Gradle User Manual

Version 4.9

Copyright © 2007-2018 Hans Dockter, Adam Murdoch

Gradle build tool source code is open and licensed under the Apache License 2.0. Gradle user manual and
DSL references are licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://github.com/gradle/gradle/blob/master/LICENSE
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Table of Contents
About Gradle

Introduction
Overview

Working with existing builds

Installing Gradle

Command-Line Interface

The Gradle Wrapper

The Gradle Daemon

Dependency Management for Java Projects
Executing Multi-Project Builds
Composite builds

Build Environment

Troubleshooting

Embedding Gradle using the Tooling API
Build Cache

Writing Gradle build scripts

Build Script Basics

Build Init Plugin

Writing Build Scripts
Authoring Tasks

Working With Files

Using Ant from Gradle

Build Lifecycle

Logging

Authoring Multi-Project Builds
Using Gradle Plugins
Standard Gradle plugins
The Project Report Plugin
The Build Dashboard Plugin
Comparing Builds
Publishing

Ivy Publish Plugin

Maven Publish Plugin

The Signing Plugin

The Distribution Plugin

The Announce Plugin

The Build Announcements Plugin
Legacy publishing

Maven Plugin

Dependency management

Introduction to Dependency Management
Declaring Dependencies

Managing Dependency Configurations
Declaring Repositories

Inspecting Dependencies

Managing Transitive Dependencies
Dependency Locking

Working with Dependencies

Customizing Dependency Resolution Behavior
Troubleshooting Dependency Resolution

Extending the build

Writing Custom Task Classes
Writing Custom Plugins

Gradle Plugin Development Plugin
Lazy Configuration

Task Configuration Avoidance
Initialization Scripts

Testing Build Logic with TestKit

Building JVM projects

Java Quickstart

Building Java & JVM projects
Testing in Java & JVM projects
The Base Plugin

The Java Plugin

The Java Library Plugin

Web Application Quickstart
The War Plugin

The Ear Plugin

The Jetty Plugin

The Application Plugin

The Java Library Distribution Plugin
Groovy Quickstart

The Groovy Plugin

The Scala Plugin

The ANTLR Plugin

The Checkstyle Plugin

The CodeNarc Plugin

The FindBugs Plugin

The JDepend Plugin

The PMD Plugin

The JaCoCo Plugin

The OSGi Plugin

The Eclipse Plugins

The IDEA Plugin

Best practices

Authoring Maintainable Build Scripts
Organizing Gradle Projects

The Software model

Rule based model configuration
Software model concepts
Implementing model rules in a plugin
Building Play applications

Building native software

Extending the software model

Glossary
Dependency Management Terminology
Dependency Types
Repository Types
The Dependency Cache

Appendix

A. Gradle Samples

B. Potential Traps

C. The Feature Lifecycle
D. Documentation licenses

List of Examples

. Excluding tasks

. Abbreviated camel case task hame

. Obtaining detailed help for tasks

. Information about properties

. Running the Wrapper task

. The generated distribution URL

. Providing options to Wrapper task

. The generated distribution URL

. Executing the build with the Wrapper batch file

© 00 N O O~ WN PP

[N
o

. Upgrading the Wrapper version

=
-

. Checking the Wrapper version after upgrading

[EEN
N

. Customizing the Wrapper task
. The generated distribution URL
. Specifying the HTTP Basic Authentication credentials using system properties

[N =
g N ow

. Specifying the HTTP Basic Authentication credentials in di st ri but i onUr |

=
(3]

. Configuring SHA-256 checksum verification

[
~

. Dependency declarations for a Java-based project

=
oo

. Definition of a module dependency

[EEY
(]

. Usage of Maven central repository

N
o

. Usage of a local Ivy directory

N
=

. Publishing to a Maven repository

N
N

. Listing the projects in a build

N
w

. Dependencies of my-app

N
i

. Declaring a command-line composite

N
ol

. Declaring a separate composite

N
»

. Depending on task from included build

N
~

. Build that does not declare group attribute

N
(o]

. Declaring the substitutions for an included build

N
©

. Depending on a single task from an included build

w
o

. Depending on a tasks with path in all included builds

w
=

. Setting properties with a gradle.properties file

w
N

. Specifying system properties in gr adl e. properties

w
w

. Setting a project property via gradle.properties

w
N

. Setting a project property via environment variable
. Changing JVM settings for Gradle client JVM

. Changing JVM settings for forked Gradle JVMs

. Set Java compile options for JavaConpi | e tasks

W W W W
o N o O

. Prevent releasing outside of Cl

w
©

. Configuring an HTTP proxy using gr adl e. properties

40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

Configuring an HTTPS proxy using gr adl e. properties
Using the tooling API

Configure the local cache

Load from HttpBuildCache

Configure remote HTTP cache

Allow untrusted SSL certificate for HttpBuildCache
Recommended setup for Cl push use case
Consistent setup for buildSrc and main build

Init script to configure the build cache

Your first build script

Execution of a build script

A task definition shortcut

Using Groovy in Gradle's tasks

Using Groovy in Gradle's tasks

Declaration of task that depends on other task
Lazy dependsOn - the other task does not exist (yet)
Dynamic creation of a task

Accessing a task via API - adding a dependency
Accessing a task via API - adding behaviour
Accessing task as a property of the build script
Adding extra properties to a task

Using AntBuilder to execute ant.loadfile target
Using methods to organize your build logic
Defining a default task

Different outcomes of build depending on chosen tasks
Declaring external dependencies for the build script
A build script with external dependencies
Accessing property of the Project object

Using local variables

Using extra properties

Configuring arbitrary objects

Configuring arbitrary objects using a script
Groovy JDK methods

Property accessors

Method call without parentheses

List and map literals

Closure as method parameter

Closure delegates

Defining tasks

Defining tasks - using strings for task names
Defining tasks with alternative syntax

Accessing tasks as properties

Accessing tasks via tasks collection

Accessing tasks by path

Creating a copy task

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
1065.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.
126.
127.
128.
129.

Configuring a task - various ways

Configuring a task - with closure

Defining a task with closure

Task class with @Inject constructor

Creating a task with constructor arguments using TaskContainer
Creating a task with constructor arguments using Map
Creating a task with constructor arguments using Kotlin DSL
Adding dependency on task from another project

Adding dependency using task object

Adding dependency using closure

Adding a 'must run after' task ordering

Adding a 'should run after' task ordering

Task ordering does not imply task execution

A 'should run after' task ordering is ignored if it introduces an ordering cycle
Adding a description to a task

Overwriting a task

Skipping a task using a predicate

Skipping tasks with StopExecutionException

Enabling and disabling tasks

Custom task class

Ad-hoc task

Ad-hoc task declaring a destroyable

Using runtime API with custom task type

Using skipWhenEmpty() via the runtime API

Inferred task dependency via task outputs

Inferred task dependency via a task argument

Declaring a method to add task inputs

Declaring a method to add a task as an input

Failed attempt at setting up an inferred task dependency
Setting up an inferred task dependency between output dir and input files
Setting up an inferred task dependency with filesFor()
Setting up an inferred task dependency with builtBy()
Ignoring up-to-date checks

Runtime classpath normalization

Task rule

Dependency on rule based tasks

Adding a task finalizer

Task finalizer for a failing task

How to copy a single file

Using implicit string paths

Prefer task/project properties over hard-coded paths
Using multiple arguments with from()

Using a flat filter

Using a deep filter

Copying an entire directory

130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
1565.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

Copying an entire directory, including itself

Archiving a directory as a ZIP

Using the Base Plugin for its archive name convention
Unpacking a ZIP file

Creating a Java uber or fat JAR

Manually creating a directory

Moving a directory using the Ant task

Renaming files as they are copied

Truncating filenames as they are copied

Deleting a directory

Deleting files matching a specific pattern

How to minimize the number of hard-coded paths in your build
Locating files

Creating a path relative to a parent project

Creating a file collection

Implementing a file collection

Using a file collection

Filtering a file collection

Creating a file tree

Changing Ant default exclusions for a copy task

Using a file tree

Using an archive as a file tree

Specifying a set of files

Appending a set of files

Specifying copy task source files and destination directory
Selecting the files to copy

Renaming files as they are copied

Filtering files as they are copied

Sharing copy specifications

Sharing copy patterns only

Nested copy specs

Copying files using the copy() method without up-to-date check
Copying files using the copy() method with up-to-date check
Using the Sync task to copy dependencies

Archiving a directory as a ZIP

Creation of ZIP archive

Configuration of archive task - custom archive name
Configuration of archive task - appendix & classifier
Activating reproducible archives

Using an Ant task

Passing nested text to an Ant task

Passing nested elements to an Ant task

Using an Ant type

Using a custom Ant task

Declaring the classpath for a custom Ant task

175. Using a custom Ant task and dependency management together
176. Importing an Ant build

177. Task that depends on Ant target

178. Adding behaviour to an Ant target

179. Ant target that depends on Gradle task

180. Renaming imported Ant targets

181. Setting an Ant property

182. Getting an Ant property

183. Setting an Ant reference

184. Getting an Ant reference

185. Fine tuning Ant logging

186. Single project build

187. Hierarchical layout

188. Flat layout

189. Lookup of elements of the project tree

190. Modification of elements of the project tree

191. Adding of test task to each project which has certain property set
192. Notifications

193. Setting of certain property to all tasks

194. Logging of start and end of each task execution

195. Using stdout to write log messages

196. Writing your own log messages

197. Writing a log message with placeholder

198. Using SLF4J to write log messages

199. Configuring standard output capture

200. Configuring standard output capture for a task

201. Customizing what Gradle logs

202. Multi-project tree - water & bluewhale projects

203. Build script of water (parent) project

204. Multi-project tree - water, bluewhale & krill projects

205. Water project build script

206. Defining common behavior of all projects and subprojects
207. Defining specific behaviour for particular project

208. Defining specific behaviour for project krill

209. Adding custom behaviour to some projects (filtered by project name)
210. Adding custom behaviour to some projects (filtered by project properties)
211. Running build from subproject

212. Evaluation and execution of projects

213. Evaluation and execution of projects

214. Running tasks by their absolute path

215. Dependencies and execution order

216. Dependencies and execution order

217. Dependencies and execution order

218. Dependencies - real life example - crossproject configuration
219. Project lib dependencies

220.
221.
222.
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242,
243.
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.

Project lib dependencies

Fine grained control over dependencies

Task generating a property file containing build information
Declaring a project dependency on the project producing the properties file
Build and Test Single Project

Build and Test Depended On Projects

Build and Test Dependent Projects

Applying a script plugin

Applying a core plugin

Applying a community plugin

Applying plugins only on certain subprojects.

Configuring pluginManagement per-project and globally
Using plugins from custom plugin repositories.

Plugin resolution strategy.

Complete Plugin Publishing Sample

Applying a binary plugin

Applying a binary plugin by type

Applying a plugin with the buildscript block

Using the Build Dashboard plugin

Applying the necessary plugins

Configuring a Java library for publishing

Adding an additional archive artifact to a MavenPublication
Defining a custom artifact for a configuration

Attaching a custom PublishArtifact to a publication

Signing a publication

Sign and publish a project

Adding multiple publications and repositories

Configuring which artifacts should be published to which repositories
Defining your own shorthand tasks for publishing
Configuring a dynamically named task created by the publishing plugins
Applying the vy Publish Plugin

customizing the publication identity

Customizing the module descriptor file

Declaring repositories to publish to

Publishing a Java module

Example generated ivy.xml

Applying the Maven Publish Plugin

customizing the publication identity

Customizing the POM file

Declaring repositories to publish to

Configuring repository URL based on project version
Configuring repository URL based on project property
Publishing a Java library

Using the Signing Plugin

Sign with GnuPG

265. Configure the GnupgSignatory

266. Signing a publication

267. Signing a publication output

268. Signing a configuration

269. Signing a configuration output

270. Signing a task

271. Signing a task output

272. Specifying when signing is required

273. Specifying when signing is skipped

274. Signing a POM for deployment

275. Using the Distribution Plugin

276. Adding extra distributions

277. Configuring the main distribution

278. Adding distribution archives to an Ivy publication
279. Adding distribution archives to a Maven publication
280. Publishing the distribution ZIP with the Maven Plugin
281. Applying the announce plugin

282. Configure the announce plugin

283. Using the announce plugin

284. Using the build announcements plugin

285. Using the build announcements plugin from an init script
286. Defining an artifact using an archive task

287. Defining an artifact using a file

288. Customizing an artifact

289. Map syntax for defining an artifact using a file

290. Configuration of the upload task

291. Using the Maven plugin

292. Creating a standalone pom.

293. Upload of file to remote Maven repository

294. Upload of file via SSH

295. Customization of pom

296. Builder style customization of pom

297. Modifying auto-generated content

298. Customization of Maven installer

299. Generation of multiple poms

300. Accessing a mapping configuration

301. Declaring a dependency with a concrete version
302. Declaring a dependency without version

303. Declaring a dependency with a dynamic version
304. Declaring a dependency with a changing version
305. Declaring multiple file dependencies

306. Declaring project dependencies

307. Resolving a JavaScript artifact for a declared dependency
308. Resolving a JavaScript artifact with classifier for a declared dependency
309. Declaring and using a custom configuration

310. Extending a configuration from another configuration

311. Declaring JCenter repository as source for resolving dependencies
312. Declaring a custom repository by URL

313. Declaring multiple repositories

314. Declaring the JGit dependency with a custom configuration

315. Rendering the dependency report for a custom configuration

316. Declaring the JGit dependency and a conflicting dependency

317. Using the dependency insight report for a given dependency

318. Giving a reason for choosing a certain module version in a dependency declaration
319. Using the dependency insight report with custom reasons

320. Define dependency constraints

321. Unresolved artifacts for transitive dependencies

322. Excluding transitive dependency for a particular dependency declaration
323. Excluding transitive dependency for a particular configuration

324. Enforcing a dependency version

325. Enforcing a dependency version on the configuration-level

326. Disabling transitive dependency resolution for a declared dependency
327. Disabling transitive dependency resolution on the configuration-level
328. Depending on a BOM to import its dependency constraints

329. Locking a specific configuration

330. Locking all configurations

331. Resolving all configurations

332. Lockfile content

333. Dynamic dependency declaration

334. lterating over the dependencies assigned to a configuration

335. Iterating over the artifacts resolved for a module

336. Walking the resolved and unresolved dependencies of a configuration
337. Accessing a Maven module's metadata artifact

338. Forcing a consistent version for a group of libraries

339. Using a custom versioning scheme

340. Blacklisting a version with a replacement

341. Changing dependency group and/or name during resolution

342. Substituting a module with a project

343. Substituting a project with a module

344. Conditionally substituting a dependency

345. 'Latest' version selector

346. Custom status scheme

347. Custom status scheme by module

348. lvy component metadata rule

349. Configuration of ComponentMetadataRule

350. Component selection rule

351. Component selection rule with module target

352. Component selection rule with metadata

353. Component selection rule using a rule source object

354. Declaring a module replacement

355. Specifying default dependencies on a configuration
356. Enabling dynamic resolve mode

357. Dynamic version cache control

358. Changing module cache control

359. Defining a custom task

360. A hello world task

361. A customizable hello world task

362. A build for a custom task

363. A custom task

364. Using a custom task in another project

365. Testing a custom task

366. Defining an incremental task action

367. Running the incremental task for the first time

368. Running the incremental task with unchanged inputs
369. Running the incremental task with updated input files
370. Running the incremental task with an input file removed
371. Running the incremental task with an output file removed
372. Running the incremental task with an input property changed
373. Declaring a command line option

374. Using a command line option

375. Declaring available values for an option

376. Listing available values for option

377. Creating a unit of work implementation

378. Submitting a unit of work for execution

379. Waiting for asynchronous work to complete

380. Submitting an item of work to run in a worker daemon
381. A custom plugin

382. A custom plugin extension

383. A custom plugin with configuration closure

384. Evaluating file properties lazily

385. Mapping extension properties to task properties

386. A build for a custom plugin

387. Wiring for a custom plugin

388. Using a custom plugin in another project

389. Applying a community plugin with the plugins DSL
390. Testing a custom plugin

391. Using the Java Gradle Plugin Development plugin
392. Nested DSL elements

393. Managing a collection of objects

394. Using the Java Gradle Plugin Development plugin
395. Using the gradlePlugin {} block.

396. Using a read-only and configurable property

397. Using file and directory property

398. Implicit task dependency

399. List property

400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425,
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443,
444,

Using init script to perform extra configuration before projects are evaluated
Declaring external dependencies for an init script

An init script with external dependencies

Using plugins in init scripts

Declaring the TestKit dependency

Declaring the JUnit dependency

Using GradleRunner with JUnit

Using GradleRunner with Spock

Making the code under test classpath available to the tests
Injecting the code under test classes into test builds

Injecting the code under test classes into test builds for Gradle versions prior to 2.8
Using the Java Gradle Development plugin for generating the plugin metadata
Automatically injecting the code under test classes into test builds
Reconfiguring the classpath generation conventions of the Java Gradle Development plugin
Specifying a Gradle version for test execution

Testing cacheable tasks

Clean build cache between tests

Using the Java plugin

Building a Java project

Adding Maven repository

Adding dependencies

Customization of MANIFEST.MF

Adding a test system property

Publishing the JAR file

Eclipse plugin

Java example - complete build file

Multi-project build - hierarchical layout

Multi-project build - settings.gradle file

Multi-project build - common configuration

Multi-project build - dependencies between projects

Multi-project build - distribution file

Applying the Java Plugin

Declaring dependencies

Declaring custom source directories

Declaring custom source directories additively

Setting Java compiler options

Configure Java 6 build

Defining a custom task to create a 'sources' JAR

Creating a Java uber or fat JAR

Customization of MANIFEST.MF

Creating a manifest object.

Separate MANIFEST.MF for a particular archive

Saving a MANIFEST.MF to disk

Using a custom doclet with Javadoc

Defining a custom Javadoc task

445. A basic configuration for the 'test' task

446. Filtering tests in the build script

447. Changing the default test report and results directories
448. Creating a unit test report for subprojects

449. JUnit Categories

450. JUnit Platform Tags

451. Grouping TestNG tests

452. Enabling JUnit Platform to run your tests

453. JUnit Jupiter dependencies

454. JUnit Vintage dependencies

455, Filter specific engines

456. Preserving order of TestNG tests

457. Grouping TestNG tests by instances

458. Setting up working integration tests

459. Defining a working integration test task

460. Skipping the unit tests based on a project property
461. Applying the Base Plugin

462. Using the Java plugin

463. Custom Java source layout

464. Assembling a JAR for a source set

465. Generating the Javadoc for a source set

466. Running tests in a source set

467. Registering incremental annotation processors
468. Registering incremental annotation processors dynamically
469. An isolated annotation processor

470. An aggregating annotation processor

471. Declaring annotation processors

472. Customization of MANIFEST.MF

473. Creating a manifest object.

474. Separate MANIFEST.MF for a particular archive
475. Saving a MANIFEST.MF to disk

476. Using the Java Library plugin

477. Declaring API and implementation dependencies
478. Making the difference between API and implementation
479. Declaring APl and implementation dependencies
480. Configuring the Groovy plugin to work with Java Library
481. War plugin

482. Running web application with Gretty plugin

483. Using the War plugin

484. Customization of war plugin

485. Using the Ear plugin

486. Customization of ear plugin

487. Using the application plugin

488. Configure the application main class

489. Configure default JVM settings

490. Configure custom directory for start scripts

491. Include output from other tasks in the application distribution
492. Automatically creating files for distribution

493. Using the Java library distribution plugin

494. Configure the distribution name

495. Include files in the distribution

496. Groovy plugin

497. Dependency on Groovy

498. Groovy example - complete build file

499. Using the Groovy plugin

500. Custom Groovy source layout

501. Configuration of Groovy dependency

502. Configuration of Groovy test dependency

503. Configuration of bundled Groovy dependency

504. Configuration of Groovy file dependency

505. Configure Java 6 build for Groovy

506. Using the Scala plugin

507. Custom Scala source layout

508. Declaring a Scala dependency for production code

509. Declaring a Scala dependency for test code

510. Declaring a version of the Zinc compiler to use

511. Forcing a scala-library dependency for all configurations
512. Forcing a scala-library dependency for the zinc configuration
513. Adjusting memory settings

514. Forcing all code to be compiled

515. Configure Java 6 build for Scala

516. Explicitly specify a target IntelliJ IDEA version

517. Using the ANTLR plugin

518. Declare ANTLR version

519. setting custom max heap size and extra arguments for ANTLR
520. Using the Checkstyle plugin

521. Using the config_loc property

522. Customizing the HTML report

523. Using the CodeNarc plugin

524. Using the FindBugs plugin

525. Customizing the HTML report

526. Using the JDepend plugin

527. Using the PMD plugin

528. Applying the JaCoCo plugin

529. Configuring JaCoCo plugin settings

530. Configuring test task

531. Configuring violation rules

532. Configuring test task

533. Using application plugin to generate code coverage data
534. Coverage reports generated by applicationCodeCoverageReport

535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
5565.
556.
557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.

Using the OSGi plugin

Configuration of OSGi MANIFEST.MF file

Using the Eclipse plugin

Using the Eclipse WTP plugin

Partial Overwrite for Classpath

Partial Overwrite for Project

Export Classpath Entries

Customizing the XML

Using the IDEA plugin

Partial Rewrite for Module

Partial Rewrite for Project

Export Dependencies

Customizing the XML

A build script using conditional logic to create a task
A binary plugin implementing imperative logic

A build script applying a plugin that encapsulates imperative logic
Definition of tasks following best practices

A task declaring the group and description
Executing logic during configuration should be avoided
Executing logic during execution phase is preferred
Integration test source set

Integration test task

Custom buildSrc build script

applying a rule source plugin

a model creation rule

a model mutation rule

creating a task

a managed type

a String property

a File property

a Long property

a boolean property

an int property

a managed property

an enumeration type property

a managed set

a scalar collection

strongly modelling sources sets

a DSL example applying a rule to every element in a scope
DSL configuration rule

Configuration run when required

Configuration not run when not required

DSL creation rule

DSL creation rule without initialization

Initialization before configuration

580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.

Nested DSL creation rule

Nested DSL configuration rule

DSL configuration rule for each element in a map

Nested DSL property configuration

a DSL example showing type conversions

a DSL rule using inputs

model task output

Using the Play plugin

The components report

Selecting a version of the Play Framework

Adding dependencies to a Play application

A Play 2.6 project

Adding Guice dependency in Play 2.6 project

Configuring extra source sets to a Play application

Adding extra source sets to a Play application

Configuring Scala compiler options

Configuring routes style

Configuring a custom asset pipeline

Configuring dependencies on Play subprojects

Add extra files to a Play application distribution

Applying both the Play and IDEA plugins

Defining a library component

Defining executable components

Sample build

Dependent components report

Dependent components report

Report of components that depends on the operators component

Report of components that depends on the operators component, including test suites
Assemble components that depends on the passing/static binary of the operators component
Build components that depends on the passing/static binary of the operators component
Adding a custom check task

Running checks for a given binary

The components report

The 'cpp’ plugin

C++ source set

The 'c' plugin

C source set

The ‘assembler’ plugin

The 'objective-c' plugin

The 'objective-cpp' plugin

Settings that apply to all binaries

Settings that apply to all shared libraries

Settings that apply to all binaries produced for the 'main' executable component
Settings that apply only to shared libraries produced for the 'main’ library component
The 'windows-resources' plugin

625. Configuring the location of Windows resource sources
626. Building a resource-only dll

627. Providing a library dependency to the source set
628. Providing a library dependency to the binary
629. Declaring project dependencies

630. Creating a precompiled header file

631. Including a precompiled header file in a source file
632. Configuring a precompiled header

633. Defining build types

634. Configuring debug binaries

635. Defining platforms

636. Defining flavors

637. Targeting a component at particular platforms
638. Building all possible variants

639. Defining tool chains

640. Reconfigure tool arguments

641. Defining target platforms

642. Registering CUnit tests

643. Configuring CUnit tests

644. Running CUnit tests

645. Registering GoogleTest tests

646. an example of using a custom software model
647. Declare a custom component

648. Register a custom component

649. Declare a custom binary

650. Register a custom binary

651. Declare a custom source set

652. Register a custom source set

653. Generates documentation binaries

654. Generates tasks for text source sets

655. Register a custom source set

656. an example of using a custom software model
657. components report

658. public type and internal view declaration

659. type registration

660. public and internal data mutation

661. example build script and model report output
662. Module dependencies

663. File dependencies

664. Generated file dependencies

665. Project dependencies

666. Gradle API dependencies

667. Gradle TestKit dependencies

668. Gradle's Groovy dependencies

669. Flat repository resolver

670.
671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.
683.
684.
685.
686.
687.
688.

Adding central Maven repository

Adding Bintray's JCenter Maven repository

Adding Google Maven repository

Adding the local Maven cache as a repository

Adding custom Maven repository

Adding additional Maven repositories for JAR files
Accessing password-protected Maven repository

Ivy repository

Ivy repository with named layout

Ivy repository with pattern layout

Ivy repository with multiple custom patterns

Ivy repository with Maven compatible layout

Ivy repository with authentication

Maven repository that supports artifacts without metadata
Declaring a Maven and lvy repository

Using the SFTP protocol for a repository

Declaring a S3 backed Maven and lvy repository

Declaring a S3 backed Maven and lvy repository using IAM
Declaring a Google Cloud Storage backed Maven and Ivy repository using default application

credentials

689.
690.

Configure repository to use only digest authentication
Configure repository to use preemptive authentication

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

About Gradle

Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology
in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!
Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or pom xm andi v
files.

Ant tasks and builds as first class citizens.

Groovy build scripts.

A rich domain model for describing your build.

In Overview you will find a detailed overview of Gradle. Otherwise, the guides are waiting, have fun :)

8§
About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren’t
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 21 of 807

https://guides.gradle.org
http://www.gradle.org/contribute

Overview

8§
Features

Here is a list of some of Gradle’s features.

Declarative builds and build-by-convention
At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build
The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don’t be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle allows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up to
huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental
build function, this is also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds
Gradle’s support for multi-project build is outstanding. Project dependencies are first class citizens. We
allow you to model the project relationships in a multi-project build as they really are for your problem

Page 22 of 807

domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds this is a big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and Ivy
repositories to jars or directories on the local file system.

Gradle is the first build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime.
You can depend on them from Gradle, you can enhance them from Gradle, you can even declare
dependencies on Gradle tasks in your build.xml. The same integration is provided for properties, paths,
etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xm into a Gradle script.

Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend to
write tests that make sure that the produced artifacts are similar. That way migration is as less disruptive
and as reliable as possible. This is following the best-practices for refactoring by applying baby steps.

Groovy

Gradle’s build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as a rigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an
enjoyable and productive experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. This
is useful for example for some continuous integration servers. It is also useful for an open source project
to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is a zero
administration approach for the client machines. It also enforces the usage of a particular Gradle version
thus minimizing support issues.

Free and open source
Gradle is an open source project, and is licensed under the ASL.

Page 23 of 807

http://www.gradle.org/license

§
Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer lies in
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build should
be as transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think this is a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful as it
could be.ll Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn’'t have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML, Java
and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

Page 24 of 807

http://www.defmacro.org/ramblings/lisp.html

Working with existing builds

Installing Gradle

You can install the Gradle build tool on Linux, macOS, or Windows. This document covers installing using a
package manager like SDKMAN!, Homebrew, or Scoop, as well as manual installation.

Use of the Gradle Wrapper is the recommended way to upgrade Gradle.

You can find all releases and their checksums on the releases page.

§
Prerequisites

Gradle runs on all major operating systems and requires only a Java JDK version 7 or higher to run. To
check, runj ava -ver si on. You should see something like this:

java -version
java version "1.8.0_151"
Java(TM SE Runtinme Environment (build 1.8.0 151-bl2)
Java Hot Spot (TM 64-Bit Server VM (build 25.151-b12, nixed node)

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment

variable to point to the installation directory of the desired JDK.

8§
Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-based systems.

sdk install gradle

Homebrew is "the missing package manager for macOS".

brew install gradle

Scoop is a command-line installer for Windows inspired by Homebrew.

Page 26 of 807

https://gradle.org/releases
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sdkman.io
http://brew.sh
http://scoop.sh

scoop install gradle

Chocolatey is "the package manager for Windows".

choco install gradle

MacPorts is a system for managing tools on macOS:

sudo port install gradle

Proceed to next steps

8§
Installing manually

§
Step 1. Download the latest Gradle distribution

The distribution ZIP file comes in two flavors:

Binary-only (bin)

Complete (all) with docs and sources

Need to work with an older version? See the releases page.

8
Step 2. Unpack the distribution

§
Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing, e.g.:

nkdir /opt/gradle

unzip -d /opt/gradle gradle-4.9-bin.zip

I's /opt/gradle/gradle-4.9

LICENSE NOTICE bin getting-started.htm init.d lib nmedia

8
Microsoft Windows users

Create a new directory C. \ G- adl e with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was downloaded.
Double-click the ZIP archive to expose the content. Drag the content folder gr adl e- 4. 9 to your newly
created C: \ G adl e folder.

Alternatively you can unpack the Gradle distribution ZIP into C:\ G- adl e using an archiver tool of your

choice.

Page 27 of 807

https://chocolatey.org
https://www.macports.org
https://gradle.org/releases
https://gradle.org/releases

8
Step 3. Configure your system environment

For running Gradle, firstly add the environment variable GRADLE HOVE. This should point to the unpacked
files from the Gradle website. Next add GRADLE HOME/ bi n to your PATH environment variable. Usually,
this is sufficient to run Gradle.

8
Linux & MacOS users

Configure your PATH environment variable to include the bi n directory of the unzipped distribution, e.g.:
export PATH=$PATH: / opt/ gradl e/ gradl e-4. 9/ bin

8
Microsoft Windows users

In File Explorer right-click on the Thi s PC (or Conput er) icon, then click Properti es Advanced Syste
Envi ronnental Vari abl es.

Under Syst em Var i abl es select Pat h, then click Edi t . Add an entry for C: \ Gr adl e\ gradl e-4. 9\ bi n
. Click OK to save.

Proceed to next steps
8§

Verifying installation

Open a console (or a Windows command prompt) and run gr adl e - v to run gradle and display the version,

e.g.:

gradle -v

Build tine: 2018-02-21 15:28:42 UIC

Revi si on: 819e0059da49f 469d3e9b2896dc4e72537¢c4847d

G oovy: 2.4.12

Ant : Apache Ant(TM version 1.9.9 conpiled on February 2 2017
JVM 1.8.0_151 (Oracle Corporation 25.151-b12)

Cs: Mac OS X 10. 13.3 x86_64

If you run into any trouble, see the section on troubleshooting installation.

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available from the

Page 28 of 807

releases page) and following these verification instructions.

8§
Next steps

Now that you have Gradle installed, use these resources for getting started:
Create your first Gradle project by following the Creating New Gradle Builds tutorial.
Sign up for a live introductory Gradle training with a core engineer.

Learn how to achieve common tasks through the command-line interface.

Configure Gradle execution, such as use of an HTTP proxy for downloading dependencies.

Subscribe to the Gradle Newsletter for monthly release and community updates.

Page 29 of 807

https://gradle.org/releases
https://guides.gradle.org/creating-new-gradle-builds/
https://gradle.org/training/intro-to-gradle/
https://newsletter.gradle.com/

Command-Line Interface

The command-line interface is one of the primary methods of interacting with Gradle. The following serves
as a reference of executing and customizing Gradle use of a command-line or when writing scripts or
configuring continuous integration.

Use of the Gradle Wrapper is highly encouraged. You should substitute . / gr adl ewor gr adl ew. bat for gr
in all following examples when using the Wrapper.

Executing Gradle on the command-line conforms to the following structure. Options are allowed before and
after task names.

gradle [taskNane...] [--option-nane...]

If multiple tasks are specified, they should be separated with a space.

Options that accept values can be specified with or without = between the option and argument; however,

use of = is recommended.

--consol e=pl ain

Options that enable behavior have long-form options with inverses specified with - - no- . The following are
opposites.

--bui |l d-cache
--no-bui | d- cache

Many long-form options, have short option equivalents. The following are equivalent:

--help
-h

Note: Many command-line flags can be specified in gr adl e. properti es to avoid needing to be
typed. See the configuring build environment guide for details.

The following sections describe use of the Gradle command-line interface, grouped roughly by user goal.
Some plugins also add their own command line options, for example - -t est s for Java test filtering. For
more information on exposing command line options for your own tasks, see the section called “Declaring
and Using Command Line Options”.

Page 30 of 807

8§
Executing tasks

You can run a task and all of its dependencies.

gradl e nyTask

You can learn about what projects and tasks are available in the project reporting section.

§
Executing tasks in multi-project builds

In a multi-project build, subproject tasks can be executed with ":" separating subproject name and task
name. The following are equivalent when run from the root project.

gradl e : nmySubproj ect: t askNane
gradl e nmySubpr oj ect: t askNane

You can also run a task for all subprojects using the task hame only. For example, this will run the "test" task
for all subprojects when invoked from the root project directory.

gradl e test

When invoking Gradle from within a subproject, the project name should be omitted:

cd nmySubpr oj ect
gradl e taskNane

Note: When executing the Gradle Wrapper from subprojects, one must reference gr adl ew
relatively. For example: . ./ gradl ew t askNanme. The community gdub project aims to make this

more convenient.

8
Executing multiple tasks

You can also specify multiple tasks. For example, the following will execute the t est and depl oy tasks in

the order that they are listed on the command-line and will also execute the dependencies for each task.

gradl e test depl oy

8
Excluding tasks from execution

You can exclude a task from being executed using the - x or - - excl ude-t ask command-line option and
providing the name of the task to exclude.

Page 31 of 807

http://www.gdub.rocks/

Figure 1. Example Task Graph

compile compile Test dist
test

Example 1. Excluding tasks

Output of gradl e di st --excl ude-task test
> gradl e dist --exclude-task test

> Task :conpile
conpi l i ng source

> Task :dist
buil ding the distribution

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

You can see that the t est task is not executed, even though it is a dependency of the di st task. The t est
task’s dependencies such as conpi | eTest are not executed either. Those dependencies of t est that are
required by another task, such as conpi | e, are still executed.

8
Forcing tasks to execute

You can force Gradle to execute all tasks ignoring up-to-date checks using the - - r er un-t asks option:

gradle test --rerun-tasks

This will force t est and all task dependencies of t est to execute. It's a little like running gr adl e cl ean t
, but without the build’s generated output being deleted.

§
Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possible in a single build execution, you can use the - - cont i nue option.

gradl e test --continue

When executed with --conti nue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

Page 32 of 807

If a task fails, any subsequent tasks that were depending on it will not be executed. For example, tests will
not run if there is a compilation failure in the code under test; because the test task will depend on the
compilation task (either directly or indirectly).

§
Task name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task. You only
need to provide enough of the task name to uniquely identify the task. For example, it's likely gr adl e che
is enough for Gradle to identify the check task.

You can also abbreviate each word in a camel case task name. For example, you can execute task conpi | €
by running gr adl e conpTest orevengradl e cT.

Example 2. Abbreviated camel case task name

Outputof gradl e cT
> gradle cT

> Task :conpile
conpi |l i ng source

> Task :conpil eTest
conmpiling unit tests

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

You can also use these abbreviations with the -x command-line option.

8
Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

8
Computing all outputs

It is common in Gradle builds for the bui | d task to designate assembling all outputs and running all checks.

gradl e build

§
Running applications

It is common for applications to be run with the r un task, which assembles the application and executes
some script or binary.

Page 33 of 807

gradl e run

8
Running all checks

It is common for all verification tasks, including tests and linting, to be executed using the check task.

gradl e check

8
Cleaning outputs

You can delete the contents of the build directory using the cl ean task, though doing so will cause
pre-computed outputs to be lost, causing significant additional build time for the subsequent task execution.

gradl e cl ean

8§
Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

You can get basic help about available reporting options using gr adl e hel p.

8
Listing projects

Running gradl e proj ects gives you a list of the sub-projects of the selected project, displayed in a

hierarchy.
gradl e projects
You also get a project report within build scans. Learn more about creating build scans.

8
Listing tasks

Running gr adl e tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task.

gradl e tasks

By default, this report shows only those tasks which have been assigned to a task group. You can obtain
more information in the task listing using the - - al | option.

gradl e tasks --all

Page 34 of 807

https://guides.gradle.org/creating-build-scans/

8
Show task usage details

Running gradl e hel p --task soneTask gives you detailed information about a specific task.
Example 3. Obtaining detailed help for tasks

Outputofgradle -gq help --task |ibs
> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
;api:libs
s webapp: | i bs

Type
Task (org.gradle. api. Task)

Descri ption
Buil ds the JAR

G oup
buil d

This information includes the full task path, the task type, possible command line options and the description
of the given task.

8
Reporting dependencies

Build scans give a full, visual report of what dependencies exist on which configurations, transitive
dependencies, and dependency version selection.

gradl e myTask --scan

This will give you a link to a web-based report, where you can find dependency information like this.

Page 35 of 807

@ @ < il & scans.gradle.com f i 'n] e
ﬁ Build Scan e v gradle :core:test

= Summary
214 dependencies resolved in 70 projects across 156 configurations
E| Console log

«# Timeline

W Performance announce

:B Tect antlr

“ esls .

) ‘baseServices -

l-h Projects compileClasspath :
com.google.code. findbugs jsr305:1.3.9

%% Dependencies S e
com.google guava:guava-jdk5:17.0

[+ Plugins commaons-io:commons-io:2,2

o= - commons-lang.commons-lang: 2.6

e= Custom values o)

= net.jcipcjcip-annotations: 1.0

s Switches org.sifdj:sifdj-api:1.7.10

] Infrastructure runtimeClasspath »
testFixturesCompileClasspath

‘hacaSarvicsalrnmnu

Learn more in Inspecting Dependencies.

8
Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken down
by configuration. For each configuration, the direct and transitive dependencies of that configuration are
shown in a tree. Below is an example of this report:

gradl e dependenci es
Concrete examples of build scripts and output available in the Inspecting Dependencies.

Running gradl e bui |l dEnvi r onment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualizes the dependencies of the software being built.

gradl e buil dEnvi ronnent

Running gradl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input.

gradl e dependencyl nsi ght

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.

Page 36 of 807

This is achieved with the optional - - conf i gur at i on parameter:

§
Listing project properties

Running gr adl e properti es gives you a list of the properties of the selected project.
Example 4. Information about properties

Outputofgradl e -qg api: properties
> gradle -q api:properties

Project :api - The shared APl for the application

all projects: [project ':api']

ant: org.gradle.api.internal.project. DefaultAntBuil der@2345

ant Bui | der Factory: org.gradle.api.internal.project.DefaultAntBuil derFact ory@234!
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decor at el
asDynam cObj ect: Dynam cObj ect for project ':api
baseC assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoaderSi
bui I dDir: /home/ user/ gradl e/ sanpl es/ user gui de/tutorial/projectReports/api/build
bui l dFi | e: /hone/ user/ gradl e/ sanpl es/ usergui de/tutorial / project Reports/api/build.

8
Software Model reports

You can get a hierarchical view of elements for software model projects using the nodel task:

gr adl e nodel

Learn more about the model report in the software model documentation.

8§
Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties through
gradle-completion, installed separately.

Page 37 of 807

https://github.com/gradle/gradle-completion

Figure 2. Gradle Completion

Page 38 of 807

8§
Debugging options

-?,-h,--help

Shows a help message with all available CLI options.

-V, --version

Prints Gradle, Groovy, Ant, JVM, and operating system version information.

-S,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See also logging options.

-s,--stacktrace
Print out the stacktrace also for user exceptions (e.g. compile error). See also logging options.

--S§can

Create a build scan with fine-grained information about all aspects of your Gradle build.

- Dorg. gradl e. debug=t r ue
Debug Gradle client (non-Daemon) process. Gradle will wait for you to attach a debugger at | ocal host :
by default.

- Dor g. gr adl e. daenon. debug=t r ue
Debug Gradle Daemon process.

8§
Performance options

Try these options when optimizing build performance. Learn more about improving performance of Gradle
builds here.

Many of these options can be specified in gr adl e. pr operti es so command-line flags are not necessary.
See the configuring build environment guide.

- -bui | d- cache, - - no- bui | d- cache
Toggles the Gradle build cache. Gradle will try to reuse outputs from previous builds. Default is off.

--confi gure-on-denand, - - no- confi gur e- on- demand
Toggles Configure-on-demand. Only relevant projects are configured in this build run. Default is off.

- - max- wor kers
Sets maximum number of workers that Gradle may use. Default is number of processors.

--parallel,--no-parallel
Build projects in parallel. For limitations of this option please see the section called “Parallel project
execution”. Default is off.

Page 39 of 807

https://gradle.com/build-scans
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/

--profile
Generates a high-level performance report in the $bui | dDi r/ report s/ profi | e directory. - - scan is

preferred.

--Scan

Generate a build scan with detailed performance diagnostics.

0@ < LH| & scans.gradle.com [i o
d' Build Scan e’ + gradle :coreitest Sep 27 2017 2:00:13 PM MST
E Summary Build Confipuration Dependency resalution Task executic
[*-] Console log
L Total build time
+## Timeline

Startup 0.767s

Settings and buildSre

Loading projects

H;] fests Configuration

& Projects Task execution

g-g Dependencies End of build

[Plugins Total garbage collection time

a= Custom values
Peak heap memory usage

D £}
cp Switches PS5 Eden Space 551.55/624.95 MB
B Infrastructure PS Survivor Space 67.87/86.51 MB
PS Old Gen 0.31/1.43 GB (21.6

§
Gradle daemon options

You can manage the Gradle Daemon through the following command line options.

- - daenon, - - no- daenon
Use the Gradle Daemon to run the build. Starts the daemon if not running or existing daemon busy.
Default is on.

--foreground
Starts the Gradle Daemon in a foreground process.

- - st at us (Standalone command)
Run gradl e - - st at us to list running and recently stopped Gradle daemons. Only displays daemons of

Page 40 of 807

the same Gradle version.

- - st op (Standalone command)
Run gr adl e - - st op to stop all Gradle Daemons of the same version.

-Dorg. gradl e. daenon. i dl eti meout =(nunber of mlliseconds)
Gradle Daemon will stop itself after this number of milliseconds of idle time. Default is 10800000 (3
hours).

8§
Logging options

§
Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least verbose to
most verbose. Learn more in the logging documentation.

-Dorg. gradl e. | oggi ng. | evel =(qui et,warn, |i fecycl e, i nfo, debug)
Set logging level via Gradle properties.

-q,--qui et
Log errors only.

-W, --warn

Set log level to warn.

-i,--info
Set log level to info.

-d, - -debug
Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

8
Customizing log format

You can control the use of rich output (colors and font variants) by specifying the "console"” mode in the
following ways:

-Dorg. gradl e. consol e=(aut o, pl ai n, rich, verbose)
Specify console mode via Gradle properties. Different modes described immediately below.

--consol e=(auto, plain,rich, verbose)
Specifies which type of console output to generate.

Set to pl ai n to generate plain text only. This option disables all color and other rich output in the

Page 41 of 807

console output. This is the default when Gradle is not attached to a terminal.

Set to aut o (the default) to enable color and other rich output in the console output when the build
process is attached to a console, or to generate plain text only when not attached to a console. This is
the default when Gradle is attached to a terminal.

Set to ri ch to enable color and other rich output in the console output, regardless of whether the build
process is not attached to a console. When not attached to a console, the build output will use ANSI
control characters to generate the rich output.

Set to ver bose to enable color and other rich output like the ri ch, but output task names and outcomes
at the lifecycle log level, as is done by default in Gradle 3.5 and earlier.

8
Showing or hiding warnings

By default, Gradle won't display all warnings (e.g. deprecation warnings). Instead, Gradle will collect them
and render a summary at the end of the build like:

Deprecated Gradle features were used in this build, making it inconpatible with ¢
You can control the verbosity of warnings on the console with the following options:

- Dor g. gr adl e. war ni ng. nrode=(al | , none, summary)
Specify warning mode via Gradle properties. Different modes described immediately below.

- -war ni ng- node=(al I , none, summary)

Specifies how to log warnings. Default is summary.

Setto al | to log all warnings.

Set to sunmar y to suppress all warnings and log a summary at the end of the build.
Set to none to suppress all warnings, including the summary at the end of the build.

§
Rich Console

Gradle’s rich console displays extra information while builds are running.

Page 42 of 807

200

> Task :logging:compilelava

Note: /Users/eric/src/gradle/gradle/subprojects/
src/main/java/org/gradle/internal/logging/progres
essLogger.java uses or overrides a deprecated AP
Note: Recompile with -Xlint:deprecation for deta
Note: Some input files use unchecked or unsafe oj
S.

Note: Recompile with =Xlint:unchecked for details

> :toolingApi:compilelava

> :logging:compileTestFixturesGroovy
> :dependencyManagement:compilelava
> :reporting:classpathManifest

Features:

Progress bar and timer visually describe overall status

Parallel work-in-progress lines below describe what is happening now
Colors and fonts are used to highlight important output and errors

8§
Execution options

The following options affect how builds are executed, by changing what is built or how dependencies are
resolved.

--include-build
Run the build as a composite, including the specified build. See Composite Builds.

--offline
Specifies that the build should operate without accessing network resources. Learn more about options
to override dependency caching.

Page 43 of 807

--refresh-dependenci es
Refresh the state of dependencies. Learn more about how to use this in the dependency management
docs.

--dry-run
Run Gradle with all task actions disabled. Use this to show which task would have executed.

--wite-|ocks
Indicates that all resolved configurations that are lockable should have their lock state persisted. Learn
more about this in dependency locking.

--updat e- | ocks <group: nane>[, <gr oup: nanme>] *
Indicates that versions for the specified modules have to be updated in the lock file. This flag also implies
--write-1ocks. Learn more about this in dependency locking.

8§
Environment options

You can customize many aspects about where build scripts, settings, caches, and so on through the options
below. Learn more about customizing your build environment.

-b,--build-file
Specifies the build file. For example: gradl e --buil d-fil e=fo0o. gradl e. The defaultis bui | d. gra
, then bui | d. gr adl e. kt s, then myPr oj ect Nane. gr adl e.

-c,--settings-file
Specifies the settings file. For example: gradl e --settings-fil e=sonewher e/ el se/ settings. g

-g,--gradl e-user-hone
Specifies the Gradle user home directory. The default is the . gr adl e directory in the user's home
directory.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory.

--project-cache-dir
Specifies the project-specific cache directory. Default value is . gr adl e in the root project directory.

- U, - - no- sear ch- upwar d (deprecated)
Don’t search in parent directories for a set ti ngs. gr adl e file.

-D, --system prop
Sets a system property of the JVM, for example - Dmypr op=nyval ue. See the section called “System
properties”.

-l,--init-script
Specifies an initialization script. See Initialization Scripts.

Page 44 of 807

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=nyval ue. See the section called
“Project properties”.

-Dorg. gradl e.jvmargs
Set JVM arguments.

-Dorg. gradl e. java. hone
Set JDK home dir.

8§
Bootstrapping new projects

§
Creating new Gradle builds

Use the built-in gr adl e i ni t task to create a new Gradle builds, with new or existing projects.

gradle init

Most of the time you'll want to specify a project type. Available types include basi ¢ (default), j ava-1i brar
,j ava- appl i cati on, and more. See init plugin documentation for details.

gradle init --type java-library

8
Standardize and provision Gradle

The built-in gr adl e wr apper task generates a script, gr adl ew, that invokes a declared version of Gradle,

downloading it beforehand if necessary.

gradl e wrapper --gradle-version=4.4

You can also specify - - di stri bution-type=(bin|all),--gradle-distribution-url,--gradle-
in addition to - - gr adl e- ver si on. Full details on how to use these options are documented in the Gradle
wrapper section.

8
Continuous Build

Continuous Build allows you to automatically re-execute the requested tasks when task inputs change.

For example, you can continuously run the t est task and all dependent tasks by running:

gradl e test --continuous

Gradle will behave as if you ran gradl e test after a change to sources or tests that contribute to the

Page 45 of 807

requested tasks. This means that unrelated changes (such as changes to build scripts) will not trigger a
rebuild. In order to incorporate build logic changes, the continuous build must be restarted manually.

8§
Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D). If
Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | | command or similar). If the build is being executed via the Tooling
API, the build can be cancelled using the Tooling API's cancellation mechanism.

8
Limitations and quirks

Note: Continuous build is an incubating feature.

There are several issues to be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle releases.

§
Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn’t unique to continuous build. A task that
modifies its own inputs will never be considered up-to-date when run "normally” without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a task
that has that file as an input. In some cases, it may be obvious (e.g., a Java file is compiled with conpi | eJa
). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

§
Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific
options, which means that:

On macOS, Gradle will poll for file changes every 10 seconds instead of every 2 seconds.

On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause continuous
build to no longer work on very large projects.

Page 46 of 807

§
Performance and stability

The JDK file watching facility relies on inefficient file system polling on macOS (see: JDK-7133447). This can
significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on macOS (see: JDK-8079620). This
will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit continuous
build and start again.

On Linux, OpenJDK'’s implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

§
Changes to symbolic links

Creating or removing symbolic link to files will initiate a build.

Modifying the target of a symbolic link will not cause a rebuild.

Creating or removing symbolic links to directories will not cause rebuilds.
Creating new files in the target directory of a symbolic link will not cause a rebuild.

Deleting the target directory will not cause a rebuild.

§
Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 47 of 807

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

The Gradle Wrapper

The recommended way to execute any Gradle build is with the help of the Gradle Wrapper (in short just
“Wrapper”). The Wrapper is a script that invokes a declared version of Gradle, downloading it beforehand if
necessary. As a result, developers can get up and running with a Gradle project quickly without having to
follow manual installation processes saving your company time and money.

Figure 3. The Wrapper workflow

1. Download

distribution
_ Gradle > Serve
Build
. use 2 Storeond
distribution distribution

v

Gradle
User Home

In a nutshell you gain the following benefits:
Standardizes a project on a given Gradle version, leading to more reliable and robust builds.

Provisioning a new Gradle version to different users and execution environment (e.g. IDEs or Continuous
Integration servers) is as simple as changing the Wrapper definition.

So how does it work? For a user there are typically three different workflows:
You set up a new Gradle project and want to add the Wrapper to it.

You want to run a project with the Wrapper that already provides it.

Page 48 of 807

You want to upgrade the Wrapper to a new version of Gradle.
The following sections explain each of these use cases in more detail.

8§
Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine as
described in Installing Gradle. Thankfully, generating the initial Wrapper files is a one-time process.

Every vanilla Gradle build comes with a built-in task called wr apper . You'll be able to find the task listed
under the group "Build Setup tasks" when listing the tasks. Executing the wr apper task generates the

necessary Wrapper files in the project directory.
Example 5. Running the Wrapper task

Output of gr adl e wr apper
> gradl e wrapper
> Task :w apper

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note: To make the Wrapper files available to other developers and execution environments you'll
need to check them into version control. All Wrapper files including the JAR file are very small in
size. Adding the JAR file to version control is expected. Some organizations do not allow projects to
submit binary files to version control. At the moment there are no alternative options to the
approach.

The generated Wrapper properties file, gr adl e/ wr apper/ gr adl e- wr apper . properti es, stores the
information about the Gradle distribution.

The server hosting the Gradle distribution.

The type of Gradle distribution. By default that's the - bi n distribution containing only the runtime but no
sample code and documentation.

The Gradle version used for executing the build. By default the wr apper task picks the exact same Gradle
version that was used to generate the Wrapper files.

Example 6. The generated distribution URL

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUl=https\://services.gradle.org/distributions/gradle-4.3.1-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the following

Page 49 of 807

command line options.

--gradl e-version
The Gradle version used for downloading and executing the Wrapper.

--distribution-type
The Gradle distribution type used for the Wrapper. Available options are bi n and al | . The default value
is bi n.

--gradl e-di stribution-url
The full URL pointing to Gradle distribution ZIP file. Using this option makes - - gr adl e- ver si on and - -
obsolete as the URL already contains this information. This option is extremely valuable if you want to
host the Gradle distribution inside your company’s network.

--gradl e-di stribution-sha256-sum
The SHA256 hash sum used for verifying the downloaded Gradle distribution.

Let's assume the following use case to illustrate the use of the command line options. You would like to
generate the Wrapper with version 4.0 and use the -al | distribution to enable your IDE to enable
code-completion and being able to navigate to the Gradle source code. Those requirements are captured by
the following command line execution:

Example 7. Providing options to Wrapper task

Output of gradl e wrapper --gradle-version 4.0 --distribution-type all
> gradl e wrapper --gradle-version 4.0 --distribution-type all
> Task :w apper

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

As a result you can find the desired information in the Wrapper properties file.
Example 8. The generated distribution URL

gr adl e/ wr apper/ gradl e-w apper. properties.
di stributionUrl=https\://services.gradle.org/distributions/gradle-4.0-all.zip

Let's have a look at the following project layout to illustrate the expected Wrapper files:

Page 50 of 807

buil d. gradl e
settings.gradle
gradl e
wWr apper
gr adl e-wr apper.j ar
gr adl e-wr apper . properties
gradl ew
gr adl ew. bat

A Gradle project typically provides a bui | d. gradl e and a set ti ngs. gr adl e file. The Wrapper files live
alongside in the gr adl e directory and the root directory of the project. The following list explains their
purpose.

gr adl e-wr apper. j ar
The Wrapper JAR file containing code for downloading the Gradle distribution.

gr adl e- wr apper . properties
A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle version
compatible with this version.

gr adl ew, gr adl ew. bat
A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and execute the build with the Wrapper without having to install the Gradle runtime. If the
project you are working on does not contain those Wrapper files then you'll need to generate them.

8§
Using the Gradle Wrapper

It is recommended to always execute a build with the Wrapper to ensure a reliable, controlled and
standardized execution of the build. Using the Wrapper looks almost exactly like running the build with a
Gradle installation. Depending on the operating system you either run gr adl ewor gr adl ew. bat instead of
the gradl e command. The following console output demonstrate the use of the Wrapper on a Windows
machine for a Java-based project.

Example 9. Executing the build with the Wrapper batch file

Output of gr adl ew. bat bui |l d
> gradl ew. bat build
Downl oadi ng https://services.gradle.org/distributions/gradle-4.0-all.zip

Unzi ppi ng C \ Docunents and Settings\C audi a\. gradl e\w apper\di sts\gradl e-4.0-al |l
Set executabl e perm ssions for: C\Docunents and Settings\C audi a\. gradl e\ w appel

BUI LD SUCCESSFUL in 12s
1 actionable task: 1 executed

Page 51 of 807

In case the Gradle distribution is not available on the machine, the Wrapper will download it and store in the
local file system. Any subsequent build invocation is going to reuse the existing local distribution as long as
the distribution URL in the Gradle properties doesn’t change.

Note: The Wrapper shell script and batch file reside in the root directory of a single or multi-project
Gradle build. You will need to reference the correct path to those files in case you want to execute
the build from a subproject directory e.g. . . /. . / gradl ew t asks.

8§
Upgrading the Gradle Wrapper

Projects will typically want to keep up with the times and upgrade their Gradle version to benefit from new
features and improvements. One way to upgrade the Gradle version is manually change the di stri buti on
property in the Wrapper property file. The better and recommended option is to run the wr apper task and
provide the target Gradle version as described in the section called “Adding the Gradle Wrapper”. Using the v
task ensures that any optimizations made to the Wrapper shell script or batch file with that specific Gradle
version are applied to the project. As usual you'd commit the changes to the Wrapper files to version control.

Use the Gradle wr apper task to generate the wrapper, specifying a version. The default is the current
version, which you can check by executing . / gr adl ew - - ver si on.

Example 10. Upgrading the Wrapper version

Output of . / gradl ew wr apper --gradle-version 4.2.1
> ./ gradl ew wrapper --gradle-version 4.2.1

BUI LD SUCCESSFUL in 4s
1 actionable task: 1 executed

Page 52 of 807

Example 11. Checking the Wrapper version after upgrading

Output of . / gradl ew -v
> ./gradlew -v
Downl oadi ng https://services.gradle.org/distributions/gradle-4.2.1-bin.zip

Unzi ppi ng / Users/cl audi a/ . gradl e/ wr apper/di sts/ gradl e-4. 2. 1- bi n/ daj vke9o8knaxbuOl
Set executabl e perm ssions for: /Users/claudial/.gradl e/wapper/dists/gradle-4.2.:

Build tine: 2017-10-02 15:36:21 UIC

Revi si on: a88ehbd6be7840c2e59ae4782eb0f 27f be3405ddf

G oovy: 2.4.12

Ant : Apache Ant(TM version 1.9.6 conpiled on June 29 2015
JVM 1.8.0_60 (Oracle Corporation 25.60-b23)

Cs: Mac OS X 10.13.1 x86_64

8§

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However, organizational
policies, security constraints or personal preferences might require you to dive deeper into customizing the
Wrapper. Thankfully, the built-in wr apper task exposes numerous options to bend the runtime behavior to

your needs. Most configuration options are exposed by the underlying task type W apper .

Let's assume you grew tired of defining the - al | distribution type on the command line every time you
upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the wr apper task.

Example 12. Customizing the Wrapper task
buil d. gradl e

wr apper {
di stributionType = Wapper.Di stributionType. ALL

With the configuration in place running ./ gradl ew wrapper --gradle-version 4.1 is enough to
produce adi stri butionUrl value in the Wrapper properties file that will request the - al | distribution.

Page 53 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Example 13. The generated distribution URL

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUrl=https\://services.gradle.org/distributions/gradle-4.1-all.zip

Check out the API documentation for more detail descriptions of the available configuration options. You can
also find various samples for configuring the Wrapper in the Gradle distribution.

8§
Authenticated Gradle distribution download

The Gradle W apper can download Gradle distributions from servers using HTTP Basic Authentication. This
enables you to host the Gradle distribution on a private protected server. You can specify a username and
password in two different ways depending on your use case: as system properties or directly embedded in
the di stri buti onUr | . Credentials in system properties take precedence over the ones embedded in di st

Security Warning

HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP ones. With
Basic Authentication, the user credentials are sent in clear text.

Using system properties can be done in the . gradl e/ gradl e. properties file in the user's home

directory, or by other means, see the section called “Gradle properties”.
Example 14. Specifying the HTTP Basic Authentication credentials using system properties

gradl e. properties.
syst enProp. gradl e. w apper User =user nane
syst enPr op. gr adl e. w apper Passwor d=passwor d

Embedding credentials in the di stri buti onUrl inthe gradl e/ wr apper/ gradl e-w apper. properti
file also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded in di stri buti onUrl should only be used in a controlled environment.

Example 15. Specifying the HTTP Basic Authentication credentials in di st ri buti onUr |

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributionUrl =https://usernane: password@onehost/ pat h/to/ gradl e-di stri bution. zi

This can be used in conjunction with a proxy, authenticated or not. See the section called “Accessing the
web through a HTTP proxy” for more information on how to configure the W apper to use a proxy.

Page 54 of 807

8§
Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature, download the . sha256 file associated with the Gradle distribution you want to verify.

§
Downloading the SHA-256 file

You can download the . sha256 file from the stable releases or release candidate and nightly releases. The
format of the file is a single line of text that is the SHA-256 hash of the corresponding zip file.

§
Configuring checksum verification

Add the downloaded hash sum to gr adl e- w apper . properti es using the di stri buti onSha256Sun
property or use - - gr adl e-di stri buti on-sha256- sumon the command-line.

Example 16. Configuring SHA-256 checksum verification

gr adl e/ wr apper/ gradl e- w apper. properties.
di stributi onSha256Sunr371cb9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b8236!

Gradle will report a build failure in case the configured checksum does not match the checksum found on the
server for hosting the distribution. Checksum Verification is only performed if the configured Wrapper
distribution hasn’t been downloaded yet.

Page 55 of 807

https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under
the direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle builds
with the Daemon is no different than without. Simply configure whether you want to use it or not - everything
else is handled transparently by Gradle.

8§
Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for every build,
but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - pr of i | e to get a sense of how much impact the Gradle Daemon
can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything to
benefit from it.

If you run CI builds in ephemeral environments (such as containers) that do not reuse any processes, use of
the Daemon will slightly decrease performance (due to caching additional information) for no benefit, and
may be disabled.

8§
Running Daemon Status

To get a list of running Gradle Daemons and their statuses use the - - st at us command.

Sample output:

Page 56 of 807

PI D VERSI ON STATUS
28411 3.0 | DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of
Gradle.

8
Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. There are several ways to
disable the Daemon, but the most common one is to add the line

org. gradl e. daenon=f al se

to the file «USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home directory.
That's typically one of the following, depending on your platform:

C:. \ User s\ <user nanme> (Windows Vista & 7+)
/ User s/ <user nane> (macOS)
/ honme/ <user nane> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in the section called “FAQ” further down. That section also contains more detailed
information on how the Daemon works.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost, regardless of
the version of Gradle a particular build uses.

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both developers'
machines and Continuous Integration servers. However, if you suspect that Daemon makes your ClI
builds unstable, you can disable it to use a fresh runtime for each build since the runtime is
completely isolated from any previous builds.

8§
Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle
processes on your machine, though. Every Daemon monitors its memory usage compared to total system
memory and will stop itself if idle when available system memory is low. If you want to explicitly stop running
Daemon processes for any reason, just use the command gr adl e -- st op.

Page 57 of 807

This will terminate all Daemon processes that were started with the same version of Gradle used to execute
the command. If you have the Java Development Kit (JDK) installed, you can easily verify that a Daemon
has stopped by running the j ps command. You'll see any running Daemons listed with the name G adl eDau

8
FAQ

§
How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

Via environment variables: add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS environment
variable

Via properties file: add or g. gr adl e. daenon=f al se to the «<GRADLE_USER HOVE»/ gr adl e. properti e

file

Note: Note, «GRADLE_USER HOVE» defaults to «USER_HOVE»/ . gr adl e, where «USER_HOVE» is
the home directory of the current user. This location can be configured via the - g and - - gr adl e- user
command line switches, as well as by the GRADLE_USER HOVME environment variable and or g. gr adl ¢
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. pr operti es file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "9JSERPROFI LE% . gradl e" nkdir "%JSERPROFI LEY% . gradle") && (echo. >:

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the current
user:

nkdir -p ~/.gradle & echo "org. gradl e. daenon=fal se" >> ~/.gradl e/ gradl e. properti

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daenon option.

The - - daenon and - - no- daenon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

Page 58 of 807

8
Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is already
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don’t have to
worry about cleaning them up manually.

idle
An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible
A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another example is the set of JVM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory allocation (e.g. - Xmx1024n), default
text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Build Environment for details on how to specify and control the build environment.

The following JVM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s JVM has for this property, the Daemon is not
compatible.

file.encoding

user.language

user.country

user.variant

java.io.tmpdir
javax.net.ssl.keyStore
javax.net.ssl.keyStorePassword
javax.net.ssl.keyStoreType
javax.net.ssl.trustStore

javax.net.ssl.trustStorePassword

Page 59 of 807

javax.net.ssl.trustStoreType
com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

The maximum heap size (i.e. the -Xmx JVM argument)
The minimum heap size (i.e. the -Xms JVM argument)
The boot classpath (i.e. the -Xbootclasspath argument)
The “assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versions is a common reason for having more than one running Daemon process.

§
How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB of
heap. It will use the JVM'’s default minimum heap size. 1GB is more than enough for most builds. Larger
builds with hundreds of subprojects, lots of configuration, and source code may require, or perform better,
with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Build Environment for details.

§
How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to
stop a Daemon process before this, you can either kill the process via your operating system or run the gr ad
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same

Gradle version used to run the command, terminate themselves.

8
What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted.
A Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

Page 60 of 807

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do not
release resources correctly. This is a particularly poignant problem when using Microsoft Windows as it is
less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the or g. gr adl e. daenon. per f or mance. enabl e- noni t ori ng system property to
false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

8
Tools & IDEs

The Gradle Tooling API (see Embedding Gradle using the Tooling API), that is used by IDEs and other tools
to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are executing Gradle
builds from within your IDE you are using the Gradle Daemon and do not need to enable it for your
environment.

8
How does the Gradle Daemon make builds faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed to
once for each build. This in itself is a significant performance optimization, but that's not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For example,
HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for
incremental building.

Page 61 of 807

Dependency Management for Java Projects

This chapter explains how to apply basic dependency management concepts to Java-based projects. For a
detailed introduction to dependency management, see Introduction to Dependency Management.

8§
Dissecting a typical build script

Let's have a look at a very simple build script for a Java-based project. It applies the Java Library plugin
which automatically introduces a standard project layout, provides tasks for performing typical work and
adequate support for dependency management.

Example 17. Dependency declarations for a Java-based project

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i npl ement ati on ' org. hi bernat e: hi bernat e-core: 3. 6. 7. Fi nal
api 'com googl e. guava: guava: 23. 0
testlnplementation "junit:junit: 4.+

The Proj ect . dependenci es{} code block declares that Hibernate core 3.6.7.Final is required to compile
the project’s production source code. It also states that junit >= 4.0 is required to compile the project’s tests.
All dependencies are supposed to be looked up in the Maven Central repository as defined by
Proj ect.repositories{}.The following sections explain each aspect in more detail.

Page 62 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

8§
Declaring module dependencies

There are various types of dependencies that you can declare. One such type is a module dependency. A
module dependency represents a dependency on a module with a specific version built outside the current
build. Modules are usually stored in a repository, such as Maven Central, a corporate Maven or lvy
repository, or a directory in the local file system.

To define an module dependency, you add it to a dependency configuration:
Example 18. Definition of a module dependency

buil d. gradl e
dependenci es {
i npl ement ati on ' org. hi bernat e: hi bernate-core: 3. 6. 7. Fi nal

To find out more about defining dependencies, have a look at Declaring Dependencies.

8§
Using dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a

configuration:

Declaring dependencies
A plugin uses configurations to make it easy for build authors to declare what other subprojects or
external artifacts are needed for various purposes during the execution of tasks defined by the plugin. For
example a plugin may need the Spring web framework dependency to compile the source code.

Resolving dependencies
A plugin uses configurations to find (and possibly download) inputs to the tasks it defines. For example
Gradle needs to download Spring web framework JAR files from Maven Central.

Exposing artifacts for consumption
A plugin uses configurations to define what artifacts it generates for other projects to consume. For
example the project would like to publish its compiled source code packaged in the JAR file to an
in-house Artifactory repository.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined by the
Java Library Plugin.

implementation
The dependencies required to compile the production source of the project which are not part of the API
exposed by the project. For example the project uses Hibernate for its internal persistence layer
implementation.

Page 63 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html

api
The dependencies required to compile the production source of the project which are part of the API
exposed by the project. For example the project uses Guava and exposes public interfaces with Guava

classes in their method signatures.

testimplementation
The dependencies required to compile and run the test source of the project. For example the project
decided to write test code with the test framework JUnit.

Various plugins add further standard configurations. You can also define your own custom configurations in
your build via Pr oj ect . confi gurati ons{}. See Managing Dependency Configurations for the details of
defining and customizing dependency configurations.

8§
Declaring common Java repositories

How does Gradle know where to find the files for external dependencies? Gradle looks for them in a
repository. A repository is a collection of modules, organized by gr oup, nane and ver si on. Gradle
understands different repository types, such as Maven and lvy, and supports various ways of accessing the
repository via HTTP or other protocols.

By default, Gradle does not define any repositories. You need to define at least one with the help of
Proj ect.repositories{} before you can use module dependencies. One option is use the Maven
Central repository:

Example 19. Usage of Maven central repository
buil d. gradl e

repositories {
mavenCentral ()

You can also have repositories on the local file system. This works for both Maven and Ivy repositories.

Example 20. Usage of a local Ivy directory

bui I d. gradl e
repositories {
ivy {

/1 URL can refer to a |local directory
url "../local-repo"

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

Page 64 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

To find out more about defining repositories, have a look at Declaring Repositories.

8§
Publishing artifacts

Dependency configurations are also used to publish files. Gradle calls these files publication artifacts, or
usually just artifacts. As a user you will need to tell Gradle where to publish the artifacts. You do this by
declaring repositories for the upl oadAr chi ves task. Here's an example of publishing to a Maven
repository:

Example 21. Publishing to a Maven repository

buil d. gradl e
apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ nmyRepo/")

Now, when you run gr adl e upl oadAr chi ves, Gradle will build the JAR file, generate a . pomfile and
upload the artifacts.

To learn more about publishing artifacts, have a look at Legacy publishing.

Page 65 of 807

Executing Multi-Project Builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you typically
want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

§
Structure of a multi-project build

Such builds come in all shapes and sizes, but they do have some common characteristics:
A settings. gradl e file in the root or mast er directory of the project
A bui | d. gradl e file in the root or nast er directory

Child directories that have their own *. gr adl e build files (some multi-project builds may omit child project
build scripts)

The settings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’t have to read this file simply to learn what the project structure is as you can run the command gr adl e
. Here's the output from using that command on the Java multiproject build in the Gradle samples:

Page 66 of 807

Example 22. Listing the projects in a build

Outputofgradl e -q projects
> gradle -qg projects

Root project 'multiproject’

+--- Project ':api

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services
project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it finds the setti ngs. gr adl e as the name of the root
project. This usually doesn’t cause problems since all developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that's not necessarily the case. In the above example, the
services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gradl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to all the child projects. It can also be used
to configure individual subprojects when it is preferable to have all the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects will
name the build files after the subproject nhames, such as api . gradl e and servi ces. gr adl e from the
previous example. Such an approach helps a lot in IDEs because it's tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic is handled by the settin
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the child
project directories to find the files with the . gr adl e suffix.

Page 67 of 807

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

8§
Executing a multi-project build

From a user’s perspective, multi-project builds are still collections of tasks you can run. The difference is that
you may want to control which project’s tasks get executed. You have two options here:

Change to the directory corresponding to the subproject you're interested in and just execute gr adl e <t ask
as normal.

Use a qualified task name from any directory, although this is usually done from the root. For example: gr adl

will build the webservice subproject and any subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case of
a multi-project build. The command gr adl e t est will execute the t est task in any subprojects, relative to
the current working directory, that have that task. So if you run the command from the root project directory,
you'll run t est in api, shared, services:shared and services:webservice. If you run the command from the
services project directory, you'll only execute the task in services:shared and services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These
are paths just like directory paths, but use “’ instead of ‘/’ or ‘\'. If the path begins with a *’, then the path is
resolved relative to the root project. In other words, the leading *:’ represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
the t asks task, e.g. gradl e : servi ces: webservi ce: tasks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how this is configured, you can read about writing multi-project builds later in the user guide.

There’s one last thing to note. When you're using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun . ./ ../ gradl ew bui | d.

That's all you really need to know about multi-project builds as a build user. You can now identify whether a
build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 68 of 807

Composite builds

Note: Composite build is an incubating feature. While useful for many use cases, there are bugs to
be discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

8§
What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to a
Gradle multi-project build, except that instead of including single pr oj ect s, complete bui | ds are included.

Composite builds allow you to:

combine builds that are usually developed independently, for instance when trying out a bug fix in a library
that your application uses

decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build". Included
builds do not share any configuration with the composite build, or the other included builds. Each included
build is configured and executed in isolation.

Included builds interact with other builds via dependency substituti on. If any build in the composite
has a dependency that can be satisfied by the included build, then that dependency will be replaced by a
project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.
However for more flexibility, it is possible to explicitly declare these substitutions if the default ones
determined by Gradle are not correct for the composite. See the section called “Declaring the dependencies
substituted by an included build”.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task
dependencies on the composite build or on other included builds. See the section called “Depending on
tasks in an included build”.

Page 69 of 807

8§
Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed
separately can be combined into a composite build. For these examples, the my- uti | s multi-project build
produces 2 different java libraries (nunber-util s and string-util s), and the ny- app build produces
an executable using functions from those libraries.

The ny-app build does not have direct dependencies on mny-utils. Instead, it declares binary
dependencies on the libraries produced by ny-util s.

Example 23. Dependencies of my-app

nmy-app/ bui | d. gradl e
apply plugin: 'java'
apply plugin: '"application'
apply plugin: 'idea'

group "org.sanple"
version "1.0"

mai nCl assNane = "org. sanpl e. nyapp. Mai n"
dependenci es {

conpil e "org. sanpl e: nunber-utils:1.0"
conpile "org.sanple:string-utils:1.0"

}

repositories {
jcenter()

}
Note: The code for this example can be found at sanpl es/ conposi t eBui | ds/ basi ¢ in the *-all’
distribution of Gradle.

8

Defining a composite build via - - i ncl ude- bui | d

The - -i ncl ude- bui I d command-line argument turns the executed build into a composite, substituting

dependencies from the included build into the executed build.

Page 70 of 807

Example 24. Declaring a command-line composite

Outputofgradl e --include-build ../my-utils run

gradle --include-build ../ny-utils run

Task : processResources NO SOURCE

Task :my-utils:string-utils:conpil eJava

Task :ny-utils:string-utils:processResources NO SOURCE
Task :my-utils:string-utils:classes

Task :ny-utils:string-utils:jar

Task :ny-utils:nunber-utils:conpil eJava

Task :ny-utils:nunber-utils:processResources NO SOURCE
Task :ny-utils:nunmber-utils:classes

Task :ny-utils:nunber-utils:jar

Task :conpil eJava

Task :classes

V VV V V V V V V V V V

> Task :run
The answer is 42

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

8
Defining a composite build via setti ngs. gr adl e

It's possible to make the above arrangement persistent, by using
Settings.includeBuild(]ava.lang. Cbj ect) to declare the included build in the setti ngs. gradl e
file. The settings. gradl e file can be used to add subprojects and included builds at the same time.
Included builds are added by location. See the examples below for more details.

8
Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less
useful as a standalone build. One way to avoid this is to define a separate composite build, whose only
purpose is to combine otherwise separate builds.

Example 25. Declaring a separate composite

settings.gradle

r oot Proj ect . name=' adhoc'
i ncl udeBui |l d

i ncl udeBui |l d

.. I ny-app’
o y-util s

In this scenario, the 'main’ build that is executed is the composite, and it doesn’t define any useful tasks to

Page 71 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build must define a
delegating task.

Example 26. Depending on task from included build

buil d. gradl e
task run {
dependsOn gradl e. i ncl udedBui |l d(' ny-app').task(' :run")

More details tasks that depend on included build tasks below.

8
Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.

Every included build:

must have a set ti ngs. gr adl e file.

must not itself be a composite build.

must not have a r oot Pr oj ect . nane the same as another included build.

must not have a r oot Pr oj ect . nane the same as a top-level project of the composite build.
must not have a r oot Pr oj ect . nane the same as the composite build r oot Pr oj ect . nane.

8§
Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build. Tasks can be
executed, tests can be run, and builds can be imported into the IDE.

8
Executing tasks

Tasks from the composite build can be executed from the command line, or from you IDE. Executing a task
will result in direct task dependencies being executed, as well as those tasks required to build dependency
artifacts from included builds.

Note: There is not (yet) any means to directly execute a task from an included build via the
command line. Included build tasks are automatically executed in order to generate required
dependency artifacts, or the including build can declare a dependency on a task from an included
build.

Page 72 of 807

8
Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the idea or eclipse plugin
to your build, it is possible to generate a single IDEA or Eclipse project that permits all builds in the
composite to be developed together.

In addition to these Gradle plugins, recent versions of IntelliJ IDEA and Eclipse Buildship support direct
import of a composite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed together.
For every included build, each sub-project is included as an IDEA Module or Eclipse Project. Source
dependencies are configured, providing cross-build navigation and refactoring.

8§
Declaring the dependencies substituted by an included build

By default, Gradle will configure each included build in order to determine the dependencies it can provide.
The algorithm for doing this is very simple: Gradle will inspect the group and name for the projects in the
included build, and substitute project dependencies for any external dependency matching ${ pr oj ect . gr ol

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not
correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an
included build. Take for example a single-project build ‘unpublished', that produces a java utility library but
does not declare a value for the group attribute:

Example 27. Build that does not declare group attribute

buil d. gradl e
apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for pr oj ect . gr oup, and 'unpublished' being
the root project name). Clearly this isn’t going to be very useful in a composite build. To use the unpublished
library unmodified in a composite build, the composing build can explicitly declare the substitutions that it
provides:

Page 73 of 807

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

Example 28. Declaring the substitutions for an included build

settings.gradle
root Proj ect. nane = 'app'

i ncludeBuil d('../anonynous-library') {
dependencySubstitution {
substitute modul e(' org. sanpl e: nunber-utils') with project(':")

With this configuration, the "my-app" composite build will substitute any dependency on or g. sanpl e: numnbe

with a dependency on the root project of "unpublished".

§
Cases where included build substitutions must be declared

Many builds that use the upl oadAr chi ves task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared substitutions
are required:

When the ar chi vesBaseNane property is used to set the name of the published artifact.

When a configuration other than def aul t is published: this usually means a task other than upl oadAr chi v

is used.
When the MavenPom addFi | t er () is used to publish artifacts that don’t match the project name.

When the maven- publish or ivy-publish plugins are used for publishing, and the publication
coordinates don’'t match ${ pr oj ect . group}: ${pr oj ect . nane}.

8
Cases where composite build substitutions won’t work

Some builds won't function correctly when included in a composite, even when dependency substitutions are
explicitly declared. This limitation is due to the fact that a project dependency that is substituted will always
point to the def aul t configuration of the target project. Any time that the artifacts and dependencies
specified for the default configuration of a project don’t match what is actually published to a repository, then
the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

When a configuration other than def aul t is published.
When the maven- publ i sh ori vy- publ i sh plugins are used.

When the POMor i vy. xm file is tweaked as part of publication.

Page 74 of 807

Builds using these features function incorrectly when included in a composite build. We plan to improve this
in the future.

8§
Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite
build is able to declare task dependencies on its included builds. The included builds are accessed using
Gradl e. get | ncl udedBui | ds() or Gradl e.includedBuild(java.lang.String), and a task

reference is obtained via the | ncl udedBui | d. t ask(] ava. | ang. St ring) method.

Using these APIs, it is possible to declare a dependency on a task in a particular included build, or tasks with
a certain path in all or some of the included builds.

Example 29. Depending on a single task from an included build

bui I d. gradl e
task run {
dependsOn gradl e.includedBuild(' nmy-app').task(':run")

Example 30. Depending on a tasks with path in all included builds

buil d. gradl e
task publishDeps {
dependsOn gradl e. i ncl udedBui | ds*. t ask("' : upl oadAr chi ves')

8§
Current limitations and future plans for composite builds

We think composite builds are pretty useful already. However, there are some things that don’t yet work the
way we’d like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

No support for included builds that have publications that don’t mirror the project default configuration. See
the section called “Cases where composite build substitutions won’t work”.

Native builds are not supported. (Binary dependencies are not yet supported for native builds).

Substituting plugins only works with the bui | dscri pt block but not with the pl ugi ns block.

Improvements we have planned for upcoming releases include:

Better detection of dependency substitution, for build that publish with custom coordinates, builds that

produce multiple components, etc. This will reduce the cases where dependency substitution needs to be

Page 75 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

explicitly declared for an included build.

The ability to target a task or tasks in an included build directly from the command line. We are currently
exploring syntax options for allowing this functionality, which will remove many cases where a delegating
task is required in the composite.

Making the implicit bui | dSr ¢ project an included build.

Supporting composite-of-composite builds.

Page 76 of 807

Build Environment

Gradle provides multiple mechanisms for configuring behavior of Gradle itself and specific projects. The
following is a reference for using these mechanisms.

When configuring Gradle behavior you can use these methods, listed in order of highest to lowest
precedence (first one wins):

Command-line flags such as - - bui | d- cache. These have precedence over properties and environment
variables.

System properties such as syst enPr op. htt p. pr oxyHost =sonehost . or g stored in a gr adl e. pr opert

file.

Gradle properties such as or g. gr adl e. cachi ng=t r ue that are typically stored in a gr adl e. properti e
file in a project root directory or GRADLE_USER_HOVE environment variable.

Environment variables such as GRADLE_OPTS sourced by the environment that executes Gradle.

Aside from configuring the build environment, you can configure a given project build using Project
properties such as - Pr el easeType=fi nal .

8§
Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute
your build. While it's possible to configure these in your local environment via GRADLE_OPTS or JAVA _OPTS,
it is useful to store certain settings like JVM memory configuration and Java home location in version control
so that an entire team can work with a consistent environment.

Setting up a consistent environment for your build is as simple as placing these settings into a gr adl e. pr of
file. The configuration is applied in following order (if an option is configured in multiple locations the last one
wins):

gradl e. properti es in project root directory.
gradl e. properties in GRADLE_USER_HOVE directory.

system properties, e.g. when - Dgr adl e. user. hon® is set on the command line.

Page 77 of 807

The following properties can be used to configure the Gradle build environment:

org. gradl e. cachi ng=(true, fal se)
When set to true, Gradle will reuse task outputs from any previous build, when possible, resulting is much
faster builds. Learn more about using the build cache.

org. gradl e. cachi ng. debug=(true, f al se)
When set to true, individual input property hashes and the build cache key for each task are logged on
the console. Learn more about task output caching.

org. gradl e. confi gureondemand=(true, f al se)
Enables incubating configuration on demand, where Gradle will attempt to configure only necessary
projects.

org. gradl e. consol e=(aut o, pl ai n, rich, verbose)
Customize console output coloring or verbosity. Default depends on how Gradle is invoked. See
command-line logging for additional details.

org. gradl e. daenon=(true, f al se)
When set to t r ue the Gradle Daemon is used to run the build. Default is t r ue.

org. gradl e. daenon.idletinmeout=(# of idle mllis)
Gradle Daemon will terminate itself after specified number of idle milliseconds. Default is 10800000 (3
hours).

org. gradl e. debug=(true, fal se)
When set to t r ue, Gradle will run the build with remote debugging enabled, listening on port 5005. Note
that this is the equivalent of adding - agent | i b: j dwp=t r ansport =dt _socket, server =y, suspend:=
to the JVM command line and will suspend the virtual machine until a debugger is attached. Default is f al

org.gradl e.java. hone=(path to JDK hone)
Specifies the Java home for the Gradle build process. The value can be set to either a jdk orjre
location, however, depending on what your build does, using a JDK is safer. A reasonable default is used
if the setting is unspecified.

org.gradle.jvmargs=(JVM ar gunment s)
Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance.

org. gradl e.l oggi ng. | evel =(qui et,warn, | ifecycle,info, debug)
When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are not case
sensitive. The | i f ecycl e level is the default. See the section called “Choosing a log level”.

org.gradle.parallel =(true, fal se)
When configured, Gradle will fork up to org. gradl e. wor kers. max JVMs to execute projects in
parallel. To learn more about parallel task execution, see the Gradle performance guide.

Page 78 of 807

https://guides.gradle.org/performance/#parallel_execution

org. gradl e. war ni ng. node=(al | , none, summary)
When set to al | , summary or none, Gradle will use different warning type display. See the section
called “Logging options” for details.

org. gradl e. workers. max=(nmax # of worker processes)
When configured, Gradle will use a maximum of the given number of workers. Default is number of CPU
processors. See also performance command-line options.

The following example demonstrates usage of various properties.
Example 31. Setting properties with a gradle.properties file

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi ttenBySysProp

envPr oj ect Prop=shoul dBeOver Wi ttenByEnvProp
syst enPr op. syst enrsyst enVal ue

bui | d. gradl e
task printProps {
doLast {

printl n comrandLi neProj ect Prop
println gradl ePropertiesProp
println systenProjectProp

println envProjectProp

println System properties['systeni]

Output of gradle -q - PcommandLi nePr oj ect Pr op=conmandLi nePr oj ect Pr opVal ue
-Dorg. gradl e. proj ect. syst enPr oj ect Prop=syst enPropertyVal ue printProps

> gradl e -g - PcomandLi nePr oj ect Prop=comuandLi nePr oj ect PropVal ue - Dorg. gradl e. pr
commandLi nePr oj ect PropVal ue

gr adl eProperti esVal ue

syst enPr opertyVal ue

envPropertyVal ue

syst enVal ue

8§
System properties

Using the - D command-line option, you can pass a system property to the JVM which runs Gradle. The - D
option of the gr adl e command has the same effect as the - D option of the] ava command.

You can also set system properties in gr adl e. properti es files with the prefix syst enPr op.

Page 79 of 807

Example 32. Specifying system properties in gr adl e. properties

syst enPr op. gr adl e. w apper User =myuser
syst enProp. gr adl e. w apper Passwor d=nypassword

The following system properties are available. Note that command-line options take precedence over system
properties.

gradl e. wr apper User =(myuser)
Specify user name to download Gradle distributions from servers using HTTP Basic Authentication.
Learn more in the section called “Authenticated Gradle distribution download”.

gr adl e. wr apper Passwor d=(nypasswor d)
Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradl e. user. hone=(path to directory)
Specify the Gradle user home directory.

In a multi project build, “syst enPr op. ” properties set in any project except the root will be ignored. That is,
only the root project’s gr adl e. properti es file will be checked for properties that begin with the “syst enP
" prefix.

8
Environment variables

The following environment variables are available for the gr adl e command. Note that command-line

options and system properties take precedence over environment variables.

GRADLE_OPTS
Specifies command-line arguments to use when starting the Gradle client. This can be useful for setting
the properties to use when running Gradle.

GRADLE_USER_HOVE
Specifies the Gradle user home directory (which defaults to SUSER _HOVE/ . gr adl e if not set).

JAVA_HOVE
Specifies the JDK installation directory to use.

8§
Project properties

You can add properties directly to your Pr o] ect object via the - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment
variables. If the environment variable name looks like ORG_GRADLE PRQIECT pr op=soneval ue, then
Gradle will set a pr op property on your project object, with the value of soneval ue. Gradle also supports

Page 80 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html

this for system properties, but with a different naming pattern, which looks like or g. gr adl e. pr oj ect . pr o}
. Both of the following will set the f oo property on your Project object to " bar .

Example 33. Setting a project property via gradle.properties

org. gradl e. proj ect. f oo=bar

Example 34. Setting a project property via environment variable

ORG_GRADLE_PRQJECT _f oo=bar

Note: The properties file in the user’'s home directory has precedence over property files in the
project directories.

This feature is very useful when you don't have admin rights to a continuous integration server and you need
to set property values that should not be easily visible. Since you cannot use the - P option in that scenario,
nor change the system-level configuration files, the correct strategy is to change the configuration of your
continuous integration build job, adding an environment variable setting that matches an expected pattern.
This won't be visible to normal users on the system.

You can access a project property in your build script simply by using its name as you would use a variable.

Note: If a project property is referenced but does not exist, an exception will be thrown and the build
will fail.

You should check for existence of optional project properties before you access them using the
Proj ect. hasProperty(java.l ang. Stri ng) method.

8
Configuring JVM memory

Gradle defaults to 1024 megabytes maximum heap per JVM process (- Xnx1024m), however, that may be
too much or too little depending on the size of your project. There are many JVM options (this blog post on
Java performance tuning and this reference may be helpful).

You can adjust JVM options for Gradle in the following ways:
The JAVA OPTS environment variable is used for the Gradle client, but not forked JVMs.

Example 35. Changing JVM settings for Gradle client JVM

JAVA OPTS="- Xnx2g - XX: MaxPer ni ze=256m - XX: +HeapDunpOnCQut O MenoryError -Dfil e. ent

You need to use the org. gradl e. j vhar gs Gradle property to configure JVM settings for the Gradle

Daemon.

Page 81 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
https://dzone.com/articles/java-performance-tuning
https://dzone.com/articles/java-performance-tuning
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Example 36. Changing JVM settings for forked Gradle JVMs

org. gradl e.jvmargs=- Xmx2g - XX: MaxPer ni ze=256m - XX: +HeapDunpOnQut O Menor yError - |

Note: Many settings (like the Java version and maximum heap size) can only be specified when
launching a new JVM for the build process. This means that Gradle must launch a separate JVM
process to execute the build after parsing the various gr adl e. pr operti es files.

When running with the Gradle Daemon, a JVM with the correct parameters is started once and
reused for each daemon build execution. When Gradle is executed without the daemon, then a new
JVM must be launched for every build execution, unless the JVM launched by the Gradle start script
happens to have the same parameters.

Certain tasks in Gradle also fork additional JVM processes, like the test task when using
Test . set MaxPar al | el Forks(int) for JUnit or TestNG tests. You must configure these through the
tasks themselves.

Example 37. Set Java compile options for JavaConpi | e tasks
apply plugin: "java"

tasks. wi t hType(JavaConpil e) {
options.conpilerArgs += ["-Xdoclint:none", "-Xint:none", "-nowarn"]

See other examples in the Test API documentation and test execution in the Java plugin reference.

Build scans will tell you information about the JVM that executed the build when you use the - - scan option.

Page 82 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com

& scans.gradle.com &

&
-
Ik
&

&

=
]

g7 Build Scan

Console log
Timeline
Performance

Projects

¥5 Dependencies

Plugins
Switches

Infrastructure

o + transitive-de... compileDebugCpp ©Oct 11, 2017 11

8E an SWitcnes

13 infrastructure properties

Operating system Mac
CPU cores 4 co
Max Gradle workers 4w
Java runtime Orai

Env
Java WM Ora

WM
Max JVM memory heap size 54
See all items

£ Gradle Inc. 2018

Terms of Service | Status | Help and Feedback

8

Configuring a task using project properties

It's possible to change the behavior of a task based on project properties specified at invocation time.

Suppose you'd like to ensure release builds are only triggered by CI. A simple way to handle this is through
ani sCl project property.

Page 83 of 807

https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

Example 38. Prevent releasing outside of Cl

buil d. gradl e
task perfornRel ease {
doLast {
if (proj

ect. hasProperty("isCl ")) {

println("Perform ng rel ease actions")

} else {

throw new I nval i dUser Dat aExcepti on(" Cannot

Output of gr adl e perfornRel ease -Pi sCl=true --quiet
> gradl e perfornRel ease -PisCl=true --quiet
Perform ng rel ease actions

8

Accessing the web through a HTTP proxy

performrel ease outside ol

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard

JVM system properties. These properties can be set directly in the build script; for example, setting the

HTTP proxy host would be done with Syst em set Property(' http. proxyHost',

. Alternatively, the properties can be specified in gradle.properties.

Example 39. Configuring an HTTP proxy using gr adl e. properties

systenProp. http.
syst enProp. http.
systenProp. http.
syst enProp. http.
systenProp. http.

pr oxyHost =www. sonmehost . or g

pr oxyPor t =8080

proxyUser =userid

pr oxyPasswor d=passwor d

nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.

Example 40. Configuring an HTTPS proxy using gr adl e. properti es

systenProp. https.
syst enProp. https.
systenProp. https.
syst enProp. https.
systenProp. https.

pr oxyHost =www. sonmehost . org

pr oxyPor t =8080

pr oxyUser =userid

pr oxyPasswor d=passwor d

nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

" wwv, sonmehost . or

You may need to set other properties to access other networks. Here are 2 references that may be helpful:

ProxySetup.java in the Ant codebase

Page 84 of 807

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD

JDK 7 Networking Properties

8
NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as
the username and password. There are 2 ways that you can provide the domain for authenticating to a
NTLM proxy:

Set the ht t p. proxyUser system property to a value like domai n/ user nane.

Provide the authentication domain via the ht t p. aut h. nt | m domai n system property.

Page 85 of 807

http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Troubleshooting

The following is a collection of common issues and suggestions for addressing them. You can get other tips
and search the Gradle forums and StackOverflow #gradle answers, as well as Gradle documentation from
help.gradle.org.

8§
Troubleshooting Gradle installation

If you followed the installation instructions, and aren’t able to execute your Gradle build, here are some tips
that may help.

If you installed Gradle outside of just invoking the Gradle Wrapper, you can check your Gradle installation by
running gr adl e - -versi on in aterminal.

You should see something like this:

gradl e --version

Build tine: 2018-02-21 15:28:42 UIC

Revi si on: 819e0059da49f 469d3e9hb2896dc4e72537¢c4847d

G oovy: 2.4.12

Ant : Apache Ant(TM version 1.9.9 conpiled on February 2 2017
JVM 1.8.0_151 (Oracle Corporation 25.151-b12)

Cs: Mac OS X 10. 13.3 x86_64

If not, here are some things you might see instead.

8
Command not found: gradle

If you get "command not found: gradle”, you need to ensure that Gradle is properly added to your PATH.

Page 86 of 807

https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle
https://help.gradle.org/

8
JAVA_HOME is set to an invalid directory

If you get something like:

ERROR. JAVA HOME is set to an invalid directory
Pl ease set the JAVA HOVE variable in your environnent to match the | ocation of yi

You'll need to ensure that a Java Development Kit version 7 or higher is properly installed, the JAVA HOME
environment variable is set, and Java is added to your PATH.

8
Permission denied

If you get "permission denied”, that means that Gradle likely exists in the correct place, but it is not
executable. You can fix this using chnod +x pat h/t o/ execut abl e on *nix-based systems.

8§
Other installation failures

If gradl e --version works, but all of your builds fail with the same error, it is possible there is a problem

with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running gr adl e hel p which executes configuration
scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If not, then the problem
exists within the execution of one or more of the requested tasks (Gradle executes configuration scripts first,
and then executes build steps).

§
Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in Troubleshooting
Dependency Resolution.

You can see a dependency tree and see which resolved dependency versions differed from what was
requested by clicking the Dependencies view and using the search functionality, specifying the resolution
reason.

Page 87 of 807

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml

Figure 4. Debugging dependency conflicts with build scans

o0 ® < Em| @ scans.gradle.com &]] ’T
~ Build Scan e} v/ gradle :docs:userguide... Feb 21, 2018 3:06:35 PM MST
E Summary Search
Console IOg | [Resolution: Selected different from requested X] |
#+ Timeline

W Performance . Found 3 dependencies resolved in 1 project across 2 configurations

[

o Projects
€9 Dependencies docs ~

Plugi asciidoctor ~ - 0.018s

ugins org.asciidoctor:asciidoctorj:1.5.2 = 1.5.6 conflict resolution

o=
o= Custom values userGuideTask v - 0.011s
g Switches xerces:xerceslmpl:2.9.0 — 2.11.0 conflict resolution
— xml-apis:xml-apis:1.3.04 — 1.4.01 conflict resolution

Infrastructure

I

Home » Dependencies Close dependency details (esc)

The actual build scan with filtering criteria is available for exploration.

8§
Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see the guide to Improving the Performance of
Gradle Builds.

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up Your
Android Gradle Builds. Many tips are also covered in the Android Studio user guide on optimizing build
speed.

Page 88 of 807

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/
https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

8§
Debugging build logic

8
Attaching a debugger to your build

You can set breakpoints and debug buildSrc and standalone plugins in your Gradle build itself by setting the 1
property to “true” and then attaching a remote debugger to port 5005.

gradl e hel p -Dorg. gradl e. debug=true --no-daenon
In addition, if you've adopted the Kotlin DSL, you can also debug build scripts themselves.
The following video demonstrates how to debug an example build using IntelliJ IDEA.

Figure 5. Interactive debugging of a build script

] - .../build.gradle.kts [gradle-digest-plugin]

L] L] __| gradle-digest-plugin [~/srcferiwen/gradle-digest-plugin
. | i v
b

.build.gradle.kts
7

I

pluginBundle {

pa{)l ishing {

| cre

Build_gradle ‘publishing { publications.create("mavenlava”, Mave..."' publishing{..}

Note: You must either stop running Gradle Daemons or run with - - no- daenon when using debug
mode.

Page 89 of 807

8
Adding and changing logging

In addition to controlling logging verbosity, you can also control display of task outcomes (e.g.
“UP-TO-DATE") in lifecycle logging using the - - consol e=ver bose flag.

You can also replace much of Gradle’s logging with your own by registering various event listeners. One
example of a custom event logger is explained in the logging documentation. You can also control logging
from external tools, making them more verbose in order to debug their execution.

Note: Additional logs from the Gradle Daemon can be found under GRADLE_USER_HOVE/ daenon/ <gr

8§
Task executed when it should have been UP-TO-DATE

--i nf o logs explain why a task was executed, though build scans do this in a searchable, visual way by
going to the Timeline view and clicking on the task you want to inspect.

Figure 6. Debugging incremental build with a build scan

(o] ® < (5] i@ scans.gradle.com & M [
ﬁ Build Scan € v/ gradle :docs:userguideHtml Feb 21, 2018 3:06:35 PM MST

Slsammany = 12 tasks executed in 1 project in 43.899s
Console log

:docs:userguideHtml

Wb Performance

(] L]

o Projects
Path Started after Duration Class Order: Execution +
&9 Dependencies Ext |
s Plugins Ge
o :docs:userguideAsciidoc brT3
o= Custom values “docs-check nids Started after Lrif
E Switches : fig Duration
n Class o o build.docs CacheableAsciidoctorTask
B Infrastructure ' ! e
The task was not up-to-date because of the following reasons:
Task docs:userguideAsciidoc’ class path has changed from pcTa
:docs:userguideDocbook 764654807a0962e25e318676ecec5244 to 1EE

97e9924c30cd3fe08d245f30f54acP2a.
:docs:userguideHtml

Build cache result > Miss (local and remote), Store (local)

ome + Timeline Close timeline fesc)

You can learn what the task outcomes mean from this listing.

Page 90 of 807

8
Debugging IDE integration

Many infrequent errors within IDEs can be solved by "refreshing" Gradle. See also more documentation on
working with Gradle in IntelliJ IDEA and in Eclipse.

8§
Refreshing IntelliJ IDEA

NOTE: This only works for Gradle projects linked to IntelliJ.
From the main menu, go to Vi ew> Tool W ndows > Gr adl e. Then click on the Refresh icon.

Figure 7. Refreshing a Gradle project in IntelliJ IDEA

& [] | gradle-digest-plugin [~/src/eriwen/gradle-digest-plugin] - .../build.gradle.kts [gradle-digest-plugin]

<) Remote Debug Gradle

Refresh all Gradle projects
+ (_, I o5

¥ (= gradle- 2st-plugin (auto-impo

ael

timeonly(

build

build

build setup
documentation

help

other

plugin development
plugin portal

publishing

>
>
>
>
>
>
>
>
>
>

verification

» N Dependencies

'buildScan { setTer ServiceUrl("https://gradle.c...' ' b

§
Refreshing Eclipse (using Buildship)

If you're using Buildship for the Eclipse IDE, you can re-synchronize your Gradle build by opening the
"Gradle Tasks" view and clicking the "Refresh" icon, or by executing the Gr adl e > Ref resh Gradl e Proj
command from the context menu while editing a Gradle script.

Page 91 of 807

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project
https://projects.eclipse.org/projects/tools.buildship

Figure 8. Refreshing a Gradle project in Eclipse Buildship

eclipse-workspace - multirepo-app/build.gradle - Eclipse

o0 e
i @ = H 0@ Q- WG BB -y
5 & build.gradle g3
= lapply plugin: 'java'
Z2apply plugin: 'application'
3apply plugin: 'idea'
4apply plugin: 'eclipse'

5

8
10
12

13
141

8

11 dependencies {
compile "org.sample:number-utils:1.0"
compile "org.sample:string-utils:1.0"

6group "org.sample"
7version "1.0"

9mainClassName = "org.sample.myapp.Main"

Getting additional help

&G

b

=

]

¥ Gradle Tasks 23

Name

v multirepo-app
» (22 application
» 2 build scan
» (22 build setup
> (2 build
P (& distribution
P (2 documentation
> (2 help
b 2 ide
b (& verification

» (=2 number-utils

> string-utils

T

=
=8,
IR $H Y m

Dest Refresh Tasks for Al Proje
. .

@;r—
=

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the help forum or
search relevant developer resources using help.gradle.org.

If you believe you've found a bug in Gradle, please file an issue on GitHub.

Page 92 of 807

https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

Embedding Gradle using the Tooling API

§
Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into
your own software. This API allows you to execute and monitor builds and to query Gradle about the details
of a build. The main audience for this API is IDE, CI server, other Ul authors; however, the API is open for
anyone who needs to embed Gradle in their application.

Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.
Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.
IntelliJ IDEA uses the Tooling API for importing your Gradle project and running tasks.

8§
Tooling API Features

A fundamental characteristic of the Tooling APl is that it operates in a version independent way. This means
that you can use the same API to work with builds that use different versions of Gradle, including versions
that are newer or older than the version of the Tooling API that you are using. The Tooling API is Gradle
wrapper aware and, by default, uses the same Gradle version as that used by the wrapper-powered build.

Some features that the Tooling API provides:

Query the details of a build, including the project hierarchy and the project dependencies, external
dependencies (including source and Javadoc jars), source directories and tasks of each project.

Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages shown in
the 'status bar' when you run on the command line).

Execute a specific test class or test method.

Receive interesting events as a build executes, such as project configuration, task execution or test
execution.

Cancel a build that is running.

Combine multiple separate Gradle builds into a single composite build.

Page 93 of 807

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved
library, and makes no assumptions about your classloader structure or logging configuration. This makes the
API easy to embed in your application.

8§
Tooling APl and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it
model building requests or task executing requests will be executed in the same long-living process. The
Gradle Daemon contains more details about the daemon, specifically information on situations when new
daemons are forked.

8§
Quickstart

As the Tooling APl is an interface for developers, the Javadoc is the main documentation for it. We provide
several samples that live in sanpl es/ t ool i ngApi in your Gradle distribution. These samples specify all of
the required dependencies for the Tooling API with examples for querying information from Gradle builds
and executing tasks from the Tooling API.

To use the Tooling API, add the following repository and dependency declarations to your build script:
Example 41. Using the tooling API

buil d. gradl e
repositories {
maven { url 'https://repo.gradle.org/gradle/libs-rel eases' }

dependenci es {
conpile "org. gradl e: gradl e-tool i ng-api : ${t ool i ngApi Versi on}"
/1 The tooling APl need an SLF4J inplenentation avail able at runtinme, replacs
runtine 'org.slf4j:slf4j-sinple:1.7.10

The main entry point to the Tooling API is the Gr adl eConnect or . You can navigate from there to find code
samples and explore the available Tooling API models. You can use G adl eConnect or. connect () to
create a Proj ect Connecti on. A Proj ect Connecti on connects to a single Gradle project. Using the
connection you can execute tasks, tests and retrieve models relative to this project.

Page 94 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/tooling/GradleConnector.html#connect--
http://www.gradle.org/docs/4.9/javadoc/org/gradle/tooling/ProjectConnection.html

8§
Gradle version and Java version compatibility

8§
Provider side

The current version of Tooling APl supports running builds using Gradle versions 1.2 and later. However,
support for running builds with Gradle versions older than 2.6 is deprecated and will be removed in Tooling
API version 5.0.

8§
Consumer side

The current version of Gradle supports running builds via Tooling API versions 2.0 and later. However,
support for running builds via Tooling API versions older than 3.0 is deprecated and will be removed in
Gradle 5.0.

You should note that not all features of the Tooling API are available for all versions of Gradle. For example,
build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the documentation for
each class and method for more details.

8
Java version

The Tooling API requires Java 8 or later. Java 7 is currently still supported but will be removed in Gradle 5.0.
The Gradle version used by builds may have additional Java version requirements.

Page 95 of 807

Build Cache

Note: The build cache feature described here is different from the Android plugin build cache.

8
Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by other
builds. The build cache works by storing (locally or remotely) build outputs and allowing builds to fetch these
outputs from the cache when it is determined that inputs have not changed, avoiding the expensive work of
regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching leverages the
same intelligence as up-to-date checks that Gradle uses to avoid work when a previous local build has
already produced a set of task outputs. But instead of being limited to the previous build in the same
workspace, task output caching allows Gradle to reuse task outputs from any earlier build in any location on
the local machine. When using a shared build cache for task output caching this even works across
developer machines and build agents.

Apart from task output caching, we expect other features to use the build cache in the future.

Note: A complete guide is available about using the build cache. It covers the different scenarios
caching can improve, and detailed discussions of the different caveats you need to be aware of
when enabling caching for a build.

8§
Enable the Build Cache

By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with - - bui | d- cache on the command-line
Gradle will use the build cache for this build only.

Put or g. gradl e. cachi ng=true in your gradl e. properties
Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled with - - no- bui

When the build cache is enabled, it will store build outputs in the Gradle user home. For configuring this

Page 96 of 807

https://developer.android.com/studio/build/build-cache.html
https://guides.gradle.org/using-build-cache/

directory or different kinds of build caches see the section called “Configure the Build Cache”.

8§
Task Output Caching

Beyond incremental builds described in the section called “Up-to-date checks (AKA Incremental Build)”,
Gradle can save time by reusing outputs from previous executions of a task by matching inputs to the task.
Task outputs can be reused between builds on one computer or even between builds running on different
computers via a build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration agents
should load cache entries from the remote build cache. We expect that developers will not be allowed to
populate the remote build cache, and all continuous integration builds populate the build cache after running
the cl ean task.

For your build to play well with task output caching it must work well with the incremental build feature. For
example, when running your build twice in a row all tasks with outputs should be UP- TO- DATE. You cannot
expect faster builds or correct builds when enabling task output caching when this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see the section called
“Enable the Build Cache”.

8§
What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build the first
time.

$> gradl e --build-cache conpil eJava
: conpi | eJava

: processResour ces

: cl asses

) ar

cassenbl e

BU LD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the same as
without the build cache. Let’s clean and run the build again.

$> gradl e clean
:clean

BU LD SUCCESSFUL

Page 97 of 807

$> gradl e --buil d-cache assenbl e
: conpi | eJava FROMt CACHE

. processResour ces

. cl asses

) ar

. assenbl e

BU LD SUCCESSFUL

Now we see that, instead of executing the : conpi | eJava task, the outputs of the task have been loaded
from the build cache. The other tasks have not been loaded from the build cache since they are not
cacheable. This is due to : cl asses and : assenbl e being lifecycle tasks and : pr ocessResour ces and :
being Copy-like tasks which are not cacheable since it is generally faster to execute them.

8§
Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that uniquely
defines the task’s outputs based on its inputs. That build cache key is used to request previous outputs from
a build cache or store new outputs in the build cache. If the previous build outputs have been already stored
in the cache by someone else, e.g. your continuous integration server or other developers, you can avoid
executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for up-to-date
checks:

The task type and its classpath

The names of the output properties

The names and values of properties annotated as described in the section called “Custom task types”
The names and values of properties added by the DSL via Taskl nput s

The classpath of the Gradle distribution, buildSrc and plugins

The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the €Cacheabl eTask annotation. Note that €Cachesz
is not inherited by subclasses. Custom task types are not cacheable by default.

8
Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:
Java toolchain: JavaConpi | e, Javadoc

Groovy toolchain: G- oovyConpi | e, G oovydoc

Page 98 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/CacheableTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Scala toolchain: Scal aConpi | e, Pl at f or mScal aConpi | e, Scal aDoc
Native toolchain: CppConpi | e, CConpi | e, Swi ft Conpi | e

Testing: Test

Code quality tasks: Checkst yl e, CodeNar c, Fi ndBugs, JDepend, Prnd
JaCoCo: JacocoMer ge, JacocoRepor t

Other tasks: Ant | r Task, Val i dat eTaskProperties, WiteProperties
All other built-in tasks are currently not cacheable.

Some tasks, like Copy or Jar, usually do not make sense to make cacheable because Gradle is only
copying files from one location to another. It also doesn’'t make sense to make tasks cacheable that do not
produce outputs or have no task actions.

8
Third party plugins

There are third party plugins that work well with the build cache. The most prominent examples are the
Android plugin 3.1+ and the Kotlin plugin 1.2.21+. For other third party plugins, check their documentation to
find out whether they support the build cache.

8
Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that the results
from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical because
the same cache key is used by both executions. Missing task outputs can cause build failures if Gradle does
not completely capture all outputs for a given task. Wrongly declared task inputs can lead to cache misses
especially when containing volatile data or absolute paths. (See the section called “Task inputs and outputs”
on what should be declared as inputs and outputs.)

Note: The task path is not an input to the build cache key. This means that tasks with different task
paths can re-use each other’s outputs as long as Gradle determines that executing them yields the
same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for example using
TestKit) to check that a task produces the same outputs for identical inputs and captures all output files for
the task. We suggest adding tests to ensure that the task inputs are relocatable, i.e. that the task can be
loaded from the cache into a different build directory (see €Pat hSensi ti ve).

In order to handle volatile inputs for your tasks consider configuring input normalization.

Page 99 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.language.cpp.tasks.CppCompile.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.language.c.tasks.CCompile.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.WriteProperties.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Jar.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://blog.gradle.org/kotlin-build-cache-use
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/PathSensitive.html

8§
Configure the Build Cache

You can configure the build cache by using the Settings. bui |l dCache(org. gradl e.api.Action)
block in setti ngs. gradl e.

Gradle supports a | ocal and a r enot e build cache that can be configured separately. When both build
caches are enabled, Gradle tries to load build outputs from the local build cache first, and then tries the
remote build cache if no build outputs are found. If outputs are found in the remote cache, they are also
stored in the local cache, so next time they will be found locally. Gradle stores ("pushes") build outputs in
any build cache that is enabled and has Bui | dCache. i sPush() settotrue.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a Di rect or yBui | dCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to (
Bui | dCacheConfi guration. renote(java.l ang. d ass)).

8
Built-in local build cache

The built-in local build cache, Di r ect or yBui | dCache, uses a directory to store build cache artifacts. By
default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory by removing entries that have not been used
recently to conserve disk space.

For more details on the configuration options refer to the DSL documentation of Di r ect or yBui | dCache.
Here is an example of the configuration.

Example 42. Configure the local cache

settings.gradle
bui | dCache {
| ocal (DirectoryBuil dCache) {
directory = new File(rootDir, 'build-cache")
renoveUnusedEntri esAft er Days = 30

8
Remote HTTP build cache

Gradle has built-in support for connecting to a remote build cache backend via HTTP. For more details on
what the protocol looks like see Ht t pBui | dCache. Note that by using the following configuration the local
build cache will be used for storing build outputs while the local and the remote build cache will be used for
retrieving build outputs.

Page 100 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush--
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.local.DirectoryBuildCache.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.http.HttpBuildCache.html

Example 43. Load from HttpBuildCache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/"'
}
}

You can configure the credentials the Ht t pBui | dCache uses to access the build cache server as shown in
the following example.

Example 44. Configure remote HTTP cache

settings.gradle

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "http://exanple.com 8123/ cache/"’
credentials {
username = 'buil d-cache-user'
password = ' sone-conpl i cat ed- password'
}
}
}

Note: You may encounter problems with an untrusted SSL certificate when you try to use a build
cache backend with an HTTPS URL. The ideal solution is for someone to add a valid SSL certificate
to the build cache backend, but we recognize that you may not be able to do that. In that case, set
Ht t pBui | dCache. i sAl | ownt r ust edServer () totrue:

Example 45. Allow untrusted SSL certificate for HttpBuildCache

Note: settings. gradl e

bui | dCache {
renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/"'

al | owUnt rust edServer = true

This is a convenient workaround, but you shouldn’t use it as a long-term solution.

§
Configuration use cases

The recommended use case for the build cache is that your continuous integration server populates the
remote build cache from clean builds while developers load from the remote build cache and store in the
local build cache. The configuration would then look as follows.

Page 101 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.http.HttpBuildCache.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
http://www.gradle.org/docs/4.9/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer

Example 46. Recommended setup for Cl push use case

settings.gradle
ext.isC Server = System getenv().contai nskey("Cl")

bui | dCache {
| ocal {
enabl ed = !isC Server
}
renot e(Ht t pBui | dCache) ({
url = "https://exanple.com 8123/ cache/"'

push = isC Server

If you use a bui | dSr ¢ directory, you should make sure that it uses the same build cache configuration as
the main build. This can be achieved by applying the same script to bui | dSrc/ setti ngs. gradl e and set
as shown in the following example.

Example 47. Consistent setup for buildSrc and main build

settings.gradle
apply from new File(settingsDir, 'gradle/buildCacheSettings.gradle')

bui |l dSrc/settings. gradle
apply from new File(settingsDir, '../gradle/buildCacheSettings.gradle')

gradl e/ bui | dCacheSettings. gradle
ext.isC Server = System getenv().contai nskKey("Cl")

bui | dCache {
| ocal {
enabled = !isG Server
}
renot e(Ht t pBui | dCache) {
url = "https://exanmpl e.com 8123/ cache/"

push = isC Server

It is also possible to configure the build cache from an init script, which can be used from the command line,
added to your Gradle user home or be a part of your custom Gradle distribution.

Page 102 of 807

Example 48. Init script to configure the build cache

init.gradle
gradl e. settingsEval uated { settings ->
settings. bui |l dCache {
/1 vvv Your custom configuration goes here
renot e(Ht t pBui | dCache) {
url = "https://exanpl e.com 8123/ cache/"'

}

[l ~"~ Your custom configuration goes here

8
Build cache and composite builds

Gradle’s composite build feature allows including other complete Gradle builds into another. Such included
builds will inherit the build cache configuration from the top level build, regardless of whether the included
builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the top level
build’s configuration. This also applies to any bui | dSr ¢ projects of any included builds.

8§
How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise for
centralized management. The cache node can also be used without a Gradle Enterprise installation with
restricted functionality.

8§
Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in support for
connecting to an HTTP backend) requires implementing your own logic for connecting to your custom build
cache backend. To this end, custom build cache types can be registered via
Bui | dCacheConfi guration. regi sterBuil dCacheService(java.l ang. Cl ass,

java. |l ang. Cl ass).

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache backend.

Page 103 of 807

https://hub.docker.com/r/gradle/build-cache-node/
http://www.gradle.org/docs/4.9/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class, java.lang.Class-
https://gradle.com/build-cache

Writing Gradle build scripts

Build Script Basics

§
Projects and tasks

Everything in Gradle sits on top of two basic concepts: projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that
you are doing with Gradle. For example, a project might represent a library JAR or a web application. It
might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your
application to staging or production environments. Don’t worry if this seems a little vague for now. Gradle’s
build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

8
Hello world

You run a Gradle build using the gr adl e command. The gr adl e command looks for a file called bui | d. gr
in the current directory.[?l We call this bui | d. gr adl e file a build script, although strictly speaking it is a
build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example 49. Your first build script

bui I d. gradl e
task hello {
doLast {

println "Hello world!'

Page 105 of 807

In a command-line shell, move to the containing directory and execute the build script with gr adl e -q hel |

What does - g do?

Most of the examples in this user guide are run with the - ¢ command-line option. This suppresses
Gradle’s log messages, so that only the output of the tasks is shown. This keeps the example output
in this user guide a little clearer. You don’'t need to use this option if you don’t want to. See Logging
for more details about the command-line options which affect Gradle’s output.

Example 50. Execution of a build script

Outputofgradl e -q hello
> gradle -q hello
Hell o worl d!

What's going on here? This build script defines a single task, called hel | o, and adds an action to it. When
you run gradl e hell o, Gradle executes the hel | o task, which in turn executes the action you've
provided. The action is simply a closure containing some Groovy code to execute.

If you think this looks similar to Ant’s targets, you would be right. Gradle tasks are the equivalent to Ant
targets, but as you will see, they are much more powerful. We have used a different terminology than Ant as
we think the word task is more expressive than the word target. Unfortunately this introduces a terminology
clash with Ant, as Ant calls its commands, such as j avac or copy, tasks. So when we talk about tasks, we
always mean Gradle tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant
commands), we explicitly say Ant task.

8
A shortcut task definition

Note: This functionality is deprecated and will be removed in Gradle 5.0 without replacement. Use
the methods Task. doFirst(org.gradl e. api . Action) and

Task. doLast (org. gradl e. api . Acti on) to define an action instead, as demonstrated by the
rest of the examples in this chapter.

There is a shorthand way to define a task like our hel | o task above, which is more concise.
Example 51. A task definition shortcut

buil d. gradl e
task hello << {
println "Hello world!'

Again, this defines a task called hel | o with a single closure to execute. The << operator is simply an alias
for doLast .

Page 106 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

8§
Build scripts are code

Gradle’s build scripts give you the full power of Groovy. As an appetizer, have a look at this:

Example 52. Using Groovy in Gradle's tasks

buil d. gradl e
task upper {
doLast {

String soneString =
println "Oiginal:
println "Upper case:

Output of gradl e -qgq upper
> gradl e -qg upper
Oiginal: my_nAnE
Upper case: MY_NAME

or

nY_nAnE'
+ soneString
+ soneString. t oUpper Case()

Example 53. Using Groovy in Gradle's tasks

buil d. gradl e
task count {
doLast ({

4.times { print "$it

Output of gradl e -g count
> gradl e -q count
0123

§

Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

)

Page 107 of 807

Example 54. Declaration of task that depends on other task

buil d. gradl e
task hello {
doLast {
printiln '"Hello world!'
}
}
task intro(dependsOn: hello) {
doLast {
println "I'm G adl e"
}
}

Outputofgradl e -qg intro
> gradle -q intro
Hell o worl d!
I'm G adle

To add a dependency, the corresponding task does not need to exist.

Example 55. Lazy dependsOn - the other task does not exist (yet)

bui | d. gradl e
task taskX(dependsOn: 'taskY') {
doLast {
println 'taskX
}
}
task taskY {
doLast ({
println 'taskY
}
}

Outputofgradl e -g taskX
> gradle -qg taskX
taskyY

taskX

The dependency of taskX to taskY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in the section called “Adding
dependencies to a task”.

Please notice that you can’t use shortcut notation (see the section called “Shortcut notations”) when referring
to a task that is not yet defined.

Page 108 of 807

8§
Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it
to dynamically create tasks.

Example 56. Dynamic creation of a task

buil d. gradl e
4.times { counter ->
task "task$counter” {
doLast {
println "I'mtask nunber S$counter"

Outputof gradl e -qg taskl
> gradle -qg taskl
' mtask nunber 1

8§
Manipulating existing tasks

Once tasks are created they can be accessed via an API. For instance, you could use this to dynamically
add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example 57. Accessing a task via APl - adding a dependency

buil d. gradl e
4.times { counter ->
task "task$counter" {
doLast {
println "I'mtask nunber $counter"

}
t ask0. dependsOn task2, task3

Output of gradl e -qg taskO
> gradle -qg taskO
I''mtask nunber 2
I'mtask nunber 3
I''mtask nunber O

Or you can add behavior to an existing task.

Page 109 of 807

Example 58. Accessing a task via APl - adding behaviour

buil d. gradl e
task hello {
doLast {

println '"Hello Earth'

}
hel | 0. doFirst {

println 'Hello Venus'
}
hel | 0. doLast {

println '"Hello Mars'

}
hell o {
doLast ({
println 'Hello Jupiter'
}
}

Outputofgradl e -q hello
> gradle -q hello
Hel | o Venus

Hello Earth

Hell o Mars

Hel I o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or the

end of the task’s actions list. When the task executes, the actions in the action list are executed in order.

8
Shortcut notations

There is a convenient notation for accessing an existing task. Each task is available as a property of the

build script:

Page 110 of 807

Example 59. Accessing task as a property of the build script

buil d. gradl e
task hello {
doLast {

printiln '"Hello world!'

}
hel | 0. doLast {

println "Geetings fromthe $hell o. nane task."

Outputofgradl e -q hello

> gradle -q hello

Hell o worl d!

Greetings fromthe hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the conpi | e
task.

8§
Extra task properties

You can add your own properties to a task. To add a property named myPr operty, set ext. nmyProperty
to an initial value. From that point on, the property can be read and set like a predefined task property.

Example 60. Adding extra properties to a task

buil d. gradl e
task nmyTask {
ext.nyProperty = "myVal ue"

task printTaskProperties {
doLast {
println myTask. nyProperty

Outputof gradl e -qg print TaskProperties
> gradle -q printTaskProperties
myVal ue

Extra properties aren’t limited to tasks. You can read more about them in the section called “Extra
properties”.

Page 111 of 807

8§
Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from a bui | d. xm file. From the example below, you
can learn how to execute Ant tasks and how to access Ant properties:

Example 61. Using AntBuilder to execute ant.loadfile target

buil d. gradl e
task loadfile {
doLast {

def files = file('../antLoadfil eResources").listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant.loadfile(srcFile: file, property: file.name)
println " *** $file. name ***"
println "${ant.properties[file.nane]}"

Outputofgradl e -qg | oadfile

> gradle -q loadfile

*** agile.manifesto.txt ***

I ndi vidual s and interacti ons over processes and tools

Wor ki ng sof tware over conprehensive docunentation

Custoner col |l aboration over contract negotiation

Respondi ng to change over followi ng a plan

*** gradl e. mani festo.txt ***

Make the inpossible possible, make the possible easy and nake the easy el egant.
(inspired by Mdshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Using Ant from Gradle.

§
Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the
example above, is extracting a method.

Page 112 of 807

Example 62. Using methods to organize your build logic

buil d. gradl e
task checksum {
doLast {

fileList('../antLoadfil eResources').each { File file ->
ant.checksun(file: file, property: "cs $file.nane")
println "$file.nane Checksum ${ant.properties["cs_$file.name"]}"

task loadfile {
doLast {
fileList('../antLoadfil eResources').each { File file ->
ant.loadfile(srcFile: file, property: file.nane)
println "I'mfond of $file.nane"

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()

Outputofgradl e -qg | oadfile

> gradle -q loadfile

I"'m fond of agile.manifesto.txt
I'mfond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
a whole chapter to this. See Organizing Gradle Projects.

8
Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 113 of 807

Example 63. Defining a default task

buil d. gradl e
def aul t Tasks 'cl ean',

run

task clean {
doLast {
println 'Default C eaning!'

task run {
doLast {
println 'Default Running!'

}
}
task other {
doLast {
println "I"mnot a default task!"
}

Outputof gradl e -q
> gradle -q

Def aul t C eani ng!
Def aul t Runni ng!

This is equivalent to running gr adl e cl ean run. In a multi-project build every subproject can have its own
specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project
are used (if defined).

8§
Configure by DAG

As we later describe in full detail (see Build Lifecycle), Gradle has a configuration phase and an execution
phase. After the configuration phase, Gradle knows all tasks that should be executed. Gradle offers you a
hook to make use of this information. A use-case for this would be to check if the release task is among the
tasks to be executed. Depending on this, you can assign different values to some variables.

In the following example, execution of the di st ri buti on and r el ease tasks results in different value of

the ver si on variable.

Page 114 of 807

Example 64. Different outcomes of build depending on chosen tasks

buil d. gradl e
task distribution {
doLast {

println "W build the zip with versi on=$versi on"

task rel ease(dependsOn: 'distribution') ({
doLast {
println "W rel ease now

gradl e. t askG aph. whenReady {taskG aph ->
i f (taskGraph. hasTask(rel ease)) {
version 1.0
} else {
versi on = ' 1. 0- SNAPSHOT'

Outputofgradl e -qg di stribution
> gradle -q distribution
We build the zip with versi on=1. 0- SNAPSHOT

Output of gradl e -q rel ease

> gradle -q rel ease

We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This

works even when the release task is not the primary task (i.e., the task passed to the gr adl e command).

8§
External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script’s classpath in the build

script itself. You do this using the bui | dscri pt () method, passing in a closure which declares the build

script classpath.

Page 115 of 807

Example 65. Declaring external dependencies for the build script

buil d. gradl e
bui I dscri pt {
repositories {
mavenCentral ()

dependenci es {
cl asspath group: 'commons-codec', name: 'conmmons-codec', version: '1.2'

The closure passed to the bui | dscri pt () method configures a Scri pt Handl er instance. You declare
the build script classpath by adding dependencies to the cl asspat h configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
described in Dependency Types, except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would any
other classes on the classpath. The following example adds to the previous example, and uses classes from
the build script classpath.

Example 66. A build script with external dependencies

buil d. gradl e
i mport org.apache. commons. codec. bi nary. Base64

bui | dscri pt {
repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'commons-codec', nane: 'conmmons-codec', version: '1.2'

task encode {
doLast {
def byte[] encodedString = new Base64().encode(' hello world\n'.getBytes(!
println new String(encodedString)

Output of gradl e -g encode
> gradl e -qg encode
aGVsbh&EBgd29ybGXK

For multi-project builds, the dependencies declared with a project’s bui | dscri pt () method are available
to the build scripts of all its sub-projects.

Page 116 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Build script dependencies may be Gradle plugins. Please consult Using Gradle Plugins for more information

on Gradle plugins.

Every project automatically has a bui | dEnvi r onment task of type Bui | dEnvi r onnent Report Task that
can be invoked to report on the resolution of the build script dependencies.

8
Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to
jump into more of the details, have a look at Authoring Tasks.

Otherwise, continue on to the tutorials in Java Quickstart and Dependency Management for Java Projects.

[2] There are command line switches to change this behavior. See Command-Line Interface)

Page 117 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

Build Init Plugin

Note: The Build Init plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see the section called
“Using plugins”). The Build Init plugin is an automatically applied plugin, which means you do not need to
apply it explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the
Gradle build. There is no need to create a “stub” bui | d. gr adl e file in order to apply the plugin.

It also leverages the wr apper task to generate the Gradle Wrapper files for the project.

8
Tasks

The plugin adds the following tasks to the project:

Table 1. Build Init plugin - tasks

ask name Depends on Type Description
nit wr apper InitBuild Generates a Gradle project.
rapper - W apper Generates Gradle wrapper files.

What to set up

The i ni t supports different build setup types. The type is specified by supplying a - - t ype argument value.
For example, to create a Java library project simply execute: gradl e init --type java-library.

If a --type parameter is not supplied, Gradle will attempt to infer the type from the environment. For
example, it will infer a type value of “ponft if it finds a pom xm to convert to a Gradle build.

Page 118 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

If the type could not be inferred, the type “basi c” will be used.

The i nit plugin also supports generating build scripts using either the Gradle Groovy DSL or the Gradle
Kotlin DSL. The build script DSL to use defaults to the Groovy DSL and is specified by supplying a - - dsl
argument value. For example, to create a Java library project with Kotlin DSL build scripts simply execute: gr

All build setup types include the setup of the Gradle Wrapper.
Note that the migration from Maven builds only supports the Groovy DSL for generated build scripts.
8§

Build init types

Note: As this plugin is currently incubating, only a few build init types are currently supported. More
types will be added in future Gradle releases.

8
“pont (Maven conversion)

The “ponf type can be used to convert an Apache Maven build to a Gradle build. This works by converting
the POM to one or more Gradle files. It is only able to be used if there is a valid “pom xm " file in the
directory that the i ni t task is invoked in or, if invoked via the “-p” command line option, in the specified
project directory. This “poni type will be automatically inferred if such a file exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed
by Gradle community members.

The conversion process has the following features:

Uses effective POM and effective settings (support for POM inheritance, dependency management,
properties)

Supports both single module and multimodule projects

Supports custom module names (that differ from directory names)
Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)
Generates download repositories (inc. local Maven repository)

Adjusts Java compiler settings

Page 119 of 807

https://github.com/jbaruch/maven2gradle

Supports packaging of sources and tests
Supports TestNG runner
Generates global exclusions from Maven enforcer plugin settings

§
“| ava- appl i cation”

The “j ava- appl i cati on” build init type is not inferable. It must be explicitly specified.

It has the following features:

Uses the “appl i cati on” plugin to produce a command-line application implemented using Java
Uses the “j cent er " dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - -t est - f r anewor k argument value. To use a
different test framework, execute one of the following commands:

gradle init --type java-application --test-framework spock: Uses Spock for testing

instead of JUnit

gradle init --type java-application --test-framework testng: Uses TestNG for testing
instead of JUnit

§
“| ava-1i brary”

The “j ava- | i brar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “j ava” plugin to produce a library Jar

Uses the “j cent er ” dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a - -t est - f r anewor k argument value. To use a

Page 120 of 807

http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://junit.org

different test framework, execute one of the following commands:

gradle init --type java-library --test-framework spock: Uses Spock for testing instead of
JUnit

gradle init --type java-library --test-framework testng: Uses TestNG for testing instead
of JUnit

8
“scal a-library”

The “scal a- | i br ar y” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “scal a” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses Scala 2.10

Uses ScalaTest for testing

Has directories in the conventional locations for source code

Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

Uses the Zinc Scala compiler by default

8
“‘groovy-library”

The “gr oovy- | i brary” build init type is not inferable. It must be explicitly specified.
It has the following features:

Uses the “gr oovy” plugin to produce a library Jar

Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

Page 121 of 807

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org
http://spockframework.org

8
“gr oovy- appl i cati on”

The “gr oovy- appl i cati on” build init type is not inferable. It must be explicitly specified.

It has the following features:

Uses the “gr oovy” plugin

Uses the “appl i cat i on” plugin to produce a command-line application implemented using Groovy
Uses the “j cent er " dependency repository

Uses Groovy 2.x

Uses Spock testing framework for testing

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

§
“basic”

The “basi c¢” build init type is useful for creating a fresh new Gradle project. It creates a sample bui | d. gr ac
file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

Page 122 of 807

http://spockframework.org

Writing Build Scripts

This chapter looks at some of the details of writing a build script.

§
The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element.[3! Gradle assumes that each build script is encoded
using UTF-8.

8§
The Project API

In the tutorial in Java Quickstart we used, for example, the appl y() method. Where does this method come
from? We said earlier that the build script defines a project in Gradle. For each project in the build, Gradle
creates an object of type Proj ect and associates this Pr oj ect object with the build script. As the build
script executes, it configures this Pr oj ect object:

Getting help writing build scripts

Don't forget that your build script is simply Groovy code that drives the Gradle APIl. And the
Proj ect interface is your starting point for accessing everything in the Gradle API. So, if you're
wondering what 'tags' are available in your build script, you can start with the documentation for the Pr c
interface.

Any method you call in your build script which is not defined in the build script, is delegated to the Pr oj ect
object.

Any property you access in your build script, which is not defined in the build script, is delegated to the Pr oj
object.

Let’s try this out and try to access the nane property of the Pr oj ect object.

Page 123 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html

Example 67. Accessing property of the Project object

buil d. gradl e
println nane

println project.nanme

Output of gradl e -g check
> gradl e -q check

pr oj ect Api
pr oj ect Api

Both pri nt| n statements print out the same property. The first uses auto-delegation to the Pr oj ect

object, for properties not defined in the build script. The other statement uses the proj ect property

available to any build script, which returns the associated Pr oj ect object. Only if you define a property or a

method which has the same name as a member of the Pr oj ect object, would you need to use the pr oj ect

property.

8

Standard project properties

The Proj ect object provides some standard properties, which are available in your build script. The

following table lists a few of the commonly used ones.

Table 2. Project Properties

ame

roj ect

ane

at h

ascription

rojectDir

uildbir

roup

arsi on

nt

Type

Pr oj ect

String

String

String

File

File

oj ect

oj ect

Ant Bui | der

Default Value

The Pr oj ect instance

The name of the project directory.

The absolute path of the project.

A description for the project.

The directory containing the build script.

projectDir/build

unspecified

unspeci fi ed

An Ant Bui | der instance

Page 124 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/AntBuilder.html

8§
The Script API

When Gradle executes a script, it compiles the script into a class which implements Scri pt . This means
that all of the properties and methods declared by the Scri pt interface are available in your script.

8§
Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra properties.

8§
Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are a feature of the underlying Groovy language.

Example 68. Using local variables

bui I d. gradl e
def dest = "dest™

task copy(type: Copy) {
from "source"

i nto dest

§
Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This includes, but is
not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning
object’'s ext property. Alternatively, an ext block can be used to add multiple properties at once.

Page 125 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Script.html

Example 69. Using extra properties

buil d. gradl e
apply plugin: "java"

ext {
springVersion = "3.1. 0. RELEASE"
emai | Notification = "buil d@muaster. org"

sourceSets.all { ext.purpose = null }

sourceSets {

mai n {

pur pose = "production"
}
test {

pur pose = "test"
}
pl ugi n {

pur pose = "production"
}

task printProperties {
doLast {
println springVersion
println email Notification
sourceSets. matching { it.purpose == "production" }.each { println it.nam

Outputofgradl e -q printProperties
> gradle -q printProperties

3. 1. 0. RELEASE

bui | d@raster.org

mai n

pl ugin

In this example, an ext block adds two extra properties to the proj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose to nul |l (null is a permissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be
accessed from anywhere their owning object can be accessed, giving them a wider scope than local
variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the Ext r aProperti esExt ensi on class in the

Page 126 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

API| documentation.

8§
Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

Example 70. Configuring arbitrary objects

buil d. gradl e
task configure {
doLast {

def pos = configure(new java.text.FieldPosition(10)) ({
begi nl ndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos.endl ndex

Output of gradl e -g configure
> gradle -q configure

1

5

8

Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

Page 127 of 807

Example 71. Configuring arbitrary objects using a script

buil d. gradl e
task configure {
doLast {

def pos = new java.text. Fiel dPosition(10)
[l Apply the script

apply from 'other.gradle', to: pos
println pos. begi nl ndex

println pos.endl ndex

ot her.gradl e

/'l Set properties.
begi nl ndex =1
endl ndex = 5

Output of gradl e -g configure
> gradle -q configure

1

5

8§
Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write your build
script, and in particular, when you start to write custom plugins and tasks.

8
Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 72. Groovy JDK methods
buil d. gradl e

/'l Iterable gets an each() nethod
configurations.runtinme.each { File f -> println f }

Have a look at http://groovy-lang.org/gdk.html for more details.

Page 128 of 807

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

8
Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 73. Property accessors

bui I d. gradl e

/1l Using a getter method

println project.buildbir

println getProject().getBuildDir()

/1l Using a setter method

project.buildDir = '"target'
getProject().setBuildDir('target')

8
Optional parentheses on method calls

Parentheses are optional for method calls.

Example 74. Method call without parentheses

bui I d. gradl e

test.systenProperty 'sone.prop', 'value
test.systenProperty(' sone. prop', 'value')
8

List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are

straightforward, but map literals have some interesting twists.

For instance, the “appl y” method (where you typically apply plugins) actually takes a map parameter.

However, when you have a line like “apply plugin:'java

, you aren't actually using a map literal,

you're actually using “named parameters”, which have almost exactly the same syntax as a map literal

(without the wrapping brackets). That named parameter list gets converted to a map when the method is

called, but it doesn't start out as a map.

Page 129 of 807

Example 75. List and map literals

buil d. gradl e
[l List litera
test.includes = ['org/gradle/api/**', "org/gradle/internal/**"]

List<String> list = new ArrayLi st<String>()
list.add(' org/gradle/api/**")
list.add('org/gradle/internal/**")
test.includes = |ist

/1 Map literal.
Map<String, String> map = [keyl:'valuel', key2: 'value2']

/'l Goovy wll coerce naned argunents
/1l into a single map argunent
apply plugin: 'java'

8
Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the last
parameter of a method is a closure, you can place the closure after the method call:

Example 76. Closure as method parameter

buil d. gradl e
repositories {
println "in a closure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

8
Closure delegate

Each closure has a del egat e object, which Groovy uses to look up variable and method references which
are not local variables or parameters of the closure. Gradle uses this for configuration closures, where the de

object is set to the object to be configured.

Page 130 of 807

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Example 77. Closure delegates

buil d. gradl e
dependenci es {
assert del egate == project. dependenci es

testCompile('junit:junit:4.12")
del egate.testConpile('junit:junit:4.12")

8§
Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle
scripts. This means that instead of using t hr ow new or g. gradl e. api . t asks. St opExecut i onExcept

you can just type t hr ow new St opExecuti onExcepti on() instead.

Listed below are the imports added to each script:

Gradle default imports.

i mport org.gradle.*

i mport org.gradle.api.*

i mport org.gradle.api.artifacts.*

i mport org.gradle.api.artifacts. conponent.*
i mport org.gradle.api.artifacts.dsl.*

i mport org.gradle.api.artifacts.ivy.*

i mport org.gradle.api.artifacts. maven. *

i mport org.gradle.api.artifacts. query.*

i mport org.gradle.api.artifacts.repositories.*

i mport org.gradle.api.artifacts.result.*

i mport org.gradle.api.artifacts.transform?*
import org.gradle.api.artifacts.type.*

i mport org.gradle.api.attributes.*

i mport org.gradle.api.capabilities.*

i mport org.gradl e. api . conmponent . *

i mport org.gradle.api.credentials.*

i mport org.gradle.api.distribution.*

i mport org.gradle.api.distribution.plugins.*
i mport org.gradle. api.dsl.*

i mport org.gradle. api.execution.*

import org.gradle.api.file.*

import org.gradle.api.initialization.?*

import org.gradle.api.initialization.definition.*

import org.gradle.api.initialization.dsl.*
i nport org.gradl e.api.invocation.*

i mport org.gradle.api.java.archives.*

i nport org.gradle. api.logging.*

Page 131 of 807

i mport org.gradle.api.logging.configuration.?*
i mport org.gradle. api.nodel.*

i mport org.gradle.api.plugins.*

i mport org.gradl e. api. plugi ns. announce. *

i mport org.gradle.api.plugins.antlr.*

i mport org.gradle. api.plugins. buil dconpari son. gradl e. *
i mport org.gradl e. api.plugins.osgi.*

i mport org.gradle.api.plugins.quality.*

i mport org.gradl e. api.plugins.scala.*

i mport org.gradle.api.provider.*

i mport org.gradle.api.publish.*

i mport org.gradle.api.publish.ivy.*

i mport org.gradle.api.publish.ivy.plugins.*

i mport org.gradle.api.publish.ivy.tasks.*

i mport org.gradl e. api.publish. maven. *

i mport org.gradle.api.publish.maven. pl ugi ns. *
i mport org.gradl e. api.publish. maven. t asks. *

i mport org.gradle.api.publish.plugins.*

i mport org.gradle. api.publish.tasks.*

i mport org.gradle.api.reflect.*

i mport org.gradle.api.reporting.*

i mport org.gradle.api.reporting.conponents. *
i mport org.gradl e.api.reporting.dependenci es. *
i mport org.gradle.api.reporting. dependents. *
i mport org.gradle.api.reporting. nodel . *

i mport org.gradle. api.reporting.plugins.*

i mport org.gradle.api.resources.*

i nport org.gradl e. api . specs. *

i mport org.gradle.api.tasks.*

i mport org.gradle. api.tasks.ant.*

i mport org.gradl e. api.tasks.application.*

i mport org.gradl e. api.tasks. bundling.*

i mport org.gradle.api.tasks.conpile.*

i mport org.gradle. api.tasks. di agnostics.*

i mport org.gradle.api.tasks.increnental.*

i mport org.gradle. api.tasks.javadoc. *

i mport org.gradle.api.tasks.options.*

i mport org.gradle. api.tasks.scal a.*

i mport org.gradle.api.tasks.testing.*

i mport org.gradle.api.tasks.testing.junit.*

i mport org.gradle.api.tasks.testing.junitplatform?*
i mport org.gradle.api.tasks.testing.testng.*
i nport org.gradle.api.tasks.util.*

i mport org.gradle.api.tasks.w apper.*

i mport org.gradl e.aut hentication.*

i mport org.gradl e.aut hentication. ans. *

i mport org.gradle.authentication.http.*

i mport org.gradle.buildinit.plugins.*

i mport org.gradle.buildinit.tasks.*

Page 132 of 807

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

cachi ng. *

cachi ng. configuration.*
caching. http.*

caching.local . *
concurrent.*
ext ernal . j avadoc. *

i de. vi sual studi o. *

i de. vi sual st udi o. pl ugi ns. *
i de. vi sual studi o.tasks. *

i de. xcode. *

i de. xcode. pl ugi ns. *

i de. xcode. t asks. *

ivy.*
jvm*

j vm appl
j vm appl
jvmpl at f
j vm pl ugi

cation.scripts.*
cation.tasks.*
orm*

ns. *

jvmtasks. *
jvmtasks. api . *

jvmtest.

*

jvmtool chain.*

| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.

*

assenbl er. *
assenbl er. pl ugi ns. *
assenbl er. t asks. *
base. *

base. artifact.*
base. conpile. *
base. pl ugi ns. *
base. sources. *
c.*

c.plugins.*
c.tasks.*

cof feescript.*
cpp. *
cpp. pl ugi ns. *
cpp. tasks. *
java. *
java.artifact.*

j ava. pl ugi ns. *

j ava.t asks. *
javascript.*
jvm*

jvm plugins. *
jvmtasks. *
nativeplatform*
nativepl atform t asks. *
obj ectivec. *

Page 133 of 807

i mport org.gradle.l anguage. obj ecti vec. pl ugi ns. *

i mport org.gradl e.l anguage. obj ecti vec. t asks. *

i mport org.gradl e. | anguage. obj ecti vecpp. *

i mport org.gradl e. |l anguage. obj ecti vecpp. pl ugi ns. *

i mport org.gradl e. | anguage. obj ecti vecpp. t asks. *

i mport org.gradl e.l anguage. pl ugi ns. *

i mport org.gradle.l anguage.rc. *

i mport org.gradl e.l anguage. rc. pl ugi ns. *

i mport org.gradl e.l anguage.rc. tasks.*

i mport org.gradle.l anguage. routes. *

i nport org.gradl e. |l anguage. scal a. *

i mport org.gradl e.l anguage. scal a. pl ugi ns. *

i nport org.gradl e. |l anguage. scal a. t asks. *

i mport org.gradl e.l anguage. scal a.tool chain. *

i mport org.gradle.l anguage. swi ft.*

i mport org.gradle.language. swift. plugins.*

i mport org.gradle.l anguage. sw ft.tasks.*

i mport org.gradle.language.twirl.*

i mport org.gradl e. maven. *

i mport org.gradl e. nodel . *

i mport org.gradle.nativeplatform*

i mport org.gradle.nativeplatformplatform?*

i mport org.gradle.nativepl atform plugins. *

i mport org.gradle.nativeplatformtasks.*

i mport org.gradle.nativeplatformtest.*

i mport org.gradle.nativeplatformtest.cpp.*

i mport org.gradle.nativeplatformtest.cpp.plugins.*
i mport org.gradle.nativeplatformtest.cunit.*

i mport org.gradle.nativeplatformtest.cunit.plugins.*
i mport org.gradle.nativeplatformtest.cunit.tasks.*
i mport org.gradle.nativeplatformtest.googletest.*

i mport org.gradle.nativeplatformtest. googletest. plugins.*
i mport org.gradle.nativeplatformtest.plugins.*

i mport org.gradle.nativeplatformtest.tasks.*

i mport org.gradle.nativeplatformtest.xctest.*

i mport org.gradle.nativeplatformtest. xctest. plugins.*
i mport org.gradle.nativeplatformtest. xctest.tasks.*
i mport org.gradle.nativeplatformtool chain.*

i mport org.gradl e.nativepl at form tool chai n. pl ugi ns. *
i mport org.gradle.nornalization.*

i mport org.gradle. pl atform base. *

i mport org.gradle. pl atform base. bi nary. *

i nport org.gradl e. pl atform base. conponent . *

i mport org.gradle. pl atform base. pl ugi ns. *

i mport org.gradle.play.*

i mport org.gradle.play.distribution.*

i mport org.gradle.play.platform?*

i mport org.gradle.play.plugins.*

i mport org.gradle.play.plugins.ide.*

Page 134 of 807

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

pl ay.tasks. *

pl ay.tool chain. *

pl ugi n. devel . *

n. devel . pl ugi ns. *
n. devel .t asks. *
n. mnagenent . *
n.use.*

pl ug
pl ug
pl ug
pl ug
pl ug
pl ug
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi

ns.
ns.
ns.
ns.
ns.
ns.
ns.
.javascri pt.coffeescript.*
ns.
ns.
ns.
ns.
ns.

ns

ns

ear.*

ear . descriptor.*
i de. *

i de. api . *

i de. eclipse.*

i de.idea.*

j avascri pt. base. *

javascript.envjs.*
javascript.envjs. browser. *
javascript.envjs. http.*
javascript.envjs.http.sinple.*
javascript.jshint.*

.javascript.rhino.*
ns.
ns.
ns.
ns.
ns.
process.
swi ftpm
swi ftpm
swi ftpm
testing.
testing.
testing.
testing.
testing.

si gning. *

si gni ng. si gnatory.*

Si gni ng. si gnatory. pgp. *
si gni ng. type. *

si gni ng. type. pgp. *

*

*

pl ugi ns. *

t asks. *

base. *
base. pl ugi ns. *

j acoco. pl ugi ns. *

j acoco. t asks. *
jacoco. tasks.rul es. *

testkit.runner.*

Page 135 of 807

i mport org.gradle.vcs.*
i mport org.gradle.vcs.git.*
i mport org.gradle.workers.*

[3] Any language element except for statement labels.

Page 136 of 807

Authoring Tasks

In the introductory tutorial (Build Script Basics) you learned how to create simple tasks. You also learned
how to add additional behavior to these tasks later on, and you learned how to create dependencies
between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle
supports enhanced tasks, which are tasks that have their own properties and methods. This is really
different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or built
into Gradle.

8
Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console Ul and via the
Tooling API (see Embedding Gradle using the Tooling API). These labels are based on if a task has actions
to execute, if it should execute those actions, if it did execute those actions and if those actions made any
changes.

Page 137 of 807

Table 3. Details about task outcomes

utcome L N .
bel Description of outcome Situations that have this outcome
e
® Used whenever a task has actions and Gradle has determined they should be
10 | abel) . . executed as part of a build.
- EXEGUTED Task executed its actions.
® Used whenever a task has no actions and some dependencies, and any of the
dependencies are executed. See also the section called “Lifecycle tasks”.
® Used when a task has outputs and inputs and they have not changed. See the
section called “Up-to-date checks (AKA Incremental Build)”.
® Used when a task has actions, but the task tells Gradle it did not change its outputs.
Task’s outputs did not
P- TO- DATE

change. ® Used when a task has no actions and some dependencies, but all of the
dependencies are up-to-date, skipped or from cache. See also the section called
“Lifecycle tasks”.

® Used when a task has no actions and no dependencies.

Task’s outputs could be
ROM CACHE found from a previo®s Used when a task has outputs restored from the build cache. See Build Cache.
execution.

® Used when a task has been explicitly excluded from the command-line. See the

Task did not execute its section called “Excluding tasks from execution”.

KI PPED]
actions. ® Used when a task has an onl yI f predicate return false. See the section called
“Using a predicate”.
= Task did not need fo Used when a task has inputs and outputs, but no sources. For example, source files
execute its actions. are . j ava files for JavaConpi | e.

Defining tasks

We have already seen how to define tasks using a keyword style in Build Script Basics. There are a few
variations on this style, which you may need to use in certain situations. For example, the keyword style
does not work in expressions.

Page 138 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 78. Defining tasks

buil d. gradl e
task(hello) {
doLast {

println "hello"

task(copy, type: Copy) {
fromfile('srcDir"))
i nto(buildDir)

You can also use strings for the task names:

Example 79. Defining tasks - using strings for task names

bui | d. gradl e
task(' hello') {
doLast {

println "hello"

task(' copy', type: Copy) {
from(file(' srchDir'))
i nto(buildDir)

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 80. Defining tasks with alternative syntax

buil d. gradl e
tasks.create(' hello') {
doLast {

println "hello"

t asks. create(' copy', Copy) {
fromfile('srcDir"))
i nt o(bui | dDi r)

Here we add tasks to the t asks collection. Have a look at TaskCont ai ner for more variations of the cr eat
method.

Page 139 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskContainer.html

8§
Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a
property of the project, using the task name as the property name:

Example 81. Accessing tasks as properties

buil d. gradl e
task hello

println hello.name
println project.hello.nane

Tasks are also available through the t asks collection.
Example 82. Accessing tasks via tasks collection

bui | d. gradl e
task hello

println tasks. hello. nane
println tasks[' hello'].nane

You can access tasks from any project using the task’s path using the t asks. get ByPat h() method. You

can call the get ByPat h() method with a task name, or a relative path, or an absolute path.
Example 83. Accessing tasks by path

buil d. gradl e
project(':projectA) {
task hello

task hello

println tasks. getByPath(' hello').path

println tasks.getByPath(':hello').path

println tasks. getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Outputofgradl e -q hello
> gradle -q hello
‘hello

“hello

:projectA hello
:projectA hello

Page 140 of 807

Have a look at TaskCont ai ner for more options for locating tasks.

8§
Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To create a Copy task for your build, you can
declare in your build script:

Example 84. Creating a copy task

bui I d. gradl e
task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “myCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You'll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 85. Configuring a task - various ways

bui I d. gradl e

Copy nyCopy = task(myCopy, type: Copy)

myCopy. from ' resour ces'

myCopy.into 'target’

nyCopy.include(' **/*. txt", "**/*.xm"', "**/* properties")

This is similar to the way we would configure objects in Java. You have to repeat the context (myCopy) in the

configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable.
It is usually our favorite.

Example 86. Configuring a task - with closure

buil d. gradl e
task nmyCopy(type: Copy)

my Copy {
from'resources'

into 'target'
include(" **/*. txt', "**/* . xm', "**/* properties')

This works for any task. Line 3 of the example is just a shortcut for the t asks. get ByNanme() method. It is

Page 141 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Copy.html

important to note that if you pass a closure to the get ByNane() method, this closure is applied to configure

the task, not when the task executes.
You can also use a configuration closure when you define a task.
Example 87. Defining a task with closure

bui | d. gradl e

task copy(type: Copy) {
from'resources'
into 'target’

include('**/*. txt', "**/* xm', "**/* properties')

}
Don't forget about the build phases
A task has both configuration and actions. When using the doLast , you are simply using a shortcut
to define an action. Code defined in the configuration section of your task will get executed during
the configuration phase of the build regardless of what task was targeted. See Build Lifecycle for
more details about the build lifecycle.

8§

Passing arguments to a task constructor

As opposed to configuring the mutable properties of a Task after creation, you can pass argument values to
the Task class’s constructor. In order to pass values to the Task constructor, you must annotate the
relevant constructor with @ avax. i nj ect. | nj ect .

Example 88. Task class with @Inject constructor

buil d. gradl e

cl ass Custonirask extends Defaul t Task {
final String nessage
final int nunmber

@ nj ect

Cust onTask(String nmessage, int numnber) {
thi s. message = nmessage
t hi s. nunber = nunber

You can then create a task, passing the constructor arguments at the end of the parameter list.
Example 89. Creating a task with constructor arguments using TaskContainer

buil d. gradl e
tasks. create(' myTask', CustonmTask, 'hello', 42)

Page 142 of 807

In a Groovy build script, you can create the task using const r uct or Ar gs.
Example 90. Creating a task with constructor arguments using Map

bui | d. gradl e
task nmyTask(type: Customlask, constructorArgs: ['hello', 42])

In a Kotlin build script, you can pass constructor arguments using the reified extension function on the t asks

TaskCont ai ner .
Example 91. Creating a task with constructor arguments using Kotlin DSL

buil d. gradl e. kts
open class CustoniTask @ nject constructor(private val message: String, private vi
@askAction fun run() = println("$nessage $nunber")

t asks. cr eat e<Cust omTask>("nyTask", "hello", 42)

In all circumstances, the values passed as constructor arguments must be non-null. If you attempt to pass a
value, Gradle will throw a Nul | Poi nt er Except i on indicating which runtime value is nul | .

8§
Adding dependencies to a task

There are several ways you can define the dependencies of a task. In the section called “Task
dependencies” you were introduced to defining dependencies using task names. Task names can refer to
tasks in the same project as the task, or to tasks in other projects. To refer to a task in another project, you
prefix the name of the task with the path of the project it belongs to. The following is an example which adds
a dependency from pr oj ect A: t askX to pr oj ect B: t askY:

Page 143 of 807

Example 92. Adding dependency on task from another project

buil d. gradl e
project('projectA) {
task taskX(dependsOn: ':projectB:taskY') {
doLast {
println 'taskX

project('projectB) {
task taskY {
doLast {
println 'taskY

Outputofgradl e -qgq taskX
> gradle -qg taskX
taskyY

taskX

Instead of using a task name, you can define a dependency using a Task object, as shown in this example:

Example 93. Adding dependency using task object

buil d. gradl e
task taskX {
doLast {

println 'taskX

task taskY {
doLast {
println 'taskY

t askX. dependsOn t askY
Outputofgradl e -qg taskX
> gradle -qg taskX

t askY
t askX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

Page 144 of 807

passed the task whose dependencies are being calculated. The closure should return a single Task or
collection of Task objects, which are then treated as dependencies of the task. The following example adds
a dependency from t askX to all the tasks in the project whose name starts with | i b:

Example 94. Adding dependency using closure

buil d. gradl e
task taskX {
doLast {

println 'taskX

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}
task libl {
doLast {
println '"libl
}
}
task lib2 {
doLast {
println "lib2'
}
}

task not ALib {
doLast {
println 'notALi b’

Outputof gradl e -qg taskX
> gradle -q taskX

libl

lib2

t askX

For more information about task dependencies, see the Task API.

8§
Ordering tasks

Note: Task ordering is an incubating feature. Please be aware that this feature may change in later
Gradle versions.

Page 145 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between a task ordering and a task dependency
is that an ordering rule does not influence which tasks will be executed, only the order in which they will be
executed.

Task ordering can be useful in a number of scenarios:
Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

Run build validations early in the build: e.g. validate | have the correct credentials before starting the work for
a release build.

Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests should
run before integration tests.

A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the outputs
of all executed test tasks.

There are two ordering rules available: “must run after” and “should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. This is expressed as t askB. nust RunAf t er (t askA) . The
“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using
that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a
task have been satisfied apart from the “should run after” task, then this task will be run regardless of
whether its “should run after” dependencies have been run or not. You should use “should run after” where
the ordering is helpful but not strictly required.

With these rules present it is still possible to execute t askA without t askB and vice-versa.

Page 146 of 807

Example 95. Adding a 'must run after' task ordering

buil d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

t askY. nust RunAfter taskX

Outputofgradl e -qg taskY taskX
> gradl e -qg taskY taskX

t askX

taskY

Example 96. Adding a 'should run after' task ordering

bui | d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast ({
println 'taskY
}
}

t askY. shoul dRunAfter taskX

Outputof gradl e -qg taskY taskX
> gradl e -q taskY taskX
taskX

taskY

In the examples above, it is still possible to execute t askY without causing t askX to run:
Example 97. Task ordering does not imply task execution

Outputofgradl e -qg taskY
> gradl e -qg taskY
taskyY

Page 147 of 807

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter (java.l ang. Obj ect[]) and Task. shoul dRunAfter(java.lang. Object[])
methods. These methods accept a task instance, a task name or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

Note that “B. must RunAf t er (A) ” or “B. shoul dRunAft er (A) ” does not imply any execution dependency
between the tasks:

It is possible to execute tasks A and B independently. The ordering rule only has an effect when both tasks
are scheduled for execution.

When run with - - cont i nue, it is possible for B to execute in the event that A fails.
As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Example 98. A 'should run after' task ordering is ignored if it introduces an ordering cycle

bui I d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}
task taskz {
doLast ({
println 'taskz
}
}

t askX. dependsOn taskY
t askY. dependsOn taskz
t askZ. shoul dRunAfter taskX

Outputof gradl e -qg taskX
> gradl e -qg taskX

t askZz

taskyY

taskX

8§
Adding a description to a task

You can add a description to your task. This description is displayed when executing gr adl e t asks.

Page 148 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object[]-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 99. Adding a description to a task

buil d. gradl e

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.'

from'resources’
into 'target'
include('**/*.txt', "**/*.xm', '"**/* properties')

8§
Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java
plugin with a custom task of a different type. You can achieve this with:

Example 100. Overwriting a task

buil d. gradl e
task copy(type: Copy)

task copy(overwite: true) {
doLast {
println('l amthe new one.")

Output of gradl e -qgq copy
> gradl e -q copy
I amthe new one.

This will replace a task of type Copy with the task you've defined, because it uses the same name. When
you define the new task, you have to set the overwr it e property to true. Otherwise Gradle throws an

exception, saying that a task with that name already exists.

8§
Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

Page 149 of 807

8
Using a predicate

You can use the onl yl f () method to attach a predicate to a task. The task’s actions are only executed if
the predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as
a parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Example 101. Skipping a task using a predicate

bui | d. gradl e
task hello {
doLast {

println "hello world

hell o.onlylf { !project.hasProperty('skipHello") }

Output of gradl e hell o - Pski pHel | o
> gradle hello -PskipHello
> Task :hell o SKI PPED

BUI LD SUCCESSFUL in Os

8
Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcept i on. If this exception is thrown by an action, the further execution of this action as
well as the execution of any following action of this task is skipped. The build continues with executing the
next task.

Page 150 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 102. Skipping tasks with StopExecutionException

buil d. gradl e
task conpile {
doLast {

println 'W are doing the conpile.’

conpi |l e. doFirst {
/'l Here you would put arbitrary conditions in real life.
/1l But this is used in an integration test so we want defined behavi or.
if (true) { throw new St opExecuti onException() }

}
task nyTask(dependsOn: 'conpile') {
doLast ({
println 'l am not affected
}
}

Output of gradl e -g myTask
> gradl e -q nyTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution of
the built-in actions of such a task.!!

8
Enabling and disabling tasks

Every task has an enabl ed flag which defaults to t r ue. Setting it to f al se prevents the execution of any of
the task’s actions. A disabled task will be labelled SKIPPED.

Example 103. Enabling and disabling tasks

buil d. gradl e
task disableMe {
doLast {

println 'This should not be printed if the task is disabled.’

}

di sabl eMe. enabl ed = fal se
Output of gr adl e di sabl eMe

> gradl e di sabl eMe

> Task :di sabl eMe SKI PPED

BUI LD SUCCESSFUL in Os

Page 151 of 807

8§
Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done. Consider the
process of compilation. Once your source files have been compiled, there should be no need to recompile
them unless something has changed that affects the output, such as the modification of a source file or the
removal of an output file. And compilation can take a significant amount of time, so skipping the step when
it's not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have almost
certainly already seen it in action: it's active nearly every time the UP- TO- DATE text appears next to the
name of a task when you run a build. Task outcomes are described in the section called “Task outcomes”.

How does incremental build work? And what does it take to make use of it in your own tasks? Let's take a
look.

§
Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the compilation
example from earlier, we can see that the source files are the inputs and, in the case of Java, the generated
class files are the outputs. Other inputs might include things like whether debug information should be
included.

Figure 9. Example task inputs and outputs

Green: inputs

Blue: outputs
Target JDK
version \
Source JavaCompile .
: S —_—
files task Class files

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from the
previous figure. Different bytecode is generated depending on the content of the source files and the
minimum version of the Java runtime you want to run the code on. That makes them task inputs. But

Page 152 of 807

whether compilation has 500MB or 600MB of maximum memory available, determined by the menmor yMaxi
property, has no impact on what bytecode gets generated. In Gradle terminology, menor yMaxi munsi ze is
just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed since the
last build. If they haven't, Gradle can consider the task up to date and therefore skip executing its actions.
Also note that incremental build won't work unless a task has at least one task output, although tasks usually
have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are inputs and
which are outputs. If a task property affects the output, be sure to register it as an input, otherwise the task
will be considered up to date when it's not. Conversely, don't register properties as inputs if they don't affect
the output, otherwise the task will potentially execute when it doesn’'t need to. Also be careful of
non-deterministic tasks that may generate different output for exactly the same inputs: these should not be
configured for incremental build as the up-to-date checks won’t work.

Let’'s now look at how you can register task properties as inputs and outputs.

§
Custom task types

If you're implementing a custom task as a class, then it takes just two steps to make it work with incremental
build:

Create typed properties (via getter methods) for each of your task inputs and outputs
Add the appropriate annotation to each of those properties

Note: Annotations must be placed on getters or on Groovy properties. Annotations placed on
setters, or on a Java field without a corresponding annotated getter are ignored.

Gradle supports three main categories of inputs and outputs:
Simple values

Things like strings and numbers. More generally, a simple value can have any type that implements Seri al i

Filesystem types

These consist of the standard Fi | e class but also derivatives of Gradle’s Fi | eCol | ecti on type and
anything else that can be passed to either the Proj ect. fil e(java. |l ang. Cbj ect) method - for single
file/directory properties - or the Project.files(java.lang. Object[]),
ProjectLayout.files(java.l ang. Object[]), and

Proj ect Layout . confi gur abl eFi | es(j ava. | ang. Qbj ect[]) methods.
Nested values

Custom types that don’t conform to the other two categories but have their own properties that are inputs or

Page 153 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-

outputs. In effect, the task inputs or outputs are nested inside these custom types.

As an example, imagine you have a task that processes templates of varying types, such as FreeMarker,
Velocity, Moustache, etc. It takes template source files and combines them with some model data to
generate populated versions of the template files.

This task will have three inputs and one output:
Template source files

Model data

Template engine

Where the output files are written

When you're writing a custom task class, it's easy to register properties as inputs or outputs via annotations.
To demonstrate, here is a skeleton task implementation with some suitable inputs and outputs, along with
their annotations:

Example 104. Custom task class

bui | dSrc/ src/ main/javal or g/ exanpl e/ ProcessTenpl ates. j ava

Page 154 of 807

package org. exanpl e;

import java.io.File;

i mport java.util.HashMap;

i mport org.gradle.api.?*;

i mport org.gradle.api.file.*;
i mport org.gradle. api.tasks. *;

public class ProcessTenpl ates extends Defaul t Task {
private Tenpl at eEngi neType t enpl at eEngi ne;
private FileCollection sourceFiles;
private Tenpl at eData tenpl at eDat a;
private File outputbDir;

@ nput
publ i c Tenpl at eEngi neType get Tenpl at eEngi ne() {
return this.tenplat eEngine;

@nputFiles
public FileCollection getSourceFiles() {
return this.sourceFil es;

@Nest ed
public Tenpl at eDat a get Tenpl at eDat a() {
return this.tenplateData;

@out put Di rect ory
public File getQutputDir() { return this.outputDir; }

/|l + setter nethods for the above - assune we’'ve defined them

@askActi on

public void processTenpl ates() {
I

}

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ Tenpl at eDat a. j ava

Page 155 of 807

package org. exanpl e;

i mport java.util.HashMap;
i mport java.util. Mp;
i mport org.gradle. api.tasks. I nput;

public class Tenpl ateData {
private String nane;
private Map<String, String> vari ables;

public Tenpl ateData(String name, Map<String, String> variables) ({
thi s. name = nane;
this.variables = new HashMap<>(vari abl es) ;

@ nput
public String getName() { return this.nane; }

@ nput
public Map<String, String> getVariables() {
return this.variabl es;

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
> Task :processTenpl at es

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
> Task :processTenpl ates UP- TO DATE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s plenty to talk about in this example, so let's work through each of the input and output properties in
turn:

t enpl at eEngi ne

Represents which engine to use when processing the source templates, e.g. FreeMarker, Velocity, etc. You
could implement this as a string, but in this case we have gone for a custom enum as it provides greater type
information and safety. Since enums implement Seri al i zabl e automatically, we can treat this as a simple
value and use the @ nput annotation, just as we would with a St r i ng property.

Page 156 of 807

sourceFil es

The source templates that the task will be processing. Single files and collections of files need their own
special annotations. In this case, we're dealing with a collection of input files and so we use the @ nput Fi | e

annotation. You’'ll see more file-oriented annotations in a table later.
t enpl at eDat a

For this example, we’re using a custom class to represent the model data. However, it does not implement Se
, SO we can't use the @ nput annotation. That's not a problem as the properties within Tenpl at eDat a - a
string and a hash map with serializable type parameters - are serializable and can be annotated with @ nput
. We use @Nest ed on t enpl at eDat a to let Gradle know that this is a value with nested input properties.

outputDir

The directory where the generated files go. As with input files, there are several annotations for output files
and directories. A property representing a single directory requires @ut put Di r ect ory. You'll learn about

the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template engine,
model data or generated files have changed since the previous time Gradle executed the task. This will often
save a significant amount of time. You can learn how Gradle detects changes later.

This example is particularly interesting because it works with collections of source files. What happens if only
one source file changes? Does the task process all the source files again or just the modified one? That
depends on the task implementation. If the latter, then the task itself is incremental, but that’s a different
feature to the one we're discussing here. Gradle does help task implementers with this via its incremental
task inputs feature.

Now that you have seen some of the input and output annotations in practice, let's take a look at all the
annotations available to you and when you should use them. The table below lists the available annotations
and the corresponding property type you can use with each one.

Table 4. Incremental build property type annotations

Expected property

nnotation Description
type
| nput Any serializable type A simple input value
I nputFile Filex A single input file (not directory)
InputDirectory File* A single input directory (not file)
I nput Fi | es Iterabl e<Fil e>* An iterable of input files and directories

Page 157 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Input.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/InputFile.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/InputDirectory.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/InputFiles.html

An iterable of input files and directories that represent a Java classpath. This
allows the task to ignore irrelevant changes to the property, such as different
names for the same files. It is similar to annotating the property @at hSensi ti ve
but it will ignore the names of JAR files directly added to the classpath, and it
will consider changes in the order of the files as a change in the classpath.
J asspat h It arable<Ei &5 Gradle will inspect the contents of jar files on the classpath and ignore changes
that do not affect the semantics of the classpath (such as file dates and entry

order). See also the section called “Using the classpath annotations”.

Note: The @ asspat h annotation was introduced in Gradle 3.2. To
stay compatible with earlier Gradle versions, classpath properties
should also be annotated with @ nput Fi | es.

An iterable of input files and directories that represent a Java compile
classpath. This allows the task to ignore irrelevant changes that do not affect
the API of the classes in classpath. See also the section called “Using the
classpath annotations”.

The following kinds of changes to the classpath will be ignored:
® Changes to the path of jar or top level directories.
® Changes to timestamps and the order of entries in Jars.

® Changes to resources and Jar manifests, including adding or removing
resources.

® Changes to private class elements, such as private fields, methods and inner
Conpi | eCl asspath I terabl e<File>* (|35ses.

® Changes to code, such as method bodies, static initializers and field initializers
(except for constants).

® Changes to debug information, for example when a change to a comment
affects the line numbers in class debug information.

® Changes to directories, including directory entries in Jars.

Note: The @onpi | eCl asspat h annotation was introduced in Gradle
3.4. To stay compatible with Gradle 3.3 and 3.2, compile classpath
properties should also be annotated with @Cl asspath. For
compatibility with Gradle versions before 3.2 the property should also
be annotated with @ nput Fi | es.

Qut put Fil e Fil e* A single output file (not directory)

Qut put Directory File* A single output directory (not file)

Map<String, File>
) . An iterable of output files (no directories). The task outputs can only be cached
Qut put Fi | es **orlterabl e<Fil e> . .
if a Map is provided.

*

Page 158 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/CompileClasspath.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/OutputFile.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/OutputDirectory.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/OutputFiles.html

Map<String, File>)) .]
)) . An iterable of output directories (no files). The task outputs can only be cached
Qut put Directories*orlterabl e<Fil e> .]
if a Map is provided.

*

- Fil e orlterabl e<Fi Beecifies one or more files that are removed by this task. Note that a task can
stroys
. * define either inputs/outputs or destroyables, but not both.

. I St at Fil e orlterabl e<Fi Bpecifies one or more files that represent the local state of the task. These files
ocal State
* are removed when the task is loaded from cache.

A custom type that may not implement Seri al i zabl e but does have at least
Nest ed Any custom type one field or property marked with one of the annotations in this table. It could
even be another @\est ed.

Indicates that the property is neither an input nor an output. It simply affects the
Consol e Any type console output of the task in some way, such as increasing or decreasing the
verbosity of the task.

Indicates that the property is used internally but is neither an input nor an
I nt ernal Any type
output.

In fact, Fi | e can be any type accepted by Proj ect.file(java.lang. Object) andlterabl e<Fil ¢
can be any type accepted by Project.files(java.lang. Object[]),
Proj ect Layout.files(java.lang. Object[]), or

Proj ect Layout . confi gurabl eFi | es(java. | ang. Ooj ect[]). Thisincludes instances of Cal | abl
, such as closures, allowing for lazy evaluation of the property values. Be aware that the types Fi | eCol |
and Fil eTree are | t er abl e<Fi | e>s.

*%

Similar to the above, Fi | e can be any type accepted by Proj ect . fil e(]java. | ang. Obj ect). The Me
itself can be wrapped in Cal | abl es, such as closures.

Page 159 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/OutputDirectories.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Destroys.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/LocalState.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Table 5. Additional annotations used to further qualifying property type annotations
nnotation Description

Used with @ nput Fi | es or @ nput Di r ect ory to tell Gradle to skip the task if the corresponding files or

SKi BWhenErot directory are empty, along with all other input files declared with this annotation. Tasks that have been
. i yskipped due to all of their input files that were declared with this annotation being empty will result in a

distinct “no source” outcome. For example, NO- SOURCE will be emitted in the console output.

ot | Used with any of the property type annotations listed in the Opt i onal API documentation. This annotation
i ona
disables validation checks on the corresponding property. See the section on validation for more details.

Used with any input file property to tell Gradle to only consider the given part of the file paths as important.
Pat hSensi t i vdror example, if a property is annotated with @at hSensi tive(Pat hSensitivity. NAME_ONLY), then
moving the files around without changing their contents will not make the task out-of-date.

Annotations are inherited from all parent types including implemented interfaces. Property type annotations
override any other property type annotation declared in a parent type. This way an @ nput Fi | e property
can be turned into an @ nput Di r ect or y property in a child task type.

Annotations on a property declared in a type override similar annotations declared by the superclass and in
any implemented interfaces. Superclass annotations take precedence over annotations declared in
implemented interfaces.

The Consol e and | nt er nal annotations in the table are special cases as they don’t declare either task
inputs or task outputs. So why use them? It's so that you can take advantage of the Java Gradle Plugin
Development plugin to help you develop and publish your own plugins. This plugin checks whether any
properties of your custom task classes lack an incremental build annotation. This protects you from
forgetting to add an appropriate annotation during development.

§
Using the classpath annotations

Besides @ nput Fi | es, for JVM-related tasks Gradle understands the concept of classpath inputs. Both
runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with € nput Fi | es, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and jar files on
the classpath itself are ignored. Timestamps and the order of class files and resources inside jar files on a
classpath are ignored, too, thus recreating a jar file with different file dates will not make the task out of date.

Runtime classpaths are marked with €Cl asspat h, and they offer further customization via classpath
normalization.

Input properties annotated with €Conpi | eCl asspat h are considered Java compile classpaths. Additionally

to the aforementioned general classpath rules, compile classpaths ignore changes to everything but class

Page 160 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/CompileClasspath.html

files. Gradle uses the same class analysis described in the section called “Compile avoidance” to further
filter changes that don't affect the class' ABls. This means that changes which only touch the implementation
of classes do not make the task out of date.

§
Nested inputs

When analyzing €Nest ed task properties for declared input and output sub-properties Gradle uses the type

of the actual value. Hence it can discover all sub-properties declared by a runtime sub-type.
When adding €\est ed to a €Pr ovi der , the value of the Pr ovi der is treated as a nested input.

When adding €\est ed to an iterable, each element is treated as a separate nested input. Each nested input
in the iterable is assigned a name, which by default is the dollar sign followed by the index in the iterable,
e.g. $2. If an element of the iterable implements Naned, then the name is used as property name. The
ordering of the elements in the iterable is crucial for for reliable up-to-date checks and caching if not all of the
elements implement Naned. Multiple elements which have the same name are not allowed.

When adding €N\est ed to a map, then for each value a nested input is added, using the key as name.

The type and classpath of nested inputs is tracked, too. This ensures that changes to the implementation of
a nested input causes the build to be out of date. By this it is also possible to add user provided code as an
input, e.g. by annotating an €Act i on property with €\est ed. Note that any inputs to such actions should be
tracked, either by annotated properties on the action or by manually registering them with the task.

Using nested inputs allows richer modeling and extensibility for tasks, as e.g. shown by Test . get JvnAr gur

This allows us to model the JaCoCo Java agent, thus declaring the necessary JVM arguments and providing
the inputs and outputs to Gradle:

Page 161 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/provider/Provider.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Named.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Named.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://github.com/gradle/gradle/blob/7b047c7cbb4932743243a76123f5347be6d07856/subprojects/jacoco/src/main/java/org/gradle/testing/jacoco/plugins/JacocoPluginExtension.java#L138-L157

cl ass JacocoAgent inpl ements CommandLi neAr gunent Provi der {
private final JacocoTaskExtension jacoco;

publ i ¢ JacocoAgent (JacocoTaskExt ensi on jacoco) {
this.jacoco = jacoco;

@Nest ed
@t i onal

public JacocoTaskExt ensi on getJacoco() {
return jacoco.isEnabled() ? jacoco : null;

@verride
public Iterabl e<String> asArgunents() {
return jacoco.isEnabled() ? |mutabl eList.of (jacoco. get AsJvmArg()) : Coll

test. get JvmAr gunent Provi der s() . add(new JacocoAgent (ext ensi on))

For this to work, JacocoTaskExt ensi on needs to have the correct input and output annotations.

The approach works for Test JVM arguments, since Test . get JvmAr gunent Provi ders() isanlterabl.
annotated with €Nest ed.

There are other task types where this kind of nested inputs are available:

JavaExec. get Argunent Provi der s() - model e.g. custom tools

JavaExec. get JvmAr gunent Provi der s() - used for Jacoco Java agent

Conpi | eOpti ons. get Conpi | er Argunent Provi der s() - model e.g annotation processors
Exec. get Argurrent Provi der s() - model e.g custom tools

In the same way, this kind of modelling is available to custom tasks.

§
Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental build, but
you don’t always have that option. That's why Gradle also provides an alternative API that can be used with
any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for scenarios
just like that. It can also be used for ad-hoc tasks, as you'll see next.

Page 162 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:argumentProviders
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:jvmArgumentProviders
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Exec.html#org.gradle.api.tasks.Exec:argumentProviders

§
Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on every Gradle
task:

Task. get | nput s() of type Taskl nput s
Task. get Qut put s() of type TaskCQut put s
Task. get Dest royabl es() of type TaskDest r oyabl es

These objects have methods that allow you to specify files, directories and values which constitute the task’s
inputs and outputs. In fact, the runtime API has almost feature parity with the annotations. All it lacks is
validation of whether declared files are actually files and declared directories are directories. Nor will it create
output directories if they don’t exist. But that's it.

Let's take the template processing example from before and see how it would look as an ad-hoc task that
uses the runtime API:

Example 105. Ad-hoc task

bui I d. gradl e

task processTenpl at esAdHoc {
i nputs. property("engine", Tenpl at eEngi neType. FREEMARKER)
inputs.files(fileTree("src/tenplates"))
i nputs. property("tenpl at eDat a. nane", "docs")
i nputs. property("tenpl ateData. vari abl es", [year: 2013])
out puts. dir("$buil dbDir/ genCut put 2")

doLast {
/'l Process the tenplates here

Output of gr adl e processTenpl at esAdHoc
> gradl e processTenpl at esAdHoc

> Task : processTenpl at esAdHoc

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for this as
it's a non-trivial implementation that has several configuration options. In this case, there are no task
properties to store the root source folder, the location of the output directory or any of the other settings.
That's deliberate to highlight the fact that the runtime API doesn't require the task to have any state. In terms
of incremental build, the above ad-hoc task will behave the same as the custom task class.

Page 163 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskDestroyables.html

All the input and output definitions are done through the methods on i nput s and out put s, such as pr oper
,files(),anddir (). Gradle performs up-to-date checks on the argument values to determine whether
the task needs to run again or not. Each method corresponds to one of the incremental build annotations, for
example i nput s. property() mapsto @ nput and out puts. dir() mapsto @ut putDirectory. The
only difference is that the file(), files(), dir() and dirs() methods don't validate the type of file
object at the given path (file or directory), unlike the annotations.

The files that a task removes can be specified through dest r oyabl es. regi ster ().
Example 106. Ad-hoc task declaring a destroyable

buil d. gradl e
task renmoveTenpDir {
destroyabl es.regi ster("$projectDir/tnpDir")
doLast {
del ete("$projectDir/tnpDir")

One notable difference between the runtime API and the annotations is the lack of a method that
corresponds directly to @Nest ed. That's why the example uses two property() declarations for the
template data, one for each Tenpl at eDat a property. You should utilize the same technique when using the
runtime API with nested values. Any given task can either declare destroyables or inputs/outputs, but cannot
declare both.

§
Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task class that
lacks the requisite annotations. For example, imagine that the ProcessTenpl at es task is provided by a
plugin and that it's missing the incremental build annotations. In order to make up for that deficiency, you can
use the runtime API:

Page 164 of 807

Example 107. Using runtime API with custom task type

buil d. gradl e
task processTenpl at esRunti ne(type: ProcessTenpl at esNoAnnot ati ons) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
sourceFiles = fileTree("src/tenpl ates")
tenpl ateData = new Tenpl ateData("test"”, [year: 2014])
outputDir = file("$buil dD r/genQut put3")

i nput s. property("engi ne", tenpl at eEngi ne)

i nputs.files(sourceFiles)

i nputs. property("tenpl at eDat a. nane", tenpl at eDat a. nane)

i nputs. property("tenpl ateDat a. vari abl es", tenpl at eDat a. vari abl es)
out puts.dir(outputbDir)

Output of gr adl e processTenpl at esRunti e
> gradl e processTenpl at esRunti ne
> Task :processTenpl at esRunti ne

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Output of gr adl e processTenpl at esRunti me
> gradl e processTenpl at esRunti ne
> Task :processTenpl at esRunti me UP- TO- DATE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

As you can see, we can both configure the tasks properties and use those properties as arguments to the
incremental build runtime API. Using the runtime API like this is a little like using doLast () and doFi r st ()
to attach extra actions to a task, except in this case we’re attaching information about inputs and outputs.
Note that if the task type is already using the incremental build annotations, the runtime APl will add inputs
and outputs rather than replace them.

§
Fine-grained configuration

The runtime APl methods only allow you to declare your inputs and outputs in themselves. However, the
file-oriented ones return a builder - of type Taskl nput Fi | ePropertyBui | der - that lets you provide
additional information about those inputs and outputs.

You can learn about all the options provided by the builder in its APl documentation, but we’ll show you a
simple example here to give you an idea of what you can do.

Let's say we don’t want to run the processTenpl at es task if there are no source files, regardless of

Page 165 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

whether it's a clean build or not. After all, if there are no source files, there’s nothing for the task to do. The
builder allows us to configure this like so:

Example 108. Using skipWhenEmpty() via the runtime API

buil d. gradl e
task processTenpl at esRunti neConf (type: ProcessTenpl at esNoAnnot ations) {
I/
sourceFiles = fileTree("src/tenplates") {
include "**/*_ fni

i nputs.files(sourceFiles).skipwenEnpty()
I/

Output of gradl e cl ean processTenpl at esRunt i meConf
> gradl e cl ean processTenpl at esRunt i meConf
> Task :processTenpl at esRunti neConf NO SOURCE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

The Taskl nputs. fil es() method returns a builder that has a ski pWhenEnpt y() method. Invoking this
method is equivalent to annotating to the property with @ki p\WhenEnmpt v.

Prior to Gradle 3.0, you had to use the Taskl nputs. source() and Taskl nputs. sourcebDir ()
methods to get the same behavior as with ski pwhenEnpt y(). These methods are now deprecated and
should not be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which API you
should be using. Our recommendation is to use the annotations wherever possible, and it's sometimes worth
creating a custom task class just so that you can make use of them. The runtime API is more for situations in
which you can’t use the annotations.

§
Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those properties.
For example, if an input of one task is set to the output of another, that means the first task depends on the
second, right? Gradle knows this and can act upon it.

We'll look at this feature next and also some other features that come from Gradle knowing things about
inputs and outputs.

Page 166 of 807

§
Inferred task dependencies

Consider an archive task that packages the output of the pr ocessTenpl at es task. A build author will see
that the archive task obviously requires pr ocessTenpl at es to run first and so may add an explicit depend:

. However, if you define the archive task like so:
Example 109. Inferred task dependency via task outputs

buil d. gradl e
task packageFil es(type: Zip) {
from processTenpl at es. out put s

Output of gr adl e cl ean packageFi |l es
> gradl e cl ean packageFil es

> Task :processTenpl ates

> Task : packageFil es

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Gradle will automatically make packageFi | es depend on pr ocessTenpl at es. It can do this because it's
aware that one of the inputs of packageFiles requires the output of the processTemplates task. We call this
an inferred task dependency.

The above example can also be written as
Example 110. Inferred task dependency via a task argument

buil d. gradl e
task packageFil es2(type: Zip) {
from processTenpl at es

Output of gr adl e cl ean packageFi | es2
> gradl e cl ean packageFil es2

> Task : processTenpl at es

> Task : packageFil es2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

This is because the fron{) method can accept a task object as an argument. Behind the scenes, f r on()

uses the proj ect. fil es() method to wrap the argument, which in turn exposes the task’s formal outputs
as a file collection. In other words, it's a special case!

Page 167 of 807

8§
Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic validation
on the annotated properties. In particular, it does the following for each property before the task executes:

@ nput Fi | e - verifies that the property has a value and that the path corresponds to a file (not a directory)
that exists.

@ nput Di rect ory - same as for @ nput Fi | e, except the path must correspond to a directory.

@out put Di rect ory - verifies that the path doesn’t match a file and also creates the directory if it doesn’t
already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to inputs and
outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may validly not
exist. That's why Gradle provides the @pt i onal annotation: you use it to tell Gradle that a particular input
is optional and therefore the build should not fail if the corresponding file or directory doesn't exist.

§
Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what files a task
depends on, it can automatically run a task again if any of its inputs change. By activating continuous build
when you run Gradle - through the - - cont i nuous or -t options - you will put Gradle into a state in which it

continually checks for changes and executes the requested tasks when it encounters such changes.

You can find out more about this feature in the section called “Continuous Build”.

§
Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make decisions
about how to run tasks when the "--parallel" option is used. For instance, Gradle will inspect the outputs of
tasks when selecting the next task to run and will avoid concurrent execution of tasks that write to the same
output directory. Similarly, Gradle will use the information about what files a task destroys (e.g. specified by
the Dest r oys annotation) and avoid running a task that removes a set of files while another task is running
that consumes or creates those same files (and vice versa). It can also determine that a task that creates a
set of files has already run and that a task that consumes those files has yet to run and will avoid running a
task that removes those files in between. By providing task input and output information in this way, Gradle
can infer creation/consumption/destruction relationships between tasks and can ensure that task execution
does not violate those relationships.

Page 168 of 807

8§
How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the
paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task
completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output
files and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is
executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If
the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date
and skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for
the next time the task is executed.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions, or its
dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When comparing
the snapshot of such a property, even a change in the order of the files will result in the task becoming
out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last time it was
executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an
output directory without interfering with each other. If this is not the behaviour you want for some reason,
consider using TaskCQut put s. upToDat eWhen(groovy. | ang. C osur e)

The inputs for the task are also used to calculate the build cache key used to load task outputs when
enabled. For more details see the section called “Task Output Caching”.

8
Advanced techniques

Everything you've seen so far in this section will cover most of the use cases you'll encounter, but there are
some scenarios that need special treatment. We'll present a few of those next with the appropriate solutions.

§
Adding your own cached input/output methods

Have you ever wondered how the f r on{) method of the Copy task works? It's not annotated with @ nput Fi

and yet any files passed to it are treated as formal inputs of the task. What's happening?

The implementation is quite simple and you can use the same technique for your own tasks to improve their
APIs. Write your methods so that they add files directly to the appropriate annotated property. As an
example, here’'s how to add a sour ces() method to the custom Pr ocessTenpl at es class we introduced
earlier:

Page 169 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

Example 111. Declaring a method to add task inputs

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava
public class ProcessTenpl ates extends Defaul t Task {
I/
private FileCollection sourceFiles = getProject().getlLayout().files();

@ki pwhenEnpt y

@nputFiles

@rat hSensi ti ve(Pat hSensi tivity. NONE)

public FileCollection getSourceFiles() {
return this.sourceFiles;

public void sources(FileCollection sourceFiles) {
this.sourceFiles = this.sourceFiles.plus(sourceFiles);

}

/1
}
buil d. gradl e

task processTenpl ates(type: ProcessTenpl ates) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
tenpl ateData = new Tenpl ateData("test", [year: 2012])
outputDir = file("$buildDir/genQutput")

sources fileTree("src/tenplates")

Output of gr adl e processTenpl at es
> gradl e processTenpl at es
> Task :processTenpl at es

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

In other words, as long as you add values and files to formal task inputs and outputs during the configuration
phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use the pr oj e
method like so:

Page 170 of 807

Example 112. Declaring a method to add a task as an input

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava
/1
public void sources(Task inputTask) {
this.sourceFiles = this.sourceFiles.plus(getProject().getlLayout().files(input

/11

buil d. gradl e

task copyTenpl ates(type: Copy) {
into "$buildDir/tnp"
from"src/tenpl at es”

task processTenpl ates2(type: ProcessTenpl ates) {
/1
sources copyTenpl at es

Output of gr adl e processTenpl at es?
> gradl e processTenpl at es2

> Task :copyTenpl at es

> Task :processTenpl at es2

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

This techniqgue can make your custom task easier to use and result in cleaner build files. As an added
benefit, our use of get Proj ect () . get Layout (). fil es() means that our custom method can set up an

inferred task dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs, like this
example, consider using the built-in Sour ceTask. It will save you having to implement some of the plumbing

that we put into Pr ocessTenpl at es.

§
Linking an @out put Directory toan @ nput Fi | es

When you want to link the output of one task to the input of another, the types often match and a simple
property assignment will provide that link. For example, a Fi | e output property can be assignedto a Fi | e
input.

Unfortunately, this approach breaks down when you want the files in a task’'s @ut put Di r ect ory (of type F
) to become the source for another task’'s @ nput Fi | es property (of type Fi | eCol | ecti on). Since the
two have different types, property assignment won’t work.

Page 171 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.SourceTask.html

As an example, imagine you want to use the output of a Java compilation task - via the desti nati onDi r
property - as the input of a custom task that instruments a set of files containing Java bytecode. This custom
task, which we’ll call | nst runment , has a cl assFi | es property annotated with @ nput Fi | es. You might
initially try to configure the task like so:

Example 113. Failed attempt at setting up an inferred task dependency

buil d. gradl e
apply plugin: "java"

task badl nstrument Cl asses(type: Instrunment) {
classFiles = fil eTree(conpil eJava. desti nationDir)
destinationDir = file("$buildD r/instrunmented")

Output of gr adl e cl ean badl nstrunent C asses
> gradl e cl ean badl nstrunent C asses

> Task :clean UP-TO DATE

> Task : badl nstrunent d asses NO SOURCE

BUI LD SUCCESSFUL in Os
1 actionable task: 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the compilation
task is missing. In this case you would need to add an explicit task dependency between i nst r unment C ass
and conpi | eJava via dependsOn. The use of fil eTree() means that Gradle can'’t infer the task
dependency itself.

One solution is to use the TaskQut put s. fi | es property, as demonstrated by the following example:
Example 114. Setting up an inferred task dependency between output dir and input files

bui I d. gradl e

task instrunent C asses(type: Instrument) {
cl assFiles = conpileJava.outputs.files
destinationDir = file("$buildDir/instrumented")

Output of gradl e cl ean i nstrunment Cl asses
gradl e cl ean instrunentC asses

> Task :clean UP-TO DATE

> Task :conpil eJava

> Task :instrunentC asses

\

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Page 172 of 807

Alternatively, you can get Gradle to access the appropriate property itself by using one of proj ect.fil es(’
,project.layout.files() orproject.|ayout.configurableFiles() inplaceofproject.file’

Example 115. Setting up an inferred task dependency with filesFor()

bui | d. gradl e
task instrunent C asses2(type: Instrunment) ({
classFiles = layout.files(conpilelava)

destinationDir = file("$buildDi r/instrumented")

Output of gradl e cl ean i nstrunment Cl asses?

\%

gradl e cl ean instrunentd asses2
> Task :clean UP-TO DATE

> Task :conpil eJava

> Task :instrunentC asses?2

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Remember that fil es(), | ayout.files() and | ayout. confi gurabl eFi | es() can take tasks as
arguments, whereas fi | eTree() cannot.

The downside of this approach is that all file outputs of the source task become the input files of the target - i
in this case. That's fine as long as the source task only has a single file-based output, like the JavaConpi | e
task. But if you have to link just one output property among several, then you need to explicitly tell Gradle
which task generates the input files using the bui | t By method:

Page 173 of 807

Example 116. Setting up an inferred task dependency with builtBy()

buil d. gradl e
task instrunent C assesBuil tBy(type: Instrunent) {
classFiles = fil eTree(conpilelava. destinationDir) {
bui | t By comnpil eJava
}

destinationDir = file("$buildDir/instrunmented")

Output of gradl e cl ean i nstrunment C assesBui | t By
> gradl e cl ean instrument Cl assesBuil t By

> Task :cl ean UP- TO DATE

> Task :conpil eJava

> Task :instrunentd assesBuiltBy

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

You can of course just add an explicit task dependency via dependsOn, but the above approach provides
more semantic meaning, explaining why conpi | eJava has to run beforehand.

§
Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task output is
something else entirely? Perhaps it's an update to a web service or a database table. Gradle has no way of
knowing how to check whether the task is up to date in such cases.

That's where the upToDat eWhen() method on TaskCQut put s comes in. This takes a predicate function
that is used to determine whether a task is up to date or not. One use case is to disable up-to-date checks
completely for a task, like so:

Page 174 of 807

Example 117. Ignoring up-to-date checks

buil d. gradl e
task al waysl nstrument C asses(type: Instrunment) {
classFiles = layout.files(conpiledava)

destinationDir = file("$buildDir/instrumented")
out puts. upToDat eWhen { false }

Output of gradl e cl ean al waysl nstrunent C asses
> gradl e cl ean al waysl nstrunent C asses

> Task :conpil eJava

> Task :al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
3 actionable tasks: 2 executed, 1 up-to-date

Output of gr adl e al waysl nstrunment Cl asses
> gradl e al waysl nstrunent Cl asses

> Task :conpil eJava UP- TO DATE

> Task :al waysl nstrunent Cl asses

BUI LD SUCCESSFUL in Os
2 actionable tasks: 1 executed, 1 up-to-date

The { false } closure ensures that copyResour ces will always perform the copy, irrespective of
whether there is no change in the inputs or outputs.

You can of course put more complex logic into the closure. You could check whether a particular record in a
database table exists or has changed for example. Just be aware that up-to-date checks should save you
time. Don’t add checks that cost as much or more time than the standard execution of the task. In fact, if a
task ends up running frequently anyway, because it's rarely up to date, then it may not be worth having an
up-to-date check at all. Remember that your checks will always run if the task is in the execution task graph.

One common mistake is to use upToDat eWhen() instead of Task. onl yI f () . If you want to skip a task on
the basis of some condition unrelated to the task inputs and outputs, then you should use onl yI f (). For
example, in cases where you want to skip a task when a particular property is set or not set.

§
Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties have the
same value. In order to do so, Gradle first normalizes both inputs and then compares the result. For
example, for a compile classpath, Gradle extracts the ABI signature from the classes on the classpath and
then compares signatures between the last Gradle run and the current Gradle run as described in the
section called “Compile avoidance”.

Page 175 of 807

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs annotated
with €Cl asspat h are considered to be runtime classpaths.

Let's say you want to add a file bui | d-i nf o. properti es to all your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the CI job that
published the artifact. This file is only for auditing purposes, and has no effect on the outcome of running
tests. Nonetheless, this file is part of the runtime classpath for the t est task and changes on every build
invocation. Therefore, the t est would be never up-to-date or pulled from the build cache. In order to benefit
from incremental builds again, you are able tell Gradle to ignore this file on the runtime classpath at the
project level by using Pr oj ect . nornal i zati on(org. gradl e. api . Acti on):

Example 118. Runtime classpath normalization

bui | d. gradl e
nornal i zation {
runti med asspath {
i gnore 'build-info.properties

The effect of this configuration would be that changes to bui | d-i nf o. properti es would be ignored for
up-to-date checks and build cache key calculations. Note that this will not change the runtime behavior of the
t est task - i.e. any test is still able to load bui | d-i nf 0. properti es and the runtime classpath is still the

same as before.

8
Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older versions of
Gradle need to be removed to ensure that the newest version of the tasks are starting from a known clean
state.

Note: Automatic clean-up of stale output directories has only been implemented for the output of
source sets (Java/Groovy/Scala compilation).

8
Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Page 176 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

Example 119. Task rule

buil d. gradl e
t asks. addRul e("Pattern: ping<IiD>") { String taskName ->
if (taskNanme.startsWth("ping")) {
task(taskNane) {
doLast {
println "Pinging: " + (taskNane - 'ping')

Outputof gradl e -qg pi ngServer1l
> gradle -q pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

Example 120. Dependency on rule based tasks

buil d. gradl e
t asks. addRul e("Pattern: ping<IiD>") { String taskName ->
if (taskNanme.startsWth("ping")) {
task(taskNane) {
doLast {
println "Pinging: " + (taskNane - 'ping')

task groupPing {
dependsOn pi ngServer 1, pingServer?2

Output of gradl e -qg groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl

Pi ngi ng: Server2

If you run “gradl e -q tasks” you won't find a task named “pi ngSer ver 1” or “pi ngSer ver 2", but this
script is executing logic based on the request to run those tasks.

Page 177 of 807

8
Finalizer tasks

Note: Finalizers tasks are an incubating feature (see the section called “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 121. Adding a task finalizer

bui | d. gradl e
task taskX {
doLast {
println 'taskX
}
}
task taskY {
doLast {
println 'taskY
}
}

taskX. finalizedBy taskY

Outputofgradl e -qgq taskX
> gradle -qg taskX

t askX

taskY

Finalizer tasks will be executed even if the finalized task fails.

Page 178 of 807

Example 122. Task finalizer for a failing task

buil d. gradl e
task taskX {
doLast {

println 'taskX
t hrow new Runti meException()

}
}
task taskY {
doLast {
println 'taskY
}
}

taskX. finalizedBy taskY

Outputofgradl e -q taskX
> gradle -qg taskX

t askX

taskY

FAILURE: Build failed with an exception.

* \Were:
Build file '/hone/user/gradl e/ sanpl es/ usergui de/ tasks/finalizersWthFail ure/buil:

* What went w ong:
Execution failed for task ':taskX .
> java.l ang. Runti neException (no error nessage)

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug ¢

* Get nore help at https://help.gradle.org

BU LD FAILED in Os

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for example if it is
considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up
regardless of the build failing or succeeding. An example of such a resource is a web container that is
started before an integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the Task.finalizedBy(]ava.lang. Object[]) method. This
method accepts a task instance, a task name, or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

Page 179 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

8§
Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task actions.
Lifecycle tasks can represent several concepts:

a work-flow step (e.g., run all checks with check)

a buildable thing (e.g., create a debug 32-bit executable for native components with debug32Mai nExecut al

)

a convenience task to execute many of the same logical tasks (e.g., run all compilation tasks with conpi | eA

)

Many Gradle plug-ins define their own lifecycle tasks to make it convenient to do specific things. When
developing your own plugins, you should consider using your own lifecycle tasks or hooking into some of the
tasks already provided by Gradle. See the Java plugin the section called “Tasks” for an example.

Unless a lifecycle task has actions, its outcome is determined by its dependencies. If any of the task’s
dependencies are executed, the lifecycle task will be considered executed. If all of the task’s dependencies
are up-to-date, skipped or from cache, the lifecycle task will be considered up-to-date.

8
Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target
and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle combines these notions
into a single entity. Simple Gradle tasks are like Ant’s targets, but enhanced Gradle tasks also include
aspects of Ant tasks. All of Gradle’s tasks share a common API and you can create dependencies between
them. These tasks are much easier to configure than an Ant task. They make full use of the type system,
and are more expressive and easier to maintain.

[4] You might be wondering why there is neither an import for the St opExecut i onExcepti on nor do we
access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script
(see the section called “Default imports”).

Page 180 of 807

Working With Files

Almost every Gradle build interacts with files in some way: think source files, file dependencies, reports and
so on. That's why Gradle comes with a comprehensive API that makes it simple to perform the file
operations you need.

The API has two parts to it:
Specifying which files and directories to process
Specifying what to do with them

The File paths in depth section covers the first of these in detail, while subsequent sections, like File
copying in depth, cover the second. To begin with, we’ll show you examples of the most common scenarios
that users encounter.

8§
Copying a single file

You copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the location of the
file and where you want to put it. This example mimics copying a generated report into a directory that will be
packed into an archive, such as a ZIP or TAR:

Example 123. How to copy a single file

buil d. gradl e

task copyReport (type: Copy) {
fromfile("${buildDir}/reports/my-report.pdf")
into file("${buildDr}/toArchive")

The Proj ect.file(]ava.lang. Obj ect) method is used to create a file or directory path relative to the
current project and is a common way to make build scripts work regardless of the project path. The file and
directory paths are then used to specify what file to copy using Copy. fron(] ava. | ang. Cbj ect[]) and
which directory to copy it to using Copy. i nt o(j ava. | ang. Cbj ect).

You can even use the path directly without the fil e() method, as explained early in the section File
copying in depth:

Page 181 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

Example 124. Using implicit string paths

buil d. gradl e

task copyReport2(type: Copy) {
from"${buildDir}/reports/ny-report. pdf"
into "${buildDir}/toArchive"

Although hard-coded paths make for simple examples, they also make the build brittle. It's better to use a
reliable, single source of truth, such as a task or shared project property. In the following modified example,
we use a report task defined elsewhere that has the report’s location stored in its out put Fi | e property:

Example 125. Prefer task/project properties over hard-coded paths

buil d. gradl e
task copyReport3(type: Copy) {
from nmyReport Task. out putFil e
i nto archi veReportsTask. di r TOAr chi ve

We have also assumed that the reports will be archived by ar chi veRepor t sTask, which provides us with
the directory that will be archived and hence where we want to put the copies of the reports.

8§
Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments to f r on{)

Example 126. Using multiple arguments with from()

buil d. gradl e

task copyReport sFor Archivi ng(type: Copy) {
from"${buildDir}/reports/ my-report.pdf", "src/docs/nmanual.pdf"
into "${buildDir}/toArchive"

Two files are now copied into the archive directory. You can also use multiple f r on{) statements to do the
same thing, as shown in the first example of the section File copying in depth.

Now consider another example: what if you want to copy all the PDFs in a directory without having to specify
each one? To do this, attach inclusion and/or exclusion patterns to the copy specification. Here we use a
string pattern to include PDFs only:

Page 182 of 807

Example 127. Using a flat filter

buil d. gradl e

task copyPdf Report sFor Archi vi ng(type: Copy) {
from"${buildDir}/reports"
i nclude "*. pdf"
into "${buildDir}/toArchive"

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside directly in the r
directory are copied:

Figure 10. The effect of a flat filter on copying

With *. pdf filter
build/reports ' > build/toArchive

metrics L my-report.pdf

L scatterPlot.pdf
numbers.csv
my-report.pdf

You can include files in subdirectories by using an Ant-style glob pattern (**/ *), as done in this updated
example:
Example 128. Using a deep filter
bui I d. gradl e
task copyAl | Pdf Report sFor Archi vi ng(type: Copy) {
from"${buildDir}/reports"

i nclude "**/* pdf"
into "${buil dDir}/toArchive"

This task has the following effect:

Figure 11. The effect of a deep filter on copying

With xx/* . pdf filter

build/reports _ build/toArchive
metrics metrics
|—scatterPIot.pdf L scatterPlot.pdf
numbers.csv my-report.pdf

my-report.pdf

One thing to bear in mind is that a deep filter like this has the side effect of copying the directory structure

Page 183 of 807

below r eport s as well as the files. If you just want to copy the files without the directory structure, you need
to use an explicitfil eTree(dir) { includes }.files expression. We talk more about the difference
between file trees and file collections in the File trees section.

This is just one of the variations in behavior you're likely to come across when dealing with file operations in
Gradle builds. Fortunately, Gradle provides elegant solutions to almost all those use cases. Read the
in-depth sections later in the chapter for more detail on how the file operations work in Gradle and what
options you have for configuring them.

8§
Copying directory hierarchies

You may have a need to copy not just files, but the directory structure they reside in as well. This is the
default behavior when you specify a directory as the from() argument, as demonstrated by the following
example that copies everything in the r epor t s directory, including all its subdirectories, to the destination:

Example 129. Copying an entire directory

buil d. gradl e

task copyReportsDirForArchiving(type: Copy) {
from"${buildDir}/reports"
into "${buildDir}/toArchive"

The key aspect that users struggle with is controlling how much of the directory structure goes to the
destination. In the above example, do you get a t oAr chi ve/ r epor t s directory or does everything in r epor
go straight into t oAr chi ve? The answer is the latter. If a directory is part of the f r om() path, then it won't

appear in the destination.

So how do you ensure that r epor t s itself is copied across, but not any other directory in $bui | dDi r ? The
answer is to add it as an include pattern:

Example 130. Copying an entire directory, including itself

buil d. gradl e
task copyReportsDirForArchiving2(type: Copy) {
from("${buildDir}") {
i nclude "reports/**"

}
into "${buildDir}/toArchive"

You'll get the same behavior as before except with one extra level of directory in the destination, i.e. t 0Ar chi

One thing to note is how the i ncl ude() directive applies only to the f r on{(), whereas the directive in the
previous section applied to the whole task. These different levels of granularity in the copy specification allow

Page 184 of 807

you to easily handle most requirements that you will come across. You can learn more about this in the
section on child specifications.

8§
Creating archives (zip, tar, etc.)

From the perspective of Gradle, packing files into an archive is effectively a copy in which the destination is
the archive file rather than a directory on the file system. This means that creating archives looks a lot like
copying, with all of the same features!

The simplest case involves archiving the entire contents of a directory, which this example demonstrates by
creating a ZIP of the t oAr chi ve directory:

Example 131. Archiving a directory as a ZIP

buil d. gradl e

task packageDi stribution(type: Zip) {
archiveNanme = "ny-distribution.zip"
destinationDir = file("${buildDir}/dist")

from"${buildDir}/toArchive"

Notice how we specify the destination and name of the archive instead of an i nt o() : both are required. You
often won't see them explicitly set, because most projects apply the Base Plugin. It provides some
conventional values for those properties. The next example demonstrates this and you can learn more about
the conventions in the archive naming section.

Each type of archive has its own task type, the most common ones being Zi p, Tar and Jar . They all share
most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified subdirectories of the archive. For
example, let's say you want to package all PDFs into a docs directory in the root of the archive. This docs
directory doesn’t exist in the source location, so you have to create it as part of the archive. You do this by
adding an i nt o() declaration for just the PDFs:

Page 185 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 132. Using the Base Plugin for its archive name convention

buil d. gradl e

pl ugi ns {
id ' base'

version = "1.0.0"

task packageDi stribution(type: Zip) {
from("${buildDir}/toArchive") {
exclude "**/* pdf"

from("${buil dDir}/toArchive") {
include "**/*. pdf"
into "docs"

As you can see, you can have multiple from() declarations in a copy specification, each with its own

configuration. See the section called “Using child specifications” for more information on this feature.

8
Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files from
that file system onto the local file system — or even into another archive. Gradle enables this by providing
some wrapper functions that make archives available as hierarchical collections of files (file trees).

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java. |l ang. Cbj ect), which produce a Fi | eTr ee from a corresponding archive file.

That file tree can then be used in a f r on{) specification, like so:
Example 133. Unpacking a ZIP file

buil d. gradl e

task unpackFil es(type: Copy) {
from zi pTree("src/resources/thirdPartyResources. zi p")
into "${buildDr}/resources"

As with a normal copy, you can control which files are unpacked via filters and even rename files as they are
unpacked.

If you're a Java developer and are wondering why there is no j ar Tr ee() method, that's because zi pTr ee(
works perfectly well for JARs, WARs and EARs.

Page 186 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTree.html

8§
Creating "uber" or "fat" JARs

In the Java space, applications and their dependencies typically used to be packaged as separate JARs
within a single distribution archive. That still happens, but there is another approach that is now common:
placing the classes and resources of the dependencies directly into the application JAR, creating what is
known as an uber or fat JAR.

Gradle makes this approach easy to accomplish. Consider the aim: to copy the contents of other JAR files
into the application JAR. All you need for this is the Proj ect. zi pTree(j ava. | ang. Cbj ect) method
and the Jar task, as demonstrated by the uber Jar task in the following example:

Example 134. Creating a Java uber or fat JAR

bui | d. gradl e

pl ugi ns {
id'java

version = '1.0.0'

repositories {
mavenCentral ()

dependenci es {
i mpl ement ati on ' conmons-i 0: comons-io0: 2.6

task uberJar(type: Jar) {
appendi x = 'uber’

from sourceSet s. mai n. out put

from configurations.runtinmed asspat h.
findAll { it.name.endsWth('jar') }.
collect { zipTree(it) }

In this case, we're taking the runtime dependencies of the project — conf i gur at i ons. runti neCl asspat
— and wrapping each of the JAR files with the zi pTree() method. The result is a collection of ZIP file
trees, the contents of which are copied into the uber JAR alongside the application classes.

Page 187 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Jar.html

8§
Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle automatically
manages this aspect of tasks when they explicitly define file and directory outputs. You can learn about this
feature in the incremental build section of the user guide. All core Gradle tasks ensure that any output
directories they need are created if necessary using this mechanism.

In cases where you need to create a directory manually, you can use the
Project.nkdir(java.l ang. Cbj ect) method from within your build scripts or custom task
implementations. Here’'s a simple example that creates a single i mages directory in the project folder:

Example 135. Manually creating a directory

buil d. gradl e
task ensureDirectory {
doLast {

nmkdir "images"

As described in the Apache Ant manual, the nkdi r task will automatically create all necessary directories in
the given path and will do nothing if the directory already exists.

8§
Moving files and directories

Gradle has no API for moving files and directories around, but you can use the Apache Ant integration to
easily do that, as shown in this example:

Example 136. Moving a directory using the Ant task

buil d. gradl e
task moveReports {
doLast {

ant.nove file: "${buildDir}/reports",
todir: "${buildDir}/toArchive"

This is not a common requirement and should be used sparingly as you lose information and can easily
break a build. It's generally preferable to copy directories and files instead.

Page 188 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)
https://ant.apache.org/manual/Tasks/mkdir.html

8§
Renaming files on copy

The files used and generated by your builds sometimes don’t have names that suit, in which case you want
to rename those files as you copy them. Gradle allows you to do this as part of a copy specification using the
renanme() configuration.

The following example removes the "-staging-" marker from the names of any files that have it:
Example 137. Renaming files as they are copied

bui | d. gradl e

task copyFronttagi ng(type: Copy) {
from"src/ min/ webapp"”
into "${buil dD r}/expl odedWar"

rename ' (.+)-staging(.+)"', '$1$2'

You can use regular expressions for this, as in the above example, or closures that use more complex logic
to determine the target filename. For example, the following task truncates filenames:

Example 138. Truncating filenames as they are copied

bui | d. gradl e
task copyWthTruncate(type: Copy) {
from"${buildDir}/reports"
renane { String fil ename ->
if (filenanme.size() > 10) {
return filenanme[0..7] + "~" + filenane. size()
}

else return fil enane

}
into "${buildDir}/toArchive"

As with filtering, you can also apply renaming to a subset of files by configuring it as part of a child
specificationonafronm() .

Page 189 of 807

8§
Deleting files and directories

You can easily delete files and directories using either the Delete task or the
Proj ect.delete(org. gradl e.api.Action) method. In both cases, you specify which files and
directories to delete in a way supported by the Project.files(java.lang. Object[]),
Proj ect Layout.files(java.l ang. Object[]), and

Proj ect Layout . confi gur abl eFi | es(j ava. | ang. Qbj ect[]) methods.

For example, the following task deletes the entire contents of a build’s output directory:
Example 139. Deleting a directory

bui I d. gradl e
task nmyd ean(type: Delete) {
delete buildbir

If you want more control over which files are deleted, you can’t use inclusions and exclusions in the same
way as for copying files. Instead, you have to use the builtin filtering mechanisms of Fi | eCol | ecti on and F

. The following example does just that to clear out temporary files from a source directory:
Example 140. Deleting files matching a specific pattern

buil d. gradl e
task cleanTenpFil es(type: Delete) {
delete fileTree("src").matching {
i nclude "**/*_ tnp"

You'll learn more about file collections and file trees in the next section.

8§
File paths in depth

In order to perform some action on a file, you need to know where it is, and that’s the information provided
by file paths. Gradle builds on the standard Java Fi | e class, which represents the location of a single file,
and provides new APIs for dealing with collections of paths. This section shows you how to use the Gradle
APIs to specify file paths for use in tasks and file operations.

But first, an important note on using hard-coded file paths in your builds.

Page 190 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
https://docs.oracle.com/javase/7/docs/api/java/io/File.html

8
On hard-coded file paths

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to understand,
but it's not good practice for real builds. The problem is that paths often change and the more places you
need to change them, the more likely you are to miss one and break the build.

Where possible, you should use tasks, task properties, and project properties — in that order of preference
— to configure file paths. For example, if you were to create a task that packages the compiled classes of a
Java application, you should aim for something like this:

Example 141. How to minimize the number of hard-coded paths in your build

bui | d. gradl e
ext {
archivesbDirPath = "${buil dDir}/archives"

task packaged asses(type: Zip) {
appendi x = "cl asses"
destinationDir = file(archivesDi rPat h)

from conpi |l eJava

See how we're using the compi | eJava task as the source of the files to package and we've created a
project property ar chi vesDi r Pat h to store the location where we put archives, on the basis we're likely to
use it elsewhere in the build.

Using a task directly as an argument like this relies on it having defined outputs, so it won't always be
possible. In addition, this example could be improved further by relying on the Java plugin’s convention for de
rather than overriding it, but it does demonstrate the use of project properties.

8
Single file paths

One of the great quandaries when developing a build is how to specify file locations when the build may be
executed from an arbitrary directory — not necessarily in the project — and may be run on any number of
different systems with incompatible directory layouts. The standard Java mechanism for specifying a file path
runs into trouble in these situations:

new File(relative path) generates a path relative to the current working directory, which could be
anywhere

new Fi |l e(absol ute path) will fail if the file system doesn’t have the requisite path.

Gradle solves this problem by providing the Project.file(java.l ang. Ooj ect) method, which
generates a path relative to the project directory (unless the given path is absolute, in which case it is used

Page 191 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

as is). Here are some examples of using the fi | e() method with different types of argument:
Example 142. Locating files

bui I d. gradl e
/1l Using a relative path
File configFile = file('src/config.xm")

/1l Using an absol ute path
configFile = fil e(configFile.absol ut ePat h)

/1 Using a File object with a relative path
configFile = file(new File('src/config.xm"))

/[l Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get('src', 'config.xm"))

/1 Using an absolute java.nio.file.Path object
configFile = fil e(Paths. get(System get Property(' user.hone')).resolve(' gl obal -coni

As you can see, you can pass strings, Fi | e instances and Pat h instances to the fil e() method, all of
which result in an absolute Fi | e object. You can find other options for argument types in the reference
guide, linked in the previous paragraph.

What happens in the case of multi-project builds? The fil e() method will always turn relative paths into
paths that are relative to the current project directory, which may be a child project. If you want to use a path
that’s relative to the root project directory, then you need to use the special Proj ect . get Root Di r ()
property to construct an absolute path, like so:

Example 143. Creating a path relative to a parent project

bui I d. gradl e
File configFile = file("${rootDir}/shared/ config.xm")

Let's say you're working on a multi-project build in a dev/ pr oj ect s/ AcneHeal t h directory. You use the
above example in the build of the library you're fixing — at AcneHeal t h/ subpr oj ect s/ AcnePati ent Rec
. The file path will resolve to the absolute version of dev/ pr oj ect s/ AcreHeal t h/ shar ed/ confi g. xm .

The fil e() method can be used to configure any task that has a property of type Fi | e. Many tasks,
though, work on multiple files, so we look at how to specify sets of files next.

Page 192 of 807

https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir

8§
File collections

A file collection is simply a set of file paths that's represented by the Fi | eCol | ect i on interface. Any file
paths. It's important to understand that the file paths don’t have to be related in any way, so they don’t have
to be in the same directory or even have a shared parent directory. You will also find that many parts of the
Gradle APl use Fi | eCol | ecti on, such as the copying API discussed later in this chapter and dependency
configurations.

The recommended way to specify a collection of files is to use the
Proj ect Layout.files(java.lang. Ooject[]) method, which returns a Fi | eCol | ecti on instance.
This method is very flexible and allows you to pass multiple strings, Fi | e instances, collections of strings,
collections of Fi | es, and more. You can even pass in tasks as arguments if they have defined outputs.
Learn about all the supported argument types in the reference guide.

As with the Proj ect.file(java.lang. Cbj ect) method covered in the previous section, all relative
paths are evaluated relative to the current project directory. The following example demonstrates some of
the variety of argument types you can use — strings, Fi | e instances, a list and a Pat h:

Example 144. Creating afile collection

bui I d. gradl e

FileCollection collection = layout.files('src/filel.txt",
new File('src/file2.txt"),
["src/file3.csv', "src/filed.csv'],

Paths.get ('src', '"fileb.txt"))

File collections have some important attributes in Gradle. They can be:
created lazily

iterated over

filtered

combined

Lazy creation of a file collection is useful when you need to evaluate the files that make up a collection at the
time a build runs. In the following example, we query the file system to find out what files exist in a particular
directory and then make those into a file collection:

Page 193 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html

Example 145. Implementing a file collection

buil d. gradl e
task list {
doLast {

File srcDhir

/| Create a file collection using a closure
collection = layout.files { srcDir.listFiles() }

srchDir = file('src')
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { printlnit }

srcDir = file('src2")
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { printlnit }

Outputofgradle -qg Ii st
> gradle -q |ist
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl

src2/dir2

The key to lazy creation is passing a closure to the fi | es() method. Your closure simply needs to return a
value of a type accepted by fil es(),suchas List<File> String,Fil eCol | ection, etc.

Iterating over a file collection can be done through the each() method on the collection or using the
collection in a f or loop. In both approaches, the file collection is treated as a set of Fi | e instances, i.e. your
iteration variable will be of type Fi | e.

The following example demonstrates such iteration as well as how you can convert file collections to other
types using the as operator or supported properties:

Page 194 of 807

Example 146. Using a file collection

buil d. gradl e
/]l lterate over the files in the collection
collection.each { File file ->

println file.nane

/1l Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = collection.asPath

File file = collection.singleFile

File file2 = collection as File

/1 Add and subtract collections
def union = collection + layout.files('src/file2.txt")
def difference = collection - layout.files('src/file2.txt")

You can also see at the end of the example how to combine file collections using the + and - operators to
merge and subtract them. An important feature of the resulting file collections is that they are live. In other
words, when you combine file collections in this way, the result always reflects what's currently in the source
file collections, even if they change during the build.

For example, imagine col | ecti on in the above example gains an extra file or two after uni on is created.
As long as you use uni on after those files are added to col | ecti on, uni on will also contain those
additional files. The same goes for the di f f er ent file collection.

Live collections are also important when it comes to filtering. If you want to use a subset of a file collection,
you can take advantage of the Fi | eCol | ection.filter(org.gradle.api.specs. Spec) method to
determine which files to "keep". In the following example, we create a new collection that consists of only the
files that end with .txt in the source collection:

Example 147. Filtering a file collection

buil d. gradl e
FileCollection textFiles = collection.filter { File f ->
f.name.endsWth(".txt")

Outputofgradle -q filterTextFiles
> gradle -q filterTextFiles
src/filel.txt

src/file2. txt

src/fileb5.txt

Page 195 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-

If col | ecti on changes at any time, either by adding or removing files from itself, then t ext Fi | es will
immediately reflect the change because it is also a live collection. Note that the closure you passto filter(

takes a Fi | e as an argument and should return a boolean.

8§
File trees

A file tree is a file collection that retains the directory structure of the files it contains and has the type
Fi | eTr ee. This means that all the paths in a file tree must have a shared parent directory. The following
diagram highlights the distinction between file trees and file collections in the common case of copying files:

Figure 12. The differences in how file trees and file collections behave when copying files

File collection

src/resources/img/logo.png Copy src/resources/** build/resources
src/resources/img/banner.jpg e > logo.png
src/resources/data.txt to build/resources/ banner.jpg
data.txt
File tree

src/resources build/resources

img Copy src/resources/** img

i: logo.png f - > ': logo.png
banner.jpg to build/resources/ banner.jog
data.ixt data.txt

Note: Although Fi | eTree extends Fi |l eCol | ecti on (an is-a relationship), their behaviors do
differ. In other words, you can use a file tree wherever a file collection is required, but remember: a
file collection is a flat list/set of files, while a file tree is a file and directory hierarchy. To convert a file

tree to a flat collection, use the Fi | eTr ee. get Fi | es() property.

The simplest way to create a file tree is to pass a file or directory path to the
Project.fileTree(]ava. |l ang. o] ect) method. This will create a tree of all the files and directories in

that base directory (but not the base directory itself). The following example demonstrates how to use the
basic method and, in addition, how to filter the files and directories using Ant-style patterns:

Page 196 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTree.html#getFiles--
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

Example 148. Creating a file tree

buil d. gradl e
/Il Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/main")

/1 Add include and exclude patterns to the tree
tree.include '**/*. java'
tree. exclude ' **/ Abstract*'

/'l Create a tree using path
tree = fileTree('src').include('**/*.java')

/[l Create a tree using closure
tree = fileTree('src') {
include '**/*_ java'

}

/Il Create a tree using a map

tree = fileTree(dir: 'src', include: '**/* java')

tree = fileTree(dir: 'src', includes: ['**/*. java', "**/*.xm"'])

tree = fileTree(dir: '"src', include: '"**/* java', exclude: '**/*test*/**")

You can see more examples of supported patterns in the APl docs for Pat t er nFi | t er abl e. Also, see the
API documentation for fi | eTr ee() to see what types you can pass as the base directory.

Note: By default, fil eTree() returns a Fi | eTr ee instance that applies some default exclusion
patterns for convenience — the same defaults as Ant in fact. For the complete default exclusion list,
see the Ant manual.

If those default exclusions prove problematic, you can workaround the issue by using the def aul t excl
Ant task, as demonstrated in this example:

Page 197 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
https://ant.apache.org/manual/Tasks/defaultexcludes.html
https://ant.apache.org/manual/Tasks/defaultexcludes.html

Example 149. Changing Ant default exclusions for a copy task

Note: bui | d. gradl e

task forcedCopy(type: Copy) {
into "${buildDir}/inPl aceApp"
from'src/ min/webapp'

doFirst {
ant . def aul t excl udes renove: "**/.git"
ant . def aul t excl udes renove: "**/.git/**"
ant . def aul t excl udes renove: "**/*-~"

}
doLast {

ant . def aul t excl udes default: true
}

In general, it's best to ensure that the default exclusions are reset whenever you change them as
modifications are visible to the entire build. The above example is performing such a reset in its doLast

action.

You can do many of the same things with file trees that you can with file collections:

iterate over them (depth first)

filter them (using Fi | eTree. nat chi ng(org. gradl e. api . Acti on) and Ant-style patterns)
merge them

You can also traverse file trees using the Fi | eTree. visit(org. gradl e. api . Acti on) method. All of
these techniques are demonstrated in the following example:

Page 198 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

Example 150. Using afile tree

buil d. gradl e
/]l lterate over the contents of a tree
tree.each {File file ->

printin file

/[l Filter a tree
FileTree filtered = tree. matchi ng {
i nclude 'org/gradl e/ api/**'

/1l Add trees together
FileTree sum= tree + fileTree(dir: 'src/test')

/[l Visit the elements of the tree
tree.visit {elenment ->
println "$elenment.rel ativePath => $el enent.file"

We've discussed how to create your own file trees and file collections, but it's also worth bearing in mind that
many Gradle plugins provide their own instances of file trees, such as Java’s source sets. These can be
used and manipulated in exactly the same way as the file trees you create yourself.

Another specific type of file tree that users commonly need is the archive, i.e. ZIP files, TAR files, etc. We
look at those next.

§
Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it's a special case of a file
tree, and that's exactly how Gradle treats archives. Instead of using the fi |l eTree() method, which only
works on normal file systems, you use the Project.zipTree(java.lang. Object) and
Project.tarTree(]ava.l ang. Cbj ect) methods to wrap archive files of the corresponding type (note
that JAR, WAR and EAR files are ZIPs). Both methods return Fi | eTr ee instances that you can then use in
the same way as normal file trees. For example, you can extract some or all of the files of an archive by
copying its contents to some directory on the file system. Or you can merge one archive into another.

Here are some simple examples of creating archive-based file trees:

Page 199 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Example 151. Using an archive as a file tree

buil d. gradl e
/Il Create a ZIP file tree using path
FileTree zip = zipTree(' soneFile.zip")

/Il Create a TARfile tree using path
FileTree tar = tarTree(' soneFile.tar")

[/tar tree attenpts to guess the conpression based on the file extension
/I however if you nust specify the conpression explicitly you can:
Fil eTree soneTar = tarTree(resources. gzip(' soneTar.ext'))

You can see a practical example of extracting an archive file in among the common scenarios we cover.

§
Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the JavaConpi | e
task has a sour ce property that defines the source files to compile. You can set the value of this property
using any of the types supported by the files() method, as mentioned in the api docs. This means you can,
for example, set the property to a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a closure.

This is a feature of specific tasks! That means implicit conversion will not happen for just any task that has
aFileCollectionorFileTree property. If you want to know whether implicit conversion happens in a
particular situation, you will need to read the relevant documentation, such as the corresponding task’s API
docs. Alternatively, you can remove all doubt by explicitly using
Proj ect Layout . fil es(java. |l ang. Qbject[]) in your build.

Here are some examples of the different types of arguments that the sour ce property can take:

Page 200 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-

Example 152. Specifying a set of files

buil d. gradl e
task conpil e(type: JavaConpil e)

/'l Use a File object to specify the source directory

conpile {
source = file('src/main/java')

}
/1l Use a String path to specify the source directory
compil e {
source = 'src/main/java'
}
/1l Use a collection to specify nmultiple source directories
compil e {
source = ['src/main/java', '../shared/java']
}
I/ Use a FileCollection (or FileTree in this case) to specify the source files
conpile {
source = fileTree(dir: 'src/nmain/java').matching { include 'org/gradle/api/*:
}
/'l Using a closure to specify the source files.
conpile {
source = {

/'l Use the contents of each zip file in the src dir

file('src').listFiles().findAI'l {it.nanme.endsWth('.zip')}.collect { zip

One other thing to note is that properties like sour ce have corresponding methods in core Gradle tasks.

Those methods follow the convention of appending to collections of values rather than replacing them.

Again, this method accepts any of the types supported by the files() method, as shown here:

Page 201 of 807

Example 153. Appending a set of files

buil d. gradl e

compil e {
/1l Add some source directories use String paths
source 'src/main/java', 'src/nmain/groovy

/1l Add a source directory using a File object
source file('../shared/java')

/1 Add sonme source directories using a closure
source { file('src/test/").listFiles() }

As this is a common convention, we recommend that you follow it in your own custom tasks. Specifically, if
you plan to add a method to configure a collection-based property, make sure the method appends rather
than replaces values.

8§

File copying in depth
The basic process of copying files in Gradle is a simple one:
Define a task of type Copy
Specify which files (and potentially directories) to copy
Specify a destination for the copied files

But this apparent simplicity hides a rich API that allows fine-grained control of which files are copied, where
they go, and what happens to them as they are copied — renaming of the files and token substitution of file
content are both possibilities, for example.

Let's start with the last two items on the list, which form what is known as a copy specification. This is
formally based on the Copy Spec interface, which the Copy task implements, and offers:

A CopySpec. fron(java. | ang. Obj ect []) method to define what to copy
An CopySpec.into(]ava. |l ang. Ooj ect) method to define the destination

CopySpec has several additional methods that allow you to control the copying process, but these two are
the only required ones. i nt o() is straightforward, requiring a directory path as its argument in any form
supported by the Proj ect.fil e(java.lang. Obj ect) method. The from() configuration is far more
flexible.

Not only does fron() accept multiple arguments, it also allows several different types of argument. For

example, some of the most common types are:

Page 202 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

A St ri ng — treated as a file path or, if it starts with "file://", a file URI

A Fi | e — used as a file path

AFileCollectionorFileTree — all files in the collection are included in the copy
A task — the files or directories that form a task’s defined outputs are included

In fact, from() accepts all the same arguments as Project.files(java.lang. Object|[]),
ProjectlLayout.files(java.lang. Object[]), and

Proj ect Layout . configurabl eFil es(java. | ang. Object[]), so see those methods for a more
detailed list of acceptable types.

Something else to consider is what type of thing a file path refers to:
A file — the file is copied as is

A directory — this is effectively treated as a file tree: everything in it, including subdirectories, is copied.
However, the directory itself is not included in the copy.

A non-existent file — the path is ignored

Here is an example that uses multiple f r on() specifications, each with a different argument type. You will
probably also notice that i nt o() is configured lazily using a closure — a technique that also works with f r ol

Example 154. Specifying copy task source files and destination directory

bui | d. gradl e

t ask anot her CopyTask(type: Copy) {
[l Copy everything under src/main/webapp
from' src/ min/webapp'
/1l Copy a single file
from'src/staging/index. htm'
/1l Copy the output of a task
from copyTask
/'l Copy the output of a task using Task outputs explicitly.
from copyTaskW t hPat t er ns. out puts
/1l Copy the contents of a Zip file
from zi pTree(' src/ mai n/ assets. zip')
[/l Deternmine the destination directory |ater
into { getDestDir() }

Note that the lazy configuration of i nt o() is different from a child specification, even though the syntax is
similar. Keep an eye on the number of arguments to distinguish between them.

Page 203 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-

8
Filtering files

You've already seen that you can filter file collections and file trees directly in a Copy task, but you can also
apply filtering in any copy specification through the CopySpec. i ncl ude(java.lang. String[]) and
CopySpec. excl ude(j ava. |l ang. String[]) methods.

Both of these methods are normally used with Ant-style include or exclude patterns, as described in
PatternFilterabl e. You can also perform more complex logic by using a closure that takes a
Fi | eTreeEl enent and returns true if the file should be included or f al se otherwise. The following
example demonstrates both forms, ensuring that only .html and .jsp files are copied, except for those .html
files with the word "DRAFT" in their content:

Example 155. Selecting the files to copy

buil d. gradl e
task copyTaskWthPatterns(type: Copy) {
from'src/ min/webapp'
into "${buil dDir}/expl odedWar"
include "**/* htm"
include '**/*.jsp'
exclude { FileTreeEl enent details ->
details.file.name.endsWth('.htm"') &&
details.file.text.contains(' DRAFT")

A question you may ask yourself at this point is what happens when inclusion and exclusion patterns
overlap? Which pattern wins? Here are the basic rules:

If there are no explicit inclusions or exclusions, everything is included
If at least one inclusion is specified, only files and directories matching the patterns are included

Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one exclusion
pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that you end up
with the exact behavior you want.

Note that the inclusions and exclusions in the above example will apply to all f r om() configurations. If you
want to apply filtering to a subset of the copied files, you'll need to use child specifications.

§
Renaming files

The example of how to rename files on copy gives you most of the information you need to perform this
operation. It demonstrates the two options for renaming:

Page 204 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTreeElement.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileTreeElement.html

Using a regular expression
Using a closure

Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex groups that
allow you to remove and replaces parts of the source filename. The following example shows how you can
remove the string "-staging-" from any filename that contains it using a simple regular expression:

Example 156. Renaming files as they are copied

bui I d. gradl e
task rename(type: Copy) {
from'src/ min/webapp'
into "${buil dDir}/expl odedWar"
/1l Use a closure to convert all file nanmes to upper case
renane { String fileNane ->
fileNane.toUpper Case()
}

/1l Use a reqgular expression to map the file nane
rename ' (.+)-staging-(.+)"', '$1$2'
renanme(/ (.+)-staging-(.+)/, '$1$2")

You can use any regular expression supported by the Java Patt er n class and the substitution string (the
second argument of r enane() works on the same principles as the Mat cher . appendRepl acenent ()
method.

Regular expressions in Groovy build scripts
There are two common issues people come across when using regular expressions in this context:

1. Note: If you use a slashy string (those delimited by '/') for the first argument, you must include the
parentheses for r enane() as shown in the above example.

2. Note: It's safest to use single quotes for the second argument, otherwise you need to escape the '$'
in group substitutions, i.e. "\ $1\ $2"

The first is a minor inconvenience, but slashy strings have the advantage that you don’t have to
escape backslash ('\') characters in the regular expression. The second issue stems from Groovy’s
support for embedded expressions using ${ } syntax in double-quoted and slashy strings.

The closure syntax for r enane() is straightforward and can be used for any requirements that simple
regular expressions can’t handle. You're given the name of a file and you return a new name for that file, or n
if you don’t want to change the name. Do be aware that the closure will be executed for every file that's
copied, so try to avoid expensive operations where possible.

Page 205 of 807

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#appendReplacement-java.lang.StringBuffer-java.lang.String-

8
Filtering file content (token substitution, templating, etc.)

Not to be confused with filtering which files are copied, file content filtering allows you to transform the
content of files while they are being copied. This can involve basic templating that uses token substitution,
removal of lines of text, or even more complex filtering using a full-blown template engine.

The following example demonstrates several forms of filtering, including token substitution using the
CopySpec. expand(java. util . Map) method and another using
CopySpec. filter(]java.lang. C ass) with an Ant filter:

Example 157. Filtering files as they are copied

buil d. gradl e
i mport org.apache.tools.ant.filters.FixCrLfFilter
i mport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from ' src/ mai n/ webapp'
into "${buil dDir}/expl odedWar"
/1l Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properti es)
/'l Use some of the filters provided by Ant
filter(FixCrLfFilter)
filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])
/1l Use a closure to filter each line
filter { String line ->
"[$line]"
}
/1l Use a closure to renove |ines
filter { String line ->
line.startsWth('-") ? null : line

}
filteringCharset = ' UTF-8'

The filter () method has two variants, which behave differently:
one takes a Fi | t er Reader and is designed to work with Ant filters, such as Repl aceTokens
one takes a closure or Tr ansf or mer that defines the transformation for each line of the source file

Note that both variants assume the source files are text based. When you use the Repl aceTokens class
with filter (), the resultis a template engine that replaces tokens of the form @ okenNane @(the Ant-style
token) with values that you define.

The expand() method treats the source files as Groovy templates, which evaluate and expand expressions

Page 206 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html
https://docs.oracle.com/javase/7/docs/api/java/io/FilterReader.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Transformer.html
http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

of the form ${ expr essi on}. You can pass in property names and values that are then expanded in the
source files. expand() allows for more than basic token substitution as the embedded expressions are
full-blown Groovy expressions.

Note: It's good practice to specify the character set when reading and writing the file, otherwise the
transformations won't work properly for non-ASCII text. You configure the character set with the
CopySpec. get Fi | teri ngCharset () property. If it's not specified, the JVM default character set
is used, which is likely to be different from the one you want.

§
Using the Copy Spec class

A copy specification (or copy spec for short) determines what gets copied to where, and what happens to
files during the copy. You've alread seen many examples in the form of configuration for Copy and archiving
tasks. But copy specs have two attributes that are worth covering in more detail:

They can be independent of tasks
They are hierarchical

The first of these attributes allows you to share copy specs within a build. The second provides fine-grained
control within the overall copy specification.

§
Sharing copy specs

Consider a build that has several tasks that copy a project’s static website resources or add them to an
archive. One task might copy the resources to a folder for a local HTTP server and another might package
them into a distribution. You could manually specify the file locations and appropriate inclusions each time
they are needed, but human error is more likely to creep in, resulting in inconsistencies between tasks.

One solution Gradle provides is the Proj ect.copySpec(org.gradl e.api.Action) method. This
allows you to create a copy spec outside of a task, which can then be attached to an appropriate task using
the CopySpec.wi th(org.gradle.api.file.CopySpec[]) method. The following example
demonstrates how this is done:

Page 207 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec[]-

Example 158. Sharing copy specifications

buil d. gradl e

CopySpec webAsset sSpec = copySpec {
from' src/ mai n/ webapp'
include "**/* htm', "**/*. png', '**/*.jpg
renanme '(.+)-staging(.+)"', '$1%$2

task copyAssets(type: Copy) {
into "${buildDir}/inPl aceApp"
wi th webAsset sSpec

task distApp(type: Zip) {
archi veNane = ' ny-app-dist.zip'
destinationDir = file("${buildDr}/dists")

from appd asses
wi th webAsset sSpec

Both the copyAsset s and di st App tasks will process the static resources under sr ¢/ mai n/ webapp, as

specified by webAsset sSpec.

Note: The configuration defined by webAsset sSpec will not apply to the app classes included by

the di st App task. That's because f r om appC asses is its own child specification independent of wi 1

This can be confusing to understand, so it's probably best to treat wi t h() as an extra from)
specification in the task. Hence it doesn’'t make sense to define a standalone copy spec without at
least one f rom() defined.

If you encounter a scenario in which you want to apply the same copy configuration to different sets of files,

then you can share the configuration block directly without using copySpec() . Here’s an example that has
two independent tasks that happen to want to process image files only:

Page 208 of 807

Example 159. Sharing copy patterns only

buil d. gradl e
def webAssetPatterns = {

include "**/* htmd', "**/*.png', '**/*.jpg

task copyAppAssets(type: Copy) {
into "${buildDir}/inPl aceApp"
from'src/ mai n/webapp', webAssetPatterns

task archiveD st Assets(type: Zip) {
archi veNane = 'distribution-assets. zip'
destinationDir = file("${buildDir}/dists")

from'di st Resources', webAsset Patterns

In this case, we assign the copy configuration to its own variable and apply it to whatever fron{)

specification we want. This doesn't just work for inclusions, but also exclusions, file renaming, and file

content filtering.

§
Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to all the files that are copied.

Sometimes this is what you want, but not always. Consider the following example that copies files into a

directory structure that can be used by a Java Servlet container to deliver a website:

Figure 13. Creating an exploded WAR for a Servlet container

Copy HTML and image files here

build/explodedWar Copy runtime

i lNF/ dependencies (JARs) here
|: lib/
classes/ \
— js/ Copy compiled app classes here

Copy JavaScript files here

Page 209 of 807

This is not a straightforward copy as the VWEB- | NF directory and its subdirectories don’t exist within the
project, so they must be created during the copy. In addition, we only want HTML and image files going
directly into the root folder — bui | d/ expl odedWar — and only JavaScript files going into the j s directory.
So we need separate filter patterns for those two sets of files.

The solution is to use child specifications, which can be applied to both from() and i nt o() declarations.
The following task definition does the necessary work:

Example 160. Nested copy specs

bui | d. gradl e
task nestedSpecs(type: Copy) {
into "${buildD r}/expl odedWar"
excl ude ' **/*stagi ng*'
from('src/dist") {
include "**/* htm"', '"**/*. png', '"**/*.jpg
}

from(sourceSet s. mai n. out put) {
into ' WEB- | NF/ cl asses'

}
into(' VEB-INF/1ib") {
from configurations.runtinmeC asspath

Notice how the sr c/ di st configuration has a nested inclusion specification: that's the child copy spec. You
can of course add content filtering and renaming here as required. A child copy spec is still a copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination either by
usingachildi nto() onafrom() orachildfrom() onaninto().Both approaches are acceptable, but
you may want to create and follow a convention to ensure consistency across your build files.

Note: Don't get your i nt o() specifications mixed up! For a normal copy — one to the filesystem
rather than an archive — there should always be one "root" i nt o() that simply specifies the overall
destination directory of the copy. Any other i nt o() should have a child spec attached and its path

will be relative to the rooti nt o() .
One final thing to be aware of is that a child copy spec inherits its destination path, include patterns, exclude

patterns, copy actions, name mappings and filters from its parent. So be careful where you place your
configuration.

Page 210 of 807

8
Copying files in your own tasks

There might be occasions when you want to copy files or directories as part of a task. For example, a
custom archiving task based on an unsupported archive format might want to copy files to a temporary
directory before they are then archived. You still want to take advantage of Gradle’s copy API, but without
introducing an extra Copy task.

The solution is to use the Proj ect . copy(org. gradl e. api . Acti on) method. It works the same way as
the Copy task by configuring it with a copy spec. Here’s a trivial example:

Example 161. Copying files using the copy() method without up-to-date check

buil d. gradl e
task copyMet hod {
doLast ({

copy {

from' src/ mai n/ webapp'

into "${buil dDir}/expl odedWar"
include "**/* htm"

include '**/* . jsp'

The above example demonstrates the basic syntax and also highlights two major limitations of using the cop!
method:

The copy() method is not incremental. The example’s copyMet hod task will always execute because it
has no information about what files make up the task’s inputs. You have to manually define the task inputs
and outputs.

Using a task as a copy source, i.e. as an argument to f r on() , won’t set up an automatic task dependency
between your task and that copy source. As such, if you are using the copy() method as part of a task
action, you must explicitly declare all inputs and outputs in order to get the correct behavior.

The following example shows you how to workaround these limitations by using the dynamic API for task
inputs and outputs:

Page 211 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Example 162. Copying files using the copy() method with up-to-date check

buil d. gradl e
task copyMet hodW t hExpli cit Dependenci es{
/'l up-to-date check for inputs, plus add copyTask as dependency
i nputs.files copyTask
outputs.dir 'sone-dir' // up-to-date check for outputs
dolLast{

copy {
/1 Copy the output of copyTask

from copyTask
into 'some-dir'’

These limitations make it preferable to use the Copy task wherever possible, because of its builtin support
for incremental building and task dependency inference. That is why the copy() method is intended for use
by custom tasks that need to copy files as part of their function. Custom tasks that use the copy() method
should declare the necessary inputs and outputs relevant to the copy action.

8
Mirroring directories and file collections with the Sync task

The Sync task, which extends the Copy task, copies the source files into the destination directory and then
removes any files from the destination directory which it did not copy. In other words, it synchronizes the
contents of a directory with its source. This can be useful for doing things such as installing your application,
creating an exploded copy of your archives, or maintaining a copy of the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the buil d/ | i bs
directory.

Example 163. Using the Sync task to copy dependencies
buil d. gradl e
task libs(type: Sync) {

from configurations. runtine
into "${buildbDir}/Iibs"

You can also perform the same function in your own tasks with the
Proj ect.sync(org. gradl e. api . Acti on) method.

Page 212 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)

8§
Archive creation in depth

Archives are essentially self-contained file systems and Gradle treats them as such. This is why working with
archives is very similar to working with files and directories, including such things as file permissions.

Out of the box, Gradle supports creation of both ZIP and TAR archives, and by extension Java’'s JAR, WAR
and EAR formats — Java’s archive formats are all ZIPs. Each of these formats has a corresponding task
type to create them: Zi p, Tar, Jar, War, and Ear . These all work the same way and are based on copy

specifications, just like the Copy task.

Creating an archive file is essentially a file copy in which the destination is implicit, i.e. the archive file itself.
Here’s a basic example that specifies the path and name of the target archive file:

Example 164. Archiving a directory as a ZIP

buil d. gradl e

task packageDi stribution(type: Zip) {
archi veName = "ny-distribution.zip"
destinationDir = file("${buildDr}/dist")

from"${buil dDir}/toArchive"

In the next section you'll learn about convention-based archive names, which can save you from always
configuring the destination directory and archive name.

The full power of copy specifications are available to you when creating archives, which means you can do
content filtering, file renaming or anything else that is covered in the previous section. A particularly common
requirement is copying files into subdirectories of the archive that don't exist in the source folders, something
that can be achieved with i nt o() child specifications.

Gradle does of course allow you create as many archive tasks as you want, but it's worth bearing in mind
that many convention-based plugins provide their own. For example, the Java plugin adds a j ar task for
packaging a project’'s compiled classes and resources in a JAR. Many of these plugins provide sensible
conventions for the names of archives as well as the copy specifications used. We recommend you use
these tasks wherever you can, rather than overriding them with your own.

§
Archive naming

Gradle has several conventions around the naming of archives and where they are created based on the
plugins your project uses. The main convention is provided by the Base Plugin, which defaults to creating
archives in the $bui | dDi r/ di stri buti ons directory and typically uses archive names of the form
[projectName]-[version].[type].

The following example comes from a project named 'zipProject’, hence the nyZi p task creates an archive

Page 213 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.ear.Ear.html

named ‘zipProject-1.0.zip":

Example 165. Creation of ZIP archive

bui | d. gradl e
pl ugi ns {

id ' base
}

version = 1.0

task nyZip(type: Zip) {
from' sonedir'

doLast {
println archi veName
println relativePath(destinationDir)
println relativePath(archivePat h)

Outputofgradl e -qgq nyZip

> gradle -gq nyZip

zipProject-1.0.zip

bui | d/ di stributions

bui l d/ di stributions/zipProject-1.0.zip

Note that the name of the archive does not derive from the name of the task that creates it.

If you want to change the name and location of a generated archive file, you can provide values for the ar chi
and desti nati onDi r properties of the corresponding task. These override any conventions that would

otherwise apply.

Alternatively, you can make use of the default archive name pattern provided by
Abstract Archi veTask. get Archi veNane(): [baseName]-[appendix]-[version]-[classifier].[extension].
You can set each of these properties on the task separately if you wish. Note that the Base Plugin uses the
convention of project name for baseName, project version for version and the archive type for extension. It
does not provide values for the other properties.

This example — from the same project as the one above — configures just the baseNane property,
overriding the default value of the project name:

Page 214 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveName
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveName

Example 166. Configuration of archive task - custom archive name

buil d. gradl e
task myCuston¥i p(type: Zip) {
baseNane = ' cust omNaneg'

from' sonmedir'

doLast {
println archi veNane

Output of gradl e -g nyCust on¥i p
> gradl e -gq nmyCuston¥ip
cust omNane-1. 0. zi p

You can also override the default baseNane value for all the archive tasks in your build by using the project

property ar chi vesBaseNane, as demonstrated by the following example:

Page 215 of 807

Example 167. Configuration of archive task - appendix & classifier

buil d. gradl e
pl ugi ns {

id ' base
}

version = 1.0
archi vesBaseNane = "gradl e"

task nyZip(type: Zip) {
from' sonedir'

}

task myQtherZ p(type: Zip) {
appendi x = 'w apper"'
classifier = "src'

from' sonedir'

task echoNanes {
doLast {
println "Project name: ${project.nanme}"
println myZ p. archi veNane
println myQ herZi p. ar chi veNane

Output of gradl e - g echoNanes
> gradl e -q echoNanes

Proj ect nane: zipProject
gradle-1.0.zip

gradl e-wrapper-1.0-src.zip

You can find all the possible archive task properties in the APl documentation for Abst ract Ar chi veTask,
but we have also summarized the main ones here:

ar chi veNane — Stri ng, default: baseNane- appendi x- ver si on-cl assi fi er. ext ensi on
The complete file name of the generated archive. If any of the properties in the default value are empty,
their '-' separator is dropped.

archi vePat h — Fi | e, read-only, default: desti nati onDi r/ ar chi veNane
The absolute file path of the generated archive.

destinationDi r — Fi |l e, default: depends on archive type
The target directory in which to put the generated archive. By default, JARs and WARs go into $bui | dDi
. ZIPs and TARs go into $bui | dDi r/ di stri buti ons.

Page 216 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

baseNanme — Stri ng, default: proj ect. nane
The base name portion of the archive file name, typically a project name or some other descriptive name
for what it contains.

appendi x — St ri ng, default: nul |
The appendix portion of the archive file name that comes immediately after the base name. It is typically
used to distinguish between different forms of content, such as code and docs, or a minimal distribution
versus a full or complete one.

versi on — Stri ng, default: proj ect. versi on
The version portion of the archive file name, typically in the form of a normal project or product version.

cl assifier —String, default: nul |
The classifier portion of the archive file name. Often used to distinguish between archives that target
different platforms.

ext ensi on — St ri ng, default: depends on archive type and compression type
The filename extension for the archive. By default, this is set based on the archive task type and the
compression type (if you're creating a TAR). Will be one of: zi p,j ar,war,tar,tgz ortbz2. You can
of course set this to a custom extension if you wish.

8
Sharing content between multiple archives

As described earlier, you can use the Proj ect . copySpec(org. gradl e. api . Acti on) method to share
content between archives.

8
Reproducible archives

Sometimes it's desirable to recreate archives exactly the same, byte for byte, on different machines. You
want to be sure that building an artifact from source code produces the same result no matter when and
where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an archive
is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built from source,
the order of the files inside the archive may change. Files that only have a different timestamp also causes
differences in archives from build to build. All Abst ract Archi veTask (e.g. Jar, Zip) tasks shipped with
Gradle include incubating support producing reproducible archives.

For example, to make a Zi p task reproducible you need to set Zi p. i sReproduci bl eFi |l eOrder () totrt
and Zi p.isPreserveFi | eTi nest anps() to fal se. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

Page 217 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps

Example 168. Activating reproducible archives

buil d. gradl e

tasks. wi t hType(Abstract Archi veTask) {
preserveFi |l eTi nestanps = fal se
reproduci bl eFil eOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is described

in Legacy publishing

Page 218 of 807

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant’'s XML format. You could even use Gradle simply as a powerful Ant task scripting
tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the bui | d. xi
file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything
except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d.
directly into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer Gradle

provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
Your build script may contain statements like: "ant cl ean conpi | e". execut e() .

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For example, you
could start by importing your existing Ant build. Then you could move your dependency declarations from the
Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with
some of Gradle’s plugins. This process can be done in parts over time, and you can have a working Gradle
build during the entire process.

8§
Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an Ant Bui | der
instance. This Ant Bui | der is used to access Ant tasks, types and properties from your build script. There
is a very simple mapping from Ant’s bui | d. xnl format to Groovy, which is explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task name as the
method name. For example, you execute the Ant echo task by calling the ant. echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo

task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 219 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/AntBuilder.html

Example 169. Using an Ant task

buil d. gradl e
task hello {
doLast {

String greeting = "hello from Ant

ant . echo(nessage: greeting)

Output of gradl e hel | o
> gradle hello

> Task :hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we

pass the message for the echo task as nested text:

Example 170. Passing nested text to an Ant task

bui I d. gradl e
task hello {
doLast {

ant.echo('hello fromAnt")

Output of gradl e hel | o
> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUI LD SUCCESSFUL in Os
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as

tasks, by calling a method with the same name as the element we want to define.

Page 220 of 807

Example 171. Passing nested elements to an Ant task

buil d. gradl e
task zip {
doLast {

ant. zi p(destfile: "archive.zip') {
fileset(dir: "src') {
i nclude(nanme: '**.xnml")
excl ude(nane: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 172. Using an Ant type

buil d. gradl e
task list {
doLast {
def path = ant.path {
fileset(dir: '"libs', includes: "*.jar")
}
path.list().each {
println it
}
}
}

More information about Ant Bui | der can be found in 'Groovy in Action' 8.4 or at the Groovy Wiki

§
Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the t askdef (usually easier) or t ypedef Ant
task, just as you would in a bui |l d. xm file. You can then refer to the custom Ant task as you would a
built-in Ant task.

Page 221 of 807

http://groovy-lang.org/scripting-ant.html

Example 173. Using a custom Ant task

buil d. gradl e
task check {
doLast {

ant . t askdef (resource: 'checkstyl etask. properties') {
cl asspath {
fileset(dir: "libs', includes: "*.jar")

}
ant . checkstyl e(config: 'checkstyle.xm"') {

fileset(dir: "src')

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To
do this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. This is described in more detail in Declaring Dependencies.

Example 174. Declaring the classpath for a custom Ant task

buil d. gradl e

configurations {
pnd

}

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 175. Using a custom Ant task and dependency management together

buil d. gradl e
task check {
doLast {

ant . t askdef (nane: 'pnd',
cl assnanme: ' net.sourceforge. pnd. ant. PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(shortFil enanes: 'true',
failonrul eviolation: '"true',
rulesetfiles: file('pnd-rules.xm").toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: '"src')

Page 222 of 807

8§
Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When you
import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute
the Ant targets in exactly the same way as Gradle tasks.

Example 176. Importing an Ant build

bui | d. gradl e
ant.inmportBuild 'build. xm"

bui | d. xm
<pr oj ect >
<target name="hell 0o">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Outputof gradl e hel |l o
> gradle hello

> Task :hello
[ant:echo] Hello, from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Page 223 of 807

Example 177. Task that depends on Ant target

buil d. gradl e
ant.inmportBuild '"build. xm"'

task intro(dependsOn: hello) {

doLast {
println "Hello, from G adle'

Outputofgradl e intro
> gradle intro

> Task :hello
[ant:echo] Hello, from Ant

> Task :intro
Hell o, from G adl e

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Or, you can add behaviour to an Ant target:

Example 178. Adding behaviour to an Ant target

bui I d. gradl e
ant.inmportBuild 'build. xm"

hell o {
doLast {
println "Hello, from G adle'

Output of gradl e hel |l o
> gradle hello

> Task :hello
[ant:echo] Hello, from Ant
Hell o, from G adl e

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Page 224 of 807

Example 179. Ant target that depends on Gradle task

buil d. gradl e
ant.inmportBuild '"build. xm"'

task intro {
doLast {
println "Hello, from G adle'

}
}
bui | d. xn
<pr oj ect >

<target name="hell 0" depends="intro">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Output of gradl e hel |l o
> gradle hello

> Task :intro
Hell o, from G adl e

> Task :hello
[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision

with existing Gradle tasks. To do this, use the Ant Buil der.inportBuild(]ava.lang. Object,

org. gradl e. api . Transf or mer) method.

Page 225 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object, org.gradle.api.Transformer-

Example 180. Renaming imported Ant targets

buil d. gradl e
ant . i mportBuil d(' build.xm"') { antTarget Nane ->

a-' + ant Tar get Nane
}
bui | d. xni
<pr oj ect >

<target nanme="hello0">
<echo>Hel | o, from Ant </ echo>
</target>
</ proj ect>

Output of gradl e a-hell o
> gradle a-hello

> Task :a-hello
[ant:echo] Hello, from Ant

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

Note that while the second argument to this method should be a Tr ansf or ner, when programming in
Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy’s
support for automatically coercing closures to single-abstract-method types.

8§
Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set
the property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you

can change. You can also use the Ant pr oper t y task. Below are some examples of how to do this.
Example 181. Setting an Ant property

buil d. gradl e

ant.buildbDir = buildDir

ant. properties.buildDir = buildDr
ant.properties['buildDir'] = buildDr

ant . property(name: 'buildDir', location: buildDir)

bui | d. xm
<echo>bui Il dDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also

Page 226 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

available as a Map. Below are some examples.
Example 182. Getting an Ant property

buil d. xm
<property name="ant Prop" val ue="a property defined in an Ant build"/>

buil d. gradl e
println ant.antProp

println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example 183. Setting an Ant reference

buil d. gradl e

ant.path(id: 'classpath', location: '"libs")

ant . references. cl asspath = ant.path(location: 'libs")
ant.references['classpath'] = ant.path(location: '"libs")
bui | d. xn

<path refid="classpath"/>

There are several ways to get an Ant reference:

Example 184. Getting an Ant reference

bui I d. xn
<pat h id="ant Pat h" |ocation="I|ibs"/>
buil d. gradl e

println ant.references. antPath
println ant.references[' antPath']

8
Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the
Gradle output. By default, these are mapped as follows:

Page 227 of 807

Table 6. Ant message priority mapping

nt Message Priority Gradle Log Level
ERBOSE DEBUG

EBUG DEBUG

\FO I NFO

/ARN WARN

RROR ERROR

§

Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LI FECYCLE log level, which is the default for
Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages from
Gradle, a build would have to be run with the log level set to | NFO, potentially logging much more output
than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would require
the build to be run at a higher log level, such as QUI ET. However, this could result in other, desirable output
being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message
priority to Gradle log level. This is done by setting the priority that should map to the default Gradle LI FECYC
log level using the Ant Bui | der. set Li fecycl eLogLevel (java. |l ang. String) method. When this
value is set, any Ant message logged at the configured priority or above will be logged at least at LI FECYCLE
. Any Ant message logged below this priority will be logged at most at | NFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed at the L
log level.

Page 228 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

Example 185. Fine tuning Ant logging

buil d. gradl e
ant.lifecycl eLogLevel = "INFO'

task hello {
doLast {
ant . echo(level: "info", message: "hello frominfo priority!")

Output of gradl e hel | o
> gradle hello

> Task :hello
[ant:echo] hello frominfo priority!

BU LD SUCCESSFUL in Os
1 actionable task: 1 executed

On the other hand, if the | i f ecycl eLogLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the | NFO level and
would be suppressed by default.

8
API

The Ant integration is provided by Ant Bui | der .

[5] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have
a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 229 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/AntBuilder.html

Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks
are executed in the order of their dependencies, and that each task is executed only once. These tasks form
a Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

8§
Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and creates a Pr oj ect instance for each of these projects.

Configuration
During this phase the project objects are configured. The build scripts of all projects which are part of the
build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on demand. In
this mode, Gradle configures only relevant projects (see the section called “Configuration on demand”).

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gr adl e command and
the current directory. Gradle then executes each of the selected tasks.

8§
Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for this file is setti ngs. gr adl e. Later in this chapter we explain
how Gradle looks for a settings file.

Page 230 of 807

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html

The settings file is executed during the initialization phase. A multiproject build must have a setti ngs. gr ac
file in the root project of the multiproject hierarchy. It is required because the settings file defines which
projects are taking part in the multi-project build (see Authoring Multi-Project Builds). For a single-project
build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to
your build script classpath (see Organizing Gradle Projects). Let's first do some introspection with a single
project build:

Page 231 of 807

Example 186. Single project build

settings.gradle
println '"This is executed during the initialization phase.'

bui I d. gradl e
println "This is executed during the configuration phase.'

task configured {
println '"This is al so executed during the configuration phase.'

}
task test {
doLast {
println '"This is executed during the execution phase.'
}
}

task testBoth {
doFirst {
println "This is executed first during the execution phase.'

}
doLast {

println '"This is executed |last during the execution phase.'

}

println '"This is executed during the configuration phase as well.'

Outputofgradl e test testBoth
> gradle test testBoth
This is executed during the initialization phase.

> Configure project

This is executed during the configuration phase.

This is also executed during the configuration phase.
This is executed during the configuration phase as well.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.

This is executed | ast during the execution phase.

BUI LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Setti ngs

Page 232 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.Settings.html

class in the APl documentation for more information.

8§
Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
You have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project builds in the chapter dedicated to this topic (see Authoring Multi-Project Builds).

§
Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents
a project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the setti ngs. gr adl e file. By default it is assumed
that the location of the settings file is also the location of the root project. But you can redefine the location of
the root project in the settings file.

§
Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

§
Hierarchical layouts

Example 187. Hierarchical layout

settings.gradle
include 'projectl', 'project2:child , 'project3:childl

The i ncl ude method takes project paths as arguments. The project path is assumed to be equal to the
relative physical file system path. For example, a path 'services:api' is mapped by default to a folder
'services/api' (relative from the project root). You only need to specify the leaves of the tree. This means that
the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and
'services:hotels:api'. More examples of how to work with the project path can be found in the DSL
documentation of Set ti ngs. i ncl ude(j ava.lang. String[]).

§
Flat layouts

Example 188. Flat layout
settings.gradle

i ncludeFl at 'project3', 'project4d

Page 233 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

The i ncl udeFl at method takes directory names as an argument. These directories need to exist as
siblings of the root project directory. The location of these directories are considered as child projects of the
root project in the multi-project tree.

8
Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can modify
these descriptors in the settings file at any time. To access a descriptor you can do:

Example 189. Lookup of elements of the project tree

settings.gradle
println rootProject. nane
println project(':projectA). name

Using this descriptor you can change the name, project directory and build file of a project.
Example 190. Modification of elements of the project tree

settings.gradle

root Project.name = 'nain'

project(':projectA).projectDir = new File(settingsDir, '../ny-project-a')
project(':projectA).buildFileNane = 'projectA gradle'

Look at the Proj ect Descri pt or class in the APl documentation for more information.

8
Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from a
directory with a settings file, things are easy. But Gradle also allows you to execute the build from within any
subproject taking part in the build.[! If you execute Gradle from within a project with no set ti ngs. gradl e

file, Gradle looks for a set ti ngs. gr adl e file in the following way:

It looks in a directory called nmast er which has the same nesting level as the current dir.
If not found yet, it searches parent directories.

If not found yet, the build is executed as a single project build.

Ifasettings. gradl e file is found, Gradle checks if the current project is part of the multiproject hierarchy
defined in the found set ti ngs. gr adl e file. If not, the build is executed as a single project build. Otherwise
a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent

Page 234 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

projects are built, but Gradle needs to create the build configuration for the whole multiproject build (see
Authoring Multi-Project Builds). You can use the - u command line option to tell Gradle not to look in the
parent hierarchy for a setti ngs. gradl e file. The current project is then always built as a single project
build. If the current project contains a setti ngs. gr adl e file, the - u option has no meaning. Such a build
is always executed as:

a single project build, if the set ti ngs. gr adl e file does not define a multiproject hierarchy
a multiproject build, if the set ti ngs. gr adl e file does define a multiproject hierarchy.

The automatic search for a settings. gradl e file only works for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described
above (“mast er ”). Gradle supports arbitrary physical layouts for a multiproject build, but for such arbitrary
layouts you need to execute the build from the directory where the settings file is located. For information on
how to run partial builds from the root see the section called “Running tasks by their absolute path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are
the projects specified in the Settings object (plus the root project). Each project object has by default a name
equal to the name of its top level directory, and every project except the root project has a parent project.
Any project may have child projects.

8§
Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build script is
executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project builds is discussed in Authoring Multi-Project Builds.

8§
Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These notifications
generally take two forms: You can either implement a particular listener interface, or you can provide a
closure to execute when the notification is fired. The examples below use closures. For details on how to use
the listener interfaces, refer to the APl documentation.

8
Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once all the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds a t est task to each project which has a hasTest s property value of true.

Page 235 of 807

Example 191. Adding of test task to each project which has certain property set

buil d. gradl e
al | projects {
afterEval uate { project ->
if (project.hasTests) {
println "Adding test task to $project”
project.task('test') {
doLast {
println "Running tests for $project”

proj ect A . gradl e
hasTests = true

Outputofgradl e -qg test

> gradle -q test

Adding test task to project ':projectA
Running tests for project ':projectA

This example uses method Proj ect. aft er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect notification is received regardless of
whether the project evaluates successfully or fails with an exception.

Page 236 of 807

Example 192. Notifications

buil d. gradl e
gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uation of $project FAILED
} else {
println "Eval uation of $project succeeded"

Outputofgradl e -g test
> gradle -q test

Eval uation of root project 'buil dProjectEval uateEvents' succeeded
Eval uation of project ':projectA succeeded

Eval uation of project ':projectB FAl LED

FAILURE: Build failed with an exception.

* \Were:
Build file '/hone/user/gradl e/ sanpl es/ usergui de/ bui |l dli fecycl e/ buil dProj ect Eval ui

* What went w ong:

A probl em occurred eval uating project ':projectB .

> broken

* Try:

Run with --stacktrace option to get the stack trace. Run with --info or --debug 1

* Get nore help at https://help.gradle.org

BU LD FAI LED in Os

You can also add a Pr oj ect Eval uati onLi st ener to the G adl e to receive these events.

8
Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example sets the srcDi r property of each task as it is created.

Page 237 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.invocation.Gradle.html

Example 193. Setting of certain property to all tasks

buil d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/min/java'

}

task a

println "source dir is $a.srchr"

Outputofgradle -gq a
> gradle -q a
source dir is src/main/java

You can also add an Act i on to a TaskCont ai ner to receive these events.

8
Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have
seen this already in the section called “Configure by DAG”.

You can also add a TaskExecuti onG aphlLi st ener to the TaskExecuti onG aph to receive these

events.

8
Task execution

You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task notification
is received regardless of whether the task completes successfully or fails with an exception.

Page 238 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Example 194. Logging of start and end of each task execution

buil d. gradl e
task ok

task broken(dependsOn: ok) {
doLast {
t hrow new Runti meException(' broken')

gradl e. t askG aph. bef oreTask { Task task ->
println "executing $task ..."

gradl e. taskG aph. after Task { Task task, TaskState state ->
if (state.failure) {
println "FAI LED

}
el se {

println "done"
}

Output of gradl e -qg broken
> gradl e -q broken
executing task ':ok
done

executing task
FAlI LED

: br oken'

FAILURE: Build failed with an exception

* \Where:
Build file '/hone/user/gradl e/ sanpl es/ usergui de/ bui | dl i fecycl e/taskExecuti onEvent

* What went wong:
Execution failed for task ':broken'.

> broken

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug

* Get nore help at https://hel p.gradle.org

BU LD FAI LED in Os

You can also use a TaskExecut i onLi st ener tothe TaskExecut i onG aph to receive these events.

Page 239 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

[6] Gradle supports partial multiproject builds (see Authoring Multi-Project Builds).

Page 240 of 807

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 7. There are two Gradle-specific log levels, in addition to the ones
you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the default, and is used to
report build progress.

Table 7. Log levels

avel Used for

RROR Error messages

UIET Important information messages
TARNING Warning messages

FECYCLE Progress information messages
IFO Information messages

EBUG Debug messages

Note: The rich components of the console (build status and work in progress area) are displayed
regardless of the log level used. Before Gradle 4.0 those rich components were only displayed at
log level LI FECYCLE or below.

8§
Choosing a log level

You can use the command line switches shown in Table 8 to choose different log levels. You can also
configure the log level using gradle.properties, see the section called “Gradle properties”. In Table 9 you find
the command line switches which affect stacktrace logging.

Page 241 of 807

Table 8. Log level command-line options

ption Outputs Log Levels

) logging options LIFECYCLE and higher

jor--quiet QUIET and higher

NOF - -warn WARN and higher

lor--info INFO and higher

d or - - debug DEBUG and higher (that is, all log messages)

Table 9. Stacktrace command-line options
ption Meaning

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in case of
o stacktrace options internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated stacktraces
are always printed.

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full stacktraces

2 or BNEEEEAE are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet they usually do not
5 0r--
contain relevant information for what has gone wrong in your code.) This option renders stacktraces for

deprecation warnings.

Sor--full-stackt Thedull stacktraces are printed out. This option renders stacktraces for deprecation warnings.

8§
Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects
anything written to standard output to its logging system at the QUI ET log level.

Example 195. Using stdout to write log messages

buil d. gradl e
println 'A nessage which is | ogged at QU ET | evel

Gradle also provides a | ogger property to a build script, which is an instance of Logger . This interface

extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is an example of

how this is used in the build script:

Page 242 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/logging/Logger.html

Example 196. Writing your own log messages

buil d. gradl e

| ogger.quiet('An info | og nessage which is always | ogged."')
| ogger.error('An error | og nessage.')

| ogger.warn(' A warning | og nessage.')

| ogger.lifecycle('Alifecycle info | og nessage.')

| ogger.info('An info | og nessage.')

| ogger . debug(' A debug | og nessage.')

| ogger.trace(' A trace | og nessage.')

Use the typical SLF4J pattern to replace a placeholder with an actual value as part of the log message.
Example 197. Writing a log message with placeholder

buil d. gradl e
| ogger.info('A {} log nessage', 'info')

You can also hook into Gradle’s logging system from within other classes used in the build (classes from the
directory for example). Simply use an SLF4J logger. You can use this logger the same way as you use the
provided logger in the build script.

Example 198. Using SLF4J to write log messages

buil d. gradl e
i mport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getLogger (' sonme-| ogger')
sl f4j Logger.info('An info | og nessage | ogged using SLF4]')

8§
Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging output
into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log levels,
except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the default
Gradle log level will not show any Ant/lvy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects
standard output to the QUI ET log level and standard error to the ERROR level. This behavior is configurable.
The project object provides a Loggi ngVanager, which allows you to change the log levels that standard

out or error are redirected to when your build script is evaluated.

Page 243 of 807

https://www.slf4j.org/manual.html#typical_usage
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/logging/LoggingManager.html

Example 199. Configuring standard output capture

buil d. gradl e
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
println 'A nessage which is logged at | NFO | evel'

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 200. Configuring standard output capture for a task

buil d. gradl e
task loglnfo {
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
doFirst {
println 'A task nmessage which is |ogged at | NFO | evel

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradle’s logging system.

8§
Changing what Gradle logs

You can replace much of Gradle’s logging Ul with your own. You might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. You replace the
logging using the Gradl e. uselLogger (] ava. | ang. Obj ect) method. This is accessible from a build
script, or an init script, or via the embedding API. Note that this completely disables Gradle’s default output.
Below is an example init script which changes how task execution and build completion is logged.

Page 244 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Example 201. Customizing what Gradle logs

init.gradle
useLogger (new Cust onmEvent Logger ())

cl ass CustonkEvent Logger extends Buil dAdapter inplenents TaskExecuti onLi stener {

public void beforeExecute(Task task) {
println "[$task. nanme]"

public void afterExecute(Task task, TaskState state) {
println()

public void buil dFi ni shed(Buil dResult result) {
println "build conpleted
if (result.failure !'= null) {
result.failure.printStackTrace()

}
}
}
Outputofgradle -1 init.gradle build
> gradle -1 init.gradle build

> Task :conpile

[conpi | €]
conpi l i ng source

> Task :testConpile
[test Conpil e]
conpiling test source

> Task :test
[test]
running unit tests

> Task :build
[bui | d]

buil d conpl et ed
3 actionabl e tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.

Page 245 of 807

You can find out more about the listener interfaces in the section called “Responding to the lifecycle in the

build script”.

Bui | dLi st ener

Pr oj ect Eval uat i onLi st ener
TaskExecuti onG aphlLi st ener
TaskExecut i onLi st ener

TaskAct i onLi st ener

Page 246 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/execution/TaskActionListener.html

Authoring Multi-Project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the
most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

8§
Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don’t have to be Java projects. Our first examples are about marine life.

§
Configuration and execution

the section called “Build phases” describes the phases of every Gradle build. Let's zoom into the
configuration and execution phases of a multi-project build. Configuration here means executing the bui | d.
file of a project, which implies e.g. downloading all plugins that were declared using ‘appl y pl ugi n’. By
default, the configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of multi-project build are configured first. The reason
every project needs to be configured is to support the flexibility of accessing and changing any part of the
Gradle project model.

§
Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every
project is configured before the execution phase. Yet, this approach may not be the most efficient in a very
large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The
configuration time of huge multi-project builds may become noticeable. Scalability is an important
requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode is
introduced.

Page 247 of 807

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.
it only executes the bui |l d. gradl e file of projects that are participating in the build. This way, the
configuration time of a large multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is
incubating so not every build is guaranteed to work correctly. The feature should work very well for
multi-project builds that have decoupled projects (the section called “Decoupled Projects”). In “configuration
on demand” mode, projects are configured as follows:

The root project is always configured. This way the typical common configuration is supported (allprojects or
subprojects script blocks).

The project in the directory where the build is executed is also configured, but only when Gradle is executed
without any tasks. This way the default tasks behave correctly when projects are configured on demand.

The standard project dependencies are supported and makes relevant projects configured. If project A has a
compile dependency on project B then building A causes configuration of both projects.

The task dependencies declared via task path are supported and cause relevant projects to be configured.
Example: someTask.dependsOn(":someOtherProject:someOtherTask")

A task requested via task path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see the section called
“Gradle properties”. To configure on demand just for a given build, see the section called “Performance
options”.

§
Defining common behavior

Let's look at some examples with the following project tree. This is a multi-project build with a root project
named wat er and a subproject named bl uewhal e.

Example 202. Multi-project tree - water & bluewhale projects

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/firstExar

in the ‘-all’ distribution of Gradle.

settings.gradle
i ncl ude ' bl uewhal e’

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously for a

Page 248 of 807

single project build, a project without a build script doesn’'t make much sense. For multiproject builds the
situation is different. Let’s look at the build script for the wat er project and execute it:

Example 203. Build script of water (parent) project

buil d. gradl e
Closure cl ={ task -> println "I'm $task. proj ect. nane" }
task(' hello').doLast(cl)
proj ect(':bluewhale') {
task(' hell o").doLast(cl)

Outputofgradl e -q hello
> gradle -q hello

' m wat er

I m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect (), which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project configuration.
Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It is inconvenient to add the task explicitly
for every project. We can do better. Let’s first add another project called kri | | to our multi-project build.

Example 204. Multi-project tree - water, bluewhale & krill projects

Build layout

wat er/
bui I d. gradl e
settings.gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/addKrill/

in the ‘-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill"’

Now we rewrite the wat er build script and boil it down to a single line.

Page 249 of 807

Example 205. Water project build script

buil d. gradl e
al | projects {
task hello {
doLast { task ->
println "I'm $task. proj ect. nang"

Outputofgradl e -q hello
> gradle -q hello

I''m wat er

' m bl uewhal e

I"mkrill

Is this cool or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.
You could also do an iteration via al | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject
builds.

Another possibility for sharing configuration is to use a common external script. See ??? for more
information.

8§
Subproject configuration

The Project API also provides a property for accessing the subprojects only.

Page 250 of 807

8
Defining common behavior

Example 206. Defining common behavior of all projects and subprojects

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. project. nane"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradl e -q hello
> gradle -q hello

' m wat er

' m bl uewhal e

- | depend on water
['"'mkril

- | depend on water

You may notice that there are two code snippets referencing the “hel | 0” task. The first one, which uses the
“t ask” keyword, constructs the task and provides it's base configuration. The second piece doesn't use the *
" keyword, as it is further configuring the existing “hel | 0” task. You may only construct a task once in a
project, but you may add any number of code blocks providing additional configuration.

8
Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don’t have to do it this way. We could add project specific behavior for the bl uewhal e project like this:

Page 251 of 807

Example 207. Defining specific behaviour for particular project

buil d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}
project(':bluewhale).hello {
doLast {
println "- I'mthe |argest aninmal that has ever lived on this planet."
}
}

Outputofgradl e -q hello

> gradle -q hello

"' m wat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
I"'mkrill

- | depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior to the kri | | project.

Example 208. Defining specific behaviour for project krill

Build layout
wat er/
bui I d. gradl e
settings.gradle
bl uewhal e/
buil d. gradl e
krill/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ spreadSpe
in the ‘-all’ distribution of Gradle.

Page 252 of 807

settings.gradle
i ncl ude ' bl uewhale', "krill

bl uewhal e/ bui | d. gradl e
hel | 0. doLast {
println "- I'mthe largest aninal that has ever lived on this planet."

krill/build.gradle
hel | 0. doLast {
println "- The weight of ny species in sumer is twice as heavy as all human b

bui I d. gradl e
al | projects {
task hello {
doLast { task ->

println "1'm $task. proj ect. nanme"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}

Outputofgradl e -q hello

> gradle -q hello

' m wat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

["mkril

| depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs.

§
Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 253 of 807

§
Filtering by name

Example 209. Adding custom behaviour to some projects (filtered by project name)

Build layout
wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
buil d. gradl e
krill/
buil d. gradl e
t ropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ addTr opi ¢
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill', "tropicalFish'

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nang"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}
}
configure(subprojects.findAll {it.name != "tropical Fish'}) {
hell o {
doLast {
println'- | love to spend tinme in the arctic waters.'
}
}
}

Outputofgradl e -q hello

Page 254 of 807

> gradle -q hello

"' m wat er

I m bl uewhal e

- | depend on water

-1 love to spend time in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"mkril

| depend on water

-1 love to spend time in the arctic waters.

- The weight of ny species in sumer is twice as heavy as all hunman beings.
' mtropical Fi sh

| depend on water

The confi gure() method takes a list as an argument and applies the configuration to the projects in this
list.

§
Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See the section
called “Extra properties” for more information on extra properties.)

Example 210. Adding custom behaviour to some projects (filtered by project properties)

Build layout
wat er/
buil d. gradl e
settings.gradle
bl uewhal e/
bui I d. gradl e
krill/
bui I d. gradl e
t ropi cal Fi sh/
bui I d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropical\
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'bluewhale', "krill"', '"tropical Fish'

bl uewhal e/ bui | d. gradl e
ext.arctic = true
hel | 0. doLast ({

println "- I'mthe largest aninmal that has ever lived on this planet."

Page 255 of 807

krill/build.gradle
ext.arctic = true
hel | 0. doLast {

println "- The weight of ny species in summer is twice as heavy as all hunman

tropi cal Fi sh/ bui |l d. gradl e
ext.arctic = fal se

bui | d. gradl e
al | projects {
task hello {
doLast { task ->

println "I'm $task. proj ect. nane"
}
}
}
subproj ects {
hell o {
doLast {println "- | depend on water"}
afterEval uate { Project project ->
if (project.arctic) { doLast {
println'- | love to spend tine in the arctic waters.' }
}
}
}
}

Outputofgradl e -qg hello

> gradle -q hello

I'''m wat er

" m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
- | love to spend tinme in the arctic waters.

["mkril

| depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs.
- | love to spend tinme in the arctic waters.

"' mtropical Fi sh

| depend on water

In the build file of the wat er project we use an af t er Eval uat e notification. This means that the closure
we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property ar ct i ¢
is set in those build scripts, we have to do it this way. You will find more on this topic in the section called
“Dependencies - Which dependencies?”

Page 256 of 807

8§
Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | ¢
tasks of the different projects were executed. Let’s switch to the bl uewhal e dir and see what happens if we
execute Gradle from there.

Example 211. Running build from subproject

Outputofgradl e -q hello

> gradle -q hello

' m bl uewhal e

- | depend on water

- I'"'mthe largest animal that has ever lived on this planet.
- | love to spend tinme in the arctic waters.

The basic rule behind Gradle’s behavior is simple. Gradle looks down the hierarchy, starting with the current
dir, for tasks with the name hel | o and executes them. One thing is very important to note. Gradle always
evaluates every project of the multi-project build and creates all existing task objects. Then, according to the
task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of
Gradle’s cross project configuration every project has to be evaluated before any task gets executed. We
will have a closer look at this in the next section. Let’'s now have our last marine example. Let's add a task to
bl uewhal e and kri || .

Page 257 of 807

Example 212. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e
ext.arctic = true

hell o {
doLast {
println "- I'mthe largest aninal that has ever lived on this planet."
}
}

task distanceTol ceberg {
doLast {
println '20 nautical mles

krill/build.gradle
ext.arctic = true

hell o {
doLast ({
println "- The weight of nmy species in summer is twi ce as heavy as all hi
}
}

task distanceTol ceberg {
doLast {
println '5 nautical niles

Outputof gradl e -qg di stanceTol ceberg
> gradl e -q di stanceTol ceberg

20 nautical mles

5 nautical mles

Here’s the output without the - q option:

Page 258 of 807

Example 213. Evaluation and execution of projects

Output of gr adl e di st anceTol ceberg
> gradl e di stanceTol ceberg

> Task : bl uewhal e: di st anceTol ceberg
20 nautical niles

> Task :krill:distanceTol ceberg
5 nautical mles

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have a task with the
name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is: Execute

all tasks down the hierarchy which have this name. Only complain if there is no such task!

8§
Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from
there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle
also offers to execute tasks by their absolute path (see also the section called “Project and task paths”):

Example 214. Running tasks by their absolute path

Outputofgradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

"' m wat er

['"'mkril

- | depend on water

- The weight of nmy species in sumrer is twice as heavy as all human bei ngs.
- | love to spend tinme in the arctic waters.

"' mtropical Fi sh

| depend on water

The build is executed from the t r opi cal Fi sh project. We execute the hel | o tasks of the wat er, the kri |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

Page 259 of 807

8§
Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of a task is simply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a project
you can address a task of the same project just by its name. This is interpreted as a relative path.

8§
Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. The following sections illustrate the differences between these two types
of dependencies.

Page 260 of 807

8
Execution dependencies

§
Dependencies and execution order

Example 215. Dependencies and execution order

Build layout
messages/
bui I d. gradl e
settings.gradle
consuner/
buil d. gradl e
pr oducer/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the ‘-all’ distribution of Gradle.

bui | d. gradl e
ext . producer Message = nul

settings.gradle
i ncl ude ' consuner', ' producer

consumner/ bui | d. gradl e
task action {
doLast {
println("Consum ng nessage: ${rootProject.producer Message}")

producer/ buil d. gradl e
task action {

doLast {

println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.
}

Outputof gradl e -qg action
> gradle -q action
Consumi ng nessage: nul
Pr oduci ng nessage:

This didn’t quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric order.
Therefore, Gradle will execute “: consumner : acti on” before “: producer : acti on”. Let’s try to solve this
with a hack and rename the producer project to “aPr oducer .

Page 261 of 807

Example 216. Dependencies and execution order

Build layout
messages/
buil d. gradl e
settings.gradle
aProducer/
bui I d. gradl e
consuner/
bui I d. gradl e

buil d. gradl e
ext . producer Message = nul |

settings.gradle
i ncl ude ' consuner', 'aProducer

aProducer/bui l d. gradl e
task action {

doLast {

println "Produci ng nessage: "

r oot Proj ect. producer Message = 'Watch the order of execution.'
}

consumer/ bui l d. gradl e
task action {
doLast {
println("Consum ng nmessage: ${rootProject.producer Message}")

Outputofgradl e -g action

> gradle -q action

Pr oduci ng nessage:

Consumi ng nmessage: Watch the order of execution.

We can show where this hack doesn’t work if we now switch to the consuner dir and execute the build.
Example 217. Dependencies and execution order

Outputofgradl e -g action
> gradle -q action
Consum ng message: nul |

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In

the last example only one “act i on” task was down the hierarchy and therefore it was the only task that was

Page 262 of 807

executed. We need something better than this hack.

8
Real life examples

Gradle’s multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications.!”! For
the example we use only one build script and do cross project configuration.

Page 263 of 807

Example 218. Dependencies - real life example - crossproject configuration

Build layout
webDi st/
settings.gradle
bui I d. gradl e
dat e/
src/ mai n/javal
or g/ gradl e/ sanpl e/
Dat eServl et . j ava
hel | o/
src/ mai n/javal
or g/ gradl e/ sanpl e/
Hel | oServl et.java

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the *-all’ distribution of Gradle.

settings.gradle
i nclude 'date', 'hello'

bui I d. gradl e

al | projects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'

subproj ects {
apply plugin: '"war'
repositories {
mavenCentral ()

}

dependenci es {
conpile "javax.servlet:servlet-api:2. 5"

task expl odedDi st (type: Copy) {
into "$buil dDir/expl odedDi st"
subproj ects {
fromtasks.w thType(War)

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration
dependency on webDi st , as all the build logic for the webapp projects is injected by webDi st. The
execution dependency is in the other direction, as webDi st depends on the build artifacts of dat e and hel |

Page 264 of 807

. There is even a third dependency. webDi st has a configuration dependency on date and hell o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore we
have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system
does not support these patterns, you either can’t solve your problem or you need to do ugly hacks which are
hard to maintain and massively impair your productivity as a build master.

8§
Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also
the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project
builds. As already mentioned in the section called “Project dependencies”, Gradle offers project lib
dependencies for this.

Example 219. Project lib dependencies

Build layout
j aval
settings.gradle
buil d. gradl e
api /
src/ mai n/javal/
or g/ gradl e/ sanpl e/
api /
Per son. j ava
api | npl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j aval/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/javal/
or g/ gradl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenc
in the ‘-all’ distribution of Gradle.

We have the projects “shar ed”, “api ” and “per sonSer vi ce”. The “per sonSer vi ce” project has a lib

dependency on the other two projects. The “api ” project has a lib dependency on the “shar ed” project. “ser

Page 265 of 807

" is also a project, but we use it just as a container. It has no build script and gets nothing injected by another
build script. We use the : separator to define a project path. Consult the DSL documentation of
Settings.include(java.lang. String[]) for more information about defining project paths.

Example 220. Project lib dependencies

settings.gradle
include "api', 'shared', 'services:personService'

bui I d. gradl e
subproj ects {
apply plugin: 'java'
group = 'org.gradle.sanpl e
version = '1.0'
repositories {
mavenCentral ()

}
dependenci es {
testConpile "junit:junit:4.12"

project(':api') {
dependenci es {
conpil e project(':shared")

project(':services:personService') {
dependenci es {
conpile project(':shared'), project(':api")

All the build logic is in the “bui | d. gr adl e” file of the root project.l®] A “lib” dependency is a special form of
an execution dependency. It causes the other project to be built first and adds the jar with the classes of the
other project to the classpath. It also adds the dependencies of the other project to the classpath. So you
can enter the “api ” directory and trigger a “gr adl e conpi | e”. First the “shar ed” project is built and then
the “api ” project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from lvy land, you might
expect some more fine grained control. Gradle offers this to you:

Page 266 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Example 221. Fine grained control over dependencies

buil d. gradl e

subproj ects {
apply plugin: 'java'
group = 'org.gradle.sanpl e’
version = '1.0'

project(':api') {
configurations {
spi
}
dependenci es {
conpil e project(':shared")

}
task spiJar(type: Jar) {
baseNarme = 'api-spi’
from sourceSet s. mai n. out put
i ncl ude(' org/ gradl e/ sanpl e/ api/**")
}
artifacts {
spi spiJar
}

proj ect(':services:personService') {
dependenci es {
conpile project(':shared')
conpile project(path: '":api', configuration: '"spi')
testConpile "junit:junit:4.12", project(':api")

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example
we create an additional library containing only the interfaces of the “api ” project. We assign this library to a
new dependency configuration. For the person service we declare that the project should be compiled only
against the “api ” interfaces but tested with all classes from “api .

8§
Depending on the task output produced by another project

Project dependencies model dependencies between modules. Effectively, you are saying that you depend
on the main output of another project. In a Java-based project that's usually a JAR file.

Sometimes you may want to depend on an output produced by another task. In turn you’ll want to make sure
that the task is executed beforehand to produce that very output. Declaring a task dependency from one
project to another is a poor way to model this kind of relationship and introduces unnecessary coupling. The

Page 267 of 807

recommended way to model such a dependency is to produce the output, mark it as an "outgoing" artifact or
add it to the output of the mai n source set which you can depend on in the consuming project.

Let's say you are working in a multi-project build with the two subprojects pr oducer and consuner. The
subproject pr oducer defines a task named bui | dl nf o that generates a properties file containing build
information e.g. the project version. The attribute bui |l t By takes care of establishing an inferred task
dependency. For more information on bui | t By, see Sour ceSet CQut put .

Example 222. Task generating a property file containing build information

bui I d. gradl e
task buildlnfo(type: Buildlnfo) {
version = project.version
outputFile = file("${buildDir}/generated-resources/build-info.properties")

sourceSets {
mai n {
out put.dir(buildlnfo.outputFile.parentFile, builtBy: buildlnfo)

The consuming project is supposed to be able to read the properties file at runtime. Declaring a project
dependency on the producing project takes care of creating the properties beforehand and making it
available to the runtime classpath.

Example 223. Declaring a project dependency on the project producing the properties file

buil d. gradl e
dependenci es {
runtime project(':producer")

In the example above, the consumer now declares a dependency on the outputs of the pr oducer project.

8§
Parallel project execution

With more and more CPU cores available on developer desktops and CI servers, it is important that Gradle
is able to fully utilise these processing resources. More specifically, parallel execution attempts to:

Reduce total build time for a multi-project build where execution is 10 bound or otherwise does not consume
all available CPU resources.

Provide faster feedback for execution of small projects without awaiting completion of other projects.

Although Gradle already offers parallel test execution via Test . set MaxPar al | el For ks(i nt) the feature

Page 268 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-

described in this section is parallel execution at a project level. Parallel execution is an incubating feature.
Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
parallel (see also: the section called “Decoupled Projects”). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

the section called “Configuration on demand”.

Configuration of projects in parallel.

Re-use of configuration for unchanged projects.

Project-level up-to-date checks.

Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use the - - pa
command line argument or configure your build environment (the section called “Gradle properties”). Unless
you provide a specific number of parallel threads, Gradle attempts to choose the right number based on
available CPU cores. Every parallel worker exclusively owns a given project while executing a task. Task
dependencies are fully supported and parallel workers will start executing upstream tasks first. Bear in mind
that the alphabetical ordering of decoupled tasks, as can be seen during sequential execution, is not
guaranteed in parallel mode. In other words, in parallel mode tasks will run as soon as their dependencies
complete and a task worker is available to run them, which may be earlier than they would start during a
sequential build. You should make sure that task dependencies and task inputs/outputs are declared
correctly to avoid ordering issues.

8§
Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution phases.
While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that
Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly
building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built
artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model. Decoupled
projects may only interact in terms of declared dependencies: project dependencies (the section called
“Project dependencies”) and/or task dependencies (the section called “Task dependencies”). Any other form
of project interaction (i.e. by modifying another project object or by reading a value from another project
object) causes the projects to be coupled. The consequence of coupling during the configuration phase is
that if gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in
several ways. The consequence of coupling during execution phase is that if gradle is invoked with the
parallel option, one project task runs too late to influence a task of a project building in parallel. Gradle does
not attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

Page 269 of 807

A very common way for projects to be coupled is by using configuration injection (the section called “Cross
project configuration”). It may not be immediately apparent, but using key Gradle features like the al | pr oj e:
and subproj ect s keywords automatically cause your projects to be coupled. This is because these
keywords are used in a bui | d. gr adl e file, which defines a project. Often this is a “root project” that does
nothing more than define common configuration, but as far as Gradle is concerned this root project is still a
fully-fledged project, and by using al | proj ect s that project is effectively coupled to all other projects.
Coupling of the root project to subprojects does not impact ‘configuration on demand', but using the al | pr oj
and subpr oj ect s in any subproject’s bui | d. gr adl e file will have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subprc
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will also introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

Avoid a subproject’s bui | d. gr adl e referencing other subprojects; preferring cross configuration from the
root project.

Avoid changing the configuration of other projects at execution time.

8§
Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these
tasks across a range of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 220. In this example, the “: ser vi ces: per sonser vi ce” project depends on both the “: af
"and “: shar ed” projects. The “: api ” project also depends on the “: shar ed” project.

Assume you are working on a single project, the “: api ” project. You have been making changes, but have
not built the entire project since performing a clean. You want to build any necessary supporting jars, but
only perform code quality and unit tests on the project you have changed. The bui | d task does this.

Page 270 of 807

Example 224. Build and Test Single Project

Outputof gradl e : api: build

Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task

V VV V V V V V V V V V V V VYV

: api
: api

: api
: api
:api
: api
capi:
Dapi:
:api
: api
capi:

gradle :api:build

: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

:conpi | eJava

pr ocessResour ces

. cl asses

Djar

;assenbl e
:conpi | eTest Java

processTest Resour ces
test Cl asses

i test
: check

buil d

BU LD SUCCESSFUL in Os
9 actionabl e tasks: 9 executed

If you have just gotten the latest version of source from your version control system which included changes

in other projects that “: api ” depends on, you might want to not only build all the projects you depend on, but

test them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies of the

testRuntime configuration.

Page 271 of 807

Example 225. Build and Test Depended On Projects

Output of gradl e : api : bui | dNeeded
gradl e : api: buil dNeeded

Task :shared: conpil eJava
Task :shared: processResources
Task :shared: cl asses

Task :shared:jar

Task :api:conpil eJava

Task :api: processResources
Task :api:cl asses

Task :api:jar

Task : api:assenbl e

Task :api:comnpil eTest Java
Task : api: processTest Resources
Task :api:testC asses

Task :api:test

Task :api: check

Task :api:build

Task :shared: assenbl e

Task :shared: conpil eTest Java
Task :shared: processTest Resour ces
Task :shared:testC asses

Task :shared:test

Task :shared: check

Task :shared: build

Task :shared: bui | dNeeded

Task : api: bui | dNeeded

V VV V V V V V V V VYV VYV YV VYV VYV VYV YV V\VYV

BUI LD SUCCESSFUL in Os
12 actionabl e tasks: 12 executed

You also might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api " project, you also need to test all projects
that depend on the “: api ” project. The bui | dDependent s task also tests all the projects that have a
project lib dependency (in the testRuntime configuration) on the specified project.

Page 272 of 807

Example 226. Build and Test Dependent Projects

Output of gradl e : api : bui | dDependent s

gradl e : api: bui |l dDependent s

Task :shared: conpil eJava

Task :shared: processResources

Task :shared: cl asses

Task :shared:jar

Task :api:conpil eJava

Task :api: processResources

Task :api:cl asses

Task :api:jar

Task : api:assenbl e

Task :api:comnpil eTest Java

Task : api: processTest Resources

Task :api:testC asses

Task :api:test

Task :api: check

Task :api:build

Task :services: personService: conpi | eJava
Task :services: personServi ce: processResour ces
Task :services: personService: cl asses

Task :services: personService:jar

Task :services: personService: assenbl e

Task :services: personService: conpil eTest Java
Task :services: personService: processTest Resour ces
Task :services: personService:testCd asses
Task :services: personService: test

Task :services: personServi ce: check

Task :services: personService: build

Task :services: personService: bui | dDependent s
Task :api: buil dDependents

V VV V V V V VYV V VYV VYV VYV YV VYV YV VYV VYV VYV YV VYV

BU LD SUCCESSFUL in Os
17 actionabl e tasks: 17 executed

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on all the children. So you can just run “gr adl e bui | d” to build
and test all projects.

8§
Multi Project and buildSrc

the section called “Use bui | dSr ¢ to abstract imperative logic” tells us that we can place build logic to be
compiled and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | d:
directory which must be located in the root directory.

Page 273 of 807

[7] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
each index you are accessing. That was one reason why we have created a distribution of webapps. The
Resin servlet container allows us, to let such a distribution point to a base installation of the servlet
container.

[€] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the build
script of the respective projects.

Page 274 of 807

http://lucene.apache.org/solr

Using Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the
ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | €), domain
objects (e.g. Sour ceSet), conventions (e.g. Java source is located at src/ mai n/java) as well as

extending core objects and objects from other plugins.
In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

8§
What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things such as:
Extend the Gradle model (e.g. add new DSL elements that can be configured)

Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)

Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
Allows a higher degree of modularization, enhancing comprehensibility and organization

Encapsulates imperative logic and allows build scripts to be as declarative as possible

8§
Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and
accessed from a remote location. Binary plugins are classes that implement the Pl ugi n interface and adopt
a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the
project hierarchy or externally in a plugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes

Page 275 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Plugin.html

more valuable, it's migrated to a binary plugin that can be easily tested and shared between multiple projects
or organizations.

8§
Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to resolve
the plugin, and then it needs to apply the plugin to the target, usually a Pr o] ect .

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it
the script classpath. Once a plugin is resolved, its APl can be used in a build script. Script plugins are
self-resolving in that they are resolved from the specific file path or URL provided when applying them. Core
binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin’s Pl ugi n. appl y(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin multiple
times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current project.
Since this is such a common use case, it's recommended that build authors use the plugins DSL to both
resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and should
be used by most users.

8§
Script plugins
Example 227. Applying a script plugin

bui | d. gradl e
apply from 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a
remote location. Filesystem locations are relative to the project directory, while remote script locations are
specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

8§
Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core Gradle
plugins are special in that they provide short names, such as ' j ava' for the core JavaPl ugi n. All other
binary plugins must use the fully qualified form of the plugin id (e.g. com gi t hub. f 0o. bar), although
some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id depends on
whether you are using the plugins DSL or the buildscript block.

Page 276 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Plugin.html#apply-T-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/plugins/JavaPlugin.html

8
Locations of binary plugins

A plugin is simply any class that implements the Pl ugi n interface. Gradle provides the core plugins (e.g. Jay
) as part of its distribution which means they are automatically resolved. However, non-core binary plugins
need to be resolved before they can be applied. This can be achieved in a number of ways:

Including the plugin from the plugin portal or a custom repository using the plugins DSL (see the section
called “Applying plugins with the plugins DSL").

Including the plugin from an external jar defined as a buildscript dependency (see the section called
“Applying plugins with the buildscript block”).

Defining the plugin as a source file under the buildSrc directory in the project (see the section called “Use bui
to abstract imperative logic”).

Defining the plugin as an inline class declaration inside a build script.
For more on defining your own plugins, see Writing Custom Plugins.

§
Applying plugins with the plugins DSL

Note: The plugins DSL is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with
the Gradle plugin portal to provide easy access to both core and community plugins. The plugins DSL block
configures an instance of Pl ugi nDependenci esSpec.

To apply a core plugin, the short name can be used:

Example 228. Applying a core plugin

buil d. gradl e
pl ugi ns {

id'java'
}

To apply a community plugin from the portal, the fully qualified plugin id must be used:
Example 229. Applying a community plugin
bui I d. gradl e

pl ugi ns {
id 'comjfrog.bintray' version '0.4.1

Page 277 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/Plugin.html
http://plugins.gradle.org
http://www.gradle.org/docs/4.9/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

§
Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is
processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This
allows Gradle to do smart things such as:

Optimize the loading and reuse of plugin classes.
Allow different plugins to use different versions of dependencies.

Provide editors detailed information about the potential properties and values in the buildscript for editing
assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing
the rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism
is still being developed and some are inherent to the new approach.

§
Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any
time).

The form is:

pl ugi ns {
id «plugin id» version «plugin version» [apply «fal se»]

Where «pl ugi n ver si on» and «pl ugi n i d» must be constant, literal, strings and the appl y statement
with a bool ean can be used to disable the default behavior of applying the plugin immediately (e.g. you
want to apply it only in subpr oj ect s). No other statements are allowed; their presence will cause a

compilation error.

The pl ugi ns {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

§
Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project’s build script. It cannot be used in script
plugins, the settings.gradle file or init scripts.

Page 278 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins using the
buildscript {} block.

§
Applying plugins to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the subprojects in your
build, but not to the root or master project. The default behavior of the pl ugi ns {} block is to
immediately r esol ve and appl y the plugins. But, you can use the appl y fal se syntax to tell Gradle not
to apply the plugin to the current project and then use appl y pl ugi n: «pl ugi n i d» in the subpr oj ect ¢
block:

Example 230. Applying plugins only on certain subprojects.

settings.gradle
i nclude ' hel | oA
i nclude ' hel | oB
i ncl ude ' goodbyeC

buil d. gradl e

pl ugi ns {
id "org.gradl e.sanple. hello" version "1.0.0" apply fal se
id "org.gradl e. sanpl e. goodbye" version "1.0.0" apply fal se

subproj ects { subproject ->
i f (subproject.nane.startsWth("hello")) {
apply plugin: 'org.gradle.sanple. hello’
}
i f (subproject.nane.startsWth("goodbye")) {
apply plugin: 'org.gradle. sanpl e. goodbye'

If you then run gr adl e hel | o you'll see that only the helloA and helloB subprojects had the hello plugin
applied.

gr adl e/ subpr oj ect s/ docs/ src/ sanpl es/ pl ugi ns/ mul ti project $> gradle hello
Paral |l el execution is an incubating feature.

:hell oA hell o

:helloB: hello

Hel | o!

Hel | o!

BU LD SUCCEEDED

Page 279 of 807

§
Plugin Management

Note: The pl ugi nManagenent {} DSL is currently incubating. Please be aware that the DSL and

other configuration may change in later Gradle versions.

The pl ugi nManagenent {} block may only appear in either the setti ngs. gr adl e file, where it must be

the first block in the file, or in an Initialization Script.

Example 231. Configuring pluginManagement per-project and globally

settings.gradle

pl ugi nManagenent {
resol utionStrategy {
}
repositories {

}

init.gradle
settingsEval uated { settings ->
settings. pl ugi nManagenent {
resol utionStrategy {
}
repositories {

}

§
Custom Plugin Repositories

By default, the pl ugi ns {} DSL resolves plugins from the public Gradle Plugin Portal. Many build authors

would also like to resolve plugins from private Maven or Ivy repositories because the plugins contain

proprietary implementation details, or just to have more control over what plugins are available to their

builds.

To specify custom plugin repositories, use the r eposi t ori es {} block inside pl ugi nManagenent {}:

Page 280 of 807

https://plugins.gradle.org

Example 232. Using plugins from custom plugin repositories.

settings.gradle
pl ugi nManagenent {
repositories {
maven {
url 'maven-repo'

}
gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'
}

This tells Gradle to first look in the Maven repository at maven-r epo when resolving plugins and then to
check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don’'t want the
Gradle Plugin Portal to be searched, omit the gr adl ePl ugi nPortal () line. Finally, the Ivy repository ati v
will be checked.

§
Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in pl ugi ns {} blocks, e.g. changing the
requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the r esol uti onStrat egy {} inside the pl ugi nManagenent {} block:
Example 233. Plugin resolution strategy.

settings.gradle
pl ugi nManagenent {
resol uti onStrategy {
eachPl ugin {
if (requested.id. nanespace == 'org.gradle.sanmple") {
useModul e(' org. gradl e. sanpl e: sanpl e-pl ugins: 1. 0.0")

}
}
}
repositories {
maven {
url 'maven-repo'
}
gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'
}
}

Page 281 of 807

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in default
mapping from plugin ID to Maven/lvy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in addition to the artifacts
which actually implement the plugin. For more information on publishing plugins to custom repositories read
Gradle Plugin Development Plugin.

See Pl ugi nVanagenent Spec for complete documentation for using the pl ugi nManagenent {} block.

§
Plugin Marker Artifacts

Since the pl ugi ns {} DSL block only allows for declaring plugins by their globally unique plugin i d and ve
properties, Gradle needs a way to look up the coordinates of the plugin implementation artifact. To do so,
Gradle will look for a Plugin Marker Artifact with the coordinates pl ugi n. i d: pl ugi n. i d. gradl e. pl ugi n
. This marker needs to have a dependency on the actual plugin implementation. Publishing these markers is
automated by the java-gradle-plugin.

For example, the following complete sample from the sanpl e- pl ugi ns project shows how to publish a or g
plugin and a org. gradl e. sanpl e. goodbye plugin to both an Ivy and Maven repository using the
combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish plugin.

Page 282 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.plugin.management.PluginManagementSpec.html

Example 234. Complete Plugin Publishing Sample

buil d. gradl e

pl ugi ns {
id'java-gradl e-plugin'
id ' maven- publish’
id'ivy-publish'

group 'org.gradle.sanple'
version '1.0.0

gradl ePl ugin {

pl ugi ns {
hell o {

id = "org.gradl e. sanpl e. hel | 0"
"org.gradl e. sanpl e. hel | 0. Hel | oPI ugi n"

i mpl ement ati ond ass

id = "org.gradl e. sanpl e. goodbye"
"org. gradl e. sanpl e. goodbye. GoodbyePI ugi n"

}
goodbye {
i mpl emrent ati onC ass
}
}
}
publ i shing {
repositories {
maven {
url "../consuni ng/ maven-repo"
}
ivy {
url "../consum ng/ivy-repo"
}
}
}

Running gr adl e publ i sh in the sample directory causes the following repo layouts to exist:

Page 283 of 807

/~ .Imaven-repo

groupld org.gradle.sample.hello groupld org.gradle.samplh
artifactld org.gradie.sample.hello.gradle.plugin artifactld sample-plugins
version 1.0.0 7 version 1.0.0
groupld org.gradle.sample.goodbye .
artifactld org.gradle. sample.goodbye. gradle. plugin sample |:Ill.|
version 1.0.0

_ 4

/— .[ivy-repo
org org.gradle. sample. hello org org.gradle. sample
module org.gradle.sample.hello.gradle. plugin module sample-plugins
rev 1.0.0 — rev 1.0.0

org org.gradle. sample.goodbye
module org.gradle. sample.goodbye.gradle. plugin
rev 1.0.0

'\ 4

Legacy Plugin Application

sample-plu

With the introduction of the plugins DSL, users should have little reason to use the legacy method of
applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions
in how it currently works.

§
Applying Binary Plugins

Example 235. Applying a binary plugin

buil d. gradl e
apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘j ava’ to apply the

JavaPl ugi n.
Rather than using a plugin id, plugins can also be applied by simply specifying the class of the plugin:
Example 236. Applying a binary plugin by type

buil d. gradl e
apply plugin: JavaPl ugin

The JavaPl ugi n symbol in the above sample refers to the JavaPl ugi n. This class does not strictly need

to be imported as the or g. gradl e. api . pl ugi ns package is automatically imported in all build scripts

Page 284 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/plugins/JavaPlugin.html

(see the section called “Default imports”). Furthermore, it is not necessary to append . cl ass to identify a
class literal in Groovy as it is in Java.

§
Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin
to the build script classpath and then applying the plugin. External jars can be added to the build script
classpath using the bui | dscri pt {} block as described in the section called “External dependencies for
the build script”.

Example 237. Applying a plugin with the buildscript block

bui | d. gradl e
bui | dscri pt {
repositories {
jcenter()

}

dependenci es {
classpath "comjfrog. bintray. gradl e: gradl e-bi ntray-pl ugin:0.4.1"

apply plugin: "comjfrog.bintray"

8§
Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.
The Gradle plugin portal provides an interface for searching and exploring community plugins.

8§
More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Writing Custom Plugins.

Page 285 of 807

http://plugins.gradle.org

Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

8§

Language plugins
These plugins add support for various languages which can be compiled for and executed in the JVM.
Table 10. Language plugins

lugin Automatically Works .
.) Description
\ applies with

. b Adds Java compilation, testing and bundling capabilities to a project. It serves as the basis for
ava ava- base -
: many of the other Gradle plugins. See also Java Quickstart.

roovy j ava, gr oovy--base Adds support for building Groovy projects. See also Groovy Quickstart.
cal a java, scal a-base Adds support for building Scala projects.
atlr java - Adds support for generating parsers using Antlr.

8§
Incubating language plugins

These plugins add support for various languages:

Page 286 of 807

http://www.antlr.org/

Table 11. Language plugins
lugin Id Automatically applies Works with Description

ssenbl er - - Adds native assembly language capabilities to a project.

- - Adds C source compilation capabilities to a project.

op - - Adds C++ source compilation capabilities to a project.

oj ective-c - - Adds Objective-C source compilation capabilities to a project.

oj ective-cpp - - Adds Objective-C++ source compilation capabilities to a project.
ndows-r esour ces - - Adds support for including Windows resources in native binaries.

§

Integration plugins

These plugins provide some integration with various runtime technologies.

Page 287 of 807

Table 12. Integration plugins

Automaticall
lugin Id) y Works with Description
applies

Adds tasks for running and bundling a Java project as a command-line

oplication java,distribution o
application.

ar - java Adds support for building J2EE applications.

appl i cati on, di stPidvittesosm new DSL to support publishing artifacts to Ivy repositories,

vy-publish - . o o
,j ava, war which improves on the existing DSL.

— appl i cati on, di stPidwidéra new DSL to support publishing artifacts to Maven
aven- publ i sh -
. ,j ava, war repositories, which improves on the existing DSL.

Adds support for publishing artifacts to Maven repositories using the
aven - j ava, war original publishing mechanism available in Gradle 1.0. See also
Legacy publishing.

5Qi j ava- base j ava Adds support for building OSGi bundles.

- ava Adds support for assembling web application WAR files. See also Web
V -
: Application Quickstart.

8§

Incubating integration plugins
These plugins provide some integration with various runtime technologies.
Table 13. Incubating integration plugins

. Automatically Works L
lugin Id . . Description
applies with

stribution - - Adds support for building ZIP and TAR distributions.

Adds support for building ZIP and TAR distributions for a

ava-|ibrary-distributionjava,distribution .
Java library.

Page 288 of 807

8§
Software development plugins

These plugins provide help with your software development process.

Page 289 of 807

Table 14. Software development plugins

Automatically Works

lugin Id . .
applies with

nnounce - -

Ui | d- announcenent s announce -

Description

Publish messages to your favourite platforms, such as Twitter or Growl.

Sends local announcements to your desktop about interesting events in
the build lifecycle.

Performs quality checks on your project’'s Java source files using

neckstyl e j ava- base -
Checkstyle and generates reports from these checks.
Performs quality checks on your project’s Groovy source files using
odenarc groovy- base -
CodeNarc and generates reports from these checks.
i j ava,gr Gewmgrates files that are used by Eclipse IDE, thus making it possible to
cli pse -
. , scal a import the project into Eclipse. See also Java Quickstart.
Does the same as the eclipse plugin plus generates eclipse WTP (Web
) Tools Platform) configuration files. After importing to eclipse your
cli pse-wtp - ear, war . . .
war/ear projects should be configured to work with WTP. See also Java
Quickstart.
. Performs quality checks on your project’s Java source files using
ndbugs j ava- base -)
FindBugs and generates reports from these checks.
’) Generates files that are used by Intellij IDEA IDE, thus making it
ea - ava
: possible to import the project into IDEA.
. Performs quality checks on your project’s source files using JDepend
depend j ava- base -
and generates reports from these checks.
. Performs quality checks on your project’s Java source files using PMD
md j ava- base -
and generates reports from these checks.
roj ect-report reporting- base - Generates reports containing useful information about your Gradle build.
gni ng base - Adds the ability to digitally sign built files and artifacts.

Page 290 of 807

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

8§
Incubating software development plugins

These plugins provide help with your software development process.

Table 15. Software development plugins

Automatically

lugin Id . Works with Description
applies
ui | d- dashboard reporting-base - Generates build dashboard report.
uni t - - Adds support for running CUnit tests.
acoco reporting-base java Provides integration with the JaCoCo code coverage library for Java.
native
sual - studi o - language Adds integration with Visual Studio.
plugins

. Assists with development of Gradle plugins by providing standard
ava- gr adl e- pl ugi n java . .] . A
plugin build configuration and validation.

8§
Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are available
for you to use in your build files, and are listed here for completeness. However, be aware that they are not
yet considered part of Gradle’s public API. As such, these plugins are not documented in the user guide.
You might refer to their APl documentation to learn more about them.

Page 291 of 807

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/

Table 16. Base plugins

lugin Id Description

Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

® adds build ConfigurationName tasks. Those tasks assemble the artifacts belonging to the specified
configuration.

® adds upload ConfigurationName tasks. Those tasks assemble and upload the artifacts belonging to the
ase specified configuration.

¢ configures reasonable default values for all archive tasks (e.g. tasks that inherit from Abst r act Ar chi veTask).
For example, the archive tasks are tasks of types: Jar, Tar, Zi p. Specifically, dest i nati onDi r, baseNane
and ver si on properties of the archive tasks are preconfigured with defaults. This is extremely useful because it
drives consistency across projects; the consistency regarding naming conventions of archives and their location
after the build completed.

va-base Adds the source sets concept to the project. Does not add any particular source sets.
‘oovy-base Adds the Groovy source sets concept to the project.
sala-base Adds the Scala source sets concept to the project.

porting-base Adds some shared convention properties to the project, relating to report generation.

8§
Third party plugins

You can find a list of external plugins at the Gradle Plugins site.

Page 292 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. These tasks generate the same content that you get by executing the t asks, di
, and properti es tasks from the command line (see the section called “Project reporting”). In contrast to
the command line reports, the report plugin generates the reports into a file. There is also an aggregating
task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

§
Usage

To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report’

8
Tasks

The project report plugin defines the following tasks:

Page 293 of 807

Table 17. Project report plugin - tasks

ask name Depends on Type

apendencyRepor t -

t Ml DependencyReport -

ropertyReport - PropertyReport Task
askReport - TaskReport Task
dependencyReport, propertyReport
roj ect Report P yrep —— Task
,taskReport, ht M DependencyReport
§

Project layout
The project report plugin does not require any particular project layout.

8§
Dependency management

The project report plugin does not define any dependency configurations.

8§
Convention properties

The project report defines the following convention properties:

DependencyReport Task

Description

Generates the project
dependency report.

Generates an HTML
dependency and

Ht ml DependencyRepor t Task dependency insight report

for the project or a set of
projects.

Generates the project
property report.

Generates the project task
report.

Generates all project
reports.

Page 294 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html

Table 18. Project report plugin - convention properties

roperty name Type Default value Description

The name of the directory to generate reports

aport sDi r Nane String reports . . o
into, relative to the build directory.
. File .) . . .
sportsDir bui I dDi r / report sDi r Nane The directory to generate reports into.
(read-only)

A one element set with the
rojects Set <Pr oj ect > project the plugin was applied The projects to generate the reports for.
to.

The name of the directory to generate the project

roj ect ReportDi rNane String proj ect . . .
report into, relative to the reports directory.
)) File ! .)))
roj ect ReportDir (read-only) reportsDir/ proj ect Report Dhe Nasetory to generate the project report into.
read-only

These convention properties are provided by a convention object of type
Pr oj ect Report sPl ugi nConventi on.

Page 295 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

The Build Dashboard Plugin

Note: The build dashboard plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point
of access to all of the reports generated by a build.

8§

Usage
To use the Build Dashboard plugin, include the following in your build script:
Example 238. Using the Build Dashboard plugin

bui I d. gradl e
apply plugin: 'build-dashboard

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for all
tasks that implement the Repor t i ng interface from all projects in the build. It is typically only applied to the
root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks
that are independently being executed as part of the build run. To generate the build dashboard, simply
include this task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will
generate a dashboard for all of the reporting tasks that are dependents of the bui | d task.

8
Tasks

The Build Dashboard plugin adds the following task to the project:

Table 19. Build Dashboard plugin - tasks
ask name Depends on Type Description

ui | dbashboard - Gener at eBui | dDashboard Generates build dashboard report.

Page 296 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html

8§
Project layout

The Build Dashboard plugin does not require any particular project layout.

8§
Dependency management

The Build Dashboard plugin does not define any dependency configurations.

§
Configuration

You can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 297 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.reporting.ReportingExtension.html

Comparing Builds

Note: Build comparison support is an incubating feature. This means that it is incomplete and not
yet at regular Gradle production quality. This also means that this Gradle User Guide chapter is a
work in progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds.
There are several reasons why you may want to compare the outcomes of two builds. You may want to
compare:

A build with a newer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something else
(i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,
migration to Gradle or build change by understanding the differences in the outcomes. The comparison
process produces a HTML report outlining which outcomes were found to be identical and identifying the
differences between non-identical outcomes.

8
Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”
In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a
Gradle build.

“Build Outcome”
Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“Source Build”
The build that comparisons are being made against, typically the build in its “current” state. In other

Page 298 of 807

words, the left hand side of the comparison.

“Target Build”
The build that is being compared to the source build, typically the “proposed” build. In other words, the
right hand side of the comparison.

“Host Build”
The Gradle build that executes the comparison process. It may be the same project as either the “target”
or “source” build or may be a completely separate project. It does not need to be the same Gradle
version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”
Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome”
A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”
A build outcome that cannot be understood by the host build. This can occur when the source or target
build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.
Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent to
an unknown build outcome in the other build, but no meaningful comparison of what the build outcome
actually is can be performed. Using the latest Gradle version for the host build will avoid encountering
unknown build outcomes.

8§
Current Capabilities

As this is an incubating feature, a limited set of the eventual functionality has been implemented at this time.

8
Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2. If the host
build is run with version 3. 0 or newer, source and target builds must be at least version 1. 2. If the host
build is run with a version older than 2. 0, source and target builds must be older than version 3. 0. So if you
for example want to compare a build under version 1. 1 with a build under version 3. 0, you have to execute
the host build with a 2. x version.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

Page 299 of 807

8
Supported build outcomes

Only support for comparing build outcomes that are zi p archives is supported at this time. This includes j ar

,war and ear archives.

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

§
Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle builds.
The plugin adds a Conpar eG adl eBui | ds task named “conpar eG adl eBui | ds” to the project. The
configuration of this task specifies what is to be compared. By default, it is configured to compare the current
build with itself using the current Gradle version by executing the tasks: “cl ean assenbl e”.

apply plugin: 'conpare-gradl e-buil ds'
This task can be configured to change what is compared.

conpar eG adl eBui | ds {
sourceBuil d {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}
targetBuil d {

projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle
versions.

§
Trying Gradle upgrades

You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e of

the root project.

Page 300 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

apply plugin: 'conpare-gradl e-builds'

conpar eG adl eBui | ds {
target Buil d. gradl eVersi on = "«gradl e versi on»"

Then simply execute the conpar eGr adl eBui | ds task. You will see the console output of the “source” and
“target” builds as they are executing.

8
The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML
report providing insight into the comparison will be given. If all compared outcomes are found to be identical,
and there are no uncompared outcomes, and there are no unknown build outcomes, the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the i gnor eFai | ur es

property to true.

conpar eG adl eBui | ds {
i gnoreFailures = true

§
Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives
configuration. Take a look at Legacy publishing for more information on how to configure and add artifacts.

The archive must also have been produced by a Zi p, Jar, War, Ear task. Future versions of Gradle will

support increased flexibility in this area.

Page 301 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.ear.Ear.html

Publishing

The vast majority of software projects build something that aims to be consumed in some way. It could be a
library that other software projects use or it could be an application for end users. Publishing is the process
by which the thing being built is made available to consumers.

In Gradle, that process looks like this:
Define what to publish

Define where to publish it to

Do the publishing

Each of the these steps is dependent on the type of repository to which you want to publish artifacts. The
two most common types are Maven-compatible and Ivy-compatible repositories, or Maven and Ivy
repositories for short.

Note: Looking for information on upload tasks and the ar chi ves configuration? See the Legacy
publishing chapter.

Gradle makes it easy to publish to these types of repository by providing some prepackaged infrastructure in
the form of the Maven Publish Plugin and the Ivy Publish Plugin. These plugins allow you to configure what
to publish and perform the publishing with a minimum of effort.

Figure 14. The publishing process

Publication

(MyLib) > Repository
l'________________l S
| Artifacts | . (Myfepo)
e e e e e e e e e e e a3
r=—-===77=7777"7"7"7"77
: Metadata !
e e e e e e e e e 3

Task publishMyLibPublicationToMyRepoRepository

Let’s take a look at those steps in more detail:

Page 302 of 807

What to publish
Gradle needs to know what files and information to publish so that consumers can use your project. This
is typically a combination of artifacts and metadata that Gradle calls a publication. Exactly what a
publication contains depends on the type of repository it's being published to.

For example, a publication destined for a Maven repository includes one or more artifacts — typically
built by the project — plus a POM file describing the primary artifact and its dependencies. The primary
artifact is typically the project’s production JAR and secondary artifacts might consist of "-sources" and
"-javadoc" JARSs.

Where to publish
Gradle needs to know where to publish artifacts so that consumers can get hold of them. This is done via
repositories, which store and make available all sorts of artifact. Gradle also needs to interact with the
repository, which is why you must provide the type of the repository and its location.

How to publish
Gradle automatically generates publishing tasks for all possible combinations of publication and
repository, allowing you to publish any artifact to any repository. If you're publishing to a Maven
repository, the tasks are of type Publ i shToMavenReposi t ory, while for Ivy repositories the tasks are
of type Publ i shTol vyReposi tory.

What follows is a practical example that demonstrates the entire publishing process.
8
Setting up basic publishing

The first step in publishing, irrespective of your project type, is to apply the appropriate publishing plugin. As
mentioned in the introduction, Gradle supports both Maven and Ivy repositories via the following plugins:

Maven Publish Plugin
Ivy Publish Plugin

These provide the specific publication and repository classes needed to configure publishing for the
corresponding repository type. Since Maven repositories are the most commonly used ones, they will be the
basis for this example and for the other samples in the chapter. Don’'t worry, we will explain how to adjust
individual samples for lvy repositories.

Let's assume we’re working with a simple Java library project, so only the following plugins are applied:

Page 303 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 239. Applying the necessary plugins

buil d. gradl e

pl ugi ns {
id 'java-library'
id ' maven- publish’

Once the appropriate plugin has been applied, you can configure the publications and repositories. For this
example, we want to publish the project’s production JAR file — the one produced by the j ar task — to a
custom, Maven repository. We do that with the following publ i shi ng {} block, which is backed by

Publ i shi ngExt ensi on:
Example 240. Configuring a Java library for publishing

buil d. gradl e
group = 'org.exanple'
version = '1.0

publ i shing {
publications {
myLi brary(MavenPubl i cati on) {
from conponents. j ava

}
}
repositories {
maven {
name = ' myRepo’
url = "file://${buildDir}/repo"
}

This defines a publication called "myLibrary” that can be published to a Maven repository by virtue of its
type: MavenPubl i cati on. This publication consists of just the production JAR artifact and its metadata,
which combined are represented by the j ava component of the project.

Note: Components are the standard way of defining a publication. They are provided by plugins,
usually of the language or platform variety. For example, the Java Plugin defines the conponent s. j av
Sof t war eConponent , while the War Plugin defines conponent s. web.

The example also defines a file-based Maven repository with the name "myRepo"”. Such a file-based
repository is convenient for a sample, but real-world builds typically work with HTTPS-based repository
servers, such as Maven Central or an internal company server.

Note: You may define one, and only one, repository without a nhame. This translates to an implicit
name of "Maven" for Maven repositories and "lvy" for Ivy repositories. All other repository definitions

Page 304 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/component/SoftwareComponent.html

must be given an explicit name.

In combination with the project’'s gr oup and ver si on, the publication and repository definitions provide
everything that Gradle needs to publish the project’s production JAR. Gradle will then create a dedicated pub
task that does just that. Its name is based on the template publ i shPubNanme Publ i cat i onToRepoNane Re
. See the appropriate publishing plugin’s documentation for more details on the nature of this task and any
other tasks that may be available to you.

You can either execute the individual publishing tasks directly, or you can execute publ i sh, which will run
all the available publishing tasks. In this example, publ i sh will just run publ i shMyLi braryPubl i cati on’

Note: Basic publishing to an Ivy repository is very similar: you simply use the Ivy Publish Plugin,
replace MavenPubl i cati on with | vyPublication, and use ivy instead of maven in the
repository definition.

There are differences between the two types of repository, particularly around the extra metadata
that each support — for example, Maven repositories require a POM file while lvy ones have their
own metadata format — so see the plugin chapters for comprehensive information on how to
configure both publications and repositories for whichever repository type you're working with.

That's everything for the basic use case. However, many projects need more control over what gets
published, so we look at several common scenarios in the following sections.

8§
Adding custom artifacts to a publication

Users often need to include additional artifacts with a publication, one of the most common examples being
that of "-sources" and "-javadoc" JARs for JVM libraries. This is easy to do for both Maven- and
Ivy-compatible repositories via the art i f act configuration.

The following sample configures "-sources" and "-javadoc" JARs for a Java project and attaches them to the
main (Maven) publication, i.e. the production JAR:

Page 305 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Example 241. Adding an additional archive artifact to a MavenPublication

buil d. gradl e
task sourcesJar(type: Jar) {
classifier = 'sources'

from sourceSets. mai n. al | Java

task javadocJdar (type: Jar) {
classifier = 'javadoc'
fromjavadoc. destinationDir

}
publ i shing {
publications {
mavenJava(MavenPubl i cati on) {
from conponents. j ava
artifact sourcesJar
artifact javadocJar
}
}
}

There are several important things to note about the sample:

The artifact () method accepts archive tasks as an argument — like sour cesJar in the sample — as
well as any type of argument accepted by Project.file(java.lang. Cbject), such as a File
instance or string file path.

Publishing plugins support different artifact configuration properties, so always check the plugin
documentation for more details. The cl assi fi er and ext ensi on properties are supported by both the
Maven Publish Plugin and the Ivy Publish Plugin.

Custom artifacts need to be distinct within a publication, typically via a unique combination of cl assi fi er
and ext ensi on. See the documentation for the plugin you're using for the precise requirements.

If youuse artifact () with an archive task, Gradle automatically populates the artifact’'s metadata with the
and ext ensi on properties from that task. That's why the above sample does not specify those properties in
the artifact configurations.

When you're attaching extra artifacts to a publication, remember that they are secondary artifacts that
support a primary artifact. The metadata that a publication defines — such as dependency information — is
associated with that primary artifact only. Thinking about publications in this way should help you determine
whether you should be adding custom artifacts to an existing publication, or defining a new publication.

Page 306 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

8§
Publishing a custom primary artifact (no component)

If your build produces a primary artifact that isn’'t supported by a predefined component, then you will need to
configure a custom artifact. This isn't much different to adding a custom artifact to an existing publication.
There are just a couple of extra considerations:

You may want to make the artifact available to other projects in the build
You will need to manually construct the necessary metadata for publishing

Inter-project dependencies have nothing to do with publishing, but both features typically apply to the same
set of artifacts in a Gradle project. So how do you tie them together?

You start by defining a custom artifact and attaching it to a Gradle configuration of your choice. The following
sample defines an RPM artifact that is produced by an r pmtask (not shown) and attaches that artifact to the

configuration:
Example 242. Defining a custom artifact for a configuration

buil d. gradl e
def rpnFile = file("$buil dD r/rpns/ny-package. rpmn')
def rpmArtifact = artifacts.add(' archives', rpnFile) {
type 'rpm
builtBy 'rpm

The artifacts.add() method — from ArtifactHandl er — returns an artifact object of type
Publ i shArti fact that can then be used in defining a publication, as shown in the following sample:

Example 243. Attaching a custom PublishArtifact to a publication

buil d. gradl e
publi shing {
publications {
maven(MavenPubl i cati on) {
artifact rpnArtifact

Now you can publish the RPM as well as depend on it from another project using the pr oj ect (path: ':m

syntax.

Note: There is currently no easy way to define dependency information for a custom artifact.

The groupl d and arti fact| d properties are specific to Maven publications. See | vyPubl i cati on for
the relevant Ivy properties.

Page 307 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.dsl.ArtifactHandler.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/PublishArtifact.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/PublishArtifact.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html

8§
Signing artifacts

The Signing Plugin can be used to sign all artifacts and metadata files that make up a publication, including
Maven POM files and Ivy module desciptors. In order to use it:

Apply the Signing Plugin

Configure the signatory credentials — follow the link to see how

Specify the publications you want signed

Here’s an example that configures the plugin to sign the navenJava publication:
Example 244. Signing a publication

bui | d. gradl e

signing {
si gn publishing. publications. mavenJava

This will create a Si gn task for each publication you specify and wire all publ i shPubNanmePubl i cati onTc
tasks to depend on it. Thus, publishing any publication will automatically create and publish the signatures
for its artifacts and metadata, as you can see from this output:

Example 245. Sign and publish a project

Output of gr adl e publ i sh

gradl e publish

Task : generat ePonti | eFor MavenJavaPubl i cati on
Task :conpil eJava

Task : processResources

Task :cl asses

Task :jar

Task :javadoc

Task :javadocJar

Task :sourcesJar

Task :signMavenJavaPublicati on

Task : publi shMavenJavaPubl i cati onToMavenReposi tory
Task : publish

V V.V V V V V V V V V V

BUI LD SUCCESSFUL in Os
9 actionabl e tasks: 9 executed

Page 308 of 807

8§
Restricting publications to specific repositories

When you have defined multiple publications or repositories, you often want to control which publications are
published to which repositories. For instance, consider the following sample that defines two publications
— one that consists of just a binary and another that contains the binary and associated sources — and two
repositories — one for internal use and one for external consumers:

Example 246. Adding multiple publications and repositories

bui | d. gradl e
publ i shing {
publications {
bi nary(MavenPubl i cati on) {
from conponents. j ava
}
bi nar yAndSour ces(MavenPubl i cati on) {
from conmponents. j ava
artifact sourcesJar

}
repositories {
/'l change URLs to point to your repos, e.g. http://ny.org/repo

maven {

name = 'external’

url = "$buil dDir/repos/ external "
}
maven {

nanme = 'internal’

url = "$buil dDir/repos/internal"”
}

The publishing plugins will create tasks that allow you to publish either of the publications to either
repository. They also attach those tasks to the publ i sh aggregate task. But let's say you want to restrict the
binary-only publication to the external repository and the binary-with-sources publication to the internal one.
To do that, you need to make the publishing conditional.

Gradle allows you to skip any task you want based on a condition via the
Task.onlylf(org.gradle.api.specs. Spec) method. The following sample demonstrates how to

implement the constraints we just mentioned:

Page 309 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(org.gradle.api.specs.Spec)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(org.gradle.api.specs.Spec)

Example 247. Configuring which artifacts should be published to which repositories

buil d. gradl e
tasks. wi t hType(Publ i shToMavenRepository) {
onlylf {
(repository == publishing.repositories.external &&
publ i cati on == publishing. publications.binary) |
(repository == publishing.repositories.internal &&
publicati on == publi shing. publications. bi nar yAndSour ces)
}
}
tasks. w t hType(Publ i shToMavenLocal) {
onlylf {
publicati on == publi shing. publications. bi nar yAndSour ces
}
}

Output of gradl e publ i sh publishToMavenLoca

gradl e publish publishToMavenLoca

Task : gener at ePonti | eFor Bi nar yAndSour cesPubl i cati on

Task : conpil eJava

Task : processResources

Task :cl asses

Task :jar

Task :sourcesJar

Task : publ i shBi nar yAndSour cesPubl i cati onToExt er nal Reposi t ory SKI PPED
Task : publ i shBi nar yAndSour cesPubl i cati onTol nt er nal Reposi tory
Task : generat ePonFi | eFor Bi naryPubl i cati on

Task : publ i shBi naryPubl i cati onToExt er nal Reposi tory

Task : publi shBi naryPublicati onTol nt ernal Reposi tory SKI PPED
Task : publish

Task : publ i shBi nar yAndSour cesPubl i cati onToMavenLoca

Task : publ i shBi naryPubl i cati onToMavenLocal SKI PPED

Task : publishToMavenLoca

V VV V V V V V V V V V V V VYV

BU LD SUCCESSFUL in Os
9 actionabl e tasks: 9 executed

You may also want to define your own aggregate tasks to help with your workflow. For example, imagine
that you have several publications that should be published to the external repository. It could be very useful
to publish all of them in one go without publishing the internal ones.

The following sample demonstrates how you can do this by defining an aggregate task — publ i shToExt er
— that depends on all the relevant publish tasks:

Page 310 of 807

Example 248. Defining your own shorthand tasks for publishing

buil d. gradl e
task publishToExternal Repository {
group = 'publishing'

description = 'Publishes all Maven publications to the external Maven reposi!
dependsOn t asks. wi t hType(Publ i shToMavenRepository). mat chi ng {

it.repository == publishing.repositories.external
}

This particular sample automatically handles the introduction or removal of the relevant publishing tasks by
using TaskCol | ecti on. wi t hType(j ava. | ang. C ass) with the Publ i shToMavenReposi t ory task
type. You can do the same with Publ i shTol vyReposi tory if you're publishing to Ivy-compatible
repositories.

8§
Configuring publishing tasks

The publishing plugins create their non-aggregate tasks after the project has been evaluated, which means
you cannot directly reference them from your build script. If you would like to configure any of these tasks,
you should use deferred task configuration. This can be done in a number of ways via the project’s t asks
collection.

For example, imagine you want to change where the gener at ePontFi | eFor PubNanePubl i cat i on tasks
write their POM files. You can do this by using the TaskCol | ection.wi t hType(java. | ang. Cl ass)
method, as demonstrated by this sample:

Example 249. Configuring a dynamically named task created by the publishing plugins

buil d. gradl e
tasks. wi t hType(Gener at eMavenPom) . al | {
def matcher = name =~ /generatePontil eFor (\ w+) Publ i cati on/

def publicati onNane = natcher[0][1]
destination = "$buil dDir/ pons/ ${ publ i cati onNane}-pom xm "

The above sample uses a regular expression to extract the name of the publication from the name of the
task. This is so that there is no conflict between the file paths of all the POM files that might be generated. If
you only have one publication, then you don’t have to worry about such conflicts since there will only be one
POM file.

Page 311 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-

8
Terminology

Artifact
A file or directory produced by a build, such as a JAR, a ZIP distribution, or a native executable.

Artifacts are typically designed to be used or consumed by users or other projects, or deployed to hosting
systems. In such cases, the artifact is a single file. Directories are common in the case of inter-project
dependencies to avoid the cost of producing the publishable artifact.

Component
Any single version of a module.

Components are defined by plugins and provide a simple way to define a publication for publishing. They
comprise one or more artifacts as well as the appropriate metadata. For example, the j ava component
consists of the production JAR — produced by the j ar task — and its dependency information.

Configuration
A named collection of dependencies or artifacts.

Gradle’s configurations can be somewhat confusing because they apply to both dependencies and
artifacts. The main difference is that dependencies are consumed by the project, while artifacts are
produced by it. Even then, the artifacts produced by a project are often consumed as dependencies by
other projects.

Configurations allow different aspects of the build to work with known subsets of a project’s
dependencies or artifacts, e.g. the dependencies required for compilation, or the artifacts related to a
project’'s API.

Publication
A description of the files and metadata that should be published to a repository as a single entity for use
by consumers.

A publication has a name and consists of one or more artifacts plus information about those artifacts. The
nature of that information depends on what type of repository you publish the publication to. In the case
of Maven, the information takes the form of a POM.

One thing to bear in mind is that Maven repositories only allow a single primary artifact, i.e. one with
metadata, but they do allow secondary artifacts such as packages of the associated source files and
documentation ("-sources" and "-javadoc" JARs in the Java world).

Page 312 of 807

lvy Publish Plugin

The Ivy Publish Plugin provides the ability to publish build artifacts in the Apache Ivy format, usually to a
repository for consumption by other builds or projects. What is published is one or more artifacts created by
the build, and an Ivy module descriptor (normally ivy.xm) that describes the artifacts and the
dependencies of the artifacts, if any.

A published Ivy module can be consumed by Gradle (see Declaring Dependencies) and other tools that
understand the vy format. You can learn about the fundamentals of publishing in Publishing.

8§
Usage
To use the Ivy Publish Plugin, include the following in your build script:
Example 250. Applying the Ivy Publish Plugin
bui I d. gradl e

pl ugi ns {
id 'ivy-publish'

The Ivy Publish Plugin uses an extension on the project named publishing of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The vy Publish Plugin works with | vyPublication publications and

I vyArtifact Repository repositories.

Page 313 of 807

http://ant.apache.org/ivy/
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html

8
Tasks

gener at eDescri pt or Fi | eFor PubNanePubl i cati on — type: Gener at el vyDescri pt or
Creates an lvy descriptor file for the publication named PubName, populating the known metadata such
as project name, project version, and the dependencies. The default location for the descriptor file is
build/publications/$pubNamef/ivy.xml.

publ i shPubNamePubl i cati onToRepoNaneReposi t ory —type: Publ i shTol vyReposi tory
Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "lvy".

publ i sh
Depends on: All publ i shPubNanePubl i cat i onToRepoNanme Reposi t ory tasks

An aggregate task that publishes all defined publications to all defined repositories.

8
Publications

This plugin provides publications of type | vyPubl i cat i on. To learn how to define and use publications,
see the section on basic publishing.

There are four main things you can configure in an Ivy publication:
A component — via | vyPubl i cati on. fronm{org. gradl e. api . conponent . Sof t war eConponent) .

Custom artifacts — via the |vyPublication.artifact(]java.lang. Object) method. See

I vyArtifact for the available configuration options for custom lvy artifacts.
Standard metadata like nodul e, or gani sati on and r evi si on.

Other contents of the module descriptor — via
I vyPubl i cati on. descriptor(org.gradle.api.Action).

You can see all of these in action in the complete publishing example. The APl documentation for | vyPubl i
has additional code samples.

8
Identity values for the published project

The generated vy module descriptor file contains an <i nf 0> element that identifies the module. The default
identity values are derived from the following:

organi sation-Proj ect.get G oup()

Page 314 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:from(org.gradle.api.component.SoftwareComponent)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:artifact(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyArtifact.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyArtifact.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:descriptor(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:descriptor(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group

nodul e - Proj ect . get Name()

revi sion-Project. getVersion()
status - Proj ect. get Stat us()

br anch - (not set)

Overriding the default identity values is easy: simply specify the or gani sati on, nodul e or revi si on
properties when configuring the | vyPubl i cati on. st atus and branch can be set via the descri pt or
property — see | vyModul eDescr i pt or Spec.

The descri pt or property can also be used to add additional custom elements as children of the <i nf 0>
element, like so:

Example 251. customizing the publication identity

buil d. gradl e
publi shing {
publications {
i vy(lvyPublication) {

organi sation = 'org.gradle.sanpl e’

modul e = ' proj ect 1- sanpl €'

revision = '1.1

descriptor.status = 'mlestone'

descriptor.branch = '"testing'

descriptor.extralnfo 'http://ny. nanespace', 'nyEl enent', 'Sone val ue'

from conponents. j ava

Tip: Certain repositories are not able to handle all supported characters. For example, the :
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Gradle will handle any valid Unicode character for or gani sati on, nodul e and r evi si on (as well as the
artifact’s name, ext ensi on and cl assi fi er). The only values that are explicitly prohibited are \, / and
any I1SO control character. The supplied values are validated early during publication.

§
Customizing the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked before
publishing. The Ivy Publish Plugin provides a DSL for that purpose. Please see

I vyModul eDescri pt or Spec in the DSL Reference for the complete documentation of available properties
and methods.

Page 315 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

The following sample shows how to use the most common aspects of the DSL.:
Example 252. Customizing the module descriptor file

bui | d. gradl e
publications {
i vyCust om(| vyPubl i cation) {
descriptor {

license {
nanme = ' The Apache License, Version 2.0
url = "http://ww:. apache. org/licenses/ LI CENSE-2. 0. t xt'
}
aut hor {
name = 'Jane Doe'
url = "http://exanpl e. com users/jane'
}
description {
text = ' A concise description of my |ibrary’
honepage = 'http://ww. exanpl e.conilibrary’
}

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

You can also add arbitrary XML to the descriptor file via
| vyModul eDescri pt or Spec. wi t hXm (org. gradl e. api . Acti on), but you can not use it to modify
any part of the module identifier (organisation, module, revision).

It is possible to modify the descriptor in such a way that it is no longer a valid lvy module
descriptor, so care must be taken when using this feature.

8§
Repositories

This plugin provides repositories of type | vyArtifact Repository. To learn how to define and use
repositories for publishing, see the section on basic publishing.

Here’s a simple example of defining a publishing repository:

Page 316 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html

Example 253. Declaring repositories to publish to

buil d. gradl e
publi shing {
repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo
url = "$buil dDir/repo"
}
}
}

The two main things you will want to configure are the repository’s:
URL (required)
Name (optional)

You can define multiple repositories as long as they have unique names within the build script. You may also
declare one (and only one) repository without a name. That repository will take on an implicit name of "lvy".

You can also configure any authentication details that are required to connect to the repository. See
| vyArtifact Repository for more details.

8§
Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the
project description for each project.

Example 254. Publishing a Java module

bui | d. gradl e
subproj ects {
apply plugin: 'java'
apply plugin: '"ivy-publish

version = '1.0'
group = 'org.gradle.sanpl e’

repositories {
mavenCentral ()

}

task sourcesJar(type: Jar) {
from sourceSets. nai n. java
classifier = 'sources'

Page 317 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html

project(':projectl') {
description = ' The first project

dependenci es {
compile "junit:junit:4.12", project(':project2')

project(':project2') {
description = ' The second project

dependenci es {
conpi l e ' commons-col | ecti ons: commons-col | ections: 3. 2. 2

}
}
subproj ects {
publi shing {
repositories {
vy {
/1l change to point to your repo, e.g. http://ny.org/repo
url = "${rootProject.buildDir}/repo”
}
}

publications {

i vy(lvyPublication) {
from conponents. j ava
artifact(sourcesJar) {

type = 'sources
conf = 'conpile'

}

descriptor.description {
text = description

Page 318 of 807

The result is that the following artifacts will be published for each project:

The Ivy module descriptor file: i vy-1. 0. xm .

The primary JAR artifact for the Java component: proj ect 1-1. 0. j ar.

The source JAR artifact that has been explicitly configured: pr oj ect 1- 1. 0- source. j ar.

When pr oj ect 1 is published, the module descriptor (i.e. the i vy. xm file) that is produced will look like:
Example 255. Example generated ivy.xml

out put -i vy. xn
<?xm version="1.0" encodi ng="UTF-8"?>
<i vy-nodul e version="2.0" xm ns: m"http://ant.apache.org/ivy/ maven">
<info organi sati on="org. gradl e. sanpl e" nodul e="proj ect1" revision="1.0" status
<description>The first project</description>
</i nf o>
<confi gurations>
<conf name="conpile" visibility="public"/>
<conf name="default" visibility="public" extends="conpile,runtine"/>
<conf name="runtinme" visibility="public"/>
</ confi gurati ons>
<publ i cati ons>
<artifact name="projectl" type="sources" ext="jar" conf="conpile" mclassifi:
<artifact name="projectl" type="jar" ext="jar" conf="conpile"/>
</ publicati ons>
<dependenci es>
<dependency org="junit" nanme="junit" rev="4.12" conf="conpile->default"/>
<dependency org="org. gradl e. sanpl e" nanme="project2" rev="1.0" conf="conpil e-.
</ dependenci es>
</i vy- nodul e>

Tip: Note that «PUBLI CATI ON- TI ME- STAMP» in this example Ivy module descriptor will be the
timestamp of when the descriptor was generated.

Page 319 of 807

Maven Publish Plugin

The Maven Publish Plugin provides the ability to publish build artifacts to an Apache Maven repository. A
module published to a Maven repository can be consumed by Maven, Gradle (see Declaring Dependencies)
and other tools that understand the Maven repository format. You can learn about the fundamentals of
publishing in Publishing.

8§
Usage
To use the Maven Publish Plugin, include the following in your build script:
Example 256. Applying the Maven Publish Plugin
buil d. gradl e

pl ugi ns {
id 'maven- publish’

The Maven Publish Plugin uses an extension on the project named publishing of type
Publ i shi ngExt ensi on. This extension provides a container of nhamed publications and a container of
named repositories. The Maven Publish Plugin works with MavenPubl i cati on publications and

MavenArti f act Reposi t ory repositories.

Page 320 of 807

http://maven.apache.org/
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

8
Tasks

gener at ePonfFi | eFor PubNanePubl i cati on — type: Gener at eMavenPom
Creates a POM file for the publication named PubName, populating the known metadata such as project
name, project version, and the dependencies. The default location for the POM file is
build/publications/$pubName/pom-default.xml.

publ i shPubNamePubl i cati onToRepoNanmeReposi t ory —type: Publ i shToMavenReposi t ory
Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "Maven".

publ i shPubNamePubl i cati onToMavenLocal —type: Publ i shToMavenlLocal
Copies the PubName publication to the local Maven cache — typically $USER_HOME/.m2/repository
— along with the publication’s POM file and other metadata.

publi sh
Depends on: All publ i shPubNanePubl i cat i onToRepoNane Reposi t ory tasks

An aggregate task that publishes all defined publications to all defined repositories. It does not include
copying publications to the local Maven cache.

publ i shToMavenLocal
Depends on: All publ i shPubNanmePubl i cati onToMavenLocal tasks

Copies all defined publications to the local Maven cache, including their metadata (POM files, etc.).

8
Publications

This plugin provides publications of type MavenPubl i cat i on. To learn how to define and use publications,
see the section on basic publishing.

There are four main things you can configure in a Maven publication:

A component — via MavenPubl i cati on. fronm{org. gradl e. api . conponent . Sof t war eConponent)

Custom artifacts — via the MavenPublication.artifact(]java.lang. Cbject) method. See
MavenArti fact for the available configuration options for custom Maven artifacts.

Standard metadata like arti f act | d, gr oupl d and ver si on.

Other contents of the POM file — via MavenPubl i cati on. pon{org. gradl e. api . Action).

Page 321 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:from(org.gradle.api.component.SoftwareComponent)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:artifact(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenArtifact.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenArtifact.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:pom(org.gradle.api.Action)

You can see all of these in action in the complete publishing example. The API documentation for MavenPub
has additional code samples.

8
Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following project
properties:

groupl d - Proj ect. get G oup()
artifactld-Project.getNanme()
versi on - Proj ect . get Ver si on()

Overriding the default identity values is easy: simply specify the groupld, artifactld or version
attributes when configuring the VavenPubl i cat i on.

Example 257. customizing the publication identity

bui I d. gradl e
publ i shing {
publications {
maven(MavenPubl i cation) {
groupld = 'org.gradl e. sanpl e’
artifactld = 'projectl-sanple'
version = "1.1'

from conponents. j ava

Tip: Certain repositories will not be able to handle all supported characters. For example, the :
character cannot be used as an identifier when publishing to a filesystem-backed repository on
Windows.

Maven restricts groupl d and arti factld to a limited character set ([A-Za-z0-9_\\-.] +) and Gradle
enforces this restriction. For ver si on (as well as the artifact ext ensi on and cl assi fi er properties),
Gradle will handle any valid Unicode character.

The only Unicode values that are explicitly prohibited are \ , / and any ISO control character. Supplied
values are validated early in publication.

Page 322 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html

8
Customizing the generated POM

The generated POM file can be customized before publishing. For example, when publishing a library to
Maven Central you will need to set certain metadata. The Maven Publish Plugin provides a DSL for that
purpose. Please see MavenPom in the DSL Reference for the complete documentation of available
properties and methods. The following sample shows how to use the most common ones:

Example 258. Customizing the POM file

bui | d. gradl e
publ i shing {
publications {
mavenJava(MavenPubl i cati on) {

pom {
name = 'My Library
description = " A concise description of ny library
url = "http://ww. exanple.coniflibrary
licenses {
license {
nane = 'The Apache License, Version 2.0
url = "http://ww. apache. org/licenses/ LI CENSE- 2. 0. t xt
}
}

devel opers {
devel oper {

id = "johnd
nanme = 'John Doe
emai |l = 'john.doe@xanpl e. com
}
}
scm {
connection = "scmgit:git://exanple.conm ny-library.git
devel oper Connection = '"scmgit:ssh://exanple.conny-library.
url = "http://exanple.con nmy-1library/'
}
}
}
}
}
§

Repositories

This plugin provides repositories of type MavenArti fact Repository. To learn how to define and use

repositories for publishing, see the section on basic publishing.

Page 323 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPom.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Here’s a simple example of defining a publishing repository:

Example 259. Declaring repositories to publish to

buil d. gradl e
publi shing {
repositories {
maven {
/1 change to point to your repo, e.g. http://ny.org/repo
url = "$buil dDir/repo"
}
}
}

The two main things you will want to configure are the repository’s:
URL (required)
Name (optional)

You can define multiple repositories as long as they have uniqgue names within the build script. You may also
declare one (and only one) repository without a name. That repository will take on an implicit name of
"Maven".

You can also configure any authentication details that are required to connect to the repository. See
MavenArti fact Reposit ory for more details.

8
Snapshot and release repositories

It is a common practice to publish snapshots and releases to different Maven repositories. A simple way to
accomplish this is to configure the repository URL based on the project version. The following sample uses
one URL for versions that end with "SNAPSHOT" and a different URL for the rest:

Example 260. Configuring repository URL based on project version

buil d. gradl e
publi shing {
repositories {
maven {
def rel easesRepoUrl = "$buil dDir/repos/rel eases”
def snapshot sRepoUrl = "$buil dDir/repos/snapshots"”

url = version.endsWth(' SNAPSHOT') ? snapshot sRepoUr|l : rel easesRepo!

Similarly, you can use a project or system property to decide which repository to publish to. The following
example uses the release repository if the project property r el ease is set, such as when a user runs gr adl

Page 324 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Example 261. Configuring repository URL based on project property

bui | d. gradl e
publ i shing {
repositories {
maven {
def rel easesRepoUrl = "$buil dDir/repos/rel eases"
def snapshot sRepoUrl = "$buil dDir/repos/snapshots"
url = project.hasProperty('release') ? rel easesRepoU| : snapshotsRe|
}
}
}
8§

Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the Maven
local repository (typically at SUSER_HOME/.m2/repository), along with its POM file and other metadata. In
Maven parlance, this is referred to as ‘installing’ the module.

The Maven Publish Plugin makes this easy to do by automatically creating a Publ i shToMavenLocal task
for each MavenPubl i cati on in the publ i shi ng. publ i cati ons container. The task name follows the
pattern of publ i shPubNanme Publ i cati onToMavenLocal . Each of these tasks is wired into the publ i sh™
aggregate task. You do not need to have mavenLocal () in your publ i shi ng. reposi t ori es section.

8§
Complete example

The following example demonstrates how to sign and publish a Java library including sources, Javadoc, and
a customized POM:

Example 262. Publishing a Java library

buil d. gradl e

pl ugi ns {
id'java-library’
id ' maven- publish’

id'signing
}
group = 'com exanpl e’
version = '1.0'

task sourcesJar(type: Jar) {
from sourceSets. main. all Java

Page 325 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html

classifi

er = 'sources'

task javadocJdar (type: Jar) {
from javadoc

classifier = 'javadoc'
}
publ i shing {
publications {
mavenJava(MavenPubl i cati on) {
artifactld = "ny-library
from conponents. j ava
artifact sourcesJar
artifact javadocJar
pom {
name = "My Library
description = "A concise description of ny library'
url = "http://ww. exanpl e.conilibrary’
licenses {
license {
nane = ' The Apache License, Version 2.0
url = "http://ww:. apache. org/licenses/ LI CENSE- 2. 0. t xt
}
}
devel opers {
devel oper {
id="johnd
nanme = 'John Doe
emai | = 'john. doe@xanpl e. con
}
}
scm {
connection = 'scmgit:git://exanple.com ny-library.git
devel oper Connection = '"scmgit:ssh://exanple.coniny-library.
url = "http://exanple.com ny-library/'
}
}
}
}
repositories {
maven {
/'l change URLs to point to your repos, e.g. http://ny.org/repo
def rel easesRepolUrl = "$buil dDir/repos/rel eases"
def snapshot sRepoUr| = "$buil dDir/repos/snapshots”
url = version.endsWth(' SNAPSHOT') ? snapshot sRepoUr|l : rel easesRepo
}
}
}

Page 326 of 807

signing {
si gn publishing. publications. mavenJava

j avadoc {
i f(JavaVersion.current().isJava9Conpatible()) {
options. addBool eanOption(' htm 4", true)

Page 327 of 807

The result is that the following artifacts will be published:

The POM: ny-li brary-1.0. pom

The primary JAR artifact for the Java component: ny-1i brary-1.0.j ar

The sources JAR artifact that has been explicitly configured: ny- | i brary- 1. 0- sources. j ar
The Javadoc JAR artifact that has been explicitly configured: my-1i brary-1. 0-j avadoc. j ar

The Signing Plugin is used to generate a signature file for each artifact. In addition, checksum files will be
generated for all artifacts and signature files.

8§
Removal of deferred configuration behavior

Note: Gradle 5.0 will change the behavior of the publishing {} block. Read on to find out how you
can make your build compatible today.

Prior to Gradle 4.8, the publ i shi ng {} block was implicitly treated as if all the logic inside it was executed
after the project is evaluated. This caused quite a bit of confusion, because it was the only block that
behaved that way. As part of the stabilization effort in Gradle 4.8, we are deprecating this behavior and
asking all users to migrate their build.

The new, stable behavior can be switched on by adding the following to your settings file:

enabl eFeat ur ePr evi ew(' STABLE PUBLI SHI NG)

We recommend doing a test run with a local repository to see whether all artifacts still have the expected
coordinates. In most cases everything should work as before and you are done.

If the coordinates change unexpectedly, you may have some logic inside your publishing block or in a plugin
that is depending on the deferred configuration behavior. For instance, the following logic assumes that the
subprojects will be evaluated when the artifactld is set:

Page 328 of 807

subproj ects {
publ i shing {
publications {
mavenJava {
from conmponents. j ava
artifactld = jar.baseNane

This kind of logic must be wrapped in an af t er Eval uat e {} block to make it work going forward.

subproj ects {
publi shing {
publications {
mavenJava {
from conmponents. j ava
af t er Eval uate {
artifactld = jar.baseNane

Page 329 of 807

The Signing Plugin

The Signing Plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then
be used to prove who built the artifact the signature is attached to as well as other information such as when
the signature was generated.

The Signing Plugin currently only provides support for generating OpenPGP signatures (which is the
signature format required for publication to the Maven Central Repository).

§
Usage

To use the Signing Plugin, include the following in your build script:

Example 263. Using the Signing Plugin

bui | d. gradl e

pl ugi ns {
id'signing

}

8§

Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using
the GnuPG tools can be found in the GhuPG HOWTOS). You need to provide the Signing Plugin with your
key information, which means three things:

The public key ID (The last 8 symbols of the keyld. You can use gpg - Kto get it).

The absolute path to the secret key ring file containing your private key. (Since gpg 2.1, you need to export
the keys with command gpg - - keyring secring. gpg --export-secret-keys > ~/.gnupg/secri

).
The passphrase used to protect your private key.

These items must be supplied as the values of the si gni ng. keyl d, si gni ng. secr et KeyRi ngFi | e, and
si gni ng. passwor d properties, respectively.

Page 330 of 807

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

Note: Given the personal and private nature of these values, a good practice is to store them in the gr ¢
file in the user’'s Gradle home directory (described in the section called “System properties”) instead
of in the project directory itself.

si gni ng. keyl d=24875D73
Si gni ng. passwor d=secr et
si gni ng. secr et KeyRi ngFi | e=/ User s/ me/ . gnupg/ secri ng. gpg

If specifying this information (especially si gni ng. passwor d) in the user gr adl e. properti es file is not
feasible for your environment, you can source the information however you need to and set the project
properties manually.

i mport org.gradle. plugins.signing.Sign

gradl e. t askG aph. whenReady { taskG aph ->
if (taskGraph.all Tasks.any { it instanceof Sign }) {
/1l Use Java 6's console to read fromthe console (no good for
/1 a Cl environnment)
Consol e consol e = System consol e()
console.printf "\n\nWe have to sign sonme things in this build." +
"\ n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key 1d: ")
def file = consol e.readLi ne("PGP Secret Key Ring File (absolute path): "
def password = consol e. readPassword("PGP Private Key Password: ")

all projects { ext."signing.keyld" =1id }
al Il projects { ext."signing.secretKeyRingFile" = file}
all projects { ext."signing.password" = password }

consol e.printf "\nThanks.\n\n"

Note that the presence of a null value for any these three properties will cause an exception.

8
Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they’re bound to a master key pair. One
feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key
management easier. A practical case study of how subkeys can be leveraged in software development can
be read on the Debian wiki.

The Signing Plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID as the value in the s
property.

Page 331 of 807

https://wiki.debian.org/Subkeys

8§
Using gpg-agent

By default the Signing Plugin uses a Java-based implementation of PGP for signing. This implementation
cannot use the gpg-agent program for managing private keys, though. If you want to use the gpg-agent, you
can change the signatory implementation used by the Signing Plugin:

Example 264. Sign with GhuPG

buil d. gradl e
signing {
useGgCnd()

sign configurations. archives

This tells the Signing Plugin to use the GnupgSi gnat ory instead of the default PgpSi gnat or y. The Ghupg
relies on the gpg2 program to sign the artifacts. Of course, this requires that GnuPG is installed.

Without any further configuration the gpg2 (on Windows: gpg2. exe) executable found on the PATH will be
used. The password is supplied by the gpg- agent and the default key is used for signing.

8
Gnupg signatory configuration

The GnhupgSi gnat or y supports a number of configuration options for controlling how gpg is invoked. These
are typically set in gradle.properties:

Example 265. Configure the GnupgSignatory

gradl e. properties

si gni ng. gnupg. execut abl e=gpg

si gni ng. gnupg. useLegacyGog=t r ue

si gni ng. gnupg. homeDi r =gnupg- homne

si gni ng. gnupg. opt i onsFi | e=gnupg- hone/ gpg. conf
si gni ng. gnupg. keyName=24875D73

si gni ng. gnupg. passphr ase=gr adl e

si gni ng. gnupg. execut abl e
The gpg executable that is invoked for signing. The default value of this property depends on uselLegacy

. If that is t r ue then the default value of executable is "gpg" otherwise it is "gpg2".

si gni ng. ghupg. uselLegacy&g
Must be t r ue if GnuPG version 1 is used and f al se otherwise. The default value of the property is f al <

si gni ng. gnupg. honmeDi r
Sets the home directory for GnuPG. If not given the default home directory of GnuPG is used.

Page 332 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/plugins/signing/signatory/pgp/PgpSignatory.html

si gni ng. gnupg. opti onsFil e
Sets a custom options file for GnuPG. If not given GnuPG's default configuration file is used.

si gni ng. gnupg. keyNane
The id of the key that should be used for signing. If not given then the default key configured in GnuPG
will be used.

si gni ng. gnupg. passphrase
The passphrase for unlocking the secret key. If not given then the gpg-agent program is used for getting
the passphrase.

All configuration properties are optional.

8§
Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify
what is to be signed. The Signing Plugin provides a DSL that allows you to specify the tasks and/or
configurations that should be signed.

§
Signing Publications

When publishing artifacts, you often want to sign them so the consumer of your artifacts can verify their
signature. For example, the Java plugin defines a component that you can use to define a publication to a
Maven (or lvy) repository using the Maven Publish Plugin (or the vy Publish Plugin, respectively). Using the
Signing DSL, you can specify that all of the artifacts of this publication should be signed.

Example 266. Signing a publication
buil d. gradl e

signing {
si gn publishing. publications. mavenJava

This will create a task (of type Si gn) in your project named si gnMavenJavaPubl i cat i on that will build all
artifacts that are part of the publication (if needed) and then generate signatures for them. The signature files
will be placed alongside the artifacts being signed.

Page 333 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.signing.Sign.html

Example 267. Signing a publication output

Output of gr adl e si gnMavenJavaPubl i cati on
gradl e si gnMavenJavaPubl i cati on

Task : generat ePonti | eFor MavenJavaPubl i cati on
Task :conpil eJava

Task : processResources

Task :classes

Task :jar

Task :j avadoc

Task :javadocJar

Task :sourcesJar

Task :signMavenJavaPubl i cati on

V V.V V V V V V V V

BUI LD SUCCESSFUL in Os
8 actionabl e tasks: 8 executed

In addition, the above DSL allows to si gn multiple comma-separated publications. Alternatively, you may
specify publ i shi ng. publ i cati ons to sign all publications, or use publ i shi ng. publ i cati ons. mat ch
to sign all publications that match the specified predicate.

§
Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin configures a jar to
build and this jar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify
that all of the artifacts of this configuration should be signed.

Example 268. Signing a configuration
buil d. gradl e

signing {
sign configurations. archives

This will create a task (of type Si gn) in your project named si gnAr chi ves, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Page 334 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.signing.Sign.html

Example 269. Signing a configuration output

Output of gr adl e si gnAr chi ves
gradl e si gnArchives

Task : conpil eJava

Task : processResources
Task :cl asses

Task :jar

Task :signArchives

V V. V V V V

BUI LD SUCCESSFUL i n Os
4 actionable tasks: 4 executed

8
Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can
directly sign the task that produces the artifact to sign.

Example 270. Signing a task

bui | d. gradl e

task stuffZip (type: Zip) {
baseNane = "stuff"
from"src/stuff"

}

signing {
sign stuffzip

}

This will create a task (of type Si gn) in your project named si gnSt uf f Zi p, that will build the input task’s
archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.

Example 271. Signing a task output

Outputof gradl e si gnStuffZp
> gradl e signStuffzip

> Task :stuffzZip

> Task :signStuffZzZip

BU LD SUCCESSFUL in Os
2 actionabl e tasks: 2 executed

For a task to be signable, it must produce an archive of some type, i.e. it must extend
Abstract Archi veTask. Tasks that do this are the Tar, Zi p, Jar, Var and Ear tasks.

Page 335 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.ear.Ear.html

8
Conditional Signing

A common usage pattern is to require the signing of build artifacts only under certain conditions. For
example, you may not need to sign artifacts for non-release versions. To achieve this, you can specify the
condition as an argument of the r equi r ed() method.

Example 272. Specifying when signing is required

buil d. gradl e
version = ' 1. 0- SNAPSHOT'
ext.isRel easeVersion = !version. endsWt h(" SNAPSHOT")

si gning {
requi red { isRel easeVersion && gradl e.taskG aph. hasTask("upl oadArchives") }
sign configurations. archives

In this example, we only want to require signing if we are building a release version and we are going to
publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must
set the signing.required property to a closure to defer the evaluation. See

Si gni ngExt ensi on. set Requi red(j ava. | ang. Obj ect) for more information.

If the r equi r ed condition does not hold true, artifacts will only be signed if signatory credentials are
configured. Alternatively, you may want to skip signing entirely whether or not signatory credentials are
available. If so, you can configure the Si gn tasks to be skipped, for example by attaching a predicate using
the onl yI f () method shown in the following example:

Example 273. Specifying when signing is skipped

bui I d. gradl e
tasks. wi t hType(Sign) {
onlylf { isRel easeVersion }

8§
Publishing the signatures

When signing publications, the resultant signature artifacts are automatically added to the corresponding
publication. Thus, when publishing to a repository, e.g. by executing the publ i sh task, your signatures will

be distributed along with the other artifacts without any additional configuration.

When signing configurations and tasks, the resultant signature artifacts are automatically added to the si gne
and ar chi ves dependency configurations. This means that if you want to upload your signatures to your
distribution repository along with the artifacts you simply execute the upl oadAr chi ves task.

Page 336 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.signing.Sign.html

8
Signing POM files

Note: This section covers signing POM files for the original publishing mechanism available in
Gradle 1.0. The POM file generated by the new Maven publishing support provided by the Maven
Publishing plugin is automatically signed if the corresponding publication is specified to be signed.

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published
POM file. The Signing Plugin adds a si gni ng. si gnPom() (see:

Si gni ngExt ensi on. si gnPon(org. gradl e. api . artifacts. maven. MavenDepl oynent
groovy. |l ang. Cl osur e)) method that can be used in the bef or eDepl oynment () block in your upload
task configuration.

Example 274. Sighing a POM for deployment

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
bef or eDepl oynent { MavenDepl oynent depl oynment -> signing. si gnPon{dep

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no
credentials for signing) then the si gnPon() method will silently do nothing.

Page 337 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/4.9/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

The Distribution Plugin

Note: The Distribution Plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Distribution Plugin facilitates building archives that serve as distributions of the project. Distribution
archives typically contain the executable application and other supporting files, such as documentation.

8§

Usage
To use the Distribution Plugin, include the following in your build script:
Example 275. Using the Distribution Plugin

bui I d. gradl e
apply plugin: "distribution’

The plugin adds an extension named di st ri buti ons of type Di st ri buti onCont ai ner to the project. It
also creates a single distribution in the distributions container extension named nmi n. If your build only
produces one distribution you only need to configure this distribution (or use the defaults).

You can run gr adl e di st Zi p to package the main distribution as a ZIP, or gr adl e di st Tar to create a
TAR file. To build both types of archives just run gr adl e assenbl eDi st . The files will be created at $bui |

Youcanrun gradl e i nstall Di st to assemble the uncompressed distribution into $bui | dDi r /i nst al |

8
Tasks

The Distribution Plugin adds a number of tasks to your project, as shown below.

di st Zi p —type: Zi p
Creates a ZIP archive of the distribution contents.

di st Tar —type: Task
Creates a TAR archive of the distribution contents.

Page 338 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.distribution.DistributionContainer.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html

assenbl eDi st —type: Task
Depends on: di st Tar, di st Zi p

Creates ZIP and TAR archives of the distribution contents.

i nstall Di st —type: Sync
Assembles the distribution content and installs it on the current machine.

For each additional distribution you add to the project, the Distribution Plugin adds the following tasks, where
distributionName comes from Di st ri buti on. get Nane() :

di stributionNaneDi st Zi p —type: Zi p
Creates a ZIP archive of the distribution contents.

di stributi onNaneDi st Tar —type: Tar
Creates a TAR archive of the distribution contents.

assenbl eDi stri buti onNaneDi st —type: Task
Depends on: di stri buti onNanmeDi st Tar, di stri buti onNameDi st Zi p

Creates ZIP and TAR archives of the distribution contents.

i nstall Di stributionNanmeDi st — type: Sync
Assembles the distribution content and installs it on the current machine.

The following sample creates a cust omdistribution that will cause four additional tasks to be added to the
project: cust onDi st Zi p, cust onDi st Tar, assenbl eCust onDi st,and i nst al | Cust onDi st :

Example 276. Adding extra distributions

buil d. gradl e

di stributions {
custom {}

}

Given that the project name is myproj ect and version 1.2, running gradl e custonDi stZip will

produce a ZIP file named nypr oj ect - cust om 1. 2. zi p.

Running gr adl e i nst al | Cust onDi st will install the distribution contents into $bui | dDir /i nstal |/ cu

8
Distribution contents

All of the files in the src/ $di stri bution. name/ di st directory will automatically be included in the
distribution. You can add additional files by configuring the Di stri buti on object that is part of the

container.

Page 339 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/distribution/Distribution.html#getName--
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/distribution/Distribution.html

Example 277. Configuring the main distribution

buil d. gradl e
di stributions {
mai n {
baseName = ' soneNane'
contents {

from{ 'src/readne' }

In the example above, the content of the sr c/ r eadne directory will be included in the distribution (along
with the files in the sr ¢/ mai n/ di st directory which are added by default).

The baseNane property has also been changed. This will cause the distribution archives to be created with
a different name.

§
Publishing

A distribution can be published using the Ivy Publish Plugin or Maven Publish Plugin, or via the original
publishing mechanism using the upl oadAr chi ves task.

8
Using the lvy/Maven Publish Plugins

To publish a distribution to an Ivy repository with the Ivy Publish Plugin, simply add one or both of its archive
tasks to an | vyPubl i cat i on. The following sample demonstrates how to add the ZIP archive of the mai n
distribution and the TAR archive of the cust omdistribution to the myDi st ri but i on publication:

Example 278. Adding distribution archives to an Ivy publication

buil d. gradl e
apply pl ugin:

"ivy-publish'
publi shing {
publications {
myDi stribution(lvyPublication) {
artifact distZp
artifact custonDi st Tar

Similarly, to publish a distribution to a Maven repository using the Maven Publish Plugin, add one or both of
its archive tasks to a MavenPubl i cat i on as follows:

Page 340 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.publish.maven.MavenPublication.html

Example 279. Adding distribution archives to a Maven publication

buil d. gradl e
apply plugin: 'maven-publish'

publi shing {
publications {
myDi st ri bution(MavenPublication) {
artifact distZp
artifact custonDi st Tar

8§
Using the upl oadAr chi ves task

The Distribution Plugin adds the distribution archives as default publishing artifact candidates. With the

Maven Plugin applied, the distribution ZIP file will be published when running upl oadAr chi ves if no other

default artifact is configured.

Example 280. Publishing the distribution ZIP with the Maven Plugin

buil d. gradl e
apply plugin:' maven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sonmel/repo")

Page 341 of 807

The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following
notification systems are supported:

Twitter
notify-send (Ubuntu)
Snarl (Windows)
Growl (macOS)
8§
Usage
To use the announce plugin, apply it to your build script:
Example 281. Applying the announce plugin

bui I d. gradl e
apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are
available):

Example 282. Configure the announce plugin

bui I d. gradl e
announce {
username = 'nyld'
password = ' nyPassword'
}

Finally, send announcements with the announce method:

Page 342 of 807

http://twitter.com
http://manpages.ubuntu.com/manpages/zesty/en/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 283. Using the announce plugin

buil d. gradl e
task hellowrld {
doLast {
println "Hello, world!"
}
}
hel | owbr | d. doLast ({
announce. announce("hel oWorl d conpleted!", "twitter")
announce. announce(" hel | oWrl d conpleted!", "local")

The announce method takes two String arguments: The message to be sent, and the natification service to
be used. The following table lists supported notification services and their configuration properties.

Table 20. Announce Plugin Notification Services

otification . Configuration .
) Operating System) Further Information
ervice Properties
. username,
litter Any
password
rarl Windows
owl macOS

. Requires the notify-send package to be installed. Use sudo apt - get i nstal
otify-send Ubuntu

to install it.
| Windows, Automatically chooses between snarl, growl, and notify-send depending on
cal
macOS, Ubuntu the current operating system.
8§
Configuration

See the AnnouncePl ugi nExt ensi on class in the APl documentation.

Page 343 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

The Build Announcements Plugin

Note: The build announcements plugin is currently incubating. Please be aware that the DSL and
other configuration may change in later Gradle versions.

The build announcements plugin uses the announce plugin to send local announcements on important
events in the build.

8§

Usage
To use the build announcements plugin, include the following in your build script:
Example 284. Using the build announcements plugin

bui I d. gradl e
apply plugin: 'build-announcenents’

That's it. If you want to tweak where the announcements go, you can configure the announce plugin to
change the local announcer.

You can also apply the plugin from an init script:
Example 285. Using the build announcements plugin from an init script
init.gradle

root Proj ect {
apply plugin: 'build-announcenents’

Page 344 of 807

Legacy publishing

Note: This chapter describes the original publishing mechanism available in Gradle 1.0, which has
since been superseded by an alternative model. The approach detailed in this chapter — based on
Upl oad tasks — should not be used in new builds. We cover it in order to help users work with and
update existing builds that use it.

8
Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.
upload them). We define the artifacts of the projects as the files the project provides to the outside world.
This might be a library or a ZIP distribution or any other file. A project can publish as many artifacts as it
wants.

8§
Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks upl oad Conf i gur ati onNarme and bui | d¢
91 Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

the section called “Dependency configurations” shows the configurations added by the Java plugin. Two of
the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the standard
configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this
configuration. We will talk more about the r unt i ne configuration in the section called “More about project
libraries”. As with dependencies, you can declare as many custom configurations as you like and assign
artifacts to them.

Page 345 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Upload.html

8§
Declaring artifacts

8§
Archive task artifacts

You can use an archive task to define an artifact:
Example 286. Defining an artifact using an archive task

bui | d. gradl e
task nyJar(type: Jar)

artifacts {
archi ves nyJar

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

8§
File artifacts

You can also use a file to define an artifact:
Example 287. Defining an artifact using a file

bui | d. gradl e
def someFile = file('build/ sonmefile.txt")

artifacts {
archi ves soneFile

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these

properties:

Page 346 of 807

Example 288. Customizing an artifact

buil d. gradl e
task nyTask(type: MTaskType) {
destFile = file(' build/sonmefile.txt")

artifacts {
archives(nyTask. destFile) {
name 'ny-artifact’
type 'text'
bui | t By nyTask

There is a map-based syntax for defining an artifact using a file. The map must include a fi | e entry that

defines the file. The map may include other artifact properties:
Example 289. Map syntax for defining an artifact using a file

bui | d. gradl e
task generate(type: MTaskType) {
destFile = file('build/sonmefile.txt")

artifacts {

archives file: generate.destFile, nane: 'ny-artifact', type: 'text',

8§
Publishing artifacts

bui | t By:

We have said that there is a specific upload task for each configuration. Before you can do an upload, you

have to configure the upload task and define where to publish the artifacts to. The repositories you have

defined (as described in Declaring Repositories) are not automatically used for uploading. In fact, some of

those repositories only allow downloading artifacts, not uploading. Here is an example of how you can

configure the upload task of a configuration:

Page 347 of 807

Example 290. Configuration of the upload task

buil d. gradl e
repositories {
flatDir {

name "fil eRepo”
dirs "repo"

upl oadAr chi ves {
repositories {
add project.repositories.fileRepo
vy {
credentials {
user name "usernane"
password " pw'

}
url "http://repo. myconpany. cont

As you can see, you can either use a reference to an existing repository or create a new repository.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading
each file. By default, Gradle will upload to the pattern defined by the ur| parameter, combined with the
optional | ayout parameter. If no ur | parameter is supplied, then Gradle will use the first defined arti f act
for uploading, or the first defined i vyPat t er n for uploading Ivy files, if this is set.

Uploading to a Maven repository is described in the section called “Interacting with Maven repositories”.

8§
More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this library and
what are the dependencies of these artifacts. The Java plugin adds a runti me configuration for this
purpose, with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact
you want to publish. Of course this is fully customizable. You can add your own custom configuration or let
the existing configurations extend from other configurations. You might have a different group of artifacts
which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur at i on property to declare this. If this
is not specified, the def aul t configuration is used (see Managing Dependency Configurations). Using your
project as a library can either happen from within a multi-project build or by retrieving your project from a
repository. In the latter case, an i vy. xm descriptor in the repository is supposed to contain all the

Page 348 of 807

necessary information. If you work with Maven repositories you don’t have the flexibility as described above.
For how to publish to a Maven repository, see the section the section called “Interacting with Maven
repositories”.

[] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the Java
plugin.

Page 349 of 807

Maven Plugin

Note: This chapter describes deploying artifacts to Maven repositories using the original publishing
mechanism available in Gradle 1.0: in Gradle 1.3 a new mechanism for publishing was introduced.
This new mechanism introduces some new concepts and features that make Gradle publishing
even more powerful and is now the preferred option for publishing artifacts.

You can read about the new publishing plugins in Ivy Publish Plugin and Maven Publish Plugin.

The Maven plugin adds support for deploying artifacts to Maven repositories.
§
Usage
To use the Maven plugin, include the following in your build script:
Example 291. Using the Maven plugin

bui | d. gradl e
apply pl ugin:

maven

8
Tasks

The Maven plugin defines the following tasks:

Table 21. Maven plugin - tasks

ask -
Depends on Type Description
ame
All tasks) . .)
that build Installs the associated artifacts to the local Maven cache, including Maven metadata
a ui
generation. By default the install task is associated with the ar chi ves configuration. This
nstall the Upl oad]]]))
iated configuration has by default only the default jar as an element. To learn more about installing to
associate
archive the local repository, see: the section called “Installing to the local repository”
ives.

Page 350 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.tasks.Upload.html

8§
Dependency management

The Maven plugin does not define any dependency configurations.

8§
Convention properties

The Maven plugin defines the following convention properties:
Table 22. Maven plugin - properties

roperty name Type Default value Description

.)))) The directory where the generated
avenPonDi r File ${project.buil dDir} /Fporm ;
OMs are written to.

Instructions for mapping Gradle

configurations to Maven scopes. See

onf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a .
the section called “Dependency

mapping”.

These properties are provided by a VavenP| ugi nConvent i on convention object.

8
Convention methods

The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without
the context of uploading to a Maven repo.

Page 351 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Example 292. Creating a standalone pom.

buil d. gradl e
task writeNewPom {
doLast {
pom {
project {
i nceptionYear '2008
|icenses {
l'icense {
nanme ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE- 2. 0. t xt
di stribution 'repo
}
}
}

}.witeTo("$buil dDir/ newpom xni ™)

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see VavenPom See also: VavenP| ugi nConvent i on

8§
Interacting with Maven repositories

8§
Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle’s
deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don’'t have a POM. Fortunately Gradle can
generate this POM for you using the dependency information it has.

8
Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote
Maven repository.

Page 352 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Example 293. Upload of file to remote Maven repository

buil d. gradl e
apply plugin: 'maven'

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the POM
to the specified repository.

There is more work to do if you need support for protocols other than fi | e. In this case the native Maven
code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you
plan to use. The available protocols and the corresponding libraries are listed in Table 23 (those libraries
have transitive dependencies which have transitive dependencies).l1% For example, to use the ssh protocol
you can do:

Example 294. Upload of file via SSH

buil d. gradl e
configurations {
depl oyerJars

repositories {
mavenCentral ()

dependenci es {
depl oyerJars "org. apache. naven. wagon: wagon- ssh: 2. 2"

upl oadAr chi ves {
reposi tori es. mavenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. myconpany.conirel eases") {
aut henti cati on(user Nanme: "

me", password: "myPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to

Page 353 of 807

the bean elements. To add bean elements to its parent, you use a closure. In the example above repository
and authentication are such bean elements. Table 24 lists the available bean elements and a link to the
Javadoc of the corresponding class. In the Javadoc you can see the possible attributes you can set for a
particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t ory element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Table 23. Protocol jars for Maven deployment

rotocol Library

1p org.apache.maven.wagon:wagon-http:2.2

sh org.apache.maven.wagon:wagon-ssh:2.2

sh-external org.apache.maven.wagon:wagon-ssh-external:2.2

) org.apache.maven.wagon:wagon-ftp:2.2

ebdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
e -

Table 24. Configuration elements of the MavenDeployer

lement Javadoc

ot MavenDepl oyer

'pository org.apache.maven.artifact.ant. RemoteRepository
Jthentication org.apache.maven.artifact.ant.Authentication
leases org.apache.maven.artifact.ant.RepositoryPolicy
1apshots org.apache.maven.artifact.ant.RepositoryPolicy
"oxy org.apache.maven.artifact.ant.Proxy
1apshotRepository org.apache.maven.artifact.ant. RemoteRepository

Page 354 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

8
Installing to the local repository

The Maven plugin adds an i nst al | task to your project. This task depends on all the archives task of the ar
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository is redefined in a Maven set ti ngs. xnl , this is considered by this task.

8
Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl ¢
,artifactld, versi on and packagi ng elements used for the POM default to the values shown in the
table below. The dependency elements are created from the project’s dependency declarations.

Table 25. Default Values for Maven POM generation

aven Element Default Value

‘oupld project.group

tifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or archiveTask.baseName.
arsion project.version

ackaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves and j ar). ar chi veTask. baseNane defaults to pr oj ect . ar«
which in turn defaults to pr oj ect . nane.

Note: When you set the “ar chi veTask. baseNane” property to a value other than the default,
you'll also have to set upl oadTask. reposi tori es. mavenDepl oyer. pom artifactl d to the
same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from
generated POMs for other projects in the same build.

Generated POMSs can be found in <bui | dDi r >/ pons. They can be further customized via the MavenPorn
API. For example, you might want the artifact deployed to the Maven repository to have a different version or
name than the artifact generated by Gradle. To customize these you can do:

Page 355 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/maven/MavenPom.html

Example 295. Customization of pom

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/nyRepo/")
pom version = '1. OMaven'
pomartifactld = ' nmyMavenNaneg'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any element
listed in the Maven POM reference can be added.

Example 296. Builder style customization of pom

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/nyRepo/")
pom proj ect {
licenses {
l'icense {
name ' The Apache Software License, Version 2.0
url "http://ww. apache. org/li censes/ LI CENSE- 2. 0. t xt
di stribution 'repo

Note: groupl d, arti factld, ver si on, and packagi ng should always be set directly on the pomobject.
Example 297. Modifying auto-generated content

buil d. gradl e

def installer = install.repositories.navenlnstall er

def depl oyer = upl oadArchives. repositories. mavenDepl oyer

[install er, deployer]*.pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3' && dep.artifactld ==

If you have more than one artifact to publish, things work a little bit differently. See the section called

Page 356 of 807

http://maven.apache.org/pom.html

“Multiple artifacts per project”.

To customize the settings for the Maven installer (see the section called “Installing to the local repository”),
you can do:

Example 298. Customization of Maven installer

buil d. gradl e
install {
reposi tories. mavenlnstall er {
pom version = '1. OMaven'
pomartifactld = ' nmyNane'
}
}
§

Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The VavenDepl oyer and the Mavenlinstaller both provide an API for
this:

Example 299. Generation of multiple poms

buil d. gradl e
upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/nyRepo/")
addFilter('api') {artifact, file ->

artifact.nane == 'api'

}

addFilter('service') {artifact, file ->
artifact.nane == 'service'

}

pon(' api').version = 'nySpeci al MavenVer si on'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about this have a look at Ponti | t er Cont ai ner and its associated classes.

Page 357 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html

§
Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don’t need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. You can also assign a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn more.

To access the mapping configuration you can say:

Example 300. Accessing a mapping configuration

buil d. gradl e
task mappi ngs {
doLast {

println conf2ScopeMappi ngs. mappi ngs

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to
Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[10] It is planned for a future release to provide out-of-the-box support for this

Page 358 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Dependency management

Introduction to Dependency Management

§
What is dependency management?

Software projects rarely work in isolation. In most cases, a project relies on reusable functionality in the form
of libraries or is broken up into individual components to compose a modularized system. Dependency
management is a technique for declaring, resolving and using dependencies required by the project in an
automated fashion.

Note: For a general overview on the terms used throughout the user guide, refer to Dependency
Management Terminology.

8§
Dependency management in Gradle

Gradle has built-in support for dependency management and lives up the task of fulfilling typical scenarios
encountered in modern software projects. We'll explore the main concepts with the help of an example
project. The illustration below should give you an rough overview on all the moving parts.

Page 360 of 807

Figure 15. Dependency management big picture

Local File
Repository

artifacts Maven

access
T download
artifacts / Repository

Gradle >

Build
Ivy
store access Repository
artifacts artifacts
Gradle
Cache

The example project builds Java source code. Some of the Java source files import classes from Google
Guava, a open-source library providing a wealth of utility functionality. In addition to Guava, the project
needs the JUnit libraries for compiling and executing test code.

Guava and JUnit represent the dependencies of this project. A build script developer can declare
dependencies for different scopes e.g. just for compilation of source code or for executing tests. In Gradle,
the scope of a dependency is called a configuration. For a full overview, see the reference material on
dependency types.

Often times dependencies come in the form of modules. You'll need to tell Gradle where to find those
modules so they can be consumed by the build. The location for storing modules is called a repository. By
declaring repositories for a build, Gradle will know how to find and retrieve modules. Repositories can come
in different forms: as local directory or a remote repository. The reference on repository types provides a
broad coverage on this topic.

At runtime, Gradle will locate the declared dependencies if needed for operating a specific task. The
dependencies might need to be downloaded from a remote repository, retrieved from a local directory or
requires another project to be built in a multi-project setting. This process is called dependency resolution.
You can find a detailed discussion in the section called “How dependency resolution works”.

Once resolved, the resolution mechanism stores the underlying files of a dependency in a local cache, also
referred to as the dependency cache. Future builds reuse the files stored in the cache to avoid unnecessary
network calls.

Modules can provide additional metadata. Metadata is the data that describes the module in more detail e.g.
the coordinates for finding it in a repository, information about the project, or its authors. As part of the

Page 361 of 807

https://github.com/google/guava
https://github.com/google/guava
http://junit.org/junit5/

metadata, a module can define that other modules are needed for it to work properly. For example, the JUnit
5 platform module also requires the platform commons module. Gradle automatically resolves those
additional modules, so called transitive dependencies. If needed, you can customize the behavior the
handling of transitive dependencies to your project’s requirements.

Projects with tens or hundreds of declared dependencies can easily suffer from dependency hell. Gradle
provides sufficient tooling to visualize, navigate and analyze the dependency graph of a project either with
the help of a build scan or built-in tasks. Learn more in Inspecting Dependencies.

Figure 16. Build scan dependencies report

@ ® < il & scans.gradle.com o O 1=

ﬁ Build Scan E + gradle :core:test

= Summary

. 214 dependencies resolved in 70 projects across 156 configurations
>—| Console log
Timeline)
W Performance :announce

T antlr

ests]

:B ‘baseServices
'-_i;*_ P-'L'Ij'EEtb compileClasspath

com.google.code. findbugs:jsr305:1.3.9

com.google guava:guava-jdk5:17.0
Zr Plugins commaons-icommaons-io:2,2
commons-lang.commons-lang: 2.6

Custom values
net.jciptjcip-annotations: 1.0

—= Switches org.sifdjsifdj-api:1.7.10
B Infrastructure runtimeClasspath

testFixturesCompileClasspath

‘haceSarvicscl S rnauy

8§
How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below is a brief outline of how this process
works.

Given a required dependency, Gradle attempts to resolve the dependency by searching for the module the
dependency points at. Each repository is inspected in order. Depending on the type of repository, Gradle
looks for metadata files describing the module (. nodul e, . pomori vy. xm file) or directly for artifact files.

If the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the highest
available concrete version (like 1. 2) in the repository. For Maven repositories, this is done using the maven-

Page 362 of 807

https://scans.gradle.com/get-started

file, while for vy repositories this is done by directory listing.

If the module metadata is a POM file that has a parent POM declared, Gradle will recursively attempt to
resolve each of the parent modules for the POM.

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is

done using the following criteria:
For a dynamic version, a 'higher' concrete version is preferred over a 'lower' version.

Modules declared by a module metadata file (. nodul e, . pomor i vy. xml file) are preferred over modules

that have an artifact file only.
Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a concrete version and a module metadata file is found in a repository,
there is no need to continue searching later repositories and the remainder of the process is short-circuited.

All of the artifacts for the module are then requested from the same repository that was chosen in the
process above.

The dependency resolution process is highly customizable to meet enterprise requirements. For more
information, see the chapter on Customizing Dependency Resolution Behavior.

Page 363 of 807

Declaring Dependencies

Gradle builds can declare dependencies on modules hosted in repositories, files and other Gradle projects.
You can find examples for common scenarios in this section. For more information, see the full reference on
all types of dependencies.

Every dependency needs to be assigned to a configuration when declared in a build script. For more
information on the purpose and syntax of configurations, see Managing Dependency Configurations.

§
Declaring a dependency to a module

Modern software projects rarely build code in isolation. Projects reference modules for the purpose of
reusing existing and proven functionality. Upon resolution, selected versions of modules are downloaded
from dedicated repositories and stored in the dependency cache to avoid unnecessary network traffic.

Figure 17. Resolving dependencies from remote repositories

download
Maven

artifacts / Repository

Gradle >

Build
\ lvy
store access Repository
artifacts artifacts
Gradle
Cache

Page 364 of 807

8
Declaring a concrete version of a dependency

A typical example for such a library in a Java project is the Spring framework. The following code snippet
declares a compile-time dependency on the Spring web module by its coordinates: or g. spri ngf r amewor k
. Gradle resolves the module including its transitive dependencies from the Maven Central repository and
uses it to compile Java source code. The version attribute of the dependency coordinates points to a
concrete version indicating that the underlying artifacts do not change over time. The use of concrete
versions ensure reproducibility for the aspect of dependency resolution.

Example 301. Declaring a dependency with a concrete version

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i npl ementation 'org. springframework: spring-web: 5. 0. 2. RELEASE'

A Gradle project can define other types of repositories hosting modules. You can learn more about the
syntax and API in the section on declaring repositories. Refer to The Java Plugin for a deep dive on
declaring dependencies for a Java project. The resolution behavior for dependencies is highly customizable.

§
Declaring a dependency without version

A recommended practice for larger projects is to declare dependencies without versions and use
dependency constraints for version declaration. The advantage is that dependency constrains allow you to
manage versions of all dependencies, including transitive ones, in one place.

Example 302. Declaring a dependency without version
bui I d. gradl e

dependenci es {
i mpl ement ation 'org.springframework: spring-web'

dependenci es {
constraints {
i mpl ementation 'org. springframework: spring-web: 5. 0. 2. RELEASE'

Page 365 of 807

https://projects.spring.io/spring-framework/
https://search.maven.org/

8
Declaring a dynamic version

Projects might adopt a more aggressive approach for consuming dependencies to modules. For example
you might want to always integrate the latest version of a dependency to consume cutting edge features at
any given time. A dynamic version allows for resolving the latest version or the latest version of a version
range for a given module.

Note: Using dynamic versions in a build bears the risk of potentially breaking it. As soon as a new
version of the dependency is released that contains an incompatible APl change your source code
might stop compiling.

Example 303. Declaring a dependency with a dynamic version

buil d. gradl e
apply plugin: "java-library

repositories {
mavenCentral ()

dependenci es {
i npl ementation 'org. springframework: spring-web: 5. +

A build scan can effectively visualize dynamic dependency versions and their respective, selected versions.

Figure 18. Dynamic dependencies in build scan

compileClasspath
org.springframework:spring-web:5.+ 5.0.2.RELEASE
org.springframework:spring-beans:5.0.2.RELEASE
org.springframework:spring-core:5.0.2.RELEASE
org.springframework:spring-jcl:5.0.2.RELEASE
org.springframework:spring-core:5.0.2.RELEASE
org.springframework:spring-jcl:5.0.2.RELEASE

By default, Gradle caches dynamic versions of dependencies for 24 hours. Within this time frame, Gradle
does not try to resolve newer versions from the declared repositories. The threshold can be configured as
needed for example if you want to resolve new versions earlier.

Page 366 of 807

https://scans.gradle.com/

8
Declaring a changing version

A team might decide to implement a series of features before releasing a new version of the application or
library. A common strategy to allow consumers to integrate an unfinished version of their artifacts early and
often is to release a module with a so-called changing version. A changing version indicates that the feature
set is still under active development and hasn'’t released a stable version for general availability yet.

In Maven repositories, changing versions are commonly referred to as snapshot versions. Snapshot versions
contain the suffix - SNAPSHOT. The following example demonstrates how to declare a snapshot version on

the Spring dependency.
Example 304. Declaring a dependency with a changing version

bui I d. gradl e
apply plugin: 'java-library'

repositories {
mavenCentral ()
maven {
url "https://repo.spring.io/snapshot/’

dependenci es {
i mpl ementation 'org. springframework: spring-web: 5. 0. 3. BU LD- SNAPSHOT'

By default, Gradle caches changing versions of dependencies for 24 hours. Within this time frame, Gradle
does not try to resolve newer versions from the declared repositories. The threshold can be configured as
needed for example if you want to resolve new snapshot versions earlier.

Gradle is flexible enough to treat any version as changing version e.g. if you wanted to model snapshot
behavior for an Ivy module. All you need to do is to set the property
Ext er nal Modul eDependency. set Changi ng(bool ean) totrue.

8§
Declaring a file dependency

Projects sometimes do not rely on a binary repository product e.g. JFrog Artifactory or Sonatype Nexus for
hosting and resolving external dependencies. It's common practice to host those dependencies on a shared
drive or check them into version control alongside the project source code. Those dependencies are referred
to as file dependencies, the reason being that they represent a file without any metadata (like information
about transitive dependencies, the origin or its author) attached to them.

Page 367 of 807

https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-

Figure 19. Resolving file dependencies from the local file system and a shared drive

Local File
System
access
artifacts access
artifacts
Gradle Shared
_ —_—
Build Drive
store access
artifacts artifacts
Gradle
Cache

The following example resolves file dependencies from the directories ant , | i bs and t ool s.

Example 305. Declaring multiple file dependencies

buil d. gradl e
configurations {
ant Contrib

ext ernal Li bs
depl oynent Tool s

dependenci es {
antContrib files('ant/antcontrib.jar")
external Libs files('libs/comons-lang.jar', 'libs/log4j.jar")
depl oynent Tools fileTree(dir: 'tools', include: '*.exe')

As you can see in the code example, every dependency has to define its exact location in the file system.
The most prominent methods for creating a file reference are Proj ect . fil es(java.lang. Object[]),
Proj ectLayout.files(java.lang. Object[]),

Proj ect Layout. confi gurabl eFil es(java.l ang. Object[]), and
Project.fileTree(java.lang. Obj ect) Alternatively, you can also define the source directory of one
or many file dependencies in the form of a flat directory repository.

Page 368 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object[]-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

8§
Declaring a project dependency

Software projects often break up software components into modules to improve maintainability and prevent
strong coupling. Modules can define dependencies between each other to reuse code within the same
project.

Gradle can model dependencies between modules. Those dependencies are called project dependencies
because each module is represented by a Gradle project. At runtime, the build automatically ensures that
project dependencies are built in the correct order and added to the classpath for compilation. The chapter
Authoring Multi-Project Builds discusses how to set up and configure multi-project builds in more detail.

Figure 20. Dependencies between projects

Gradle Multi-Project Build

depends

on
Project A | Project B

depends depends
on on

Project C

The following example declares the dependencies on the uti | s and api project from the web- servi ce
project. The method Project.project(]java.lang. String) creates a reference to a specific
subproject by path.

Example 306. Declaring project dependencies

buil d. gradl e
project(':web-service') {
dependenci es {
i mpl ementation project(':utils")
i mpl ementation project(':api')

Page 369 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

8§
Resolving specific artifacts from a module dependency

Whenever Gradle tries to resolve a module from a Maven or Ivy repository, it looks for a metadata file and
the default artifact file, a JAR. The build fails if none of these artifact files can be resolved. Under certain
conditions, you might want to tweak the way Gradle resolves artifacts for a dependency.

The dependency only provides a non-standard artifact without any metadata e.g. a ZIP file.
The module metadata declares more than one artifact e.g. as part of an Ivy dependency descriptor.

You only want to download a specific artifact without any of the transitive dependencies declared in the
metadata.

Gradle is a polyglot build tool and not limited to just resolving Java libraries. Let's assume you wanted to
build a web application using JavaScript as the client technology. Most projects check in external JavaScript
libraries into version control. An external JavaScript library is no different than a reusable Java library so why
not download it from a repository instead?

Google Hosted Libraries is a distribution platform for popular, open-source JavaScript libraries. With the help
of the artifact-only notation you can download a JavaScript library file e.g. JQuery. The @ character
separates the dependency’s coordinates from the artifact’s file extension.

Example 307. Resolving a JavaScript artifact for a declared dependency

bui I d. gradl e
repositories {
ivy {

url '"https://ajax.googl eapis.confajax/|ibs'
| ayout 'pattern', {
artifact '[organization]/[revision]/[nodule].[ext]"

configurations {
is

dependenci es {
js '"jquery:jquery:3.2.1@s'

Some modules ship different "flavors" of the same artifact or they publish multiple artifacts that belong to a
specific module version but have a different purpose. It's common for a Java library to publish the artifact
with the compiled class files, another one with just the source code in it and a third one containing the
Javadocs.

Page 370 of 807

https://developers.google.com/speed/libraries/

In JavaScript, a library may exist as uncompressed or minified artifact. In Gradle, a specific artifact identifier
is called classifier, a term generally used in Maven and lvy dependency management.

Let's say we wanted to download the minified artifact of the JQuery library instead of the uncompressed file.
You can provide the classifier m n as part of the dependency declaration.

Example 308. Resolving a JavaScript artifact with classifier for a declared dependency

bui | d. gradl e
repositories {
vy {

url '"https://ajax.googl eapis.confajax/|ibs'
| ayout 'pattern', {
artifact '[organization]/[revision]/[nodule](.[classifier]).[ext]'

configurations {
is

dependenci es {
js "jquery:jquery:3.2.1:mn@s'

Page 371 of 807

Managing Dependency Configurations

§
What is a configuration?

Every dependency declared for a Gradle project applies to a specific scope. For example some
dependencies should be used for compiling source code whereas others only need to be available at
runtime. Gradle represents the scope of a dependency with the help of a Configuration. Every

configuration can be identified by a uniqgue name.

Many Gradle plugins add pre-defined configurations to your project. The Java plugin, for example, adds
configurations to represent the various classpaths it needs for source code compilation, executing tests and
the like. See the Java plugin chapter for an example. The sections above demonstrate how to declare
dependencies for different use cases.

Figure 21. Configurations use declared dependencies for specific purposes

compile Gradle Build

source file

resolve

| F—\ ; ; dependencies
| |implementation| | P

configuration \

, Bin
/ Repo
| | I N test‘Runt‘ime _ —
configuration resolve
dependencies
execute
tests

For more examples on the usage of configurations to navigate, inspect and post-process metadata and
artifacts of assigned dependencies, see Working with Dependencies.

Page 372 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html

8§
Defining custom configurations

You can define configurations yourself, so-called custom configurations. A custom configuration is useful for
separating the scope of dependencies needed for a dedicated purpose.

Let's say you wanted to declare a dependency on the Jasper Ant task for the purpose of pre-compiling JSP
files that should not end up in the classpath for compiling your source code. It's fairly simple to achieve that
goal by introducing a custom configuration and using it in a task.

Example 309. Declaring and using a custom configuration

buil d. gradl e

configurations {
j asper

}

repositories {
mavenCentral ()

dependenci es {
j asper 'org.apache.tontat.enbed: tontat-enbed-j asper:9.0. 2’

task preConpil eJsps {
doLast {
ant . t askdef (cl assnane: 'org. apache. jasper.JspC ,
nane: 'jasper',
cl asspath: configurations.jasper.asPath)
ant . j asper(validateXm : false,
uriroot: file(' src/ main/webapp'),
outputDir: file("$buildDir/conpiled-jsps"))

A project’s configurations are managed by a conf i gur at i ons object. Configurations have a name and can
extend each other. To learn more about this API have a look at Conf i gur at i onCont ai ner .

8§
Inheriting dependencies from other configurations

A configuration can extend other configurations to form an inheritance hierarchy. Child configurations inherit
the whole set of dependencies declared for any of its superconfigurations.

Configuration inheritance is heavily used by Gradle core plugins like the Java plugin. For example the t est |
configuration extends the i npl enent at i on configuration. The configuration hierarchy has a practical

Page 373 of 807

https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

purpose: compiling tests requires the dependencies of the source code under test on top of the
dependencies needed write the test class. A Java project that uses JUnit to write and execute test code also
needs Guava if its classes are imported in the production source code.

Figure 22. Configuration inheritance provided by the Java plugin

implementation

. . . le. : :23.0
configuration com.google.guava:guava

extends

testImplementation

. . junit:junit:4.12
configuration e

Under the covers the t est | npl enent ati on and i npl enent at i on configurations form an inheritance
hierarchy by calling the method

Confi gurati on. extendsFron{org. gradl e. api.artifacts. Configuration[]). A configuration
can extend any other configuration irrespective of its definition in the build script or a plugin.

Let's say you wanted to write a suite of smoke tests. Each smoke test makes a HTTP call to verify a web
service endpoint. As the underlying test framework the project already uses JUnit. You can define a new
configuration named snokeTest that extends from the t est | npl ement at i on configuration to reuse the
existing test framework dependency.

Example 310. Extending a configuration from another configuration

buil d. gradl e
configurations {
snokeTest . ext endsFrom t est | npl enent ati on

dependenci es {
testlnplenentation "junit:junit:4.12
snokeTest 'org. apache. htt pconponents: httpclient:4.5.5'

Page 374 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])

Declaring Repositories

Gradle can resolve dependencies from one or many repositories based on Maven, lvy or flat directory
formats. Check out the full reference on all types of repositories for more information.

8§
Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and consume
open source dependencies. Popular public repositories include Maven Central, Bintray JCenter and the
Google Android repository. Gradle provides built-in shortcut methods for the most widely-used repositories.

Figure 23. Declaring a repository with the help of shortcut methods

Maven
Central
mavenCentral ()
Gradle Jeenter O | Bintray
Build > JCenter
google () Google
Android

To declare JCenter as repository, add this code to your build script:

Page 375 of 807

Example 311. Declaring JCenter repository as source for resolving dependencies

buil d. gradl e
repositories {

jcenter()
}

Under the covers Gradle resolves dependencies from the respective URL of the public repository defined by
the shortcut method. All shortcut methods are available via the Reposi t or yHandl er APIL. Alternatively,
you can spell out the URL of the repository for more fine-grained control.

8§
Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house repositories
enable teams to publish internal binaries, setup user management and security measure and ensure uptime
and availability. Specifying a custom URL is also helpful if you want to declare a less popular, but
publicly-available repository.

Add the following code to declare an in-house repository for your build reachable through a custom URL.

Example 312. Declaring a custom repository by URL

bui | d. gradl e
repositories {
maven {

url "http://repo. nyconpany. com maven2"

Repositories with custom URLS can be specified as Maven or lvy repositories by calling the corresponding
methods available on the Reposi t or yHandl er API. Gradle supports other protocols than htt p or htt ps
as part of the custom URL e.g. file, sftp or s3. For a full coverage see the reference manual on
supported transport protocols.

You can also define your own repository layout by using i vy { } repositories as they are very flexible in
terms of how modules are organised in a repository.

8§
Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple repositories is
helpful if some dependencies are only available in one repository but not the other. You can mix any type of
repository described in the reference section.

This example demonstrates how to declare various shortcut and custom URL repositories for a project:

Page 376 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Example 313. Declaring multiple repositories

buil d. gradl e
repositories {
jcenter()
maven {
url "https://maven. spri ngfranmework. org/rel ease"

}

maven {
url "https://maven.restlet. cont

Note: The order of declaration determines how Gradle will check for dependencies at runtime. If
Gradle finds a module descriptor in a particular repository, it will attempt to download all of the
artifacts for that module from the same repository. You can learn more about the inner workings of
Gradle’s resolution mechanism.

Page 377 of 807

Inspecting Dependencies

Gradle provides sufficient tooling to navigate large dependency graphs and mitigate situations that can lead
to dependency hell. Users can chose to render the full graph of dependencies as well as identify the
selection reason and origin for a dependency. The origin of a dependency can be a declared dependency in
the build script or a transitive dependency in graph plus their corresponding configuration. Gradle offers both
capabilities through visual representation via build scans and as command line tooling.

8§
Listing dependencies in a project

A project can declare one or more dependencies. Gradle can visualize the whole dependency tree for every
configuration available in the project.

Rendering the dependency tree is particularly useful if you'd like to identify which dependencies have been
resolved at runtime. It also provides you with information about any dependency conflict resolution that
occurred in the process and clearly indicates the selected version. The dependency report always contains
declared and transitive dependencies.

Let's say you'd want to create tasks for your project that use the JGit library to execute SCM operations e.g.
to model a release process. You can declare dependencies for any external tooling with the help of a custom
configuration so that it doesn’t doesn’'t pollute other contexts like the compilation classpath for your
production source code.

Example 314. Declaring the JGit dependency with a custom configuration

buil d. gradl e
repositories {

jcenter()
}

configurations {
scm

dependenci es {
scm'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"

Page 378 of 807

https://en.wikipedia.org/wiki/Dependency_hell
https://www.eclipse.org/jgit/

A build scan can visualize dependencies as a navigable, searchable tree. Additional context information can
be rendered by clicking on a specific dependency in the graph.

Figure 24. Dependency tree in a build scan

8 dependencies resolved in 1 project across 1 configuration

scm
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6
commons-codec:commons-codec:1.6
commons-logging:commons-logging:1.1.3
org.apache.httpcomponents:httpcore:4.3.3
org.slf4j:slf4j-api:1.7.2

Every Gradle project provides the task dependenci es to render the so-called dependency report from the
command line. By default the dependency report renders dependencies for all configurations. To pair down
on the information provide the optional parameter - - confi gur ati on.

Example 315. Rendering the dependency report for a custom configuration

Output of gradl e - g dependenci es --configuration scm
> gradl e -q dependencies --configuration scm

scm
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
+--- comjcraft:jsch:0.1.54
+--- com googl ecode. j avaewah: JavaEWAH: 1. 1. 6

+--- org.apache. httpconponents: httpclient:4.3.6

| +--- org.apache. htt pconponents: httpcore: 4. 3.3
[+--- commons- | oggi ng: commons- | oggi ng: 1. 1.3

[\--- commons- codec: conmpns- codec: 1. 6

\--- org.slf4j:slf4j-api:1.7.2

A web-based, searchabl e dependency report is avail able by adding the --scan opti:

Page 379 of 807

https://scans.gradle.com/

The dependencies report provides detailed information about the dependencies available in the graph. Any
dependency that could not be resolved is marked with FAI LED in red color. Dependencies with the same
coordinates that can occur multiple times in the graph are omitted and indicated by an asterisk.
Dependencies that had to undergo conflict resolution render the requested and selected version separated
by a right arrow character.

8§
Identifying which dependency version was selected and why

Large software projects inevitably deal with an increased number of dependencies either through direct or
transitive dependencies. The dependencies report provides you with the raw list of dependencies but does
not explain why they have been selected or which dependency is responsible for pulling them into the
graph.

Let's have a look at a concrete example. A project may request two different versions of the same
dependency either as direct or transitive dependency. Gradle applies version conflict resolution to ensure
that only one version of the dependency exists in the dependency graph. In this example the conflicting
dependency is represented by conmons- codec: commons- codec.

Example 316. Declaring the JGit dependency and a conflicting dependency

bui I d. gradl e
repositories {

jcenter()
}

configurations {
scm

dependenci es {
scm'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"
scm ' commons- codec: comons- codec: 1. 7

The dependency tree in a build scan renders the selection reason (conflict resolution) as well as the origin of
a dependency if you click on a dependency and select the "Required By" tab.

Page 380 of 807

https://scans.gradle.com/

Figure 25. Dependency insight capabilities in a build scan

8 dependencies resolved in 1 project across 1 configuration

commons-codec:commons-codec:1.6 1.7

Dependencies Required By

commons-codec:commons-codec:1.6 1.7
org.apache.httpcomponents:httpclient:4.3.6
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
:scm

Every Gradle project provides the task dependencyl nsi ght to render the so-called dependency insight
report from the command line. Given a dependency in the dependency graph you can identify the selection
reason and track down the origin of the dependency selection. You can think of the dependency insight
report as the inverse representation of the dependency report for a given dependency. When executing the
task you have to provide the mandatory parameter - - dependency to specify the coordinates of the
dependency under inspection. The parameters - - confi gurati on and - - si ngl epat h are optional but

help with filtering the output.
Example 317. Using the dependency insight report for a given dependency

Output of gradl e -g dependencyl nsi ght --dependency conmnobns-codec --configuration

scm
> gradl e -q dependencyl nsi ght --dependency conmons-codec --configuration scm
commons- codec: comons- codec: 1. 7
vari ant "defaul t+runtime" |
org.gradle.status = rel ease (not requested)
]
Sel ection reasons:
- Was requested
- By conflict resolution : between versions 1.7 and 1.6

conmons- codec: commbns-codec: 1.7
\--- scm

commons- codec: comons-codec: 1.6 -> 1.7
\--- org.apache. htt pconmponents: httpclient:4.3.6
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r

\--- scm

A web- based, searchabl e dependency report is available by adding the --scan opti:

Page 381 of 807

8§
Justifying dependency declarations with custom reasons

When you declare a dependency or a dependency constraint, you can provide a custom reason for the
declaration. This makes the dependency declarations in your build script and the dependency insight report
easier to interpret.

Example 318. Giving areason for choosing a certain module version in a dependency declaration

buil d. gradl e
apply plugin: '"java-library'

repositories {
jcenter()

dependenci es {
i mpl ementation('org.ow2.asmasm6.0") {
because 'we require a JDK 9 conpati bl e bytecode generator'

Example 319. Using the dependency insight report with custom reasons

Output of gr adl e -g dependencyl nsi ght --dependency asm
> gradl e -g dependencyl nsi ght --dependency asm
org.ow2.asmasm6.0
variant "conpile" |
org. gradl e. status
org. gradl e. usage

rel ease (not requested)
j ava- api

]

Sel ection reasons:
- Was requested : we require a JDK 9 conpati bl e byt ecode generat or

org.ow2.asmasmé6.0
\--- conpil ed asspath

A web- based, searchabl e dependency report is available by adding the --scan opti:«

Page 382 of 807

Managing Transitive Dependencies

Resolution behavior for transitive dependencies can be customized to a high degree to meet enterprise
requirements.

8

Managing versions of transitive dependencies with dependency
constraints

Dependency constraints allow you to define the version or the version range of both dependencies declared
in the build script and transitive dependencies. It is the preferred method to express constraints that should
be applied to all dependencies of a configuration. When Gradle attempts to resolve a dependency to a
module version, all dependency declarations with version, all transitive dependencies and all dependency
constraints for that module are taken into consideration. The highest version that matches all conditions is
selected. If no such version is found, Gradle fails with an error showing the conflicting declarations. If this
happens you can adjust your dependencies or dependency constraints declarations, or make other
adjustments to the transitive dependencies if needed. Similar to dependency declarations, dependency
constraint declarations are scoped by configurations and can therefore be selectively defined for parts of a
build. If a dependency constraint influenced the resolution result, any type of dependency resolve rules may
still be applied afterwards.

Example 320. Define dependency constraints

buil d. gradl e
dependenci es {
i npl ement ati on ' org. apache. htt pconponents: httpclient
constraints {
i npl ement ati on(' or g. apache. htt pconponents: httpclient:4.5.3") {
because ' previ ous versions have a bug inpacting this application
}
i mpl ement ati on(' conmmons- codec: commons-codec: 1. 11') {
because 'version 1.9 pulled fromhttpclient has bugs affecting this

In the example, all versions are omitted from the dependency declaration. Instead, the versions are defined
in the constraints block. The version definition for conmons- codec: 1. 11 is only taken into account if conmt

Page 383 of 807

is brought in as transitive dependency, since cormons- codec is not defined as dependency in the project.
Otherwise, the constraint has no effect.

Note: Dependency constraints are not yet published, but that will be added in a future release. This
means that their use currently only targets builds that do not publish artifacts to maven or ivy
repositories.

Dependency constraints themselves can also be added transitively. If a modules’s metadata is defined in a . |
file that contains dependency entries with <opti onal >t rue</opti onal >, Gradle will create a
dependency constraint for each of these so-called optional dependencies. This leads to a similar resolution
behavior as provided by Maven: if the corresponding module is brought in by another, non-optional
dependency declaration, then the constraint will apply when choosing the version for that module (e.qg., if the
optional dependency defines a higher version, that one is chosen).

Note: Support for optional dependencies from pom files is active by default with Gradle 5.0+. For
using it in Gradle 4.6+, you need to activate it by adding enabl eFeat ur ePr evi ew(' | MPROVED_POM
in settings.gradle.

8§
Excluding transitive module dependencies

Declared dependencies in a build script can pull in a lot of transitive dependencies. You might decide that
you do not want a particular transitive dependency as part of the dependency graph for a good reason.

The dependency is undesired due to licensing constraints.

The dependency is not available in any of the declared repositories.

The metadata for the dependency exists but the artifact does not.

The metadata provides incorrect coordinates for a transitive dependency.

Transitive dependencies can be excluded on the level of a declared dependency or a configuration. Let’s
demonstrate both use cases. In the following two examples the build script declares a dependency on
Log4J, a popular logging framework in the Java world. The metadata of the particular version of Log4J also
defines transitive dependencies.

Page 384 of 807

Example 321. Unresolved artifacts for transitive dependencies

buil d. gradl e
apply plugin: 'java'

repositories {
mavenCentral ()

dependenci es {
i mpl ementation 'log4j:log4j:1.2.15

If resolved from Maven Central some of the transitive dependencies provide metadata but not the
corresponding binary artifact. As a result any task requiring the binary files will fail e.g. a compilation task.

> gradl e -q conpil eJava

* \What went w ong:
Coul d not resolve all files for configuration
> Could not find jns.jar (javax.jns:jns:1.1).
Searched in the followi ng | ocations:
htt ps://repo. maven. apache. org/ maven2/javax/jns/jns/ 1. 1/jns-1. 1.jar
> Could not find jnxtools.jar (comsun.jdnk:jnxtools:1.2. 1).
Searched in the follow ng | ocations:
htt ps://repo. maven. apache. or g/ maven2/ com sun/j dnk/j nxt ool s/ 1. 2. 1/ j nxt ool s-:
> Could not find jnxri.jar (comsun.jnmx:jnxri:1.2.1).
Searched in the follow ng | ocations:
htt ps://repo. maven. apache. or g/ maven2/ comf sun/jmx/jmxri/1.2. 1/jmxkri-1.2.1.ji

: conpi | ed asspat h'.

The situation can be fixed by adding a repository containing those dependencies. In the given example
project, the source code does not actually use any of Log4J’s functionality that require the JMS (e.g. JNVSApp
) or IMX libraries. It's safe to exclude them from the dependency declaration.

Exclusions need to spelled out as a key/value pair via the attributes gr oup and/or nodul e. For more
information, refer to Modul eDependency. excl ude(j ava. util. Map).

Example 322. Excluding transitive dependency for a particular dependency declaration

bui I d. gradl e
dependenci es {
i mpl ementation('log4j:log4j:1.2.15") {

exclude group: 'javax.jns', nodule: 'jns'
exclude group: 'com sun.jdnk', nodule: 'jnxtools'
exclude group: 'comsun.jnx', nodule: "jnxri'

You may find that other dependencies will want to pull in the same transitive dependency that misses the

Page 385 of 807

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/ModuleDependency.html#exclude-java.util.Map-

artifacts. Alternatively, you can exclude the transitive dependencies for a particular configuration by calling
the method Confi gurati on. excl ude(j ava. util . Map).

Example 323. Excluding transitive dependency for a particular configuration

buil d. gradl e
configurations {
i mpl ement ation {

exclude group: 'javax.jns', nodule: 'jns'
excl ude group: 'comsun.jdnk', nodule: 'jnxtools'
excl ude group: 'comsun.jnx', nodule: "jnxri'

dependenci es {
i npl ementation 'log4j:1og4j:1. 2.15

Note: As a build script author you often times know that you want to exclude a dependency for all
configurations available in the project. You can wuse the method
Domai nhj ect Col | ection. al | (org. gradl e. api . Acti on) to define a global rule.

You might encounter other use cases that don't quite fit the bill of an exclude rule. For example you want to
automatically select a version for a dependency with a specific requested version or you want to select a
different group for a requested dependency to react to a relocation. Those use cases are better solved by
the Resol utionStrategy APl Some of these use cases are covered in Customizing Dependency
Resolution Behavior.

8§
Enforcing a particular dependency version

Gradle resolves any dependency version conflicts by selecting the latest version found in the dependency
graph. Some projects might need to divert from the default behavior and enforce an earlier version of a
dependency e.g. if the source code of the project depends on an older API of a dependency than some of
the external libraries.

Note: Enforcing a version of a dependency requires a conscious decision. Changing the version of
a transitive dependency might lead to runtime errors if external libraries do not properly function
without them. Consider upgrading your source code to use a newer version of the library as an
alternative approach.

Let’s say a project uses the HttpClient library for performing HTTP calls. HttpClient pulls in Commons Codec
as transitive dependency with version 1.10. However, the production source code of the project requires an
API from Commons Codec 1.9 which is not available in 1.10 anymore. A dependency version can be
enforced by declaring it in the build script and setting Ext er nal Dependency. set For ce(bool ean) totrt

Page 386 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:exclude(java.util.Map)
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://hc.apache.org/httpcomponents-client-ga/
https://commons.apache.org/proper/commons-codec/
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/ExternalDependency.html#setForce-boolean-

Example 324. Enforcing a dependency version

buil d. gradl e
dependenci es {
i npl ement ati on 'org. apache. htt pconponents: httpclient:4.5.4
i mpl erent ati on(' conmons- codec: commons- codec: 1. 9") {
force = true

If the project requires a specific version of a dependency on a configuration-level then it can be achieved by
calling the method Resol uti onStrat egy. force(java. |l ang. Object[]).

Example 325. Enforcing a dependency version on the configuration-level

bui | d. gradl e
configurations {
conpi | eCl asspat h {
resol utionStrategy.force ' conmons-codec: cormons- codec: 1. 9'

dependenci es {
i npl ement ati on ' org. apache. htt pconponents: httpclient:4.5.4

8§
Disabling resolution of transitive dependencies

By default Gradle resolves all transitive dependencies specified by the dependency metadata. Sometimes
this behavior may not be desirable e.g. if the metadata is incorrect or defines a large graph of transitive
dependencies. You can tell Gradle to disable transitive dependency management for a dependency by
setting Mbdul eDependency. set Transi ti ve(bool ean) to true. As a result only the main artifact will
be resolved for the declared dependency.

Example 326. Disabling transitive dependency resolution for a declared dependency

bui I d. gradl e
dependenci es {
i mpl emrent ati on(' com googl e. guava: guava: 23.0"') {
transitive = fal se

Note: Disabling transitive dependency resolution will likely require you to declare the necessary
runtime dependencies in your build script which otherwise would have been resolved automatically.
Not doing so might lead to runtime classpath issues.

Page 387 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:force(java.lang.Object[])
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/ModuleDependency.html#setTransitive-boolean-

A project can decide to disable transitive dependency resolution completely. You either don’t want to rely on
the metadata published to the consumed repositories or you want to gain full control over the dependencies
in your graph. For more information, see Conf i gur ati on. set Transi ti ve(bool ean).

Example 327. Disabling transitive dependency resolution on the configuration-level

buil d. gradl e
configurations.all ({
transitive = fal se

dependenci es {
i npl ementation ' com googl e. guava: guava: 23. 0

8§
Importing version recommendations from a Maven BOM

Gradle provides support for importing bill of materials (BOM) files, which are effectively . pomfiles that use <c
to control the dependency versions of direct and transitive dependencies. The BOM support in Gradle works
similar to using <scope>i nport </ scope> when depending on a BOM in Maven. In Gradle however, it is
done via a regular dependency declaration on the BOM:

Example 328. Depending on a BOM to import its dependency constraints

buil d. gradl e
dependenci es {
/[l inport a BOM
i mpl ementation 'org. springfranmework. boot: spri ng-boot - dependenci es: 1. 5. 8. RELE

/1 define dependencies without versions
i npl ement ati on ' com googl e. code. gson: gson'
i mpl ementation ' dondj : domdj "’

In the example, the versions of gson and don#j are provided by the Spring Boot BOM. This way, if you are
developing for a platform like Spring Boot, you do not have to declare any versions yourself but can rely on
the versions the platform provides.

Gradle treats all entries in the <dependencyManagenent > block of a BOM similar to Gradle’s dependency
constraints. This means that any version defined in the <dependencyManagenent > block can impact the
dependency resolution result. In order to qualify as a BOM, a . pomfile needs to have <packagi hg>ponx/ p
set.

Note: Importing dependency constraints from Maven BOMs is active by default with Gradle 5.0+.
For using it in Gradle 4.6+, you need to activate it by adding enabl eFeat ur ePrevi ew(' | MPROVED F

Page 388 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/Configuration.html#setTransitive-boolean-
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Importing_Dependencies

in settings.gradle.

Page 389 of 807

Dependency Locking

Use of dynamic dependency versions (e.g. 1. + or [1. 0, 2. 0)) makes builds non-deterministic. This causes
builds to break without any obvious change, and worse, can be caused by a transitive dependency that the
build author has no control over.

To achieve reproducible builds, it is necessary to lock versions of dependencies and transitive
dependencies such that a build with the same inputs will always resolve the same module versions. This is
called dependency locking.

It enables, amongst others, the following scenarios:

Companies dealing with multi repositories no longer need to rely on - SNAPSHOT or changing dependencies,
which sometimes result in cascading failures when a dependency introduces a bug or incompatibility. Now
dependencies can be declared against major or minor version range, enabling to test with the latest versions
on Cl while leveraging locking for stable developer builds.

Teams that want to always use the latest of their dependencies can use dynamic versions, locking their
dependencies only for releases. The release tag will contain the lock states, allowing that build to be fully
reproducible when bug fixes need to be developed.

Locking is enabled per dependency configuration. Once enabled, you must create an initial lock state. It will
cause Gradle to verify that resolution results do not change, resulting in the same selected dependencies
even if newer versions are produced. Modifications to your build that would impact the resolved set of
dependencies will cause it to fail. This makes sure that changes, either in published dependencies or build
definitions, do not alter resolution without adapting the lock state.

Note: Dependency locking makes sense only with dynamic versions. It will have no impact on
changing versions (like - SNAPSHOT) whose coordinates remain the same, though the content may
change. Gradle will even emit a warning when persisting lock state and changing dependencies are
present in the resolution result.

8§
Enabling locking on configurations

Locking of a configuration happens through the Resol uti onSt rat egy:

Page 390 of 807

https://reproducible-builds.org/
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Example 329. Locking a specific configuration

buil d. gradl e
configurations {
conpi | eCl asspat h {
resol utionStrategy. acti vat eDependencyLocki ng()

Or the following, as a way to lock all configurations:
Example 330. Locking all configurations

buil d. gradl e
dependencyLocki ng {
| ockAl'l Configurations()

Note: Only configurations that can be resolved will have lock state attached to them. Applying
locking on non resolvable-configurations is simply a no-op.

8§
Generating and updating dependency locks

In order to generate or update lock state, you specify the --write-1ocks command line argument in
addition to the normal tasks that would trigger configurations to be resolved. This will cause the creation of
lock state for each resolved configuration in that build execution. Note that if lock state existed previously, it
is overwritten.

8
Lock all configurations in one build execution

When locking multiple configurations, you may want to lock them all at once, during a single build execution.
For this, you have two options:

Run gradl e dependencies --write-I|ocks. This will effectively lock all resolvable configurations that
have locking enabled. Note that in a multi project setup, dependenci es only is executed on one project,
the root one in this case.

Declare a custom task that will resolve all configurations

Page 391 of 807

Example 331. Resolving all configurations

buil d. gradl e
task resol veAndLockAl | {
doFirst {
assert gradle.startParaneter.witeDependencylLocks

}
doLast {

configurations.findAll {
/1 Add any customfiltering on the configurations to be resolved
i t.canBeResol ved

}.each { it.resolve() }

That second option, with proper choosing of configurations, can be the only option in the native world, where
not all configurations can be resolved on a single platform.

8
Lock state location and format

Lock state will be preserved in a file located in the folder gr adl e/ dependency- | ocks inside the project or
subproject directory. Each file is named by the configuration it locks and has the | ockf i | e extension.

The content of the file is a module notation per line, with a header giving some context. Module notations are
ordered alphabetically, to ease diffs.

Example 332. Lockfile content

gr adl e/ dependency-1 ocks/ conpi | eCl asspat h. | ockfile

This is a Gadle generated file for dependency | ocking.
Manual edits can break the build and are not advised.
This file is expected to be part of source control.
or g. spri ngframewor k: spri ng- beans: 5. 0. 5. RELEASE

org. spri ngframework: spring-core: 5. 0.5. RELEASE

org. spri ngframewor k: spring-jcl:5.0.5. RELEASE

which matches the following dependency declaration:
Example 333. Dynamic dependency declaration

bui | d. gradl e
dependenci es {
i mpl ementation 'org.springfranmework: spring-beans:[5.0,6.0)

Page 392 of 807

8§
Running a build with lock state present

The moment a build needs to resolve a configuration that has locking enabled and it finds a matching lock
state, it will use it to verify that the given configuration still resolves the same versions.

A successful build indicates that the same dependencies are used as stored in the lock state, regardless if
new versions matching the dynamic selector have been produced.

The complete validation is as follows:

Existing entries in the lock state must be matched in the build

A version mismatch or missing resolved module causes a build failure

Resolution result must not contain extra dependencies compared to the lock state

8§
Selectively updating lock state entries

In order to update only specific modules of a configuration, you can use the - - updat e-| ocks command
line flag. It takes a comma (,) separated list of module notations. In this mode, the existing lock state is still
used as input to resolution, filtering out the modules targeted by the update.

gradl e cl asses --update-|ocks org.apache. conmons: conmons- | ang3, org. sl f4j:slf4j-i

Wildcards, indicated with *, can be used in the group or module name. They can be the only character or
appear at the end of the group or module respectively. The following wildcard notation examples are valid:

or g. apache. commons: *: will let all modules belonging to group or g. apache. conmons update
*: guava: will let all modules named guava, whatever their group, update

org. springfranmewor k. spri ng*: spri ng*: will let all modules having their group starting with or g. spri
and name starting with spri ng update

Note: The resolution may cause other module versions to update, as dictated by the Gradle
resolution rules.

8§
Disabling dependency locking

Make sure that the configuration for which you no longer want locking is not configured with locking.
Remove the file matching the configurations where you no longer want locking.

If you only perform the second step above, then locking will effectively no longer be applied. However, if that

Page 393 of 807

configuration happens to be resolved in the future at a time where lock state is persisted, it will once again

be locked.

8§
Locking limitations

It is currently not possible to lock the cl asspat h configuration used for script plugins.

Locking can not yet be applied to source dependencies.

8§
Nebula locking plugin

This feature is inspired by the Nebula Gradle dependency lock plugin.

If you were using that plugin and want to migrate, see the Nebula documentation.

Page 394 of 807

https://github.com/nebula-plugins/gradle-dependency-lock-plugin

Working with Dependencies

Gradle provides an extensive API for navigating, inspecting and post-processing metadata and artifacts of
resolved dependencies.

The main entry point for this functionality is the Conf i gur at i on API. To learn more about the fundamentals
of configurations, see Managing Dependency Configurations.

8§
Iterating over dependencies assigned to a configuration

Sometimes you'll want to implement logic based on the dependencies declared in the build script of a project
e.g. to inspect them in a Gradle plugin. You can iterate over the set of dependencies assigned to a
configuration with the help of the method Confi gur ati on. get Dependenci es() . Alternatively, you can
also use Configuration.getAll Dependencies() to include the dependencies declared in
superconfigurations. These APIs only return the declared dependencies and do not trigger dependency
resolution. Therefore, the dependency sets do not include transitive dependencies. Calling the APIs during
the configuration phase of the build lifecycle does not result in a significant performance impact.

Example 334. Iterating over the dependencies assigned to a configuration

bui | d. gradl e
task iterateDecl aredDependenci es {
doLast {

DependencySet dependencySet = confi gurations.scm dependenci es

dependencySet . each {
| ogger.quiet "$it.group:$it.nane: $it.version"

§
Iterating over artifacts resolved for a module

None of the dependency reporting helps you with inspecting or further processing the underlying, resolved
artifacts of a module. A typical use case for accessing the artifacts is to copy them into a specific directory or
filter out files of interest based on a specific file extension.

Page 395 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:dependencies
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:allDependencies

You can iterate over the complete set of artifacts resolved for a module with the help of the method
Fil eCol | ection.getFiles().Every file instance returned from the method points to its location in the
dependency cache. Using this method on a Conf i gur at i on instance is possible as the interface extends Fi

Example 335. Iterating over the artifacts resolved for a module

buil d. gradl e
task iterateResol vedArtifacts {
dependsOn configurations.scm

doLast {
configurations.scmeach {
| ogger. quiet it.absolutePath

}
}
}
Note: Iterating over the artifacts of a module automatically resolves the configuration. A resolved
configuration becomes immutable and cannot add or remove dependencies. If needed you can copy
a configuration for further modification via Conf i gur ati on. copy() .
8§

Navigating the dependency graph

As a plugin developer, you may want to navigate the full graph of dependencies assigned to a configuration
e.g. for turning the dependency graph into a visualization. You can access the full graph of dependencies for
a configuration with the help of the Resol ut i onResul t .

The resolution result provides various methods for accessing the resolved and unresolved dependencies.
For demonstration purposes the sample code uses Resol uti onResul t. get Root () to access the root
node the resolved dependency graph. Each dependency of this component returns an instance of
Resol vedDependencyResul t or Unresol vedDependencyResul t providing detailed information about
the node.

Page 396 of 807

http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileCollection.html#getFiles--
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/file/FileCollection.html#getFiles--
http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:copy()
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html#getRoot--
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/result/ResolvedDependencyResult.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/result/ResolvedDependencyResult.html
http://www.gradle.org/docs/4.9/javadoc/org/gradle/api/artifacts/result/UnresolvedDependencyResult.html

Example 336. Walking the resolved and unresolved dependencies of a configuration

buil d. gradl e
task wal kDependencyG aph(type: DependencyG aphWal k) {
dependsOn configurations.scm

cl ass DependencyG aphWal k ext ends Def aul t Task {
@askActi on
voi d wal k() {
Configuration configuration = project.configurations.scm

Resol uti onResult resol utionResult = configuration.incom ng.resol utionResi

Resol vedConponent Result root = resol uti onResult.root
| ogger. qui et configuration. nanme
traver seDependenci es(0, root. dependencies)

private void traverseDependencies(int |evel, Set<? extends DependencyResult>

for (DependencyResult result : results) {
if (result instanceof Resol vedDependencyResult) {
Resol vedConponent Resul t conponent Result = result.sel ected
Conponent I denti fi er conponentldentifier = conponentResult.id

String node = cal cul atel ndentation(level) + "- $conponent!|dentifi

| ogger. qui et node

traver seDependenci es(l evel + 1, conponent Resul t. dependenci es)
} else if (result instanceof Unresol vedDependencyResult) ({

Conponent Sel ect or conponent Sel ector = result. attenpted

String node = cal cul atel ndentation(level) + "-

| ogger. qui et node

}
}
}
private String cal cul atel ndentation(int level) {
' " * |evel
}
}
§

Accessing a module’s metadata file

$conponent Sel ect ol

As part of the dependency resolution process, Gradle downloads the metadata file of a module and stores it

in the dependency cache. Some organizations enforce strong restrictions on accessing repositories outside

of internal network. Instead of downloading artifacts, those organizations prefer to provide an "installable"

Gradle cache with all artifacts contained in it to fulfill the build’s dependency requirements.

The artifact query API provides access to the raw files of a module. Currently, it allows getting a handle to

Page 397 of 807

the metadata file and some selected, additional artifacts (e.g. a JVM-based module’s source and Javadoc
files). The main API entry pointis Art i f act Resol uti onQuery.

Let's say you wanted to post-process the metadata file of a Maven module. The group, name and version of
the module component serve as input to the artifact resolution query. After executing the query, you get a
handle to all components that match the criteria and their underlying files. Additionally, it's very easy to
post-process the metadata file. The example code uses Groovy’s XmiSlurper to ask for POM element
values.

Example 337. Accessing a Maven module's metadata artifact

bui | d. gradl e
apply plugin: 'java-library'

repositories {
mavenCentral ()

dependenci es {
i mpl erent ati on ' com googl e. guava: guava: 18. 0'

task printGuavaMet adata {
dependsOn configurations. conpil ed asspath

doLast {
Artifact Resol uti onQuery query = dependenci es. createArtifactResol uti onQuel
. forMdul e(' com googl e. guava', 'guava', '18.0")
.wWithArtifacts(MawvenMdul e, MavenPonArti fact)
ArtifactResolutionResult result = query.execute()

for(conponent in result.resol vedConponents) {
Set <Artifact Result> mavenPomArtifacts = conponent.getArtifacts(Mvenl
ArtifactResult guavaPomArtifact = mavenPomArtifacts.find { it.file.ni
def xm = new Xm Sl urper (). parse(guavaPonArtifact.file)
println guavaPomArtifact.file
println xm.nane
println xm .description

Page 398 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.query.ArtifactResolutionQuery.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html

Customizing Dependency Resolution
Behavior

There are a number of ways that you can influence how Gradle resolves dependencies. All of these
mechanisms offer an API to define a reason for why they are used. Providing reasons makes dependency
resolution results more understandable. If any customization influenced the resolution result, the provided
reason will show up in dependency insight report.

8§
Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. The feature currently offers
the ability to change the group, name and/or version of a requested dependency, allowing a dependency to
be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and
can be used to implement all sorts of advanced patterns in dependency management. Some of these
patterns are outlined below. For more information and code samples see the Resol ut i onSt r at egy class
in the APl documentation.

§
Modelling releasable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested
and published together. These libraries form a "releasable unit", designed and intended to be used as a
whole. It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:
nodul e- a depends onr el easabl e-unit: part-one: 1.0
nodul e- b depends onrel easabl e-unit:part-two: 1.1

A build depending on both nodul e- a and nodul e- b will obtain different versions of libraries within the
releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a releasable

Page 399 of 807

http://www.gradle.org/docs/4.9/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

unit defined by all libraries that have or g. gradl e group. We can force all of these libraries to use a

consistent version:
Example 338. Forcing a consistent version for a group of libraries

buil d. gradl e
configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == '"org.gradle') {
details.useVersion '1.4
detail s. because ' APl breakage in higher versions

§
Implementing a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is
maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

In the build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: def aul t .

The def aul t version is resolved to a specific version via a dependency resolve rule, which looks up the

version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all builds
within the organisation.

Example 339. Using a custom versioning scheme

buil d. gradl e
configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested. group, di
detail s. useVersi on version.version
det ai | s. because versi on. because

def findDefaultVersionlnCatal og(String group, String nane) {
/I some custom |l ogic that resolves the default version into a specific versiol
[version: "1.0", because: 'tested by QA']

Page 400 of 807

8
Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing a replacement version. This can be useful if a certain dependency version is broken and should
not be used, where a dependency resolve rule causes this version to be replaced with a known good
version. One example of a broken module is one that declares a dependency on a library that cannot be
found in any of the public repositories, but there are many other reasons why a particular module version is
unwanted and a different version is preferred.

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preference to 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that this is different from a forced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy would
still select version 1. 3 if this version was also pulled transitively.

Example 340. Blacklisting a version with a replacement

buil d. gradl e
configurations.all ({
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && details.requested. nane
details.useVersion '1.2. 1
details. because 'fixes critical bug in 1.2

8
Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examples include using gr oovy in place of gr oovy- al | , or using | og4j - over - sl f 4] instead of | 0og4j .
You can perform these substitutions using dependency resolve rules:

Page 401 of 807

Example 341. Changing dependency group and/or name during resolution

buil d. gradl e
configurations.all ({
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested. name == 'groovy-all"') {
detail s. useTarget group: details.requested.group, nane: 'groovy', ve
detail s. because "prefer 'groovy' over 'groovy-all"'"

}
if (details.requested. name == 'l o0g4]"') {
details.useTarget "org.slf4j:1og4j-over-slf4j:1.7.10"
detai |l s. because "prefer 'log4j-over-slif4j' 1.7.10 over any version of
}
}
}
8§

Using dependency substitution rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of
dependency resolve rules can be implemented with dependency substitution rules. They allow project and
module dependencies to be transparently substituted with specified replacements. Unlike dependency
resolve rules, dependency substitution rules allow project and module dependencies to be substituted
interchangeably.

Adding a dependency substitution rule to a configuration changes the timing of when that configuration is
resolved. Instead of being resolved on first use, the configuration is instead resolved when the task graph is
being constructed. This can have unexpected consequences if the configuration is being further modified
during task execution, or if the configuration relies on modules that are published during execution of another
task.

To explain:

A Confi guration can be declared as an input to any Task, and that configuration can include project
dependencies when it is resolved.

If a project dependency is an input to a Task (via a configuration), then tasks to build the project artifacts
must be added to the task dependencies.

In order to determine the project dependencies that are inputs to a task, Gradle needs to resolve the Confi g

inputs.

Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to perform this
resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency will

Page 402 of 807

neve