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Chapter 1

Introduction to the PERMUT Package

All functions defined in this package deal only with finite groups. Moreover, some of the functions
assume that the orders of all subgroups are easily computable and that the decomposition of the order
of a group as a product of prime numbers can be done in a reasonable time.

The package PERMUT contains some functions to deal with permutability in finite groups. It in-
cludes functions to test some subgroup embedding properties related to permutability, like permutabil-
ity or Sylow permutability. It also includes some functions to check whether a group belongs to the
classes of T-groups, PT-groups, and PST-groups, which are the classes of groups in which normality,
permutability, and Sylow permutability, respectively, are transitive. These properties and classes of
groups have been widely studied during the last years. Most of them are described in [BBERA10].

The algorithms for T-groups, PT-groups, and PST-groups of this package use some interesting lo-
cal descriptions of groups in these classes, that is, given in terms of some information related to the
primes p dividing their order, usually by looking at p-subgroups or p-chief factors. These charac-
terisations show that the only difference between all three classes of groups in the soluble universe
corresponds to the Sylow structure. Nevertheless, for the sake of completeness, we also provide func-
tions that use directly the definition of these classes. In the case of T-groups and PST-groups, as well
as for soluble PT-groups, we reduce the test to subnormal subgroups of defect 2 (see [BBERR07],
[BBERR09], and [BBBC+09]). Of course, to do this we must introduce some functions to check
whether two subgroups permute and whether a subgroup is permutable or S-permutable.

Some of the definitions of group-related concepts appear more than once in this manual, in the
description of different functions. Although these repetitions may seem unnecessary when reading the
whole manual, we hope that they benefit users who read the online help in GAP.

In order to obtain easily counterexamples which show that a group or a subgroup does not satisfy
a certain property, we have introduced what we have called “One” functions, which store such coun-
terexamples. In some cases, the property can be checked by proving that these counterexamples do
not exist.

This package requires the Format package by B. Eick and C. R. B. Wright (see [EW03]), because
it uses the functions PResidual (FORMAT: PResidual) and SystemNormalizer (FORMAT: Sys-
temNormalizer), which are defined there. Some of the examples in this manual use the library of
groups of small order.

The mathematical foundations of the algorithms presented in this package have been described in
[BBCLER13].

The authors acknowledge the support of the grants MTM2010-19938-C03-01 and MTM2014-
54707-C3-1-P from the Ministerio de Economía y Competitividad, Spanish Government (all authors),
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the grant PROMETEO/2017/057 from the Generalitat, Valencian Goverment (A. Ballester-Bolinches
and R. Esteban-Romero), the grant 11271085 from National Natural Science Foundation of China
(A. Ballester-Bolinches) and the predoctoral grant AP2010-2764 from the Ministerio de Educación,
Spanish Government (E. Cosme-Llópez). The authors are also indebted to the members of the GAP
council, especially Leonard Soicher, Alice Niemeyer, Max Horn, and Alexander Konovalov, as well
as to the anonymous referees, for their comments which have helped us to improve the package and
its documentation.



Chapter 2

Installation and Help of the PERMUT
Package

Since all functions of this package are written in the GAP language, it is enough to unpack the archive
file in a directory in the pkg hierarchy of your GAP 4 distribution. It has been tested on version 4.7.4
of GAP.

The PERMUT package requires that the package Format [EW03] be installed on the system, be-
cause it uses the functions PResidual (FORMAT: PResidual) and SystemNormalizer (FORMAT:
SystemNormalizer) which are defined there. The Format package can be downloaded from the GAP
web page (https://www.gap-system.org).

The PERMUT package can be loaded with
Example

gap> LoadPackage("permut");
-----------------------------------------------------------------------------
Loading FORMAT 1.3 (Formations of Finite Soluble Groups)
by Bettina Eick (http://www.icm.tu-bs.de/~beick) and

Charles R.B. Wright (http://www.uoregon.edu/~wright).
Homepage: http://www.uoregon.edu/~wright/RESEARCH/format/
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
Loading permut 2.0.1 (PERMUT: A package to deal with permutability in finite groups)
by Adolfo Ballester-Bolinches (Adolfo.Ballester@uv.es),

Enric Cosme-Ll\’opez (https://www.uv.es/coslloen), and
Ram\’on Esteban-Romero (https://www.uv.es/estebanr).

Homepage: https://gap-packages.github.io/permut/
-----------------------------------------------------------------------------
true

Suggestions, comments, and bug reports can be sent to the email address Ramon.Esteban@uv.es.
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Chapter 3

Permutability of Subgroups in Finite
Groups

This chapter describes functions to check permutability of subgroups in a given group. First we
present a function to check whether a subgroup permutes with another one, then we present functions
to test whether a subgroup permutes with the members of a given family of subgroups, and finally we
introduce some other subgroup embedding properties related to permutability.

3.1 Permutability functions

3.1.1 ArePermutableSubgroups

. ArePermutableSubgroups([G, ]U, V) (function)

This function returns true if U and V permute in G . The groups U and V must be subgroups of
G . The subgroups U and V permute when UV = VU . This is equivalent to affirming that UV is a
subgroup of G.

This is done by checking that the order of 〈U,V 〉 is the order of their Frobenius product UV ,
that is, |U ||V |/|U ∩V |. Hence the performance of this function depends strongly on the existence of
good algorithms to compute the intersection of two subgroups and, of course, the order of a subgroup.
Shorthands are provided for the cases in which one of U and V is a subgroup of the other one or U or
V are permutable in a common supergroup.

In the version with two arguments, U and V must have a common parent or ClosureGroup( U,
V ) (see ClosureGroup (Reference: ClosureGroup)) is called to construct a common supergroup
for U and V .

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> a:=Subgroup(g,[(1,2)(3,4)]);
Group([ (1,2)(3,4) ])
gap> b:=Subgroup(g,[(1,2,3)]);
Group([ (1,2,3) ])
gap> c:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> ArePermutableSubgroups(g,a,b);
false
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gap> ArePermutableSubgroups(g,a,c);
true
gap> ArePermutableSubgroups(g,b,c);
true
gap> ArePermutableSubgroups(b,c);
true
gap> ArePermutableSubgroups(b,a);
false

3.2 Embedding properties related to permutability

In the following we describe some functions which allow us to test whether a subgroup permutes with
the members of some families of subgroups. We pay special attention to the families of all subgroups
and all Sylow subgroups of the group. In some cases, we have introduced some “One” functions,
which give an element or a subgroup in the relevant family of subgroups of the group which shows
that the given property fails, or fail otherwise.

3.2.1 PermutMaxTries

. PermutMaxTries (global variable)

This variable contains the maximum number of random attempts of permutability checks before
trying general deterministic methods in the functions IsPermutable (3.2.2) and IsIwasawaSylow
(5.3.5). Its default value is 10.

3.2.2 IsPermutable

. IsPermutable(G, H) (operation)

. IsPermutableInParent(H) (property)

This property returns true if the subgroup H is permutable in G , otherwise it returns false. We
say that a subgroup H of a group G is permutable in G if H permutes with all subgroups of G.

If the attribute OneSubgroupNotPermutingWithInParent (3.2.3) has been set, it is used if pos-
sible. Otherwise, the algorithm checks looks for a cyclic subgroup not permuting with H . The number
of such cyclic subgroups is controlled by the variable PermutMaxTries (3.2.1), by default, 10. If H
permutes with all these subgroups, then the algorithm checks whether H is hypercentrally embedded
in G and that the Sylow p-subgroups of H/HG permute with all cyclic p-subgroups of G/HG for each
prime p dividing the order of G/HG. This is a sufficient condition for permutability.

3.2.3 OneSubgroupNotPermutingWith

. OneSubgroupNotPermutingWith(G, H) (function)

. OneSubgroupNotPermutingWithInParent(H) (attribute)

This attribute finds a cyclic subgroup of G which does not permute with H , that is, a subgroup
which shows that H is not permutable in G . Recall that a subgroup H of a group G is permutable in G
if H permutes with all subgroups of G.



PERMUT 8

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> a:=Subgroup(g,[(1,2)(3,4)]);
Group([ (1,2)(3,4) ])
gap> b:=Subgroup(g,[(1,2,3)]);
Group([ (1,2,3) ])
gap> c:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> IsPermutable(g,a);
false
gap> IsPermutable(g,b);
false
gap> IsPermutable(g,c);
false
gap> OneSubgroupNotPermutingWith(g,b);
Group([ (1,3,4) ])
gap> v:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);
Group([ (1,2)(3,4), (1,3)(2,4) ])
gap> OneSubgroupNotPermutingWith(g,v);
fail
gap> IsPermutable(g,b);
false
gap> IsPermutable(g,v);
true

Example
gap> g:=SmallGroup(16,6);
<pc group of size 16 with 4 generators>
gap> h:=Subgroup(g,[g.2]);
Group([ f2 ])
gap> IsNormal(g,h);
false
gap> IsPermutable(g,h);
true

Sometimes one does not require a subgroup to permute with all subgroups of the group, but only
with a selected family of subgroups of the group. The general case is the following.

3.2.4 IsFPermutable

. IsFPermutable(G, H, f) (function)

In this function, H is a subgroup of G and f must be a list of subgroups of G . It returns true if H
permutes with all members of f and false otherwise.

This function uses the function OneFSubgroupNotPermutingWith (3.2.5). Hence it tries to
use the values of IsPermutableInParent (3.2.2) and OneSubgroupNotPermutingWithInParent
(3.2.3) if one of them is set, and if it returns false it tries to set the values of IsPermutableInParent
(3.2.2) and OneSubgroupNotPermutingWithInParent (3.2.3).
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3.2.5 OneFSubgroupNotPermutingWith

. OneFSubgroupNotPermutingWith(G, H, f) (operation)

In this operation, H is a subgroup of G and f must be a list of subgroups of G . It returns a subgroup
in f not permuting with H if such a subgroup exists, and fail otherwise.

This function tries to use the values of IsPermutableInParent (3.2.2) and
OneSubgroupNotPermutingWithInParent (3.2.3) if one of them is set. If it re-
turns fail, then it tries to set the value of IsPermutableInParent (3.2.2) and
OneSubgroupNotPermutingWithInParent (3.2.3).

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> a:=Subgroup(g,[(1,2,3,4),(1,3)]);
Group([ (1,2,3,4), (1,3) ])
gap> Size(a);
8
gap> OneFSubgroupNotPermutingWith(g,a,MaximalSubgroups(g));
Group([ (1,2), (3,4), (1,3)(2,4) ])
gap> IsFPermutable(g,a,MaximalSubgroups(g));
false
gap> HasIsPermutableInParent(a);
true
gap> IsPermutableInParent(a);
false
gap> HasOneSubgroupNotPermutingWithInParent(a);
true
gap> OneSubgroupNotPermutingWithInParent(a);
Group([ (1,2), (3,4), (1,3)(2,4) ])
gap> IsFPermutable(g,a,AllSubnormalSubgroups(g));
true
gap> OneFSubgroupNotPermutingWith(g,a,AllSubnormalSubgroups(g));
fail
gap> sylows:=g->Union(List(SylowSubgroups(g),
> t->ConjugacyClassSubgroups(g,t)));
function( g ) ... end
gap> OneFSubgroupNotPermutingWith(g,a,sylows(g));
Group([ (3,4), (1,4)(2,3), (1,3)(2,4) ])

The following functions can be considered as particular cases of the previous function for some
subgroup embedding functors. However, they can be stored as “in parent” attributes or properties and
in some cases we have tried to give more efficient code.

3.2.6 IsSPermutable

. IsSPermutable(G, H) (operation)

. IsSPermutableInParent(H) (property)

This operation returns true if a subgroup H of G is S-permutable in G , that is, H permutes with all
Sylow subgroups of G , and returns false otherwise.
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Example
gap> g:=SmallGroup(8,3);
<pc group of size 8 with 3 generators>
gap> IsSPermutable(g,Subgroup(g,[g.1]));
true
gap> IsPermutable(g,Subgroup(g,[g.1]));
false

3.2.7 OneSylowSubgroupNotPermutingWith

. OneSylowSubgroupNotPermutingWith(G, H) (operation)

. OneSylowSubgroupNotPermutingWithInParent(H) (attribute)

The argument H must be a subgroup of G . If H is S-permutable in G , then it returns fail. Other-
wise, it returns a Sylow subgroup of G which does not permute with H . We say that a subgroup H of
a group G is S-permutable in G if H permutes with all Sylow subgroups of G.

Example
gap> g:=SymmetricGroup(4);;
gap> a:=Subgroup(g,[(1,2)(3,4)]);;
gap> OneSylowSubgroupNotPermutingWith(g,a);
Group([ (2,4,3) ])

3.2.8 IsSNPermutable

. IsSNPermutable(G, H) (operation)

. IsSNPermutableInParent(H) (attribute)

This operation returns true if H permutes with all system normalisers of G , and false otherwise.
Here G must be a soluble group and H must be a subgroup of G . If the function is applied to an
insoluble group, it gives an error.

3.2.9 OneSystemNormaliserNotPermutingWith

. OneSystemNormaliserNotPermutingWith(G, H) (operation)

. OneSystemNormaliserNotPermutingWithInParent(H) (attribute)

Here G must be a soluble group and H must be a subgroup of G . If H permutes with all system
normalisers of G , then this operation returns fail. Otherwise, it returns a system normaliser D of G
such that H does not permute with D. If the group G is not soluble, then it gives an error.

Example
gap> g:=Group((1,2,3),(4,5,6),(1,2));
Group([ (1,2,3), (4,5,6), (1,2) ])
gap> a:=Subgroup(g,[(1,2,3)(4,5,6)]);
Group([ (1,2,3)(4,5,6) ])
gap> IsSNPermutable(g,a);
true
gap> IsSPermutable(g,a);
false
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The next functions are not particular cases of IsFPermutable (3.2.4) or
OneFSubgroupNotPermutingWith (3.2.5), but we include them in the package because every
subgroup permuting with all its conjugates is subnormal (see [Fog97]).

3.2.10 IsConjugatePermutable

. IsConjugatePermutable(G, H) (operation)

. IsConjugatePermutableInParent(H) (property)

This operation takes the value true if H permutes with all its conjugates, and the value false
otherwise.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> a:=Subgroup(g,[(1,2)(3,4)]);
Group([ (1,2)(3,4) ])
gap> IsPermutable(g,a);
false
gap> IsConjugatePermutable(g,a);
true

3.2.11 OneConjugateSubgroupNotPermutingWith

. OneConjugateSubgroupNotPermutingWith(G, H) (operation)

. OneConjugateSubgroupNotPermutingWithInParent(H) (attribute)

This operation finds a conjugate subgroup of H which does not permute with H if such a subgroup
exists. If H permutes with all its conjugates, then this operation returns fail.

Example
gap> g:=SmallGroup(16,7);
<pc group of size 16 with 4 generators>
gap> h:=Subgroup(g,[g.1*g.4]);
Group([ f1*f4 ])
gap> IsConjugatePermutable(g,h);
false
gap> OneConjugateSubgroupNotPermutingWith(g,h);
Group([ f1*f3 ])

Next we introduce some subgroup embedding functions related to permutability which have
proved to be useful in some characterisations of soluble T-groups, PT-groups, and PST-groups. The
“One” functions return a value which proves that the corresponding subgroup embedding property is
false.

3.2.12 IsWeaklySPermutable

. IsWeaklySPermutable(G, H) (operation)

. IsWeaklySPermutableInParent(H) (property)

The value returned by this operation is true when H is a weakly S-permutable subgroup of G , that
is, H is S-permutable in 〈H,Hg〉 implies that H is S-permutable in 〈H,g〉, and false otherwise.
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3.2.13 OneElementShowingNotWeaklySPermutable

. OneElementShowingNotWeaklySPermutable(G, H) (operation)

. OneElementShowingNotWeaklySPermutableInParent(H) (attribute)

If H is a weakly S-permutable subgroup of G , then this operation returns fail. Otherwise, the
value returned by this operation is an element g ∈ G such that H is S-permutable in 〈H,Hg〉, but H
is not S-permutable in 〈H,g〉. A subgroup H of a group G is said to be weakly S-permutable if H is
S-permutable in 〈H,Hg〉 implies that H is S-permutable in 〈H,g〉.

3.2.14 IsWeaklyPermutable

. IsWeaklyPermutable(G, H) (operation)

. IsWeaklyPermutableInParent(H) (property)

This operation returns true if H is weakly permutable in G , and false otherwise. A subgroup H
of G is weakly permutable if the fact that H is S-permutable in 〈H,Hg〉, implies that H is S-permutable
in 〈H,g〉.

3.2.15 OneElementShowingNotWeaklyPermutable

. OneElementShowingNotWeaklyPermutable(G, H) (operation)

. OneElementShowingNotWeaklyPermutableInParent(H) (attribute)

If H is a weakly permutable subgroup of G , then this operation returns fail. Otherwise, the value
returned by this operation is an element g ∈ G such that H is permutable in 〈H,Hg〉, but H is not
permutable in 〈H,g〉. A subgroup H of a group G is said to be weakly permutable if the fact that H is
permutable in 〈H,Hg〉 implies that H is permutable in 〈H,g〉.

3.2.16 IsWeaklyNormal

. IsWeaklyNormal(G, H) (operation)

. IsWeaklyNormalInParent(H) (property)

This operation returns true if H is weakly normal in G , and false otherwise. A subgroup H of G
is weakly normal whenever if Hg ≤ NG(H), then g ∈ NG(H).

3.2.17 OneElementShowingNotWeaklyNormal

. OneElementShowingNotWeaklyNormal(G, H) (operation)

. OneElementShowingNotWeaklyNormalInParent(H) (attribute)

If H is a weakly normal subgruop of G , then this function returns fail. Otherwise, the value
returned by this operation is an element g such that Hg ≤ NG(H) is a subgroup of NG(H) but g /∈
NG(H).

Example
gap> g:=DihedralGroup(8);
<pc group of size 8 with 3 generators>
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gap> a:=Subgroup(g,[g.1]);
Group([ f1 ])
gap> IsWeaklySPermutable(g,a);
true
gap> IsWeaklyPermutable(g,a);
false
gap> x:=OneElementShowingNotWeaklyPermutable(g,a);
f2
gap> IsSubgroup(Normalizer(g,a),ConjugateSubgroup(a,x));
true
gap> x in Normalizer(g,a);
false

3.2.18 IsWithSubnormalizerCondition

. IsWithSubnormalizerCondition(G, H) (operation)

. IsWithSubnormalizerConditionInParent(H) (property)

. IsWithSubnormaliserCondition(G, H) (operation)

. IsWithSubnormaliserConditionInParent(H) (property)

This operation returns true if the subgroup H satisfies the subnormaliser condition in G, and
false otherwise.

A subgroup H is said to satisfy the subnormaliser condition in G if the condition that H is subnor-
mal in a subgroup K of G implies that H is normal in K.

3.2.19 OneSubgroupInWhichSubnormalNotNormal

. OneSubgroupInWhichSubnormalNotNormal(G, H) (operation)

. OneSubgroupInWhichSubnormalNotNormalInParent(H) (attribute)

This function returns a subgroup K of G such that H is subnormal in K and H is not normal in K,
if this subgroup exists; otherwise, it returns fail.

3.2.20 IsWithSubpermutizerCondition

. IsWithSubpermutizerCondition(G, H) (operation)

. IsWithSubpermutizerConditionInParent(H) (property)

. IsWithSubpermutiserCondition(G, H) (operation)

. IsWithSubpermutiserConditionInParent(H) (property)

This operation returns true if the subgroup H satisfies the subpermutiser condition in G, and
false otherwise.

A subgroup H is said to satisfy the subpermutiser condition in G if the condition that H is subnor-
mal in a subgroup K of G implies that H is permutable in K.



PERMUT 14

3.2.21 OneSubgroupInWhichSubnormalNotPermutable

. OneSubgroupInWhichSubnormalNotPermutable(G, H) (operation)

. OneSubgroupInWhichSubnormalNotPermutableInParent(H) (attribute)

This function returns a subgroup K of G such that H is subnormal in K and H is not permutable
in K if this subgroup exists; otherwise it returns fail.

3.2.22 IsWithSSubpermutizerCondition

. IsWithSSubpermutizerCondition(G, H) (operation)

. IsWithSSubpermutizerConditionInParent(H) (property)

. IsWithSSubpermutiserCondition(G, H) (operation)

. IsWithSSubpermutiserConditionInParent(H) (property)

This operation returns true if the subgroup H satisfies the S-subpermutiser condition in G, and
false otherwise.

A subgroup H is said to satisfy the S-subpermutiser condition in G if the condition that H is
subnormal in a subgroup K of G implies that H is S-permutable in K.

3.2.23 OneSubgroupInWhichSubnormalNotSPermutable

. OneSubgroupInWhichSubnormalNotSPermutable(G, H) (operation)

. OneSubgroupInWhichSubnormalNotSPermutableInParent(H) (attribute)

This function returns a subgroup K of G such that H is subnormal in K and H is not S-permutable
in K if such a subgroup exists; otherwise it returns fail.

Example
gap> g:=SmallGroup(324,160);
<pc group of size 324 with 6 generators>
gap> a:=Subgroup(g,[g.3,g.5]);
Group([ f3, f5 ])
gap> IsWithSubnormalizerCondition(g,a);
true
gap> IsWeaklyNormal(g,a);
false
gap> IsWeaklySPermutable(g,a);
false
gap> x:=OneElementShowingNotWeaklyNormal(g,a);
f1
gap> ConjugateSubgroup(a,x)=a;
false
gap> IsSubset(Normalizer(g,a),ConjugateSubgroup(a,x));
true



Chapter 4

T-groups, PT-groups, and PST-groups

This chapter explains the functions to check whether a given group is a T-group, a PT-group, or a
PST-group.

Recall that a group G is:

a T-group
when every subnormal subgroup of G is normal,

a PT-group
when every subnormal subgroup of G is permutable,

a PST-group
when every subnormal subgroup of G is S-permutable.

We also present functions to identify groups in other classes related to these ones.
The “One” functions are defined to provide examples of subgroups or elements showing that a

group theoretical property for a group or for a subgroup is false.

4.1 “One” functions

4.1.1 OneSubnormalNonNormalSubgroup

. OneSubnormalNonNormalSubgroup(G) (attribute)

OneSubnormalNonNormalSubgroup returns a subnormal subgroup of defect 2 which is not nor-
mal in the group G , if such a subgroup exists. If such a subgroup does not exist because the group is a
T-group, it returns fail.

A T-group is a group in which normality is transitive, that is, if H is a normal subgroup of K and
K is a normal subgroup of G, then H is a normal subgroup of G. Finite T-groups are the groups in
which every subnormal subgroup is normal.

This function tries to set the property IsTGroup (4.2.1) to true or false according to its result.
Example

gap> g:=SmallGroup(320,152);
<pc group of size 320 with 7 generators>
gap> x:=OneSubnormalNonNormalSubgroup(g);
Group([ f2, f3, f5, f7 ])

15
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gap> IsNormal(g,x);
false
gap> IsSubnormal(g,x);
true

4.1.2 OneSubnormalNonPermutableSubgroup

. OneSubnormalNonPermutableSubgroup(G) (attribute)

OneSubnormalNonPermutableSubgroup returns a subnormal subgroup which is not permutable
in the group G , if such a subgroup exists. If such a subgroup does not exist because the group is a
PT-group, it returns fail.

A group G is a PT-group when permutability is a transitive relation in G, that is, if H is a per-
mutable subgroup of K and K is a permutable subgroup of G, then H is a permutable subgroupof G.
This is equivalent in finite groups to affirming that every subnormal subgroup of G is permutable.

This function tries to set the property IsPTGroup (4.2.2) to true or false according to its result.
Since this function checks all subnormal subgroups for permutability, it may take a long time if

there are many subnormal subgroups.
Example

gap> g:=SmallGroup(320,152);
<pc group of size 320 with 7 generators>
gap> OneSubnormalNonPermutableSubgroup(g);
fail
gap> IsPTGroup(g);
true
gap> g:=SmallGroup(8,3);
<pc group of size 8 with 3 generators>
gap> OneSubnormalNonPermutableSubgroup(g);
Group([ f1*f3 ])

4.1.3 OneSubnormalNonSPermutableSubgroup

. OneSubnormalNonSPermutableSubgroup(G) (attribute)

OneSubnormalNonSPermutableSubgroup returns a subnormal subgroup of defect 2 which is not
S-permutable in G , if such a subgroup exists. If such a subgroup does not exist because the group is a
PST-group, it returns fail.

A group G is a PST-group when S-permutability (Sylow permutability) is a transitive relation in
G, that is, if H is an S-permutable subgroup of K and K is an S-permutable subgroup of G, then H is
an S-permutable subgroup of G. This is equivalent in finite groups to affirming that every subnormal
subgroup of G is S-permutable. By a result of Ballester-Bolinches, Esteban-Romero, and Ragland
[BBERR07], it is enough to check this last condition for all subnormal subgroups of defect 2.

This function tries to set the property IsPSTGroup (4.2.3) to true or false according to its result.
Example

gap> g:=AlternatingGroup(4);
Alt( [ 1 .. 4 ] )
gap> OneSubnormalNonSPermutableSubgroup(g);
Group([ (1,2)(3,4) ])
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4.1.4 OneSubnormalNonConjugatePermutableSubgroup

. OneSubnormalNonConjugatePermutableSubgroup(G) (attribute)

This function finds a subnormal subgroup H which does not permute with all its conjugates, if
such a subgroup exist; otherwise, it returns fail.

Example
gap> g:=AlternatingGroup(4);
Alt( [ 1 .. 4 ] )
gap> OneSubnormalNonConjugatePermutableSubgroup(g);
fail
gap> g:=DihedralGroup(16);
<pc group of size 16 with 4 generators>
gap> OneSubnormalNonConjugatePermutableSubgroup(g);
Group([ f1*f4 ])
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> OneSubnormalNonConjugatePermutableSubgroup(g);
fail
gap> OneSubnormalNonPermutableSubgroup(g);
Group([ (1,2)(3,4) ])

4.1.5 OneSubnormalNonSNPermutableSubgroup

. OneSubnormalNonSNPermutableSubgroup(G) (attribute)

This attribute returns a subnormal subgroup H of the soluble group G such that H does not permute
with a system normaliser if such a subgroup exists; otherwise, it returns fail. This system normaliser
is obtained with the function SystemNormalizer (FORMAT: SystemNormalizer) of the Format
package.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> OneSubnormalNonSNPermutableSubgroup(g);
Group([ (1,3)(2,4) ])
gap> g:=Group((1,2,3)(4,5,6),(1,2));
Group([ (1,2,3)(4,5,6), (1,2) ])
gap> OneSubnormalNonSNPermutableSubgroup(g);
fail
gap> OneSubnormalNonSPermutableSubgroup(g);
Group([ (1,2,3)(4,6,5) ])

4.2 Group properties related to permutability

The next function names correspond to properties.

4.2.1 IsTGroup

. IsTGroup(G) (property)
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This function returns true if G is a T-group, and false otherwise.
T-groups are the groups in which normality is a transitive relation, that is, if H is a subgroup of K

and K is a subgroup of G, then H is a subgroup of G. In the finite case, they are the groups in which
every subnormal subgroup is normal.

For soluble groups, the algorithm checks that for every prime p dividing its order, G is p-nilpotent
and has a Dedekind Sylow p-subgroup or G has an abelian Sylow p-subgroup P and every subgroup
of P is normal in NG(P).

For insoluble groups, the function checks whether the group is an SC-group with the function
IsSCGroup (7.1.4), because PT-groups are SC-groups. Since the methods for insoluble groups
depend on the computation of a chief series with the function ChiefSeries (Reference: Chief-
Series), they might not be available if the group is not given as a permutation group. Then
it is checked that every subnormal subgroup of defect 2 is normal with the help of the func-
tion OneSubnormalNonNormalSubgroup (4.1.1). The methods based on the ideas of [BBBH03a],
[BBBH03b], and [BH03] have not been implemented so far because they require the computation of
quotients by all normal subgroups, which could be a time-consuming task.

Example
gap> g:=SmallGroup(40,4);
<pc group of size 40 with 4 generators>
gap> IsTGroup(g);
true
gap> g:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> IsTGroup(g);
true

4.2.2 IsPTGroup

. IsPTGroup(G) (property)

This property takes the value true if G is a PT-group, and the value false otherwise.
For a soluble group G, the function checks whether for all primes p, G is p-nilpotent and has an

Iwasawa Sylow p-subgroup or G has an abelian Sylow p-subgroup and it satisfies the property Cp

(that is, every subgroup of a Sylow p-subgroup P of G is normal in the Sylow normaliser NG(P)).
For insoluble groups, the function checks that the group is an SC-group with the function

IsSCGroup (7.1.4), because PT-groups are SC-groups. Since the methods for insoluble groups de-
pend on the computation of a chief series with the function ChiefSeries (Reference: ChiefSeries),
they might not be available if the group is not given as a permutation group. Then it uses the function
OneSubnormalNonPermutableSubgroup (4.1.2) to check whether or not every subnormal subgroup
is permutable. The methods based on the ideas of [BBBH03a], [BBBH03b], and [BH03] have not
been implemented so far because they require the computation of quotients by all normal subgroups,
which could be a time-consuming task.

Example
gap> g:=SmallGroup(1323,37);
<pc group of size 1323 with 5 generators>
gap> IsPTGroup(g);
true
gap> IsTGroup(g);
false
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gap> OneSubnormalNonNormalSubgroup(g);
Group([ f2*f3, f4, f5 ])

4.2.3 IsPSTGroup

. IsPSTGroup(G) (property)

This function returns true if the group G is a PST-group, and false otherwise.
A finite group G is a PST-group if S-permutability (Sylow-permutability) is a transitive relation in

G, that is, if H is S-permutable in K and K is S-permutable in G, then H is S-permutable in G. This is
equivalent to affirming that every subnormal subgroup of G is S-permutable in G.

For a soluble group G, the function checks whether for all primes p, G is p-nilpotent, or G has
an abelian Sylow p-subgroup and G satisfies the property Cp (that is, every subgroup of a Sylow
p-subgroup P of G is normal in the Sylow normaliser NG(P))

For insoluble groups, the function checks whether the group is an SC-group with the function
IsSCGroup (7.1.4), because PST-groups are SC-groups. Since the methods for insoluble groups de-
pend on the computation of a chief series with the function ChiefSeries (Reference: ChiefSeries),
they might not be available if the group is not given as a permutation group. Then it uses the function
OneSubnormalNonSPermutableSubgroup (4.1.3) to check whether or not every subnormal subgroup
of defect 2 is S-permutable. The methods based on the ideas of [BBBH03a], [BBBH03b], and [BH03]
have not been implemented so far because they require the computation of quotients by all normal
subgroups, which could be a time-consuming task.

Example
gap> g:=SmallGroup(24,6);
<pc group of size 24 with 4 generators>
gap> IsPSTGroup(g);
true
gap> IsPTGroup(g);
false
gap> OneSubnormalNonPermutableSubgroup(g);
Group([ f1*f3, f4 ])
gap> g:=SmallGroup(24,6);
<pc group of size 24 with 4 generators>
gap> IsPSTGroup(g);
true
gap> IsPTGroup(g);
false
gap> OneSubnormalNonPermutableSubgroup(g);
Group([ f1*f3, f4 ])
gap> OneSubgroupNotPermutingWith(g,last);
Group([ f1*f2 ])

4.2.4 IsCPTGroup

. IsCPTGroup(G) (property)

This property returns true if every subnormal subgroup of G permutes with all its conjugates, and
false otherwise.
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Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> IsCPTGroup(g);
true
gap> IsPTGroup(g);
false
gap> IsPSTGroup(g);
false

4.2.5 IsPSNTGroup

. IsPSNTGroup(G) (property)

This property takes the value true if every subnormal subgroup of the soluble group G permutes
with every system normaliser of G, and false otherwise. If the function is applied to an insoluble
group, it gives an error.

Example
gap> g:=Group((1,2,3)(4,5,6),(1,3));
Group([ (1,2,3)(4,5,6), (1,3) ])
gap> IsPSTGroup(g);
false
gap> IsPSNTGroup(g);
true
gap> IsCPTGroup(g);
true
gap> g:=SmallGroup(16,7);
<pc group of size 16 with 4 generators>
gap> IsPSTGroup(g);
true
gap> IsCPTGroup(g);
false
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> IsPSNTGroup(g);
false
gap> IsCPTGroup(g);
true



Chapter 5

Local Functions in the PERMUT Package

In the study of permutability, the usage of local characterisations has become a useful tool to describe
the classes of T-groups, PT-groups, and PST-groups. In this chapter we present some local charac-
terisations of these classes and some functions which allow to check whether or not a group given in
GAP satisfies these conditions.

A local description of group-theoretical property consists of expressing it as the conjunction of
some properties depending on a prime p, usually related to the behaviour of p-elements, p-subgroups,
or p-chief factors, for all primes p.

5.1 A Local Function for Supersolubility

The GAP library does not contain methods to check whether a group G is p-supersoluble, where p is
a prime number. We include such a function in the PERMUT package.

5.1.1 IsPSupersolvable

. IsPSupersolvable(G, p) (function)

. IsPSupersoluble(G, p) (function)

This function returns true if the group G is p-supersoluble, and false otherwise, where p is
a prime number. This function is not defined in GAP. The method we have implemented for finite
groups includes checking whether the group is supersoluble (in this case, it must return true). If the
group is not soluble, it computes a chief series and checks whether all chief factors have order p or
have order not divisible by p.

Example
gap> g:=Group((1,2,3,4,5,6,7), (8,9,10,11,12,13,14), (15,16,17,18,19,20,21),
> (22,23,24,25,26,27,28), (29,30,31,32,33,34,35),
> (1,8,15,22,29)(2,9,16,23,30)(3,10,17,24,31)(4,11,18,25,32)(5,12,19,26,
> 33)(6,13,20,27,34)(7,14,21,28,35),
> (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)); #C7 wr S5
<permutation group with 7 generators>
gap> IsPSupersolvable(g,7);
false
gap> IsPSupersolvable(g,11);
true

21
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Example
gap> g:=DirectProduct(PSL(2,7),
> Group((1,2,3,4,5,6,7,8,9,10,11), (2,5,6,10,4)(3,9,11,8,7)));
Group([ (3,7,5)(4,8,6), (1,2,6)(3,4,8), (9,10,11,12,13,14,15,16,17,18,19),

(10,13,14,18,12)(11,17,19,16,15) ])
gap> IsPNilpotent(g,5);
true
gap> IsPNilpotent(g,11);
false
gap> IsPSupersolvable(g,11);
true
gap> IsPNilpotent(g,3);
false

5.2 Local functions for T-groups, PT-groups, and PST-groups

The following functions correspond to local description of the classes of soluble T-groups, PT-groups,
and PST-groups. Most of the known useful local characterisations of these classes of groups can be
seen to be equivalent to one of them, either in the universe or all finite groups or in the universe of
all finite p-soluble groups. By a local characterisation of a group-theoretical property R we mean a
group-theoretical property Rp for each prime p such that a group satisfies R if and only if it satisfies
Rp for all primes p.

5.2.1 IsCp

. IsCp(G, p) (function)

This function returns true if the group G satisfies the property Cp, where p is a prime number,
and false otherwise.

A group G satisfies Cp when every subgroup H of a Sylow p-subgroup P of G is normal in the
corresponding Sylow normaliser NG(P). This property was introduced by Robinson in [Rob68]. A
group G is a soluble PST-group if and only if it satisfies Cp for all primes p.

Example
gap> g:=AlternatingGroup(5);
Alt( [ 1 .. 5 ] )
gap> IsCp(g,3);
true
gap> IsCp(g,5);
true
gap> IsCp(g,7);
true
gap> IsCp(g,2);
false
gap> g:=SmallGroup(200,44); # semidirect product of Q8 with C5xC5
<pc group of size 200 with 5 generators>
gap> IsCp(g,5);
false
gap> IsCp(g,2);
true
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5.2.2 IsXp

. IsXp(G, p) (function)

This function returns true if G satisfies Xp, where p is a prime, and false otherwise.
A group G satisfies Xp when for every subgroup H of a Sylow p-subgroup P of G, H is permutable

in NG(P). This property was introduced by Beidleman, Brewster, and Robinson in [BBR99]. A group
G is a soluble PT-group if and only if G satisfies Xp for all primes p.

Example
gap> g:=SmallGroup(189,7);
<pc group of size 189 with 4 generators>
gap> IsXp(g,3);
true
gap> IsXp(g,7);
true
gap> IsPTGroup(g);
true
gap> IsCp(g,3);
false
gap> IsTGroup(g);
false

5.2.3 IsYp

. IsYp(G, p) (function)

This function returns true if G satisfies Yp, where p is a prime, and false otherwise.
A group G satisfies Xp when for every two subgroups H and K with H ≤ K, H is S-permutable in

NG(P). This property was introduced by Ballester-Bolinches and Esteban-Romero in [BBER02]. A
group G is a soluble PST-group if and only if G satisfies Yp for all primes p.

Example
gap> g:=SmallGroup(200,43); # semidirect product of D8 with C5xC5
<pc group of size 200 with 5 generators>
gap> IsCp(g,2);
false
gap> IsXp(g,2);
false
gap> IsYp(g,2);
true
gap> g:=Group((1,2,3)(4,5,6),(1,2));
Group([ (1,2,3)(4,5,6), (1,2) ])
gap> IsYp(g,3);
false
gap> IsYp(g,2);
true
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5.3 Auxiliary Functions for T-groups, PT-groups, and PST-groups

The following functions are used to check whether or not a group is a soluble T-group, PT-group, or
PST-group.

5.3.1 IsAbCp

. IsAbCp(G, p) (function)

This function returns true if G has an abelian Sylow p -subgroup p such that every subgroup of P
is normal in the Sylow normaliser NG(P), and false otherwise.

This function is used to characterise soluble PST-groups: a group G is a soluble PST-group if and
only if G satisfies Yp for all primes p, and a group G satisfies Yp if and only if G is p-nilpotent or G has
an abelian Sylow p-subgroup and satisfies Cp. A group G satisfies Cp if and only if every subgroup of
a Sylow p-subgroup P of G is normal in the Sylow normaliser NG(P). Therefore this function checks
whether G has an abelian Sylow p-subgroup and G satisfies Cp.

Example
gap> g:=AlternatingGroup(5);
Alt( [ 1 .. 5 ] )
gap> IsAbCp(g,5);
true

5.3.2 IsDedekindSylow

. IsDedekindSylow(G, p) (function)

This function returns true if a Sylow p -subgroup of G is Dedekind, else it returns false.
A group G is Dedekind when every subgroup of G is normal. If p is a prime, a Dedekind p-group

(see for example 2.3.12 in [Sch94]) is abelian or a direct product of a quaternion group of order 8 and
an elementary abelian 2-group. Obviously, a p-group is Dedekind if and only if it is a T-group.

The algorithm used in this function to test whether a non-abelian 2-group satisfies this condition
checks that the Frattini subgroup of a Sylow 2-subgroup P of G has order 2 and that the centre of P
has exponent 2 and index 4. In this case, it computes the natural epimorphism from P to P/Z(P) and
it checks that the preimages of the generators of P/Z(P) under the natural epimorphism have order 4.
If all these conditions hold, then the Sylow 2-subgroup is Dedekind, otherwise it is not.

This function tries to set the property IsTGroup (4.2.1) to true or false for the Sylow p-
subgroup.

Example
gap> g:=DirectProduct(SmallGroup(8,4),CyclicGroup(5));
<pc group of size 40 with 4 generators>
gap> IsDedekindSylow(g,2);
true

5.3.3 IwasawaTripleWithSubgroup

. IwasawaTripleWithSubgroup(G, X, p) (function)
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This function returns an Iwasawa triple for a p -group G such that X is a member of it, if such a
triple exists, and fail otherwise. This function is used as an auxiliary function to compute an Iwasawa
triple for a group G .

An Iwasawa triple for a p-group G is a triple (X ,b,s) such that X is an abelian normal subgroup of
G with cyclic quotient, b is a generator of a supplement to X in G, and b induces a power automorphism
in X of the form x→ x1+ps

. A theorem of Iwasawa states that a p-group G has a modular subgroup
lattice (or, equivalently, G has all subgroups permutable) if and only if G is a direct product of a
quaternion group of order 8 and an elementary abelian 2-group or G has an Iwasawa triple (X ,b,s)
with s≥ 2.

The construction of the Iwasawa triple takes a generator b of a cyclic supplement to X in G. Then
we consider a generator a of X of the largest possible order and find an element c of 〈b〉 and an element
s such that ac = a1+ps

. If such an element does not exist, the function returns fail. For this element,
it checks whether for all generators t of X , the equality tc = t1+ps

holds. If this holds, it returns the
triple (X ,c,s); otherwise it returns fail.

Example
gap> e:=ExtraspecialGroup(27,9);
<pc group of size 27 with 3 generators>
gap> IwasawaTripleWithSubgroup(e,Subgroup(e,[e.1,e.3]),3);
[ Group([ f1, f3 ]), f2, 1 ]

5.3.4 IwasawaTriple

. IwasawaTriple(G) (attribute)

This function computes an Iwasawa triple for the p-group G , if it exists. If G is not Iwasawa, the
function returns fail. If G is a direct product of an elementary abelian 2-group and a quaternion
group of order 8, it returns an empty list. If G is Iwasawa, then the function returns an Iwasawa triple
for G . An Iwasawa triple for a group G is a triple (X ,b,s) where X is an abelian normal subgroup of G
such that G/X is cyclic, b is a generator of a cyclic supplement to X in G, and s is an integer such that
for all x∈ X , xb = x1+ps

. A theorem of Iwasawa states that a p-group G has a modular subgroup lattice
(or, equivalently, G has all subgroups permutable) if and only if G is a direct product of an elementary
abelian 2-group and a quaternion group of order 8 or G has an Iwasawa triple (X ,b,s) with s ≥ 2 if
p = 2.

The method followed to find an Iwasawa triple for non-abelian non-Dedekind groups begins with
the whole group G. If the group is abelian, it returns the Iwasawa triple (G,1, logp exp(G)). If it is not
abelian, it constructs a list l formed by G. For every element N of l, it takes the maximal subgroups
of N which are normal in G and give cyclic quotient. If any of these subgroups is a member of an
Iwasawa triple, it is computed with the function IwasawaTripleWithSubgroup (5.3.3) and the value
is returned. If not, N is removed from the l and these maximal subgroups of N are added to l. This
follows until an Iwasawa triple is found or the list l is empty. Since normal subgroups with cyclic
quotient are contained in a unique maximal chain, no subgroup appears twice in this algorithm.

The algorithm also takes into account the fact that a Iwasawa group of exponent 4 must be abelian
or a direct product of a quaternion group of order 8 and an elementary abelian 2-group.

For the trivial group, it returns the triple composed by the trivial group, its identity element, and
the prime 3.

Example
gap> e:=ExtraspecialGroup(27,3);
<pc group of size 27 with 3 generators>
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gap> IwasawaTriple(e);
fail
gap> e:=ExtraspecialGroup(27,9);
<pc group of size 27 with 3 generators>
gap> IwasawaTriple(e);
[ Group([ f1, f3 ]), f2, 1 ]

5.3.5 IsIwasawaSylow

. IsIwasawaSylow(G, p) (function)

This function returns true if G has an Iwasawa (modular) Sylow p -subgroup, and false other-
wise.

Recall that a p-group P has a modular subgroup lattice, or is an Iwasawa group, when all subgroups
of P are permutable. It is clear that a p-group has a modular subgroup lattice if and only if it is a T-
group.

The implementation of this function begins by searching for a pair of subgroups that do not per-
mute. In this case, the function returns false. The maximum number of pairs to be checked here is
controlled by the variable PermutMaxTries (3.2.1), which is assigned to 10 by default. If no such
pair is found, the algorithm looks for an Iwasawa triple for a Sylow p-subgroup P of G. If there exists
one such triple (X ,b,s) with s ≥ 2 when p = 2 or the group is a direct product of a quaternion group
of order 8 and an elementary abelian 2-group, then it returns true; else it returns false.

The values of the attributes IsPTGroup (4.2.2) and IsTGroup (4.2.1) for P are set by the function.
Example

gap> e:=ExtraspecialGroup(27,9);
<pc group of size 27 with 3 generators>
gap> IsIwasawaSylow(e,3);
true



Chapter 6

Totally and Mutually Permutable
Products

In recent years, many authors have considered totally and mutually permutable subgroups. Recall that
two subgroups A and B of a group G are totally permutable if every subgroup of A permutes with
every subgroup of B, and they are mutually permutable if every subgroup of A permutes with B and
every subgroup of B permutes with A.

We have defined some “One” functions which give a pair of subgroups which do not permute and
prove that two subgroups fail to have a certain property.

We have also defined some functions to work with totally and mutually f -permutable subgroups,
where f is a subgroup embedding functor.

The functions of this chapter are defined in a preliminary state.

6.1 Functions for Mutually and Totally Permutable Products

6.1.1 AreMutuallyPermutableSubgroups

. AreMutuallyPermutableSubgroups([G, ]A, B) (function)

This function returns true if the subgroups A and B of G are mutually permutable subgroups,
that is, every subgroup of A permutes with B and every subgroup of B permutes with A, and false
otherwise. The method used here checks only that A permutes with all cyclic subgroups of B and that
B permutes with all cyclic subgroups of A.

The method with two arguments assume that A and B have a common supergroup.

6.1.2 OnePairShowingNotMutuallyPermutableSubgroups

. OnePairShowingNotMutuallyPermutableSubgroups([G, ]A, B) (function)

This function returns a pair of the form [ A , V ] with V a subgroup of B or of the form [ W , B ] with
W a subgroup of A in which both subgroups do not permute, or fail if this pair does not exist because
the product is mutually permutable.

27
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6.1.3 AreTotallyPermutableSubgroups

. AreTotallyPermutableSubgroups([G, ]A, B) (function)

This function returns true if the subgroups A and B of G are totally permutable, that is, every
subgroup of A permutes with every subgroup of B, and false otherwise. The method used here
checks only that every cyclic subgroup of A permutes with every cyclic subgroup of B.

The method with two arguments assume that A and B have a common supergroup.

6.1.4 OnePairShowingNotTotallyPermutableSubgroups

. OnePairShowingNotTotallyPermutableSubgroups([G, ]A, B) (function)

This function returns a pair of the form [ V , W ], with V a subgroup of A and W a subgroup of B ,
such that both subgroups do not permute, or fail if this pair does not exist because the product is
totally permutable.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> a:=AlternatingGroup(4);
Alt( [ 1 .. 4 ] )
gap> b:=Subgroup(g,[(1,2,3,4),(1,3)]);
Group([ (1,2,3,4), (1,3) ])
gap> AreMutuallyPermutableSubgroups(g,a,b);
true
gap> AreTotallyPermutableSubgroups(g,a,b);
false
gap> OnePairShowingNotTotallyPermutableSubgroups(g,a,b);
[ Group([ (2,3,4) ]), Group([ (1,2)(3,4) ]) ]
gap> c:=Subgroup(g,[(1,2,3)]);
Group([ (1,2,3) ])
gap> AreMutuallyPermutableSubgroups(g,a,c);
false
gap> OnePairShowingNotMutuallyPermutableSubgroups(g,a,c);
[ Group([ (2,3,4) ]), Group([ (1,2,3) ]) ]
gap> AreMutuallyPermutableSubgroups(a,c);
false
gap> g:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> a:=AlternatingGroup(3);
Alt( [ 1 .. 3 ] )
gap> b:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> AreTotallyPermutableSubgroups(g,a,b);
true

6.1.5 AreMutuallyFPermutableSubgroups

. AreMutuallyFPermutableSubgroups([G, ]A, B, fA, fB) (function)
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This function returns true if the subgroups A and B are mutually f -permutable, and false oth-
erwise. Here A and B are subgroups of G and fA and fB are, respectively, lists of subgroups of A and
B , respectively.

In the version with four arguments, A and B are assumed to be subgroups of a common super-
group.

6.1.6 OnePairShowingNotMutuallyFPermutableSubgroups

. OnePairShowingNotMutuallyFPermutableSubgroups([G, ]A, B, fA, fB) (function)

This function returns a pair of the form [ A , V ] with V a subgroup in fB or B or of the form [ W ,
B ] with W a subgroup in fA or A in which both subgroups do not permute, or fail if this pair does not
exist. Here A and B are subgroups of G and fA and fB are lists of subgroups of A and B , respectively.

In the version with four arguments, A and B are assumed to be subgroups of a common super-
group.

6.1.7 AreTotallyFPermutableSubgroups

. AreTotallyFPermutableSubgroups([G, ]A, B, fA, fB) (function)

This function returns true if the subgroup A permutes with all subgroups in the list fB and B
permutes with all subgroups in the list fA , and false otherwise. Here A and B are subgroups of G ,
fA is a list of subgroups of A and fB is a list of subgroups of B .

In the version with four arguments, A and B are assumed to be subgroups of a common super-
group.

6.1.8 OnePairShowingNotTotallyFPermutableSubgroups

. OnePairShowingNotTotallyFPermutableSubgroups([G, ]A, B, fA, fB) (function)

This function returns a pair of the form [ U , V ] with U a subgroup in fA or A and V a subgroup in
fB or B in which both subgroups do not permute, or fail if this pair does not exist. Here A and B are
subgroups of G , fA is a list of subgroups of A and fB is a list of subgroups of B .

In the version with two arguments, A and B are assumed to be subgroups of a common supergroup.
Example

gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> a:=AlternatingGroup(4);
Alt( [ 1 .. 4 ] )
gap> b:=Subgroup(g,[(1,2,3,4),(1,3)]);
Group([ (1,2,3,4), (1,3) ])
gap> AreTotallyFPermutableSubgroups(g,a,b,
> MaximalSubgroups(a),MaximalSubgroups(b));
false
gap> OnePairShowingNotTotallyFPermutableSubgroups(g,a,b,
> MaximalSubgroups(a),MaximalSubgroups(b));
[ Group([ (1,2,3) ]), Group([ (2,4), (1,3)(2,4) ]) ]
gap> AreTotallyFPermutableSubgroups(g,a,b,DerivedSeries(a),DerivedSeries(b));
true



Chapter 7

Other Functions in the PERMUT
Package

In this chapter we define some miscellaneous functions which have appeared in the context of per-
mutability, or some functions which have been used for some of the functions of the package.

7.1 Functions

7.1.1 AllSubnormalSubgroups

. AllSubnormalSubgroups(G) (attribute)

This function computes all subnormal subgroups of G . The method used to obtain this list consists
in beginning with the list of all normal subgroups of G and by adding all normal subgroups of the
subgroups in the list until no new subnormal subgroups appear. This computes the complete list of
subgroups, not only a representative of each conjugacy class as other functions do.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> AllSubnormalSubgroups(g);
[ Sym( [ 1 .. 4 ] ), Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]), Group([ (1,4)

(2,3), (1,3)(2,4) ]), Group(()), Group([ (1,3)(2,4) ]), Group([ (1,2)
(3,4) ]), Group([ (1,4)(2,3) ]) ]

7.1.2 PrimesDividingSize

. PrimesDividingSize(G) (attribute)

This attribute gives a list of primes dividing the size of the finite group G , without repetitions. Its
code has been borrowed from the GAP manual.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> PrimesDividingSize(g);
[ 2, 3 ]

30



PERMUT 31

7.1.3 SylowSubgroups

. SylowSubgroups(G) (attribute)

This attribute returns a list composed by one Sylow subgroup for every prime dividing the size
of G . If G is soluble, then it returns a Sylow system or Sylow basis of G by means of the function
SylowSystem (Reference: SylowSystem) (a set composed of a Sylow subgroup for each prime di-
viding the order of G permuting in pairs).

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> SylowSubgroups(g);
[ Group([ (1,2), (3,4), (1,3)(2,4) ]), Group([ (1,2,3) ]) ]
gap> s5:=SymmetricGroup(5);
Sym( [ 1 .. 5 ] )
gap> SylowSubgroups(s5);
[ Group([ (1,2), (3,4), (1,3)(2,4) ]), Group([ (1,2,3) ]), Group([ (1,2,3,4,

5) ]) ]

7.1.4 IsSCGroup

. IsSCGroup(G) (property)

This property is true if G is an SC-group, and false otherwise. A group G is an SC-group if all its
chief factors are simple. Note that a soluble group G is an SC-group if and only if G is supersoluble.
The method used to check this property uses the chief series if its is available or the group is not
soluble.

Since the methods for insoluble groups might on the computation of a chief series with the function
ChiefSeries (Reference: ChiefSeries), they might not be available if the group is not given as a
permutation group.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> IsSCGroup(g);
false
gap> g:=GL(2,5);
GL(2,5)
gap> IsSCGroup(g);
true

7.1.5 IsSylowTowerGroup

. IsSylowTowerGroup(G) (property)

This property takes the value true if G has a Sylow tower of supersoluble type, and false other-
wise.

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
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gap> IsSylowTowerGroup(g);
false
gap> g:=SmallGroup(75,1);
<pc group of size 75 with 3 generators>
gap> IsSylowTowerGroup(g);
true

7.1.6 Permutizer

. Permutizer(G, U) (function)

. Permutiser(G, U) (function)

The permutiser of a subgroup U of a group G is the subgroup generated by all cyclic subgroups of
G which permute with U . If U is permutable in G (in particular, if U is normal in G ), then its permutizer
coincides with G .

Example
gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> Permutizer(g,Subgroup(g,[(1,2,3)]));
Group([ (1,2,3), (2,3) ])
gap> Size(last);
6

7.1.7 AllGeneratorsCyclicPGroup

. AllGeneratorsCyclicPGroup(g, p) (function)

This auxiliary function returns the list of all generators of the cyclic p-group generated by the
p-element g. Here p is a prime number. Since this function is not intended to be used in interactive
mode, no check is done that the argument is a p-element.

Example
gap> AllGeneratorsCyclicPGroup((1,2,3,4,5,6,7,8,9),3);
[ (1,2,3,4,5,6,7,8,9), (1,3,5,7,9,2,4,6,8), (1,5,9,4,8,3,7,2,6),

(1,6,2,7,3,8,4,9,5), (1,8,6,4,2,9,7,5,3), (1,9,8,7,6,5,4,3,2) ]
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