets to a Play application

Adding extra source sets to a Play application

Configuring Scala compiler options

Configuring routes style

Configuring a custom asset pipeline

Configuring dependencies on Play subprojects

Add extra files to a Play application distribution

Applying both the Play and IDEA plugins

Defining a library component

Defining executable components

Sample build

Dependent components report

Dependent components report

Report of components that depends on the operators component

Report of components that depends on the operators component, including test suites
Assemble components that depends on the passing/static binary of the operators component
Build components that depends on the passing/static binary of the operators component
Adding a custom check task

Running checks for a given binary

The components report

The 'cpp’ plugin

C++ source set

The 'c' plugin

C source set

The 'assembler’ plugin

The 'objective-c' plugin

The 'objective-cpp' plugin

Settings that apply to all binaries

Settings that apply to all shared libraries

Settings that apply to all binaries produced for the 'main' executable component
Settings that apply only to shared libraries produced for the 'main’ library component
The 'windows-resources' plugin

Configuring the location of Windows resource sources

Building a resource-only dll

Providing a library dependency to the source set

Providing a library dependency to the binary

626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670.

Declaring project dependencies

Creating a precompiled header file

Including a precompiled header file in a source file
Configuring a precompiled header

Defining build types

Configuring debug binaries

Defining platforms

Defining flavors

Targeting a component at particular platforms
Building all possible variants

Defining tool chains

Reconfigure tool arguments

Defining target platforms

Registering CUnit tests

Configuring CUnit tests

Running CUnit tests

Registering GoogleTest tests

an example of using a custom software model
Declare a custom component

Register a custom component

Declare a custom binary

Register a custom binary

Declare a custom source set

Register a custom source set

Generates documentation binaries
Generates tasks for text source sets

Register a custom source set

an example of using a custom software model
components report

public type and internal view declaration

type registration

public and internal data mutation

example build script and model report output
Module dependencies

File dependencies

Generated file dependencies

Project dependencies

Gradle API dependencies

Gradle TestKit dependencies

Gradle's Groovy dependencies

Flat repository resolver

Adding central Maven repository

Adding Bintray's JCenter Maven repository
Adding Google Maven repository

Adding the local Maven cache as a repository

671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.
683.
684.
685.

Adding custom Maven repository

Adding additional Maven repositories for JAR files
Accessing password-protected Maven repository

Ivy repository

Ivy repository with named layout

Ivy repository with pattern layout

Ivy repository with multiple custom patterns

Ivy repository with Maven compatible layout

Ivy repository with authentication

Maven repository that supports artifacts without metadata
Declaring a Maven and lvy repository

Using the SFTP protocol for a repository

Declaring a S3 backed Maven and Ivy repository

Declaring a S3 backed Maven and lvy repository using IAM
Declaring a Google Cloud Storage backed Maven and Ivy repository using default application

credentials

686.
687.

Configure repository to use only digest authentication
Configure repository to use preemptive authentication

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

About Gradle

Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology
in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!
Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or pom xm andi v
files.

Ant tasks and builds as first class citizens.

Groovy build scripts.

A rich domain model for describing your build.

In Overview you will find a detailed overview of Gradle. Otherwise, the guides are waiting, have fun :)

8§
About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren’t
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 21 of 777

https://guides.gradle.org
http://www.gradle.org/contribute

Overview

8§
Features

Here is a list of some of Gradle’s features.

Declarative builds and build-by-convention
At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build
The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don’t be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle allows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up to
huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental
build function, this is also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds
Gradle’s support for multi-project build is outstanding. Project dependencies are first class citizens. We
allow you to model the project relationships in a multi-project build as they really are for your problem

Page 22 of 777

domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds this is a big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and Ivy
repositories to jars or directories on the local file system.

Gradle is the first build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime.
You can depend on them from Gradle, you can enhance them from Gradle, you can even declare
dependencies on Gradle tasks in your build.xml. The same integration is provided for properties, paths,
etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xm into a Gradle script.

Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend to
write tests that make sure that the produced artifacts are similar. That way migration is as less disruptive
and as reliable as possible. This is following the best-practices for refactoring by applying baby steps.

Groovy

Gradle’s build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as a rigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an
enjoyable and productive experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. This
is useful for example for some continuous integration servers. It is also useful for an open source project
to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is a zero
administration approach for the client machines. It also enforces the usage of a particular Gradle version
thus minimizing support issues.

Free and open source
Gradle is an open source project, and is licensed under the ASL.

Page 23 of 777

http://www.gradle.org/license

§
Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer lies in
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build should
be as transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think this is a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful as it
could be.ll Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn’'t have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML, Java
and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

Page 24 of 777

http://www.defmacro.org/ramblings/lisp.html

Working with existing builds

Installing Gradle

You can install the Gradle build tool on Linux, macOS, or Windows. This document covers installing using a
package manager like SDKMAN!, Homebrew, or Scoop, as well as manual installation.

To upgrade Gradle, use of the Gradle Wrapper is the recommended.

You can find all releases and their checksums on the releases page.

§
Prerequisites

Gradle runs on all major operating systems and requires only a Java JDK version 7 or higher to run. To
check, runj ava -ver si on. You should see something like this:

java -version
java version "1.8.0_151"
Java(TM SE Runtinme Environment (build 1.8.0 151-bl2)
Java Hot Spot (TM 64-Bit Server VM (build 25.151-b12, nixed node)

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment

variable to point to the installation directory of the desired JDK.

8§
Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-based systems.

sdk install gradle 4.6

Homebrew is "the missing package manager for macOS".

brew install gradle

Scoop is a command-line installer for Windows inspired by Homebrew.

Page 26 of 777

https://gradle.org/releases
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sdkman.io
http://brew.sh
http://scoop.sh

scoop install gradle

Chocolatey is "the package manager for Windows".

choco install gradle

MacPorts is a system for managing tools on macOS:

sudo port install gradle

Proceed to next steps

8§
Installing manually

§
Step 1. Download the latest Gradle distribution

The distribution ZIP file comes in two flavors:

Binary-only (bin)

Complete (all) with docs and sources

Need to work with an older version? See the releases page.

8
Step 2. Unpack the distribution

§
Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing, e.g.:

nkdir /opt/gradle

unzip -d /opt/gradle gradle-4.6-bin.zip

I's /opt/gradle/gradle-4.6

LICENSE NOTICE bin getting-started.htm init.d lib nmedia

8
Microsoft Windows users

Create a new directory C. \ G- adl e with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was downloaded.
Double-click the ZIP archive to expose the content. Drag the content folder gr adl e- 4. 6 to your newly
created C: \ G adl e folder.

Alternatively you can unpack the Gradle distribution ZIP into C:\ G- adl e using an archiver tool of your

choice.

Page 27 of 777

https://chocolatey.org
https://www.macports.org
https://gradle.org/releases
https://gradle.org/releases

8
Step 3. Configure your system environment

For running Gradle, firstly add the environment variable GRADLE HOVE. This should point to the unpacked
files from the Gradle website. Next add GRADLE HOME/ bi n to your PATH environment variable. Usually,
this is sufficient to run Gradle.

8
Linux & MacOS users

Configure your PATH environment variable to include the bi n directory of the unzipped distribution, e.g.:
export PATH=$PATH: / opt/ gradl e/ gradl e-4. 6/ bin

8
Microsoft Windows users

In File Explorer right-click on the Thi s PC (or Conput er) icon, then click Properti es Advanced Syste
Envi ronnental Vari abl es.

Under Syst em Var i abl es select Pat h, then click Edi t . Add an entry for C: \ Gr adl e\ gr adl e-4. 6\ bi n
. Click OK to save.

Proceed to next steps
8§

Verifying installation

Open a console (or a Windows command prompt) and run gr adl e - v to run gradle and display the version,

e.g.:

gradle -v

Build tine: 2018-02-21 15:28:42 UIC

Revi si on: 819e0059da49f 469d3e9b2896dc4e72537¢c4847d

G oovy: 2.4.12

Ant : Apache Ant(TM version 1.9.9 conpiled on February 2 2017
JVM 1.8.0_151 (Oracle Corporation 25.151-b12)

Cs: Mac OS X 10. 13.3 x86_64

If you run into any trouble, see the section on troubleshooting installation.

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available from the

Page 28 of 777

releases page) and following these verification instructions.

8§
Next steps

Now that you have Gradle installed, use these resources for getting started:
Create your first Gradle project by following the Creating New Gradle Builds tutorial.
Sign up for a live introductory Gradle training with a core engineer.

Learn how to achieve common tasks through the command-line interface.

Configure Gradle execution, such as use of an HTTP proxy for downloading dependencies.

Subscribe to the Gradle Newsletter for monthly release and community updates.

Page 29 of 777

https://gradle.org/releases
https://guides.gradle.org/creating-new-gradle-builds/
https://gradle.org/training/intro-to-gradle/
https://newsletter.gradle.com/

Command-Line Interface

The command-line interface is one of the primary methods of interacting with Gradle. The following serves
as a reference of executing and customizing Gradle use of a command-line or when writing scripts or
configuring continuous integration.

Use of the Gradle Wrapper is highly encouraged. You should substitute . / gr adl ewor gr adl ew. bat for gr
in all following examples when using the Wrapper.

Executing Gradle on the command-line conforms to the following structure. Options are allowed before and
after task names.

gradle [taskNane...] [--option-nane...]

If multiple tasks are specified, they should be separated with a space.

Options that accept values can be specified with or without = between the option and argument; however,

use of = is recommended.

--consol e=pl ain

Options that enable behavior have long-form options with inverses specified with - - no- . The following are
opposites.

--bui |l d-cache
--no-bui | d- cache

Many long-form options, have short option equivalents. The following are equivalent:

--help
-h

Note: Many command-line flags can be specified in gr adl e. properti es to avoid needing to be
typed. See the configuring build environment guide for details.

The following sections describe use of the Gradle command-line interface, grouped roughly by user goal.
Some plugins also add their own command line options, for example - -t est s for Java test filtering. For
more information on exposing command line options for your own tasks, see the section called “Declaring
and Using Command Line Options”.

Page 30 of 777

8§
Executing tasks

You can run a task and all of its dependencies.

gradl e nyTask

You can learn about what projects and tasks are available in the project reporting section.

§
Executing tasks in multi-project builds

In a multi-project build, subproject tasks can be executed with ":" separating subproject name and task
name. The following are equivalent when run from the root project.

gradl e : nmySubproj ect: t askNane
gradl e nmySubpr oj ect: t askNane

You can also run a task for all subprojects using the task hame only. For example, this will run the "test" task
for all subprojects when invoked from the root project directory.

gradl e test

When invoking Gradle from within a subproject, the project name should be omitted:

cd nmySubpr oj ect
gradl e taskNane

Note: When executing the Gradle Wrapper from subprojects, one must reference gr adl ew
relatively. For example: . ./ gradl ew t askNanme. The community gdub project aims to make this

more convenient.

8
Executing multiple tasks

You can also specify multiple tasks. For example, the following will execute the t est and depl oy tasks in

the order that they are listed on the command-line and will also execute the dependencies for each task.

gradl e test depl oy

8
Excluding tasks from execution

You can exclude a task from being executed using the - x or - - excl ude-t ask command-line option and
providing the name of the task to exclude.

Page 31 of 777

http://www.gdub.rocks/

Figure 1. Example Task Graph

compile compile Test dist
test

Example 1. Excluding tasks

Output of gradl e di st --excl ude-task test
> gradl e dist --exclude-task test

> Task :conpile
conpi l i ng source

> Task :dist
buil ding the distribution

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

You can see that the t est task is not executed, even though it is a dependency of the di st task. The t est
task’s dependencies such as conpi | eTest are not executed either. Those dependencies of t est that are
required by another task, such as conpi | e, are still executed.

8
Forcing tasks to execute

You can force Gradle to execute all tasks ignoring up-to-date checks using the - - r er un-t asks option:

gradle test --rerun-tasks

This will force t est and all task dependencies of t est to execute. It's a little like running gr adl e cl ean t
, but without the build’s generated output being deleted.

§
Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possible in a single build execution, you can use the - - cont i nue option.

gradl e test --continue

When executed with --conti nue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

Page 32 of 777

If a task fails, any subsequent tasks that were depending on it will not be executed. For example, tests will
not run if there is a compilation failure in the code under test; because the test task will depend on the
compilation task (either directly or indirectly).

§
Task name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task. You only
need to provide enough of the task name to uniquely identify the task. For example, it's likely gr adl e che
is enough for Gradle to identify the check task.

You can also abbreviate each word in a camel case task name. For example, you can execute task conpi | €
by running gr adl e conpTest orevengradl e cT.

Example 2. Abbreviated camel case task name

Outputof gradl e cT
> gradle cT

> Task :conpile
conpi |l i ng source

> Task :conpil eTest
conmpiling unit tests

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

You can also use these abbreviations with the -x command-line option.

8
Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

8
Computing all outputs

It is common in Gradle builds for the bui | d task to designate assembling all outputs and running all checks.

gradl e build

§
Running applications

It is common for applications to be run with the r un task, which assembles the application and executes
some script or binary.

Page 33 of 777

gradl e run

8
Running all checks

It is common for all verification tasks, including tests and linting, to be executed using the check task.

gradl e check

8
Cleaning outputs

You can delete the contents of the build directory using the cl ean task, though doing so will cause
pre-computed outputs to be lost, causing significant additional build time for the subsequent task execution.

gradl e cl ean

8§
Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

You can get basic help about available reporting options using gr adl e hel p.

8
Listing projects

Running gradl e proj ects gives you a list of the sub-projects of the selected project, displayed in a

hierarchy.
gradl e projects
You also get a project report within build scans. Learn more about creating build scans.

8
Listing tasks

Running gr adl e tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task.

gradl e tasks

By default, this report shows only those tasks which have been assigned to a task group. You can obtain
more information in the task listing using the - - al | option.

gradl e tasks --all

Page 34 of 777

https://guides.gradle.org/creating-build-scans/

8
Show task usage details

Running gradl e hel p --task soneTask gives you detailed information about a specific task.
Example 3. Obtaining detailed help for tasks

Outputofgradle -gq help --task |ibs
> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
;api:libs
s webapp: | i bs

Type
Task (org.gradle. api. Task)

Descri ption
Buil ds the JAR

G oup
buil d

This information includes the full task path, the task type, possible command line options and the description
of the given task.

8
Reporting dependencies

Build scans give a full, visual report of what dependencies exist on which configurations, transitive
dependencies, and dependency version selection.

gradl e myTask --scan

This will give you a link to a web-based report, where you can find dependency information like this.

Page 35 of 777

@ @ < il & scans.gradle.com f i 'n] e
ﬁ Build Scan e v gradle :core:test

= Summary
214 dependencies resolved in 70 projects across 156 configurations
E| Console log

«# Timeline

W Performance announce

:B Tect antlr

“ esls .

) ‘baseServices -

l-h Projects compileClasspath :
com.google.code. findbugs jsr305:1.3.9

%% Dependencies S e
com.google guava:guava-jdk5:17.0

[+ Plugins commaons-io:commons-io:2,2

o= - commons-lang.commons-lang: 2.6

e= Custom values o)

= net.jcipcjcip-annotations: 1.0

s Switches org.sifdj:sifdj-api:1.7.10

] Infrastructure runtimeClasspath »
testFixturesCompileClasspath

‘hacaSarvicsalrnmnu

Learn more in Inspecting Dependencies.

8
Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken down
by configuration. For each configuration, the direct and transitive dependencies of that configuration are
shown in a tree. Below is an example of this report:

gradl e dependenci es
Concrete examples of build scripts and output available in the Inspecting Dependencies.

Running gradl e bui |l dEnvi r onment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualizes the dependencies of the software being built.

gradl e buil dEnvi ronnent

Running gradl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input.

gradl e dependencyl nsi ght

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.

Page 36 of 777

This is achieved with the optional - - conf i gur at i on parameter:

§
Listing project properties

Running gr adl e properti es gives you a list of the properties of the selected project.
Example 4. Information about properties

Outputofgradl e -qg api: properties
> gradle -q api:properties

Project :api - The shared APl for the application

all projects: [project ':api']

ant: org.gradle.api.internal.project. DefaultAntBuil der@2345

ant Bui | der Factory: org.gradle.api.internal.project.DefaultAntBuil derFact ory@234!
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decor at el
asDynam cObj ect: Dynam cObj ect for project ':api
baseC assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoaderSi
bui I dDir: /home/ user/ gradl e/ sanpl es/ user gui de/tutorial/projectReports/api/build
bui l dFi | e: /hone/ user/ gradl e/ sanpl es/ usergui de/tutorial / project Reports/api/build.

8
Software Model reports

You can get a hierarchical view of elements for software model projects using the nodel task:

gr adl e nodel

Learn more about the model report in the software model documentation.

8§
Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties through
gradle-completion, installed separately.

Page 37 of 777

https://github.com/gradle/gradle-completion

Figure 2. Gradle Completion

Page 38 of 777

8§
Debugging options

-?,-h,--help

Shows a help message with all available CLI options.

-V, --version

Prints Gradle, Groovy, Ant, JVM, and operating system version information.

-S,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See also logging options.

-s,--stacktrace
Print out the stacktrace also for user exceptions (e.g. compile error). See also logging options.

--S§can

Create a build scan with fine-grained information about all aspects of your Gradle build.

- Dorg. gradl e. debug=t r ue
Debug Gradle client (non-Daemon) process. Gradle will wait for you to attach a debugger at | ocal host :
by default.

- Dor g. gr adl e. daenon. debug=t r ue
Debug Gradle Daemon process.

8§
Performance options

Try these options when optimizing build performance. Learn more about improving performance of Gradle
builds here.

Many of these options can be specified in gr adl e. pr operti es so command-line flags are not necessary.
See the configuring build environment guide.

- -bui | d- cache, - - no- bui | d- cache
Toggles the Gradle build cache. Gradle will try to reuse outputs from previous builds. Default is off.

--confi gure-on-denand, - - no- confi gur e- on- demand
Toggles Configure-on-demand. Only relevant projects are configured in this build run. Default is off.

- - max- wor kers
Sets maximum number of workers that Gradle may use. Default is number of processors.

--parallel,--no-parallel
Build projects in parallel. For limitations of this option please see the section called “Parallel project
execution”. Default is off.

Page 39 of 777

https://gradle.com/build-scans
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/

--profile
Generates a high-level performance report in the $bui | dDi r/ report s/ profi | e directory. - - scan is

preferred.

--Scan

Generate a build scan with detailed performance diagnostics.

0@ < LH| & scans.gradle.com [i o
d' Build Scan e’ + gradle :coreitest Sep 27 2017 2:00:13 PM MST
E Summary Build Confipuration Dependency resalution Task executic
[*-] Console log
L Total build time
+## Timeline

Startup 0.767s

Settings and buildSre

Loading projects

H;] fests Configuration

& Projects Task execution

g-g Dependencies End of build

[Plugins Total garbage collection time

a= Custom values
Peak heap memory usage

D £}
cp Switches PS5 Eden Space 551.55/624.95 MB
B Infrastructure PS Survivor Space 67.87/86.51 MB
PS Old Gen 0.31/1.43 GB (21.6

§
Gradle daemon options

You can manage the Gradle Daemon through the following command line options.

- - daenon, - - no- daenon
Use the Gradle Daemon to run the build. Starts the daemon if not running or existing daemon busy.
Default is on.

--foreground
Starts the Gradle Daemon in a foreground process.

- - st at us (Standalone command)
Run gradl e - - st at us to list running and recently stopped Gradle daemons. Only displays daemons of

Page 40 of 777

the same Gradle version.

- - st op (Standalone command)
Run gr adl e - - st op to stop all Gradle Daemons of the same version.

-Dorg. gradl e. daenon. i dl eti meout =(nunber of mlliseconds)
Gradle Daemon will stop itself after this number of milliseconds of idle time. Default is 10800000 (3
hours).

8§
Logging options

§
Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least verbose to
most verbose. Learn more in the logging documentation.

-Dorg. gradl e. | oggi ng. | evel =(qui et,warn, |i fecycl e, i nfo, debug)
Set logging level via Gradle properties.

-q,--qui et
Log errors only.

-W, --warn

Set log level to warn.

-i,--info
Set log level to info.

-d, - -debug
Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

8
Customizing log format

You can control the use of rich output (colors and font variants) by specifying the "console"” mode in the
following ways:

-Dorg. gradl e. consol e=(aut o, pl ai n, rich, verbose)
Specify console mode via Gradle properties. Different modes described immediately below.

--consol e=(auto, plain,rich, verbose)
Specifies which type of console output to generate.

Set to pl ai n to generate plain text only. This option disables all color and other rich output in the

Page 41 of 777

console output. This is the default when Gradle is not attached to a terminal.

Set to aut o (the default) to enable color and other rich output in the console output when the build
process is attached to a console, or to generate plain text only when not attached to a console. This is
the default when Gradle is attached to a terminal.

Set to ri ch to enable color and other rich output in the console output, regardless of whether the build
process is not attached to a console. When not attached to a console, the build output will use ANSI
control characters to generate the rich output.

Set to ver bose to enable color and other rich output like the ri ch, but output task names and outcomes
at the lifecycle log level, as is done by default in Gradle 3.5 and earlier.

8
Showing or hiding warnings

By default, Gradle won't display all warnings (e.g. deprecation warnings). Instead, Gradle will collect them
and render a summary at the end of the build like:

Deprecated Gradle features were used in this build, making it inconpatible with ¢
You can control the verbosity of warnings on the console with the following options:

- Dor g. gr adl e. war ni ng. nrode=(al | , none, summary)
Specify warning mode via Gradle properties. Different modes described immediately below.

- -war ni ng- node=(al I , none, summary)

Specifies how to log warnings. Default is summary.

Setto al | to log all warnings.

Set to sunmar y to suppress all warnings and log a summary at the end of the build.
Set to none to suppress all warnings, including the summary at the end of the build.

§
Rich Console

Gradle’s rich console displays extra information while builds are running.

Page 42 of 777

200

> Task :logging:compilelava

Note: /Users/eric/src/gradle/gradle/subprojects/
src/main/java/org/gradle/internal/logging/progres
essLogger.java uses or overrides a deprecated AP
Note: Recompile with -Xlint:deprecation for deta
Note: Some input files use unchecked or unsafe oj
S.

Note: Recompile with =Xlint:unchecked for details

> :toolingApi:compilelava

> :logging:compileTestFixturesGroovy
> :dependencyManagement:compilelava
> :reporting:classpathManifest

Features:

Progress bar and timer visually describe overall status

Parallel work-in-progress lines below describe what is happening now
Colors and fonts are used to highlight important output and errors

8§
Execution options

The following options affect how builds are executed, by changing what is built or how dependencies are
resolved.

--include-build
Run the build as a composite, including the specified build. See Composite Builds.

--offline
Specifies that the build should operate without accessing network resources. Learn more about options
to override dependency caching.

Page 43 of 777

--refresh-dependenci es
Refresh the state of dependencies. Learn more about how to use this in the dependency management
docs.

--dry-run
Run Gradle with all task actions disabled. Use this to show which task would have executed.

8§
Environment options

You can customize many aspects about where build scripts, settings, caches, and so on through the options
below. Learn more about customizing your build environment.

-b,--build-file
Specifies the build file. For example: gradl e --bui |l d-fil e=f 0o0. gradl e. The defaultis bui | d. gra
, then bui | d. gr adl e. kt s, then myPr oj ect Nane. gr adl e.

-c,--settings-file

Specifies the settings file. For example: gradl e --settings-fil e=sonmewhere/ el se/ settings. gl

-g,--gradl e-user-hone
Specifies the Gradle user home directory. The default is the . gr adl e directory in the user's home
directory.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory.

--project-cache-dir
Specifies the project-specific cache directory. Default value is . gr adl e in the root project directory.

- U, - - no- sear ch- upwar d (deprecated)
Don’t search in parent directories for a set ti ngs. gr adl e file.

-D, --system prop
Sets a system property of the JVM, for example - Dy pr op=nyval ue. See the section called “System
properties”.

-l,--init-script
Specifies an initialization script. See Initialization Scripts.

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=nyval ue. See the section called
“Project properties”.

-Dorg. gradl e.jvmargs
Set JVM arguments.

Page 44 of 777

- Dorg. gradl e. java. hone
Set JDK home dir.

8§
Bootstrapping new projects

8
Creating new Gradle builds

Use the built-in gr adl e i nit task to create a new Gradle builds, with new or existing projects.

gradle init

Most of the time you'll want to specify a project type. Available types include basi c (default), j ava-1i brar®
, j ava- appl i cati on, and more. See init plugin documentation for details.

gradle init --type java-library

§
Standardize and provision Gradle

The built-in gr adl e wr apper task generates a script, gr adl ew, that invokes a declared version of Gradle,
downloading it beforehand if necessary.

gradl e wrapper --gradle-version=4.4

You can also specify - - di stri bution-type=(bin|all),--gradl e-distribution-url,--gradl e-
in addition to - - gr adl e- ver si on. Full details on how to use these options are documented in the Gradle

wrapper section.

8
Continuous Build

Continuous Build allows you to automatically re-execute the requested tasks when task inputs change.
For example, you can continuously run the t est task and all dependent tasks by running:
gradl e test --continuous

Gradle will behave as if you ran gradl e test after a change to sources or tests that contribute to the
requested tasks. This means that unrelated changes (such as changes to build scripts) will not trigger a
rebuild. In order to incorporate build logic changes, the continuous build must be restarted manually.

Page 45 of 777

8
Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D). If
Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | | command or similar). If the build is being executed via the Tooling
API, the build can be cancelled using the Tooling API's cancellation mechanism.

8
Limitations and quirks

Note: Continuous build is an incubating feature.

There are several issues to be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle releases.

§
Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn’t unique to continuous build. A task that
modifies its own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a task
that has that file as an input. In some cases, it may be obvious (e.g., a Java file is compiled with conpi | eJa
). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

8
Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific
options, which means that:

On macOS, Gradle will poll for file changes every 10 seconds instead of every 2 seconds.

On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause continuous
build to no longer work on very large projects.

8§
Performance and stability

The JDK file watching facility relies on inefficient file system polling on macOS (see: JDK-7133447). This can
significantly delay natification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on macOS (see: JDK-8079620). This

Page 46 of 777

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620

will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit continuous
build and start again.

On Linux, OpenJDK'’s implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

§
Changes to symbolic links

Creating or removing symbolic link to files will initiate a build.

Modifying the target of a symbolic link will not cause a rebuild.

Creating or removing symbolic links to directories will not cause rebuilds.
Creating new files in the target directory of a symbolic link will not cause a rebuild.

Deleting the target directory will not cause a rebuild.

§
Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 47 of 777

https://bugs.openjdk.java.net/browse/JDK-8145981

The Gradle Wrapper

The recommended way to execute any Gradle build is with the help of the Gradle Wrapper (in short just
“Wrapper”). The Wrapper is a script that invokes a declared version of Gradle, downloading it beforehand if
necessary. As a result, developers can get up and running with a Gradle project quickly without having to
follow manual installation processes saving your company time and money.

Figure 3. The Wrapper workflow

1. Download

distribution
_ Gradle > Serve
Build
. use 2 Storeond
distribution distribution

v

Gradle
User Home

In a nutshell you gain the following benefits:
Standardizes a project on a given Gradle version, leading to more reliable and robust builds.

Provisioning a new Gradle version to different users and execution environment (e.g. IDEs or Continuous
Integration servers) is as simple as changing the Wrapper definition.

So how does it work? For a user there are typically three different workflows:
You set up a new Gradle project and want to add the Wrapper to it.

You want to run a project with the Wrapper that already provides it.

Page 48 of 777

You want to upgrade the Wrapper to a new version of Gradle.
The following sections explain each of these use cases in more detail.

8§
Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine as
described in Installing Gradle. Thankfully, generating the initial Wrapper files is a one-time process.

Every vanilla Gradle build comes with a built-in task called wr apper . You'll be able to find the task listed
under the group "Build Setup tasks" when listing the tasks. Executing the wr apper task generates the

necessary Wrapper files in the project directory.
Example 5. Running the Wrapper task

Output of gr adl e wr apper
> gradl e wrapper
> Task :w apper

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note: To make the Wrapper files available to other developers and execution environments you'll
need to check them into version control. All Wrapper files including the JAR file are very small in
size. Adding the JAR file to version control is expected. Some organizations do not allow projects to
submit binary files to version control. At the moment there are no alternative options to the
approach.

The generated Wrapper properties file, gr adl e/ wr apper/ gr adl e- wr apper . properti es, stores the
information about the Gradle distribution.

The server hosting the Gradle distribution.

The type of Gradle distribution. By default that's the - bi n distribution containing only the runtime but no
sample code and documentation.

The Gradle version used for executing the build. By default the wr apper task picks the exact same Gradle
version that was used to generate the Wrapper files.

Example 6. The generated distribution URL

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUl=https\://services.gradle.org/distributions/gradle-4.3.1-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the following

Page 49 of 777

command line options.

--gradl e-version
The Gradle version used for downloading and executing the Wrapper.

--distribution-type
The Gradle distribution type used for the Wrapper. Available options are bi n and al | . The default value
is bi n.

--gradl e-di stribution-url
The full URL pointing to Gradle distribution ZIP file. Using this option makes - - gr adl e- ver si on and - -
obsolete as the URL already contains this information. This option is extremely valuable if you want to
host the Gradle distribution inside your company’s network.

--gradl e-di stribution-sha256-sum
The SHA256 hash sum used for verifying the downloaded Gradle distribution.

Let's assume the following use case to illustrate the use of the command line options. You would like to
generate the Wrapper with version 4.0 and use the -al | distribution to enable your IDE to enable
code-completion and being able to navigate to the Gradle source code. Those requirements are captured by
the following command line execution:

Example 7. Providing options to Wrapper task

Output of gradl e wrapper --gradle-version 4.0 --distribution-type all
> gradl e wrapper --gradle-version 4.0 --distribution-type all
> Task :w apper

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

As a result you can find the desired information in the Wrapper properties file.
Example 8. The generated distribution URL

gr adl e/ wr apper/ gradl e-w apper. properties.
di stributionUrl=https\://services.gradle.org/distributions/gradle-4.0-all.zip

Let's have a look at the following project layout to illustrate the expected Wrapper files:

Page 50 of 777

buil d. gradl e
settings.gradle
gradl e
wWr apper
gr adl e-wr apper.j ar
gr adl e-wr apper . properties
gradl ew
gr adl ew. bat

A Gradle project typically provides a bui | d. gradl e and a set ti ngs. gr adl e file. The Wrapper files live
alongside in the gr adl e directory and the root directory of the project. The following list explains their
purpose.

gr adl e-wr apper. j ar
The Wrapper JAR file containing code for downloading the Gradle distribution.

gr adl e- wr apper . properties
A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle version
compatible with this version.

gr adl ew, gr adl ew. bat
A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and execute the build with the Wrapper without having to install the Gradle runtime. If the
project you are working on does not contain those Wrapper files then you'll need to generate them.

8§
Using the Gradle Wrapper

It is recommended to always execute a build with the Wrapper to ensure a reliable, controlled and
standardized execution of the build. Using the Wrapper looks almost exactly like running the build with a
Gradle installation. Depending on the operating system you either run gr adl ewor gr adl ew. bat instead of
the gradl e command. The following console output demonstrate the use of the Wrapper on a Windows
machine for a Java-based project.

Example 9. Executing the build with the Wrapper batch file

Output of gr adl ew. bat bui |l d
> gradl ew. bat build
Downl oadi ng https://services.gradle.org/distributions/gradle-4.0-all.zip

Unzi ppi ng C \ Docunents and Settings\C audi a\. gradl e\w apper\di sts\gradl e-4.0-al |l
Set executabl e perm ssions for: C\Docunents and Settings\C audi a\. gradl e\ w appel

BUI LD SUCCESSFUL in 12s
1 actionable task: 1 executed

Page 51 of 777

In case the Gradle distribution is not available on the machine, the Wrapper will download it and store in the
local file system. Any subsequent build invocation is going to reuse the existing local distribution as long as
the distribution URL in the Gradle properties doesn’t change.

Note: The Wrapper shell script and batch file reside in the root directory of a single or multi-project
Gradle build. You will need to reference the correct path to those files in case you want to execute
the build from a subproject directory e.g. . . /. . / gradl ew t asks.

8§
Upgrading the Gradle Wrapper

Projects will typically want to keep up with the times and upgrade their Gradle version to benefit from new
features and improvements. One way to upgrade the Gradle version is manually change the di stri buti on
property in the Wrapper property file. The better and recommended option is to run the wr apper task and
provide the target Gradle version as described in the section called “Adding the Gradle Wrapper”. Using the v
task ensures that any optimizations made to the Wrapper shell script or batch file with that specific Gradle
version are applied to the project. As usual you'd commit the changes to the Wrapper files to version control.

Use the Gradle wr apper task to generate the wrapper, specifying a version. The default is the current
version, which you can check by executing . / gr adl ew - - ver si on.

Example 10. Upgrading the Wrapper version

Output of . / gradl ew wr apper --gradle-version 4.2.1
> ./ gradl ew wrapper --gradle-version 4.2.1

BUI LD SUCCESSFUL in 4s
1 actionable task: 1 executed

Page 52 of 777

Example 11. Checking the Wrapper version after upgrading

Output of . / gradl ew -v
> ./gradlew -v
Downl oadi ng https://services.gradle.org/distributions/gradle-4.2.1-bin.zip

Unzi ppi ng / Users/cl audi a/ . gradl e/ wr apper/di sts/ gradl e-4. 2. 1- bi n/ daj vke9o8knaxbuOl
Set executabl e perm ssions for: /Users/claudial/.gradl e/wapper/dists/gradle-4.2.:

Build tine: 2017-10-02 15:36:21 UIC

Revi si on: a88ehbd6be7840c2e59ae4782eb0f 27f be3405ddf

G oovy: 2.4.12

Ant : Apache Ant(TM version 1.9.6 conpiled on June 29 2015
JVM 1.8.0_60 (Oracle Corporation 25.60-b23)

Cs: Mac OS X 10.13.1 x86_64

8§

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However, organizational
policies, security constraints or personal preferences might require you to dive deeper into customizing the
Wrapper. Thankfully, the built-in wr apper task exposes numerous options to bend the runtime behavior to

your needs. Most configuration options are exposed by the underlying task type W apper .

Let's assume you grew tired of defining the - al | distribution type on the command line every time you
upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the wr apper task.

Example 12. Customizing the Wrapper task
buil d. gradl e

wr apper {
di stributionType = Wapper.Di stributionType. ALL

With the configuration in place running ./ gradl ew wrapper --gradle-version 4.1 is enough to
produce adi stri butionUrl value in the Wrapper properties file that will request the - al | distribution.

Page 53 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Example 13. The generated distribution URL

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUrl=https\://services.gradle.org/distributions/gradle-4.1-all.zip

Check out the API documentation for more detail descriptions of the available configuration options. You can
also find various samples for configuring the Wrapper in the Gradle distribution.

8§
Authenticated Gradle distribution download

The Gradle W apper can download Gradle distributions from servers using HTTP Basic Authentication. This
enables you to host the Gradle distribution on a private protected server. You can specify a username and
password in two different ways depending on your use case: as system properties or directly embedded in
the di stri buti onUr | . Credentials in system properties take precedence over the ones embedded in di st

Security Warning

HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP ones. With
Basic Authentication, the user credentials are sent in clear text.

Using system properties can be done in the . gradl e/ gradl e. properties file in the user's home

directory, or by other means, see the section called “Gradle properties”.
Example 14. Specifying the HTTP Basic Authentication credentials using system properties

gradl e. properties.
syst enProp. gradl e. w apper User =user nane
syst enPr op. gr adl e. w apper Passwor d=passwor d

Embedding credentials in the di stri buti onUrl inthe gradl e/ wr apper/ gradl e-w apper. properti
file also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded in di stri buti onUrl should only be used in a controlled environment.

Example 15. Specifying the HTTP Basic Authentication credentials in di st ri buti onUr |

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUrl =https://usernane: password@onehost/ pat h/to/ gradl e-di stri bution. zi

This can be used in conjunction with a proxy, authenticated or not. See the section called “Accessing the
web through a HTTP proxy” for more information on how to configure the W apper to use a proxy.

Page 54 of 777

8§
Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature, download the . sha256 file associated with the Gradle distribution you want to verify.

§
Downloading the SHA-256 file

You can download the . sha256 file from the stable releases or release candidate and nightly releases. The
format of the file is a single line of text that is the SHA-256 hash of the corresponding zip file.

§
Configuring checksum verification

Add the downloaded hash sum to gr adl e- w apper . properti es using the di stri buti onSha256Sun
property or use - - gr adl e-di stri buti on-sha256- sumon the command-line.

Example 16. Configuring SHA-256 checksum verification

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributi onSha256Sunr371cb9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b8236!

Gradle will report a build failure in case the configured checksum does not match the checksum found on the
server for hosting the distribution. Checksum Verification is only performed if the configured Wrapper
distribution hasn’t been downloaded yet.

Page 55 of 777

https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under
the direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle builds
with the Daemon is no different than without. Simply configure whether you want to use it or not - everything
else is handled transparently by Gradle.

8§
Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for every build,
but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - pr of i | e to get a sense of how much impact the Gradle Daemon
can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything to
benefit from it.

If you run CI builds in ephemeral environments (such as containers) that do not reuse any processes, use of
the Daemon will slightly decrease performance (due to caching additional information) for no benefit, and
may be disabled.

8§
Running Daemon Status

To get a list of running Gradle Daemons and their statuses use the - - st at us command.

Sample output:

Page 56 of 777

PI D VERSI ON STATUS
28411 3.0 | DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of
Gradle.

8
Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. There are several ways to
disable the Daemon, but the most common one is to add the line

org. gradl e. daenon=f al se

to the file «USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home directory.
That's typically one of the following, depending on your platform:

C:. \ User s\ <user nanme> (Windows Vista & 7+)
/ User s/ <user nane> (macOS)
/ honme/ <user nane> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in the section called “FAQ” further down. That section also contains more detailed
information on how the Daemon works.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost, regardless of
the version of Gradle a particular build uses.

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both developers'
machines and Continuous Integration servers. However, if you suspect that Daemon makes your ClI
builds unstable, you can disable it to use a fresh runtime for each build since the runtime is
completely isolated from any previous builds.

8§
Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle
processes on your machine, though. Every Daemon monitors its memory usage compared to total system
memory and will stop itself if idle when available system memory is low. If you want to explicitly stop running
Daemon processes for any reason, just use the command gr adl e -- st op.

Page 57 of 777

This will terminate all Daemon processes that were started with the same version of Gradle used to execute
the command. If you have the Java Development Kit (JDK) installed, you can easily verify that a Daemon
has stopped by running the j ps command. You'll see any running Daemons listed with the name G adl eDau

8
FAQ

§
How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

Via environment variables: add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS environment
variable

Via properties file: add or g. gr adl e. daenon=f al se to the «<GRADLE_USER HOVE»/ gr adl e. properti e

file

Note: Note, «GRADLE_USER HOVE» defaults to «USER_HOVE»/ . gr adl e, where «USER_HOVE» is
the home directory of the current user. This location can be configured via the - g and - - gr adl e- user
command line switches, as well as by the GRADLE_USER HOVME environment variable and or g. gr adl ¢
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. pr operti es file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "9JSERPROFI LE% . gradl e" nkdir "%JSERPROFI LEY% . gradle") && (echo. >:

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the current
user:

nkdir -p ~/.gradle & echo "org. gradl e. daenon=fal se" >> ~/.gradl e/ gradl e. properti

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daenon option.

The - - daenon and - - no- daenon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

Page 58 of 777

8
Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is already
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don’t have to
worry about cleaning them up manually.

idle
An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible
A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another example is the set of JVM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory allocation (e.g. - Xmx1024n), default
text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Build Environment for details on how to specify and control the build environment.

The following JVM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s JVM has for this property, the Daemon is not
compatible.

file.encoding

user.language

user.country

user.variant

java.io.tmpdir
javax.net.ssl.keyStore
javax.net.ssl.keyStorePassword
javax.net.ssl.keyStoreType
javax.net.ssl.trustStore

javax.net.ssl.trustStorePassword

Page 59 of 777

javax.net.ssl.trustStoreType
com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

The maximum heap size (i.e. the -Xmx JVM argument)
The minimum heap size (i.e. the -Xms JVM argument)
The boot classpath (i.e. the -Xbootclasspath argument)
The “assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versions is a common reason for having more than one running Daemon process.

§
How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB of
heap. It will use the JVM'’s default minimum heap size. 1GB is more than enough for most builds. Larger
builds with hundreds of subprojects, lots of configuration, and source code may require, or perform better,
with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Build Environment for details.

§
How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to
stop a Daemon process before this, you can either kill the process via your operating system or run the gr ad
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same

Gradle version used to run the command, terminate themselves.

8
What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted.
A Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

Page 60 of 777

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do not
release resources correctly. This is a particularly poignant problem when using Microsoft Windows as it is
less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the or g. gr adl e. daenon. per f or mance. enabl e- noni t ori ng system property to
false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

8
Tools & IDEs

The Gradle Tooling API (see Embedding Gradle using the Tooling API), that is used by IDEs and other tools
to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are executing Gradle
builds from within you're IDE you are using the Gradle Daemon and do not need to enable it for your
environment.

8
How does the Gradle Daemon make builds faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed to
once for each build. This in itself is a significant performance optimization, but that's not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For example,
HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for
incremental building.

Page 61 of 777

Dependency Management for Java Projects

This chapter explains how to apply basic dependency management concepts to Java-based projects. For a
detailed introduction to dependency management, see Introduction to Dependency Management.

8§
Dissecting a typical build script

Let's have a look at a very simple build script for a Java-based project. It applies the Java Library plugin
which automatically introduces a standard project layout, provides tasks for performing typical work and
adequate support for dependency management.

Example 17. Dependency declarations for a Java-based project

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i npl ement ati on ' org. hi bernat e: hi bernate-core: 3. 6. 7. Fi nal
api 'com googl e. guava: guava: 23. 0
testlnplementation "junit:junit: 4.+

The Proj ect . dependenci es{} code block declares that Hibernate core 3.6.7.Final is required to compile
the project’s production source code. It also states that junit >= 4.0 is required to compile the project’s tests.
All dependencies are supposed to be looked up in the Maven Central repository as defined by
Proj ect.repositories{}.The following sections explain each aspect in more detail.

Page 62 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

8§
Declaring module dependencies

There are various types of dependencies that you can declare. One such type is a module dependency. A
module dependency represents a dependency on a module with a specific version built outside the current
build. Modules are usually stored in a repository, such as Maven Central, a corporate Maven or lvy
repository, or a directory in the local file system.

To define an module dependency, you add it to a dependency configuration:
Example 18. Definition of a module dependency

buil d. gradl e
dependenci es {
i npl ement ati on ' org. hi bernat e: hi bernate-core: 3. 6. 7. Fi nal’

To find out more about defining dependencies, have a look at Declaring Dependencies.

8§
Using dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a

configuration:

Declaring dependencies
A plugin uses configurations to make it easy for build authors to declare what other subprojects or
external artifacts are needed for various purposes during the execution of tasks defined by the plugin. For
example a plugin may need the Spring web framework dependency to compile the source code.

Resolving dependencies
A plugin uses configurations to find (and possibly download) inputs to the tasks it defines. For example
Gradle needs to download Spring web framework JAR files from Maven Central.

Exposing artifacts for consumption
A plugin uses configurations to define what artifacts it generates for other projects to consume. For
example the project would like to publish its compiled source code packaged in the JAR file to an
in-house Artifactory repository.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined by the
Java Library Plugin.

implementation
The dependencies required to compile the production source of the project which are not part of the API
exposed by the project. For example the project uses Hibernate for its internal persistence layer
implementation.

Page 63 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html

api
The dependencies required to compile the production source of the project which are part of the API
exposed by the project. For example the project uses Guava and exposes public interfaces with Guava

classes in their method signatures.

testimplementation
The dependencies required to compile and run the test source of the project. For example the project
decided to write test code with the test framework JUnit.

Various plugins add further standard configurations. You can also define your own custom configurations in
your build via Pr oj ect . confi gurati ons{}. See Managing Dependency Configurations for the details of
defining and customizing dependency configurations.

8§
Declaring common Java repositories

How does Gradle know where to find the files for external dependencies? Gradle looks for them in a
repository. A repository is a collection of modules, organized by gr oup, nane and ver si on. Gradle
understands different repository types, such as Maven and lvy, and supports various ways of accessing the
repository via HTTP or other protocols.

By default, Gradle does not define any repositories. You need to define at least one with the help of
Proj ect.repositories{} before you can use module dependencies. One option is use the Maven
Central repository:

Example 19. Usage of Maven central repository
buil d. gradl e

repositories {
mavenCentral ()

You can also have repositories on the local file system. This works for both Maven and Ivy repositories.

Example 20. Usage of a local Ivy directory

bui I d. gradl e
repositories {
vy {
url "../local-repo"
}
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

Page 64 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

To find out more about defining repositories, have a look at Declaring Repositories.

8§
Publishing artifacts

Dependency configurations are also used to publish files. Gradle calls these files publication artifacts, or
usually just artifacts. As a user you will need to tell Gradle where to publish the artifacts. You do this by
declaring repositories for the upl oadAr chi ves task. Here's an example of publishing to a Maven
repository:

Example 21. Publishing to a Maven repository

buil d. gradl e
apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ nmyRepo/")

Now, when you run gr adl e upl oadAr chi ves, Gradle will build the JAR file, generate a . pomfile and
upload the artifacts.

To learn more about publishing artifacts, have a look at Publishing artifacts.

Page 65 of 777

Executing Multi-Project Builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you typically
want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

§
Structure of a multi-project build

Such builds come in all shapes and sizes, but they do have some common characteristics:
A settings. gradl e file in the root or mast er directory of the project
A bui | d. gradl e file in the root or nast er directory

Child directories that have their own *. gr adl e build files (some multi-project builds may omit child project
build scripts)

The settings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’t have to read this file simply to learn what the project structure is as you can run the command gr adl e
. Here's the output from using that command on the Java multiproject build in the Gradle samples:

Page 66 of 777

Example 22. Listing the projects in a build

Outputofgradl e -q projects
> gradle -qg projects

Root project 'multiproject’

+--- Project ':api

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services
project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it finds the setti ngs. gr adl e as the name of the root
project. This usually doesn’t cause problems since all developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that's not necessarily the case. In the above example, the
services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gradl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to all the child projects. It can also be used
to configure individual subprojects when it is preferable to have all the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects will
name the build files after the subproject nhames, such as api . gradl e and servi ces. gr adl e from the
previous example. Such an approach helps a lot in IDEs because it's tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic is handled by the settin
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the child
project directories to find the files with the . gr adl e suffix.

Page 67 of 777

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

8§
Executing a multi-project build

From a user’s perspective, multi-project builds are still collections of tasks you can run. The difference is that
you may want to control which project’s tasks get executed. You have two options here:

Change to the directory corresponding to the subproject you're interested in and just execute gr adl e <t ask
as normal.

Use a qualified task name from any directory, although this is usually done from the root. For example: gr adl

will build the webservice subproject and any subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case of
a multi-project build. The command gr adl e t est will execute the t est task in any subprojects, relative to
the current working directory, that have that task. So if you run the command from the root project directory,
you'll run t est in api, shared, services:shared and services:webservice. If you run the command from the
services project directory, you'll only execute the task in services:shared and services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These
are paths just like directory paths, but use “’ instead of ‘/’ or ‘\'. If the path begins with a *’, then the path is
resolved relative to the root project. In other words, the leading *:’ represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
the t asks task, e.g. gradl e : servi ces: webservi ce: tasks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how this is configured, you can read about writing multi-project builds later in the user guide.

There’s one last thing to note. When you're using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun . ./ ../ gradl ew bui | d.

That's all you really need to know about multi-project builds as a build user. You can now identify whether a
build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 68 of 777

Composite builds

Note: Composite build is an incubating feature. While useful for many use cases, there are bugs to
be discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

8§
What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to a
Gradle multi-project build, except that instead of including single pr oj ect s, complete bui | ds are included.

Composite builds allow you to:

combine builds that are usually developed independently, for instance when trying out a bug fix in a library
that your application uses

decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build". Included
builds do not share any configuration with the composite build, or the other included builds. Each included
build is configured and executed in isolation.

Included builds interact with other builds via dependency substituti on. If any build in the composite
has a dependency that can be satisfied by the included build, then that dependency will be replaced by a
project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.
However for more flexibility, it is possible to explicitly declare these substitutions if the default ones
determined by Gradle are not correct for the composite. See the section called “Declaring the dependencies
substituted by an included build”.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task
dependencies on the composite build or on other included builds. See the section called “Depending on
tasks in an included build”.

Page 69 of 777

8§
Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed
separately can be combined into a composite build. For these examples, the my- uti | s multi-project build
produces 2 different java libraries (nunber-util s and string-util s), and the ny- app build produces
an executable using functions from those libraries.

The ny-app build does not have direct dependencies on mny-utils. Instead, it declares binary
dependencies on the libraries produced by ny-util s.

Example 23. Dependencies of my-app

nmy-app/ bui | d. gradl e
apply plugin: 'java'
apply plugin: "application'
apply plugin: 'idea'

group "org.sanple"
version "1.0"

mai nCl assNane = "org. sanpl e. nyapp. Mai n"
dependenci es {

conpile "org. sanpl e: nunber-utils:1.0"
conpile "org.sanple:string-utils:1.0"

}

repositories {
jcenter()

}
Note: The code for this example can be found at sanpl es/ conposi t eBui | ds/ basi ¢ in the *-all’
distribution of Gradle.

8

Defining a composite build via - - i ncl ude- bui | d

The - -i ncl ude- bui I d command-line argument turns the executed build into a composite, substituting

dependencies from the included build into the executed build.

Page 70 of 777

Example 24. Declaring a command-line composite

Outputofgradl e --include-build ../my-utils run

gradle --include-build ../ny-utils run

Task : processResources NO SOURCE

Task :my-utils:string-utils:conpil eJava

Task :ny-utils:string-utils:processResources NO SOURCE
Task :my-utils:string-utils:classes

Task :ny-utils:string-utils:jar

Task :ny-utils:nunber-utils:conpil eJava

Task :ny-utils:nunber-utils:processResources NO SOURCE
Task :ny-utils:nunmber-utils:classes

Task :ny-utils:nunber-utils:jar

Task :conpil eJava

Task :classes

V VV V V V V V V V V V

> Task :run
The answer is 42

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

8
Defining a composite build via setti ngs. gr adl e

It's possible to make the above arrangement persistent, by using
Settings.includeBuild(]ava.lang. Cbj ect) to declare the included build in the setti ngs. gradl e
file. The settings. gradl e file can be used to add subprojects and included builds at the same time.
Included builds are added by location. See the examples below for more details.

8
Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less
useful as a standalone build. One way to avoid this is to define a separate composite build, whose only
purpose is to combine otherwise separate builds.

Example 25. Declaring a separate composite

settings.gradle

r oot Proj ect . name=' adhoc'
i ncl udeBui |l d

i ncl udeBui |l d

.. I ny-app’
o lmy-util s

In this scenario, the 'main’ build that is executed is the composite, and it doesn’t define any useful tasks to

Page 71 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build must define a
delegating task.

Example 26. Depending on task from included build

buil d. gradl e
task run {
dependsOn gradl e. i ncl udedBui | d(' ny-app').task(' :run")

More details tasks that depend on included build tasks below.

8
Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.

Every included build:

must have a set ti ngs. gr adl e file.

must not itself be a composite build.

must not have a r oot Pr oj ect . nane the same as another included build.

must not have a r oot Pr oj ect . nane the same as a top-level project of the composite build.
must not have a r oot Pr oj ect . nane the same as the composite build r oot Pr oj ect . nane.

8§
Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build. Tasks can be
executed, tests can be run, and builds can be imported into the IDE.

8
Executing tasks

Tasks from the composite build can be executed from the command line, or from you IDE. Executing a task
will result in direct task dependencies being executed, as well as those tasks required to build dependency
artifacts from included builds.

Note: There is not (yet) any means to directly execute a task from an included build via the
command line. Included build tasks are automatically executed in order to generate required
dependency artifacts, or the including build can declare a dependency on a task from an included
build.

Page 72 of 777

8
Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the idea or eclipse plugin
to your build, it is possible to generate a single IDEA or Eclipse project that permits all builds in the
composite to be developed together.

In addition to these Gradle plugins, recent versions of IntelliJ IDEA and Eclipse Buildship support direct
import of a composite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed together.
For every included build, each sub-project is included as an IDEA Module or Eclipse Project. Source
dependencies are configured, providing cross-build navigation and refactoring.

8§
Declaring the dependencies substituted by an included build

By default, Gradle will configure each included build in order to determine the dependencies it can provide.
The algorithm for doing this is very simple: Gradle will inspect the group and name for the projects in the
included build, and substitute project dependencies for any external dependency matching ${ pr oj ect . gr ol

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not
correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an
included build. Take for example a single-project build ‘unpublished', that produces a java utility library but
does not declare a value for the group attribute:

Example 27. Build that does not declare group attribute

buil d. gradl e
apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for pr oj ect . gr oup, and 'unpublished' being
the root project name). Clearly this isn’t going to be very useful in a composite build. To use the unpublished
library unmodified in a composite build, the composing build can explicitly declare the substitutions that it
provides:

Page 73 of 777

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

Example 28. Declaring the substitutions for an included build

settings.gradle
root Proj ect. nane = 'app'

i ncludeBuil d('../anonynous-library') {
dependencySubstitution {
substitute modul e(' org. sanpl e: nunber-utils'") with project(':")

With this configuration, the "my-app" composite build will substitute any dependency on or g. sanpl e: numnbe

with a dependency on the root project of "unpublished".

§
Cases where included build substitutions must be declared

Many builds that use the upl oadAr chi ves task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared substitutions
are required:

When the ar chi vesBaseNane property is used to set the name of the published artifact.

When a configuration other than def aul t is published: this usually means a task other than upl oadAr chi v

is used.
When the MavenPom addFi | t er () is used to publish artifacts that don’t match the project name.

When the maven- publish or ivy-publish plugins are used for publishing, and the publication
coordinates don’'t match ${ pr oj ect . group}: ${pr oj ect . nane}.

8
Cases where composite build substitutions won’t work

Some builds won't function correctly when included in a composite, even when dependency substitutions are
explicitly declared. This limitation is due to the fact that a project dependency that is substituted will always
point to the def aul t configuration of the target project. Any time that the artifacts and dependencies
specified for the default configuration of a project don’t match what is actually published to a repository, then
the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

When a configuration other than def aul t is published.
When the maven- publ i sh ori vy- publ i sh plugins are used.

When the POMor i vy. xm file is tweaked as part of publication.

Page 74 of 777

Builds using these features function incorrectly when included in a composite build. We plan to improve this
in the future.

8§
Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite
build is able to declare task dependencies on its included builds. The included builds are accessed using
Gradl e. get | ncl udedBui | ds() or Gradl e.includedBuild(java.lang.String), and a task

reference is obtained via the | ncl udedBui | d. t ask(] ava. | ang. St ring) method.

Using these APIs, it is possible to declare a dependency on a task in a particular included build, or tasks with
a certain path in all or some of the included builds.

Example 29. Depending on a single task from an included build

bui I d. gradl e
task run {
dependsOn gradl e.includedBuild(' nmy-app').task(':run")

Example 30. Depending on a tasks with path in all included builds

buil d. gradl e
task publishDeps {
dependsOn gradl e. i ncl udedBui | ds*. t ask("' : upl oadAr chi ves')

8§
Current limitations and future plans for composite builds

We think composite builds are pretty useful already. However, there are some things that don’t yet work the
way we’d like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

No support for included builds that have publications that don’t mirror the project default configuration. See
the section called “Cases where composite build substitutions won’t work”.

Native builds are not supported. (Binary dependencies are not yet supported for native builds).

Substituting plugins only works with the bui | dscri pt block but not with the pl ugi ns block.

Improvements we have planned for upcoming releases include:

Better detection of dependency substitution, for build that publish with custom coordinates, builds that

produce multiple components, etc. This will reduce the cases where dependency substitution needs to be

Page 75 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

explicitly declared for an included build.

The ability to target a task or tasks in an included build directly from the command line. We are currently
exploring syntax options for allowing this functionality, which will remove many cases where a delegating
task is required in the composite.

Making the implicit bui | dSr ¢ project an included build.

Supporting composite-of-composite builds.

Page 76 of 777

Build Environment

Gradle provides multiple mechanisms for configuring behavior of Gradle itself and specific projects. The
following is a reference for using these mechanisms.

When configuring Gradle behavior you can use these methods, listed in order of highest to lowest
precedence (first one wins):

Command-line flags such as - - bui | d- cache. These have precedence over properties and environment
variables.

System properties such as syst enPr op. htt p. pr oxyHost =sonehost . or g stored in a gr adl e. pr opert

file.

Gradle properties such as or g. gr adl e. cachi ng=t r ue that are typically stored in a gr adl e. properti e
file in a project root directory or GRADLE_USER_HOVE environment variable.

Environment variables such as GRADLE_OPTS sourced by the environment that executes Gradle.

Aside from configuring the build environment, you can configure a given project build using Project
properties such as - Pr el easeType=fi nal .

8§
Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute
your build. While it's possible to configure these in your local environment via GRADLE_OPTS or JAVA _OPTS,
it is useful to store certain settings like JVM memory configuration and Java home location in version control
so that an entire team can work with a consistent environment.

Setting up a consistent environment for your build is as simple as placing these settings into a gr adl e. pr of
file. The configuration is applied in following order (if an option is configured in multiple locations the last one
wins):

gradl e. properti es in project root directory.
gradl e. properties in GRADLE_USER_HOVE directory.

system properties, e.g. when - Dgr adl e. user. hon® is set on the command line.

Page 77 of 777

The following properties can be used to configure the Gradle build environment:

org. gradl e. cachi ng=(true, fal se)
When set to true, Gradle will reuse task outputs from any previous build, when possible, resulting is much
faster builds. Learn more about using the build cache.

org. gradl e. cachi ng. debug=(true, f al se)
When set to true, individual input property hashes and the build cache key for each task are logged on
the console. Learn more about task output caching.

org. gradl e. confi gureondemand=(true, f al se)
Enables incubating configuration on demand, where Gradle will attempt to configure only necessary
projects.

org. gradl e. consol e=(aut o, pl ai n, rich, verbose)
Customize console output coloring or verbosity. Default depends on how Gradle is invoked. See
command-line logging for additional details.

org. gradl e. daenon=(true, f al se)
When set to t r ue the Gradle Daemon is used to run the build. Default is t r ue.

org. gradl e. daenon.idletinmeout=(# of idle mllis)
Gradle Daemon will terminate itself after specified number of idle milliseconds. Default is 10800000 (3
hours).

org. gradl e. debug=(true, fal se)
When set to t r ue, Gradle will run the build with remote debugging enabled, listening on port 5005. Note
that this is the equivalent of adding - agent | i b: j dwp=t r ansport =dt _socket, server =y, suspend:=
to the JVM command line and will suspend the virtual machine until a debugger is attached. Default is f al

org.gradl e.java. hone=(path to JDK hone)
Specifies the Java home for the Gradle build process. The value can be set to either a jdk orjre
location, however, depending on what your build does, using a JDK is safer. A reasonable default is used
if the setting is unspecified.

org.gradle.jvmargs=(JVM ar gunment s)
Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance.

org. gradl e.l oggi ng. | evel =(qui et,warn, | ifecycle,info, debug)
When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are not case
sensitive. The | i f ecycl e level is the default. See the section called “Choosing a log level”.

org.gradle.parallel =(true, fal se)
When configured, Gradle will fork up to org. gradl e. wor kers. max JVMs to execute projects in
parallel. To learn more about parallel task execution, see the Gradle performance guide.

Page 78 of 777

https://guides.gradle.org/performance/#parallel_execution

org. gradl e. war ni ng. node=(al | , none, summary)
When set to al | , summary or none, Gradle will use different warning type display. See the section
called “Logging options” for details.

org. gradl e. workers. max=(nmax # of worker processes)
When configured, Gradle will use a maximum of the given number of workers. Default is number of CPU
processors. See also performance command-line options.

The following example demonstrates usage of various properties.
Example 31. Setting properties with a gradle.properties file

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi ttenBySysProp

envPr oj ect Prop=shoul dBeOver Wi ttenByEnvProp
syst enPr op. syst enrsyst enVal ue

bui | d. gradl e
task printProps {
doLast {

printl n comrandLi neProj ect Prop
println gradl ePropertiesProp
println systenProjectProp

println envProjectProp

println System properties['systeni]

Output of gradle -q - PcommandLi nePr oj ect Pr op=conmandLi nePr oj ect Pr opVal ue
-Dorg. gradl e. proj ect. syst enPr oj ect Prop=syst enPropertyVal ue printProps

> gradl e -g - PcomandLi nePr oj ect Prop=comuandLi nePr oj ect PropVal ue - Dorg. gradl e. pr
commandLi nePr oj ect PropVal ue

gr adl eProperti esVal ue

syst enPr opertyVal ue

envPropertyVal ue

syst enVal ue

8§
System properties

Using the - D command-line option, you can pass a system property to the JVM which runs Gradle. The - D
option of the gr adl e command has the same effect as the - D option of the] ava command.

You can also set system properties in gr adl e. properti es files with the prefix syst enPr op.

Page 79 of 777

Example 32. Specifying system properties in gr adl e. properties

syst enPr op. gr adl e. w apper User =myuser
syst enProp. gr adl e. w apper Passwor d=nypassword

The following system properties are available. Note that command-line options take precedence over system
properties.

gradl e. wr apper User =(myuser)
Specify user name to download Gradle distributions from servers using HTTP Basic Authentication.
Learn more in the section called “Authenticated Gradle distribution download”.

gr adl e. wr apper Passwor d=(nypasswor d)
Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradl e. user. hone=(path to directory)
Specify the Gradle user home directory.

In a multi project build, “syst enPr op. ” properties set in any project except the root will be ignored. That is,
only the root project’s gr adl e. properti es file will be checked for properties that begin with the “syst enP
" prefix.

8
Environment variables

The following environment variables are available for the gr adl e command. Note that command-line

options and system properties take precedence over environment variables.

GRADLE_OPTS
Specifies command-line arguments to use when starting the Gradle client. This can be useful for setting
the properties to use when running Gradle.

GRADLE_USER_HOVE
Specifies the Gradle user home directory (which defaults to SUSER _HOVE/ . gr adl e if not set).

JAVA_HOVE
Specifies the JDK installation directory to use.

8§
Project properties

You can add properties directly to your Pr o] ect object via the - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment
variables. If the environment variable name looks like ORG_GRADLE PRQIECT pr op=soneval ue, then
Gradle will set a pr op property on your project object, with the value of soneval ue. Gradle also supports

Page 80 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

this for system properties, but with a different naming pattern, which looks like or g. gr adl e. pr oj ect . pr o}
. Both of the following will set the f oo property on your Project object to " bar .

Example 33. Setting a project property via gradle.properties

org. gradl e. proj ect. f oo=bar

Example 34. Setting a project property via environment variable

ORG_GRADLE_PRQJECT _f oo=bar

Note: The properties file in the user’'s home directory has precedence over property files in the
project directories.

This feature is very useful when you don't have admin rights to a continuous integration server and you need
to set property values that should not be easily visible. Since you cannot use the - P option in that scenario,
nor change the system-level configuration files, the correct strategy is to change the configuration of your
continuous integration build job, adding an environment variable setting that matches an expected pattern.
This won't be visible to normal users on the system.

You can access a project property in your build script simply by using its name as you would use a variable.

Note: If a project property is referenced but does not exist, an exception will be thrown and the build
will fail.

You should check for existence of optional project properties before you access them using the
Proj ect. hasProperty(java.l ang. Stri ng) method.

8
Configuring JVM memory

Gradle defaults to 1024 megabytes maximum heap per JVM process (- Xnx1024m), however, that may be
too much or too little depending on the size of your project. There are many JVM options (this blog post on
Java performance tuning and this reference may be helpful).

You can adjust JVM options for Gradle in the following ways:
The JAVA OPTS environment variable is used for the Gradle client, but not forked JVMs.

Example 35. Changing JVM settings for Gradle client JVM

JAVA OPTS="- Xnx2g - XX: MaxPer ni ze=256m - XX: +HeapDunpOnCQut O MenoryError -Dfil e. ent

You need to use the org. gradl e. j vhar gs Gradle property to configure JVM settings for the Gradle

Daemon.

Page 81 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
https://dzone.com/articles/java-performance-tuning
https://dzone.com/articles/java-performance-tuning
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Example 36. Changing JVM settings for forked Gradle JVMs

org. gradl e.jvmargs=- Xmx2g - XX: MaxPer ni ze=256m - XX: +HeapDunpOnQut O Menor yError - |

Note: Many settings (like the Java version and maximum heap size) can only be specified when
launching a new JVM for the build process. This means that Gradle must launch a separate JVM
process to execute the build after parsing the various gr adl e. pr operti es files.

When running with the Gradle Daemon, a JVM with the correct parameters is started once and
reused for each daemon build execution. When Gradle is executed without the daemon, then a new
JVM must be launched for every build execution, unless the JVM launched by the Gradle start script
happens to have the same parameters.

Certain tasks in Gradle also fork additional JVM processes, like the test task when using
Test . set MaxPar al | el Forks(int) for JUnit or TestNG tests. You must configure these through the
tasks themselves.

Example 37. Set Java compile options for JavaConpi | e tasks
apply plugin: "java"

tasks. wi t hType(JavaConpil e) {
options.conpilerArgs += ["-Xdoclint:none", "-Xint:none", "-nowarn"]

See other examples in the Test API documentation and test execution in the Java plugin reference.

Build scans will tell you information about the JVM that executed the build when you use the - - scan option.

Page 82 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com

& scans.gradle.com &

&
-
Ik
&

&

=
]

g7 Build Scan

Console log
Timeline
Performance

Projects

¥5 Dependencies

Plugins
Switches

Infrastructure

o + transitive-de... compileDebugCpp ©Oct 11, 2017 11

8E an SWitcnes

13 infrastructure properties

Operating system Mac
CPU cores 4 co
Max Gradle workers 4w
Java runtime Orai

Env
Java WM Ora

WM
Max JVM memory heap size 54
See all items

£ Gradle Inc. 2018

Terms of Service | Status | Help and Feedback

8

Configuring a task using project properties

It's possible to change the behavior of a task based on project properties specified at invocation time.

Suppose you'd like to ensure release builds are only triggered by CI. A simple way to handle this is through
ani sCl project property.

Page 83 of 777

https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

Example 38. Prevent releasing outside of Cl

buil d. gradl e
task perfornRel ease {
doLast {
i f (proj

ect. hasProperty("isCl")) {

println("Perform ng rel ease actions")

} else {

t hrow new | nval i dUser Dat aExcepti on(" Cannot

Output of gr adl e perfornRel ease -Pi sCl=true --quiet
> gradl e perfornRel ease -PisCl=true --quiet
Perform ng rel ease actions

8

Accessing the web through a HTTP proxy

performrel ease outside ol

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard

JVM system properties. These properties can be set directly in the build script; for example, setting the

HTTP proxy host would be done with Syst em set Property(' http. proxyHost',

. Alternatively, the properties can be specified in gradle.properties.

Example 39. Configuring an HTTP proxy using gr adl e. properties

systenProp. http.
syst enProp. http.
systenProp. http.
syst enProp. http.
systenProp. http.

pr oxyHost =www. sonmehost . or g

pr oxyPor t =8080

proxyUser =userid

pr oxyPasswor d=passwor d

nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.

Example 40. Configuring an HTTPS proxy using gr adl e. properti es

systenProp. https.
syst enProp. https.
systenProp. https.
syst enProp. https.
systenProp. https.

pr oxyHost =www. sonmehost . org

pr oxyPor t =8080

pr oxyUser =userid

pr oxyPasswor d=passwor d

nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

" wwv, sonmehost . or

You may need to set other properties to access other networks. Here are 2 references that may be helpful:

ProxySetup.java in the Ant codebase

Page 84 of 777

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD

JDK 7 Networking Properties

8
NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as
the username and password. There are 2 ways that you can provide the domain for authenticating to a
NTLM proxy:

Set the ht t p. proxyUser system property to a value like domai n/ user nane.

Provide the authentication domain via the ht t p. aut h. nt | m domai n system property.

Page 85 of 777

http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Troubleshooting

The following is a collection of common issues and suggestions for addressing them. You can get other tips
and search the Gradle forums and StackOverflow #gradle answers, as well as Gradle documentation from
help.gradle.org.

8§
Troubleshooting Gradle installation

If you followed the installation instructions, and aren’t able to execute your Gradle build, here are some tips
that may help.

If you installed Gradle outside of just invoking the Gradle Wrapper, you can check your Gradle installation by
running gr adl e - -versi on in aterminal.

You should see something like this:

gradl e --version

Build tine: 2018-02-21 15:28:42 UIC

Revi si on: 819e0059da49f 469d3e9hb2896dc4e72537¢c4847d

G oovy: 2.4.12

Ant : Apache Ant(TM version 1.9.9 conpiled on February 2 2017
JVM 1.8.0_151 (Oracle Corporation 25.151-b12)

Cs: Mac OS X 10. 13.3 x86_64

If not, here are some things you might see instead.

8
Command not found: gradle

If you get "command not found: gradle”, you need to ensure that Gradle is properly added to your PATH.

Page 86 of 777

https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle
https://help.gradle.org/

8
JAVA_HOME is set to an invalid directory

If you get something like:

ERROR. JAVA HOME is set to an invalid directory
Pl ease set the JAVA HOVE variable in your environnent to match the | ocation of yi

You'll need to ensure that a Java Development Kit version 7 or higher is properly installed, the JAVA HOME
environment variable is set, and Java is added to your PATH.

8
Permission denied

If you get "permission denied”, that means that Gradle likely exists in the correct place, but it is not
executable. You can fix this using chnod +x pat h/t o/ execut abl e on *nix-based systems.

8§
Other installation failures

If gradl e --version works, but all of your builds fail with the same error, it is possible there is a problem

with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running gr adl e hel p which executes configuration
scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If not, then the problem
exists within the execution of one or more of the requested tasks (Gradle executes configuration scripts first,
and then executes build steps).

§
Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in Troubleshooting
Dependency Resolution.

You can see a dependency tree and see which resolved dependency versions differed from what was
requested by clicking the Dependencies view and using the search functionality, specifying the resolution
reason.

Page 87 of 777

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml

Figure 4. Debugging dependency conflicts with build scans

o0 ® < Em| @ scans.gradle.com &]] ’T
~ Build Scan e} v/ gradle :docs:userguide... Feb 21, 2018 3:06:35 PM MST
E Summary Search
Console IOg | [Resolution: Selected different from requested X] |
#+ Timeline

W Performance . Found 3 dependencies resolved in 1 project across 2 configurations

[

o Projects
€9 Dependencies docs ~

Plugi asciidoctor ~ - 0.018s

ugins org.asciidoctor:asciidoctorj:1.5.2 = 1.5.6 conflict resolution

o=
o= Custom values userGuideTask v - 0.011s
g Switches xerces:xerceslmpl:2.9.0 — 2.11.0 conflict resolution
— xml-apis:xml-apis:1.3.04 — 1.4.01 conflict resolution

Infrastructure

I

Home » Dependencies Close dependency details (esc)

The actual build scan with filtering criteria is available for exploration.

8§
Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see the guide to Improving the Performance of
Gradle Builds.

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up Your
Android Gradle Builds. Many tips are also covered in the Android Studio user guide on optimizing build
speed.

Page 88 of 777

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/
https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

8§
Debugging build logic

8
Attaching a debugger to your build

You can set breakpoints and debug buildSrc and standalone plugins in your Gradle build itself by setting the 1
property to “true” and then attaching a remote debugger to port 5005.

gradl e hel p -Dorg. gradl e. debug=true --no-daenon
In addition, if you've adopted the Kotlin DSL, you can also debug build scripts themselves.
The following video demonstrates how to debug an example build using IntelliJ IDEA.

Figure 5. Interactive debugging of a build script

] - .../build.gradle.kts [gradle-digest-plugin]

L] L] __| gradle-digest-plugin [~/srcferiwen/gradle-digest-plugin
. | i v
b

.build.gradle.kts
7

I

pluginBundle {

pa{)l ishing {

| cre

Build_gradle ‘publishing { publications.create("mavenlava”, Mave..."' publishing{..}

Note: You must either stop running Gradle Daemons or run with - - no- daenon when using debug
mode.

Page 89 of 777

8
Adding and changing logging

In addition to controlling logging verbosity, you can also control display of task outcomes (e.g.
“UP-TO-DATE") in lifecycle logging using the - - consol e=ver bose flag.

You can also replace much of Gradle’s logging with your own by registering various event listeners. One
example of a custom event logger is explained in the logging documentation. You can also control logging
from external tools, making them more verbose in order to debug their execution.

Note: Additional logs from the Gradle Daemon can be found under GRADLE_USER_HOVE/ daenon/ <gr

8§
Task executed when it should have been UP-TO-DATE

- - i nf o logs explain why a task was executed, though build scans do this is searchable, visual way by going
to the Timeline view and clicking on the task you want to inspect.

Figure 6. Debugging incremental build with a build scan

(o] ® < (5] i@ scans.gradle.com & M [

K

ﬁ Build Scan € v/ gradle :docs:userguideHtml Feb 21, 2018 3:06:35 PM MST

Slsammany = 12 tasks executed in 1 project in 43.899s
Console log

:docs:userguideHtml

Wb Performance

(] L]

o Projects
Path Started after Duration Class Order: Execution +
&9 Dependencies Ext |
b Plugins Ge
o :docs:userguideAsciidoc brT4
o= Custom values :docs:chech nids Started after 0.108 prif
E Switches : fig Duration
n Class o o build.docs CacheableAsciidoctorTask
B Infrastructure ' ! e
The task was not up-to-date because of the following reasons:
Task docs:userguideAsciidoc’ class path has changed from pcT3
:docs:userguideDocbook 764654807a0962e25e318676ecec5244 to 1EE

97e9924c30cd3fe08d245f30f54acP2a.
:docs:userguideHtml

Build cache result > Miss (local and remote), Store (local)

ome + Timeline Close timeline fesc)

You can learn what the task outcomes mean from this listing.

Page 90 of 777

8
Debugging IDE integration

Many infrequent errors within IDEs can be solved by "refreshing" Gradle. See also more documentation on
working with Gradle in IntelliJ IDEA and in Eclipse.

8§
Refreshing IntelliJ IDEA

NOTE: This only works for Gradle projects linked to IntelliJ.
From the main menu, go to Vi ew> Tool W ndows > Gr adl e. Then click on the Refresh icon.

Figure 7. Refreshing a Gradle project in IntelliJ IDEA

& [] | gradle-digest-plugin [~/src/eriwen/gradle-digest-plugin] - .../build.gradle.kts [gradle-digest-plugin]

<) Remote Debug Gradle

Refresh all Gradle projects
+ (_, I o5

¥ (= gradle- 2st-plugin (auto-impo

ael

timeonly(

build

build

build setup
documentation

help

other

plugin development
plugin portal

publishing

>
>
>
>
>
>
>
>
>
>

verification

» N Dependencies

'buildScan { setTer ServiceUrl("https://gradle.c...' ' b

§
Refreshing Eclipse (using Buildship)

If you're using Buildship for the Eclipse IDE, you can re-synchronize your Gradle build by opening the
"Gradle Tasks" view and clicking the "Refresh" icon, or by executing the Gr adl e > Ref resh Gradl e Proj
command from the context menu while editing a Gradle script.

Page 91 of 777

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project
https://projects.eclipse.org/projects/tools.buildship

Figure 8. Refreshing a Gradle project in Eclipse Buildship

eclipse-workspace - multirepo-app/build.gradle - Eclipse

o0 e
i @ = H 0@ Q- WG BB -y
5 & build.gradle g3
= lapply plugin: 'java'
Z2apply plugin: 'application'
3apply plugin: 'idea'
4apply plugin: 'eclipse'

5

8
10
12

13
141

8

11 dependencies {
compile "org.sample:number-utils:1.0"
compile "org.sample:string-utils:1.0"

6group "org.sample"
7version "1.0"

9mainClassName = "org.sample.myapp.Main"

Getting additional help

&G

=

]

¥ Gradle Tasks 23

Name

v multirepo-app
» (22 application
» 2 build scan
» (22 build setup
> (2 build
P (& distribution
P (2 documentation
> (2 help
b 2 ide
b & verification

» (=2 number-utils

» L string-utils

T

=g
=8,
% &% Y @

Dest Refresh Tasks for Al Proje
. .

|Q)r-—
=

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the help forum or
search relevant developer resources using help.gradle.org.

If you believe you've found a bug in Gradle, please file an issue on GitHub.

Page 92 of 777

https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

Embedding Gradle using the Tooling API

§
Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into
your own software. This API allows you to execute and monitor builds and to query Gradle about the details
of a build. The main audience for this API is IDE, CI server, other Ul authors; however, the API is open for
anyone who needs to embed Gradle in their application.

Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.
Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.
IntelliJ IDEA uses the Tooling API for importing your Gradle project and running tasks.

8§
Tooling API Features

A fundamental characteristic of the Tooling APl is that it operates in a version independent way. This means
that you can use the same API to work with builds that use different versions of Gradle, including versions
that are newer or older than the version of the Tooling API that you are using. The Tooling API is Gradle
wrapper aware and, by default, uses the same Gradle version as that used by the wrapper-powered build.

Some features that the Tooling API provides:

Query the details of a build, including the project hierarchy and the project dependencies, external
dependencies (including source and Javadoc jars), source directories and tasks of each project.

Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages shown in
the 'status bar' when you run on the command line).

Execute a specific test class or test method.

Receive interesting events as a build executes, such as project configuration, task execution or test
execution.

Cancel a build that is running.

Combine multiple separate Gradle builds into a single composite build.

Page 93 of 777

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved
library, and makes no assumptions about your classloader structure or logging configuration. This makes the
API easy to embed in your application.

8§
Tooling APl and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it
model building requests or task executing requests will be executed in the same long-living process. The
Gradle Daemon contains more details about the daemon, specifically information on situations when new
daemons are forked.

8§
Quickstart

As the Tooling APl is an interface for developers, the Javadoc is the main documentation for it. We provide
several samples that live in sanpl es/ t ool i ngApi in your Gradle distribution. These samples specify all of
the required dependencies for the Tooling API with examples for querying information from Gradle builds
and executing tasks from the Tooling API.

To use the Tooling API, add the following repository and dependency declarations to your build script:
Example 41. Using the tooling API
buil d. gradl e

repositories {
maven { url 'https://repo.gradle.org/gradle/libs-rel eases' }

dependenci es {
conpile "org. gradl e: gradl e-tool i ng-api : ${t ool i ngApi Versi on}"

runtine 'org.slf4j:slf4j-sinple:1.7.10

The main entry point to the Tooling API is the Gr adl eConnect or . You can navigate from there to find code
samples and explore the available Tooling API models. You can use G adl eConnect or. connect () to
create a Proj ect Connecti on. A Proj ect Connecti on connects to a single Gradle project. Using the
connection you can execute tasks, tests and retrieve models relative to this project.

Page 94 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/tooling/GradleConnector.html#connect--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/tooling/ProjectConnection.html

8§
Gradle version and Java version compatibility

8§
Provider side

The current version of Tooling APl supports running builds using Gradle versions 1.2 and later. However,
support for running builds with Gradle versions older than 2.6 is deprecated and will be removed in Tooling
API version 5.0.

8§
Consumer side

The current version of Gradle supports running builds via Tooling API versions 2.0 and later. However,
support for running builds via Tooling API versions older than 3.0 is deprecated and will be removed in
Gradle 5.0.

You should note that not all features of the Tooling API are available for all versions of Gradle. For example,
build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the documentation for
each class and method for more details.

8
Java version

The Tooling API requires Java 8 or later. Java 7 is currently still supported but will be removed in Gradle 5.0.
The Gradle version used by builds may have additional Java version requirements.

Page 95 of 777

Build Cache

Note: The build cache feature described here is different from the Android plugin build cache.

8
Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by other
builds. The build cache works by storing (locally or remotely) build outputs and allowing builds to fetch these
outputs from the cache when it is determined that inputs have not changed, avoiding the expensive work of
regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching leverages the
same intelligence as up-to-date checks that Gradle uses to avoid work when a previous local build has
already produced a set of task outputs. But instead of being limited to the previous build in the same
workspace, task output caching allows Gradle to reuse task outputs from any earlier build in any location on
the local machine. When using a shared build cache for task output caching this even works across
developer machines and build agents.

Apart from task output caching, we expect other features to use the build cache in the future.

Note: A complete guide is available about using the build cache. It covers the different scenarios
caching can improve, and detailed discussions of the different caveats you need to be aware of
when enabling caching for a build.

8§
Enable the Build Cache

By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with - - bui | d- cache on the command-line
Gradle will use the build cache for this build only.

Put or g. gradl e. cachi ng=true in your gradl e. properties
Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled with - - no- bui

When the build cache is enabled, it will store build outputs in the Gradle user home. For configuring this

Page 96 of 777

https://developer.android.com/studio/build/build-cache.html
https://guides.gradle.org/using-build-cache/

directory or different kinds of build caches see the section called “Configure the Build Cache”.

8§
Task Output Caching

Beyond incremental builds described in the section called “Up-to-date checks (AKA Incremental Build)”,
Gradle can save time by reusing outputs from previous executions of a task by matching inputs to the task.
Task outputs can be reused between builds on one computer or even between builds running on different
computers via a build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration agents
should pull cache entries from the remote build cache. We expect that developers will not be allowed to
populate the remote build cache, and all continuous integration builds populate the build cache after running
the cl ean task.

For your build to play well with task output caching it must work well with the incremental build feature. For
example, when running your build twice in a row all tasks with outputs should be UP- TO- DATE. You cannot
expect faster builds or correct builds when enabling task output caching when this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see the section called
“Enable the Build Cache”.

8§
What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build the first
time.

$> gradl e --build-cache conpil eJava
: conpi | eJava

: processResour ces

: cl asses

) ar

cassenbl e

BU LD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the same as
without the build cache. Let’s clean and run the build again.

$> gradl e clean
:clean

BU LD SUCCESSFUL

Page 97 of 777

$> gradl e --buil d-cache assenbl e
: conpi | eJava FROMt CACHE

. processResour ces

. cl asses

) ar

. assenbl e

BU LD SUCCESSFUL

Now we see that, instead of executing the : conpi | eJava task, the outputs of the task have been loaded
from the build cache. The other tasks have not been loaded from the build cache since they are not
cacheable. This is due to : cl asses and : assenbl e being lifecycle tasks and : pr ocessResour ces and :
being Copy-like tasks which are not cacheable since it is generally faster to execute them.

8§
Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that uniquely
defines the task’s outputs based on its inputs. That build cache key is used to request previous outputs from
a build cache or push new outputs to the build cache. If the previous build is already populated by someone
else, e.g. your continuous integration server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for up-to-date
checks:

The task type and its classpath

The names of the output properties

The names and values of properties annotated as described in the section called “Custom task types”
The names and values of properties added by the DSL via Taskl nput s

The classpath of the Gradle distribution, buildSrc and plugins

The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the €Cacheabl eTask annotation. Note that €Cachesz
is not inherited by subclasses. Custom task types are not cacheable by default.

8
Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:
Java toolchain: JavaConpi | e, Javadoc

Groovy toolchain: G- oovyConpi | e, G oovydoc

Page 98 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Scala toolchain: Scal aConpi | e, Pl at f or mScal aConpi | e, Scal aDoc
Native toolchain: CppConpi | e, CConpi | e, Swi ft Conpi | e

Testing: Test

Code quality tasks: Checkst yl e, CodeNar c, Fi ndBugs, JDepend, Prnd
JaCoCo: JacocoMer ge, JacocoRepor't

Other tasks: Ant | r Task, Val i dat eTaskProperties, WiteProperties
All other built-in tasks are currently not cacheable.

Some tasks, like Copy or Jar, usually do not make sense to make cacheable because Gradle is only
copying files from one location to another. It also doesn’t make sense to make tasks cacheable that do not
produce outputs or have no task actions.

8
Third party plugins

There are third party plugins that work well with the build cache. The most prominent examples are the
Android plugin 3.1+ and the Kotlin plugin 1.2.21+. For other third party plugins, check their documentation to
find out whether they support the build cache.

8
Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that the results
from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical because
the same cache key is used by both executions. Missing task outputs can cause build failures if Gradle does
not completely capture all outputs for a given task. Wrongly declared task inputs can lead to cache misses
especially when containing volatile data or absolute paths. (See the section called “Task inputs and outputs”
on what should be declared as inputs and outputs.)

Note: The task path is not an input to the build cache key. This means that tasks with different task
paths can re-use each other’s outputs as long as Gradle determines that executing them yields the
same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for example using
TestKit) to check that a task produces the same outputs for identical inputs and captures all output files for
the task. We suggest adding tests to ensure that the task inputs are relocatable, i.e. that the task can be
loaded from the cache into a different build directory (see €Pat hSensi ti ve).

In order to handle volatile inputs for your tasks consider configuring input normalization.

Page 99 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.cpp.tasks.CppCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.language.c.tasks.CCompile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.WriteProperties.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://blog.gradle.org/kotlin-build-cache-use
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/PathSensitive.html

8§
Configure the Build Cache

You can configure the build cache by using the Settings. bui |l dCache(org. gradl e.api.Action)
block in setti ngs. gradl e.

Gradle supports a | ocal and a r enot e build cache that can be configured separately. When both build
caches are enabled, Gradle tries to load build outputs from the local build cache first, and then tries the
remote build cache if no build outputs are found. If outputs are found in the remote cache, they are also
stored in the local cache, so next time they will be found locally. Gradle pushes build outputs to any build
cache that is enabled and has Bui | dCache. i sPush() settotrue.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a Di rect or yBui | dCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to (
Bui | dCacheConfi guration. renote(java.l ang. d ass)).

8
Built-in local build cache

The built-in local build cache, Di r ect or yBui | dCache, uses a directory to store build cache artifacts. By
default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory by removing entries that have not been used
recently to conserve disk space.

For more details on the configuration options refer to the DSL documentation of Di r ect or yBui | dCache.
Here is an example of the configuration.

Example 42. Configure the local cache

settings.gradle
bui | dCache {
| ocal (DirectoryBuil dCache) {
directory = new File(rootDir, 'build-cache")
renoveUnusedEntri esAft er Days = 30

8
Remote HTTP build cache

Gradle has built-in support for connecting to a remote build cache backend via HTTP. For more details on
what the protocol looks like see Ht t pBui | dCache. Note that by using the following configuration the local
build cache will be used for storing build outputs while the local and the remote build cache will be used for
retrieving build outputs.

Page 100 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush--
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html

Example 43. Pull from HttpBuildCache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/"'
}
}

You can configure the credentials the Ht t pBui | dCache uses to access the build cache server as shown in
the following example.

Example 44. Configure remote HTTP cache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "http://exanple.com 8123/ cache/"’
credentials {
username = 'buil d-cache-user'
password = ' sone-conpl i cat ed- passwor d'
}
}
}

Note: You may encounter problems with an untrusted SSL certificate when you try to use a build
cache backend with an HTTPS URL. The ideal solution is for someone to add a valid SSL certificate
to the build cache backend, but we recognize that you may not be able to do that. In that case, set
Ht t pBui | dCache. i sAl | ownt r ust edServer () totrue:

Example 45. Allow untrusted SSL certificate for HttpBuildCache

Note: settings. gradl e

bui | dCache {
renot e(Ht t pBui | dCache) {
url = '"https://exanpl e.com 8123/ cache/'

al | owUnt rust edServer = true

This is a convenient workaround, but you shouldn’t use it as a long-term solution.

§
Configuration use cases

The recommended use case for the build cache is that your continuous integration server populates the
remote build cache with clean builds while developers pull from the remote build cache and push to a local
build cache. The configuration would then look as follows.

Page 101 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
http://www.gradle.org/docs/4.7/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer

Example 46. Recommended setup for Cl push use case

settings.gradle
ext.isC Server = System getenv().contai nskey("Cl")

bui | dCache {
| ocal {
enabl ed = !isC Server
}
renot e(Ht t pBui | dCache) ({
url = "https://exanple.com 8123/ cache/"'

push = isC Server

If you use a bui | dSr ¢ directory, you should make sure that it uses the same build cache configuration as
the main build. This can be achieved by applying the same script to bui | dSrc/ setti ngs. gradl e and set
as shown in the following example.

Example 47. Consistent setup for buildSrc and main build

settings.gradle
apply from new File(settingsDir, 'gradle/buildCacheSettings.gradle')

bui |l dSrc/settings. gradle
apply from new File(settingsDir, '../gradle/buildCacheSettings.gradle')

gradl e/ bui | dCacheSettings. gradle
ext.isC Server = System getenv().contai nsKey("Cl")

bui | dCache {
| ocal {
enabled = !isG Server
}
renot e(Ht t pBui | dCache) {
url = "https://exanmpl e.com 8123/ cache/"

push = isC Server

It is also possible to configure the build cache from an init script, which can be used from the command line,
added to your Gradle user home or be a part of your custom Gradle distribution.

Page 102 of 777

Example 48. Init script to configure the build cache

init.gradle
gradl e. settingsEval uated { settings ->
settings. bui |l dCache {

renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/"'

8
Build cache and composite builds

Gradle’s composite build feature allows including other complete Gradle builds into another. Such included
builds will inherit the build cache configuration from the top level build, regardless of whether the included
builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the top level
build’s configuration. This also applies to any bui | dSr ¢ projects of any included builds.

8§
How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise for
centralized management. The cache node can also be used without a Gradle Enterprise installation with
restricted functionality.

8§
Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in support for
connecting to an HTTP backend) requires implementing your own logic for connecting to your custom build
cache backend. To this end, custom build cache types can be registered via
Bui | dCacheConfi guration. regi sterBuil dCacheService(java.l ang. Cl ass,

java. |l ang. Cl ass) . For an example of what this could look like see the Gradle Hazelcast plugin.

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache backend.

Page 103 of 777

https://hub.docker.com/r/gradle/build-cache-node/
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
https://github.com/gradle/gradle-hazelcast-plugin
https://gradle.com/build-cache

Writing Gradle build scripts

Build Script Basics

§
Projects and tasks

Everything in Gradle sits on top of two basic concepts: projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that
you are doing with Gradle. For example, a project might represent a library JAR or a web application. It
might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your
application to staging or production environments. Don’t worry if this seems a little vague for now. Gradle’s
build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

8
Hello world

You run a Gradle build using the gr adl e command. The gr adl e command looks for a file called bui | d. gr
in the current directory.[?l We call this bui | d. gr adl e file a build script, although strictly speaking it is a
build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example 49. Your first build script

bui I d. gradl e
task hello {
doLast {

println "Hello world!'

Page 105 of 777

In a command-line shell, move to the containing directory and execute the build script with gr adl e -q hel |

What does - g do?

Most of the examples in this user guide are run with the - ¢ command-line option. This suppresses
Gradle’s log messages, so that only the output of the tasks is shown. This keeps the example output
in this user guide a little clearer. You don’'t need to use this option if you don’t want to. See Logging
for more details about the command-line options which affect Gradle’s output.

Example 50. Execution of a build script

Outputofgradl e -q hello
> gradle -q hello
Hell o worl d!

What's going on here? This build script defines a single task, called hel | o, and adds an action to it. When
you run gradl e hell o, Gradle executes the hel | o task, which in turn executes the action you've
provided. The action is simply a closure containing some Groovy code to execute.

If you think this looks similar to Ant’s targets, you would be right. Gradle tasks are the equivalent to Ant
targets, but as you will see, they are much more powerful. We have used a different terminology than Ant as
we think the word task is more expressive than the word target. Unfortunately this introduces a terminology
clash with Ant, as Ant calls its commands, such as j avac or copy, tasks. So when we talk about tasks, we
always mean Gradle tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant
commands), we explicitly say Ant task.

8
A shortcut task definition

Note: This functionality is deprecated and will be removed in Gradle 5.0 without replacement. Use
the methods Task. doFirst(org.gradl e. api . Action) and

Task. doLast (org. gradl e. api . Acti on) to define an action instead, as demonstrated by the
rest of the examples in this chapter.

There is a shorthand way to define a task like our hel | o task above, which is more concise.
Example 51. A task definition shortcut

buil d. gradl e
task hello << {
println "Hello world!’

Again, this defines a task called hel | o with a single closure to execute. The << operator is simply an alias
for doLast .

Page 106 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

8§
Build scripts are code

Gradle’s build scripts give you the full power of Groovy. As an appetizer, have a look at this:

Example 52. Using Groovy in Gradle's tasks

buil d. gradl e
task upper {
doLast {

String soneString =
println "Oiginal:
println "Upper case:

Output of gradl e -qgq upper
> gradl e -qg upper
Oiginal: my_nAnE
Upper case: MY_NAME

or

nY_nAnE'
+ soneString
+ soneString. t oUpper Case()

Example 53. Using Groovy in Gradle's tasks

buil d. gradl e
task count {
doLast ({

4.times { print "$it

Output of gradl e -g count
> gradl e -q count
0123

§

Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

o}

Page 107 of 777

Example 54. Declaration of task that depends on other task

buil d. gradl e
task hello {
doLast {
println 'Hello world!'
}
}
task intro(dependsOn: hello) {
doLast {
println "I'm G adl e"
}
}

Outputofgradl e -qg intro
> gradle -q intro
Hell o worl d!
I'm G adle

To add a dependency, the corresponding task does not need to exist.

Example 55. Lazy dependsOn - the other task does not exist (yet)

bui | d. gradl e
task taskX(dependsOn: 'taskY') {
doLast {
println 'taskX
}
}
task taskY {
doLast ({
println 'taskY
}
}

Outputofgradl e -g taskX
> gradle -qg taskX
taskyY

taskX

The dependency of taskX to taskY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in the section called “Adding
dependencies to a task”.

Please notice that you can’t use shortcut notation (see the section called “Shortcut notations”) when referring
to a task that is not yet defined.

Page 108 of 777

8§
Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it
to dynamically create tasks.

Example 56. Dynamic creation of a task

buil d. gradl e
4.times { counter ->
task "task$counter” {
doLast {
println "I'mtask nunber S$counter"

Outputof gradl e -qg taskl
> gradle -qg taskl
' mtask nunber 1

8§
Manipulating existing tasks

Once tasks are created they can be accessed via an API. For instance, you could use this to dynamically
add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example 57. Accessing a task via APl - adding a dependency

buil d. gradl e
4.times { counter ->
task "task$counter" {
doLast {
println "I'mtask nunber $counter"

}
t ask0. dependsOn task2, task3

Output of gradl e -qg taskO
> gradle -qg taskO
I''mtask nunber 2
I'mtask nunber 3
I''mtask nunber O

Or you can add behavior to an existing task.

Page 109 of 777

Example 58. Accessing a task via APl - adding behaviour

buil d. gradl e
task hello {
doLast {

println '"Hello Earth'

}
hel | 0. doFirst {

println 'Hello Venus'
}
hel | 0. doLast {

println '"Hello Mars'

}
hell o {
doLast ({
println 'Hello Jupiter'
}
}

Outputofgradl e -q hello
> gradle -q hello
Hel | o Venus

Hello Earth

Hell o Mars

Hel I o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or the

end of the task’s actions list. When the task executes, the actions in the action list are executed in order.

8
Shortcut notations

There is a convenient notation for accessing an existing task. Each task is available as a property of the

build script:

Page 110 of 777

Example 59. Accessing task as a property of the build script

buil d. gradl e
task hello {
doLast {

println 'Hello world!'

}
hel | 0. doLast {

println "Greetings fromthe $hell o. nane task."

Outputofgradl e -q hello

> gradle -q hello

Hell o worl d!

Greetings fromthe hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the conpi | e
task.

8§
Extra task properties

You can add your own properties to a task. To add a property named myPr operty, set ext. nmyProperty
to an initial value. From that point on, the property can be read and set like a predefined task property.

Example 60. Adding extra properties to a task

buil d. gradl e
task nmyTask {
ext.nyProperty = "nyVal ue”

task printTaskProperties {
doLast {
println myTask. nyProperty

Outputof gradl e -qg print TaskProperties
> gradle -q printTaskProperties
myVal ue

Extra properties aren’t limited to tasks. You can read more about them in the section called “Extra
properties”.

Page 111 of 777

8§
Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from a bui | d. xm file. From the example below, you
can learn how to execute Ant tasks and how to access Ant properties:

Example 61. Using AntBuilder to execute ant.loadfile target

buil d. gradl e
task loadfile {
doLast {

def files = file('../antLoadfil eResources").listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant.loadfile(srcFile: file, property: file.name)
println " *** $file. name ***"
println "${ant.properties[file.nane]}"

Outputofgradl e -qg | oadfile

> gradle -q loadfile

*** agile.manifesto.txt ***

I ndi vidual s and interacti ons over processes and tools

Wor ki ng sof tware over conprehensive docunentation

Custoner col |l aboration over contract negotiation

Respondi ng to change over followi ng a plan

*** gradl e. mani festo.txt ***

Make the inpossible possible, make the possible easy and nake the easy el egant.
(inspired by Mdshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Using Ant from Gradle.

§
Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the
example above, is extracting a method.

Page 112 of 777

Example 62. Using methods to organize your build logic

buil d. gradl e
task checksum {
doLast {

fileList('../antLoadfil eResources').each { File file ->
ant . checksun(file: file, property: "cs $file.nane")
println "$file.nane Checksum ${ant.properties["cs_$file.name"]}"

task loadfile {
doLast {
fileList('../antLoadfil eResources').each { File file ->
ant.loadfile(srcFile: file, property: file.nane)
println "I'mfond of $file.nane"

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()

Outputofgradl e -qg | oadfile

> gradle -q loadfile

I"'m fond of agile.manifesto.txt
I'mfond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
a whole chapter to this. See Organizing Build Logic.

8
Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 113 of 777

Example 63. Defining a default task

buil d. gradl e
def aul t Tasks 'clean', 'run

task clean {
doLast {
println 'Default C eaning!'

task run {
doLast {
println 'Default Running!'

}
}
task other {
doLast {
println "I"mnot a default task!"
}

Outputof gradl e -q
> gradle -q

Def aul t C eani ng!
Def aul t Runni ng!

This is equivalent to running gr adl e cl ean run. In a multi-project build every subproject can have its own
specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project
are used (if defined).

8§
Configure by DAG

As we later describe in full detail (see Build Lifecycle), Gradle has a configuration phase and an execution
phase. After the configuration phase, Gradle knows all tasks that should be executed. Gradle offers you a
hook to make use of this information. A use-case for this would be to check if the release task is among the
tasks to be executed. Depending on this, you can assign different values to some variables.

In the following example, execution of the di st ri buti on and r el ease tasks results in different value of

the ver si on variable.

Page 114 of 777

Example 64. Different outcomes of build depending on chosen tasks

buil d. gradl e
task distribution {
doLast {

printin "W build the zip with version=$versi on"

task rel ease(dependsOn: 'distribution') {
doLast {
println 'W rel ease now

gradl e. t askG aph. whenReady {taskG aph ->
i f (taskGraph. hasTask(rel ease)) {
version = '1. 0
} else {
versi on = ' 1. 0- SNAPSHOT'

Outputofgradl e -qg di stribution
> gradle -q distribution
We build the zip with versi on=1. 0- SNAPSHOT

Output of gradl e -q rel ease

> gradle -q rel ease

We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This
works even when the release task is not the primary task (i.e., the task passed to the gr adl e command).

8
Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to
jump into more of the details, have a look at Authoring Tasks.

Otherwise, continue on to the tutorials in Java Quickstart and Dependency Management for Java Projects.

[2] There are command line switches to change this behavior. See Command-Line Interface)

Page 115 of 777

Build Init Plugin

Note: The Build Init plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see the section called
“Using plugins”). The Build Init plugin is an automatically applied plugin, which means you do not need to
apply it explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the
Gradle build. There is no need to create a “stub” bui | d. gr adl e file in order to apply the plugin.

It also leverages the wr apper task to generate the Gradle Wrapper files for the project.

8
Tasks

The plugin adds the following tasks to the project:

Table 1. Build Init plugin - tasks

ask name Depends on Type Description
nit wr apper InitBuild Generates a Gradle project.
rapper - W apper Generates Gradle wrapper files.

What to set up

The i ni t supports different build setup types. The type is specified by supplying a - - t ype argument value.
For example, to create a Java library project simply execute: gradl e init --type java-library.

If a --type parameter is not supplied, Gradle will attempt to infer the type from the environment. For
example, it will infer a type value of “ponft if it finds a pom xm to convert to a Gradle build.

Page 116 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

If the type could not be inferred, the type “basi c” will be used.

The i nit plugin also supports generating build scripts using either the Gradle Groovy DSL or the Gradle
Kotlin DSL. The build script DSL to use defaults to the Groovy DSL and is specified by supplying a - - dsl
argument value. For example, to create a Java library project with Kotlin DSL build scripts simply execute: gr

All build setup types include the setup of the Gradle Wrapper.
Note that the migration from Maven builds only supports the Groovy DSL for generated build scripts.
8§

Build init types

Note: As this plugin is currently incubating, only a few build init types are currently supported. More
types will be added in future Gradle releases.

8
“pont (Maven conversion)

The “ponf type can be used to convert an Apache Maven build to a Gradle build. This works by converting
the POM to one or more Gradle files. It is only able to be used if there is a valid “pom xm " file in the
directory that the i ni t task is invoked in or, if invoked via the “-p” command line option, in the specified
project directory. This “poni type will be automatically inferred if such a file exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed
by Gradle community members.

The conversion process has the following features:

Uses effective POM and effective settings (support for POM inheritance, dependency management,
properties)

Supports both single module and multimodule projects

Supports custom module names (that differ from directory names)
Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)
Generates download repositories (inc. local Maven repository)

Adjusts Java compiler settings

Page 117 of 777

https://github.com/jbaruch/maven2gradle

Supports packaging of sources and tests
Supports TestNG runner
Generates global exclusions from Maven enforcer plugin settings

§
“| ava- appl i cation”

The “j ava- appl i cati on” build init type is not inferable. It must be explicitly specified.

It has the following features:

Uses the “appl i cati on” plugin to produce a command-line application implemented using Java
Uses the “j cent er " dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - -t est - f r anewor k argument value. To use a
different test framework, execute one of the following commands:

gradle init --type java-application --test-framework spock: Uses Spock for testing

instead of JUnit

gradle init --type java-application --test-framework testng: Uses TestNG for testing
instead of JUnit

§
“| ava-1i brary”

The “j ava- | i brar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “j ava” plugin to produce a library Jar

Uses the “j cent er ” dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - -t est - f r anewor k argument value. To use a

Page 118 of 777

http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://junit.org

different test framework, execute one of the following commands:

gradle init --type java-library --test-framework spock: Uses Spock for testing instead of
JUnit

gradle init --type java-library --test-framework testng: Uses TestNG for testing instead
of JUnit

8
“scal a-library”

The “scal a- | i br ar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “scal a” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses Scala 2.10

Uses ScalaTest for testing

Has directories in the conventional locations for source code

Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

Uses the Zinc Scala compiler by default

8
“‘groovy-library”

The “gr oovy- | i brary” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “gr oovy” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

Page 119 of 777

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org
http://spockframework.org

8
“gr oovy- appl i cati on”

The “gr oovy- appl i cati on” build init type is not inferable. It must be explicitly specified.

It has the following features:

Uses the “gr oovy” plugin

Uses the “appl i cat i on” plugin to produce a command-line application implemented using Groovy
Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

§
“basic”

The “basi c¢” build init type is useful for creating a fresh new Gradle project. It creates a sample bui | d. gr ac
file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

Page 120 of 777

http://spockframework.org

Writing Build Scripts

This chapter looks at some of the details of writing a build script.

§
The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element.[3! Gradle assumes that each build script is encoded
using UTF-8.

8§
The Project API

In the tutorial in Java Quickstart we used, for example, the appl y() method. Where does this method come
from? We said earlier that the build script defines a project in Gradle. For each project in the build, Gradle
creates an object of type Proj ect and associates this Pr oj ect object with the build script. As the build
script executes, it configures this Pr oj ect object:

Getting help writing build scripts

Don't forget that your build script is simply Groovy code that drives the Gradle APIl. And the
Proj ect interface is your starting point for accessing everything in the Gradle API. So, if you're
wondering what 'tags' are available in your build script, you can start with the documentation for the Pr c
interface.

Any method you call in your build script which is not defined in the build script, is delegated to the Pr oj ect
object.

Any property you access in your build script, which is not defined in the build script, is delegated to the Pr oj
object.

Let’s try this out and try to access the nane property of the Pr oj ect object.

Page 121 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

Example 65. Accessing property of the Project object

buil d. gradl e
println nane

println project.nanme

Output of gradl e -g check
> gradl e -q check

pr oj ect Api
pr oj ect Api

Both pri nt| n statements print out the same property. The first uses auto-delegation to the Pr oj ect

object, for properties not defined in the build script. The other statement uses the proj ect property

available to any build script, which returns the associated Pr oj ect object. Only if you define a property or a

method which has the same name as a member of the Pr oj ect object, would you need to use the pr oj ect

property.

8

Standard project properties

The Proj ect object provides some standard properties, which are available in your build script. The

following table lists a few of the commonly used ones.

Table 2. Project Properties

ame

roj ect

ane

at h

ascription

rojectDir

uildbir

roup

arsi on

nt

Type

Pr oj ect

String

String

String

File

File

oj ect

oj ect

Ant Bui | der

Default Value

The Pr oj ect instance

The name of the project directory.

The absolute path of the project.

A description for the project.

The directory containing the build script.

projectDir/build

unspecified

unspeci fi ed

An Ant Bui | der instance

Page 122 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html

8§
The Script API

When Gradle executes a script, it compiles the script into a class which implements Scri pt . This means
that all of the properties and methods declared by the Scri pt interface are available in your script.

8§
Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra properties.

8§
Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are a feature of the underlying Groovy language.

Example 66. Using local variables

bui I d. gradl e
def dest = "dest™

task copy(type: Copy) {
from "source"

i nto dest

§
Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This includes, but is
not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning
object’'s ext property. Alternatively, an ext block can be used to add multiple properties at once.

Page 123 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Script.html

Example 67. Using extra properties

buil d. gradl e
apply plugin: "java"

ext {
springVersion = "3. 1. 0. RELEASE"
emai | Notification = "buil d@muaster. org"

sourceSets.all { ext.purpose = null }

sourceSets {

mai n {

pur pose = "production"
}
test {

pur pose = "test"
}
pl ugi n {

pur pose = "production"
}

task printProperties {
doLast {
println springVersion
println email Notification
sourceSets. matching { it.purpose == "production" }.each { println it.nam

Outputofgradl e -q printProperties
> gradle -q printProperties

3. 1. 0. RELEASE

bui | d@raster.org

mai n

pl ugin

In this example, an ext block adds two extra properties to the proj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose to nul |l (null is a permissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be
accessed from anywhere their owning object can be accessed, giving them a wider scope than local
variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the Ext r aProperti esExt ensi on class in the

Page 124 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

API| documentation.

8§
Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

Example 68. Configuring arbitrary objects

buil d. gradl e
task configure {
doLast {

def pos = configure(new java.text. FieldPosition(10)) ({
begi nl ndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos.endl ndex

Output of gradl e -g configure
> gradle -q configure

1

5

8

Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

Page 125 of 777

Example 69. Configuring arbitrary objects using a script

buil d. gradl e
task configure {
doLast {

def pos = new java.text.Fiel dPosition(10)
apply from 'other.gradle', to: pos

println pos. begi nl ndex
println pos.endl ndex

ot her.gradl e

1
-

begi nl ndex
endl ndex = 5

Output of gradl e -g configure
> gradle -q configure

1

5

8§
Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write your build
script, and in particular, when you start to write custom plugins and tasks.

8
Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 70. Groovy JDK methods

bui I d. gradl e

configurations.runtinme.each { File f -> println f }

Have a look at http://groovy-lang.org/gdk.html for more details.

Page 126 of 777

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

8
Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 71. Property accessors

bui I d. gradl e

println project.buildbir
println getProject().getBuildDir()

project.buildDir = '"target'
getProject().setBuildDir('target')

8
Optional parentheses on method calls

Parentheses are optional for method calls.

Example 72. Method call without parentheses

bui I d. gradl e

test.systenProperty 'sone.prop', 'value
test.systenProperty(' sone. prop', 'value')
8

List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are

straightforward, but map literals have some interesting twists.

For instance, the “appl y” method (where you typically apply plugins) actually takes a map parameter.

However, when you have a line like “apply plugin:'java

, you aren't actually using a map literal,

you're actually using “named parameters”, which have almost exactly the same syntax as a map literal

(without the wrapping brackets). That named parameter list gets converted to a map when the method is

called, but it doesn't start out as a map.

Page 127 of 777

Example 73. List and map literals

buil d. gradl e
test.includes = ['org/gradle/api/**", '"org/gradle/internal/**"]

List<String> list = new ArrayLi st<String>()
list.add(' org/gradle/api/**")
list.add('org/gradle/internal/**")
test.includes = |ist

Map<String, String> map = [keyl:'valuel', key2: 'value2']

apply plugin: 'java'

8
Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the last
parameter of a method is a closure, you can place the closure after the method call:

Example 74. Closure as method parameter

buil d. gradl e
repositories {
println "in a closure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

8
Closure delegate

Each closure has a del egat e object, which Groovy uses to look up variable and method references which
are not local variables or parameters of the closure. Gradle uses this for configuration closures, where the de

object is set to the object to be configured.

Page 128 of 777

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Example 75. Closure delegates

buil d. gradl e
dependenci es {
assert del egate == project. dependenci es

testCompile('junit:junit:4.12")
del egate.testConpile('junit:junit:4.12")

8§
Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle
scripts. This means that instead of using t hr ow new or g. gradl e. api . t asks. St opExecut i onExcept

you can just type t hr ow new St opExecuti onExcepti on() instead.

Listed below are the imports added to each script:

Gradle default imports.

i mport org.gradle.*

i mport org.gradle.api.*

i mport org.gradle.api.artifacts.*

i mport org.gradle.api.artifacts. conponent.*
i mport org.gradle.api.artifacts.dsl.*

i mport org.gradle.api.artifacts.ivy.*

i mport org.gradle.api.artifacts. maven. *

i mport org.gradle.api.artifacts. query.*

i mport org.gradle.api.artifacts.repositories.*

i mport org.gradle.api.artifacts.result.*

i mport org.gradle.api.artifacts.transform?*
import org.gradle.api.artifacts.type.*

i mport org.gradle.api.attributes.*

i mport org.gradle.api.capabilities.*

i mport org.gradl e. api.comnmponent . *

i mport org.gradle.api.credentials.*

i mport org.gradle.api.distribution.*

i mport org.gradle.api.distribution.plugins.*
i mport org.gradle.api.dsl.*

i mport org.gradle. api.execution.*

i mport org.gradle.api.file.*

i mport org.gradle.api.initialization.?*

i mport org.gradle.api.initialization.definition.*

import org.gradle.api.initialization.dsl.*
i mport org.gradle.api.invocation.*

i mport org.gradle.api.java. archives.*

i mport org.gradle. api.logging.*

Page 129 of 777

i mport org.gradle.api.logging.configuration.?*
i mport org.gradl e. api.nodel.*

i mport org.gradle.api.plugins.*

i mport org.gradl e. api.plugi ns. announce. *

i mport org.gradle.api.plugins.antlr.*

i mport org.gradle. api.plugins. buildconparison. gradle.*
i mport org.gradl e. api.plugins.osgi.*

i mport org.gradle.api.plugins.quality.*

i mport org.gradle.api.plugins.scala.*

i mport org.gradle. api.provider.*

i mport org.gradle. api.publish.*

i mport org.gradle.api.publish.ivy.*

i mport org.gradle.api.publish.ivy.plugins.*

i mport org.gradle.api.publish.ivy.tasks.*

i mport org.gradl e. api.publish. maven. *

i mport org.gradl e.api.publish. maven. pl ugi ns. *
i mport org.gradl e. api.publish. maven.tasks. *

i mport org.gradle.api.publish.plugins.*

i mport org.gradl e.api.publish.tasks.*

i mport org.gradle.api.reflect.*

i mport org.gradle.api.reporting.*

i mport org.gradle.api.reporting.conmponents. *
i mport org.gradl e.api.reporting. dependenci es. *
i mport org.gradle.api.reporting. dependents. *
i mport org.gradl e. api.reporting. nodel . *

i mport org.gradle.api.reporting.plugins.*

i mport org.gradle.api.resources.*

i mport org.gradl e. api.specs.*

i mport org.gradle.api.tasks.*

i mport org.gradle. api.tasks. ant.*

i mport org.gradl e.api.tasks. application.*

i mport org.gradl e. api.tasks. bundling.*

i mport org.gradle.api.tasks.conpile.*

i mport org.gradle. api.tasks. di agnostics.*

i mport org.gradle.api.tasks.increnental.*

i mport org.gradl e.api.tasks.javadoc. *

i mport org.gradle.api.tasks.options.*

i mport org.gradle. api.tasks.scal a.*

i mport org.gradle.api.tasks.testing.*

i mport org.gradle.api.tasks.testing.junit.*

i mport org.gradle.api.tasks.testing.junitplatform?*
i mport org.gradle.api.tasks.testing.testng.*
i mport org.gradle.api.tasks.util.*

i mport org.gradle.api.tasks.w apper.*

i mport org.gradl e.authentication.*

i mport org.gradl e.authentication. aws. *

i mport org.gradle.authentication.http.*

i mport org.gradle.buildinit.plugins.*

i mport org.gradle.buildinit.tasks.*

Page 130 of 777

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

caching. *

cachi ng. confi guration.*
caching. http. *

cachi ng.

ocal . *

concurrent.*

ext er nal

j avadoc. *

i de. vi sual studi o. *

i de. vi sual st udi o. pl ugi ns. *
i de. vi sual studi o. tasks. *

i de. xcode. *

i de. xcode. pl ugi ns. *

i de. xcode. t asks. *

ivy.*
jvm*

j vm appl
j vm appl
jvmpl at f
j vm pl ug

cation.scripts.*
cation.tasks.*
orm*

ns. *

jvmtasks. *
jvmtasks. api . *

jvmtest.

*

jvmtool chain.*

| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.

*

assenbl er. *
assenbl er. pl ugi ns. *
assenbl er .t asks. *
base. *

base. artifact.*
base. conpile. *
base. pl ugi ns. *
base. sources. *
c.*

c.plugins. *
c.tasks.*

cof feescript.*
cpp. *
cpp. pl ugi ns. *
cpp. tasks. *
java. *
java.artifact.*

j ava. pl ugi ns. *

j ava.t asks. *
javascript.*
jvm*

jvm plugins. *
jvmtasks. *
nativeplatform*
nati vepl at f orm t asks. *
obj ectivec. *

Page 131 of 777

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
| ang
mave
nmode
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i
nat i

pl at
pl at
pl at
pl at

pl ay.

pl ay
pl ay
pl ay
pl ay

uage. obj ecti vec. pl ugi ns. *
uage. obj ectivec. tasks. *

uage. obj ecti vecpp. pl ugi ns. *
uage. obj ecti vecpp. t asks. *

uage. obj ecti vecpp. *
uage. pl ugi ns. *
uage.rc.*

uage. rc. plugins. *

uage.rc.tasks. *
uage.routes.*
uage. scal a. *

uage. scal a. pl ugi ns. *
uage. scal a. t asks. *
uage. scal a. t ool chai n. *

uage. swi ft.*

uage. swi ft. plugins. *
uage. swi ft.tasks.*

uage.twirl.*
n.*

| *

vepl atform *

vepl atform pl atform *
vepl at f orm pl ugi ns. *
vepl at formt asks. *

veplatformtest.
vepl atformtest.
veplatformtest.
vepl atformtest.
veplatformtest.
veplatformtest.
vepl atformtest.
veplatformtest.
veplatformtest.
veplatformtest.
vepl atformtest.
veplatformtest.
vepl atformtest.

*

cpp. *
cpp. pl ugi ns. *
cunit.*
cunit.plugins.*
cunit.tasks.*
googl et est . *

googl et est. pl ugi ns. *

pl ugi ns. *

t asks. *

xctest.*

xct est. pl ugi ns. *
xctest.tasks.*

vepl at form t ool chai n. *
vepl at f or m t ool chai n. pl ugi ns. *
nornmal i zation. *

f orm base. *

f orm base. bi nary. *
f orm base. conponent . *
f orm base. pl ugi ns. *

*

.distribution.*
.platform?*
. pl ugins. *
.plugins.ide.*

Page 132 of 777

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

pl ay. tasks. *

pl ay. t ool chain. *

pl ugi n. devel . *

n. devel . pl ugi ns. *
n. devel .t asks. *
n. managenent . *

n. use. *

pl ug
p!l ug
pl ug
pl ug
pl ug
pl ug
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi

ns.
ns.
ns.
ns.
ns.
ns.
ns.
.javascript.coffeescript.*
ns.
ns.
ns.
ns.
ns.

ns

ns

ear.*

ear. descriptor.*
i de. *

i de. api . *

i de. eclipse.*

i de.idea.*
javascri pt . base. *

javascript.envjs.*
javascript.envjs. browser. *
javascript.envjs. http.*
javascript.envjs.http.sinple.*
javascript.jshint.*

.javascript.rhino.*
ns.
ns.
ns.
ns.
ns.
process.
swiftpm
swi ftpm
swiftpm
testing.
testing.
testing.
testing.
testing.

si gni ng. *

si gni ng. si gnatory.*

si gni ng. si gnatory. pgp. *
si gni ng.type. *

si gni ng. type. pgp. *

*

*

pl ugi ns. *

t asks. *

base. *
base. pl ugi ns. *
jacoco. pl ugi ns. *

j acoco. t asks. *
jacoco. tasks.rul es. *

testkit.runner.*

Page 133 of 777

i mport org.gradle.vcs.*
i mport org.gradle.vecs.git.*
i mport org.gradl e.workers. *

[3] Any language element except for statement labels.

Page 134 of 777

Authoring Tasks

In the introductory tutorial (Build Script Basics) you learned how to create simple tasks. You also learned
how to add additional behavior to these tasks later on, and you learned how to create dependencies
between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle
supports enhanced tasks, which are tasks that have their own properties and methods. This is really
different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or built
into Gradle.

8
Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console Ul and via the
Tooling API (see Embedding Gradle using the Tooling API). These labels are based on if a task has actions
to execute, if it should execute those actions, if it did execute those actions and if those actions made any
changes.

Page 135 of 777

Table 3. Details about task outcomes

utcome L N .
bel Description of outcome Situations that have this outcome
e
® Used whenever a task has actions and Gradle has determined they should be
10 | abel) . . executed as part of a build.
- EXEGUTED Task executed its actions.
® Used whenever a task has no actions and some dependencies, and any of the
dependencies are executed. See also the section called “Lifecycle tasks”.
® Used when a task has outputs and inputs and they have not changed. See the
section called “Up-to-date checks (AKA Incremental Build)”.
® Used when a task has actions, but the task tells Gradle it did not change its outputs.
Task’s outputs did not
P- TO- DATE

change. ® Used when a task has no actions and some dependencies, but all of the
dependencies are up-to-date, skipped or from cache. See also the section called
“Lifecycle tasks”.

® Used when a task has no actions and no dependencies.

Task’s outputs could be
ROM CACHE found from a previo®s Used when a task has outputs restored from the build cache. See Build Cache.
execution.

® Used when a task has been explicitly excluded from the command-line. See the

Task did not execute its section called “Excluding tasks from execution”.

KI PPED]
actions. ® Used when a task has an onl yI f predicate return false. See the section called
“Using a predicate”.
= Task did not need fo Used when a task has inputs and outputs, but no sources. For example, source files
execute its actions. are . j ava files for JavaConpi | e.

Defining tasks

We have already seen how to define tasks using a keyword style in Build Script Basics. There are a few
variations on this style, which you may need to use in certain situations. For example, the keyword style
does not work in expressions.

Page 136 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 76. Defining tasks

buil d. gradl e
task(hello) {
doLast {

println "hello"

task(copy, type: Copy) {
fromfile('srcDir"))
i nto(buildDir)

You can also use strings for the task names:

Example 77. Defining tasks - using strings for task names

bui | d. gradl e
task(' hello') {
doLast {

println "hello"

task(' copy', type: Copy) {
from(file(' srchDir'))
i nto(buildDir)

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 78. Defining tasks with alternative syntax

buil d. gradl e
tasks. create(nanme: 'hello") {
doLast {

println "hello"

tasks. create(nanme: 'copy', type: Copy) {
fromfile('srcDir"))
into(buildDir)

Here we add tasks to the t asks collection. Have a look at TaskCont ai ner for more variations of the cr eat
method.

Page 137 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html

8§
Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a
property of the project, using the task name as the property name:

Example 79. Accessing tasks as properties

buil d. gradl e
task hello

println hello.name
println project.hello.nane

Tasks are also available through the t asks collection.
Example 80. Accessing tasks via tasks collection

bui | d. gradl e
task hello

println tasks. hello. nane
println tasks[' hello'].nane

You can access tasks from any project using the task’s path using the t asks. get ByPat h() method. You

can call the get ByPat h() method with a task name, or a relative path, or an absolute path.
Example 81. Accessing tasks by path

buil d. gradl e
project(':projectA) {
task hello

task hello

println tasks. getByPath(' hello").path

println tasks.getByPath(':hello").path

println tasks. getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Outputofgradl e -q hello
> gradle -q hello
‘hello

“hello

:projectA hello
:projectA hello

Page 138 of 777

Have a look at TaskCont ai ner for more options for locating tasks.

8§
Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To create a Copy task for your build, you can
declare in your build script:

Example 82. Creating a copy task

bui I d. gradl e
task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “myCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You'll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 83. Configuring a task - various ways

bui I d. gradl e

Copy nyCopy = task(myCopy, type: Copy)

myCopy. from ' resour ces’

myCopy.into 'target’

nyCopy.include(' **/*. txt", "**/*.xm"', "**/* properties")

This is similar to the way we would configure objects in Java. You have to repeat the context (myCopy) in the

configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable.
It is usually our favorite.

Example 84. Configuring a task - with closure

buil d. gradl e
task nmyCopy(type: Copy)

my Copy {
from'resources'

into 'target'
include(' **/*. txt', "**/* . xm', '"**/* properties')

This works for any task. Line 3 of the example is just a shortcut for the t asks. get ByNanme() method. It is

Page 139 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html

important to note that if you pass a closure to the get ByNane() method, this closure is applied to configure

the task, not when the task executes.
You can also use a configuration closure when you define a task.
Example 85. Defining a task with closure

bui | d. gradl e

task copy(type: Copy) {
from'resources'
into 'target’

include('**/*. txt', "**/* xm', "**/* properties')

}
Don't forget about the build phases
A task has both configuration and actions. When using the doLast , you are simply using a shortcut
to define an action. Code defined in the configuration section of your task will get executed during
the configuration phase of the build regardless of what task was targeted. See Build Lifecycle for
more details about the build lifecycle.

8§

Adding dependencies to a task

There are several ways you can define the dependencies of a task. In the section called “Task
dependencies” you were introduced to defining dependencies using task names. Task names can refer to
tasks in the same project as the task, or to tasks in other projects. To refer to a task in another project, you
prefix the name of the task with the path of the project it belongs to. The following is an example which adds
a dependency from pr oj ect A: t askXto pr oj ect B: t ask:

Page 140 of 777

Example 86. Adding dependency on task from another project

buil d. gradl e
project('projectA) {
task taskX(dependsOn: ':projectB:taskY') {
doLast {
println 'taskX

project(' projectB) {
task taskY {
doLast {
println 'taskY

Outputofgradl e -qgq taskX
> gradle -qg taskX
taskyY

taskX

Instead of using a task name, you can define a dependency using a Task object, as shown in this example:

Example 87. Adding dependency using task object

buil d. gradl e
task taskX {
doLast {

println 'taskX

task taskY {
doLast {
println 'taskY

t askX. dependsOn t askY
Outputofgradl e -qg taskX
> gradle -qg taskX

t askY
t askX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

Page 141 of 777

passed the task whose dependencies are being calculated. The closure should return a single Task or
collection of Task objects, which are then treated as dependencies of the task. The following example adds
a dependency from t askX to all the tasks in the project whose name starts with | i b:

Example 88. Adding dependency using closure

buil d. gradl e
task taskX {
doLast {

println 'taskX

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}
task libl {
doLast {
println "libl
}
}
task lib2 {
doLast {
println "lib2'
}
}

task not ALib {
doLast {
println 'notALi b’

Outputof gradl e -qg taskX
> gradle -q taskX

libl

lib2

t askX

For more information about task dependencies, see the Task API.

8§
Ordering tasks

Note: Task ordering is an incubating feature. Please be aware that this feature may change in later
Gradle versions.

Page 142 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between a task ordering and a task dependency
is that an ordering rule does not influence which tasks will be executed, only the order in which they will be
executed.

Task ordering can be useful in a number of scenarios:
Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

Run build validations early in the build: e.g. validate | have the correct credentials before starting the work for
a release build.

Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests should
run before integration tests.

A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the outputs
of all executed test tasks.

There are two ordering rules available: “must run after” and “should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. This is expressed as t askB. nust RunAf t er (t askA) . The
“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using
that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a
task have been satisfied apart from the “should run after” task, then this task will be run regardless of
whether its “should run after” dependencies have been run or not. You should use “should run after” where
the ordering is helpful but not strictly required.

With these rules present it is still possible to execute t askA without t askB and vice-versa.

Page 143 of 777

Example 89. Adding a 'must run after' task ordering

buil d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

t askY. nust RunAfter taskX

Outputofgradl e -qg taskY taskX
> gradl e -qg taskY taskX

t askX

taskY

Example 90. Adding a 'should run after' task ordering

bui | d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast ({
println 'taskY
}
}

t askY. shoul dRunAfter taskX

Outputof gradl e -qg taskY taskX
> gradl e -q taskY taskX
taskX

taskY

In the examples above, it is still possible to execute t askY without causing t askX to run:
Example 91. Task ordering does not imply task execution

Outputofgradl e -qg taskY
> gradl e -qg taskY
taskyY

Page 144 of 777

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter (java.l ang. Obj ect[]) and Task. shoul dRunAfter(java.lang. Object[])
methods. These methods accept a task instance, a task name or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

Note that “B. must RunAf t er (A) ” or “B. shoul dRunAft er (A) ” does not imply any execution dependency
between the tasks:

It is possible to execute tasks A and B independently. The ordering rule only has an effect when both tasks
are scheduled for execution.

When run with - - cont i nue, it is possible for B to execute in the event that A fails.
As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Example 92. A 'should run after' task ordering is ignored if it introduces an ordering cycle

bui I d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}
task taskz {
doLast ({
println 'taskz
}
}

t askX. dependsOn taskY
t askY. dependsOn taskz
t askZ. shoul dRunAfter taskX

Outputof gradl e -qg taskX
> gradl e -qg taskX

t askZz

taskyY

taskX

8§
Adding a description to a task

You can add a description to your task. This description is displayed when executing gr adl e t asks.

Page 145 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object[]-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 93. Adding a description to a task

buil d. gradl e

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.'

from'resources'
into 'target'
include('**/*. txt', "**/*.xm', '"**/* properties')

8§
Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java
plugin with a custom task of a different type. You can achieve this with:

Example 94. Overwriting a task

buil d. gradl e
task copy(type: Copy)

task copy(overwite: true) {
doLast {
println('l amthe new one.")

Output of gradl e -qgq copy
> gradl e -q copy
I amthe new one.

This will replace a task of type Copy with the task you've defined, because it uses the same name. When
you define the new task, you have to set the overwr it e property to true. Otherwise Gradle throws an

exception, saying that a task with that name already exists.

8§
Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

Page 146 of 777

8
Using a predicate

You can use the onl yl f () method to attach a predicate to a task. The task’s actions are only executed if
the predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as
a parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Example 95. Skipping a task using a predicate

bui | d. gradl e
task hello {
doLast {

println "hello world

hell o.onlylf { !project.hasProperty('skipHello") }

Output of gradl e hell o - Pski pHel | o
> gradle hello -PskipHello
> Task :hell o SKI PPED

BUI LD SUCCESSFUL in Os

8
Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcept i on. If this exception is thrown by an action, the further execution of this action as
well as the execution of any following action of this task is skipped. The build continues with executing the
next task.

Page 147 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 96. Skipping tasks with StopExecutionException

buil d. gradl e
task conpile {
doLast {

println 'W are doing the conpile.’

conpi |l e. doFirst {

if (true) { throw new St opExecuti onException() }

}
task nyTask(dependsOn: 'conpile') {
doLast ({
println 'l am not affected
}
}

Output of gradl e -g myTask
> gradl e -q nyTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution of
the built-in actions of such a task.!!

8
Enabling and disabling tasks

Every task has an enabl ed flag which defaults to t r ue. Setting it to f al se prevents the execution of any of
the task’s actions. A disabled task will be labelled SKIPPED.

Example 97. Enabling and disabling tasks

buil d. gradl e
task disableMe {
doLast {

println 'This should not be printed if the task is disabled.’

}

di sabl eMe. enabl ed = fal se
Output of gr adl e di sabl eMe

> gradl e di sabl eMe

> Task :di sabl eMe SKI PPED

BUI LD SUCCESSFUL in Os

Page 148 of 777

8§
Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done. Consider the
process of compilation. Once your source files have been compiled, there should be no need to recompile
them unless something has changed that affects the output, such as the modification of a source file or the
removal of an output file. And compilation can take a significant amount of time, so skipping the step when
it's not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have almost
certainly already seen it in action: it's active nearly every time the UP- TO- DATE text appears next to the
name of a task when you run a build. Task outcomes are described in the section called “Task outcomes”.

How does incremental build work? And what does it take to make use of it in your own tasks? Let's take a
look.

§
Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the compilation
example from earlier, we can see that the source files are the inputs and, in the case of Java, the generated
class files are the outputs. Other inputs might include things like whether debug information should be
included.

Figure 9. Example task inputs and outputs

Green: inputs

Blue: outputs
Target JDK
version \
Source JavaCompile .
: S —_—
files task Class files

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from the
previous figure. Different bytecode is generated depending on the content of the source files and the
minimum version of the Java runtime you want to run the code on. That makes them task inputs. But

Page 149 of 777

whether compilation has 500MB or 600MB of maximum memory available, determined by the menmor yMaxi
property, has no impact on what bytecode gets generated. In Gradle terminology, menor yMaxi munsi ze is
just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed since the
last build. If they haven't, Gradle can consider the task up to date and therefore skip executing its actions.
Also note that incremental build won't work unless a task has at least one task output, although tasks usually
have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are inputs and
which are outputs. If a task property affects the output, be sure to register it as an input, otherwise the task
will be considered up to date when it's not. Conversely, don't register properties as inputs if they don't affect
the output, otherwise the task will potentially execute when it doesn’'t need to. Also be careful of
non-deterministic tasks that may generate different output for exactly the same inputs: these should not be
configured for incremental build as the up-to-date checks won’t work.

Let’'s now look at how you can register task properties as inputs and outputs.

§
Custom task types

If you're implementing a custom task as a class, then it takes just two steps to make it work with incremental
build:

Create typed properties (via getter methods) for each of your task inputs and outputs
Add the appropriate annotation to each of those properties

Note: Annotations must be placed on getters or on Groovy properties. Annotations placed on
setters, or on a Java field without a corresponding annotated getter are ignored.

Gradle supports three main categories of inputs and outputs:
Simple values

Things like strings and numbers. More generally, a simple value can have any type that implements Seri al i

Filesystem types

These consist of the standard Fi | e class but also derivatives of Gradle’s Fi | eCol | ecti on type and
anything else that can be passed to either the Proj ect. fil e(java. |l ang. Cbj ect) method - for single
file/directory properties - or the Proj ect . fi | es(] ava. | ang. Obj ect[]) method.

Nested values

Custom types that don’t conform to the other two categories but have their own properties that are inputs or
outputs. In effect, the task inputs or outputs are nested inside these custom types.

Page 150 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

As an example, imagine you have a task that processes templates of varying types, such as FreeMarker,
Velocity, Moustache, etc. It takes template source files and combines them with some model data to
generate populated versions of the template files.

This task will have three inputs and one output:
Template source files

Model data

Template engine

Where the output files are written

When you're writing a custom task class, it's easy to register properties as inputs or outputs via annotations.
To demonstrate, here is a skeleton task implementation with some suitable inputs and outputs, along with
their annotations:

Example 98. Custom task class

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

Page 151 of 777

package org.exanpl e;

inmport java.io.File;

i mport java.util.HashMap;

i mport org.gradle.api.?*;

i mport org.gradle.api.file.*;
i mport org.gradle. api.tasks.*;

public class ProcessTenpl ates extends Defaul t Task {
private Tenpl at eEngi neType t enpl at eEngi ne;
private FileCollection sourceFiles;
private Tenpl ateData tenpl at eDat a;
private File outputDir;

@ nput
public Tenpl at eEngi neType get Tenpl at eEngi ne() {
return this.tenplateEngine;

@nput Fil es
public FileCollection getSourceFiles() {
return this.sourceFiles;

@Nest ed
public Tenpl at eDat a get Tenpl at eDat a() {
return this.tenplateData;

@out put Di rectory

public File getQutputDir() { return this.outputbDir; }

@askAction
public void processTenpl ates() {

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ Tenpl at eDat a. j ava

Page 152 of 777

package org. exanpl e;

i mport java.util.HashMap;
i mport java.util. Mp;
i mport org.gradle. api.tasks. I nput;

public class Tenpl ateData {
private String namne;
private Map<String, String> vari ables;

public Tenpl ateData(String name, Map<String, String> variables) ({
thi s. name = nane;
thi s.variabl es = new HashMap<>(vari abl es);

@ nput
public String getNanme() { return this.nane; }

@ nput
public Map<String, String> getVariables() {
return this.variables;

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
> Task :processTenpl at es

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
> Task :processTenpl ates UP- TO DATE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s plenty to talk about in this example, so let’'s work through each of the input and output properties in
turn:

t enpl at eEngi ne

Represents which engine to use when processing the source templates, e.g. FreeMarker, Velocity, etc. You
could implement this as a string, but in this case we have gone for a custom enum as it provides greater type
information and safety. Since enums implement Seri al i zabl e automatically, we can treat this as a simple
value and use the @ nput annotation, just as we would with a St r i ng property.

Page 153 of 777

sourceFil es

The source templates that the task will be processing. Single files and collections of files need their own
special annotations. In this case, we're dealing with a collection of input files and so we use the @ nput Fi | e

annotation. You’'ll see more file-oriented annotations in a table later.
t enpl at eDat a

For this example, we’re using a custom class to represent the model data. However, it does not implement Se
, SO we can't use the @ nput annotation. That's not a problem as the properties within Tenpl at eDat a - a
string and a hash map with serializable type parameters - are serializable and can be annotated with @ nput
. We use @Nest ed on t enpl at eDat a to let Gradle know that this is a value with nested input properties.

outputDir

The directory where the generated files go. As with input files, there are several annotations for output files
and directories. A property representing a single directory requires @ut put Di r ect ory. You'll learn about

the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template engine,
model data or generated files have changed since the previous time Gradle executed the task. This will often
save a significant amount of time. You can learn how Gradle detects changes later.

This example is particularly interesting because it works with collections of source files. What happens if only
one source file changes? Does the task process all the source files again or just the modified one? That
depends on the task implementation. If the latter, then the task itself is incremental, but that’s a different
feature to the one we're discussing here. Gradle does help task implementers with this via its incremental
task inputs feature.

Now that you have seen some of the input and output annotations in practice, let's take a look at all the
annotations available to you and when you should use them. The table below lists the available annotations
and the corresponding property type you can use with each one.

Table 4. Incremental build property type annotations

Expected property

nnotation Description
type
| nput Any serializable type A simple input value
I nputFile Filex A single input file (not directory)
InputDirectory File* A single input directory (not file)
I nput Fi | es Iterabl e<Fil e>* An iterable of input files and directories

Page 154 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Input.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputDirectory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputFiles.html

An iterable of input files and directories that represent a Java classpath. This
allows the task to ignore irrelevant changes to the property, such as different
names for the same files. It is similar to annotating the property @at hSensi ti ve
but it will ignore the names of JAR files directly added to the classpath, and it
will consider changes in the order of the files as a change in the classpath.
J asspat h It arable<Ei &5 Gradle will inspect the contents of jar files on the classpath and ignore changes
that do not affect the semantics of the classpath (such as file dates and entry

order). See also the section called “Using the classpath annotations”.

Note: The @ asspat h annotation was introduced in Gradle 3.2. To
stay compatible with earlier Gradle versions, classpath properties
should also be annotated with @ nput Fi | es.

An iterable of input files and directories that represent a Java compile
classpath. This allows the task to ignore irrelevant changes that do not affect
the API of the classes in classpath. See also the section called “Using the
classpath annotations”.

The following kinds of changes to the classpath will be ignored:
® Changes to the path of jar or top level directories.
® Changes to timestamps and the order of entries in Jars.

® Changes to resources and Jar manifests, including adding or removing
resources.

® Changes to private class elements, such as private fields, methods and inner
Conpi | eCl asspath I terabl e<File>* (|35ses.

® Changes to code, such as method bodies, static initializers and field initializers
(except for constants).

® Changes to debug information, for example when a change to a comment
affects the line numbers in class debug information.

® Changes to directories, including directory entries in Jars.

Note: The @onpi | eCl asspat h annotation was introduced in Gradle
3.4. To stay compatible with Gradle 3.3 and 3.2, compile classpath
properties should also be annotated with @Cl asspath. For
compatibility with Gradle versions before 3.2 the property should also
be annotated with @ nput Fi | es.

Qut put Fil e Fil e* A single output file (not directory)

Qut put Directory File* A single output directory (not file)

Map<String, File>
) . An iterable of output files (no directories). The task outputs can only be cached
Qut put Fi | es **orlterabl e<Fil e> . .
if a Map is provided.

*

Page 155 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CompileClasspath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputDirectory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputFiles.html

Map<String, File>)))]
)) . An iterable of output directories (no files). The task outputs can only be cached
Qut put Directories*orlterabl e<Fil e> .]
if a Map is provided.

*

- Fil e orlterabl e<Fi Beecifies one or more files that are removed by this task. Note that a task can
stroys
. * define either inputs/outputs or destroyables, but not both.

. I St at Fil e orlterabl e<Fi Bpecifies one or more files that represent the local state of the task. These files
ocal State
* are removed when the task is loaded from cache.

A custom type that may not implement Seri al i zabl e but does have at least
Nest ed Any custom type one field or property marked with one of the annotations in this table. It could
even be another @\est ed.

Indicates that the property is neither an input nor an output. It simply affects the
Consol e Any type console output of the task in some way, such as increasing or decreasing the
verbosity of the task.

Indicates that the property is used internally but is neither an input nor an
I nt ernal Any type
output.

In fact, Fi | e can be any type accepted by Proj ect.file(java.lang. Object) andlterabl e<Fil ¢
can be any type accepted by Proj ect. files(java. | ang. Obj ect[]) . Thisincludes instances of Cal
, such as closures, allowing for lazy evaluation of the property values. Be aware that the types Fi | eCol |
and Fil eTree are | t er abl e<Fi | e>s.

%

Similar to the above, Fi | e can be any type accepted by Proj ect . fil e(]java. | ang. Obj ect). The Me
itself can be wrapped in Cal | abl es, such as closures.

Page 156 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/OutputDirectories.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Destroys.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/LocalState.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Table 5. Additional annotations used to further qualifying property type annotations
nnotation Description

Used with @ nput Fi | es or @ nput Di r ect ory to tell Gradle to skip the task if the corresponding files or

SKi BWhenErot directory are empty, along with all other input files declared with this annotation. Tasks that have been
. i yskipped due to all of their input files that were declared with this annotation being empty will result in a

distinct “no source” outcome. For example, NO- SOURCE will be emitted in the console output.

ot | Used with any of the property type annotations listed in the Opt i onal API documentation. This annotation
i ona
disables validation checks on the corresponding property. See the section on validation for more details.

Used with any input file property to tell Gradle to only consider the given part of the file paths as important.
Pat hSensi t i vdror example, if a property is annotated with @at hSensi tive(Pat hSensitivity. NAME_ONLY), then
moving the files around without changing their contents will not make the task out-of-date.

Annotations are inherited from all parent types including implemented interfaces. Property type annotations
override any other property type annotation declared in a parent type. This way an @ nput Fi | e property
can be turned into an @ nput Di r ect or y property in a child task type.

Annotations on a property declared in a type override similar annotations declared by the superclass and in
any implemented interfaces. Superclass annotations take precedence over annotations declared in
implemented interfaces.

The Consol e and | nt er nal annotations in the table are special cases as they don’t declare either task
inputs or task outputs. So why use them? It's so that you can take advantage of the Java Gradle Plugin
Development plugin to help you develop and publish your own plugins. This plugin checks whether any
properties of your custom task classes lack an incremental build annotation. This protects you from
forgetting to add an appropriate annotation during development.

§
Using the classpath annotations

Besides @ nput Fi | es, for JVM-related tasks Gradle understands the concept of classpath inputs. Both
runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with € nput Fi | es, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and jar files on
the classpath itself are ignored. Timestamps and the order of class files and resources inside jar files on a
classpath are ignored, too, thus recreating a jar file with different file dates will not make the task out of date.

Runtime classpaths are marked with €Cl asspat h, and they offer further customization via classpath
normalization.

Input properties annotated with €Conpi | eCl asspat h are considered Java compile classpaths. Additionally

to the aforementioned general classpath rules, compile classpaths ignore changes to everything but class

Page 157 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/CompileClasspath.html

files. Gradle uses the same class analysis described in the section called “Compile avoidance” to further
filter changes that don't affect the class' ABls. This means that changes which only touch the implementation
of classes do not make the task out of date.

§
Nested inputs

When analyzing €Nest ed task properties for declared input and output sub-properties Gradle uses the type

of the actual value. Hence it can discover all sub-properties declared by a runtime sub-type.
When adding €\est ed to a €Pr ovi der , the value of the Pr ovi der is treated as a nested input.

When adding €Nest ed to an iterable, each element is treated as a separate nested input. Each nested input
in the iterable is assigned a name, which by default is the dollar sign followed by the index in the iterable,
e.g. $2. If an element of the iterable implements Naned, then the name is used as property name. The
ordering of the elements in the iterable is crucial for for reliable up-to-date checks and caching if not all of the
elements implement Naned. Multiple elements which have the same name are not allowed.

When adding €N\est ed to a map, then for each value a nested input is added, using the key as name.

The type and classpath of nested inputs is tracked, too. This ensures that changes to the implementation of
a nested input causes the build to be out of date. By this it is also possible to add user provided code as an
input, e.g. by annotating an €Act i on property with €\est ed. Note that any inputs to such actions should be
tracked, either by annotated properties on the action or by manually registering them with the task.

Using nested inputs allows richer modeling and extensibility for tasks, as e.g. shown by Test . get JvnAr gur

This allows us to model the JaCoCo Java agent, thus declaring the necessary JVM arguments and providing
the inputs and outputs to Gradle:

Page 158 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Named.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Named.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://github.com/gradle/gradle/blob/7b047c7cbb4932743243a76123f5347be6d07856/subprojects/jacoco/src/main/java/org/gradle/testing/jacoco/plugins/JacocoPluginExtension.java#L138-L157

cl ass JacocoAgent inpl ements ComrandLi neAr gunent Provi der {
private final JacocoTaskExtension jacoco;

publ i c JacocoAgent (JacocoTaskExt ensi on jacoco) {
this.jacoco = jacoco;

@Nest ed
@t i onal

public JacocoTaskExt ensi on getJacoco() {
return jacoco.isEnabled() ? jacoco : null;

@verride
public Iterabl e<String> asArgunents() {
return jacoco.isEnabl ed() ? |mutabl eList.of (jacoco.get AsJvmArg()) : Coll

test. get JvmAr gunent Provi der s() . add(new JacocoAgent (ext ensi on))

For this to work, JacocoTaskExt ensi on needs to have the correct input and output annotations.

The approach works for Test JVM arguments, since Test . get JvmAr gunent Provi ders() isanlterabl.
annotated with €Nest ed.

There are other task types where this kind of nested inputs are available:

JavaExec. get Argunent Provi der s() - model e.g. custom tools

JavaExec. get JvmAr gunent Provi der s() - used for Jacoco Java agent

Conpi | eOpti ons. get Conpi | er Argunment Provi der s() - model e.g annotation processors
Exec. get Argurrent Provi der s() - model e.g custom tools

In the same way, this kind of modelling is available to custom tasks.

§
Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental build, but
you don’t always have that option. That's why Gradle also provides an alternative API that can be used with
any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for scenarios
just like that. It can also be used for ad-hoc tasks, as you'll see next.

Page 159 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:argumentProviders
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:jvmArgumentProviders
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Exec.html#org.gradle.api.tasks.Exec:argumentProviders

§
Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on every Gradle
task:

Task. get | nput s() of type Taskl nput s
Task. get Qut put s() of type TaskCQut put s
Task. get Dest royabl es() of type TaskDest r oyabl es

These objects have methods that allow you to specify files, directories and values which constitute the task’s
inputs and outputs. In fact, the runtime API has almost feature parity with the annotations. All it lacks is
validation of whether declared files are actually files and declared directories are directories. Nor will it create
output directories if they don’t exist. But that's it.

Let's take the template processing example from before and see how it would look as an ad-hoc task that
uses the runtime API:

Example 99. Ad-hoc task

buil d. gradl e

task processTenpl at esAdHoc {
i nputs. property("engine", Tenpl at eEngi neType. FREEMARKER)
inputs.files(fileTree("src/tenplates"))
i nputs. property("tenpl at eDat a. nane", "docs")
i nputs. property("tenpl ateData. variabl es", [year: 2013])
out puts.dir("$buil dDir/ genQut put2")

doLast {

Output of gr adl e processTenpl at esAdHoc
> gradl e processTenpl at esAdHoc

> Task : processTenpl at esAdHoc

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for this as
it's a non-trivial implementation that has several configuration options. In this case, there are no task
properties to store the root source folder, the location of the output directory or any of the other settings.
That's deliberate to highlight the fact that the runtime API doesn't require the task to have any state. In terms
of incremental build, the above ad-hoc task will behave the same as the custom task class.

Page 160 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskDestroyables.html

All the input and output definitions are done through the methods on i nput s and out put s, such as pr oper
,files(),anddir (). Gradle performs up-to-date checks on the argument values to determine whether
the task needs to run again or not. Each method corresponds to one of the incremental build annotations, for
example i nput s. property() mapsto @ nput and out puts. dir() mapsto @ut putDirectory. The
only difference is that the file(), files(), dir() and dirs() methods don't validate the type of file
object at the given path (file or directory), unlike the annotations.

The files that a task removes can be specified through dest r oyabl es. regi ster ().
Example 100. Ad-hoc task declaring a destroyable

buil d. gradl e
task renmoveTenpDir {
destroyabl es.regi ster("$projectDir/tnpDir")
doLast {
del ete("$projectDir/tnpDir")

One notable difference between the runtime API and the annotations is the lack of a method that
corresponds directly to @Nest ed. That's why the example uses two property() declarations for the
template data, one for each Tenpl at eDat a property. You should utilize the same technique when using the
runtime API with nested values. Any given task can either declare destroyables or inputs/outputs, but cannot
declare both.

§
Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task class that
lacks the requisite annotations. For example, imagine that the ProcessTenpl at es task is provided by a
plugin and that it's missing the incremental build annotations. In order to make up for that deficiency, you can
use the runtime API:

Page 161 of 777

Example 101. Using runtime API with custom task type

buil d. gradl e
task processTenpl at esRunti ne(type: ProcessTenpl at esNoAnnot ati ons) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
sourceFiles = fileTree("src/tenpl ates")
tenpl ateData = new Tenpl ateData("test"”, [year: 2014])
outputDir = file("$buil dDir/genQut put3")

i nput s. property("engi ne", tenpl at eEngi ne)

i nputs.files(sourceFiles)

i nputs. property("tenpl at eDat a. nane", tenpl at eDat a. nane)

i nputs. property("tenpl ateDat a. vari abl es", tenpl at eDat a. vari abl es)
out puts.dir(outputbDir)

Output of gr adl e processTenpl at esRunti e
> gradl e processTenpl at esRunti ne
> Task :processTenpl at esRunti ne

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at esRunti me
> gradl e processTenpl at esRunti ne
> Task :processTenpl at esRunti me UP- TO- DATE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

As you can see, we can both configure the tasks properties and use those properties as arguments to the
incremental build runtime API. Using the runtime API like this is a little like using doLast () and doFi r st ()
to attach extra actions to a task, except in this case we’re attaching information about inputs and outputs.
Note that if the task type is already using the incremental build annotations, the runtime APl will add inputs
and outputs rather than replace them.

§
Fine-grained configuration

The runtime APl methods only allow you to declare your inputs and outputs in themselves. However, the
file-oriented ones return a builder - of type Taskl nput Fi | ePropertyBui | der - that lets you provide
additional information about those inputs and outputs.

You can learn about all the options provided by the builder in its APl documentation, but we’ll show you a
simple example here to give you an idea of what you can do.

Let's say we don’t want to run the processTenpl at es task if there are no source files, regardless of

Page 162 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

whether it's a clean build or not. After all, if there are no source files, there’s nothing for the task to do. The
builder allows us to configure this like so:

Example 102. Using skipWhenEmpty() via the runtime API

buil d. gradl e
task processTenpl at esRunti neConf (type: ProcessTenpl at esNoAnnot ations) {

sourceFiles = fileTree("src/tenplates") {
include "**/*_ fni

i nputs.files(sourceFiles).skipwenEnpty()

Output of gradl e cl ean processTenpl at esRunt i meConf
> gradl e cl ean processTenpl at esRunt i meConf
> Task :processTenpl at esRunti neConf NO SOURCE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

The Taskl nputs. fil es() method returns a builder that has a ski pWhenEnpt y() method. Invoking this
method is equivalent to annotating to the property with @ki p\WhenEnmpt v.

Prior to Gradle 3.0, you had to use the Taskl nputs. source() and Taskl nputs. sourcebDir ()
methods to get the same behavior as with ski pwhenEnpt y(). These methods are now deprecated and
should not be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which API you
should be using. Our recommendation is to use the annotations wherever possible, and it's sometimes worth
creating a custom task class just so that you can make use of them. The runtime API is more for situations in
which you can’t use the annotations.

§
Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those properties.
For example, if an input of one task is set to the output of another, that means the first task depends on the
second, right? Gradle knows this and can act upon it.

We'll look at this feature next and also some other features that come from Gradle knowing things about
inputs and outputs.

Page 163 of 777

§
Inferred task dependencies

Consider an archive task that packages the output of the pr ocessTenpl at es task. A build author will see
that the archive task obviously requires pr ocessTenpl at es to run first and so may add an explicit depend:

. However, if you define the archive task like so:
Example 103. Inferred task dependency via task outputs

buil d. gradl e
task packageFil es(type: Zip) {
from processTenpl at es. out put s

Output of gr adl e cl ean packageFi |l es
> gradl e cl ean packageFil es

> Task :processTenpl ates

> Task : packageFil es

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Gradle will automatically make packageFi | es depend on pr ocessTenpl at es. It can do this because it's
aware that one of the inputs of packageFiles requires the output of the processTemplates task. We call this
an inferred task dependency.

The above example can also be written as
Example 104. Inferred task dependency via a task argument

buil d. gradl e
task packageFil es2(type: Zip) {
from processTenpl at es

Output of gr adl e cl ean packageFi | es2
> gradl e cl ean packageFil es2

> Task : processTenpl at es

> Task : packageFil es2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

This is because the fron{) method can accept a task object as an argument. Behind the scenes, f r on()

uses the proj ect. fil es() method to wrap the argument, which in turn exposes the task’s formal outputs
as a file collection. In other words, it's a special case!

Page 164 of 777

8§
Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic validation
on the annotated properties. In particular, it does the following for each property before the task executes:

@ nput Fi | e - verifies that the property has a value and that the path corresponds to a file (not a directory)
that exists.

@ nput Di rect ory - same as for @ nput Fi | e, except the path must correspond to a directory.

@out put Di rect ory - verifies that the path doesn’t match a file and also creates the directory if it doesn’t
already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to inputs and
outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may validly not
exist. That's why Gradle provides the @pt i onal annotation: you use it to tell Gradle that a particular input
is optional and therefore the build should not fail if the corresponding file or directory doesn't exist.

§
Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what files a task
depends on, it can automatically run a task again if any of its inputs change. By activating continuous build
when you run Gradle - through the - - cont i nuous or -t options - you will put Gradle into a state in which it

continually checks for changes and executes the requested tasks when it encounters such changes.

You can find out more about this feature in the section called “Continuous Build”.

§
Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make decisions
about how to run tasks when the "--parallel" option is used. For instance, Gradle will inspect the outputs of
tasks when selecting the next task to run and will avoid concurrent execution of tasks that write to the same
output directory. Similarly, Gradle will use the information about what files a task destroys (e.g. specified by
the Dest r oys annotation) and avoid running a task that removes a set of files while another task is running
that consumes or creates those same files (and vice versa). It can also determine that a task that creates a
set of files has already run and that a task that consumes those files has yet to run and will avoid running a
task that removes those files in between. By providing task input and output information in this way, Gradle
can infer creation/consumption/destruction relationships between tasks and can ensure that task execution
does not violate those relationships.

Page 165 of 777

8§
How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the
paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task
completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output
files and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is
executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If
the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date
and skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for
the next time the task is executed.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions, or its
dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When comparing
the snapshot of such a property, even a change in the order of the files will result in the task becoming
out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last time it was
executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an
output directory without interfering with each other. If this is not the behaviour you want for some reason,
consider using TaskCQut put s. upToDat eWhen(groovy. | ang. C osur e)

The inputs for the task are also used to calculate the build cache key used to load task outputs when
enabled. For more details see the section called “Task Output Caching”.

8
Advanced techniques

Everything you've seen so far in this section will cover most of the use cases you'll encounter, but there are
some scenarios that need special treatment. We'll present a few of those next with the appropriate solutions.

§
Adding your own cached input/output methods

Have you ever wondered how the f r on{) method of the Copy task works? It's not annotated with @ nput Fi

and yet any files passed to it are treated as formal inputs of the task. What's happening?

The implementation is quite simple and you can use the same technique for your own tasks to improve their
APIs. Write your methods so that they add files directly to the appropriate annotated property. As an
example, here’'s how to add a sour ces() method to the custom Pr ocessTenpl at es class we introduced
earlier:

Page 166 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

Example 105. Declaring a method to add task inputs

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava
public class ProcessTenpl ates extends Defaul t Task {

private FileCollection sourceFiles = getProject().files();

@ki pWhenEnpt y

@nput Fil es

@Pat hSensi ti ve(Pat hSensitivity. NONE)

public FileCollection getSourceFiles() {
return this.sourceFiles;

public void sources(FileCollection sourceFiles) {
this.sourceFiles = this.sourceFiles.plus(sourceFiles);

buil d. gradl e

task processTenpl ates(type: ProcessTenpl ates) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
tenpl ateData = new Tenpl ateData("test", [year: 2012])
outputDir = file("$buildDir/genCutput")

sources fileTree("src/tenplates")

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
> Task :processTenpl at es

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

In other words, as long as you add values and files to formal task inputs and outputs during the configuration
phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use the pr oj e
method like so:

Page 167 of 777

Example 106. Declaring a method to add a task as an input

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

public void sources(Task inputTask) {
this.sourceFiles = this.sourceFiles.plus(getProject().files(inputTask));

buil d. gradl e

task copyTenpl ates(type: Copy) {
into "$buildDir/tnp"
from"src/tenpl at es"

task processTenpl ates2(type: ProcessTenpl ates) {

sources copyTenpl at es

Output of gr adl e processTenpl at es?
> gradl e processTenpl at es2

> Task :copyTenpl at es

> Task :processTenpl at es2

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

This techniqgue can make your custom task easier to use and result in cleaner build files. As an added
benefit, our use of get Proj ect (). fil es() means that our custom method can set up an inferred task

dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs, like this
example, consider using the built-in Sour ceTask. It will save you having to implement some of the plumbing

that we put into Pr ocessTenpl at es.

§
Linking an @out put Directory toan @ nput Fi | es

When you want to link the output of one task to the input of another, the types often match and a simple
property assignment will provide that link. For example, a Fi | e output property can be assignedto a Fi | e
input.

Unfortunately, this approach breaks down when you want the files in a task’'s @ut put Di r ect ory (of type F
) to become the source for another task’'s @ nput Fi | es property (of type Fi | eCol | ecti on). Since the
two have different types, property assignment won’t work.

Page 168 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceTask.html

As an example, imagine you want to use the output of a Java compilation task - via the desti nati onDi r
property - as the input of a custom task that instruments a set of files containing Java bytecode. This custom
task, which we’ll call | nst runment , has a cl assFi | es property annotated with @ nput Fi | es. You might
initially try to configure the task like so:

Example 107. Failed attempt at setting up an inferred task dependency

buil d. gradl e
apply plugin: "java"

task badl nstrument Cl asses(type: Instrunment) {
classFiles = fil eTree(conpil eJava. desti nationDir)
destinationDir = file("$buildD r/instrumented")

Output of gr adl e cl ean badl nstrunent C asses
> gradl e cl ean badl nstrunent C asses

> Task :clean UP-TO DATE

> Task : badl nstrunent d asses NO SOURCE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the compilation
task is missing. In this case you would need to add an explicit task dependency between i nst r unment C ass
and conpi | eJava via dependsOn. The use of fil eTree() means that Gradle can'’t infer the task
dependency itself.

One solution is to use the TaskQut put s. fi | es property, as demonstrated by the following example:
Example 108. Setting up an inferred task dependency between output dir and input files

bui I d. gradl e

task instrunent C asses(type: Instrument) {
cl assFiles = conpileJava.outputs.files
destinationDir = file("$buildDir/instrumented")

Output of gradl e cl ean i nstrunment Cl asses
gradl e cl ean instrunentC asses

> Task :clean UP-TO DATE

> Task :conpil eJava

> Task :instrunentC asses

\

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Page 169 of 777

Alternatively, you can get Gradle to access the appropriate property itself by using the proj ect.fil es()
method in place of proj ect.fil eTree():

Example 109. Setting up an inferred task dependency with files()

buil d. gradl e

task instrunent d asses2(type: Instrument) {
classFiles = fil es(compil eJava)
destinationDir = file("$buildDir/instrunmented")

Output of gradl e cl ean i nstrunment Cl asses?
> gradl e clean instrumentC asses?2

> Task :clean UP-TO DATE

> Task :conpil eJava

> Task :instrunentC asses2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Remember that fi | es() can take tasks as arguments, whereas fi | eTr ee() cannot.

The downside of this approach is that all file outputs of the source task become the input files of the target - i
in this case. That's fine as long as the source task only has a single file-based output, like the JavaConpi | e
task. But if you have to link just one output property among several, then you need to explicitly tell Gradle
which task generates the input files using the bui | t By method:

Example 110. Setting up an inferred task dependency with builtBy()

buil d. gradl e
task instrunent C assesBuiltBy(type: Instrunent) {
classFiles = fil eTree(conpil eJava. destinationDir) {
bui It By conpil eJava
}

destinationDir = file("$buildDir/instrunmented")

Output of gradl e cl ean i nstrunment Cl assesBui | t By
> gradl e cl ean instrument Cl assesBui |t By

> Task :cl ean UP- TO DATE

> Task :conpil eJava

> Task :instrunentd assesBuiltBy

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Page 170 of 777

You can of course just add an explicit task dependency via dependsOn, but the above approach provides
more semantic meaning, explaining why conpi | eJava has to run beforehand.

§
Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task output is
something else entirely? Perhaps it's an update to a web service or a database table. Gradle has no way of
knowing how to check whether the task is up to date in such cases.

That's where the upToDat eWhen() method on TaskCQut put s comes in. This takes a predicate function
that is used to determine whether a task is up to date or not. One use case is to disable up-to-date checks
completely for a task, like so:

Example 111. Ignoring up-to-date checks

buil d. gradl e

task al waysl nstrument C asses(type: Instrunment) {
classFiles = fil es(conpil eJava)
destinationDir = file("$buildDir/instrumented")
out puts. upToDat eWhen { fal se }

Output of gradl e cl ean al waysl nstrunent C asses
> gradl e cl ean al waysl nstrunent C asses

> Task :conpil eJava

> Task :al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Output of gr adl e al waysl nstrunment Cl asses
> gradl e al waysl nstrunent Cl asses

> Task :conpil eJava UP- TO- DATE

> Task :al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
2 actionable tasks: 1 executed, 1 up-to-date

The { false } closure ensures that copyResour ces will always perform the copy, irrespective of
whether there is no change in the inputs or outputs.

You can of course put more complex logic into the closure. You could check whether a particular record in a
database table exists or has changed for example. Just be aware that up-to-date checks should save you

Page 171 of 777

time. Don’t add checks that cost as much or more time than the standard execution of the task. In fact, if a
task ends up running frequently anyway, because it's rarely up to date, then it may not be worth having an
up-to-date check at all. Remember that your checks will always run if the task is in the execution task graph.

One common mistake is to use upToDat eWhen() instead of Task. onl yI f () . If you want to skip a task on
the basis of some condition unrelated to the task inputs and outputs, then you should use onl yIf (). For
example, in cases where you want to skip a task when a particular property is set or not set.

§
Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties have the
same value. In order to do so, Gradle first normalizes both inputs and then compares the result. For
example, for a compile classpath, Gradle extracts the ABI signature from the classes on the classpath and
then compares signatures between the last Gradle run and the current Gradle run as described in the
section called “Compile avoidance”.

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs annotated
with €Cl asspat h are considered to be runtime classpaths.

Let's say you want to add a file bui | d-i nf o. properti es to all your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the CI job that
published the artifact. This file is only for auditing purposes, and has no effect on the outcome of running
tests. Nonetheless, this file is part of the runtime classpath for the t est task and changes on every build
invocation. Therefore, the t est would be never up-to-date or pulled from the build cache. In order to benefit
from incremental builds again, you are able tell Gradle to ignore this file on the runtime classpath at the
project level by using Pr oj ect . nor mal i zati on(org. gradl e. api . Action):

Example 112. Runtime classpath normalization

bui I d. gradl e
normal i zati on {
runti med asspath {
i gnore 'build-info.properties

The effect of this configuration would be that changes to bui | d-i nf 0. properti es would be ignored for
up-to-date checks and build cache key calculations. Note that this will not change the runtime behavior of the
t est task - i.e. any test is still able to load bui | d-i nf 0. properti es and the runtime classpath is still the

same as before.

Page 172 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

8
Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older versions of

Gradle need to be removed to ensure that the newest version of the tasks are starting from a known clean

state.

Note: Automatic clean-up of stale output directories has only been implemented for the output of

source sets (Java/Groovy/Scala compilation).

8
Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of

parameters. A very nice and expressive way to provide such tasks are task rules:
Example 113. Task rule

bui I d. gradl e
t asks. addRul e("Pattern: ping<ID>") { String taskNane ->
if (taskNane.startsWth("ping")) {
task(taskNane) {
doLast {
println "Pinging: " + (taskNanme - 'ping')

Output of gradl e -qg pi ngServer1l
> gradle -qg pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn

relations on rule based tasks:

Page 173 of 777

Example 114. Dependency on rule based tasks

buil d. gradl e
tasks. addRul e("Pattern: ping<ID>") { String taskName ->
i f (taskName.startsWth("ping")) {
task(taskNane) {
doLast {
println "Pinging: " + (taskNane - 'ping')

task groupPing {
dependsOn pi ngServer 1, pingServer?2

Output of gradl e -qg groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl

Pi ngi ng: Server2

If you run “gradl e -q tasks” you won't find a task named “pi ngSer ver 1” or “pi ngSer ver 2", but this
script is executing logic based on the request to run those tasks.

8
Finalizer tasks

Note: Finalizers tasks are an incubating feature (see the section called “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Page 174 of 777

Example 115. Adding a task finalizer

buil d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

taskX. finalizedBy taskY

Outputof gradl e -qg taskX
> gradle -qg taskX
taskX

taskyY

Finalizer tasks will be executed even if the finalized task fails.

Example 116. Task finalizer for a failing task

bui | d. gradl e
task taskX {
doLast {

println 'taskX
t hrow new Runti meException()

}
}
task taskY {
doLast {
println 'taskY
}
}

taskX. finalizedBy taskY
Output of gradl e -q taskX
> gradl e -qg taskX

t askX

taskyY

BU LD FAILED in Os

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for example if it is
considered up to date or if a dependent task fails.

Page 175 of 777

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up
regardless of the build failing or succeeding. An example of such a resource is a web container that is
started before an integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the Task.finalizedBy(]ava.lang. Object[]) method. This
method accepts a task instance, a task name, or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

8§
Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task actions.
Lifecycle tasks can represent several concepts:

a work-flow step (e.g., run all checks with check)

a buildable thing (e.g., create a debug 32-bit executable for native components with debug32Mai nExecut al

)

a convenience task to execute many of the same logical tasks (e.g., run all compilation tasks with comnpi | eA

)

Many Gradle plug-ins define their own lifecycle tasks to make it convenient to do specific things. When
developing your own plugins, you should consider using your own lifecycle tasks or hooking into some of the
tasks already provided by Gradle. See the Java plugin the section called “Tasks” for an example.

Unless a lifecycle task has actions, its outcome is determined by its dependencies. If any of the task’s
dependencies are executed, the lifecycle task will be considered executed. If all of the task’s dependencies
are up-to-date, skipped or from cache, the lifecycle task will be considered up-to-date.

8§
Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target
and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle combines these notions
into a single entity. Simple Gradle tasks are like Ant's targets, but enhanced Gradle tasks also include
aspects of Ant tasks. All of Gradle’s tasks share a common API and you can create dependencies between
them. These tasks are much easier to configure than an Ant task. They make full use of the type system,
and are more expressive and easier to maintain.

[4] You might be wondering why there is neither an import for the St opExecut i onExcepti on nor do we
access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script
(see the section called “Default imports”).

Page 176 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Working With Files

Almost every Gradle build interacts with files in some way: think source files, file dependencies, reports and
so on. That's why Gradle comes with a comprehensive API that makes it simple to perform the file
operations you need.

The API has two parts to it:
Specifying which files and directories to process
Specifying what to do with them

The File paths in depth section covers the first of these in detail, while subsequent sections, like File
copying in depth, cover the second. To begin with, we’ll show you examples of the most common scenarios
that users encounter.

8§
Copying a single file

You copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the location of the
file and where you want to put it. This example mimics copying a generated report into a directory that will be
packed into an archive, such as a ZIP or TAR:

Example 117. How to copy a single file

buil d. gradl e

task copyReport (type: Copy) {
fromfile("${buildDir}/reports/my-report.pdf")
into file("${buildDir}/toArchive")

The Proj ect.file(]ava.lang. Obj ect) method is used to create a file or directory path relative to the
current project and is a common way to make build scripts work regardless of the project path. The file and
directory paths are then used to specify what file to copy using Copy. fron(] ava. | ang. Cbj ect[]) and
which directory to copy it to using Copy. i nt o(j ava. | ang. Cbj ect).

You can even use the path directly without the fil e() method, as explained early in the section File
copying in depth:

Page 177 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

Example 118. Using implicit string paths

buil d. gradl e

task copyReport2(type: Copy) {
from"${buildDir}/reports/ny-report. pdf"
into "${buildDir}/toArchive"

Although hard-coded paths make for simple examples, they also make the build brittle. It's better to use a
reliable, single source of truth, such as a task or shared project property. In the following modified example,
we use a report task defined elsewhere that has the report’s location stored in its out put Fi | e property:

Example 119. Prefer task/project properties over hard-coded paths

buil d. gradl e
task copyReport3(type: Copy) {
from nmyReport Task. out putFil e
i nto archi veReportsTask. di r TOAr chi ve

We have also assumed that the reports will be archived by ar chi veRepor t sTask, which provides us with
the directory that will be archived and hence where we want to put the copies of the reports.

8§
Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments to f r on{)

Example 120. Using multiple arguments with from()

buil d. gradl e

task copyReport sFor Archivi ng(type: Copy) {
from"${buildDir}/reports/ my-report.pdf", "src/docs/nmanual.pdf"
into "${buil dDir}/toArchive"

Two files are now copied into the archive directory. You can also use multiple f r on{) statements to do the
same thing, as shown in the first example of the section File copying in depth.

Now consider another example: what if you want to copy all the PDFs in a directory without having to specify
each one? To do this, attach inclusion and/or exclusion patterns to the copy specification. Here we use a
string pattern to include PDFs only:

Page 178 of 777

Example 121. Using a flat filter

buil d. gradl e

task copyPdf Report sFor Archi vi ng(type: Copy) {
from"${buildDir}/reports"
i nclude "*. pdf"
into "${buildDir}/toArchive"

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside directly in the r
directory are copied:

Figure 10. The effect of a flat filter on copying

With *. pdf filter
build/reports ' > build/toArchive

metrics L my-report.pdf

L scatterPlot.pdf
numbers.csv
my-report.pdf

You can include files in subdirectories by using an Ant-style glob pattern (**/ *), as done in this updated
example:
Example 122. Using a deep filter
bui I d. gradl e
task copyAl | Pdf Report sFor Archi vi ng(type: Copy) {
from"${buildDir}/reports"

i nclude "**/*_ pdf"
into "${buildDir}/toArchive"

This task has the following effect:

Figure 11. The effect of a deep filter on copying

With xx/* . pdf filter

build/reports _ build/toArchive
metrics metrics
|—scatterPIot.pdf L scatterPlot.pdf
numbers.csv my-report.pdf

my-report.pdf

One thing to bear in mind is that a deep filter like this has the side effect of copying the directory structure

Page 179 of 777

below r eport s as well as the files. If you just want to copy the files without the directory structure, you need
to use an explicitfil eTree(dir) { includes }.files expression. We talk more about the difference
between file trees and file collections in the File trees section.

This is just one of the variations in behavior you're likely to come across when dealing with file operations in
Gradle builds. Fortunately, Gradle provides elegant solutions to almost all those use cases. Read the
in-depth sections later in the chapter for more detail on how the file operations work in Gradle and what
options you have for configuring them.

8§
Copying directory hierarchies

You may have a need to copy not just files, but the directory structure they reside in as well. This is the
default behavior when you specify a directory as the from() argument, as demonstrated by the following
example that copies everything in the r epor t s directory, including all its subdirectories, to the destination:

Example 123. Copying an entire directory

buil d. gradl e

task copyReportsDirForArchiving(type: Copy) {
from"${buildDir}/reports"
into "${buildDir}/toArchive"

The key aspect that users struggle with is controlling how much of the directory structure goes to the
destination. In the above example, do you get a t oAr chi ve/ r epor t s directory or does everything in r epor
go straight into t oAr chi ve? The answer is the latter. If a directory is part of the f r om() path, then it won't

appear in the destination.

So how do you ensure that r epor t s itself is copied across, but not any other directory in $bui | dDi r ? The
answer is to add it as an include pattern:

Example 124. Copying an entire directory, including itself

buil d. gradl e
task copyReportsDirForArchiving2(type: Copy) {
from("${buildDir}") {
i nclude "reports/**"

}
into "${buildDir}/toArchive"

You'll get the same behavior as before except with one extra level of directory in the destination, i.e. t 0Ar chi

One thing to note is how the i ncl ude() directive applies only to the f r on{(), whereas the directive in the
previous section applied to the whole task. These different levels of granularity in the copy specification allow

Page 180 of 777

you to easily handle most requirements that you will come across. You can learn more about this in the
section on child specifications.

8§
Creating archives (zip, tar, etc.)

From the perspective of Gradle, packing files into an archive is effectively a copy in which the destination is
the archive file rather than a directory on the file system. This means that creating archives looks a lot like
copying, with all of the same features!

The simplest case involves archiving the entire contents of a directory, which this example demonstrates by
creating a ZIP of the t oAr chi ve directory:

Example 125. Archiving a directory as a ZIP

buil d. gradl e

task packageDi stribution(type: Zip) {
archiveNanme = "ny-distribution.zip"
destinationDir = file("${buildDir}/dist")

from"${buildDir}/toArchive"

Notice how we specify the destination and name of the archive instead of an i nt o() : both are required. You
often won't see them explicitly set, because most projects apply the Base Plugin. It provides some
conventional values for those properties. The next example demonstrates this and you can learn more about
the conventions in the archive naming section.

Each type of archive has its own task type, the most common ones being Zi p, Tar and Jar . They all share
most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified subdirectories of the archive. For
example, let's say you want to package all PDFs into a docs directory in the root of the archive. This docs
directory doesn’t exist in the source location, so you have to create it as part of the archive. You do this by
adding an i nt o() declaration for just the PDFs:

Page 181 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 126. Using the Base Plugin for its archive name convention

buil d. gradl e

pl ugi ns {
id ' base'

version = "1.0.0"

task packageDi stribution(type: Zip) {
fron("${buildDir}/toArchive") {
exclude "**/* pdf"

from("${buil dDir}/toArchive") {
include "**/*. pdf"
into "docs"

As you can see, you can have multiple from() declarations in a copy specification, each with its own

configuration. See the section called “Using child specifications” for more information on this feature.

8
Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files from
that file system onto the local file system — or even into another archive. Gradle enables this by providing
some wrapper functions that make archives available as hierarchical collections of files (file trees).

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java. |l ang. Cbj ect), which produce a Fi | eTr ee from a corresponding archive file.

That file tree can then be used in a f r on{) specification, like so:
Example 127. Unpacking a ZIP file

buil d. gradl e

task unpackFil es(type: Copy) {
from zi pTree("src/resources/thirdPartyResources. zi p")
into "${buildDr}/resources"

As with a normal copy, you can control which files are unpacked via filters and even rename files as they are
unpacked.

If you're a Java developer and are wondering why there is no j ar Tr ee() method, that's because zi pTr ee(
works perfectly well for JARs, WARs and EARs.

Page 182 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html

8§
Creating "uber" or "fat" JARs

In the Java space, applications and their dependencies typically used to be packaged as separate JARs

within a single distribution archive. That still happens, but there is another approach that is now common:

placing the classes and resources of the dependencies directly into the application JAR, creating what is

known as an uber or fat JAR.

Gradle makes this approach easy to accomplish. Consider the aim: to copy the contents of other JAR files

into the application JAR. All you need for this is the Proj ect. zi pTree(j ava. | ang. Cbj ect) method

and the Jar task, as demonstrated by the uber Jar task in the following example:

Example 128. Creating a Java uber or fat JAR
bui | d. gradl e

pl ugi ns {
id'java

version = '1.0.0
repositories {

mavenCentral ()

dependenci es {
i mpl enment ati on ' conmons-i 0: comons-io0: 2.6

task uberJar(type: Jar) {
appendi x = 'uber’

from sourceSet s. mai n. out put

from configurations. runtinmed asspath. files.
findAll

{ it.name.endsWth('jar') }.

collect { zipTree(it) }

In this case, we're taking the runtime dependencies of the project — conf i gur at i ons. runti neCl asspat

— and wrapping each of the JAR files with the zi pTree() method. The result is a collection of ZIP file

trees, the contents of which are copied into the uber JAR alongside the application classes.

Page 183 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html

8§
Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle automatically
manages this aspect of tasks when they explicitly define file and directory outputs. You can learn about this
feature in the incremental build section of the user guide. All core Gradle tasks ensure that any output
directories they need are created if necessary using this mechanism.

In cases where you need to create a directory manually, you can use the
Project.nkdir(java.l ang. Cbj ect) method from within your build scripts or custom task
implementations. Here’'s a simple example that creates a single i mages directory in the project folder:

Example 129. Manually creating a directory

buil d. gradl e
task ensureDirectory {
doLast {

nkdi r "i mages”

As described in the Apache Ant manual, the nkdi r task will automatically create all necessary directories in
the given path and will do nothing if the directory already exists.

8§
Moving files and directories

Gradle has no API for moving files and directories around, but you can use the Apache Ant integration to
easily do that, as shown in this example:

Example 130. Moving a directory using the Ant task

buil d. gradl e
task moveReports {
doLast {

ant.nove file: "${buildDir}/reports",
todir: "${buildDir}/toArchive"

This is not a common requirement and should be used sparingly as you lose information and can easily
break a build. It's generally preferable to copy directories and files instead.

Page 184 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)
https://ant.apache.org/manual/Tasks/mkdir.html

8§
Renaming files on copy

The files used and generated by your builds sometimes don’t have names that suit, in which case you want
to rename those files as you copy them. Gradle allows you to do this as part of a copy specification using the
renanme() configuration.

The following example removes the "-staging-" marker from the names of any files that have it:
Example 131. Renaming files as they are copied

bui | d. gradl e

task copyFronttagi ng(type: Copy) {
from "src/ min/ webapp”
into "${buil dD r}/expl odedWar"

rename ' (.+)-staging(.+)"', '$1$2'

You can use regular expressions for this, as in the above example, or closures that use more complex logic
to determine the target filename. For example, the following task truncates filenames:

Example 132. Truncating filenames as they are copied

bui | d. gradl e
task copyWthTruncate(type: Copy) {
from"${buildDir}/reports"
renane { String fil ename ->
if (filenane.size() > 10) {
return filename[0..7] + "~" + filenane. size()

}

el se return fil enane

}
into "${buildDir}/toArchive"

As with filtering, you can also apply renaming to a subset of files by configuring it as part of a child
specificationonafronm() .

8§
Deleting files and directories

You can easily delete files and directories using either the Delete task or the
Proj ect.delete(org.gradle.api.Action) method. In both cases, you specify which files and
directories to delete in a way supported by the Proj ect . fi | es(j ava. | ang. Obj ect[]) method.

For example, the following task deletes the entire contents of a build’s output directory:

Page 185 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 133. Deleting a directory

buil d. gradl e
task myd ean(type: Delete) {
delete buildbDir

If you want more control over which files are deleted, you can't use inclusions and exclusions in the same
way as for copying files. Instead, you have to use the builtin filtering mechanisms of fi |l es() andfil eTr ee
. The following example does just that to clear out temporary files from a source directory:

Example 134. Deleting files matching a specific pattern

bui | d. gradl e
task cleanTenpFil es(type: Delete) {
delete fileTree("src"). matching {
i nclude "**/* tnp"

You'll learn more about file collections and file trees in the next section.

8§
File paths in depth

In order to perform some action on a file, you need to know where it is, and that’s the information provided
by file paths. Gradle builds on the standard Java Fi | e class, which represents the location of a single file,
and provides new APIs for dealing with collections of paths. This section shows you how to use the Gradle
APIs to specify file paths for use in tasks and file operations.

But first, an important note on using hard-coded file paths in your builds.

8
On hard-coded file paths

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to understand,
but it's not good practice for real builds. The problem is that paths often change and the more places you
need to change them, the more likely you are to miss one and break the build.

Where possible, you should use tasks, task properties, and project properties — in that order of preference
— to configure file paths. For example, if you were to create a task that packages the compiled classes of a
Java application, you should aim for something like this:

Page 186 of 777

https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Example 135. How to minimize the number of hard-coded paths in your build

buil d. gradl e
ext {
archivesDirPath = "${buil dDir}/archives"

task packaged asses(type: Zip) {
appendi x = "cl asses"
destinationDir = file(archivesDi rPat h)

from conpi |l eJava

See how we're using the conpi | eJava task as the source of the files to package and we've created a
project property ar chi vesDi r Pat h to store the location where we put archives, on the basis we’re likely to
use it elsewhere in the build.

Using a task directly as an argument like this relies on it having defined outputs, so it won't always be
possible. In addition, this example could be improved further by relying on the Java plugin’s convention for de
rather than overriding it, but it does demonstrate the use of project properties.

8
Single file paths

One of the great quandaries when developing a build is how to specify file locations when the build may be
executed from an arbitrary directory — not necessarily in the project — and may be run on any number of
different systems with incompatible directory layouts. The standard Java mechanism for specifying a file path
runs into trouble in these situations:

new File(relative path) generates a path relative to the current working directory, which could be
anywhere

new Fil e(absol ute path) will fail if the file system doesn’t have the requisite path.

Gradle solves this problem by providing the Project.file(java.lang. Object) method, which
generates a path relative to the project directory (unless the given path is absolute, in which case it is used
as is). Here are some examples of using the fi | e() method with different types of argument:

Page 187 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 136. Locating files

buil d. gradl e

File configFile = file('src/config.xnm")

configFile = file(configFile.absol utePat h)

configFile = file(new File('src/config.xnm"))

configFile = file(Paths.get('src', 'config.xm"))

configFile = fil e(Paths. get(System get Property(' user.hone')).resolve(' gl obal -coni

As you can see, you can pass strings, Fi | e instances and Pat h instances to the fi |l e() method, all of
which result in an absolute Fi | e object. You can find other options for argument types in the reference
guide, linked in the previous paragraph.

What happens in the case of multi-project builds? The fi | e() method will always turn relative paths into
paths that are relative to the current project directory, which may be a child project. If you want to use a path
that’s relative to the root project directory, then you need to use the special Proj ect . get Root Di r ()
property to construct an absolute path, like so:

Example 137. Creating a path relative to a parent project

buil d. gradl e
File configFile = file("${rootDir}/shared/config.xm")

Let's say you're working on a multi-project build in a dev/ pr oj ect s/ AcreHeal t h directory. You use the
above example in the build of the library you're fixing — at AcneHeal t h/ subpr oj ect s/ AcnePat i ent Rec
. The file path will resolve to the absolute version of dev/ pr oj ect s/ AcnreHeal t h/ shar ed/ confi g. xm .

The fil e() method can be used to configure any task that has a property of type Fi | e. Many tasks,
though, work on multiple files, so we look at how to specify sets of files next.

§
File collections

A file collection is simply a set of file paths that's represented by the Fi | eCol | ect i on interface. Any file
paths. It's important to understand that the file paths don’t have to be related in any way, so they don’t have
to be in the same directory or even have a shared parent directory. You will also find that many parts of the
Gradle APl use Fi | eCol | ect i on, such as the copying API discussed later in this chapter and dependency
configurations.

Page 188 of 777

https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html

The recommended way to specify a collection of files is to use the
Project.files(java.lang. Object[]) method, which returns a Fil eCol | ecti on instance. This
method is very flexible and allows you to pass multiple strings, Fi | e instances, collections of strings,
collections of Fi | es, and more. You can even pass in tasks as arguments if they have defined outputs.
Learn about all the supported argument types in the reference guide.

As with the Project.file(]java.lang. Obj ect) method covered in the previous section, all relative
paths are evaluated relative to the current project directory. The following example demonstrates some of
the variety of argument types you can use — strings, Fi | e instances, a list and a Pat h:

Example 138. Creating a file collection

buil d. gradl e

FileCollection collection = files('src/filel.txt",
new File('src/file2.txt"),
['src/file3.csv', "src/filed.csv'],
Pat hs.get('src', '"fileb5.txt'))

File collections have some important attributes in Gradle. They can be:
created lazily

iterated over

filtered

combined

Lazy creation of a file collection is useful when you need to evaluate the files that make up a collection at the
time a build runs. In the following example, we query the file system to find out what files exist in a particular
directory and then make those into a file collection:

Page 189 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html

Example 139. Implementing a file collection

buil d. gradl e
task list {
doLast {

File srcDhir

collection = files { srcDir.listFiles() }

srchDir = file('src')
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { printlnit }

srcDir = file('src2")
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { printlnit }

Outputofgradle -qg Ii st
> gradle -q |ist
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl

src2/dir2

The key to lazy creation is passing a closure to the fi | es() method. Your closure simply needs to return a
value of a type accepted by fil es(),suchas List<File> String,Fil eCol | ection, etc.

Iterating over a file collection can be done through the each() method on the collection or using the
collection in a f or loop. In both approaches, the file collection is treated as a set of Fi | e instances, i.e. your
iteration variable will be of type Fi | e.

The following example demonstrates such iteration as well as how you can convert file collections to other
types using the as operator or supported properties:

Page 190 of 777

Example 140. Using a file collection

buil d. gradl e

collection.each { File file ->
println file.nane

Set set = collection.files

Set set2 = collection as Set

List list = collection as List
String path = collection.asPath
File file = collection.singleFile
File file2 = collection as File

def union = collection + files('src/file2.txt")
def different = collection - files('src/file2.txt")

You can also see at the end of the example how to combine file collections using the + and - operators to
merge and subtract them. An important feature of the resulting file collections is that they are live. In other
words, when you combine file collections in this way, the result always reflects what's currently in the source
file collections, even if they change during the build.

For example, imagine col | ecti on in the above example gains an extra file or two after uni on is created.
As long as you use uni on after those files are added to col | ecti on, uni on will also contain those
additional files. The same goes for the di f f er ent file collection.

Live collections are also important when it comes to filtering. If you want to use a subset of a file collection,
you can take advantage of the Fi | eCol | ection.filter(org.gradle.api.specs. Spec) method to
determine which files to "keep". In the following example, we create a new collection that consists of only the
files that end with .txt in the source collection:

Example 141. Filtering a file collection

buil d. gradl e
FileCollection textFiles = collection.filter { File f ->
f.name.endsWth(".txt")

Outputofgradle -q filterTextFiles
> gradle -q filterTextFiles
src/filel.txt

src/file2. txt

src/fileb5.txt

Page 191 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-

If col | ecti on changes at any time, either by adding or removing files from itself, then t ext Fi | es will
immediately reflect the change because it is also a live collection. Note that the closure you passto filter(

takes a Fi | e as an argument and should return a boolean.

8§
File trees

A file tree is a file collection that retains the directory structure of the files it contains and has the type
Fi | eTr ee. This means that all the paths in a file tree must have a shared parent directory. The following
diagram highlights the distinction between file trees and file collections in the common case of copying files:

Figure 12. The differences in how file trees and file collections behave when copying files

File collection

src/resources/img/logo.png Copy src/resources/** build/resources
src/resources/img/banner.jpg e > logo.png
src/resources/data.txt to build/resources/ banner.jpg
data.txt
File tree

src/resources build/resources

img Copy src/resources/** img

i: logo.png f - > ': logo.png
banner.jpg to build/resources/ banner.jog
data.ixt data.txt

Note: Although Fi | eTree extends Fi |l eCol | ecti on (an is-a relationship), their behaviors do
differ. In other words, you can use a file tree wherever a file collection is required, but remember: a
file collection is a flat list/set of files, while a file tree is a file and directory hierarchy. To convert a file

tree to a flat collection, use the Fi | eTr ee. get Fi | es() property.

The simplest way to create a file tree is to pass a file or directory path to the
Project.fileTree(]ava. |l ang. o] ect) method. This will create a tree of all the files and directories in

that base directory (but not the base directory itself). The following example demonstrates how to use the
basic method and, in addition, how to filter the files and directories using Ant-style patterns:

Page 192 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html#getFiles--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

Example 142. Creating a file tree

buil d. gradl e

FileTree tree = fileTree(dir: 'src/main")

tree.include '**/*. java'
tree. exclude ' **/ Abstract*'

tree = fileTree('src').include(' **/*.java')
tree = fileTree('src') {
i nclude '**/* java'
}
tree = fileTree(dir: 'src', include: '**/* java')
tree = fileTree(dir: 'src', includes: ['**/*. java', "**/*.xm"'])
tree = fileTree(dir: '"src', include: '"**/* java', exclude: '**/*test*/**")

You can see more examples of supported patterns in the APl docs for Pat t er nFi | t er abl e. Also, see the
API documentation for fi | eTr ee() to see what types you can pass as the base directory.

Note: By default, fil eTree() returns a Fi | eTr ee instance that applies some default exclusion
patterns for convenience — the same defaults as Ant in fact. For the complete default exclusion list,
see the Ant manual.

If those default exclusions prove problematic, you can workaround the issue by using the def aul t excl
Ant task, as demonstrated in this example:

Page 193 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
https://ant.apache.org/manual/Tasks/defaultexcludes.html
https://ant.apache.org/manual/Tasks/defaultexcludes.html

Example 143. Changing Ant default exclusions for a copy task

Note: bui | d. gradl e

task forcedCopy(type: Copy) {
into "${buildDir}/inPl aceApp"
from'src/ min/webapp'

doFirst {
ant . def aul t excl udes renove: "**/.git"
ant . def aul t excl udes renove: "**/.git/**"
ant . def aul t excl udes renove: "**/*-"

}
doLast {

ant . def aul t excl udes default: true
}

In general, it's best to ensure that the default exclusions are reset whenever you change them as
modifications are visible to the entire build. The above example is performing such a reset in its doLast

action.

You can do many of the same things with file trees that you can with file collections:

iterate over them (depth first)

filter them (using Fi | eTree. nat chi ng(org. gradl e. api . Acti on) and Ant-style patterns)
merge them

You can also traverse file trees using the Fi | eTree. visit(org. gradl e. api . Acti on) method. All of
these techniques are demonstrated in the following example:

Page 194 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

Example 144. Using afile tree

buil d. gradl e

tree.each {File file ->
printin file

FileTree filtered = tree. matching {
i nclude 'org/gradl e/ api/**'

FileTree sum= tree + fileTree(dir: 'src/test')

tree.visit {elenment ->
println "$elenment.rel ativePath => $el enent.file"

We've discussed how to create your own file trees and file collections, but it's also worth bearing in mind that
many Gradle plugins provide their own instances of file trees, such as Java’s source sets. These can be
used and manipulated in exactly the same way as the file trees you create yourself.

Another specific type of file tree that users commonly need is the archive, i.e. ZIP files, TAR files, etc. We
look at those next.

§
Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it's a special case of a file
tree, and that's exactly how Gradle treats archives. Instead of using the fi |l eTree() method, which only
works on normal file systems, you use the Project.zipTree(java.lang. Object) and
Project.tarTree(]ava.l ang. Cbj ect) methods to wrap archive files of the corresponding type (note
that JAR, WAR and EAR files are ZIPs). Both methods return Fi | eTr ee instances that you can then use in
the same way as normal file trees. For example, you can extract some or all of the files of an archive by
copying its contents to some directory on the file system. Or you can merge one archive into another.

Here are some simple examples of creating archive-based file trees:

Page 195 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Example 145. Using an archive as a file tree

buil d. gradl e

FileTree zip = zipTree(' soneFile.zip")

FileTree tar = tarTree(' soneFile.tar")

Fil eTree soneTar = tarTree(resources. gzip(' soneTar.ext'))

You can see a practical example of extracting an archive file in among the common scenarios we cover.

§
Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the JavaConpi | e
task has a sour ce property that defines the source files to compile. You can set the value of this property
using any of the types supported by the files() method, as mentioned in the api docs. This means you can,
for example, set the property to a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a closure.

This is a feature of specific tasks! That means implicit conversion will not happen for just any task that has
a FileCollection orFileTree property. If you want to know whether implicit conversion happens in a
particular situation, you will need to read the relevant documentation, such as the corresponding task’s API
docs. Alternatively, you can remove all doubt by explicitly using Proj ect . fil es(j ava. | ang. Gbj ect[])
in your build.

Here are some examples of the different types of arguments that the sour ce property can take:

Page 196 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 146. Specifying a set of files

buil d. gradl e
task conpil e(type: JavaConpil e)

/'l Use a File object to specify the source directory

conpile {
source = file('src/main/java')

}
/1l Use a String path to specify the source directory
compil e {
source = 'src/nmain/java'
}
/1l Use a collection to specify nmultiple source directories
conpile {
source = ['src/main/java', '../shared/java']
}
/[l Use a FileCollection (or FileTree in this case) to specify the source files
conpile {
source = fileTree(dir: 'src/main/java').matching { include 'org/gradle/api/*:
}
/1l Using a closure to specify the source files.
conpile {
source = {

/'l Use the contents of each zip file in the src dir

file('src').listFiles().findAI'l {it.nanme.endsWth('.zip')}.collect { zip

One other thing to note is that properties like sour ce have corresponding methods in core Gradle tasks.

Those methods follow the convention of appending to collections of values rather than replacing them.

Again, this method accepts any of the types supported by the files() method, as shown here:

Page 197 of 777

Example 147. Appending a set of files

buil d. gradl e
compil e {
source 'src/main/java', 'src/main/groovy

source file('../shared/java')

source { file('src/test/").listFiles() }

As this is a common convention, we recommend that you follow it in your own custom tasks. Specifically, if
you plan to add a method to configure a collection-based property, make sure the method appends rather
than replaces values.

8§

File copying in depth
The basic process of copying files in Gradle is a simple one:
Define a task of type Copy
Specify which files (and potentially directories) to copy
Specify a destination for the copied files

But this apparent simplicity hides a rich API that allows fine-grained control of which files are copied, where
they go, and what happens to them as they are copied — renaming of the files and token substitution of file
content are both possibilities, for example.

Let's start with the last two items on the list, which form what is known as a copy specification. This is
formally based on the Copy Spec interface, which the Copy task implements, and offers:

A CopySpec. fron(java. | ang. Obj ect []) method to define what to copy
An CopySpec.into(]ava. |l ang. Gbj ect) method to define the destination

CopySpec has several additional methods that allow you to control the copying process, but these two are
the only required ones. i nt o() is straightforward, requiring a directory path as its argument in any form
supported by the Proj ect.fil e(java.lang. Obj ect) method. The from() configuration is far more
flexible.

Not only does fron() accept multiple arguments, it also allows several different types of argument. For

example, some of the most common types are:

Page 198 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

A St ri ng — treated as a file path or, if it starts with "file://", a file URI

A Fi | e — used as a file path

AFileCollectionorFileTree — all files in the collection are included in the copy
A task — the files or directories that form a task’s defined outputs are included

In fact, from() accepts all the same arguments as Proj ect.files(]java.lang. Object[]), so see
that method for a more detailed list of acceptable types.

Something else to consider is what type of thing a file path refers to:
A file — the file is copied as is

A directory — this is effectively treated as a file tree: everything in it, including subdirectories, is copied.
However, the directory itself is not included in the copy.

A non-existent file — the path is ignored

Here is an example that uses multiple f ron() specifications, each with a different argument type. You will
probably also notice that i nt o() is configured lazily using a closure — a technique that also works with f r ol

Example 148. Specifying copy task source files and destination directory

buil d. gradl e
t ask anot her CopyTask(type: Copy) {

from ' src/ mai n/ webapp'
from'src/stagi ng/index.htm"

from copyTask

from copyTaskW t hPat t er ns. out put s
from zi pTree(' src/ mai n/ assets. zip')

into { getDestDir() }

Note that the lazy configuration of i nt o() is different from a child specification, even though the syntax is
similar. Keep an eye on the number of arguments to distinguish between them.

Page 199 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

8
Filtering files

You've already seen that you can filter file collections and file trees directly in a Copy task, but you can also
apply filtering in any copy specification through the CopySpec. i ncl ude(java.lang. String[]) and
CopySpec. excl ude(j ava. |l ang. String[]) methods.

Both of these methods are normally used with Ant-style include or exclude patterns, as described in
PatternFilterabl e. You can also perform more complex logic by using a closure that takes a
Fi | eTreeEl enent and returns true if the file should be included or f al se otherwise. The following
example demonstrates both forms, ensuring that only .html and .jsp files are copied, except for those .html
files with the word "DRAFT" in their content:

Example 149. Selecting the files to copy

buil d. gradl e
task copyTaskWthPatterns(type: Copy) {
from'src/min/webapp'
into "${buil dDir}/expl odedWar"
include "**/* htm"
i nclude '"**/* jsp'
exclude { FileTreeEl enent details ->
details.file.name.endsWth('.htm"') &&
details.file.text.contains(' DRAFT")

A question you may ask yourself at this point is what happens when inclusion and exclusion patterns
overlap? Which pattern wins? Here are the basic rules:

If there are no explicit inclusions or exclusions, everything is included
If at least one inclusion is specified, only files and directories matching the patterns are included

Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one exclusion
pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that you end up
with the exact behavior you want.

Note that the inclusions and exclusions in the above example will apply to all f r om() configurations. If you
want to apply filtering to a subset of the copied files, you'll need to use child specifications.

§
Renaming files

The example of how to rename files on copy gives you most of the information you need to perform this
operation. It demonstrates the two options for renaming:

Page 200 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String[]-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTreeElement.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTreeElement.html

Using a regular expression
Using a closure

Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex groups that
allow you to remove and replaces parts of the source filename. The following example shows how you can
remove the string "-staging-" from any filename that contains it using a simple regular expression:

Example 150. Renaming files as they are copied

bui I d. gradl e

task rename(type: Copy) {
from'src/ min/webapp'
into "${buil dD r}/expl odedWar"

renane { String fileNane ->
fileNane.toUpper Case()

rename '(.+)-staging-(.+)"', '$1$2'
rename(/ (.+)-staging-(.+)/, '$1%$2")

You can use any regular expression supported by the Java Patt er n class and the substitution string (the
second argument of renane() works on the same principles as the Mat cher. appendRepl acenent ()
method.

Regular expressions in Groovy build scripts
There are two common issues people come across when using regular expressions in this context:

1. Note: If you use a slashy string (those delimited by '/') for the first argument, you must include the
parentheses for r enane() as shown in the above example.

2. Note: It's safest to use single quotes for the second argument, otherwise you need to escape the '$'
in group substitutions, i.e. "\ $1\ $2"

The first is a minor inconvenience, but slashy strings have the advantage that you don’t have to
escape backslash ('\') characters in the regular expression. The second issue stems from Groovy’s
support for embedded expressions using ${ } syntax in double-quoted and slashy strings.

The closure syntax for r enane() is straightforward and can be used for any requirements that simple
regular expressions can’t handle. You're given the name of a file and you return a new name for that file, or n
if you don’t want to change the name. Do be aware that the closure will be executed for every file that's
copied, so try to avoid expensive operations where possible.

Page 201 of 777

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#appendReplacement-java.lang.StringBuffer-java.lang.String-

8
Filtering file content (token substitution, templating, etc.)

Not to be confused with filtering which files are copied, file content filtering allows you to transform the
content of files while they are being copied. This can involve basic templating that uses token substitution,
removal of lines of text, or even more complex filtering using a full-blown template engine.

The following example demonstrates several forms of filtering, including token substitution using the
CopySpec. expand(java. util . Map) method and another using
CopySpec. filter(]java.lang. C ass) with an Ant filter:

Example 151. Filtering files as they are copied

buil d. gradl e
i nport org.apache.tools.ant.filters. FixCrLfFilter
i mport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from'src/ min/webapp'

into "${buildD r}/expl odedWar"

expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)

filter(FixCrLfFilter)
filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])

filter { String line ->

"[$line]"
}
filter { String line ->
line.startsWth('-") ? null : line
}
filteringCharset = ' UTF-8'

The filter () method has two variants, which behave differently:
one takes a Fi | t er Reader and is designed to work with Ant filters, such as Repl aceTokens
one takes a closure or Tr ansf or mer that defines the transformation for each line of the source file

Note that both variants assume the source files are text based. When you use the Repl aceTokens class
with filter (), the resultis a template engine that replaces tokens of the form @ okenNane @(the Ant-style
token) with values that you define.

The expand() method treats the source files as Groovy templates, which evaluate and expand expressions

Page 202 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html
https://docs.oracle.com/javase/7/docs/api/java/io/FilterReader.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Transformer.html
http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

of the form ${ expr essi on}. You can pass in property names and values that are then expanded in the
source files. expand() allows for more than basic token substitution as the embedded expressions are
full-blown Groovy expressions.

Note: It's good practice to specify the character set when reading and writing the file, otherwise the
transformations won't work properly for non-ASCII text. You configure the character set with the
CopySpec. get Fi | teri ngCharset () property. If it's not specified, the JVM default character set
is used, which is likely to be different from the one you want.

§
Using the Copy Spec class

A copy specification (or copy spec for short) determines what gets copied to where, and what happens to
files during the copy. You've alread seen many examples in the form of configuration for Copy and archiving
tasks. But copy specs have two attributes that are worth covering in more detail:

They can be independent of tasks
They are hierarchical

The first of these attributes allows you to share copy specs within a build. The second provides fine-grained
control within the overall copy specification.

§
Sharing copy specs

Consider a build that has several tasks that copy a project’s static website resources or add them to an
archive. One task might copy the resources to a folder for a local HTTP server and another might package
them into a distribution. You could manually specify the file locations and appropriate inclusions each time
they are needed, but human error is more likely to creep in, resulting in inconsistencies between tasks.

One solution Gradle provides is the Proj ect.copySpec(org.gradl e.api.Action) method. This
allows you to create a copy spec outside of a task, which can then be attached to an appropriate task using
the CopySpec.wi th(org.gradle.api.file.CopySpec[]) method. The following example
demonstrates how this is done:

Page 203 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec[]-

Example 152. Sharing copy specifications

buil d. gradl e

CopySpec webAsset sSpec = copySpec {
from' src/ mai n/ webapp'
include "**/* htm', "**/*. png', '**/*.jpg
rename ' (.+)-staging(.+)"', '$1%$2

task copyAssets(type: Copy) {
into "${buildDir}/inPl aceApp"
wi th webAsset sSpec

task distApp(type: Zip) {
archi veName = ' ny-app-dist.zip'
destinationDir = file("${buildDr}/dists")

from appd asses
wi th webAsset sSpec

Both the copyAsset s and di st App tasks will process the static resources under sr ¢/ mai n/ webapp, as
specified by webAsset sSpec.

Note: The configuration defined by webAsset sSpec will not apply to the app classes included by

the di st App task. That's because f r om appC asses is its own child specification independent of wi 1

This can be confusing to understand, so it's probably best to treat wi t h() as an extra from)
specification in the task. Hence it doesn’'t make sense to define a standalone copy spec without at
least one f rom() defined.

If you encounter a scenario in which you want to apply the same copy configuration to different sets of files,

then you can share the configuration block directly without using copySpec() . Here’s an example that has
two independent tasks that happen to want to process image files only:

Page 204 of 777

Example 153. Sharing copy patterns only

buil d. gradl e
def webAsset Patterns = {

include "**/* htmd', "**/*.png', '**/*.jpg

task copyAppAssets(type: Copy) {
into "${buildDir}/inPl aceApp"
from'src/ mai n/webapp', webAssetPatterns

task archiveD st Assets(type: Zip) {
archi veNane = 'distribution-assets. zip'
destinationDir = file("${buildDir}/dists")

from'di st Resources', webAsset Patterns

In this case, we assign the copy configuration to its own variable and apply it to whatever fron{)

specification we want. This doesn't just work for inclusions, but also exclusions, file renaming, and file

content filtering.

§
Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to all the files that are copied.

Sometimes this is what you want, but not always. Consider the following example that copies files into a

directory structure that can be used by a Java Servlet container to deliver a website:

Figure 13. Creating an exploded WAR for a Servlet container

Copy HTML and image files here

build/explodedWar Copy runtime

i lNF/ dependencies (JARs) here
|: lib/
classes/ \
— js/ Copy compiled app classes here

Copy JavaScript files here

Page 205 of 777

This is not a straightforward copy as the VWEB- | NF directory and its subdirectories don’t exist within the
project, so they must be created during the copy. In addition, we only want HTML and image files going
directly into the root folder — bui | d/ expl odedWar — and only JavaScript files going into the j s directory.
So we need separate filter patterns for those two sets of files.

The solution is to use child specifications, which can be applied to both from() and i nt o() declarations.
The following task definition does the necessary work:

Example 154. Nested copy specs

bui | d. gradl e
task nestedSpecs(type: Copy) {
into "${buildD r}/expl odedWar"
exclude ' **/*stagi ng*'
from('src/dist") {
include "**/* html', "**/* png', '**/*.jpg
}

from(sourceSet s. mai n. out put) {
into ' WEB- | NF/ cl asses'

}
into(' VEB-INF/1ib") {
from configurations.runtinmeC asspath

Notice how the sr c/ di st configuration has a nested inclusion specification: that's the child copy spec. You
can of course add content filtering and renaming here as required. A child copy spec is still a copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination either by
usingachildi nto() onafrom() orachildfrom() onaninto().Both approaches are acceptable, but
you may want to create and follow a convention to ensure consistency across your build files.

Note: Don't get your i nt o() specifications mixed up! For a normal copy — one to the filesystem
rather than an archive — there should always be one "root" i nt o() that simply specifies the overall
destination directory of the copy. Any other i nt o() should have a child spec attached and its path

will be relative to the rooti nt o() .
One final thing to be aware of is that a child copy spec inherits its destination path, include patterns, exclude

patterns, copy actions, name mappings and filters from its parent. So be careful where you place your
configuration.

Page 206 of 777

8
Copying files in your own tasks

There might be occasions when you want to copy files or directories as part of a task. For example, a
custom archiving task based on an unsupported archive format might want to copy files to a temporary
directory before they are then archived. You still want to take advantage of Gradle’s copy API, but without
introducing an extra Copy task.

The solution is to use the Proj ect . copy(org. gradl e. api . Acti on) method. It works the same way as
the Copy task by configuring it with a copy spec. Here’s a trivial example:

Example 155. Copying files using the copy() method without up-to-date check

buil d. gradl e
task copyMet hod {
doLast ({

copy {

from' src/ mai n/ webapp'

into "${buil dD r}/expl odedWar"
include "**/* htm"

include "**/* jsp'

The above example demonstrates the basic syntax and also highlights two major limitations of using the cop!
method:

The copy() method is not incremental. The example’s copyMet hod task will always execute because it
has no information about what files make up the task’s inputs. You have to manually define the task inputs
and outputs.

Using a task as a copy source, i.e. as an argument to f r on() , won’t set up an automatic task dependency
between your task and that copy source. As such, if you are using the copy() method as part of a task
action, you must explicitly declare all inputs and outputs in order to get the correct behavior.

The following example shows you how to workaround these limitations by using the dynamic API for task
inputs and outputs:

Page 207 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Example 156. Copying files using the copy() method with up-to-date check

buil d. gradl e
task copyMet hodW t hExpli cit Dependenci es{

i nputs.files copyTask
outputs.dir 'sone-dir’
dolLast{

copy {

from copyTask
into 'some-dir'’

These limitations make it preferable to use the Copy task wherever possible, because of its builtin support
for incremental building and task dependency inference. That is why the copy() method is intended for use
by custom tasks that need to copy files as part of their function. Custom tasks that use the copy() method

should declare the necessary inputs and outputs relevant to the copy action.

8
Mirroring directories and file collections with the Sync task

The Sync task, which extends the Copy task, copies the source files into the destination directory and then
removes any files from the destination directory which it did not copy. In other words, it synchronizes the
contents of a directory with its source. This can be useful for doing things such as installing your application,
creating an exploded copy of your archives, or maintaining a copy of the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the buil d/ | i bs
directory.

Example 157. Using the Sync task to copy dependencies
buil d. gradl e
task libs(type: Sync) {

from configurations. runtine
into "${buildbDir}/Iibs"

You can also perform the same function in your own tasks with the
Proj ect.sync(org. gradl e. api . Acti on) method.

Page 208 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)

8§
Archive creation in depth

Archives are essentially self-contained file systems and Gradle treats them as such. This is why working with
archives is very similar to working with files and directories, including such things as file permissions.

Out of the box, Gradle supports creation of both ZIP and TAR archives, and by extension Java’'s JAR, WAR
and EAR formats — Java’s archive formats are all ZIPs. Each of these formats has a corresponding task
type to create them: Zi p, Tar, Jar, War, and Ear . These all work the same way and are based on copy

specifications, just like the Copy task.

Creating an archive file is essentially a file copy in which the destination is implicit, i.e. the archive file itself.
Here’s a basic example that specifies the path and name of the target archive file:

Example 158. Archiving a directory as a ZIP

buil d. gradl e

task packageDi stribution(type: Zip) {
archi veName = "ny-distribution.zip"
destinationDir = file("${buildDr}/dist")

from"${buil dDir}/toArchive"

In the next section you'll learn about convention-based archive names, which can save you from always
configuring the destination directory and archive name.

The full power of copy specifications are available to you when creating archives, which means you can do
content filtering, file renaming or anything else that is covered in the previous section. A particularly common
requirement is copying files into subdirectories of the archive that don't exist in the source folders, something
that can be achieved with i nt o() child specifications.

Gradle does of course allow you create as many archive tasks as you want, but it's worth bearing in mind
that many convention-based plugins provide their own. For example, the Java plugin adds a j ar task for
packaging a project’'s compiled classes and resources in a JAR. Many of these plugins provide sensible
conventions for the names of archives as well as the copy specifications used. We recommend you use
these tasks wherever you can, rather than overriding them with your own.

§
Archive naming

Gradle has several conventions around the naming of archives and where they are created based on the
plugins your project uses. The main convention is provided by the Base Plugin, which defaults to creating
archives in the $bui | dDi r/ di stri buti ons directory and typically uses archive names of the form
[projectName]-[version].[type].

The following example comes from a project named 'zipProject’, hence the nyZi p task creates an archive

Page 209 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

named ‘zipProject-1.0.zip":

Example 159. Creation of ZIP archive

bui | d. gradl e
pl ugi ns {

id ' base
}

version = 1.0

task nyZip(type: Zip) {
from' sonedir'

doLast {
println archi veName
println relativePath(destinationDir)
println relativePath(archivePat h)

Outputofgradl e -qgq nyZip

> gradle -gq nyZip

zipProject-1.0.zip

bui | d/ di stributions

bui l d/ di stributions/zipProject-1.0.zip

Note that the name of the archive does not derive from the name of the task that creates it.

If you want to change the name and location of a generated archive file, you can provide values for the ar chi
and desti nati onDi r properties of the corresponding task. These override any conventions that would

otherwise apply.

Alternatively, you can make use of the default archive name pattern provided by
Abstract Archi veTask. get Archi veNane(): [baseName]-[appendix]-[version]-[classifier].[extension].
You can set each of these properties on the task separately if you wish. Note that the Base Plugin uses the
convention of project name for baseName, project version for version and the archive type for extension. It
does not provide values for the other properties.

This example — from the same project as the one above — configures just the baseNane property,
overriding the default value of the project name:

Page 210 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveName
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveName

Example 160. Configuration of archive task - custom archive name

buil d. gradl e
task myCuston¥i p(type: Zip) {
baseNane = ' cust omNane'

from' sonedir'

doLast {
println archi veNane

Output of gradl e -g nyCust on¥i p
> gradl e -gq nmyCuston¥ip
cust omNane-1. 0. zi p

You can also override the default baseNane value for all the archive tasks in your build by using the project

property ar chi vesBaseNane, as demonstrated by the following example:

Page 211 of 777

Example 161. Configuration of archive task - appendix & classifier

buil d. gradl e
pl ugi ns {

id ' base
}

version = 1.0
archi vesBaseNane = "gradl e"

task nyZip(type: Zip) {
from' sonedir'

}

task myQtherZ p(type: Zip) {
appendi x = 'w apper"'
classifier = "'src'

from' sonedir'

task echoNanes {
doLast {
println "Project name: ${project.nane}"
println myZ p. archi veNane
println myQ herZi p. ar chi veNane

Output of gradl e - g echoNanes
> gradl e -q echoNanes

Proj ect nane: zipProject
gradle-1.0.zip

gradl e-wrapper-1.0-src.zip

You can find all the possible archive task properties in the APl documentation for Abst ract Ar chi veTask,
but we have also summarized the main ones here:

ar chi veNane — Stri ng, default: baseNane- appendi x- ver si on-cl assi fi er. ext ensi on
The complete file name of the generated archive. If any of the properties in the default value are empty,
their '-' separator is dropped.

archi vePat h — Fi | e, read-only, default: desti nati onDi r/ ar chi veNane
The absolute file path of the generated archive.

destinationDi r — Fi |l e, default: depends on archive type
The target directory in which to put the generated archive. By default, JARs and WARs go into $bui | dDi
. ZIPs and TARs go into $bui | dDi r/ di stri buti ons.

Page 212 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

baseNanme — Stri ng, default: proj ect. nane
The base name portion of the archive file name, typically a project name or some other descriptive name
for what it contains.

appendi x — St ri ng, default: nul |
The appendix portion of the archive file name that comes immediately after the base name. It is typically
used to distinguish between different forms of content, such as code and docs, or a minimal distribution
versus a full or complete one.

versi on — Stri ng, default: proj ect. versi on
The version portion of the archive file name, typically in the form of a normal project or product version.

cl assifier —String, default: nul |
The classifier portion of the archive file name. Often used to distinguish between archives that target
different platforms.

ext ensi on — St ri ng, default: depends on archive type and compression type
The filename extension for the archive. By default, this is set based on the archive task type and the
compression type (if you're creating a TAR). Will be one of: zi p,j ar,war,tar,tgz ortbz2. You can
of course set this to a custom extension if you wish.

8
Sharing content between multiple archives

As described earlier, you can use the Proj ect . copySpec(org. gradl e. api . Acti on) method to share
content between archives.

8
Reproducible archives

Sometimes it's desirable to recreate archives exactly the same, byte for byte, on different machines. You
want to be sure that building an artifact from source code produces the same result no matter when and
where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an archive
is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built from source,
the order of the files inside the archive may change. Files that only have a different timestamp also causes
differences in archives from build to build. All Abst ract Archi veTask (e.g. Jar, Zip) tasks shipped with
Gradle include incubating support producing reproducible archives.

For example, to make a Zi p task reproducible you need to set Zi p. i sReproduci bl eFi |l eOrder () totrt
and Zi p.isPreserveFi | eTi nest anps() to fal se. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

Page 213 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps

Example 162. Activating reproducible archives

buil d. gradl e

tasks. wi t hType(Abstract Archi veTask) {
preserveFi |l eTi nest anps = fal se
reproduci bl eFil eOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is described

in Publishing artifacts

Page 214 of 777

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant’'s XML format. You could even use Gradle simply as a powerful Ant task scripting
tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the bui | d. xi
file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything
except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d.
directly into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer Gradle

provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
Your build script may contain statements like: "ant cl ean conpi | e". execut e() .

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For example, you
could start by importing your existing Ant build. Then you could move your dependency declarations from the
Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with
some of Gradle’s plugins. This process can be done in parts over time, and you can have a working Gradle
build during the entire process.

8§
Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an Ant Bui | der
instance. This Ant Bui | der is used to access Ant tasks, types and properties from your build script. There
is a very simple mapping from Ant’s bui | d. xnl format to Groovy, which is explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task name as the
method name. For example, you execute the Ant echo task by calling the ant. echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo

task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 215 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html

Example 163. Using an Ant task

buil d. gradl e
task hello {
doLast {

String greeting = '"hello from Ant

ant . echo(nessage: greeting)

Output of gradl e hel | o
> gradle hello

> Task :hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we

pass the message for the echo task as nested text:

Example 164. Passing nested text to an Ant task

bui I d. gradl e
task hello {
doLast {

ant.echo(' hello fromAnt")

Output of gradl e hel | o
> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as

tasks, by calling a method with the same name as the element we want to define.

Page 216 of 777

Example 165. Passing nested elements to an Ant task

buil d. gradl e
task zip {
doLast {

ant. zi p(destfile: "archive.zip') {
fileset(dir: "src') {
i nclude(nanme: ' **.xm ")
excl ude(nane: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 166. Using an Ant type

buil d. gradl e
task list {
doLast {
def path = ant.path {
fileset(dir: "libs', includes: "*.jar")
}
path.list().each {
println it
}
}
}

More information about Ant Bui | der can be found in 'Groovy in Action' 8.4 or at the Groovy Wiki

§
Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the t askdef (usually easier) or t ypedef Ant
task, just as you would in a bui |l d. xm file. You can then refer to the custom Ant task as you would a
built-in Ant task.

Page 217 of 777

http://groovy-lang.org/scripting-ant.html

Example 167. Using a custom Ant task

buil d. gradl e
task check {
doLast {

ant . t askdef (resource: 'checkstyl etask. properties') {
cl asspath {
fileset(dir: "libs', includes: "*.jar")

}
ant . checkstyl e(config: 'checkstyle.xm"') {

fileset(dir: "src")

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To
do this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. This is described in more detail in Declaring Dependencies.

Example 168. Declaring the classpath for a custom Ant task

buil d. gradl e

configurations {
pnd

}

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 169. Using a custom Ant task and dependency management together

buil d. gradl e
task check {
doLast {

ant . t askdef (nane: 'pnd',
cl assnanme: ' net.sourceforge. pnd. ant. PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(shortFil enanes: 'true',
failonrul eviolation: '"true',
rulesetfiles: file('pnd-rules.xm").toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: '"src')

Page 218 of 777

8§
Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When you
import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute
the Ant targets in exactly the same way as Gradle tasks.

Example 170. Importing an Ant build

bui | d. gradl e
ant.inmportBuild 'build. xm"

bui | d. xm
<pr oj ect >
<target name="hell 0">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Outputof gradl e hel |l o
> gradle hello

> Task :hello
[ant:echo] Hello, from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Page 219 of 777

Example 171. Task that depends on Ant target

buil d. gradl e
ant.inmportBuild '"build. xm"'

task intro(dependsOn: hello) {

doLast {
println '"Hello, from G adle'

Outputofgradl e intro
> gradle intro

> Task :hello
[ant:echo] Hello, from Ant

> Task :intro
Hell o, from G adl e

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Or, you can add behaviour to an Ant target:

Example 172. Adding behaviour to an Ant target

bui I d. gradl e
ant.inmportBuild 'build. xm"

hell o {
doLast {
println "Hello, from G adle'

Output of gradl e hel |l o
> gradle hello

> Task :hello
[ant:echo] Hello, from Ant
Hell o, from G adl e

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Page 220 of 777

Example 173. Ant target that depends on Gradle task

buil d. gradl e
ant.inmportBuild '"build. xm"'

task intro {
doLast {
println '"Hello, from G adle'

}
}
bui | d. xni
<pr oj ect >

<target name="hell 0" depends="intro">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Output of gradl e hel |l o
> gradle hello

> Task :intro
Hell o, from G adl e

> Task :hello
[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision

with existing Gradle tasks. To do this, use the Ant Buil der.inportBuild(]ava.lang. Object,

org. gradl e. api . Transf or mer) method.

Page 221 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-

Example 174. Renaming imported Ant targets

buil d. gradl e
ant . i mportBui l d(' build.xm"') { antTarget Nane ->

a-' + ant Tar get Nane
}
bui | d. xni
<pr oj ect >

<target nanme="hello">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Output of gradl e a-hell o
> gradle a-hello

> Task :a-hello
[ant:echo] Hello, from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note that while the second argument to this method should be a Tr ansf or ner, when programming in
Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy’s
support for automatically coercing closures to single-abstract-method types.

8§
Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set
the property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you

can change. You can also use the Ant pr oper t y task. Below are some examples of how to do this.
Example 175. Setting an Ant property

buil d. gradl e

ant.buildbDir = buildDir

ant. properties.buildDir = buildDr
ant.properties['buildDir'] = buildDir

ant . property(name: 'buildDir', location: buildDir)

bui | d. xm
<echo>bui Il dDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also

Page 222 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

available as a Map. Below are some examples.
Example 176. Getting an Ant property

buil d. xm
<property name="ant Prop" val ue="a property defined in an Ant build"/>

buil d. gradl e
println ant.antProp

println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example 177. Setting an Ant reference

buil d. gradl e

ant.path(id: 'classpath', location: '"libs")

ant . references. cl asspath = ant.path(location: 'libs")
ant.references['classpath'] = ant.path(location: '"libs")
bui | d. xn

<path refid="classpath"/>

There are several ways to get an Ant reference:

Example 178. Getting an Ant reference

bui I d. xn
<pat h id="ant Pat h" |ocation="I|ibs"/>
buil d. gradl e

println ant.references. antPath
println ant.references[' antPath']

8
Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the
Gradle output. By default, these are mapped as follows:

Page 223 of 777

Table 6. Ant message priority mapping

nt Message Priority Gradle Log Level
ERBOSE DEBUG

EBUG DEBUG

\FO I NFO

/ARN WARN

RROR ERROR

§

Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LI FECYCLE log level, which is the default for
Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages from
Gradle, a build would have to be run with the log level set to | NFO, potentially logging much more output
than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would require
the build to be run at a higher log level, such as QUI ET. However, this could result in other, desirable output
being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message
priority to Gradle log level. This is done by setting the priority that should map to the default Gradle LI FECYC
log level using the Ant Bui | der. set Li fecycl eLogLevel (java. |l ang. String) method. When this
value is set, any Ant message logged at the configured priority or above will be logged at least at LI FECYCLE
. Any Ant message logged below this priority will be logged at most at | NFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed at the L
log level.

Page 224 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

Example 179. Fine tuning Ant logging

buil d. gradl e
ant.lifecycl eLogLevel = "INFO'

task hello {
doLast {
ant . echo(level: "info", message: "hello frominfo priority!")

Output of gradl e hel | o
> gradle hello

> Task :hello
[ant:echo] hello frominfo priority!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

On the other hand, if the | i f ecycl eLogLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the | NFO level and
would be suppressed by default.

8
API

The Ant integration is provided by Ant Bui | der .

[5] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have
a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 225 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/AntBuilder.html

Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks
are executed in the order of their dependencies, and that each task is executed only once. These tasks form
a Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

8§
Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and creates a Pr oj ect instance for each of these projects.

Configuration
During this phase the project objects are configured. The build scripts of all projects which are part of the
build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on demand. In
this mode, Gradle configures only relevant projects (see the section called “Configuration on demand”).

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gr adl e command and
the current directory. Gradle then executes each of the selected tasks.

8§
Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for this file is setti ngs. gr adl e. Later in this chapter we explain
how Gradle looks for a settings file.

Page 226 of 777

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

The settings file is executed during the initialization phase. A multiproject build must have a setti ngs. gr ac
file in the root project of the multiproject hierarchy. It is required because the settings file defines which
projects are taking part in the multi-project build (see Authoring Multi-Project Builds). For a single-project
build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to
your build script classpath (see Organizing Build Logic). Let’s first do some introspection with a single project
build:

Page 227 of 777

Example 180. Single project build

settings.gradle
println "This is executed during the initialization phase."'

bui I d. gradl e
println "This is executed during the configuration phase.'

task configured {
println "This is al so executed during the configuration phase.'

}
task test {
doLast {
println 'This is executed during the execution phase."'
}
}

task testBoth {
doFirst {
println "This is executed first during the execution phase.'

}
doLast {

println '"This is executed |last during the execution phase.'

}

println '"This is executed during the configuration phase as well.'

Outputofgradl e test testBoth
> gradle test testBoth
This is executed during the initialization phase.

> Configure project

This is executed during the configuration phase.

This is also executed during the configuration phase.
This is executed during the configuration phase as well.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.

This is executed | ast during the execution phase.

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Setti ngs

Page 228 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html

class in the APl documentation for more information.

8§
Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
You have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project builds in the chapter dedicated to this topic (see Authoring Multi-Project Builds).

§
Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents
a project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the setti ngs. gr adl e file. By default it is assumed
that the location of the settings file is also the location of the root project. But you can redefine the location of
the root project in the settings file.

§
Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

§
Hierarchical layouts

Example 181. Hierarchical layout

settings.gradle
include '"projectl', 'project2:child, 'project3:childl

The i ncl ude method takes project paths as arguments. The project path is assumed to be equal to the
relative physical file system path. For example, a path 'services:api' is mapped by default to a folder
'services/api' (relative from the project root). You only need to specify the leaves of the tree. This means that
the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and
'services:hotels:api'. More examples of how to work with the project path can be found in the DSL
documentation of Set ti ngs. i ncl ude(j ava.lang. String[]).

§
Flat layouts

Example 182. Flat layout
settings.gradle

i ncludeFl at 'project3', 'project4d

Page 229 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

The i ncl udeFl at method takes directory names as an argument. These directories need to exist as
siblings of the root project directory. The location of these directories are considered as child projects of the
root project in the multi-project tree.

8
Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can modify
these descriptors in the settings file at any time. To access a descriptor you can do:

Example 183. Lookup of elements of the project tree

settings.gradle
println rootProject. nane
println project(':projectA). name

Using this descriptor you can change the name, project directory and build file of a project.
Example 184. Modification of elements of the project tree

settings.gradle

root Project.name = 'nmain'

project(':projectA).projectDir = new File(settingsDir, '../nmy-project-a')
project(':projectA).buildFileNane = 'projectA gradle'

Look at the Proj ect Descri pt or class in the APl documentation for more information.

8
Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from a
directory with a settings file, things are easy. But Gradle also allows you to execute the build from within any
subproject taking part in the build.[! If you execute Gradle from within a project with no set ti ngs. gradl e

file, Gradle looks for a set ti ngs. gr adl e file in the following way:

It looks in a directory called nmast er which has the same nesting level as the current dir.
If not found yet, it searches parent directories.

If not found yet, the build is executed as a single project build.

Ifasettings. gradl e file is found, Gradle checks if the current project is part of the multiproject hierarchy
defined in the found set ti ngs. gr adl e file. If not, the build is executed as a single project build. Otherwise
a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent

Page 230 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

projects are built, but Gradle needs to create the build configuration for the whole multiproject build (see
Authoring Multi-Project Builds). You can use the - u command line option to tell Gradle not to look in the
parent hierarchy for a setti ngs. gradl e file. The current project is then always built as a single project
build. If the current project contains a setti ngs. gr adl e file, the - u option has no meaning. Such a build
is always executed as:

a single project build, if the set ti ngs. gr adl e file does not define a multiproject hierarchy
a multiproject build, if the set ti ngs. gr adl e file does define a multiproject hierarchy.

The automatic search for a settings. gradl e file only works for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described
above (“mast er ”). Gradle supports arbitrary physical layouts for a multiproject build, but for such arbitrary
layouts you need to execute the build from the directory where the settings file is located. For information on
how to run partial builds from the root see the section called “Running tasks by their absolute path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are
the projects specified in the Settings object (plus the root project). Each project object has by default a name
equal to the name of its top level directory, and every project except the root project has a parent project.
Any project may have child projects.

8§
Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build script is
executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project builds is discussed in Authoring Multi-Project Builds.

8§
Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These notifications
generally take two forms: You can either implement a particular listener interface, or you can provide a
closure to execute when the notification is fired. The examples below use closures. For details on how to use
the listener interfaces, refer to the APl documentation.

8
Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once all the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds a t est task to each project which has a hasTest s property value of true.

Page 231 of 777

Example 185. Adding of test task to each project which has certain property set

buil d. gradl e
al | projects {
afterEval uate { project ->
i f (project.hasTests) {
println "Adding test task to $project”
project.task('test') {
doLast {
println "Running tests for $project”

proj ect A . gradl e
hasTests = true

Outputofgradl e -qg test

> gradle -q test

Adding test task to project ':projectA
Running tests for project ':projectA

This example uses method Proj ect. aft er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect notification is received regardless of
whether the project evaluates successfully or fails with an exception.

Example 186. Notifications

buil d. gradl e
gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uation of $project FAlILED
} else {
println "Eval uati on of $project succeeded"

Outputofgradl e -qg test

> gradle -q test

Eval uation of root project 'buil dProjectEval uateEvents' succeeded
Eval uation of project ':projectA succeeded

Eval uation of project ':projectB FAILED

BU LD FAILED in Os

Page 232 of 777

You can also add a Pr o] ect Eval uati onLi st ener tothe G adl e to receive these events.

§
Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example sets the srcDi r property of each task as it is created.

Example 187. Setting of certain property to all tasks

buil d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/main/java'

}

task a

println "source dir is $a.srcDr"

Outputofgradle -gq a
> gradle -q a
source dir is src/main/java

You can also add an Act i on to a TaskCont ai ner to receive these events.

§
Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have
seen this already in the section called “Configure by DAG”.

You can also add a TaskExecuti onG aphLi st ener to the TaskExecuti onG aph to receive these

events.

§
Task execution

You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task notification
is received regardless of whether the task completes successfully or fails with an exception.

Page 233 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Example 188. Logging of start and end of each task execution

buil d. gradl e
task ok

task broken(dependsOn: ok) {
doLast {
throw new Runti meException(' broken')

gradl e. t askG aph. bef oreTask { Task task ->
println "executing $task ..."

gradl e. taskG aph. after Task { Task task, TaskState state ->
if (state.failure) {
println "FAI LED

}
el se {

println "done"
}

Output of gradl e -qg broken
> gradl e -q broken
executing task ':ok
done

executing task
FAlI LED

: br oken'

BU LD FAI LED in Os

You can also use a TaskExecut i onLi st ener tothe TaskExecuti onG aph to receive these events.

[6] Gradle supports partial multiproject builds (see Authoring Multi-Project Builds).

Page 234 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 7. There are two Gradle-specific log levels, in addition to the ones
you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the default, and is used to
report build progress.

Table 7. Log levels

avel Used for

RROR Error messages

UIET Important information messages
TARNING Warning messages

FECYCLE Progress information messages
IFO Information messages

EBUG Debug messages

Note: The rich components of the console (build status and work in progress area) are displayed
regardless of the log level used. Before Gradle 4.0 those rich components were only displayed at
log level LI FECYCLE or below.

8§
Choosing a log level

You can use the command line switches shown in Table 8 to choose different log levels. You can also
configure the log level using gradle.properties, see the section called “Gradle properties”. In Table 9 you find
the command line switches which affect stacktrace logging.

Page 235 of 777

Table 8. Log level command-line options

ption Outputs Log Levels

) logging options LIFECYCLE and higher

jor--quiet QUIET and higher

NOF - -warn WARN and higher

lor--info INFO and higher

d or - - debug DEBUG and higher (that is, all log messages)

Table 9. Stacktrace command-line options
ption Meaning

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in case of
o stacktrace options internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated stacktraces
are always printed.

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full stacktraces

2 or BNEEEEAE are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet they usually do not
5 0r--
contain relevant information for what has gone wrong in your code.) This option renders stacktraces for

deprecation warnings.

Sor--full-stackt Thedull stacktraces are printed out. This option renders stacktraces for deprecation warnings.

8§
Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects
anything written to standard output to its logging system at the QUI ET log level.

Example 189. Using stdout to write log messages

buil d. gradl e
println 'A nessage which is | ogged at QU ET | evel'

Gradle also provides a | ogger property to a build script, which is an instance of Logger . This interface

extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is an example of

how this is used in the build script:

Page 236 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/Logger.html

Example 190. Writing your own log messages

buil d. gradl e

| ogger.quiet('An info | og nessage which is always | ogged."')
| ogger.error('An error | og nessage.')

| ogger.warn(' A warning | og nessage.")

| ogger.lifecycle('Alifecycle info | og nessage.')

| ogger.info('An info | og nessage.')

| ogger . debug(' A debug | og nessage.')

| ogger.trace(' A trace | og nessage.')

Use the typical SLF4J pattern to replace a placeholder with an actual value as part of the log message.
Example 191. Writing a log message with placeholder

buil d. gradl e
| ogger.info('A {} log nessage', 'info')

You can also hook into Gradle’s logging system from within other classes used in the build (classes from the
directory for example). Simply use an SLF4J logger. You can use this logger the same way as you use the
provided logger in the build script.

Example 192. Using SLF4J to write log messages

buil d. gradl e
i nport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getLogger (' sonme-| ogger")
sl f4j Logger.info('An info | og nessage | ogged using SLF4]')

8§
Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging output
into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log levels,
except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the default
Gradle log level will not show any Ant/lvy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects
standard output to the QUI ET log level and standard error to the ERROR level. This behavior is configurable.
The project object provides a Loggi ngVanager, which allows you to change the log levels that standard

out or error are redirected to when your build script is evaluated.

Page 237 of 777

https://www.slf4j.org/manual.html#typical_usage
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/LoggingManager.html

Example 193. Configuring standard output capture

buil d. gradl e
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
println 'A nessage which is | ogged at | NFO | evel

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 194. Configuring standard output capture for a task

buil d. gradl e
task loglnfo {
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
doFirst {
println 'A task nmessage which is |ogged at | NFO | evel

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradle’s logging system.

8§
Changing what Gradle logs

You can replace much of Gradle’s logging Ul with your own. You might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. You replace the
logging using the Gradl e. uselLogger (] ava. | ang. Obj ect) method. This is accessible from a build
script, or an init script, or via the embedding API. Note that this completely disables Gradle’s default output.
Below is an example init script which changes how task execution and build completion is logged.

Page 238 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Example 195. Customizing what Gradle logs

init.gradle
uselLogger (new Cust onmEvent Logger ())

cl ass CustonEvent Logger extends Buil dAdapter inplenents TaskExecuti onLi stener {

public void beforeExecute(Task task) {
println "[$task. nane]"

public void afterExecute(Task task, TaskState state) {
println()

public void buil dFi ni shed(Buil dResult result) ({
println "build conpleted
if (result.failure !'= null) {
result.failure.printStackTrace()

}
}
}
Outputofgradle -1 init.gradle build
> gradle -1 init.gradle build

> Task :conpile

[conpi | €]
conpi l i ng source

> Task :testConpile
[test Conpil e]
conpiling test source

> Task :test
[test]
running unit tests

> Task :build
[bui | d]

buil d conpl et ed
3 actionabl e tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.

Page 239 of 777

You can find out more about the listener interfaces in the section called “Responding to the lifecycle in the

build script”.

Bui | dLi st ener

Pr oj ect Eval uat i onLi st ener
TaskExecuti onG aphlLi st ener
TaskExecut i onLi st ener

TaskAct i onLi st ener

Page 240 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/execution/TaskActionListener.html

Authoring Multi-Project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the
most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

8§
Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don’t have to be Java projects. Our first examples are about marine life.

§
Configuration and execution

the section called “Build phases” describes the phases of every Gradle build. Let's zoom into the
configuration and execution phases of a multi-project build. Configuration here means executing the bui | d.
file of a project, which implies e.g. downloading all plugins that were declared using ‘appl y pl ugi n’. By
default, the configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of multi-project build are configured first. The reason
every project needs to be configured is to support the flexibility of accessing and changing any part of the
Gradle project model.

§
Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every
project is configured before the execution phase. Yet, this approach may not be the most efficient in a very
large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The
configuration time of huge multi-project builds may become noticeable. Scalability is an important
requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode is
introduced.

Page 241 of 777

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.
it only executes the bui |l d. gradl e file of projects that are participating in the build. This way, the
configuration time of a large multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is
incubating so not every build is guaranteed to work correctly. The feature should work very well for
multi-project builds that have decoupled projects (the section called “Decoupled Projects”). In “configuration
on demand” mode, projects are configured as follows:

The root project is always configured. This way the typical common configuration is supported (allprojects or
subprojects script blocks).

The project in the directory where the build is executed is also configured, but only when Gradle is executed
without any tasks. This way the default tasks behave correctly when projects are configured on demand.

The standard project dependencies are supported and makes relevant projects configured. If project A has a
compile dependency on project B then building A causes configuration of both projects.

The task dependencies declared via task path are supported and cause relevant projects to be configured.
Example: someTask.dependsOn(":someOtherProject:someOtherTask")

A task requested via task path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see the section called
“Gradle properties”. To configure on demand just for a given build, see the section called “Performance
options”.

§
Defining common behavior

Let's look at some examples with the following project tree. This is a multi-project build with a root project
named wat er and a subproject named bl uewhal e.

Example 196. Multi-project tree - water & bluewhale projects

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/firstExar

in the ‘-all’ distribution of Gradle.

settings.gradle
i ncl ude ' bl uewhal e

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously for a

Page 242 of 777

single project build, a project without a build script doesn’'t make much sense. For multiproject builds the
situation is different. Let’s look at the build script for the wat er project and execute it:

Example 197. Build script of water (parent) project

buil d. gradl e
Closure cl ={ task -> println "I'm $task. proj ect. nane" }
task(' hello').doLast(cl)
proj ect(':bluewhale') {
task(' hell o").doLast(cl)

Outputofgradl e -q hello
> gradle -q hello

' m wat er

I m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect (), which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project configuration.
Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It is inconvenient to add the task explicitly
for every project. We can do better. Let’s first add another project called kri | | to our multi-project build.

Example 198. Multi-project tree - water, bluewhale & krill projects

Build layout

wat er/
bui I d. gradl e
settings.gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/addKrill/

in the ‘-all’ distribution of Gradle.

settings.gradle
i ncl ude ' bluewhale', "krill"’

Now we rewrite the wat er build script and boil it down to a single line.

Page 243 of 777

Example 199. Water project build script

buil d. gradl e
al | projects {
task hello {
doLast { task ->
println "I'm $task. proj ect. nang"

Outputofgradl e -q hello
> gradle -q hello

I''m wat er

' m bl uewhal e

I"mkrill

Is this cool or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.
You could also do an iteration via al | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject
builds.

Another possibility for sharing configuration is to use a common external script. See the section called
“Configuring the project using an external build script” for more information.

8§
Subproject configuration

The Project API also provides a property for accessing the subprojects only.

Page 244 of 777

8
Defining common behavior

Example 200. Defining common behavior of all projects and subprojects

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nane"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradl e -q hello
> gradle -q hello

' m wat er

' m bl uewhal e

- | depend on water
['"'mkril

- | depend on water

You may notice that there are two code snippets referencing the “hel | 0” task. The first one, which uses the
“t ask” keyword, constructs the task and provides it's base configuration. The second piece doesn't use the *
" keyword, as it is further configuring the existing “hel | 0” task. You may only construct a task once in a
project, but you may add any number of code blocks providing additional configuration.

8
Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don’t have to do it this way. We could add project specific behavior for the bl uewhal e project like this:

Page 245 of 777

Example 201. Defining specific behaviour for particular project

buil d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}
project(':bluewhale).hello {
doLast {
println "- I'mthe |argest aninmal that has ever lived on this planet."
}
}

Outputofgradl e -q hello

> gradle -q hello

"' m wat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
I"'mkrill

- | depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior to the kri | | project.

Example 202. Defining specific behaviour for project krill

Build layout
wat er/
bui I d. gradl e
settings.gradle
bl uewhal e/
buil d. gradl e
krill/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ spreadSpe
in the ‘-all’ distribution of Gradle.

Page 246 of 777

settings.gradle
i nclude ' bl uewhale', "krill

bl uewhal e/ bui | d. gradl e
hel | 0. doLast {
println "- I'mthe largest aninal that has ever lived on this planet."

krill/build.gradle
hel | 0. doLast {
println "- The weight of ny species in sumer is twi ce as heavy as all hunman b

bui I d. gradl e
al | projects {
task hello {
doLast { task ->

println "1'm $task. proj ect. nanme"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradl e -q hello

> gradle -q hello

' m wat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

["mkril

| depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs.

§
Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 247 of 777

§
Filtering by name

Example 203. Adding custom behaviour to some projects (filtered by project name)

Build layout
wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
buil d. gradl e
krill/
buil d. gradl e
t ropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ addTr opi ¢
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill', "tropicalFish'

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}
configure(subprojects.findAll {it.name != "tropical Fish'}) {
hell o {
doLast {
println'- | love to spend tinme in the arctic waters.'
}
}
}

Outputofgradl e -q hello

Page 248 of 777

> gradle -q hello

"' m wat er

I m bl uewhal e

- | depend on water

-1 love to spend time in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"mkril

| depend on water

-1 love to spend time in the arctic waters.

- The weight of ny species in sumer is twice as heavy as all hunman beings.
' mtropical Fi sh

| depend on water

The confi gure() method takes a list as an argument and applies the configuration to the projects in this
list.

§
Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See the section
called “Extra properties” for more information on extra properties.)

Example 204. Adding custom behaviour to some projects (filtered by project properties)

Build layout
wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
bui I d. gradl e
krill/
bui I d. gradl e
t ropi cal Fi sh/
bui I d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropical\
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill"', '"tropical Fish'

bl uewhal e/ bui | d. gradl e
ext.arctic = true
hel | 0. doLast ({
println "- I'mthe largest aninmal that has ever lived on this planet."

Page 249 of 777

krill/build.gradle
ext.arctic = true
hel | 0. doLast {

println "- The weight of ny species in summer is twice as heavy as all hunman

tropi cal Fi sh/ bui |l d. gradl e
ext.arctic = fal se

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nane"
}
}
}
subproj ects {
hell o {
doLast {println "- | depend on water"}
afterEval uate { Project project ->
if (project.arctic) { doLast {
println'- | love to spend tine in the arctic waters.' }
}
}
}
}

Outputofgradl e -qg hello

> gradle -q hello

I'''m wat er

" m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
- | love to spend tinme in the arctic waters.

["mkril

| depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs.
- | love to spend tinme in the arctic waters.

"' mtropical Fi sh

| depend on water

In the build file of the wat er project we use an af t er Eval uat e notification. This means that the closure
we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property ar ct i ¢
is set in those build scripts, we have to do it this way. You will find more on this topic in the section called
“Dependencies - Which dependencies?”

Page 250 of 777

8§
Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | ¢
tasks of the different projects were executed. Let’s switch to the bl uewhal e dir and see what happens if we
execute Gradle from there.

Example 205. Running build from subproject

Outputofgradl e -q hello

> gradle -q hello

' m bl uewhal e

- | depend on water

- I'"'mthe largest animal that has ever lived on this planet.
- | love to spend tinme in the arctic waters.

The basic rule behind Gradle’s behavior is simple. Gradle looks down the hierarchy, starting with the current
dir, for tasks with the name hel | o and executes them. One thing is very important to note. Gradle always
evaluates every project of the multi-project build and creates all existing task objects. Then, according to the
task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of
Gradle’s cross project configuration every project has to be evaluated before any task gets executed. We
will have a closer look at this in the next section. Let’'s now have our last marine example. Let's add a task to
bl uewhal e and kri || .

Page 251 of 777

Example 206. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e
ext.arctic = true

hell o {
doLast {
println "- I'mthe largest aninal that has ever lived on this planet."
}
}

task distanceTol ceberg {
doLast {
println '20 nautical mles

krill/build.gradle
ext.arctic = true

hell o {
doLast ({
println "- The weight of nmy species in summer is twi ce as heavy as all hi
}
}

task distanceTol ceberg {
doLast {
println '5 nautical niles'

Outputof gradl e -qg di stanceTol ceberg
> gradl e -q di stanceTol ceberg

20 nautical mles

5 nautical mles

Here’s the output without the - q option:

Page 252 of 777

Example 207. Evaluation and execution of projects

Output of gr adl e di st anceTol ceberg
> gradl e di stanceTol ceberg

> Task : bl uewhal e: di st anceTol ceberg
20 nautical niles

> Task :krill:distanceTol ceberg
5 nautical mles

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have a task with the
name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is: Execute

all tasks down the hierarchy which have this name. Only complain if there is no such task!

8§
Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from
there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle
also offers to execute tasks by their absolute path (see also the section called “Project and task paths”):

Example 208. Running tasks by their absolute path

Outputofgradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

"' m wat er

['"'mkril

- | depend on water

- The weight of nmy species in sumrer is twice as heavy as all human bei ngs.
- | love to spend tinme in the arctic waters.

"' mtropical Fi sh

| depend on water

The build is executed from the t r opi cal Fi sh project. We execute the hel | o tasks of the wat er, the kri |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

Page 253 of 777

8§
Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of a task is simply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a project
you can address a task of the same project just by its name. This is interpreted as a relative path.

8§
Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. The following sections illustrate the differences between these two types
of dependencies.

Page 254 of 777

8
Execution dependencies

§
Dependencies and execution order

Example 209. Dependencies and execution order

Build layout
messages/
bui I d. gradl e
settings.gradle
consuner/
buil d. gradl e
pr oducer/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the ‘-all’ distribution of Gradle.

bui | d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude ' consuner', ' producer

consumner/ bui | d. gradl e
task action {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

producer/ buil d. gradl e
task action {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.
}

Outputof gradl e -qg action
> gradle -q action
Consumi ng nessage: nul
Pr oduci ng nessage:

This didn’t quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric order.
Therefore, Gradle will execute “: consumner : acti on” before “: producer : acti on”. Let’s try to solve this
with a hack and rename the producer project to “aPr oducer .

Page 255 of 777

Example 210. Dependencies and execution order

Build layout
messages/
buil d. gradl e
settings.gradle
aProducer/
bui I d. gradl e
consuner/
bui I d. gradl e

buil d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude ' consuner', 'aProducer

aProducer/bui l d. gradl e
task action {

doLast {

println "Produci ng nmessage: "

r oot Proj ect. producer Message = 'Watch the order of execution.
}

consumer/ bui l d. gradl e
task action {
doLast {
println("Consum ng nmessage: ${rootProject.producer Message}")

Outputofgradl e -g action

> gradle -q action

Pr oduci ng nessage:

Consumi ng nmessage: Watch the order of execution

We can show where this hack doesn’t work if we now switch to the consuner dir and execute the build.
Example 211. Dependencies and execution order

Outputofgradl e -g action
> gradle -q action
Consum ng message: nul

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In

the last example only one “act i on” task was down the hierarchy and therefore it was the only task that was

Page 256 of 777

executed. We need something better than this hack.

§
Declaring dependencies

Example 212. Declaring dependencies

Build layout
messages/
buil d. gradl e
settings.gradle
consuner/
bui I d. gradl e
pr oducer/
bui I d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the *-all’ distribution of Gradle.

buil d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude 'consuner', 'producer’

consurmer/ bui |l d. gradl e
task action(dependsOn: ":producer:action") {
doLast ({
println("Consum ng nessage: ${rootProject.producer Message}")

producer/ buil d. gradl e
task action {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.
}

Outputofgradl e -g action

> gradle -q action

Pr oduci ng nessage:

Consumi ng nmessage: Watch the order of execution

Running this from the consuner directory gives:

Page 257 of 777

Example 213. Declaring dependencies

Outputofgradl e -g action

> gradle -q action

Pr oduci ng nessage:

Consumi ng nessage: Watch the order of execution.

This is now working better because we have declared that the “act i on” task in the “consuner ” project has

an execution dependency on the “act i on” task in the “pr oducer ” project.

§
The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let’s
change the naming of our tasks and execute the build.

Example 214. Cross project task dependencies

consuner/bui |l d. gradl e
task consune(dependsOn: ' :producer: produce') {
doLast {
println("Consum ng nmessage: ${rootProject.producer Message}")

producer/ buil d. gradl e
task produce {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.'
}

Output of gradl e -g consune

> gradle -q consune

Pr oduci ng nessage:

Consumi ng nmessage: Watch the order of execution.

§
Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter Java land. We add a
property to the “pr oducer ” project and create a configuration time dependency from “consuner ” to “pr odu

Page 258 of 777

Example 215. Configuration time dependencies

consuner/bui |l d. gradl e
def nessage = root Project. producer Message

task consune {
doLast {
println("Consum ng nessage: " + nessage)

producer/ buil d. gradl e
r oot Proj ect. producer Message = 'Watch the order of evaluation.'

Output of gradl e -g consune
> gradl e -gq consune
Consumi ng nessage: nul |

The default evaluation order of projects is alphanumeric (for the same nesting level). Therefore the “consum
" project is evaluated before the “pr oducer ” project and the “pr oducer Message” value is set after it is
read by the “consuner ” project. Gradle offers a solution for this.

Example 216. Configuration time dependencies - evaluationDependsOn

consuner/bui |l d. gradl e
eval uati onDependsOn(' : producer")

def nessage = root Project. producer Message

task consume {
doLast {
println("Consum ng nessage: " + nessage)

Outputof gradl e -g consune
> gradle -q consune
Consum ng nmessage: Watch the order of eval uation.

The use of the “eval uat i onDependsOn” command results in the evaluation of the “pr oducer ” project

before the “consuner ” project is evaluated. This example is a bit contrived to show the mechanism. In this
case there would be an easier solution by reading the key property at execution time.

Page 259 of 777

Example 217. Configuration time dependencies

consuner/bui |l d. gradl e
task consune {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

Outputof gradl e -g consune
> gradl e -q consune
Consum ng message: Watch the order of eval uation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies
are between projects whereas execution dependencies are always resolved to task dependencies. Also note
that all projects are always configured, even when you start the build from a subproject. The default
configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “eval uati onDependsOnChi |l dren()”
method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common
use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).
If you declare with dependsOn an execution dependency between different projects, the default behavior of
this method is to also create a configuration dependency between the two projects. Therefore it is likely that
you don't have to define configuration dependencies explicitly.

8
Real life examples

Gradle’s multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications.” For
the example we use only one build script and do cross project configuration.

Page 260 of 777

Example 218. Dependencies - real life example - crossproject configuration

Build layout
webDi st/
settings.gradle
bui I d. gradl e
dat e/
src/ mai n/javal
or g/ gradl e/ sanpl e/
Dat eServl et . j ava
hel | o/
src/ mai n/javal
or g/ gradl e/ sanpl e/
Hel | oServl et.java

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'date', 'hello'

bui I d. gradl e

al | projects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'

subproj ects {
apply plugin: '"war'
repositories {
mavenCentral ()

}

dependenci es {
conpile "javax.servlet:servlet-api:2.5"

task expl odedDi st (type: Copy) {
into "$buil dDir/expl odedDi st "
subproj ects {
fromtasks.w thType(War)

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration
dependency on webDi st , as all the build logic for the webapp projects is injected by webDi st. The
execution dependency is in the other direction, as webDi st depends on the build artifacts of dat e and hel |

Page 261 of 777

. There is even a third dependency. webDi st has a configuration dependency on date and hell o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore we
have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system
does not support these patterns, you either can’t solve your problem or you need to do ugly hacks which are
hard to maintain and massively impair your productivity as a build master.

8§
Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also
the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project
builds. As already mentioned in the section called “Project dependencies”, Gradle offers project lib
dependencies for this.

Example 219. Project lib dependencies

Build layout
j aval
settings.gradle
buil d. gradl e
api /
src/ mai n/javal/
or g/ gradl e/ sanpl e/
api /
Per son. j ava
api | npl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j aval/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/javal/
or g/ gradl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the ‘-all’ distribution of Gradle.

We have the projects “shar ed”, “api ” and “per sonSer vi ce”. The “per sonSer vi ce” project has a lib

dependency on the other two projects. The “api ” project has a lib dependency on the “shar ed” project. “ser

Page 262 of 777

" is also a project, but we use it just as a container. It has no build script and gets nothing injected by another
build script. We use the : separator to define a project path. Consult the DSL documentation of
Settings.include(java.lang. String[]) for more information about defining project paths.

Example 220. Project lib dependencies

settings.gradle
include "api', 'shared', 'services:personService'

bui I d. gradl e
subproj ects {
apply plugin: 'java'
group = 'org.gradle.sanpl e
version = '1.0'
repositories {
mavenCentral ()

}
dependenci es {
testConpile "junit:junit:4.12"

project(':api') {
dependenci es {
conpil e project(':shared")

proj ect(':services:personService') {
dependenci es {
conpile project(':shared'), project(':api")

All the build logic is in the “bui | d. gr adl e” file of the root project.l®] A “lib” dependency is a special form of
an execution dependency. It causes the other project to be built first and adds the jar with the classes of the
other project to the classpath. It also adds the dependencies of the other project to the classpath. So you
can enter the “api ” directory and trigger a “gr adl e conpi | e”. First the “shar ed” project is built and then
the “api ” project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from lvy land, you might
expect some more fine grained control. Gradle offers this to you:

Page 263 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Example 221. Fine grained control over dependencies

buil d. gradl e

subprojects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'

project(':api') {
configurations {
spi
}
dependenci es {
conpil e project(':shared")

}
task spiJar(type: Jar) {
baseNarme = 'api-spi’
from sourceSet s. mai n. out put
i ncl ude(' org/ gradl e/ sanpl e/ api/**")
}
artifacts {
spi spiJar
}

proj ect(':services:personService') {
dependenci es {
conpile project(':shared')
conpile project(path: '":api', configuration: '"spi')
testConpile "junit:junit:4.12", project(':api")

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example
we create an additional library containing only the interfaces of the “api ” project. We assign this library to a
new dependency configuration. For the person service we declare that the project should be compiled only
against the “api " interfaces but tested with all classes from “api ”.

8§
Disabling the build of dependency projects

Sometimes you don’t want depended on projects to be built when doing a partial build. To disable the build
of the depended on projects you can run Gradle with the - a option.

Page 264 of 777

8§
Parallel project execution

With more and more CPU cores available on developer desktops and ClI servers, it is important that Gradle
is able to fully utilise these processing resources. More specifically, parallel execution attempts to:

Reduce total build time for a multi-project build where execution is 10 bound or otherwise does not consume
all available CPU resources.

Provide faster feedback for execution of small projects without awaiting completion of other projects.

Although Gradle already offers parallel test execution via Test . set MaxPar al | el For ks(i nt) the feature
described in this section is parallel execution at a project level. Parallel execution is an incubating feature.
Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
parallel (see also: the section called “Decoupled Projects”). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

the section called “Configuration on demand”.

Configuration of projects in parallel.

Re-use of configuration for unchanged projects.

Project-level up-to-date checks.

Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use the - - pa
command line argument or configure your build environment (the section called “Gradle properties”). Unless
you provide a specific number of parallel threads, Gradle attempts to choose the right number based on
available CPU cores. Every parallel worker exclusively owns a given project while executing a task. Task
dependencies are fully supported and parallel workers will start executing upstream tasks first. Bear in mind
that the alphabetical ordering of decoupled tasks, as can be seen during sequential execution, is not
guaranteed in parallel mode. In other words, in parallel mode tasks will run as soon as their dependencies
complete and a task worker is available to run them, which may be earlier than they would start during a
sequential build. You should make sure that task dependencies and task inputs/outputs are declared
correctly to avoid ordering issues.

Page 265 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-

8§
Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution phases.
While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that
Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly
building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built
artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model. Decoupled
projects may only interact in terms of declared dependencies: project dependencies (the section called
“Project dependencies”) and/or task dependencies (the section called “Task dependencies”). Any other form
of project interaction (i.e. by modifying another project object or by reading a value from another project
object) causes the projects to be coupled. The consequence of coupling during the configuration phase is
that if gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in
several ways. The consequence of coupling during execution phase is that if gradle is invoked with the
parallel option, one project task runs too late to influence a task of a project building in parallel. Gradle does
not attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (the section called “Cross
project configuration”). It may not be immediately apparent, but using key Gradle features like the al | pr oj e!
and subpr oj ect s keywords automatically cause your projects to be coupled. This is because these
keywords are used in a bui | d. gr adl e file, which defines a project. Often this is a “root project” that does
nothing more than define common configuration, but as far as Gradle is concerned this root project is still a
fully-fledged project, and by using al | pr oj ect s that project is effectively coupled to all other projects.
Coupling of the root project to subprojects does not impact ‘configuration on demand', but using the al | pr oj
and subpr oj ect s in any subproject’s bui | d. gr adl e file will have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subprc
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will also introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

Avoid a subproject’s bui | d. gr adl e referencing other subprojects; preferring cross configuration from the

root project.

Avoid changing the configuration of other projects at execution time.

Page 266 of 777

8§
Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these
tasks across a range of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 220. In this example, the “: ser vi ces: per sonser vi ce” project depends on both the “: af
"and “: shar ed” projects. The “: api ” project also depends on the “: shar ed” project.

Assume you are working on a single project, the “: api ” project. You have been making changes, but have
not built the entire project since performing a clean. You want to build any necessary supporting jars, but
only perform code quality and unit tests on the project you have changed. The bui | d task does this.

Example 222. Build and Test Single Project

Output of gradl e : api: build
gradle :api:build

Task :shared: conpil eJava

Task :shared: processResour ces
Task :shared: cl asses

Task :shared:jar

Task :api:conpil eJava

Task : api: processResources
Task :api:classes

Task :api:jar

Task : api:assenbl e

Task : api:conpil eTest Java
Task :api: processTest Resources
Task :api:testC asses

Task :api:test

Task : api: check

Task :api:build

V V.V V V V V V V V V V V V V V

BU LD SUCCESSFUL in Os
9 actionable tasks: 9 executed

While you are working in a typical development cycle repeatedly building and testing changes to the “: api ”
project (knowing that you are only changing files in this one project), you may not want to even suffer the
expense of building “: shar ed: conpi | e” to see what has changed in the “: shar ed” project. Adding the “- a
" option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to re-build
the depended on projects.

Page 267 of 777

Example 223. Partial Build and Test Single Project

Outputofgradl e -a :api:build
gradle -a :api:build

Task :api:conpil eJava
Task :api: processResources
Task :api:cl asses

Task :api:jar

Task : api:assenbl e

Task :api:comnpil eTest Java

Task :api:testC asses
Task : api:test

Task :api: check

Task :api:build

V VV V V V V V V V V V

BUI LD SUCCESSFUL in Os

6 actionabl e tasks: 6 executed

Task : api: processTest Resources

If you have just gotten the latest version of source from your version control system which included changes

in other projects that “: api ” depends on, you might want to not only build all the projects you depend on, but

test them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies of the

testRuntime configuration.

Page 268 of 777

Example 224. Build and Test Depended On Projects

Output of gradl e : api : bui | dNeeded
gradl e : api: buil dNeeded

Task :shared: conpil eJava
Task :shared: processResources
Task :shared: cl asses

Task :shared:jar

Task :api:conpil eJava

Task :api: processResources
Task :api:cl asses

Task :api:jar

Task : api:assenbl e

Task :api:comnpil eTest Java
Task : api: processTest Resources
Task :api:testC asses

Task :api:test

Task :api: check

Task :api:build

Task :shared: assenbl e

Task :shared: conpil eTest Java
Task :shared: processTest Resour ces
Task :shared:testC asses

Task :shared:test

Task :shared: check

Task :shared: build

Task :shared: bui | dNeeded

Task : api: bui | dNeeded

V VV V V V V V V V VYV VYV YV VYV VYV VYV YV V\VYV

BUI LD SUCCESSFUL in Os
12 actionabl e tasks: 12 executed

You also might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api " project, you also need to test all projects
that depend on the “: api ” project. The bui | dDependent s task also tests all the projects that have a
project lib dependency (in the testRuntime configuration) on the specified project.

Page 269 of 777

Example 225. Build and Test Dependent Projects

Output of gradl e : api : bui | dDependent s

gradl e : api: bui |l dDependent s

Task :shared: conpil eJava

Task :shared: processResources

Task :shared: cl asses

Task :shared:jar

Task :api:conpil eJava

Task :api: processResources

Task :api:cl asses

Task :api:jar

Task : api:assenbl e

Task :api:comnpil eTest Java

Task : api: processTest Resources

Task :api:testC asses

Task :api:test

Task :api: check

Task :api:build

Task :services: personService: conpi | eJava
Task :services: personServi ce: processResour ces
Task :services: personService: cl asses

Task :services: personService:jar

Task :services: personService: assenbl e

Task :services: personService: conpil eTest Java
Task :services: personService: processTest Resour ces
Task :services: personService:testCd asses
Task :services: personService: test

Task :services: personServi ce: check

Task :services: personService: build

Task :services: personService: bui | dDependent s
Task :api: buil dDependents

V VV V V V V VYV V VYV VYV VYV YV VYV YV VYV VYV VYV YV VYV

BU LD SUCCESSFUL in Os
17 actionabl e tasks: 17 executed

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on all the children. So you can just run “gr adl e bui | d” to build
and test all projects.

8§
Multi Project and buildSrc

the section called “Build sources in the bui | dSrc project” tells us that we can place build logic to be
compiled and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | d:
directory which must be located in the root directory.

Page 270 of 777

8§
Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In a future edition of this user guide we might write more about this.

Method inheritance might be interesting to use as Gradle’s Configuration Injection does not support methods
yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don’t like that much. One reason
is that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like
to offer our users a choice.

8§
Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for
this chapter is that multi-project builds with Gradle are usually not difficult. There are five elements you need
to remember: al | proj ect s, subproj ect s, eval uat i onDependsOn, eval uati onDependsOnChi | dre
and project lib dependencies.[®! With those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory
Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[7] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
each index you are accessing. That was one reason why we have created a distribution of webapps. The
Resin servlet container allows us, to let such a distribution point to a base installation of the servlet
container.

[€] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the build
script of the respective projects.

[°] So we are well in the range of the 7 plus 2 Rule :)

Page 271 of 777

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Using Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the
ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | €), domain
objects (e.g. Sour ceSet), conventions (e.g. Java source is located at src/ mai n/java) as well as

extending core objects and objects from other plugins.
In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

8§
What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things such as:
Extend the Gradle model (e.g. add new DSL elements that can be configured)

Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)

Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
Allows a higher degree of modularization, enhancing comprehensibility and organization

Encapsulates imperative logic and allows build scripts to be as declarative as possible

8§
Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and
accessed from a remote location. Binary plugins are classes that implement the Pl ugi n interface and adopt
a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the
project hierarchy or externally in a plugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes

Page 272 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html

more valuable, it's migrated to a binary plugin that can be easily tested and shared between multiple projects
or organizations.

8§
Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to resolve
the plugin, and then it needs to apply the plugin to the target, usually a Pr o] ect .

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it
the script classpath. Once a plugin is resolved, its APl can be used in a build script. Script plugins are
self-resolving in that they are resolved from the specific file path or URL provided when applying them. Core
binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin’s Pl ugi n. appl y(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin multiple
times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current project.
Since this is such a common use case, it's recommended that build authors use the plugins DSL to both
resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and should
be used by most users.

8§
Script plugins
Example 226. Applying a script plugin

bui | d. gradl e
apply from 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a
remote location. Filesystem locations are relative to the project directory, while remote script locations are
specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

8§
Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core Gradle
plugins are special in that they provide short names, such as ' j ava' for the core JavaPl ugi n. All other
binary plugins must use the fully qualified form of the plugin id (e.g. com gi t hub. f 0o. bar), although
some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id depends on
whether you are using the plugins DSL or the buildscript block.

Page 273 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/JavaPlugin.html

8
Locations of binary plugins

A plugin is simply any class that implements the Pl ugi n interface. Gradle provides the core plugins (e.g. Jay
) as part of its distribution which means they are automatically resolved. However, non-core binary plugins
need to be resolved before they can be applied. This can be achieved in a number of ways:

Including the plugin from the plugin portal or a custom repository using the plugins DSL (see the section
called “Applying plugins with the plugins DSL").

Including the plugin from an external jar defined as a buildscript dependency (see the section called
“Applying plugins with the buildscript block”).

Defining the plugin as a source file under the buildSrc directory in the project (see the section called “Build
sources in the bui | dSr c project”).

Defining the plugin as an inline class declaration inside a build script.
For more on defining your own plugins, see Writing Custom Plugins.

§
Applying plugins with the plugins DSL

Note: The plugins DSL is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with
the Gradle plugin portal to provide easy access to both core and community plugins. The plugins DSL block
configures an instance of Pl ugi nDependenci esSpec.

To apply a core plugin, the short name can be used:

Example 227. Applying a core plugin

buil d. gradl e
pl ugi ns {

id"'java'
}

To apply a community plugin from the portal, the fully qualified plugin id must be used:
Example 228. Applying a community plugin
bui I d. gradl e

pl ugi ns {
id 'comjfrog.bintray' version '0.4.1

Page 274 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://plugins.gradle.org
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

§
Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is
processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This
allows Gradle to do smart things such as:

Optimize the loading and reuse of plugin classes.
Allow different plugins to use different versions of dependencies.

Provide editors detailed information about the potential properties and values in the buildscript for editing
assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing
the rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism
is still being developed and some are inherent to the new approach.

§
Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any
time).

The form is:

pl ugi ns {
id «plugin id» version «plugin version» [apply «fal se»]

Where «pl ugi n ver si on» and «pl ugi n i d» must be constant, literal, strings and the appl y statement
with a bool ean can be used to disable the default behavior of applying the plugin immediately (e.g. you
want to apply it only in subpr oj ect s). No other statements are allowed; their presence will cause a

compilation error.

The pl ugi ns {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

§
Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project’s build script. It cannot be used in script
plugins, the settings.gradle file or init scripts.

Page 275 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins using the
buildscript {} block.

§
Applying plugins to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the subprojects in your
build, but not to the root or master project. The default behavior of the pl ugi ns {} block is to
immediately r esol ve and appl y the plugins. But, you can use the appl y fal se syntax to tell Gradle not
to apply the plugin to the current project and then use appl y pl ugi n: «pl ugi n i d» in the subpr oj ect ¢
block:

Example 229. Applying plugins only on certain subprojects.

settings.gradle
i nclude ' hel | oA
i nclude ' hel | oB
i ncl ude ' goodhyeC

buil d. gradl e

pl ugi ns {
id "org.gradl e.sanple. hello" version "1.0.0" apply fal se
id "org.gradl e. sanpl e. goodbye" version "1.0.0" apply fal se

subproj ects { subproject ->
i f (subproject.nane.startsWth("hello")) {
apply plugin: 'org.gradle.sanple. hello
}
i f (subproject.nane.startsWth("goodbye")) {
apply plugin: 'org.gradle. sanpl e. goodbye'

If you then run gr adl e hel | o you'll see that only the helloA and helloB subprojects had the hello plugin
applied.

gr adl e/ subpr oj ect s/ docs/ src/ sanpl es/ pl ugi ns/ mul ti project $> gradle hello
Paral |l el execution is an incubating feature.

:hell oA hell o

:helloB: hello

Hel | o!

Hel | o!

BU LD SUCCEEDED

Page 276 of 777

§
Plugin Management

Note: The pl ugi nManagenent {} DSL is currently incubating. Please be aware that the DSL and
other configuration may change in later Gradle versions.

§
Custom Plugin Repositories

By default, the pl ugi ns {} DSL resolves plugins from the public Gradle Plugin Portal. Many build authors
would also like to resolve plugins from private Maven or Ivy repositories because the plugins contain
proprietary implementation details, or just to have more control over what plugins are available to their
builds.

To specify custom plugin repositories, use the reposi tori es {} block inside pl ugi nManagenent {} in
the setti ngs. gradl e file:

Example 230. Using plugins from custom plugin repositories.

settings.gradle
pl ugi nManagenent {
repositories {
maven {
url 'maven-repo'

}
gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'
}

This tells Gradle to first look in the Maven repository at maven-r epo when resolving plugins and then to
check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don’t want the
Gradle Plugin Portal to be searched, omit the gr adl ePl ugi nPort al () line. Finally, the Ivy repository ati v
will be checked.

8
Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in pl ugi ns {} blocks, e.g. changing the
requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the r esol uti onStrat egy {} inside the pl ugi nManagenent {} block:

Page 277 of 777

https://plugins.gradle.org

Example 231. Plugin resolution strategy.

settings.gradle
pl ugi nManagenent {
resol utionStrategy {
eachPl ugin {
i f (requested.id. nanespace == 'org.gradle.sanple') {
useMdul e(' org. gradl e. sanpl e: sanpl e- pl ugi ns: 1. 0. 0")

repositories {
maven {
url 'maven-repo’

}
gr adl ePl ugi nPort al ()

ivy {
ur |

i Vy-repo'

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in default
mapping from plugin ID to Maven/Ivy coordinates.

The pl ugi nManagenent {} block may only appear in the setti ngs. gradl e file, and must be the first
block in the file. Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in addition to
the artifacts which actually implement the plugin. For more information on publishing plugins to custom
repositories read Gradle Plugin Development Plugin.

See Pl ugi nVanagenent Spec for complete documentation for using the pl ugi nManagenent {} block.

§
Plugin Marker Artifacts

Since the pl ugi ns {} DSL block only allows for declaring plugins by their globally unique plugin i d and ve
properties, Gradle needs a way to look up the coordinates of the plugin implementation artifact. To do so,
Gradle will look for a Plugin Marker Artifact with the coordinates pl ugi n. i d: pl ugi n. i d. gradl e. pl ugi n

. This marker needs to have a dependency on the actual plugin implementation. Publishing these markers is
automated by the java-gradle-plugin.

For example, the following complete sample from the sanpl e- pl ugi ns project shows how to publish a or g
plugin and a org. gradl e. sanpl e. goodbye plugin to both an Ivy and Maven repository using the
combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish plugin.

Page 278 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugin.management.PluginManagementSpec.html

Example 232. Complete Plugin Publishing Sample

buil d. gradl e

pl ugi ns {
id'java-gradl e-plugin'
id ' maven- publish’
id"'ivy-publish'

group 'org.gradle.sanpl e’
version '1.0.0

gradl ePl ugin {

pl ugi ns {
hell o {

id = "org.gradl e. sanpl e. hel | 0"
"org.gradl e. sanpl e. hel | 0. Hel | oPI ugi n"

i mpl ement ati ond ass

id = "org.gradl e. sanpl e. goodbye"
"org. gradl e. sanpl e. goodbye. GoodbyePI ugi n"

}
goodbye {
i mpl emrent ati onC ass
}
}
}
publ i shing {
repositories {
maven {
url "../consuni ng/ maven-repo"
}
ivy {
url "../consum ng/ivy-repo"
}
}
}

Running gr adl e publ i sh in the sample directory causes the following repo layouts to exist:

Page 279 of 777

/~ .Imaven-repo

groupld org.gradle.sample.hello groupld org.gradle.samplh
artifactld org.gradie.sample.hello.gradle.plugin artifactld sample-plugins
version 1.0.0 7 version 1.0.0
groupld org.gradle.sample.goodbye .
artifactld org.gradle. sample.goodbye. gradle. plugin sample |:Ill.|
version 1.0.0

_ 4

/— .[ivy-repo
org org.gradle. sample. hello org org.gradle. sample
module org.gradle.sample.hello.gradle. plugin module sample-plugins
rev 1.0.0 — rev 1.0.0

org org.gradle. sample.goodbye
module org.gradle. sample.goodbye.gradle. plugin
rev 1.0.0

'\ 4

Legacy Plugin Application

sample-plu

With the introduction of the plugins DSL, users should have little reason to use the legacy method of
applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions
in how it currently works.

§
Applying Binary Plugins

Example 233. Applying a binary plugin

buil d. gradl e
apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘j ava’ to apply the

JavaPl ugi n.
Rather than using a plugin id, plugins can also be applied by simply specifying the class of the plugin:
Example 234. Applying a binary plugin by type

buil d. gradl e
apply plugin: JavaPl ugin

The JavaPl ugi n symbol in the above sample refers to the JavaPl ugi n. This class does not strictly need

to be imported as the or g. gradl e. api . pl ugi ns package is automatically imported in all build scripts

Page 280 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/JavaPlugin.html

(see the section called “Default imports”). Furthermore, it is not necessary to append . cl ass to identify a
class literal in Groovy as it is in Java.

§
Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin
to the build script classpath and then applying the plugin. External jars can be added to the build script
classpath using the bui | dscri pt {} block as described in the section called “External dependencies for
the build script”.

Example 235. Applying a plugin with the buildscript block

bui | d. gradl e
bui | dscri pt {
repositories {
jcenter()

}

dependenci es {
classpath "comjfrog. bintray. gradl e: gradl e-bi ntray-pl ugin:0.4.1"

apply plugin: "comjfrog.bintray"

8§
Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.
The Gradle plugin portal provides an interface for searching and exploring community plugins.

8§
More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Writing Custom Plugins.

Page 281 of 777

http://plugins.gradle.org

Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

8§

Language plugins
These plugins add support for various languages which can be compiled for and executed in the JVM.
Table 10. Language plugins

lugin Automatically Works .
.) Description
\ applies with

. b Adds Java compilation, testing and bundling capabilities to a project. It serves as the basis for
ava ava- base -
: many of the other Gradle plugins. See also Java Quickstart.

roovy j ava, gr oovy--base Adds support for building Groovy projects. See also Groovy Quickstart.
cal a java, scal a-base Adds support for building Scala projects.
atlr java - Adds support for generating parsers using Antlr.

8§
Incubating language plugins

These plugins add support for various languages:

Page 282 of 777

http://www.antlr.org/

Table 11. Language plugins
lugin Id Automatically applies Works with Description

ssenbl er - - Adds native assembly language capabilities to a project.

- - Adds C source compilation capabilities to a project.

op - - Adds C++ source compilation capabilities to a project.

oj ective-c - - Adds Objective-C source compilation capabilities to a project.

oj ective-cpp - - Adds Objective-C++ source compilation capabilities to a project.
ndows-r esour ces - - Adds support for including Windows resources in native binaries.

§

Integration plugins
These plugins provide some integration with various runtime technologies.

Table 12. Integration plugins

) Automatically Works -
lugin Id . . Description
applies with

.) Adds tasks for running and bundling a Java project as a command-line
oplicationjava,distributien

application.
ar - j ava Adds support for building J2EE applications.
aven - j ava, warAdds support for publishing artifacts to Maven repositories.
5Qi j ava- base j ava Adds support for building OSGi bundles.

. Adds support for assembling web application WAR files. See also Web
ar ava -
J Application Quickstart.

Page 283 of 777

8§

Incubating integration plugins
These plugins provide some integration with various runtime technologies.
Table 13. Incubating integration plugins

) Automatically ~ Works .
lugin Id .) Description
applies with

stribution - - Adds support for building ZIP and TAR distributions.

Adds support for building ZIP and TAR distributions for a Java

ava-|ibrary-distributionjava,distribution
library.

bli'sh j ava, This plugin provides a new DSL to support publishing artifacts to vy
vy-pu | -
P war repositories, which improves on the existing DSL.

) j ava, This plugin provides a new DSL to support publishing artifacts to
aven- publ i sh -

war Maven repositories, which improves on the existing DSL.

8§
Software development plugins

These plugins provide help with your software development process.

Page 284 of 777

Table 14. Software development plugins

Automatically Works

lugin Id . .
applies with

nnounce - -

Ui | d- announcenent s announce -

Description

Publish messages to your favourite platforms, such as Twitter or Growl.

Sends local announcements to your desktop about interesting events in
the build lifecycle.

Performs quality checks on your project’'s Java source files using

neckstyl e j ava- base -
Checkstyle and generates reports from these checks.
Performs quality checks on your project’s Groovy source files using
odenarc groovy- base -
CodeNarc and generates reports from these checks.
i j ava,gr Gewmgrates files that are used by Eclipse IDE, thus making it possible to
cli pse -
. , scal a import the project into Eclipse. See also Java Quickstart.
Does the same as the eclipse plugin plus generates eclipse WTP (Web
) Tools Platform) configuration files. After importing to eclipse your
cli pse-wtp - ear, war . . .
war/ear projects should be configured to work with WTP. See also Java
Quickstart.
. Performs quality checks on your project’s Java source files using
ndbugs j ava- base -)
FindBugs and generates reports from these checks.
’) Generates files that are used by Intellij IDEA IDE, thus making it
ea - ava
: possible to import the project into IDEA.
. Performs quality checks on your project’s source files using JDepend
depend j ava- base -
and generates reports from these checks.
. Performs quality checks on your project’s Java source files using PMD
md j ava- base -
and generates reports from these checks.
roj ect-report reporting- base - Generates reports containing useful information about your Gradle build.
gni ng base - Adds the ability to digitally sign built files and artifacts.

Page 285 of 777

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

8§
Incubating software development plugins

These plugins provide help with your software development process.

Table 15. Software development plugins

Automatically

lugin Id . Works with Description
applies
ui | d- dashboard reporting-base - Generates build dashboard report.
uni t - - Adds support for running CUnit tests.
acoco reporting-base java Provides integration with the JaCoCo code coverage library for Java.
native
sual - studi o - language Adds integration with Visual Studio.
plugins

. Assists with development of Gradle plugins by providing standard
ava- gr adl e- pl ugi n java . .] . A
plugin build configuration and validation.

8§
Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are available
for you to use in your build files, and are listed here for completeness. However, be aware that they are not
yet considered part of Gradle’s public API. As such, these plugins are not documented in the user guide.
You might refer to their APl documentation to learn more about them.

Page 286 of 777

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/

Table 16. Base plugins

lugin Id Description

Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

® adds build ConfigurationName tasks. Those tasks assemble the artifacts belonging to the specified
configuration.

® adds upload ConfigurationName tasks. Those tasks assemble and upload the artifacts belonging to the
ase specified configuration.

¢ configures reasonable default values for all archive tasks (e.g. tasks that inherit from Abst r act Ar chi veTask).
For example, the archive tasks are tasks of types: Jar, Tar, Zi p. Specifically, dest i nati onDi r, baseNane
and ver si on properties of the archive tasks are preconfigured with defaults. This is extremely useful because it
drives consistency across projects; the consistency regarding naming conventions of archives and their location
after the build completed.

va-base Adds the source sets concept to the project. Does not add any particular source sets.
‘oovy-base Adds the Groovy source sets concept to the project.
sala-base Adds the Scala source sets concept to the project.

porting-base Adds some shared convention properties to the project, relating to report generation.

8§
Third party plugins

You can find a list of external plugins at the Gradle Plugins site.

Page 287 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. These tasks generate the same content that you get by executing the t asks, di
, and properti es tasks from the command line (see the section called “Project reporting”). In contrast to
the command line reports, the report plugin generates the reports into a file. There is also an aggregating
task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

§
Usage

To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report’

8
Tasks

The project report plugin defines the following tasks:

Page 288 of 777

Table 17. Project report plugin - tasks

ask name Depends on Type

apendencyRepor t -

t Ml DependencyReport -

ropertyReport - PropertyReport Task
askReport - TaskReport Task
dependencyReport, propertyReport
roj ect Report P yrep —— Task
,taskReport, ht M DependencyReport
§

Project layout
The project report plugin does not require any particular project layout.

8§
Dependency management

The project report plugin does not define any dependency configurations.

8§
Convention properties

The project report defines the following convention properties:

DependencyReport Task

Description

Generates the project
dependency report.

Generates an HTML
dependency and

Ht ml DependencyRepor t Task dependency insight report

for the project or a set of
projects.

Generates the project
property report.

Generates the project task
report.

Generates all project
reports.

Page 289 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html

Table 18. Project report plugin - convention properties

roperty name Type Default value Description

The name of the directory to generate reports

aport sDi r Nane String reports . . o
into, relative to the build directory.
. File .) . . .
sportsDir bui I dDi r / report sDi r Nane The directory to generate reports into.
(read-only)

A one element set with the
rojects Set <Pr oj ect > project the plugin was applied The projects to generate the reports for.
to.

The name of the directory to generate the project

roj ect ReportDi rNane String proj ect . . .
report into, relative to the reports directory.
)) File ! .)))
roj ect ReportDir (read-only) reportsDir/ proj ect Report Dhe Nasetory to generate the project report into.
read-only

These convention properties are provided by a convention object of type
Pr oj ect Report sPl ugi nConventi on.

Page 290 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

The Build Dashboard Plugin

Note: The build dashboard plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point
of access to all of the reports generated by a build.

8§

Usage
To use the Build Dashboard plugin, include the following in your build script:
Example 236. Using the Build Dashboard plugin

bui I d. gradl e
apply plugin: 'build-dashboard

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for all
tasks that implement the Repor t i ng interface from all projects in the build. It is typically only applied to the
root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks
that are independently being executed as part of the build run. To generate the build dashboard, simply
include this task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will
generate a dashboard for all of the reporting tasks that are dependents of the bui | d task.

8
Tasks

The Build Dashboard plugin adds the following task to the project:

Table 19. Build Dashboard plugin - tasks
ask name Depends on Type Description

ui | dbashboard - Gener at eBui | dDashboard Generates build dashboard report.

Page 291 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html

8§
Project layout

The Build Dashboard plugin does not require any particular project layout.

8§
Dependency management

The Build Dashboard plugin does not define any dependency configurations.

§
Configuration

You can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 292 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.reporting.ReportingExtension.html

Comparing Builds

Note: Build comparison support is an incubating feature. This means that it is incomplete and not
yet at regular Gradle production quality. This also means that this Gradle User Guide chapter is a
work in progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds.
There are several reasons why you may want to compare the outcomes of two builds. You may want to
compare:

A build with a newer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something else
(i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,
migration to Gradle or build change by understanding the differences in the outcomes. The comparison
process produces a HTML report outlining which outcomes were found to be identical and identifying the
differences between non-identical outcomes.

8
Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”
In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a
Gradle build.

“Build Outcome”
Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“Source Build”
The build that comparisons are being made against, typically the build in its “current” state. In other

Page 293 of 777

words, the left hand side of the comparison.

“Target Build”
The build that is being compared to the source build, typically the “proposed” build. In other words, the
right hand side of the comparison.

“Host Build”
The Gradle build that executes the comparison process. It may be the same project as either the “target”
or “source” build or may be a completely separate project. It does not need to be the same Gradle
version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”
Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome”
A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”
A build outcome that cannot be understood by the host build. This can occur when the source or target
build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.
Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent to
an unknown build outcome in the other build, but no meaningful comparison of what the build outcome
actually is can be performed. Using the latest Gradle version for the host build will avoid encountering
unknown build outcomes.

8§
Current Capabilities

As this is an incubating feature, a limited set of the eventual functionality has been implemented at this time.

8
Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2. If the host
build is run with version 3. 0 or newer, source and target builds must be at least version 1. 2. If the host
build is run with a version older than 2. 0, source and target builds must be older than version 3. 0. So if you
for example want to compare a build under version 1. 1 with a build under version 3. 0, you have to execute
the host build with a 2. x version.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

Page 294 of 777

8
Supported build outcomes

Only support for comparing build outcomes that are zi p archives is supported at this time. This includes j ar

,war and ear archives.

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

§
Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle builds.
The plugin adds a Conpar eG adl eBui | ds task named “conpar eG adl eBui | ds” to the project. The
configuration of this task specifies what is to be compared. By default, it is configured to compare the current
build with itself using the current Gradle version by executing the tasks: “cl ean assenbl e”.

apply plugin: 'conpare-gradl e-builds'
This task can be configured to change what is compared.

conpar eG adl eBui | ds {
sourceBuil d {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}
targetBuil d {

projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle
versions.

§
Trying Gradle upgrades

You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e of

the root project.

Page 295 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

apply plugin: 'conpare-gradl e-builds'

conpar eG adl eBui | ds {
target Buil d. gradl eVersi on = "«gradl e versi on»"

Then simply execute the conpar eGr adl eBui | ds task. You will see the console output of the “source” and
“target” builds as they are executing.

8
The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML
report providing insight into the comparison will be given. If all compared outcomes are found to be identical,
and there are no uncompared outcomes, and there are no unknown build outcomes, the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the i gnor eFai | ur es

property to true.

conpar eG adl eBui | ds {
i gnoreFailures = true

§
Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives
configuration. Take a look at Publishing artifacts for more information on how to configure and add artifacts.

The archive must also have been produced by a Zi p, Jar, War, Ear task. Future versions of Gradle will

support increased flexibility in this area.

Page 296 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

Publishing artifacts

Note: This chapter describes the original publishing mechanism available in Gradle 1.0: in Gradle
1.3 a new mechanism for publishing was introduced. While this new mechanism is incubating and
not yet complete, it introduces some new concepts and features that do (and will) make Gradle
publishing even more powerful.

You can read about the new publishing plugins in Ivy Publishing (new) and Maven Publishing (new).
Please try them out and give us feedback.

8
Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.
upload them). We define the artifacts of the projects as the files the project provides to the outside world.
This might be a library or a ZIP distribution or any other file. A project can publish as many artifacts as it
wants.

8§
Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks upl oadConf i gur ati onNane and bui | d¢
119 Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

the section called “Dependency configurations” shows the configurations added by the Java plugin. Two of
the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the standard
configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this
configuration. We will talk more about the r unt i ne configuration in the section called “More about project
libraries”. As with dependencies, you can declare as many custom configurations as you like and assign
artifacts to them.

Page 297 of 777

8§
Declaring artifacts

8§
Archive task artifacts

You can use an archive task to define an artifact:
Example 237. Defining an artifact using an archive task

bui | d. gradl e
task nyJar(type: Jar)

artifacts {
archi ves nyJar

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

8§
File artifacts

You can also use a file to define an artifact:
Example 238. Defining an artifact using a file

bui | d. gradl e
def someFile = file('build/ sonmefile.txt")

artifacts {
archi ves soneFile

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these

properties:

Page 298 of 777

Example 239. Customizing an artifact

buil d. gradl e
task nyTask(type: MTaskType) {
destFile = file(' build/sonmefile.txt")

artifacts {
archives(nyTask. destFile) {
name 'ny-artifact’
type 'text'
bui | t By nyTask

There is a map-based syntax for defining an artifact using a file. The map must include a fi | e entry that

defines the file. The map may include other artifact properties:
Example 240. Map syntax for defining an artifact using a file

bui | d. gradl e
task generate(type: MTaskType) {
destFile = file('build/somefile.txt")

artifacts {

archives file: generate.destFile, nane: 'ny-artifact', type: 'text',

8§
Publishing artifacts

bui | t By:

We have said that there is a specific upload task for each configuration. Before you can do an upload, you

have to configure the upload task and define where to publish the artifacts to. The repositories you have

defined (as described in Declaring Repositories) are not automatically used for uploading. In fact, some of

those repositories only allow downloading artifacts, not uploading. Here is an example of how you can

configure the upload task of a configuration:

Page 299 of 777

Example 241. Configuration of the upload task

buil d. gradl e
repositories {
flatDir {

name "fil eRepo”
dirs "repo"

upl oadAr chi ves {
repositories {
add project.repositories.fileRepo
vy {
credentials {
user name "usernane"
password " pw'

}
url "http://repo. myconpany. cont

As you can see, you can either use a reference to an existing repository or create a new repository.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading
each file. By default, Gradle will upload to the pattern defined by the ur| parameter, combined with the
optional | ayout parameter. If no ur | parameter is supplied, then Gradle will use the first defined arti f act
for uploading, or the first defined i vyPat t er n for uploading Ivy files, if this is set.

Uploading to a Maven repository is described in the section called “Interacting with Maven repositories”.

8§
More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this library and
what are the dependencies of these artifacts. The Java plugin adds a runti me configuration for this
purpose, with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact
you want to publish. Of course this is fully customizable. You can add your own custom configuration or let
the existing configurations extend from other configurations. You might have a different group of artifacts
which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur at i on property to declare this. If this
is not specified, the def aul t configuration is used (see Managing Dependency Configurations). Using your
project as a library can either happen from within a multi-project build or by retrieving your project from a
repository. In the latter case, an i vy. xm descriptor in the repository is supposed to contain all the

Page 300 of 777

necessary information. If you work with Maven repositories you don’t have the flexibility as described above.
For how to publish to a Maven repository, see the section the section called “Interacting with Maven
repositories”.

[10] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the
Java plugin.

Page 301 of 777

The Maven Plugin

Note: This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.
8§
Usage
To use the Maven plugin, include the following in your build script:
Example 242. Using the Maven plugin

buil d. gradl e
apply plugin: 'maven

8
Tasks

The Maven plugin defines the following tasks:

Table 20. Maven plugin - tasks

ask
Depends on Type Description
- p yp p
All tasks
that build Installs the associated artifacts to the local Maven cache, including Maven metadata
a ui
generation. By default the install task is associated with the ar chi ves configuration. This
nstall the Upl oad])) _)
iated configuration has by default only the default jar as an element. To learn more about installing to
associate
hi the local repository, see: the section called “Installing to the local repository”
archives.

Dependency management

The Maven plugin does not define any dependency configurations.

Page 302 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Upload.html

8§
Convention properties

The Maven plugin defines the following convention properties:
Table 21. Maven plugin - properties

roperty name Type Default value Description

. The directory where the generated
avenPonDi r File ${project.buil dDir} /Ig)oms ;
OMs are written to.

Instructions for mapping Gradle

.)) configurations to Maven scopes. See
onf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a .
the section called “Dependency

mapping”.

These properties are provided by a VavenPl ugi nConvent i on convention object.

8
Convention methods

The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without
the context of uploading to a Maven repo.

Example 243. Creating a standalone pom.

buil d. gradl e
task writeNewPom {
doLast {
pom {
project {
i nceptionYear '2008
licenses {
license {
nanme ' The Apache Software License, Version 2.0
url '"http://ww. apache. org/licenses/ LI CENSE- 2. 0. t xt
di stribution 'repo
}
}
}

}.writeTo("$buil dDi r/ newpom xmi ")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see VavenPom See also: MavenPl ugi nConvent i on

Page 303 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.MavenPluginConvention.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.MavenPluginConvention.html

8§
Interacting with Maven repositories

8
Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle’'s
deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don’t have a POM. Fortunately Gradle can
generate this POM for you using the dependency information it has.

§
Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote
Maven repository.

Example 244. Upload of file to remote Maven repository

bui | d. gradl e
apply plugin: 'maven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the POM
to the specified repository.

There is more work to do if you need support for protocols other than fi | e. In this case the native Maven
code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you
plan to use. The available protocols and the corresponding libraries are listed in Table 22 (those libraries
have transitive dependencies which have transitive dependencies).l! For example, to use the ssh protocol
you can do:

Page 304 of 777

Example 245. Upload of file via SSH

buil d. gradl e
configurations {
depl oyer Jars

repositories {
mavenCentral ()

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 2. 2"

upl oadAr chi ves {
reposi tories. mavenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. myconpany.conirel eases") {
aut henti cati on(user Nane: "

me", password: "myPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to
the bean elements. To add bean elements to its parent, you use a closure. In the example above repository
and authentication are such bean elements. Table 23 lists the available bean elements and a link to the
Javadoc of the corresponding class. In the Javadoc you can see the possible attributes you can set for a
particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t ory element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Page 305 of 777

Table 22. Protocol jars for Maven deployment

rotocol Library

1p org.apache.maven.wagon:wagon-http:2.2

sh org.apache.maven.wagon:wagon-ssh:2.2

sh-external org.apache.maven.wagon:wagon-ssh-external:2.2

J org.apache.maven.wagon:wagon-ftp:2.2

ebdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
e -

Table 23. Configuration elements of the MavenDeployer

lement Javadoc

ot MavenDepl oyer

pository org.apache.maven.artifact.ant. RemoteRepository
Jthentication org.apache.maven.artifact.ant.Authentication
leases org.apache.maven.artifact.ant.RepositoryPolicy
1apshots org.apache.maven.artifact.ant.RepositoryPolicy
oXy org.apache.maven.artifact.ant.Proxy
1apshotRepository org.apache.maven.artifact.ant.RemoteRepository
8

Installing to the local repository

The Maven plugin adds an i nst al | task to your project. This task depends on all the archives task of the ar
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository is redefined in a Maven set ti ngs. xm , this is considered by this task.

Page 306 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

8
Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl ¢
,artifactld, versi on and packagi ng elements used for the POM default to the values shown in the

table below. The dependency elements are created from the project's dependency declarations.

Table 24. Default Values for Maven POM generation

aven Element Default Value

-‘oupld project.group

tifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or archiveTask.baseName.
arsion project.version

ackaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves and j ar). ar chi veTask. baseNane defaults to pr oj ect . ar ¢
which in turn defaults to pr oj ect . nane.

Note: When you set the “ar chi veTask. baseNane” property to a value other than the default,
you'll also have to set upl oadTask. reposi tori es. mavenDepl oyer. pom artifactl d to the
same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from
generated POMs for other projects in the same build.

Generated POMs can be found in <bui | dDi r >/ pons. They can be further customized via the MavenPon
API. For example, you might want the artifact deployed to the Maven repository to have a different version or
name than the artifact generated by Gradle. To customize these you can do:

Example 246. Customization of pom

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")
pom version = '1. OMaven'
pomartifactld = ' nmyMavenNaneg'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any element

Page 307 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenPom.html

listed in the Maven POM reference can be added.
Example 247. Builder style customization of pom

bui | d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
pom proj ect {
licenses {
license {
nanme ' The Apache Software License, Version 2.0
url 'http://ww. apache. org/|licenses/ LI CENSE- 2. 0. t xt
di stribution 'repo

Note: groupl d, arti factld, versi on, and packagi ng should always be set directly on the pomobject.
Example 248. Modifying auto-generated content

buil d. gradl e
def installer = install.repositories. mavenlnstaller
def depl oyer = upl oadArchives. repositories. mavenDepl oyer

[install er, deployer]*.pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3' && dep.artifactld ==

If you have more than one artifact to publish, things work a little bit differently. See the section called
“Multiple artifacts per project”.

To customize the settings for the Maven installer (see the section called “Installing to the local repository”),
you can do:

Example 249. Customization of Maven installer

buil d. gradl e
install {
repositories. mavenlnstaller {
pomversion = '1. OMaven'

pomartifactld = ' myNane'

Page 308 of 777

http://maven.apache.org/pom.html

§
Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The VavenDepl oyer and the Mavenlinstaller both provide an API for
this:

Example 250. Generation of multiple poms

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")
addFilter('api') {artifact, file ->

artifact.nane == 'api

}

addFilter('service') {artifact, file ->
artifact.nane == 'service'

}

pon(' api').version = 'nySpeci al MavenVer si on'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about this have a look at Ponti | t er Cont al ner and its associated classes.

§
Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. You can also assign a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn more.
To access the mapping configuration you can say:

Page 309 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Example 251. Accessing a mapping configuration

buil d. gradl e
task mappi ngs {
doLast {

println conf2ScopeMappi ngs. mappi ngs

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to
Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[11] It is planned for a future release to provide out-of-the-box support for this

Page 310 of 777

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then
be used to prove who built the artifact the signature is attached to as well as other information such as when
the signature was generated.

The signing plugin currently only provides support for generating OpenPGP signatures (which is the
signature format required for publication to the Maven Central Repository).

§
Usage
To use the Signing plugin, include the following in your build script:
Example 252. Using the Signing plugin
bui | d. gradl e

apply plugin: 'signing

8§
Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using
the GnuPG tools can be found in the GnuPG HOWTOSs). You need to provide the signing plugin with your
key information, which means three things:

The public key ID (The last 8 symbols of the keyld. You can use gpg - Kto get it).

The absolute path to the secret key ring file containing your private key. (Since gpg 2.1, you need to export
the keys with command gpg - - keyring secring.gpg --export-secret-keys > ~/.gnupg/secri

).
The passphrase used to protect your private key.

These items must be supplied as the values of properties si gni ng. keyl d, si gni ng. secr et KeyRi ngFi |
, and si gni ng. passwor d respectively. Given the personal and private nature of these values, a good
practice is to store them in the user gradl e. properti es file (described in the section called “System
properties”).

Page 311 of 777

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

si gni ng. keyl d=24875D73
si gni ng. passwor d=secr et
si gni ng. secr et KeyRi ngFi | e=/ User s/ ne/ . gnupg/ secri ng. gpg

If specifying this information (especially si gni ng. passwor d) in the user gr adl e. properti es file is not
feasible for your environment, you can source the information however you need to and set the project
properties manually.

i mport org.gradl e. pl ugi ns. si gning.Sign

gradl e. t askG aph. whenReady { taskGraph ->
if (taskG aph.all Tasks.any { it instanceof Sign }) {
/1l Use Java 6's console to read fromthe console (no good for
/1 a Cl environment)
Consol e consol e = System consol e()
consol e.printf "\ n\nW have to sign some things in this build." +
"\ n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key 1d: ")
def file = consol e.readLi ne("PGP Secret Key Ring File (absolute path): "
def password = consol e. readPassword(" PGP Private Key Password: ")

al l projects { ext."signing. keyld" =id }
al l projects { ext."signing.secretKeyRingFile" = file }
al |l projects { ext."signing. password" = password }

consol e. printf "\ nThanks.\n\n"

Note that the presence of a null value for any these three properties will cause an exception.

8
Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they're bound to a master key pair. One
feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key
management easier. A practical case study of how subkeys can be leveraged in software development can
be read on the Debian wiki.

The signing plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID as the value in the si
property.

Page 312 of 777

https://wiki.debian.org/Subkeys

8§
Using gpg-agent

By default the signing plugin uses a Java-based implementation of PGP for signing. This implementation
cannot use the gpg-agent program for managing private keys, though. If you want to use the gpg-agent, you
can change the signatory implementation used by the signing plugin:

Example 253. Sigh with GhuPG

buil d. gradl e
signing {
useGgCnd()

sign configurations. archives

This tells the signing plugin to use the GnupgSi gnat ory instead of the default PgpSi gnat or y. The Ghupg:
relies on the gpg2 program to sign the artifacts. Of course, this requires that GnuPG is installed.

Without any further configuration the gpg2 (on Windows: gpg2. exe) executable found on the PATH will be
used. The password is supplied by the gpg- agent and the default key is used for signing.

8
Gnupg signatory configuration

The GnhupgSi gnat or y supports a number of configuration options for controlling how gpg is invoked. These
are typically set in gradle.properties:

Example 254. Configure the GnupgSignatory

gradl e. properties

si gni ng. gnupg. execut abl e=gpg

si gni ng. gnupg. useLegacyGog=t r ue

si gni ng. gnupg. homeDi r =gnupg- homne

si gni ng. gnupg. opt i onsFi | e=gnupg- hone/ gpg. conf
si gni ng. gnupg. keyName=24875D73

si gni ng. gnupg. passphr ase=gr adl e

si gni ng. gnupg. execut abl e
The gpg executable that is invoked for signing. The default value of this property depends on uselLegacy

. If that is t r ue then the default value of executable is "gpg" otherwise it is "gpg2".

si gni ng. ghupg. uselLegacy&g
Must be t r ue if GnuPG version 1 is used and f al se otherwise. The default value of the property is f al <

si gni ng. gnupg. honmeDi r
Sets the home directory for GnuPG. If not given the default home directory of GnuPG is used.

Page 313 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/signing/signatory/pgp/PgpSignatory.html

si gni ng. gnupg. opti onsFil e
Sets a custom options file for GnuPG. If not given GnuPG's default configuration file is used.

si gni ng. gnupg. keyNane
The id of the key that should be used for signing. If not given then the default key configured in GnuPG
will be used.

si gni ng. gnupg. passphrase
The passphrase for unlocking the secret key. If not given then the gpg-agent program is used for getting
the passphrase.

All configuration properties are optional.

8§
Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify
what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or
configurations that should be signed.

§
Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin configures a jar to
build and this jar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify
that all of the artifacts of this configuration should be signed.

Example 255. Signing a configuration
buil d. gradl e

signing {
sign configurations. archives

This will create a task (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Page 314 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.Sign.html

Example 256. Signing a configuration output

Output of gr adl e si gnAr chi ves
gradl e si gnArchives

Task : conpil eJava

Task : processResources
Task :cl asses

Task :jar

Task :signArchives

V V. V V V V

BUI LD SUCCESSFUL i n Os
4 actionable tasks: 4 executed

§
Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can
directly sign the task that produces the artifact to sign.

Example 257. Signing a task

bui | d. gradl e

task stuffZip (type: Zip) {
baseNane = "stuff"
from"src/stuff"

}

signing {
sign stuffzip

}

This will create a task (of type Si gn) in your project named “si gnSt uf f Zi p”, that will build the input task’s

archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.
Example 258. Signing a task output

Outputof gradl e si gnStuffZp
> gradl e signStuffzip

> Task :stuffzZip

> Task :signStuffZzZip

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar, Zi p,
Jar, VWar and Ear tasks.

Page 315 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.ear.Ear.html

8
Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not
wish to sign artifacts for non-release versions. To achieve this, you can specify that signing is only required
under certain conditions.

Example 259. Conditional signing

buil d. gradl e
version = ' 1. 0- SNAPSHOT'
ext.isRel easeVersion = !version. endsWth("SNAPSHOT")

signing {
requi red { isRel easeVersion && gradl e.taskG aph. hasTask("upl oadArchives") }
sign configurations. archives

In this example, we only want to require signing if we are building a release version and we are going to
publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must
set the signing.required property to a closure to defer the evaluation. See

Si gni ngExt ensi on. set Requi red(j ava. | ang. Obj ect) for more information.

8§
Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically
added to the si gnat ures and ar chi ves dependency configurations. This means that if you want to
upload your signatures to your distribution repository along with the artifacts you simply execute the upl oad/

task as normal.

8
Signing POM files

Note: Signing the generated POM file generated by the Maven Publishing plugin is currently not
supported. Future versions of Gradle might add this functionality.

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published
POM file. The signing plugin adds a si gni ng. si gnPom() (see:

Si gni ngExt ensi on. si gnPom(or g. gradl e. api . arti facts. maven. MavenDepl oynent ,
groovy. | ang. Cl osur e)) method that can be used in the bef or eDepl oynent () block in your upload
task configuration.

Page 316 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.7/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

Example 260. Sighing a POM for deployment

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
bef or eDepl oynent { MavenDepl oynent depl oynment -> si gni ng. si gnPon{ depl

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no
credentials for signing) then the si gnPon() method will silently do nothing.

Page 317 of 777

lvy Publishing (new)

Note: This chapter describes the new incubating Ivy publishing support provided by the “i vy- publ i sh
" plugin. Eventually this new publishing support will replace publishing via the Upl oad task.

If you are looking for documentation on the original vy publishing support using the Upl oad task
please see Publishing artifacts.

This chapter describes how to publish build artifacts in the Apache lvy format, usually to a repository for
consumption by other builds or projects. What is published is one or more artifacts created by the build, and
an Ivy module descriptor (normally i vy. xni) that describes the artifacts and the dependencies of the
artifacts, if any.

A published Ivy module can be consumed by Gradle (see Declaring Dependencies) and other tools that
understand the Ivy format.

8§
The “i vy- publ i sh” Plugin
The ability to publish in the Ivy format is provided by the “i vy- publ i sh” plugin.

The “publi shing” plugin creates an extension on the project named “publi shing” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “i vy-publi sh” plugin works with | vyPublicati on publications and

| vyArtifact Reposit ory repositories.

Example 261. Applying the “ivy-publish” plugin

bui | d. gradl e
apply plugin: "ivy-publish'

Applying the “i vy- publ i sh” plugin does the following:
Applies the “publ i shi ng” plugin

Establishes a rule to automatically create a Gener at el vyDescri pt or task for each | vyPubl i cati on

added (see the section called “Publications”).

Establishes a rule to automatically create a Publ i shTol vyReposi t ory task for the combination of each

Page 318 of 777

http://ant.apache.org/ivy/
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html

I vyPubl i cati on added (see the section called “Publications”), with each | vyArtifact Repository

added (see the section called “Repositories”).

8
Publications

Note: If you are not familiar with project artifacts and configurations, you should read Publishing
artifacts, which introduces these concepts. This chapter also describes “publishing artifacts” using a
different mechanism than what is described in this chapter. The publishing functionality described
here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the

Publ i shi ngExt ensi on. get Publ i cat i ons() container. Each publication has a unique name within the

project.

For the “i vy- publ i sh” plugin to have any effect, an | vyPubl i cati on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details included
in the associated Ivy module descriptor file. A publication can be configured by adding components,
customizing artifacts, and by modifying the generated module descriptor file directly.

§
Publishing a Software Component

The simplest way to publish a Gradle project to an lvy repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 25. Software Components

ame Provided By Artifacts Dependencies
ava Java Plugin Generated jar file Dependencies from ‘runtime' configuration
ab War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is

added by the Java Pl ugi n.

Page 319 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/component/SoftwareComponent.html

Example 262. Publishing a Java module to Ivy

buil d. gradl e
publications {
i vyJava(lvyPublication) {
from conponents. j ava

8
Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied as raw files, or as instances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the nane, ext ensi on, type, cl assi fi er and conf
values to use for publication. Note that each artifacts must have a unique name/classifier/extension
combination.

Configure custom artifacts as follows:
Example 263. Publishing additional artifact to lvy

bui I d. gradl e

task sourceldar(type: Jar) {
from sourceSets. nai n. java
classifier "source"

}
publ i shing {
publications {

i vy(lvyPublication) {
from conponents. j ava
artifact(sourcedar) {

type "source"
conf "conpile"
}
}
}
}

See the | vyPubl i cati on class in the APl documentation for more detailed information on how artifacts
can be customized.

Page 320 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html

8
Identity values for the published project

The generated lvy module descriptor file contains an <i nf 0> element that identifies the module. The default
identity values are derived from the following:

organi sation-Project.get Goup()
nodul e - Proj ect . get Name()

revi sion-Project.getVersion()
status - Proj ect. get Stat us()
branch - (not set)

Overriding the default identity values is easy: simply specify the or gani sati on, nodul e or revi si on
attributes when configuring the | vyPubl i cati on. The st at us and br anch attributes can be set via the de
property (see | vyNbdul eDescri ptor Spec). The descri ptor property can also be used to add

additional custom elements as children of the <i nf 0> element.
Example 264. customizing the publication identity

buil d. gradl e
publ i shing {
publications {
i vy(lvyPublication) {
organi sation 'org.gradle.sanpl e’
nmodul e ' proj ect 1- sanpl e'
revision '1.1'

descriptor.status = 'mlestone'
descriptor.branch = "testing'
descriptor.extralnfo 'http://ny. nanespace', 'nyEl enent', 'Sone val ue'

from conponents. j ava

Tip: Certain repositories are not able to handle all supported characters. For example, the "
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Gradle will handle any valid Unicode character for organisation, module and revision (as well as artifact
name, extension and classifier). The only values that are explicitly prohibited are ‘\’, '/ * and any I1SO control
character. The supplied values are validated early during publication.

Page 321 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

8
Modifying the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked before
publishing. The “i vy- publ i sh” plugin provides a hook to allow such modification.

Example 265. Customizing the module descriptor file

buil d. gradl e
publications {
i vyCust om(| vyPubl i cation) ({
descriptor.wi thXm {
asNode() . i nfo[0] . appendNode("' descri ption',
"A denonstration of ivy descriptor custol

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

See | vyMbdul eDescri pt or Spec. wi t hXm (org. gradl e. api . Acti on) in the APl documentation for

more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it is
also possible to modify the descriptor in such a way that it is no longer a valid Ivy module descriptor, so care
must be taken when using this feature.

The identifier (organisation, module, revision) of the published module is an exception; these values cannot
be modified in the descriptor using the wi t hXM_ hook.

8
Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle
subproject. An example is publishing a separate APl and implementation jar for your library. With Gradle this
is simple:

Page 322 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

Example 266. Publishing multiple modules from a single project

buil d. gradl e

task apiJar(type: Jar) {
baseNane "publishing-api"
from sourceSet s. mai n. out put
exclude " **/inmpl/**'

}
publ i shing {
publications {
i mpl (1vyPublication) {
organi sation 'org.gradle.sanple.inpl
nmodul e ' project2-inpl’
revision '2.3
from conponents. j ava
}
api (1 vyPublication) ({
organi sation 'org.gradle.sanpl e’
nmodul e ' proj ect 2- api
revision '2'
}
}
}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

8§
Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Example 267. Declaring repositories to publish to

bui | d. gradl e
repositories {
ivy {

url "S$buil dDir/repo”

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for
dependencies (Reposit oryHandl er). However, in the context of Ivy publication only the repositories
created by the i vy() methods can be used as publication destinations. You cannot publish an | vyPubl i ca

Page 323 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

to a Maven repository for example.

8§
Performing a publish

The “i vy-publish” plugin automatically creates a PublishTol vyRepository task for each

| vyPublicationand!|vyArtifact Repository combination in the publ i shi ng. publicati ons and |

containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Reposi t ory”, which is “pt

" for this example. This task is of type Publ i shTol vyRepository.

Example 268. Choosing a particular publication to publish

buil d. gradl e

apply plugin: 'java'

apply plugin: "ivy-publish'
group = 'org.gradle.sanmpl e’
version = '1.0

publi shing {

publications {
i vyJava(lvyPublication) {
from conmponents. j ava

}
}
repositories {
ivy {
url "$buil dDir/repo"
}
}

Output of gr adl e publ i shl vyJavaPubl i cati onTol vyRepository
gradl e publishlvyJavaPubli cati onTol vyRepository

Task :generateDescriptorFil eForlvyJavaPublication
Task : conpil eJava NO SOURCE

Task : processResources NO SOURCE

Task :classes UP-TO DATE

Task :jar

Task : publishlvyJavaPublicationTol vyRepository

V V. V V V V V

BU LD SUCCESSFUL in Os
3 actionabl e tasks: 3 executed

Page 324 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

8
The “publ i sh” lifecycle task

The “publ i sh” plugin (that the “i vy- publ i sh” plugin implicitly applies) adds a lifecycle task that can be
used to publish all publications to all applicable repositories named “publ i sh”.

In more concrete terms, executing this task will execute all Publ i shTol vyRepository tasks in the
project. This is usually the most convenient way to perform a publish.

Example 269. Publishing all publications via the “publish” lifecycle task

Output of gr adl e publ i sh

gradl e publish

Task :generateDescriptorFil eForlvyJavaPublication
Task : conpil eJava NO SOURCE

Task : processResources NO SOURCE

Task :classes UP-TO DATE

Task :jar

Task : publishlvyJavaPublicationTol vyRepository
Task : publish

V V. V V V V V V

BUI LD SUCCESSFUL in Os
3 actionabl e tasks: 3 executed

8§
Generating the lvy module descriptor file without publishing

At times it is useful to generate the vy module descriptor file (normally i vy. xm) without publishing your
module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very
easy to do.

The “i vy-publish” plugin creates one CeneratelvyDescriptor task for each registered
I vyPubl i cati on, named “gener at eDescri pt or Fi | eFor « PUBNAME»Publ i cat i on”, which will be “ge
" for the previous example of the “i vyJava” publication.

You can specify where the generated Ivy file will be located by setting the dest i nati on property on the
generated task. By default this file is written to “bui | d/ publ i cati ons/ «PUBNAME»/ i vy. xm ".

Page 325 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Example 270. Generating the lvy module descriptor file

buil d. gradl e
nodel {
t asks. gener at eDescri ptor Fi | eFor | vyCust onPubl i cation {
destination = file("$buildDir/generated-ivy.xm")

Output of gr adl e gener at eDescri ptorFil eFor | vyCust onPubl i cati on
> gradl e generateDescriptorFil eForlvyCustonPublication
> Task :generateDescriptorFil eForlvyCustonPublication

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note: The “i vy-publish” plugin leverages some experimental support for late plugin
configuration, and the Gener at el vyDescri pt or task will not be constructed until the publishing
extension is configured. The simplest way to ensure that the publishing plugin is configured when
you attempt to access the Gener at el vyDescr i pt or task is to place the access inside a nodel
block, as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shTol vyReposi t ory. These tasks should be referenced from within a nodel block.

8§
Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the
project description for each project.

Example 271. Publishing a Java module

buil d. gradl e
subproj ects {
apply plugin: 'java'
apply plugin: '"ivy-publish'

version = '1.0'
group = 'org.gradle.sanpl e’

repositories {
mavenCentral ()

}

task sourcelar(type: Jar) {
from sourceSets. mai n. java

Page 326 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

classifier "source"

project(":projectl") {
description = "The first project"

dependenci es {
compile "junit:junit:4.12", project(':project2')

project(":project2") {
description = "The second project"

dependenci es {
conpi l e ' comons-col | ecti ons: commons-col | ections: 3. 2. 2

}
}
subproj ects {
publ i shing {
repositories {
vy {

/'l change to point to your repo, e.g. http://my.org/repo
url "${rootProject.buildDir}/repo"

}

publications {
i vy(lvyPublication) {

from conponents. j ava

artifact(sourcedar) {
type "source"
conf "conpile"

}

descriptor.w thXm {
asNode() . i nfo[O] . appendNode(' description', description)

Page 327 of 777

The result is that the following artifacts will be published for each project:

The vy module descriptor file: “i vy-1. 0. xm ”.

The primary “jar” artifact for the Java component: “pr oj ect 1- 1. 0. j ar ".

The source “jar” artifact that has been explicitly configured: “pr oj ect 1- 1. 0- sour ce. j ar”.

When pr oj ect 1 is published, the module descriptor (i.e. the i vy. xm file) that is produced will look like:

Tip: Note that «PUBLI CATI ON- TI ME- STAMP» in this example Ivy module descriptor will be the

timestamp of when the descriptor was generated.

Example 272. Example generated ivy.xml

out put -i vy. xn
<?xm version="1.0" encodi ng="UTF-8"?>
<i vy-nodul e version="2.0">
<i nfo organi sati on="org. gradl e. sanpl e" nodul e="proj ect1" revision="1.0" status:
<description>The first project</description>
</i nf o>
<confi gurations>
<conf nanme="conpile" visibility="public"/>
<conf name="default" visibility="public" extends="conpile,runtine"/>
<conf name="runtine" visibility="public"/>
</ configurati ons>
<publ i cati ons>
<artifact name="projectl" type="jar" ext="jar" conf="conpile"/>
<artifact name="projectl" type="source" ext="jar" conf="conpile" mclassifie
</ publicati ons>
<dependenci es>
<dependency org="junit" nanme="junit" rev="4.12" conf="conpile->defaul t"/>
<dependency org="org. gradl e. sanpl e" name="project2" rev="1. 0" conf="conpil e-.
</ dependenci es>
</i vy-nodul e>

8

Future features

The “i vy- publ i sh” plugin functionality as described above is incomplete, as the feature is still incubating.
In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

Convenient customization of module attributes (modul e, or gani sat i on etc.)

Page 328 of 777

Convenient customization of dependencies reported in nodul e descri ptor.

Multiple discrete publications per project

Page 329 of 777

Maven Publishing (new)

Note: This chapter describes the new incubating Maven publishing support provided by the “naven- pu
" plugin. Eventually this new publishing support will replace publishing via the Upl oad task.

Note: Signing the generated POM file generated by this plugin is currently not supported. Future
versions of Gradle might add this functionality. Please use the Maven plugin for the purpose of
publishing your artifacts to Maven Central.

If you are looking for documentation on the original Maven publishing support using the Upl oad
task please see Publishing artifacts.

This chapter describes how to publish build artifacts to an Apache Maven Repository. A module published to
a Maven repository can be consumed by Maven, Gradle (see Declaring Dependencies) and other tools that
understand the Maven repository format.

8
The “maven- publ i sh” Plugin
The ability to publish in the Maven format is provided by the “naven- publ i sh” plugin.

The “publ i shing” plugin creates an extension on the project named “publi shing” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “maven- publ i sh” plugin works with MavenPubl i cati on publications and
MavenArti f act Reposi t ory repositories.

Example 273. Applying the 'maven-publish’ plugin

bui I d. gradl e
apply plugin:

maven- publ i sh’

Applying the “maven- publ i sh” plugin does the following:
Applies the “publ i shi ng” plugin

Establishes a rule to automatically create a Gener at eMavenPomtask for each MavenPubl i cat i on added
(see the section called “Publications”).

Establishes a rule to automatically create a Publ i shTolVavenReposi t ory task for the combination of

Page 330 of 777

http://maven.apache.org/
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

each MavenPublication added (see the section called “Publications”), with each
MavenArti fact Repository added (see the section called “Repositories”).

Establishes a rule to automatically create a Publ i shToMavenlLocal task for each MavenPubl i cati on
added (seethe section called “Publications™).

8
Publications

Note: If you are not familiar with project artifacts and configurations, you should read the Publishing
artifacts that introduces these concepts. This chapter also describes “publishing artifacts” using a
different mechanism than what is described in this chapter. The publishing functionality described
here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the

Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a uniqgue name within the

project.

For the “maven- publ i sh” plugin to have any effect, a MavenPubl i cati on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details included
in the associated POM file. A publication can be configured by adding components, customizing artifacts,
and by modifying the generated POM file directly.

8
Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 26. Software Components

ame Provided By Artifacts Dependencies
ava The Java Plugin Generated jar file Dependencies from 'runtime' configuration
2b The War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the j ava component, which is
added by the Java PI ugi n.

Page 331 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/component/SoftwareComponent.html

Example 274. Adding a MavenPublication for a Java component

buil d. gradl e
publi shing {
publications {
mavenJava(MavenPubl i cation) {
from conmponents. j ava

8
Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied as raw files, or as instances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the ext ensi on and cl assi fi er values to use for
publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts
must have a unique classifier/extension combination.

Configure custom artifacts as follows:
Example 275. Adding additional artifact to a MavenPublication
buil d. gradl e

task sourcelar(type: Jar) {
from sourceSets. main. all Java

}
publ i shing {
publications {
mavenJava(MavenPubl i cati on) ({
from conmponents. j ava
artifact sourcedar {
classifier "sources"
}
}
}
}

See the MavenPubl i cat i on class in the APl documentation for more information about how artifacts can

be customized.

Page 332 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html

8
Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following project
properties:

groupl d - Proj ect. get Goup()
artifactld-Project.getNane()
version - Proj ect. get Versi on()

Overriding the default identity values is easy: simply specify the groupl d, artifactld or version
attributes when configuring the MavenPubl i cat i on.

Example 276. customizing the publication identity

bui I d. gradl e
publ i shing {
publications {
maven(MavenPubl i cation) {
groupld 'org. gradle. sanpl e'
artifactld 'projectl-sanple'
version '1.1'

from conponents. j ava

Tip: Certain repositories will not be able to handle all supported characters. For example, the "'
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Maven restricts 'groupld' and 'artifactld’ to a limited character set ([A-Za-z0-9 \\-.]+) and Gradle
enforces this restriction. For 'version' (as well as artifact 'extension’ and 'classifier'), Gradle will handle any
valid Unicode character.

The only Unicode values that are explicitly prohibited are ‘\’, // * and any ISO control character. Supplied
values are validated early in publication.

§
Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “maven- publ i sh” plugin provides
a hook to allow such modification.

Page 333 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version

Example 277. Modifying the POM file

buil d. gradl e
publications {
mavenCust on(MavenPubl i cati on) {
pom wi t hXm {
asNode() . appendNode(' descri ption',
" A denonstration of nmaven POM custom zation')

In this example we are adding a 'description’ element for the generated POM. With this hook, you can modify
any aspect of the POM. For example, you could replace the version range for a dependency with the actual
version used to produce the build.

See MavenPom wi t hXm (org. gradl e. api . Acti on) inthe APl documentation for more information.

It is possible to modify virtually any aspect of the created POM. This means that it is also possible to modify
the POM in such a way that it is no longer a valid Maven POM, so care must be taken when using this
feature.

The identifier (groupld, artifactld, version) of the published module is an exception; these values cannot be
modified in the POM using the wi t hXM. hook.

8
Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle
subproject. An example is publishing a separate API and implementation jar for your library. With Gradle this
is simple:

Page 334 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)

Example 278. Publishing multiple modules from a single project

buil d. gradl e

task apiJar(type: Jar) {
baseNane "publishing-api"
from sourceSet s. mai n. out put
exclude " **/inmpl/**'

publi shing {
publications {
i mpl (MavenPubl i cation) {
groupld 'org.gradl e.sanpl e.inpl"'
artifactld 'project2-inpl
version '2. 3

from conponents. j ava

}
api (MavenPubl i cation) {

groupld 'org.gradl e.sanpl e
artifactld 'project2-api
version '2'

artifact apiJar

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

8§
Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Example 279. Declaring repositories to publish to

buil d. gradl e
publi shing {
repositories {
maven {

url "$buil dDir/repo"

Page 335 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to
consume dependencies from, Reposi t or yHandl er . However, in the context of Maven publication only
MavenArti fact Reposi tory repositories can be used for publication.

8§
Performing a publish

The “maven- publ i sh” plugin automatically creates a Publ i shToMavenRepository task for each
MavenPubl i cati on and MavenArti fact Reposit ory combination in the publ i shi ng. publ i cati ons
and publ i shi ng. reposi t ori es containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cat i onTo« REPONAME»Reposi t ory”.

Page 336 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Example 280. Publishing a project to a Maven repository

buil d. gradl e

apply plugin: 'java'
apply plugin: 'maven-publish’

group = 'org.gradle.sanmpl e’
version = '1.0
publi shing {

publications {
mavenJava(MavenPubl i cation) {
from conmponents. j ava

}
}
}
publi shing {
repositories {
maven {
url "$buil dDir/repo"
}
}
}

Output of gr adl e publ i sh

gradl e publish

Task : generat ePonti | eFor MavenJavaPubl i cati on

Task : conpil eJava

Task : processResources NO SOURCE

Task :classes

Task :jar

Task : publishMavenJavaPubl i cati onToMavenRepository
Task : publish

V V.V V V V V V

BU LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

In this example, a task named “publ i shMavenJavaPubl i cati onToMavenReposi tory” is created,
which is of type Publ i shToMavenRepository. This task is wired into the publ i sh lifecycle task.
Executing “gradl e publ i sh” builds the POM file and all of the artifacts to be published, and transfers
them to the repository.

Page 337 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

8§
Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the local .m2
repository. In Maven parlance, this is referred to as 'installing' the module. The “maven- publ i sh” plugin
makes this easy to do by automatically creating a PublishToMavenLocal task for each
MavenPubl i cati on in the publ i shi ng. publ i cati ons container. Each of these tasks is wired into the p
lifecycle task. You do not need to have mavenLocal inyour publ i shi ng. repositori es section.

The created task is named “publ i sh« PUBNAME»Publ i cati onToMavenLocal .
Example 281. Publish a project to the Maven local repository

Output of gr adl e publ i shToMavenLoca

gradl e publishToMavenLoca

Task : generat ePonti | eFor MavenJavaPubl i cati on
Task : conpil eJava

Task : processResources NO SOURCE

Task :classes

Task :jar

Task : publ i shMavenJavaPubl i cati onToMavenLoca
Task : publishToMavenLoca

V V. V V V V V V

BUI LD SUCCESSFUL in Os
4 actionable tasks: 4 executed

The resulting task in this example is named “publ i shMavenJavaPubl i cati onToMavenLocal ". This task
is wired into the publ i shToMavenLocal lifecycle task. Executing “gr adl e publi shToMavenLocal ”

builds the POM file and all of the artifacts to be published, and “installs” them into the local Maven repository.

8§
Generating the POM file without publishing

At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM
generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type Gener at eMavenPom and it is given a name based on the
name of the publication: “gener at ePonFi | eFor « PUBNAME»Publ i cati on”. So in the example below,
where the publication is named “mavenCust onf, the task will be named “gener at ePonFi | eFor MavenCust

Page 338 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html

Example 282. Generate a POM file without publishing

buil d. gradl e
nodel {
t asks. gener at ePonti | eFor MavenCust onPubl i cati on {
destination = file("$buildDir/generated-pomxm")

Output of gr adl e gener at ePonti | eFor MavenCust onPubl i cati on
> gradl e generat ePonti | eFor MavenCust onPubl i cati on
> Task :generat ePonFi | eFor MavenCust onPubl i cati on

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

All details of the publishing model are still considered in POM generation, including conponent s, custom ar

, and any modifications made via pom wi t hXm .

Note: The “maven- publish” plugin leverages some experimental support for late plugin
configuration, and any Gener at eMavenPom tasks will not be constructed until the publishing
extension is configured. The simplest way to ensure that the publishing plugin is configured when
you attempt to access the Gener at eMavenPomtask is to place the access inside a nodel block,
as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shToMavenReposi t ory. These tasks should be referenced from within a nodel block.

Page 339 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

The Distribution Plugin

Note: The distribution plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution
archives typically contain the executable application and other supporting files, such as documentation.

8§

Usage
To use the distribution plugin, include the following in your build script:
Example 283. Using the distribution plugin

bui I d. gradl e
apply plugin: "distribution’

The plugin adds an extension named “di stri buti ons” of type Di stri buti onCont ai ner to the project.
It also creates a single distribution in the distributions container extension named “rmai n”. If your build only
produces one distribution you only need to configure this distribution (or use the defaults).

You can run “gr adl e di st Zi p” to package the main distribution as a ZIP, or “gr adl e di st Tar " to create
a TAR file. To build both types of archives just run gr adl e assenbl eDi st . The files will be created at “$bt

You can run “gr adl e i nstal | Di st”to assemble the uncompressed distribution into “$bui | dDi r /i nst a

8
Tasks

The Distribution plugin adds the following tasks to the project:

Page 340 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.distribution.DistributionContainer.html

Table 27. Distribution plugin - tasks

ask name Depends on Type Description
IstZip - Zi p Creates a ZIP archive of the distribution contents
| st Tar - Tar Creates a TAR archive of the distribution contents

ssenbl eDi st distTar,distZip Task Creates ZIP and TAR archives with the distribution contents

nstal |l D st - Sync Assembles the distribution content and installs it on the current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:
Table 28. Multiple distributions - tasks

ask name Depends on Type Description

))) ! .) Creates a ZIP archive of the
{distribution.name} DistZp - Zip
distribution contents

{distributi }DistT Creates a TAR archive of the
i stribution.nanme st Tar -
distribution contents

ssenbl e${di stribution. name. capi t e${di stri bution. nane} Di st Tar, ${Task Asserhbles.ailadiefiBudrzahives

Assembles the distribution content
nstal | ${di stribution. name. capital- ze()} D st Sync and installs it on the current
machine

Example 284. Adding extra distributions

buil d. gradl e
apply plugin: "distribution'

version = '1.2'

di stributions {
custom {}

This will add following tasks to the project:
customDistZip

customDistTar

Page 341 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Sync.html

assembleCustomDist
installCustomDist

Given that the project name is “nmypr oj ect ” and version “1. 2", running “gr adl e cust onDi st Zi p” will
produce a ZIP file named “nypr oj ect - cust om 1. 2. zi p”.

Running “gradl e i nst al | Cust onDi st ” will install the distribution contents into “$bui | dDir /i nstal | / ¢

8
Distribution contents

All of the files in the “src/ $di stri buti on. nane/ di st” directory will automatically be included in the
distribution. You can add additional files by configuring the Di stri buti on object that is part of the
container.

Example 285. Configuring the main distribution

bui | d. gradl e
apply plugin: "distribution’

di stributions {

mai n {
baseNane = ' soneNane'
contents {
from{ 'src/readne' }
}
}

apply plugin:' maven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sonmel/repo")

In the example above, the content of the “sr ¢/ r eadne” directory will be included in the distribution (along
with the files in the “sr ¢/ mai n/ di st " directory which are added by default).

The “baseNane” property has also been changed. This will cause the distribution archives to be created with
a different name.

Page 342 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/distribution/Distribution.html

8§
Publishing distributions

The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the ma
plugin applied the distribution zip file will be published when running uploadArchives if no other default
artifact is configured

Example 286. publish main distribution

buil d. gradl e
apply plugin:' naven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sone/repo")

Page 343 of 777

The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following
notification systems are supported:

Twitter
notify-send (Ubuntu)
Snarl (Windows)
Growl (macOS)
8§
Usage
To use the announce plugin, apply it to your build script:
Example 287. Applying the announce plugin

bui I d. gradl e
apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are
available):

Example 288. Configure the announce plugin

bui I d. gradl e
announce {
username = 'nyld'
password = ' nyPassword'
}

Finally, send announcements with the announce method:

Page 344 of 777

http://twitter.com
http://manpages.ubuntu.com/manpages/zesty/en/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 289. Using the announce plugin

buil d. gradl e
task hellowrld {
doLast {
println "Hello, world!"
}
}
hel | owbr | d. doLast ({
announce. announce("hel oWorl d conpleted!", "twitter")
announce. announce(" hel | oWrl d conpl eted!", "local")

The announce method takes two String arguments: The message to be sent, and the natification service to
be used. The following table lists supported notification services and their configuration properties.

Table 29. Announce Plugin Notification Services

otification . Configuration .
) Operating System) Further Information
ervice Properties
. username,
litter Any
password
rarl Windows
owl macOS

. Requires the notify-send package to be installed. Use sudo apt - get i nstal
otify-send Ubuntu

to install it.
| Windows, Automatically chooses between snarl, growl, and notify-send depending on
cal
macOS, Ubuntu the current operating system.
8§
Configuration

See the AnnouncePl ugi nExt ensi on class in the APl documentation.

Page 345 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

The Build Announcements Plugin

Note: The build announcements plugin is currently incubating. Please be aware that the DSL and
other configuration may change in later Gradle versions.

The build announcements plugin uses the announce plugin to send local announcements on important
events in the build.

8§

Usage
To use the build announcements plugin, include the following in your build script:
Example 290. Using the build announcements plugin

bui I d. gradl e
apply plugin: 'build-announcenents

That's it. If you want to tweak where the announcements go, you can configure the announce plugin to
change the local announcer.

You can also apply the plugin from an init script:
Example 291. Using the build announcements plugin from an init script
init.gradle

root Proj ect {
apply plugin: 'build-announcenents’

Page 346 of 777

Dependency management

Introduction to Dependency Management

§
What is dependency management?

Software projects rarely work in isolation. In most cases, a project relies on reusable functionality in the form
of libraries or is broken up into individual components to compose a modularized system. Dependency
management is a technique for declaring, resolving and using dependencies required by the project in an
automated fashion.

Note: For a general overview on the terms used throughout the user guide, refer to Dependency
Management Terminology.

8§
Dependency management in Gradle

Gradle has built-in support for dependency management and lives up the task of fulfilling typical scenarios
encountered in modern software projects. We'll explore the main concepts with the help of an example
project. The illustration below should give you an rough overview on all the moving parts.

Page 348 of 777

Figure 14. Dependency management big picture

Local File
Repository

artifacts Maven

access
T download
artifacts / Repository

Gradle >

Build
Ivy
store access Repository
artifacts artifacts
Gradle
Cache

The example project builds Java source code. Some of the Java source files import classes from Google
Guava, a open-source library providing a wealth of utility functionality. In addition to Guava, the project
needs the JUnit libraries for compiling and executing test code.

Guava and JUnit represent the dependencies of this project. A build script developer can declare
dependencies for different scopes e.g. just for compilation of source code or for executing tests. In Gradle,
the scope of a dependency is called a configuration. For a full overview, see the reference material on
dependency types.

Often times dependencies come in the form of modules. You'll need to tell Gradle where to find those
modules so they can be consumed by the build. The location for storing modules is called a repository. By
declaring repositories for a build, Gradle will know how to find and retrieve modules. Repositories can come
in different forms: as local directory or a remote repository. The reference on repository types provides a
broad coverage on this topic.

At runtime, Gradle will locate the declared dependencies if needed for operating a specific task. The
dependencies might need to be downloaded from a remote repository, retrieved from a local directory or
requires another project to be built in a multi-project setting. This process is called dependency resolution.
You can find a detailed discussion in the section called “How dependency resolution works”.

Once resolved, the resolution mechanism stores the underlying files of a dependency in a local cache, also
referred to as the dependency cache. Future builds reuse the files stored in the cache to avoid unnecessary
network calls.

Modules can provide additional metadata. Metadata is the data that describes the module in more detail e.g.
the coordinates for finding it in a repository, information about the project, or its authors. As part of the

Page 349 of 777

https://github.com/google/guava
https://github.com/google/guava
http://junit.org/junit5/

metadata, a module can define that other modules are needed for it to work properly. For example, the JUnit
5 platform module also requires the platform commons module. Gradle automatically resolves those
additional modules, so called transitive dependencies. If needed, you can customize the behavior the
handling of transitive dependencies to your project’s requirements.

Projects with tens or hundreds of declared dependencies can easily suffer from dependency hell. Gradle
provides sufficient tooling to visualize, navigate and analyze the dependency graph of a project either with
the help of a build scan or built-in tasks. Learn more in Inspecting Dependencies.

Figure 15. Build scan dependencies report

@ ® < il & scans.gradle.com o O 1=

ﬁ Build Scan E + gradle :core:test

= Summary

. 214 dependencies resolved in 70 projects across 156 configurations
>—| Console log
Timeline)
W Performance :announce

T antlr

ests]

:B ‘baseServices
'-_i;*_ P-'L'Ij'EEtb compileClasspath

com.google.code. findbugs:jsr305:1.3.9

com.google guava:guava-jdk5:17.0
Zr Plugins commaons-icommaons-io:2,2
commons-lang.commons-lang: 2.6

Custom values
net.jciptjcip-annotations: 1.0

—= Switches org.sifdjsifdj-api:1.7.10
B Infrastructure runtimeClasspath

testFixturesCompileClasspath

‘haceSarvicscl S rnauy

8§
How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below is a brief outline of how this process
works.

Given a required dependency, Gradle attempts to resolve the dependency by searching for the module the
dependency points at. Each repository is inspected in order. Depending on the type of repository, Gradle
looks for metadata files describing the module (. nodul e, . pomori vy. xm file) or directly for artifact files.

If the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the highest
available concrete version (like 1. 2) in the repository. For Maven repositories, this is done using the maven-

Page 350 of 777

https://scans.gradle.com/get-started

file, while for vy repositories this is done by directory listing.

If the module metadata is a POM file that has a parent POM declared, Gradle will recursively attempt to
resolve each of the parent modules for the POM.

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is

done using the following criteria:
For a dynamic version, a 'higher' concrete version is preferred over a 'lower' version.

Modules declared by a module metadata file (. nodul e, . pomor i vy. xml file) are preferred over modules

that have an artifact file only.
Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a concrete version and a module metadata file is found in a repository,
there is no need to continue searching later repositories and the remainder of the process is short-circuited.

All of the artifacts for the module are then requested from the same repository that was chosen in the
process above.

The dependency resolution process is highly customizable to meet enterprise requirements. For more
information, see the chapter on Customizing Dependency Resolution Behavior.

Page 351 of 777

Declaring Dependencies

Gradle builds can declare dependencies on modules hosted in repositories, files and other Gradle projects.
You can find examples for common scenarios in this section. For more information, see the full reference on
all types of dependencies.

Every dependency needs to be assigned to a configuration when declared in a build script. For more
information on the purpose and syntax of configurations, see Managing Dependency Configurations.

§
Declaring a dependency to a module

Modern software projects rarely build code in isolation. Projects reference modules for the purpose of
reusing existing and proven functionality. Upon resolution, selected versions of modules are downloaded
from dedicated repositories and stored in the dependency cache to avoid unnecessary network traffic.

Figure 16. Resolving dependencies from remote repositories

download
Maven

artifacts / Repository

Gradle >

Build
\ lvy
store access Repository
artifacts artifacts
Gradle
Cache

Page 352 of 777

8
Declaring a concrete version of a dependency

A typical example for such a library in a Java project is the Spring framework. The following code snippet
declares a compile-time dependency on the Spring web module by its coordinates: or g. spri ngf r amewor k
. Gradle resolves the module including its transitive dependencies from the Maven Central repository and
uses it to compile Java source code. The version attribute of the dependency coordinates points to a
concrete version indicating that the underlying artifacts do not change over time. The use of concrete
versions ensure reproducibility for the aspect of dependency resolution.

Example 292. Declaring a dependency with a concrete version

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i npl ementation 'org. springframework: spring-web: 5. 0. 2. RELEASE'

A Gradle project can define other types of repositories hosting modules. You can learn more about the
syntax and API in the section on declaring repositories. Refer to The Java Plugin for a deep dive on
declaring dependencies for a Java project. The resolution behavior for dependencies is highly customizable.

§
Declaring a dependency without version

A recommended practice for larger projects is to declare dependencies without versions and use
dependency constraints for version declaration. The advantage is that dependency constrains allow you to
manage versions of all dependencies, including transitive ones, in one place.

Example 293. Declaring a dependency without version
bui I d. gradl e

dependenci es {
i mpl ement ation 'org.springframework: spring-web'

dependenci es {
constraints {
i mpl ementation 'org. springframework: spring-web: 5. 0. 2. RELEASE'

Page 353 of 777

https://projects.spring.io/spring-framework/
https://search.maven.org/

8
Declaring a dynamic version

Projects might adopt a more aggressive approach for consuming dependencies to modules. For example
you might want to always integrate the latest version of a dependency to consume cutting edge features at
any given time. A dynamic version allows for resolving the latest version or the latest version of a version
range for a given module.

Note: Using dynamic versions in a build bears the risk of potentially breaking it. As soon as a new
version of the dependency is released that contains an incompatible APl change your source code
might stop compiling.

Example 294. Declaring a dependency with a dynamic version

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i mpl ementation 'org. springframework: spring-web: 5. +

A build scan can effectively visualize dynamic dependency versions and their respective, selected versions.

Figure 17. Dynamic dependencies in build scan

compileClasspath
org.springframework:spring-web:5.+ 5.0.2.RELEASE
org.springframework:spring-beans:5.0.2.RELEASE
org.springframework:spring-core:5.0.2.RELEASE
org.springframework:spring-jcl:5.0.2.RELEASE
org.springframework:spring-core:5.0.2.RELEASE
org.springframework:spring-jcl:5.0.2.RELEASE

By default, Gradle caches dynamic versions of dependencies for 24 hours. Within this time frame, Gradle
does not try to resolve newer versions from the declared repositories. The threshold can be configured as
needed for example if you want to resolve new versions earlier.

Page 354 of 777

https://scans.gradle.com/

8
Declaring a changing version

A team might decide to implement a series of features before releasing a new version of the application or
library. A common strategy to allow consumers to integrate an unfinished version of their artifacts early and
often is to release a module with a so-called changing version. A changing version indicates that the feature
set is still under active development and hasn'’t released a stable version for general availability yet.

In Maven repositories, changing versions are commonly referred to as snapshot versions. Snapshot versions
contain the suffix - SNAPSHOT. The following example demonstrates how to declare a snapshot version on

the Spring dependency.
Example 295. Declaring a dependencies with a changing version

bui I d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()
maven {
url "https://repo.spring.iol/snapshot/’

dependenci es {
i mpl ementation 'org. springframework: spring-web: 5. 0. 3. BU LD- SNAPSHOT'

By default, Gradle caches changing versions of dependencies for 24 hours. Within this time frame, Gradle
does not try to resolve newer versions from the declared repositories. The threshold can be configured as
needed for example if you want to resolve new snapshot versions earlier.

Gradle is flexible enough to treat any version as changing version e.g. if you wanted to model snapshot
behavior for an Ivy module. All you need to do is to set the property
Ext er nal Modul eDependency. set Changi ng(bool ean) totrue.

8§
Declaring a file dependency

Projects sometimes do not rely on a binary repository product e.g. JFrog Artifactory or Sonatype Nexus for
hosting and resolving external dependencies. It's common practice to host those dependencies on a shared
drive or check them into version control alongside the project source code. Those dependencies are referred
to as file dependencies, the reason being that they represent a file without any metadata (like information
about transitive dependencies, the origin or its author) attached to them.

Page 355 of 777

https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-

Figure 18. Resolving file dependencies from the local file system and a shared drive

Local File
System
access
artifacts access
artifacts
Gradle Shared
_ —_—
Build Drive
store access
artifacts artifacts
Gradle
Cache

The following example resolves file dependencies from the directories ant , | i bs and t ool s.

Example 296. Declaring multiple file dependencies

buil d. gradl e
configurations {
ant Contrib

ext ernal Li bs
depl oynent Tool s

dependenci es {
antContrib files('ant/antcontrib.jar")
external Libs files('libs/comons-lang.jar', 'libs/log4j.jar")
depl oynent Tools fileTree(dir: '"tools', include: '*.exe')

As you can see in the code example, every dependency has to define its exact location in the file system.
The most prominent methods for creating a file reference are Proj ect . fil es(java. |l ang. Cbject[])
and Proj ect.fileTree(java.lang. Ooj ect) . Alternatively, you can also define the source directory of
one or many file dependencies in the form of a flat directory repository.

Page 356 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

8§
Declaring a project dependency

Software projects often break up software components into modules to improve maintainability and prevent
strong coupling. Modules can define dependencies between each other to reuse code within the same
project.

Gradle can model dependencies between modules. Those dependencies are called project dependencies
because each module is represented by a Gradle project. At runtime, the build automatically ensures that
project dependencies are built in the correct order and added to the classpath for compilation. The chapter
Authoring Multi-Project Builds discusses how to set up and configure multi-project builds in more detail.

Figure 19. Dependencies between projects

Gradle Multi-Project Build

depends

on
Project A | Project B

depends depends
on on

Project C

The following example declares the dependencies on the uti | s and api project from the web- servi ce
project. The method Project.project(]java.lang. String) creates a reference to a specific
subproject by path.

Example 297. Declaring project dependencies

buil d. gradl e
project(':web-service') {
dependenci es {
i mpl ementation project(':utils")
i mpl ementation project(':api')

Page 357 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

8§
Resolving specific artifacts from a module dependency

Whenever Gradle tries to resolve a module from a Maven or Ivy repository, it looks for a metadata file and
the default artifact file, a JAR. The build fails if none of these artifact files can be resolved. Under certain
conditions, you might want to tweak the way Gradle resolves artifacts for a dependency.

The dependency only provides a non-standard artifact without any metadata e.g. a ZIP file.
The module metadata declares more than one artifact e.g. as part of an Ivy dependency descriptor.

You only want to download a specific artifact without any of the transitive dependencies declared in the
metadata.

Gradle is a polyglot build tool and not limited to just resolving Java libraries. Let's assume you wanted to
build a web application using JavaScript as the client technology. Most projects check in external JavaScript
libraries into version control. An external JavaScript library is no different than a reusable Java library so why
not download it from a repository instead?

Google Hosted Libraries is a distribution platform for popular, open-source JavaScript libraries. With the help
of the artifact-only notation you can download a JavaScript library file e.g. JQuery. The @ character
separates the dependency’s coordinates from the artifact’s file extension.

Example 298. Resolving a JavaScript artifact for a declared dependency

bui I d. gradl e
repositories {
ivy {

url '"https://ajax.googl eapis.conifajax/|ibs'
| ayout 'pattern', {
artifact '[organization]/[revision]/[nodule].[ext]'

configurations {
is

dependenci es {
js 'jquery:jquery:3.2.1@s'

Some modules ship different "flavors" of the same artifact or they publish multiple artifacts that belong to a
specific module version but have a different purpose. It's common for a Java library to publish the artifact
with the compiled class files, another one with just the source code in it and a third one containing the
Javadocs.

Page 358 of 777

https://developers.google.com/speed/libraries/

In JavaScript, a library may exist as uncompressed or minified artifact. In Gradle, a specific artifact identifier
is called classifier, a term generally used in Maven and lvy dependency management.

Let's say we wanted to download the minified artifact of the JQuery library instead of the uncompressed file.
You can provide the classifier m n as part of the dependency declaration.

Example 299. Resolving a JavaScript artifact with classifier for a declared dependency

bui | d. gradl e
repositories {
vy {

url '"https://ajax.googl eapis.confajax/libs'
| ayout 'pattern', {
artifact '[organization]/[revision]/[nodule](.[classifier]).[ext]'

configurations {
is

dependenci es {
js "jquery:jquery:3.2.1:mn@s'

Page 359 of 777

Managing Dependency Configurations

§
What is a configuration?

Every dependency declared for a Gradle project applies to a specific scope. For example some
dependencies should be used for compiling source code whereas others only need to be available at
runtime. Gradle represents the scope of a dependency with the help of a Configuration. Every

configuration can be identified by a uniqgue name.

Many Gradle plugins add pre-defined configurations to your project. The Java plugin, for example, adds
configurations to represent the various classpaths it needs for source code compilation, executing tests and
the like. See the Java plugin chapter for an example. The sections above demonstrate how to declare
dependencies for different use cases.

Figure 20. Configurations use declared dependencies for specific purposes

compile Gradle Build

source file

resolve

| F—\ ; ; dependencies
| |implementation| | P

configuration \

, Bin
/ Repo
| | I N test‘Runt‘ime _ —
configuration resolve
dependencies
execute
tests

For more examples on the usage of configurations to navigate, inspect and post-process metadata and
artifacts of assigned dependencies, see Working with Dependencies.

Page 360 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html

8§
Defining custom configurations

You can define configurations yourself, so-called custom configurations. A custom configuration is useful for
separating the scope of dependencies needed for a dedicated purpose.

Let's say you wanted to declare a dependency on the Jasper Ant task for the purpose of pre-compiling JSP
files that should not end up in the classpath for compiling your source code. It's fairly simple to achieve that
goal by introducing a custom configuration and using it in a task.

Example 300. Declaring and using a custom configuration

buil d. gradl e

configurations {
j asper

}

repositories {
mavenCentral ()

dependenci es {
j asper 'org.apache.tontat. enbed: tontat-enbed-j asper:9.0. 2’

task preConpil eJsps {
doLast {
ant . t askdef (cl assnane: 'org. apache. jasper.JspC ,
nane: 'jasper',
cl asspath: configurations.jasper.asPath)
ant . j asper(validateXm : false,
uriroot: file(' src/ main/webapp'),
outputDir: file("$buildbDir/conpiled-jsps"))

A project’s configurations are managed by a conf i gur at i ons object. Configurations have a name and can
extend each other. To learn more about this API have a look at Conf i gur at i onCont ai ner .

8§
Inheriting dependencies from other configurations

A configuration can extend other configurations to form an inheritance hierarchy. Child configurations inherit
the whole set of dependencies declared for any of its superconfigurations.

Configuration inheritance is heavily used by Gradle core plugins like the Java plugin. For example the t est |
configuration extends the i npl enent at i on configuration. The configuration hierarchy has a practical

Page 361 of 777

https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

purpose: compiling tests requires the dependencies of the source code under test on top of the
dependencies needed write the test class. A Java project that uses JUnit to write and execute test code also
needs Guava if its classes are imported in the production source code.

Figure 21. Configuration inheritance provided by the Java plugin

implementation

. . . le. : :23.0
configuration com.google.guava:guava

extends

testImplementation

. . junit:junit:4.12
configuration e

Under the covers the t est | npl enent ati on and i npl enent at i on configurations form an inheritance
hierarchy by calling the method

Confi gurati on. extendsFron{org. gradl e. api.artifacts. Configuration[]). A configuration
can extend any other configuration irrespective of its definition in the build script or a plugin.

Let's say you wanted to write a suite of smoke tests. Each smoke test makes a HTTP call to verify a web
service endpoint. As the underlying test framework the project already uses JUnit. You can define a new
configuration named snokeTest that extends from the t est | npl ement at i on configuration to reuse the
existing test framework dependency.

Example 301. Extending a configuration from another configuration

buil d. gradl e
configurations {
snokeTest . ext endsFrom t est | npl enent ati on

dependenci es {
testlnplenentation "junit:junit:4.12
snokeTest 'org. apache. htt pconponents: httpclient:4.5.5'

Page 362 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])

Declaring Repositories

Gradle can resolve dependencies from one or many repositories based on Maven, lvy or flat directory
formats. Check out the full reference on all types of repositories for more information.

8§
Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and consume
open source dependencies. Popular public repositories include Maven Central, Bintray JCenter and the
Google Android repository. Gradle provides built-in shortcut methods for the most widely-used repositories.

Figure 22. Declaring a repository with the help of shortcut methods

Maven
Central
mavenCentral ()
Gradle Jeenter O | Bintray
Build > JCenter
google () Google
Android

To declare JCenter as repository, add this code to your build script:

Page 363 of 777

Example 302. Declaring JCenter repository as source for resolving dependencies

buil d. gradl e
repositories {

jcenter()
}

Under the covers Gradle resolves dependencies from the respective URL of the public repository defined by
the shortcut method. All shortcut methods are available via the Reposi t or yHandl er APIL. Alternatively,
you can spell out the URL of the repository for more fine-grained control.

8§
Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house repositories
enable teams to publish internal binaries, setup user management and security measure and ensure uptime
and availability. Specifying a custom URL is also helpful if you want to declare a less popular, but
publicly-available repository.

Add the following code to declare an in-house repository for your build reachable through a custom URL.

Example 303. Declaring a custom repository by URL

bui | d. gradl e
repositories {
maven {

url "http://repo. myconmpany. com maven2"

Repositories with custom URLS can be specified as Maven or lvy repositories by calling the corresponding
methods available on the Reposi t or yHandl er API. Gradle supports other protocols than htt p or htt ps
as part of the custom URL e.g. file, sftp or s3. For a full coverage see the reference manual on
supported transport protocols.

You can also define your own repository layout by using i vy { } repositories as they are very flexible in
terms of how modules are organised in a repository.

8§
Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple repositories is
helpful if some dependencies are only available in one repository but not the other. You can mix any type of
repository described in the reference section.

This example demonstrates how to declare various shortcut and custom URL repositories for a project:

Page 364 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Example 304. Declaring multiple repositories

buil d. gradl e
repositories {
jcenter()
maven {
url "https://maven. springfranmework. org/rel ease"

}

maven {
url "https://maven.restlet.org"

Note: The order of declaration determines how Gradle will check for dependencies at runtime. If
Gradle finds a module descriptor in a particular repository, it will attempt to download all of the
artifacts for that module from the same repository. You can learn more about the inner workings of
Gradle’s resolution mechanism.

Page 365 of 777

Inspecting Dependencies

Gradle provides sufficient tooling to navigate large dependency graphs and mitigate situations that can lead
to dependency hell. Users can chose to render the full graph of dependencies as well as identify the
selection reason and origin for a dependency. The origin of a dependency can be a declared dependency in
the build script or a transitive dependency in graph plus their corresponding configuration. Gradle offers both
capabilities through visual representation via build scans and as command line tooling.

8§
Listing dependencies in a project

A project can declare one or more dependencies. Gradle can visualize the whole dependency tree for every
configuration available in the project.

Rendering the dependency tree is particularly useful if you'd like to identify which dependencies have been
resolved at runtime. It also provides you with information about any dependency conflict resolution that
occurred in the process and clearly indicates the selected version. The dependency report always contains
declared and transitive dependencies.

Let's say you'd want to create tasks for your project that use the JGit library to execute SCM operations e.g.
to model a release process. You can declare dependencies for any external tooling with the help of a custom
configuration so that it doesn’t doesn’'t pollute other contexts like the compilation classpath for your
production source code.

Example 305. Declaring the JGit dependency with a custom configuration

buil d. gradl e
repositories {

jcenter()
}

configurations {
scm

dependenci es {
scm ' org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"

Page 366 of 777

https://en.wikipedia.org/wiki/Dependency_hell
https://www.eclipse.org/jgit/

A build scan can visualize dependencies as a navigable, searchable tree. Additional context information can
be rendered by clicking on a specific dependency in the graph.

Figure 23. Dependency tree in a build scan

8 dependencies resolved in 1 project across 1 configuration

scm
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6
commons-codec:commons-codec:1.6
commons-logging:commons-logging:1.1.3
org.apache.httpcomponents:httpcore:4.3.3
org.slf4j:slf4j-api:1.7.2

Every Gradle project provides the task dependenci es to render the so-called dependency report from the
command line. By default the dependency report renders dependencies for all configurations. To pair down
on the information provide the optional parameter - - confi gur ati on.

Example 306. Rendering the dependency report for a custom configuration

Output of gradl e - g dependenci es --configuration scm
> gradl e -q dependencies --configuration scm

scm
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
+--- comjcraft:jsch:0.1.54
+--- com googl ecode. j avaewah: JavaEWAH: 1. 1. 6

+--- org.apache. httpconponents: httpclient:4.3.6

| +--- org.apache. htt pconponents: httpcore: 4. 3.3
[+--- commons- | oggi ng: commons- | oggi ng: 1. 1.3

[\--- commons- codec: conmpns- codec: 1. 6

\--- org.slf4j:slf4j-api:1.7.2

A web-based, searchabl e dependency report is avail able by adding the --scan opti:

Page 367 of 777

https://scans.gradle.com/

The dependencies report provides detailed information about the dependencies available in the graph. Any
dependency that could not be resolved is marked with FAI LED in red color. Dependencies with the same
coordinates that can occur multiple times in the graph are omitted and indicated by an asterisk.
Dependencies that had to undergo conflict resolution render the requested and selected version separated
by a right arrow character.

8§
Identifying which dependency version was selected and why

Large software projects inevitably deal with an increased number of dependencies either through direct or
transitive dependencies. The dependencies report provides you with the raw list of dependencies but does
not explain why they have been selected or which dependency is responsible for pulling them into the
graph.

Let's have a look at a concrete example. A project may request two different versions of the same
dependency either as direct or transitive dependency. Gradle applies version conflict resolution to ensure
that only one version of the dependency exists in the dependency graph. In this example the conflicting
dependency is represented by conmons- codec: commons- codec.

Example 307. Declaring the JGit dependency and a conflicting dependency

bui I d. gradl e
repositories {

jcenter()
}

configurations {
scm

dependenci es {
scm'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"
scm ' commons- codec: commons- codec: 1. 7

The dependency tree in a build scan renders the selection reason (conflict resolution) as well as the origin of
a dependency if you click on a dependency and select the "Required By" tab.

Page 368 of 777

https://scans.gradle.com/

Figure 24. Dependency insight capabilities in a build scan

8 dependencies resolved in 1 project across 1 configuration

commons-codec:commons-codec:1.6 1.7

Dependencies Required By

commons-codec:commons-codec:1.6 1.7
org.apache.httpcomponents:httpclient:4.3.6
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
1scm

Every Gradle project provides the task dependencyl nsi ght to render the so-called dependency insight
report from the command line. Given a dependency in the dependency graph you can identify the selection
reason and track down the origin of the dependency selection. You can think of the dependency insight
report as the inverse representation of the dependency report for a given dependency. When executing the
task you have to provide the mandatory parameter - - dependency to specify the coordinates of the
dependency under inspection. The parameter - - confi gurati on is optional but helps with filtering the

output.
Example 308. Using the dependency insight report for a given dependency

Output of gradl e -g dependencyl nsi ght --dependency conmnobns-codec --configuration

scm
> gradl e -q dependencyl nsi ght --dependency conmons-codec --configuration scm
conmmons- codec: compns-codec: 1.7 (conflict resol ution)

vari ant "defaul t+runti me"
\--- scm

commons- codec: comons-codec: 1.6 -> 1.7
vari ant "defaul t+runti me"
\--- org.apache. htt pconmponents: httpclient:4.3.6
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
\--- scm

A web- based, searchabl e dependency report is available by adding the --scan opti
§

Justifying dependency declarations with custom reasons

When you declare a dependency or a dependency constraint, you can provide a custom reason for the
declaration. This makes the dependency declarations in your build script and the dependency insight report
easier to interpret.

Page 369 of 777

Example 309. Giving a reason for choosing a certain module version in a dependency declaration

buil d. gradl e
apply plugin: "java-library
repositories {

jcenter()

dependenci es {
i mpl ementation('org.ow2. asmasm6.0") {
because 'we require a JDK 9 conpati bl e bytecode generator'

Example 310. Using the dependency insight report with custom reasons

Output of gr adl e -g dependencyl nsi ght --dependency asm
> gradl e - g dependencyl nsi ght --dependency asm
org.ow2.asmasm6.0 (we require a JDK 9 conpati bl e byt ecode generator)
variant "conpile" |
org. gradl e. usage = j ava- api
]
\--- conpiled asspath

A web-based, searchabl e dependency report is avail able by adding the --scan opti:

Page 370 of 777

Managing Transitive Dependencies

Resolution behavior for transitive dependencies can be customized to a high degree to meet enterprise
requirements.

8

Managing versions of transitive dependencies with dependency
constraints

Dependency constraints allow you to define the version or the version range of both dependencies declared
in the build script and transitive dependencies. It is the preferred method to express constraints that should
be applied to all dependencies of a configuration. When Gradle attempts to resolve a dependency to a
module version, all dependency declarations with version, all transitive dependencies and all dependency
constraints for that module are taken into consideration. The highest version that matches all conditions is
selected. If no such version is found, Gradle fails with an error showing the conflicting declarations. If this
happens you can adjust your dependencies or dependency constraints declarations, or make other
adjustments to the transitive dependencies if needed. Similar to dependency declarations, dependency
constraint declarations are scoped by configurations and can therefore be selectively defined for parts of a
build. If a dependency constraint influenced the resolution result, any type of dependency resolve rules may
still be applied afterwards.

Example 311. Define dependency constraints

buil d. gradl e
dependenci es {
i npl ement ati on ' org. apache. htt pconponents: httpclient
constraints {
i npl ement ati on(' org. apache. htt pconponents: httpclient:4.5.3") {
because ' previ ous versions have a bug inpacting this application
}
i mpl ement ati on(' conmmons- codec: comons-codec: 1. 11') {
because 'version 1.9 pulled fromhttpclient has bugs affecting this

In the example, all versions are omitted from the dependency declaration. Instead, the versions are defined
in the constraints block. The version definition for conmons- codec: 1. 11 is only taken into account if conmt

Page 371 of 777

is brought in as transitive dependency, since cormons- codec is not defined as dependency in the project.
Otherwise, the constraint has no effect.

Note: Dependency constraints are not yet published, but that will be added in a future release. This
means that their use currently only targets builds that do not publish artifacts to maven or ivy
repositories.

Dependency constraints themselves can also be added transitively. If a modules’s metadata is defined in a . |
file that contains dependency entries with <opti onal >t rue</opti onal >, Gradle will create a
dependency constraint for each of these so-called optional dependencies. This leads to a similar resolution
behavior as provided by Maven: if the corresponding module is brought in by another, non-optional
dependency declaration, then the constraint will apply when choosing the version for that module (e.qg., if the
optional dependency defines a higher version, that one is chosen).

Note: Support for optional dependencies from pom files is active by default with Gradle 5.0+. For
using it in Gradle 4.6+, you need to activate it by adding enabl eFeat ur ePr evi ew(' | MPROVED_POM
in settings.gradle.

8§
Excluding transitive module dependencies

Declared dependencies in a build script can pull in a lot of transitive dependencies. You might decide that
you do not want a particular transitive dependency as part of the dependency graph for a good reason.

The dependency is undesired due to licensing constraints.

The dependency is not available in any of the declared repositories.

The metadata for the dependency exists but the artifact does not.

The metadata provides incorrect coordinates for a transitive dependency.

Transitive dependencies can be excluded on the level of a declared dependency or a configuration. Let’s
demonstrate both use cases. In the following two examples the build script declares a dependency on
Log4J, a popular logging framework in the Java world. The metadata of the particular version of Log4J also
defines transitive dependencies.

Page 372 of 777

Example 312. Unresolved artifacts for transitive dependencies

buil d. gradl e
apply plugin: 'java'

repositories {
mavenCentral ()

dependenci es {
i mpl ementation 'log4j:log4j:1.2.15

If resolved from Maven Central some of the transitive dependencies provide metadata but not the
corresponding binary artifact. As a result any task requiring the binary files will fail e.g. a compilation task.

> gradl e -q conpil eJava

* \What went w ong:
Coul d not resolve all files for configuration
> Could not find jns.jar (javax.jns:jns:1.1).
Searched in the followi ng | ocations:
htt ps://repo. maven. apache. org/ maven2/javax/jns/jns/ 1. 1/jns-1. 1.jar
> Could not find jnxtools.jar (comsun.jdnk:jnxtools:1.2. 1).
Searched in the follow ng | ocations:
htt ps://repo. maven. apache. or g/ maven2/ com sun/j dnk/j nxt ool s/ 1. 2. 1/ j nxt ool s-:
> Could not find jnxri.jar (comsun.jnmx:jnxri:1.2.1).
Searched in the follow ng | ocations:
htt ps://repo. maven. apache. or g/ maven2/ comf sun/jmx/jmxri/1.2. 1/jmxkri-1.2.1.ji

: conpi | ed asspat h'.

The situation can be fixed by adding a repository containing those dependencies. In the given example
project, the source code does not actually use any of Log4J’s functionality that require the JMS (e.g. JNVSApp
) or IMX libraries. It's safe to exclude them from the dependency declaration.

Exclusions need to spelled out as a key/value pair via the attributes gr oup and/or nodul e. For more
information, refer to Modul eDependency. excl ude(j ava. util. Map).

Example 313. Excluding transitive dependency for a particular dependency declaration

bui I d. gradl e
dependenci es {
i mpl ementation('log4j:log4j:1.2.15") {

exclude group: 'javax.jns', nodule: 'jns'
exclude group: 'com sun.jdnk', nodule: 'jnxtools'
exclude group: 'comsun.jnx', nodule: "jnxri'

You may find that other dependencies will want to pull in the same transitive dependency that misses the

Page 373 of 777

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ModuleDependency.html#exclude-java.util.Map-

artifacts. Alternatively, you can exclude the transitive dependencies for a particular configuration by calling
the method Confi gurati on. excl ude(j ava. util . Map).

Example 314. Excluding transitive dependency for a particular configuration

buil d. gradl e
configurations {
i mpl ement ation {

exclude group: 'javax.jns', nodule: 'jns'
excl ude group: 'com sun.jdnk', nodule: 'jnxtools'
exclude group: 'comsun.jnx', nodule: "jnxri'

dependenci es {
i npl ementation 'log4j:1og4j:1. 2.15

Note: As a build script author you often times know that you want to exclude a dependency for all
configurations available in the project. You can wuse the method
Domai nhj ect Col | ection. al | (org. gradl e. api . Acti on) to define a global rule.

You might encounter other use cases that don't quite fit the bill of an exclude rule. For example you want to
automatically select a version for a dependency with a specific requested version or you want to select a
different group for a requested dependency to react to a relocation. Those use cases are better solved by
the Resol utionStrategy APl Some of these use cases are covered in Customizing Dependency
Resolution Behavior.

8§
Enforcing a particular dependency version

Gradle resolves any dependency version conflicts by selecting the latest version found in the dependency
graph. Some projects might need to divert from the default behavior and enforce an earlier version of a
dependency e.g. if the source code of the project depends on an older API of a dependency than some of
the external libraries.

Note: Enforcing a version of a dependency requires a conscious decision. Changing the version of
a transitive dependency might lead to runtime errors if external libraries do not properly function
without them. Consider upgrading your source code to use a newer version of the library as an
alternative approach.

Let’s say a project uses the HttpClient library for performing HTTP calls. HttpClient pulls in Commons Codec
as transitive dependency with version 1.10. However, the production source code of the project requires an
API from Commons Codec 1.9 which is not available in 1.10 anymore. A dependency version can be
enforced by declaring it in the build script and setting Ext er nal Dependency. set For ce(bool ean) totrt

Page 374 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:exclude(java.util.Map)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://hc.apache.org/httpcomponents-client-ga/
https://commons.apache.org/proper/commons-codec/
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ExternalDependency.html#setForce-boolean-

Example 315. Enforcing a dependency version

buil d. gradl e
dependenci es {
i npl ement ati on 'org. apache. htt pconponents: httpclient:4.5.4
i mpl emrent ati on(' conmons- codec: conmmons- codec: 1. 9") {
force = true

If the project requires a specific version of a dependency on a configuration-level then it can be achieved by
calling the method Resol uti onStrat egy. force(java. |l ang. Object[]).

Example 316. Enforcing a dependency version on the configuration-level

bui | d. gradl e
configurations {
conpi | eCl asspat h {
resol utionStrategy.force ' conmons-codec: cormons- codec: 1. 9'

dependenci es {
i npl ement ati on ' org. apache. htt pconponents: httpclient:4.5.4

8§
Disabling resolution of transitive dependencies

By default Gradle resolves all transitive dependencies specified by the dependency metadata. Sometimes
this behavior may not be desirable e.g. if the metadata is incorrect or defines a large graph of transitive
dependencies. You can tell Gradle to disable transitive dependency management for a dependency by
setting Mbdul eDependency. set Transi ti ve(bool ean) to true. As a result only the main artifact will
be resolved for the declared dependency.

Example 317. Disabling transitive dependency resolution for a declared dependency

bui I d. gradl e
dependenci es {
i mpl ement ati on(' com googl e. guava: guava: 23.0") {
transitive = fal se

Note: Disabling transitive dependency resolution will likely require you to declare the necessary
runtime dependencies in your build script which otherwise would have been resolved automatically.
Not doing so might lead to runtime classpath issues.

Page 375 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:force(java.lang.Object[])
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ModuleDependency.html#setTransitive-boolean-

A project can decide to disable transitive dependency resolution completely. You either don’t want to rely on
the metadata published to the consumed repositories or you want to gain full control over the dependencies
in your graph. For more information, see Conf i gur ati on. set Transi ti ve(bool ean).

Example 318. Disabling transitive dependency resolution on the configuration-level

bui | d. gradl e
configurations.all ({
transitive = fal se

dependenci es {
i mpl ementati on ' com googl e. guava: guava: 23. 0

8§
Importing version recommendations from a Maven BOM

Gradle provides support for importing bill of materials (BOM) files, which are effectively . pomfiles that use <c
to control the dependency versions of direct and transitive dependencies. The BOM support in Gradle works
similar to using <scope>i nport </ scope> when depending on a BOM in Maven. In Gradle however, it is
done via a regular dependency declaration on the BOM:

Example 319. Depending on a BOM to import its dependency constraints

buil d. gradl e
dependenci es {

i mpl ementation 'org. springfranmework. boot: spri ng-boot - dependenci es: 1. 5. 8. RELE

i npl ement ati on ' com googl e. code. gson: gson'
i mpl enmentation ' dondj: domdj "’

In the example, the versions of gson and don#j are provided by the Spring Boot BOM. This way, if you are
developing for a platform like Spring Boot, you do not have to declare any versions yourself but can rely on
the versions the platform provides.

Gradle treats all entries in the <dependencyManagenent > block of a BOM similar to Gradle’s dependency
constraints. This means that any version defined in the <dependencyManagenent > block can impact the
dependency resolution result. In order to qualify as a BOM, a . pomfile needs to have <packagi hg>ponx/ p
set.

Note: Importing dependency constraints from Maven BOMs is active by default with Gradle 5.0+.
For using it in Gradle 4.6+, you need to activate it by adding enabl eFeat ur ePrevi ew(' | MPROVED F

Page 376 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/Configuration.html#setTransitive-boolean-
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Importing_Dependencies

in settings.gradle.

Page 377 of 777

Working with Dependencies

Gradle provides an extensive API for navigating, inspecting and post-processing metadata and artifacts of
resolved dependencies.

The main entry point for this functionality is the Conf i gur at i on API. To learn more about the fundamentals
of configurations, see Managing Dependency Configurations.

8§
Iterating over dependencies assigned to a configuration

Sometimes you'll want to implement logic based on the dependencies declared in the build script of a project
e.g. to inspect them in a Gradle plugin. You can iterate over the set of dependencies assigned to a
configuration with the help of the method Confi gur ati on. get Dependenci es() . Alternatively, you can
also use Configuration.getAll Dependencies() to include the dependencies declared in
superconfigurations. These APIs only return the declared dependencies and do not trigger dependency
resolution. Therefore, the dependency sets do not include transitive dependencies. Calling the APIs during
the configuration phase of the build lifecycle does not result in a significant performance impact.

Example 320. Iterating over the dependencies assigned to a configuration

bui | d. gradl e
task iterateDecl aredDependenci es {
doLast {

DependencySet dependencySet = confi gurations.scm dependenci es

dependencySet . each {
| ogger.quiet "$it.group: $it.nane: $it.version"

§
Iterating over artifacts resolved for a module

None of the dependency reporting helps you with inspecting or further processing the underlying, resolved
artifacts of a module. A typical use case for accessing the artifacts is to copy them into a specific directory or
filter out files of interest based on a specific file extension.

Page 378 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:dependencies
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:allDependencies

You can iterate over the complete set of artifacts resolved for a module with the help of the method
Fil eCol | ection.getFiles().Every file instance returned from the method points to its location in the
dependency cache. Using this method on a Conf i gur at i on instance is possible as the interface extends Fi

Example 321. Iterating over the artifacts resolved for a module

buil d. gradl e
task iterateResol vedArtifacts {
dependsOn configurations.scm

doLast {
Set<File> files = configurations.scmfiles

files.each {
| ogger. quiet it.absolutePath

}
}
}
Note: Iterating over the artifacts of a module automatically resolves the configuration. A resolved
configuration becomes immutable and cannot add or remove dependencies. If needed you can copy
a configuration for further modification via Conf i gur ati on. copy() .
8§

Navigating the dependency graph

As a plugin developer, you may want to navigate the full graph of dependencies assigned to a configuration
e.g. for turning the dependency graph into a visualization. You can access the full graph of dependencies for
a configuration with the help of the Resol ut i onResul t.

The resolution result provides various methods for accessing the resolved and unresolved dependencies.
For demonstration purposes the sample code uses Resol uti onResul t. get Root () to access the root
node the resolved dependency graph. Each dependency of this component returns an instance of
Resol vedDependencyResul t or Unresol vedDependencyResul t providing detailed information about
the node.

Page 379 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html#getFiles--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html#getFiles--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:copy()
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html#getRoot--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolvedDependencyResult.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/ResolvedDependencyResult.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/result/UnresolvedDependencyResult.html

Example 322. Walking the resolved and unresolved dependencies of a configuration

buil d. gradl e
task wal kDependencyG aph(type: DependencyG aphWal k) {
dependsOn configurations.scm

cl ass DependencyG aphWal k extends Def aul t Task {
@askAction
voi d wal k() {
Configuration configuration = project.configurations.scm

Resol uti onResult resol utionResult = configuration.incom ng.resol utionResi

Resol vedConponent Result root = resol uti onResult.root
| ogger. qui et configuration. nanme
traver seDependenci es(0, root. dependencies)

private void traverseDependencies(int |evel, Set<? extends DependencyResult>

for (DependencyResult result : results) {
if (result instanceof Resol vedDependencyResult) {
Resol vedConponent Resul t conponent Result = result.sel ected
Conponent I denti fi er conponentldentifier = conponentResult.id

String node = cal cul atel ndentation(level) + "- $conponentl|dentifi

| ogger. qui et node

traver seDependenci es(l evel + 1, conponent Resul t. dependenci es)
} else if (result instanceof Unresol vedDependencyResult) ({

Conponent Sel ect or conponent Sel ector = result. attenpted

String node = cal cul atel ndentation(level) + "-

| ogger. qui et node

}
}
}
private String cal cul atel ndentation(int |evel) ({
' " * |evel
}
}
8§

Accessing a module’s metadata file

$conponent Sel ect ol

As part of the dependency resolution process, Gradle downloads the metadata file of a module and stores it

in the dependency cache. Some organizations enforce strong restrictions on accessing repositories outside

of internal network. Instead of downloading artifacts, those organizations prefer to provide an "installable"

Gradle cache with all artifacts contained in it to fulfill the build’s dependency requirements.

The artifact query API provides access to the raw files of a module. Currently, it allows getting a handle to

Page 380 of 777

the metadata file and some selected, additional artifacts (e.g. a JVM-based module’s source and Javadoc
files). The main API entry pointis Art i f act Resol uti onQuery.

Let's say you wanted to post-process the metadata file of a Maven module. The group, name and version of
the module component serve as input to the artifact resolution query. After executing the query, you get a
handle to all components that match the criteria and their underlying files. Additionally, it's very easy to
post-process the metadata file. The example code uses Groovy’s XmiSlurper to ask for POM element
values.

Example 323. Accessing a Maven module's metadata artifact

bui | d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i mpl ement ati on ' com googl e. guava: guava: 18. 0

task printGuavaMet adata {
dependsOn configurations. conpil ed asspath

doLast {
Artifact Resol uti onQuery query = dependenci es. createArtifactResol uti onQuel
. for Modul e(' com googl e. guava', 'guava', '18.0")
.wWithArtifacts(MawvenMdul e, MavenPonArti fact)
ArtifactResolutionResult result = query.execute()

for(conponent in result.resol vedConponents) {
Set <Artifact Result> mavenPomArtifacts = conponent.getArtifacts(Mvenl
ArtifactResult guavaPomArtifact = mavenPomArtifacts.find { it.file.ni
def xm = new Xm Sl urper (). parse(guavaPonmArtifact.file)
println guavaPomArtifact.file
println xm.nane
println xm .description

Page 381 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.query.ArtifactResolutionQuery.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html

Customizing Dependency Resolution
Behavior

There are a number of ways that you can influence how Gradle resolves dependencies. All of these
mechanisms offer an API to define a reason for why they are used. Providing reasons makes dependency
resolution results more understandable. If any customization influenced the resolution result, the provided
reason will show up in dependency insight report.

8§
Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. The feature currently offers
the ability to change the group, name and/or version of a requested dependency, allowing a dependency to
be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and
can be used to implement all sorts of advanced patterns in dependency management. Some of these
patterns are outlined below. For more information and code samples see the Resol ut i onSt r at egy class
in the APl documentation.

§
Modelling releasable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested
and published together. These libraries form a "releasable unit", designed and intended to be used as a
whole. It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:
nodul e- a depends onr el easabl e-unit: part-one: 1.0
nodul e- b depends onrel easabl e-unit:part-two: 1.1

A build depending on both nodul e- a and nodul e- b will obtain different versions of libraries within the
releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a releasable

Page 382 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

unit defined by all libraries that have or g. gradl e group. We can force all of these libraries to use a

consistent version:
Example 324. Forcing a consistent version for a group of libraries

buil d. gradl e
configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.gradle') {
detail s.useVersion '1.4'
detail s. because ' APl breakage in higher versions'

§
Implementing a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is
maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

In the build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: def aul t .

The def aul t version is resolved to a specific version via a dependency resolve rule, which looks up the

version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all builds
within the organisation.

Example 325. Using a custom versioning scheme

buil d. gradl e
configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested.group, d
detail s. useVersi on version.version
det ai | s. because versi on. because

def findDefaultVersionlnCatal og(String group, String nane) {

[version: "1.0", because: 'tested by QA']

Page 383 of 777

8
Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing a replacement version. This can be useful if a certain dependency version is broken and should
not be used, where a dependency resolve rule causes this version to be replaced with a known good
version. One example of a broken module is one that declares a dependency on a library that cannot be
found in any of the public repositories, but there are many other reasons why a particular module version is
unwanted and a different version is preferred.

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preference to 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that this is different from a forced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy would
still select version 1. 3 if this version was also pulled transitively.

Example 326. Blacklisting a version with a replacement

buil d. gradl e
configurations.all ({
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && details.requested. nane
details.useVersion '"1.2. 1
details. because 'fixes critical bug in 1.2

8
Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examples include using gr oovy in place of gr oovy- al | , or using | og4j - over - sl f 4] instead of | 0og4j .
You can perform these substitutions using dependency resolve rules:

Page 384 of 777

Example 327. Changing dependency group and/or name during resolution

buil d. gradl e
configurations.all ({
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
i f (details.requested. nane == 'groovy-all"') {
detail s. useTarget group: details.requested.group, nane: 'groovy', ve
detail s. because "prefer 'groovy' over 'groovy-all"'"

}
i f (details.requested. name == 'log4j"') {
detail s.useTarget "org.slf4j:1og4j-over-slf4j:1.7.10"
detail s. because "prefer 'log4j-over-sif4j' 1.7.10 over any version of
}
}
}
8

Using dependency substitution rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of
dependency resolve rules can be implemented with dependency substitution rules. They allow project and
module dependencies to be transparently substituted with specified replacements. Unlike dependency
resolve rules, dependency substitution rules allow project and module dependencies to be substituted
interchangeably.

Adding a dependency substitution rule to a configuration changes the timing of when that configuration is
resolved. Instead of being resolved on first use, the configuration is instead resolved when the task graph is
being constructed. This can have unexpected consequences if the configuration is being further modified
during task execution, or if the configuration relies on modules that are published during execution of another
task.

To explain:

A Confi guration can be declared as an input to any Task, and that configuration can include project
dependencies when it is resolved.

If a project dependency is an input to a Task (via a configuration), then tasks to build the project artifacts
must be added to the task dependencies.

In order to determine the project dependencies that are inputs to a task, Gradle needs to resolve the Confi g

inputs.

Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to perform this
resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency will

Page 385 of 777

never transitively reference a project dependency. This makes it easy to determine the full set of project
dependencies for a configuration through simple graph traversal. With this functionality, Gradle can no
longer make this assumption, and must perform a full resolve in order to determine the project
dependencies.

§
Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one
that is downloaded from an external repository. This could be useful for testing a local, patched version of a
dependency.

The module to be replaced can be declared with or without a version specified.
Example 328. Substituting a module with a project

buil d. gradl e
configurations.all ({
resol uti onStrat egy. dependencySubstitution {
substitute modul e("org.utils:api") with project(":api") because "we work
substitute modul e("org.utils:util:2.5") with project(":util")

Note that a project that is substituted must be included in the multi-project build (via setti ngs. gradl e).
Dependency substitution rules take care of replacing the module dependency with the project dependency
and wiring up any task dependencies, but do not implicitly include the project in the build.

8
Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project
build. This can be useful to speed up development with a large multi-project build, by allowing a subset of
the project dependencies to be downloaded from a repository rather than being built.

The module to be used as a replacement must be declared with a version specified.
Example 329. Substituting a project with a module

buil d. gradl e
configurations.all {
resol utionStrategy. dependencySubstitution {
substitute project(":api") with nodule("org.utils:api:1.3") because "we |

When a project dependency has been replaced with a module dependency, that project is still included in the
overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to

Page 386 of 777

build the resolve the depending Conf i gur ati on.

§
Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a
multi-project build. This can be useful for developing a local, patched version of an external dependency or
for building a subset of the modules within a large multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the
group or g. exanpl e, but only if a local project matching the dependency name can be located.

Example 330. Conditionally substituting a dependency

bui | d. gradl e
configurations.all {
resol uti onStrat egy. dependencySubstitution.all { DependencySubstitution depeni
i f (dependency. requested instanceof Mdul eConponent Sel ect or && dependenc
def targetProject = findProject(": ${dependency. request ed. nodul e}")
if (targetProject !'= null) {
dependency. useTar get target Project

Note that a project that is substituted must be included in the multi-project build (via setti ngs. gradl e).
Dependency substitution rules take care of replacing the module dependency with the project dependency,
but do not implicitly include the project in the build

8§
Using component metadata rules

Each module has metadata associated with it, such as its group, name, version, dependencies, and so on.
This metadata typically originates in the module’s descriptor. Metadata rules allow certain parts of a
module’s metadata to be manipulated from within the build script. They take effect after a module’s
descriptor has been downloaded, but before it has been selected among all candidate versions. This makes
metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module’s status scheme. This concept, also
known from Ivy, models the different levels of maturity that a module transitions through over time. The
default status scheme, ordered from least to most mature status, is i nt egrati on, m | est one, r el ease.
Apart from a status scheme, a module also has a (current) status, which must be one of the values in its
status scheme. If not specified in the (Ivy) descriptor, the status defaults to i nt egr at i on for lvy modules
and Maven snapshot modules, and r el ease for Maven modules that aren’t snapshots.

A module’s status and status scheme are taken into consideration when a | at est version selector is

Page 387 of 777

resolved. Specifically, | at est. someSt at us will resolve to the highest module version that has status sone
or a more mature status. For example, with the default status scheme in place, | at est . i nt egrati on will
select the highest module version regardless of its status (because i nt egrati on is the least mature
status), whereas | at est . r el ease will select the highest module version with status r el ease. Here is
what this looks like in code:

Example 331. 'Latest’ version selector

buil d. gradl e

dependenci es {
configl "org.sanple:client:latest.integration"
config2 "org.sanple:client:|atest.rel ease"

}
task listConfigs {
doLast {
configurations.configl.each { println it.name }
println()

configurations.config2.each { println it.name }

Outputofgradl e -qg |istConfigs
> gradle -q |istConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates | at est selectors based on a custom status scheme declared in a
component metadata rule that applies to all modules:

Example 332. Custom status scheme

bui | d. gradl e
dependenci es {
config3 "org.sanpl e: api:latest.silver"
component s {
all { Conponent Met adat aDetails details ->
if (details.id.group == "org.sanple” && details.id.nane == "api") {
detail s.statusSchenme = ["bronze", "silver", "gold", "platinun]

Component metadata rules can be applied to a specified module. Modules must be specified in the form of gi

Page 388 of 777

Example 333. Custom status scheme by module

buil d. gradl e
dependenci es {
configd4 "org.sanple:lib:latest. prod"
components {
wi t hModul e(' org. sanple:lib") { Conponent Met adataDetails details ->
details.statusSchene = ["int", "rc", "prod"]

Gradle can also create component metadata rules utilizing Ivy-specific metadata for modules resolved from
an lvy repository. Values from the lvy descriptor are made available via the | vyModul eDescri pt or

interface.
Example 334. lvy component metadata rule

buil d. gradl e
dependenci es {
configb "org.sample:lib:latest.rc"
components {
wi t hMbdul e("org. sanpl e: i b") { Conponent Met adat aDetails details, |vyMdu
if (ivyModul e.branch == "testing') {

details.status = "rc

Note that any rule that declares specific arguments must always include a Conponent Met adat aDet ai | s
argument as the first argument. The second Ivy metadata argument is optional.

Component metadata rules can also be defined using a rule source object. A rule source object is any object
that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:
must return void.
must have Conponent Met adat aDet ai | s as the first argument.

may have an additional parameter of type | vyModul eDescri pt or.

Page 389 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 335. Rule source component metadata rule

buil d. gradl e
dependenci es {
configb "org.sanpl e: api : | atest. gol d"
components {
wi t hModul e(' org. sanpl e: api ', new Custonft at usRul e())

}
}
cl ass CustonttatusRul e {
@ut at e
voi d set St at usSchene(Conponent Met adat aDetails details) {
detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]
}
}
8§

Using component selection rules

Component selection rules may influence which component instance should be selected when multiple
versions are available that match a version selector. Rules are applied against every available version and
allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that
does not satisfy conditions set by the rule. Examples include:

For a dynamic version like 1. + certain versions may be explicitly rejected from selection.

For a static version like 1. 4 an instance may be rejected based on extra component metadata such as the
Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the Conponent Sel ect i onRul es object. Each rule configured will be called with a
Component Sel ecti on object as an argument which contains information about the candidate version
being considered. Calling Conponent Sel ection.reject(]ava.lang. String) causes the given
candidate version to be explicitly rejected, in which case the candidate will not be considered for the
selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic
version to choose the next best candidate.

Page 390 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 336. Component selection rule

buil d. gradl e
configurations {
rejectConfig {
resol utionStrategy {
conponent Sel ecti on {

all { Component Sel ection selection ->
if (selection.candidate.group == 'org.sanple' && selection.ci
sel ection.reject("version 1.5 is broken for 'org.sanple:i

dependenci es {
rejectConfig "org.sanple:api:1.+"

Note that version selection is applied starting with the highest version first. The version selected will be the
first version found that all component selection rules accept. A version is considered accepted if no rule
explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of gr oup: nodul ¢

Example 337. Component selection rule with module target

buil d. gradl e
configurations {
target Config {
resol utionStrategy {
conmponent Sel ecti on {
wi t hModul e("org. sanpl e: api ") { Conponent Sel ecti on sel ection ->
if (selection.candidate.version == "1.5") {
selection.reject("version 1.5 is broken for 'org.sanple:;

Component selection rules can also consider component metadata when selecting a version. Possible
metadata arguments that can be considered are Conponent Met adat a and | vyModul eDescri pt or.

Page 391 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 338. Component selection rule with metadata

buil d. gradl e
configurations {
nmet adat aRul esConfi g {
resol utionStrategy {
conponent Sel ecti on {

all { Component Sel ection sel ection, Conponent Met adata netadata -:
if (selection.candidate.group == 'org.sanple'" && metadata. st
sel ection.reject("don't use experinental candidates from

wi t hModul e(' org. sanpl e: api ') { Conponent Sel ecti on sel ection, vyl
if (descriptor.branch !'= "rel ease" && netadata.status !="m|
sel ection.reject("' org.sanpl e:api' nust have testing bral

Note that a Conponent Sel ect i on argument is always required as the first parameter when declaring a
component selection rule with additional vy metadata parameters, but the metadata parameters can be
declared in any order.

Lastly, component selection rules can also be defined using a rule source object. A rule source object is any
object that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:
must return void.
must have Conmponent Sel ect i on as the first argument.

may have additional parameters of type Conponent Vet adat a and/or | vyNMbdul eDescri ptor.

Page 392 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 339. Component selection rule using a rule source object

buil d. gradl e
cl ass Reject TestBranch {
@t at e
voi d eval uat eRul e(Conponent Sel ecti on sel ection, |vyMdul eDescriptor ivy) {
if (ivy.branch == "test") {

selection.reject("reject test branch")

configurations {
rul eSourceConfig {
resol utionStrategy {
component Sel ecti on {
all new Rej ect Test Branch()

8§
Using module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A
good example when a new library replaced a legacy one is the googl e- col | ect i ons -> guava migration.
The team that created google-collections decided to change the module name from com googl e. col | ect i
into com googl e. guava: guava. This is a legal scenario in the industry: teams need to be able to change
the names of products they maintain, including the module coordinates. Renaming of the module
coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the googl e- col | ecti ons -> guava scenario. It
may happen that both libraries are pulled into the same dependency graph. For example, our project
depends on guava but some of our dependencies pull in a legacy version of googl e- col | ecti ons. This
can cause runtime errors, for example during test or application execution. Gradle does not automatically
resolve the googl e- col | ecti ons -> guava conflict because it is not considered as a version conflict. It's
because the module coordinates for both libraries are completely different and conflict resolution is activated
when group and nodul e coordinates are the same but there are different versions available in the
dependency graph (for more info, refer to the section on conflict resolution). Traditional remedies to this
problem are:

Declare exclusion rule to avoid pulling in googl e- col | ecti ons to graph. It is probably the most popular
approach.

Page 393 of 777

Avoid dependencies that pull in legacy libraries.
Upgrade the dependency version if the new version no longer pulls in a legacy library.
Downgrade to googl e- col | ect i ons. It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve
the googl e-col | ecti ons -> guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is
possible to declare that certain module was replaced by other. This enables organisations to include the
information about module replacement in the corporate plugin suite and resolve the problem holistically for
all Gradle-powered projects in the enterprise.

Example 340. Declaring a module replacement

buil d. gradl e
dependenci es {
nmodul es {
nodul e("com googl e. col | ecti ons: googl e-col | ections") {
r epl acedBy("com googl e. guava: guava", "googl e-coll ections is now part
}
}
}

For more examples and detailed API, refer to the DSL reference for Conponent Vet adat aHandl er .

What happens when we declare that googl e-col | ecti ons is replaced by guava? Gradle can use this
information for conflict resolution. Gradle will consider every version of guava newer/better than any version
of googl e- col | ecti ons. Also, Gradle will ensure that only guava jar is present in the classpath / resolved
file list. Note that if only googl e- col | ecti ons appears in the dependency graph (e.g. no guava) Gradle
will not eagerly replace it with guava. Module replacement is an information that Gradle uses for resolving
conflicts. If there is no conflict (e.g. only googl e-col | ecti ons or only guava in the graph) the
replacement information is not used.

Currently it is not possible to declare that a given module is replaced by a set of modules. However, it is
possible to declare that multiple modules are replaced by a single module.

8§
Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set
for the configuration. A primary use case of this functionality is for developing plugins that make use of
versioned tools that the user might override. By specifying default dependencies, the plugin can use a
default version of the tool only if the user has not specified a particular version to use.

Page 394 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

Example 341. Specifying default dependencies on a configuration

buil d. gradl e
configurations {
pl ugi nTool {

def aul t Dependenci es { dependencies ->

dependenci es. add(proj ect. dependenci es. create("org. gradl e: ny-util: 1.0

8§
Enabling Ivy dynamic resolve mode

Gradle’s Ivy repository implementations support the equivalent to Ivy’'s dynamic resolve mode. Normally,

Gradle will use the r ev attribute for each dependency definition included in an i vy. xml file. In dynamic

resolve mode, Gradle will instead prefer the r evConst r ai nt attribute over the r ev attribute for a given

dependency definition. If the r evConst r ai nt attribute is not present, the r ev attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A

couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle’s Ivy

repositories. It is not available for Maven repositories, or custom

implementations.
Example 342. Enabling dynamic resolve mode

bui I d. gradl e

repositories {
ivy {
url "http://repo. myconpany. com repo”
resol ve. dynam cMbde = true

repositories.withType(lvyArtifactRepository) {
resol ve. dynam cMbde = true

Ilvy DependencyResol ver

Page 395 of 777

Troubleshooting Dependency Resolution

Managing dependencies in a project can be challenging. This chapter describes techniques for
troubleshooting issues you might encounter in your project as well as best practices for avoiding common
problems.

8§
Resolving version conflicts

Gradle resolves version conflicts by picking the highest version of a module. Build scans and the
dependency insight report are immensely helpful in identifying why a specific version was selected. If the
resolution result is not satisfying (e.g. the selected version of a module is too high) or it fails (because you
configured Resol utionStrategy. fail OnVersi onConflict()) you have the following possibilities to
fix it.

Configuring any dependency (transitive or not) as forced. This approach is useful if the dependency in
conflict is a transitive dependency. See the section called “Enforcing a particular dependency version” for
examples.

Configuring dependency resolution to prefer modules that are part of your build (transitive or not). This
approach is useful if your build contains custom forks of modules (as part of multi-project builds or as include
in composite builds). See Resol uti onStrat egy. preferProj ect Modul es() for more information.

Using dependency resolve rules for fine-grained control over the version selected for a particular
dependency.

8§
Using dynamic versions and changing modules

There are many situations when you want to use the latest version of a particular module dependency, or the
latest in a range of versions. This can be a requirement during development, or you may be developing a
library that is designed to work with a range of dependency versions. You can easily depend on these
constantly changing dependencies by using a dynamic version. A dynamic version can be either a version
range (e.g. 2. +) or it can be a placeholder for the latest version available e.g. | at est . i nt egrati on.

Alternatively, the module you request can change over time even for the same version, a so-called changing
version. An example of this type of changing module is a Maven SNAPSHOT module, which always points at
the latest artifact published. In other words, a standard Maven snapshot is a module that is continually

Page 396 of 777

https://scans.gradle.com/get-started
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:failOnVersionConflict()
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:preferProjectModules()

evolving, it is a "changing module".

Note: Using dynamic versions and changing modules can lead to unreproducible builds. As new
versions of a particular module are published, its APl may become incompatible with your source
code. Use this feature with caution!

By default, Gradle caches dynamic versions and changing modules for 24 hours. During that time frame
Gradle does not contact any of the declared, remote repositories for new versions. If you want Gradle to
check the remote repository more frequently or with every execution of your build, then you will need to
change the time to live (TTL) threshold.

Note: Using a short TTL threshold for dynamic or changing versions may result in longer build times
due to the increased number of HTTP(s) calls.

You can override the default cache modes using command line options. You can also change the cache
expiry times in your build programmatically using the resolution strategy.

8§
Controlling dependency caching programmatically

You can fine-tune certain aspects of caching programmatically using the Resol uti onStrategy for a
configuration. The programmatic approach is useful if you would like to change the settings permanently.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for a dynamic version, use:

Example 343. Dynamic version cache control

buil d. gradl e
configurations.all {
resol uti onStrat egy. cacheDynani cVersi onsFor 10, 'ninutes'

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:

Example 344. Changing module cache control

bui | d. gradl e
configurations.all {
resol uti onStrat egy. cacheChangi nghbdul esFor 4, 'hours'

Page 397 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

8§
Controlling dependency caching from the command line

You can control the behavior of dependency caching for a distinct build invocation from the command line.
Command line options are helpful for making a selective, ad-hoc choice for a single execution of the build.

8§
Avoiding network access with offline mode

The - - of fI i ne command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never attempt to
access the network to perform dependency resolution. If required modules are not present in the
dependency cache, build execution will fail.

8
Forcing all dependencies to be re-resolved

At times, the Gradle Dependency Cache can become out of sync with the actual state of the configured
repositories. Perhaps a repository was initially misconfigured, or perhaps a "non-changing” module was
published incorrectly. To refresh all dependencies in the dependency cache, use the - - r ef r esh- depender
option on the command line.

The - -refresh- dependenci es option tells Gradle to ignore all cached entries for resolved modules and
artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions
recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the
previously downloaded artifacts are valid before downloading again. This is done by comparing published
SHAL1 values in the repository with the SHA1 values for existing downloaded artifacts.

8§
Locking dependency versions

The use of dynamic dependencies in a build is convenient. The user does not need to know the latest
version of a dependency and Gradle automatically uses new versions once they are published. However,
dynamic dependencies make builds non-reproducible, as they can resolve to a different version at a later
point in time. This makes it hard to reproduce old builds when debugging a problem. It can also disrupt
development if a new, but incompatible version is selected. In the best case the CI build catches the problem
and someone needs to investigate. In the worst case, the problem makes it to production unnoticed.

In the Gradle ecosystem, the dependency lock plugin currently solves this problem. The user can run a task
that writes a file containing the resolved versions for every module dependency. This file is then checked in
and the versions in it are used on all subsequent runs until the lock is updated or removed again.

Page 398 of 777

https://github.com/nebula-plugins/gradle-dependency-lock-plugin

8§
Versioning of file dependencies

Legacy projects sometimes prefer to consume file dependencies instead of module dependencies. File
dependencies can point to any file in the filesystem and do not need to adhere a specific naming convention.
It is recommended to clearly express the intention and a concrete version for file dependencies. File
dependencies are not considered by Gradle’s version conflict resolution. Therefore, it is extremely important
to assign a version to the file name to indicate the distinct set of changes shipped with it. For example comrmo

lets you track the changes of the library by the release notes.

As a result, the dependencies of the project are easier to maintain and organize. It's much easier to uncover
potential API incompatibilities by the assigned version.

Page 399 of 777

Extending the build

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an
action closure. We have seen these in Build Script Basics. For this type of task, the action closure
determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build
script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides
some properties which you can use to configure the behaviour. We have seen these in Authoring Tasks.
Most Gradle plugins use enhanced tasks. With enhanced tasks, you don’t need to implement the task
behaviour as you do with simple tasks. You simply declare the task and configure the task using its
properties. In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly
across different builds.

The behaviour and properties of an enhanced task is defined by the task’s class. When you declare an
enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in
pretty much any language you like, provided it ends up compiled to bytecode. In our examples, we are going
to use Groovy as the implementation language. Groovy, Java or Kotlin are all good choices as the language
to use to implement a task class, as the Gradle API has been designed to work well with these languages. In
general, a task implemented using Java or Kotlin, which are statically typed, will perform better than the
same task implemented using Groovy.

8§
Packaging a task class

There are several places where you can put the source for the task class.

Build script
You can include the task class directly in the build script. This has the benefit that the task class is
automatically compiled and included in the classpath of the build script without you having to do anything.
However, the task class is not visible outside the build script, and so you cannot reuse the task class
outside the build script it is defined in.

bui | dSr c project
You can put the source for the task class in the root ProjectDi r/ buil dSrc/ src/ mai n/ groovy
directory. Gradle will take care of compiling and testing the task class and making it available on the
classpath of the build script. The task class is visible to every build script used by the build. However, it is

Page 401 of 777

not visible outside the build, and so you cannot reuse the task class outside the build it is defined in.

Using the bui | dSr ¢ project approach separates the task declaration - that is, what the task should do -

from the task implementation - that is, how the task does it.

See Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR which

you can then use in multiple builds and share with others. Generally, this JAR might include some

custom plugins, or bundle several related task classes into a single library. Or some combination of the

two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we will look

at creating a standalone project.

8§
Writing a simple task class

To implement a custom task class, you extend Def aul t Task.

Example 345. Defining a custom task

bui | d. gradl e
cl ass GeetingTask extends Default Task {

}

This task doesn’t do anything useful, so let's add some behaviour. To do so, we add a method to the task

and mark it with the TaskAct i on annotation. Gradle will call the method when the task executes. You don’t

have to use a method to define the behaviour for the task. You could, for instance, call doFi r st () or doLas

with a closure in the task constructor to add behaviour.

Example 346. A hello world task

bui | d. gradl e
cl ass GeetingTask extends Default Task {
@askAction

def greet() {
println "hello from G eetingTask’

task hello(type: G eetingTask)

Outputofgradl e -q hello
> gradle -q hello
hell o from Greeti ngTask

Page 402 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/TaskAction.html

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a
task, you can set the properties or call methods on the task object. Here we add a gr eet i ng property, and
set the value when we declare the gr eet i ng task.

Example 347. A customizable hello world task

bui I d. gradl e
cl ass GreetingTask extends Defaul t Task {
String greeting = 'hello from G eetingTask'

@askAction
def greet() {
println greeting

task hello(type: GreetingTask)

task greeting(type: GeetingTask) {
greeting = 'greetings from G eeti ngTask’

Outputofgradl e -g hell o greeting
> gradle -q hello greeting

hell o from Greeti ngTask
greetings from G eetingTask

8§
A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others. This project
is simply a Groovy project that produces a JAR containing the task class. Here is a simple build script for the
project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 348. A build for a custom task

buil d. gradl e
apply plugin: 'groovy'

dependenci es {

conpi l e gradl eApi ()
conpi |l e | ocal Groovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the ‘“-all’
distribution of Gradle.

Page 403 of 777

We just follow the convention for where the source for the task class should go.

Example 349. A custom task

src/ mai n/ gr oovy/ or g/ gradl e/ Gr eeti ngTask. gr oovy
package org.gradle

i mport org.gradl e. api. Defaul t Task
i nport org.gradle.api.tasks. TaskAction

class G eetingTask extends Defaul t Task {
String greeting = "hello from G eetingTask’

@askActi on
def greet() {
println greeting

8
Using your task class in another project

To use a task class in a build script, you need to add the class to the build script’'s classpath. To do this, you

use a bui l dscript { } block, as described in the section called “External dependencies for the build

script”. The following example shows how you might do this when the JAR containing the task class has

been published to a local repository:
Example 350. Using a custom task in another project

bui | d. gradl e
bui | dscri pt {
repositories {
maven {
url uri('../repo")

}

dependenci es {

classpath group: 'org.gradle', nanme: 'custonPlugin',

version: '1.0- SNAPSHOT

task greeting(type: org.gradle. GeetingTask) {
greeting = ' howdy!'

Page 404 of 777

8
Writing tests for your task class

You can use the Proj ect Bui | der class to create Proj ect instances to use when you test your task
class.

Example 351. Testing a custom task

src/test/groovy/org/gradl e/ GeetingTaskTest. groovy
cl ass GreetingTaskTest {

@est

public void canAddTaskToProject () {
Project project = ProjectBuilder.builder().build()
def task = project.task('greeting', type: G eetingTask)
assert True(task i nstanceof G eetingTask)

8
Incremental tasks

Note: Incremental tasks are an incubating feature.

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),
discussions within the Gradle community have produced superior ideas for exposing the information
about changes to task implementors to what is described below. As such, the API for this feature will
almost certainly change in upcoming releases. However, please do experiment with the current
implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see Appendix C), exists
for this purpose of ensuring high quality final implementations through incorporation of early user
feedback.

With Gradle, it's very simple to implement a task that is skipped when all of its inputs and outputs are up to
date (see the section called “Up-to-date checks (AKA Incremental Build)”). However, there are times when
only a few input files have changed since the last execution, and you'd like to avoid reprocessing all of the
unchanged inputs. This can be particularly useful for a transformer task, that converts input files to output
files on a 1:1 basis.

If you'd like to optimise your build so that only out-of-date inputs are processed, you can do so with an
incremental task.

Page 405 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

8
Implementing an incremental task

For a task to process inputs incrementally, that task must contain an incremental task action. This is a task
action method that contains a single | ncr enent al Taskl nput s parameter, which indicates to Gradle that
the action will process the changed inputs only.

The incremental task action may supply an
I ncrenment al Taskl nputs. out Of Dat e(org. gradl e. api . Acti on) action for processing any input file
that is out-of-date, and a | ncrenent al Taskl nputs. renoved(org. gradl e. api . Acti on) action that

executes for any input file that has been removed since the previous execution.
Example 352. Defining an incremental task action

buil d. gradl e

cl ass I ncrenment al ReverseTask extends Defaul t Task {
@nputDirectory
def File inputDir

@ut put Di rectory
def File outputDr

@ nput
def inputProperty

@askActi on
voi d execut e(l ncrenental Taskl nputs inputs) {
println inputs.increnental ? ' CHANGED i nputs consi dered out of date'
"ALL inputs considered out of date'
if (Yinputs.increnental)
project.delete(outputDir.listFiles())

i nputs. out O Date { change ->
println "out of date: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFile.text = change.file.text.reverse()

i nputs.removed { change ->
println "renoved: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFil e. del ete()

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ i ncrenent al Task
in the ‘-all’ distribution of Gradle.

Page 406 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

If for some reason the task is not run incremental, e.g. by running with - - r er un-t asks, only the outOfDate
action is executed, even if there were deleted input files. You should consider handling this case at the
beginning, as is done in the example above.

For a simple transformer task like this, the task action simply needs to generate output files for any
out-of-date inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

8
Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context
since that execution are to input files, then Gradle is able to determine which input files need to be
reprocessed by the task. In this case, the

I ncrement al Taskl nput s. out Of Dat e(or g. gr adl e. api . Acti on) action will be executed for any
input file that was added or modified, and the

I ncrenent al Taskl nputs. renoved(org. gradl e. api . Action) action will be executed for any

removed input file.

However, there are many cases where Gradle is unable to determine which input files need to be
reprocessed. Examples include:

There is no history available from a previous execution.

You are building with a different version of Gradle. Currently, Gradle does not use task history from a
different version.

An upToDat eWhen criteria added to the task returns f al se.
An input property has changed since the previous execution.
One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider all of the input files to be out Of Date. The
I ncr enent al Taskl nput s. out Of Dat e(or g. gradl e. api . Acti on) action will be executed for every
input file, and the | ncrenent al Taskl nput s. renoved(org. gradl e. api . Acti on) action will not be

executed at all.

You can check if Gradle was able to determine the incremental changes to input files with
I ncrenment al Taskl nputs.islncrenmental ().

8§
An incremental task in action

Given the incremental task implementation above, we can explore the various change scenarios by
example. Note that the various mutation tasks (‘updatelnputs’, 'removelnput’, etc) are only present for
demonstration purposes: these would not normally be part of your build script.

Page 407 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

First, consider the | ncr enent al Rever seTask executed against a set of inputs for the first time. In this
case, all inputs will be considered “out of date”:

Example 353. Running the incremental task for the first time

bui I d. gradl e
task increnmental Reverse(type: |ncrenental ReverseTask) {
inputDir = file('inputs")
outputDir = file("$buildDi r/outputs")
i nput Property = project.properties['tasklnputProperty'] ?: 'original’

Build layout
i ncrenent al Task/
bui | d. gradl e
i nput s/
1.txt
2. txt
3. txt

Output of gradl e -qg i ncrenent al Rever se
> gradl e -q increnental Reverse

ALL inputs considered out of date
out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are
reported to the task action:

Example 354. Running the incremental task with unchanged inputs

Outputof gradl e -qg i ncrenent al Reverse
> gradle -q increnental Reverse

When an input file is modified in some way or a new input file is added, then re-executing the task results in
those files being reported to | ncr enent al Taskl nput s. out O Dat e(or g. gr adl e. api . Acti on):

Page 408 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)

Example 355. Running the incremental task with updated input files

buil d. gradl e
task updatel nputs() {
doLast {
file("inputs/1l.txt"').text = 'Changed content for existing file 1.
file("inputs/4.txt').text = 'Content for new file 4.'
}
}

Output of gradl e -g updat el nputs i ncrenent al Reverse
> gradl e -q updatel nputs increnental Reverse
CHANGED i nputs consi dered out of date

out of date: 1.txt

out of date: 4.txt

When an existing input file is removed, then re-executing the task results in that file being reported to
I ncrenment al Taskl nput s. renmoved(org. gradl e. api . Acti on):

Example 356. Running the incremental task with an input file removed

buil d. gradl e
task renovel nput () {
doLast {

file("inputs/3.txt').delete()

Output of gradl e -qg renovel nput increnental Reverse
> gradl e -q renovel nput increnental Reverse
CHANGED i nputs consi dered out of date

removed: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of
date. In this case, all input files are reported to the
I ncrement al Taskl nput s. out Of Dat e(or g. gradl e. api . Acti on) action, and no input files are

reported to the | ncr enent al Taskl nput s. renoved(org. gradl e. api . Acti on) action:

Page 409 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Example 357. Running the incremental task with an output file removed

buil d. gradl e
task renoveQut put () {
doLast {

file("$buildDir/outputs/1.txt").delete()

Outputof gradl e -g renoveCQut put increnental Reverse
> gradl e -q renoveCQut put increnental Reverse

ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted the task
outputs, so all input files are assumed to be out of date. So similar to the changed output file example, all
input files are reported to the | ncrenent al Taskl nputs. out Of Dat e(or g. gradl e. api . Acti on)
action, and no input files are reported to the

I ncr enent al Taskl nput s. renmoved(or g. gradl e. api . Acti on) action:

Example 358. Running the incremental task with an input property changed

Output of gradl e -qg - Pt askl nput Property=changed i ncrenent al Rever se
> gradl e -q -Ptaskl nput Property=changed i ncrenent al Rever se

ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

8
Storing incremental state for cached tasks

Using Gradle’s | ncr errent al Taskl nput s is not the only way to create tasks that only works on changes
since the last execution. Tools like the Kotlin compiler provide incrementality as a built-in feature. The way
this is typically implemented is that the tool stores some analysis data about the state of the previous
execution in some file. If such state files are relocatable, then they can be declared as outputs of the task.
This way when the task’s results are loaded from cache, the next execution can already use the analysis
data loaded from cache, too.

However, if the state files are non-relocatable, then they can’t be shared via the build cache. Indeed, when
the task is loaded from cache, any such state files must be cleaned up to prevent stale state to confuse the
tool during the next execution. Gradle can ensure such stale files are removed if they are declared via t ask.
or a property is marked with the @.ocal St at e annotation.

Page 410 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

8§
Declaring and Using Command Line Options

Note: The API for exposing command line options is an incubating feature.

Sometimes a user wants to declare the value of an exposed task property on the command line instead of
the build script. Being able to pass in property values on the command line is particularly helpful if they
change more frequently. The task API supports a mechanism for marking a property to automatically
generate a corresponding command line parameter with a specific name at runtime.

§
Declaring a command-line option

Exposing a new command line option for a task property is straightforward. You just have to annotate the
corresponding setter method of a property with Opti on. An option requires a mandatory identifier.
Additionally, you can provide an optional description. A task can expose as many command line options as
properties available in the class.

Let's have a look at an example to illustrate the functionality. The custom task Ur | Ver i f y verifies whether a
given URL can be resolved by making a HTTP call and checking the response code. The URL to be verified
is configurable through the property ur | . The setter method for the property is annotated with Opt i on.

Example 359. Declaring a command line option

Ul Verify.java
i mport org.gradle. api.tasks. options. Qption;

public class Ul Verify extends DefaultTask {
private String url;

@ption(option = "url", description = "Configures the URL to be verified.")
public void setUl (String url) {

this.url = url;

}

@ nput

public String getUl () {
return url;

}

@askActi on

public void verify() {
get Logger (). quiet("Verifying URL '{}'", url);

Page 411 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/Option.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/Option.html

All options declared for a task can be rendered as console output by running the hel p task and the - - t ask
option.

§
Using an option on the command line

Using an option on the command line has to adhere to the following rules:

The option uses a double-dash as prefix e.g. - - ur | . A single dash does not qualify as valid syntax for a task
option.

The option argument follows directly after the task declaration e.g. veri fyUrl --url =http://ww. goog

Multiple options of a task can be declared in any order on the command line following the task name.

Getting back to the previous example, the build script creates a task instance of type Url Veri fy and
provides a value from the command line through the exposed option.

Example 360. Using a command line option

buil d. gradl e
task verifyUrl (type: Ul Verify)

Outputofgradl e -q verifyUl --url=http://ww. googl e. conl
> gradle -q verifyUrl --url=http://ww. googl e. cont
Verifying URL 'http://wwmv. googl e. cont'

8
Supported data types for options

Gradle limits the set of data types that can be used for declaring command line options. The use on the
command line differ per type.

bool ean, Bool ean
Describes an option with the value t r ue or f al se. Passing the option on the command line does not
require assigning a value. For example - - enabl ed equates to t r ue. The absence of the option uses
the default values assign to the property; that is f al se for bool ean and nul | for the complex data type.

String
Describes an option with an arbitrary String value. Passing the option on the command line requires a
key-value pair of option and value separated by an equals sign e.g. - - cont ai ner | d=2x94hel d.

enum
Describes an option as enum. The enum has to be passed on the command line as key-value pair similar
to the String type e.g. - - | og-| evel =DEBUG. The provided value is not case sensitive.

Li st <String>, Li st <enun»

Page 412 of 777

Describes an option that can takes multiple values of a given type. The values for the option have to be
provided as distinct declarations e.g. --inmagel d=123 --i magel d=456. Other notations like
comma-separated lists or multiple values separated by a space character are currently not supported.

8
Documenting available values for an option

In theory, an option for a property type St ri ng or Li st <Stri ng> can accept any arbitrary value. Expected
values for such an option can be documented programmatically with the help of the annotation
Opt 1 onVal ues. This annotation may be assigned to any method that returns a Li st of one of the
supported data types. In addition, you have to provide the option identifier to indicate the relationship
between option and available values.

Note: Passing a value on the command line that is not supported by the option does not fail the
build or throw an exception. You'll have to implement custom logic for such behavior in the task
action.

This example demonstrates the use of multiple options for a single task. The task implementation provides a
list of available values for the option out put - t ype.

Page 413 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/OptionValues.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/OptionValues.html

Example 361. Declaring available values for an option

Url Process. j ava
i nport org.gradle.api.tasks.options. Option;
i mport org.gradl e. api.tasks. options. Opti onVal ues;

public class Ul Process extends DefaultTask {
private String url;
private Qutput Type out put Type;

@xption(option = "url", description = "Configures the URL to be wite to the
public void setUl (String url) {
this.url = url;
}
@ nput
public String getUrl () {
return url;
}

@ption(option = "output-type", description = "Configures the output type.")
public voi d setQut put Type(Qut put Type out put Type) {
thi s. out put Type = out put Type;

@pt i onVal ues(" out put -type")
public List<Qutput Type> get Avai | abl eQut put Types() {
return new Arrayli st <Qut put Type>(Arrays. asLi st (Qut put Type. val ues()));

@ nput
public Qutput Type get Qut put Type() {
return out put Type;

@askAction
public void process() {
get Logger (). quiet ("Witing out the URL reponse from'{}' to "{}'", url,

private static enum Qutput Type {
CONSOLE, FILE

Page 414 of 777

8
Listing command line options

Command line options using the annotations Opt | on and Opt i onVal ues are self-documenting. You will
see declared options and their available values reflected in the console output of the hel p task. The output

renders options in alphabetical order.
Example 362. Listing available values for option

Outputofgradl e -gq help --task processuUrl
> gradle -q help --task processurl
Detailed task information for processUrl

Pat h
i processurl
Type
Url Process (Url Process)
Opti ons
--out put -type Configures the output type.
Avai | abl e val ues are:
CONSCLE
FI LE
--url Configures the URL to be wite to the output.
Descri ption
G oup
8
Limitations

Support for declaring command line options currently comes with a few limitations.

Command line options can only be declared for custom tasks via annotation. There's no programmatic
equivalent for defining options.

Options cannot be declared globally e.g. on a project-level or as part of a plugin.

When assigning an option on the command line then the task exposing the option needs to be spelled out
explicitly e.g. gr adl e check --tests abc does not work even though the check task depends onthet e
task.

Page 415 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/Option.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/tasks/options/OptionValues.html

8
The Worker API

Note: The Worker API is an incubating feature.

As can be seen from the discussion of incremental tasks, the work that a task performs can be viewed as
discrete units (i.e. a subset of inputs that are transformed to a certain subset of outputs). Many times, these
units of work are highly independent of each other, meaning they can be performed in any order and simply
aggregated together to form the overall action of the task. In a single threaded execution, these units of work
would execute in sequence, however if we have multiple processors, it would be desirable to perform
independent units of work concurrently. By doing so, we can fully utilize the available resources at build time
and complete the activity of the task faster.

The Worker API provides a mechanism for doing exactly this. It allows for safe, concurrent execution of
multiple items of work during a task action. But the benefits of the Worker API are not confined to
parallelizing the work of a task. You can also configure a desired level of isolation such that work can be
executed in an isolated classloader or even in an isolated process. Furthermore, the benefits extend beyond
even the execution of a single task. Using the Worker API, Gradle can begin to execute tasks in parallel by
default. In other words, once a task has submitted its work to be executed asynchronously, and has exited
the task action, Gradle can then begin the execution of other independent tasks in parallel, even if those
tasks are in the same project.

8§
Using the Worker API

In order to submit work to the Worker API, two things must be provided: an implementation of the unit of
work, and a configuration for the unit of work. The implementation is simply a class that extends j ava. | ang.
. This class should have a constructor that is annotated with j avax. i nject.|nject and accepts
parameters that configure the class for a single unit of work. When a unit of work is submitted to the
Wor ker Execut or, an instance of this class will be created and the parameters configured for the unit of
work will be passed to the constructor.

Page 416 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html

Example 363. Creating a unit of work implementation
buil d. gradl e

i mport org.gradl e. workers. Wr ker Execut or

i mport javax.inject.lnject

cl ass ReverseFile inplenents Runnable {
File fil eToReverse
File destinationFile

@ nj ect

public ReverseFile(File fileToReverse, File destinationFile) {
this.fileToReverse = fil eToReverse
this.destinationFile = destinationFile

@verride
public void run() {
destinationFile.text = fil eToReverse.text.reverse()

The configuration of the worker is represented by a \WWor ker Conf i gur ati on and is set by configuring an
instance of this object at the time of submission. However, in order to submit the unit of work, it is necessary
to first acquire the Vr ker Execut or . To do this, a constructor should be provided that is annotated with j a\
and accepts a VWr ker Execut or parameter. Gradle will inject the instance of \\r ker Execut or at runtime

when the task is created.

Page 417 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html

Example 364. Submitting a unit of work for execution

buil d. gradl e
cl ass ReverseFil es extends SourceTask {
final Worker Execut or wor ker Execut or

@out put Di rectory
File outputDr

@ nj ect
public ReverseFil es(Wrker Execut or wor ker Execut or) {
t hi s. wor ker Execut or = wor ker Execut or

@askActi on
voi d reverseFiles() {

source.files.each { file ->
wor ker Execut or . subm t (ReverseFi |l e. cl ass) { Wirker Configuration confi

config.isolationMbde = |sol ati onivbde. NONE

config.parans file, project.file("${outputDir}/${file.nanme}")

Note that one element of the \Wor ker Conf i gur at i on is the par anms property. These are the parameters
passed to the constructor of the unit of work implementation for each item of work submitted. Any
parameters provided to the unit of work must be j ava. i 0. Seri al i zabl e.

Once all of the work for a task action has been submitted, it is safe to exit the task action. The work will be
executed asynchronously and in parallel (up to the setting of max- wor ker s). Of course, any tasks that are
dependent on this task (and any subsequent task actions of this task) will not begin executing until all of the
asynchronous work completes. However, other independent tasks that have no relationship to this task can

begin executing immediately.

If any failures occur while executing the asynchronous work, the task will fail and a
Wor ker Execut i onExcepti on will be thrown detailing the failure for each failed work item. This will be

treated like any failure during task execution and will prevent any dependent tasks from executing.

In some cases, however, it might be desirable to wait for work to complete before exiting the task action.
This is possible using the Wor ker Execut or . awai t () method. As in the case of allowing the work to
complete asynchronously, any failures that occur while executing an item of work will be surfaced as a
Wor ker Execut i onExcept i on thrown from the Wor ker Execut or . awai t () method.

Page 418 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutionException.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--

Note: Note that Gradle will only begin running other independent tasks in parallel when a task has
exited a task action and returned control of execution to Gradle. When
Wor ker Execut or. awal t () is used, execution does not leave the task action. This means that
Gradle will not allow other tasks to begin executing and will wait for the task action to complete
before doing so.

Example 365. Waiting for asynchronous work to complete

buil d. gradl e

source.files.each { file ->
wor ker Execut or . submi t (ReverseFil e. class) { config ->
config.isolati onMbde = |sol ati onbde. NONE

config.paranms file, project.file("${outputDir}/${file.nanme}")

wor ker Execut or . awai t ()
| ogger.lifecycle("Created ${outputDir.listFiles().size()} reversed files in ${pri

8§
Isolation Modes

Gradle provides three isolation modes that can be configured on a unit of work and are specified using the
| sol ati onMbde enum:

IsolationMode.NONE
This states that the work should be run in a thread with a minimum of isolation. For instance, it will share
the same classloader that the task is loaded from. This is the fastest level of isolation.

IsolationMode.CLASSLOADER
This states that the work should be run in a thread with an isolated classloader. The classloader will have
the classpath from the classloader that the unit of work implementation class was loaded from as well as
any additional classpath entries added through
Wor ker Confi gurati on. cl asspat h(j ava. |l ang. I terabl e).

IsolationMode.PROCESS

This states that the work should be run with a maximum level of isolation by executing the work in a
separate process. The classloader of the process will use the classpath from the classloader that the unit
of work was loaded from as well as any additional classpath entries added through
Wor ker Configuration.classpath(java.lang.|terable). Furthermore, the process will be a
Worker Daemon which will stay alive and can be reused for future work items that may have the same
requirements. This process can be configured with different settings than the Gradle JVM using
Wor ker Confi guration. forkOptions(org.gradl e. api.Action).

Page 419 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerExecutor.html#await--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/IsolationMode.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

8§
Worker Daemons

When using | sol at i onMbde. PROCESS, gradle will start a long-lived Worker Daemon process that can be
reused for future work items.

Example 366. Submitting an item of work to run in a worker daemon

buil d. gradl e
wor ker Execut or . submi t (ReverseFi |l e. cl ass) { WrkerConfiguration config ->

config.isolationMbde = | sol ati onMbde. PROCESS

config.forkOptions { JavaForkOptions options ->
opti ons. maxHeapSi ze = "512nf
options. systenProperty "org.gradl e. sanpl e. showri | eSi ze", "true"

config.parans file, project.file("${outputDir}/${file.nane}")

When a unit of work for a Worker Daemon is submitted, Gradle will first look to see if a compatible, idle
daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as busy. If not, it will
start a new daemon. When evaluating compatibility, Gradle looks at a number of criteria, all of which can be
controlled through Wor ker Conf i gurati on. f or kOpti ons(org. gradl e. api . Action).

executable
A daemon is considered compatible only if it uses the same java executable.

classpath
A daemon is considered compatible if its classpath contains all of the classpath entries requested. Note
that a daemon is considered compatible if it has more classpath entries in addition to those requested.

heap settings
A daemon is considered compatible if it has at least the same heap size settings as requested. In other
words, a daemon that has higher heap settings than requested would be considered compatible.

jvm arguments
A daemon is considered compatible if it has set all of the jvm arguments requested. Note that a daemon
is considered compatible if it has additional jym arguments beyond those requested (except for
arguments treated specially such as heap settings, assertions, debug, etc).

system properties
A daemon is considered compatible if it has set all of the system properties requested with the same
values. Note that a daemon is considered compatible if it has additional system properties beyond those
requested.

Page 420 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

environment variables
A daemon is considered compatible if it has set all of the environment variables requested with the same
values. Note that a daemon is considered compatible if it has more environment variables in addition to
those requested.

bootstrap classpath
A daemon is considered compatible if it contains all of the bootstrap classpath entries requested. Note
that a daemon is considered compatible if it has more bootstrap classpath entries in addition to those
requested.

debug
A daemon is considered compatible only if debug is set to the same value as requested (true or false).

enable assertions
A daemon is considered compatible only if enable assertions is set to the same value as requested (true
or false).

default character encoding
A daemon is considered compatible only if the default character encoding is set to the same value as
requested.

Worker daemons will remain running until either the build daemon that started them is stopped, or system
memory becomes scarce. When available system memory is low, Gradle will begin stopping worker
daemons in an attempt to minimize memory consumption.

8§
Re-using logic between task classes

There are different ways to re-use logic between task classes. The easiest case is when you can extract the
logic you want to share in a separate method or class and then use the extracted piece of code in your
tasks. For example, the Copy task re-uses the logic of the Proj ect . copy(org. gradl e. api . Acti on)
method. Another option is to add a task dependency on the task which outputs you want to re-use. Other
options include using task rules or the worker API.

Page 421 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different
projects and builds. Gradle allows you to implement your own plugins, so you can reuse your build logic, and
share it with others.

You can implement a Gradle plugin in any language you like, provided the implementation ends up compiled
as bytecode. In our examples, we are going to use Groovy as the implementation language. Groovy, Java or
Kotlin are all good choices as the language to use to implement a plugin, as the Gradle APl has been
designed to work well with these languages. In general, a plugin implemented using Java or Kotlin, which
are statically typed, will perform better than the same plugin implemented using Groovy.

8§
Packaging a plugin

There are several places where you can put the source for the plugin.

Build script
You can include the source for the plugin directly in the build script. This has the benefit that the plugin is
automatically compiled and included in the classpath of the build script without you having to do anything.
However, the plugin is not visible outside the build script, and so you cannot reuse the plugin outside the
build script it is defined in.

bui | dSr c project
You can put the source for the plugin in the root ProjectDir/buil dSrc/src/min/groovy
directory. Gradle will take care of compiling and testing the plugin and making it available on the
classpath of the build script. The plugin is visible to every build script used by the build. However, it is not
visible outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone project
You can create a separate project for your plugin. This project produces and publishes a JAR which you
can then use in multiple builds and share with others. Generally, this JAR might include some plugins, or
bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at
creating a standalone project.

Page 422 of 777

8
Writing a simple plugin

To create a Gradle plugin, you need to write a class that implements the Pl ugi n interface. When the plugin
is applied to a project, Gradle creates an instance of the plugin class and calls the instance’s
Pl ugi n. appl y(T) method. The project object is passed as a parameter, which the plugin can use to
configure the project however it needs to. The following sample contains a greeting plugin, which adds a hel
task to the project.

Example 367. A custom plugin

bui | d. gradl e
class GreetingPlugin inplenents Plugin<Project> {
voi d appl y(Project project) {
project.task(' hello") {
doLast {
println "Hello fromthe G eetingPlugin'

apply plugin: GeetingPlugin

Outputofgradl e -q hello
> gradle -q hello
Hello fromthe G eetingPlugin

One thing to note is that a new instance of a plugin is created for each project it is applied to. Also note that
the Pl ugi n class is a generic type. This example has it receiving the Pr o] ect type as a type parameter. A
plugin can instead receive a parameter of type Setti ngs, in which case the plugin can be applied in a
settings script, or a parameter of type G- adl e, in which case the plugin can be applied in an initialization

script.

8§
Making the plugin configurable

Most plugins need to obtain some configuration from the build script. One method for doing this is to use
extension objects. The Gradle Proj ect has an associated Ext ensi onCont ai ner object that contains all
the settings and properties for the plugins that have been applied to the project. You can provide
configuration for your plugin by adding an extension object to this container. An extension object is simply a
Java Bean compliant class. Groovy is a good language choice to implement an extension object because
plain old Groovy objects contain all the getter and setter methods that a Java Bean requires. Java and Kotlin
are other good choices.

Page 423 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Let's add a simple extension object to the project. Here we add a gr eet i ng extension object to the project,

which allows you to configure the greeting.

Example 368. A custom plugin extension

buil d. gradl e
cl ass GreetingPl ugi nExt ensi on {

String message = 'Hello from G eetingPl ugin'
}

class GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {

def extension = project.extensions.create(' greeting' , GeetingPluginExtel

project.task(' hello") {
doLast {
println extension. nessage

apply plugin: GeetingPlugin

greeting. nessage = 'H from G adl e’

Outputofgradl e -q hello
> gradle -q hello
H from Gadle

In this example, Gr eet i ngPl ugi nExt ensi on is a plain old Groovy object with a property called nessage.
The extension object is added to the plugin list with the name greeti ng. This object then becomes
available as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a
configuration closure block for each extension object, so you can group settings together. The following
example shows you how this works.

Page 424 of 777

Example 369. A custom plugin with configuration closure

buil d. gradl e

cl ass GreetingPl ugi nExt ensi on {
String nessage
String greeter

class GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
def extension = project.extensions.create(' greeting', GeetingPluginExtel
project.task(' hello") {
doLast {
println "${extension. nessage} from ${extension.greeter}"

apply plugin: GeetingPlugin

greeting {
message = 'H'
greeter = 'Gadle
}

Outputofgradl e -q hello
> gradle -q hello
H from Gadle

In this example, several settings can be grouped together within the gr eeti ng closure. The name of the
closure block in the build script (gr eet i ng) needs to match the extension object name. Then, when the
closure is executed, the fields on the extension object will be mapped to the variables within the closure
based on the standard Groovy closure delegate feature.

8§
Working with files in custom tasks and plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input
configuration for file locations. To do this, you can leverage the Project.file(]ava.lang. Ooj ect)
method to resolve values to files as late as possible.

Page 425 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 370. Evaluating file properties lazily

buil d. gradl e
class G eetingToFil eTask extends Defaul t Task {

def destination

File getDestination() {
project.fil e(destination)

@askActi on

def greet() {
def file = getDestination()
file.parentFile.nkdirs()
file.wite 'Hello!’

task greet(type: GeetingToFileTask) ({
destination = { project.greetingFile }

task sayG eeting(dependsOn: greet) {
doLast {
println file(greetingFile).text

ext.greetingFile = "$buildDir/hello.txt"

Outputofgradl e -gq sayGreeting
> gradle -q sayGeeting
Hel | o!

In this example, we configure the gr eet task desti nati on property as a closure, which is evaluated with
the Project.file(java.lang. Obj ect) method to turn the return value of the closure into a Fil e
object at the last minute. You will notice that in the example above we specify the gr eet i ngFi | e property
value after we have configured to use it for the task. This kind of lazy evaluation is a key benefit of accepting
any value when setting a file property, then resolving that value when reading the property.

8§
Mapping extension properties to task properties

Capturing user input from the build script through an extension and mapping it to input/output properties of a
custom task is considered a best practice. The end user only interacts with the exposed DSL defined by the
extension. The imperative logic is hidden in the plugin implementation.

Page 426 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

The extension declaration in the build script as well as the mapping between extension properties and
custom task properties occurs during Gradle’s configuration phase of the build lifecycle. To avoid evaluation
order issues, the actual value of a mapped property has to be resolved during the execution phase. For
more information please see the section called “Build phases”. Gradle’s API offers types for representing a

property that should be lazily evaluated e.g. during execution time. Refer to Lazy Configuration for more
information.

The following demonstrates the usage of the type for mapping an extension property to a task property:

Example 371. Mapping extension properties to task properties

bui I d. gradl e

Page 427 of 777

class G eetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
def extension = project.extensions.create(' greeting' , GeetingPluginExtel
proj ect.tasks.create(' hello', Geeting) {
nmessage = extension. message
outputFil es = extension.outputFiles

cl ass G eetingPl ugi nExt ensi on {
final Property<String> nessage
final ConfigurableFileCollection outputFiles

Gr eet i ngPl ugi nExt ensi on(Proj ect project) {
nmessage = project.objects. property(String)
message. set (' Hello from GreetingPl ugin')
outputFiles = project.files()

voi d setQutputFiles(FileCollection outputFiles) {
this.outputFiles.setFron{outputFiles)

class Greeting extends DefaultTask {

final Property<String> nmessage = project.objects. property(String)
final ConfigurableFileCollection outputFiles = project.files()

voi d setQutputFiles(FileCollection outputFiles) {
this.outputFiles.setFron{outputFiles)

@askAction
voi d printMessage() {
out put Fi | es. each {

| ogger.quiet "Witing nessage 'H from Gadle' to file"
it.text = nessage. get ()

apply plugin: GeetingPlugin

greeting {
message = 'H from G adl e
outputFiles = files('a.txt', "b.txt")
}

Page 428 of 777

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ mapExt ensi onPr of
in the *-all’ distribution of Gradle.

Outputofgradle -q hello

> gradle -q hello

Witing nessage 'H from Gadle' to file
Witing nessage 'H fromGadle' to file

§
A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others. This
project is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build
script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 372. A build for a custom plugin

buil d. gradl e
apply plugin: 'groovy'

dependenci es {

conpi l e gradl eApi ()
conpi |l e | ocal Groovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the *-all’
distribution of Gradle.

So how does Gradle find the Pl ugi n implementation? The answer is you need to provide a properties file in
the jar's META- | NF/ gr adl e- pl ugi ns directory that matches the id of your plugin.

Example 373. Wiring for a custom plugin

src/ mai n/ resour ces/ META- | NF/ gr adl e- pl ugi ns/ org. sanpl es. greeti ng. properties
i mpl enent ati on-cl ass=org. gradl e. G eeti ngPl ugi n

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the i
property identifies the Pl ugi n implementation class.

§
Creating a plugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps
to avoid collisions and provides a way to group plugins with similar ownership.

Page 429 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you
or your organization) and the name of the plugin it provides. For example if you had a Github account named
"foo" and your plugin was named "bar", a suitable plugin id might be com gi t hub. f co. bar. Similarly, if
the plugin was developed at the baz organization, the plugin id might be or g. baz. bar .

Plugin ids should conform to the following:

May contain any alphanumeric character, '.", and '-'.

Must contain at least one "' character separating the namespace from the name of the plugin.
Conventionally use a lowercase reverse domain name convention for the namespace.
Conventionally use only lowercase characters in the name.

org. gradl e and com gr adl ewar e namespaces may not be used.

Cannot start or end with a '." character.

Cannot contain consecutive '.' characters (i.e. "..").

Although there are conventional similarities between plugin ids and package names, package names are
generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add
"gradle" as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would
be superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a
good plugin id.

§
Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any other
code artifact. See the ivy and maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it
to the Gradle plugin portal. This site provides the ability to search for and gather information about plugins
contributed by the Gradle community. See the instructions here on how to make your plugin available on this
site.

§
Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script’'s classpath. To do this,
you use a “buildscript { }" block, as described in the section called “Applying plugins with the buildscript
block”. The following example shows how you might do this when the JAR containing the plugin has been
published to a local repository:

Page 430 of 777

http://plugins.gradle.org
http://plugins.gradle.org/docs/submit

Example 374. Using a custom plugin in another project

buil d. gradl e
bui I dscri pt {
repositories {
maven {
url wuri('../repo")

}
dependenci es {
cl asspath group: 'org.gradle', nane: 'custonPlugin',
version: '1.0- SNAPSHOT'

}
apply plugin: 'org.sanples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see the

section called “Applying plugins with the plugins DSL”) to apply the plugin:

Example 375. Applying a community plugin with the plugins DSL

buil d. gradl e
pl ugi ns {
id 'comjfrog.bintray' version '0.4.1
}
8

Writing tests for your plugin

You can use the Proj ect Bui | der class to create Proj ect instances to use when you test your plugin

implementation.
Example 376. Testing a custom plugin

src/test/groovy/org/gradl e/ GeetingPl ugi nTest. groovy
cl ass GreetingPlugi nTest {
@est
public void greeterPlugi nAddsG eeti ngTaskToProject() {
Project project = ProjectBuilder. builder().build()
proj ect. pl ugi nManager. apply 'org. sanpl es. greeting'

assert True(project.tasks. hello instanceof G eetingTask)

Page 431 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html

8
Using the Java Gradle Plugin development plugin

You can use the incubating Java Gradle Plugin development plugin to eliminate some of the boilerplate
declarations in your build script and provide some basic validations of plugin metadata. This plugin will
automatically apply the Java plugin, add the gr adl eApi () dependency to the compile configuration, and
perform plugin metadata validations as part of the j ar task execution.

Example 377. Using the Java Gradle Plugin Development plugin

buil d. gradl e

pl ugi ns {
id'java-gradl e-plugin'

When publishing plugins to custom plugin repositories using the ivy or maven publish plugins, the Java
Gradle Plugin development plugin will also generate plugin marker artifacts named based on the plugin id
which depend on the plugin’s implementation artifact.

8§
Providing a configuration DSL for the plugin

As we saw above, you can use an extension object to provide configuration for your plugin. Using an
extension object also extends the Gradle DSL to add a project property and DSL block for the plugin. An
extension object is simply a regular object, and so you can provide DSL elements nested inside this block by
adding properties and methods to the extension object.

Gradle provides several conveniences to help create a well-behaved DSL for your plugin.

8
Nested DSL elements

When Gradle creates a task or extension object, Gradle decorates the implementation class to mix in DSL
support. To create a nested DSL element you can use the Cbj ect Fact ory type to create objects that are
similarly decorated. These decorated objects can then be made visible to the DSL through properties and
methods of the plugin’s extension:

Page 432 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html

Example 378. Nested DSL elements

buil d. gradl e
class Person {
String nane

cl ass G eetingPl ugi nExt ensi on {
String nessage
final Person greeter

@ avax.inject.|nject
Greeti ngPl ugi nExt ensi on(Obj ect Fact ory obj ect Factory) {

greeter = objectFactory. new nst ance(Person)

voi d greeter(Action<? super Person> action) {
action. execut e(greeter)

class G eetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {

def extension = project.extensions.create(' greeting', GeetingPluginExtel
project.task(' hello") {
doLast {
println "${extension. nessage} from ${extension. greeter.nane}"

apply plugin: GeetingPlugin

greeting {
message = 'H'
greeter {
nane = ' G adl e’
}
}

Outputofgradl e -q hello
> gradle -q hello
H from Gadle

In this example, the plugin passes the project’'s Obj ect Fact ory to the extension object through its
constructor. The constructor uses this to create a nested object and makes this object available to the DSL

Page 433 of 777

through the gr eet er property.

§
Configuring a collection of objects

Gradle provides some utility classes for maintaining collections of objects, intended to work well with the
Gradle DSL.

Example 379. Managing a collection of objects

bui | d. gradl e

Page 434 of 777

cl ass Book {
final String nane
File sourceFile

Book(String name) {
this.name = nane

cl ass DocunentationPlugin inplenents Plugi n<Project> {
voi d appl y(Project project) {

def books = project.contai ner(Book)
books. al | {
sourceFile = project.file("src/docs/ $nane")

pr oj ect . ext ensi ons. books = books

apply plugin: DocumentationPl ugin

books {
qui ckStart {
sourceFile = file('src/docs/quick-start')

}
user Gui de {

}
devel oper Gui de {

task books {
doLast {
books. each { book ->
println "$book. name -> $book. sourceFil e"

Output of gradl e -g books

> gradl e -q books

devel oper Gui de -> / hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi c/ cust onPl
qui ckStart -> /hone/user/gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi
user Qui de -> /hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi n'

Page 435 of 777

The Proj ect.contai ner(java. |l ang. Cl ass) methods create instances of
NanmedDomai nObj ect Cont ai ner, that have many useful methods for managing and configuring the
objects. In order to use a type with any of the pr oj ect . cont ai ner methods, it MUST expose a property
named “name” as the unique, and constant, name for the object. The proj ect. cont ai ner (Cl ass)
variant of the container method creates new instances by attempting to invoke the constructor of the class
that takes a single string argument, which is the desired name of the object. See the above link for pr oj ect .
method variants that allow custom instantiation strategies.

Page 436 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.NamedDomainObjectContainer.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.NamedDomainObjectContainer.html

Gradle Plugin Development Plugin

Note: The Java Gradle plugin development plugin is currently incubating. Please be aware that the
DSL and other configuration may change in later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It
automatically applies the Java plugin, adds the gr adl eApi () dependency to the compile configuration and

performs validation of plugin metadata during j ar task execution.

The plugin also integrates with TestKit, a library that aids in writing and executing functional tests for plugin
code. It automatically adds the gradl eTest Ki t () dependency to the test compile configuration and
generates a plugin classpath manifest file consumed by a G adl eRunner instance if found. Please refer to
the section called “Automatic injection with the Java Gradle Plugin Development plugin” for more on its
usage, configuration options and samples.

8§
Usage
To use the Java Gradle Plugin Development plugin, include the following in your build script:
Example 380. Using the Java Gradle Plugin Development plugin
buil d. gradl e

pl ugi ns {
id'java-gradl e-plugin’

Applying the plugin automatically applies the Java plugin and adds the gr adl eApi () dependency to the

compile configuration. It also adds some validations to the build.

The following validations are performed:

There is a plugin descriptor defined for the plugin.

The plugin descriptor contains an i npl ement at i on- cl ass property.

The i npl enent at i on- cl ass property references a valid class file in the jar.

Each property getter or the corresponding field must be annotated with a property annotation like @ nput Fi |

Page 437 of 777

and @t put Di r ect ory. Properties that don't participate in up-to-date checks should be annotated with @

Any failed validations will result in a warning message.
For each plugin you are developing, add an entry to the gr adl ePl ugi n {} script block:

Example 381. Using the gradlePlugin {} block.

buil d. gradl e
gradl ePl ugin {
pl ugi ns {

si mpl ePl ugi n {
id = "org.gradl e. sanpl e. si npl e-pl ugi n'
i npl ementati onC ass = 'org. gradl e. sanpl e. Si npl ePl ugi n'

The gr adl ePl ugi n {} block defines the plugins being built by the project including the i d and i npl enent
of the plugin. From this data about the plugins being developed, Gradle can automatically:

Generate the plugin descriptor in the j ar file’s META- | NF directory.

Configure the Maven or Ivy publishing plugins to publish a Plugin Marker Artifact for each plugin.

Page 438 of 777

Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in
the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a
method. If multiple projects of a multi-project build share some logic you can define this method in the parent
project. If the build logic gets too complex for being properly modeled by methods then you likely should
implement your logic with classes to encapsulate your logic.*2 Gradle makes this very easy. Just drop your
classes in a certain directory and Gradle automatically compiles them and puts them in the classpath of your
build script.

Here is a summary of the ways you can organise your build logic:

POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The build
script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to organize code.

Inherited properties and methods. In a multi-project build, sub-projects inherit the properties and methods of
their parent project.

Configuration injection. In a multi-project build, a project (usually the root project) can inject properties and
methods into another project.

bui | dSrc project. Drop the source for your build classes into a certain directory and Gradle automatically
compiles them and includes them in the classpath of your build script.

Shared scripts. Define common configuration in an external build, and apply the script to multiple projects,
possibly across different builds.

Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects. The
plugin must be in the classpath of your build script. You can achieve this either by using bui | d sour ces or
by adding an external library that contains the plugin.

Execute an external build. Execute another Gradle build from the current build.

External libraries. Use external libraries directly in your build file.

Page 439 of 777

8§
Inherited properties and methods

Any method or property defined in a project build script is also visible to all the sub-projects. You can use
this to define common configurations, and to extract build logic into methods which can be reused by the
sub-projects.

Example 382. Using inherited properties and methods

buil d. gradl e

ext.srcDirName = 'src/java'

def getSrcDir(project) {
return project.file(srcDi rNane)

child/build.gradle
task show {
doLast ({

println 'srcDi rNane: + srcDi r Namre

File srcDir = getSrcDir(project)
println "srcDir: ' + rootProject.relativePath(srcDir)

Output of gradl e -gq show
> gradl e -g show

srcDi rNanme: src/java
srcDir: child/src/java

8§
Injected configuration

You can use the configuration injection technique discussed in the section called “Cross project
configuration” and the section called “Subproject configuration” to inject properties and methods into various
projects. This is generally a better option than inheritance, for a number of reasons: The injection is explicit
in the build script, You can inject different logic into different projects, And you can inject any kind of
configuration such as repositories, plug-ins, tasks, and so on. The following sample shows how this works.

Page 440 of 777

Example 383. Using injected properties and methods

buil d. gradl e

subprojects {

ext.srcDirName = 'src/java'

ext.srcDir = { file(srcD rNane) }

task show {

doLast {

println "project: ' + project.path

println "srcDirNane: ' + srcDirNanme

File srcDir = srcDir()

println "srcDir: ' + rootProject.relativePath(srcDir)
}

project(':child2") {
ext.srcDirName = "$srcDi r Nane/ | egacy”

chil d1/buil d. gradl e

srcDirNane = 'java'
def dir = srchir()

Output of gradl e -gq show

> gradle -g show

project: :childl

srcDi rNane: java

srcDir: childl/java

project: :child2

srcDi r Nanme: src/javal/l egacy
srcDir: child2/src/javall egacy

§
Configuring the project using an external build script

You can configure the current project using an external build script. All of the Gradle build language is
available in the external script. You can even apply other scripts from the external script.

Build scripts can be local files or remotely accessible files downloaded via a URL.

Page 441 of 777

Remote files will be cached and made available when Gradle runs offline. On each build, Gradle will check if
the remote file has changed and will only download the build script file again if it has changed. URLs that
contain query strings will not be cached.

Example 384. Configuring the project using an external build script

buil d. gradl e
apply from 'other.gradle'

ot her. gradl e
println "configuring $project"
task hello {
doLast {
println "hello from other script'

Outputofgradl e -q hello

> gradle -q hello

configuring root project 'configureProjectUsingScript'
hell o from ot her script

§
Build sources in the bui | dSr ¢ project

When you run Gradle, it checks for the existence of a directory called bui | dSr c. Gradle then automatically
compiles and tests this code and puts it in the classpath of your build script. You don’t need to provide any
further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one bui | dSr c directory, which has to be in the root project
directory.

Listed below is the default build script that Gradle applies to the bui | dSr c project:
Default buildSrc build script.
apply plugin: 'groovy'

dependenci es {

conpi | e gradl eApi ()
conpi |l e | ocal Goovy()

This means that you can just put your build source code in this directory and stick to the layout convention
for a Java/Groovy project (see Table 33).

If you need more flexibility, you can provide your own bui | d. gr adl e. Gradle applies the default build script
regardless of whether there is one specified. This means you only need to declare the extra things you need.

Page 442 of 777

Below is an example. Notice that this example does not need to declare a dependency on the Gradle API, as
this is done by the default build script:

Example 385. Custom buildSrc build script

bui | dSrc/ bui |l d. gradl e
repositories {
mavenCentral ()

dependenci es {
testConpile "junit:junit:4.12

The bui | dSr ¢ project can be a multi-project build, just like any other regular multi-project build. However,
all of the projects that should be on the classpath of the actual build must be r unt i e dependencies of the
root project in bui | dSrc. You can do this by adding this to the configuration of each project you wish to
export:

Example 386. Adding subprojects to the root buildSrc project

bui | dSrc/ bui |l d. gradl e
r oot Proj ect. dependenci es {
runti me project(path)

Note: The code for this example can be found at sanpl es/ mul ti Proj ect Bui | dSr ¢ in the ‘*-all’
distribution of Gradle.

8§
Running another Gradle build from a build

You can use the G adl eBui | d task. You can use either of the di r or bui | dFi | e properties to specify
which build to execute, and the t asks property to specify which tasks to execute.

Page 443 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.GradleBuild.html

Example 387. Running another build from a build

buil d. gradl e

task build(type: GadleBuild) {
buildFile = 'other.gradl e
tasks = ['hello']

other.gradl e

task hello {

doLast {
println "hello fromthe other build."

Outputofgradle -q build
> gradle -q build
hello fromthe other build.

8§
External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script’s classpath in the build
script itself. You do this using the bui | dscri pt () method, passing in a closure which declares the build
script classpath.

Example 388. Declaring external dependencies for the build script

bui I d. gradl e
bui I dscript {
repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'commons-codec', name: 'commons-codec', version: '1.2

The closure passed to the bui | dscri pt () method configures a Scri pt Handl er instance. You declare
the build script classpath by adding dependencies to the cl asspat h configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
described in Dependency Types, except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would any
other classes on the classpath. The following example adds to the previous example, and uses classes from
the build script classpath.

Page 444 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 389. A build script with external dependencies

buil d. gradl e
i nport org.apache. commons. codec. bi nary. Base64

bui I dscri pt {
repositories {
mavenCentral ()

dependenci es {
cl asspath group: 'commons-codec', name: 'conmons-codec', version: '1.2'

task encode {
doLast ({
def byte[] encodedString = new Base64().encode(' hello world\n'.getBytes(:
println new String(encodedString)

Output of gradl e -g encode
> gradle -q encode
aGVsbh&EBgd29ybGXK

For multi-project builds, the dependencies declared with a project’s bui | dscri pt () method are available
to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult Using Gradle Plugins for more information
on Gradle plugins.

Every project automatically has a bui | dEnvi r onnment task of type Bui | dEnvi r onnent Report Task that
can be invoked to report on the resolution of the build script dependencies.

8§
Ant optional dependencies

For reasons we don'’t fully understand yet, external dependencies are not picked up by Ant’s optional tasks.
But you can easily do it in another way.[13]

Page 445 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

Example 390. Ant optional dependencies

buil d. gradl e

configurations {
ft pAnt Task

}

dependenci es {
ft pAnt Task(" or g. apache. ant : ant - cormons-net: 1. 9. 9") {
nodul e(" commons-net: conmmons-net: 1.4.1") {
dependencies "oro:oro:2.0.8:jar"

}
}
}
task ftp {
doLast {
ant {
t askdef (name: 'ftp',
cl assname: 'org. apache.tool s. ant.taskdefs. optional.net.FTP,
cl asspath: configurations. ftpAnt Task. asPat h)
ftp(server: "ftp.apache.org", userid: "anonynous", password: "ne@ryol
fileset(dir: "htdocs/ manual")
}
}
}
}

This is also a good example for the usage of client modules. The POM file in Maven Central for the
ant-commons-net task does not provide the right information for this use case.

§
Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your
domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to
maintain code base. It is our experience that even very complex custom build logic is rarely shared between
different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle
spares you this unnecessary overhead and indirection.

[12] Which might range from a single class to something very complex.

[13] In fact, we think this is a better solution. Only if your buildscript and Ant's optional task need the same
library would you have to define it twice. In such a case it would be nice if Ant's optional task would
automatically pick up the classpath defined in the “gr adl e. setti ngs” file.

Page 446 of 777

Lazy Configuration

As a build grows in complexity, knowing when and where a particular value is configured can become
difficult to reason about. Gradle provides several ways to manage this complexity using lazy configuration.

8§
Lazy properties

Note: The Provider API is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

Gradle provides lazy properties, which delay the calculation of a property’s value until it's absolutely
required. Lazy types are faster, more understandable and better instrumented than the internal convention
mapping mechanisms. This provides two main benefits to build script and plugin authors:

Build authors can wire together Gradle models without worrying when a particular property’s value will be
known. For example, when you want to map properties in an extension to task properties but the values
aren’t known until the build script configures them.

Build authors can avoid resource intensive work during the configuration phase, which can have a direct
impact on maximum build performance. For example, when a property value comes from parsing a file.

Gradle represents lazy properties with two interfaces:

Provi der are properties that can only be queried and cannot be changed.
Properties with these types are read-only.

The method Pr ovi der . get () returns the current value of the property.

A Provi der can be created by the factory method

Provi der Fact ory. provi der(java. util.concurrent. Call able).
Property are properties that can be queried and overwritten.

Properties with these types are configurable.

Pr operty implements the Pr ovi der interface.

The method Property. set (T) specifies a value for the property, overwriting whatever value may have

Page 447 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html#get--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html#set-T-

been present.

The method Property. set (org.gradle.api.provider.Provider) specifies a Provi der for the
value for the property, overwriting whatever value may have been present. This allows you to wire together Pi
and Pr oper t y instances before the values are configured.

A Pr operty can be created by the factory method Obj ect Fact ory. property(j ava. | ang. Cl ass) .

Neither of these types nor their subtypes are intended to be implemented by a build script or plugin author.
Gradle provides several factory methods to create instances of these types. See the Quick Reference for all
of the types and factories available.

Lazy properties are intended to be passed around and only evaluated when required (usually, during the
execution phase). For more information about the Gradle build phases, please see the section called “Build
phases”.

The following demonstrates a task with a read-only property and a configurable property:
Example 391. Using aread-only and configurable property

bui | d. gradl e
class Greeting extends DefaultTask {

@ nput

final Property<String> nmessage = project.objects. property(String)

@ nt er nal

final Provider<String> full Message = nessage.map { it + " from Gadle" }
@askActi on

voi d printMessage() {
| ogger. qui et (ful | Message. get())

task greeting(type: Geeting) {

message = 'H '

Output of gradl e greeting

> gradl e greeting

> Task :greeting
H from Gadle

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 448 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

The Gr eet i ng task has a Propert y<St ri ng> for the mutable part of the message and a Pr ovi der <Stri
for the calculated, read-only, message.

Note: Note that Groovy Gradle DSL will generate setter methods for each Pr opert y-typed property
in a task implementation. These setter methods allow you to configure the property using the
assignment (=) operator as a convenience.

8§
Creating a Property or Provider

If provider types are not intended to be implemented directly by build script or plugin authors, how do you
create a new one? Gradle provides various factory APIs to create new instances of both Provi der and
Property:

Provi der Fact ory. provi der (java. util.concurrent. Cal | abl e) instantiates a new Provi der.
An instance of the Pr ovi der Fact ory can be referenced from Proj ect . get Provi der s() or by injecting
Pr ovi der Fact ory through a constructor or method.

bj ect Factory. property(java. |l ang. Cl ass) instantiates a new Property. An instance of the
bj ect Fact ory can be referenced from Proj ect. get Obj ect s() or by injecting Obj ect Factory
through a constructor or method.

Note: Proj ect does not provide a specific method signature for creating a provider from a gr oovy. | ¢
. When writing a plugin with Groovy, you can use the method signature accepting aj ava. util . conct
parameter. Groovy's Closure to type coercion will take care of the rest.

§
Working with files and Providers
In Working With Files, we introduced four collection types for Fi | e-like objects:

Table 30. Collection of files recap

ead-only Type Configurable Type
| eCol | ection Confi gur abl eFi | eCol | ecti on
| eTree Confi gurabl eFi | eTree

All of these types are also considered Pr ovi der types.

In this section, we are going to introduce more strongly typed models for a Fi | eSyst enlLocat i on:
Di rectory and Regul ar Fi | e. These types shouldn’t be confused with the standard Java java.io.File type
as they tell Gradle to expect more specific values (a directory or a non-directory, regular file).

Page 449 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ProviderFactory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getProviders--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getObjects--
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html
http://docs.groovy-lang.org/next/html/documentation/core-semantics.html#_assigning_a_closure_to_a_sam_type
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileSystemLocation.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Gradle provides two specialized Pr operty subtypes for dealing with these types: Regul ar Fi | ePr operty
and DirectoryProperty. ProjectLayout has methods to create these:
Proj ect Layout . fil eProperty() and Proj ect Layout . di rect oryProperty().

A DirectoryProperty can also be used to create a lazily evaluated Pr ovi der for a Di r ect ory and Reg
via DirectoryProperty.dir(java.lang. String) and
DirectoryProperty.file(]java.lang. String) respectively. These methods create paths that are
relative to the location set for the original Di r ect or yPr operty.

Page 450 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

Example 392. Using file and directory property

buil d. gradl e

cl ass FooExt ension {
final DirectoryProperty soneDirectory
final RegularFileProperty soneFile
final Configurabl eFileCollection soneFiles

FooExt ensi on(Proj ect project) {
someDirectory = project.|ayout.directoryProperty()
sonmeFile = project.layout.fil eProperty()
soneFiles = project.files()

proj ect. extensions.create(' foo', FooExtension, project)

foo {
sonmeDirectory = project.layout.projectDirectory.dir(' sone-directory')
someFile = project.|layout.buildDi rectory.file(' sonme-file")
sonmeFil es.fromproject.files(soneDirectory, someFile)

}
task print {
doLast {
def soneDirectory = project.foo.soneDirectory.get().asFile
| ogger. quiet("foo.soneDirectory =" + soneDirectory)

| ogger. qui et ("foo.soneFiles contains soneDirectory? " + project.foo.sonel

def soneFile = project.foo.soneFile.get().asFile

| ogger. qui et("foo.soneFile = + soneFil e)
| ogger. qui et ("foo.sonmeFiles contains soneFile? " + project.foo.soneFiles.

Output of gr adl e pri nt
> gradl e print

> Task :print

foo. soneDirectory = /hone/ user/gradl e/ sanpl es/ provi ders/fil eAndDirectoryProperty;
foo. soneFil es contains soneDirectory? true

foo. soneFil e = /home/ user/ gradl e/ sanpl es/ provi ders/fil eAndDi rect oryProperty/ buil
f oo. someFi | es contains someFile? true

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

This example shows how Provi der types can be used inside an extension. Lazy values for
Project.getBuildDir() and Project.getProjectDir() can be accessed through

Page 451 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:projectDir
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getLayout--

Proj ect. get Layout () with Proj ect Layout . get Bui | dDi rect ory() and
Proj ect Layout . get Proj ect Directory().

8§
Working with task dependencies and Providers

Many builds have several tasks that depend on each other. This usually means that one task processes the
outputs of another task as an input. For these outputs and inputs, we need to know their locations on the file
system and appropriately configure each task to know where to look. This can be cumbersome if any of
these values are configurable by a user or configured by multiple plugins.

To make this easier, Gradle offers convenient APIs for defining files or directories as task inputs and outputs
in a descriptive way. As an example consider the following plugin with a producer and consumer task, which
are wired together via inputs and outputs:

Example 393. Implicit task dependency

buil d. gradl e

Page 452 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Project.html#getLayout--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--

cl ass Producer extends DefaultTask {
@ut putFile
final RegularFileProperty outputFile = newQutputFile()

@askAction
voi d produce() {
String nmessage = 'Hello, Wrld!
def output = outputFile.get().asFile
out put.text = nessage
| ogger. quiet("Wote '${nessage}’' to ${output}")

cl ass Consumer extends Defaul t Task {
@nputFile
final RegularFileProperty inputFile = newl nputFile()

@askAction
voi d consume() {
def input = inputFile.get().asFile
def nmessage = input.text
| ogger. qui et ("Read ' ${nessage}' from ${i nput}")

task producer(type: Producer)
task consuner(type: Consuner)

/[l Wre property from producer to consumer task
consuner.inputFile = producer.outputFile

/] Set values for the producer lazily
/'l Note that the consumer does not need to be changed again

producer.outputFile = layout.buildDi rectory.file('file.txt")

/'l Change the base output directory.

/1l Note that this automatically changes producer. outputFile and consumer. i nputFi |

bui I dDir = 'out put

Output of gr adl e consuner

Page 453 of 777

> gradl e consuner

> Task : producer
Wote 'Hello, World!' to /home/user/gradl e/ sanpl es/ provi ders/inplicitTaskDepende

> Task :consuner
Read 'Hello, World!'" from/home/user/gradl e/ sanpl es/ provi ders/inplicitTaskDepend:

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

In the example above, the task outputs and inputs are connected before any location is defined. This is
possible because the input and output properties use the Pr ovi der API. The output property is created with
Def aul t Task. newOut put Fi | e() and the input property is created with
Def aul t Task. newl nput Fi | e() . Values are only resolved when they are needed during execution. The
setters can be called at any time before the task is executed and the change will automatically affect all
related input and output properties.

Another thing to note is the absence of any explicit task dependency. Properties created via newQut put Fi | «
and newCut put Di rect or y() bring knowledge about which task is generating them, so using them as task
input will implicitly link tasks together.

8§
Working with collection Providers

In this section, we are going to explore lazy collections. They work exactly like any other Pr ovi der and, just
like Fi | eSyst enmLocat i on providers, they have additional modeling around them. There are two provider

interfaces available, one for Li st values and another for Set values:

For Li st values the interface is called Li st Property. You can create a new Li st Property using
Obj ect Factory. listProperty(java.lang. Cl ass) and specifying the element’s type.

For Set values the interface is called Set Property. You can create a new Set Property using
hj ect Factory. set Property(java. | ang. C ass) and specifying the element’s type.

This type of property allows you to overwrite the entire collection value with
HasMul ti pl eVal ues. set (java.l ang. |lterabl e) and

HasMul ti pl evVal ues. set (org. gradl e. api . provi der. Provi der) or add new elements through the
various add methods:

HasMul ti pl eVal ues. add(T) : Add a single concrete element to the collection

HasMul ti pl eVal ues. add(org. gradl e. api . provi der. Provi der): Add a lazily evaluated element
to the collection

Page 454 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ListProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/SetProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-

HasMul ti pl eVal ues. addAl | (org. gradl e. api . provi der. Provider): Add a lazily evaluated
collection of elements to the list

Just like every Provi der, the collection is calculated when Provi der. get () is called. The following
example show the Li st Property in action:

Example 394. List property

buil d. gradl e
task print {
doLast {

Li st Property<String> list = project.objects.listProperty(String)

/'l Resolve the |i st
| ogger.quiet(' The list contains: ' + list.get())

/1l Add elenents to the enpty I|i st
|ist.add(project.provider { "element-1' }) // Add a provider elenent
list.add(' elenment-2") /1 Add a concrete el enent

/'l Resolve the |ist
| ogger.quiet(' The list contains: ' + list.get())

/] Overwite the entire list with a new |i st
list.set(['elenent-3', "element-4'])

/'l Resolve the |ist
| ogger.quiet(' The list contains: ' + list.get())

/1 Add nore el enents through a |ist provider
list.addAll (project.provider { ['elenent-5", "elenent-6"] })

/'l Resolve the |ist
| ogger.quiet(' The list contains: ' + list.get())

Output of gradl e print
> gradle print

> Task :print

The list contains: []

The list contains: [elenment-1, el enent-2]

The list contains: [elenment-3, elenent-4]

The list contains: [elenment-3, elenent-4, elenment-5, elenent-6]

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Page 455 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html#get--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ListProperty.html

8
Guidelines

This section will introduce guidelines to be successful with the Provider API. To see those guidelines in
action, have a look at gradle-site-plugin, a Gradle plugin demonstrating established techniques and practices
for plugin development.

The Property and Provi der types have all of the overloads you need to query or configure a value. For
this reason, you should follow the following guidelines:

For configurable properties, expose the Pr oper t vy directly through a single getter.
For non-configurable properties, expose an Pr ovi der directly through a single getter.

Avoid simplifying calls like obj . get Property(). get () and obj . get Property().set(T) inyour code
by introducing additional getters and setters.

When migrating your plugin to use providers, follow these guidelines:
If it's a new property, expose it as a Property or Provi der using a single getter.
If it's incubating, change it to use a Pr oper ty or Provi der using a single getter.

If it's a stable property, add a new Pr operty or Provi der and deprecate the old one. You should wire the
old getter/setters into the new property as appropriate.

8§
Future development

Going forward, new properties will use the Provider APIl. The Groovy Gradle DSL adds convenience
methods to make the use of Providers mostly transparent in build scripts. Existing tasks will have their
existing "raw" properties replaced by Providers as needed and in a backwards compatible way. New tasks
will be designed with the Provider API.

The Provider API is incubating. Please create new issues at gradle/gradle to report bugs or to submit use
cases for new features.

Page 456 of 777

https://github.com/gradle-guides/gradle-site-plugin
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
https://github.com/gradle/gradle/issues/new

8§
Provider APl Quick Reference

Table 31. Lazy properties summary

escription Read-only Configurable

file onProvider<)
) Regul ar Fi | eProperty
sk Regul ar Fi | e>

file used .
Provi der <

5 a task

) Regul ar Fi | eProperty
Regul ar Fi | e>

put/output

directory Provi der <

Di rect oryPropert
1 disk . . .

Directory>

directory

sed as aProvider<]
Di rectoryProperty

ask Directory>
put/output
ollection of _) . : .
Fi | eCol | ecti on Confi gurabl eFil eCol | ection
es
ierarchy of _ . .
FileTree Confi gurabl eFi | eTr ee
es

st of anyProvider)
. Li st Property
pe <List<T>>

et of anyProvider
Set Property
pe <Set<T>>

ny other

Provi der <T> Property<T>
pe

Factory

Proj ect Layout . fil eProperty()

Directory.file(java.lang. String)

DirectoryProperty.file(java.lang. String)

Def aul t Task. newl nput Fi | e()

Def aul t Task. newQut put Fi | e()

Proj ect Layout . di rect oryProperty()
Directory.dir(java.lang. String)

Di rectoryProperty.dir(java.lang. String)

Def aul t Task. newl nput Di rect ory()

Def aul t Task. newQut put Di rect ory()

Project.files(java.lang. Ooject[])

Project.fil eTree(java.l ang. Obj ect)

Obj ect Factory. | istProperty(java.lang. Cl ass)

bj ect Factory. set Property(java.lang. C ass)

bj ect Factory. property(java. |l ang. d ass)

Page 457 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html#file-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFile.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/RegularFileProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html#dir-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/Directory.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/DirectoryProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newInputDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/file/ConfigurableFileTree.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/ListProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/SetProperty.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/provider/Property.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current environment.
This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “i ni t ” task provided by the “bui | d-i ni t ” incubating plugin
(see Build Init Plugin).

§
Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scripts in Gradle. These scripts, however, are run
before the build starts. Here are several possible uses:

Set up enterprise-wide configuration, such as where to find custom plugins.

Set up properties based on the current environment, such as a developer’'s machine vs. a continuous
integration server.

Supply personal information about the user that is required by the build, such as repository or database
authentication credentials.

Define machine specific details, such as where JDKs are installed.
Register build listeners. External tools that wish to listen to Gradle events might find this useful.
Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the bui | dSrc project (see the
section called “Build sources in the bui | dSr ¢ project” for details of this feature).

8§
Using an init script
There are several ways to use an init script:

Specify a file on the command line. The command line optionis -1 or--i ni t-scri pt followed by the path
to the script. The command line option can appear more than once, each time adding another init script.

Put a file called i ni t. gr adl e in the USER_HOVE/ . gr adl e/ directory.

Page 458 of 777

Put a file that ends with . gr adl e in the USER_HOVE/ . gradl e/ i ni t. d/ directory.

Put a file that ends with . gr adl e in the GRADLE_HOVE/ i ni t . d/ directory, in the Gradle distribution. This
allows you to package up a custom Gradle distribution containing some custom build logic and plugins. You
can combine this with the Gradle wrapper as a way to make custom logic available to all builds in your

enterprise.

If more than one init script is found they will all be executed, in the order specified above. Scripts in a given
directory are executed in alphabetical order. This allows, for example, a tool to specify an init script on the
command line and the user to put one in their home directory for defining the environment and both scripts
will run when Gradle is executed.

§
Writing an init script
Similar to a Gradle build script, an init script is a Groovy script. Each init script has a Gr adl e instance

associated with it. Any property reference and method call in the init script will delegate to this Gr adl e

instance.
Each init script also implements the Scri pt interface.

§
Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring
projects in a multi-project build. The following sample shows how to perform extra configuration from an init
script before the projects are evaluated. This sample uses this feature to configure an extra repository to be
used only for certain environments.

Page 459 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.Script.html

Example 395. Using init script to perform extra configuration before projects are evaluated

buil d. gradl e
repositories {
mavenCentral ()

t ask showRepos {
doLast {
println "Al repos:"
println repositories.collect { it.name }

init.gradle
all projects {
repositories {
mavenLocal ()

Outputofgradle --init-script init.gradle -gq showRepos
> gradle --init-script init.gradle -q showRepos

Al'l repos:

[MavenLocal , MavenRepo]

8§
External dependencies for the init script

In the section called “External dependencies for the build script” it was explained how to add external

dependencies to a build script. Init scripts can also declare dependencies. You do this with the i ni t scri pt (

method, passing in a closure which declares the init script classpath.
Example 396. Declaring external dependencies for an init script

init.gradle
initscript {
repositories {
mavenCentral ()

}

dependenci es {

cl asspath group: 'org.apache. commons', name: 'conmons-nmath', version:

2

The closure passed to the i ni t scri pt () method configures a Scr i pt Handl er instance. You declare the

Page 460 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

init script classpath by adding dependencies to the cl asspat h configuration. This is the same way you

declare, for example, the Java compilation classpath. You can use any of the dependency types described in

Declaring Dependencies, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the

init script classpath.
Example 397. An init script with external dependencies

init.gradle
i nport org.apache. commons. nat h. fracti on. Fracti on

initscript {
repositories {
mavenCentral ()

}

dependenci es {

cl asspath group: 'org.apache.comons', nane: 'conmons-nath'

println Fraction. ONE_FI FTH. nul ti pl y(2)
Outputofgradl e --init-script init.gradle -g doNothing

> gradle --init-script init.gradle -g doNothing
2/ 5

8§
Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Example 398. Using plugins in init scripts

version: '2

Page 461 of 777

init.gradle
apply plugin: EnterpriseRepositoryPl ugin
class EnterpriseRepositoryPlugin inplenments Plugin<G adl e> {
private static String ENTERPRI SE_REPCSI TORY_URL = "https://repo.gradle.org/g
voi d apply(Gadle gradle) {
gradl e. al | proj ects{ project ->

project.repositories {

all { ArtifactRepository repo ->
if (!'(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRI SE_REPOSI TORY_URL) {

project.logger.lifecycle "Repository ${repo.url} renoved
renove repo

}
}
maven {
name " STANDARD_ENTERPRI SE_REPO'
url ENTERPRI SE_REPOSI TORY_URL
}
}
}
}
}
buil d. gradl e

repositories{
mavenCentral ()

task showRepositories {
doLast {
repositories.each {
println "repository: ${it.name} ('"${it.url}")"

}
}
}
Outputofgradl e -q -1 init.gradle showRepositories
> gradle -q -1 init.gradl e showRepositories

repository: STANDARD ENTERPRI SE_REPO (' https://repo. gradl e.org/gradl e/repo')

Page 462 of 777

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance’s
Pl ugi n. appl y(T) method. The gr adl e object is passed as a parameter, which can be used to configure

all aspects of a build. Of course, the applied plugin can be resolved as an external dependency as described
in the section called “External dependencies for the init script”

Page 463 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/api/Plugin.html#apply-T-

Testing Build Logic with TestKit

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At this time, it is focused on functional testing. That is, testing build logic by exercising it as part of
a programmatically executed build. Over time, the TestKit will likely expand to facilitate other kinds of tests.

8§

Usage
To use the TestKit, include the following in your plugin’s build:
Example 399. Declaring the TestKit dependency

bui I d. gradl e
dependenci es {
test Conpil e gradl eTestKit ()

The gradl eTest Ki t () encompasses the classes of the TestKit, as well as the Gradle Tooling API client. It
does not include a version of JUnit, TestNG, or any other test execution framework. Such a dependency
must be explicitly declared.

Example 400. Declaring the JUnit dependency

buil d. gradl e
dependenci es {
testConpile '"junit:junit:4.12

8§
Functional testing with the Gradle runner

The G adl eRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the “logic under
test”. The build can then be executed, potentially in a variety of ways (e.g. different combinations of tasks
and arguments). The correctness of the logic can then be verified by asserting the following, potentially in
combination:

Page 464 of 777

http://junit.org
http://testng.org
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html

The build’s output;
The build’s logging (i.e. console output);

The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the

Gradl eRunner . bui | d() or Gradl eRunner . bui | dAndFai | () methods depending on the anticipated

outcome.
The following demonstrates the usage of Gradle runner in a Java JUnit test:
Example 401. Using GradleRunner with JUnit

Bui | dLogi cFuncti onal Test . j ava

inport org.gradle.testkit.runner.Buil dResult;

i mport org.gradle.testkit.runner. G adl eRunner;
import org.junit. Before;

i mport org.junit.Rule;

import org.junit. Test;

i mport org.junit.rul es. TenporaryFol der;

i mport java.io.BufferedWiter;
import java.io.File;

inmport java.io.FileWiter;

i mport java.io.| CException;
import java.util.Collections;

inmport static org.junit.Assert.assertEqual s;
import static org.junit.Assert.assertTrue;

import static org.gradle.testkit.runner. TaskQutcone. *;

public class BuildLogi cFuncti onal Test {

@l e public final TenporaryFol der testProjectDir = new Tenporar
private File buil dFil e;
@Bef or e
public void setup() throws | OException {
buildFile = testProjectDir.newFile("build.gradle");
}
@est
public void testHell oWwrldTask() throws | OException {
String buildFil eContent = "task hellowrld {" +
" doLast {" +
" println "Hello world!"" +

n }II +
"
writeFile(buildFile, buildFileContent);

yFol der () ;

Page 465 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

Bui | dResult result = Gradl eRunner.create()
.wWithProjectDir(testProjectDir.getRoot())
. Wi t hArgunent s("hel | oWor | d")
Lbuild();

assert True(result.getQutput().contains("Hello world!"));
assert Equal s(SUCCESS, result.task(":helloWrld").getQutcone());

private void witeFile(File destination, String content) throws |CException -
Buf feredWiter output = null
try {
output = new BufferedWiter(new FileWiter(destination));
output.wite(content);
} finally {
if (output !'= null) {
out put . cl ose();

Page 466 of 777

Any test execution framework can be used.

As Gradle build scripts are written in the Groovy programming language, and as many plugins are
implemented in Groovy, it is often a productive choice to write Gradle functional tests in Groovy.
Furthermore, it is recommended to use the (Groovy based) Spock test execution framework as it offers
many compelling features over the use of JUnit.

The following demonstrates the usage of Gradle runner in a Groovy Spock test:

Page 467 of 777

https://code.google.com/p/spock/

Example 402. Using GradleRunner with Spock

Bui | dLogi cFuncti onal Test . groovy

i mport
i nport
i mport
i nport
i mport

org.gradle.testkit.runner. G adl eRunner

static org.gradle.testkit.runner. TaskQutcone. *
org.junit.Rule

org.junit.rul es. TemporaryFol der

spock. | ang. Speci fi cati on

cl ass Buil dLogi cFuncti onal Test extends Specification {
@rul e final TenporaryFol der testProjectDir = new TenporaryFol der ()

Fi l

def

def

e buildFile

setup() {
buildFile = testProjectDir.newFile(' build.gradle")

"hello world task prints hello world"() {
gi ven:
buildFile << """
task helloWorld {
doLast {
println '"Hello world!

when:

def result = G adl eRunner.create()
.withProjectDir(testProjectDir.root)
.wi t hArgunment s(' hel | oWorl d")
. bui 1 d()

t hen:
result.output.contains('Hello world!")
result.task(": hell owrld"). outcome == SUCCESS

It is a common practice to implement any custom build logic (like plugins and task types) that is more

complex

in nature as external classes in a standalone project. The main driver behind this approach is

bundle the compiled code into a JAR file, publish it to a binary repository and reuse it across various

projects.

Page 468 of 777

8§
Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, the test build
does not share the same classpath or classloaders as the test process and the code under test is not
implicitly available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test into the
test build.

For earlier versions of Gradle (before 2.13), it is possible to manually make the code under test available via
some extra configuration. The following example demonstrates having the build generate a file containing
the implementation classpath of the code under test, and making it available at test runtime.

Example 403. Making the code under test classpath available to the tests

bui | d. gradl e

task created asspat hMani fest {
def outputDir = file("$buil dD r/ $nane")

inputs.files sourceSets. main.runtinmeC asspath
outputs.dir outputDir

doLast {
out put Di r. nkdirs()
file("$outputDir/plugin-classpath.txt").text = sourceSets. main.runti med i

dependenci es {
testRuntime fil es(createC asspat hMani f est)

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ manual C ass
in the *-all’ distribution of Gradle.

The tests can then read this value, and inject the classpath into the test build by using the method
Gradl eRunner . wi t hPl ugi nCl asspat h(j ava. | ang. | terabl e). This classpath is then available to
use to locate plugins in a test build via the plugins DSL (seeUsing Gradle Plugins). Applying plugins with the
plugins DSL requires the definition of a plugin identifier. The following is an example (in Groovy) of doing this
from within a Spock Framework set up() method, which is analogous to a JUnit @ef or e method.

Page 469 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

Example 404. Injecting the code under test classes into test builds

src/test/ groovy/ org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy
Li st<Fi | e> pl ugi nCl asspat h

def setup() {
buildFile = testProjectDir.newFile(' build.gradle")

def plugi nCl asspat hResource = getd ass().cl assLoader. fi ndResource("pl ugi n-cl
i f (pluginC asspat hResource == null) {
throw new I Il egal StateException("Did not find plugin classpath resource,

pl ugi nC asspath = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)

def "hello world task prints hello world"() {
gi ven:
buildFile << """
pl ugi ns {
id 'org.gradle.sanple. helloworld

when:

def result = Gradl eRunner.create()
.wWithProjectDi r(testProjectDir.root)
. Wi t hArgunent s(' hel |l oWorl d")
. W t hPl ugi nCl asspat h(pl ugi nd asspat h)
. bui 1d()

t hen:
result.output.contains('Hello world!")
result.task(": hell owrld"). outcome == SUCCESS

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ manual C ass
in the ‘-all’ distribution of Gradle.

This approach works well when executing the functional tests as part of the Gradle build. When executing
the functional tests from an IDE, there are extra considerations. Namely, the classpath manifest file points to
the class files etc. generated by Gradle and not the IDE. This means that after making a change to the
source of the code under test, the source must be recompiled by Gradle. Similarly, if the effective classpath
of the code under test changes, the manifest must be regenerated. In either case, executing the t est Cl ass:
task of the build will ensure that things are up to date.

Some IDEs provide a convenience option to delegate the "test classpath generation and execution" to the
build. In Intellid you can find this option under Preferences... > Build, Execution, Deployment > Build Tools >

Page 470 of 777

Gradle > Runner > Delegate IDE build/run actions to gradle. Please consult the documentation of your IDE
for more information.

8§
Working with Gradle versions prior to 2.8

The G adl eRunner.w t hPl ugi nCl asspat h(j ava. | ang. | terabl e) method will not work when
executing the build with a Gradle version earlier than 2.8 (see:the section called “The Gradle version used to
test”), as this feature is not supported on such Gradle versions.

Instead, the code must be injected via the build script itself. The following sample demonstrates how this can
be done.

Page 471 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

Example 405. Injecting the code under test classes into test builds for Gradle versions prior to 2.8

src/test/ groovy/ org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy
Li st<Fi | e> pl ugi nCl asspat h

def setup() {
buildFile = testProjectDir.newFile(' build.gradle")

def plugi nCl asspat hResource = getd ass().cl assLoader. fi ndResource("pl ugi n-cl

i f (pluginC asspat hResource == null) {
throw new I Il egal StateException("Did not find plugin classpath resource,
}
pl ugi nC asspath = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)
}
def "hello world task prints hello world with pre Gadle 2.8"() {
gi ven:
def classpathString = plugi nC asspath
.collect { it.absolutePath.replace('\\', "\\\\") }
.collect { ""®it'" }
.join(", ")

buildFile << """
bui l dscri pt {
dependenci es {
classpath files($cl asspathString)

}
apply plugin: "org.gradl e.sanpl e. hel | owor| d"

when:

def result = G adl eRunner.create()
.withProjectDir(testProjectDir.root)
. Wi t hArgunent s(' hel | oWor | d")
.wWi thG adl eVersion("2.7")
bui 1 d()

t hen:

result.output.contains('Hello world!")
result.task(": hell owrld"). outcome == SUCCESS

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ manual C ass
in the ‘-all’ distribution of Gradle.

Page 472 of 777

8
Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins.
Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit. When applied to a
project, the plugin automatically adds the gr adl eTest Ki t () dependency to the test compile configuration.
Furthermore, it automatically generates the classpath for the code under test and injects it via

Gradl eRunner. wi t hPl ugi nCl asspat h() for any Gradl eRunner instance created by the user. It's
important to note that the mechanism currently only works if the plugin under test is applied using the

plugins DSL. If the target Gradle version is prior to 2.8, automatic plugin classpath injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the classpath:
Source set containing code under test: sour ceSet s. mai n
Source set used for injecting the plugin classpath: sour ceSet s. t est

Any of these conventions can be reconfigured with the help of the class
G adl ePl ugi nDevel opnent Ext ensi on.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath by using
the standard conventions applied by the Java Gradle Plugin Development plugin.

Example 406. Using the Java Gradle Development plugin for generating the plugin metadata
buil d. gradl e

apply plugin: 'groovy'

apply plugin: 'java-gradl e-plugin'

dependenci es {
t est Conpi | e(' or g. spockf ranmewor k: spock-core: 1. 0-groovy-2.4") {
excl ude nodul e: ' groovy-all

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut omat i cC
in the ‘-all’ distribution of Gradle.

Page 473 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

Example 407. Automatically injecting the code under test classes into test builds

src/test/ groovy/ org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy
def "hello world task prints hello world"() {

gi ven:
buildFile << """
pl ugi ns {
id 'org.gradle.sanple.helloworld
}
when:

def result = Gradl eRunner.create()
.withProjectDir(testProjectDir.root)
. Wi t hArgunent s(' hel | oWorl d")
.w t hPl ugi nCl asspat h()
. bui 1d()

t hen:

result.output.contains('Hello world!")
result.task(": hell owrld").outcome == SUCCESS

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut omati cC
in the ‘-all’ distribution of Gradle.

The following build script demonstrates how to reconfigure the conventions provided by the Java Gradle
Plugin Development plugin for a project that uses a custom Test source set.

Page 474 of 777

Example 408. Reconfiguring the classpath generation conventions of the Java Gradle Development pl

buil d. gradl e

apply plugin: 'groovy'
apply plugin: 'java-gradl e-plugin'

sourceSets {
functional Test {

groovy {
srcDir file('src/functional Test/groovy')

}
resources {
srcDir file('src/functional Test/resources')

}

conpi | eCl asspath += sourceSets. nmai n. out put + configurations.testRuntine
runti meC asspath += output + conpil eC asspath

task functional Test(type: Test) {
testCl assesDirs = sourceSets. functional Test. out put.classesDirs
cl asspath = sourceSets. functional Test.runti ned asspath

check. dependsOn functi onal Test
gradl ePl ugin {

t est SourceSet s sourceSets. functi onal Test

dependenci es {
functi onal Test Conpi | e(' org. spockf ramewor k: spock-core: 1. 0-groovy-2.4") {
excl ude nodul e: ' groovy-all

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut onati cC
in the ‘-all’ distribution of Gradle.

Page 475 of 777

8§
Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working directory"
in a directory inside the JVM’s temp directory (i.e. the location specified by the j ava. i 0.t npdi r system
property, typically / t np). Any configuration in the default Gradle user home directory (e.g. ~/ . gr adl e/ gr ac
) is not used for test execution. The TestKit does not expose a mechanism for fine grained control of
environment variables etc. Future versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

8
The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not depend
on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the Gr adl eRunner class
was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as is the case
when using the gr adl eTest Ki t () dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the t est task of a plugin
project), the same distribution used to execute the tests will be used by the runner. When using the runner
as part of tests being executed by an IDE, the same distribution of Gradle that was used when importing the
project will be used. This means that the plugin will effectively be tested with the same version of Gradle that
it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the following G ¢
methods:

Gradl eRunner. wi t hGradl eVer si on(j ava. |l ang. Stri ng)
G adl eRunner.wi t hG adl el nstallation(java.io.File)
Gradl eRunner. wi t hGradl eDi stri bution(java. net.URl)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Page 476 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

Example 409. Specifying a Gradle version for test execution

Bui | dLogi cFuncti onal Test . groovy

i mport
i nport
i mport
i nport
i mport
i nport

cl ass Buil dLogi cFunctional Test extends Specification {

org.gradle.testkit.runner. G adl eRunner

static org.gradle.testkit.runner. TaskQutcone. *
org.junit.Rule

org.junit.rul es. TemporaryFol der

spock. | ang. Speci fi cati on

spock. | ang. Unr ol

@wul e final TenporaryFol der testProjectDir = new TenporaryFol der ()

Fi l

def

e buildFile

setup() {

buildFile = testProjectDir.newkile(' build.gradle")

@nr ol |
"can execute hello world task with G adle version #gradl eVersion"() {

def

gi ven:
buildrile << """
task helloWrld {
doLast {
| ogger.quiet 'Hello world!

when:

def result = G adl eRunner.create()
. Wi t hGradl eVer si on(gradl eVer si on)
.withProjectDir(testProjectDir.root)
. Wi t hArgunment s(' hel |l oWorl d")
. bui 1d()

t hen:
result.output.contains('Hello world!")
result.task(":hellowrld"). outconme == SUCCESS

wher e:
gradl eVersion << ['2.6', '2.7"]

Page 477 of 777

8
Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some runner
features are not supported on earlier versions. In such cases, the runner will throw an exception when
attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.
Table 32. Gradle version compatibility

Minimum o
2ature . Description
Version

ispecting executed . .) L
K 25 Inspecting the executed tasks, using Bui | dResul t . get Tasks() and similar methods.
ISKS

lugin classpath28 Injecting the code under test via
jection ' G adl eRunner . wi t hPl ugi nd asspat h(j ava. |l ang. | terabl e).
ispecting build output2 9 Inspecting the build’s text output when run in debug mode, using
debug mode ' Bui | dResul t. get Qut put ().
. . Injecting the code under test automatically via
utomatic plugin) . . .
2.13 Gradl eRunner . wi t hPl ugi nCl asspat h() by applying the Java Gradle Plugin

asspath injection)
Development plugin.

8§
Debugging build logic

The runner uses the Tooling API to execute builds. An implication of this is that the builds are executed in a
separate process (i.e. not the same process executing the tests). Therefore, executing your tests in debug
mode does not allow you to debug your build logic as you may expect. Any breakpoints set in your IDE will
be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

Setting “or g. gradl e. t est ki t. debug” system property to t r ue for the JVM using the Gr adl eRunner

(i.e. not the build being executed with the runner);
Calling the G- adl eRunner . wi t hDebug(bool ean) method.

The system property approach can be used when it is desirable to enable debugging support without making
an adhoc change to the runner configuration. Most IDEs offer the capability to set JVM system properties for
test execution, and such a feature can be used to set this system property.

Page 478 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-

8§
Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the - - bui | d- cache argument to G- adl eRunner or
use one of the other methods described in the section called “Enable the Build Cache”. You can then check
for the task outcome TaskQut cone. FROM CACHE when your plugin’s custom task is cached. This outcome
is only valid for Gradle 3.5 and newer.

Example 410. Testing cacheable tasks

Bui | dLogi cFuncti onal Test. gr oovy
def "cacheabl eTask is | oaded from cache"() {

gi ven:
buildFile << """
pl ugi ns {
id "org.gradle.sanple.helloworld
}
when:
def result = runner()
.wi t hArguments('--build-cache', 'cacheabl eTask')
Lbui 1 d()
t hen:

result.task(": cacheabl eTask"). out cone == SUCCESS

when:
new File(testProjectDir.root, '"build).deletebDir()
result = runner()
.W t hArguments('--build-cache', 'cacheabl eTask')
. bui 1d()

t hen:
result.task(": cacheabl eTask"). out cone == FROM CACHE

Note that TestKit re-uses a Gradle wuser home between tests (see

G adl eRunner. wit hTest KitDir (] ava.io. File)) which contains the default location for the local
build cache. For testing with the build cache, the build cache directory should be cleaned between tests. The
easiest way to accomplish this is to configure the local build cache to us a temporary directory.

Page 479 of 777

http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-
http://www.gradle.org/docs/4.7/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

Example 411. Clean build cache between tests

Bui | dLogi cFuncti onal Test . groovy

@rul e final TenporaryFol der testProjectDir = new TenporaryFol der ()
File buildFile

Fil e | ocal Bui | dCacheDi rectory

def setup() {
| ocal Bui | dCacheDirectory = testProjectDir.newrol der(' | ocal -cache")
testProjectDir.newFil e(' settings.gradle') << """
bui | dCache {
| ocal {
directory '${l ocal Bui | dCachebDirectory.toURI ()}’

buildFile = testProjectDir.newFile(' build.gradle")

Page 480 of 777

Building JVM projects

Java Quickstart

§
The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to
implement in your build script. Out-of-the-box, however, it doesn’t build anything unless you add code to your
build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run
some unit tests, and create a JAR file containing your classes. It would be nice if you didn’t have to code all
this up for every project. Luckily, you don’t have to. Gradle solves this problem through the use of plugins. A
plugin is an extension to Gradle which configures your project in some way, typically by adding some
pre-configured tasks which together do something useful. Gradle ships with a number of plugins, and you
can easily write your own and share them with others. One such plugin is the Java plugin. This plugin adds
some tasks to your project which will compile and unit test your Java source code, and bundle it into a JAR
file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of
the project, such as where the Java source files are located. If you follow the convention in your project, you
generally don’t need to do much in your build script to get a useful build. Gradle allows you to customize
your project if you don’t want to or cannot follow the convention in some way. In fact, because support for
Java projects is implemented as a plugin, you don’t have to use the plugin at all to build a Java project, if you
don’t want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and
multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the Java
plugin to build a Java project.

8§
A basic Java project

Let’s look at a simple example. To use the Java plugin, add the following to your build file:

Page 482 of 777

Example 412. Using the Java plugin

buil d. gradl e
apply plugin: 'java

Note: The code for this example can be found at sanpl es/j aval/ qui ckstart in the ‘-all’
distribution of Gradle.

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a
number of tasks to your project.

What tasks are available?

You can use gradl e tasks to list the tasks of a project. This will let you see the tasks that the
Java plugin has added to your project.

Gradle expects to find your production source code under src/ mai n/j ava and your test source code
under sr c/ test/j ava. In addition, any files under sr ¢/ nmai n/ r esour ces will be included in the JAR file
as resources, and any files under src/t est/resour ces will be included in the classpath used to run the
tests. All output files are created under the bui | d directory, with the JAR file ending up in the bui | d/ | i bs
directory.

§
Building the project

The Java plugin adds quite a few tasks to your project. However, there are only a handful of tasks that you
will need to use to build the project. The most commonly used task is the bui | d task, which does a full build
of the project. When you run gr adl e bui | d, Gradle will compile and test your code, and create a JAR file

containing your main classes and resources:
Example 413. Building a Java project

Output of gradl e buil d

> gradle build

> Task :conpil eJava

> Task :processResources
> Task :cl asses

> Task :jar

> Task :assenbl e

> Task :conpil eTest Java
> Task :processTest Resources
> Task :testC asses

> Task :test

> Task :check

> Task :build

BUI LD SUCCESSFUL in Os
6 actionabl e tasks: 6 executed

Page 483 of 777

Some other useful tasks are:

clean
Deletes the bui | d directory, removing all built files.

assemble
Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.
For example, if you use the War plugin, this task will also build the WAR file for your project.

check
Compiles and tests your code. Other plugins add more checks to this task. For example, if you use the ch
plugin, this task will also run Checkstyle against your source code.

§
External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in
the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a
repository. A repository can be used for fetching the dependencies of a project, or for publishing the artifacts
of a project, or both. For this example, we will use the public Maven repository:

Example 414. Adding Maven repository

buil d. gradl e
repositories {
mavenCentral ()

Let's add some dependencies. Here, we will declare that our production classes have a compile-time
dependency on commons collections, and that our test classes have a compile-time dependency on junit:

Example 415. Adding dependencies

bui | d. gradl e

dependenci es {
conpi l e group: 'comons-col l ections', name: 'conmons-collections', version
testConpile group: "junit', name: '"junit', version: '4.+

You can find out more in Dependency Management for Java Projects.

Page 484 of 777

8
Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are
usually sufficient to get started. It's easy to change these values if they don’t suit. Let’s look at this for our
sample. Here we will specify the version number for our Java project, along with some attributes to the JAR
manifest.

Example 416. Customization of MANIFEST.MF

buil d. gradl e
version = '1.0
jar {

mani f est {

attributes 'Inplenentation-Title': 'Gadle Quickstart',
"I npl ement ati on-Version': version

}

}

What properties are available?

You can use gradl e properti es to list the properties of a project. This will allow you to see the
properties added by the Java plugin, and their default values.

The tasks which the Java plugin adds are regular tasks, exactly the same as if they were declared in the
build file. This means you can use any of the mechanisms shown in earlier chapters to customize these
tasks. For example, you can set the properties of a task, add behaviour to a task, change the dependencies
of a task, or replace a task entirely. In our sample, we will configure the t est task, which is of type Test , to
add a system property when the tests are executed:

Example 417. Adding a test system property

bui | d. gradl e
test {
systenProperties 'property': 'value
}
§

Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish
the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will
publish to a local directory. You can also publish to a remote location, or multiple locations.

Page 485 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.testing.Test.html

Example 418. Publishing the JAR file

buil d. gradl e
upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos'

To publish the JAR file, run gr adl e upl oadAr chi ves.

8
Creating an Eclipse project

To create the Eclipse-specific descriptor files, like . pr oj ect, you need to add another plugin to your build
file:

Example 419. Eclipse plugin

bui I d. gradl e
apply plugin: '"eclipse

Now execute gr adl e ecl i pse command to generate Eclipse project files. More information about the ecl i
task can be found in The Eclipse Plugins.

8
Summary

Here’s the complete build file for our sample:

Page 486 of 777

Example 420. Java example - complete build file

buil d. gradl e

apply plugin: 'java'
apply plugin: '"eclipse

version = '1.0
jar {
mani f est {
attributes 'Inplenentation-Title': 'Gadle Quickstart',
"I npl ement ati on-Version': version

repositories {
mavenCentral ()

dependenci es {
compi l e group: 'comons-col | ections', name: 'conmons-collections', version

testConpile group: "junit', nanme: 'junit', version: '4.+
}
test {

systenProperties 'property': 'value
}

upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos'

8§
Multi-project Java build

Now let's look at a typical multi-project build. Below is the layout for the project:

Page 487 of 777

Example 421. Multi-project build - hierarchical layout

Build layout

mul ti project/
api /
servi ces/ webservi ce/
shar ed/
servi ces/ shar ed/

Note: The code for this example can be found at sanpl es/j ava/ mul ti proj ect in the ‘-all’
distribution of Gradle.

Here we have four projects. Project api produces a JAR file which is shipped to the client to provide them a
Java client for your XML webservice. Project webser vi ce is a webapp which returns XML. Project shar ed
contains code used both by api and webser vi ce. Project servi ces/ shar ed has code that depends on
the shar ed project.

§
Defining a multi-project build

To define a multi-project build, you need to create a settings file. The settings file lives in the root directory of
the source tree, and specifies which projects to include in the build. It must be called setti ngs. gradl e.
For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 422. Multi-project build - settings.gradle file

settings.gradle
i ncl ude "shared",

api ", "services:webservice", "services:shared"

You can find out more about the settings file in Authoring Multi-Project Builds.

§
Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample, we
will define this common configuration in the root project, using a technique called configuration injection.
Here, the root project is like a container and the subpr oj ect s method iterates over the elements of this
container - the projects in this instance - and injects the specified configuration. This way we can easily
define the manifest content for all archives, and some common dependencies:

Page 488 of 777

Example 423. Multi-project build - common configuration

buil d. gradl e
subprojects {
apply plugin: 'java'
apply plugin: "eclipse-wp

repositories {

mavenCentral ()

dependenci es {
testConpile "junit:junit:4.12

}
version = '1.0'
jar {
mani fest.attri butes provider: 'gradle'
}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration
properties we have seen in the previous section are available in each subproject. So, you can compile, test,
and JAR all the projects by running gr adl e bui | d from the root project directory.

Also note that these plugins are only applied within the subpr oj ect s section, not at the root level, so the

root build will not expect to find Java source files in the root project, only in the subprojects.

8
Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one
project is used to compile another project. In the api build file we will add a dependency on the shar ed
project. Due to this dependency, Gradle will ensure that project shar ed always gets built before project api .

Example 424. Multi-project build - dependencies between projects
api / buil d. gradl e

dependenci es {
compil e project(':shared')

See the section called “Disabling the build of dependency projects” for how to disable this functionality.

Page 489 of 777

8
Creating a distribution

We also add a distribution, that gets shipped to the client:
Example 425. Multi-project build - distribution file

api / buil d. gradl e
task dist(type: Zip) {
dependsOn spi Jar
from'src/dist'
into('libs") {
from spi Jar. archi vePat h
from configurations. runtine

artifacts {
archi ves di st

8
Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java based
project. This chapter is not exhaustive, and there are many other things you can do with Java projects in
Gradle. You can find out more about the Java plugin in The Java Plugin, and you can find more sample Java
projects in the sanpl es/ j ava directory in the Gradle distribution.

Otherwise, continue on to Dependency Management for Java Projects.

Page 490 of 777

Building Java & JVM projects

Gradle uses a convention-over-configuration approach to building JVM-based projects that borrows several
conventions from Apache Maven. In particular, it uses the same directory structure for source files and
resources, and it works with Maven-compatible repositories.

We will look at Java projects in detail in this chapter, but most of the topics apply to other supported JVM
languages as well, such as Kotlin, Groovy and Scala. If you don’'t have much experience with building
JVM-based projects with Gradle, take a look at the Java Quickstart first as it will give you a good overview of
the basics.

8
Introduction

The simplest build script for a Java project applies the Java Plugin and optionally sets the project version
and Java compatibility versions:

Example 426. Applying the Java Plugin

buil d. gradl e
pl ugi ns {
id'java'
}
sourceConpatibility = "1.8'
target Conpatibility = "'1.8

version = '1.2. 1

By applying the Java Plugin, you get a whole host of features:

A conpi | eJava task that compiles all the Java source files under src/main/java
A compi | eTest Java task for source files under src/test/java

At est task that runs the unit tests from src/test/java

A j ar task that packages the mai n compiled classes and resources from src/main/resources into a single
JAR named <project>-<version>.jar

A j avadoc task that generates Javadoc for the mai n classes

Page 491 of 777

https://guides.gradle.org/building-kotlin-jvm-libraries/

This isn't sufficient to build any non-trivial Java project — at the very least, you'll probably have some file
dependencies. But it means that your build script only needs the information that is specific to your project.

Note: Although the properties in the example are optional, we recommend that you specify them in
your projects. The compatibility options mitigate against problems with the project being built with
different Java compiler versions, and the version string is important for tracking the progression of
the project. The project version is also used in archive names by default.

The Java Plugin also integrates the above tasks into the standard Base Plugin lifecycle tasks:
j ar is attached to assenbl e [14
t est is attached to check

The rest of the chapter explains the different avenues for customizing the build to your requirements. You
will also see later how to adjust the build for libraries, applications, web apps and enterprise apps.

8§
Declaring your source files via source sets

Gradle’s Java support was the first to introduce a new concept for building source-based projects: source
sets. The main idea is that source files and resources are often logically grouped by type, such as
application code, unit tests and integration tests. Each logical group typically has its own sets of file
dependencies, classpaths, and more. Significantly, the files that form a source set don’t have to be located
in the same directory!

Source sets are a powerful concept that tie together several aspects of compilation:
the source files and where they’re located

the compilation classpath, including any required dependencies

where the compiled class files are placed

You can see how these relate to one another in this diagram:

Page 492 of 777

Figure 25. Source sets and Java compilation

sourceSetCompileOnly
(configuration)

sourceSetImplementation
(configuration)

Compilation
classpath

Source files compileSourceSet]ava ——> Output directory

The shaded boxes represent properties of the source set itself. On top of that, the Java Plugin automatically
creates a compilation task for every source set you or a plugin defines — named conpi | e Sour ceSet Java
— and several dependency configurations.

The mai n source set

Most language plugins, Java included, automatically create a source set called mai n, which is used
for the project’s production code. This source set is special in that its name is not included in the
names of the configurations and tasks, hence why you have just a conpi | eJava task and conpi | eOn
and i npl enment at i on configurations rather than conpi | eMai nJava, mai nConpi | eOnl y and nai nl
respectively.

Java projects typically include resources other than source files, such as properties files, that may need
processing — for example by replacing tokens within the files — and packaging within the final JAR. The
Java Plugin handles this by automatically creating a dedicated task for each defined source set called pr oce
(or processResour ces for the mai n source set). The following diagram shows how the source set fits in
with this task:

Figure 26. Processing non-source files for a source set

Resource files processSourceSetResources Output directory

As before, the shaded boxes represent properties of the source set, which in this case comprises the
locations of the resource files and where they are copied to.

Page 493 of 777

In addition to the nmai n source set, the Java Plugin defines a t est source set that represents the project’s
tests. This source set is used by the t est task, which runs the tests. You can learn more about this task and
related topics in the Java testing chapter.

Projects typically use this source set for unit tests, but you can also use it for integration, acceptance and
other types of test if you wish. That said, most projects define new source sets for those other test types
because they require special setup or classpaths.

You'll learn more about source sets and the features they provide in:
Customizing file and directory locations

Configuring Java integration tests

We also discuss when and how to create your own custom source sets.

8§
Managing your dependencies

The vast majority of Java projects rely on libraries, so managing a project’s dependencies is an important
part of building a Java project. Dependency management is a big topic, so we will focus on the basics for
Java projects here. If you'd like to dive into the detail, check out the introduction to dependency management

Specifying the dependencies for your Java project requires just three pieces of information:
Which dependency you need, such as a name and version

What it's needed for, e.g. compilation or running

Where to look for it

The first two are specified in a dependenci es {} block and the second in a reposi tories {} block.
For example, to tell Gradle that your project requires version 3.6.7 of Hibernate Core to compile and run your
production code, and that you want to download the library from the Maven Central repository, you can use
the following fragment:

Example 427. Declaring dependencies
buil d. gradl e

repositories {
mavenCentral ()

dependenci es {
i mpl ementation 'org. hi bernate: hi bernate-core: 3.6. 7. Fi nal

Page 494 of 777

http://hibernate.org/

The Gradle terminology for the three elements is as follows:
Repository (ex: mavenCent r al ()) — where to look for the modules you declare as dependencies

Configuration (ex: i npl erent at i on) - a named collection of dependencies, grouped together for a specific

goal such as compiling or running a module — a more flexible form of Maven scopes

Module coordinate (ex: or g. hi ber nat e: hi ber nat e-core- 3. 6. 7. Fi nal) — the ID of the dependency,
usually in the form '<group>:<module>:<version>' (or '<groupld>:<artifactld>:<version>' in Maven
terminology)

You can find a more comprehensive glossary of dependency management terms here.
As far as configurations go, the main ones of interest are:

conpi | eOnl y — for dependencies that are necessary to compile your production code but shouldn't be
part of the runtime classpath

i npl ement at i on (supersedes conpi | e) — used for compilation and runtime

runti meOnl y (supersedes r unt i ne) — only used at runtime, not for compilation

t est Conpi | eOnl y — same as conpi | eOnl y except it’s for the tests

t est | npl enent at i on — test equivalent of i npl enent ati on

test Runti neOnl y — test equivalent of runt i neOnl y

You can learn more about these and how they relate to one another in the plugin reference chapter.

Be aware that the Java Library Plugin creates an additional configuration — api — for dependencies that
are required for compiling both the module and any modules that depend on it.

Why no conpi | e configuration?

The Java Plugin has historically used the conpi | e configuration for dependencies that are required
to both compile and run a project’s production code. It is now deprecated — although it won't be
going away any time soon — because it doesn'’t distinguish between dependencies that impact the
public API of a Java library project and those that don’t. You can learn more about the importance of
this distinction in Building Java libraries.

We have only scratched the surface here, so we recommend that you read the dedicated dependency
management chapters once you're comfortable with the basics of building Java projects with Gradle. Some
common scenarios that require further reading include:

Defining a custom Maven- or lvy-compatible repository

Using dependencies from a local filesystem directory

Page 495 of 777

Declaring dependencies with changing (e.g. SNAPSHOT) and dynamic (range) versions
Declaring a sibling project as a dependency
Controlling transitive dependencies and their versions

Testing your fixes to a 3rd-party dependency via composite builds (a better alternative to publishing to and
consuming from Maven Local)

You'll discover that Gradle has a rich API for working with dependencies — one that takes time to master,
but is straightforward to use for common scenarios.

8§
Compiling your code
Compiling both your production and test code can be trivially easy if you follow the conventions:
Put your production source code under the src/main/java directory
Put your test source code under src/test/java

Declare your production compile dependencies in the conpi | eOnl y or i npl enent at i on configurations
(see previous section)

Declare your test compile dependencies in the testConpileOnly or testlnplenentation

configurations
Run the conpi | eJava task for the production code and conpi | eTest Java for the tests

Other JVM language plugins, such as the one for Groovy, follow the same pattern of conventions. We
recommend that you follow these conventions wherever possible, but you don’t have to. There are several
options for customization, as you'll see next.

8
Customizing file and directory locations

Imagine you have a legacy project that uses an src directory for the production code and test for the test
code. The conventional directory structure won't work, so you need to tell Gradle where to find the source
files. You do that via source set configuration.

Each source set defines where its source code resides, along with the resources and the output directory for
the class files. You can override the convention values by using the following syntax:

Page 496 of 777

Example 428. Declaring custom source directories

buil d. gradl e
sourceSets {
mai n {
java {
srcDirs = ['src']
}
}
test {
java {
srcDirs = ['test']
}
}

Now Gradle will only search directly in src and test for the respective source code. What if you don’t want to
override the convention, but simply want to add an extra source directory, perhaps one that contains some
third-party source code you want to keep separate? The syntax is similar:

Example 429. Declaring custom source directories additively

buil d. gradl e
sourceSets {
mai n {
java {

srcDir "thirdParty/src/ min/java'

Crucially, we're using the method srcDi r () here to append a directory path, whereas setting the srcDi r s
property replaces any existing values. This is a common convention in Gradle: setting a property replaces
values, while the corresponding method appends values.

You can see all the properties and methods available on source sets in the DSL reference for Sour ceSet
and Sour ceDi rect orySet . Note that srcDi rs and srcDi r () are both on Sour ceDi r ect or ySet .

8
Changing compiler options

Most of the compiler options are accessible through the corresponding task, such as conpi | eJava and con
. These tasks are of type JavaConpi | e, so read the task reference for an up-to-date and comprehensive
list of the options.

For example, if you want to use incremental compilation, use a separate JVM process for the compiler and
prevent compilation failures from failing the build, you can use this configuration:

Page 497 of 777

http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.file.SourceDirectorySet.html
http://www.gradle.org/docs/4.7/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 430. Setting Java compiler options

buil d. gradl e

conpi | eJava {
options.increnental
options.fork = true
options.fail OnError = fal se

true

That's also how you can change the verbosity of the compiler, disable debug output in the byte code and
configure where the compiler can find annotation processors.

Two common options for the Java compiler are defined at the project level:

sourceConpatibility
Defines which language version of Java your source files should be treated as.

target Conpatibility
Defines the minimum JVM version your code should run on, i.e. it determines the version of byte code
the compiler generates.

If you need or want more than one compilation task for any reason, you can either create a new source set
or simply define a new task of type JavaConpi | e. We look at setting up a new source set next.

§
Compiling and testing Java 6/7

Gradle can only run on Java version 7 or higher. However, support for running Gradle on Java 7 has been
deprecated and is scheduled to be removed in Gradle 5.0. There are two reasons for deprecating support for
Java 7:

Java 7 reached end of life. Therefore, Oracle ceased public availability of security fixes and upgrades for
Java 7 as of April 2015.

Once support for Java 7 has ceased (likely with Gradle 5.0), Gradle’s implementation can start to use Java 8
APIs optimized for performance and usability.

Gradle still supports compiling, testing, generating Javadoc and executing applications for Java 6 and Java
7. Java 5 is not supported.

To use Java 6 or Java 7, the following tasks need to be configured:
JavaConpi | e task to fork and use the correct Java home
Javadoc t