Gradle User Manual
Version 4.10

Table of Contents

ADOUL Gradle 1
OV VIO L ittt 1
Getting Started e 4
Installing Gradle e 4
Using Gradle BUildsottt e 8
Command-Line INnterface. e 8
Build ENVIFONIMENTttt 23
DIrectory LayOulttt e 30
The Gradle DAaemOmnottt it e 33
INitialiZation SCIIPLS . ..ottt e 38
Executing Multi-Project BulldsS. ... e 43
The Gradle WrapPero it e e 45
TroubleShOOting. it e e e 52
Authoring Gradle Builds.ttt 58
The Feature LIfecyCle et 58
Authoring Maintainable Build SCripts ...t i 59
Organizing Gradle Projects it e 66
BUild Cachieo e 71
Build Init PIUGIN. . ..o e 79
Build LIfeCyCle . .o e 83
BUild SCIIPt BaSICS . . . oottt ettt e 91
Composite buildso 103
Authoring Multi-Project Builds ... e 109
AUTNOTING TaSKS . . . oottt e 138
LML . ettt 183
Standard Gradle PIUZINS 188
Testing Build Logic with TeStKitooouumuii i e 191
Using Gradle PIUZINS ettt 206
Working With Files oo e e 217
Writing Build SCIIPLS ... e 252
Writing Custom Task Classest i e 264
The Base PIUGINo e 284
Dependency Management.ttt ittt ettt ettt e 287
Introduction to Dependency Managementuuuuutiiiinnnnttteeteeiiennnnnnnnnnn. 287
Dependency Management Terminology ..ot 290
DePeNAenCY TYPES ..ottt 292
RePOSITOTY TYPeS o ottt 295

Declaring Dependenciesuu ittt 309

Declaring RePOSITOTIES . . .ottt et e e et e e ettt 318

INSpecting DePeNAeNCIeS. . . oo\ttt ettt e e e 321
Managing Dependency COonfigurationsouuiiietiiine i iiiineeinneeans 325
Managing Transitive Dependenciesuuutttttin it eiian e 328
Dependency LOCKINGttt et e e e et e e 335
Troubleshooting Dependency ResOIUtionttt i ee 339
Customizing Dependency Resolution Behavior. ... iiiinneean. 342
The Dependency Cachettt e et et eas 356
Working with Dependenciesoouuutt ettt e 358
PUDLIShING ATt aCtSo v ettt et e e et e e 362
PUDLI SN g . oo e 362
Maven Publish PIUGIN et e i et 372
IVy PUDLISh PIUGIn . . oo e e e 380
Legacy PUBLIShINg . ..o e 386
Maven PIUGIn . ..o e 390
The Signing PIUGINttt e et ettt 397
The Distribution PIUgInot i e i e 404
I L A= 20 0 [Tt € 409
Building native SOftWaret e 409
Software model CONCEPLS . ..ottt e et e e 448
Rule based model configurationttt et e 448
Implementing model rules in a PIUGIN.ttt i e e 472
Extending the software model o e 472
(€8 0 T0 N7 V20 2 () [t P 484
GroOVY QUICKSTATT . . oottt e et et e e 484
The Groovy PIUGIn.ot e e et i e 485
The CodeNarc PIUGINttt e et e i i iiae e eans 492
2N B0 24 (0 [=To1 € AP 494
JAVA QUICKSTATT. . ..ottt et et e e e e 494
Building Java & JVM PrOJECES . ..ottt ettt et et e e e e e e et e e 501
Testing in Java & JVM PrOJECES . . oo v vttt ettt ittt ettt e e et e ie e i 517
The Java PIUGINot et e et et e e 532
The Java Library PIUGINttt et it ettt eaa 549
The Java Library Distribution PIugin et e ea 556
Dependency Management for Java Projects.ttt eiiie e 557
Using Ant from Gradlet e 561
The ANTLR PIUGINL.ottt e e e e e e e e 571
The Application PIUGIN. e et et et eas 573
The Checkstyle PIUZINt e et et ea 576
The FINABUES PIUGIN.ottt e et e ettt ean 579

The JaCoCo PIUGInottt e et et et 580

The JDepend PIUGINttt et ettt et 586

The OSGIL PIUGINot et e e e e e 587
The PMD PIUGINottt et e e e e e e et 589
Java WD ProjeCtS ..ottt e e e e e 591
The Ear PIUGIN . .. oot e ettt et e e e 591
Building Play appliCations.ttt et et e e e 594
The War PIUGINo et et e et ettt ee 608
SCALA PrOJECES ..ttt et e e 611
The Scala PIUGIN. e et e e e 611
Integrating Gradlettt et e e 620
The EClipse PIUGINSottt ittt ettt e e et e e et e it i ea 620
The IDEA PIUGIN.ttt ettt ettt ettt et e e e e e e e e ee e 625
Embedding Gradle using the Tooling APlottt i e ee 630
EXtending Gradleottt et e e e 633
Writing Custom PIUGINSottt ittt et i e 633
Gradle Plugin Development PIUGIN. oottt et e a 647
Lazy Configurationt e e e e 648
5 103 4 = 660
Documentation LICEINSESottt e e 661

Gradle DOCUIMENTATION . « o v v ottt ettt et e e e e e e e e e e e e 661

About Gradle

Overview

Features
Here is a list of some of Gradle’s features.

Declarative builds and build-by-convention

At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy.
Gradle pushes declarative builds to the next level by providing declarative language elements
that you can assemble as you like. Those elements also provide build-by-convention support for
Java, Groovy, OSGi, Web and Scala projects. Even more, this declarative language is extensible.
Add your own new language elements or enhance the existing ones, thus providing concise,
maintainable and comprehensible builds.

Language for dependency based programming

The declarative language lies on top of a general purpose task graph, which you can fully
leverage in your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build

The suppleness and richness of Gradle finally allows you to apply common design principles to
your build. For example, it is very easy to compose your build from reusable pieces of build
logic. Inline stuff where unnecessary indirections would be inappropriate. Don’t be forced to
tear apart what belongs together (e.g. in your project hierarchy). Avoid smells like shotgun
changes or divergent change that turn your build into a maintenance nightmare. At last you can
create a well structured, easily maintained, comprehensible build.

Deep API

From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle allows you to monitor and customize its configuration and execution behavior
to its very core.

Gradle scales

Gradle scales very well. It significantly increases your productivity, from simple single project
builds up to huge enterprise multi-project builds. This is true for structuring the build. With the
state-of-art incremental build function, this is also true for tackling the performance pain many
large enterprise builds suffer from.

Multi-project builds

Gradle’s support for multi-project build is outstanding. Project dependencies are first class
citizens. We allow you to model the project relationships in a multi-project build as they really
are for your problem domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all
the subprojects that subproject depends on. You can also choose to rebuild the subprojects that
depend on a particular subproject. Together with incremental builds this is a big time saver for

larger builds.

Many ways to manage your dependencies

Different teams prefer different ways to manage their external dependencies. Gradle provides
convenient support for any strategy. From transitive dependency management with remote
Maven and Ivy repositories to jars or directories on the local file system.

Gradle is the first build integration tool

Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as
well. Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle
tasks at runtime. You can depend on them from Gradle, you can enhance them from Gradle, you
can even declare dependencies on Gradle tasks in your build.xml. The same integration is
provided for properties, paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and
retrieving dependencies. Gradle also provides a converter for turning a Maven pom.xml into a
Gradle script. Runtime imports of Maven projects will come soon.

Ease of migration

Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build
in the same branch where your production build lives and both can evolve in parallel. We
usually recommend to write tests that make sure that the produced artifacts are similar. That
way migration is as less disruptive and as reliable as possible. This is following the best-practices
for refactoring by applying baby steps.

Groovy

Gradle’s build scripts are written in Groovy or Kotlin, not XML. But unlike other approaches this
is not for simply exposing the raw scripting power of a dynamic language. That would just lead
to a very difficult to maintain build. The whole design of Gradle is oriented towards being used
as a language, not as a rigid framework. And Groovy is our glue that allows you to tell your
individual story with the abstractions Gradle (or you) provide. Gradle provides some standard
stories but they are not privileged in any form. This is for us a major distinguishing feature
compared to other declarative build systems. Our Groovy support is not just sugar coating. The
whole Gradle API is fully Groovy-ized. Adding Groovy results in an enjoyable and productive
experience.

The Gradle wrapper

The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not
installed. This is useful for example for some continuous integration servers. It is also useful for
an open source project to keep the barrier low for building it. The wrapper is also very
interesting for the enterprise. It is a zero administration approach for the client machines. It also
enforces the usage of a particular Gradle version thus minimizing support issues.

Free and open source

Gradle is an open source project, and is licensed under the Apache License 2.0.

https://github.com/gradle/gradle/blob/master/LICENSE

Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are
tremendous when used in build scripts. There are a couple of dynamic languages out there. Why
Groovy? The answer lies in the context Gradle is operating in. Although Gradle is a general purpose
build tool at its core, its main focus are Java projects. In such projects the team members will be
very familiar with Java. We think a build should be as transparent as possible to all team members.

In that case, you might argue why we don’t just use Java as the language for build scripts. We think
this is a valid question. It would have the highest transparency for your team and the lowest
learning curve, but because of the limitations of Java, such a build language would not be as nice,
expressive and powerful as it could be. [1: At http://www.defmacro.org/ramblings/lisp.html you find
an interesting article comparing Ant, XML, Java and Lisp. It’s funny that the 'if Java had that syntax'
syntax in this article is actually the Groovy syntax.] Languages like Python, Groovy or Ruby do a
much better job here. We have chosen Groovy as it offers by far the greatest transparency for Java
people. Its base syntax is the same as Java’s as well as its type system, its package structure and
other things. Groovy provides much more on top of that, but with the common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above
arguments don’t apply. The Gradle design is well-suited for creating another build script engine in
JRuby or Jython. It just doesn’t have the highest priority for us at the moment. We happily support
any community effort to create additional build script engines.

http://www.defmacro.org/ramblings/lisp.html

Getting Started

Installing Gradle

You can install the Gradle build tool on Linux, macOS, or Windows. This document covers installing
using a package manager like SDKMAN!, Homebrew, or Scoop, as well as manual installation.

Use of the Gradle Wrapper is the recommended way to upgrade Gradle.

You can find all releases and their checksums on the releases page.

Prerequisites

Gradle runs on all major operating systems and requires only a Java JDK version 7 or higher to run.
To check, run java -version. You should see something like this:

java -version
java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any
existing Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA_HOME
environment variable to point to the installation directory of the desired JDK.

Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-based systems.

sdk install gradle

Homebrew is "the missing package manager for macOS".
brew install gradle

Scoop is a command-line installer for Windows inspired by Homebrew.
scoop install gradle

Chocolatey is "the package manager for Windows".

https://gradle.org/releases
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sdkman.io
http://brew.sh
http://scoop.sh
https://chocolatey.org

choco install gradle
MacPorts is a system for managing tools on macOS:
sudo port install gradle

{ Proceed to next steps

Installing manually

Step 1. Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

» Complete (all) with docs and sources

Need to work with an older version? See the releases page.

Step 2. Unpack the distribution

Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing, e.g.:

mkdir /opt/gradle
unzip -d /opt/gradle gradle-4.10-bin.zip
1ls /opt/gradle/gradle-4.10
LICENSE NOTICE bin getting-started.html init.d 1ib media

Microsoft Windows users

Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was
downloaded. Double-click the ZIP archive to expose the content. Drag the content folder gradle-4.10
to your newly created C:\Gradle folder.

Alternatively you can unpack the Gradle distribution ZIP into C:\Gradle using an archiver tool of
your choice.

Step 3. Configure your system environment

For running Gradle, firstly add the environment variable GRADLE_HOME. This should point to the
unpacked files from the Gradle website. Next add GRADLE_HOME/bin to your PATH environment
variable. Usually, this is sufficient to run Gradle.

https://www.macports.org
https://gradle.org/releases
https://gradle.org/releases

Linux & MacOS users

Configure your PATH environment variable to include the bin directory of the unzipped distribution,
e.g.

export PATH=$PATH:/opt/gradle/gradle-4.10/bin

Microsoft Windows users

In File Explorer right-click on the This PC (or Computer) icon, then click Properties — Advanced
System Settings — Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-4.10\bin.
Click OK to save.

! Proceed to next steps

Verifying installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

Build time: 2018-02-21 15:28:42 UTC

Revision: 819e0059da49f469d3e9b2896dc4e72537c4847d

Groovy: 2.4.15

Ant: Apache Ant(TM) version 1.9.9 compiled on February 2 2017
JUM: 1.8.0_151 (Oracle Corporation 25.151-b12)

0S: Mac 0S X 10.13.3 x86_64

If you run into any trouble, see the section on troubleshooting installation.

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.

Next steps
Now that you have Gradle installed, use these resources for getting started:

* Create your first Gradle project by following the Creating New Gradle Builds tutorial.
* Sign up for a live introductory Gradle training with a core engineer.

* Learn how to achieve common tasks through the command-line interface.

https://gradle.org/releases
https://guides.gradle.org/creating-new-gradle-builds/
https://gradle.org/training/intro-to-gradle/

» Configure Gradle execution, such as use of an HTTP proxy for downloading dependencies.

» Subscribe to the Gradle Newsletter for monthly release and community updates.

https://newsletter.gradle.com/

Using Gradle Builds

Command-Line Interface

The command-line interface is one of the primary methods of interacting with
Gradle. The following serves as a reference of executing and customizing Gradle
use of a command-line or when writing scripts or configuring continuous
integration.

Use of the Gradle Wrapper is highly encouraged. You should substitute ./gradlew or gradlew.bat for
gradle in all following examples when using the Wrapper.

Executing Gradle on the command-line conforms to the following structure. Options are allowed
before and after task names.

gradle [taskName...] [--option-name...]

If multiple tasks are specified, they should be separated with a space.

Options that accept values can be specified with or without = between the option and argument;
however, use of = is recommended.

--console=plain

Options that enable behavior have long-form options with inverses specified with --no-. The
following are opposites.

--build-cache
--no-build-cache

Many long-form options, have short option equivalents. The following are equivalent:

--help
-h

NOTE Many command-line flags can be specified in gradle.properties to avoid needing to
be typed. See the configuring build environment guide for details.

The following sections describe use of the Gradle command-line interface, grouped roughly by user

goal. Some plugins also add their own command line options, for example --tests for Java test

filtering. For more information on exposing command line options for your own tasks, see

Declaring and using command-line options.

Executing tasks

You can run a task and all of its dependencies.
gradle myTask

You can learn about what projects and tasks are available in the project reporting section.

Executing tasks in multi-project builds

In a multi-project build, subproject tasks can be executed with ":" separating subproject name and
task name. The following are equivalent when run from the root project.

gradle :mySubproject:taskName
gradle mySubproject:taskName

You can also run a task for all subprojects using the task name only. For example, this will run the
"test" task for all subprojects when invoked from the root project directory.

gradle test
When invoking Gradle from within a subproject, the project name should be omitted:

cd mySubproject
gradle taskName

When executing the Gradle Wrapper from subprojects, one must reference gradlew
NOTE relatively. For example: ../gradlew taskName. The community gdub project aims to
make this more convenient.

Executing multiple tasks

You can also specify multiple tasks. For example, the following will execute the test and deploy
tasks in the order that they are listed on the command-line and will also execute the dependencies
for each task.

gradle test deploy

Excluding tasks from execution

You can exclude a task from being executed using the -x or --exclude-task command-line option
and providing the name of the task to exclude.

http://www.gdub.rocks/

compile compileTest dist
test

Figure 1. Example Task Graph

Example: Excluding tasks

Output of gradle dist --exclude-task test
> gradle dist --exclude-task test

> Task :compile
compiling source

> Task :dist
building the distribution

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

You can see that the test task is not executed, even though it is a dependency of the dist task. The
test task’s dependencies such as compileTest are not executed either. Those dependencies of test
that are required by another task, such as compile, are still executed.

Forcing tasks to execute

You can force Gradle to execute all tasks ignoring up-to-date checks using the --rerun-tasks option:

gradle test --rerun-tasks

This will force test and all task dependencies of test to execute. It’s a little like running gradle
clean test, but without the build’s generated output being deleted.

Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the
build to complete sooner, but hides other failures that would have occurred. In order to discover as
many failures as possible in a single build execution, you can use the --continue option.

gradle test --continue

When executed with --continue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure
is encountered. Each of the encountered failures will be reported at the end of the build.

If a task fails, any subsequent tasks that were depending on it will not be executed. For example,

tests will not run if there is a compilation failure in the code under test; because the test task will
depend on the compilation task (either directly or indirectly).

Task name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task.
You only need to provide enough of the task name to uniquely identify the task. For example, it’s
likely gradle che is enough for Gradle to identify the check task.

You can also abbreviate each word in a camel case task name. For example, you can execute task
compileTest by running gradle compTest or even gradle cT.

Example: Abbreviated camel case task name

Output of gradle cT
> gradle cT

> Task :compile
compiling source

> Task :compileTest
compiling unit tests

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

You can also use these abbreviations with the -x command-line option.

Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

Computing all outputs

It is common in Gradle builds for the build task to designate assembling all outputs and running all
checks.

gradle build

Running applications

It is common for applications to be run with the run task, which assembles the application and
executes some script or binary.

gradle run

Running all checks

It is common for all verification tasks, including tests and linting, to be executed using the check
task.

gradle check

Cleaning outputs

You can delete the contents of the build directory using the clean task, though doing so will cause
pre-computed outputs to be lost, causing significant additional build time for the subsequent task
execution.

gradle clean

Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be
useful for understanding the structure and dependencies of your build, and for debugging
problems.

You can get basic help about available reporting options using gradle help.

Listing projects
Running gradle projects gives you a list of the sub-projects of the selected project, displayed in a
hierarchy.

gradle projects

You also get a project report within build scans. Learn more about creating build scans.

Listing tasks

Running gradle tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task.

gradle tasks

By default, this report shows only those tasks which have been assigned to a task group. You can
obtain more information in the task listing using the --all option.

gradle tasks --all

https://guides.gradle.org/creating-build-scans/

Show task usage details

Running gradle help --task someTask gives you detailed information about a specific task.

Example: Obtaining detailed help for tasks

Output of gradle -q help --task libs

> gradle -q help --task libs
Detailed task information for 1ibs

Paths
:api:libs
:webapp:1libs

Type
Task (org.gradle.api.Task)

Description
Builds the JAR

Group
build

This information includes the full task path, the task type, possible command line options and the
description of the given task.

Reporting dependencies

Build scans give a full, visual report of what dependencies exist on which configurations, transitive
dependencies, and dependency version selection.

gradle myTask --scan

This will give you a link to a web-based report, where you can find dependency information like
this.

*e0® < @M & scans.gradle.com
ﬂ Build Scan e v gradle :core:test Sep 27, 2017 2:00:13 PM MST

= Summary

Ce
ey
mj}

F.

214 dependencies resolved in 70 projects across 156 configurations

7] Console log

Timeline -

Wr Performance Aannounce

EB T antlr »

ests baseServices ~
d} Projects compileClasspath ~ - 0.002¢
E com.google code findbugs:jsr305:1.3.9

n DepenianEs com.google. guava:guava-jdk5:17.0

[+ Plugins commaons-io;commaons-io:2,2

9% Clistom values commons-lang;mml?ons-|a-ng;2.:5
net.jcipijcip-annotations: 1.0

& Switches org.slfajsifdj-api:1.7.10

B Infrastructure runtimeClasspath » - 0.038s

testFixturesCompileClasspath » - 0.003s

‘hateServicecGrmme

Learn more in Inspecting Dependencies.

Listing project dependencies

Running gradle dependencies gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that
configuration are shown in a tree. Below is an example of this report:

gradle dependencies

Concrete examples of build scripts and output available in the Inspecting Dependencies.

Running gradle buildEnvironment visualises the buildscript dependencies of the selected project,
similarly to how gradle dependencies visualizes the dependencies of the software being built.

gradle buildEnvironment

Running gradle dependencyInsight gives you an insight into a particular dependency (or
dependencies) that match specified input.

gradle dependencyInsight

Since a dependency report can get large, it can be useful to restrict the report to a particular
configuration. This is achieved with the optional --configuration parameter:

Listing project properties
Running gradle properties gives you a list of the properties of the selected project.
Example: Information about properties
Output of gradle -q api:properties
> gradle -q api:properties

allprojects: [project ':api']

ant: org.gradle.api.internal.project.DefaultAntBuilder@12345

antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345
artifacts:
org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler_Decorated@12345
asDynamicObject: DynamicObject for project ':api'

baseClassLoaderScope:
org.gradle.api.internal.initialization.DefaultClassLoaderScope@12345

Software Model reports

You can get a hierarchical view of elements for software model projects using the model task:
gradle model

Learn more about the model report in the software model documentation.

Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties
through gradle-completion, installed separately.

Debugging options

-7, -h, --help

Shows a help message with all available CLI options.

-v, --version

Prints Gradle, Groovy, Ant, JVM, and operating system version information.

-S, --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See also logging options.

-s, --stacktrace

https://github.com/gradle/gradle-completion

Print out the stacktrace also for user exceptions (e.g. compile error). See also logging options.

--scan
Create a build scan with fine-grained information about all aspects of your Gradle build.

-Dorg.gradle.debug=true

Debug Gradle client (non-Daemon) process. Gradle will wait for you to attach a debugger at
localhost:5005 by default.

-Dorg.gradle.daemon.debug=true
Debug Gradle Daemon process.

Performance options

Try these options when optimizing build performance. Learn more about improving performance
of Gradle builds here.

Many of these options can be specified in gradle.properties so command-line flags are not
necessary. See the configuring build environment guide.

--build-cache, --no-build-cache

Toggles the Gradle build cache. Gradle will try to reuse outputs from previous builds. Default is

off.

--configure-on-demand, --no-configure-on-demand
Toggles Configure-on-demand. Only relevant projects are configured in this build run. Default is

off-

--max-workers

Sets maximum number of workers that Gradle may use. Default is number of processors.

--parallel, --no-parallel

Build projects in parallel. For limitations of this option, see Parallel Project Execution. Default is

off-

--profile

Generates a high-level performance report in the $buildDir/reports/profile directory. --scan is
preferred.

--Scan

Generate a build scan with detailed performance diagnostics.

https://gradle.com/build-scans
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/

208 < L} & scans.gradle.com & M 2 |

B Ly
” Build Scan Gj v gradle :core:test Sep27, 2017 2:00:13 PM MST
= Summary Build Configuration Dependency resolution Task execution
[*] Consale log
. Total build time Am 2499
Timeling Startup
Settings and buildSre
Loading projects
EEI TSt Configuration
& Projects Task execution 3m 55.
9 Dependencies End of bulld
[+ Plugins Total garbage collection time 0.854s
o= Custom values
= Peak heap memory usage
< Switches PS Eden Space 551.55
B8 Infrastructure PS Survivor Space &47.87/8
PS5 Old Gen
T P L Close OFmar 5 (g5

Gradle daemon options

You can manage the Gradle Daemon through the following command line options.

--daemon, --no-daemon

Use the Gradle Daemon to run the build. Starts the daemon if not running or existing daemon
busy. Default is on.

--foreground
Starts the Gradle Daemon in a foreground process.

--status (Standalone command)

Run gradle --status to list running and recently stopped Gradle daemons. Only displays
daemons of the same Gradle version.

--stop (Standalone command)

Run gradle --stop to stop all Gradle Daemons of the same version.

-Dorg.gradle.daemon.idletimeout=(number of milliseconds)

Gradle Daemon will stop itself after this number of milliseconds of idle time. Default is 10800000
(3 hours).

Logging options

Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least
verbose to most verbose. Learn more in the logging documentation.

-Dorg.gradle.logging.level=(quiet,warn,lifecycle,info,debug)
Set logging level via Gradle properties.

-q, --quiet

Log errors only.

-W, --warn

Set log level to warn.

-1, --info

Set log level to info.

-d, --debug

Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

Customizing log format

You can control the use of rich output (colors and font variants) by specifying the "console” mode in
the following ways:

-Dorg.gradle.console=(auto,plain,rich,verbose)
Specify console mode via Gradle properties. Different modes described immediately below.

--console=(auto,plain,rich,verbose)
Specifies which type of console output to generate.

Set to plain to generate plain text only. This option disables all color and other rich output in the
console output. This is the default when Gradle is not attached to a terminal.

Set to auto (the default) to enable color and other rich output in the console output when the
build process is attached to a console, or to generate plain text only when not attached to a
console. This is the default when Gradle is attached to a terminal.

Set to rich to enable color and other rich output in the console output, regardless of whether the
build process is not attached to a console. When not attached to a console, the build output will
use ANSI control characters to generate the rich output.

Set to verbose to enable color and other rich output like the rich, but output task names and
outcomes at the lifecycle log level, as is done by default in Gradle 3.5 and earlier.

Showing or hiding warnings

By default, Gradle won’t display all warnings (e.g. deprecation warnings). Instead, Gradle will
collect them and render a summary at the end of the build like:

Deprecated Gradle features were used in this build, making it incompatible with Gradle
5.0.
You can control the verbosity of warnings on the console with the following options:

-Dorg.gradle.warning.mode=(all,none, summary)
Specify warning mode via Gradle properties. Different modes described immediately below.

--warning-mode=(all,none, summary)
Specifies how to log warnings. Default is summary.

Set to all to log all warnings.
Set to summary to suppress all warnings and log a summary at the end of the build.

Set to none to suppress all warnings, including the summary at the end of the build.

Rich Console

Gradle’s rich console displays extra information while builds are running.

o0 ®

> Task :logging:compilelava

Note: /Users/eric/src/gradle/gradle/subprojects/logging/
src/main/java/org/gradle/internal/logging/progress/Progr
essLogger. java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.
Note: Some input files use unchecked or unsafe operation
S.

Note: Recompile with =Xlint:unchecked for details.

:toolingApi:compilelava

:logging: compileTestFixturesGroovy
:dependencyManagement: compileJava
:reporting:classpathManifest

Features:

* Progress bar and timer visually describe overall status
 Parallel work-in-progress lines below describe what is happening now

* Colors and fonts are used to highlight important output and errors

Execution options

The following options affect how builds are executed, by changing what is built or how
dependencies are resolved.

--include-build

Run the build as a composite, including the specified build. See Composite Builds.

--offline

Specifies that the build should operate without accessing network resources. Learn more about
options to override dependency caching.

--refresh-dependencies

Refresh the state of dependencies. Learn more about how to use this in the dependency
management docs.

--dry-run
Run Gradle with all task actions disabled. Use this to show which task would have executed.

--write-locks

Indicates that all resolved configurations that are lockable should have their lock state persisted.
Learn more about this in dependency locking.

--update-locks <group:name>[,<group:name>]*

Indicates that versions for the specified modules have to be updated in the lock file. This flag
also implies --write-locks. Learn more about this in dependency locking.

Environment options

You can customize many aspects about where build scripts, settings, caches, and so on through the
options below. Learn more about customizing your build environment.

-b, --build-file
Specifies the build file. For example: gradle --build-file=foo.gradle. The default is build.gradle,
then build.gradle.kts, then myProjectName.gradle.

-c, --settings-file

Specifies the settings file. For example: gradle --settings-file=somewhere/else/settings.gradle

-g, --gradle-user-home

Specifies the Gradle user home directory. The default is the .gradle directory in the user’s home
directory.

-p, --project-dir
Specifies the start directory for Gradle. Defaults to current directory.
--project-cache-dir

Specifies the project-specific cache directory. Default value is .gradle in the root project
directory.

-u, --no-search-upward (deprecated)

Don’t search in parent directories for a settings.gradle file.

-D, --system-prop
Sets a system property of the JVM, for example -Dmyprop=myvalue. See System Properties.

-1, --init-script

Specifies an initialization script. See Init Scripts.

-P, --project-prop

Sets a project property of the root project, for example -Pmyprop=myvalue. See System Properties.

-Dorg.gradle.jvmargs
Set JVM arguments.

-Dorg.gradle. java.home
Set JDK home dir.

Bootstrapping new projects

Creating new Gradle builds

Use the built-in gradle init task to create a new Gradle builds, with new or existing projects.
gradle init

Most of the time youw’ll want to specify a project type. Available types include basic (default), java-
library, java-application, and more. See init plugin documentation for details.

gradle init --type java-library

Standardize and provision Gradle

The built-in gradle wrapper task generates a script, gradlew, that invokes a declared version of
Gradle, downloading it beforehand if necessary.

gradle wrapper --gradle-version=4.4

You can also specify --distribution-type=(bin|all), --gradle-distribution-url, --gradle
-distribution-sha256-sum in addition to --gradle-version. Full details on how to use these options
are documented in the Gradle wrapper section.

Continuous Build

Continuous Build allows you to automatically re-execute the requested tasks when task inputs
change.

For example, you can continuously run the test task and all dependent tasks by running:

gradle test --continuous

Gradle will behave as if you ran gradle test after a change to sources or tests that contribute to the
requested tasks. This means that unrelated changes (such as changes to build scripts) will not
trigger a rebuild. In order to incorporate build logic changes, the continuous build must be
restarted manually.

Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be
exited by pressing CTRL-D (On Microsoft Windows, it is required to also press ENTER or RETURN after
CTRL-D). If Gradle is not attached to an interactive input source (e.g. is running as part of a script),
the build process must be terminated (e.g. using the kill command or similar). If the build is being
executed via the Tooling API, the build can be cancelled using the Tooling API’s cancellation
mechanism.

Limitations and quirks

NOTE Continuous build is an incubating feature.

There are several issues to be aware with the current implementation of continuous build. These
are likely to be addressed in future Gradle releases.

Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs
while executing, Gradle will detect the change and trigger a new build. If every time the task
executes, the inputs are modified again, the build will be triggered again. This isn’t unique to
continuous build. A task that modifies its own inputs will never be considered up-to-date when run
"normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files
reported changed by Gradle. After identifying the file(s) that are changed during each build, you
should look for a task that has that file as an input. In some cases, it may be obvious (e.g., a Java file
is compiled with compileJava). In other cases, you can use --info logging to find the task that is out-
of-date due to the identified files.

Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific
options, which means that:
* On macOS, Gradle will poll for file changes every 10 seconds instead of every 2 seconds.

* On Windows, Gradle must use individual file watches (like on Linux/Mac 0S), which may cause
continuous build to no longer work on very large projects.

Performance and stability

The JDK file watching facility relies on inefficient file system polling on macOS (see: JDK-7133447).
This can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on macOS (see: JDK-
8079620). This will manifest as Gradle appearing not to notice file changes. If you suspect this is
occurring, exit continuous build and start again.

On Linux, OpenJDK’s implementation of the file watch service can sometimes miss file system
events (see: JDK-8145981).

Changes to symbolic links

* Creating or removing symbolic link to files will initiate a build.
* Modifying the target of a symbolic link will not cause a rebuild.
* Creating or removing symbolic links to directories will not cause rebuilds.

* Creating new files in the target directory of a symbolic link will not cause a rebuild.

Deleting the target directory will not cause a rebuild.

Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means
that changes to task configuration, or any other change to the build model, are effectively ignored.

Build Environment

Gradle provides multiple mechanisms for configuring behavior of Gradle itself
and specific projects. The following is a reference for using these mechanisms.

When configuring Gradle behavior you can use these methods, listed in order of highest to lowest
precedence (first one wins):

* Command-line flags such as --build-cache. These have precedence over properties and
environment variables.

» System properties such as systemProp.http.proxyHost=somehost.org stored in a gradle.properties
file.

* Gradle properties such as org.gradle.caching=true that are typically stored in a
gradle.properties file in a project root directory or GRADLE_USER_HOME environment variable.

* Environment variables such as GRADLE_OPTS sourced by the environment that executes Gradle.

Aside from configuring the build environment, you can configure a given project build using
Project properties such as -PreleaseType=final.

Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

execute your build. While it’s possible to configure these in your local environment via GRADLE_OPTS
or JAVA_OPTS, it is useful to store certain settings like JVM memory configuration and Java home
location in version control so that an entire team can work with a consistent environment.

Setting up a consistent environment for your build is as simple as placing these settings into a
gradle.properties file. The configuration is applied in following order (if an option is configured in
multiple locations the last one wins):

* gradle.properties in project root directory.
* gradle.properties in GRADLE_USER_HOME directory.

* system properties, e.g. when -Dgradle.user.home is set on the command line.

The following properties can be used to configure the Gradle build environment:

org.gradle.caching=(true,false)

When set to true, Gradle will reuse task outputs from any previous build, when possible,
resulting is much faster builds. Learn more about using the build cache.

org.gradle.caching.debug=(true,false)

When set to true, individual input property hashes and the build cache key for each task are
logged on the console. Learn more about task output caching.

org.gradle.configureondemand=(true, false)

Enables incubating configuration on demand, where Gradle will attempt to configure only
necessary projects.

org.gradle.console=(auto,plain,rich,verbose)

Customize console output coloring or verbosity. Default depends on how Gradle is invoked. See
command-line logging for additional details.

org.gradle.daemon=(true,false)
When set to true the Gradle Daemon is used to run the build. Default is true.

org.gradle.daemon.idletimeout=(# of idle millis)

Gradle Daemon will terminate itself after specified number of idle milliseconds. Default is
10800000 (3 hours).

org.gradle.debug=(true,false)
When set to true, Gradle will run the build with remote debugging enabled, listening on port
5005. Note that this is the equivalent of adding
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 to the JVM command line
and will suspend the virtual machine until a debugger is attached. Default is false.

org.gradle.java.home=(path to JDK home)

Specifies the Java home for the Gradle build process. The value can be set to either a jdk or jre
location, however, depending on what your build does, using a JDK is safer. A reasonable default
is used if the setting is unspecified.

org.gradle.jvmargs=(JVM arguments)
Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for

configuring JVM memory settings for build performance.

org.gradle.logging.level=(quiet,warn,lifecycle,info,debug)
When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are
not case sensitive. The lifecycle level is the default. See Choosing a log level.

org.gradle.parallel=(true,false)
When configured, Gradle will fork up to org.gradle.workers.max JVMs to execute projects in
parallel. To learn more about parallel task execution, see the Gradle performance guide.

org.gradle.warning.mode=(all,none, summary)
When set to all, summary or none, Gradle will use different warning type display. See Command-
line logging options for details.

org.gradle.workers.max=(max # of worker processes)

When configured, Gradle will use a maximum of the given number of workers. Default is
number of CPU processors. See also performance command-line options.

The following example demonstrates usage of various properties.

Example: Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
sysProp=shouldBeOverWrittenBySysProp
systemProp.system=systemValue

build.gradle

task printProps {
dolast {
println commandLineProjectProp
println gradlePropertiesProp
println systemProjectProp
println System.properties['system']

Output of gradle -q -PcommandLineProjectProp=commandLineProjectPropValue
-Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps

> gradle -q -PcommandLineProjectProp=commandLineProjectPropValue
-Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps
commandLineProjectPropValue

gradlePropertiesValue

systemPropertyValue

systemValue

https://guides.gradle.org/performance/#parallel_execution

System properties

Using the -D command-line option, you can pass a system property to the JVM which runs Gradle.
The -D option of the gradle command has the same effect as the -D option of the java command.

You can also set system properties in gradle.properties files with the prefix systemProp.

Example: Specifying system properties in gradle.properties

systemProp.gradle.wrapperUser=myuser
systemProp.gradle.wrapperPassword=mypassword

The following system properties are available. Note that command-line options take precedence
over system properties.

gradle.wrapperUser=(myuser)
Specify user name to download Gradle distributions from servers using HTTP Basic
Authentication. Learn more in Authenticated wrapper downloads.

gradle.wrapperPassword=(mypassword)
Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradle.user.home=(path to directory)
Specify the Gradle user home directory.

In a multi project build, “systemProp.” properties set in any project except the root will be ignored.
That is, only the root project’s gradle.properties file will be checked for properties that begin with
the “systemProp.” prefix.

Environment variables

The following environment variables are available for the gradle command. Note that command-
line options and system properties take precedence over environment variables.

GRADLE_OPTS
Specifies command-line arguments to use when starting the Gradle client. This can be useful for
setting the properties to use when running Gradle.

GRADLE _USER_HOME
Specifies the Gradle user home directory (which defaults to $USER_HOME/.gradle if not set).

JAVA_HOME
Specifies the JDK installation directory to use.

Project properties
You can add properties directly to your Project object via the -P command line option.

Gradle can also set project properties when it sees specially-named system properties or
environment variables. If the environment variable name looks like ORG_GRADLE PROJECT

../dsl/org.gradle.api.Project.html

_prop=somevalue, then Gradle will set a prop property on your project object, with the value of
somevalue. Gradle also supports this for system properties, but with a different naming pattern,
which looks like org.gradle.project.prop. Both of the following will set the foo property on your
Project object to "bar".

Example: Setting a project property via gradle.properties

org.gradle.project.foo=bar

Example: Setting a project property via environment variable

ORG_GRADLE_PROJECT_foo=bar

NOTE The properties file in the user’s home directory has precedence over property files
in the project directories.

This feature is very useful when you don’t have admin rights to a continuous integration server and

you need to set property values that should not be easily visible. Since you cannot use the -P option

in that scenario, nor change the system-level configuration files, the correct strategy is to change

the configuration of your continuous integration build job, adding an environment variable setting

that matches an expected pattern. This won’t be visible to normal users on the system.

You can access a project property in your build script simply by using its name as you would use a
variable.

If a project property is referenced but does not exist, an exception will be thrown

and the build will fail.
NOTE
You should check for existence of optional project properties before you access them

using the Project.hasProperty(java.lang.String) method.
Configuring JVM memory

Gradle defaults to 1024 megabytes maximum heap per JVM process (-Xmx1024m), however, that may
be too much or too little depending on the size of your project. There are many JVM options (this
blog post on Java performance tuning and this reference may be helpful).

You can adjust JVM options for Gradle in the following ways:

The JAVA_OPTS environment variable is used for the Gradle client, but not forked JVMs.

Example: Changing JVM settings for Gradle client JVM

JAVA_OPTS="-Xmx2g -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError
-Dfile.encoding=UTF-8"

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)
https://dzone.com/articles/java-performance-tuning
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

You need to use the org.gradle.jvmargs Gradle property to configure JVM settings for the Gradle
Daemon.

Example: Changing JVM settings for forked Gradle JVMs

org.gradle.jvmargs=-Xmx2g -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError
-Dfile.encoding=UTF-8

Many settings (like the Java version and maximum heap size) can only be specified
when launching a new JVM for the build process. This means that Gradle must
launch a separate JVM process to execute the build after parsing the various
gradle.properties files.

NOTE When running with the Gradle Daemon, a JVM with the correct parameters is

started once and reused for each daemon build execution. When Gradle is executed
without the daemon, then a new JVM must be launched for every build execution,
unless the JVM launched by the Gradle start script happens to have the same
parameters.

Certain tasks in Gradle also fork additional JVM processes, like the test task when using
Test.setMaxParallelForks(int) for JUnit or TestNG tests. You must configure these through the tasks
themselves.

Example: Set Java compile options for JavaCompile tasks

build.gradle
apply plugin: "java"

tasks.withType(JavaCompile) {
options.compilerArgs += ["-Xdoclint:none", "-Xlint:none", "-nowarn"]

}

See other examples in the Test API documentation and test execution in the Java plugin reference.

Build scans will tell you information about the JVM that executed the build when you use the --scan
option.

../javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-
../dsl/org.gradle.api.tasks.compile.JavaCompile.html
../dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com

0@ < (im] @& scans.gradle.com < t a ’T

d Build Scan GJ +/ transitive-de... compileDebugCpp Oct 11, 2017 11:55:37 AM MST
2ee an swicnes
Console log
. 13 infrastructure properties
Timeline
Operating system
Wk Performance CPU cores
o Projects Max Gradle workers
; Java runtime
% Dependencies
> Plugins Java VM
g Switches Max JZVM memory heap size 954 MB
B3 Infrastructure
See all items
Gradle Inc. 2018 | Terms of Service | Status | Help and Feedback

Configuring a task using project properties

It’s possible to change the behavior of a task based on project properties specified at invocation
time.

Suppose you’d like to ensure release builds are only triggered by CI. A simple way to handle this is
through an isCI project property.

Example: Prevent releasing outside of CI

build.gradle

task performRelease {
dolLast {
if (project.hasProperty("isCI")) {
println("Performing release actions")
} else {
throw new InvalidUserDataException("Cannot perform release outside of CI")

Output of gradle performRelease -PisCI=true --quiet

> gradle performRelease -PisCI=true --quiet
Performing release actions

https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

Accessing the web through a HTTP proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via
standard JVM system properties. These properties can be set directly in the build script; for
example, setting the HTTP proxy host would be done with System.setProperty("http.proxyHost',
"www.somehost.org"'). Alternatively, the properties can be specified in gradle.properties.

Configuring an HTTP proxy using gradle.properties

systemProp.http.proxyHost=www.somehost.org
systemProp.http.proxyPort=8080
systemProp.http.proxyUser=userid
systemProp.http.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

There are separate settings for HTTPS.

Configuring an HTTPS proxy using gradle.properties

systemProp.https.proxyHost=www.somehost.org
systemProp.https.proxyPort=8080
systemProp.https.proxyUser=userid
systemProp.https.proxyPassword=password
systemProp.https.nonProxyHosts=*.nonproxyrepos.com|localhost

You may need to set other properties to access other networks. Here are 2 references that may be
helpful:

* ProxySetup.java in the Ant codebase

* JDK 7 Networking Properties
NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain
as well as the username and password. There are 2 ways that you can provide the domain for
authenticating to a NTLM proxy:

» Set the http.proxyUser system property to a value like domain/username.

* Provide the authentication domain via the http.auth.ntlm.domain system property.

Directory Layout

Gradle uses two main directories to perform and manage its work: the Gradle user home directory
and the Project root directory. The following two sections describe what is stored in each of them
and how transient files and directories are cleaned up.

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD
http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Gradle user home directory

The Gradle user home directory ($USER_HOME/.gradle by default) is used to store global configuration
properties and initialization scripts as well as caches and log files. It is roughly structured as
follows:

jars-3 ®

—— wrapper

| L—— dists ®

| —

| —— gradle-4.8-bin

| —— gradle-4.9-all

| L—— gradle-4.9-bin

L—— gradle.properties @
@ Global cache directory (for everything that’s not project-specific)
@ Version-specific caches (e.g. to support incremental builds)
® Shared caches (e.g. for artifacts of dependencies)
@ Registry and logs of the Gradle Daemon
® Global initialization scripts

® Distributions downloaded by the Gradle Wrapper

@ Global Gradle configuration properties

Cleanup of caches and distributions

From version 4.10 onwards, Gradle automatically cleans its user home directory. The cleanup runs
in the background when the Gradle daemon is stopped or shuts down. If using --no-daemon, it runs
in the foreground after the build session with a visual progress indicator.

The following cleanup strategies are applied periodically (at most every 24 hours):

* Version-specific caches in caches/<gradle-version>/ are checked for whether they are still in
use. If not, directories for release versions are deleted after 30 days of inactivity, snapshot
versions after 7 days of inactivity.

» Shared caches in caches/ (e.g. jars-*) are checked for whether they are still in use. If there’s no
Gradle version that still uses them, they are deleted.

* Files in shared caches used by the current Gradle version in caches/ (e.g. jars-3 or modules-2)
are checked for when they were last accessed. Depending on whether the file can be recreated
locally or would have to be downloaded from a remote repository again, it will be deleted after
7 or 30 days of not being accessed, respectively.

* Gradle distributions in wrapper/dists/ are checked for whether they are still in use, i.e. whether
there’s a corresponding version-specific cache directory. Unused distributions are deleted.

Project root directory

The project root directory contains all source files that are part of your project. In addition, it
contains files and directories that are generated by Gradle such as .gradle and build. While the
former are usually checked in to source control, the latter are transient files used by Gradle to
support features like incremental builds. Overall, the anatomy of a typical project root directory
looks roughly as follows:

—— gradle

| L—— wrapper @

—— build.gradle or build.gradle.kts ®
—— gradle.properties ®

—— gradlew @

—— gradlew.bat @

L—— settings.gradle or settings.gradle.kts

@ Project-specific cache directory generated by Gradle

@ Version-specific caches (e.g. to support incremental builds)

® The build directory of this project into which Gradle generates all build artifacts.
@ Contains the JAR file and configuration of the Gradle Wrapper

® The project’s Gradle build script

® Project-specific Gradle configuration properties

@ Scripts for executing builds using the Gradle Wrapper

The project’s settings file

Project cache cleanup

From version 4.10 onwards, Gradle automatically cleans the project-specific cache directory. After
building the project, version-specific cache directories in .gradle/<gradle-version>/ are checked
periodically (at most every 24 hours) for whether they are still in use. They are deleted if they
haven’t been used for 7 days.

The Gradle Daemon

A daemon is a computer program that runs as a background process, rather
than being under the direct control of an interactive user.

— Wikipedia

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution
to this problem is the Gradle Daemon: a long-lived background process that executes your builds
much more quickly than would otherwise be the case. We accomplish this by avoiding the
expensive bootstrapping process as well as leveraging caching, by keeping data about your project
in memory. Running Gradle builds with the Daemon is no different than without. Simply configure
whether you want to use it or not - everything else is handled transparently by Gradle.

Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for
every build, but we are able to cache information about project structure, files, tasks, and more in
memory.

The reasoning is simple: improve build speed by reusing computations from previous builds.
However, the benefits are dramatic: we typically measure build times reduced by 15-75% on
subsequent builds. We recommend profiling your build by using --profile to get a sense of how
much impact the Gradle Daemon can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything
to benefit from it.

If you run CI builds in ephemeral environments (such as containers) that do not reuse any
processes, use of the Daemon will slightly decrease performance (due to caching additional
information) for no benefit, and may be disabled.

Running Daemon Status
To get a list of running Gradle Daemons and their statuses use the --status command.

Sample output:

PID VERSION STATUS
28411 3.0 IDLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the
status output will only show Daemons for the version of Gradle being invoked and not for any other
versions. Future versions of Gradle will lift this constraint and will show the running Daemons for
all versions of Gradle.

Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. There are several
ways to disable the Daemon, but the most common one is to add the line

org.gradle.daemon=false

to the file «USER_HOME>/.gradle/gradle.properties, where «USER_HOME>» is your home directory.
That’s typically one of the following, depending on your platform:

e (:\Users\<username> (Windows Vista & 7+)
e /Users/<username> (macOS)

e /home/<username> (Linux)

If that file doesn’t exist, just create it using a text editor. You can find details of other ways to
disable (and enable) the Daemon in Daemon FAQ further down. That section also contains more
detailed information on how the Daemon works.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost,
regardless of the version of Gradle a particular build uses.

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both

TIP developers' machines and Continuous Integration servers. However, if you suspect
that Daemon makes your CI builds unstable, you can disable it to use a fresh runtime
for each build since the runtime is completely isolated from any previous builds.

Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle
processes on your machine, though. Every Daemon monitors its memory usage compared to total
system memory and will stop itself if idle when available system memory is low. If you want to
explicitly stop running Daemon processes for any reason, just use the command gradle --stop.

This will terminate all Daemon processes that were started with the same version of Gradle used to
execute the command. If you have the Java Development Kit (JDK) installed, you can easily verify
that a Daemon has stopped by running the jps command. You’ll see any running Daemons listed
with the name GradleDaemon.

FAQ
How do I disable the Gradle Daemon?
There are two recommended ways to disable the Daemon persistently for an environment:

* Via environment variables: add the flag -Dorg.gradle.daemon=false to the GRADLE_OPTS
environment variable

» Via properties file: add org.gradle.daemon=false to the «GRADLE_USER_HOME>>/gradle.properties
file

Note, «GRADLE_USER_HOME>> defaults to «USER_HOME>>/.gradle, where <«USER_HOME>> is
the home directory of the current user. This location can be configured via the -g
and --gradle-user-home command line switches, as well as by the GRADLE_USER_HOME
environment variable and org.gradle.user.home JVM system property.

NOTE

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle
users choose the second option and add the entry to the user gradle.properties file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo. >>
"%USERPROFILE%/.gradle/gradle.properties” && echo org.gradle.daemon=false >>
"%USERPROFILE%/.gradle/gradle.properties")

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the
current user:

mkdir -p ~/.gradle && echo "org.gradle.daemon=false" >> ~/.gradle/gradle.properties

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be
started unless explicitly requested using the --daemon option.

The --daemon and --no-daemon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line
options have the highest precedence when considering the build environment. Typically, it is more
convenient to enable the Daemon for an environment (e.g. a user account) so that all builds use the
Daemon without requiring to remember to supply the --daemon option.

Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is
already running. The basic rule is that Gradle will start a new Daemon if there are no existing idle
or compatible Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or
more, so you don’t have to worry about cleaning them up manually.

idle

An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible

A compatible Daemon is one that can (or can be made to) meet the requirements of the
requested build environment. The Java runtime used to execute the build is an example aspect
of the build environment. Another example is the set of JVM system properties required by the
build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is
running with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is
not compatible and another must be started. Moreover, certain properties of a Java runtime cannot
be changed once the JVM has started. For example, it is not possible to change the memory
allocation (e.g. -Xmx1024m), default text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build
client’s (e.g. Gradle command line client, IDE etc.) environment and explicitly via command line
switches and settings. See Build Environment for details on how to specify and control the build
environment.

The following JVM system properties are effectively immutable. If the requested build environment
requires any of these properties, with a different value than a Daemon’s JVM has for this property,
the Daemon is not compatible.

file.encoding

* user.language

* user.country

* user.variant

* java.io.tmpdir

* javax.net.ssl.keyStore

* javax.net.ssl.keyStorePassword

* javax.net.ssl.keyStoreType

* javax.net.ssl.trustStore

* javax.net.ssl.trustStorePassword

* javax.net.ssl.trustStoreType

* com.sun.management.jmxremote
The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must
match exactly in order for a Daemon to be compatible.

* The maximum heap size (i.e. the -Xmx JVM argument)

* The minimum heap size (i.e. the -Xms JVM argument)

The boot classpath (i.e. the -Xbootclasspath argument)

* The “assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon
processes are coupled to a specific Gradle runtime. Working on multiple Gradle projects during a
session that use different Gradle versions is a common reason for having more than one running
Daemon process.

How much memory does the Daemon use and can I give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up
to 1GB of heap. It will use the JVM’s default minimum heap size. 1GB is more than enough for most
builds. Larger builds with hundreds of subprojects, lots of configuration, and source code may
require, or perform better, with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Build Environment for details.

How can I stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you
wish to stop a Daemon process before this, you can either kill the process via your operating system
or run the gradle --stop command. The --stop switch causes Gradle to request that all running
Daemon processes, of the same Gradle version used to run the command, terminate themselves.

What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and
unobtrusive during day to day development. However, Daemon processes can occasionally be
corrupted or exhausted. A Gradle build executes arbitrary code from multiple sources. While
Gradle itself is designed for and heavily tested with the Daemon, user build scripts and third party
plugins can destabilize the Daemon process through defects such as memory leaks or global state
corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds
that do not release resources correctly. This is a particularly poignant problem when using
Microsoft Windows as it is less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the
available heap space in the daemon. When it detects a problem, the Gradle daemon will finish the
currently running build and proactively restart the daemon on the next build. This monitoring is
enabled by default, but can be disabled by setting the org.gradle.daemon.performance.enable-
monitoring system property to false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that
the --no-daemon switch can be specified for a build to prevent use of the Daemon. This can be useful
to diagnose whether or not the Daemon is actually the culprit of a problem.

Tools & IDEs

The Gradle Tooling API that is used by IDEs and other tools to integrate with Gradle always uses the
Gradle Daemon to execute builds. If you are executing Gradle builds from within your IDE you are
using the Gradle Daemon and do not need to enable it for your environment.

How does the Gradle Daemon make builds faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build.
This has the obvious benefit of only requiring Gradle to be loaded into memory once for multiple

builds, as opposed to once for each build. This in itself is a significant performance optimization,
but that’s not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For
example, HotSpot (the JVM implementation provided by Oracle and used as the basis of Open]JDK)
applies optimization to code while it is running. The optimization is progressive and not
instantaneous. That is, the code is progressively optimized during execution which means that
subsequent builds can be faster purely due to this optimization process. Experiments with HotSpot
have shown that it takes somewhere between 5 and 10 builds for optimization to stabilize. The
difference in perceived build time between the first build and the 10th for a Daemon can be quite
dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes
needed by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly,
Gradle can maintain in-memory caches of build data such as the hashes of task inputs and outputs,
used for incremental building.

Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current
environment. This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “init” task provided by the “build-init” incubating
plugin (see Build Init Plugin).

Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scripts in Gradle. These scripts, however,
are run before the build starts. Here are several possible uses:
* Set up enterprise-wide configuration, such as where to find custom plugins.

* Set up properties based on the current environment, such as a developer’s machine vs. a
continuous integration server.

» Supply personal information about the user that is required by the build, such as repository or
database authentication credentials.

» Define machine specific details, such as where JDKs are installed.
» Register build listeners. External tools that wish to listen to Gradle events might find this useful.

» Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the buildSrc project (see
Using buildSrc to extract imperative logic for details of this feature).

Using an init script
There are several ways to use an init script:

» Specify a file on the command line. The command line option is -I or --init-script followed by

the path to the script. The command line option can appear more than once, each time adding
another init script. The build will fail if any of the files specified on the command line does not
exist.

» Put afile called init.gradle in the USER_HOME/.gradle/ directory.
 Put a file that ends with .gradle in the USER_HOME/.gradle/init.d/ directory.

 Put a file that ends with .gradle in the GRADLE_HOME/init.d/ directory, in the Gradle distribution.
This allows you to package up a custom Gradle distribution containing some custom build logic
and plugins. You can combine this with the Gradle wrapper as a way to make custom logic
available to all builds in your enterprise.

If more than one init script is found they will all be executed, in the order specified above. Scripts
in a given directory are executed in alphabetical order. This allows, for example, a tool to specify an
init script on the command line and the user to put one in their home directory for defining the
environment and both scripts will run when Gradle is executed.

Writing an init script

Similar to a Gradle build script, an init script is a Groovy script. Each init script has a Gradle
instance associated with it. Any property reference and method call in the init script will delegate to
this Gradle instance.

Each init script also implements the Script interface.

Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to
configuring projects in a multi-project build. The following sample shows how to perform extra
configuration from an init script before the projects are evaluated. This sample uses this feature to
configure an extra repository to be used only for certain environments.

Example: Using init script to perform extra configuration before projects are evaluated

../dsl/org.gradle.api.invocation.Gradle.html
../dsl/org.gradle.api.Script.html

build.gradle

repositories {
mavenCentral()

}

task showRepos {
dolast {
println "All repos:"
println repositories.collect { it.name }

init.gradle

allprojects {
repositories {
mavenlLocal()

}

Output of gradle --init-script init.gradle -q showRepos

> gradle --init-script init.gradle -q showRepos
All repos:
[MavenLocal, MavenRepo]

External dependencies for the init script

In External dependencies for the build script it was explained how to add external dependencies to
a build script. Init scripts can also declare dependencies. You do this with the initscript() method,
passing in a closure which declares the init script classpath.

Example: Declaring external dependencies for an init script

init.gradle

initseript {
repositories {
mavenCentral()
}
dependencies {
classpath group: 'org.apache.commons', name: 'commons-math', version: '2.0'

}

The closure passed to the initscript() method configures a ScriptHandler instance. You declare the
init script classpath by adding dependencies to the classpath configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
described in Declaring Dependencies, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would
any other classes on the classpath. The following example adds to the previous example, and uses
classes from the init script classpath.

Example: An init script with external dependencies

init.gradle
import org.apache.commons.math.fraction.Fraction

initscript {
repositories {
mavenCentral()

}

dependencies {
classpath group: 'org.apache.commons', name: 'commons-math', version: '2.0'

}
}

println Fraction.ONE_FIFTH.multiply(2)

Output of gradle --init-script init.gradle -q doNothing
> gradle --init-script init.gradle -q doNothing
2/5

Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Example: Using plugins in init scripts

../javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

init.gradle
apply plugin:EnterpriseRepositoryPlugin
class EnterpriseRepositoryPlugin implements Plugin<Gradle> {

private static String ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"

void apply(Gradle gradle) {
// ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
gradle.allprojects{ project ->
project.repositories {

// Remove all repositories not pointing to the enterprise
repository url
all { ArtifactRepository repo ->
if (!(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {
project.logger.lifecycle "Repository ${repo.url} removed.
Only $ENTERPRISE_REPOSITORY_URL is allowed"
remove repo
¥
}

// add the enterprise repository
maven {
name "STANDARD_ENTERPRISE_REPOQ"
url ENTERPRISE_REPOSITORY_URL

}
+
}
}
}
build.gradle
repositories{
mavenCentral()
}

task showRepositories {
dolLast {
repositories.each {
println "repository: ${it.name} ('${it.url}')"
}

Output of gradle --init-script init.gradle -q showRepositories

> gradle --init-script init.gradle -q showRepositories
repository: STANDARD_ENTERPRISE_REPO (‘'https://repo.gradle.org/gradle/repo")

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin
instance’s Plugin.apply(T) method. The gradle object is passed as a parameter, which can be used to
configure all aspects of a build. Of course, the applied plugin can be resolved as an external
dependency as described in External dependencies for the init script

Executing Multi-Project Builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a
massive, monolithic application. It’s often much easier to digest and understand a project that has
been split into smaller, inter-dependent modules. The word “inter-dependent” is important, though,
and is why you typically want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

Structure of a multi-project build
Such builds come in all shapes and sizes, but they do have some common characteristics:

» Asettings.gradle file in the root or master directory of the project
* Abuild.gradle file in the root or master directory
¢ Child directories that have their own *.gradle build files (some multi-project builds may omit

child project build scripts)

The settings.gradle file tells Gradle how the project and subprojects are structured. Fortunately,
you don’t have to read this file simply to learn what the project structure is as you can run the
command gradle projects. Here’s the output from using that command on the Java multiproject
build in the Gradle samples:

Example: Listing the projects in a build

../javadoc/org/gradle/api/Plugin.html#apply-T-

Output of gradle -q projects

> gradle -q projects

Root project 'multiproject’

+--- Project ':api’

+--- Project ':services'

| +--- Project ':services:shared'

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The
services project then has its own children, shared and webservice. These map to the directory
structure, so it’s easy to find them. For example, you can find webservice in
<root>/services/webservice.

By default, Gradle uses the name of the directory it finds the settings.gradle as the name of the
root project. This usually doesn’t cause problems since all developers check out the same directory
name when working on a project. On Continuous Integration servers, like Jenkins, the directory
name may be auto-generated and not match the name in your VCS. For that reason, it’s
recommended that you always set the root project name to something predictable, even in single
project builds. You can configure the root project name by setting rootProject.name.

Each project will usually have its own build file, but that’s not necessarily the case. In the above
example, the services project is just a container or grouping of other subprojects. There is no build
file in the corresponding directory. However, multiproject does have one for the root project.

The root build.gradle is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to all the child projects. It can also
be used to configure individual subprojects when it is preferable to have all the configuration in
one place. This means you should always check the root build file when discovering how a
particular subproject is being configured.

Another thing to bear in mind is that the build files might not be called build.gradle. Many projects
will name the build files after the subproject names, such as api.gradle and services.gradle from
the previous example. Such an approach helps a lot in IDEs because it’s tough to work out which
build.gradle file out of twenty possibilities is the one you want to open. This little piece of magic is
handled by the settings.gradle file, but as a build user you don’t need to know the details of how
it’s done. Just have a look through the child project directories to find the files with the .gradle
suffix.

Once you know what subprojects are available, the key question for a build user is how to execute

the tasks within the project.

Executing a multi-project build

From a user’s perspective, multi-project builds are still collections of tasks you can run. The
difference is that you may want to control which project’s tasks get executed. You have two options
here:

* Change to the directory corresponding to the subproject you’re interested in and just execute
gradle <task>as normal.

* Use a qualified task name from any directory, although this is usually done from the root. For
example: gradle :services:webservice:build will build the webservice subproject and any
subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in
the case of a multi-project build. The command gradle test will execute the test task in any
subprojects, relative to the current working directory, that have that task. So if you run the
command from the root project directory, youw’ll run test in api, shared, services:shared and
services:webservice. If you run the command from the services project directory, yow’ll only execute
the task in services:shared and services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned).
These are paths just like directory paths, but use ‘.’ instead of / or °\'. If the path begins with a 7,
then the path is resolved relative to the root project. In other words, the leading ‘’ represents the
root project itself. All other colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject,
just use the tasks task, e.g. gradle :services:webservice:tasks.

Regardless of which technique you use to execute tasks, Gradle will take care of building any
subprojects that the target depends on. You don’t have to worry about the inter-project
dependencies yourself. If you’re interested in how this is configured, you can read about writing
multi-project builds later in the user guide.

There’s one last thing to note. When you’re using the Gradle wrapper, the first approach doesn’t
work well because you have to specify the path to the wrapper script if you’re not in the project
root. For example, if you’re in the webservice subproject directory, you would have to run
../../gradlew build.

That’s all you really need to know about multi-project builds as a build user. You can now identify
whether a build is a multi-project one and you can discover its structure. And finally, you can
execute tasks within specific subprojects.

The Gradle Wrapper

The recommended way to execute any Gradle build is with the help of the Gradle Wrapper (in short
just “Wrapper”). The Wrapper is a script that invokes a declared version of Gradle, downloading it
beforehand if necessary. As a result, developers can get up and running with a Gradle project
quickly without having to follow manual installation processes saving your company time and

money.

1. Download
I Gradle distribution
; -
Build Server
Vo Bl
distribution distribution
Y
Gradle
User Home

Figure 2. The Wrapper workflow
In a nutshell you gain the following benefits:

» Standardizes a project on a given Gradle version, leading to more reliable and robust builds.

* Provisioning a new Gradle version to different users and execution environment (e.g. IDEs or
Continuous Integration servers) is as simple as changing the Wrapper definition.

So how does it work? For a user there are typically three different workflows:

* You set up a new Gradle project and want to add the Wrapper to it.
* You want to run a project with the Wrapper that already provides it.

* You want to upgrade the Wrapper to a new version of Gradle.

The following sections explain each of these use cases in more detail.

Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine
as described in Installation. Thankfully, generating the initial Wrapper files is a one-time process.

Every vanilla Gradle build comes with a built-in task called wrapper. You’ll be able to find the task
listed under the group "Build Setup tasks" when listing the tasks. Executing the wrapper task
generates the necessary Wrapper files in the project directory.

Example: Running the Wrapper task

Output of gradle wrapper

> gradle wrapper
> Task :wrapper

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

To make the Wrapper files available to other developers and execution
environments youw’ll need to check them into version control. All Wrapper files

NOTE including the JAR file are very small in size. Adding the JAR file to version control is
expected. Some organizations do not allow projects to submit binary files to version
control. At the moment there are no alternative options to the approach.

The generated Wrapper properties file, gradle/wrapper/gradle-wrapper.properties, stores the
information about the Gradle distribution.

* The server hosting the Gradle distribution.

* The type of Gradle distribution. By default that’s the -bin distribution containing only the
runtime but no sample code and documentation.

* The Gradle version used for executing the build. By default the wrapper task picks the exact same
Gradle version that was used to generate the Wrapper files.

gradle/wrapper/gradle-wrapper.properties

distributionUrl=https\://services.gradle.org/distributions/gradle-4.3.1-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the
following command line options.

--gradle-version
The Gradle version used for downloading and executing the Wrapper.

--distribution-type
The Gradle distribution type used for the Wrapper. Available options are bin and all. The default
value is bin.

--gradle-distribution-url
The full URL pointing to Gradle distribution ZIP file. Using this option makes --gradle-version
and --distribution-type obsolete as the URL already contains this information. This option is
extremely valuable if you want to host the Gradle distribution inside your company’s network.

--gradle-distribution-sha256-sum
The SHA256 hash sum used for verifying the downloaded Gradle distribution.

Let’s assume the following use case to illustrate the use of the command line options. You would
like to generate the Wrapper with version 4.0 and use the -all distribution to enable your IDE to
enable code-completion and being able to navigate to the Gradle source code. Those requirements

are captured by the following command line execution:

Example: Providing options to Wrapper task

Output of gradle wrapper --gradle-version 4.0 --distribution-type all

> gradle wrapper --gradle-version 4.0 --distribution-type all
> Task :wrapper

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

As a result you can find the desired information in the Wrapper properties file.

gradle/wrapper/gradle-wrapper.properties

distributionUrl=https\://services.gradle.org/distributions/gradle-4.0-all.zip

Let’s have a look at the following project layout to illustrate the expected Wrapper files:

—— build.gradle
—— settings.gradle
—— gradle

| L—— wrapper

| —— gradle-wrapper.jar
! L—— gradle-wrapper.properties

—— gradlew

L—— gradlew.bat

A Gradle project typically provides a build.gradle and a settings.gradle file. The Wrapper files live
alongside in the gradle directory and the root directory of the project. The following list explains
their purpose.

gradle-wrapper.jar
The Wrapper JAR file containing code for downloading the Gradle distribution.

gradle-wrapper.properties
A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle
version compatible with this version.

gradlew, gradlew.bat
A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and execute the build with the Wrapper without having to install the Gradle
runtime. If the project you are working on does not contain those Wrapper files then you’ll need to
generate them.

Using the Gradle Wrapper

It is recommended to always execute a build with the Wrapper to ensure a reliable, controlled and
standardized execution of the build. Using the Wrapper looks almost exactly like running the build
with a Gradle installation. Depending on the operating system you either run gradlew or gradlew.bat
instead of the gradle command. The following console output demonstrate the use of the Wrapper
on a Windows machine for a Java-based project.

Example: Executing the build with the Wrapper batch file

Output of gradlew.bat build

> gradlew.bat build

Downloading https://services.gradle.org/distributions/gradle-4.0-all.zip
Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-4.0-
all\ac2708rbd@ic8ih410r9132mv\gradle-4.0-all.zip to C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-4.0-al\ac2708rbd@ic8ih41or9132mv
Set executable permissions for: C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-4.0-
all\ac2708rbd@ic81h410r9132mv\gradle-4.0\bin\gradle

BUILD SUCCESSFUL in 12s
1 actionable task: 1 executed

In case the Gradle distribution is not available on the machine, the Wrapper will download it and
store in the local file system. Any subsequent build invocation is going to reuse the existing local
distribution as long as the distribution URL in the Gradle properties doesn’t change.

The Wrapper shell script and batch file reside in the root directory of a single or
multi-project Gradle build. You will need to reference the correct path to those files
in case you want to execute the build from a subproject directory e.g. ../../gradlew
tasks.

NOTE

Upgrading the Gradle Wrapper

Projects will typically want to keep up with the times and upgrade their Gradle version to benefit
from new features and improvements. One way to upgrade the Gradle version is manually change
the distributionUrl property in the Wrapper property file. The better and recommended option is
to run the wrapper task and provide the target Gradle version as described in Adding the Gradle
Wrapper. Using the wrapper task ensures that any optimizations made to the Wrapper shell script or
batch file with that specific Gradle version are applied to the project. As usual you’d commit the
changes to the Wrapper files to version control.

Use the Gradle wrapper task to generate the wrapper, specifying a version. The default is the current
version, which you can check by executing ./gradlew --version.

Example: Upgrading the Wrapper version

Output of ./gradlew wrapper --gradle-version 4.2.1
> ./gradlew wrapper --gradle-version 4.2.1

BUILD SUCCESSFUL in 4s
1 actionable task: 1 executed

Example: Checking the Wrapper version after upgrading

Output of ./gradlew -v

> ./gradlew -v

Downloading https://services.gradle.org/distributions/gradle-4.2.1-bin.zip
Unzipping /Users/claudia/.gradle/wrapper/dists/gradle-4.2.1-
bin/dajvke9o8kmaxbu@kc5gcgeju/gradle-4.2.1-bin.zip to
/Users/claudia/.gradle/wrapper/dists/gradle-4.2.1-bin/dajvke908kmaxbu@kc5gcgeju
Set executable permissions for: /Users/claudia/.gradle/wrapper/dists/gradle-4.2.1-
bin/dajvke9o8kmaxbu@kc5gcgeju/gradle-4.2.1/bin/gradle

Build time: 2017-10-02 15:36:21 UTC

Revision: a88ebdbbe7840c2e59a3e4782eb0f27fbe3405ddf

Groovy: 2.4.12

Ant: Apache Ant(TM) version 1.9.6 compiled on June 29 2015
JVM: 1.8.0_60 (Oracle Corporation 25.60-b23)

0S: Mac 0S X 10.13.1 x86_64

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However,
organizational policies, security constraints or personal preferences might require you to dive
deeper into customizing the Wrapper. Thankfully, the built-in wrapper task exposes numerous
options to bend the runtime behavior to your needs. Most configuration options are exposed by the
underlying task type Wrapper.

Let’s assume you grew tired of defining the -all distribution type on the command line every time
you upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the
wrapper task.

Example: Customizing the Wrapper task

../dsl/org.gradle.api.tasks.wrapper.Wrapper.html

build.gradle

wrapper {
distributionType = Wrapper.DistributionType.ALL

}

With the configuration in place running ./gradlew wrapper --gradle-version 4.1 is enough to
produce a distributionUrl value in the Wrapper properties file that will request the -all
distribution.

gradle/wrapper/gradle-wrapper.properties

distributionUrl=https\://services.gradle.org/distributions/gradle-4.1-all.zip

Check out the API documentation for more detail descriptions of the available configuration
options. You can also find various samples for configuring the Wrapper in the Gradle distribution.

Authenticated Gradle distribution download

The Gradle Wrapper can download Gradle distributions from servers using HTTP Basic
Authentication. This enables you to host the Gradle distribution on a private protected server. You
can specify a username and password in two different ways depending on your use case: as system
properties or directly embedded in the distributionUrl. Credentials in system properties take
precedence over the ones embedded in distributionUrl.

Security Warning

TIP HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP
ones. With Basic Authentication, the user credentials are sent in clear text.

Using system properties can be done in the .gradle/gradle.properties file in the user’s home
directory, or by other means, see Gradle Configuration Properties.

gradle.properties

systemProp.gradle.wrapperUser=username
systemProp.gradle.wrapperPassword=password

Embedding credentials in the distributionUrl in the gradle/wrapper/gradle-wrapper.properties file
also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded in distributionUrl should only be used in a controlled environment.

gradle/wrapper/gradle-wrapper.properties

distributionUrl=https://username:password@somehost/path/to/gradle-distribution.zip

This can be used in conjunction with a proxy, authenticated or not. See Accessing the web via a
proxy for more information on how to configure the Wrapper to use a proxy.

Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256
hash sum comparison. This increases security against targeted attacks by preventing a man-in-the-
middle attacker from tampering with the downloaded Gradle distribution.

To enable this feature, download the .sha256 file associated with the Gradle distribution you want
to verify.

Downloading the SHA-256 file

You can download the .sha256 file from the stable releases or release candidate and nightly
releases. The format of the file is a single line of text that is the SHA-256 hash of the corresponding
zip file.

Configuring checksum verification

Add the downloaded hash sum to gradle-wrapper.properties using the distributionSha256Sum
property or use --gradle-distribution-sha256-sum on the command-line.

gradle/wrapper/gradle-wrapper.properties

distributionSha256Sum=371cb9fbebbe9880d147159bab36d61eee122854ef8c9eelect12b82368bct10

Gradle will report a build failure in case the configured checksum does not match the checksum
found on the server for hosting the distribution. Checksum Verification is only performed if the
configured Wrapper distribution hasn’t been downloaded yet.

Troubleshooting

The following is a collection of common issues and suggestions for addressing them. You can get
other tips and search the Gradle forums and StackOverflow #gradle answers, as well as Gradle
documentation from help.gradle.org.

Troubleshooting Gradle installation

If you followed the installation instructions, and aren’t able to execute your Gradle build, here are
some tips that may help.

If you installed Gradle outside of just invoking the Gradle Wrapper, you can check your Gradle
installation by running gradle --versionin a terminal.

You should see something like this:

https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/
https://services.gradle.org/distributions-snapshots/
https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle
https://help.gradle.org/

gradle --version

Build time: 2018-02-21 15:28:42 UTC

Revision: 819e0059da491469d3e9b2896dc4e72537c4847d

Groovy: 2.4.12

Ant: Apache Ant(TM) version 1.9.9 compiled on February 2 2017
JVM: 1.8.0_151 (Oracle Corporation 25.151-b12)

0S: Mac 0S X 10.13.3 x86_64

If not, here are some things you might see instead.

Command not found: gradle

If you get "command not found: gradle", you need to ensure that Gradle is properly added to your
PATH.

JAVA_HOME is set to an invalid directory

If you get something like:

ERROR: JAVA_HOME is set to an invalid directory

Please set the JAVA_HOME variable in your environment to match the location of your
Java installation.

You’ll need to ensure that a Java Development Kit version 7 or higher is properly installed, the
JAVA_HOME environment variable is set, and Java is added to your PATH.

Permission denied

If you get "permission denied", that means that Gradle likely exists in the correct place, but it is not
executable. You can fix this using chmod +x path/to/executable on *nix-based systems.

Other installation failures

If gradle --version works, but all of your builds fail with the same error, it is possible there is a
problem with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running gradle help which executes
configuration scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If
not, then the problem exists within the execution of one or more of the requested tasks (Gradle
executes configuration scripts first, and then executes build steps).

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml

Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in
Troubleshooting Dependency Resolution.

You can see a dependency tree and see which resolved dependency versions differed from what

was requested by clicking the Dependencies view and using the search functionality, specifying the
resolution reason.

0@ (< Em| & scans.gradle.com & ™ [l ’T
ﬁ Build Scan ef v/ gradle :docs:userguide... Feb 21, 2018 3:06:35 PM MST

E Summary Search

Console IOS | [Resolution: Selected different from requested X] |

#+ Timeline

Wf Performance |= ©1 Found 3 dependencies resolved in 1 project across 2 configurations

o Projects

9 Dependencies :docs

) asciidoctor ~ - 0.018s

> Plugins org.asciidoctor:asciidoctorji1.5.2 = 1.5.6 conflict resolution

o= Custom values userGuideTask ~ - 0.011s

g Switches xerces:xerceslmpl:2.9.0 — 2.11.0 conflict resolution

o xml-apis:xml-apis:1.3.04 — 1.4.01 conflict resolution

Infrastructure

Home : Dependencies Close dependency details {esc)

Figure 3. Debugging dependency conflicts with build scans

The actual build scan with filtering criteria is available for exploration.

Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see the guide to Improving the
Performance of Gradle Builds.

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up
Your Android Gradle Builds. Many tips are also covered in the Android Studio user guide on
optimizing build speed.

Debugging build logic
Attaching a debugger to your build

You can set breakpoints and debug buildSrc and standalone plugins in your Gradle build itself by
setting the org.gradle.debug property to “true” and then attaching a remote debugger to port 5005.

gradle help -Dorg.gradle.debug=true --no-daemon

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d
https://guides.gradle.org/performance/
https://guides.gradle.org/performance/
https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

In addition, if you’ve adopted the Kotlin DSL, you can also debug build scripts themselves.

You must either stop running Gradle Daemons or run with --no-daemon when using

NOTE
debug mode.

Adding and changing logging

In addition to controlling logging verbosity, you can also control display of task outcomes (e.g. “UP-
TO-DATE”) in lifecycle logging using the --console=verbose flag.

You can also replace much of Gradle’s logging with your own by registering various event listeners.
One example of a custom event logger is explained in the logging documentation. You can also
control logging from external tools, making them more verbose in order to debug their execution.

can be found wunder

Additional logs from the Gradle Daemon

NOTE .
GRADLE_USER_HOME/daemon/<gradle-version>/.

Task executed when it should have been UP-TO-DATE

--info logs explain why a task was executed, though build scans do this in a searchable, visual way
by going to the Timeline view and clicking on the task you want to inspect.

o008 < G| & scans.gradle.com & t]} ,T
ﬁ Build Scan e} +/ gradle :docs:userguideHtml Feb 21, 2018 3:06:35 PM MST
= =] “. 12 tasks executed in 1 project in 43.899s +
= Summary
Console log
:docs:userguideHtml
I Performance -
_ ® ®
b, Projects
Path Started after Duration Class Order: Execution »
#% Dependencies ExtractDsIM
P> Plugins GenerateDe
o | "docs:userguideAsciidoc E T:
o= Custom values :docs:checkSectionlds Started after 0.108s rifi
g Switches :docs:configureCss Duration 8.930¢
=n Class org.gradle build.docs.CacheableAsciidoctorTask
EY Infrastructure el
The task was not up-to-date because of the following reasons:
Task "docs:userguideAsciidoc' class path has changed from cl
:docsuserguideDocbook 764654807a0962e25e318676ecec5244 to JEE
97e9924c30cd3fe08d245f30f54ac92a.
:docs:userguideHtml
Build cache result » Miss (local and remote), Store (local)
Home » Timeline Close timeline {esc)

\)
Figure 4. Debugging incremental build with a build scan

You can learn what the task outcomes mean from this listing.

Debugging IDE integration

Many infrequent errors within IDEs can be solved by "refreshing" Gradle. See also more

documentation on working with Gradle in Intelli] IDEA and in Eclipse.

Refreshing Intelli] IDEA

NOTE: This only works for Gradle projects linked to Intelli].

From the main menu, go to View > Tool Windows > Gradle. Then click on the Refresh icon.

[] [] | gradle-digest-plugin [~/srcferiwen/gradle-digest-plugin] - .../build.gradle.kts [gradle-digest-plugin]

': <) Remote Debug Gradle v ¥

Refresh all Gradle projects
+ &
¥ (= gradle st-plugin (auto-impo
v Tasks
build
build scan
build setup
documentation
help
other
plugin development
plugin portal
publishing

>
>
>
>
>
>
>
>
>
>

verification

> [Ejj Dependencies

Build_gradle 'buildScan { setTermsOfServiceUrl("https

Figure 5. Refreshing a Gradle project in Intelli] IDEA

Refreshing Eclipse (using Buildship)

If you're using Buildship for the Eclipse IDE, you can re-synchronize your Gradle build by opening
the "Gradle Tasks" view and clicking the "Refresh" icon, or by executing the Gradle > Refresh Gradle
Project command from the context menu while editing a Gradle script.

L] [] eclipse-workspace - multirepo-app/build.gradle - Eclipse
s @ % B Q- QG HEG @S 4 v o v v 5 &
= & build.gradle 33 = O o Gradle Tasks 33 =] =
e lapply plugin: 'java' TED $B | @
2 apply pl Ugil"l : " application ! N:'mé i Desc pefresh Tasks for All Praje
" " ¥ =¥ multirepo-app r
3 apply pl ugin: "idea' » (22 application B
4apply plugin: 'eclipse' » (2 build scan =]
5 b (2 build setup
. " " > (2 build
6 group or'g.sample b (& distribution
Fd version "1. @'" » (2 documentation
8 » (& help
: " - > G3ie
9mainClassName = "org.sample.myapp.Main b (4 verification
10 » = number-utils
. oy
11 dependencies { wEEstringutte
12 compile "org.sample:number-utils:1.@"
13 compile "org.sample:string-utils:1.@"
141
] -
& L}

Figure 6. Refreshing a Gradle project in Eclipse Buildship

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project
https://projects.eclipse.org/projects/tools.buildship

Getting additional help

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the help
forum or search relevant developer resources using help.gradle.org.

If you believe you’ve found a bug in Gradle, please file an issue on GitHub.

https://discuss.gradle.org/c/help-discuss
https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

Authoring Gradle Builds

The Feature Lifecycle

Gradle is under constant development and improvement. New versions are delivered on a regular
and frequent basis (approximately every 6 weeks). Continuous improvement combined with
frequent delivery allows new features to be made available to users early and for invaluable real
world feedback to be incorporated into the development process. Getting new functionality into the
hands of users regularly is a core value of the Gradle platform. At the same time, API and feature
stability is taken very seriously and is also considered a core value of the Gradle platform. This is
something that is engineered into the development process by design choices and automated
testing, and is formalised by the section on backwards compatibility.

The Gradle feature lifecycle has been designed to meet these goals. It also serves to clearly
communicate to users of Gradle what the state of a feature is. The term feature typically means an
API or DSL method or property in this context, but it is not restricted to this definition. Command
line arguments and modes of execution (e.g. the Build Daemon) are two examples of other kinds of
features.

States

Features can be in one of 4 states:

e Internal
* Incubating

e Public

Deprecated

Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself.
They can change in any way at any point in time without any notice. Therefore, we recommend
avoiding the use of such features. Internal features are not documented. If it appears in this User
Guide, the DSL Reference or the API Reference documentation then the feature is not internal.

Internal features may evolve into public features.

Incubating

Features are introduced in the incubating state to allow real world feedback to be incorporated into
the feature before it is made public and locked down to provide backwards compatibility. It also
gives users who are willing to accept potential future changes early access to the feature so they
can put it into use immediately.

A feature in an incubating state may change in future Gradle versions until it is no longer
incubating. Changes to incubating features for a Gradle release will be highlighted in the release
notes for that release. The incubation period for new features varies depending on the scope,

complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all
methods/properties/classes that are incubating are annotated with Incubating, which is also used to
specially mark them in the DSL and API references. If an incubating feature is discussed in this User
Guide, it will be explicitly said to be in the incubating state.

Public

The default state for a non-internal feature is public. Anything that is documented in the User
Guide, DSL Reference or API references that is not explicitly said to be incubating or deprecated is
considered public. Features are said to be promoted from an incubating state to public. The release
notes for each release indicate which previously incubating features are being promoted by the
release.

A public feature will never be removed or intentionally changed without undergoing deprecation.
All public features are subject to the backwards compatibility policy.

Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such
features will eventually be removed from Gradle after being deprecated. A deprecated feature will
never be changed, until it is finally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, all
methods/properties/classes that are deprecated are annotated with “@java.lang.Deprecated” which
is reflected in the DSL and API references. In most cases, there is a replacement for the deprecated
element, and this will be described in the documentation. Using a deprecated feature will also
result in a runtime warning in Gradle’s output.

Use of deprecated features should be avoided. The release notes for each release indicate any
features that are being deprecated by the release.

Backwards Compatibility Policy

Gradle provides backwards compatibility across major versions (e.g. 1.x, 2.x, etc.). Once a public
feature is introduced or promoted in a Gradle release it will remain indefinitely or until it is
deprecated. Once deprecated, it may be removed in the next major release. Deprecated features
may be supported across major releases, but this is not guaranteed.

Authoring Maintainable Build Scripts

Gradle build scripts combine the qualities of declarative build logic, expressiveness as well as
flexibility and rigidity as needed. As a build script author it is easy to fall into the trap of striking
the wrong balance or applying poor coding habits. This chapter describes best practices for writing
your build script in a meaningful, yet flexible and efficient way.

The third-party Gradle lint plugin helps with enforcing a desired code style in a

NOTE
build script if you are looking for appropriate linting automation.

../javadoc/org/gradle/api/Incubating.html
https://github.com/nebula-plugins/gradle-lint-plugin

Avoiding imperative logic in scripts

The Gradle runtime does not enforce a specific style for build logic. For that very reason, it’s easy to
end up with a build script that mixes declarative DSL elements with imperative, procedural code.
Let’s talk about some concrete examples.

* Declarative code: Built-in, language-agnostic DSL elements (e.g. Project.dependencies{} or
Project.repositories{}) or DSLs exposed by plugins

* Imperative code: Conditional logic or very complex task action implementations

The end goal of every build script should be to only contain declarative language elements which
makes the code easier to understand and maintain. Imperative logic should live in binary plugins
and which in turn is applied to the build script. As a side product, you automatically enable your
team to reuse the plugin logic in other projects if you publish the artifact to a binary repository.

The following sample build shows a negative example of using conditional logic directly in the
build script. While this code snippet is small, it is easy to imagine a full-blown build script using
numerous procedural statements and the impact it would have on readability and maintainability.
By moving the code into a class testability also becomes a valid option.

Example: A build script using conditional logic to create a task

build.gradle

if (project.findProperty('releaseEngineer')) {
task release {
dolast {
logger.quiet 'Releasing to production...’

// release the artifact to production

Let’s compare the build script with the same logic implemented as a binary plugin. The code might
look more involved at first but clearly looks more like typical application code. This particular
plugin class lives in the buildSrc directory which makes it available to the build script
automatically.

Example: A binary plugin implementing imperative logic

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
https://guides.gradle.org/designing-gradle-plugins/#reusable_logic_should_be_written_as_binary_plugin
https://guides.gradle.org/testing-gradle-plugins/

ReleasePlugin.java
package com.enterprise;
import org.gradle.api.Action;
import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.Task;
public class ReleasePlugin implements Plugin<Project> {

private static final String RELEASE_ENG_ROLE_PROP = "releaseEngineer";
private static final String RELEASE_TASK_NAME = "release";

public void apply(Project project) {
if (project.findProperty(RELEASE_ENG_ROLE_PROP) != null) {
Task task = project.getTasks().create(RELEASE_TASK_NAME);
task.dolLast(new Action<Task>() {

public void execute(Task task) {
task.getLogger().quiet("Releasing to production...");

// release the artifact to production

b

Now that the build logic has been translated into a plugin, you can apply it in the build script. The
build script has been shrunk from 8 lines of code to a one liner.

Example: A build script applying a plugin that encapsulates imperative logic

build.gradle

apply plugin: 'com.enterprise.release’

Avoiding Gradle internal APIs

Use of Gradle internal APIs in plugins and build scripts has the potential to break builds when
either Gradle or plugins change.

The following packages are listed in the Gradle public API definition, with the exception of any
subpackage with internal in the name:

https://github.com/gradle/gradle/blob/180b9d3fa84b91768364c603380e82947437eda1/buildSrc/subprojects/configuration/src/main/kotlin/org/gradle/gradlebuild/public-api.kt

org/gradle/*
org/gradle/api/**
org/gradle/authentication/**
org/gradle/buildinit/**
org/gradle/caching/**
org/gradle/concurrent/**
org/gradle/deployment/**
org/gradle/external/javadoc/**
org/gradle/ide/**
org/gradle/includedbuild/**
org/gradle/ivy/**
org/gradle/jvm/**
org/gradle/language/**
org/gradle/maven/**
org/gradle/nativeplatform/**
org/gradle/normalization/**
org/gradle/platform/**
org/gradle/play/**
org/gradle/plugin/devel/**
org/gradle/plugin/repository/*
org/gradle/plugin/use/*
org/gradle/plugin/management/*
org/gradle/plugins/**
org/gradle/process/**
org/gradle/testfixtures/**
org/gradle/testing/jacoco/**
org/gradle/tooling/**
org/gradle/swiftpm/**
org/gradle/model/**
org/gradle/testkit/**
org/gradle/testing/**
org/gradle/vcs/**
org/gradle/workers/**

Alternatives for oft-used internal APIs

To provide a nested DSL for your custom task, don’t use org.gradle.internal.reflect.Instantiator;
use ObjectFactory instead. It may also be helpful to read the chapter on lazy configuration.

Don’t use org.gradle.api.internal.ConventionMapping. Use Provider and/or Property. You can find
an example for capturing user input to configure runtime behavior in the implementing plugins
guide.

Instead of org.gradle.internal.os.OperatingSystem, use another method to detect operating system,
such as Apache commons-lang SystemUtils or System.getProperty("os.name").

Use other collections or I/0 frameworks instead of org.gradle.util.CollectionUtils,
org.gradle.util.GFileUtils, and other classes under org.gradle.util.*.

Gradle plugin authors may find the Designing Gradle Plugins subsection on restricting the plugin

../javadoc/org/gradle/api/model/ObjectFactory.html
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/provider/Property.html
https://guides.gradle.org/implementing-gradle-plugins/#capturing_user_input_to_configure_plugin_runtime_behavior
https://guides.gradle.org/implementing-gradle-plugins/#capturing_user_input_to_configure_plugin_runtime_behavior
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/SystemUtils.html
https://guides.gradle.org/designing-gradle-plugins/#restricting_the_plugin_implementation_to_gradle_s_public_api

implementation to Gradle’s public API helpful.

Declaring tasks in a build script

The task API gives a build author a lot of flexibility to declare tasks in a build script. For optimal
readability and maintainability follow these rules:

* The task type should be the only key-value pair that belongs within the parentheses after the
task name.

* Any other configuration logic for a task should be defined as part of
Project.task(java.lang.String, groovy.lang.Closure) if possible.

» Task actions should only be declared with the methods Task.doFirst{} or Task.doLast{}.

Task.doLast{} should be used if the task only defines a single action.

A task should define a group and description.

Example: Definition of tasks following best practices

build.gradle
import com.enterprise.DocsGenerate

task generateHtmlDocs(type: DocsGenerate) {
group = JavaBasePlugin.DOCUMENTATION_GROUP
description = 'Generates the HTML documentation for this project.'
title = 'Project docs'
outputDir = file("${buildDir}/docs")
}

task allDocs {
group = JavaBasePlugin.DOCUMENTATION_GROUP
description = 'Generates all documentation for this project.'
dependsOn generateHtmlDocs

dolLast {
logger.quiet('Generating all documentation...")

}

Improving task discoverability

Even new users to a build should to be able to find crucial information quickly and effortlessly. In
Gradle you can declare a group and a description for any task of the build. The tasks report uses the
assigned values to organize and render the task for easy discoverability. Assigning a group and
description is most helpful for any task that you expect build users to invoke.

The example task generateDocs generates documentation for a project in the form of HTML pages.
The task should be organized underneath the bucket Documentation. The description should express
its intent.

https://guides.gradle.org/designing-gradle-plugins/#restricting_the_plugin_implementation_to_gradle_s_public_api
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:task(java.lang.String,%20groovy.lang.Closure)
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:description

Example: A task declaring the group and description

build.gradle

task generateDocs {
group = 'Documentation’
description = 'Generates the HTML documentation for this project.'

dolast {
// action implementation

}

The output of the tasks report reflects the assigned values.

> gradle tasks
> Task :tasks

Documentation tasks

generateDocs - Generates the HTML documentation for this project.

Minimize logic executed during the configuration phase

It’s important for every build script developer to understand the different phases of the build
lifecycle and their implications on performance and evaluation order of build logic. During the
configuration phase the project and its domain objects should be configured, whereas the execution
phase only executes the actions of the task(s) requested on the command line plus their
dependencies. Be aware that any code that is not part of a task action will be executed with every
single run of the build. A build scan can help you with identifying the time spent during each of the
lifecycle phases. It’s an invaluable tool for diagnosing common performance issues.

Let’s consider the following incantation of the anti-pattern described above. In the build script you
can see that the dependencies assigned to the configuration printArtifactNames are resolved outside
of the task action.

Example: Executing logic during configuration should be avoided

https://scans.gradle.com/get-started

build.gradle

dependencies {
implementation 'log4j:log4j:1.2.17'
}

task printArtifactNames {
// always executed
def libraryNames = configurations.compileClasspath.collect { it.name }

dolLast {
logger.quiet libraryNames

}

The code for resolving the dependencies should be moved into the task action to avoid the
performance impact of resolving the dependencies before they are actually needed.

Example: Executing logic during execution phase is preferred

build.gradle

dependencies {
implementation 'log4j:log4j:1.2.17"
}

task printArtifactNames {
dolast {
def libraryNames = configurations.compileClasspath.collect { it.name }
logger.quiet libraryNames

Avoiding the use of GradleBuild

The GradleBuild task type allows a build script to define a task that invokes another Gradle build.
The use of this type is generally discouraged. There are some corner cases where the invoked build
doesn’t expose the same runtime behavior as from the command line or through the Tooling API
leading to unexpected results.

Usually, there’s a better way to model the requirement. The appropriate approach depends on the
problem at hand. Here’re some options:

* Model the build as multi-project build if the intention is to execute tasks from different modules
as unified build.

» Use composite builds for projects that are physically separated but should occasionally be built
as a single unit.

../dsl/org.gradle.api.tasks.GradleBuild.html

Avoiding inter-project configuration

Gradle does not restrict build script authors from reaching into the domain model from one project
into another one in a multi-project build. Strongly-coupled projects hurts build execution
performance as well as readability and maintainability of code.

The following practices should be avoided:

» Explicitly depending on a task from another project via Task.dependsOn(java.lang.Object...).
 Setting property values or calling methods on domain objects from another project.
» Executing another portion of the build with GradleBuild.

* Declaring unnecessary project dependencies.

Avoiding passwords in plain text

Most builds need to consume one or many passwords. The reasons for this need may vary. Some
builds need a password for publishing artifacts to a secured binary repository, other builds need a
password for downloading binary files. Passwords should always kept safe to prevent fraud. Under
no circumstance should you add the password to the build script as property in plain text or
declare it in a gradle.properties. Those files usually live in a version control repository and can be
viewed by anyone that has access to it.

Passwords should be stored in encrypted fashion. At the moment Gradle does not provide a built-in
mechanism for encrypting, storing and accessing passwords. A good solution for solving this
problem is the Gradle Credentials plugin.

Organizing Gradle Projects

Source code and build logic of every software project should be organized in a meaningful way.
This page lays out the best practices that lead to readable, maintainable projects. The following
sections also touch on common problems and how to avoid them.

Separate language-specific source files

Gradle’s language plugins establish conventions for discovering and compiling source code. For
example, a project applying the Java plugin will automatically compile the code in the directory
src/main/java. Other language plugins follow the same pattern. The last portion of the directory
path usually indicates the expected language of the source files.

Some compilers are capable of cross-compiling multiple languages in the same source directory.
The Groovy compiler can handle the scenario of mixing Java and Groovy source files located in
src/main/groovy. Gradle recommends that you place sources in directories according to their
language, because builds are more performant and both the user and build can make stronger
assumptions.

The following source tree contains Java and Kotlin source files. Java source files live in
src/main/java, whereas Kotlin source files live in src/main/kot1in.

../dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
https://github.com/etiennestuder/gradle-credentials-plugin

—— build.gradle
—— settings.gradle

—— java
| L—— HelloWor1ld.java
L—— kotlin

L—— Utils.kt

Separate source files per test type

I’s very common that a project defines and executes different types of tests e.g. unit tests,
integration tests, functional tests or smoke tests. Optimally, the test source code for each test type
should be stored in dedicated source directories. Separated test source code has a positive impact
on maintainability and separation of concerns as you can run test types independent from each

other.

The following source tree demonstrates how to separate unit from integration tests in a Java-based

project.

—— build.gradle
—— gradle

| L—— integration-test.gradle

—— settings.gradle
—— 3

—— integTest

| L—— java

| L—— DefaultFileReaderIntegrationTest.java

F—— main

| L—— java

| [——— DefaultFileReader.java

| [—— FileReader.java

| L—— StringUtils.java

L—— test
L—— java

L—— StringUtilsTest.java

Gradle models source code directories with the help of the source set concept. By pointing an
instance of a source set to one or many source code directories, Gradle will automatically create a

corresponding compilation task out-of-the-box.

Example: Integration test source set

gradle/integration-test.gradle

sourceSets {
integTest {
java.srcDir file('src/integTest/java')
resources.srcDir file('src/integTest/resources")
compileClasspath += sourceSets.main.output + configurations
.testRuntimeClasspath
runtimeClasspath += output + compileClasspath

}

Source sets are only responsible for compiling source code, but do not deal with executing the byte
code. For the purpose of test execution, a corresponding task of type Test needs to be established.

Example: Integration test task

gradle/integration-test.gradle

task integTest(type: Test) {
description = 'Runs the integration tests.'
group = 'verification'
testClassesDirs = sourceSets.integTest.output.classesDirs
classpath = sourceSets.integTest.runtimeClasspath
mustRunAfter test

}

check.dependsOn integTest

Use standard conventions as much as possible

All Gradle core plugins follow the software engineering paradigm convention over configuration.
The plugin logic provides users with sensible defaults and standards, the conventions, in a certain
context. Let’s take the Java plugin as an example.

* It defines the directory src/main/java as the default source directory for compilation.

* The output directory for compiled source code and other artifacts (like the JAR file) is build.
By sticking to the default conventions, new developers to the project immediately know how to find
their way around. While those conventions can be reconfigured, it makes it harder to build script
users and authors to manage the build logic and its outcome. Try to stick to the default conventions

as much as possible except if you need to adapt to the layout of a legacy project. Refer to the
reference page of the relevant plugin to learn about its default conventions.

Always define a settings file

Gradle tries to locate a settings.gradle (Groovy DSL) or a settings.gradle.kts (Kotlin DSL) file with
every invocation of the build. For that purpose, the runtime walks the hierarchy of the directory

../dsl/org.gradle.api.tasks.testing.Test.html
https://en.wikipedia.org/wiki/Convention_over_configuration

tree up to the root directory. The algorithm stops searching as soon as it finds the settings file.

Always add a settings.gradle to the root directory of your build to avoid the initial performance
impact. This recommendation applies to single project builds as well as multi-project builds. The
file can either be empty or define the desired name of the project.

A typical Gradle project with a settings file look as such:

—— build.gradle
L—— settings.gradle

Use buildSrc to abstract imperative logic

Complex build logic is usually a good candidate for being encapsulated either as custom task or
binary plugin. Custom task and plugin implementations should not live in the build script. It is very
convenient to use buildSrc for that purpose as long as the code does not need to be shared among
multiple, independent projects.

The directory buildSrc is treated as an included build. Upon discovery of the directory, Gradle
automatically compiles and tests this code and puts it in the classpath of your build script. For
multi-project builds there can be only one buildSrc directory, which has to sit in the root project
directory. buildSrc should be preferred over script plugins as it is easier to maintain, refactor and
test the code.

buildSrc uses the same source code conventions applicable to Java and Groovy projects. It also
provides direct access to the Gradle API. Additional dependencies can be declared in a dedicated
build.gradle under buildSrc.

Example: Custom buildSrc build script

buildSrc/build.gradle

repositories {
mavenCentral()

}

dependencies {
testCompile 'junit:junit:4.12'
}

A typical project including buildSrc has the following layout. Any code under buildSrc should use a
package similar to application code. Optionally, the buildSrc directory can host a build script if
additional configuration is needed (e.g. to apply plugins or to declare dependencies).

—— build.gradle

L—— enterprise
L—— DeploymentPluginTest.java

—— buildSrc

| —— build.gradle

| L—— src

| F—— main

| | L—— java

| | L—— com

| | L—— enterprise

| | —— Deploy.java
| | L—— DeploymentPlugin.java
| L—— test

’ L—— java

|

|

|

L—— settings.gradle

Declare properties in gradle.properties file

In Gradle, properties can be define in the build script, in a gradle.properties file or as parameters
on the command line.

It’s common to declare properties on the command line for ad-hoc scenarios. For example you may
want to pass in a specific property value to control runtime behavior just for this one invocation of
the build. Properties in a build script can easily become a maintenance headache and convolute the
build script logic. The gradle.properties helps with keeping properties separate from the build
script and should be explored as viable option. It’s a good location for placing properties that
control the build environment.

A typical project setup places the gradle.properties file in the root directory of the build.
Alternatively, the file can also live in the GRADLE_USER_HOME directory if you want to it apply to all
builds on your machine.

—— build.gradle
—— gradle.properties
L—— settings.gradle

Avoid overlapping task outputs

Tasks should define inputs and outputs to get the performance benefits of incremental build
functionality. When declaring the outputs of a task, make sure that the directory for writing
outputs is unique among all the tasks in your project.

Intermingling or overwriting output files produced by different tasks compromises up-to-date
checking causing slower builds. In turn, these filesystem changes may prevent Gradle’s build cache

from properly identifying and caching what would otherwise be cacheable tasks.

Standardizing builds with a custom Gradle distribution

Often enterprises want to standardize the build platform for all projects in the organization by
defining common conventions or rules. You can achieve that with the help of initialization scripts.
Initialization scripts make it extremely easy to apply build logic across all projects on a single
machine. For example, to declare a in-house repository and its credentials.

There are some drawbacks to the approach. First of all, you will have to communicate the setup
process across all developers in the company. Furthermore, updating the initialization script logic
uniformly can prove challenging.

Custom Gradle distributions are a practical solution to this very problem. A custom Gradle
distribution is comprised of the standard Gradle distribution plus one or many custom initialization
scripts. The initialization scripts come bundled with the distribution and are applied every time the
build is run. Developers only need to point their checked-in Wrapper files to the URL of the custom
Gradle distribution.

The following steps are typical for creating a custom Gradle distribution:

Implement logic for downloading and repackaging a Gradle distribution.
Define one or many initialization scripts with the desired logic.
Bundle the initialization scripts with the Gradle distribution.

Upload the Gradle distribution archive to a HTTP server.

SR

Change the Wrapper files of all projects to point to the URL of the custom Gradle distribution.

You can find a sample project that covers steps one to three in the samples directory of the standard
-all Gradle distribution.

Build Cache

The build cache feature described here is different from the Android plugin build

NOTE
cache.

Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by
other builds. The build cache works by storing (locally or remotely) build outputs and allowing
builds to fetch these outputs from the cache when it is determined that inputs have not changed,
avoiding the expensive work of regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching
leverages the same intelligence as up-to-date checks that Gradle uses to avoid work when a
previous local build has already produced a set of task outputs. But instead of being limited to the
previous build in the same workspace, task output caching allows Gradle to reuse task outputs from
any earlier build in any location on the local machine. When using a shared build cache for task

https://developer.android.com/studio/build/build-cache.html
https://developer.android.com/studio/build/build-cache.html

output caching this even works across developer machines and build agents.

Apart from task output caching, we expect other features to use the build cache in the future.

A complete guide is available about using the build cache. It covers the different
NOTE scenarios caching can improve, and detailed discussions of the different caveats you
need to be aware of when enabling caching for a build.

Enable the Build Cache
By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with --build-cache on the command-line

Gradle will use the build cache for this build only.

Put org.gradle.caching=true in your gradle.properties

Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled
with --no-build-cache.

When the build cache is enabled, it will store build outputs in the Gradle user home. For
configuring this directory or different kinds of build caches see Configure the Build Cache.

Task Output Caching

Beyond incremental builds described in up-to-date checks, Gradle can save time by reusing outputs
from previous executions of a task by matching inputs to the task. Task outputs can be reused
between builds on one computer or even between builds running on different computers via a
build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration
agents should load cache entries from the remote build cache. We expect that developers will not
be allowed to populate the remote build cache, and all continuous integration builds populate the
build cache after running the clean task.

For your build to play well with task output caching it must work well with the incremental build
feature. For example, when running your build twice in a row all tasks with outputs should be UP-
TO-DATE. You cannot expect faster builds or correct builds when enabling task output caching when
this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see Enable the
Build Cache.

What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build
the first time.

https://guides.gradle.org/using-build-cache/

> gradle --build-cache compileJava
:compilelava

:processResources

:classes

1jar

:assemble

BUILD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the
same as without the build cache. Let’s clean and run the build again.

> gradle clean
:clean

BUILD SUCCESSFUL

> gradle --build-cache assemble
:compileJava FROM-CACHE
:processResources

:classes

1jar

:assemble

BUILD SUCCESSFUL

Now we see that, instead of executing the :compilelava task, the outputs of the task have been
loaded from the build cache. The other tasks have not been loaded from the build cache since they
are not cacheable. This is due to :classes and :assemble being lifecycle tasks and :processResources
and :jar being Copy-like tasks which are not cacheable since it is generally faster to execute them.

Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that
uniquely defines the task’s outputs based on its inputs. That build cache key is used to request
previous outputs from a build cache or store new outputs in the build cache. If the previous build
outputs have been already stored in the cache by someone else, e.g. your continuous integration
server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for
up-to-date checks:

» The task type and its classpath

* The names of the output properties

* The names and values of properties annotated as described in the section called "Custom task
types"

* The names and values of properties added by the DSL via TaskInputs
* The classpath of the Gradle distribution, buildSrc and plugins

* The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the @CacheableTask annotation. Note that
@CacheableTask is not inherited by subclasses. Custom task types are not cacheable by default.

Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:

 Java toolchain: JavaCompile, Javadoc

* Groovy toolchain: GroovyCompile, Groovydoc

Scala toolchain: ScalaCompile, PlatformScalaCompile, ScalaDoc

* Native toolchain: CppCompile, CCompile, SwiftCompile

Testing: Test

Code quality tasks: Checkstyle, CodeNarc, FindBugs, J]Depend, Pmd

JaCoCo: JacocoMerge, JacocoReport

» Other tasks: AntlrTask, ValidateTaskProperties, WriteProperties
All other built-in tasks are currently not cacheable.

Some tasks, like Copy or Jar, usually do not make sense to make cacheable because Gradle is only
copying files from one location to another. It also doesn’t make sense to make tasks cacheable that
do not produce outputs or have no task actions.

Third party plugins

There are third party plugins that work well with the build cache. The most prominent examples
are the Android plugin 3.1+ and the Kotlin plugin 1.2.21+. For other third party plugins, check their
documentation to find out whether they support the build cache.

Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that
the results from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical
because the same cache key is used by both executions. Missing task outputs can cause build
failures if Gradle does not completely capture all outputs for a given task. Wrongly declared task
inputs can lead to cache misses especially when containing volatile data or absolute paths. (See the
section called "Task inputs and outputs" on what should be declared as inputs and outputs.)

The task path is not an input to the build cache key. This means that tasks with
NOTE different task paths can re-use each other’s outputs as long as Gradle determines
that executing them yields the same result.

../javadoc/org/gradle/api/tasks/TaskInputs.html
../javadoc/org/gradle/api/tasks/CacheableTask.html
../javadoc/org/gradle/api/tasks/CacheableTask.html
../dsl/org.gradle.api.tasks.compile.JavaCompile.html
../dsl/org.gradle.api.tasks.javadoc.Javadoc.html
../dsl/org.gradle.api.tasks.compile.GroovyCompile.html
../dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
../dsl/org.gradle.api.tasks.scala.ScalaCompile.html
../javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
../dsl/org.gradle.api.tasks.scala.ScalaDoc.html
../javadoc/org/gradle/language/cpp/tasks/CppCompile.html
../javadoc/org/gradle/language/c/tasks/CCompile.html
../javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
../dsl/org.gradle.api.tasks.testing.Test.html
../dsl/org.gradle.api.plugins.quality.Checkstyle.html
../dsl/org.gradle.api.plugins.quality.CodeNarc.html
../dsl/org.gradle.api.plugins.quality.FindBugs.html
../dsl/org.gradle.api.plugins.quality.JDepend.html
../dsl/org.gradle.api.plugins.quality.Pmd.html
../dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
../dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
../dsl/org.gradle.api.plugins.antlr.AntlrTask.html
../javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
../dsl/org.gradle.api.tasks.WriteProperties.html
../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.tasks.bundling.Jar.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://blog.gradle.org/kotlin-build-cache-use

In order to ensure that the inputs and outputs are properly declared use integration tests (for
example using TestKit) to check that a task produces the same outputs for identical inputs and
captures all output files for the task. We suggest adding tests to ensure that the task inputs are
relocatable, i.e. that the task can be loaded from the cache into a different build directory (see
@PathSensitive).

In order to handle volatile inputs for your tasks consider configuring input normalization.

Configure the Build Cache

You can configure the build cache by using the Settings.buildCache(org.gradle.api.Action) block in
settings.gradle.

Gradle supports a local and a remote build cache that can be configured separately. When both
build caches are enabled, Gradle tries to load build outputs from the local build cache first, and
then tries the remote build cache if no build outputs are found. If outputs are found in the remote
cache, they are also stored in the local cache, so next time they will be found locally. Gradle stores
("pushes") build outputs in any build cache that is enabled and has BuildCache.isPush() set to true.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a DirectoryBuildCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to
(BuildCacheConfiguration.remote(java.lang.Class)).

Built-in local build cache

The built-in local build cache, DirectoryBuildCache, uses a directory to store build cache artifacts.
By default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory by removing entries that have not been
used recently to conserve disk space.

For more details on the configuration options refer to the DSL documentation of
DirectoryBuildCache. Here is an example of the configuration.

Example: Configure the local cache

settings.gradle

buildCache {
local(DirectoryBuildCache) {
directory = new File(rootDir, 'build-cache')
removeUnusedEntriesAfterDays = 30

Remote HTTP build cache

Gradle has built-in support for connecting to a remote build cache backend via HTTP. For more

../javadoc/org/gradle/api/tasks/PathSensitive.html
../dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
../javadoc//org/gradle/caching/configuration/BuildCache.html#isPush--
../dsl/org.gradle.caching.local.DirectoryBuildCache.html
../dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
../dsl/org.gradle.caching.local.DirectoryBuildCache.html
../dsl/org.gradle.caching.local.DirectoryBuildCache.html

details on what the protocol looks like see HttpBuildCache. Note that by using the following
configuration the local build cache will be used for storing build outputs while the local and the
remote build cache will be used for retrieving build outputs.

Example: Load from HttpBuildCache

settings.gradle

buildCache {
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/’
}

You can configure the credentials the HttpBuildCache uses to access the build cache server as
shown in the following example.

Example: Configure remote HTTP cache

settings.gradle

buildCache {
remote(HttpBuildCache) {
url = "http://example.com:8123/cache/’
credentials {
username = 'build-cache-user'
password = 'some-complicated-password'

You may encounter problems with an untrusted SSL certificate when you try to use
a build cache backend with an HTTPS URL. The ideal solution is for someone to add
a valid SSL certificate to the build cache backend, but we recognize that you may not
be able to do that. In that case, set HttpBuildCache.isAllowUntrustedServer() to true:

settings.gradle

NOTE buildCache {
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/’
allowUntrustedServer = true

This is a convenient workaround, but you shouldn’t use it as a long-term solution.

../dsl/org.gradle.caching.http.HttpBuildCache.html
../dsl/org.gradle.caching.http.HttpBuildCache.html
../dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer

Configuration use cases

The recommended use case for the build cache is that your continuous integration server populates
the remote build cache from clean builds while developers load from the remote build cache and
store in the local build cache. The configuration would then look as follows.

Example: Recommended setup for CI push use case

settings.gradle
ext.isCiServer = System.getenv().containsKey("CI")

buildCache {
local {
enabled = !isCiServer

}

remote(HttpBuildCache) {
url = "https://example.com:8123/cache/’
push = isCiServer

If you use a buildSrc directory, you should make sure that it uses the same build cache
configuration as the main build. This can be achieved by applying the same script to
buildSrc/settings.gradle and settings.gradle as shown in the following example.

Example: Consistent setup for buildSrc and main build

settings.gradle

apply from: new File(settingsDir, 'gradle/buildCacheSettings.gradle')

gradle/buildCacheSettings.gradle

ext.isCiServer = System.getenv().containsKey("CI")

buildCache {
local {
enabled = !isCiServer

}
remote(HttpBuildCache) {

url = 'https://example.com:8123/cache/"
push = isCiServer

buildSrc/settings.gradle

apply from: new File(settingsDir, '../gradle/buildCacheSettings.gradle’)

It is also possible to configure the build cache from an init script, which can be used from the
command line, added to your Gradle user home or be a part of your custom Gradle distribution.

Example: Init script to configure the build cache

init.gradle

gradle.settingsEvaluated { settings ->
settings.buildCache {
// vvv Your custom configuration goes here
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/’
}

// MM Your custom configuration goes here

Build cache and composite builds

Gradle’s composite build feature allows including other complete Gradle builds into another. Such
included builds will inherit the build cache configuration from the top level build, regardless of
whether the included builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the
top level build’s configuration. This also applies to any buildSrc projects of any included builds.

How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise
for centralized management. The cache node can also be used without a Gradle Enterprise
installation with restricted functionality.

Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in
support for connecting to an HTTP backend) requires implementing your own logic for connecting
to your custom build cache backend. To this end, custom build cache types can be registered via
BuildCacheConfiguration.registerBuildCacheService(java.lang.Class, java.lang.Class).

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache
backend.

Build Init Plugin

The Build Init plugin is currently incubating. Please be aware that the DSL and other

NOTE i . . .
configuration may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It
supports creating brand new projects of different types as well as converting existing builds (e.g. An
Apache Maven build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see Using plugins).
The Build Init plugin is an automatically applied plugin, which means you do not need to apply it
explicitly. To use the plugin, simply execute the task named init where you would like to create the
Gradle build. There is no need to create a “stub” build.gradle file in order to apply the plugin.

It also leverages the wrapper task to generate the Gradle Wrapper files for the project.

Tasks
The plugin adds the following tasks to the project:

init — InitBuild

Depends on: wrapper
Generates a Gradle project.

wrapper — Wrapper

Generates Gradle wrapper files.

What to set up

The init supports different build setup types. The type is specified by supplying a --type argument
value. For example, to create a Java library project simply execute: gradle init --type java-
library.

https://hub.docker.com/r/gradle/build-cache-node/
../javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class-java.lang.Class-
https://gradle.com/build-cache
../dsl/org.gradle.buildinit.tasks.InitBuild.html
../dsl/org.gradle.api.tasks.wrapper.Wrapper.html

If a --type parameter is not supplied, Gradle will attempt to infer the type from the environment.
For example, it will infer a type value of “pom” if it finds a pom.xml to convert to a Gradle build.

If the type could not be inferred, the type “basic” will be used.

The init plugin also supports generating build scripts using either the Gradle Groovy DSL or the
Gradle Kotlin DSL. The build script DSL to use defaults to the Groovy DSL and is specified by
supplying a --dsl argument value. For example, to create a Java library project with Kotlin DSL
build scripts simply execute: gradle init --type java-library --dsl kotlin.

All build setup types include the setup of the Gradle Wrapper.

Note that the migration from Maven builds only supports the Groovy DSL for generated build
scripts.

Build init types

As this plugin is currently incubating, only a few build init types are currently

NOTE
supported. More types will be added in future Gradle releases.

pom (Maven conversion)

The “pom” type can be used to convert an Apache Maven build to a Gradle build. This works by
converting the POM to one or more Gradle files. It is only able to be used if there is a valid “pom.xm1”
file in the directory that the init task is invoked in or, if invoked via the “-p” command line option,
in the specified project directory. This “pom” type will be automatically inferred if such a file exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally
developed by Gradle community members.

The conversion process has the following features:
* Uses effective POM and effective settings (support for POM inheritance, dependency
management, properties)
* Supports both single module and multimodule projects
* Supports custom module names (that differ from directory names)
* Generates general metadata - id, description and version
* Applies maven, java and war plugins (as needed)
» Supports packaging war projects as jars if needed
* Generates dependencies (both external and inter-module)
* Generates download repositories (inc. local Maven repository)
* Adjusts Java compiler settings
» Supports packaging of sources and tests
o Supports TestNG runner

» Generates global exclusions from Maven enforcer plugin settings

https://github.com/jbaruch/maven2gradle

java-application
The “java-application” build init type is not inferable. It must be explicitly specified.

It has the following features:

Uses the “application” plugin to produce a command-line application implemented using Java

* Uses the “jcenter” dependency repository

Uses JUnit for testing
* Has directories in the conventional locations for source code

» Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a --test-framework argument value. To
use a different test framework, execute one of the following commands:

* gradle init --type java-application --test-framework spock: Uses Spock for testing instead of
JUnit

* gradle init --type java-application --test-framework testng: Uses TestNG for testing instead
of JUnit

java-library
The “java-library” build init type is not inferable. It must be explicitly specified.
It has the following features:

» Uses the “java” plugin to produce a library Jar

* Uses the “jcenter” dependency repository

Uses JUnit for testing

Has directories in the conventional locations for source code

» Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a --test-framework argument value. To
use a different test framework, execute one of the following commands:

» gradle init --type java-library --test-framework spock: Uses Spock for testing instead of JUnit

* gradle init --type java-library --test-framework testng: Uses TestNG for testing instead of
JUnit

scala-library
The “scala-library” build init type is not inferable. It must be explicitly specified.
It has the following features:

* Uses the “scala” plugin to produce a library Jar

* Uses the “jcenter” dependency repository

http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html

Uses Scala 2.10
* Uses ScalaTest for testing
* Has directories in the conventional locations for source code

» Contains a sample scala class and an associated ScalaTest test suite, if there are no existing
source or test files

Uses the Zinc Scala compiler by default

groovy-library

The “groovy-library” build init type is not inferable. It must be explicitly specified.
It has the following features:

* Uses the “groovy” plugin to produce a library Jar
* Uses the “jcenter” dependency repository
* Uses Groovy 2.X
» Uses Spock testing framework for testing
» Has directories in the conventional locations for source code
* Contains a sample Groovy class and an associated Spock specification, if there are no existing
source or test files
groovy-application

The “groovy-application” build init type is not inferable. It must be explicitly specified.
It has the following features:

* Uses the “groovy” plugin

* Uses the “application” plugin to produce a command-line application implemented using
Groovy

* Uses the “jcenter” dependency repository

* Uses Groovy 2.X

» Uses Spock testing framework for testing

» Has directories in the conventional locations for source code

* Contains a sample Groovy class and an associated Spock specification, if there are no existing

source or test files

basic

The “basic” build init type is useful for creating a fresh new Gradle project. It creates a sample
build.gradle file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

http://www.scalatest.org
http://spockframework.org
http://spockframework.org

Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle
terms this means that you can define tasks and dependencies between tasks. Gradle guarantees that
these tasks are executed in the order of their dependencies, and that each task is executed only
once. These tasks form a Directed Acyclic Graph. There are build tools that build up such a
dependency graph as they execute their tasks. Gradle builds the complete dependency graph before
any task is executed. This lies at the heart of Gradle and makes many things possible which would
not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build
configuration scripts.

Build phases
A Gradle build has three distinct phases.

Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle
determines which projects are going to take part in the build, and creates a Project instance for
each of these projects.

Configuration

During this phase the project objects are configured. The build scripts of all projects which are
part of the build are executed.

Execution

Gradle determines the subset of the tasks, created and configured during the configuration
phase, to be executed. The subset is determined by the task name arguments passed to the gradle
command and the current directory. Gradle then executes each of the selected tasks.

Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle
via a naming convention. The default name for this file is settings.gradle. Later in this chapter we
explain how Gradle looks for a settings file.

The settings file is executed during the initialization phase. A multi-project build must have a
settings.gradle file in the root project of the multi-project hierarchy. It is required because the
settings file defines which projects are taking part in the multi-project build (see Authoring Multi-
Project Builds). For a single-project build, a settings file is optional. Besides defining the included
projects, you might need it to add libraries to your build script classpath (see Organizing Gradle
Projects). Let’s first do some introspection with a single project build:

Example: Single project build

http://en.wikipedia.org/wiki/Directed_acyclic_graph
../dsl/org.gradle.api.Project.html

settings.gradle

println 'This is executed during the initialization phase.'

build.gradle
println 'This is executed during the configuration phase.'’

task configured {
println 'This is also executed during the configuration phase.'

}
task test {
dolLast {
println 'This is executed during the execution phase.’
}
}
task testBoth {
doFirst {
println 'This is executed first during the execution phase.'
}
dolast {
println 'This is executed last during the execution phase.'’
}

println 'This is executed during the configuration phase as well.'

Output of gradle test testBoth

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is also executed during the configuration phase.
This is executed during the configuration phase as well.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

For a build script, the property access and method calls are delegated to a project object. Similarly
property access and method calls within the settings file is delegated to a settings object. Look at the
Settings class in the API documentation for more information.

Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of
Gradle. You have to declare the projects taking part in the multi-project build in the settings file.
There is much more to say about multi-project builds in the chapter dedicated to this topic (see
Authoring Multi-Project Builds).

Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree
represents a project. A project has a path which denotes the position of the project in the multi-
project build tree. In most cases the project path is consistent with the physical location of the
project in the file system. However, this behavior is configurable. The project tree is created in the
settings.gradle file. By default it is assumed that the location of the settings file is also the location
of the root project. But you can redefine the location of the root project in the settings file.

Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat
physical layouts get special support.

Hierarchical layouts

Example: Hierarchical layout

settings.gradle

include 'project1', 'project2:child', 'project3:childl’

The include method takes project paths as arguments. The project path is assumed to be equal to
the relative physical file system path. For example, a path 'services:api' is mapped by default to a
folder 'services/api' (relative from the project root). You only need to specify the leaves of the tree.
This means that the inclusion of the path 'services:hotels:api' will result in creating 3 projects:
'services', 'services:hotels' and 'services:hotels:api'. More examples of how to work with the project
path can be found in the DSL documentation of Settings.include(java.lang.String[]).

Flat layouts

Example: Flat layout

settings.gradle

includeFlat 'project3', 'project4'

The includeFlat method takes directory names as an argument. These directories need to exist as

../dsl/org.gradle.api.initialization.Settings.html
../dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

siblings of the root project directory. The location of these directories are considered as child
projects of the root project in the multi-project tree.

Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can
modify these descriptors in the settings file at any time. To access a descriptor you can do:

Example: Lookup of elements of the project tree

settings.gradle

println rootProject.name
println project(':projectA').name

Using this descriptor you can change the name, project directory and build file of a project.

Example: Modification of elements of the project tree

settings.gradle

rootProject.name = 'main’
project(':projectA').projectDir = new File(settingsDir, '../my-project-a")
project(':projectA").buildFileName = 'projectA.gradle’

Look at the ProjectDescriptor class in the API documentation for more information.

Initialization

How does Gradle know whether to do a single or multi-project build? If you trigger a multi-project
build from a directory with a settings file, things are easy. But Gradle also allows you to execute the
build from within any subproject taking part in the build. [2: Gradle supports partial multi-project
builds (see Authoring Multi-Project Builds).] If you execute Gradle from within a project with no
settings.gradle file, Gradle looks for a settings.gradle file in the following way:

It looks in a directory called master which has the same nesting level as the current dir.

If not found yet, it searches parent directories.

If not found yet, the build is executed as a single project build.

If a settings.gradle file is found, Gradle checks if the current project is part of the multi-project
hierarchy defined in the found settings.gradle file. If not, the build is executed as a single
project build. Otherwise a multi-project build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multi-project build or not. Of course, if it is a subproject, only the subproject and its
dependent projects are built, but Gradle needs to create the build configuration for the whole multi-
project build (see Authoring Multi-Project Builds). You can use the -u command line option to tell
Gradle not to look in the parent hierarchy for a settings.gradle file. The current project is then
always built as a single project build. If the current project contains a settings.gradle file, the -u

../javadoc/org/gradle/api/initialization/ProjectDescriptor.html

option has no meaning. Such a build is always executed as:

* asingle project build, if the settings.gradle file does not define a multi-project hierarchy

* a multi-project build, if the settings.gradle file does define a multi-project hierarchy.

The automatic search for a settings.gradle file only works for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally follow the naming convention
described above (“master”). Gradle supports arbitrary physical layouts for a multi-project build, but
for such arbitrary layouts you need to execute the build from the directory where the settings file is
located. For information on how to run partial builds from the root, see Running tasks by their
absolute path.

Gradle creates a Project object for every project taking part in the build. For a multi-project build
these are the projects specified in the Settings object (plus the root project). Each project object has
by default a name equal to the name of its top level directory, and every project except the root
project has a parent project. Any project may have child projects.

Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build
script is executed against the project object that was created during the initialization phase. Then
Gradle looks for tasks with names equal to those passed as command line arguments. If these task
names exist, they are executed as a separate build in the order you have passed them. The
configuration and execution for multi-project builds is discussed in Authoring Multi-Project Builds.

Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These
notifications generally take two forms: You can either implement a particular listener interface, or
you can provide a closure to execute when the notification is fired. The examples below use
closures. For details on how to use the listener interfaces, refer to the API documentation.

Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used
to do things like performing additional configuration once all the definitions in a build script have
been applied, or for some custom logging or profiling.

Below is an example which adds a test task to each project which has a hasTests property value of
true.

Example: Adding of test task to each project which has certain property set

build.gradle

allprojects {
afterEvaluate { project ->
if (project.hasTests) {
println "Adding test task to $project"
project.task('test") {
dolast {
println "Running tests for $project

n

}

projectA.gradle

hasTests = true

Output of gradle -q test

> gradle -q test
Adding test task to project ':projectA’
Running tests for project ':projectA’

This example uses method Project.afterEvaluate() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs
some custom logging of project evaluation. Notice that the afterProject notification is received
regardless of whether the project evaluates successfully or fails with an exception.

Example: Notifications

build.gradle

gradle.afterProject {project, projectState ->
if (projectState.failure) {
println "Evaluation of $project FAILED"
} else {
println "Evaluation of $project succeeded"

}

Output of gradle -q test

> gradle -q test

Evaluation of root project 'buildProjectEvaluateEvents' succeeded
Evaluation of project ':projectA' succeeded

Evaluation of project ':projectB' FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/projectB.gradle’ line: 1

* What went wrong:
A problem occurred evaluating project
> broken

:projectB’.

* Try:

Run with --stacktrace option to get the stack trace. Run with --info or --debug option
to get more log output. Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

You can also add a ProjectEvaluationListener to the Gradle to receive these events.

Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set
some default values or add behaviour before the task is made available in the build file.

The following example sets the srcDir property of each task as it is created.

Example: Setting of certain property to all tasks

build.gradle

tasks.whenTaskAdded { task ->
task.ext.sreDir = "src/main/java’

}

task a

println "source dir is $a.srcDir"

Output of gradle -q a

> gradle -q a
source dir is src/main/java

../javadoc/org/gradle/api/ProjectEvaluationListener.html
../dsl/org.gradle.api.invocation.Gradle.html

You can also add an Action to a TaskContainer to receive these events.

Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated (See
Configure by DAG).

You can also add a TaskExecutionGraphListener to the TaskExecutionGraph to receive these events.

Task execution

You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the afterTask
notification is received regardless of whether the task completes successfully or fails with an
exception.

Example: Logging of start and end of each task execution

build.gradle
task ok

task broken(dependsOn: ok) {
dolast {
throw new RuntimeException('broken")
}
}

gradle.taskGraph.beforeTask { Task task ->
println "executing f$task ..."

}

gradle.taskGraph.afterTask { Task task, TaskState state ->
if (state.failure) {
println "FAILED"

}
else {

println "done"
}

../javadoc/org/gradle/api/Action.html
../javadoc/org/gradle/api/tasks/TaskContainer.html
../javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
../javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Output of gradle -q broken

> gradle -q broken

executing task ':ok
done

executing task ':broken' ...
FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/build.gradle’ line: 5

* What went wrong:
Execution failed for task ':broken'.
> broken

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug option
to get more log output. Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

You can also use a TaskExecutionListener to the TaskExecutionGraph to receive these events.

Build Script Basics

Projects and tasks
Everything in Gradle sits on top of two basic concepts: projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what
it is that you are doing with Gradle. For example, a project might represent a library JAR or a web
application. It might represent a distribution ZIP assembled from the JARs produced by other
projects. A project does not necessarily represent a thing to be built. It might represent a thing to be
done, such as deploying your application to staging or production environments. Don’t worry if this
seems a little vague for now. Gradle’s build-by-convention support adds a more concrete definition
for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a
build performs. This might be compiling some classes, creating a JAR, generating Javadoc, or
publishing some archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will
look at working with multiple projects and more about working with projects and tasks.

../javadoc/org/gradle/api/execution/TaskExecutionListener.html
../javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Hello world

You run a Gradle build using the gradle command. The gradle command looks for a file called
build.gradle in the current directory. [3: There are command line switches to change this behavior.
See Command-Line Interface)] We call this build.gradle file a build script, although strictly speaking
it is a build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named build.gradle.

Example: Your first build script

build.gradle

task hello {
dolLast {
println "Hello world!’

In a command-line shell, move to the containing directory and execute the build script with gradle
-q hello:

What does -q do?

Most of the examples in this user guide are run with the -q command-line option. This
suppresses Gradle’s log messages, so that only the output of the tasks is shown. This
keeps the example output in this user guide a little clearer. You don’t need to use this
option if you don’t want to. See Logging for more details about the command-line
options which affect Gradle’s output.

TIP

Example: Execution of a build script

Output of gradle -q hello

> gradle -q hello
Hello world!

What’s going on here? This build script defines a single task, called hello, and adds an action to it.
When you run gradle hello, Gradle executes the hello task, which in turn executes the action
you’ve provided. The action is simply a closure containing some Groovy code to execute.

If you think this looks similar to Ant’s targets, you would be right. Gradle tasks are the equivalent to
Ant targets, but as you will see, they are much more powerful. We have used a different
terminology than Ant as we think the word task is more expressive than the word target.
Unfortunately this introduces a terminology clash with Ant, as Ant calls its commands, such as
javac or copy, tasks. So when we talk about tasks, we always mean Gradle tasks, which are the
equivalent to Ant’s targets. If we talk about Ant tasks (Ant commands), we explicitly say Ant task.

A shortcut task definition

This functionality is deprecated and will be removed in Gradle 5.0 without
replacement. Use the methods Task.doFirst(org.gradle.api.Action) and
Task.doLast(org.gradle.api.Action) to define an action instead, as demonstrated by
the rest of the examples in this chapter.

NOTE

There is a shorthand way to define a task like our hello task above, which is more concise.

Example: A task definition shortcut

build.gradle

task hello << {
println 'Hello world!'
¥

Again, this defines a task called hello with a single closure to execute. The << operator is simply an
alias for dolast.

Build scripts are code

Gradle’s build scripts give you the full power of Groovy. As an appetizer, have a look at this:

Example: Using Groovy in Gradle’s tasks

build.gradle

task upper {
dolLast {
String someString = 'mY_nAmE'
println "Original: " + someString
println "Upper case: " + someString.toUpperCase()

Output of gradle -q upper
> gradle -q upper

Original: mY_nAmE
Upper case: MY_NAME

or

Example: Using Groovy in Gradle’s tasks

../dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

build.gradle

task count {
dolLast {
4.times { print "$it " }
}

Output of gradle -q count

> gradle -q count
0123

Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

Example: Declaration of task that depends on other task

build.gradle

task hello {
dolLast {
println 'Hello world!'

}
}
task intro(dependsOn: hello) {
dolLast {
println "I'm Gradle"
}
}

Output of gradle -q intro
> gradle -q intro

Hello world!
I'm Gradle

To add a dependency, the corresponding task does not need to exist.

Example: Lazy dependsOn - the other task does not exist (yet)

build.gradle

task taskX(dependsOn: 'taskY') {
dolLast {
println 'taskX'

}
}
task taskY {
dolLast {
println 'taskY'
}
}

Output of gradle -q taskX

> gradle -q taskX
tasky
taskX

The dependency of taskX to taskY is declared before taskY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Adding dependencies to a
task.

Please notice that you can’t use shortcut notation when referring to a task that is not yet defined.

Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can
also use it to dynamically create tasks.

Example: Dynamic creation of a task

build.gradle

4.times { counter ->
task "task$counter" {
dolast {
println "I'm task number $counter"

}

Output of gradle -q task1l

> gradle -q task1
I'm task number 1

Manipulating existing tasks

Once tasks are created they can be accessed via an API. For instance, you could use this to
dynamically add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example: Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->
task "taskfcounter" {
dolLast {
println "I'm task number $counter"
}
}

}
task@.dependsOn task2, task3

Output of gradle -q task@

> gradle -q task®
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task.

Example: Accessing a task via API - adding behaviour

build.gradle

task hello {
dolLast {
println 'Hello Earth'
}

+
hello.doFirst {

println 'Hello Venus'
¥
hello.dolast {

println 'Hello Mars'
¥
hello {

dolast {

println 'Hello Jupiter'

}

Output of gradle -q hello

> gradle -q hello
Hello Venus

Hello Earth

Hello Mars

Hello Jupiter

The calls doFirst and doLast can be executed multiple times. They add an action to the beginning or
the end of the task’s actions list. When the task executes, the actions in the action list are executed
in order.

Shortcut notations

There is a convenient notation for accessing an existing task. Each task is available as a property of
the build script:

Example: Accessing task as a property of the build script

build.gradle

task hello {
doLast {
println 'Hello world!’

}

}
hello.dolast {
println "Greetings from the $hello.name task."

}

Output of gradle -q hello

> gradle -q hello
Hello world!
Greetings from the hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the
compile task.

Extra task properties

You can add your own properties to a task. To add a property named myProperty, set ext.myProperty
to an initial value. From that point on, the property can be read and set like a predefined task

property.

Example: Adding extra properties to a task

build.gradle

task myTask {
ext.myProperty = "myValue"

}

task printTaskProperties {
dolast {
println myTask.myProperty

}

Output of gradle -q printTaskProperties

> gradle -q printTaskProperties
myValue

Extra properties aren’t limited to tasks. You can read more about them in Extra properties.

Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by
simply relying on Groovy. Groovy is shipped with the fantastic AntBuilder. Using Ant tasks from
Gradle is as convenient and more powerful than using Ant tasks from a build.xml file. From the
example below, you can learn how to execute Ant tasks and how to access Ant properties:

Example: Using AntBuilder to execute ant.loadfile target

build.gradle

task loadfile {
dolast {
def files = file('./antLoadfileResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {

ant.loadfile(srcFile: file, property: file.name)
println " *** {file.name ***"
println "${ant.properties[file.name]}"

Output of gradle -q loadfile

> gradle -q loadfile

*** agile.manifesto.txt ***

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

*** gradle.manifesto.txt ***

Make the impossible possible, make the possible easy and make the easy elegant.
(inspired by Moshe Feldenkrais)

There is lots more you can do with Ant in your build scripts. You can find out more in Ant.

Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic
for the example above, is extracting a method.

Example: Using methods to organize your build logic

build.gradle

task checksum {
dolast {
fileList('./antLoadfileResources').each { File file ->
ant.checksum(file: file, property: "cs_§file.name")
println "$file.name Checksum: ${ant.properties["cs_$file.name"]}"

}

task loadfile {
dolLast {
fileList('./antLoadfileResources').each { File file ->
ant.loadfile(srcFile: file, property: file.name)
println "I'm fond of $file.name"

}

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
+

Output of gradle -q loadfile

> gradle -q loadfile
I'm fond of agile.manifesto.txt
I'm fond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If
your build logic becomes more complex, Gradle offers you other very convenient ways to organize
it. We have devoted a whole chapter to this. See Organizing Gradle Projects.

Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are
specified.

Example: Defining a default task
build.gradle
defaultTasks 'clean', 'run'
task clean {

doLast {
println 'Default Cleaning!'

}
}
task run {
dolast {
println 'Default Running!'
}
¥

task other {
dolLast {
println "I'm not a default task!"

}

Output of gradle -q

> gradle -q
Default Cleaning!
Default Running!

This is equivalent to running gradle clean run. In a multi-project build every subproject can have
its own specific default tasks. If a subproject does not specify default tasks, the default tasks of the
parent project are used (if defined).

Configure by DAG

As we later describe in full detail (see Build Lifecycle), Gradle has a configuration phase and an
execution phase. After the configuration phase, Gradle knows all tasks that should be executed.
Gradle offers you a hook to make use of this information. A use-case for this would be to check if
the release task is among the tasks to be executed. Depending on this, you can assign different
values to some variables.

In the following example, execution of the distribution and release tasks results in different value
of the version variable.

Example: Different outcomes of build depending on chosen tasks

build.gradle

task distribution {
dolast {
println "We build the zip with version=fversion"
}
}

task release(dependsOn: 'distribution') {
dolast {
println 'We release now'

}
}

gradle.taskGraph.whenReady {taskGraph ->
if (taskGraph.hasTask(release)) {
version = '1.0'
} else {
version = '1.0-SNAPSHOT'

}

Output of gradle -q distribution

> gradle -q distribution
We build the zip with version=1.0-SNAPSHOT

Output of gradle -q release

> gradle -q release
We build the zip with version=1.0
We release now

The important thing is that whenReady affects the release task before the release task is executed. This
works even when the release task is not the primary task (i.e., the task passed to the gradle
command).

External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script’s classpath in the
build script itself. You do this using the buildscript() method, passing in a closure which declares
the build script classpath.

Example: Declaring external dependencies for the build script

build.gradle

buildscript {
repositories {
mavenCentral()

}
dependencies {
classpath group: 'commons-codec', name: 'commons-codec', version: '1.2'

}

The closure passed to the buildscript() method configures a ScriptHandler instance. You declare
the build script classpath by adding dependencies to the classpath configuration. This is the same
way you declare, for example, the Java compilation classpath. You can use any of the dependency
types except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would
any other classes on the classpath. The following example adds to the previous example, and uses
classes from the build script classpath.

Example: A build script with external dependencies

build.gradle
import org.apache.commons.codec.binary.Base64

buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath group: 'commons-codec', name: 'commons-codec', version: '1.2'

}
}

task encode {
dolLast {
def byte[] encodedString = new Base64().encode('hello world\n'.getBytes())
println new String(encodedString)

../javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Output of gradle -q encode

> gradle -q encode
aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared with a project’s buildscript() method are
available to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult Using Gradle Plugins for more
information on Gradle plugins.

Every project automatically has a buildEnvironment task of type BuildEnvironmentReportTask that
can be invoked to report on the resolution of the build script dependencies.

Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you
want to jump into more of the details, have a look at More About Tasks.

Otherwise, continue on to the tutorials and Dependency Management for Java Projects.

Composite builds

Composite build is an incubating feature. While useful for many use cases, there are
NOTE bugs to be discovered, rough edges to smooth, and enhancements we plan to make.
Thanks for trying it out!

What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is
similar to a Gradle multi-project build, except that instead of including single projects, complete
builds are included.

Composite builds allow you to:

» combine builds that are usually developed independently, for instance when trying out a bug fix
in a library that your application uses

* decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build".
Included builds do not share any configuration with the composite build, or the other included
builds. Each included build is configured and executed in isolation.

Included builds interact with other builds via dependency substitution. If any build in the composite
has a dependency that can be satisfied by the included build, then that dependency will be replaced
by a project dependency on the included build.

../dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

By default, Gradle will attempt to determine the dependencies that can be substituted by an
included build. However for more flexibility, it is possible to explicitly declare these substitutions if
the default ones determined by Gradle are not correct for the composite. See Declaring
substitutions.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task
dependencies on the composite build or on other included builds. See Depending on tasks in an
included build.

Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally
developed separately can be combined into a composite build. For these examples, the my-utils
multi-project build produces 2 different java libraries (number-utils and string-utils), and the my-
app build produces an executable using functions from those libraries.

The my-app build does not have direct dependencies on my-utils. Instead, it declares binary
dependencies on the libraries produced by my-utils.

Example: Dependencies of my-app

my-app/build.gradle

apply plugin: 'java'
apply plugin: 'application’
apply plugin: 'idea’

group "org.sample"
version "1.0"

mainClassName = "org.sample.myapp.Main"

dependencies {
compile "org.sample:number-utils:1.0"
compile "org.sample:string-utils:1.0"

}

repositories {
jecenter()

}

The code for this example can be found at samples/compositeBuilds/basic in the “-all’

NOTE
0 distribution of Gradle.

Defining a composite build via --include-build

The --include-build command-line argument turns the executed build into a composite,
substituting dependencies from the included build into the executed build.

Example: Declaring a command-line composite

Output of gradle --include-build ../my-utils run

gradle --include-build ../my-utils run

Task :processResources NO-SOURCE

Task :my-utils:string-utils:compilelava

Task :my-utils:string-utils:processResources NO-SOURCE
Task :my-utils:string-utils:classes

Task :my-utils:string-utils:jar

Task :my-utils:number-utils:compilelava

Task :my-utils:number-utils:processResources NO-SOURCE
Task :my-utils:number-utils:classes

Task :my-utils:number-utils:jar

Task :compilelava

Task :classes

V V V V V V V V V V V V

> Task :run
The answer is 42

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Defining a composite build via settings.gradle

It’s possible to make the above arrangement persistent, by using
Settings.includeBuild(java.lang.Object) to declare the included build in the settings.gradle file. The
settings.gradle file can be used to add subprojects and included builds at the same time. Included
builds are added by location. See the examples below for more details.

Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it
less useful as a standalone build. One way to avoid this is to define a separate composite build,
whose only purpose is to combine otherwise separate builds.

Example: Declaring a separate composite

settings.gradle
rootProject.name="adhoc'

includeBuild '../my-app’
includeBuild '../my-utils'

In this scenario, the 'main’ build that is executed is the composite, and it doesn’t define any useful
tasks to execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build
must define a delegating task.

../dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

Example: Depending on task from included build

build.gradle

task run {
dependsOn gradle.includedBuild('my-app").task(':run")
}

More details tasks that depend on included build tasks below.

Restrictions on included builds

Most builds can be included into a composite, including other composite builds. However there are
some limitations.

Every included build:

* must not have a rootProject.name the same as another included build.
» must not have a rootProject.name the same as a top-level project of the composite build.

* must not have a rootProject.name the same as the composite build rootProject.name.

Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build.
Tasks can be executed, tests can be run, and builds can be imported into the IDE.

Executing tasks

Tasks from the composite build can be executed from the command line, or from you IDE.
Executing a task will result in direct task dependencies being executed, as well as those tasks
required to build dependency artifacts from included builds.

There is not (yet) any means to directly execute a task from an included build via
the command line. Included build tasks are automatically executed in order to
generate required dependency artifacts, or the including build can declare a
dependency on a task from an included build.

NOTE

Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the idea or
eclipse plugin to your build, it is possible to generate a single IDEA or Eclipse project that permits
all builds in the composite to be developed together.

In addition to these Gradle plugins, recent versions of Intelli] IDEA and Eclipse Buildship support
direct import of a composite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed
together. For every included build, each sub-project is included as an IDEA Module or Eclipse
Project. Source dependencies are configured, providing cross-build navigation and refactoring.

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

Declaring the dependencies substituted by an included build

By default, Gradle will configure each included build in order to determine the dependencies it can
provide. The algorithm for doing this is very simple: Gradle will inspect the group and name for the
projects in the included build, and substitute project dependencies for any external dependency
matching ${project.group}:${project.name}.

There are cases when the default substitutions determined by Gradle are not sufficient, or they are
not correct for a particular composite. For these cases it is possible to explicitly declare the
substitutions for an included build. Take for example a single-project build 'unpublished’, that
produces a java utility library but does not declare a value for the group attribute:

Example: Build that does not declare group attribute

build.gradle

apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for project.group, and 'unpublished'
being the root project name). Clearly this isn’t going to be very useful in a composite build. To use
the unpublished library unmodified in a composite build, the composing build can explicitly
declare the substitutions that it provides:

Example: Declaring the substitutions for an included build

settings.gradle
rootProject.name = 'app’

includeBuild("'../anonymous-library') {
dependencySubstitution {
substitute module('org.sample:number-utils') with project(':")

}

With this configuration, the "my-app" composite build will substitute any dependency on
org.sample:number-utils with a dependency on the root project of "unpublished".

Cases where included build substitutions must be declared

Many builds that use the uploadArchives task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared
substitutions are required:

* When the archivesBaseName property is used to set the name of the published artifact.

* When a configuration other than default is published: this usually means a task other than
uploadArchives is used.

* When the MavenPom.addFilter() is used to publish artifacts that don’t match the project name.

* When the maven-publish or ivy-publish plugins are used for publishing, and the publication
coordinates don’t match ${project.group}:${project.name}.

Cases where composite build substitutions won’t work

Some builds won’t function correctly when included in a composite, even when dependency
substitutions are explicitly declared. This limitation is due to the fact that a project dependency that
is substituted will always point to the default configuration of the target project. Any time that the
artifacts and dependencies specified for the default configuration of a project don’t match what is
actually published to a repository, then the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

* When a configuration other than default is published.
* When the maven-publish or ivy-publish plugins are used.

* When the POM or ivy.xml file is tweaked as part of publication.

Builds using these features function incorrectly when included in a composite build. We plan to
improve this in the future.

Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a
composite build is able to declare task dependencies on its included builds. The included builds are
accessed using Gradle.getincludedBuilds() or Gradle.includedBuild(java.lang.String), and a task
reference is obtained via the IncludedBuild.task(java.lang.String) method.

Using these APISs, it is possible to declare a dependency on a task in a particular included build, or
tasks with a certain path in all or some of the included builds.

Example: Depending on a single task from an included build

build.gradle

task run {
dependsOn gradle.includedBuild('my-app").task(':run")
}

Example: Depending on a tasks with path in all included builds

build.gradle

task publishDeps {
dependsOn gradle.includedBuilds*.task(':uploadArchives")
}

../dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
../dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
../dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

Current limitations and future plans for composite builds

We think composite builds are pretty useful already. However, there are some things that don’t yet
work the way we’d like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:
* No support for included builds that have publications that don’t mirror the project default
configuration. See Cases where composite builds won’t work.

* Native builds are not supported. (Binary dependencies are not yet supported for native builds).

 Substituting plugins only works with the buildscript block but not with the plugins block.
Improvements we have planned for upcoming releases include:

* Better detection of dependency substitution, for build that publish with custom coordinates,
builds that produce multiple components, etc. This will reduce the cases where dependency
substitution needs to be explicitly declared for an included build.

» The ability to target a task or tasks in an included build directly from the command line. We are
currently exploring syntax options for allowing this functionality, which will remove many
cases where a delegating task is required in the composite.

* Make the plugins {} block consider included builds when locating plugins and their
dependencies.

* Making the implicit buildSrc project an included build.

Authoring Multi-Project Builds

The powerful support for multi-project builds is one of Gradle’s unique selling points. This topic is
also the most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may
also have subprojects.

Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is
common that subprojects share common traits. It is then usually preferable to share configurations
among projects, so the same configuration affects several subprojects.

Let’s start with a very simple multi-project build. Gradle is a general purpose build tool at its core,
so the projects don’t have to be Java projects. Our first examples are about marine life.

Configuration and execution

Build phases describes the phases of every Gradle build. Let’s zoom into the configuration and
execution phases of a multi-project build. Configuration here means executing the build.gradle file
of a project, which implies e.g. downloading all plugins that were declared using ‘apply plugin’. By
default, the configuration of all projects happens before any task is executed. This means that when

a single task, from a single project is requested, all projects of multi-project build are configured
first. The reason every project needs to be configured is to support the flexibility of accessing and
changing any part of the Gradle project model.

Configuration on demand

The Configuration injection feature and access to the complete project model are possible because
every project is configured before the execution phase. Yet, this approach may not be the most
efficient in a very large multi-project build. There are Gradle builds with a hierarchy of hundreds of
subprojects. The configuration time of huge multi-project builds may become noticeable. Scalability
is an important requirement for Gradle. Hence, starting from version 1.4 a new incubating
'configuration on demand' mode is introduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested
tasks, i.e. it only executes the build.gradle file of projects that are participating in the build. This
way, the configuration time of a large multi-project build can be reduced. In the long term, this
mode will become the default mode, possibly the only mode for Gradle build execution. The
configuration on demand feature is incubating so not every build is guaranteed to work correctly.
The feature should work very well for multi-project builds that have decoupled projects. In
“configuration on demand” mode, projects are configured as follows:

* The root project is always configured. This way the typical common configuration is supported
(allprojects or subprojects script blocks).

* The project in the directory where the build is executed is also configured, but only when
Gradle is executed without any tasks. This way the default tasks behave correctly when projects
are configured on demand.

* The standard project dependencies are supported and makes relevant projects configured. If
project A has a compile dependency on project B then building A causes configuration of both
projects.

* The task dependencies declared via task path are supported and cause relevant projects to be
configured. Example: someTask.dependsOn(":someOtherProject:someOtherTask")

* A task requested via task path from the command line (or Tooling API) causes the relevant
project to be configured. For example, building 'projectA:projectB:someTask' causes
configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Gradle
properties. To configure on demand just for a given build, see command-line performance-oriented
options.

Defining common behavior

Let’s look at some examples with the following project tree. This is a multi-project build with a root
project named water and a subproject named bluewhale.

Example: Multi-project tree - water & bluewhale projects

Project layout

—— bluewhale/

—— build.gradle
L—— settings.gradle

The code for this example can be found at
NOTE samples/userguide/multiproject/firstExample/water in the ‘“all’ distribution of
Gradle.
settings.gradle

rootProject.name = 'water'
include 'bluewhale’

And where is the build script for the bluewhale project? In Gradle build scripts are optional.
Obviously for a single project build, a project without a build script doesn’t make much sense. For
multiproject builds the situation is different. Let’s look at the build script for the water project and
execute it:

Example: Build script of water (parent) project

build.gradle

Closure cl = { task -> println "I'm $task.project.name" }
task('hello").dolast(cl)
project(':bluewhale') {
task('hello").dolLast(cl)
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale

Gradle allows you to access any project of the multi-project build from any build script. The Project
API provides a method called project(), which takes a path as an argument and returns the Project
object for this path. The capability to configure a project build from any build script we call cross
project configuration. Gradle implements this via configuration injection.

We are not that happy with the build script of the water project. It is inconvenient to add the task
explicitly for every project. We can do better. Let’s first add another project called krill to our
multi-project build.

Example: Multi-project tree - water, bluewhale & krill projects

Project layout

—— bluewhale/
—— build.gradle
F—— krill/

L—— settings.gradle

NOTE The code for this example can be found at
samples/userguide/multiproject/addKrill/water in the “all’ distribution of Gradle.
settings.gradle

rootProject.name = 'water'

include 'bluewhale', 'krill'

Now we rewrite the water build script and boil it down to a single line.

Example: Water project build script

build.gradle

allprojects {
task hello {
dolast { task ->
println "I'm $task.project.name"

}

Output of gradle -q hello

> gradle -q hello
I'm water

I'm bluewhale

I'm krill

Is this cool or is this cool? And how does this work? The Project API provides a property allprojects
which returns a list with the current project and all its subprojects underneath it. If you call
allprojects with a closure, the statements of the closure are delegated to the projects associated
with allprojects. You could also do an iteration via allprojects.each, but that would be more
verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also
offer inheritance for projects as you will see later. But Gradle uses configuration injection as the

usual way of defining common behavior. We think it provides a very powerful and flexible way of
configuring multiproject builds.

Another possibility for sharing configuration is to use a common external script.

Subproject configuration

The Project API also provides a property for accessing the subprojects only.

Defining common behavior

Example: Defining common behavior of all projects and subprojects

build.gradle

allprojects {
task hello {
dolLast { task ->
println "I'm $task.project.name"

}
}
}
subprojects {
hello {
dolast {
println "- I depend on water"
}
}
}

Output of gradle -q hello

> gradle -q hello
I'm water

I'm bluewhale

- I depend on water
I'm krill

- I depend on water

You may notice that there are two code snippets referencing the “hello” task. The first one, which
uses the “task” keyword, constructs the task and provides it’s base configuration. The second piece
doesn’t use the “task” keyword, as it is further configuring the existing “hello” task. You may only
construct a task once in a project, but you may add any number of code blocks providing additional
configuration.

Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific
behavior in the build script of the project where we want to apply this specific behavior. But as we

have already seen, we don’t have to do it this way. We could add project specific behavior for the
bluewhale project like this:

Example: Defining specific behaviour for particular project

build.gradle

allprojects {
task hello {
dolLast { task ->
println "I'm $task.project.name"

}
}
}
subprojects {
hello {
dolast {
println "- I depend on water"
}
}
by
project(':bluewhale").hello {
dolast {
println "- I'm the largest animal that has ever lived on this planet."
}
}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.
I'm krill

- I depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this
project. Let’s refactor and also add some project specific behavior to the krill project.

Example: Defining specific behaviour for project krill

Project layout

—— bluewhale

| L—— build.gradle
—— build.gradle
F—— krill

| L—— build.gradle
L—— settings.gradle

The code for this example can be found at
NOTE samples/userquide/multiproject/spreadSpecifics/water in the ‘“all’ distribution of
Gradle.

settings.gradle

rootProject.name = 'water'
include 'bluewhale', 'krill'

bluewhale/build.gradle

hello.dolast {
println "- I'm the largest animal that has ever lived on this planet."

}

krill/build.gradle

hello.dolast {
println "- The weight of my species in summer is twice as heavy as all human
beings."

}

build.gradle

allprojects {
task hello {
dolast { task ->
println "I'm $task.project.name"

}
}
}
subprojects {
hello {
dolast {
println "- I depend on water"
}
}
}

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.

I'm krill

- I depend on water

- The weight of my species in summer is twice as heavy as all human beings.

Project filtering

To show more of the power of configuration injection, let’s add another project called tropicalFish
and add more behavior to the build via the build script of the water project.

Filtering by name

Example: Adding custom behaviour to some projects (filtered by project name)

Project layout

——— bluewhale/

| L—— build.gradle
—— build.gradle
F—— krill/

! L—— build.gradle

—— settings.gradle
L—— tropicalFish/

The code for this example can be found at

NOTE
samples/userguide/multiproject/addTropical/water in the “all’ distribution of Gradle.

settings.gradle

rootProject.name = 'water'
include 'bluewhale', 'krill', 'tropicalFish'

build.gradle

allprojects {
task hello {
dolLast { task ->
println "I'm $task.project.name"

}
}
}
subprojects {
hello {
dolast {
println "- I depend on water"
}
}
}
configure(subprojects.findAll {it.name != "tropicalFish'}) {
hello {
dolast {
println '- I love to spend time in the arctic waters.'
}
}
¥

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

I depend on water

I love to spend time in the arctic waters.

I'm the largest animal that has ever lived on this planet.
I'm krill

I depend on water

I love to spend time in the arctic waters.

- The weight of my species in summer is twice as heavy as all human beings.
I'm tropicalFish

- I depend on water

The confiqure() method takes a list as an argument and applies the configuration to the projects in
this list.

Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. for
more information on extra properties.)

Example: Adding custom behaviour to some projects (filtered by project properties)

Project layout

—— bluewhale

| L—— build.gradle
—— build.gradle
F—— krill

| L—— build.gradle

—— settings.gradle
L—— tropicalFish
L—— build.gradle

The code for this example can be found at
NOTE samples/userguide/multiproject/tropicalWithProperties/water in the “all’
distribution of Gradle.

settings.gradle

rootProject.name = 'water'
include 'bluewhale', 'krill', 'tropicalFish'

bluewhale/build.gradle

ext.arctic = true
hello.dolast {
println "- I'm the largest animal that has ever lived on this planet."

}

krill/build.gradle

ext.arctic = true
hello.dolast {

println "- The weight of my species in summer is twice as heavy as all human
beings."

}

build.gradle

allprojects {
task hello {
dolLast { task ->
println "I'm $task.project.name"

}
}
}
subprojects {
hello {
dolLast {println "- I depend on water"}
afterEvaluate { Project project ->
if (project.arctic) { dolast {
println '- I love to spend time in the arctic waters.' }
}
}
}
}
tropicalFish/build.gradle

ext.arctic = false

Output of gradle -q hello

> gradle -q hello

I'm water

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.

I'm krill

I depend on water

- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.

I'm tropicalFish

I depend on water

In the build file of the water project we use an afterEvaluate notification. This means that the
closure we are passing gets evaluated after the build scripts of the subproject are evaluated. As the
property arctic is set in those build scripts, we have to do it this way. You will find more on this
topic in Dependencies — Which Dependencies?

Execution rules for multi-project builds

When we executed the hello task from the root project dir, things behaved in an intuitive way. All
the hello tasks of the different projects were executed. Let’s switch to the bluewhale dir and see
what happens if we execute Gradle from there.

Example: Running build from subproject

Output of gradle -q hello

> gradle -q hello

I'm bluewhale

- I depend on water

- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.

The basic rule behind Gradle’s behavior is simple. Gradle looks down the hierarchy, starting with
the current dir, for tasks with the name hello and executes them. One thing is very important to
note. Gradle always evaluates every project of the multi-project build and creates all existing task
objects. Then, according to the task name arguments and the current dir, Gradle filters the tasks
which should be executed. Because of Gradle’s cross project configuration every project has to be
evaluated before any task gets executed. We will have a closer look at this in the next section. Let’s
now have our last marine example. Let’s add a task to bluewhale and krill.

Example: Evaluation and execution of projects

bluewhale/build.gradle

ext.arctic = true

hello {
dolLast {
println "- I'm the largest animal that has ever lived on this planet."
}
¥

task distanceTolceberg {
dolLast {
println '20 nautical miles'

}

krill/build.gradle

ext.arctic = true
hello {
dolLast {
println
human beings."

}

'- The weight of my species in summer is twice as heavy as all

}

task distanceTolceberg {
dolast {
println '5 nautical miles'

}

Output of gradle -q distanceToIceberg

> gradle -q distanceToIceberg
20 nautical miles
5 nautical miles

Here’s the output without the -q option:

Example: Evaluation and execution of projects

Output of gradle distanceToIceberg
> gradle distanceTolceberg

> Task :bluewhale:distanceTolIceberg
20 nautical miles

> Task :krill:distanceTolceberg
5 nautical miles

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

The build is executed from the water project. Neither water nor tropicalFish have a task with the
name distanceTolceberg. Gradle does not care. The simple rule mentioned already above is: Execute
all tasks down the hierarchy which have this name. Only complain if there is no such task!

Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the
build from there. All matching task names of the project hierarchy starting with the current dir are
executed. But Gradle also offers to execute tasks by their absolute path (see also Project and task
paths):

Example: Running tasks by their absolute path

Output of gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

I'm water

I'm krill

- I depend on water

- The weight of my species in summer is twice as heavy as all human beings.
- I Tove to spend time in the arctic waters.

I'm tropicalFish

- I depend on water

The build is executed from the tropicalFish project. We execute the hello tasks of the water, the
krill and the tropicalFish project. The first two tasks are specified by their absolute path, the last
task is executed using the name matching mechanism described above.

Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root
project. The root project is the only project in a path that is not specified by its name. The rest of a
project path is a colon-separated sequence of project names, where the next project is a subproject
of the previous project.

The path of a task is simply its project path plus the task name, like “:bluewhale:hello”. Within a

project you can address a task of the same project just by its name. This is interpreted as a relative
path.

Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies.
They had only Configuration Dependencies. The following sections illustrate the differences between
these two types of dependencies.

Execution dependencies
Dependencies and execution order

Example: Dependencies and execution order

Project layout

—— build.gradle
—— consumer

| L—— build.gradle

—— producer

| L—— build.gradle
L—— settings.gradle

The code for this example can be found at
NOTE samples/userguide/multiproject/dependencies/firstMessages/messages in the ‘“all’
distribution of Gradle.

build.gradle

ext.producerMessage = null

settings.gradle

include 'consumer', 'producer’

consumer/build.gradle

task action {
dolLast {
println("Consuming message: ${rootProject.producerMessage}")

}

producer/build.gradle

task action {
dolLast {
println "Producing message:"
rootProject.producerMessage = 'Watch the order of execution.'

Output of gradle -q action

> gradle -q action
Consuming message: null
Producing message:

This didn’t quite do what we want. If nothing else is defined, Gradle executes the task in
alphanumeric order. Therefore, Gradle will execute “:consumer:action” before “:producer:action”.
Let’s try to solve this with a hack and rename the producer project to “aProducer”.

Example: Dependencies and execution order

Project layout

——— aProducer

| L—— build.gradle
—— build.gradle
—— consumer

| L—— build.gradle
L—— settings.gradle

build.gradle

ext.producerMessage = null

settings.gradle

include 'consumer', 'aProducer'

aProducer/build.gradle

task action {
dolLast {
println "Producing message:"
rootProject.producerMessage = 'Watch the order of execution.'

consumer/build.gradle

task action {
dolast {
println("Consuming message: ${rootProject.producerMessage}")

}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

We can show where this hack doesn’t work if we now switch to the consumer dir and execute the
build.

Example: Dependencies and execution order

Output of gradle -q action

> gradle -q action
Consuming message: null

The problem is that the two “action” tasks are unrelated. If you execute the build from the
“messages” project Gradle executes them both because they have the same name and they are down
the hierarchy. In the last example only one “action” task was down the hierarchy and therefore it
was the only task that was executed. We need something better than this hack.

Real life examples

Gradle’s multi-project features are driven by real life use cases. One good example consists of two
web application projects and a parent project that creates a distribution including the two web
applications. [4: The real use case we had, was using http://lucene.apache.org/solr, where you need
a separate war for each index you are accessing. That was one reason why we have created a
distribution of webapps. The Resin servlet container allows us, to let such a distribution point to a
base installation of the servlet container.] For the example we use only one build script and do
cross project configuration.

Example: Dependencies - real life example - crossproject configuration

Project layout

—— build.gradle
——— date

L—— sre

L—— settings.gradle

http://lucene.apache.org/solr

The code for this example can be found at
NOTE samples/userquide/multiproject/dependencies/webDist in the ‘“all’ distribution of
Gradle.

settings.gradle

include 'date', 'hello'

build.gradle

allprojects {
apply plugin: 'java'
group = 'org.gradle.sample’
version = '1.0'

}

subprojects {
apply plugin: ‘'war'
repositories {
mavenCentral()

}
dependencies {
compile "javax.servlet:servlet-api:2.5"

}
}

task explodedDist(type: Copy) {
into "$buildDir/explodedDist"
subprojects {
from tasks.withType(War)
}

We have an interesting set of dependencies. Obviously the date and hello projects have a
configuration dependency on webDist, as all the build logic for the webapp projects is injected by
webDist. The execution dependency is in the other direction, as webDist depends on the build
artifacts of date and hello. There is even a third dependency. webDist has a configuration
dependency on date and hello because it needs to know the archivePath. But it asks for this
information at execution time. Therefore we have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build
system does not support these patterns, you either can’t solve your problem or you need to do ugly
hacks which are hard to maintain and massively impair your productivity as a build master.

Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the

jar but also the transitive dependencies of this jar? Obviously this is a very common use case for
Java multi-project builds. As mentioned in Project dependencies, Gradle offers project lib
dependencies for this.

Project lib dependencies

—— api

| L—— Person.java
L—— apilmpl
L—— PersonImpl.java

L—— PersonTest.java
—— build.gradle

L—— services
L—— PersonServiceTest.java

—— services

| L—— personService

| L—— src

| F—— main

| | L—— java

’ | L—— org

| | L—— gradle

| | L—— sample

| | L—— services
| | L—— PersonService.java
| L—— test

| L—— java

’ L—— org

|

|

|

|

—— settings.gradle
l—— shared

L— src
L—— main
L—— java
L—— org
L—— gradle
L—— sample
L—— shared
L—— Helper.java
The code for this example can be found at
NOTE

samples/userguide/multiproject/dependencies/java in the “-all’ distribution of Gradle.

We have the projects “shared”, “api” and “personService”. The “personService” project has a lib
dependency on the other two projects. The “api” project has a lib dependency on the “shared”
project. “services” is also a project, but we use it just as a container. It has no build script and gets
nothing injected by another build script. We use the : separator to define a project path. Consult the
DSL documentation of Settings.include(java.lang.String[]) for more information about defining
project paths.

Example: Project lib dependencies

settings.gradle

include 'api', 'shared', 'services:personService'

build.gradle

subprojects {
apply plugin: 'java'
group = 'org.gradle.sample’
version = '1.0'
repositories {
mavenCentral()
}
dependencies {
testCompile "junit:junit:4.12"
}
}

project(':api') {
dependencies {
compile project(':shared")
}
}

project(':services:personService') {
dependencies {
compile project(':shared'), project(':api')

}

All the build logic is in the “build.gradle” file of the root project. [5: We do this here, as it makes the
layout a bit easier. We usually put the project specific stuff into the build script of the respective
projects.] A “lib” dependency is a special form of an execution dependency. It causes the other
project to be built first and adds the jar with the classes of the other project to the classpath. It also
adds the dependencies of the other project to the classpath. So you can enter the “api” directory and
trigger a “gradle compile”. First the “shared” project is built and then the “api” project is built.
Project dependencies enable partial multi-project builds.

../dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land,
you might expect some more fine grained control. Gradle offers this to you:

Example: Fine grained control over dependencies

build.gradle

subprojects {
apply plugin: 'java'
group = 'org.gradle.sample’
version = '1.0'

}

project(':api') {

configurations {
spi

}

dependencies {
compile project(':shared")

}

task spiJar(type: Jar) {
baseName = 'api-spi'
from sourceSets.main.output
include('org/gradle/sample/api/**")

}

artifacts {
spi spilar

}

}

project(':services:personService') {
dependencies {
compile project(':shared")
compile project(path: ':api', configuration: 'spi')
testCompile "junit:junit:4.12", project(':api')

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this
example we create an additional library containing only the interfaces of the “api” project. We
assign this library to a new dependency configuration. For the person service we declare that the
project should be compiled only against the “api” interfaces but tested with all classes from “api”.

Depending on the task output produced by another project

Project dependencies model dependencies between modules. Effectively, you are saying that you
depend on the main output of another project. In a Java-based project that’s usually a JAR file.

Sometimes you may want to depend on an output produced by another task. In turn youw’ll want to
make sure that the task is executed beforehand to produce that very output. Declaring a task

dependency from one project to another is a poor way to model this kind of relationship and
introduces unnecessary coupling. The recommended way to model such a dependency is to
produce the output, mark it as an "outgoing" artifact or add it to the output of the main source set
which you can depend on in the consuming project.

Let’s say you are working in a multi-project build with the two subprojects producer and consumer.
The subproject producer defines a task named buildInfo that generates a properties file containing
build information e.g. the project version. The attribute builtBy takes care of establishing an
inferred task dependency. For more information on builtBy, see SourceSetOutput.

Example: Task generating a property file containing build information

build.gradle

task buildInfo(type: BuildInfo) {
version = project.version
outputFile = file("${buildDir}/generated-resources/build-info.properties")

}

sourceSets {
main {
output.dir(buildInfo.outputFile.parentFile, builtBy: buildInfo)
}

The consuming project is supposed to be able to read the properties file at runtime. Declaring a
project dependency on the producing project takes care of creating the properties beforehand and
making it available to the runtime classpath.

Example: Declaring a project dependency on the project producing the properties file

build.gradle

dependencies {
runtime project(':producer')

}

In the example above, the consumer now declares a dependency on the outputs of the producer
project.

Parallel project execution

With more and more CPU cores available on developer desktops and CI servers, it is important that
Gradle is able to fully utilise these processing resources. More specifically, parallel execution
attempts to:

* Reduce total build time for a multi-project build where execution is I0 bound or otherwise does
not consume all available CPU resources.

* Provide faster feedback for execution of small projects without awaiting completion of other

../dsl/org.gradle.api.tasks.SourceSetOutput.html

projects.

Although Gradle already offers parallel test execution via Test.setMaxParallelForks(int) the feature
described in this section is parallel execution at a project level. Parallel execution is an incubating
feature. Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be
executed in parallel (see also Decoupled projects). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that
will be available for fully decoupled projects. Such features include:

* Configuration on-demand.

* Configuration of projects in parallel.

* Re-use of configuration for unchanged projects.
* Project-level up-to-date checks.

» Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use
the --parallel command line argument or configure your build environment (Gradle properties).
Unless you provide a specific number of parallel threads, Gradle attempts to choose the right
number based on available CPU cores. Every parallel worker exclusively owns a given project while
executing a task. Task dependencies are fully supported and parallel workers will start executing
upstream tasks first. Bear in mind that the alphabetical ordering of decoupled tasks, as can be seen
during sequential execution, is not guaranteed in parallel mode. In other words, in parallel mode
tasks will run as soon as their dependencies complete and a task worker is available to run them,
which may be earlier than they would start during a sequential build. You should make sure that
task dependencies and task inputs/outputs are declared correctly to avoid ordering issues.

Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution
phases. While this provides a great deal of power and flexibility to the build author, it also limits
the flexibility that Gradle has when building those projects. For instance, this effectively prevents
Gradle from correctly building multiple projects in parallel, configuring only a subset of projects, or
from substituting a pre-built artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model.
Decoupled projects may only interact in terms of declared dependencies: project dependencies
and/or task dependencies. Any other form of project interaction (i.e. by modifying another project
object or by reading a value from another project object) causes the projects to be coupled. The
consequence of coupling during the configuration phase is that if gradle is invoked with the
'configuration on demand' option, the result of the build can be flawed in several ways. The
consequence of coupling during execution phase is that if gradle is invoked with the parallel option,
one project task runs too late to influence a task of a project building in parallel. Gradle does not
attempt to detect coupling and warn the user, as there are too many possibilities to introduce
coupling.

A very common way for projects to be coupled is by using configuration injection. It may not be

../javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-

immediately apparent, but using key Gradle features like the allprojects and subprojects keywords
automatically cause your projects to be coupled. This is because these keywords are used in a
build.gradle file, which defines a project. Often this is a “root project” that does nothing more than
define common configuration, but as far as Gradle is concerned this root project is still a fully-
fledged project, and by using allprojects that project is effectively coupled to all other projects.
Coupling of the root project to subprojects does not impact 'configuration on demand’, but using the
allprojects and subprojects in any subproject’s build.gradle file will have an impact.

This means that using any form of shared build script logic or configuration injection (allprojects,
subprojects, etc.) will cause your projects to be coupled. As we extend the concept of project
decoupling and provide features that take advantage of decoupled projects, we will also introduce
new features to help you to solve common use cases (like configuration injection) without causing
your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel
and 'configuration on demand' options, follow these recommendations:

* Avoid a subproject’s build.gradle referencing other subprojects; preferring cross configuration
from the root project.

* Avoid changing the configuration of other projects at execution time.

Multi-Project Building and Testing

The build task of the Java plugin is typically used to compile, test, and perform code style checks (if
the CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do
all of these tasks across a range of projects. The buildNeeded and buildDependents tasks can help with
this.

In this example, the “:services:personservice” project depends on both the “:api” and “:shared”
projects. The “:api” project also depends on the “:shared” project.

Assume you are working on a single project, the “:api” project. You have been making changes, but
have not built the entire project since performing a clean. You want to build any necessary
supporting jars, but only perform code quality and unit tests on the project you have changed. The
build task does this.

Example: Build and Test Single Project

Output of gradle :api:build

gradle :api:build

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTest]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

V V V V V V V V V V V V V V V VvV

BUILD SUCCESSFUL in @s
9 actionable tasks: 9 executed

If you have just gotten the latest version of source from your version control system which included
changes in other projects that “:api” depends on, you might want to not only build all the projects
you depend on, but test them as well. The buildNeeded task also tests all the projects from the project
lib dependencies of the testRuntime configuration.

Example: Build and Test Depended On Projects

Output of gradle :api:buildNeeded

gradle :api:buildNeeded

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTest]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

Task :shared:assemble

Task :shared:compileTestJava
Task :shared:processTestResources
Task :shared:test(Classes

Task :shared:test

Task :shared:check

Task :shared:build

Task :shared:buildNeeded

Task :api:buildNeeded

V V.V

BUILD SUCCESSFUL in @s
12 actionable tasks: 12 executed

You also might want to refactor some part of the “:api” project that is used in other projects. If you
make these types of changes, it is not sufficient to test just the “:api” project, you also need to test
all projects that depend on the “:api” project. The buildDependents task also tests all the projects that
have a project lib dependency (in the testRuntime configuration) on the specified project.

Example: Build and Test Dependent Projects

Output of gradle :api:buildDependents

gradle :api:buildDependents
Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTest]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

Task
Task
Task
Task
Task
Task
Task

iservices:
iservices:
iservices:
iservices:
;services:
iservices:
iservices:

personService:
personService:
personService:
personService:
personService:
personService:
personService:

compilelava
processResources
classes

jar

assemble
compileTest]ava
processTestResources

testClasses
test

check

build
buildDependents

Task :services:
Task
Task
Task
Task

Task

personService:
:services:personService:
:services:personService:
:services:personService:
:services:personService:
:api:buildDependents

V V.V

BUILD SUCCESSFUL in @s
17 actionable tasks: 17 executed

Finally, you may want to build and test everything in all projects. Any task you run in the root
project folder will cause that same named task to be run on all the children. So you can just run
“gradle build” to build and test all projects.

Multi Project and buildSrc

Using buildSrc to organize build logic tells us that we can place build logic to be compiled and
tested in the special buildSrc directory. In a multi project build, there can only be one buildSrc
directory which must be located in the root directory.

Authoring Tasks

In the introductory tutorial you learned how to create simple tasks. You also learned how to add
additional behavior to these tasks later on, and you learned how to create dependencies between

tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle supports
enhanced tasks, which are tasks that have their own properties and methods. This is really different
from what you are used to with Ant targets. Such enhanced tasks are either provided by you or
built into Gradle.

Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console UI and via
the Tooling API. These labels are based on if a task has actions to execute, if it should execute those
actions, if it did execute those actions and if those actions made any changes.

(no label) or EXECUTED

Task executed its actions.

» Task has actions and Gradle has determined they should be executed as part of a build.

» Task has no actions and some dependencies, and any of the dependencies are executed. See
also Lifecycle Tasks.

UP-TO-DATE
Task’s outputs did not change.
» Task has outputs and inputs and they have not changed. See Incremental Builds.
» Task has actions, but the task tells Gradle it did not change its outputs.

» Task has no actions and some dependencies, but all of the dependencies are up-to-date,
skipped or from cache. See also Lifecycle Tasks.

» Task has no actions and no dependencies.

FROM-CACHE
Task’s outputs could be found from a previous execution.

 Task has outputs restored from the build cache. See Build Cache.

SKIPPED
Task did not execute its actions.

« Task has been explicitly excluded from the command-line. See Excluding tasks from
execution.

» Task has an onlyIf predicate return false. See Using a predicate.

NO-SOURCE
Task did not need to execute its actions.

» Task has inputs and outputs, but no sources. For example, source files are .java files for
JavaCompile.

Defining tasks

We have already seen how to define tasks using a keyword style in this chapter. There are a few

../dsl/org.gradle.api.tasks.compile.JavaCompile.html

variations on this style, which you may need to use in certain situations. For example, the keyword
style does not work in expressions.

Example: Defining tasks

build.gradle

task(hello) {
dolast {
println "hello"
}
}

task(copy, type: Copy) {
from(file('srcDir'))
into(buildDir)

You can also use strings for the task names:

Example: Defining tasks - using strings for task names

build.gradle

task('hello') {
dolast {
println "hello"
}
}

task('copy', type: Copy) {
from(file('srcDir"))
into(buildDir)

There is an alternative syntax for defining tasks, which you may prefer to use:

Example: Defining tasks with alternative syntax

build.gradle

tasks.create('hello") {
dolLast {
println "hello"
}
}

tasks.create('copy', Copy) {

from(file('srcDir"))
into(buildDir)

Here we add tasks to the tasks collection. Have a look at TaskContainer for more variations of the
create() method.

Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure
them or use them for dependencies. There are a number of ways of doing this. Firstly, each task is
available as a property of the project, using the task name as the property name:

Example: Accessing tasks as properties

build.gradle
task hello

println hello.name
println project.hello.name

Tasks are also available through the tasks collection.

Example: Accessing tasks via tasks collection

build.gradle
task hello

println tasks.hello.name
println tasks['hello'].name

You can access tasks from any project using the task’s path using the tasks.getByPath() method. You
can call the getByPath() method with a task name, or a relative path, or an absolute path.

Example: Accessing tasks by path

../javadoc/org/gradle/api/tasks/TaskContainer.html

build.gradle

project(':projectA’) {
task hello
}

task hello

println tasks.getByPath('hello").path
println tasks.getByPath(':hello").path
println tasks.getByPath('projectA:hello").path
println tasks.getByPath(':projectA:hello").path

Output of gradle -q hello

> gradle -q hello
hello

:hello
:projectA:hello
:projectA:hello

Have a look at TaskContainer for more options for locating tasks.

Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To create a Copy task for your build,
you can declare in your build script:

Example: Creating a copy task

build.gradle

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see
Copy). The following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “myCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You’ll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example: Configuring a task - various ways

../javadoc/org/gradle/api/tasks/TaskContainer.html
../dsl/org.gradle.api.tasks.Copy.html

build.gradle

Copy myCopy = task(myCopy, type: Copy)

myCopy.from 'resources’

myCopy.into 'target'

myCopy.include('**/*.txt"', '**/*.xml', '**/*.properties")

This is similar to the way we would configure objects in Java. You have to repeat the context (
myCopy) in the configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most
readable. It is usually our favorite.

Example: Configuring a task - with closure

build.gradle
task myCopy(type: Copy)

myCopy {
from 'resources'
into 'target'
include('**/*.txt", "**/*.xml', "**/*.properties')

This works for any task. Line 3 of the example is just a shortcut for the tasks.getByName() method. It
is important to note that if you pass a closure to the getByName() method, this closure is applied to
configure the task, not when the task executes.

You can also use a configuration closure when you define a task.

Example: Defining a task with closure

build.gradle

task copy(type: Copy) {
from 'resources'

into 'target'
include('**/*.txt', "**/*.xml', "**/*.properties')

Don’t forget about the build phases

A task has both configuration and actions. When using the dolLast, you are simply

TIP using a shortcut to define an action. Code defined in the configuration section of your
task will get executed during the configuration phase of the build regardless of what
task was targeted. See Build Lifecycle for more details about the build lifecycle.

Passing arguments to a task constructor

As opposed to configuring the mutable properties of a Task after creation, you can pass argument
values to the Task class’s constructor. In order to pass values to the Task constructor, you must
annotate the relevant constructor with @javax.inject.Inject.

Example: Task class with @Inject constructor

build.gradle
class CustomTask extends DefaultTask {

final String message
final int number

CustomTask(String message, int number) {
this.message = message
this.number = number

You can then create a task, passing the constructor arguments at the end of the parameter list.

Example: Creating a task with constructor arguments using TaskContainer

build.gradle

tasks.create('myTask', CustomTask, 'hello', 42)

In a Groovy build script, you can create the task using constructorArgs.

Example: Creating a task with constructor arguments using Map

build.gradle

task myTask(type: CustomTask, constructorArgs: ['hello', 42])

In a Kotlin build script, you can pass constructor arguments using the reified extension function on
the tasks TaskContainer.

Example: Creating a task with constructor arguments using Kotlin DSL

build.gradle.kts

open class CustomTask constructor(private val message: String, private val
number: Int) : DefaultTask() {
fun run() = println("¢message $number")

}

tasks.create<CustomTask>("myTask", "hello", 42)

In all circumstances, the values passed as constructor arguments must be non-null. If you attempt
to pass a null value, Gradle will throw a NullPointerException indicating which runtime value is
null.

Adding dependencies to a task

There are several ways you can define the dependencies of a task. In Task dependencies you were
introduced to defining dependencies using task names. Task names can refer to tasks in the same
project as the task, or to tasks in other projects. To refer to a task in another project, you prefix the
name of the task with the path of the project it belongs to. The following is an example which adds
a dependency from projectA:taskX to projectB:taskY:

Example: Adding dependency on task from another project

build.gradle

project('projectA’) {
task taskX(dependsOn: ':projectB:taskY') {
dolast {
println '"taskX'

}
}

project('projectB") {
task taskY {
dolast {
println '"taskY'

}

Output of gradle -q taskX

> gradle -q taskX
tasky
taskX

Instead of using a task name, you can define a dependency using a Task object, as shown in this

example:

Example: Adding dependency using task object

build.gradle

task taskX {
dolast {
println 'taskX'
}
}

task taskY {
dolast {
println 'taskY'

}
}

taskX.dependsOn taskY

Output of gradle -q taskX

> gradle -q taskX
tasky
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the
closure is passed the task whose dependencies are being calculated. The closure should return a
single Task or collection of Task objects, which are then treated as dependencies of the task. The
following example adds a dependency from taskX to all the tasks in the project whose name starts
with 1ib:

Example: Adding dependency using closure

build.gradle

task taskX {
dolLast {
println 'taskX'
}
}

taskX.dependsOn {
tasks.findA1ll { task -> task.name.startsWith('1lib") }

}
task 1ib1 {
dolLast {
println 'L1ib1’
}
}
task 1ib2 {
dolast {
println '1ib2’
}
}

task notALib {
dolLast {
println "notALib'

}

Output of gradle -q taskX

> gradle -q taskX
1ib1

1ib2

taskX

For more information about task dependencies, see the Task API.

Ordering tasks

NOTE Task ordering is an incubating feature. Please be aware that this feature may
change in later Gradle versions.

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an

explicit dependency between those tasks. The primary difference between a task ordering and a

task dependency is that an ordering rule does not influence which tasks will be executed, only the

order in which they will be executed.

../dsl/org.gradle.api.Task.html

Task ordering can be useful in a number of scenarios:

» Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

* Run build validations early in the build: e.g. validate I have the correct credentials before
starting the work for a release build.

* Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit
tests should run before integration tests.

* A task that aggregates the results of all tasks of a particular type: e.g. test report task combines
the outputs of all executed test tasks.

There are two ordering rules available: “must run after” and “should run after”.

When you use the “must run after” ordering rule you specify that taskB must always run after
taskA, whenever both taskA and taskB will be run. This is expressed as taskB.mustRunAfter(taskA).
The “should run after” ordering rule is similar but less strict as it will be ignored in two situations.
Firstly if using that rule introduces an ordering cycle. Secondly when using parallel execution and
all dependencies of a task have been satisfied apart from the “should run after” task, then this task
will be run regardless of whether its “should run after” dependencies have been run or not. You
should use “should run after” where the ordering is helpful but not strictly required.

With these rules present it is still possible to execute taskA without taskB and vice-versa.

Example: Adding a 'must run after' task ordering

build.gradle

task taskX {
dolast {
println 'taskX'

}
}
task taskY {
dolast {
println 'taskY'
}
}

taskY.mustRunAfter taskX

Output of gradle -q taskY taskX
> gradle -q taskY taskX

taskX
taskY

Example: Adding a 'should run after' task ordering

build.gradle

task taskX {
dolLast {
println 'taskX'

}
}
task taskY {
dolLast {
println 'taskY'
}
}

taskY.shouldRunAfter taskX

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
tasky

In the examples above, it is still possible to execute taskY without causing taskX to run:

Example: Task ordering does not imply task execution

Output of gradle -q taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task.mustRunAfter(java.lang.Object...) and Task.shouldRunAfter(java.lang.Object...) methods. These
methods accept a task instance, a task name or any other input accepted by
Task.dependsOn(java.lang.Object...).

Note that “B.mustRunAfter(A)” or “B.shouldRunAfter(A)” does not imply any execution dependency
between the tasks:

* It is possible to execute tasks A and B independently. The ordering rule only has an effect when
both tasks are scheduled for execution.

* When run with --continue, it is possible for B to execute in the event that A fails.

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an
ordering cycle:

Example: A 'should run after' task ordering is ignored if it introduces an ordering cycle

../dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
../javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object...-
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

build.gradle

task taskX {
dolLast {
println 'taskX'

}
}
task taskY {
dolLast {
println 'taskY'
}
}
task taskZ {
dolLast {
println '"taskZ'
}
}

taskX.dependsOn taskY
taskY.dependsOn taskZ
taskZ.shouldRunAfter taskX

Output of gradle -q taskX

> gradle -q taskX
taskZ
taskY
taskX

Adding a description to a task

You can add a description to your task. This description is displayed when executing gradle tasks.

Example: Adding a description to a task

build.gradle

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.'
from 'resources’
into 'target'
include('**/*.txt', "**/*.xml', "**/*.properties’')

Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the
Java plugin with a custom task of a different type. You can achieve this with:

Example: Overwriting a task

build.gradle
task copy(type: Copy)

task copy(overwrite: true) {
dolast {
println('I am the new one.")

}

Output of gradle -q copy

> gradle -q copy
I am the new one.

This will replace a task of type Copy with the task you’ve defined, because it uses the same name.
When you define the new task, you have to set the overwrite property to true. Otherwise Gradle
throws an exception, saying that a task with that name already exists.

Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

Using a predicate

You can use the onlyIf() method to attach a predicate to a task. The task’s actions are only executed
if the predicate evaluates to true. You implement the predicate as a closure. The closure is passed
the task as a parameter, and should return true if the task should execute and false if the task
should be skipped. The predicate is evaluated just before the task is due to be executed.

Example: Skipping a task using a predicate

build.gradle

task hello {
doLast {
println "hello world’
}
}

hello.onlyIf { !project.hasProperty('skipHello") }

Output of gradle hello -PskipHello

> gradle hello -PskipHello
> Task :hello SKIPPED

BUILD SUCCESSFUL in 0s

Using StopExecutionException

If the logic for skipping a task can’t be expressed with a predicate, you can use the
StopExecutionException. If this exception is thrown by an action, the further execution of this
action as well as the execution of any following action of this task is skipped. The build continues
with executing the next task.

Example: Skipping tasks with StopExecutionException

build.gradle

task compile {
dolast {
println 'We are doing the compile.'
}
}

compile.doFirst {
// Here you would put arbitrary conditions in real life.
// But this 1is used in an integration test so we want defined behavior.
if (true) { throw new StopExecutionException() }

}
task myTask(dependsOn: 'compile') {
dolast {
println 'I am not affected'
}
}

Output of gradle -q myTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional
execution of the built-in actions of such a task. [6: You might be wondering why there is neither an
import for the StopExecutionException nor do we access it via its fully qualified name. The reason is,
that Gradle adds a set of default imports to your script (see Default imports).]

Enabling and disabling tasks

Every task has an enabled flag which defaults to true. Setting it to false prevents the execution of
any of the task’s actions. A disabled task will be labelled SKIPPED.

../javadoc/org/gradle/api/tasks/StopExecutionException.html

Example: Enabling and disabling tasks

build.gradle

task disableMe {
dolast {
println 'This should not be printed if the task is disabled.'

}

}
disableMe.enabled = false

Output of gradle disableMe

> gradle disableMe
> Task :disableMe SKIPPED

BUILD SUCCESSFUL in 0s

Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done.
Consider the process of compilation. Once your source files have been compiled, there should be no
need to recompile them unless something has changed that affects the output, such as the
modification of a source file or the removal of an output file. And compilation can take a significant
amount of time, so skipping the step when it’s not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have
almost certainly already seen it in action: it’s active nearly every time the UP-TO-DATE text appears
next to the name of a task when you run a build. Task outcomes are described in Task outcomes.

How does incremental build work? And what does it take to make use of it in your own tasks? Let’s
take a look.

Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the
compilation example from earlier, we can see that the source files are the inputs and, in the case of
Java, the generated class files are the outputs. Other inputs might include things like whether debug
information should be included.

Green: inputs

Blue: outputs
Target JDK
version \
Source JavaCompile _
files > task » Class files

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

Figure 7. Example task inputs and outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from
the previous figure. Different bytecode is generated depending on the content of the source files
and the minimum version of the Java runtime you want to run the code on. That makes them task
inputs. But whether compilation has 500MB or 600MB of maximum memory available, determined
by the memoryMaximumSize property, has no impact on what bytecode gets generated. In Gradle
terminology, memoryMaximumSize is just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed
since the last build. If they haven’t, Gradle can consider the task up to date and therefore skip
executing its actions. Also note that incremental build won’t work unless a task has at least one task
output, although tasks usually have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are
inputs and which are outputs. If a task property affects the output, be sure to register it as an input,
otherwise the task will be considered up to date when it’s not. Conversely, don’t register properties
as inputs if they don’t affect the output, otherwise the task will potentially execute when it doesn’t
need to. Also be careful of non-deterministic tasks that may generate different output for exactly
the same inputs: these should not be configured for incremental build as the up-to-date checks
won’t work.

Let’s now look at how you can register task properties as inputs and outputs.

Custom task types

If you’re implementing a custom task as a class, then it takes just two steps to make it work with
incremental build:

1. Create typed properties (via getter methods) for each of your task inputs and outputs

2. Add the appropriate annotation to each of those properties

Annotations must be placed on getters or on Groovy properties. Annotations placed

NOTE
on setters, or on a Java field without a corresponding annotated getter are ignored.

Gradle supports three main categories of inputs and outputs:

As

Simple values

Things like strings and numbers. More generally, a simple value can have any type that
implements Serializable.

Filesystem types

These consist of the standard File class but also derivatives of Gradle’s FileCollection type and
anything else that can be passed to either the Project.file(java.lang.Object) method - for single
file/directory properties - or the Project.files(java.lang.Object...),
ProjectLayout.files(java.lang.Object...), and ProjectLayout.configurableFiles(java.lang.Object...)
methods.

Nested values

Custom types that don’t conform to the other two categories but have their own properties that
are inputs or outputs. In effect, the task inputs or outputs are nested inside these custom types.

an example, imagine you have a task that processes templates of varying types, such as

FreeMarker, Velocity, Moustache, etc. It takes template source files and combines them with some
model data to generate populated versions of the template files.

This task will have three inputs and one output:

Template source files
Model data
Template engine

Where the output files are written

When you’re writing a custom task class, it’s easy to register properties as inputs or outputs via

an
ou

notations. To demonstrate, here is a skeleton task implementation with some suitable inputs and
tputs, along with their annotations:

Example: Custom task class

../javadoc/org/gradle/api/file/FileCollection.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
../javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object...-

buildSrc/src/main/java/org/example/ProcessTemplates.java
package org.example;

import java.io.File;

import java.util.HashMap;
import org.gradle.api.*;
import org.gradle.api.file.*;
import org.gradle.api.tasks.*;

public class ProcessTemplates extends DefaultTask {
private TemplateEngineType templateEngine;
private FileCollection sourceFiles;
private TemplateData templateData;
private File outputDir;

@Input
public TemplateEngineType getTemplateEngine() {
return this.templateEngine;

}

@InputFiles
public FileCollection getSourceFiles() {
return this.sourceFiles;

}

@Nested
public TemplateData getTemplateData() {
return this.templateData;

}

@OutputDirectory
public File getOutputDir() { return this.outputDir; }

// + setter methods for the above - assume we’ve defined them

@TaskAction

public void processTemplates() {
/] ...

}

buildSrc/src/main/java/org/example/TemplateData.java
package org.example;

import java.util.HashMap;
import java.util.Map;
import org.gradle.api.tasks.Input;

public class TemplateData {
private String name;
private Map<String, String> variables;

public TemplateData(String name, Map<String, String> variables) {
this.name = name;
this.variables = new HashMap<>(variables);

public String getName() { return this.name; }

public Map<String, String> getVariables() {
return this.variables;

}

Output of gradle processTemplates

> gradle processTemplates
> Task :processTemplates

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Output of gradle processTemplates (run again)

> gradle processTemplates
> Task :processTemplates UP-TO-DATE

BUILD SUCCESSFUL in @s
1 actionable task: 1 up-to-date

There’s plenty to talk about in this example, so let’s work through each of the input and output
properties in turn:
o templateEngine

Represents which engine to use when processing the source templates, e.g. FreeMarker,

Velocity, etc. You could implement this as a string, but in this case we have gone for a custom
enum as it provides greater type information and safety. Since enums implement Serializable
automatically, we can treat this as a simple value and use the @Input annotation, just as we
would with a String property.

« sourceFiles

The source templates that the task will be processing. Single files and collections of files need
their own special annotations. In this case, we’re dealing with a collection of input files and so
we use the @InputFiles annotation. You’ll see more file-oriented annotations in a table later.

o templateData

For this example, we’re using a custom class to represent the model data. However, it does not
implement Serializable, so we can’t use the @Input annotation. That’s not a problem as the
properties within TemplateData - a string and a hash map with serializable type parameters - are
serializable and can be annotated with @Input. We use @Nested on templateData to let Gradle
know that this is a value with nested input properties.

« outputDir

The directory where the generated files go. As with input files, there are several annotations for
output files and directories. A property representing a single directory requires
@0utputDirectory. You’ll learn about the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template
engine, model data or generated files have changed since the previous time Gradle executed the
task. This will often save a significant amount of time. You can learn how Gradle detects changes
later.

This example is particularly interesting because it works with collections of source files. What
happens if only one source file changes? Does the task process all the source files again or just the
modified one? That depends on the task implementation. If the latter, then the task itself is
incremental, but that’s a different feature to the one we’re discussing here. Gradle does help task
implementers with this via its incremental task inputs feature.

Now that you have seen some of the input and output annotations in practice, let’s take a look at all
the annotations available to you and when you should use them. The table below lists the available
annotations and the corresponding property type you can use with each one.

Table 1. Incremental build property type annotations

Annotation Expected property type Description
"@link:{javadocPath}/org/gradl Any "Serializable " type A simple input value
e/api/tasks/Input.html[Input]”

" @link:{javadocPath}/org/gradl "File * A single input file (not
e/api/tasks/InputFile.html[Input directory)

File]”

Annotation Expected property type

" @link:{javadocPath}/org/gradl "File *
e/api/tasks/InputDirectory.html[
InputDirectory]

" @link:{javadocPath}/org/gradl Iterable<File>"*
e/api/tasks/InputFiles.html[Inpu
tFiles]”

"@link:{javadocPath}/org/gradl Iterable<File>"*
e/api/tasks/Classpath.html[Class
path]”

Description

A single input directory (not
file)

An iterable of input files and
directories

An iterable of input files and
directories that represent a Java
classpath. This allows the task
to ignore irrelevant changes to
the property, such as different
names for the same files. It is
similar to annotating the
property
*@PathSensitive(RELATIVE) "
but it will ignore the names of
JAR files directly added to the
classpath, and it will consider
changes in the order of the files
as a change in the classpath.
Gradle will inspect the contents
of jar files on the classpath and
ignore changes that do not
affect the semantics of the
classpath (such as file dates and
entry order). See also
<<#sec:task_input_using_classpa
th_annotations,Using the
classpath annotations>>.
Note: The " @Classpath”
annotation was introduced in
Gradle 3.2. To stay compatible
with earlier Gradle versions,
classpath properties should also
be annotated with

"@InputFiles .

Annotation

*@link:{javadocPath}/org/gradl
e/api/tasks/CompileClasspath.ht
ml[CompileClasspath]"

@link:{javadocPath}/org/gradl
e/api/tasks/OutputFile.html[Out
putFile]"

@link:{javadocPath}/org/gradl
e/api/tasks/OutputDirectory.htm
1[OutputDirectory]”

Expected property type

‘Iterable<File> " *

“File™*

"File™*

Description

An iterable of input files and
directories that represent a Java
compile classpath. This allows
the task to ignore irrelevant
changes that do not affect the
API of the classes in classpath.
See also
<<#tsec:task_input_using_classpa
th_annotations,Using the
classpath annotations>>. The
following kinds of changes to
the classpath will be ignored: *
Changes to the path of jar or top
level directories. * Changes to
timestamps and the order of
entries in Jars. * Changes to
resources and Jar manifests,
including adding or removing
resources. * Changes to private
class elements, such as private
fields, methods and inner
classes. * Changes to code, such
as method bodies, static
initializers and field initializers
(except for constants). *
Changes to debug information,
for example when a change to a
comment affects the line
numbers in class debug
information. * Changes to
directories, including directory
entries in Jars. [NOTE] ==== The
"@CompileClasspath”
annotation was introduced in
Gradle 3.4. To stay compatible
with Gradle 3.3 and 3.2, compile
classpath properties should also
be annotated with

"@Classpath . For compatibility
with Gradle versions before 3.2
the property should also be
annotated with " @InputFiles".

A single output file (not
directory)

A single output directory (not
file)

Annotation

*@link:{javadocPath}/org/gradl
e/api/tasks/OutputFiles.html[Ou
tputFiles]”

" @link:{javadocPath}/org/gradl
e/api/tasks/OutputDirectories.ht
ml[OutputDirectories] "

@link:{javadocPath}/org/gradl
e/api/tasks/Destroys.html[Destr
oys]”

@link:{javadocPath}/org/gradl
e/api/tasks/LocalState.html[Loca
IState]”

Expected property type

*Map<String, File> " +++**+++ or
‘Iterable<File> " +++*+++

*Map<String, File> " +++**+++ or
‘Iterable<File> " +++%+++

“File" or
‘Iterable<File> " +++*+++

“File" or
‘Iterable<File> " +++*+++

" @link:{javadocPath}/org/gradl Any custom type

e/api/tasks/Nested.html[Nested]

"@link:{javadocPath}/org/gradl Any type

e/api/tasks/Console.html[Consol
el’

"@link:{javadocPath}/org/gradl Any type

e/api/tasks/Internal.html[Intern
all”

Description

An iterable of output files (no
directories). The task outputs
can only be
<<build_cache.adoc#sec:task_ou
tput_caching, cached>> if a
"Map " is provided.

An iterable of output directories
(no files). The task outputs can
only be
<<build_cache.adoc#sec:task_ou
tput_caching, cached>> if a
"Map " is provided.

Specifies one or more files that
are removed by this task. Note
that a task can define either
inputs/outputs or destroyables,
but not both.

Specifies one or more files that
represent the
<<custom_tasks.adoc#sec:storin
g_incremental_task_state,local
state of the task>>. These files
are removed when the task is
loaded from cache.

A custom type that may not
implement "Serializable ™ but
does have at least one field or
property marked with one of
the annotations in this table. It
could even be another
"@Nested .

Indicates that the property is
neither an input nor an output.
It simply affects the console
output of the task in some way,
such as increasing or
decreasing the verbosity of the
task.

Indicates that the property is
used internally but is neither an
input nor an output.

Annotation Expected property type

[#skip-when- “File ™ +++%+++
empty] @link:{javadocPath}/or
g/gradle/api/tasks/SkipWhenEm
pty.html[SkipWhenEmpty]"

" @link:{javadocPath}/org/gradl Any type
e/api/tasks/Optional.html[Optio
nal]”

"@link:{javadocPath}/org/gradl "File +++*+++
e/api/tasks/PathSensitive.html[P
athSensitive]

Description

Used with " @InputFiles" or
"@InputDirectory " to tell
Gradle to skip the task if the
corresponding files or directory
are empty, along with all other
input files declared with this
annotation. Tasks that have
been skipped due to all of their
input files that were declared
with this annotation being
empty will result in a distinct
“no source” outcome. For
example, "NO-SOURCE " will be
emitted in the console output.

Used with any of the property
type annotations listed in the
link:{javadocPath}/org/gradle/a
pi/tasks/Optional.html[Optional]
API documentation. This
annotation disables validation
checks on the corresponding
property. See
<<#sec:task_input_output_valid
ation,the section on
validation>> for more details.

[[inputs_path_sensitivity]]Used
with any input file property to
tell Gradle to only consider the
given part of the file paths as
important. For example, if a
property is annotated with

" @PathSensitive(PathSensitivit
y.NAME_ONLY) ', then moving
the files around without
changing their contents will not
make the task out-of-date.

In fact, File can be any type accepted by Project.file(java.lang.Object) and
Iterable<File> can be any type accepted by Project.files(java.lang.Object...),
ProjectLayout.files(java.lang.Object...), or
ProjectLayout.configurableFiles(java.lang.Object...). This includes instances of
Callable, such as closures, allowing for lazy evaluation of the property values. Be
aware that the types FileCollection and FileTree are Iterable<File>s.

NOTE

k%

Similar to the above, File can be any type accepted by
Project.file(java.lang.Object). The Map itself can be wrapped in Callables, such as
closures.

Annotations are inherited from all parent types including implemented interfaces. Property type
annotations override any other property type annotation declared in a parent type. This way an
@InputFile property can be turned into an @InputDirectory property in a child task type.

Annotations on a property declared in a type override similar annotations declared by the
superclass and in any implemented interfaces. Superclass annotations take precedence over
annotations declared in implemented interfaces.

The Console and Internal annotations in the table are special cases as they don’t declare either task
inputs or task outputs. So why use them? It’s so that you can take advantage of the Java Gradle
Plugin Development plugin to help you develop and publish your own plugins. This plugin checks
whether any properties of your custom task classes lack an incremental build annotation. This
protects you from forgetting to add an appropriate annotation during development.

Using the classpath annotations

Besides @InputFiles, for JVM-related tasks Gradle understands the concept of classpath inputs. Both
runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with @InputFiles, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and
jar files on the classpath itself are ignored. Timestamps and the order of class files and resources
inside jar files on a classpath are ignored, too, thus recreating a jar file with different file dates will
not make the task out of date.

Runtime classpaths are marked with @Classpath, and they offer further customization via classpath
normalization.

Input properties annotated with @CompileClasspath are considered Java compile classpaths.
Additionally to the aforementioned general classpath rules, compile classpaths ignore changes to
everything but class files. Gradle uses the same class analysis described in Java compile avoidance
to further filter changes that don’t affect the class' ABIs. This means that changes which only touch
the implementation of classes do not make the task out of date.

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
../javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object...-
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
../javadoc/org/gradle/api/tasks/Console.html
../javadoc/org/gradle/api/tasks/Internal.html
../javadoc/org/gradle/api/tasks/InputFiles.html
../javadoc/org/gradle/api/tasks/Classpath.html
../javadoc/org/gradle/api/tasks/CompileClasspath.html

Nested inputs

When analyzing @Nested task properties for declared input and output sub-properties Gradle uses
the type of the actual value. Hence it can discover all sub-properties declared by a runtime sub-

type.
When adding @Nested to a @Provider, the value of the Provider is treated as a nested input.

When adding @Nested to an iterable, each element is treated as a separate nested input. Each nested
input in the iterable is assigned a name, which by default is the dollar sign followed by the index in
the iterable, e.g. $2. If an element of the iterable implements Named, then the name is used as
property name. The ordering of the elements in the iterable is crucial for for reliable up-to-date
checks and caching if not all of the elements implement Named. Multiple elements which have the
same name are not allowed.

When adding @Nested to a map, then for each value a nested input is added, using the key as name.

The type and classpath of nested inputs is tracked, too. This ensures that changes to the
implementation of a nested input causes the build to be out of date. By this it is also possible to add
user provided code as an input, e.g. by annotating an @Action property with @Nested. Note that any
inputs to such actions should be tracked, either by annotated properties on the action or by
manually registering them with the task.

Using nested inputs allows richer modeling and extensibility for tasks, as e.g. shown by
Test.getfJvmArgumentProviders().

This allows us to model the JaCoCo Java agent, thus declaring the necessary JVM arguments and
providing the inputs and outputs to Gradle:

../javadoc/org/gradle/api/tasks/Nested.html
../javadoc/org/gradle/api/tasks/Nested.html
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/tasks/Nested.html
../javadoc/org/gradle/api/Named.html
../javadoc/org/gradle/api/Named.html
../javadoc/org/gradle/api/tasks/Nested.html
../javadoc/org/gradle/api/Action.html
../javadoc/org/gradle/api/tasks/Nested.html
../dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://github.com/gradle/gradle/blob/7b047c7cbb4932743243a76123f5347be6d07856/subprojects/jacoco/src/main/java/org/gradle/testing/jacoco/plugins/JacocoPluginExtension.java#L138-L157

JacocoAgent.java

class JacocoAgent implements CommandLineArgumentProvider {
private final JacocoTaskExtension jacoco;

public JacocoAgent(JacocoTaskExtension jacoco) {
this.jacoco = jacoco;

}

public JacocoTaskExtension getJacoco() {
return jacoco.isEnabled() ? jacoco : null;

}

public Iterable<String> asArguments() {
return jacoco.isEnabled() ? Immutablelist.of(jacoco.getAsJvmArg()) :
Collections.<String>emptylList();
}
}

test.getJvmArgumentProviders().add(new JacocoAgent(extension));

For this to work, JacocoTaskExtension needs to have the correct input and output annotations.

The approach works for Test JVM arguments, since Test.getJvmArgumentProviders() is an Iterable
annotated with @Nested.

There are other task types where this kind of nested inputs are available:

* JavaExec.getArgumentProviders() - model e.g. custom tools
» JavaExec.getfJvmArgumentProviders() - used for Jacoco Java agent
* CompileOptions.getCompilerArgumentProviders() - model e.g annotation processors

* Exec.getArgumentProviders() - model e.g custom tools

In the same way, this kind of modelling is available to custom tasks.

Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental
build, but you don’t always have that option. That’s why Gradle also provides an alternative API
that can be used with any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for
scenarios just like that. It can also be used for ad-hoc tasks, as you’ll see next.

../dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
../dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
../javadoc/org/gradle/api/tasks/Nested.html
../dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:argumentProviders
../dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:jvmArgumentProviders
../dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
../dsl/org.gradle.api.tasks.Exec.html#org.gradle.api.tasks.Exec:argumentProviders

Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on
every Gradle task:

» Task.getInputs() of type TaskInputs
» Task.getOutputs() of type TaskOutputs
» Task.getDestroyables() of type TaskDestroyables

These objects have methods that allow you to specify files, directories and values which constitute
the task’s inputs and outputs. In fact, the runtime API has almost feature parity with the
annotations. All it lacks is validation of whether declared files are actually files and declared
directories are directories. Nor will it create output directories if they don’t exist. But that’s it.

Let’s take the template processing example from before and see how it would look as an ad-hoc task
that uses the runtime API:

Example: Ad-hoc task

build.gradle

task processTemplatesAdHoc {
inputs.property(“engine", TemplateEngineType.FREEMARKER)
inputs.files(fileTree("src/templates”))
inputs.property("templateData.name", "docs")
inputs.property("templateData.variables", [year: 2013])
outputs.dir("$buildDir/genOutput2")

dolast {
// Process the templates here

}

Output of gradle processTemplatesAdHoc

> gradle processTemplatesAdHoc
> Task :processTemplatesAdHoc

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for
this as it’s a non-trivial implementation that has several configuration options. In this case, there
are no task properties to store the root source folder, the location of the output directory or any of
the other settings. That’s deliberate to highlight the fact that the runtime API doesn’t require the
task to have any state. In terms of incremental build, the above ad-hoc task will behave the same as
the custom task class.

All the input and output definitions are done through the methods on inputs and outputs, such as

../dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
../javadoc/org/gradle/api/tasks/TaskInputs.html
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
../javadoc/org/gradle/api/tasks/TaskOutputs.html
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
../javadoc/org/gradle/api/tasks/TaskDestroyables.html

property(), files(), and dir(). Gradle performs up-to-date checks on the argument values to
determine whether the task needs to run again or not. Each method corresponds to one of the
incremental build annotations, for example inputs.property() maps to @Input and outputs.dir()
maps to @0utputDirectory. The only difference is that the file(), files(), dir() and dirs() methods
don’t validate the type of file object at the given path (file or directory), unlike the annotations.

The files that a task removes can be specified through destroyables.register().

Example: Ad-hoc task declaring a destroyable

build.gradle

task removeTempDir {
destroyables.register("$projectDir/tmpDir")
dolast {
delete("$projectDir/tmpDir")
}

One notable difference between the runtime API and the annotations is the lack of a method that
corresponds directly to @Nested. That’s why the example uses two property() declarations for the
template data, one for each TemplateData property. You should utilize the same technique when
using the runtime API with nested values. Any given task can either declare destroyables or
inputs/outputs, but cannot declare both.

Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task
class that lacks the requisite annotations. For example, imagine that the ProcessTemplates task is
provided by a plugin and that it’s missing the incremental build annotations. In order to make up
for that deficiency, you can use the runtime API:

Example: Using runtime API with custom task type

build.gradle

task processTemplatesRuntime(type: ProcessTemplatesNoAnnotations) {
templateEngine = TemplateEngineType.FREEMARKER
sourceFiles = fileTree("src/templates”)
templateData = new TemplateData("test", [year: 2014])
outputDir = file("$buildDir/genOutput3")

inputs.property("engine", templateEngine)
inputs.files(sourceFiles)

inputs.property("templateData.name", templateData.name)
inputs.property("templateData.variables", templateData.variables)
outputs.dir(outputDir)

Output of gradle processTemplatesRuntime

> gradle processTemplatesRuntime
> Task :processTemplatesRuntime

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Output of gradle processTemplatesRuntime (run again)

> gradle processTemplatesRuntime
> Task :processTemplatesRuntime UP-TO-DATE

BUILD SUCCESSFUL in @s
1 actionable task: 1 up-to-date

As you can see, we can both configure the tasks properties and use those properties as arguments
to the incremental build runtime API. Using the runtime API like this is a little like using dolLast()
and doFirst() to attach extra actions to a task, except in this case we’re attaching information about
inputs and outputs. Note that if the task type is already using the incremental build annotations, the
runtime API will add inputs and outputs rather than replace them.

Fine-grained configuration

The runtime API methods only allow you to declare your inputs and outputs in themselves.
However, the file-oriented ones return a builder - of type TaskinputFilePropertyBuilder - that lets
you provide additional information about those inputs and outputs.

You can learn about all the options provided by the builder in its API documentation, but we’ll
show you a simple example here to give you an idea of what you can do.

Let’s say we don’t want to run the processTemplates task if there are no source files, regardless of
whether it’s a clean build or not. After all, if there are no source files, there’s nothing for the task to
do. The builder allows us to configure this like so:

Example: Using skipWhenEmpty() via the runtime API

../javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

build.gradle

task processTemplatesRuntimeConf(type: ProcessTemplatesNoAnnotations) {
/] ...
sourceFiles = fileTree("src/templates”) {
include "**/* fm"

inputs.files(sourceFiles).skipWhenEmpty()
/] ...

Output of gradle clean processTemplatesRuntimeConf

> gradle clean processTemplatesRuntimeConf
> Task :processTemplatesRuntimeConf NO-SOURCE

BUILD SUCCESSFUL in @s
1 actionable task: 1 up-to-date

The TaskInputs.files() method returns a builder that has a skipWhenEmpty() method. Invoking this
method is equivalent to annotating to the property with @SkipWhenEmpty.

Prior to Gradle 3.0, you had to use the TaskInputs.source() and TaskInputs.sourceDir() methods to
get the same behavior as with skipWhenEmpty(). These methods are now deprecated and should not
be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which
API you should be using. Our recommendation is to use the annotations wherever possible, and it’s
sometimes worth creating a custom task class just so that you can make use of them. The runtime
API is more for situations in which you can’t use the annotations.

Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those
properties. For example, if an input of one task is set to the output of another, that means the first
task depends on the second, right? Gradle knows this and can act upon it.

We’ll look at this feature next and also some other features that come from Gradle knowing things
about inputs and outputs.

Inferred task dependencies

Consider an archive task that packages the output of the processTemplates task. A build author will
see that the archive task obviously requires processTemplates to run first and so may add an explicit
dependsOn. However, if you define the archive task like so:

Example: Inferred task dependency via task outputs

build.gradle

task packageFiles(type: Zip) {
from processTemplates.outputs

}

Output of gradle clean packageFiles

> gradle clean packageFiles
> Task :processTemplates
> Task :packageFiles

BUILD SUCCESSFUL in @s
3 actionable tasks: 2 executed, 1 up-to-date

Gradle will automatically make packageFiles depend on processTemplates. It can do this because it’s
aware that one of the inputs of packageFiles requires the output of the processTemplates task. We
call this an inferred task dependency.

The above example can also be written as

Example: Inferred task dependency via a task argument

build.gradle

task packageFiles2(type: Zip) {
from processTemplates

}

Output of gradle clean packageFiles2

> gradle clean packageFiles2
> Task :processTemplates
> Task :packageFiles2

BUILD SUCCESSFUL in @s
3 actionable tasks: 2 executed, 1 up-to-date

This is because the from() method can accept a task object as an argument. Behind the scenes,
from() uses the project.files() method to wrap the argument, which in turn exposes the task’s
formal outputs as a file collection. In other words, it’s a special case!

Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic
validation on the annotated properties. In particular, it does the following for each property before
the task executes:

* @InputFile - verifies that the property has a value and that the path corresponds to a file (not a
directory) that exists.

» @InputDirectory - same as for @InputFile, except the path must correspond to a directory.

* @OutputDirectory - verifies that the path doesn’t match a file and also creates the directory if it
doesn’t already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to
inputs and outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may
validly not exist. That’s why Gradle provides the @0ptional annotation: you use it to tell Gradle that
a particular input is optional and therefore the build should not fail if the corresponding file or
directory doesn’t exist.

Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what
files a task depends on, it can automatically run a task again if any of its inputs change. By
activating continuous build when you run Gradle - through the --continuous or -t options - you will
put Gradle into a state in which it continually checks for changes and executes the requested tasks
when it encounters such changes.

You can find out more about this feature in Continuous build.

Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make
decisions about how to run tasks when the "--parallel” option is used. For instance, Gradle will
inspect the outputs of tasks when selecting the next task to run and will avoid concurrent
execution of tasks that write to the same output directory. Similarly, Gradle will use the
information about what files a task destroys (e.g. specified by the Destroys annotation) and avoid
running a task that removes a set of files while another task is running that consumes or creates
those same files (and vice versa). It can also determine that a task that creates a set of files has
already run and that a task that consumes those files has yet to run and will avoid running a task
that removes those files in between. By providing task input and output information in this way,
Gradle can infer creation/consumption/destruction relationships between tasks and can ensure that
task execution does not violate those relationships.

How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot
contains the paths of input files and a hash of the contents of each file. Gradle then executes the
task. If the task completes successfully, Gradle takes a snapshot of the outputs. This snapshot

contains the set of output files and a hash of the contents of each file. Gradle persists both
snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and
outputs. If the new snapshots are the same as the previous snapshots, Gradle assumes that the
outputs are up to date and skips the task. If they are not the same, Gradle executes the task. Gradle
persists both snapshots for the next time the task is executed.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions,
or its dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When
comparing the snapshot of such a property, even a change in the order of the files will result in the
task becoming out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last
time it was executed are ignored and will NOT cause the task to be out of date. This is so unrelated
tasks may share an output directory without interfering with each other. If this is not the behaviour
you want for some reason, consider using TaskOutputs.upToDateWhen(groovy.lang.Closure)

The inputs for the task are also used to calculate the build cache key used to load task outputs when
enabled. For more details see Task output caching.

Advanced techniques

Everything you’ve seen so far in this section will cover most of the use cases you’ll encounter, but
there are some scenarios that need special treatment. We’ll present a few of those next with the
appropriate solutions.

Adding your own cached input/output methods

Have you ever wondered how the from() method of the Copy task works? It’s not annotated with
@InputFiles and yet any files passed to it are treated as formal inputs of the task. What’s
happening?

The implementation is quite simple and you can use the same technique for your own tasks to
improve their APIs. Write your methods so that they add files directly to the appropriate annotated
property. As an example, here’s how to add a sources() method to the custom ProcessTemplates class
we introduced earlier:

Example: Declaring a method to add task inputs

../javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

ProcessTemplates.java

public class ProcessTemplates extends DefaultTask {
/] ...
private FileCollection sourceFiles = getProject().getlLayout().files();

(PathSensitivity.NONE)
public FileCollection getSourceFiles() {
return this.sourceFiles;

}

public void sources(FileCollection sourceFiles) {
this.sourceFiles = this.sourceFiles.plus(sourceFiles);

}
/] ...
}
build.gradle

task processTemplates(type: ProcessTemplates) {
templateEngine = TemplateEngineType.FREEMARKER
templateData = new TemplateData("test", [year: 2012])
outputDir = file("$buildDir/genOutput")

sources fileTree("src/templates")

Output of gradle processTemplates

> gradle processTemplates
> Task :processTemplates

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

In other words, as long as you add values and files to formal task inputs and outputs during the
configuration phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use
the project.layout.files() method like so:

Example: Declaring a method to add a task as an input

ProcessTemplates.java

/] ...
public void sources(Task inputTask) {
this.sourceFiles = this.sourceFiles.plus(getProject().getlLayout().files
(inputTask));

}
/] ...

build.gradle

task copyTemplates(type: Copy) {
into "$buildDir/tmp"
from "src/templates”

}

task processTemplates2(type: ProcessTemplates) {
/] ...
sources copyTemplates

Output of gradle processTemplates?

> gradle processTemplates2
> Task :copyTemplates
> Task :processTemplates?

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

This technique can make your custom task easier to use and result in cleaner build files. As an
added benefit, our use of getProject().getlLayout().files() means that our custom method can set
up an inferred task dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs,
like this example, consider using the built-in SourceTask. It will save you having to implement some
of the plumbing that we put into ProcessTemplates.

Linking an @0utputDirectory to an @InputFiles

When you want to link the output of one task to the input of another, the types often match and a
simple property assignment will provide that link. For example, a File output property can be
assigned to a File input.

Unfortunately, this approach breaks down when you want the files in a task’s @0utputDirectory (of
type File) to become the source for another task’s @InputFiles property (of type FileCollection).
Since the two have different types, property assignment won’t work.

../dsl/org.gradle.api.tasks.SourceTask.html

As an example, imagine you want to use the output of a Java compilation task - via the
destinationDir property - as the input of a custom task that instruments a set of files containing
Java bytecode. This custom task, which we’ll call Instrument, has a classFiles property annotated
with @InputFiles. You might initially try to configure the task like so:

Example: Failed attempt at setting up an inferred task dependency

build.gradle
apply plugin: "java"

task badInstrumentClasses(type: Instrument) {
classFiles = fileTree(compileJava.destinationDir)
destinationDir = file("$buildDir/instrumented")

Output of gradle clean badInstrumentClasses

> gradle clean badInstrumentClasses
> Task :clean UP-TO-DATE
> Task :badInstrumentClasses NO-SOURCE

BUILD SUCCESSFUL 1in @s
1 actionable task: 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the
compilation task is missing. In this case you would need to add an explicit task dependency
between instrumentClasses and compileJava via dependsOn. The use of fileTree() means that Gradle
can’t infer the task dependency itself.

One solution is to use the TaskOutputs.files property, as demonstrated by the following example:

Example: Setting up an inferred task dependency between output dir and input files

build.gradle

task instrumentClasses(type: Instrument) {
classFiles = compilelava.outputs.files
destinationDir = file("$buildDir/instrumented")

Output of gradle clean instrumentClasses

> gradle clean instrumentClasses
> Task :clean UP-TO-DATE

> Task :compilelava

> Task :instrument(Classes

BUILD SUCCESSFUL in 0s
3 actionable tasks: 2 executed, 1 up-to-date

Alternatively, you can get Gradle to access the appropriate property itself by using one of
project.files(), project.layout.files() or project.layout.configurableFiles() in place of
project.fileTree():

Example: Setting up an inferred task dependency with filesFor()

build.gradle

task instrumentClasses2(type: Instrument) {
classFiles = layout.files(compilelava)
destinationDir = file("$buildDir/instrumented")

Output of gradle clean instrumentClasses2

> gradle clean instrumentClasses2
> Task :clean UP-TO-DATE

> Task :compilelava

> Task :instrument(Classes?

BUILD SUCCESSFUL in @s
3 actionable tasks: 2 executed, 1 up-to-date

Remember that files(), layout.files() and 1layout.configurableFiles() can take tasks as
arguments, whereas fileTree() cannot.

The downside of this approach is that all file outputs of the source task become the input files of the
target - instrumentClasses in this case. That’s fine as long as the source task only has a single file-
based output, like the JavaCompile task. But if you have to link just one output property among
several, then you need to explicitly tell Gradle which task generates the input files using the builtBy
method:

Example: Setting up an inferred task dependency with builtBy()

build.gradle

task instrumentClassesBuiltBy(type: Instrument) {
classFiles = fileTree(compileJava.destinationDir) {
builtBy compilelava

}
destinationDir = file("$buildDir/instrumented")

Output of gradle clean instrumentClassesBuiltBy

> gradle clean instrumentClassesBuiltBy
> Task :clean UP-TO-DATE

> Task :compilelava

> Task :instrumentClassesBuiltBy

BUILD SUCCESSFUL in @s
3 actionable tasks: 2 executed, 1 up-to-date

You can of course just add an explicit task dependency via dependsOn, but the above approach
provides more semantic meaning, explaining why compileJava has to run beforehand.

Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task
output is something else entirely? Perhaps it’s an update to a web service or a database table.
Gradle has no way of knowing how to check whether the task is up to date in such cases.

That’s where the upToDateWhen() method on TaskOutputs comes in. This takes a predicate function
that is used to determine whether a task is up to date or not. One use case is to disable up-to-date
checks completely for a task, like so:

Example: Ignoring up-to-date checks

build.gradle

task alwaysInstrumentClasses(type: Instrument) {
classFiles = layout.files(compilelava)
destinationDir = file("$buildDir/instrumented")
outputs.upToDateWhen { false }

Output of gradle clean alwaysInstrumentClasses

> gradle clean alwaysInstrumentClasses
> Task :compilelava
> Task :alwaysInstrument(Classes

BUILD SUCCESSFUL in @s
3 actionable tasks: 2 executed, 1 up-to-date

Output of gradle alwaysInstrument(Classes

> gradle alwaysInstrumentClasses
> Task :compileJava UP-TO-DATE
> Task :alwaysInstrument(Classes

BUILD SUCCESSFUL in @s
2 actionable tasks: 1 executed, 1 up-to-date

The { false } closure ensures that copyResources will always perform the copy, irrespective of
whether there is no change in the inputs or outputs.

You can of course put more complex logic into the closure. You could check whether a particular
record in a database table exists or has changed for example. Just be aware that up-to-date checks
should save you time. Don’t add checks that cost as much or more time than the standard execution
of the task. In fact, if a task ends up running frequently anyway, because it’s rarely up to date, then
it may not be worth having an up-to-date check at all. Remember that your checks will always run
if the task is in the execution task graph.

One common mistake is to use upToDateWhen() instead of Task.onlyIf(). If you want to skip a task on
the basis of some condition unrelated to the task inputs and outputs, then you should use onlyIf().
For example, in cases where you want to skip a task when a particular property is set or not set.

Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties
have the same value. In order to do so, Gradle first normalizes both inputs and then compares the
result. For example, for a compile classpath, Gradle extracts the ABI signature from the classes on
the classpath and then compares signatures between the last Gradle run and the current Gradle run
as described in Java compile avoidance.

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs
annotated with @Classpath are considered to be runtime classpaths.

Let’s say you want to add a file build-info.properties to all your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the CI
job that published the artifact. This file is only for auditing purposes, and has no effect on the
outcome of running tests. Nonetheless, this file is part of the runtime classpath for the test task and

../javadoc/org/gradle/api/tasks/Classpath.html

changes on every build invocation. Therefore, the test would be never up-to-date or pulled from
the build cache. In order to benefit from incremental builds again, you are able tell Gradle to ignore
this file on the runtime classpath at the project level by using
Project.normalization(org.gradle.api.Action):

Example: Runtime classpath normalization

build.gradle

normalization {
runtimeClasspath {
ignore 'build-info.properties’

}

The effect of this configuration would be that changes to build-info.properties would be ignored
for up-to-date checks and build cache key calculations. Note that this will not change the runtime
behavior of the test task - i.e. any test is still able to load build-info.properties and the runtime
classpath is still the same as before.

Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older
versions of Gradle need to be removed to ensure that the newest version of the tasks are starting
from a known clean state.

Automatic clean-up of stale output directories has only been implemented for the

NOTE o
output of source sets (Java/Groovy/Scala compilation).

Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value
range of parameters. A very nice and expressive way to provide such tasks are task rules:

Example: Task rule

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->
if (taskName.startsWith("ping")) {
task(taskName) {
dolLast {
println "Pinging:

+ (taskName - 'ping")
}

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

Output of gradle -q pingServer1

> gradle -q pingServer1
Pinging: Server1

The String parameter is used as a description for the rule, which is shown with gradle tasks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

Example: Dependency on rule based tasks

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->
if (taskName.startsWith("ping")) {
task(taskName) {
dolLast {
println "Pinging:

+ (taskName - 'ping')
+

}

task groupPing {
dependsOn pingServer1, pingServer?

}

Output of gradle -q groupPing
> gradle -q groupPing

Pinging: Server1
Pinging: Server2

If you run “gradle -q tasks” you won’t find a task named “pingServer1” or “pingServer2”, but this
script is executing logic based on the request to run those tasks.

Finalizer tasks

Finalizers tasks are an incubating feature (see more about the Gradle feature

NOTE
lifecycle).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to
run.

Example: Adding a task finalizer

build.gradle

task taskX {
dolLast {
println 'taskX'

}
}
task taskY {
dolLast {
println 'taskY'
}
}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Example: Task finalizer for a failing task

build.gradle

task taskX {
dolast {
println 'taskX'
throw new RuntimeException()

}
}
task taskY {
dolLast {
println 'taskY'
}
}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/build.gradle’ line: 4

* What went wrong:
Execution failed for task ':taskX'.
> java.lang.RuntimeException (no error message)

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug option
to get more log output. Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in @s

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for
example if it is considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up
regardless of the build failing or succeeding. An example of such a resource is a web container that
is started before an integration test task and which should be always shut down, even if some of the
tests fail.

To specify a finalizer task you use the Task.finalizedBy(java.lang.Object...) method. This method
accepts a task instance, a task name, or any other input accepted by
Task.dependsOn(java.lang.Object...).

Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task
actions. Lifecycle tasks can represent several concepts:

* a work-flow step (e.g., run all checks with check)

* a buildable thing (e.g., create a debug 32-bit executable for native components with
debug32MainExecutable)

* a convenience task to execute many of the same logical tasks (e.g., run all compilation tasks with
compileAll)

Many Gradle plug-ins define their own lifecycle tasks to make it convenient to do specific things.
When developing your own plugins, you should consider using your own lifecycle tasks or hooking
into some of the tasks already provided by Gradle. See the Java plugin tasks for an example.

../dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
../dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Unless a lifecycle task has actions, its outcome is determined by its dependencies. If any of the task’s
dependencies are executed, the lifecycle task will be considered executed. If all of the task’s
dependencies are up-to-date, skipped or from cache, the lifecycle task will be considered up-to-date.

Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant
target and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle
combines these notions into a single entity. Simple Gradle tasks are like Ant’s targets, but enhanced
Gradle tasks also include aspects of Ant tasks. All of Gradle’s tasks share a common API and you can
create dependencies between them. These tasks are much easier to configure than an Ant task.
They make full use of the type system, and are more expressive and easier to maintain.

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily
hidden by this. On the other hand you need relevant information for figuring out if things have
gone wrong. Gradle defines 6 log levels, as shown in Log levels. There are two Gradle-specific log
levels, in addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The
latter is the default, and is used to report build progress.

Log levels

ERROR

Error messages

QUIET

Important information messages

WARNING

Warning messages

LIFECYCLE

Progress information messages

INFO

Information messages

DEBUG

Debug messages

The rich components of the console (build status and work in progress area) are
NOTE displayed regardless of the log level used. Before Gradle 4.0 those rich components
were only displayed at log level LIFECYCLE or below.

Choosing a log level

You can use the command line switches shown in Log level command-line options to choose
different log levels. You can also configure the log level using gradle.properties, see Gradle
properties. In Stacktrace command-line options you find the command line switches which affect
stacktrace logging.

Table 2. Log level command-line options
Option Outputs Log Levels

no logging options LIFECYCLE and higher

-qor --quiet QUIET and higher

-W Or --warn WARN and higher

-i or --info INFO and higher

-d or --debug DEBUG and higher (that is, all log messages)

Stacktrace command-line options

-s or --stacktrace

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full
stacktraces are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet
they usually do not contain relevant information for what has gone wrong in your code.) This
option renders stacktraces for deprecation warnings.

-Sor --full-stacktrace

The full stacktraces are printed out. This option renders stacktraces for deprecation warnings.

<No stacktrace options>

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in
case of internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated
stacktraces are always printed.

Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle
redirects anything written to standard output to its logging system at the QUIET log level.

Example: Using stdout to write log messages

build.gradle

println "A message which is logged at QUIET level'

Gradle also provides a logger property to a build script, which is an instance of Logger. This
interface extends the SLF4] Logger interface and adds a few Gradle specific methods to it. Below is
an example of how this is used in the build script:

../javadoc/org/gradle/api/logging/Logger.html

Example: Writing your own log messages

build.gradle

logger.quiet('An info log message which is always logged.')
logger.error('An error log message.')

logger.warn('A warning log message.')

logger.lifecycle('A lifecycle info log message.')
logger.info('An info log message.')

logger.debug('A debug log message.')

logger.trace('A trace log message.')

Use the typical SLF4] pattern to replace a placeholder with an actual value as part of the log
message.

Example: Writing a log message with placeholder

build.gradle

logger.info('A {} log message', 'info')

You can also hook into Gradle’s logging system from within other classes used in the build (classes
from the buildSrc directory for example). Simply use an SLF4] logger. You can use this logger the
same way as you use the provided logger in the build script.

Example: Using SLF4]J to write log messages

build.gradle

import org.s1f4j.Logger
import org.s1f4j.LoggerFactory

Logger slf4jLogger = LoggerFactory.getlLogger('some-logger')
s1f4jLogger.info('An info log message logged using SLF4j")

Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their
logging output into the Gradle logging system. There is a 1:1 mapping from the Ant/Ivy log levels to
the Gradle log levels, except the Ant/Ivy TRACE log level, which is mapped to Gradle DEBUG log level.
This means the default Gradle log level will not show any Ant/Ivy output unless it is an error or a
warning.

There are many tools out there which still use standard output for logging. By default, Gradle
redirects standard output to the QUIET log level and standard error to the ERROR level. This behavior
is configurable. The project object provides a LoggingManager, which allows you to change the log
levels that standard out or error are redirected to when your build script is evaluated.

https://www.slf4j.org/manual.html#typical_usage
../javadoc/org/gradle/api/logging/LoggingManager.html

Example: Configuring standard output capture

build.gradle

logging.captureStandardOutput Loglevel.INFO
println "A message which is logged at INFO level'

To change the log level for standard out or error during task execution, tasks also provide a
LoggingManager.

Example: Configuring standard output capture for a task

build.gradle

task logInfo {
logging.captureStandardOutput Loglevel.INFO
doFirst {
println 'A task message which is logged at INFO level'

}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j
logging toolkits. Any log messages which your build classes write using these logging toolkits will be
redirected to Gradle’s logging system.

Changing what Gradle logs

You can replace much of Gradle’s logging UI with your own. You might do this, for example, if you
want to customize the Ul in some way - to log more or less information, or to change the formatting.
You replace the logging using the Gradle.useLogger(java.lang.Object) method. This is accessible
from a build script, or an init script, or via the embedding API. Note that this completely disables
Gradle’s default output. Below is an example init script which changes how task execution and
build completion is logged.

Example: Customizing what Gradle logs

../javadoc/org/gradle/api/logging/LoggingManager.html
../dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

init.gradle
useLogger (new CustomEventLogger())
class CustomEventLogger extends BuildAdapter implements TaskExecutionListener {

public void beforeExecute(Task task) {
println "[$task.name]"

}

public void afterExecute(Task task, TaskState state) {
println()
}

public void buildFinished(BuildResult result) {
println 'build completed'
if (result.failure !'= null) {
result.failure.printStackTrace()

}

Output of gradle -I init.gradle build
> gradle -I init.gradle build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger,
only the logging for the interfaces that it implements is replaced. Logging for the other interfaces is

left untouched. You can find out more about the listener interfaces in Build lifecycle events.

* BuildListener

* ProjectEvaluationListener

* TaskExecutionGraphListener
» TaskExecutionListener

* TaskActionListener

Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

Language plugins

These plugins add support for various languages which can be compiled for and executed in the
JVM.

Plugin Automatically Description

Id applies
java java-base Adds Java compilation, testing and bundling capabilities to a project. It
serves as the basis for many of the other Gradle plugins. See also this
tutorial on Java projects.
groovy java, groovy- Adds support for building Groovy projects. See also this tutorial for
base Groovy projects.

scala java, scala-base Adds support for building Scala projects.

antlr java Adds support for generating parsers using Antlr.

Incubating language plugins

These plugins add support for various languages:

Plugin Id Automatically Description
applies

assembler - Adds native assembly language capabilities to a project.

c - Adds C source compilation capabilities to a project.

cpp - Adds C++ source compilation capabilities to a project.

objective-c - Adds Objective-C source compilation capabilities to a
project.

objective-cpp - Adds Objective-C++ source compilation capabilities to a
project.

windows- - Adds support for including Windows resources in native

resources

binaries.

../javadoc/org/gradle/BuildListener.html
../javadoc/org/gradle/api/ProjectEvaluationListener.html
../javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
../javadoc/org/gradle/api/execution/TaskExecutionListener.html
../javadoc/org/gradle/api/execution/TaskActionListener.html
http://www.antlr.org/

Integration plugins

These plugins provide some integration with various runtime technologies.

Plugin
Id

applicat
ion

ear

ivy-
publish

maven-
publish

maven

0sgi

war

Automatica Works with Description

Ily applies

java, - Adds tasks for running and bundling a Java project as

distribution a command-line application.

- java Adds support for building J2EE applications.

- application, Provides a new DSL to support publishing artifacts to
distribution, java, Ivy repositories, which improves on the existing DSL.
war

- application, Provides a new DSL to support publishing artifacts to
distribution, java, Maven repositories, which improves on the existing
WEL DSL.

- java, war Adds support for publishing artifacts to Maven

repositories using the original publishing mechanism
available in Gradle 1.0. See also Legacy Publishing.

java-base java Adds support for building 0SGi bundles.
java - Adds support for assembling web application WAR
files.

Incubating integration plugins

These plugins provide some integration with various runtime technologies.

Plugin Id Automatically Description

applies
distribution - Adds support for building ZIP and TAR distributions.
java-library- java, distribution Adds support for building ZIP and TAR distributions for
distribution

a Java library.

Software development plugins

These plugins provide help with your software development process.

Plugin Id

announce

build-
announcem
ts

Automatical Works Description
ly applies with
- - Publish messages to your favourite platforms, such as
Twitter or Growl.
announce - Sends local announcements to your desktop about
en

interesting events in the build lifecycle.

announce_plugin.pdf#announce_plugin
build_announcements_plugin.pdf#build_announcements_plugin
build_announcements_plugin.pdf#build_announcements_plugin
build_announcements_plugin.pdf#build_announcements_plugin

Plugin Id

checkstyle

codenarc

eclipse

eclipse-wtp

findbugs

idea

jdepend

pmd

project-

report

signing

Automatical Works

ly applies

java-base

groovy-base

java-base

java-base
java-base
reporting-
base

base

with

java,groovy
,scala

ear, war

java

Description

Performs quality checks on your project’s Java source files
using Checkstyle and generates reports from these checks.

Performs quality checks on your project’s Groovy source
files using CodeNarc and generates reports from these
checks.

Generates files that are used by Eclipse IDE, thus making it
possible to import the project into Eclipse. See also this
tutorial for Java projects.

Does the same as the eclipse plugin plus generates eclipse
WTP (Web Tools Platform) configuration files. After
importing to eclipse your war/ear projects should be
configured to work with WTP. See also this tutorial for
Java projects.

Performs quality checks on your project’s Java source files
using FindBugs and generates reports from these checks.

Generates files that are used by Intellij IDEA IDE, thus
making it possible to import the project into IDEA.

Performs quality checks on your project’s source files
using JDepend and generates reports from these checks.

Performs quality checks on your project’s Java source files
using PMD and generates reports from these checks.

Generates reports containing useful information about
your Gradle build.

Adds the ability to digitally sign built files and artifacts.

Incubating software development plugins

These plugins provide help with your software development process.

Table 3. Software development plugins

Plugin Id

build-
dashboard

cunit

jacoco

visual-
studio

Automatical Works with Description

ly applies

reporting-
base

reporting-
base

java

native
language
plugins

Generates build dashboard report.

Adds support for running CUnit tests.

Provides integration with the JaCoCo code coverage
library for Java.

Adds integration with Visual Studio.

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net
project_report_plugin.pdf#project_report_plugin
project_report_plugin.pdf#project_report_plugin
build_dashboard_plugin.pdf#build_dashboard_plugin
build_dashboard_plugin.pdf#build_dashboard_plugin
http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/

Plugin Id Automatical Works with Description

ly applies
java- java Assists with development of Gradle plugins by providing
g{ﬁg}ﬁ_ standard plugin build configuration and validation.

Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are
available for you to use in your build files, and are listed here for completeness. However, be aware
that they are not yet considered part of Gradle’s public API. As such, these plugins are not
documented in the user guide. You might refer to their API documentation to learn more about
them.

Plugin Id Description

base Adds the standard lifecycle tasks and configures reasonable defaults for the archive
tasks. See Base Plugin.

java-base Adds the source sets concept to the project. Does not add any particular source sets.
groovy-base Adds the Groovy source sets concept to the project.
scala-base = Adds the Scala source sets concept to the project.

reporting- Adds some shared convention properties to the project, relating to report
base generation.

Third party plugins

You can find a list of external plugins at the Gradle Plugins site.

Testing Build Logic with TestKit

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At this time, it is focused on functional testing. That is, testing build logic by exercising it
as part of a programmatically executed build. Over time, the TestKit will likely expand to facilitate
other kinds of tests.

Usage

To use the TestKit, include the following in your plugin’s build:

Example: Declaring the TestKit dependency

build.gradle

dependencies {
testCompile gradleTestKit()
+

http://plugins.gradle.org/

The gradleTestKit() encompasses the classes of the TestKit, as well as the Gradle Tooling API client.
It does not include a version of JUnit, TestNG, or any other test execution framework. Such a
dependency must be explicitly declared.

Example: Declaring the JUnit dependency

build.gradle

dependencies {
testCompile 'junit:junit:4.12'
¥

Functional testing with the Gradle runner
The GradleRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the
“logic under test”. The build can then be executed, potentially in a variety of ways (e.g. different
combinations of tasks and arguments). The correctness of the logic can then be verified by asserting
the following, potentially in combination:

* The build’s output;
* The build’s logging (i.e. console output);
» The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
GradleRunner.build() or GradleRunner.buildAndFail() methods depending on the anticipated
outcome.

The following demonstrates the usage of Gradle runner in a Java JUnit test:

Example: Using GradleRunner with JUnit

BuildLogicFunctionalTest.java

import org.gradle.testkit.runner.BuildResult;
import org.gradle.testkit.runner.GradleRunner;
import org.junit.Before;

import org.junit.Rule;

import org.junit.Test;

import org.junit.rules.TemporaryFolder;

import java.io.BufferedWriter;
import java.io.File;

import java.io.FileWriter;
import java.io.IOException;
import java.util.Collections;

import static org.junit.Assert.assertEquals;

http://junit.org
http://testng.org
../javadoc/org/gradle/testkit/runner/GradleRunner.html
../javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
../javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

import static org.junit.Assert.assertTrue;
import static org.gradle.testkit.runner.TaskOutcome.*;

public class BuildlLogicFunctionalTest {

public final TemporaryFolder testProjectDir = new TemporaryFolder();
private File buildFile;

public void setup() throws IOException {
buildFile = testProjectDir.newFile("build.gradle");
}

public void testHelloWorldTask() throws IOException {
String buildFileContent = "task helloWorld {" +
" dolLast {" +
! println 'Hello world!'" +
n }ll +
h
writeFile(buildFile, buildFileContent);

BuildResult result = GradleRunner.create()
.withProjectDir(testProjectDir.getRoot())
.withArguments("helloWor1ld")

.build();

assertTrue(result.getOutput().contains("Hello world!"));
assertEquals(SUCCESS, result.task(":helloWor1ld").getOutcome());
}

private void writeFile(File destination, String content) throws IOException {
BufferedWriter output = null;
try {
output = new BufferedWriter(new FileWriter(destination));
output.write(content);
} finally {
if (output != null) {
output.close();
}

Any test execution framework can be used.

As Gradle build scripts are written in the Groovy programming language, and as many plugins are
implemented in Groovy, it is often a productive choice to write Gradle functional tests in Groovy.
Furthermore, it is recommended to use the (Groovy based) Spock test execution framework as it
offers many compelling features over the use of JUnit.

https://code.google.com/p/spock/

The following demonstrates the usage of Gradle runner in a Groovy Spock test:

Example: Using GradleRunner with Spock

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

import static org.gradle.testkit.runner.TaskOutcome.*
import org.junit.Rule

import org.junit.rules.TemporaryFolder

import spock.lang.Specification

class BuildLogicFunctionalTest extends Specification {
final TemporaryFolder testProjectDir = new TemporaryFolder()
File buildFile

def setup() {
buildFile = testProjectDir.newFile('build.gradle")
}

def "hello world task prints hello world"() {
given:
buildFile << """
task helloWorld {
dolast {
println 'Hello world!’
}
}

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir.root)
.withArguments('helloWorld")
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWorld").outcome == SUCCESS

It is a common practice to implement any custom build logic (like plugins and task types) that is
more complex in nature as external classes in a standalone project. The main driver behind this
approach is bundle the compiled code into a JAR file, publish it to a binary repository and reuse it
across various projects.

Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds

are executed in a separate process (i.e. not the same process executing the tests). Therefore, the test
build does not share the same classpath or classloaders as the test process and the code under test
is not implicitly available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test
into the test build.

For earlier versions of Gradle (before 2.13), it is possible to manually make the code under test
available via some extra configuration. The following example demonstrates having the build
generate a file containing the implementation classpath of the code under test, and making it
available at test runtime.

Example: Making the code under test classpath available to the tests

build.gradle

// Write the plugin's classpath to a file to share with the tests
task createClasspathManifest {
def outputDir = file("$buildDir/$name")

inputs.files sourceSets.main.runtimeClasspath
outputs.dir outputDir

dolast {
outputDir.mkdirs()
file("foutputDir/plugin-classpath.txt").text = sourceSets.main
.runtimeClasspath.join("\n")
}
¥

// Add the classpath file to the test runtime classpath
dependencies {
testRuntime files(createClasspathManifest)

}
The code for this example can be found at
NOTE samples/testKit/gradleRunner/manualClasspathInjection in the ‘“all’ distribution of
Gradle.

The tests can then read this value, and inject the classpath into the test build by using the method
GradleRunner.withPluginClasspath(java.lang.Iterable). This classpath is then available to use to
locate plugins in a test build via the plugins DSL (see Plugins). Applying plugins with the plugins
DSL requires the definition of a plugin identifier. The following is an example (in Groovy) of doing
this from within a Spock Framework setup() method, which is analogous to a JUnit @Before method.

Example: Injecting the code under test classes into test builds

../javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy
List<File> pluginClasspath

def setup() {
buildFile = testProjectDir.newFile('build.gradle")

def pluginClasspathResource = getClass().classLoader.findResource("plugin-
classpath.txt")
if (pluginClasspathResource == null) {
throw new I1legalStateException("Did not find plugin classpath resource,
run ‘testClasses' build task.")

}
pluginClasspath = pluginClasspathResource.readlines().collect { new File(it) }
}
def "hello world task prints hello world"() {
given:
buildFile << """
plugins {
id 'org.gradle.sample.helloworld’
}
when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir.root)
.withArguments('helloWorld")
.withPluginClasspath(pluginClasspath)
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWorld").outcome == SUCCESS

}
The code for this example can be found at
NOTE samples/testKit/gradleRunner/manualClasspathInjection in the ‘“all’ distribution of
Gradle.

This approach works well when executing the functional tests as part of the Gradle build. When
executing the functional tests from an IDE, there are extra considerations. Namely, the classpath
manifest file points to the class files etc. generated by Gradle and not the IDE. This means that after
making a change to the source of the code under test, the source must be recompiled by Gradle.
Similarly, if the effective classpath of the code under test changes, the manifest must be
regenerated. In either case, executing the testClasses task of the build will ensure that things are
up to date.

Some IDEs provide a convenience option to delegate the "test classpath generation and execution”
to the build. In Intelli] you can find this option under Preferences... > Build, Execution, Deployment
> Build Tools > Gradle > Runner > Delegate IDE build/run actions to gradle. Please consult the
documentation of your IDE for more information.

Working with Gradle versions prior to 2.8

The GradleRunner.withPluginClasspath(java.lang.Iterable) method will not work when executing
the build with a Gradle version earlier than 2.8 (see The version used to test), as this feature is not
supported on such Gradle versions.

Instead, the code must be injected via the build script itself. The following sample demonstrates
how this can be done.

Example: Injecting the code under test classes into test builds for Gradle versions prior to 2.8

../javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy
List<File> pluginClasspath

def setup() {
buildFile = testProjectDir.newFile('build.gradle")

def pluginClasspathResource = getClass().classLoader.findResource("plugin-
classpath.txt")
if (pluginClasspathResource == null) {
throw new I1legalStateException("Did not find plugin classpath resource,
run ‘testClasses' build task.")

}

pluginClasspath = pluginClasspathResource.readlines().collect { new File(it) }
}

def "hello world task prints hello world with pre Gradle 2.8"() {
given:
def classpathString = pluginClasspath
.collect { it.absolutePath.replace('\\"', "\\\\') } // escape backslashes
in Windows paths
.collect { "'$it"" }
Jjoin(", ")

buildFile << """
buildscript {
dependencies {
classpath files($classpathString)
}

}
apply plugin: "org.gradle.sample.helloworld"

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir.root)
.withArqguments('helloWorld")
.withGradleVersion("2.7")
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWorld").outcome == SUCCESS

The code for this example can be found at
NOTE samples/testKit/gradleRunner/manualClasspathInjection in the ‘“all’ distribution of
Gradle.

Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle
plugins. Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit.
When applied to a project, the plugin automatically adds the gradleTestKit() dependency to the test
compile configuration. Furthermore, it automatically generates the classpath for the code under
test and injects it via GradleRunner.withPluginClasspath() for any GradleRunner instance created by
the user. It’s important to note that the mechanism currently only works if the plugin under test is
applied using the plugins DSL. If the target Gradle version is prior to 2.8, automatic plugin classpath
injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the
classpath:

* Source set containing code under test: sourceSets.main

* Source set used for injecting the plugin classpath: sourceSets.test

Any of these conventions can be reconfigured with the help of the
classGradlePluginDevelopmentExtension.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath
by using the standard conventions applied by the Java Gradle Plugin Development plugin.

Example: Using the Java Gradle Development plugin for generating the plugin metadata

build.gradle

apply plugin: 'groovy'
apply plugin: 'java-gradle-plugin’

dependencies {
testCompile('org.spockframework:spock-core:1.1-groovy-2.4") {
exclude module: 'groovy-all'

}

The code for this example can be found at
NOTE samples/testKit/gradleRunner/automaticClasspathInjectionQuickstart in the ‘all’
distribution of Gradle.

Example: Automatically injecting the code under test classes into test builds

../javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
../javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

def "hello world task prints hello world"() {
given:
buildFile << """
plugins {
id 'org.gradle.sample.helloworld’
}

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir.root)
.withArquments("helloWorld")
.withPluginClasspath()
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWor1ld").outcome == SUCCESS

The code for this example can be found at
NOTE samples/testKit/gradleRunner/automaticClasspathInjectionQuickstart in the “all’
distribution of Gradle.

The following build script demonstrates how to reconfigure the conventions provided by the Java
Gradle Plugin Development plugin for a project that uses a custom Test source set.

Example: Reconfiguring the classpath generation conventions of the Java Gradle
Development plugin

build.gradle

apply plugin: 'groovy'
apply plugin: 'java-gradle-plugin’

sourceSets {
functionalTest {

groovy {
srcDir file('src/functionalTest/groovy')

}
resources {
srcDir file('src/functionalTest/resources')

}

compileClasspath += sourceSets.main.output + configurations.testRuntime
runtimeClasspath += output + compileClasspath

}

task functionalTest(type: Test) {
testClassesDirs = sourceSets.functionalTest.output.classesDirs
classpath = sourceSets.functionalTest.runtimeClasspath

}

check.dependsOn functionalTest

gradlePlugin {
testSourceSets sourceSets.functionalTest

}

dependencies {
functionalTestCompile('org.spockframework:spock-core:1.1-groovy-2.4") {
exclude module: 'groovy-all'

}

The code for this example can be found at
NOTE samples/testKit/gradleRunner/automaticClasspathInjectionCustomTestSourceSet in
the ‘“-all’ distribution of Gradle.

Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working
directory” in a directory inside the JVM’s temp directory (i.e. the location specified by the
java.io.tmpdir system property, typically /tmp). Any configuration in the default Gradle user home
directory (e.g. ~/.gradle/gradle.properties) is not used for test execution. The TestKit does not
expose a mechanism for fine grained control of environment variables etc. Future versions of the
TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not
depend on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the GradleRunner
class was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as
is the case when using the gradleTestKit() dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the test task of a
plugin project), the same distribution used to execute the tests will be used by the runner. When
using the runner as part of tests being executed by an IDE, the same distribution of Gradle that was
used when importing the project will be used. This means that the plugin will effectively be tested
with the same version of Gradle that it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the
following GradleRunner methods:

* GradleRunner.withGradleVersion(java.lang.String)
* GradleRunner.withGradlelnstallation(java.io.File)

* GradleRunner.withGradleDistribution(java.net.URI)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Example: Specifying a Gradle version for test execution

../javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
../javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
../javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

import static org.gradle.testkit.runner.TaskOutcome.*
import org.junit.Rule

import org.junit.rules.TemporaryFolder

import spock.lang.Specification

import spock.lang.Unroll

class BuildLogicFunctionalTest extends Specification {
final TemporaryFolder testProjectDir = new TemporaryFolder()
File buildFile

def setup() {
buildFile = testProjectDir.newFile('build.gradle")

}

def "can execute hello world task with Gradle version #gradleVersion"() {
given:
buildFile << """
task helloWorld {
dolLast {
logger.quiet 'Hello world!'
}
}

nmmn

when:

def result = GradleRunner.create()
.withGradleVersion(gradleVersion)
.withProjectDir(testProjectDir.root)
.withArqguments('helloWorld")
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWor1d").outcome == SUCCESS

where:
gradleVersion << ['2.6"', '2.7']

Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some
runner features are not supported on earlier versions. In such cases, the runner will throw an
exception when attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Table 4. Gradle version compatibility

Feature Minimum Description

Version
Inspecting executed 2.5 Inspecting the executed tasks, using BuildResult.getTasks()
tasks and similar methods.
Plugin classpath 2.8 Injecting the code under test
injection viaGradleRunner.withPluginClasspath(java.lang.Iterable).
Inspecting build output 2.9 Inspecting the build’s text output when run in debug mode,
in debug mode using BuildResult.getOutput().
Automatic plugin 2.13 Injecting the code under test automatically via
classpath injection GradleRunner.withPluginClasspath() by applying the Java

Gradle Plugin Development plugin.

Debugging build logic

The runner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, executing
your tests in debug mode does not allow you to debug your build logic as you may expect. Any
breakpoints set in your IDE will be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

» Setting “org.gradle.testkit.debug” system property to true for the JVM using the GradleRunner
(i.e. not the build being executed with the runner);

 Calling the GradleRunner.withDebug(boolean) method.
The system property approach can be used when it is desirable to enable debugging support

without making an adhoc change to the runner configuration. Most IDEs offer the capability to set
JVM system properties for test execution, and such a feature can be used to set this system property.

Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the --build-cache argument to GradleRunner
or use one of the other methods described in Enable the build cache. You can then check for the
task outcome TaskOutcome.FROM_CACHE when your plugin’s custom task is cached. This outcome
is only valid for Gradle 3.5 and newer.

Example: Testing cacheable tasks

../javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
../javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
../javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
../javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
../javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-
../javadoc/org/gradle/testkit/runner/GradleRunner.html
../javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE

BuildLogicFunctionalTest.groovy

def "cacheableTask is loaded from cache"() {
given:
buildFile << """
plugins {
id 'org.gradle.sample.helloworld’
}

when:

def result = runner()
.withArguments('--build-cache', 'cacheableTask')
.build()

then:
result.task(":cacheableTask").outcome == SUCCESS

when:
new File(testProjectDir.root, 'build').deleteDir()
result = runner()
.withArguments('--build-cache', 'cacheableTask')
.build()

then:
result.task(":cacheableTask").outcome == FROM_CACHE

Note that TestKit re-uses a Gradle user home between tests (see
GradleRunner.withTestKitDir(java.io.File)) which contains the default location for the local build
cache. For testing with the build cache, the build cache directory should be cleaned between tests.
The easiest way to accomplish this is to configure the local build cache to use a temporary directory.

Example: Clean build cache between tests

../javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

BuildLogicFunctionalTest.groovy

final TemporaryFolder testProjectDir = new TemporaryFolder()
File buildFile
File localBuildCacheDirectory

def setup() {
localBuildCacheDirectory = testProjectDir.newFolder('local-cache')
testProjectDir.newFile('settings.gradle') << """
buildCache {
local A
directory '${localBuildCacheDirectory.toURI()}'

}
}

nnn

buildFile = testProjectDir.newFile('build.gradle")

Using Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful
features, like the ability to compile Java code, are added by plugins. Plugins add new tasks (e.g.
JavaCompile), domain objects (e.g. SourceSet), conventions (e.g. Java source is located at
src/main/java) as well as extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding
plugins.

What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things
such as:
* Extend the Gradle model (e.g. add new DSL elements that can be configured)

* Configure the project according to conventions (e.g. add new tasks or configure sensible
defaults)

 Apply specific configuration (e.g. add organizational repositories or enforce standards)
By applying plugins, rather than adding logic to the project build script, we can reap a number of
benefits. Applying plugins:

* Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects

* Allows a higher degree of modularization, enhancing comprehensibility and organization

* Encapsulates imperative logic and allows build scripts to be as declarative as possible

../dsl/org.gradle.api.tasks.compile.JavaCompile.html
../dsl/org.gradle.api.tasks.SourceSet.html

Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins
are additional build scripts that further configure the build and usually implement a declarative
approach to manipulating the build. They are typically used within a build although they can be
externalized and accessed from a remote location. Binary plugins are classes that implement the
Plugin interface and adopt a programmatic approach to manipulating the build. Binary plugins can
reside within a build script, within the project hierarchy or externally in a plugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code
becomes more valuable, it’s migrated to a binary plugin that can be easily tested and shared
between multiple projects or organizations.

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to
resolve the plugin, and then it needs to apply the plugin to the target, usually a Project.

Resolving a plugin means finding the correct version of the jar which contains a given plugin and
adding it the script classpath. Once a plugin is resolved, its API can be used in a build script. Script
plugins are self-resolving in that they are resolved from the specific file path or URL provided when
applying them. Core binary plugins provided as part of the Gradle distribution are automatically
resolved.

Applying a plugin means actually executing the plugin’s Plugin.apply(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin
multiple times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the
current project. Since this is such a common use case, it’s recommended that build authors use the
plugins DSL to both resolve and apply plugins in one step. The feature is technically still incubating,
but it works well, and should be used by most users.

Script plugins

Example: Applying a script plugin

build.gradle

apply from: 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or
at a remote location. Filesystem locations are relative to the project directory, while remote script
locations are specified with an HTTP URL. Multiple script plugins (of either form) can be applied to
a given target.

Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core

../javadoc/org/gradle/api/Plugin.html
../dsl/org.gradle.api.Project.html
../javadoc/org/gradle/api/Plugin.html#apply-T-

Gradle plugins are special in that they provide short names, such as 'java' for the core JavaPlugin.
All other binary plugins must use the fully qualified form of the plugin id (e.g. com.github.foo.bar),
although some legacy plugins may still utilize a short, unqualified form. Where you put the plugin
id depends on whether you are using the plugins DSL or the buildscript block.

Locations of binary plugins

A plugin is simply any class that implements the Plugin interface. Gradle provides the core plugins
(e.g. JavaPlugin) as part of its distribution which means they are automatically resolved. However,
non-core binary plugins need to be resolved before they can be applied. This can be achieved in a
number of ways:

Including the plugin from the plugin portal or a custom repository using the plugins DSL (see
Applying plugins using the plugins DSL).

* Including the plugin from an external jar defined as a buildscript dependency (see see Applying
plugins using the buildscript block).

* Defining the plugin as a source file under the buildSrc directory in the project (see Using
buildSrc to extract functional logic).

Defining the plugin as an inline class declaration inside a build script.

For more on defining your own plugins, see Custom Plugins.
Applying plugins with the plugins DSL

The plugins DSL is currently incubating. Please be aware that the DSL and other

NOTE
configuration may change in later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It
works with the Gradle plugin portal to provide easy access to both core and community plugins.
The plugins DSL block configures an instance of PluginDependenciesSpec.

To apply a core plugin, the short name can be used:

Example: Applying a core plugin
build.gradle
plugins {

id 'java'

}

To apply a community plugin from the portal, the fully qualified plugin id must be used:

Example: Applying a community plugin

../javadoc/org/gradle/api/plugins/JavaPlugin.html
../javadoc/org/gradle/api/Plugin.html
http://plugins.gradle.org
../javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

build.gradle

plugins {
id 'com.jfrog.bintray' version '0.4.1'

}

See PluginDependenciesSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins
DSL is processed in a way which allows Gradle to determine the plugins in use very early and very
quickly. This allows Gradle to do smart things such as:

* Optimize the loading and reuse of plugin classes.
» Allow different plugins to use different versions of dependencies.

* Provide editors detailed information about the potential properties and values in the buildscript
for editing assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before
executing the rest of the build script. It also requires that the definition of plugins to use be
somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” apply()
method mechanism. There are also some constraints, some of which are temporary limitations
while the mechanism is still being developed and some are inherent to the new approach.

Constrained Syntax

The new plugins {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at
any time).

The form is:

plugins {
id «plugin id» version «plugin version» [apply «false»]

}

Where «plugin version» and «plugin id>» must be constant, literal, strings and the apply statement
with a boolean can be used to disable the default behavior of applying the plugin immediately (e.g.
you want to apply it only in subprojects). No other statements are allowed; their presence will
cause a compilation error.

The plugins {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

../javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

Can only be used in build scripts

The plugins {} block can currently only be used in a project’s build script. It cannot be used in
script plugins, the settings.gradle file or init scripts.

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins
using the buildscript {} block.

Applying plugins to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the
subprojects in your build, but not to the root or master project. The default behavior of the plugins
{} block is to immediately resolve and apply the plugins. But, you can use the apply false syntax to
tell Gradle not to apply the plugin to the current project and then use apply plugin: «plugin id>» in
the subprojects block:

Example: Applying plugins only on certain subprojects.

settings.gradle

include "helloA'
include 'helloB'’
include 'goodbyeC'

build.gradle

plugins {
id "org.gradle.sample.hello" version "1.0.0" apply false
id "org.gradle.sample.goodbye" version "1.0.0" apply false
¥

subprojects { subproject ->
if (subproject.name.startsWith("hello")) {
apply plugin: 'org.gradle.sample.hello’

}

if (subproject.name.startsWith("goodbye")) {
apply plugin: 'org.gradle.sample.goodbye'’

}

If you then run gradle hello you’ll see that only the helloA and helloB subprojects had the hello
plugin applied.

gradle/subprojects/docs/src/samples/plugins/multiproject $> gradle hello
Parallel execution is an incubating feature.

:helloA:hello

:helloB:hello

Hello!

Hello!

BUILD SUCCEEDED

Applying plugins from the buildSrc directory

You can apply plugins that reside in a project’s buildSrc directory as long as they have a defined ID.
The following example shows how to tie a plugin implementation class — my.MyPlugin — defined in
buildSrc to the ID "my-plugin”:

Example 1. Defining a buildSrc plugin with an ID

buildSrc/build.gradle

plugins {

id 'java'

id 'java-gradle-plugin'
}

gradlePlugin {
plugins {
myPlugins {
id = 'my-plugin’
implementationClass = "my.MyPlugin'

}

dependencies {
compileOnly gradleApi()
}

The plugin can then be applied by ID as normal:

Example 2. Applying a plugin from buildSrc

build.gradle
plugins {

id 'my-plugin’
}

Plugin Management

The pluginManagement {} DSL is currently incubating. Please be aware that the DSL

NOTE
and other configuration may change in later Gradle versions.

The pluginManagement {} block may only appear in either the settings.gradle file, where it must be
the first block in the file, or in an Initialization Script.

Example: Configuring pluginManagement per-project and globally

settings.gradle

pluginManagement {
resolutionStrategy {

}
repositories {
}
+
init.gradle

settingsEvaluated { settings ->
settings.pluginManagement {
resolutionStrategy {
}

repositories {

}

Custom Plugin Repositories

By default, the plugins {} DSL resolves plugins from the public Gradle Plugin Portal. Many build
authors would also like to resolve plugins from private Maven or Ivy repositories because the
plugins contain proprietary implementation details, or just to have more control over what plugins
are available to their builds.

https://plugins.gradle.org

To specify custom plugin repositories, use the repositories {} block inside pluginManagement {}:

Example: Using plugins from custom plugin repositories.

settings.gradle

pluginManagement {
repositories {
maven {
url "maven-repo’

}
gradlePluginPortal()

ivy {
url "ivy-repo’

}

This tells Gradle to first look in the Maven repository at maven-repo when resolving plugins and then
to check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don’t
want the Gradle Plugin Portal to be searched, omit the gradlePluginPortal() line. Finally, the Ivy
repository at ivy-repo will be checked.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in plugins {} blocks, e.g.
changing the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resolutionStrategy {} inside the pluginManagement {} block:

Example: Plugin resolution strategy.

settings.gradle

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == 'org.gradle.sample') {
useModule('org.gradle.sample:sample-plugins:1.0.0")

}
}
}
repositories {
maven {
url 'maven-repo’
}
gradlePluginPortal()
ivy {
url "ivy-repo’
}
}

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in
default mapping from plugin ID to Maven/Ivy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in addition to the
artifacts which actually implement the plugin. For more information on publishing plugins to
custom repositories read Gradle Plugin Development Plugin.

See PluginManagementSpec for complete documentation for using the pluginManagement {} block.

Plugin Marker Artifacts

Since the plugins {} DSL block only allows for declaring plugins by their globally unique plugin id
and version properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact. To do so, Gradle will look for a Plugin Marker Artifact with the coordinates
plugin.id:plugin.id.gradle.plugin:plugin.version. This marker needs to have a dependency on the
actual plugin implementation. Publishing these markers is automated by the java-gradle-plugin.

For example, the following complete sample from the sample-plugins project shows how to publish
aorg.gradle.sample.hello plugin and a org.gradle.sample.goodbye plugin to both an Ivy and Maven
repository using the combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-
publish plugin.

Example: Complete Plugin Publishing Sample

../javadoc/org/gradle/plugin/management/PluginManagementSpec.html

build.gradle

plugins {
id 'java-gradle-plugin’
id 'maven-publish’
id "ivy-publish'

}

group 'org.gradle.sample’
version '1.0.0'

gradlePlugin {
plugins {
hello {
id = "org.gradle.sample.hello"
implementationClass = "org.gradle.sample.hello.HelloPlugin®
}
goodbye {
id = "org.gradle.sample.goodbye"
implementationClass = "org.gradle.sample.goodbye.GoodbyePlugin"
}
}
¥

publishing {
repositories {

maven {
url "../consuming/maven-repo"”
}
ivy {
url "../consuming/ivy-repo"
}

}
}

Running gradle publishin the sample directory causes the following repo layouts to exist:

/ ../maven-repo \

groupld org.gradle.sample.hello groupld org.gradle. sample

artifactld org.gradle.sample.hello.gradle. plugin artifactld sample-plugins

version 1.0.0 7 version 1.0.0

groupld org.gradle.sample.goodbye _ e i

artifactld org.gradle.sample.goodbye.gradie.plugin [,\;mple plugins 1'0'0ﬁ

version 1.0.0
\ g /
/ .[ivy-repo \

org org.gradle.sample.hello org org.gradle.sample

module org.gradle.sample.hello.gradle.plugin module sample-plugins

rev 1.0.0 rev 1.0.0

7

org org.gradle. sample goodbye o e :

medule org.gradle.sample.goodbye.gradie.plugin sample-plugins-1.0.0.jar

rev 1.0.0

- d /

Legacy Plugin Application

With the introduction of the plugins DSL, users should have little reason to use the legacy method
of applying plugins. It is documented here in case a build author cannot use the plugins DSL due to
restrictions in how it currently works.

Applying Binary Plugins
Example: Applying a binary plugin
build.gradle

apply plugin: 'java'
Plugins can be applied using a plugin id. In the above case, we are using the short name ‘java’ to
apply the JavaPlugin.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the
plugin:
Example: Applying a binary plugin by type

build.gradle

apply plugin: JavaPlugin

The JavaPlugin symbol in the above sample refers to the JavaPlugin. This class does not strictly need
to be imported as the org.gradle.api.plugins package is automatically imported in all build scripts
(see Default imports). Furthermore, it is not necessary to append .class to identify a class literal in
Groovy as it is in Java.

../javadoc/org/gradle/api/plugins/JavaPlugin.html
../javadoc/org/gradle/api/plugins/JavaPlugin.html

Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding
the plugin to the build script classpath and then applying the plugin. External jars can be added to
the build script classpath using the buildscript {} block as described in External dependencies for
the build script.

Example: Applying a plugin with the buildscript block

build.gradle

buildscript {
repositories {
jeenter()

}
dependencies {
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:0.4.1"
}
}

apply plugin: "com.jfrog.bintray"

Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of
capabilities. The Gradle plugin portal provides an interface for searching and exploring community
plugins.

More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Custom Plugins.

Working With Files

Almost every Gradle build interacts with files in some way: think source files, file dependencies,
reports and so on. That’s why Gradle comes with a comprehensive API that makes it simple to
perform the file operations you need.

The API has two parts to it:

» Specifying which files and directories to process
» Specifying what to do with them
The File paths in depth section covers the first of these in detail, while subsequent sections, like File

copying in depth, cover the second. To begin with, we’ll show you examples of the most common
scenarios that users encounter.

https://plugins.gradle.org

Copying a single file

You copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the
location of the file and where you want to put it. This example mimics copying a generated report
into a directory that will be packed into an archive, such as a ZIP or TAR:

Example: How to copy a single file

build.gradle

task copyReport(type: Copy) {
from file("${buildDir}/reports/my-report.pdf")
into file("${buildDir}/toArchive")

The Project.file(java.lang.Object) method is used to create a file or directory path relative to the
current project and is a common way to make build scripts work regardless of the project path. The
file and directory paths are then wused to specify what file to copy using
Copy.from(java.lang.Object...) and which directory to copy it to using Copy.into(java.lang.Object).

You can even use the path directly without the file() method, as explained early in the section File
copying in depth:

Example: Using implicit string paths

build.gradle

task copyReport2(type: Copy) {
from "${buildDir}/reports/my-report.pdf"
into "${buildDir}/toArchive"

Although hard-coded paths make for simple examples, they also make the build brittle. It’s better to
use a reliable, single source of truth, such as a task or shared project property. In the following
modified example, we use a report task defined elsewhere that has the report’s location stored in
its outputFile property:

Example: Prefer task/project properties over hard-coded paths

build.gradle

task copyReport3(type: Copy) {
from myReportTask.outputFile
into archiveReportsTask.dirToArchive

We have also assumed that the reports will be archived by archiveReportsTask, which provides us
with the directory that will be archived and hence where we want to put the copies of the reports.

../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
../dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
../dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments
to from():

Example: Using multiple arguments with from()

build.gradle

task copyReportsForArchiving(type: Copy) {
from "${buildDir}/reports/my-report.pdf", "src/docs/manual.pdf"
into "${buildDir}/toArchive"

Two files are now copied into the archive directory. You can also use multiple from() statements to
do the same thing, as shown in the first example of the section File copying in depth.

Now consider another example: what if you want to copy all the PDFs in a directory without having
to specify each one? To do this, attach inclusion and/or exclusion patterns to the copy specification.
Here we use a string pattern to include PDFs only:

Example: Using a flat filter

build.gradle

task copyPdfReportsForArchiving(type: Copy) {
from "${buildDir}/reports"
include "*.pdf"
into "${buildDir}/toArchive"

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside
directly in the reports directory are copied:

With *. pdf filter
build/reports ' > build/toArchive

— metrics L my-report.pdf

|—scatterPIot.pdf
— numbers.csv
— my-report.pdf

Figure 8. The effect of a flat filter on copying

You can include files in subdirectories by using an Ant-style glob pattern (**/*), as done in this
updated example:

Example: Using a deep filter

build.gradle
task copyAllPdfReportsForArchiving(type: Copy) {
from "${buildDir}/reports"

include "**/*. pdf"
into "${buildDir}/toArchive"

This task has the following effect:

With *x/x . pdf filter

build/reports - > build/toArchive
metrics metrics
L scatterPlot.pdf L scatterPlot.pdf
numbers.csv my-report.pdf

my-report.pdf

Figure 9. The effect of a deep filter on copying

One thing to bear in mind is that a deep filter like this has the side effect of copying the directory
structure below reports as well as the files. If you just want to copy the files without the directory
structure, you need to use an explicit fileTree(dir) { includes }.files expression. We talk more
about the difference between file trees and file collections in the File trees section.

This is just one of the variations in behavior you’re likely to come across when dealing with file
operations in Gradle builds. Fortunately, Gradle provides elegant solutions to almost all those use
cases. Read the in-depth sections later in the chapter for more detail on how the file operations
work in Gradle and what options you have for configuring them.

Copying directory hierarchies

You may have a need to copy not just files, but the directory structure they reside in as well. This is
the default behavior when you specify a directory as the from() argument, as demonstrated by the
following example that copies everything in the reports directory, including all its subdirectories, to
the destination:

Example: Copying an entire directory

build.gradle
task copyReportsDirForArchiving(type: Copy) {

from "${buildDir}/reports"
into "${buildDir}/toArchive"

The key aspect that users struggle with is controlling how much of the directory structure goes to

the destination. In the above example, do you get a toArchive/reports directory or does everything
in reports go straight into toArchive? The answer is the latter. If a directory is part of the from()
path, then it won’t appear in the destination.

So how do you ensure that reports itself is copied across, but not any other directory in $buildDir?
The answer is to add it as an include pattern:

Example: Copying an entire directory, including itself

build.gradle

task copyReportsDirForArchiving2(type: Copy) {
from("${buildDir}") {
include "reports/**"

}
into "${buildDir}/toArchive"

You’ll get the same behavior as before except with one extra level of directory in the destination, i.e.
toArchive/reports.

One thing to note is how the include() directive applies only to the from(), whereas the directive in
the previous section applied to the whole task. These different levels of granularity in the copy
specification allow you to easily handle most requirements that you will come across. You can learn
more about this in the section on child specifications.

Creating archives (zip, tar, etc.)

From the perspective of Gradle, packing files into an archive is effectively a copy in which the
destination is the archive file rather than a directory on the file system. This means that creating
archives looks a lot like copying, with all of the same features!

The simplest case involves archiving the entire contents of a directory, which this example
demonstrates by creating a ZIP of the toArchive directory:

Example: Archiving a directory as a ZIP

build.gradle

task packageDistribution(type: Zip) {
archiveName = "my-distribution.zip"
destinationDir = file("${buildDir}/dist")

from "${buildDir}/toArchive"

Notice how we specify the destination and name of the archive instead of an into(): both are
required. You often won’t see them explicitly set, because most projects apply the Base Plugin. It
provides some conventional values for those properties. The next example demonstrates this and

you can learn more about the conventions in the archive naming section.

Each type of archive has its own task type, the most common ones being Zip, Tar and Jar. They all
share most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified subdirectories of the
archive. For example, let’s say you want to package all PDFs into a docs directory in the root of the
archive. This docs directory doesn’t exist in the source location, so you have to create it as part of
the archive. You do this by adding an into() declaration for just the PDFs:

Example: Using the Base Plugin for its archive name convention

build.gradle

plugins {
id 'base'

}

version = "1.0.0"

task packageDistribution(type: Zip) {
from("${buildDir}/toArchive") {
exclude "**/* pdf"
}

from("${buildDir}/toArchive") {
include "**/* pdf"
into "docs"

As you can see, you can have multiple from() declarations in a copy specification, each with its own
configuration. See Using child copy specifications for more information on this feature.

Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files
from that file system onto the local file system — or even into another archive. Gradle enables this
by providing some wrapper functions that make archives available as hierarchical collections of
files (file trees).

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object), which produce a FileTree from a corresponding archive file. That
file tree can then be used in a from() specification, like so:

Example: Unpacking a ZIP file

../dsl/org.gradle.api.tasks.bundling.Zip.html
../dsl/org.gradle.api.tasks.bundling.Tar.html
../dsl/org.gradle.api.tasks.bundling.Jar.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
../javadoc/org/gradle/api/file/FileTree.html

build.gradle

task unpackFiles(type: Copy) {
from zipTree("src/resources/thirdPartyResources.zip")
into "${buildDir}/resources"

As with a normal copy, you can control which files are unpacked via filters and even rename files
as they are unpacked.

If you're a Java developer and are wondering why there is no jarTree() method, that’s because
zipTree() works perfectly well for JARs, WARs and EARs.

Creating "uber"” or "fat" JARs

In the Java space, applications and their dependencies typically used to be packaged as separate
JARs within a single distribution archive. That still happens, but there is another approach that is
now common: placing the classes and resources of the dependencies directly into the application
JAR, creating what is known as an uber or fat JAR.

Gradle makes this approach easy to accomplish. Consider the aim: to copy the contents of other JAR
files into the application JAR. All you need for this is the Project.zipTree(java.lang.Object) method
and the Jar task, as demonstrated by the uberJar task in the following example:

Example: Creating a Java uber or fat JAR

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
../dsl/org.gradle.api.tasks.bundling.Jar.html

build.gradle

plugins {
id 'java'

}
version = '1.0.0'

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-i0:2.6'

}

task uberJar(type: Jar) {
appendix = 'uber'

from sourceSets.main.output

from configurations.runtimeClasspath.
findA1l { it.name.endsWith('jar") }.
collect { zipTree(it) }

In this case, we’re taking the runtime dependencies of the project —
configurations.runtimeClasspath.files — and wrapping each of the JAR files with the zipTree()
method. The result is a collection of ZIP file trees, the contents of which are copied into the uber JAR
alongside the application classes.

Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle
automatically manages this aspect of tasks when they explicitly define file and directory outputs.
You can learn about this feature in the incremental build section of the user guide. All core Gradle
tasks ensure that any output directories they need are created if necessary using this mechanism.

In cases where you need to create a directory manuallyy, you can wuse the
Project.mkdir(java.lang.Object) method from within your build scripts or custom task
implementations. Here’s a simple example that creates a single images directory in the project
folder:

Example: Manually creating a directory

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)

build.gradle

task ensureDirectory {
dolLast {
mkdir "images"

}

As described in the Apache Ant manual, the mkdir task will automatically create all necessary
directories in the given path and will do nothing if the directory already exists.

Moving files and directories

Gradle has no API for moving files and directories around, but you can use the Apache Ant
integration to easily do that, as shown in this example:

Example: Moving a directory using the Ant task

build.gradle

task moveReports {
dolast {
ant.move file: "${buildDir}/reports"”,
todir: "${buildDir}/toArchive"

This is not a common requirement and should be used sparingly as you lose information and can
easily break a build. It’s generally preferable to copy directories and files instead.

Renaming files on copy

The files used and generated by your builds sometimes don’t have names that suit, in which case
you want to rename those files as you copy them. Gradle allows you to do this as part of a copy
specification using the rename() configuration.

The following example removes the "-staging-" marker from the names of any files that have it:

Example: Renaming files as they are copied

build.gradle
task copyFromStaging(type: Copy) {
from "src/main/webapp”

into "${buildDir}/explodedWar"

rename '(.+)-staging(.+)', '$1$2'

https://ant.apache.org/manual/Tasks/mkdir.html

You can use regular expressions for this, as in the above example, or closures that use more
complex logic to determine the target filename. For example, the following task truncates
filenames:

Example: Truncating filenames as they are copied

build.gradle

task copyWithTruncate(type: Copy) {
from "${buildDir}/reports"
rename { String filename ->
if (filename.size() > 10) {
return filename[0..7] +

mn
~

+ filename.size()

}

else return filename

}
into "${buildDir}/toArchive"

As with filtering, you can also apply renaming to a subset of files by configuring it as part of a child
specification on a from().

Deleting files and directories

You can easily delete files and directories using either the Delete task or the
Project.delete(org.gradle.api.Action) method. In both cases, you specify which files and directories
to delete in a way supported by the Project.files(java.lang.Object...),
ProjectLayout.files(java.lang.Object...), and ProjectLayout.configurableFiles(java.lang.Object...)
methods.

For example, the following task deletes the entire contents of a build’s output directory:

Example: Deleting a directory

build.gradle

task myClean(type: Delete) {
delete buildDir

}

If you want more control over which files are deleted, you can’t use inclusions and exclusions in
the same way as for copying files. Instead, you have to use the builtin filtering mechanisms of
FileCollection and FileTree. The following example does just that to clear out temporary files from
a source directory:

Example: Deleting files matching a specific pattern

../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
../javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object...-

build.gradle

task cleanTempFiles(type: Delete) {
delete fileTree("src").matching {
include "**/*. tmp"

}

You’ll learn more about file collections and file trees in the next section.

File paths in depth

In order to perform some action on a file, you need to know where it is, and that’s the information
provided by file paths. Gradle builds on the standard Java File class, which represents the location
of a single file, and provides new APIs for dealing with collections of paths. This section shows you
how to use the Gradle APIs to specify file paths for use in tasks and file operations.

But first, an important note on using hard-coded file paths in your builds.

On hard-coded file paths

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to
understand, but it’s not good practice for real builds. The problem is that paths often change and
the more places you need to change them, the more likely you are to miss one and break the build.

Where possible, you should use tasks, task properties, and project properties — in that order of
preference — to configure file paths. For example, if you were to create a task that packages the
compiled classes of a Java application, you should aim for something like this:

Example: How to minimize the number of hard-coded paths in your build

build.gradle

ext {
archivesDirPath = "${buildDir}/archives"
}

task packageClasses(type: Zip) {
appendix = "classes"
destinationDir = file(archivesDirPath)

from compilelava

See how we’re using the compileJava task as the source of the files to package and we’ve created a
project property archivesDirPath to store the location where we put archives, on the basis we’re
likely to use it elsewhere in the build.

Using a task directly as an argument like this relies on it having defined outputs, so it won’t always

https://docs.oracle.com/javase/7/docs/api/java/io/File.html

be possible. In addition, this example could be improved further by relying on the Java plugin’s
convention for destinationDir rather than overriding it, but it does demonstrate the use of project
properties.

Single files and directories

Gradle provides the Project.file(java.lang.Object) method for specifying the location of a single file
or directory. Relative paths are resolved relative to the project directory, while absolute paths
remain unchanged.

Never use new File(relative path), as this creates a path relative to the current

CAUTION
working directory, which could be anywhere.

Here are some examples of using the file() method with different types of argument:

Example: Locating files

build.gradle

// Using a relative path
File configFile = file('src/config.xml")

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(new File('src/config.xml"))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get('src', 'config.xml'))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty('user.home')).resolve('global-
config.xml'))

As you can see, you can pass strings, File instances and Path instances to the file() method, all of
which result in an absolute File object. You can find other options for argument types in the
reference guide, linked in the previous paragraph.

What happens in the case of multi-project builds? The file() method will always turn relative
paths into paths that are relative to the current project directory, which may be a child project. If
you want to use a path that’s relative to the root project directory, then you need to use the special
Project.getRootDir() property to construct an absolute path, like so:

Example: Creating a path relative to a parent project

build.gradle

File configFile = file("${rootDir}/shared/config.xml")

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir

Let’s say you’re working on a multi-project build in a dev/projects/AcmeHealth directory. You use the
above example in the build of the library you're fixing — at
AcmeHealth/subprojects/AcmePatientRecordLib/build.gradle. The file path will resolve to the
absolute version of dev/projects/AcmeHealth/shared/config.xml.

The file() method can be used to configure any task that has a property of type File. Many tasks,
though, work on multiple files, so we look at how to specify sets of files next.

File collections

A file collection is simply a set of file paths that’s represented by the FileCollection interface. Any file
paths. It’s important to understand that the file paths don’t have to be related in any way, so they
don’t have to be in the same directory or even have a shared parent directory. You will also find
that many parts of the Gradle API use FileCollection, such as the copying API discussed later in this
chapter and dependency configurations.

The recommended way to specify a collection of files is to use the
link:../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
[ProjectLayout.files(java.lang.Object...) method, which returns a FileCollection instance. This
method is very flexible and allows you to pass multiple strings, File instances, collections of strings,
collections of Files, and more. You can even pass in tasks as arguments if they have defined
outputs. Learn about all the supported argument types in the reference guide.

As with the Project.file(java.lang.Object) method covered in the previous section, all relative paths
are evaluated relative to the current project directory. The following example demonstrates some
of the variety of argument types you can use — strings, File instances, a list and a Path:

Example: Creating a file collection

build.gradle

FileCollection collection = layout.files('src/filel.txt",
new File('src/file2.txt'),
['src/file3.csv', 'src/filed.csv'],
Paths.get('src', 'file5.txt"))

File collections have some important attributes in Gradle. They can be:

* created lazily
* iterated over
« filtered
» combined
Lazy creation of a file collection is useful when you need to evaluate the files that make up a

collection at the time a build runs. In the following example, we query the file system to find out
what files exist in a particular directory and then make those into a file collection:

../javadoc/org/gradle/api/file/FileCollection.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html

Example: Implementing a file collection

build.gradle

task list {
dolast {
File srcDir

// Create a file collection using a closure
collection = layout.files { srcDir.listFiles() }

sreDir = file('src')
println "Contents of $srcDir.name"
collection.collect { relativePath(it) }.sort().each { println it }

sreDir = file('src2")
println "Contents of $srcDir.name"
collection.collect { relativePath(it) }.sort().each { println it }

Output of gradle -q list

> gradle -q list
Contents of src
src/dir
src/filel.txt
Contents of src2
src2/dir1
src2/dir2

The key to lazy creation is passing a closure to the files() method. Your closure simply needs to
return a value of a type accepted by files(), such as List<File>, String, FileCollection, etc.

Iterating over a file collection can be done through the each() method on the collection or using the
collection in a for loop. In both approaches, the file collection is treated as a set of File instances,
i.e. your iteration variable will be of type File.

The following example demonstrates such iteration as well as how you can convert file collections
to other types using the as operator or supported properties:

Example: Using a file collection

build.gradle

// Iterate over the files in the collection
collection.each { File file ->
println file.name

}

// Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = collection.asPath

File file = collection.singleFile

File file2 = collection as File

// Add and subtract collections
def union = collection + layout.files('src/file2.txt")
def difference = collection - layout.files('src/file2.txt")

You can also see at the end of the example how to combine file collections using the + and -
operators to merge and subtract them. An important feature of the resulting file collections is that
they are live. In other words, when you combine file collections in this way, the result always
reflects what’s currently in the source file collections, even if they change during the build.

For example, imagine collection in the above example gains an extra file or two after union is
created. As long as you use union after those files are added to collection, union will also contain
those additional files. The same goes for the different file collection.

Live collections are also important when it comes to filtering. If you want to use a subset of a file
collection, you can take advantage of the FileCollection.filter(org.gradle.api.specs.Spec) method to
determine which files to "keep". In the following example, we create a new collection that consists
of only the files that end with .txt in the source collection:

Example: Filtering a file collection

build.gradle

FileCollection textFiles = collection.filter { File f ->
f.name.endsWith(".txt")

Output of gradle -q filterTextFiles

> gradle -q filterTextFiles
src/filel.txt
src/file2.txt
src/fileb.txt

If collection changes at any time, either by adding or removing files from itself, then textFiles will

../javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-

immediately reflect the change because it is also a live collection. Note that the closure you pass to
filter() takes a File as an argument and should return a boolean.

File trees

A file tree is a file collection that retains the directory structure of the files it contains and has the
type FileTree. This means that all the paths in a file tree must have a shared parent directory. The
following diagram highlights the distinction between file trees and file collections in the common
case of copying files:

File collection

src/resources/img/logo.png Copy src/resources,/** build/resources
src/resources/img/banner.jpg - > logo.png
src/resources/data.txt tobuild/resources/ banner.jpg
data.txt
File tree
src/resources build/resources
img Copy src/resources/** img
i: logo.png : i > |: logo.png
banner.jpg to build/resources/ banner.jpg
data.txt data.txt

Figure 10. The differences in how file trees and file collections behave when copying files

Although FileTree extends FileCollection (an is-a relationship), their behaviors do
differ. In other words, you can use a file tree wherever a file collection is required,

NOTE but remember: a file collection is a flat list/set of files, while a file tree is a file and
directory hierarchy. To convert a file tree to a flat collection, use the
FileTree.getFiles() property.

The simplest way to create a file tree is to pass a file or directory path to the
Project.fileTree(java.lang.Object) method. This will create a tree of all the files and directories in
that base directory (but not the base directory itself). The following example demonstrates how to
use the basic method and, in addition, how to filter the files and directories using Ant-style
patterns:

Example: Creating a file tree

../javadoc/org/gradle/api/file/FileTree.html
../javadoc/org/gradle/api/file/FileTree.html#getFiles--
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

build.gradle

// Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/main')

// Add include and exclude patterns to the tree
tree.include '**/*.java’
tree.exclude '**/Abstract*’

// Create a tree using path
tree = fileTree('src').include('**/*.java")

// Create a tree using closure
tree = fileTree('src') {
include '**/*.java’

// Create a tree using a map

tree = fileTree(dir: 'src', include: '**/*.java')

tree = fileTree(dir: 'src', includes: ['**/*.java', "**/*.xml'])

tree = fileTree(dir: 'src', include: '**/*.java', exclude: '**/*test*/**")

You can see more examples of supported patterns in the API docs for PatternFilterable. Also, see the
API documentation for fileTree() to see what types you can pass as the base directory.

By default, fileTree() returns a FileTree instance that applies some default exclusion patterns for
convenience — the same defaults as Ant in fact. For the complete default exclusion list, see the Ant
manual.

If those default exclusions prove problematic, you can workaround the issue by using the
defaultexcludes Ant task, as demonstrated in this example:

Example: Changing Ant default exclusions for a copy task

../javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
https://ant.apache.org/manual/Tasks/defaultexcludes.html
https://ant.apache.org/manual/Tasks/defaultexcludes.html

build.gradle

task forcedCopy(type: Copy) {
into "${buildDir}/inPlaceApp"
from 'src/main/webapp’

doFirst {
ant.defaultexcludes remove: "**/.git"
ant.defaultexcludes remove: "**/.git/**"
ant.defaultexcludes remove: "**/*~"

}
dolast {

ant.defaultexcludes default: true
}

In general, it’s best to ensure that the default exclusions are reset whenever you change them as
modifications are visible to the entire build. The above example is performing such a reset in its
dolLast action.

You can do many of the same things with file trees that you can with file collections:

* iterate over them (depth first)
* filter them (using FileTree.matching(org.gradle.api.Action) and Ant-style patterns)

* merge them

You can also traverse file trees using the FileTree.visit(org.gradle.api.Action) method. All of these
techniques are demonstrated in the following example:

Example: Using a file tree

../javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
../javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->
println file

// Filter a tree

FileTree filtered = tree.matching {
include 'org/gradle/api/**'

}

// Add trees together
FileTree sum = tree + fileTree(dir: 'src/test')

// Visit the elements of the tree
tree.visit {element ->
println "Selement.relativePath => Selement.file"

We’ve discussed how to create your own file trees and file collections, but it’s also worth bearing in
mind that many Gradle plugins provide their own instances of file trees, such as Java’s source sets.
These can be used and manipulated in exactly the same way as the file trees you create yourself.

Another specific type of file tree that users commonly need is the archive, i.e. ZIP files, TAR files, etc.
We look at those next.

Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it’s a special
case of a file tree, and that’s exactly how Gradle treats archives. Instead of using the fileTree()
method, which only works on normal file systems, you use the Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object) methods to wrap archive files of the corresponding type (note that
JAR, WAR and EAR files are ZIPs). Both methods return FileTree instances that you can then use in
the same way as normal file trees. For example, you can extract some or all of the files of an archive
by copying its contents to some directory on the file system. Or you can merge one archive into
another.

Here are some simple examples of creating archive-based file trees:

Example: Using an archive as a file tree

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree('someFile.zip")

// Create a TAR file tree using path
FileTree tar = tarTree('someFile.tar")

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip('someTar.ext"))

You can see a practical example of extracting an archive file in among the common scenarios we
cover.

Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the
JavaCompile task has a source property that defines the source files to compile. You can set the
value of this property using any of the types supported by the files() method, as mentioned in the
api docs. This means you can, for example, set the property to a File, String, collection,
FileCollection or even a closure.

This is a feature of specific tasks! That means implicit conversion will not happen for just any
task that has a FileCollection or FileTree property. If you want to know whether implicit
conversion happens in a particular situation, you will need to read the relevant documentation,
such as the corresponding task’s API docs. Alternatively, you can remove all doubt by explicitly
using link:../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
[ProjectLayout.files(java.lang.Object...) in your build.

Here are some examples of the different types of arguments that the source property can take:

Example: Specifying a set of files

../dsl/org.gradle.api.tasks.compile.JavaCompile.html

build.gradle

task compile(type: JavaCompile)

// Use a File object to specify the source directory
compile {
source = file('src/main/java")

}

// Use a String path to specify the source directory
compile {
source = 'src/main/java’

}

// Use a collection to specify multiple source directories
compile {
source = ['sre/main/java', '../shared/java']

}

// Use a FileCollection (or FileTree in this case) to specify the source files
compile {
source = fileTree(dir: 'src/main/java').matching { include 'org/gradle/api/**' }

}
// Using a closure to specify the source files.
compile {

source = {

// Use the contents of each zip file in the src dir
file('src').listFiles().findAll {it.name.endsWith('.zip")}.collect { zipTree
(it) }
}
}

One other thing to note is that properties like source have corresponding methods in core Gradle
tasks. Those methods follow the convention of appending to collections of values rather than
replacing them. Again, this method accepts any of the types supported by the files() method, as
shown here:

Example: Appending a set of files

build.gradle

compile {
// Add some source directories use String paths
source 'src/main/java’, 'src/main/groovy’

// Add a source directory using a File object
source file('../shared/java')

// Add some source directories using a closure
source { file('src/test/").listFiles() }

As this is a common convention, we recommend that you follow it in your own custom tasks.
Specifically, if you plan to add a method to configure a collection-based property, make sure the
method appends rather than replaces values.

File copying in depth
The basic process of copying files in Gradle is a simple one:

* Define a task of type Copy
 Specify which files (and potentially directories) to copy
 Specify a destination for the copied files
But this apparent simplicity hides a rich API that allows fine-grained control of which files are

copied, where they go, and what happens to them as they are copied — renaming of the files and
token substitution of file content are both possibilities, for example.

Let’s start with the last two items on the list, which form what is known as a copy specification. This
is formally based on the CopySpec interface, which the Copy task implements, and offers:

* A CopySpec.from(java.lang.Object...) method to define what to copy

* An CopySpec.into(java.lang.Object) method to define the destination
CopySpec has several additional methods that allow you to control the copying process, but these
two are the only required ones. into() is straightforward, requiring a directory path as its

argument in any form supported by the Project.file(java.lang.Object) method. The from()
configuration is far more flexible.

Not only does from() accept multiple arguments, it also allows several different types of argument.
For example, some of the most common types are:

* A String — treated as a file path or, if it starts with "file://", a file URI

* AFile —used as a file path

A FileCollection or FileTree — all files in the collection are included in the copy

A task — the files or directories that form a task’s defined outputs are included

../dsl/org.gradle.api.tasks.Copy.html
../javadoc/org/gradle/api/file/CopySpec.html
../javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object...-
../javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

In fact, from() accepts all the same arguments as Project.files(java.lang.Object...),
ProjectLayout.files(java.lang.Object...), and ProjectLayout.configurableFiles(java.lang.Object...), so
see those methods for a more detailed list of acceptable types.

Something else to consider is what type of thing a file path refers to:

* A file — the file is copied as is

* A directory — this is effectively treated as a file tree: everything in it, including subdirectories,
is copied. However, the directory itself is not included in the copy.

* A non-existent file — the path is ignored

Here is an example that uses multiple from() specifications, each with a different argument type.
You will probably also notice that into() is configured lazily using a closure — a technique that also
works with from():

Example: Specifying copy task source files and destination directory

build.gradle

task anotherCopyTask(type: Copy) {
// Copy everything under src/main/webapp
from 'src/main/webapp’
// Copy a single file
from 'src/staging/index.html’
// Copy the output of a task
from copyTask
// Copy the output of a task using Task outputs explicitly.
from copyTaskWithPatterns.outputs
// Copy the contents of a Zip file
from zipTree('src/main/assets.zip')
// Determine the destination directory later
into { getDestDir() }

Note that the lazy configuration of into() is different from a child specification, even though the
syntax is similar. Keep an eye on the number of arguments to distinguish between them.

Filtering files

You’ve already seen that you can filter file collections and file trees directly in a Copy task, but you
can also apply filtering in any copy specification through the CopySpec.include(java.lang.String...)
and CopySpec.exclude(java.lang.String...) methods.

Both of these methods are normally used with Ant-style include or exclude patterns, as described in
PatternFilterable. You can also perform more complex logic by using a closure that takes a
FileTreeElement and returns true if the file should be included or false otherwise. The following
example demonstrates both forms, ensuring that only .html and .jsp files are copied, except for
those .html files with the word "DRAFT" in their content:

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
../javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object...-
../javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String...-
../javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String...-
../javadoc/org/gradle/api/tasks/util/PatternFilterable.html
../javadoc/org/gradle/api/file/FileTreeElement.html

Example: Selecting the files to copy

build.gradle

task copyTaskWithPatterns(type: Copy) {

from 'src/main/webapp’

into "${buildDir}/explodedWar"

include '"**/* html'

include "**/*.jsp'

exclude { FileTreeElement details ->
details.file.name.endsWith('.html") &&

details.file.text.contains('DRAFT")

A question you may ask yourself at this point is what happens when inclusion and exclusion
patterns overlap? Which pattern wins? Here are the basic rules:
« If there are no explicit inclusions or exclusions, everything is included

» If at least one inclusion is specified, only files and directories matching the patterns are
included

* Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one

exclusion pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that
you end up with the exact behavior you want.

Note that the inclusions and exclusions in the above example will apply to all from() configurations.
If you want to apply filtering to a subset of the copied files, you’ll need to use child specifications.

Renaming files

The example of how to rename files on copy gives you most of the information you need to perform
this operation. It demonstrates the two options for renaming:

» Using a regular expression

» Using a closure
Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex
groups that allow you to remove and replaces parts of the source filename. The following example

shows how you can remove the string "-staging-" from any filename that contains it using a simple
regular expression:

Example: Renaming files as they are copied

build.gradle

task rename(type: Copy) {
from 'src/main/webapp’
into "${buildDir}/explodedWar"
// Use a closure to convert all file names to upper case
rename { String fileName ->
fileName.toUpperCase()
}

// Use a regular expression to map the file name
rename '(.+)-staging-(.+)"', '$1$2'
rename(/(.+)-staging-(.+)/, '$182")

You can use any regular expression supported by the Java Pattern class and the substitution string
(the second argument of rename() works on the same principles as the Matcher.appendReplacement()
method.

Regular expressions in Groovy build scripts

There are two common issues people come across when using regular expressions
in this context:

1. If you use a slashy string (those delimited by '/') for the first argument, you must
include the parentheses for rename() as shown in the above example.

NOTE 2. It’s safest to use single quotes for the second argument, otherwise you need to
escape the '$' in group substitutions, i.e. "\§1\$2"

The first is a minor inconvenience, but slashy strings have the advantage that you
don’t have to escape backslash ('\') characters in the regular expression. The second
issue stems from Groovy’s support for embedded expressions using ${ } syntax in
double-quoted and slashy strings.

The closure syntax for rename() is straightforward and can be used for any requirements that
simple regular expressions can’t handle. You're given the name of a file and you return a new name
for that file, or null if you don’t want to change the name. Do be aware that the closure will be
executed for every file that’s copied, so try to avoid expensive operations where possible.

Filtering file content (token substitution, templating, etc.)

Not to be confused with filtering which files are copied, file content filtering allows you to transform
the content of files while they are being copied. This can involve basic templating that uses token
substitution, removal of lines of text, or even more complex filtering using a full-blown template
engine.

The following example demonstrates several forms of filtering, including token substitution using
the CopySpec.expand(java.util. Map) method and another using CopySpec.filter(java.lang.Class) with
an Ant filter:

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#appendReplacement(java.lang.StringBuffer,%20java.lang.String)
../javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
../javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html

Example: Filtering files as they are copied

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens

task filter(type: Copy) {
from 'src/main/webapp’
into "${buildDir}/explodedWar"
// Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(project.properties)
// Use some of the filters provided by Ant
filter(FixCrLfFilter)
filter(ReplaceTokens, tokens: [copyright: '2009', version: '2.3.1'])
// Use a closure to filter each line
filter { String line ->
"[$1line]"
}

// Use a closure to remove lines
filter { String line ->
line.startsWith('-') ? null : line

}
filteringCharset = "UTF-8'

The filter() method has two variants, which behave differently:

* one takes a FilterReader and is designed to work with Ant filters, such as ReplaceTokens

* one takes a closure or Transformer that defines the transformation for each line of the source
file

Note that both variants assume the source files are text based. When you use the ReplaceTokens
class with filter(), the result is a template engine that replaces tokens of the form @tokenName@ (the
Ant-style token) with values that you define.

The expand() method treats the source files as Groovy templates, which evaluate and expand
expressions of the form ${expression}. You can pass in property names and values that are then
expanded in the source files. expand() allows for more than basic token substitution as the
embedded expressions are full-blown Groovy expressions.

It’s good practice to specify the character set when reading and writing the file,
otherwise the transformations won’t work properly for non-ASCII text. You

NOTE configure the character set with the CopySpec.getFilteringCharset() property. If it’s
not specified, the JVM default character set is used, which is likely to be different
from the one you want.

https://docs.oracle.com/javase/7/docs/api/java/io/FilterReader.html
../javadoc/org/gradle/api/Transformer.html
http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html
../javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--

Using the CopySpec class

A copy specification (or copy spec for short) determines what gets copied to where, and what
happens to files during the copy. You’ve alread seen many examples in the form of configuration for
Copy and archiving tasks. But copy specs have two attributes that are worth covering in more detail:

1. They can be independent of tasks

2. They are hierarchical

The first of these attributes allows you to share copy specs within a build. The second provides fine-
grained control within the overall copy specification.

Sharing copy specs

Consider a build that has several tasks that copy a project’s static website resources or add them to
an archive. One task might copy the resources to a folder for a local HTTP server and another might
package them into a distribution. You could manually specify the file locations and appropriate
inclusions each time they are needed, but human error is more likely to creep in, resulting in
inconsistencies between tasks.

One solution Gradle provides is the Project.copySpec(org.gradle.api.Action) method. This allows you
to create a copy spec outside of a task, which can then be attached to an appropriate task using the
CopySpec.with(org.gradle.api.file.CopySpec...) method. The following example demonstrates how
this is done:

Example: Sharing copy specifications

build.gradle

CopySpec webAssetsSpec = copySpec {
from 'src/main/webapp’
include "**/*.html', "**/*.png', '**/*.jpg’
rename '(.+)-staging(.+)', '$1$2'

}

task copyAssets(type: Copy) {
into "${buildDir}/inPlaceApp"
with webAssetsSpec

}

task distApp(type: Zip) {
archiveName = 'my-app-dist.zip'
destinationDir = file("${buildDir}/dists")

from appClasses
with webAssetsSpec

Both the copyAssets and distApp tasks will process the static resources under src/main/webapp, as
specified by webAssetsSpec.

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
../javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec...-

The configuration defined by webAssetsSpec will not apply to the app classes
included by the distApp task. That’s because from appClasses is its own child

specification independent of with webAssetsSpec.
NOTE
This can be confusing to understand, so it’s probably best to treat with() as an extra

from() specification in the task. Hence it doesn’t make sense to define a standalone
copy spec without at least one from() defined.

If you encounter a scenario in which you want to apply the same copy configuration to different sets
of files, then you can share the configuration block directly without using copySpec(). Here’s an
example that has two independent tasks that happen to want to process image files only:

Example: Sharing copy patterns only

build.gradle

def webAssetPatterns = {
include "**/*.html', "**/*.png', '**/*.jpg’
}

task copyAppAssets(type: Copy) {
into "${buildDir}/inPlaceApp"
from 'src/main/webapp', webAssetPatterns

}

task archiveDistAssets(type: Zip) {
archiveName = 'distribution-assets.zip'
destinationDir = file("${buildDir}/dists")

from 'distResources', webAssetPatterns

In this case, we assign the copy configuration to its own variable and apply it to whatever from()
specification we want. This doesn’t just work for inclusions, but also exclusions, file renaming, and
file content filtering.

Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to all the files that are
copied. Sometimes this is what you want, but not always. Consider the following example that
copies files into a directory structure that can be used by a Java Servlet container to deliver a
website:

Copy HTML and image files here

build/explodedWar Copy runtime

T INF/ dependencies (JARs) here
i: lib/
classes/ \
— s/ Copy compiled app classes here

Copy JavaScript files here

Figure 11. Creating an exploded WAR for a Servlet container

This is not a straightforward copy as the WEB-INF directory and its subdirectories don’t exist within
the project, so they must be created during the copy. In addition, we only want HTML and image
files going directly into the root folder — build/explodedWar — and only JavaScript files going into
the js directory. So we need separate filter patterns for those two sets of files.

The solution is to use child specifications, which can be applied to both from() and into()
declarations. The following task definition does the necessary work:

Example: Nested copy specs

build.gradle

task nestedSpecs(type: Copy) {
into "${buildDir}/explodedWar"
exclude '**/*staging*’
from('src/dist') {
include "**/*.html', "**/*.png', '**/*.jpqg’
}
from(sourceSets.main.output) {
into "WEB-INF/classes'
}
into('WEB-INF/1ib"') {
from confiqgurations.runtimeClasspath

}

Notice how the src/dist configuration has a nested inclusion specification: that’s the child copy
spec. You can of course add content filtering and renaming here as required. A child copy spec is

still a copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination
either by using a child into() on a from() or a child from() on an into(). Both approaches are
acceptable, but you may want to create and follow a convention to ensure consistency across your
build files.

Don’t get your into() specifications mixed up! For a normal copy — one to the
filesystem rather than an archive — there should always be one "root" into() that
simply specifies the overall destination directory of the copy. Any other into()
should have a child spec attached and its path will be relative to the root into().

NOTE

One final thing to be aware of is that a child copy spec inherits its destination path, include
patterns, exclude patterns, copy actions, name mappings and filters from its parent. So be careful
where you place your configuration.

Copying files in your own tasks

There might be occasions when you want to copy files or directories as part of a task. For example,
a custom archiving task based on an unsupported archive format might want to copy files to a
temporary directory before they are then archived. You still want to take advantage of Gradle’s
copy API, but without introducing an extra Copy task.

The solution is to use the Project.copy(org.gradle.api.Action) method. It works the same way as the
Copy task by configuring it with a copy spec. Here’s a trivial example:

Example: Copying files using the copy() method without up-to-date check

build.gradle

task copyMethod {
dolast {

copy {
from 'src/main/webapp’

into "${buildDir}/explodedWar"
include '**/* html'
include "**/*.jsp'

The above example demonstrates the basic syntax and also highlights two major limitations of
using the copy() method:

1. The copy() method is not incremental. The example’s copyMethod task will always execute
because it has no information about what files make up the task’s inputs. You have to manually
define the task inputs and outputs.

2. Using a task as a copy source, i.e. as an argument to from(), won’t set up an automatic task
dependency between your task and that copy source. As such, if you are using the copy()

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

method as part of a task action, you must explicitly declare all inputs and outputs in order to get
the correct behavior.

The following example shows you how to workaround these limitations by using the dynamic API
for task inputs and outputs:

Example: Copying files using the copy() method with up-to-date check

build.gradle

task copyMethodWithExplicitDependencies{
// up-to-date check for inputs, plus add copyTask as dependency
inputs.files copyTask
outputs.dir 'some-dir' // up-to-date check for outputs
dolast{

copy {
// Copy the output of copyTask

from copyTask
into 'some-dir'

These limitations make it preferable to use the Copy task wherever possible, because of its builtin
support for incremental building and task dependency inference. That is why the copy() method is
intended for use by custom tasks that need to copy files as part of their function. Custom tasks that
use the copy() method should declare the necessary inputs and outputs relevant to the copy action.

Mirroring directories and file collections with the Sync task

The Sync task, which extends the Copy task, copies the source files into the destination directory and
then removes any files from the destination directory which it did not copy. In other words, it
synchronizes the contents of a directory with its source. This can be useful for doing things such as
installing your application, creating an exploded copy of your archives, or maintaining a copy of
the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the build/libs
directory.

Example: Using the Sync task to copy dependencies

build.gradle
task libs(type: Sync) {

from configurations.runtime
into "${buildDir}/1ibs"

You <can also perform the same function in your own tasks with the

../dsl/org.gradle.api.tasks.Sync.html

Project.sync(org.gradle.api.Action) method.

Archive creation in depth

Archives are essentially self-contained file systems and Gradle treats them as such. This is why
working with archives is very similar to working with files and directories, including such things as
file permissions.

Out of the box, Gradle supports creation of both ZIP and TAR archives, and by extension Java’s JAR,
WAR and EAR formats — Java’s archive formats are all ZIPs. Each of these formats has a
corresponding task type to create them: Zip, Tar, Jar, War, and Ear. These all work the same way
and are based on copy specifications, just like the Copy task.

Creating an archive file is essentially a file copy in which the destination is implicit, i.e. the archive
file itself. Here’s a basic example that specifies the path and name of the target archive file:

Example: Archiving a directory as a ZIP

build.gradle

task packageDistribution(type: Zip) {
archiveName = "my-distribution.zip"
destinationDir = file("${buildDir}/dist")

from "${buildDir}/toArchive"

In the next section you’ll learn about convention-based archive names, which can save you from
always configuring the destination directory and archive name.

The full power of copy specifications are available to you when creating archives, which means you
can do content filtering, file renaming or anything else that is covered in the previous section. A
particularly common requirement is copying files into subdirectories of the archive that don’t exist
in the source folders, something that can be achieved with into() child specifications.

Gradle does of course allow you create as many archive tasks as you want, but it’s worth bearing in
mind that many convention-based plugins provide their own. For example, the Java plugin adds a
jar task for packaging a project’s compiled classes and resources in a JAR. Many of these plugins
provide sensible conventions for the names of archives as well as the copy specifications used. We
recommend you use these tasks wherever you can, rather than overriding them with your own.

Archive naming

Gradle has several conventions around the naming of archives and where they are created based
on the plugins your project uses. The main convention is provided by the Base Plugin, which
defaults to creating archives in the $buildDir/distributions directory and typically uses archive
names of the form [projectName]-[version].[type].

The following example comes from a project named 'zipProject’, hence the myZip task creates an
archive named 'zipProject-1.0.zip":

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.bundling.Zip.html
../dsl/org.gradle.api.tasks.bundling.Tar.html
../dsl/org.gradle.api.tasks.bundling.Jar.html
../dsl/org.gradle.api.tasks.bundling.War.html
../dsl/org.gradle.plugins.ear.Ear.html

Example: Creation of ZIP archive

build.gradle

plugins {
id 'base'

}
version = 1.0

task myZip(type: Zip) {
from 'somedir'

dolast {
println archiveName
println relativePath(destinationDir)
println relativePath(archivePath)

Output of gradle -q myZip

> gradle -q myZip

zipProject-1.0.zip

build/distributions
build/distributions/zipProject-1.0.zip

Note that the name of the archive does not derive from the name of the task that creates it.

If you want to change the name and location of a generated archive file, you can provide values for
the archiveName and destinationDir properties of the corresponding task. These override any
conventions that would otherwise apply.

Alternatively, you can make wuse of the default archive name pattern provided by
AbstractArchiveTask.getArchiveName(): [baseName]-[appendix]-[version]-[classifier].[extension].
You can set each of these properties on the task separately if you wish. Note that the Base Plugin
uses the convention of project name for baseName, project version for version and the archive type
for extension. It does not provide values for the other properties.

This example — from the same project as the one above — configures just the baseName property,
overriding the default value of the project name:

Example: Configuration of archive task - custom archive name

../dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveName

build.gradle

task myCustomZip(type: Zip) {
baseName = 'customName'
from 'somedir'

dolast {
println archiveName

}

Output of gradle -q myCustomZip

> gradle -q myCustomZip
customName-1.0.zip

You can also override the default baseName value for all the archive tasks in your build by using the
project property archivesBaseName, as demonstrated by the following example:

Example: Configuration of archive task - appendix & classifier

build.gradle

plugins {
id 'base'

}

version = 1.0
archivesBaseName = "gradle"

task myZip(type: Zip) {
from 'somedir'

}

task myOtherZip(type: Zip) {
appendix = 'wrapper'
classifier = 'src'
from 'somedir’

}

task echoNames {
dolast {
println "Project name: ${project.name}"
println myZip.archiveName
println myOtherZip.archiveName

Output of gradle -q echoNames

> gradle -q echoNames
Project name: zipProject
gradle-1.0.zip
gradle-wrapper-1.0-src.zip

You can find all the possible archive task properties in the API documentation for
AbstractArchiveTask, but we have also summarized the main ones here:

archiveName — String, default: baseName-appendix-version-classifier.extension

The complete file name of the generated archive. If any of the properties in the default value are
empty, their '-' separator is dropped.

archivePath — File, read-only, default: destinationDir/archiveName

The absolute file path of the generated archive.

destinationDir — File, default: depends on archive type

The target directory in which to put the generated archive. By default, JARs and WARs go into
$buildDir/1ibs. ZIPs and TARs go into $buildDir/distributions.

baseName — String, default: project.name

The base name portion of the archive file name, typically a project name or some other
descriptive name for what it contains.

appendix — String, default: null

The appendix portion of the archive file name that comes immediately after the base name. It is
typically used to distinguish between different forms of content, such as code and docs, or a
minimal distribution versus a full or complete one.

version — String, default: project.version

The version portion of the archive file name, typically in the form of a normal project or product
version.

classifier — String, default: null

The classifier portion of the archive file name. Often used to distinguish between archives that
target different platforms.

extension — String, default: depends on archive type and compression type

The filename extension for the archive. By default, this is set based on the archive task type and
the compression type (if you're creating a TAR). Will be one of: zip, jar, war, tar, tgz or tbz2. You
can of course set this to a custom extension if you wish.

Sharing content between multiple archives

As described earlier, you can use the Project.copySpec(org.gradle.api.Action) method to share
content between archives.

../dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)

Reproducible archives

Sometimes it’s desirable to recreate archives exactly the same, byte for byte, on different machines.
You want to be sure that building an artifact from source code produces the same result no matter
when and where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an
archive is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built
from source, the order of the files inside the archive may change. Files that only have a different
timestamp also causes differences in archives from build to build. All AbstractArchiveTask (e.g. Jar,
Zip) tasks shipped with Gradle include incubating support producing reproducible archives.

For example, to make a Zip task reproducible you need to set Zip.isReproducibleFileOrder() to true
and Zip.isPreserveFileTimestamps() to false. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

Example: Activating reproducible archives

build.gradle

tasks.withType(AbstractArchiveTask) {
preserveFileTimestamps = false
reproducibleFileOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is
described in Legacy Publishing.

Writing Build Scripts

This chapter looks at some of the details of writing a build script.

The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is
based on Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element. [7: Any language element except for
statement labels.] Gradle assumes that each build script is encoded using UTF-8.

The Project API

In the tutorial we used, for example, the apply() method. Where does this method come from? We
said earlier that the build script defines a project in Gradle. For each project in the build, Gradle
creates an object of type Project and associates this Project object with the build script. As the build
script executes, it configures this Project object:

https://reproducible-builds.org/
../dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
../dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
../dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps
../dsl/org.gradle.api.Project.html

Getting help writing build scripts

Don’t forget that your build script is simply Groovy code that drives the Gradle API.

TIP And the Project interface is your starting point for accessing everything in the Gradle
APL. So, if you’re wondering what 'tags' are available in your build script, you can start
with the documentation for the Project interface.

* Any method you call in your build script which is not defined in the build script, is delegated to
the Project object.

* Any property you access in your build script, which is not defined in the build script, is
delegated to the Project object.

Let’s try this out and try to access the name property of the Project object.

Example: Accessing property of the Project object

build.gradle

println name
println project.name

Output of gradle -q check

> gradle -q check
projectApi
projectApi

Both println statements print out the same property. The first uses auto-delegation to the Project
object, for properties not defined in the build script. The other statement uses the project property
available to any build script, which returns the associated Project object. Only if you define a
property or a method which has the same name as a member of the Project object, would you need
to use the project property.

Standard project properties

The Project object provides some standard properties, which are available in your build script. The
following table lists a few of the commonly used ones.

Table 5. Project Properties

Name Type Default Value

project Project The Project instance

name String The name of the project directory.
path String The absolute path of the project.
description String A description for the project.

projectDir File The directory containing the build script.

../dsl/org.gradle.api.Project.html
../dsl/org.gradle.api.Project.html

Name Type Default Value

buildDir File projectDir/build
group Object unspecified

version Object unspecified

ant AntBuilder An AntBuilder instance
The Script API

When Gradle executes a script, it compiles the script into a class which implements Script. This
means that all of the properties and methods declared by the Script interface are available in your
script.

Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra
properties.

Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they
have been declared. Local variables are a feature of the underlying Groovy language.

Example: Using local variables

build.gradle
def dest = "dest"

task copy(type: Copy) {
from "source"

into dest

Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This
includes, but is not limited to, projects, tasks, and source sets. Extra properties can be added, read
and set via the owning object’s ext property. Alternatively, an ext block can be used to add multiple
properties at once.

Example: Using extra properties

../javadoc/org/gradle/api/AntBuilder.html
../dsl/org.gradle.api.Script.html

build.gradle
apply plugin: "java"

ext {
springVersion = "3.1.0.RELEASE"
emailNotification = "build@master.org"

}

sourceSets.all { ext.purpose = null }

sourceSets {
main {
purpose = "production”

}
test {
purpose = "test"
}
plugin {
purpose = "production”
}

}

task printProperties {
dolast {
println springVersion
println emailNotification
sourceSets.matching { it.purpose == "production" }.each { println it.name }

Output of gradle -q printProperties

> gradle -q printProperties
3.1.0.RELEASE
build@master.org

main

plugin

In this example, an ext block adds two extra properties to the project object. Additionally, a
property named purpose is added to each source set by setting ext.purpose to null (null is a
permissible value). Once the properties have been added, they can be read and set like predefined
properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to
set a (predefined or extra) property but the property is misspelled or does not exist. Extra
properties can be accessed from anywhere their owning object can be accessed, giving them a
wider scope than local variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the ExtraPropertiesExtension class in the
API documentation.

Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

Example: Configuring arbitrary objects

build.gradle

task configure {
dolast {
def pos = configure(new java.text.FieldPosition(10)) {
beginIndex = 1
endIndex = 5

}
println pos.beginIndex
println pos.endIndex

Output of gradle -q configure

> gradle -q configure
1
5

Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

Example: Configuring arbitrary objects using a script

../dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

build.gradle

task configure {
dolLast {
def pos = new java.text.FieldPosition(10)
// Apply the script
apply from: 'other.gradle', to: pos
println pos.beginIndex
println pos.endIndex

other.gradle

// Set properties.
beginIndex = 1
endIndex = 5

Output of gradle -q configure

> gradle -q configure
1
5

Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language
takes advantage of these. Understanding how the build language works will help you when you
write your build script, and in particular, when you start to write custom plugins and tasks.

Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, Iterable gets an each
method, which iterates over the elements of the Iterable:

Example: Groovy JDK methods

build.gradle

// Iterable gets an each() method
configurations.runtime.each { File f -> println f }

Have a look at http://groovy-lang.org/gdk.html for more details.

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter
method.

Example: Property accessors

build.gradle

// Using a getter method
println project.buildDir
println getProject().getBuildDir()

// Using a setter method
project.buildDir = 'target'
getProject().setBuildDir('target")

Optional parentheses on method calls

Parentheses are optional for method calls.

Example: Method call without parentheses

build.gradle

test.systemProperty 'some.prop', 'value'
test.systemProperty('some.prop', 'value')

List and map literals

Groovy provides some shortcuts for defining List and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

For instance, the “apply” method (where you typically apply plugins) actually takes a map
parameter. However, when you have a line like “apply plugin:'java'”, you aren’t actually using a
map literal, you’re actually using “named parameters”, which have almost exactly the same syntax
as a map literal (without the wrapping brackets). That named parameter list gets converted to a
map when the method is called, but it doesn’t start out as a map.

Example: List and map literals

build.gradle

// List literal
test.includes = ['org/gradle/api/**', 'org/gradle/internal/**"']

List<String> list = new ArraylList<String>()
list.add('org/gradle/api/**")
list.add('org/gradle/internal/**")
test.includes = list

// Map literal.
Map<String, String> map = [key1:'valuel', key2: 'value2']

// Groovy will coerce named arquments
// into a single map argument
apply plugin: 'java'

Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the
last parameter of a method is a closure, you can place the closure after the method call:

Example: Closure as method parameter

build.gradle

repositories {
println "in a closure"

}
repositories() { println "in a closure" }
repositories({ println "in a closure" })

Closure delegate

Each closure has a delegate object, which Groovy uses to look up variable and method references
which are not local variables or parameters of the closure. Gradle uses this for configuration
closures, where the delegate object is set to the object to be configured.

Example: Closure delegates

build.gradle

dependencies {
assert delegate == project.dependencies
testCompile('junit:junit:4.12")
delegate.testCompile('junit:junit:4.12")

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the
This means that instead
org.gradle.api.tasks.StopExecutionException() you can
StopExecutionException() instead.

Gradle

scripts.

Listed below are the imports added to each script:

Gradle default imports

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
.gradle
org.

org

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

gradle

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

*

.api.
.artifacts.*
.artifacts.component.*
.artifacts.dsl.*
.artifacts.ivy.*
.artifacts.maven.*
.artifacts.query.*
.artifacts.repositories.*

api
api
api
api
api
api
api

api
api
api
api
api
api
api
api
api
api
api

api
api
api

api
api
api
api
api
api
api
api
api
api
api

api.
.artifacts.transform.*
.artifacts.type.*
.attributes.*
.capabilities.*
.component.*
.credentials.*
.distribution.*
.distribution.plugins.*
.dsl.*

.execution.*

.file.*

api.
api.
api.
api.
.java.archives.*
.logging.*
.logging.configuration.*
api.
.plugins.*

.plugins.announce.*
.plugins.antlr.*
.plugins.buildcomparison.gradle.*
.plugins.osgi.*
.plugins.quality.*
.plugins.scala.*

.provider.*

.publish.*

.publish.ivy.*
.publish.ivy.plugins.*

*

artifacts.result.*

initialization.*
initialization.definition.*
initialization.dsl.*
invocation.*

model.*

of
just

using
type

throw
throw

new
new

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.
.gradle
org.
.gradle
org.
.gradle
org.

org

org

org

gradle

gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle
gradle
gradle
gradle
gradle

gradle

.api
api
api
api
api
api
api.
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api.
api
api.
api
api.
api

.ide.
.ide.
.ide.
.ide.
.ide.
.ide.
Lvy.
.jvm.
.jvm.

.publish
.publish.maven
.publish.maven
.publish.maven
.publish.
.publish.tasks

reflect.*

.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.testing.
.tasks.
.testing
.tasks.
tasks.
.tasks

tasks

tasks

.reporting.*
.reporting
.reporting
.reporting
.reporting
.reporting
.resources.*
.Specs.
.tasks.
.tasks.
.tasks.

*

*

ant.*

.vy.tasks.*

.*
.plugins.*
.tasks.*

plugins.*

*

.components.*
.dependencies.*
.dependents.*
.model.*
.plugins.*

application.*
bundling.*

compile

*

diagnostics.*
incremental.*

javadoc.
options.

scala.*
testing

testing
util.*

.Wrapper.
authentication.*
authentication.aws.*
authentication.http.*
buildinit.plugins.*
buildinit.tasks.*
caching.*
caching.configuration.*
caching.http.*
caching.local.*
concurrent.*
external.javadoc.*

*

*

*

.junit.*
.junitplatform.*
.testng.*

*

visualstudio.*
visualstudio.plugins.*
visualstudio.tasks.*

xcode.

*

xcode.plugins.*

xcode.

*

*

tasks.*

application.scripts.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
.gradle
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.

gradle
gradle
gradle
gradle
gradle
gradle

.jvm.application.tasks.*
.jvm.platform.*
.jvm.plugins.*
.jvm.tasks.*
.jvm.tasks.api.*

.jvm. test.

*

.jvm.toolchain.*

language

language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
.scala.plugins.*
language.
language.
language.
language.
language.

*

assembler.*
assembler.plugins.*
assembler.tasks.*
base.*
base.artifact.*
base.compile.*
base.plugins.*
base.sources.*

c.*

c.plugins.*
c.tasks.*
coffeescript.*

cpp.*

cpp.plugins.*
cpp.tasks.*

java.*
java.artifact.*
java.plugins.*
java.tasks.*
javascript.*

jvm.*

jvm.plugins.*
jvm.tasks.*
nativeplatform.*
nativeplatform.tasks.*
objectivec.*
objectivec.plugins.*
objectivec.tasks.*
objectivecpp.*
objectivecpp.plugins.*
objectivecpp.tasks.*
plugins.*

re.*

rc.plugins.*
rc.tasks.*

routes.*

scala.*

scala.tasks.*
scala.toolchain.*
swift.*
swift.plugins.*
swift.tasks.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.

gradle

gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.

.language.twirl.*

maven.*
model.*

play.*

plugins
plugins
plugins
plugins
plugins
plugins
plugins
plugins
plugins
plugins
plugins

nativeplatform.*
nativeplatform.plat
nativeplatform.plug
nativeplatform.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.test.
nativeplatform.tool
nativeplatform.tool
normalization.*
platform.base.*
platform.base.binary.*
platform.base.component.*
platform.base.plugins.*

play.distribution.*
play.platform.*
play.plugins.*
play.plugins.ide.*
play.tasks.*
play.toolchain.*
plugin.devel.*
plugin.devel.plugins.*
plugin.devel.tasks.*
plugin.management.*
plugin.use.*
plugins.

ear.*
.ear.descrip
.ide.*
.ide.api.*
.ide.eclipse
.1de.idea.*
.javascript.
.javascript.
.javascript.
.javascript.
.javascript.
.javascript.

form.*
ins.*

tasks.*

*

cpp.*
cpp.plugins.*
cunit.*
cunit.plugins.*
cunit.tasks.*
googletest.*
googletest.plugins.*
plugins.*
tasks.*

xctest.*
xctest.plugins.*
xctest.tasks.*
chain.*
chain.plugins.*

tor.*

*

base.*
coffeescript.*
envjs.*
envjs.browser.*
envjs.http.*
envjs.http.simple.*

import org.gradle.plugins.javascript.jshint.*
import org.gradle.plugins.javascript.rhino.*
import org.gradle.plugins.signing.*

import org.gradle.plugins.signing.signatory.*
import org.gradle.plugins.signing.signatory.pgp.*
import org.gradle.plugins.signing.type.*
import org.gradle.plugins.signing.type.pgp.*
import org.gradle.process.*

import org.gradle.swiftpm.*

import org.gradle.swiftpm.plugins.*

import org.gradle.swiftpm.tasks.*

import org.gradle.testing.base.*

import org.gradle.testing.base.plugins.*
import org.gradle.testing.jacoco.plugins.*
import org.gradle.testing.jacoco.tasks.*
import org.gradle.testing.jacoco.tasks.rules.*
import org.gradle.testkit.runner.*

import org.gradle.vcs.*

import org.gradle.vcs.git.*

import org.gradle.workers.*

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with
an action closure. We have seen these in Build Script Basics. For this type of task, the action closure
determines the behaviour of the task. This type of task is good for implementing one-off tasks in
your build script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task
provides some properties which you can use to configure the behaviour. We have seen these in
Authoring Tasks. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don’t need to
implement the task behaviour as you do with simple tasks. You simply declare the task and
configure the task using its properties. In this way, enhanced tasks let you reuse a piece of
behaviour in many different places, possibly across different builds.

The behaviour and properties of an enhanced task is defined by the task’s class. When you declare
an enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class
in pretty much any language you like, provided it ends up compiled to bytecode. In our examples,
we are going to use Groovy as the implementation language. Groovy, Java or Kotlin are all good
choices as the language to use to implement a task class, as the Gradle API has been designed to
work well with these languages. In general, a task implemented using Java or Kotlin, which are
statically typed, will perform better than the same task implemented using Groovy.

Packaging a task class

There are several places where you can put the source for the task class.

Build script

You can include the task class directly in the build script. This has the benefit that the task class
is automatically compiled and included in the classpath of the build script without you having to
do anything. However, the task class is not visible outside the build script, and so you cannot
reuse the task class outside the build script it is defined in.

buildSrc project

You can put the source for the task class in the rootProjectDir/buildSrc/src/main/groovy
directory. Gradle will take care of compiling and testing the task class and making it available on
the classpath of the build script. The task class is visible to every build script used by the build.
However, it is not visible outside the build, and so you cannot reuse the task class outside the
build it is defined in. Using the buildSrc project approach separates the task declaration - that is,
what the task should do - from the task implementation - that is, how the task does it.

See Organizing Gradle Projects for more details about the buildSrc project.

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR
which you can then use in multiple builds and share with others. Generally, this JAR might
include some custom plugins, or bundle several related task classes into a single library. Or some
combination of the two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we
will look at creating a standalone project.

Writing a simple task class

To implement a custom task class, you extend DefaultTask.

Example: Defining a custom task

build.gradle

class GreetingTask extends DefaultTask {
}

This task doesn’t do anything useful, so let’s add some behaviour. To do so, we add a method to the
task and mark it with the TaskAction annotation. Gradle will call the method when the task
executes. You don’t have to use a method to define the behaviour for the task. You could, for
instance, call doFirst() or doLast() with a closure in the task constructor to add behaviour.

Example: A hello world task

../dsl/org.gradle.api.DefaultTask.html
../javadoc/org/gradle/api/tasks/TaskAction.html

build.gradle

class GreetingTask extends DefaultTask {
@TaskAction
def greet() {
println "hello from GreetingTask'

}
}

// Create a task using the task type
task hello(type: GreetingTask)

Output of gradle -q hello

> gradle -q hello
hello from GreetingTask

Let’s add a property to the task, so we can customize it. Tasks are simply POGOs, and when you
declare a task, you can set the properties or call methods on the task object. Here we add a greeting
property, and set the value when we declare the greeting task.

Example: A customizable hello world task

build.gradle

class GreetingTask extends DefaultTask {
String greeting = "hello from GreetingTask'

@TaskAction
def greet() {
println greeting
}
+

// Use the default greeting
task hello(type: GreetingTask)

// Customize the greeting
task greeting(type: GreetingTask) {
greeting = 'greetings from GreetingTask'

}

Output of gradle -q hello greeting

> gradle -q hello greeting
hello from GreetingTask
greetings from GreetingTask

A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others.
This project is simply a Groovy project that produces a JAR containing the task class. Here is a
simple build script for the project. It applies the Groovy plugin, and adds the Gradle API as a
compile-time dependency.

Example: A build for a custom task

build.gradle

plugins {
id "groovy'

}

dependencies {
compile gradleApi()
compile localGroovy()

The code for this example can be found at samples/customPlugin/plugin in the ‘“-all’
distribution of Gradle.

NOTE

We just follow the convention for where the source for the task class should go.

Example: A custom task

src/main/groovy/org/gradle/GreetingTask.groovy
package org.gradle

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class GreetingTask extends DefaultTask {
String greeting = "hello from GreetingTask'

def greet() {
println greeting
}

Using your task class in another project

To use a task class in a build script, you need to add the class to the build script’s classpath. To do
this, you use a buildscript { } block, as described in External dependencies for the build script.
The following example shows how you might do this when the JAR containing the task class has
been published to a local repository:

Example: Using a custom task in another project

build.gradle

buildscript {
repositories {
maven {
// END SNIPPET use-plugin
// END SNIPPET use-task
def producerName = findProperty('producerName') ?: 'plugin'
def repoLocation = "../$producerName/build/repo"
// START SNIPPET use-plugin
// START SNIPPET use-task
url = uri(repolLocation)

}
}
dependencies {
classpath group: 'org.gradle', name: 'customPlugin',
version: '1.0-SNAPSHOT'

}

task greeting(type: org.gradle.GreetingTask) {
greeting = "howdy!'
}

Writing tests for your task class

You can use the ProjectBuilder class to create Project instances to use when you test your task class.

Example: Testing a custom task

src/test/groovy/org/gradle/GreetingTaskTest.groovy

class GreetingTaskTest {
@Test
public void canAddTaskToProject() {
Project project = ProjectBuilder.builder().build()
def task = project.task('greeting', type: GreetingTask)
assertTrue(task instanceof GreetingTask)

Incremental tasks

../javadoc/org/gradle/testfixtures/ProjectBuilder.html
../dsl/org.gradle.api.Project.html

Incremental tasks are an incubating feature.

Since the introduction of the implementation described above (early in the Gradle
1.6 release cycle), discussions within the Gradle community have produced superior
ideas for exposing the information about changes to task implementors to what is
described below. As such, the API for this feature will almost certainly change in
upcoming releases. However, please do experiment with the current
implementation and share your experiences with the Gradle community.

NOTE

The feature incubation process, which is part of the Gradle feature lifecycle (see
Feature Lifecycle), exists for this purpose of ensuring high quality final
implementations through incorporation of early user feedback.

With Gradle, it’s very simple to implement a task that is skipped when all of its inputs and outputs
are up to date (see Incremental Builds). However, there are times when only a few input files have
changed since the last execution, and you’d like to avoid reprocessing all of the unchanged inputs.
This can be particularly useful for a transformer task, that converts input files to output files on a
1:1 basis.

If you’d like to optimise your build so that only out-of-date inputs are processed, you can do so with
an incremental task.

Implementing an incremental task

For a task to process inputs incrementally, that task must contain an incremental task action. This is
a task action method that contains a single IncrementalTaskinputs parameter, which indicates to
Gradle that the action will process the changed inputs only.

The incremental task action may supply an
IncrementalTaskInputs.outOfDate(org.gradle.api.Action) action for processing any input file that is
out-of-date, and a IncrementalTaskinputs.removed(org.gradle.api.Action) action that executes for
any input file that has been removed since the previous execution.

Example: Defining an incremental task action

../javadoc/org/gradle/api/tasks/incremental/IncrementalTaskInputs.html
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

build.gradle
class IncrementalReverseTask extends DefaultTask {

def File inputDir

def File outputDir

def inputProperty

void execute(IncrementalTaskInputs inputs) {
println inputs.incremental ? 'CHANGED inputs considered out of date
: "ALL inputs considered out of date'

if (!inputs.incremental)
project.delete(outputDir.listFiles())

inputs.outOfDate { change ->
println "out of date: ${change.file.name}"
def targetFile = new File(outputDir, change.file.name)
targetFile.text = change.file.text.reverse()

}

inputs.removed { change ->
println "removed: ${change.file.name}"
def targetFile = new File(outputDir, change.file.name)
targetFile.delete()

NOTE The code for this example can be found at samples/userqguide/tasks/incrementalTask
in the “all’ distribution of Gradle.

If for some reason the task is not run incremental, e.g. by running with --rerun-tasks, only the

outOfDate action is executed, even if there were deleted input files. You should consider handling

this case at the beginning, as is done in the example above.

For a simple transformer task like this, the task action simply needs to generate output files for any
out-of-date inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution
context since that execution are to input files, then Gradle is able to determine which input files
need to be reprocessed by the task. In this case, the

IncrementalTaskInputs.outOfDate(org.gradle.api.Action) action will be executed for any input file
that was added or modified, and the IncrementalTaskinputs.removed(org.gradle.api.Action) action
will be executed for any removed input file.

However, there are many cases where Gradle is unable to determine which input files need to be
reprocessed. Examples include:
* There is no history available from a previous execution.

* You are building with a different version of Gradle. Currently, Gradle does not use task history
from a different version.

e An upToDatelWhen criteria added to the task returns false.
* An input property has changed since the previous execution.
* One or more output files have changed since the previous execution.
In any of these cases, Gradle will consider all of the input files to be outOfDate. The

IncrementalTaskInputs.outOfDate(org.gradle.api.Action) action will be executed for every input file,
and the IncrementalTaskinputs.removed(org.gradle.api.Action) action will not be executed at all.

You can check if Gradle was able to determine the incremental changes to input files with
IncrementalTaskInputs.isincremental().

An incremental task in action

Given the incremental task implementation above, we can explore the various change scenarios by
example. Note that the various mutation tasks (‘'updatelnputs’, 'removelnput’, etc) are only present
for demonstration purposes: these would not normally be part of your build script.

First, consider the IncrementalReverseTask executed against a set of inputs for the first time. In this
case, all inputs will be considered “out of date”:

Example: Running the incremental task for the first time

build.gradle

task incrementalReverse(type: IncrementalReverseTask) {
inputDir = file('inputs')
outputDir = file("$buildDir/outputs")
inputProperty = project.properties['taskInputProperty'] ?: 'original'

Build layout

—— build.gradle

L—— inputs
F— 1.txt
F—— 2.txt

L—— 3.txt

../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse
ALL inputs considered out of date
out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no
files are reported to the task action:

Example: Running the incremental task with unchanged inputs

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse

When an input file is modified in some way or a new input file is added, then re-executing the task
results in those files being reported to IncrementalTaskInputs.outOfDate(org.gradle.api.Action):

Example: Running the incremental task with updated input files

build.gradle

task updateInputs() {
dolast {
file('inputs/1.txt").text
file('inputs/4.txt"').text

'Changed content for existing file 1.'
"Content for new file 4.'

Output of gradle -q updateInputs incrementalReverse

> gradle -q updatelnputs incrementalReverse
CHANGED inputs considered out of date

out of date: 1.txt

out of date: 4.txt

When an existing input file is removed, then re-executing the task results in that file being reported
to IncrementalTaskInputs.removed(org.gradle.api.Action):

Example: Running the incremental task with an input file removed

../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

build.gradle

task removeInput() {
dolLast {
file("inputs/3.txt").delete()
}

Output of gradle -q removeInput incrementalReverse

> gradle -q removelnput incrementalReverse
CHANGED inputs considered out of date
removed: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files
are out of date. In this case, all input files are reported to the
IncrementalTaskInputs.outOfDate(org.gradle.api.Action) action, and no input files are reported to
the IncrementalTaskInputs.removed(org.gradle.api.Action) action:

Example: Running the incremental task with an output file removed

build.gradle

task removeOutput() {
dolLast {
file("$buildDir/outputs/1.txt").delete()
}

Output of gradle -q removeOutput incrementalReverse

> gradle -q removeQutput incrementalReverse
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted
the task outputs, so all input files are assumed to be out of date. So similar to the changed output
file example, all input files are reported to the
IncrementalTaskInputs.outOfDate(org.gradle.api.Action) action, and no input files are reported to
the IncrementalTaskInputs.removed(org.gradle.api.Action) action:

Example: Running the incremental task with an input property changed

../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
../dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Output of gradle -q -PtaskInputProperty=changed incrementalReverse

> gradle -q -PtaskInputProperty=changed incrementalReverse
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Storing incremental state for cached tasks

Using Gradle’s IncrementalTaskInputs is not the only way to create tasks that only works on changes
since the last execution. Tools like the Kotlin compiler provide incrementality as a built-in feature.
The way this is typically implemented is that the tool stores some analysis data about the state of
the previous execution in some file. If such state files are relocatable, then they can be declared as
outputs of the task. This way when the task’s results are loaded from cache, the next execution can
already use the analysis data loaded from cache, too.

However, if the state files are non-relocatable, then they can’t be shared via the build cache. Indeed,
when the task is loaded from cache, any such state files must be cleaned up to prevent stale state to
confuse the tool during the next execution. Gradle can ensure such stale files are removed if they
are declared via task.localState.register() or a property is marked with the @LocalState
annotation.

Declaring and Using Command Line Options

NOTE The API for exposing command line options is an incubating feature.

Sometimes a user wants to declare the value of an exposed task property on the command line
instead of the build script. Being able to pass in property values on the command line is particularly
helpful if they change more frequently. The task API supports a mechanism for marking a property
to automatically generate a corresponding command line parameter with a specific name at
runtime.

Declaring a command-line option

Exposing a new command line option for a task property is straightforward. You just have to
annotate the corresponding setter method of a property with Option. An option requires a
mandatory identifier. Additionally, you can provide an optional description. A task can expose as
many command line options as properties available in the class.

Let’s have a look at an example to illustrate the functionality. The custom task UrlVerify verifies
whether a given URL can be resolved by making a HTTP call and checking the response code. The
URL to be verified is configurable through the property url. The setter method for the property is
annotated with Option.

Example: Declaring a command line option

../javadoc/org/gradle/api/tasks/options/Option.html
../javadoc/org/gradle/api/tasks/options/Option.html

UrlVerify.java
import org.gradle.api.tasks.options.Option;

public class UrlVerify extends DefaultTask {
private String url;

(option = "url", description = "Configures the URL to be verified.")
public void setUrl(String url) {
this.url = url;

}

public String getUrl() {
return url;

}

public void verify() {
getLogger().quiet("Verifying URL '{}'", url);

// verify URL by making a HTTP call

All options declared for a task can be rendered as console output by running the help task and the
--task option.

Using an option on the command line

Using an option on the command line has to adhere to the following rules:

* The option uses a double-dash as prefix e.g. --url. A single dash does not qualify as valid syntax
for a task option.

« The option argument follows directly after the task declaration e.g. verifyUrl
--url=http://www.google.com/.

» Multiple options of a task can be declared in any order on the command line following the task
name.

Getting back to the previous example, the build script creates a task instance of type UrlVerify and
provides a value from the command line through the exposed option.

Example: Using a command line option

build.gradle

task verifyUrl(type: UrlVerify)

Output of gradle -q verifyUrl --url=http://www.google.com/

> gradle -q verifyUrl --url=http://www.google.com/
Verifying URL 'http://www.google.com/'

Supported data types for options

Gradle limits the set of data types that can be used for declaring command line options. The use on
the command line differ per type.

boolean, Boolean

Describes an option with the value true or false. Passing the option on the command line does
not require assigning a value. For example --enabled equates to true. The absence of the option
uses the default values assign to the property; that is false for boolean and null for the complex
data type.

String
Describes an option with an arbitrary String value. Passing the option on the command line
requires a Kkey-value pair of option and value separated by an equals sign e.g.
--containerId=2x94held.

enum

Describes an option as enum. The enum has to be passed on the command line as key-value pair
similar to the String type e.g. --1og-level=DEBUG. The provided value is not case sensitive.

List<String>, List<enum>

Describes an option that can takes multiple values of a given type. The values for the option have
to be provided as distinct declarations e.g. --imageld=123 --imageId=456. Other notations like
comma-separated lists or multiple values separated by a space character are currently not
supported.

Documenting available values for an option

In theory, an option for a property type String or List<String> can accept any arbitrary value.
Expected values for such an option can be documented programmatically with the help of the
annotation OptionValues. This annotation may be assigned to any method that returns a List of one
of the supported data types. In addition, you have to provide the option identifier to indicate the
relationship between option and available values.

Passing a value on the command line that is not supported by the option does not
NOTE fail the build or throw an exception. Youw’ll have to implement custom logic for such

behavior in the task action.

This example demonstrates the use of multiple options for a single task. The task implementation
provides a list of available values for the option output-type.

Example: Declaring available values for an option

../javadoc/org/gradle/api/tasks/options/OptionValues.html

UrlProcess.java

import org.gradle.api.tasks.options.Option;
import org.gradle.api.tasks.options.OptionValues;

public class UrlProcess extends DefaultTask {
private String url;
private OutputType outputType;
@0ption(option = "url", description = "Configures the URL to be write to the
output.")
public void setUrl(String url) {
this.url = url;

}

@Input
public String getUrl() {
return url;

}

@ption(option = "output-type", description = "Configures the output type.")
public void setOutputType(OutputType outputType) {

this.outputType = outputType;
}

@0ptionValues("output-type")
public List<OutputType> getAvailableOutputTypes() {
return new ArraylList<OutputType>(Arrays.asList(OutputType.values()));

}

@Input

public OutputType getOutputType() {
return outputType;

}

@TaskAction
public void process() {
getLogger().quiet("Writing out the URL reponse from '{}' to '{}
outputType);

, url,

// retrieve content from URL and write to output

}

private static enum OutputType {
CONSOLE, FILE
}

Listing command line options

Command line options using the annotations Option and OptionValues are self-documenting. You
will see declared options and their available values reflected in the console output of the help task.
The output renders options in alphabetical order.

Example: Listing available values for option

Output of gradle -q help --task processUrl

> gradle -q help --task processUrl
Detailed task information for processUrl

Path
:processUrl

Type
Ur1Process (UrlProcess)

Options
--output-type Configures the output type.
Available values are:
CONSOLE
FILE

--url Configures the URL to be write to the output.

Description

Group

Limitations

Support for declaring command line options currently comes with a few limitations.

* Command line options can only be declared for custom tasks via annotation. There’s no
programmatic equivalent for defining options.

* Options cannot be declared globally e.g. on a project-level or as part of a plugin.

* When assigning an option on the command line then the task exposing the option needs to be
spelled out explicitly e.g. gradle check --tests abc does not work even though the check task
depends on the test task.

The Worker API
NOTE The Worker API is an incubating feature.

As can be seen from the discussion of incremental tasks, the work that a task performs can be

../javadoc/org/gradle/api/tasks/options/Option.html
../javadoc/org/gradle/api/tasks/options/OptionValues.html

viewed as discrete units (i.e. a subset of inputs that are transformed to a certain subset of outputs).
Many times, these units of work are highly independent of each other, meaning they can be
performed in any order and simply aggregated together to form the overall action of the task. In a
single threaded execution, these units of work would execute in sequence, however if we have
multiple processors, it would be desirable to perform independent units of work concurrently. By
doing so, we can fully utilize the available resources at build time and complete the activity of the
task faster.

The Worker API provides a mechanism for doing exactly this. It allows for safe, concurrent
execution of multiple items of work during a task action. But the benefits of the Worker API are not
confined to parallelizing the work of a task. You can also configure a desired level of isolation such
that work can be executed in an isolated classloader or even in an isolated process. Furthermore,
the benefits extend beyond even the execution of a single task. Using the Worker API, Gradle can
begin to execute tasks in parallel by default. In other words, once a task has submitted its work to
be executed asynchronously, and has exited the task action, Gradle can then begin the execution of
other independent tasks in parallel, even if those tasks are in the same project.

Using the Worker API

In order to submit work to the Worker API, two things must be provided: an implementation of the
unit of work, and a configuration for the unit of work. The implementation is simply a class that
extends java.lang.Runnable. This class should have a constructor that is annotated with
javax.inject.Inject and accepts parameters that configure the class for a single unit of work. When
a unit of work is submitted to the WorkerExecutor, an instance of this class will be created and the
parameters configured for the unit of work will be passed to the constructor.

Example: Creating a unit of work implementation

../javadoc/org/gradle/workers/WorkerExecutor.html

build.gradle

import org.gradle.workers.WorkerExecutor
import javax.inject.Inject

// The implementation of a single unit of work
class ReverseFile implements Runnable {

File fileToReverse

File destinationFile

@Inject

public ReverseFile(File fileToReverse, File destinationFile) {
this.fileToReverse = fileToReverse
this.destinationFile = destinationFile

@0verride
public void run() {
destinationFile.text = fileToReverse.text.reverse()

}

The configuration of the worker is represented by a WorkerConfiguration and is set by configuring
an instance of this object at the time of submission. However, in order to submit the unit of work, it
is necessary to first acquire the WorkerExecutor. To do this, a constructor should be provided that
is annotated with javax.inject.Inject and accepts a WorkerExecutor parameter. Gradle will inject
the instance of WorkerExecutor at runtime when the task is created.

Example: Submitting a unit of work for execution

../javadoc/org/gradle/workers/WorkerConfiguration.html
../javadoc/org/gradle/workers/WorkerExecutor.html
../javadoc/org/gradle/workers/WorkerExecutor.html
../javadoc/org/gradle/workers/WorkerExecutor.html

build.gradle

class ReverseFiles extends SourceTask {
final WorkerExecutor workerExecutor

@OutputDirectory
File outputDir

// The WorkerExecutor will be injected by Gradle at runtime

@Inject

public ReverseFiles(WorkerExecutor workerExecutor) {
this.workerExecutor = workerExecutor

}

@TaskAction
void reverseFiles() {
// Create and submit a unit of work for each file
source.each { file ->
workerExecutor.submit(ReverseFile.class) { WorkerConfiguration config ->
// Use the minimum level of isolation
config.isolationMode = IsolationMode.NONE

// Constructor parameters for the unit of work implementation
config.params file, project.file("%{outputDir}/${file.name}")

Note that one element of the WorkerConfiguration is the params property. These are the parameters
passed to the constructor of the unit of work implementation for each item of work submitted. Any
parameters provided to the unit of work must be java.io.Serializable.

Once all of the work for a task action has been submitted, it is safe to exit the task action. The work
will be executed asynchronously and in parallel (up to the setting of max-workers). Of course, any
tasks that are dependent on this task (and any subsequent task actions of this task) will not begin
executing until all of the asynchronous work completes. However, other independent tasks that
have no relationship to this task can begin executing immediately.

If any failures occur while executing the asynchronous work, the task will fail and a
WorkerExecutionException will be thrown detailing the failure for each failed work item. This will
be treated like any failure during task execution and will prevent any dependent tasks from
executing.

In some cases, however, it might be desirable to wait for work to complete before exiting the task
action. This is possible using the WorkerExecutor.await() method. As in the case of allowing the
work to complete asynchronously, any failures that occur while executing an item of work will be
surfaced as a WorkerExecutionException thrown from the WorkerExecutor.await() method.

../javadoc/org/gradle/workers/WorkerConfiguration.html
../javadoc/org/gradle/workers/WorkerExecutionException.html
../javadoc/org/gradle/workers/WorkerExecutor.html#await--
../javadoc/org/gradle/workers/WorkerExecutionException.html
../javadoc/org/gradle/workers/WorkerExecutor.html#await--

Note that Gradle will only begin running other independent tasks in parallel when a
task has exited a task action and returned control of execution to Gradle. When

NOTE WorkerExecutor.await() is used, execution does not leave the task action. This
means that Gradle will not allow other tasks to begin executing and will wait for the
task action to complete before doing so.

Example: Waiting for asynchronous work to complete

build.gradle

// Create and submit a unit of work for each file
source.each { file ->
workerExecutor.submit(ReverseFile.class) { config ->
config.isolationMode = IsolationMode.NONE
// Constructor parameters for the unit of work implementation
config.params file, project.file("${outputDir}/${file.name}")

}

// Wait for all asynchronous work to complete before continuing
workerExecutor.await()

logger.lifecycle("Created ${outputDir.listFiles().size()} reversed files in ${project
.relativePath(outputDir)}")

Isolation Modes

Gradle provides three isolation modes that can be configured on a unit of work and are specified
using the IsolationMode enum:

IsolationMode.NONE

This states that the work should be run in a thread with a minimum of isolation. For instance, it
will share the same classloader that the task is loaded from. This is the fastest level of isolation.

IsolationMode.CLASSLOADER

This states that the work should be run in a thread with an isolated classloader. The classloader
will have the classpath from the classloader that the unit of work implementation class was
loaded from as well as any additional classpath entries added through
WorkerConfiguration.classpath(java.lang.Iterable).

IsolationMode.PROCESS

This states that the work should be run with a maximum level of isolation by executing the work
in a separate process. The classloader of the process will use the classpath from the classloader
that the unit of work was loaded from as well as any additional classpath entries added through
WorkerConfiguration.classpath(java.lang.Iterable). Furthermore, the process will be a Worker
Daemon which will stay alive and can be reused for future work items that may have the same
requirements. This process can be configured with different settings than the Gradle JVM using
WorkerConfiguration.forkOptions(org.gradle.api.Action).

../javadoc/org/gradle/workers/WorkerExecutor.html#await--
../javadoc/org/gradle/workers/IsolationMode.html
../javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
../javadoc/org/gradle/workers/WorkerConfiguration.html#classpath-java.lang.Iterable-
../javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

Worker Daemons

When using IsolationMode.PROCESS, gradle will start a long-lived Worker Daemon process that can
be reused for future work items.

Example: Submitting an item of work to run in a worker daemon

build.gradle

workerExecutor.submit(ReverseFile.class) { WorkerConfiguration config ->
// Run this work in an isolated process
config.isolationMode = IsolationMode.PROCESS

// Configure the options for the forked process
config.forkOptions { JavaForkOptions options ->
options.maxHeapSize = "512m"
options.systemProperty "org.gradle.sample.showFileSize", "true"

}

// Constructor parameters for the unit of work implementation
config.params file, project.file("${outputDir}/${file.name}")

When a unit of work for a Worker Daemon is submitted, Gradle will first look to see if a compatible,
idle daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as
busy. If not, it will start a new daemon. When evaluating compatibility, Gradle looks at a number of
criteria, all of which can be controlled through
WorkerConfiguration.forkOptions(org.gradle.api.Action).

executable

A daemon is considered compatible only if it uses the same java executable.

classpath

A daemon is considered compatible if its classpath contains all of the classpath entries
requested. Note that a daemon is considered compatible if it has more classpath entries in
addition to those requested.

heap settings

A daemon is considered compatible if it has at least the same heap size settings as requested. In
other words, a daemon that has higher heap settings than requested would be considered
compatible.

jvm arguments

A daemon is considered compatible if it has set all of the jvm arguments requested. Note that a
daemon is considered compatible if it has additional jvm arguments beyond those requested
(except for arguments treated specially such as heap settings, assertions, debug, etc).

system properties

A daemon is considered compatible if it has set all of the system properties requested with the

../javadoc/org/gradle/workers/WorkerConfiguration.html#forkOptions-org.gradle.api.Action-

same values. Note that a daemon is considered compatible if it has additional system properties
beyond those requested.

environment variables

A daemon is considered compatible if it has set all of the environment variables requested with
the same values. Note that a daemon is considered compatible if it has more environment
variables in addition to those requested.

bootstrap classpath

A daemon is considered compatible if it contains all of the bootstrap classpath entries requested.
Note that a daemon is considered compatible if it has more bootstrap classpath entries in
addition to those requested.

debug

A daemon is considered compatible only if debug is set to the same value as requested (true or
false).

enable assertions

A daemon is considered compatible only if enable assertions is set to the same value as
requested (true or false).

default character encoding

A daemon is considered compatible only if the default character encoding is set to the same
value as requested.

Worker daemons will remain running until either the build daemon that started them is stopped, or
system memory becomes scarce. When available system memory is low, Gradle will begin stopping
worker daemons in an attempt to minimize memory consumption.

Re-using logic between task classes

There are different ways to re-use logic between task classes. The easiest case is when you can
extract the logic you want to share in a separate method or class and then use the extracted piece of
code in vyour tasks. For example, the Copy task re-uses the logic of the
Project.copy(org.gradle.api.Action) method. Another option is to add a task dependency on the task
which outputs you want to re-use. Other options include using task rules or the worker API.

The Base Plugin

The Base Plugin provides some tasks and conventions that are common to most builds and adds a
structure to the build that promotes consistency in how they are run. Its most significant
contribution is a set of lifecycle tasks that act as an umbrella for the more specific tasks provided by
other plugins and build authors.

Usage

../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Example: Applying the Base Plugin

build.gradle

plugins {
id 'base'

}

Task

clean — Delete

Deletes the build directory and everything in it, i.e. the path specified by the Project.getBuildDir()
project property.

check — lifecycle task

Plugins and build authors should attach their verification tasks, such as ones that run tests, to
this lifecycle task using check.dependsOn(task).

assemble — lifecycle task

Plugins and build authors should attach tasks that produce distributions and other consumable
artifacts to this lifecycle task. For example, jar produces the consumable artifact for Java
libraries. Attach tasks to this lifecycle task using assemble.dependsOn(task).

build — lifecycle task

Depends on: check, assemble

Intended to build everything, including running all tests, producing the production artifacts and
generating documentation. You will probably rarely attach concrete tasks directly to build as
assemble and check are typically more appropriate.

buildConfiquration — task rule

Assembles those artifacts attached to the named configuration. For example, buildArchives will
execute any task that is required to create any artifact attached to the archives configuration.

uploadConfiquration — task rule

Does the same as buildConfiguration, but also uploads all the artifacts attached to the given
configuration.

cleanTask — task rule

Removes the defined outputs of a task, e.g. clean]ar will delete the JAR file produced by the jar
task of the Java Plugin.

Dependency management

The Base Plugin adds no configurations for dependencies, but it does add the following
configurations for artifacts:

default

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir

A fallback configuration used by consumer projects. Let’s say you have project B with a project
dependency on project A. Gradle uses some internal logic to determine which of project A’s
artifacts and dependencies are added to the specified configuration of project B. If no other
factors apply — you don’t need to worry what these are — then Gradle falls back to using
everything in project A’s default configuration.

New builds and plugins should not be using the default configuration! It remains for the
reason of backwards compatibility.

archives

A standard configuration for the production artifacts of a project. This results in an
uploadArchives task for publishing artifacts attached to the archives configuration.

Note that the assemble task generates all artifacts that are attached to the archives configuration.

Conventions

The Base Plugin only adds conventions related to the creation of archives, such as ZIPs, TARs and
JARs. Specifically, it provides the following project properties that you can set:

archivesBaseName — default: $project.name

Provides the default AbstractArchiveTask.getBaseName() for archive tasks.

distsDirName — default: distributions

Default name of the directory in which distribution archives, i.e. non-JARs, are created.

libsDirName — default: libs

Default name of the directory in which library archives, i.e. JARs, are created.

The plugin also provides default values for the following properties on any task that extends
AbstractArchiveTask:

destinationDir

Defaults to $buildDir/$distsDirName for non-JAR archives and $buildDir/$1ibsDirName for JARs
and derivatives of JAR, such as WARs.

version

Defaults to $project.version or 'unspecified' if the project has no version.

baseName
Defaults to $archivesBaseName.

../dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:baseName
../dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

Dependency Management

Introduction to Dependency Management

What is dependency management?

Software projects rarely work in isolation. In most cases, a project relies on reusable functionality
in the form of libraries or is broken up into individual components to compose a modularized
system. Dependency management is a technique for declaring, resolving and using dependencies
required by the project in an automated fashion.

For a general overview on the terms used throughout the user guide, refer to

NOTE .
Dependency Management Terminology.

Dependency management in Gradle

Gradle has built-in support for dependency management and lives up the task of fulfilling typical
scenarios encountered in modern software projects. We’ll explore the main concepts with the help
of an example project. The illustration below should give you an rough overview on all the moving
parts.

Local File
Repository

dCCesS

artifacts download Maven

artifacts / Repository

Gradle

\ I
Build
\ lvy
store access Repository
artifacts artifacts

Gradle
Cache

Figure 12. Dependency management big picture

The example project builds Java source code. Some of the Java source files import classes from
Google Guava, a open-source library providing a wealth of utility functionality. In addition to
Guava, the project needs the JUnit libraries for compiling and executing test code.

Guava and JUnit represent the dependencies of this project. A build script developer can declare
dependencies for different scopes e.g. just for compilation of source code or for executing tests. In
Gradle, the scope of a dependency is called a configuration. For a full overview, see the reference
material on dependency types.

Often times dependencies come in the form of modules. You’ll need to tell Gradle where to find
those modules so they can be consumed by the build. The location for storing modules is called a
repository. By declaring repositories for a build, Gradle will know how to find and retrieve
modules. Repositories can come in different forms: as local directory or a remote repository. The
reference on repository types provides a broad coverage on this topic.

At runtime, Gradle will locate the declared dependencies if needed for operating a specific task. The
dependencies might need to be downloaded from a remote repository, retrieved from a local
directory or requires another project to be built in a multi-project setting. This process is called
dependency resolution. You can find a detailed discussion in How dependency resolution works.

Once resolved, the resolution mechanism stores the underlying files of a dependency in a local

https://github.com/google/guava
http://junit.org/junit5/

cache, also referred to as the dependency cache. Future builds reuse the files stored in the cache to
avoid unnecessary network calls.

Modules can provide additional metadata. Metadata is the data that describes the module in more
detail e.g. the coordinates for finding it in a repository, information about the project, or its authors.
As part of the metadata, a module can define that other modules are needed for it to work properly.
For example, the JUnit 5 platform module also requires the platform commons module. Gradle
automatically resolves those additional modules, so called transitive dependencies. If needed, you
can customize the behavior the handling of transitive dependencies to your project’s requirements.

Projects with tens or hundreds of declared dependencies can easily suffer from dependency hell.
Gradle provides sufficient tooling to visualize, navigate and analyze the dependency graph of a
project either with the help of a build scan or built-in tasks. Learn more in Inspecting
Dependencies.

[] ® < il i scans.gradle.com W u] 4
| ﬂ Build Scan e{ v gradle :coreitest Sep 27, 2017 2:00:13 PM MST

= Summary

=

214 dependencies resolved in 70 projects across 156 configurations
[*] Console log

+## Timeline -

Wp Performance AANNOUNCe 3

:E| T antlr »

= :baseServices -

_rh Projects compileClasspath ~ {2
com.google.code findbugs:jsr305:1.3.9

29 Dependencies i -
com.google guava:guava-jdk5:17.0

s Plugins commans-io:commons-io:2,2

o commans-lang:commons-lang: 2.6

f= Custom values
net.jcip:;jcip-annotations: 1.0

Switches org.slf4jslfdj-api:1.7.10

-

=

B Infrastructure runtimeClasspath »
testFixturesCompileClasspath »

ThateServicscGrmmne

Figure 13. Build scan dependencies report

How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all
of your dependencies by a process called dependency resolution. Below is a brief outline of how this
process works.

* Given a required dependency, Gradle attempts to resolve the dependency by searching for the
module the dependency points at. Each repository is inspected in order. Depending on the type
of repository, Gradle looks for metadata files describing the module (.module, .pom or ivy.xml
file) or directly for artifact files.

https://scans.gradle.com/get-started

* If the dependency is declared as a dynamic version (like 1.+), Gradle will resolve this to the
highest available concrete version (like 1.2) in the repository. For Maven repositories, this is
done using the maven-metadata.xml file, while for Ivy repositories this is done by directory
listing.

* If the module metadata is a POM file that has a parent POM declared, Gradle will recursively
attempt to resolve each of the parent modules for the POM.
* Once each repository has been inspected for the module, Gradle will choose the 'best' one to use.
This is done using the following criteria:
» For a dynamic version, a 'higher' concrete version is preferred over a lower' version.

* Modules declared by a module metadata file (.module, .pom or ivy.xml file) are preferred over
modules that have an artifact file only.

* Modules from earlier repositories are preferred over modules in later repositories.

* When the dependency is declared by a concrete version and a module metadata file is found
in a repository, there is no need to continue searching later repositories and the remainder
of the process is short-circuited.

 All of the artifacts for the module are then requested from the same repository that was chosen
in the process above.

The dependency resolution process is highly customizable to meet enterprise requirements. For
more information, see the chapter on customizing dependency resolution.

Dependency Management Terminology

Dependency management comes with a wealth of terminology. Here you can find the most
commonly-used terms including references to the user guide to learn about their practical
application.

Configuration

A configuration is a named set of dependencies grouped together for a specific goal: For example
the implementation configuration represents the set of dependencies required to compile a project.
Configurations provide access to the underlying, resolved modules and their artifacts. For more
information, see Managing Dependency Configurations.

The word "configuration" is an overloaded term and has a different meaning

NOTE
outside of the context of dependency management.

Dependency

A dependency is a pointer to another piece of software required to build, test or run a module. For
more information, see Declaring Dependencies.

Dependency constraint

A dependency constraint defines requirements that need to be met by a module to make it a valid
resolution result for the dependency. For example, a dependency constraint can narrow down the
set of supported module versions. Dependency constraints can be used to express such
requirements for transitive dependencies. For more information, see Dependency Constraints.

Module

A piece of software that evolves over time e.g. Google Guava. Every module has a name. Each
release of a module is optimally represented by a module version. For convenient consumption,
modules can be hosted in a repository.

Module metadata

Releases of a module can provide metadata. Metadata is the data that describes the module in more
detail e.g. the coordinates for locating it in a repository, information about the project or required
transitive dependencies. In Maven the metadata file is called .pom, in Ivy it is called ivy.xml.

Module version

A module version represents a distinct set of changes of a released module. For example 18.0
represents the version of the module with the coordinates com.google:quava:18.0. In practice there’s
no limitation to the scheme of the module version. Timestamps, numbers, special suffixes like -GA
are all allowed identifiers. The most widely-used versioning strategy is semantic versioning.

Repository

A repository hosts a set of modules, each of which may provide one or many releases indicated by a
module version. The repository can be based on a binary repository product (e.g. Artifactory or
Nexus) or a directory structure in the filesystem. For more information, see Declaring Repositories.

Resolution rule

A resolution rule influences the behavior of how a dependency is resolved. Resolution rules are
defined as part of the build logic. For more information, see Customizing Dependency Resolution
Behavior.

Transitive dependency

A module can have dependencies on other modules to work properly, so-called transitive
dependencies. Releases of a module hosted on a repository can provide metadata to declare those
transitive dependencies. By default, Gradle resolves transitive dependencies automatically.
However, the behavior is highly customizable. For more information, see Managing Transitive
Dependencies.

https://github.com/google/guava
https://semver.org/

Dependency Types

Module dependencies

Module dependencies are the most common dependencies. They refer to a module in a repository.

Example: Module dependencies

build.gradle

dependencies {
runtime group: 'org.springframework', name: 'spring-core', version: '2.5'
runtime 'org.springframework:spring-core:2.5",
'org.springframework:spring-aop:2.5'
runtime(
[group: 'org.springframework', name: 'spring-core', version: '2.5'],
[group: 'org.springframework', name: 'spring-aop', version: '2.5']
)
runtime('org.hibernate:hibernate:3.0.5") {
transitive = true
}
runtime group: 'org.hibernate', name: 'hibernate', version: '3.0.5', transitive:
true
runtime(group: 'org.hibernate', name: 'hibernate', version: '3.0.5") {
transitive = true

}

See the DependencyHandler class in the API documentation for more examples and a complete
reference.

Gradle provides different notations for module dependencies. There is a string notation and a map
notation. A module dependency has an API which allows further configuration. Have a look at
ExternalModuleDependency to learn all about the API. This API provides properties and
configuration methods. Via the string notation you can define a subset of the properties. With the
map notation you can define all properties. To have access to the complete API, either with the map
or with the string notation, you can assign a single dependency to a configuration together with a
closure.

If you declare a module dependency, Gradle looks for a module metadata file
(.module, .pom or ivy.xml) in the repositories. If such a module metadata file exists, it
is parsed and the artifacts of this module (e.g. hibernate-3.0.5.jar) as well as its
dependencies (e.g. cglib) are downloaded. If no such module metadata file exists,
Gradle may look, depending on the metadata sources definitions, for an artifact file
called hibernate-3.0.5.jar directly. In Maven, a module can have one and only one
artifact. In Gradle and Ivy, a module can have multiple artifacts. Each artifact can
have a different set of dependencies.

NOTE

../dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
../javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding
them to a repository. This can be useful if you cannot, or do not want to, place certain files in a
repository. Or if you do not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a file collection as a
dependency:

Example: File dependencies

build.gradle

dependencies {
runtime files('libs/a.jar', 'libs/b.jar")
runtime fileTree(dir: 'libs', include: '*.jar')

File dependencies are not included in the published dependency descriptor for your project.
However, file dependencies are included in transitive project dependencies within the same build.
This means they cannot be used outside the current build, but they can be used with the same
build.

You can declare which tasks produce the files for a file dependency. You might do this when, for
example, the files are generated by the build.

Example: Generated file dependencies

build.gradle

dependencies {
compile files("$buildDir/classes") {
builtBy 'compile'
}
}

task compile {
dolLast {
println 'compiling classes'
}
¥

task list(dependsOn: configurations.compile) {
dolast {
println "classpath = ${configurations.compile.collect { File file -> file.name
H
}
}

Output of gradle -q list

> gradle -q list
compiling classes
classpath = [classes]

Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part
of the same multi-project build. For the latter you can declare project dependencies.

Example: Project dependencies

build.gradle

dependencies {
compile project(':shared")

}

For more information see the API documentation for ProjectDependency.

Multi-project builds are discussed in this chapter.

Gradle distribution-specific dependencies

Gradle API dependency

You can declare a dependency on the API of the current version of Gradle by using the
DependencyHandler.gradleApi() method. This is useful when you are developing custom Gradle
tasks or plugins.

Example: Gradle API dependencies

build.gradle

dependencies {
compile gradleApi()
¥

Gradle TestKit dependency

You can declare a dependency on the TestKit API of the current version of Gradle by using the
DependencyHandler.gradleTestKit() method. This is useful for writing and executing functional
tests for Gradle plugins and build scripts.

Example: Gradle TestKit dependencies

../javadoc/org/gradle/api/artifacts/ProjectDependency.html
../dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
../dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()

build.gradle

dependencies {
testCompile gradleTestKit()

}

The TestKit chapter explains the use of TestKit by example.

Local Groovy dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandler.localGroovy() method. This is useful when you are developing custom Gradle
tasks or plugins in Groovy.

Example: Gradle’s Groovy dependencies

build.gradle

dependencies {
compile localGroovy()

}

Repository Types

Flat directory repository

Some projects might prefer to store dependencies on a shared drive or as part of the project source
code instead of a binary repository product. If you want to use a (flat) filesystem directory as a
repository, simply type:

Example: Flat repository resolver

build.gradle

repositories {
flatDir {
dirs 'lib’
}
flatDir {
dirs 'lib1', '1ib2'
}

This adds repositories which look into one or more directories for finding dependencies. Note that
this type of repository does not support any meta-data formats like Ivy XML or Maven POM files.
Instead, Gradle will dynamically generate a module descriptor (without any dependency
information) based on the presence of artifacts. However, as Gradle prefers to use modules whose
descriptor has been created from real meta-data rather than being generated, flat directory

../dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

repositories cannot be used to override artifacts with real meta-data from other repositories. For
example, if Gradle finds only jmxri-1.2.17.jar in a flat directory repository, but jmxri-1.2.7.pom in
another repository that supports meta-data, it will use the second repository to provide the module.

For the use case of overriding remote artifacts with local ones consider using an Ivy or Maven
repository instead whose URL points to a local directory. If you only work with flat directory
repositories you don’t need to set all attributes of a dependency.

Maven Central repository

Maven Central is a popular repository hosting open source libraries for consumption by Java
projects.

To declare the central Maven repository for your build add this to your script:

Example: Adding central Maven repository

build.gradle

repositories {
mavenCentral()

}

JCenter Maven repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts
published directly to Bintray.

To declare the JCenter Maven repository add this to your build script:

Example: Adding Bintray’s JCenter Maven repository

build.gradle

repositories {
jecenter()

}

Google Maven repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage
examples, see the relevant documentation.

To declare the Google Maven repository add this to your build script:

Example: Adding Google Maven repository

https://repo.maven.apache.org/maven2/
http://bintray.com
https://jcenter.bintray.com
https://developer.android.com/studio/build/dependencies.html#google-maven
https://maven.google.com/

build.gradle

repositories {
google()
}

Local Maven repository

Gradle can consume dependencies available in the local Maven repository. Declaring this
repository is beneficial for teams that publish to the local Maven repository with one project and
consume the artifacts by Gradle in another project.

Gradle stores resolved dependencies in its own cache. A build does not need to
NOTE declare the local Maven repository even if you resolve dependencies from a Maven-
based, remote repository.

To declare the local Maven cache as a repository add this to your build script:

Example: Adding the local Maven cache as a repository

build.gradle

repositories {
mavenLocal()

}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local
repository location is defined in a settings.xml, this location will be used. The settings.xml in
USER_HOME/.m2 takes precedence over the settings.xml in M2 HOME/conf. If no settings.xml is
available, Gradle uses the default location USER_HOME/.m2/repository.

Custom Maven repositories

Many organizations host dependencies in an in-house Maven repository only accessible within the
company’s network. Gradle can declare Maven repositories by URL.

For adding a custom Maven repository you can do:

Example: Adding custom Maven repository

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"

https://maven.apache.org/guides/introduction/introduction-to-repositories.html

Sometimes a repository will have the POMs published to one location, and the JARs and other
artifacts published at another location. To define such a repository, you can do:

Example: Adding additional Maven repositories for JAR files

build.gradle

repositories {
maven {
// Look for POMs and artifacts, such as JARs, here
url "http://repo2.mycompany.com/maven2"
// Look for artifacts here if not found at the above location
artifactUrls "http://repo.mycompany.com/jars"
artifactUrls "http://repo.mycompany.com/jars2"

Gradle will look at the first URL for the POM and the JAR. If the JAR can’t be found there, the artifact
URLSs are used to look for JARs.

See Configuring HTTP authentication schemes for authentication options.

Custom Ivy repositories

Organizations might decide to host dependencies in an in-house Ivy repository. Gradle can declare
Ivy repositories by URL.

Defining an Ivy repository with a standard layout

To declare an Ivy repository using the standard layout no additional customization is needed. You
just declare the URL.

Example: Ivy repository

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
}

Defining a named layout for an Ivy repository

You can specify that your repository conforms to the Ivy or Maven default layout by using a named
layout.

Example: Ivy repository with named layout

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
layout "maven"

Valid named layout values are 'gradle' (the default), 'maven’, 'ivy' and 'pattern'. See
IvyArtifactRepositorylayout(java.lang.String, groovy.lang.Closure) in the API documentation for
details of these named layouts.

Defining custom pattern layout for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a 'pattern' layout for the
repository:

Example: Ivy repository with pattern layout

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
layout "pattern", {
artifact "[module]/[revision]/[type]/[artifact].[ext]"
}

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can
define separate patterns to use to locate the Ivy files and artifacts:

Each artifact or ivy specified for a repository adds an additional pattern to use. The patterns are
used in the order that they are defined.

Example: Ivy repository with multiple custom patterns

../dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String,%20groovy.lang.Closure)

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
layout "pattern", {
artifact "3rd-party-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
artifact "company-artifacts/[organisation]/[module]/[revision]/[artifact]-
[revision].[ext]"
ivy "ivy-files/[organisation]/[module]/[revision]/ivy.xml"

}

Optionally, a repository with pattern layout can have its 'organisation’ part laid out in Maven style,
with forward slashes replacing dots as separators. For example, the organisation my.company would
then be represented as my/company.

Example: Ivy repository with Maven compatible layout

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
layout "pattern", {
artifact "[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
m2compatible = true

Accessing password-protected Ivy repositories

You can specify credentials for Ivy repositories secured by basic authentication.

Example: Ivy repository with authentication

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com"
credentials {
username "user"
password "password"

Supported metadata sources

When searching for a module in a repository, Gradle, by default, checks for supported metadata file
formats in that repository. In a Maven repository, Gradle looks for a .pom file, in an ivy repository it
looks for an ivy.xml file and in a flat directory repository it looks directly for .jar files as it does not
expect any metadata. Starting with 5.0, Gradle also looks for .module (Gradle module metadata) files.

However, if you define a customized repository you might want to configure this behavior. For
example, you can define a Maven repository without .pom files but only jars. To do so, you can
configure metadata sources for any repository.

Example: Maven repository that supports artifacts without metadata

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/repo"
metadataSources {
mavenPom()
artifact()

You can specify multiple sources to tell Gradle to keep looking if a file was not found. In that case,
the order of checking for sources is predefined.

The following metadata sources are supported:

Table 6. Repository transport protocols

Metadata Description Orde Mave Ivy/flat
source r n dir

gradleMetadata() Look for Gradle .module files 1st yes yes

mavenPom() Look for Maven .pomfiles 2nd yes yes

Metadata Description Orde Mave Ivy/flat

source r n dir
ivyDescriptor() Look for ivy.xml files 2nd no yes
artifact() Look directly for artifact 3rd yes yes

The defaults for Ivy and Maven repositories change with Gradle 5.0. Before 5.0,
artifact() was included in the defaults. Leading to some inefficiency when modules

NOTE are missing completely. To restore this behavior, for example, for Maven central you
can use mavenCentral { mavenPom(); artifact() }.In a similar way, you can opt into
the new behavior in older Gradle verisions using mavenCentral { mavenPom() }

Supported repository transport protocols

Maven and Ivy repositories support the use of various transport protocols. At the moment the
following protocols are supported:

Table 7. Repository transport protocols

Type Credential types

file none

http username/password

https username/password

sftp username/password

s3 access key/secret key/session token or Environment variables

9¢s default application credentials sourced from well known files, Environment variables etc.

Username and password should never be checked in plain text into version control
as part of your build file. You can store the credentials in a local gradle.properties
file and use one of the open source Gradle plugins for encrypting and consuming
credentials e.g. the credentials plugin.

NOTE

The transport protocol is part of the URL definition for a repository. The following build script
demonstrates how to create a HTTP-based Maven and Ivy repository:

Example: Declaring a Maven and Ivy repository

https://developers.google.com/identity/protocols/application-default-credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"

}
ivy {

url "http://repo.mycompany.com/repo"
}

The following example shows how to declare SFTP repositories:

Example: Using the SFTP protocol for a repository

build.gradle

repositories {
maven {
url "sftp://repo.mycompany.com:22/maven2"
credentials {
username "user"
password "password"

}
}
ivy {
url "sftp://repo.mycompany.com:22/repo"”
credentials {
username "user"
password "password"
}
}

When using an AWS S3 backed repository you need to authenticate using AwsCredentials,
providing access-key and a private-key. The following example shows how to declare a S3 backed
repository and providing AWS credentials:

Example: Declaring a S3 backed Maven and Ivy repository

../dsl/org.gradle.api.credentials.AwsCredentials.html

build.gradle

repositories {
maven {

url "s3://myCompanyBucket/maven2"

credentials(AwsCredentials) {
accessKey "someKey"
secretKey "someSecret"
// optional
sessionToken "someSTSToken"

}
}
vy {
url "s3://myCompanyBucket/ivyrepo"
credentials(AwsCredentials) {
accessKey "someKey"
secretKey "someSecret"
// optional
sessionToken "someSTSToken"
}
}

You can also delegate all credentials to the AWS sdk by using the AwsImAuthentication. The
following example shows how:

Example: Declaring a S3 backed Maven and Ivy repository using IAM

build.gradle

repositories {
maven {
url "s3://myCompanyBucket/maven2"
authentication {
awsIm(AwsImAuthentication) // load from EC2 role or env var

}
}
ivy {
url "s3://myCompanyBucket/ivyrepo"
authentication {
awsIm(AwsImAuthentication)
}
}

When using a Google Cloud Storage backed repository default application credentials will be used
with no further configuration required:

Example: Declaring a Google Cloud Storage backed Maven and Ivy repository using default
application credentials

build.gradle

repositories {
maven {
url "gcs://myCompanyBucket/maven2"

}
ivy {

url "gcs://myCompanyBucket/ivyrepo"
}

S3 configuration properties
The following system properties can be used to configure the interactions with s3 repositories:

org.gradle.s3.endpoint

Used to override the AWS S3 endpoint when using a non AWS, S3 API compatible, storage
service.

org.gradle.s3.maxErrorRetry

Specifies the maximum number of times to retry a request in the event that the S3 server
responds with a HTTP 5xx status code. When not specified a default value of 3 is used.

S3 URL formats

S3 URL’s are 'virtual-hosted-style' and must be in the following format

s3://<bucketName>[.<regionSpecificEndpoint>]/<s3Key>

e.g.s3://myBucket.s3.eu-central-1.amazonaws.com/maven/release

* myBucket is the AWS S3 bucket name.
* s3.eu-central-1.amazonaws.com is the optional region specific endpoint.

» /maven/release is the AWS S3 key (unique identifier for an object within a bucket)

S3 proxy settings
A proxy for S3 can be configured using the following system properties:

« https.proxyHost

« https.proxyPort

« https.proxyUser

o https.proxyPassword
« http.nonProxyHosts

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

If the 'org.gradle.s3.endpoint' property has been specified with a http (not https) URI the following
system proxy settings can be used:

« http.proxyHost
o http.proxyPort
« http.proxyUser
o http.proxyPassword
o http.nonProxyHosts

AWS S3 V4 Signatures (AWS4-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS’s signature version 4. It is recommended to specify S3 URL’s containing the
region specific endpoint when using buckets that require V4 signatures. e.g.

s3://somebucket.s3.eu-central-1.amazonaws.com/maven/release

When a region-specific endpoint is not specified for buckets requiring V4
Signatures, Gradle will use the default AWS region (us-east-1) and the following
warning will appear on the console:

Attempting to re-send the request to with AWS V4 authentication. To avoid this
warning in the future, use region-specific endpoint to access buckets located in

NOTE regions that require V4 signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures
means:

« 3 round-trips to AWS, as opposed to one, for every file upload and download.
« Depending on location - increased network latencies and slower builds.

e Increased likelihood of transmission failures.

AWS S3 Cross Account Access

Some organizations may have multiple AWS accounts, e.g. one for each team. The AWS account of
the bucket owner is often different from the artifact publisher and consumers. The bucket owner
needs to be able to grant the consumers access otherwise the artifacts will only be usable by the
publisher’s account. This is done by adding the bucket-owner-full-control Canned ACL to the
uploaded objects. Gradle will do this in every upload. Make sure the publisher has the required IAM
permission, PutObjectAcl (and PutObjectVersionAcl if bucket versioning is enabled), either directly
or via an assumed IAM Role (depending on your case). You can read more at AWS S3 Access
Permissions.

Google Cloud Storage configuration properties

The following system properties can be used to configure the interactions with Google Cloud
Storage repositories:

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://cloud.google.com/storage/
https://cloud.google.com/storage/

org.gradle.gcs.endpoint
Used to override the Google Cloud Storage endpoint when using a non-Google Cloud Platform,
Google Cloud Storage API compatible, storage service.

org.gradle.gcs.servicePath
Used to override the Google Cloud Storage root service path which the Google Cloud Storage
client builds requests from, defaults to /.

Google Cloud Storage URL formats

Google Cloud Storage URL's are 'virtual-hosted-style’ and must be in the following format
gcs://<bucketName>/<objectKey>

e.g. gcs://myBucket/maven/release

* myBucket is the Google Cloud Storage bucket name.

» /maven/release is the Google Cloud Storage key (unique identifier for an object within a bucket)

Configuring HTTP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication
schemes are available. By default, Gradle will attempt to use all schemes that are supported by the
Apache HttpClient library, documented here. In some cases, it may be preferable to explicitly
specify which authentication schemes should be used when exchanging credentials with a remote
server. When explicitly declared, only those schemes are used when authenticating to a remote
repository.

You can specify credentials for Maven repositories secured by basic authentication using
api:org.gradle.api.credentials.PasswordCredentials(].

Example: Accessing password-protected Maven repository

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"
credentials {
username "user"
password "password"

NOTE The code for this example can be found at
samples/userqguide/artifacts/defineRepository in the “-all’ distribution of Gradle.

The following example show how to configure a repository to wuse only

api:org.gradle.authentication.http.DigestAuthentication[]:

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625

Example: Configure repository to use only digest authentication

build.gradle

repositories {
maven {
url "https://repo.mycompany.com/maven?2’
credentials {
username "user"
password "password"

}
authentication {
digest(DigestAuthentication)

Currently supported authentication schemes are:

BasicAuthentication

Basic access authentication over HTTP. When wusing this scheme, credentials are sent
preemptively.

DigestAuthentication

Digest access authentication over HTTP.

HttpHeaderAuthentication

Authentication based on any custom HTTP header, e.g. private tokens, OAuth tokens, etc.

Using preemptive authentication

Gradle’s default behavior is to only submit credentials when a server responds with an
authentication challenge in the form of a HTTP 401 response. In some cases, the server will respond
with a different code (ex. for repositories hosted on GitHub a 404 is returned) causing dependency
resolution to fail. To get around this behavior, credentials may be sent to the server preemptively.
To enable preemptive authentication simply configure your repository to explicitly use the
BasicAuthentication scheme:

Example: Configure repository to use preemptive authentication

../javadoc/org/gradle/authentication/http/BasicAuthentication.html
../javadoc/org/gradle/authentication/http/DigestAuthentication.html
../javadoc/org/gradle/authentication/http/HttpHeaderAuthentication.html
../javadoc/org/gradle/authentication/http/BasicAuthentication.html

build.gradle

repositories {
maven {
url "https://repo.mycompany.com/maven?2’
credentials {
username "user"
password "password"

}

authentication {
basic(BasicAuthentication)

}

Using HTTP header authentication

You can specify any HTTP header for secured Maven repositories requiring token, OAuth2 or other
HTTP header based authentication using api:org.gradle.api.credentials.HttpHeaderCredentials[]
with api:org.gradle.authentication.http.HttpHeaderAuthentication[].

Example: Accessing header-protected Maven repository

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"
credentials(HttpHeaderCredentials) {
name = "Private-Token"
value = "TOKEN"

}

authentication {
header (HttpHeaderAuthentication)

}

The code for this example can be found at

NOTE
samples/userguide/artifacts/defineRepository in the “-all’ distribution of Gradle.

Declaring Dependencies

Gradle builds can declare dependencies on modules hosted in repositories, files and other Gradle
projects. You can find examples for common scenarios in this section. For more information, see the
full reference on all types of dependencies.

Every dependency needs to be assigned to a configuration when declared in a build script. For

more information on the purpose and syntax of configurations, see Managing Dependency
Configurations.

Declaring a dependency to a module

Modern software projects rarely build code in isolation. Projects reference modules for the purpose
of reusing existing and proven functionality. Upon resolution, selected versions of modules are
downloaded from dedicated repositories and stored in the dependency cache to avoid unnecessary
network traffic.

download
Maven

artifacts / Repository

N lvy

store access Repository
artifacts artifacts

Gradle
—l
Build

Gradle
Cache

Figure 14. Resolving dependencies from remote repositories

Declaring a concrete version of a dependency

A typical example for such a library in a Java project is the Spring framework. The following code
snippet declares a compile-time dependency on the Spring web module by its coordinates:
org.springframework:spring-web:5.0.2.RELEASE. Gradle resolves the module including its transitive
dependencies from the Maven Central repository and uses it to compile Java source code. The
version attribute of the dependency coordinates points to a concrete version indicating that the
underlying artifacts do not change over time. The use of concrete versions ensure reproducibility
for the aspect of dependency resolution.

Example: Declaring a dependency with a concrete version

https://projects.spring.io/spring-framework/
https://search.maven.org/

build.gradle
apply plugin: 'java-library'

repositories {
mavenCentral()

}

dependencies {
implementation 'org.springframework:spring-web:5.0.2.RELEASE'

}

A Gradle project can define other types of repositories hosting modules. You can learn more about
the syntax and API in the section on declaring repositories. Refer to the chapter on the Java Plugin
for a deep dive on declaring dependencies for a Java project. The resolution behavior for
dependencies is highly customizable.

Declaring a dependency without version

A recommended practice for larger projects is to declare dependencies without versions and use
dependency constraints for version declaration. The advantage is that dependency constrains allow
you to manage versions of all dependencies, including transitive ones, in one place.

Example: Declaring a dependency without version

build.gradle

dependencies {
implementation 'org.springframework:spring-web'

}

dependencies {
constraints {
implementation 'org.springframework:spring-web:5.0.2.RELEASE'

Declaring a dynamic version

Projects might adopt a more aggressive approach for consuming dependencies to modules. For
example you might want to always integrate the latest version of a dependency to consume cutting
edge features at any given time. A dynamic version allows for resolving the latest version or the
latest version of a version range for a given module.

Using dynamic versions in a build bears the risk of potentially breaking it. As soon
NOTE as a new version of the dependency is released that contains an incompatible API
change your source code might stop compiling.

Example: Declaring a dependency with a dynamic version

build.gradle
apply plugin: 'java-library'

repositories {
mavenCentral()

}

dependencies {
implementation 'org.springframework:spring-web:5.+'

}

A build scan can effectively visualize dynamic dependency versions and their respective, selected
compileClasspath v - 0.819s
org.springframework:spring-web:5.+ — 5.0.2.RELEASE ~
org.springframework:spring-beans:5.0.2.RELEASE ~
org.springframework:spring-core:5.0.2.RELEASE ~
org.springframework:spring-jcl:5.0.2.RELEASE
org.springframework:spring-core:5.0.2.RELEASE ~
org.springframework:spring-jcl:5.0.2.RELEASE

Figure 15. Dynamic dependencies in build scan

By default, Gradle caches dynamic versions of dependencies for 24 hours. Within this time frame,
Gradle does not try to resolve newer versions from the declared repositories. The threshold can be
configured as needed for example if you want to resolve new versions earlier.

Declaring a changing version

A team might decide to implement a series of features before releasing a new version of the
application or library. A common strategy to allow consumers to integrate an unfinished version of
their artifacts early and often is to release a module with a so-called changing version. A changing
version indicates that the feature set is still under active development and hasn’t released a stable
version for general availability yet.

In Maven repositories, changing versions are commonly referred to as snapshot versions. Snapshot
versions contain the suffix -SNAPSHOT. The following example demonstrates how to declare a
snapshot version on the Spring dependency.

https://scans.gradle.com/
https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version

Example: Declaring a dependency with a changing version

build.gradle
apply plugin: 'java-library'

repositories {
mavenCentral()
maven {
url "https://repo.spring.io/snapshot/’

}
}

dependencies {
implementation 'org.springframework:spring-web:5.0.3.BUILD-SNAPSHOT'

}

By default, Gradle caches changing versions of dependencies for 24 hours. Within this time frame,
Gradle does not try to resolve newer versions from the declared repositories. The threshold can be
configured as needed for example if you want to resolve new snapshot versions earlier.

Gradle is flexible enough to treat any version as changing version e.g. if you wanted to model
snapshot behavior for an Ivy module. All you need to do is to set the property
ExternalModuleDependency.setChanging(boolean) to true.

Declaring a file dependency

Projects sometimes do not rely on a binary repository product e.g. JFrog Artifactory or Sonatype
Nexus for hosting and resolving external dependencies. It's common practice to host those
dependencies on a shared drive or check them into version control alongside the project source
code. Those dependencies are referred to as file dependencies, the reason being that they represent
a file without any metadata (like information about transitive dependencies, the origin or its
author) attached to them.

../javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-

Local File

System
access
artifacts access
artifacts
Gradle Shared
— ——
Build Drive
store access
artifacts artifacts
Gradle
Cache

Figure 16. Resolving file dependencies from the local file system and a shared drive

The following example resolves file dependencies from the directories ant, 1ibs and tools.

Example: Declaring multiple file dependencies

build.gradle

configurations {
antContrib
externallibs
deploymentTools
}

dependencies {
antContrib files('ant/antcontrib.jar")
externallibs files('libs/commons-lang.jar', 'libs/log4j.jar')
deploymentTools fileTree(dir: 'tools', include: '*.exe')

As you can see in the code example, every dependency has to define its exact location in the file
system. The most prominent methods for creating a file reference are
Project.files(java.lang.Object...), ProjectLayout.files(java.lang.Object...),

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-

ProjectLayout.configurableFiles(java.lang.Object...), and Project.fileTree(java.lang.Object)
Alternatively, you can also define the source directory of one or many file dependencies in the form
of a flat directory repository.

Declaring a project dependency

Software projects often break up software components into modules to improve maintainability
and prevent strong coupling. Modules can define dependencies between each other to reuse code
within the same project.

Gradle can model dependencies between modules. Those dependencies are called project
dependencies because each module is represented by a Gradle project. At runtime, the build
automatically ensures that project dependencies are built in the correct order and added to the
classpath for compilation. The chapter Authoring Multi-Project Builds discusses how to set up and
configure multi-project builds in more detail.

Gradle Multi-Project Build

depends

Project A LY Project B

depends depends
on on

Project C

Figure 17. Dependencies between projects

The following example declares the dependencies on the utils and api project from the web-service
project. The method Project.project(java.lang.String) creates a reference to a specific subproject by
path.

../javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object...-
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

Example: Declaring project dependencies

build.gradle

project(':web-service') {
dependencies {
implementation project(':utils")
implementation project(':api')

Resolving specific artifacts from a module dependency

Whenever Gradle tries to resolve a module from a Maven or Ivy repository, it looks for a metadata
file and the default artifact file, a JAR. The build fails if none of these artifact files can be resolved.
Under certain conditions, you might want to tweak the way Gradle resolves artifacts for a
dependency.

* The dependency only provides a non-standard artifact without any metadata e.g. a ZIP file.

* The module metadata declares more than one artifact e.g. as part of an Ivy dependency
descriptor.

* You only want to download a specific artifact without any of the transitive dependencies
declared in the metadata.

Gradle is a polyglot build tool and not limited to just resolving Java libraries. Let’s assume you
wanted to build a web application using JavaScript as the client technology. Most projects check in
external JavaScript libraries into version control. An external JavaScript library is no different than
a reusable Java library so why not download it from a repository instead?

Google Hosted Libraries is a distribution platform for popular, open-source JavaScript libraries.
With the help of the artifact-only notation you can download a JavaScript library file e.g. JQuery.
The @ character separates the dependency’s coordinates from the artifact’s file extension.

Example: Resolving a JavaScript artifact for a declared dependency

https://developers.google.com/speed/libraries/

build.gradle

repositories {
ivy {
url 'https://ajax.googleapis.com/ajax/libs’
layout 'pattern', {
artifact '[organization]/[revision]/[module].[ext]’

}
}

configurations {
js
+

dependencies {
js 'jquery:jquery:3.2.1@js'
}

Some modules ship different "flavors" of the same artifact or they publish multiple artifacts that
belong to a specific module version but have a different purpose. It’s common for a Java library to
publish the artifact with the compiled class files, another one with just the source code in it and a
third one containing the Javadocs.

In JavaScript, a library may exist as uncompressed or minified artifact. In Gradle, a specific artifact
identifier is called classifier, a term generally used in Maven and Ivy dependency management.

Let’s say we wanted to download the minified artifact of the JQuery library instead of the
uncompressed file. You can provide the classifier min as part of the dependency declaration.

Example: Resolving a JavaScript artifact with classifier for a declared dependency

build.gradle

repositories {
ivy {
url 'https://ajax.googleapis.com/ajax/libs’
layout 'pattern', {
artifact '[organization]/[revision]/[module](.[classifier]).[ext]’

}
}

configurations {
js
+

dependencies {
js 'jquery:jquery:3.2.1:min@js’
}

Declaring Repositories

Gradle can resolve dependencies from one or many repositories based on Maven, Ivy or flat
directory formats. Check out the full reference on all types of repositories for more information.

Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and
consume open source dependencies. Popular public repositories include Maven Central, Bintray
JCenter and the Google Android repository. Gradle provides built-in shortcut methods for the most
widely-used repositories.

mavenCentral ()

Gradle
Build

Figure 18. Declaring a repository with the help of shortcut methods

jcenter ()

_

google ()

Maven
Central

Bintray
JCenter

Google
Android

To declare JCenter as repository, add this code to your build script:

Example: Declaring JCenter repository as source for resolving dependencies

build.gradle

repositories {
jecenter()

}

Under the covers Gradle resolves dependencies from the respective URL of the public repository
defined by the shortcut method. All shortcut methods are available via the RepositoryHandler API.
Alternatively, you can spell out the URL of the repository for more fine-grained control.

Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house
repositories enable teams to publish internal binaries, setup user management and security
measure and ensure uptime and availability. Specifying a custom URL is also helpful if you want to

declare a less popular, but publicly-available repository.

Add the following code to declare an in-house repository for your build reachable through a custom

URL.

../dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Example: Declaring a custom repository by URL

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"

Repositories with custom URLs can be specified as Maven or Ivy repositories by calling the
corresponding methods available on the RepositoryHandler API. Gradle supports other protocols
than http or https as part of the custom URL e.g. file, sftp or s3. For a full coverage see the
reference manual on supported transport protocols.

You can also define your own repository layout by using ivy { } repositories as they are very
flexible in terms of how modules are organised in a repository.

Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple
repositories is helpful if some dependencies are only available in one repository but not the other.
You can mix any type of repository described in the reference section.

This example demonstrates how to declare various shortcut and custom URL repositories for a
project:

Example: Declaring multiple repositories

build.gradle

repositories {

jcenter()
maven {
url "https://maven.springframework.org/release"
}
maven {
url "https://maven.restlet.com"
}
}
The order of declaration determines how Gradle will check for dependencies at
NOTE runtime. If Gradle finds a module descriptor in a particular repository, it will

attempt to download all of the artifacts for that module from the same repository.
You can learn more about the inner workings of Gradle’s resolution mechanism.

../dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Inspecting Dependencies

Gradle provides sufficient tooling to navigate large dependency graphs and mitigate situations that
can lead to dependency hell. Users can chose to render the full graph of dependencies as well as
identify the selection reason and origin for a dependency. The origin of a dependency can be a
declared dependency in the build script or a transitive dependency in graph plus their
corresponding configuration. Gradle offers both capabilities through visual representation via
build scans and as command line tooling.

Listing dependencies in a project

A project can declare one or more dependencies. Gradle can visualize the whole dependency tree
for every configuration available in the project.

Rendering the dependency tree is particularly useful if you’d like to identify which dependencies
have been resolved at runtime. It also provides you with information about any dependency
conflict resolution that occurred in the process and clearly indicates the selected version. The
dependency report always contains declared and transitive dependencies.

Let’s say you’d want to create tasks for your project that use the JGit library to execute SCM
operations e.g. to model a release process. You can declare dependencies for any external tooling
with the help of a custom configuration so that it doesn’t doesn’t pollute other contexts like the
compilation classpath for your production source code.

Example: Declaring the JGit dependency with a custom configuration

build.gradle

repositories {
jcenter()

}

configurations {
scm

}

dependencies {
scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"

}

A build scan can visualize dependencies as a navigable, searchable tree. Additional context
information can be rendered by clicking on a specific dependency in the graph.

https://en.wikipedia.org/wiki/Dependency_hell
https://www.eclipse.org/jgit/
https://scans.gradle.com/

8 dependencies resolved in 1 project across 1 configuration

scm v - 0.008s
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r ~
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6 +
commons-codec:commons-codec:1.6
commons-logging:commons-logging:1.1.3
org.apache.httpcomponents:httpcore:4.3.3
org.slf4j:slf4j-api:1.7.2

Figure 19. Dependency tree in a build scan

Every Gradle project provides the task dependencies to render the so-called dependency report from

the command line. By default the dependency report renders dependencies for all configurations.
To pair down on the information provide the optional parameter --configuration.

Example: Rendering the dependency report for a custom configuration

Output of gradle -q dependencies --configuration scm

> gradle -q dependencies --configuration scm

scm
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
+--- com.jcraft:jsch:0.1.54
+--- com.googlecode.javaewah:JavaEWAH:1.1.6
+--- org.apache.httpcomponents:httpclient:4.3.6
| +--- org.apache.httpcomponents:httpcore:4.3.3
| +--- commons-logging:commons-logging:1.1.3
| \--- commons-codec:commons-codec:1.6
\--- org.slf4j:slf4j-api:1.7.2

A web-based, searchable dependency report is available by adding the --scan option.

The dependencies report provides detailed information about the dependencies available in the
graph. Any dependency that could not be resolved is marked with FAILED in red color. Dependencies
with the same coordinates that can occur multiple times in the graph are omitted and indicated by

an asterisk. Dependencies that had to undergo conflict resolution render the requested and selected
version separated by a right arrow character.

Identifying which dependency version was selected and why

Large software projects inevitably deal with an increased number of dependencies either through
direct or transitive dependencies. The dependencies report provides you with the raw list of
dependencies but does not explain why they have been selected or which dependency is responsible
for pulling them into the graph.

Let’s have a look at a concrete example. A project may request two different versions of the same
dependency either as direct or transitive dependency. Gradle applies version conflict resolution to
ensure that only one version of the dependency exists in the dependency graph. In this example the
conflicting dependency is represented by commons-codec:commons-codec.

Example: Declaring the JGit dependency and a conflicting dependency

build.gradle

repositories {
jecenter()

configurations {
scm

dependencies {
scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"
scm 'commons-codec:commons-codec:1.7'

The dependency tree in a build scan renders the selection reason (conflict resolution) as well as the
origin of a dependency if you click on a dependency and select the "Required By" tab.

8 dependencies resolved in 1 project across 1 configuration

commons-codec:commons-codec:1.7
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:;jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6
commons-codec:commons-codec:1.6 — 1.7 conflict resolution
commons-logging:commons-logging:1.1.3
org.apache.httpcomponents:httpcore:4.3.3
org.slf4j:slf4j-api:1.7.2 commons-codec:commons-codec:1.6 — 1.7 conflict resolution +

Dependencies Required By

org.apache.httpcomponents:httpclient:4.3.6 ~
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r ~
:scm

Figure 20. Dependency insight capabilities in a build scan

https://scans.gradle.com/

Every Gradle project provides the task dependencyInsight to render the so-called dependency insight
report from the command line. Given a dependency in the dependency graph you can identify the
selection reason and track down the origin of the dependency selection. You can think of the
dependency insight report as the inverse representation of the dependency report for a given
dependency. When executing the task you have to provide the mandatory parameter --dependency
to specify the coordinates of the dependency under inspection. The parameters --configuration and
--singlepath are optional but help with filtering the output.

Example: Using the dependency insight report for a given dependency

Output of gradle -q dependencyInsight --dependency commons-codec --configuration scm

> gradle -q dependencyInsight --dependency commons-codec --configuration scm
commons-codec:commons-codec:1.7
variant "default+runtime" [
org.gradle.status = release (not requested)
]
Selection reasons:
- Was requested
- By conflict resolution : between versions 1.7 and 1.6

commons-codec:commons-codec:1.7
\--- scm

commons-codec:commons-codec:1.6 -> 1.7
\--- org.apache.httpcomponents:httpclient:4.3.6
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
\--- scm

A web-based, searchable dependency report is available by adding the --scan option.

Justifying dependency declarations with custom reasons

When you declare a dependency or a dependency constraint, you can provide a custom reason for
the declaration. This makes the dependency declarations in your build script and the dependency
insight report easier to interpret.

Example: Giving a reason for choosing a certain module version in a dependency declaration

build.gradle
apply plugin: 'java-library'

repositories {
jeenter()

}

dependencies {
implementation('org.ow2.asm:asm:6.0") {
because 'we require a JDK 9 compatible bytecode generator'

}

Example: Using the dependency insight report with custom reasons

Output of gradle -q dependencyInsight --dependency asm

> gradle -q dependencyInsight --dependency asm
org.ow2.asm:asm:6.0
variant "compile" [
org.gradle.status = release (not requested)
org.gradle.usage = java-api

]

Selection reasons:
- Was requested : we require a JDK 9 compatible bytecode generator

org.ow2.asm:asm:6.0
\--- compileClasspath

A web-based, searchable dependency report is available by adding the --scan option.

Managing Dependency Configurations

What is a configuration?

Every dependency declared for a Gradle project applies to a specific scope. For example some
dependencies should be used for compiling source code whereas others only need to be available at
runtime. Gradle represents the scope of a dependency with the help of a Configuration. Every
configuration can be identified by a unique name.

Many Gradle plugins add pre-defined configurations to your project. The Java plugin, for example,
adds configurations to represent the various classpaths it needs for source code compilation,
executing tests and the like. See the Java plugin chapter for an example. The sections above
demonstrate how to declare dependencies for different use cases.

../dsl/org.gradle.api.artifacts.Configuration.html

compile Gradle Build

source file

resolve

; ; dependencies
|| I _ 1mplerflentaftlon « P
configuration

> Binary
/ Repository
E“ < testRuntime

configuration resolve
dependencies

execute
tests

Figure 21. Configurations use declared dependencies for specific purposes

For more examples on the usage of configurations to navigate, inspect and post-process metadata
and artifacts of assigned dependencies, see Working with Dependencies.

Defining custom configurations

You can define configurations yourself, so-called custom configurations. A custom configuration is
useful for separating the scope of dependencies needed for a dedicated purpose.

Let’s say you wanted to declare a dependency on the Jasper Ant task for the purpose of pre-
compiling JSP files that should not end up in the classpath for compiling your source code. It’s fairly
simple to achieve that goal by introducing a custom configuration and using it in a task.

Example: Declaring and using a custom configuration

https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html

build.gradle

configurations {
jasper

}

repositories {
mavenCentral()

}

dependencies {
jasper 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.2"

}

task preCompilelsps {
dolLast {
ant.taskdef(classname: 'org.apache.jasper.JspC',
name: 'jasper',
classpath: configurations.jasper.asPath)
ant.jasper(validateXml: false,
uriroot: file('src/main/webapp'),
outputDir: file("$buildDir/compiled-jsps"))

A project’s configurations are managed by a configurations object. Configurations have a name and
can extend each other. To learn more about this API have a look at ConfigurationContainer.

Inheriting dependencies from other configurations

A configuration can extend other configurations to form an inheritance hierarchy. Child
configurations inherit the whole set of dependencies declared for any of its superconfigurations.

Configuration inheritance is heavily used by Gradle core plugins like the Java plugin. For example
the testImplementation configuration extends the implementation configuration. The configuration
hierarchy has a practical purpose: compiling tests requires the dependencies of the source code
under test on top of the dependencies needed write the test class. A Java project that uses JUnit to
write and execute test code also needs Guava if its classes are imported in the production source
code.

../dsl/org.gradle.api.artifacts.ConfigurationContainer.html

implementation

- i com.google.guava:guava:23.0
configuration google.guava:guav

extends

testImplementation

. . junit:junit:4.12
configuration]]

Figure 22. Configuration inheritance provided by the Java plugin

Under the covers the testImplementation and implementation configurations form an inheritance
hierarchy by calling the method
Configuration.extendsFrom(org.gradle.api.artifacts.Configuration[]). A configuration can extend
any other configuration irrespective of its definition in the build script or a plugin.

Let’s say you wanted to write a suite of smoke tests. Each smoke test makes a HTTP call to verify a
web service endpoint. As the underlying test framework the project already uses JUnit. You can
define a new configuration named smokeTest that extends from the testImplementation
configuration to reuse the existing test framework dependency.

Example: Extending a configuration from another configuration

build.gradle

configurations {
smokeTest.extendsFrom testImplementation

}

dependencies {
testImplementation 'junit:junit:4.12'
smokeTest 'org.apache.httpcomponents:httpclient:4.5.5'

Managing Transitive Dependencies

Resolution behavior for transitive dependencies can be customized to a high degree to meet
enterprise requirements.

Managing versions of transitive dependencies with dependency constraints

Dependency constraints allow you to define the version or the version range of both dependencies

../dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])

declared in the build script and transitive dependencies. It is the preferred method to express
constraints that should be applied to all dependencies of a configuration. When Gradle attempts to
resolve a dependency to a module version, all dependency declarations with version, all transitive
dependencies and all dependency constraints for that module are taken into consideration. The
highest version that matches all conditions is selected. If no such version is found, Gradle fails with
an error showing the conflicting declarations. If this happens you can adjust your dependencies or
dependency constraints declarations, or make other adjustments to the transitive dependencies if
needed. Similar to dependency declarations, dependency constraint declarations are scoped by
configurations and can therefore be selectively defined for parts of a build. If a dependency
constraint influenced the resolution result, any type of dependency resolve rules may still be
applied afterwards.

Example: Define dependency constraints

build.gradle

dependencies {
implementation 'org.apache.httpcomponents:httpclient’
constraints {
implementation('org.apache.httpcomponents:httpclient:4.5.3") {
because 'previous versions have a bug impacting this application’

}

implementation('commons-codec:commons-codec:1.11") {
because 'version 1.9 pulled from httpclient has bugs affecting this
application’
}
}

In the example, all versions are omitted from the dependency declaration. Instead, the versions are
defined in the constraints block. The version definition for commons-codec:1.11 is only taken into
account if commons-codec is brought in as transitive dependency, since commons-codec is not defined
as dependency in the project. Otherwise, the constraint has no effect.

Dependency constraints are not yet published, but that will be added in a future
NOTE release. This means that their use currently only targets builds that do not publish
artifacts to maven or ivy repositories.

Dependency constraints themselves can also be added transitively. If a modules’s metadata is
defined in a .pom file that contains dependency entries with <optional>true</optional>, Gradle will
create a dependency constraint for each of these so-called optional dependencies. This leads to a
similar resolution behavior as provided by Maven: if the corresponding module is brought in by
another, non-optional dependency declaration, then the constraint will apply when choosing the
version for that module (e.g., if the optional dependency defines a higher version, that one is
chosen).

Support for optional dependencies from pom files is active by default with Gradle
NOTE 5.0+. For wusing it in Gradle 4.6+, you need to activate it by adding
enableFeaturePreview('IMPROVED_POM_SUPPORT') in settings.gradle.

Excluding transitive module dependencies

Declared dependencies in a build script can pull in a lot of transitive dependencies. You might
decide that you do not want a particular transitive dependency as part of the dependency graph for
a good reason.

* The dependency is undesired due to licensing constraints.

» The dependency is not available in any of the declared repositories.

The metadata for the dependency exists but the artifact does not.

The metadata provides incorrect coordinates for a transitive dependency.

Transitive dependencies can be excluded on the level of a declared dependency or a configuration.
Let’s demonstrate both use cases. In the following two examples the build script declares a
dependency on Log4], a popular logging framework in the Java world. The metadata of the
particular version of Log4] also defines transitive dependencies.

Example: Unresolved artifacts for transitive dependencies

build.gradle
apply plugin: 'java'

repositories {
mavenCentral()

}

dependencies {
implementation 'log4j:log4j:1.2.15'
}

If resolved from Maven Central some of the transitive dependencies provide metadata but not the
corresponding binary artifact. As a result any task requiring the binary files will fail e.g. a
compilation task.

> gradle -q compileJava

* What went wrong:
Could not resolve all files for configuration
> Could not find jms.jar (javax.jms:jms:1.1).
Searched in the following locations:
https://repo.maven.apache.org/maven2/javax/jms/jms/1.1/jms-1.1.jar
> Could not find jmxtools.jar (com.sun.jdmk:jmxtools:1.2.1).
Searched in the following locations:
https://repo.maven.apache.org/maven2/com/sun/jdmk/jmxtools/1.2.1/jmxtools-
1.2.1.jar
> Could not find jmxri.jar (com.sun.jmx:jmxri:1.2.1).
Searched in the following locations:
https://repo.maven.apache.org/maven2/com/sun/jmx/jmxri/1.2.1/jmxri-1.2.1.jar

:compileClasspath’.

The situation can be fixed by adding a repository containing those dependencies. In the given
example project, the source code does not actually use any of Log4]’s functionality that require the
JMS (e.g. JMSAppender) or JMX libraries. It’s safe to exclude them from the dependency declaration.

Exclusions need to spelled out as a key/value pair via the attributes group and/or module. For more
information, refer to ModuleDependency.exclude(java.util.Map).

Example: Excluding transitive dependency for a particular dependency declaration

build.gradle

dependencies {
implementation('log4j:10og4j:1.2.15") {
exclude group: 'javax.jms', module: 'jms'
exclude group: 'com.sun.jdmk', module: 'jmxtools'
exclude group: 'com.sun.jmx', module: "jmxri'

You may find that other dependencies will want to pull in the same transitive dependency that
misses the artifacts. Alternatively, you can exclude the transitive dependencies for a particular
configuration by calling the method Configuration.exclude(java.util. Map).

Example: Excluding transitive dependency for a particular configuration

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/JMSAppender.html
../javadoc/org/gradle/api/artifacts/ModuleDependency.html#exclude-java.util.Map-
../dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:exclude(java.util.Map)

build.gradle

configurations {
implementation {
exclude group: 'javax.jms', module: 'jms'
exclude group: 'com.sun.jdmk', module: 'jmxtools'
exclude group: 'com.sun.jmx', module: 'jmxri’

dependencies {
implementation 'log4j:log4j:1.2.15'
}

As a build script author you often times know that you want to exclude a
NOTE dependency for all configurations available in the project. You can use the method
DomainObjectCollection.all(org.gradle.api.Action) to define a global rule.

You might encounter other use cases that don’t quite fit the bill of an exclude rule. For example you
want to automatically select a version for a dependency with a specific requested version or you
want to select a different group for a requested dependency to react to a relocation. Those use cases
are better solved by the ResolutionStrategy API. Some of these use cases are covered in Customizing
Dependency Resolution Behavior.

Enforcing a particular dependency version

Gradle resolves any dependency version conflicts by selecting the latest version found in the
dependency graph. Some projects might need to divert from the default behavior and enforce an
earlier version of a dependency e.g. if the source code of the project depends on an older API of a
dependency than some of the external libraries.

Enforcing a version of a dependency requires a conscious decision. Changing the
version of a transitive dependency might lead to runtime errors if external libraries
do not properly function without them. Consider upgrading your source code to use
a newer version of the library as an alternative approach.

NOTE

Let’s say a project uses the HttpClient library for performing HTTP calls. HttpClient pulls in
Commons Codec as transitive dependency with version 1.10. However, the production source code
of the project requires an API from Commons Codec 1.9 which is not available in 1.10 anymore. A
dependency version can be enforced by declaring it in the build script and setting
ExternalDependency.setForce(boolean) to true.

Example: Enforcing a dependency version

../javadoc/org/gradle/api/DomainObjectCollection.html#all-org.gradle.api.Action-
../dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://hc.apache.org/httpcomponents-client-ga/
https://commons.apache.org/proper/commons-codec/
../javadoc/org/gradle/api/artifacts/ExternalDependency.html#setForce-boolean-

build.gradle

dependencies {
implementation 'org.apache.httpcomponents:httpclient:4.5.4"
implementation('commons-codec:commons-codec:1.9") {
force = true

}

If the project requires a specific version of a dependency on a configuration-level then it can be
achieved by calling the method ResolutionStrategy.force(java.lang.Object[]).

Example: Enforcing a dependency version on the configuration-level

build.gradle

configurations {
compileClasspath {
resolutionStrategy.force 'commons-codec:commons-codec:1.9'

}
}

dependencies {
implementation 'org.apache.httpcomponents:httpclient:4.5.4"

}

Disabling resolution of transitive dependencies

By default Gradle resolves all transitive dependencies specified by the dependency metadata.
Sometimes this behavior may not be desirable e.g. if the metadata is incorrect or defines a large
graph of transitive dependencies. You can tell Gradle to disable transitive dependency management
for a dependency by setting ModuleDependency.setTransitive(boolean) to true. As a result only the
main artifact will be resolved for the declared dependency.

Example: Disabling transitive dependency resolution for a declared dependency

build.gradle

dependencies {
implementation('com.google.guava:quava:23.0") {
transitive = false

}

Disabling transitive dependency resolution will likely require you to declare the
NOTE necessary runtime dependencies in your build script which otherwise would have
been resolved automatically. Not doing so might lead to runtime classpath issues.

../dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:force(java.lang.Object[])
../javadoc/org/gradle/api/artifacts/ModuleDependency.html#setTransitive-boolean-

A project can decide to disable transitive dependency resolution completely. You either don’t want
to rely on the metadata published to the consumed repositories or you want to gain full control
over the dependencies in your graph. For more information, see
Configuration.setTransitive(boolean).

Example: Disabling transitive dependency resolution on the configuration-level

build.gradle

configurations.all {
transitive = false

}

dependencies {
implementation 'com.google.guava:quava:23.0'

}

Importing version recommendations from a Maven BOM

Gradle provides support for importing bill of materials (BOM) files, which are effectively .pom files
that use <dependencyManagement> to control the dependency versions of direct and transitive
dependencies. The BOM support in Gradle works similar to using <scope>import</scope> when
depending on a BOM in Maven. In Gradle however, it is done via a regular dependency declaration
on the BOM:

Example: Depending on a BOM to import its dependency constraints

build.gradle

dependencies {
// import a BOM
implementation 'org.springframework.boot:spring-boot-dependencies:1.5.8.RELEASE'

// define dependencies without versions
implementation 'com.google.code.gson:gson'
implementation 'dom4j:dom4j'

In the example, the versions of gson and dom4j are provided by the Spring Boot BOM. This way, if
you are developing for a platform like Spring Boot, you do not have to declare any versions yourself
but can rely on the versions the platform provides.

Gradle treats all entries in the <dependencyManagement> block of a BOM similar to Gradle’s
dependency constraints. This means that any version defined in the <dependencyManagement> block
can impact the dependency resolution result. In order to qualify as a BOM, a .pom file needs to have
<packaging>pom</packaging> set.

../javadoc/org/gradle/api/artifacts/Configuration.html#setTransitive-boolean-
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Importing_Dependencies

Importing dependency constraints from Maven BOMs is active by default with
NOTE Gradle 5.0+. For using it in Gradle 4.6+, you need to activate it by adding
enableFeaturePreview('IMPROVED_POM_SUPPORT') in settings.gradle.

Dependency Locking

Use of dynamic dependency versions (e.g. 1.+ or [1.0,2.0)) makes builds non-deterministic. This
causes builds to break without any obvious change, and worse, can be caused by a transitive
dependency that the build author has no control over.

To achieve reproducible builds, it is necessary to lock versions of dependencies and transitive
dependencies such that a build with the same inputs will always resolve the same module versions.
This is called dependency locking.

It enables, amongst others, the following scenarios:

* Companies dealing with multi repositories no longer need to rely on -SNAPSHOT or changing
dependencies, which sometimes result in cascading failures when a dependency introduces a
bug or incompatibility. Now dependencies can be declared against major or minor version
range, enabling to test with the latest versions on CI while leveraging locking for stable
developer builds.

* Teams that want to always use the latest of their dependencies can use dynamic versions,
locking their dependencies only for releases. The release tag will contain the lock states,
allowing that build to be fully reproducible when bug fixes need to be developed.

Locking is enabled per dependency configuration. Once enabled, you must create an initial lock
state. It will cause Gradle to verify that resolution results do not change, resulting in the same
selected dependencies even if newer versions are produced. Modifications to your build that would
impact the resolved set of dependencies will cause it to fail. This makes sure that changes, either in
published dependencies or build definitions, do not alter resolution without adapting the lock state.

Dependency locking makes sense only with dynamic versions. It will have no impact
on changing versions (like -SNAPSHOT) whose coordinates remain the same, though
the content may change. Gradle will even emit a warning when persisting lock state
and changing dependencies are present in the resolution result.

NOTE

Enabling locking on configurations

Locking of a configuration happens through the ResolutionStrategy:

Example: Locking a specific configuration

https://reproducible-builds.org/
../dsl/org.gradle.api.artifacts.ResolutionStrategy.html

build.gradle

configurations {
compileClasspath {
resolutionStrategy.activateDependencylocking()

}

Or the following, as a way to lock all configurations:

Example: Locking all configurations

build.gradle

dependencylocking {
lockAllConfigurations()

}

Only configurations that can be resolved will have lock state attached to them.

NOTE
Applying locking on non resolvable-configurations is simply a no-op.

Generating and updating dependency locks

In order to generate or update lock state, you specify the --write-locks command line argument in
addition to the normal tasks that would trigger configurations to be resolved. This will cause the
creation of lock state for each resolved configuration in that build execution. Note that if lock state
existed previously, it is overwritten.

Lock all configurations in one build execution

When locking multiple configurations, you may want to lock them all at once, during a single build
execution.

For this, you have two options:

* Run gradle dependencies --write-locks. This will effectively lock all resolvable configurations
that have locking enabled. Note that in a multi project setup, dependencies only is executed on
one project, the root one in this case.

* Declare a custom task that will resolve all configurations

Example: Resolving all configurations

build.gradle

task resolveAndLockAll {
doFirst {
assert gradle.startParameter.writeDependencylocks

}
dolast {
configurations.findAll {
// Add any custom filtering on the configurations to be resolved
it.canBeResolved
}.each { it.resolve() }
}

That second option, with proper choosing of configurations, can be the only option in the native
world, where not all configurations can be resolved on a single platform.

Lock state location and format

Lock state will be preserved in a file located in the folder gradle/dependency-locks inside the project
or subproject directory. Each file is named by the configuration it locks and has the lockfile
extension.

The content of the file is a module notation per line, with a header giving some context. Module
notations are ordered alphabetically, to ease diffs.

Example: Lockfile content

gradle/dependency-locks/compileClasspath.lockfile

This is a Gradle generated file for dependency locking.
Manual edits can break the build and are not advised.

This file is expected to be part of source control.
org.springframework:spring-beans:5.0.5.RELEASE
org.springframework:spring-core:5.0.5.RELEASE
org.springframework:spring-jcl:5.0.5.RELEASE

which matches the following dependency declaration:

Example: Dynamic dependency declaration

build.gradle

dependencies {
implementation 'org.springframework:spring-beans:[5.0,6.0)"

}

Running a build with lock state present

The moment a build needs to resolve a configuration that has locking enabled and it finds a
matching lock state, it will use it to verify that the given configuration still resolves the same
versions.

A successful build indicates that the same dependencies are used as stored in the lock state,
regardless if new versions matching the dynamic selector have been produced.

The complete validation is as follows:

* Existing entries in the lock state must be matched in the build

* A version mismatch or missing resolved module causes a build failure

* Resolution result must not contain extra dependencies compared to the lock state

Selectively updating lock state entries

In order to update only specific modules of a configuration, you can use the --update-locks
command line flag. It takes a comma (,) separated list of module notations. In this mode, the
existing lock state is still used as input to resolution, filtering out the modules targeted by the
update.

gradle classes --update-locks org.apache.commons:commons-lang3,org.slf4j:s1f4j-api

Wildcards, indicated with *, can be used in the group or module name. They can be the only
character or appear at the end of the group or module respectively. The following wildcard notation
examples are valid:

* org.apache.commons:*: will let all modules belonging to group org.apache.commons update

» *:guava: will let all modules named guava, whatever their group, update

* org.springframework.spring*:spring*: will let all modules having their group starting with
org.springframework.spring and name starting with spring update

The resolution may cause other module versions to update, as dictated by the Gradle

NOTE .
resolution rules.

Disabling dependency locking

1. Make sure that the configuration for which you no longer want locking is not configured with
locking.

2. Remove the file matching the configurations where you no longer want locking.
If you only perform the second step above, then locking will effectively no longer be applied.

However, if that configuration happens to be resolved in the future at a time where lock state is
persisted, it will once again be locked.

Locking limitations

* Itis currently not possible to lock the classpath configuration used for script plugins.

* Locking can not yet be applied to source dependencies.

Nebula locking plugin

This feature is inspired by the Nebula Gradle dependency lock plugin.

Troubleshooting Dependency Resolution

Managing dependencies in a project can be challenging. This chapter describes techniques for
troubleshooting issues you might encounter in your project as well as best practices for avoiding
common problems.

Resolving version conflicts

Gradle resolves version conflicts by picking the highest version of a module. Build scans and the
dependency insight report are immensely helpful in identifying why a specific version was
selected. If the resolution result is not satisfying (e.g. the selected version of a module is too high) or
it fails (because you configured ResolutionStrategy.failOnVersionConflict()) you have the following
possibilities to fix it.

* Configuring any dependency (transitive or not) as forced. This approach is useful if the
dependency in conflict is a transitive dependency. See Enforcing a particular dependency
version for examples.

* Configuring dependency resolution to prefer modules that are part of your build (transitive or
not). This approach is useful if your build contains custom forks of modules (as part of multi-
project builds or as include in composite builds). See ResolutionStrategy.preferProjectModules()
for more information.

* Using dependency resolve rules for fine-grained control over the version selected for a
particular dependency.

Using dynamic versions and changing modules

There are many situations when you want to use the latest version of a particular module
dependency, or the latest in a range of versions. This can be a requirement during development, or
you may be developing a library that is designed to work with a range of dependency versions. You
can easily depend on these constantly changing dependencies by using a dynamic version. A
dynamic version can be either a version range (e.g. 2.+) or it can be a placeholder for the latest
version available e.g. 1atest.integration.

Alternatively, the module you request can change over time even for the same version, a so-called
changing version. An example of this type of changing module is a Maven SNAPSHOT module, which
always points at the latest artifact published. In other words, a standard Maven snapshot is a
module that is continually evolving, it is a "changing module".

https://github.com/nebula-plugins/gradle-dependency-lock-plugin
https://scans.gradle.com/get-started
../dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:failOnVersionConflict()
../dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:preferProjectModules()

Using dynamic versions and changing modules can lead to unreproducible builds.
NOTE As new versions of a particular module are published, its API may become
incompatible with your source code. Use this feature with caution!

By default, Gradle caches dynamic versions and changing modules for 24 hours. During that time
frame Gradle does not contact any of the declared, remote repositories for new versions. If you
want Gradle to check the remote repository more frequently or with every execution of your build,
then you will need to change the time to live (TTL) threshold.

Using a short TTL threshold for dynamic or changing versions may result in longer

NOTE
build times due to the increased number of HTTP(s) calls.

You can override the default cache modes using command line options. You can also change the
cache expiry times in your build programmatically using the resolution strategy.

Controlling dependency caching programmatically

You can fine-tune certain aspects of caching programmatically using the ResolutionStrategy for a
configuration. The programmatic approach is useful if you would like to change the settings
permanently.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for a dynamic version, use:

Example: Dynamic version cache control

build.gradle

configurations.all {
resolutionStrategy.cacheDynamicVersionsFor 10, 'minutes’

}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:

Example: Changing module cache control

build.gradle

configurations.all {
resolutionStrategy.cacheChangingModulesFor 4, "hours'

}

Controlling dependency caching from the command line

You can control the behavior of dependency caching for a distinct build invocation from the
command line. Command line options are helpful for making a selective, ad-hoc choice for a single
execution of the build.

../javadoc/org/gradle/api/artifacts/ResolutionStrategy.html

Avoiding network access with offline mode

The --offline command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never
attempt to access the network to perform dependency resolution. If required modules are not
present in the dependency cache, build execution will fail.

Forcing all dependencies to be re-resolved

At times, the Gradle Dependency Cache can become out of sync with the actual state of the
configured repositories. Perhaps a repository was initially misconfigured, or perhaps a "non-
changing" module was published incorrectly. To refresh all dependencies in the dependency cache,
use the --refresh-dependencies option on the command line.

The --refresh-dependencies option tells Gradle to ignore all cached entries for resolved modules
and artifacts. A fresh resolve will be performed against all configured repositories, with dynamic
versions recalculated, modules refreshed, and artifacts downloaded. However, where possible
Gradle will check if the previously downloaded artifacts are valid before downloading again. This is
done by comparing published SHA1 values in the repository with the SHA1 values for existing
downloaded artifacts.

Locking dependency versions

The use of dynamic dependencies in a build is convenient. The user does not need to know the
latest version of a dependency and Gradle automatically uses new versions once they are
published. However, dynamic dependencies make builds non-reproducible, as they can resolve to a
different version at a later point in time. This makes it hard to reproduce old builds when
debugging a problem. It can also disrupt development if a new, but incompatible version is
selected. In the best case the CI build catches the problem and someone needs to investigate. In the
worst case, the problem makes it to production unnoticed.

Gradle offers dependency locking to solve this problem. The user can run a build asking to persist
the resolved versions for every module dependency. This file is then checked in and the versions in
it are used on all subsequent runs until the lock is updated or removed again.

Versioning of file dependencies

Legacy projects sometimes prefer to consume file dependencies instead of module dependencies.
File dependencies can point to any file in the filesystem and do not need to adhere a specific
naming convention. It is recommended to clearly express the intention and a concrete version for
file dependencies. File dependencies are not considered by Gradle’s version conflict resolution.
Therefore, it is extremely important to assign a version to the file name to indicate the distinct set
of changes shipped with it. For example commons-beanutils-1.3.jar lets you track the changes of the
library by the release notes.

As a result, the dependencies of the project are easier to maintain and organize. It’s much easier to
uncover potential API incompatibilities by the assigned version.

Customizing Dependency Resolution Behavior

There are a number of ways that you can influence how Gradle resolves dependencies. All of these
mechanisms offer an API to define a reason for why they are used. Providing reasons makes
dependency resolution results more understandable. If any customization influenced the resolution
result, the provided reason will show up in dependency insight report.

Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. The feature
currently offers the ability to change the group, name and/or version of a requested dependency,
allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution
process, and can be used to implement all sorts of advanced patterns in dependency management.
Some of these patterns are outlined below. For more information and code samples see the
ResolutionStrategy class in the API documentation.

Modelling releasable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built,
tested and published together. These libraries form a "releasable unit", designed and intended to be
used as a whole. It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

* module-a depends on releasable-unit:part-one:1.0

» module-b depends on releasable-unit:part-two:1.1

A build depending on both module-a and module-b will obtain different versions of libraries within
the releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a
releasable unit defined by all libraries that have org.gradle group. We can force all of these
libraries to use a consistent version:

Example: Forcing a consistent version for a group of libraries

build.gradle

configurations.all {
resolutionStrategy.eachDependency { DependencyResolveDetails details ->
if (details.requested.group == 'org.gradle') {
details.useVersion '1.4'
details.because 'API breakage in higher versions'

../dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Implementing a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds
is maintained and audited externally. Dependency resolve rules provide a neat implementation of
this pattern:

* In the build script, the developer declares dependencies with the module group and name, but
uses a placeholder version, for example: default.

» The default version is resolved to a specific version via a dependency resolve rule, which looks
up the version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all
builds within the organisation.

Example: Using a custom versioning scheme

build.gradle

configurations.all {
resolutionStrategy.eachDependency { DependencyResolveDetails details ->
if (details.requested.version == 'default') {
def version = findDefaultVersionInCatalog(details.requested.group,
details.requested.name)
details.useVersion version.version
details.because version.because

def findDefaultVersionInCatalog(String group, String name) {
//some custom logic that resolves the default version into a specific version
[version: "1.0", because: 'tested by QA']

Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a
dependency and providing a replacement version. This can be useful if a certain dependency
version is broken and should not be used, where a dependency resolve rule causes this version to
be replaced with a known good version. One example of a broken module is one that declares a
dependency on a library that cannot be found in any of the public repositories, but there are many
other reasons why a particular module version is unwanted and a different version is preferred.

In example below, imagine that version 1.2.1 contains important fixes and should always be used
in preference to 1.2. The rule provided will enforce just this: any time version 1.2 is encountered it
will be replaced with 1.2.1. Note that this is different from a forced version as described above, in
that any other versions of this module would not be affected. This means that the 'newest' conflict
resolution strategy would still select version 1.3 if this version was also pulled transitively.

Example: Blacklisting a version with a replacement

build.gradle

configurations.all {
resolutionStrategy.eachDependency { DependencyResolveDetails details ->
if (details.requested.group == 'org.software' && details.requested.name ==
"some-library' && details.requested.version == '1.2") {
details.useVersion '1.2.1"
details.because 'fixes critical bug in 1.2'

Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module
dependency. Examples include using groovy in place of groovy-all, or using log4j-over-slf4j
instead of 10g4j. You can perform these substitutions using dependency resolve rules:

Example: Changing dependency group and/or name during resolution

build.gradle

configurations.all {
resolutionStrategy.eachDependency { DependencyResolveDetails details ->
if (details.requested.name == 'groovy-all') {
details.useTarget group: details.requested.group, name: 'groovy', version:
details.requested.version
details.because "prefer 'groovy' over 'groovy-all

}
if (details.requested.name == 'log4j") {
details.useTarget "org.s1f4j:log4j-over-s1f4j:1.7.10"
details.because "prefer 'log4j-over-s1f4j' 1.7.10 over any version of

}

'log4j

}

Using dependency substitution rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many
capabilities of dependency resolve rules can be implemented with dependency substitution rules.
They allow project and module dependencies to be transparently substituted with specified
replacements. Unlike dependency resolve rules, dependency substitution rules allow project and
module dependencies to be substituted interchangeably.

Adding a dependency substitution rule to a configuration changes the timing of when that
configuration is resolved. Instead of being resolved on first use, the configuration is instead resolved
when the task graph is being constructed. This can have unexpected consequences if the

configuration is being further modified during task execution, or if the configuration relies on
modules that are published during execution of another task.

To explain:

* A Configuration can be declared as an input to any Task, and that configuration can include
project dependencies when it is resolved.

 If a project dependency is an input to a Task (via a configuration), then tasks to build the project
artifacts must be added to the task dependencies.

* In order to determine the project dependencies that are inputs to a task, Gradle needs to resolve
the Configuration inputs.

* Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to
perform this resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module
dependency will never transitively reference a project dependency. This makes it easy to determine
the full set of project dependencies for a configuration through simple graph traversal. With this
functionality, Gradle can no longer make this assumption, and must perform a full resolve in order
to determine the project dependencies.

Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place
of one that is downloaded from an external repository. This could be useful for testing a local,
patched version of a dependency.

The module to be replaced can be declared with or without a version specified.

Example: Substituting a module with a project

build.gradle

configurations.all {
resolutionStrategy.dependencySubstitution {
substitute module("org.utils:api") with project(":api") because "we work with
the unreleased development version"
substitute module("org.utils:util:2.5") with project(":util")
}

Note that a project that is substituted must be included in the multi-project build (via
settings.gradle). Dependency substitution rules take care of replacing the module dependency
with the project dependency and wiring up any task dependencies, but do not implicitly include the
project in the build.

Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-
project build. This can be useful to speed up development with a large multi-project build, by

allowing a subset of the project dependencies to be downloaded from a repository rather than
being built.

The module to be used as a replacement must be declared with a version specified.

Example: Substituting a project with a module

build.gradle

configurations.all {
resolutionStrategy.dependencySubstitution {
substitute project(":api") with module("org.utils:api:1.3") because "we use a
stable version of utils"

}

When a project dependency has been replaced with a module dependency, that project is still
included in the overall multi-project build. However, tasks to build the replaced dependency will
not be executed in order to build the resolve the depending Configuration.

Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects
within a multi-project build. This can be useful for developing a local, patched version of an
external dependency or for building a subset of the modules within a large multi-project build.

The following example uses a dependency substitution rule to replace any module dependency
with the group org.example, but only if a local project matching the dependency name can be
located.

Example: Conditionally substituting a dependency

build.gradle

configurations.all {
resolutionStrateqy.dependencySubstitution.all { DependencySubstitution
dependency ->
if (dependency.requested instanceof ModuleComponentSelector && dependency

.requested.group == "org.example") {

def targetProject = findProject(":%{dependency.requested.module}")

if (targetProject != null) {

dependency.useTarget targetProject

}

Note that a project that is substituted must be included in the multi-project build (via
settings.gradle). Dependency substitution rules take care of replacing the module dependency
with the project dependency, but do not implicitly include the project in the build

Using component metadata rules

Each module has metadata associated with it, such as its group, name, version, dependencies, and
so on. This metadata typically originates in the module’s descriptor. Metadata rules allow certain
parts of a module’s metadata to be manipulated from within the build script. They take effect after
a module’s descriptor has been downloaded, but before it has been selected among all candidate
versions. This makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module’s status scheme. This concept,
also known from Ivy, models the different levels of maturity that a module transitions through over
time. The default status scheme, ordered from least to most mature status, is integration, milestone,
release. Apart from a status scheme, a module also has a (current) status, which must be one of the
values in its status scheme. If not specified in the (Ivy) descriptor, the status defaults to integration
for Ivy modules and Maven snapshot modules, and release for Maven modules that aren’t
snapshots.

A module’s status and status scheme are taken into consideration when a latest version selector is
resolved. Specifically, latest.someStatus will resolve to the highest module version that has status
someStatus or a more mature status. For example, with the default status scheme in place,
latest.integration will select the highest module version regardless of its status (because
integration is the least mature status), whereas latest.release will select the highest module
version with status release. Here is what this looks like in code:

Example: 'Latest' version selector

build.gradle

dependencies {
configl "org.sample:client:latest.integration"
config2 "org.sample:client:latest.release"”

}
task listConfigs {
dolast {
configurations.configl.each { println it.name }
println()

configurations.config2.each { println it.name }

Output of gradle -q listConfigs

> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates latest selectors based on a custom status scheme declared in a
component metadata rule that applies to all modules:

Example: Custom status scheme

build.gradle
class CustomStatusRule implements ComponentMetadataRule {

void execute(ComponentMetadataContext context) {
def details = context.details
if (details.id.group == "org.sample" && details.id.name == "api") {
details.statusScheme = ["bronze", "silver", "gold", "platinum"]

}
}

dependencies {
config3 "org.sample:api:latest.silver"
components {
all(CustomStatusRule)

}

Component metadata rules can be applied to a specified module. Modules must be specified in the
form of group:module.

Example: Custom status scheme by module

build.gradle
class ModuleStatusRule implements ComponentMetadataRule {

void execute(ComponentMetadataContext context) {

context.details.statusScheme = ["int", "rc", "prod"]

}
}

dependencies {
configd "org.sample:lib:latest.prod"
components {
withModule('org.sample:1ib", ModuleStatusRule)

}

Gradle can also provide to component metadata rules the Ivy-specific metadata for modules
resolved from an Ivy repository. Values from the Ivy descriptor are made available via the
IvyModuleDescriptor interface.

Example: Ivy component metadata rule

../javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

build.gradle

class IvyComponentRule implements ComponentMetadataRule {
@0verride
void execute(ComponentMetadataContext context) {
def descriptor = context.getDescriptor(IvyModuleDescriptor)
if (descriptor != null && descriptor.branch == 'testing') {
context.details.status = "rc"
}
}
}
dependencies {
configh "org.sample:lib:latest.rc"
components {
withModule("org.sample:1ib", IvyComponentRule)

}

Note that while any rule can request the IvyModuleDescriptor, only components sourced from an

Ivy repository will have a non-null value for it.

As can be seen in the examples above, component metadata rules are defined by implementing
ComponentMetadataRule which has a single execute method receiving an instance of

ComponentMetadataContext as parameter.

The next example shows how you can configure the ComponentMetadataRule through an

ActionConfiguration.

Example: Configuration of ComponentMetadataRule

../javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
../javadoc/org/gradle/api/artifacts/ComponentMetadataRule.html
../javadoc/org/gradle/api/artifacts/ComponentMetadataContext.html
../javadoc/org/gradle/api/ActionConfiguration.html

build.gradle

class ConfiguredRule implements ComponentMetadataRule {
String param

.inject.Inject
ConfiguredRule(String param) {
this.param = param

}

void execute(ComponentMetadataContext context) {
if (param == 'sampleValue') {
context.details.statusScheme = ["bronze", "silver", "gold", "platinum"]

}
}

dependencies {
configb "org.sample:api:latest.gold"
components {
withModule('org.sample:api', ConfiguredRule, {
params('sampleValue")

1))

This happens by having a constructor in your implementation of ComponentMetadataRule accepting
the parameters that were configured and the services that need injecting.

Gradle enforces isolation of instances of ComponentMetadataRule. This means that all passed in
parameters must be Serializable or known Gradle types that can be isolated.

In addition, Gradle services can be injected into your ComponentMetadataRule. This is for the moment
limited to the RepositoryResourceAccessor. Because of this, the moment you have a constructor, it
must be annotated with @javax.inject.Inject.

Using component selection rules

Component selection rules may influence which component instance should be selected when
multiple versions are available that match a version selector. Rules are applied against every
available version and allow the version to be explicitly rejected by rule. This allows Gradle to
ignore any component instance that does not satisfy conditions set by the rule. Examples include:

* For a dynamic version like 1.+ certain versions may be explicitly rejected from selection.
» For a static version like 1.4 an instance may be rejected based on extra component metadata

such as the Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the ComponentSelectionRules object. Each rule configured will be called
with a ComponentSelection object as an argument which contains information about the candidate

../javadoc/org/gradle/api/artifacts/repositories/RepositoryResourceAccessor.html
../dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
../dsl/org.gradle.api.artifacts.ComponentSelection.html

version being considered. Calling ComponentSelection.reject(java.lang.String) causes the given
candidate version to be explicitly rejected, in which case the candidate will not be considered for
the selector.

The following example shows a rule that disallows a particular version of a module but allows the
dynamic version to choose the next best candidate.

Example: Component selection rule

build.gradle

configurations {
rejectConfig {
resolutionStrategy {
componentSelection {
// Accept the highest version matching the requested version that

isn't "1.5'
all { ComponentSelection selection ->
if (selection.candidate.group == 'org.sample' && selection
.candidate.module == 'api' && selection.candidate.version == '1.5") {
selection.reject("version 1.5 is broken for 'org.sample:api'")
}
}
¥
}
}
}

dependencies {
rejectConfig "org.sample:api:1.+"

}

Note that version selection is applied starting with the highest version first. The version selected
will be the first version found that all component selection rules accept. A version is considered
accepted if no rule explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
group:module.

Example: Component selection rule with module target

../dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

build.gradle

configurations {
targetConfig {
resolutionStrategy {
componentSelection {
withModule("org.sample:api") { ComponentSelection selection ->
if (selection.candidate.version == "1.5") {
selection.reject("version 1.5 is broken for 'org.sample:api'")

}

Component selection rules can also consider component metadata when selecting a version.
Possible metadata arguments that can be considered are ComponentMetadata and
IvyModuleDescriptor.

Example: Component selection rule with metadata

../javadoc/org/gradle/api/artifacts/ComponentMetadata.html
../javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

build.gradle

configurations {
metadataRulesConfig {
resolutionStrategy {
componentSelection {
// Reject any versions with a status of 'experimental'
all { ComponentSelection selection, ComponentMetadata metadata ->
if (selection.candidate.group == 'org.sample’ &% metadata.status
== "experimental') {
selection.reject("don't use experimental candidates from

'org.sample'")

}
// Accept the highest version with either a "release" branch or a
status of 'milestone’
withModule('org.sample:api') { ComponentSelection selection,
IvyModuleDescriptor descriptor, ComponentMetadata metadata ->
if (descriptor.branch != "release" && metadata.status !=
'milestone’) {

selection.reject("'org.sample:api' must have testing branch or

milestone status")

Note that a ComponentSelection argument is always required as the first parameter when declaring
a component selection rule with additional Ivy metadata parameters, but the metadata parameters
can be declared in any order.

Lastly, component selection rules can also be defined using a rule source object. A rule source object
is any object that contains exactly one method that defines the rule action and is annotated with
@Mutate.

This method:

* must return void.
* must have ComponentSelection as the first argument.

* may have additional parameters of type ComponentMetadata and/or IvyModuleDescriptor.

Example: Component selection rule using a rule source object

../dsl/org.gradle.api.artifacts.ComponentSelection.html
../dsl/org.gradle.api.artifacts.ComponentSelection.html
../javadoc/org/gradle/api/artifacts/ComponentMetadata.html
../javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

build.gradle
class RejectTestBranch {

void evaluateRule(ComponentSelection selection, IvyModuleDescriptor ivy) {
if (ivy.branch == "test") {
selection.reject("reject test branch")

}

configurations {
ruleSourceConfig {
resolutionStrategy {
componentSelection {
all new RejectTestBranch()

}

Using module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new
one. A good example when a new library replaced a legacy one is the google-collections -> guava
migration. The team that created google-collections decided to change the module name from
com.google.collections:google-collections into com.google.quava:quava. This is a legal scenario in
the industry: teams need to be able to change the names of products they maintain, including the
module coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let’s consider the google-collections -> guava scenario.
It may happen that both libraries are pulled into the same dependency graph. For example, our
project depends on guava but some of our dependencies pull in a legacy version of google-
collections. This can cause runtime errors, for example during test or application execution.
Gradle does not automatically resolve the google-collections -> guava conflict because it is not
considered as a version conflict. It’'s because the module coordinates for both libraries are
completely different and conflict resolution is activated when group and module coordinates are the
same but there are different versions available in the dependency graph (for more info, refer to the
section on conflict resolution). Traditional remedies to this problem are:

* Declare exclusion rule to avoid pulling in google-collections to graph. It is probably the most
popular approach.

* Avoid dependencies that pull in legacy libraries.

» Upgrade the dependency version if the new version no longer pulls in a legacy library.

* Downgrade to google-collections. It’s not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants
to resolve the google-collections -> guava conflict resolution problem in all projects. Starting from

Gradle 2.2 it is possible to declare that certain module was replaced by other. This enables
organisations to include the information about module replacement in the corporate plugin suite
and resolve the problem holistically for all Gradle-powered projects in the enterprise.

Example: Declaring a module replacement

build.gradle

dependencies {
modules {
module("com.google.collections:google-collections") {
replacedBy("com.google.quava:guava", "google-collections is now part of
Guava")

}
}

For more examples and detailed API, refer to the DSL reference for ComponentMetadataHandler.

What happens when we declare that google-collections is replaced by guava? Gradle can use this
information for conflict resolution. Gradle will consider every version of quava newer/better than
any version of google-collections. Also, Gradle will ensure that only guava jar is present in the
classpath / resolved file list. Note that if only google-collections appears in the dependency graph
(e.g. no guava) Gradle will not eagerly replace it with guava. Module replacement is an information
that Gradle uses for resolving conflicts. If there is no conflict (e.g. only google-collections or only
guava in the graph) the replacement information is not used.

Currently it is not possible to declare that a given module is replaced by a set of modules. However,
it is possible to declare that multiple modules are replaced by a single module.

Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are
explicitly set for the configuration. A primary use case of this functionality is for developing plugins
that make use of versioned tools that the user might override. By specifying default dependencies,
the plugin can use a default version of the tool only if the user has not specified a particular version
to use.

Example: Specifying default dependencies on a configuration

build.gradle

configurations {
pluginTool {
defaultDependencies { dependencies ->
dependencies.add(project.dependencies.create("org.gradle:my-util:1.0"))

}

../javadoc/org/gradle/api/artifacts/dsl/ComponentMetadataHandler.html

Enabling Ivy dynamic resolve mode

Gradle’s Ivy repository implementations support the equivalent to Ivy’s dynamic resolve mode.
Normally, Gradle will use the rev attribute for each dependency definition included in an ivy.xml
file. In dynamic resolve mode, Gradle will instead prefer the revConstraint attribute over the rev
attribute for a given dependency definition. If the revConstraint attribute is not present, the rev
attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository
definition. A couple of examples are shown below. Note that dynamic resolve mode is only
available for Gradle’s Ivy repositories. It is not available for Maven repositories, or custom Ivy
DependencyResolver implementations.

Example: Enabling dynamic resolve mode

build.gradle

// Can enable dynamic resolve mode when you define the repository
repositories {
ivy {
url "http://repo.mycompany.com/repo"
resolve.dynamicMode = true

}

// Can use a rule instead to enable (or disable) dynamic resolve mode for all
repositories
repositories.withType(IvyArtifactRepository) {

resolve.dynamicMode = true

}

The Dependency Cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise
the number of remote requests made in dependency resolution, while striving to guarantee that the
results of dependency resolution are correct and reproducible.

The Gradle dependency cache consists of two storage types located under GRADLE_USER_HOME/caches:

* A file-based store of downloaded artifacts, including binaries like jars as well as raw
downloaded meta-data like POM files and Ivy files. The storage path for a downloaded artifact
includes the SHA1 checksum, meaning that 2 artifacts with the same name but different content
can easily be cached.

* A binary store of resolved module meta-data, including the results of resolving dynamic
versions, module descriptors, and artifacts.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and
difficult to debug behavior. Gradle enables reliable and reproducible enterprise builds with a focus
on bandwidth and storage efficiency.

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata
cache. The information stored in the metadata cache includes:

* The result of resolving a dynamic version (e.g. 1.+) to a concrete version (e.g. 1.2).

* The resolved module metadata for a particular module, including module artifacts and module
dependencies.

* The resolved artifact metadata for a particular artifact, including a pointer to the downloaded
artifact file.

* The absence of a particular module or artifact in a particular repository, eliminating repeated
attempts to access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the
information as well as a timestamp that can be used for cache expiry.

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is
identified by its URL, type and layout. If a module or artifact has not been previously resolved from
this repository, Gradle will attempt to resolve the module against the repository. This will always
involve a remote lookup on the repository, however in many cases no download will be required.

Dependency resolution will fail if the required artifacts are not available in any repository specified
by the build, even if the local cache has a copy of this artifact which was retrieved from a different
repository. Repository independence allows builds to be isolated from each other in an advanced
way that no build tool has done before. This is a key feature to create builds that are reliable and
reproducible in any environment.

Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact
is not downloaded if an artifact already exists with the same id and checksum. If the checksum
cannot be retrieved from the remote server, the artifact will be downloaded (and ignored if it
matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to
reuse artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by
Maven, Gradle will use this artifact if it can be verified to match the checksum declared by the
remote server.

Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same
artifact identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for
any artifact which is republished without changing its identifier. By caching artifacts based on their
SHA1 checksum, Gradle is able to maintain multiple versions of the same artifact. This means that

when resolving against one repository Gradle will never overwrite the cached artifact file from a
different repository. This is done without requiring a separate artifact file store per repository.

Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by
multiple Gradle processes concurrently. The lock is held whenever the binary meta-data store is
being read or written, but is released for slow operations such as downloading remote artifacts.

Cache Cleanup

Gradle keeps track of which artifacts in the dependency cache are accessed. Using this information,
the cache is periodically (at most every 24 hours) scanned for artifacts that have not been used for
more than 30 days. Obsolete artifacts are then deleted to ensure the cache does not grow
indefinitely.

Working with Dependencies

Gradle provides an extensive API for navigating, inspecting and post-processing metadata and
artifacts of resolved dependencies.

The main entry point for this functionality is the Configuration API. To learn more about the
fundamentals of configurations, see Managing Dependency Configurations.

Iterating over dependencies assigned to a configuration

Sometimes you’ll want to implement logic based on the dependencies declared in the build script of
a project e.g. to inspect them in a Gradle plugin. You can iterate over the set of dependencies
assigned to a configuration with the help of the method Configuration.getDependencies().
Alternatively, you can also use Configuration.getAllDependencies() to include the dependencies
declared in superconfigurations. These APIs only return the declared dependencies and do not
trigger dependency resolution. Therefore, the dependency sets do not include transitive
dependencies. Calling the APIs during the configuration phase of the build lifecycle does not result
in a significant performance impact.

Example: Iterating over the dependencies assigned to a configuration

build.gradle

task iterateDeclaredDependencies {
dolLast {
DependencySet dependencySet = configurations.scm.dependencies

dependencySet.each {
logger.quiet "$it.group:$it.name:§it.version”

}

../dsl/org.gradle.api.artifacts.Configuration.html
../dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:dependencies
../dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:allDependencies

Iterating over artifacts resolved for a module

None of the dependency reporting helps you with inspecting or further processing the underlying,
resolved artifacts of a module. A typical use case for accessing the artifacts is to copy them into a
specific directory or filter out files of interest based on a specific file extension.

You can iterate over the complete set of artifacts resolved for a module with the help of the method
FileCollection.getFiles(). Every file instance returned from the method points to its location in the
dependency cache. Using this method on a Configuration instance is possible as the interface
extends FileCollection.

Example: Iterating over the artifacts resolved for a module

build.gradle

task iterateResolvedArtifacts {
dependsOn configurations.scm

dolast {
configurations.scm.each {
logger.quiet it.absolutePath

}

Iterating over the artifacts of a module automatically resolves the configuration. A
resolved configuration becomes immutable and cannot add or remove
dependencies. If needed you can copy a configuration for further modification via
Configuration.copy().

NOTE

Navigating the dependency graph

As a plugin developer, you may want to navigate the full graph of dependencies assigned to a
configuration e.g. for turning the dependency graph into a visualization. You can access the full
graph of dependencies for a configuration with the help of the ResolutionResult.

The resolution result provides various methods for accessing the resolved and unresolved
dependencies. For demonstration purposes the sample code uses ResolutionResult.getRoot() to
access the root node the resolved dependency graph. Each dependency of this component returns
an instance of ResolvedDependencyResult or UnresolvedDependencyResult providing detailed
information about the node.

Example: Walking the resolved and unresolved dependencies of a configuration

../javadoc/org/gradle/api/file/FileCollection.html#getFiles--
../dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:copy()
../javadoc/org/gradle/api/artifacts/result/ResolutionResult.html
../javadoc/org/gradle/api/artifacts/result/ResolutionResult.html#getRoot--
../javadoc/org/gradle/api/artifacts/result/ResolvedDependencyResult.html
../javadoc/org/gradle/api/artifacts/result/UnresolvedDependencyResult.html

build.gradle

task walkDependencyGraph(type: DependencyGraphWalk) {
dependsOn configurations.scm

}

class DependencyGraphWalk extends DefaultTask {

void walk() {
Configuration configuration = project.configurations.scm
ResolutionResult resolutionResult = confiquration.incoming.resolutionResult
ResolvedComponentResult root = resolutionResult.root
logger.quiet configuration.name
traverseDependencies(?, root.dependencies)

}

private void traverseDependencies(int level, Set<? extends DependencyResult>
results) {
for (DependencyResult result : results) {
if (result instanceof ResolvedDependencyResult) {
ResolvedComponentResult componentResult = result.selected
ComponentIdentifier componentIdentifier = componentResult.id
String node = calculateIndentation(level) + "- §
componentIdentifier.displayName ($componentResult.selectionReason)"
logger.quiet node
traverseDependencies(level + 1, componentResult.dependencies)
} else if (result instanceof UnresolvedDependencyResult) {
ComponentSelector componentSelector = result.attempted
String node = calculateIndentation(level) + "- §
componentSelector.displayName (failed)"
logger.quiet node

}
}

private String calculateIndentation(int level) {
' " * level

}

Accessing a module’s metadata file

As part of the dependency resolution process, Gradle downloads the metadata file of a module and
stores it in the dependency cache. Some organizations enforce strong restrictions on accessing
repositories outside of internal network. Instead of downloading artifacts, those organizations
prefer to provide an "installable” Gradle cache with all artifacts contained in it to fulfill the build’s
dependency requirements.

The artifact query API provides access to the raw files of a module. Currently, it allows getting a
handle to the metadata file and some selected, additional artifacts (e.g. a JVM-based module’s

source and Javadoc files). The main API entry point is ArtifactResolutionQuery.

Let’s say you wanted to post-process the metadata file of a Maven module. The group, name and
version of the module component serve as input to the artifact resolution query. After executing the
query, you get a handle to all components that match the criteria and their underlying files.
Additionally, it’s very easy to post-process the metadata file. The example code uses Groovy’s
XmlSlurper to ask for POM element values.

Example: Accessing a Maven module’s metadata artifact

build.gradle
apply plugin: 'java-library'

repositories {
mavenCentral()

}

dependencies {
implementation 'com.google.guava:quava:18.0'

}

task printGuavaMetadata {
dependsOn configurations.compileClasspath

dolast {

ArtifactResolutionQuery query = dependencies.createArtifactResolutionQuery()
.forModule('com.google.quava', 'quava', '18.0')
.withArtifacts(MavenModule, MavenPomArtifact)

ArtifactResolutionResult result = query.execute()

for(component in result.resolvedComponents) {

Set<ArtifactResult> mavenPomArtifacts = component.getArtifacts
(MavenPomArtifact)

ArtifactResult quavaPomArtifact = mavenPomArtifacts.find { it.file.name ==
"quava-18.0.pom' }

def xml = new XmlSlurper().parse(guavaPomArtifact.file)

println guavaPomArtifact.file

println xml.name

println xml.description

../dsl/org.gradle.api.artifacts.query.ArtifactResolutionQuery.html
http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html

Publishing Artifacts

Publishing

The vast majority of software projects build something that aims to be consumed in some way. It
could be a library that other software projects use or it could be an application for end users.
Publishing is the process by which the thing being built is made available to consumers.

In Gradle, that process looks like this:

1. Define what to publish
2. Define where to publish it to

3. Do the publishing

Each of the these steps is dependent on the type of repository to which you want to publish
artifacts. The two most common types are Maven-compatible and Ivy-compatible repositories, or
Maven and Ivy repositories for short.

NOTE Looking for information on upload tasks and the archives configuration? See the
Legacy Publishing chapter.

Gradle makes it easy to publish to these types of repository by providing some prepackaged

infrastructure in the form of the Maven Publish Plugin and the Ivy Publish Plugin. These plugins

allow you to configure what to publish and perform the publishing with a minimum of effort.

Publication

(MyLib) > Repository
r--__---—--—_--—-l S
' Artifacts ! (MyRepo)
e e e e e e e e e e e -2 3
FoT-TT T T T T T T T T T
: Metadata !
e e e e e e e e e e e -2 3

Task publishMyLibPublicationToMyRepoRepository

Figure 23. The publishing process
Let’s take a look at those steps in more detail:

What to publish

Gradle needs to know what files and information to publish so that consumers can use your
project. This is typically a combination of artifacts and metadata that Gradle calls a publication.
Exactly what a publication contains depends on the type of repository it’s being published to.

For example, a publication destined for a Maven repository includes one or more artifacts —
typically built by the project — plus a POM file describing the primary artifact and its
dependencies. The primary artifact is typically the project’s production JAR and secondary

artifacts might consist of "-sources" and "-javadoc" JARs.

Where to publish

Gradle needs to know where to publish artifacts so that consumers can get hold of them. This is
done via repositories, which store and make available all sorts of artifact. Gradle also needs to
interact with the repository, which is why you must provide the type of the repository and its
location.

How to publish

Gradle automatically generates publishing tasks for all possible combinations of publication and
repository, allowing you to publish any artifact to any repository. If you’re publishing to a Maven
repository, the tasks are of type PublishToMavenRepository, while for Ivy repositories the tasks
are of type PublishToIvyRepository.

What follows is a practical example that demonstrates the entire publishing process.

Setting up basic publishing

The first step in publishing, irrespective of your project type, is to apply the appropriate publishing
plugin. As mentioned in the introduction, Gradle supports both Maven and Ivy repositories via the
following plugins:

* Maven Publish Plugin

* Ivy Publish Plugin

These provide the specific publication and repository classes needed to configure publishing for the
corresponding repository type. Since Maven repositories are the most commonly used ones, they
will be the basis for this example and for the other samples in the chapter. Don’t worry, we will
explain how to adjust individual samples for Ivy repositories.

Let’s assume we’re working with a simple Java library project, so only the following plugins are
applied:

Example: Applying the necessary plugins

build.gradle

plugins {
id 'java-library'
id 'maven-publish’

Once the appropriate plugin has been applied, you can configure the publications and repositories.
For this example, we want to publish the project’s production JAR file — the one produced by the
jar task — to a custom, Maven repository. We do that with the following publishing {} block, which
is backed by PublishingExtension:

../dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
../dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
../dsl/org.gradle.api.publish.PublishingExtension.html

Example: Configuring a Java library for publishing

build.gradle

group = 'org.example’
version = '1.0'

publishing {
publications {
myLibrary(MavenPublication) {
from components.java
}
}

repositories {
maven {
name = 'myRepo’
url = "file://${buildDir}/repo"

This defines a publication called "myLibrary" that can be published to a Maven repository by virtue
of its type: MavenPublication. This publication consists of just the production JAR artifact and its
metadata, which combined are represented by the java component of the project.

Components are the standard way of defining a publication. They are provided by
plugins, usually of the language or platform variety. For example, the Java Plugin
defines the components.java SoftwareComponent, while the War Plugin defines
components.web.

NOTE

The example also defines a file-based Maven repository with the name "myRepo". Such a file-based
repository is convenient for a sample, but real-world builds typically work with HTTPS-based
repository servers, such as Maven Central or an internal company server.

You may define one, and only one, repository without a name. This translates to an
NOTE implicit name of "Maven" for Maven repositories and "Ivy" for Ivy repositories. All
other repository definitions must be given an explicit name.

In combination with the project’s group and version, the publication and repository definitions
provide everything that Gradle needs to publish the project’s production JAR. Gradle will then
create a dedicated publishMyLibraryPublicationToMyRepoRepository task that does just that. Its name
is based on the template publishPubNamePublicationToRepoNameRepository. See the appropriate
publishing plugin’s documentation for more details on the nature of this task and any other tasks
that may be available to you.

You can either execute the individual publishing tasks directly, or you can execute publish, which
will run all the available publishing tasks. In this example, publish will just run
publishMyLibraryPublicationToMavenRepository.

../dsl/org.gradle.api.publish.maven.MavenPublication.html
../javadoc/org/gradle/api/component/SoftwareComponent.html

Basic publishing to an Ivy repository is very similar: you simply use the Ivy Publish
Plugin, replace MavenPublication with IvyPublication, and use ivy instead of maven in
the repository definition.

NOTE There are differences between the two types of repository, particularly around the
extra metadata that each support — for example, Maven repositories require a POM
file while Ivy ones have their own metadata format — so see the plugin chapters for
comprehensive information on how to configure both publications and repositories
for whichever repository type you’re working with.

That’s everything for the basic use case. However, many projects need more control over what gets
published, so we look at several common scenarios in the following sections.

Adding custom artifacts to a publication

Users often need to include additional artifacts with a publication, one of the most common
examples being that of "-sources" and "-javadoc" JARs for JVM libraries. This is easy to do for both
Maven- and Ivy-compatible repositories via the artifact configuration.

The following sample configures "-sources" and "-javadoc" JARs for a Java project and attaches them
to the main (Maven) publication, i.e. the production JAR:

Example: Adding an additional archive artifact to a MavenPublication

build.gradle

task sourcesJar(type: Jar) {
classifier = 'sources'
from sourceSets.main.alllava

task javadoclar(type: Jar) {
classifier = 'javadoc'
from javadoc.destinationDir

publishing {
publications {
mavenJava(MavenPublication) {
from components.java

artifact sources]ar
artifact javadoclar

There are several important things to note about the sample:

../dsl/org.gradle.api.publish.ivy.IvyPublication.html

» The artifact() method accepts archive tasks as an argument — like sourcesJar in the sample —
as well as any type of argument accepted by Project.file(java.lang.Object), such as a File
instance or string file path.

 Publishing plugins support different artifact configuration properties, so always check the
plugin documentation for more details. The classifier and extension properties are supported
by both the Maven Publish Plugin and the Ivy Publish Plugin.

* Custom artifacts need to be distinct within a publication, typically via a unique combination of
classifier and extension. See the documentation for the plugin you’re using for the precise
requirements.

o If you use artifact() with an archive task, Gradle automatically populates the artifact’s
metadata with the classifier and extension properties from that task. That’s why the above
sample does not specify those properties in the artifact configurations.

When you’re attaching extra artifacts to a publication, remember that they are secondary artifacts
that support a primary artifact. The metadata that a publication defines — such as dependency
information — is associated with that primary artifact only. Thinking about publications in this way
should help you determine whether you should be adding custom artifacts to an existing
publication, or defining a new publication.

Publishing a custom primary artifact (no component)

If your build produces a primary artifact that isn’t supported by a predefined component, then you
will need to configure a custom artifact. This isn’t much different to adding a custom artifact to an
existing publication. There are just a couple of extra considerations:

* You may want to make the artifact available to other projects in the build
* You will need to manually construct the necessary metadata for publishing

Inter-project dependencies have nothing to do with publishing, but both features typically apply to
the same set of artifacts in a Gradle project. So how do you tie them together?

You start by defining a custom artifact and attaching it to a Gradle configuration of your choice. The
following sample defines an RPM artifact that is produced by an rpm task (not shown) and attaches
that artifact to the archives configuration:

Example: Defining a custom artifact for a configuration

build.gradle

def rpmFile = file("$buildDir/rpms/my-package.rpm")
def rpmArtifact = artifacts.add('archives', rpmFile) {

type "rpm
builtBy 'rpm’

The artifacts.add() method — from ArtifactHandler — returns an artifact object of type
PublishArtifact that can then be used in defining a publication, as shown in the following sample:

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
../dsl/org.gradle.api.artifacts.dsl.ArtifactHandler.html
../javadoc/org/gradle/api/artifacts/PublishArtifact.html

Example: Attaching a custom PublishArtifact to a publication

build.gradle

publishing {
publications {
maven(MavenPublication) {
artifact rpmArtifact
}

Now you can publish the RPM as well as depend on it from another project using the project(path:
":my-project', configuration: 'archives') syntax.

There is currently no easy way to define dependency information for a custom

NOTE .
artifact.

The groupld and artifactId properties are specific to Maven publications. See IvyPublication for the
relevant Ivy properties.
Signing artifacts

The Signing Plugin can be used to sign all artifacts and metadata files that make up a publication,
including Maven POM files and Ivy module desciptors. In order to use it:

1. Apply the Signing Plugin
2. Configure the signatory credentials — follow the link to see how

3. Specify the publications you want signed

Here’s an example that configures the plugin to sign the mavenJava publication:

Example: Signing a publication

build.gradle

signing {
sign publishing.publications.mavenJava

}

This will create a Sign task for each publication you specify and wire all publish
PubNamePublicationToRepoNameRepository tasks to depend on it. Thus, publishing any publication will
automatically create and publish the signatures for its artifacts and metadata, as you can see from
this output:

Example: Sign and publish a project

../dsl/org.gradle.api.publish.ivy.IvyPublication.html

Output of gradle publish

gradle publish

Task :generatePomFileForMavenJavaPublication
Task :compilelava

Task :processResources

Task :classes

Task :jar

Task :javadoc

Task :javadocJar

Task :sourcesJar

Task :signMavenJavaPublication

Task :publishMavenJavaPublicationToMavenRepository
Task :publish

V V V V V V V V V V V V

BUILD SUCCESSFUL in @s
9 actionable tasks: 9 executed

Restricting publications to specific repositories

When you have defined multiple publications or repositories, you often want to control which
publications are published to which repositories. For instance, consider the following sample that
defines two publications — one that consists of just a binary and another that contains the binary
and associated sources — and two repositories — one for internal use and one for external
consumers:

Example: Adding multiple publications and repositories

build.gradle

publishing {
publications {
binary(MavenPublication) {
from components.java
}
binaryAndSources(MavenPublication) {
from components.java
artifact sourceslar
}
}
repositories {
// change URLs to point to your repos, e.g. http://my.org/repo
maven {
name = 'external’
url = "$buildDir/repos/external”

}
maven {

name = 'internal’

url = "$buildDir/repos/internal”
}

The publishing plugins will create tasks that allow you to publish either of the publications to either
repository. They also attach those tasks to the publish aggregate task. But let’s say you want to
restrict the binary-only publication to the external repository and the binary-with-sources
publication to the internal one. To do that, you need to make the publishing conditional.

Gradle allows you to skip any task you want based on a condition via the
Task.onlylIf(org.gradle.api.specs.Spec) method. The following sample demonstrates how to
implement the constraints we just mentioned:

Example: Configuring which artifacts should be published to which repositories

../dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(org.gradle.api.specs.Spec)

build.gradle

tasks.withType(PublishToMavenRepository) {
onlyIf {
(repository == publishing.repositories.external &&
publication == publishing.publications.binary) ||
(repository == publishing.repositories.internal &&
publication == publishing.publications.binaryAndSources)

}
}
tasks.withType(PublishToMavenLocal) {
onlyIf {
publication == publishing.publications.binaryAndSources
}
¥

Output of gradle publish

gradle publish

Task :generatePomFileForBinaryAndSourcesPublication

Task :compilelava

Task :processResources

Task :classes

Task :jar

Task :sourceslar

Task :publishBinaryAndSourcesPublicationToExternalRepository SKIPPED
Task :publishBinaryAndSourcesPublicationToInternalRepository
Task :generatePomFileForBinaryPublication

Task :publishBinaryPublicationToExternalRepository

Task :publishBinaryPublicationToInternalRepository SKIPPED
Task :publish

V V V V V V V V V V V V V

BUILD SUCCESSFUL in @s
8 actionable tasks: 8 executed

You may also want to define your own aggregate tasks to help with your workflow. For example,
imagine that you have several publications that should be published to the external repository. It
could be very useful to publish all of them in one go without publishing the internal ones.

The following sample demonstrates how you can do this by defining an aggregate task
— publishToExternalRepository — that depends on all the relevant publish tasks:

Example: Defining your own shorthand tasks for publishing

build.gradle

task publishToExternalRepository {
group = 'publishing’
description = 'Publishes all Maven publications to the external Maven repository.'
dependsOn tasks.withType(PublishToMavenRepository).matching {
it.repository == publishing.repositories.external

}

This particular sample automatically handles the introduction or removal of the relevant
publishing tasks by using TaskCollection.withType(java.lang.Class) with the
PublishToMavenRepository task type. You can do the same with PublishToIvyRepository if you’re
publishing to Ivy-compatible repositories.

Configuring publishing tasks

The publishing plugins create their non-aggregate tasks after the project has been evaluated, which
means you cannot directly reference them from your build script. If you would like to configure
any of these tasks, you should use deferred task configuration. This can be done in a number of
ways via the project’s tasks collection.

For example, imagine you want to change where the generatePomFileForPubNamePublication tasks
write their POM files. You can do this by using the TaskCollection.withType(java.lang.Class) method,
as demonstrated by this sample:

Example: Configuring a dynamically named task created by the publishing plugins

build.gradle

tasks.withType(GenerateMavenPom).all {
def matcher = name =~ /generatePomFileFor (\w+)Publication/
def publicationName = matcher[0][1]
destination = "$buildDir/poms/${publicationName}-pom.xml"

The above sample uses a regular expression to extract the name of the publication from the name
of the task. This is so that there is no conflict between the file paths of all the POM files that might
be generated. If you only have one publication, then you don’t have to worry about such conflicts
since there will only be one POM file.

Terminology

Artifact

A file or directory produced by a build, such as a JAR, a ZIP distribution, or a native executable.

Artifacts are typically designed to be used or consumed by users or other projects, or deployed to
hosting systems. In such cases, the artifact is a single file. Directories are common in the case of

../javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
../dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
../dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
../javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-

inter-project dependencies to avoid the cost of producing the publishable artifact.

Component

Any single version of a module.

Components are defined by plugins and provide a simple way to define a publication for
publishing. They comprise one or more artifacts as well as the appropriate metadata. For
example, the java component consists of the production JAR — produced by the jar task — and
its dependency information.

Configuration

A named collection of dependencies or artifacts.

Gradle’s configurations can be somewhat confusing because they apply to both dependencies
and artifacts. The main difference is that dependencies are consumed by the project, while
artifacts are produced by it. Even then, the artifacts produced by a project are often consumed as
dependencies by other projects.

Configurations allow different aspects of the build to work with known subsets of a project’s
dependencies or artifacts, e.g. the dependencies required for compilation, or the artifacts related
to a project’s APL.

Publication

A description of the files and metadata that should be published to a repository as a single entity
for use by consumers.

A publication has a name and consists of one or more artifacts plus information about those
artifacts. The nature of that information depends on what type of repository you publish the
publication to. In the case of Maven, the information takes the form of a POM.

One thing to bear in mind is that Maven repositories only allow a single primary artifact, i.e. one
with metadata, but they do allow secondary artifacts such as packages of the associated source
files and documentation ("-sources" and "-javadoc” JARs in the Java world).

Maven Publish Plugin

The Maven Publish Plugin provides the ability to publish build artifacts to an Apache Maven
repository. A module published to a Maven repository can be consumed by Maven, Gradle (see
Declaring Dependencies) and other tools that understand the Maven repository format. You can
learn about the fundamentals of publishing in Publishing Overview.

Usage

To use the Maven Publish Plugin, include the following in your build script:

Example: Applying the Maven Publish Plugin

http://maven.apache.org/

build.gradle

plugins {
id 'maven-publish'

}

The Maven Publish Plugin uses an extension on the project named publishing of type
PublishingExtension. This extension provides a container of named publications and a container of
named repositories. The Maven Publish Plugin works with MavenPublication publications and
MavenArtifactRepository repositories.

Tasks

generatePomFileForPubNamePublication — GenerateMavenPom

Creates a POM file for the publication named PubName, populating the known metadata such as
project name, project version, and the dependencies. The default location for the POM file is
build/publications/$pubName/pom-default.xml.

publishPubNamePublicationToRepoNameRepository — PublishToMavenRepository

Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "Maven".

publishPubNamePublicationToMavenLocal — PublishToMavenLocal

Copies the PubName publication to the local Maven cache — typically
$USER_HOME/.m2/repository — along with the publication’s POM file and other metadata.

publish
Depends on: All publishPubNamePublicationToRepoNameRepository tasks

An aggregate task that publishes all defined publications to all defined repositories. It does not
include copying publications to the local Maven cache.

publishToMavenlLocal
Depends on: All publishPubNamePublicationToMavenLocal tasks

Copies all defined publications to the local Maven cache, including their metadata (POM files,
etc.).

Publications

This plugin provides publications of type MavenPublication. To learn how to define and use
publications, see the section on basic publishing.

There are four main things you can configure in a Maven publication:

* A component — via MavenPublication.from(org.gradle.api.component.SoftwareComponent).

* Custom artifacts —via the MavenPublication.artifact(java.lang.Object) method. See
MavenArtifact for the available configuration options for custom Maven artifacts.

../dsl/org.gradle.api.publish.PublishingExtension.html
../dsl/org.gradle.api.publish.maven.MavenPublication.html
../dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
../dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
../dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
../javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
../dsl/org.gradle.api.publish.maven.MavenPublication.html
../dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:from(org.gradle.api.component.SoftwareComponent)
../dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:artifact(java.lang.Object)
../dsl/org.gradle.api.publish.maven.MavenArtifact.html

» Standard metadata like artifactId, groupId and version.
* Other contents of the POM file — via MavenPublication.pom(org.gradle.api.Action).

You can see all of these in action in the complete publishing example. The API documentation for
MavenPublication has additional code samples.

Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following
project properties:

* groupld - Project.getGroup()

» artifactld - Project.getName()

* version - Project.getVersion()

Overriding the default identity values is easy: simply specify the groupId, artifactId or version
attributes when configuring the MavenPublication.

Example: customizing the publication identity

build.gradle

publishing {
publications {
maven(MavenPublication) {
groupId = 'org.gradle.sample’
artifactId = 'projectl-sample’
version = '1.1'

from components.java

Certain repositories will not be able to handle all supported characters. For example,
TIP the : character cannot be used as an identifier when publishing to a filesystem-backed
repository on Windows.

Maven restricts groupld and artifactId to a limited character set ([A-Za-z0-9_\\-.]+) and Gradle
enforces this restriction. For version (as well as the artifact extension and classifier properties),
Gradle will handle any valid Unicode character.

The only Unicode values that are explicitly prohibited are \, / and any ISO control character.
Supplied values are validated early in publication.

Customizing the generated POM

The generated POM file can be customized before publishing. For example, when publishing a

../dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:pom(org.gradle.api.Action)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
../dsl/org.gradle.api.publish.maven.MavenPublication.html

library to Maven Central you will need to set certain metadata. The Maven Publish Plugin provides
a DSL for that purpose. Please see MavenPom in the DSL Reference for the complete documentation
of available properties and methods. The following sample shows how to use the most common
ones:

Example: Customizing the POM file

build.gradle

publishing {
publications {
mavenJava(MavenPublication) {
pom {
name = 'My Library'
description = 'A concise description of my library'
url = "http://www.example.com/library'
licenses {
license {
name = 'The Apache License, Version 2.0’
url = "http://www.apache.org/licenses/LICENSE-2.0.txt"
}
}
developers {
developer {
id = 'johnd'
name = 'John Doe'
email = 'john.doe@example.com’

}
}
scm {
connection = 'scm:git:git://example.com/my-library.git’
developerConnection = 'scm:git:ssh://example.com/my-library.git'
url = "http://example.com/my-library/'
}
}
}
}
¥
Repositories

This plugin provides repositories of type MavenArtifactRepository. To learn how to define and use
repositories for publishing, see the section on basic publishing.

Here’s a simple example of defining a publishing repository:

Example: Declaring repositories to publish to

../dsl/org.gradle.api.publish.maven.MavenPom.html
../dslorg.gradle.api.artifacts.repositories.MavenArtifactRepository.html

build.gradle

publishing {
repositories {
maven {
// change to point to your repo, e.g. http://my.org/repo
url = "$buildDir/repo"

The two main things you will want to configure are the repository’s:

* URL (required)

* Name (optional)

You can define multiple repositories as long as they have unique names within the build script. You
may also declare one (and only one) repository without a name. That repository will take on an
implicit name of "Maven".

You can also configure any authentication details that are required to connect to the repository. See
MavenArtifactRepository for more details.

Snapshot and release repositories

It is a common practice to publish snapshots and releases to different Maven repositories. A simple
way to accomplish this is to configure the repository URL based on the project version. The
following sample uses one URL for versions that end with "SNAPSHOT" and a different URL for the
rest:

Example: Configuring repository URL based on project version

build.gradle

publishing {
repositories {
maven {
def releasesRepoUrl = "$buildDir/repos/releases"
def snapshotsRepoUrl = "$buildDir/repos/snapshots”
url = version.endsWith('SNAPSHOT') ? snapshotsRepoUrl : releasesRepoUrl

Similarly, you can use a project or system property to decide which repository to publish to. The
following example uses the release repository if the project property release is set, such as when a
user runs gradle -Prelease publish:

../dslorg.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Example: Configuring repository URL based on project property

build.gradle

publishing {
repositories {
maven {
def releasesRepoUrl = "$buildDir/repos/releases”
def snapshotsRepoUrl = "$buildDir/repos/snapshots”
url = project.hasProperty('release') ? releasesRepoUrl : snapshotsRepolUrl

Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the
Maven local repository (typically at SUSER_HOME/.m2/repository), along with its POM file and other
metadata. In Maven parlance, this is referred to as 'installing' the module.

The Maven Publish Plugin makes this easy to do by automatically creating a PublishToMavenLocal
task for each MavenPublication in the publishing.publications container. The task name follows
the pattern of publishPubNamePublicationToMavenLocal. Each of these tasks is wired into the
publishToMavenLocal aggregate task. You do not need to have mavenlLocal() in your
publishing.repositories section.

Complete example

The following example demonstrates how to sign and publish a Java library including sources,
Javadoc, and a customized POM:

Example: Publishing a Java library

build.gradle

plugins {
id 'java-library'
id 'maven-publish'
id 'signing'

}

group = 'com.example'
version = '1.0'

task sourcesJar(type: Jar) {
from sourceSets.main.alllava
classifier = 'sources'

}

task javadocJar(type: Jar) {

../javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
../dsl/org.gradle.api.publish.maven.MavenPublication.html

from javadoc
classifier = 'javadoc'

}

publishing {
publications {
mavenJava(MavenPublication) {
artifactId = 'my-library'
from components.java
artifact sourceslar
artifact javadoclar
pom {
name = 'My Library'
description = 'A concise description of my library'
url = "http://www.example.com/library'
licenses {
license {
name = 'The Apache License, Version 2.0’
url = "http://www.apache.org/licenses/LICENSE-2.0.txt"
}
}
developers {
developer {
id = 'johnd'
name = 'John Doe'
email = 'john.doe@example.com’

}
}
scm {
connection = 'scm:git:git://example.com/my-library.git’
developerConnection = 'scm:git:ssh://example.com/my-library.git'
url = "http://example.com/my-library/'
}
}
}
}
repositories {
maven {
// change URLs to point to your repos, e.g. http://my.org/repo
def releasesRepoUrl = "$buildDir/repos/releases"
def snapshotsRepoUrl = "$buildDir/repos/snapshots”
url = version.endsWith('SNAPSHOT') ? snapshotsRepoUrl : releasesRepoUrl
}
}
by
signing {

sign publishing.publications.mavenJava

}

javadoc {
if(JavaVersion.current().isJava9Compatible()) {
options.addBooleanOption('html4', true)
}

The result is that the following artifacts will be published:

The POM: my-1library-1.0.pom

The primary JAR artifact for the Java component: my-1library-1.0.jar
» The sources JAR artifact that has been explicitly configured: my-1ibrary-1.0-sources.jar
» The Javadoc JAR artifact that has been explicitly configured: my-1library-1.0-javadoc.jar

The Signing Plugin is used to generate a signature file for each artifact. In addition, checksum files
will be generated for all artifacts and signature files.

Removal of deferred configuration behavior

NOTE Gradle 5.0 will change the behavior of the publishing {} block. Read on to find out
how you can make your build compatible today.

Prior to Gradle 4.8, the publishing {} block was implicitly treated as if all the logic inside it was

executed after the project is evaluated. This caused quite a bit of confusion, because it was the only

block that behaved that way. As part of the stabilization effort in Gradle 4.8, we are deprecating this

behavior and asking all users to migrate their build.

The new, stable behavior can be switched on by adding the following to your settings file:
enableFeaturePreview('STABLE PUBLISHING')

We recommend doing a test run with a local repository to see whether all artifacts still have the
expected coordinates. In most cases everything should work as before and you are done.

If the coordinates change unexpectedly, you may have some logic inside your publishing block or in
a plugin that is depending on the deferred configuration behavior. For instance, the following logic
assumes that the subprojects will be evaluated when the artifactld is set:

subprojects {
publishing {
publications {
mavenJava {
from components.java
artifactId = jar.baseName

This kind of logic must be wrapped in an afterEvaluate {} block to make it work going forward.

subprojects {
publishing {
publications {
mavenJava {
from components.java
afterEvaluate {
artifactId = jar.baseName

}

Ivy Publish Plugin

The Ivy Publish Plugin provides the ability to publish build artifacts in the Apache Ivy format,
usually to a repository for consumption by other builds or projects. What is published is one or
more artifacts created by the build, and an Ivy module descriptor (normally ivy.xml) that describes
the artifacts and the dependencies of the artifacts, if any.

A published Ivy module can be consumed by Gradle (see Declaring Dependencies) and other tools
that understand the Ivy format. You can learn about the fundamentals of publishing in Publishing
Overview.

Usage

To use the Ivy Publish Plugin, include the following in your build script:

Example: Applying the Ivy Publish Plugin

http://ant.apache.org/ivy/

build.gradle

plugins {
id "ivy-publish'
}

The Ivy Publish Plugin uses an extension on the project named publishing of type
PublishingExtension. This extension provides a container of named publications and a container of
named repositories. The Ivy Publish Plugin works with IvyPublication publications and
IvyArtifactRepository repositories.

Tasks

generateDescriptorFileForPubNamePublication — GeneratelvyDescriptor

Creates an Ivy descriptor file for the publication named PubName, populating the known
metadata such as project name, project version, and the dependencies. The default location for
the descriptor file is build/publications/$pubName/ivy.xml.

publishPubNamePublicationToRepoNameRepository — PublishTolvyRepository

Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "Ivy".

publish
Depends on: All publishPubNamePublicationToRepoNameRepository tasks

An aggregate task that publishes all defined publications to all defined repositories.

Publications

This plugin provides publications of type IvyPublication. To learn how to define and use
publications, see the section on basic publishing.

There are four main things you can configure in an Ivy publication:

* A component — via IvyPublication.from(org.gradle.api.component.SoftwareComponent).

* Custom artifacts — via the IvyPublication.artifact(java.lang.Object) method. See IvyArtifact for
the available configuration options for custom Ivy artifacts.

» Standard metadata like module, organisation and revision.

* Other contents of the module descriptor — via IvyPublication.descriptor(org.gradle.api.Action).

You can see all of these in action in the complete publishing example. The API documentation for
IvyPublication has additional code samples.

Identity values for the published project

The generated Ivy module descriptor file contains an <info> element that identifies the module. The
default identity values are derived from the following:

../dsl/org.gradle.api.publish.PublishingExtension.html
../dsl/org.gradle.api.publish.ivy.IvyPublication.html
../dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
../dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
../dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
../dsl/org.gradle.api.publish.ivy.IvyPublication.html
../dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:from(org.gradle.api.component.SoftwareComponent)
../dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:artifact(java.lang.Object)
../dsl/org.gradle.api.publish.ivy.IvyArtifact.html
../dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:descriptor(org.gradle.api.Action)

* organisation - Project.getGroup()
* module - Project.getName()

* revision - Project.getVersion()

» status - Project.getStatus()

e branch - (not set)

Overriding the default identity values is easy: simply specify the organisation, module or revision
properties when configuring the IvyPublication. status and branch can be set via the descriptor
property — see IvyModuleDescriptorSpec.

The descriptor property can also be used to add additional custom elements as children of the
<info> element, like so:

Example: customizing the publication identity

build.gradle

publishing {
publications {
ivy(IvyPublication) {
organisation = 'org.gradle.sample
module = 'projectl-sample’
revision = '1.1"
descriptor.status = 'milestone’
descriptor.branch = 'testing’
descriptor.extralnfo 'http://my.namespace', 'myElement', 'Some value'

from components.java

Certain repositories are not able to handle all supported characters. For example, the :
TIP character cannot be used as an identifier when publishing to a filesystem-backed
repository on Windows.

Gradle will handle any valid Unicode character for organisation, module and revision (as well as the
artifact’s name, extension and classifier). The only values that are explicitly prohibited are \, / and
any ISO control character. The supplied values are validated early during publication.

Customizing the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked
before publishing. The Ivy Publish Plugin provides a DSL for that purpose. Please see
IvyModuleDescriptorSpec in the DSL Reference for the complete documentation of available
properties and methods.

The following sample shows how to use the most common aspects of the DSL:

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
../dsl/org.gradle.api.publish.ivy.IvyPublication.html
../dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html
../dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Example: Customizing the module descriptor file

build.gradle

publications {
ivyCustom(IvyPublication) {
descriptor {
license {
name = 'The Apache License, Version 2.0’
url = "http://www.apache.org/licenses/LICENSE-2.0.txt"

¥
author {

name = 'Jane Doe'

url = "http://example.com/users/jane’
}

description {
text = 'A concise description of my library'
homepage = 'http://www.example.com/library’

In this example we are simply adding a 'description’ element to the generated Ivy dependency
descriptor, but this hook allows you to modify any aspect of the generated descriptor. For example,
you could replace the version range for a dependency with the actual version used to produce the
build.

You can also add arbitrary XML to the descriptor file via
IvyModuleDescriptorSpec.withXml(org.gradle.api.Action), but you can not use it to modify any part
of the module identifier (organisation, module, revision).

It is possible to modify the descriptor in such a way that it is no longer a valid

CAUTION
Ivy module descriptor, so care must be taken when using this feature.

Repositories

This plugin provides repositories of type IvyArtifactRepository. To learn how to define and use
repositories for publishing, see the section on basic publishing.

Here’s a simple example of defining a publishing repository:

Example: Declaring repositories to publish to

../dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)
../dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html

build.gradle

publishing {
repositories {
ivy {
// change to point to your repo, e.g. http://my.org/repo
url = "$buildDir/repo"

The two main things you will want to configure are the repository’s:

* URL (required)

* Name (optional)

You can define multiple repositories as long as they have unique names within the build script. You
may also declare one (and only one) repository without a name. That repository will take on an
implicit name of "Ivy".

You can also configure any authentication details that are required to connect to the repository. See
IvyArtifactRepository for more details.

Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a
Java component and a configured additional source artifact. The descriptor file is customized to
include the project description for each project.

Example: Publishing a Java module

build.gradle

subprojects {
apply plugin: 'java'
apply plugin: 'ivy-publish’

version = '1.0'
group = 'org.gradle.sample’

repositories {
mavenCentral()

}

task sourcesJar(type: Jar) {
from sourceSets.main.java
classifier = 'sources'

}

project(':projectl') {

../dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html

description = 'The first project’

dependencies {
compile 'junit:junit:4.12', project(':project2')
}
}

project(':project2") {
description = 'The second project’

dependencies {
compile 'commons-collections:commons-collections:3.2.2'
}
}

subprojects {
publishing {
repositories {
ivy {
// change to point to your repo, e.g. http://my.org/repo
url = "${rootProject.buildDir}/repo"
}
}
publications {
ivy(IvyPublication) {
from components.java
artifact(sourcesl]ar) {
type = "sources'
conf = 'compile'

}
descriptor.description {
text = description

}

The result is that the following artifacts will be published for each project:

* The Ivy module descriptor file: ivy-1.0.xml.
* The primary JAR artifact for the Java component: project1-1.0.jar.

» The source JAR artifact that has been explicitly configured: project1-1.0-source.jar.

When project1 is published, the module descriptor (i.e. the ivy.xml file) that is produced will look
like:

Example: Generated ivy.xml

output-ivy.xml

<!-- This file is an example of the Ivy module descriptor that this build will produce
-->
<?xml version="1.0" encoding="UTF-8"7>
<ivy-module version="2.0" xmlns:m="http://ant.apache.org/ivy/maven">
<info organisation="org.gradle.sample" module="project1" revision="1.0" status=
"integration" publication="<«PUBLICATION-TIME-STAMP>">
<description>The first project</description>
</info>
<configurations>
<conf name="compile" visibility="public"/>
<conf name="default" visibility="public" extends="compile,runtime"/>
<conf name="runtime" visibility="public"/>
</configurations>
<publications>
<artifact name="project1" type="sources" ext="jar" conf="compile" m:classifier=
"sources"/>
<artifact name="project1" type="jar" ext="jar" conf="compile"/>
</publications>
<dependencies>
<dependency org="junit" name="junit" rev="4.12" conf="compile-&qgt;default"/>
<dependency org="org.gradle.sample" name="project2" rev="1.0" conf="compile-
Ggt;default"/>
</dependencies>
</ivy-module>

Note that «PUBLICATION-TIME-STAMP>> in this example Ivy module descriptor will be the

TIP
timestamp of when the descriptor was generated.

Legacy publishing

This chapter describes the original publishing mechanism available in Gradle 1.0,
which has since been superseded by an alternative model. The approach detailed in

NOTE
this chapter — based on Upload tasks — should not be used in new builds. We cover
it in order to help users work with and update existing builds that use it.
Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with
them (e.g. upload them). We define the artifacts of the projects as the files the project provides to
the outside world. This might be a library or a ZIP distribution or any other file. A project can
publish as many artifacts as it wants.

Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain
both artifacts and dependencies at the same time.

../dsl/org.gradle.api.tasks.Upload.html

For each configuration in your project, Gradle provides the tasks uploadConfigurationName and
buildConfigurationName when the base plugin is applied. Execution of these tasks will build or
upload the artifacts belonging to the respective configuration.

This listing shows the configurations added by the Java plugin. Two of the configurations are
relevant for the usage with artifacts. The archives configuration is the standard configuration to
assign your artifacts to. The Java plugin automatically assigns the default jar to this configuration.
We will talk more about the runtime configuration further on. As with dependencies, you can
declare as many custom configurations as you like and assign artifacts to them.

Declaring artifacts

Archive task artifacts

You can use an archive task to define an artifact:

Example: Defining an artifact using an archive task

build.gradle
task myJar(type: Jar)

artifacts {
archives myJar

It is important to note that the custom archives you are creating as part of your build are not
automatically assigned to any configuration. You have to explicitly do this assignment.

File artifacts

You can also use a file to define an artifact:

Example: Defining an artifact using a file

build.gradle
def someFile = file('build/somefile.txt")

artifacts {
archives someFile

Gradle will figure out the properties of the artifact based on the name of the file. You can customize
these properties:

Example: Customizing an artifact

build.gradle

task myTask(type: MyTaskType) {
destFile = file('build/somefile.txt")

}

artifacts {
archives(myTask.destFile) {
name 'my-artifact'
type 'text'
builtBy myTask

There is a map-based syntax for defining an artifact using a file. The map must include a file entry
that defines the file. The map may include other artifact properties:

Example: Map syntax for defining an artifact using a file

build.gradle

task generate(type: MyTaskType) {
destFile = file('build/somefile.txt")
}

artifacts {
archives file: generate.destFile, name: 'my-artifact', type: '"text', builtBy:
generate

}

Publishing artifacts

We have said that there is a specific upload task for each configuration. Before you can do an
upload, you have to configure the upload task and define where to publish the artifacts to. The
repositories you have defined (as described in Declaring Repositories) are not automatically used
for uploading. In fact, some of those repositories only allow downloading artifacts, not uploading.
Here is an example of how you can configure the upload task of a configuration:

Example: Configuration of the upload task

build.gradle

repositories {

flatDir {
name "fileRepo"
dirs "repo"

}

uploadArchives {
repositories {
add project.repositories.fileRepo
ivy {
credentials {
username "username"
password "pw"

}
url "http://repo.mycompany.com"

As you can see, you can either use a reference to an existing repository or create a new repository.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for
uploading each file. By default, Gradle will upload to the pattern defined by the url parameter,
combined with the optional layout parameter. If no url parameter is supplied, then Gradle will use
the first defined artifactPattern for uploading, or the first defined ivyPattern for uploading Ivy
files, if this is set.

Uploading to a Maven repository is described in this section.

More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this
library and what are the dependencies of these artifacts. The Java plugin adds a runtime
configuration for this purpose, with the implicit assumption that the runtime dependencies are the
dependencies of the artifact you want to publish. Of course this is fully customizable. You can add
your own custom configuration or let the existing configurations extend from other configurations.
You might have a different group of artifacts which have a different set of dependencies. This
mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration
of the dependency to depend on. A Gradle dependency offers the configuration property to declare
this. If this is not specified, the default configuration is used (see Managing Dependency
Configurations). Using your project as a library can either happen from within a multi-project build
or by retrieving your project from a repository. In the latter case, an ivy.xml descriptor in the
repository is supposed to contain all the necessary information. If you work with Maven
repositories you don’t have the flexibility as described above. For how to publish to a Maven

repository, see the section Uploading to Maven repositories.

Maven Plugin

This chapter describes deploying artifacts to Maven repositories using the original
publishing mechanism available in Gradle 1.0: in Gradle 1.3 a new mechanism for
publishing was introduced. This new mechanism introduces some new concepts
and features that make Gradle publishing even more powerful and is now the
preferred option for publishing artifacts.

NOTE

You can read about the new publishing plugins in Publishing Ivy and Publishing
Maven.

The Maven plugin adds support for deploying artifacts to Maven repositories.

Usage

To use the Maven plugin, include the following in your build script:

Example: Using the Maven plugin

build.gradle

apply plugin: 'maven’

Tasks

The Maven plugin defines the following tasks:

install — Upload
Depends on: All tasks that build the associated archives.

Installs the associated artifacts to the local Maven cache, including Maven metadata generation.
By default the install task is associated with the archives configuration. This configuration has by
default only the default jar as an element. To learn more about installing to the local repository,
see Installing to the local repository

Dependency management

The Maven plugin does not define any dependency configurations.

Convention properties
The Maven plugin defines the following convention properties:

mavenPomDir — File

The directory where the generated POMs are written to. Default value: ${project.buildDir}/poms

../dsl/org.gradle.api.tasks.Upload.html

conf2ScopeMappings — Conf2ScopeMappingContainer

Instructions for mapping Gradle configurations to Maven scopes. See Dependency mapping.

These properties are provided by a MavenPluginConvention convention object.

Convention methods

The maven plugin provides a factory method for creating a POM. This is useful if you need a POM
without the context of uploading to a Maven repo.

Example: Creating a standalone pom.

build.gradle

task writeNewPom {

dolast {
pom {
project {
inceptionYear '2008'
licenses {
license {
name 'The Apache Software License, Version 2.0'
url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
distribution 'repo’
}
}
+

}.writeTo("$buildDir/newpom.xml")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more
about the Gradle Maven POM object, see MavenPom. See also: MavenPluginConvention

Interacting with Maven repositories

Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository.
This includes all Maven metadata manipulation and works also for Maven snapshots. In fact,
Gradle’s deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under
the hood.

Deploying to a Maven repository is only half the fun if you don’t have a POM. Fortunately Gradle
can generate this POM for you using the dependency information it has.

Deploying to a Maven repository

Let’s assume your project produces just the default jar file. Now you want to deploy this jar file to a
remote Maven repository.

../javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
../dsl/org.gradle.api.plugins.MavenPluginConvention.html
../javadoc/org/gradle/api/artifacts/maven/MavenPom.html
../dsl/org.gradle.api.plugins.MavenPluginConvention.html

Example: Upload of file to remote Maven repository

build.gradle
apply plugin: 'maven’

uploadArchives {
repositories {
mavenDeployer {
repository(url: "file://localhost/tmp/myRepo/")

}

That is all. Calling the uploadArchives task will generate the POM and deploys the artifact and the
POM to the specified repository.

There is more work to do if you need support for protocols other than file. In this case the native
Maven code we delegate to needs additional libraries. Which libraries are needed depends on what
protocol you plan to use. The available protocols and the corresponding libraries are listed in
Protocol JARs for Maven deployment (those libraries have transitive dependencies which have
transitive dependencies). [8: It is planned for a future release to provide out-of-the-box support for
this] For example, to use the ssh protocol you can do:

Example: Upload of file via SSH

build.gradle

configurations {
deployerJars
}

repositories {
mavenCentral()

}

dependencies {
deployerJars "org.apache.maven.wagon:wagon-ssh:2.2"

}

uploadArchives {
repositories.mavenDeployer {
configuration = confiqgurations.deployerJars
repository(url: "scp://repos.mycompany.com/releases") {

authentication(userName: "me", password: "myPassword")

}

There are many configuration options for the Maven deployer. The configuration is done via a

Groovy builder. All the elements of this tree are Java beans. To configure the simple attributes you
pass a map to the bean elements. To add bean elements to its parent, you use a closure. In the
example above repository and authentication are such bean elements. Configuration elements of
Maven deployer lists the available bean elements and a link to the Javadoc of the corresponding
class. In the Javadoc you can see the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot
repository is defined, releases and snapshots are both deployed to the repository element.
Otherwise snapshots are deployed to the snapshotRepository element.

Table 8. Protocol jars for Maven deployment

Protocol Library

http org.apache.maven.wagon:wagon-http:2.2
ssh org.apache.maven.wagon:wagon-ssh:2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external:2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2
webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
file -

Table 9. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDeployer

repository org.apache.maven.artifact.ant.RemoteRepository
authentication org.apache.maven.artifact.ant.Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
snapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

Installing to the local repository

The Maven plugin adds an install task to your project. This task depends on all the archives task of
the archives configuration. It installs those archives to your local Maven repository. If the default
location for the local repository is redefined in a Maven settings.xml, this is considered by this task.

Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The
groupld, artifactlId, version and packaging elements used for the POM default to the values shown in
the table below. The dependency elements are created from the project’s dependency declarations.

Table 10. Default Values for Maven POM generation

../javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

Maven Default Value

Element

groupld project.group

artifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or
archiveTask.baseName.

version project.version

packaging archiveTask.extension

Here, uploadTask and archiveTask refer to the tasks used for uploading and generating the archive,
respectively (for example wuploadArchives and jar). archiveTask.baseName defaults to
project.archivesBaseName which in turn defaults to project.name.

When you set the “archiveTask.baseName” property to a value other than the default,
youw’ll also have to set uploadTask.repositories.mavenDeployer.pom.artifactId to the
same value. Otherwise, the project at hand may be referenced with the wrong
artifact ID from generated POMs for other projects in the same build.

NOTE

Generated POMs can be found in <buildDir>/poms. They can be further customized via the
MavenPom API. For example, you might want the artifact deployed to the Maven repository to have
a different version or name than the artifact generated by Gradle. To customize these you can do:

Example: Customization of pom

build.gradle

uploadArchives {
repositories {
mavenDeployer {
repository(url: "file://localhost/tmp/myRepo/")
pom.version = '1.0Maven'
pom.artifactId = 'myMavenName'

To add additional content to the POM, the pom.project builder can be used. With this builder, any
element listed in the Maven POM reference can be added.

Example: Builder style customization of pom

../javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

build.gradle

uploadArchives {
repositories {
mavenDeployer {
repository(url: "file://localhost/tmp/myRepo/")
pom.project {
licenses {
license {

name 'The Apache Software License, Version 2.0'
url "http://www.apache.org/licenses/LICENSE-2.0.txt"
distribution 'repo’

Note: groupld, artifactId, version, and packaging should always be set directly on the pom object.

Example: Modifying auto-generated content

build.gradle

def installer = install.repositories.mavenInstaller
def deployer = uploadArchives.repositories.mavenDeployer

[installer, deployer]*.pom*.whenConfigured {pom ->
pom.dependencies.find {dep -> dep.groupld == 'group3' && dep.artifactld ==
‘runtime’ }.optional = true

}
If you have more than one artifact to publish, things work a little bit differently. See Multiple
artifacts per project.

To customize the settings for the Maven installer (see Installing to the local repository), you can do:

Example: Customization of Maven installer

build.gradle

install {
repositories.mavenInstaller {
pom.version = '1.0Maven'
pom.artifactId = 'myName'

Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven
POM. We think there are many situations where it makes sense to have more than one artifact per
project. In such a case you need to generate multiple POMs. In such a case you have to explicitly
declare each artifact you want to publish to a Maven repository. The MavenDeployer and the
MavenlInstaller both provide an API for this:

Example: Generation of multiple poms

build.gradle

uploadArchives {
repositories {
mavenDeployer {
repository(url: "file://localhost/tmp/myRepo/")
addFilter('api') {artifact, file ->

artifact.name == 'api'

+

addFilter('service') {artifact, file ->
artifact.name == 'service'

}

pom('api').version = 'mySpecialMavenVersion'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean
expression for which Gradle artifact it accepts. Each filter has a POM associated with it which you
can configure. To learn more about this have a look at PomFilterContainer and its associated
classes.

Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the
Java and War plugin and the Maven scopes. Most of the time you don’t need to touch this and you
can safely skip this section. The mapping works like the following. You can map a configuration to
one and only one scope. Different configurations can be mapped to one or different scopes. You can
also assign a priority to a particular configuration-to-scope mapping. Have a look at
Conf2ScopeMappingContainer to learn more. To access the mapping configuration you can say:

Example: Accessing a mapping configuration

../javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
../javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
../javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

build.gradle

task mappings {
doLast {
println conf2ScopeMappings.mappings

}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in
the Gradle exclude rule the group as well as the module name is specified (as Maven needs both in
contrast to Ivy). Per-configuration excludes are also included in the Maven POM, if they are
convertible.

The Signing Plugin

The Signing Plugin adds the ability to digitally sign built files and artifacts. These digital signatures
can then be used to prove who built the artifact the signature is attached to as well as other
information such as when the signature was generated.

The Signing Plugin currently only provides support for generating OpenPGP signatures (which is
the signature format required for publication to the Maven Central Repository).
Usage

To use the Signing Plugin, include the following in your build script:

Example: Using the Signing Plugin
build.gradle
plugins {

id 'signing'

}

Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair
using the GnuPG tools can be found in the GnuPG HOWTOs). You need to provide the Signing Plugin
with your key information, which means three things:

» The public key ID (The last 8 symbols of the keyld. You can use gpg -K to get it).

» The absolute path to the secret key ring file containing your private key. (Since gpg 2.1, you need
to export the keys with command gpg --keyring secring.gpg --export-secret-keys >
~/.gnupg/secring.gpg).

* The passphrase used to protect your private key.

These items must be supplied as the values of the signing.keyId, signing.secretKeyRingFile, and

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

signing.password properties, respectively.

Given the personal and private nature of these values, a good practice is to store
NOTE them in the gradle.properties file in the user’s Gradle home directory (described in
System properties) instead of in the project directory itself.

signing.keyId=24875D73
signing.password=secret
signing.secretKeyRingFile=/Users/me/.gnupg/secring.gpg

If specifying this information (especially signing.password) in the user gradle.properties file is not
feasible for your environment, you can source the information however you need to and set the
project properties manually.

import org.gradle.plugins.signing.Sign

gradle.taskGraph.whenReady { taskGraph ->
if (taskGraph.allTasks.any { it instanceof Sign }) {
// Use Java 6's console to read from the console (no good for
// a CI environment)
Console console = System.console()
console.printf "\n\nWe have to sign some things in this build." +
"\n\nPlease enter your signing details.\n\n"

def id = console.readLine("PGP Key Id: ")
def file = console.readlLine("PGP Secret Key Ring File (absolute path): ")
def password = console.readPassword("PGP Private Key Password: ")

allprojects { ext."signing.keyId" = id }
allprojects { ext."signing.secretKeyRingFile" = file }
allprojects { ext."signing.password" = password }

console.printf "\nThanks.\n\n"

Note that the presence of a null value for any these three properties will cause an exception.

Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they’re bound to a master key
pair. One feature of OpenPGP subkeys is that they can be revoked independently of the master keys
which makes key management easier. A practical case study of how subkeys can be leveraged in
software development can be read on the Debian wiki.

The Signing Plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID as the value
in the signing.keyId property.

https://wiki.debian.org/Subkeys

Using gpg-agent

By default the Signing Plugin uses a Java-based implementation of PGP for signing. This
implementation cannot use the gpg-agent program for managing private keys, though. If you want
to use the gpg-agent, you can change the signatory implementation used by the Signing Plugin:

Example: Sign with GnuPG

build.gradle

signing {
useGpgCmd()
sign confiqurations.archives

This tells the Signing Plugin to use the GnupgSignatory instead of the default PgpSignatory. The
GnupgSignatory relies on the gpg2 program to sign the artifacts. Of course, this requires that GnuPG
is installed.

Without any further configuration the gpg2 (on Windows: gpg2.exe) executable found on the PATH
will be used. The password is supplied by the gpg-agent and the default key is used for signing.

Gnupg signatory configuration

The GnupgSignatory supports a number of configuration options for controlling how gpg is invoked.
These are typically set in gradle.properties:

Example: Configure the GnupgSignatory

gradle.properties

signing.gnupg.executable=gpg
signing.gnupg.uselegacyGpg=true
signing.gnupg.homeDir=gnupg-home
signing.gnupg.optionsFile=gnupg-home/gpg.conf
signing.gnupg.keyName=24875073
signing.gnupg.passphrase=gradle

signing.gnupg.executable
The gpg executable that is invoked for signing. The default value of this property depends on
uselLegacyGpg. If that is true then the default value of executable is "gpg" otherwise it is "gpg2".

signing.gnupg.uselegacyGpg
Must be true if GnuPG version 1 is used and false otherwise. The default value of the property is
false.

signing.gnupg.homeDir
Sets the home directory for GnuPG. If not given the default home directory of GnuPG is used.

../javadoc/org/gradle/plugins/signing/signatory/pgp/PgpSignatory.html

signing.gnupg.optionsFile
Sets a custom options file for GnuPG. If not given GnuPG’s default configuration file is used.

signing.gnupg.keyName
The id of the key that should be used for signing. If not given then the default key configured in
GnuPG will be used.

signing.gnupg.passphrase
The passphrase for unlocking the secret key. If not given then the gpg-agent program is used for
getting the passphrase.

All configuration properties are optional.

Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also
specify what is to be signed. The Signing Plugin provides a DSL that allows you to specify the tasks
and/or configurations that should be signed.

Signing Publications

When publishing artifacts, you often want to sign them so the consumer of your artifacts can verify
their signature. For example, the Java plugin defines a component that you can use to define a
publication to a Maven (or Ivy) repository using the Maven Publish Plugin (or the Ivy Publish
Plugin, respectively). Using the Signing DSL, you can specify that all of the artifacts of this
publication should be signed.

Example: Signing a publication

build.gradle
signing {

sign publishing.publications.mavenl]ava

}

This will create a task (of type Sign) in your project named signMavenJavaPublication that will build
all artifacts that are part of the publication (if needed) and then generate signatures for them. The
signature files will be placed alongside the artifacts being signed.

Example: Signing a publication output

../dsl/org.gradle.plugins.signing.Sign.html

Output of gradle signMavenJavaPublication

gradle signMavenJavaPublication

Task :generatePomFileForMavenJavaPublication
Task :compilelava

Task :processResources

Task :classes

Task :jar

Task :javadoc

Task :javadocJar

Task :sourceslar

Task :signMavenJavaPublication

vV V V V V V V V V V

BUILD SUCCESSFUL in @s
8 actionable tasks: 8 executed

In addition, the above DSL allows to sign multiple comma-separated publications. Alternatively, you
may specify publishing.publications to sign all publications, or use
publishing.publications.matching { -+ } to sign all publications that match the specified predicate.

Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin
configures a jar to build and this jar artifact is added to the archives configuration. Using the
Signing DSL, you can specify that all of the artifacts of this configuration should be signed.

Example: Signing a configuration

build.gradle

signing {
sign configurations.archives

}

This will create a task (of type Sign) in your project named signArchives, that will build any archives
artifacts (if needed) and then generate signatures for them. The signature files will be placed
alongside the artifacts being signed.

Example: Signing a configuration output

../dsl/org.gradle.plugins.signing.Sign.html

Output of gradle signArchives

gradle signArchives
Task :compilelava

Task :processResources
Task :classes

Task :jar

Task :signArchives

V V V V V V

BUILD SUCCESSFUL in @s
4 actionable tasks: 4 executed

Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you
can directly sign the task that produces the artifact to sign.

Example: Signing a task

build.gradle

task stuffZip (type: Zip) {
baseName = "stuff"
from "src/stuff"

}
signing {

sign stuffZip
}

This will create a task (of type Sign) in your project named signStuffZip, that will build the input
task’s archive (if needed) and then sign it. The signature file will be placed alongside the artifact
being signed.

Example: Signing a task output

Output of gradle signStuffZip

> gradle signStuffZip
> Task :stuffZip
> Task :signStuffZip

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

For a task to be signable, it must produce an archive of some type, i.e. it must extend
AbstractArchiveTask. Tasks that do this are the Tar, Zip, Jar, War and Ear tasks.

../dsl/org.gradle.plugins.signing.Sign.html
../dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
../dsl/org.gradle.api.tasks.bundling.Tar.html
../dsl/org.gradle.api.tasks.bundling.Zip.html
../dsl/org.gradle.api.tasks.bundling.Jar.html
../dsl/org.gradle.api.tasks.bundling.War.html
../dsl/org.gradle.plugins.ear.Ear.html

Conditional Signing

A common usage pattern is to require the signing of build artifacts only under certain conditions.
For example, you may not need to sign artifacts for non-release versions. To achieve this, you can
specify the condition as an argument of the required() method.

Example: Specifying when signing is required

build.gradle

version = '1.0-SNAPSHOT'
ext.isReleaseVersion = !version.endsWith("SNAPSHOT")

signing {
required { isReleaseVersion &% gradle.taskGraph.hasTask("uploadArchives") }
sign confiqurations.archives

In this example, we only want to require signing if we are building a release version and we are
going to publish it. Because we are inspecting the task graph to determine if we are going to be
publishing, we must set the signing.required property to a closure to defer the evaluation. See
SigningExtension.setRequired(java.lang.Object) for more information.

If the required condition does not hold true, artifacts will only be signed if signatory credentials are
configured. Alternatively, you may want to skip signing entirely whether or not signatory
credentials are available. If so, you can configure the Sign tasks to be skipped, for example by
attaching a predicate using the onlyIf() method shown in the following example:

Example: Specifying when signing is skipped

build.gradle

tasks.withType(Sign) {
onlyIf { isReleaseVersion }

}

Publishing the signatures

When signing publications, the resultant signature artifacts are automatically added to the
corresponding publication. Thus, when publishing to a repository, e.g. by executing the publish task,
your signatures will be distributed along with the other artifacts without any additional
configuration.

When signing configurations and tasks, the resultant signature artifacts are automatically added to
the signatures and archives dependency configurations. This means that if you want to upload your
signatures to your distribution repository along with the artifacts you simply execute the
uploadArchives task.

../javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
../dsl/org.gradle.plugins.signing.Sign.html

Signing POM files

This section covers signing POM files for the original publishing mechanism
available in Gradle 1.0. The POM file generated by the new Maven publishing
support provided by the Maven Publishing plugin is automatically signed if the
corresponding publication is specified to be signed.

NOTE

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the
published POM file. The Signing Plugin adds a signing.signPom() (see
SigningExtension.signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure))
method that can be used in the beforeDeployment() block in your upload task configuration.

Example: Signing a POM for deployment

build.gradle

uploadArchives {
repositories {
mavenDeployer {
beforeDeployment { MavenDeployment deployment -> signing.signPom
(deployment) }
}
}

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e.
no credentials for signing) then the signPom() method will silently do nothing.

The Distribution Plugin

The Distribution Plugin is currently incubating. Please be aware that the DSL and

NOTE
other configuration may change in later Gradle versions.

The Distribution Plugin facilitates building archives that serve as distributions of the project.
Distribution archives typically contain the executable application and other supporting files, such
as documentation.

Usage

To use the Distribution Plugin, include the following in your build script:

Example: Using the Distribution Plugin

build.gradle

apply plugin: 'distribution’

The plugin adds an extension named distributions of type DistributionContainer to the project. It

../dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment,%20groovy.lang.Closure)
../dsl/org.gradle.api.distribution.DistributionContainer.html

also creates a single distribution in the distributions container extension named main. If your build
only produces one distribution you only need to configure this distribution (or use the defaults).

You can run gradle distZip to package the main distribution as a ZIP, or gradle distTar to create a
TAR file. To build both types of archives just run gradle assembleDist. The files will be created at
$buildDir/distributions/${project.name}-${project.version}.«ext».

You can run gradle installDist to assemble the uncompressed distribution into $buildDir
/install/${project.name}.

Tasks

The Distribution Plugin adds a number of tasks to your project, as shown below.

distZip—Zip

Creates a ZIP archive of the distribution contents.

distTar — Task

Creates a TAR archive of the distribution contents.

assembleDist — Task

Depends on: distTar, distZip
Creates ZIP and TAR archives of the distribution contents.

installDist — Sync

Assembles the distribution content and installs it on the current machine.

For each additional distribution you add to the project, the Distribution Plugin adds the following
tasks, where distributionName comes from Distribution.getName():

distributionNameDistZip — Zip

Creates a ZIP archive of the distribution contents.

distributionNameDistTar — Tar

Creates a TAR archive of the distribution contents.

assembleDistributionNameDist — Task

Depends on: distributionNameDistTar, distributionNameDistZip
Creates ZIP and TAR archives of the distribution contents.

installDistributionNameDist — Sync

Assembles the distribution content and installs it on the current machine.

The following sample creates a custom distribution that will cause four additional tasks to be added
to the project: customDistZip, customDistTar, assembleCustomDist, and installCustomDist:

../dsl/org.gradle.api.tasks.bundling.Zip.html
../dsl/org.gradle.api.Task.html
../dsl/org.gradle.api.Task.html
../dsl/org.gradle.api.tasks.Sync.html
../javadoc/org/gradle/api/distribution/Distribution.html#getName--
../dsl/org.gradle.api.tasks.bundling.Zip.html
../dsl/org.gradle.api.tasks.bundling.Tar.html
../dsl/org.gradle.api.Task.html
../dsl/org.gradle.api.tasks.Sync.html

Example: Adding extra distributions

build.gradle

distributions {
custom {}

}

Given that the project name is myproject and version 1.2, running gradle customDistZip will
produce a ZIP file named myproject-custom-1.2.z1p.

Running gradle installCustomDist ~ will install the distribution contents into
$buildDir/install/custom.

Distribution contents

All of the files in the src/$distribution.name/dist directory will automatically be included in the
distribution. You can add additional files by configuring the Distribution object that is part of the
container.

Example: Configuring the main distribution

build.gradle

distributions {
main {
baseName = 'someName'
contents {
from { 'src/readme' }

}

In the example above, the content of the src/readme directory will be included in the distribution
(along with the files in the src/main/dist directory which are added by default).

The baseName property has also been changed. This will cause the distribution archives to be created
with a different name.

Publishing

A distribution can be published using the Ivy Publish Plugin or Maven Publish Plugin, or via the
original publishing mechanism using the uploadArchives task.

Using the Ivy/Maven Publish Plugins

To publish a distribution to an Ivy repository with the Ivy Publish Plugin, simply add one or both of
its archive tasks to an IvyPublication. The following sample demonstrates how to add the ZIP
archive of the main distribution and the TAR archive of the custom distribution to the myDistribution

../javadoc/org/gradle/api/distribution/Distribution.html
../dsl/org.gradle.api.publish.ivy.IvyPublication.html

publication:

Example: Adding distribution archives to an Ivy publication

build.gradle
apply plugin: 'ivy-publish'

publishing {
publications {
myDistribution(IvyPublication) {
artifact distZip
artifact customDistTar

Similarly, to publish a distribution to a Maven repository using the Maven Publish Plugin, add one
or both of its archive tasks to a MavenPublication as follows:

Example: Adding distribution archives to a Maven publication

build.gradle
apply plugin: 'maven-publish'

publishing {
publications {
myDistribution(MavenPublication) {
artifact distZip
artifact customDistTar

Using the uploadArchives task

The Distribution Plugin adds the distribution archives as default publishing artifact candidates.
With the Maven Plugin applied, the distribution ZIP file will be published when running
uploadArchives if no other default artifact is configured.

Example: Publishing the distribution ZIP with the Maven Plugin

../dsl/org.gradle.api.publish.maven.MavenPublication.html

build.gradle
apply plugin: 'maven’

uploadArchives {
repositories {
mavenDeployer {
repository(url: "file://some/repo")

}

Native Projects

Building native software

Support for building native software is currently incubating. Please be aware that

NOTE
the DSL, APIs and other configuration may change in later Gradle versions.

The native software plugins add support for building native software components, such as
executables or shared libraries, from code written in C++, C and other languages. While many
excellent build tools exist for this space of software development, Gradle offers developers its
trademark power and flexibility together with dependency management practices more
traditionally found in the JVM development space.

The native software plugins make use of the Gradle software model.

Features
The native software plugins provide:
» Support for building native libraries and applications on Windows, Linux, macOS and other
platforms.

» Support for several source languages.

» Support for building different variants of the same software, for different architectures,
operating systems, or for any purpose.

* Incremental parallel compilation, precompiled headers.

* Dependency management between native software components.
* Unit test execution.

* Generate Visual studio solution and project files.

* Deep integration with various tool chain, including discovery of installed tool chains.

Supported languages
The following source languages are currently supported:
e C
o C++
* Objective-C
* Objective-C++
* Assembly

« Windows resources

Tool chain support

Gradle offers the ability to execute the same build using different tool chains. When you build a
native binary, Gradle will attempt to locate a tool chain installed on your machine that can build
the binary. You can fine tune exactly how this works, see Tool chain support for details.

The following tool chains are supported:

Operating Tool Chain Notes

System

Linux GCC

Linux Clang

macOS XCode Uses the Clang tool chain bundled with XCode.
Windows Visual C++ Windows XP and later, Visual C++

2010/2012/2013/2015/2017.

Windows GCCwith Cygwin ~ Windows XP and later.
32
Windows GCC with MinGW Windows XP and later. Mingw-w64 is currently not
supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested
continuously:

Operating Tool Chain Notes

System

macOS GCC from Macports

macOS Clang from Macports

Windows GCC with Cygwin 64 Windows XP and later.
UNIX-like GCC

UNIX-like Clang

Tool chain installation

Note that if you are using GCC then you currently need to install support for C++,
NOTE even if you are not building from C++ source. This restriction will be removed in a
future Gradle version.

To build native software, you will need to have a compatible tool chain installed:

Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover
the Visual Studio installations and select the latest version. There is no need to mess around with

http://gcc.gnu.org/
http://clang.llvm.org
https://visualstudio.microsoft.com/
http://gcc.gnu.org/
http://cygwin.com
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://clang.llvm.org

environment variables or batch scripts. This works fine from a Cygwin shell or the Windows
command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

macOS

To build on macOS, you should install XCode. The native plugins will discover the XCode installation
using the system PATH.

The native plugins also work with GCC and Clang bundled with Macports. To use one of the
Macports tool chains, you will need to make the tool chain the default using the port select
command and add Macports to the system PATH.

Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover
GCC or Clang using the system PATH.

Native software model

The native software model builds on the base Gradle software model.

To build native software using Gradle, your project should define one or more native components.
Each component represents either an executable or a library that Gradle should build. A project
can define any number of components. Gradle does not define any components by default.

For each component, Gradle defines a source set for each language that the component can be built
from. A source set is essentially just a set of source directories containing source files. For example,
when you apply the c plugin and define a library called helloworld, Gradle will define, by default, a
source set containing the C source files in the src/helloworld/c directory. It will use these source
files to build the helloworld library. This is described in more detail below.

For each component, Gradle defines one or more binaries as output. To build a binary, Gradle will
take the source files defined for the component, compile them as appropriate for the source
language, and link the result into a binary file. For an executable component, Gradle can produce
executable binary files. For a library component, Gradle can produce both static and shared library
binary files. For example, when you define a library called helloworld and build on Linux, Gradle
will, by default, produce libhelloworld.so and libhelloworld.a binaries.

In many cases, more than one binary can be produced for a component. These binaries may vary
based on the tool chain used to build, the compiler/linker flags supplied, the dependencies
provided, or additional source files provided. Each native binary produced for a component is
referred to as a variant. Binary variants are discussed in detail below.

Parallel Compilation

Gradle uses the single build worker pool to concurrently compile and link native components, by
default. No special configuration is required to enable concurrent building.

By default, the worker pool size is determined by the number of available processors on the build
machine (as reported to the build JVM). To explicitly set the number of workers use the --max
-workers command-line option or org.gradle.workers.max system property. There is generally no
need to change this setting from its default.

The build worker pool is shared across all build tasks. This means that when using parallel project
execution, the maximum number of concurrent individual compilation operations does not
increase. For example, if the build machine has 4 processing cores and 10 projects are compiling in
parallel, Gradle will only use 4 total workers, not 40.

Building a library

To build either a static or shared native library, you define a library component in the components
container. The following sample defines a library called hello:

Example: Defining a library component

build.gradle

model {
components {
hello(NativelLibrarySpec)

}

A library component is represented using NativeLibrarySpec. Each library component can produce
at least one shared library binary (SharedLibraryBinarySpec) and at least one static library binary
(StaticLibraryBinarySpec).

Building an executable

To build a native executable, you define an executable component in the components container. The
following sample defines an executable called main:

Example: Defining executable components

build.gradle

model {
components {
main(NativeExecutableSpec) {
sources {
c.lib library: "hello"
}

An executable component is represented using NativeExecutableSpec. Each executable component

../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html
../javadoc/org/gradle/nativeplatform/StaticLibraryBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html

can produce at least one executable binary (NativeExecutableBinarySpec).

For each component defined, Gradle adds a FunctionalSourceSet with the same name. Each of these
functional source sets will contain a language-specific source set for each of the languages
supported by the project.

Assembling or building dependents

Sometimes, you may need to assemble (compile and link) or build (compile, link and test) a
component or binary and its dependents (things that depend upon the component or binary). The
native software model provides tasks that enable this capability. First, the dependent components
report gives insight about the relationships between each component. Second, the build and
assemble dependents tasks allow you to assemble or build a component and its dependents in one
step.

In the following example, the build file defines OpenSSL as a dependency of 1ibUtil and 1ibUtil as a
dependency of LinuxApp and WindowsApp. Test suites are treated similarly. Dependents can be thought
of as reverse dependencies.

Gradle Component [DpenSSL] [CuUnit]

e

Non-buildable component

b

Prebuilt Library

libUtilTest

Figure 24. Dependent Components Example

By following the dependencies backwards, you can see LinuxApp and WindowsApp are
NOTE dependents of 1ibUtil. When 1ibUtil is changed, Gradle will need to recompile or
relink LinuxApp and WindowsApp.

When you assemble dependents of a component, the component and all of its dependents are
compiled and linked, including any test suite binaries. Gradle’s up-to-date checks are used to only
compile or link if something has changed. For instance, if you have changed source files in a way
that do not affect the headers of your project, Gradle will be able to skip compilation for dependent
components and only need to re-link with the new library. Tests are not run when assembling a
component.

When you build dependents of a component, the component and all of its dependent binaries are
compiled, linked and checked. Checking components means running any check task including
executing any test suites, so tests are run when building a component.

In the following sections, we will demonstrate the usage of the assembleDependents*,

../javadoc/org/gradle/nativeplatform/NativeExecutableBinarySpec.html
../javadoc/org/gradle/language/base/FunctionalSourceSet.html

buildDependents* and dependentComponents tasks with a sample build that contains a CUnit test suite.
The build script for the sample is the following:

Example: Sample build
build.gradle

apply plugin: "c
apply plugin: 'cunit-test-suite’

model {
flavors {
passing
failing
}
platforms {
x86 {
architecture "x86"
}
}
components {
operators(NativelLibrarySpec) {
targetPlatform "x86"
}
}
testSuites {
operatorsTest(CUnitTestSuiteSpec) {
testing $.components.operators

}

The code for this example can be found at samples/native-binaries/cunit in the “all’

NOTE
distribution of Gradle.

Dependent components report

Gradle provides a report that you can run from the command-line that shows a graph of
components in your project and components that depend upon them. The following is an example
of running gradle dependentComponents on the sample project:

Example: Dependent components report

Output of gradle dependentComponents

> gradle dependentComponents

> Task :dependentComponents

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticlLibrary
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary

Some test suites were not shown, use --test-suites or --all to show them.

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

NOTE See DependentComponentsReport API documentation for more details.
By default, non-buildable binaries and test suites are hidden from the report. The
dependentComponents task provides options that allow you to see all dependents by using the --all

option:

Example: Dependent components report

../dsl/org.gradle.api.reporting.dependents.DependentComponentsReport.html

Output of gradle dependentComponents --all

> gradle dependentComponents --all

> Task :dependentComponents

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticlLibrary
| \--- operatorsTest:failingCUnitExe (t)
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary
\--- operatorsTest:passingCUnitExe (t)

operatorsTest - Components that depend on Cunit test suite 'operatorsTest'
+--- operatorsTest:failingCUnitExe (t)

\--- operatorsTest:passingCUnitExe (t)

(t) - Test suite binary

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Here is the corresponding report for the operators component, showing dependents of all its
binaries:

Example: Report of components that depends on the operators component

Output of gradle dependentComponents --component operators
> gradle dependentComponents --component operators

> Task :dependentComponents

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticlLibrary
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary

Some test suites were not shown, use --test-suites or --all to show them.

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Here is the corresponding report for the operators component, showing dependents of all its
binaries, including test suites:

Example: Report of components that depends on the operators component, including test
suites

Output of gradle dependentComponents --test-suites --component operators
> gradle dependentComponents --test-suites --component operators

> Task :dependentComponents

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticlLibrary
| \--- operatorsTest:failingCUnitExe (t)
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary
\--- operatorsTest:passingCUnitExe (t)

(t) - Test suite binary

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Assembling dependents

For each NativeBinarySpec, Gradle will create a task named
assembleDependents${component.name}${binary.variant} that assembles (compile and link) the binary
and all of its dependent binaries.

For each NativeComponentSpec, Gradle will create a task named
assembleDependents${component.name} that assembles all the binaries of the component and all of
their dependent binaries.

For example, to assemble the dependents of the "passing" flavor of the "static" library binary of the
"operators" component, you would run the assembleDependentsOperatorsPassingStaticlLibrary task:

Example: Assemble components that depends on the passing/static binary of the operators
component

Output of gradle assembleDependentsOperatorsPassingStaticLibrary --max-workers=1

gradle assembleDependentsOperatorsPassingStaticLibrary --max-workers=1
Task :compileOperatorsTestPassingCUnitExeOperatorsC

Task :operatorsTestCUnitLauncher

Task :compileOperatorsTestPassingCUnitExeOperatorsTestC

Task :compileOperatorsTestPassingCUnitExeOperatorsTestCunitlLauncher
Task :linkOperatorsTestPassingCUnitExe

Task :operatorsTestPassingCUnitExe

Task :assembleDependentsOperatorsTestPassingCUnitExe

Task :compileOperatorsPassingStaticLibraryOperatorsC

Task :createOperatorsPassingStaticlLibrary

Task :operatorsPassingStaticLibrary

Task :assembleDependentsOperatorsPassingStaticLibrary

V V V V V V V V V V V V

BUILD SUCCESSFUL in @s
7 actionable tasks: 7 executed

In the output above, the targeted binary gets assembled as well as the test suite binary that depends
on it.

You can also assemble all of the dependents of a component (i.e. of all its binaries/variants) using
the corresponding component task, e.g. assembleDependentsOperators. This is useful if you have
many combinations of build types, flavors and platforms and want to assemble all of them.

Building dependents

For each NativeBinarySpec, Gradle will create a task named
buildDependents${component.name}${binary.variant} that builds (compile, link and check) the binary
and all of its dependent binaries.

For each NativeComponentSpec, Gradle will create a task named buildDependents${component.name}
that builds all the binaries of the component and all of their dependent binaries.

For example, to build the dependents of the "passing" flavor of the "static" library binary of the

../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeComponentSpec.html
../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeComponentSpec.html

"operators" component, you would run the buildDependentsOperatorsPassingStaticLibrary task:

Example: Build components that depends on the passing/static binary of the operators
component

Output of gradle buildDependentsOperatorsPassingStaticLibrary --max-workers=1

Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task

V V V V V V V V V V V V V V V

gradle buildDependentsOperatorsPassingStaticLibrary --max-workers=1
:compileOperatorsTestPassingCUnitExeOperatorsC
roperatorsTestCUnitLauncher
:compileOperatorsTestPassingCUnitExeOperatorsTestC
:compileOperatorsTestPassingCUnitExeOperatorsTestCunitLauncher
:LlinkOperatorsTestPassingCUnitExe
roperatorsTestPassingCUnitExe
:installOperatorsTestPassingCUnitExe
:runOperatorsTestPassingCUnitExe
:checkOperatorsTestPassingCUnitExe
:buildDependentsOperatorsTestPassingCUnitExe
:compileOperatorsPassingStaticLibraryOperatorsC
:createOperatorsPassingStaticlLibrary
:operatorsPassingStaticlLibrary
:buildDependentsOperatorsPassingStaticlibrary

BUILD SUCCESSFUL in @s
9 actionable tasks: 9 executed

In the output above, the targeted binary as well as the test suite binary that depends on it are built

and the test suite has run.

You can also build all of the dependents of a component (i.e. of all its binaries/variants) using the

corresponding component task, e.g. buildDependentsOperators.

Tasks

For each NativeBinarySpec that can be produced by a build, a single lifecycle task is constructed
that can be used to create that binary, together with a set of other tasks that do the actual work of

compiling, linking or assembling the binary.

${component.name}Executable

Component Type

NativeExecutableSpec

Native Binary Type

NativeExecutableBinarySpec

Location of created binary

${project.buildDir}/exe/${component.name}/${component.name}

${component.name}SharedLibrary

../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
../javadoc/org/gradle/nativeplatform/NativeExecutableBinarySpec.html

Component Type
NativeLibrarySpec

Native Binary Type
SharedLibraryBinarySpec

Location of created binary
${project.buildDir}/1ibs/${component.name}/shared/1ib${component.name}.so

${component.name}StaticLibrary
Component Type

NativeLibrarySpec

Native Binary Type
StaticLibraryBinarySpec

Location of created binary
${project.buildDir}/1ibs/${component.name}/static/${component.name}.a

Check tasks

For each NativeBinarySpec that can be produced by a build, a single check task is constructed that
can be used to assemble and check that binary.

check${component.name}Executable
Component Type

NativeExecutableSpec

Native Binary Type

NativeExecutableBinarySpec

check${component.name}SharedLibrary
Component Type

NativeLibrarySpec

Native Binary Type
SharedLibraryBinarySpec

check${component.name}StaticLibrary
Component Type

NativeLibrarySpec

Native Binary Type
SharedLibraryBinarySpec

The built-in check task depends on all the check tasks for binaries in the project. Without either
CUnit or GoogleTest plugins, the binary check task only depends on the lifecycle task that assembles
the binary, see Native tasks.

../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../javadoc/org/gradle/nativeplatform/StaticLibraryBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
../javadoc/org/gradle/nativeplatform/NativeExecutableBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html

When the CUnit or GoogleTest plugins are applied, the task that executes the test suites for a
component are automatically wired to the appropriate check task.

You can also add custom check tasks as follows:

Example: Adding a custom check task

build.gradle

apply plugin: "cpp"

// You don't need to apply the plugin below if you're already using CUnit or
GoogleTest support

apply plugin: TestingModelBasePlugin

task myCustomCheck {
dolast {
println 'Executing my custom check'

}
}

model {
components {
hello(NativelLibrarySpec) {
binaries.all {
// Register our custom check task to all binaries of this component
checkedBy $.tasks.myCustomCheck

The code for this example can be found at samples/native-binaries/custom-check in

NOTE
the “-all’ distribution of Gradle.

Now, running check or any of the check tasks for the hello binaries will run the custom check task:

Example: Running checks for a given binary

Output of gradle checkHelloSharedLibrary
> gradle checkHelloSharedLibrary

> Task :myCustomCheck
Executing my custom check

> Task :checkHelloSharedLibrary

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Working with shared libraries

For each executable binary produced, the cpp plugin provides an install${binary.name} task, which
creates a development install of the executable, along with the shared libraries it requires. This
allows you to run the executable without needing to install the shared libraries in their final
locations.

Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about
the components and binaries that your project produces. To use this report, just run gradle
components. Below is an example of running this report for one of the sample projects:

Example: The components report

Output of gradle components
> gradle components

> Task :components

Source sets
C++ source 'hello:cpp'
srcDir: src/hello/cpp

Binaries
Shared library 'hello:sharedLibrary’
build using task: :helloSharedLibrary
build type: build type 'debug’
flavor: flavor 'default'
target platform: platform 'current'
tool chain: Tool chain 'clang' (Clang)
shared library file: build/libs/hello/shared/1libhello.dylib
Static library 'hello:staticlLibrary'
build using task: :helloStaticlLibrary
build type: build type 'debug'
flavor: flavor 'default'
target platform: platform 'current'
tool chain: Tool chain 'clang' (Clang)
static library file: build/libs/hello/static/libhello.a

Native executable 'main'

Source sets
C++ source 'main:cpp’
srcDir: src/main/cpp

Binaries

Executable 'main:executable’
build using task: :mainExecutable
install using task: :installMainExecutable
build type: build type 'debug'
flavor: flavor 'default'
target platform: platform 'current'
tool chain: Tool chain 'clang' (Clang)
executable file: build/exe/main/main

Note: currently not all plugins register their components, so some components may not
be visible here.

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Language support

Presently, Gradle supports building native software from any combination of source languages
listed below. A native binary project will contain one or more named FunctionalSourceSet instances
(eg 'main’, 'test, etc), each of which can contain LanguageSourceSets containing source files, one for
each language.

e C

o C++

Objective-C

Objective-C++
* Assembly

« Windows resources

C++ sources

C++ language support is provided by means of the 'cpp' plugin.

Example: The 'cpp' plugin
build.gradle

apply plugin: 'cpp

C++ sources to be included in a native binary are provided via a CppSourceSet, which defines a set
of C++ source files and optionally a set of exported header files (for a library). By default, for any
named component the CppSourceSet contains .cpp source files in src/${name}/cpp, and header files

../dsl/org.gradle.language.cpp.CppSourceSet.html
../dsl/org.gradle.language.cpp.CppSourceSet.html

in src/${name}/headers.

While the cpp plugin defines these default locations for each CppSourceSet, it is possible to extend
or override these defaults to allow for a different project layout.

Example: C++ source set

build.gradle
sources {
cpp {
source {
srcDir "src/source”
include "**/*.cpp"
}
Iy
}

For a library named 'main', header files in src/main/headers are considered the "public" or
"exported" headers. Header files that should not be exported should be placed inside the
src/main/cpp directory (though be aware that such header files should always be referenced in a
manner relative to the file including them).

C sources

C language support is provided by means of the 'c¢' plugin.

Example: The 'c' plugin

build.gradle

apply plugin: 'c'

C sources to be included in a native binary are provided via a CSourceSet, which defines a set of C
source files and optionally a set of exported header files (for a library). By default, for any named
component the CSourceSet contains .c source files in src/${name}/c, and header files in
src/${name}/headers.

While the ¢ plugin defines these default locations for each CSourceSet, it is possible to extend or
override these defaults to allow for a different project layout.

Example: C source set

../dsl/org.gradle.language.cpp.CppSourceSet.html
../dsl/org.gradle.language.c.CSourceSet.html
../dsl/org.gradle.language.c.CSourceSet.html
../dsl/org.gradle.language.c.CSourceSet.html

build.gradle

sources {
¢ {
source {
srcDir "src/source”
include "**/*, c"
}

exportedHeaders {
srcDir "src/include"

}

For a library named 'main’, header files in src/main/headers are considered the "public" or
"exported" headers. Header files that should not be exported should be placed inside the src/main/c
directory (though be aware that such header files should always be referenced in a manner relative
to the file including them).

Assembler sources

Assembly language support is provided by means of the 'assembler' plugin.

Example: The 'assembler' plugin

build.gradle

apply plugin: 'assembler'

Assembler sources to be included in a native binary are provided via a AssemblerSourceSet, which
defines a set of Assembler source files. By default, for any named component the
AssemblerSourceSet contains .s source files under src/${name}/asm.

Objective-C sources
Objective-C language support is provided by means of the 'objective-c' plugin.
Example: The 'objective-c' plugin

build.gradle

apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided via a ObjectiveCSourceSet, which
defines a set of Objective-C source files. By default, for any named component the
ObjectiveCSourceSet contains .m source files under src/${name}/objectiveC.

../dsl/org.gradle.language.assembler.AssemblerSourceSet.html
../dsl/org.gradle.language.assembler.AssemblerSourceSet.html
../dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
../dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html

Objective-C++ sources

Objective-C++ language support is provided by means of the "objective-cpp' plugin.

Example: The 'objective-cpp' plugin

build.gradle

apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided via a ObjectiveCppSourceSet,
which defines a set of Objective-C++ source files. By default, for any named component the
ObjectiveCppSourceSet contains .mm source files under src/${name}/objectiveCpp.

Configuring the compiler, assembler and linker

Each binary to be produced is associated with a set of compiler and linker settings, which include
command-line arguments as well as macro definitions. These settings can be applied to all binaries,
an individual binary, or selectively to a group of binaries based on some criteria.

Example: Settings that apply to all binaries

build.gradle

model {
binaries {
all {
// Define a preprocessor macro for every binary
cppCompiler.define "NDEBUG"

// Define toolchain-specific compiler and linker options
if (toolChain in Gece) {
cppCompiler.args "-02", "-fno-access-control"
linker.args "-Xlinker", "-S"

¥

if (toolChain in VisualCpp) {
cppCompiler.args "/Zi"
linker.args "/DEBUG"

Each binary is associated with a particular NativeToolChain, allowing settings to be targeted based
on this value.

It is easy to apply settings to all binaries of a particular type:

../dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
../dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
../javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Example: Settings that apply to all shared libraries

build.gradle

// For any shared library binaries built with Visual C++,
// define the DLL_EXPORT macro

model {
binaries {
withType(SharedLibraryBinarySpec) {
if (toolChain in VisualCpp) {
cCompiler.args "/Zi"
cCompiler.define "DLL_EXPORT"
}
}
}
¥

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular
executable or library component:

Example: Settings that apply to all binaries produced for the 'main' executable component

build.gradle

model {
components {
main(NativeExecutableSpec) {
targetPlatform "x86"
binaries.all {
if (toolChain in VisualCpp) {
sources {
platformAsm(AssemblerSourceSet) {
source.srcDir "src/main/asm_i386_masm'

}

}

assembler.args "/Zi"

} else {

sources {

platformAsm(AssemblerSourceSet) {
source.srcDir "src/main/asm_i386_gcc"

}

}

assembler.args "-g

The example above will apply the supplied configuration to all executable binaries built.

Similarly, settings can be specified to target binaries for a component that are of a particular type:
eg all shared libraries for the main library component.

Example: Settings that apply only to shared libraries produced for the 'main’ library
component

build.gradle

model {
components {
main(NativelLibrarySpec) {
binaries.withType(SharedLibraryBinarySpec) {
// Define a preprocessor macro that only applies to shared libraries
cppCompiler.define "DLL_EXPORT"

Windows Resources

When using the VisualCpp tool chain, Gradle is able to compile Window Resource (rc) files and link
them into a native binary. This functionality is provided by the 'windows-resources' plugin.

Example: The 'windows-resources' plugin

build.gradle

apply plugin: 'windows-resources'’

Windows resources to be included in a native binary are provided via a WindowsResourceSet,
which defines a set of Windows Resource source files. By default, for any named component the
WindowsResourceSet contains .rc source files under src/${name}/rc.

As with other source types, you can configure the location of the windows resources that should be
included in the binary.

Example: Configuring the location of Windows resource sources

../dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
../dsl/org.gradle.language.rc.WindowsResourceSet.html
../dsl/org.gradle.language.rc.WindowsResourceSet.html

build-resource-only-dll.gradle

sources {
re {
source {
srcDirs "src/hello/rc"
}

exportedHeaders {
srcDirs "src/hello/headers”

}

You are able to construct a resource-only library by providing Windows Resource sources with no
other language sources, and configure the linker as appropriate:

Example: Building a resource-only dll

build-resource-only-dll.gradle

model {
components {
helloRes(NativelLibrarySpec) {
binaries.all {
rcCompiler.args "/v"
linker.args "/noentry", "/machine:x86"

}
sources {
rc {
source {
srcDirs "src/hello/rc"
}
exportedHeaders {
srcDirs "src/hello/headers”
}
}
}

The example above also demonstrates the mechanism of passing extra command-line arguments to
the resource compiler. The rcCompiler extension is of type PreprocessingTool.

Library Dependencies

Dependencies for native components are binary libraries that export header files. The header files
are used during compilation, with the compiled binary dependency being used during linking and
execution. Header files should be organized into subdirectories to prevent clashes of commonly

../javadoc/org/gradle/nativeplatform/PreprocessingTool.html

named headers. For instance, if your mylib project has a logging.h header, it will make it less likely
the wrong header is used if you include it as "mylib/logging.h" instead of "logging.h".

Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the
same project. A common example is a native executable component that uses functions provided by
a separate native library component.

Such a library dependency can be added to a source set associated with the executable component:

Example: Providing a library dependency to the source set

build.gradle

sources {

cpp {
lib library: "hello"

}

Alternatively, a library dependency can be provided directly to the NativeExecutableBinarySpec for
the executable.

Example: Providing a library dependency to the binary

build.gradle

model {
components {
hello(NativelLibrarySpec) {

sources {
c{
source {
srcDir "src/source”
include "**/*.c"
}

exportedHeaders {
srcDir "src/include"

}
}
}
}
main(NativeExecutableSpec) {
sources {
cpp {
source {
srcDir "src/source”
include "**/*.cpp"
}
}
¥
binaries.all {
// Each executable binary produced uses the 'hello' static library
binary
1ib library: 'hello', linkage: 'static'
}
}
}
}

Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Example: Declaring project dependencies

build.gradle

project(":1ib") {
apply plugin: "cpp"
model {
components {
main(NativelLibrarySpec)

}

// For any shared library binaries built with Visual C++,
// define the DLL_EXPORT macro
binaries {
withType(SharedLibraryBinarySpec) {
if (toolChain in VisualCpp) {
cppCompiler.define "DLL_EXPORT"
}

}

project(":exe") {
apply plugin: "cpp"
model {
components {
main(NativeExecutableSpec) {
sources
cpp {
lib project: ':1ib", library: 'main’

}

Precompiled Headers

Precompiled headers are a performance optimization that reduces the cost of compiling widely
used headers multiple times. This feature precompiles a header such that the compiled object file
can be reused when compiling each source file rather than recompiling the header each time. This
support is available for C, C++, Objective-C, and Objective-C++ builds.

To configure a precompiled header, first a header file needs to be defined that includes all of the
headers that should be precompiled. It must be specified as the first included header in every
source file where the precompiled header should be used. It is assumed that this header file, and
any headers it contains, make use of header guards so that they can be included in an idempotent
manner. If header guards are not used in a header file, it is possible the header could be compiled
more than once and could potentially lead to a broken build.

Example: Creating a precompiled header file

src/hello/headers/pch.h

#ifndef PCH_H
#idefine PCH_H
#include <iostream>
#include "hello.h"
fendif

Example: Including a precompiled header file in a source file

src/hello/cpp/hello.cpp

#include "pch.h"

void LIB_FUNC Greeter::hello () {
std::cout << "Hello world!" << std::endl;

}

Precompiled headers are specified on a source set. Only one precompiled header file can be
specified on a given source set and will be applied to all source files that declare it as the first
include. If a source files does not include this header file as the first header, the file will be
compiled in the normal manner (without making use of the precompiled header object file). The
string provided should be the same as that which is used in the "#include" directive in the source
files.

Example: Configuring a precompiled header

build.gradle

model {
components {
hello(NativelLibrarySpec) {
sources {

cpp {
preCompiledHeader "pch.h"

}

A precompiled header must be included in the same way for all files that use it. Usually, this means
the header file should exist in the source set "headers" directory or in a directory included on the
compiler include path.

Native Binary Variants

For each executable or library defined, Gradle is able to build a number of different native binary
variants. Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries,
and binaries produced with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on build type, platform, and flavor. For each of
these 'variant dimensions', it is possible to specify a set of available values as well as target each
component at one, some or all of these. For example, a plugin may define a range of support
platforms, but you may choose to only target Windows-x86 for a particular component.

Build types

A build type determines various non-functional aspects of a binary, such as whether debug
information is included, or what optimisation level the binary is compiled with. Typical build types
are 'debug' and 'release’, but a project is free to define any set of build types.

Example: Defining build types

build.gradle

model {
buildTypes {
debug
release

If no build types are defined in a project, then a single, default build type called 'debug' is added.

For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example: Configuring debug binaries

build.gradle

model {
binaries {
all {
if (toolChain in Gee &% buildType == buildTypes.debug) {
cppCompiler.args "-g"
}
if (toolChain in VisualCpp && buildType == buildTypes.debug) {
cppCompiler.args '/Zi'
cppCompiler.define 'DEBUG'
linker.args '/DEBUG'
}
}
}
}
At this stage, it is completely up to the build script to configure the relevant
NOTE compiler/linker flags for each build type. Future versions of Gradle will
automatically include the appropriate debug flags for any 'debug' build type, and
may be aware of various levels of optimisation as well.
Platform

An executable or library can be built to run on different operating systems and cpu architectures,
with a variant being produced for each platform. Gradle defines each OS/architecture combination
as a NativePlatform, and a project may define any number of platforms. If no platforms are defined
in a project, then a single, default platform 'current' is added.

Presently, a Platform consists of a defined operating system and architecture. As we
continue to develop the native binary support in Gradle, the concept of Platform
will be extended to include things like C-runtime version, Windows SDK, ABI, etc.
Sophisticated builds may use the extensibility of Gradle to apply additional
attributes to each platform, which can then be queried to specify particular
includes, preprocessor macros or compiler arguments for a native binary.

NOTE

Example: Defining platforms

../dsl/org.gradle.nativeplatform.platform.NativePlatform.html

build.gradle

model {
platforms {
x86 {
architecture "x86"

}
x64 {
architecture "x86 64"

}
itanium {
architecture "ia-64"

For a given variant, Gradle will attempt to find a NativeToolChain that is able to build for the target
platform. Available tool chains are searched in the order defined. See the tool chains section below
for more details.

Flavor

Each component can have a set of named flavors, and a separate binary variant can be produced
for each flavor. While the build type and target platform variant dimensions have a defined
meaning in Gradle, each project is free to define any number of flavors and apply meaning to them
in any way.

An example of component flavors might differentiate between 'demo’, 'paid’ and 'enterprise’
editions of the component, where the same set of sources is used to produce binaries with different
functions.

Example: Defining flavors

../javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

build.gradle

model {
flavors {
english
french

}

components {
hello(NativelLibrarySpec) {
binaries.all {
if (flavor == flavors.french) {
cppCompiler.define "FRENCH"
}

In the example above, a library is defined with a 'english' and 'french’' flavor. When compiling the
'french' variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default’ is used.

Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every
combination of buildType and flavor defined for the project. It is possible to override this on a per-
component basis, by specifying the set of targetBuildTypes and/or targetFlavors. By default, Gradle
will build for the default platform, see above, unless specified explicitly on a per-component basis
by specifying a set of targetPlatforms.

Example: Targeting a component at particular platforms

build.gradle

model {
components {
hello(NativelLibrarySpec) {
targetPlatform "x86"
targetPlatform "x64"

}
main(NativeExecutableSpec) {
targetPlatform "x86"
targetPlatform "x64"
sources {
cpp.lib library: 'hello', linkage: 'static'
¥

Here you can see that the TargetedNativeComponent.targetPlatform(java.lang.String) method is
used to specify a platform that the NativeExecutableSpec named main should be built for.

A similar mechanism exists for selecting
TargetedNativeComponent.targetBuildTypes(java.lang.String...) and
TargetedNativeComponent.targetFlavors(java.lang.String...).

Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a
NativeBinarySpec model element is created for every possible combination of these. However, in
many cases it is not possible to build a particular variant, perhaps because no tool chain is available
to build for a particular platform.

If a binary variant cannot be built for any reason, then the NativeBinarySpec associated with that
variant will not be buildable. It is possible to use this property to create a task to generate all
possible variants on a particular machine.

Example: Building all possible variants

build.gradle

model {
tasks {
buildAllExecutables(Task) {
dependsOn $.binaries.findAll { it.buildable }

}

../dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
../dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
../dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html

Tool chains

A single build may utilize different tool chains to build variants for different platforms. To this end,
the core 'native-binary' plugins will attempt to locate and make available supported tool chains.
However, the set of tool chains for a project may also be explicitly defined, allowing additional
cross-compilers to be configured as well as allowing the install directories to be specified.

Defining tool chains

The supported tool chain types are:

* Gce
* Clang
* VisualCpp

Example: Defining tool chains

build.gradle

model {
toolChains {

visualCpp(VisualCpp) {
// Specify the installDir if Visual Studio cannot be located
// installDir "C:/Apps/Microsoft Visual Studio 10.0"

}

gcee(Gee) {
// Uncomment to use a GCC install that is not in the PATH

// path "/usr/bin/gcc”

}
clang(Clang)

Each tool chain implementation allows for a certain degree of configuration (see the API
documentation for more details).

Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given
variant, Gradle will attempt to locate a NativeToolChain that is able to build for the target platform.
Available tool chains are searched in the order defined.

When a platform does not define an architecture or operating system, the default
target of the tool chain is assumed. So if a platform does not define a value for
operatingSystem, Gradle will find the first available tool chain that can build for the
specified architecture.

NOTE

The core Gradle tool chains are able to target the following architectures out of the box. In each
case, the tool chain will target the current operating system. See the next section for information on

../dsl/org.gradle.nativeplatform.toolchain.Gcc.html
../dsl/org.gradle.nativeplatform.toolchain.Clang.html
../dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
../javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

cross-compiling for other operating systems.

Tool Chain Architectures
GCC x86, x86_64
Clang x86, x86_64
Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64". For
GCC running on Windows via Cygwin, platforms 'windows/x86' and 'windows/x86_64' are
supported. (The Cygwin POSIX runtime is not yet modelled as part of the platform, but will be in the
future.)

If no target platforms are defined for a project, then all binaries are built to target a default
platform named 'current. This default platform does not specify any architecture or
operatingSystem value, hence using the default values of the first available tool chain.

Gradle provides a hook that allows the build author to control the exact set of arguments passed to
a tool chain executable. This enables the build author to work around any limitations in Gradle, or
assumptions that Gradle makes. The arguments hook should be seen as a 'last-resort’ mechanism,
with preference given to truly modelling the underlying domain.

Example: Reconfigure tool arguments

build.gradle

model {
toolChains {
visualCpp(VisualCpp) {
eachPlatform {
cppCompiler.withArguments { args ->
args << "-DFRENCH"
}
}
}
clang(Clang) {
eachPlatform {
cCompiler.withArguments { args ->
Collections.replaceAll(args, "CUSTOM", "-DFRENCH")
}
linker.withArguments { args ->
args.remove "CUSTOM"
}
staticLibArchiver.withArguments { args ->
args.remove "CUSTOM"

}

Cross-compiling with GCC

Cross-compiling is possible with the Gcec and Clang tool chains, by adding support for additional
target platforms. This is done by specifying a target platform for a toolchain. For each target
platform a custom configuration can be specified.

Example: Defining target platforms

../dsl/org.gradle.nativeplatform.toolchain.Gcc.html
../dsl/org.gradle.nativeplatform.toolchain.Clang.html

build.gradle

model {
toolChains {
gce(Gee) {
target("arm"){
cppCompiler.withArguments { args ->
args << "-m32"
}
linker.withArguments { args ->
args << "-m32"
}
}
target("sparc")
}
}
platforms {
arm {
architecture "arm"
}
sparc {
architecture "sparc”
}
}

components {
main(NativeExecutableSpec) {
targetPlatform "arm"
targetPlatform "sparc”

Visual Studio IDE integration

Gradle has the ability to generate Visual Studio project and solution files for the native components
defined in your build. This ability is added by the visual-studio plugin. For a multi-project build, all
projects with native components (and the root project) should have this plugin applied.

When the visual-studio plugin is applied to the root project, a task named visualStudio is created,
which will generate a Visual Studio solution file containing all components in the build. This
solution will include a Visual Studio project for each component, as well as configuring each
component to build using Gradle.

A task named openVisualStudio is also created by the visual-studio plugin when the project is the
root project. This task generates the Visual Studio solution and then opens the solution in Visual
Studio. This means you can simply run gradlew openVisualStudio from the root project to generate
and open the Visual Studio solution in one convenient step.

The content of the generated visual studio files can be modified via API hooks, provided by the
visualStudio extension. Take a look at the ‘visual-studio' sample, or see

VisualStudioExtension.getProjects() and VisualStudioRootExtension.getSolution() in the API
documentation for more details.

CUnit support

The Gradle cunit plugin provides support for compiling and executing CUnit tests in your native-
binary project. For each NativeExecutableSpec and NativeLibrarySpec defined in your project,
Gradle will create a matching CUnitTestSuiteSpec component, named ${component.name}Test.

CUnit sources

Gradle will create a CSourceSet named 'cunit' for each CUnitTestSuiteSpec component in the
project. This source set should contain the cunit test files for the component under test. Source files
can be located in the conventional location (src/${component.name}Test/cunit) or can be configured
like any other source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit
launcher sources. Gradle will expect and call a function with the signature void
gradle_cunit_register() that you can use to configure the actual CUnit suites and tests to execute.

Example: Registering CUnit tests

suite_operators.c

#include <CUnit/Basic.h>
#include "gradle_cunit_register.h"
#include "test_operators.h"

int suite_init(void) {
return 0;

int suite_clean(void) {
return 0;

void gradle_cunit_register() {
CU_pSuite pSuiteMath = CU_add_suite("operator tests", suite_init, suite_clean);
CU_add_test(pSuiteMath, "test_plus", test_plus);
CU_add_test(pSuiteMath, "test_minus", test_minus);

Due to this mechanism, your CUnit sources may not contain a main method since this

NOTE
will clash with the method provided by Gradle.

Building CUnit executables

A CUnitTestSuiteSpec component has an associated NativeExecutableSpec or NativeLibrarySpec
component. For each NativeBinarySpec configured for the main component, a matching

../dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
../dsl/org.gradle.ide.visualstudio.VisualStudioRootExtension.html#org.gradle.ide.visualstudio.VisualStudioRootExtension:solution
../javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
../dsl/org.gradle.language.c.CSourceSet.html
../dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
../dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
../javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html

CUnitTestSuiteBinarySpec will be configured on the test suite component. These test suite binaries
can be configured in a similar way to any other binary instance:

Example: Configuring CUnit tests

build.gradle

model {
binaries {
withType(CUnitTestSuiteBinarySpec) {
lib library: "cunit", linkage: "static"

if (flavor == flavors.failing) {
cCompiler.define "PLUS_BROKEN"

}

Both the CUnit sources provided by your project and the generated launcher require
NOTE the core CUnit headers and libraries. Presently, this library dependency must be
provided by your project for each CUnitTestSuiteBinarySpec.

Running CUnit tests

For each CUnitTestSuiteBinarySpec, Gradle will create a task to execute this binary, which will run
all of the registered CUnit tests. Test results will be found in the ${build.dir}/test-results
directory.

Example: Running CUnit tests

../dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
../dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
../dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html

build.gradle
apply plugin: "c"
apply plugin: 'cunit-test-suite’
model {
flavors {
passing
failing
}
platforms {
x86 {
architecture "x86"
}
}

repositories {
libs(PrebuiltLibraries) {

cunit {
headers.srcDir "libs/cunit/2.1-2/include"
binaries.withType(StaticlLibraryBinary) {

staticlLibraryFile =
file("libs/cunit/2.1-2/1ib/" +
findCUnitLibForPlatform(targetPlatform))

}
}

components {
operators(NativelLibrarySpec) {
targetPlatform "x86"
}
}
testSuites {
operatorsTest(CUnitTestSuiteSpec) {
testing $.components.operators

}
}
}
model {
binaries {
withType(CUnitTestSuiteBinarySpec) {
lib library: "cunit", linkage: "static"
if (flavor == flavors.failing) {
cCompiler.define "PLUS_BROKEN"
}
}
}

Output of gradle -q runOperatorsTestFailingCUnitExe
> gradle -q runOperatorsTestFailingCUnitExe

There were test failures:
1. /home/user/gradle/samples/src/operatorsTest/c/test_plus.c:6 - plus(@, -2) == -2
2. /home/user/gradle/samples/src/operatorsTest/c/test_plus.c:7 - plus(2, 2) == 4

FAILURE: Build failed with an exception.

* What went wrong:

Execution failed for task ':runOperatorsTestFailingCUnitExe'.

> There were failing tests. See the results at:
file:///home/user/gradle/samples/build/test-results/operatorsTest/failing/

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug option
to get more log output. Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

The code for this example can be found at samples/native-binaries/cunit in the “all’

NOTE
distribution of Gradle.

The current support for CUnit is quite rudimentary. Plans for future integration
include:

» Allow tests to be declared with Javadoc-style annotations.
NOTE
* Improved HTML reporting, similar to that available for JUnit.

» Real-time feedback for test execution.

» Support for additional test frameworks.

GoogleTest support

The Gradle google-test plugin provides support for compiling and executing GoogleTest tests in
your native-binary project. For each NativeExecutableSpec and NativeLibrarySpec defined in your
project, Gradle will create a matching GoogleTestTestSuiteSpec component, named
${component.name}Test.

GoogleTest sources

Gradle will create a CppSourceSet named 'cpp' for each GoogleTestTestSuiteSpec component in the
project. This source set should contain the GoogleTest test files for the component under test.
Source files can be located in the conventional location (src/${component.name}Test/cpp) or can be

../javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
../dsl/org.gradle.language.cpp.CppSourceSet.html
../dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html

configured like any other source set.

Building GoogleTest executables

A GoogleTestTestSuiteSpec component has an associated NativeExecutableSpec or
NativeLibrarySpec component. For each NativeBinarySpec configured for the main component, a
matching GoogleTestTestSuiteBinarySpec will be configured on the test suite component. These test
suite binaries can be configured in a similar way to any other binary instance:

Example: Registering GoogleTest tests

build.gradle

model {
binaries {
withType(GoogleTestTestSuiteBinarySpec) {
lib library: "googleTest", linkage: "static"

if (flavor == flavors.failing) {
cppCompiler.define "PLUS_BROKEN"
}

if (targetPlatform.operatingSystem.linux) {
cppCompiler.args '-pthread’
linker.args '-pthread’

if (toolChain instanceof Gece || toolChain instanceof Clang) {
// Use C++03 with the old ABIs, as this is what the googletest
binaries were built with
cppCompiler.args '-std=c++03"', '-D_GLIBCXX_USE_CXX11_ABI=0'
linker.args '-std=c++03'

The code for this example can be found at samples/native-binaries/google-test in

NOTE
the “-all’ distribution of Gradle.

The GoogleTest sources provided by your project require the core GoogleTest
NOTE headers and libraries. Presently, this library dependency must be provided by your
project for each GoogleTestTestSuiteBinarySpec.

Running GoogleTest tests

For each GoogleTestTestSuiteBinarySpec, Gradle will create a task to execute this binary, which will
run all of the registered GoogleTest tests. Test results will be found in the ${build.dir}/test-results
directory.

../dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
../javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
../javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
../javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
../dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
../dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
../dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html

The current support for GoogleTest is quite rudimentary. Plans for future
integration include:

NOTE * Improved HTML reporting, similar to that available for JUnit.
» Real-time feedback for test execution.

» Support for additional test frameworks.

Software model concepts

Rule based configuration will be deprecated. New plugins should not use this
concept.

CAUTION

The software model describes how a piece of software is built and how the components of the
software relate to each other. The software model is organized around some key concepts:

* A component is a general concept that represents some logical piece of software. Examples of
components are a command-line application, a web application or a library. A component is
often composed of other components. Most Gradle builds will produce at least one component.

* A library is a reusable component that is linked into or combined into some other component.
In the Java ecosystem, a library is often built as a Jar file, and then later bundled into an
application of some kind. In the native ecosystem, a library may be built as a shared library or
static library, or both.

* A source set represents a logical group of source files. Most components are built from source
sets of various languages. Some source sets contain source that is written by hand, and some
source sets may contain source that is generated from something else.

* A binary represents some output that is built for a component. A component may produce
multiple different output binaries. For example, for a C++ library, both a shared library and a
static library binary may be produced. Each binary is initially configured to be built from the
component sources, but additional source sets can be added to specific binary variants.

* A variant represents some mutually exclusive binary of a component. A library, for example,
might target Java 7 and Java 8, effectively producing two distinct binaries: a Java 7 Jar and a
Java 8 Jar. These are different variants of the library.

» The API of a library represents the artifacts and dependencies that are required to compile
against that library. The API typically consists of a binary together with a set of dependencies.

Rule based model configuration

Rule based configuration will be deprecated. New plugins should not use this
concept.

CAUTION

Rule based model configuration enables configuration logic to itself have dependencies on other
elements of configuration, and to make use of the resolved states of those other elements of
configuration while performing its own configuration.

https://blog.gradle.org/state-and-future-of-the-gradle-software-model
https://blog.gradle.org/state-and-future-of-the-gradle-software-model

Background

In a nutshell, the Software Model is a very declarative way to describe how a piece of software is
built and the other components it needs as dependencies in the process. It also provides a new,
rule-based engine for configuring a Gradle build. When we started to implement the software
model we set ourselves the following goals:

* Improve configuration and execution time performance.
* Make customizations of builds with complex tool chains easier.

* Provide a richer, more standardized way to model different software ecosystems.

Gradle drastically improved configuration performance through other measures. There is no longer
any need for a drastic, incompatible change in how Gradle builds are configured. Gradle’s support
for building native software and Play Framework applications still use the configuration model.

Basic Concepts

The “model space”

The term “model space” is used to refer to the formal model, which can be read and modified by
rules.

A counterpart to the model space is the “project space”, which should be familiar to readers. The
“project space” is a graph of objects (e.g project.repositories, project.tasks etc.) having a Project as
its root. A build script is effectively adding and configuring objects of this graph. For the most part,
the “project space” is opaque to Gradle. It is an arbitrary graph of objects that Gradle only partially
understands.

Each project also has its own model space, which is distinct from the project space. A key
characteristic of the “model space” is that Gradle knows much more about it (which is knowledge
that can be put to good use). The objects in the model space are “managed”, to a greater extent than
objects in the project space. The origin, structure, state, collaborators and relationships of objects in
the model space are first class constructs. This is effectively the characteristic that functionally
distinguishes the model space from the project space: the objects of the model space are defined in
ways that Gradle can understand them intimately, as opposed to an object that is the result of
running relatively opaque code. A “rule” is effectively a building block of this definition.

The model space will eventually replace the project space, becoming the only “space”.

Rules

The model space is defined by “rules”. A rule is just a function (in the abstract sense) that either
produces a model element, or acts upon a model element. Every rule has a single subject and zero
or more inputs. Only the subject can be changed by a rule, while the inputs are effectively
immutable.

Gradle guarantees that all inputs are fully “realized“ before the rule executes. The process of
“realizing” a model element is effectively executing all the rules for which it is the subject,
transitioning it to its final state. There is a strong analogy here to Gradle’s task graph and task

../dsl/org.gradle.api.Project.html

execution model. Just as tasks depend on each other and Gradle ensures that dependencies are
satisfied before executing a task, rules effectively depend on each other (i.e. a rule depends on all
rules whose subject is one of the inputs) and Gradle ensures that all dependencies are satisfied
before executing the rule.

Model elements are very often defined in terms of other model elements. For example, a compile
task’s configuration can be defined in terms of the configuration of the source set that it is
compiling. In this scenario, the compile task would be the subject of a rule and the source set an
input. Such a rule could configure the task subject based on the source set input without concern
for how it was configured, who it was configured by or when the configuration was specified.

There are several ways to declare rules, and in several forms.

Rule sources

One way to define rules is via a RuleSource subclass. If an object extends RuleSource and contains
any methods annotated by '@Mutate’, then each such method defines a rule. For each such method,
the first argument is the subject, and zero or more subsequent arguments may follow and are
inputs of the rule.

Example: applying a rule source plugin

../javadoc/org/gradle/model/RuleSource.html

build.gradle

@Managed

interface Person {
void setFirstName(String name)
String getFirstName()

void setlLastName(String name)
String getLastName()
}

class PersonRules extends RuleSource {
@Model void person(Person p) {}

//Create a rule that modifies a Person and takes no other inputs
@Mutate void setFirstName(Person p) {
p.firstName = "John"

}

//Create a rule that modifies a ModelMap<Task> and takes as input a Person
@Mutate void createHelloTask(ModelMap<Task> tasks, Person p) {
tasks.create("hello") {
dolLast {
println "Hello $p.firstName $p.lastName!"
}
}
}
}

apply plugin: PersonRules

Output of gradle hello
> gradle hello

> Task :hello
Hello John Smith!

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Each of the different methods of the rule source are discrete, independent rules. Their order, or the
fact that they belong to the same class, do not affect their behavior.

Example: a model creation rule

build.gradle

@Model void person(Person p) {}

This rule declares that there is a model element at path "person” (defined by the method name), of
type Person. This is the form of the Model type rule for Managed types. Here, the person object is the
rule subject. The method could potentially have a body, that mutated the person instance. It could
also potentially have more parameters, which would be the rule inputs.

Example: a model mutation rule

build.gradle

//Create a rule that modifies a Person and takes no other inputs
void setFirstName(Person p) {
p.firstName = "John"

}

This Mutate rule mutates the person object. The first parameter to the method is the subject. Here, a
by-type reference is used as no Path annotation is present on the parameter. It could also
potentially have more parameters, that would be the rule inputs.

Example: creating a task

build.gradle

//Create a rule that modifies a ModelMap<Task> and takes as input a Person
void createHelloTask(ModelMap<Task> tasks, Person p) {
tasks.create("hello") {
dolast {
println "Hello $p.firstName $p.lastName!"
}
}
}

This Mutate rule effectively adds a task, by mutating the tasks collection. The subject here is the
"tasks" node, which is available as a ModelMap of Task. The only input is our person element. As
the person is being used as an input here, it will have been realised before executing this rule. That
is, the task container effectively depends on the person element. If there are other configuration
rules for the person element, potentially specified in a build script or other plugin, they will also be
guaranteed to have been executed.

As Person is a Managed type in this example, any attempt to modify the person parameter in this
method would result in an exception being thrown. Managed objects enforce immutability at the
appropriate point in their lifecycle.

Rule source plugins can be packaged and distributed in the same manner as other types of plugins
(see Custom Plugins). They also may be applied in the same manner (to project objects) as Plugin
implementations (i.e. via Project.apply(java.util.Map)).

Please see the documentation for RuleSource for more information on constraints on how rule
sources must be implemented and for more types of rules.

../javadoc/org/gradle/model/Model.html
../javadoc/org/gradle/model/Managed.html
../javadoc/org/gradle/model/Mutate.html
../javadoc/org/gradle/model/Path.html
../javadoc/org/gradle/model/Mutate.html
../javadoc/org/gradle/model/ModelMap.html
../dsl/org.gradle.api.Task.html
../javadoc/org/gradle/model/Managed.html
../javadoc/org/gradle/api/Plugin.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)
../javadoc/org/gradle/model/RuleSource.html

Advanced Concepts

Model paths

A model path identifies the location of an element relative to the root of its model space. A common
representation is a period-delimited set of names. For example, the model path "tasks" is the path
to the element that is the task container. Assuming a task whose name is hello, the path
"tasks.hello" is the path to this task.

Managed model elements

Currently, any kind of Java object can be part of the model space. However, there is a difference
between “managed” and “unmanaged” objects.

A “managed” object is transparent and enforces immutability once realized. Being transparent
means that its structure is understood by the rule infrastructure and as such each of its properties
are also individual elements in the model space.

An “unmanaged” object is opaque to the model space and does not enforce immutability. Over time,
more mechanisms will be available for defining managed model elements culminating in all model
elements being managed in some way.

Managed models can be defined by attaching the @Managed annotation to an interface:

Example: a managed type

build.gradle

interface Person {
void setFirstName(String name)
String getFirstName()

void setlLastName(String name)
String getLastName()
¥

By defining a getter/setter pair, you are effectively declaring a managed property. A managed
property is a property for which Gradle will enforce semantics such as immutability when a node
of the model is not the subject of a rule. Therefore, this example declares properties named
firstName and lastName on the managed type Person. These properties will only be writable when
the view is mutable, that is to say when the Person is the subject of a Rule (see below the
explanation for rules).

Managed properties can be of any scalar type. In addition, properties can also be of any type which
is itself managed:

Property type

*String”

“File®

"Integer”, "Boolean’, "Byte',
“Short", "Float", "Long",
"Double”

‘int’, "boolean’, "byte ",
“short”, “float", "long",
“double”

Another _managed_ type.

An _enumeration_ type.

A "ManagedSet . A managed
set supports the creation of new
named model elements, but not
their removal.

A “Set’ or "List’ of scalar types.
All classic operations on
collections are supported: add,
remove, clear...

Nullable

Yes

Yes

Yes

No

Only if read/write

Yes

Only if read/write

Only if read/write

Example

[source,groovy,indent=0] ----
void setFirstName(String name)
String getFirstName() ----

[source,groovy,indent=0] ----
void setHomeDirectory(File
homeDir) File
getHomeDirectory() --—

[source,groovy,indent=0] ----
void setld(Long id) Long
getld() -

[source,groovy,indent=0] ----
void setEmployed(boolean
isEmployed) boolean
isEmployed() - "'
[source,groovy,indent=0] ----
void setAge(int age) int
getAge() -

[source,groovy,indent=0] ----
void setMother(Person mother)
Person getMother() ----

[source,groovy,indent=0] ----
void
setMaritalStatus(MaritalStatus
status) MaritalStatus
getMaritalStatus() ----

[source,groovy,indent=0] ----
ModelSet<Person> getChildren()

[source,groovy,indent=0] ----
void
setUserGroups(List<String>
groups) List<String>
getUserGroups() ----

If the type of a property is itself a managed type, it is possible to declare only a getter, in which case
you are declaring a read-only property. A read-only property will be instantiated by Gradle, and
cannot be replaced with another object of the same type (for example calling a setter). However,
the properties of that property can potentially be changed, if, and only if, the property is the subject
of a rule. If it’s not the case, the property is immutable, like any classic read/write managed

property, and properties of the property cannot be changed at all.

Managed types can be defined out of interfaces or abstract classes and are usually defined in
plugins, which are written either in Java or Groovy. Please see the Managed annotation for more
information on creating managed model objects.

../javadoc/org/gradle/model/Managed.html

Model element types

There are particular types (language types) supported by the model space and can be generalised as
follows:

Table 11. Type definitions
Type Definition

Scalar A scalar type is one of the following: * a primitive type (e.g. "int’) or
its boxed type (e.g "Integer ') * a "BigInteger or "BigDecimal ™ * a
“String” *a "File® * an enumeration type

Scalar Collection Ajava.util.List or java.util.Set containing one of the scalar types

Managed type Any class which is a valid managed model (i.e.annotated with
@link:{javadocPath}/org/gradle/model/Managed.html[Managed])

Managed collection A link:{javadocPath}/org/gradle/model/ModelMap.html[ModelMap] or
link:{javadocPath}/org/gradle/model/ModelSet.html[ModelSet]

There are various contexts in which these types can be used:

Table 12. Model type support
Context Supported types

Creating top level model = * Any managed type *

elements link:{javadocPath}/org/gradle/language/base/FunctionalSourceSet.htm
1[FunctionalSourceSet] (when the
link:{javadocPath}/org/gradle/language/base/plugins/LanguageBasePl
ugin.html[LanguageBasePlugin] plugin has been applied) * Subtypes
of
link:{javadocPath}/org/gradle/language/base/LanguageSourceSet.html
[LanguageSourceSet] which have been registered via
link:{javadocPath}/org/gradle/platform/base/ComponentType.html[Co

mponentType]
Properties of managed The properties (attributes) of a managed model elements may be one
model elements or more of the following: * A managed type * A type which is
annotated with

@link:{javadocPath}/org/gradle/model/Unmanaged.html[Unmanaged]
* A Scalar Collection * A Managed collection containing managed
types * A Managed collection containing
link:{javadocPath}/org/gradle/language/base/FunctionalSourceSet.htm
1[FunctionalSourceSet]'s (when the
link:{javadocPath}/org/gradle/language/base/plugins/LanguageBasePl
ugin.html[LanguageBasePlugin] plugin has been applied) * Subtypes
of
link:{javadocPath}/org/gradle/language/base/LanguageSourceSet.html
[LanguageSourceSet] which have been registered via
link:{javadocPath}/org/gradle/platform/base/ComponentType.html[Co
mponentType]

Language source sets

FunctionalSourceSets and subtypes of LanguageSourceSet (which have been registered via
ComponentType) can be added to the model space via rules or via the model DSL.

Example: Strongly modelling sources sets

build.gradle
apply plugin: 'java-lang'

//Creating LanguageSourceSets via rules
class LanguageSourceSetRules extends RuleSource {
@Model
void mySourceSet(JavaSourceSet javaSource) {
javaSource.source.srcDir("src/main/my")
}

}
apply plugin: LanguageSourceSetRules

//Creating LanguageSourceSets via the model DSL

model {
another (JavaSourceSet) {
source {
srcDir "src/main/another”
}
}
}

//Using FunctionalSourceSets

@Managed

interface SourceBundle {
FunctionalSourceSet getFreeSources()
FunctionalSourceSet getPaidSources()

}
model {
sourceBundle(SourceBundle) {
freeSources.create("main", JavaSourceSet)
freeSources.create("resources"”, JvmResourceSet)
paidSources.create("main", JavaSourceSet)
paidSources.create("resources", JvmResourceSet)
}
}

Output of gradle help
> gradle help

> Task :help

../javadoc/org/gradle/language/base/FunctionalSourceSet.html
../javadoc/org/gradle/language/base/LanguageSourceSet.html
../javadoc/org/gradle/platform/base/ComponentType.html

The code for this example can be found at samples/modelRules/language-support in

NOTE
the ‘-all’ distribution of Gradle.

References, binding and scopes

As previously mentioned, a rule has a subject and zero or more inputs. The rule’s subject and
inputs are declared as “references” and are “bound” to model elements before execution by Gradle.
Each rule must effectively forward declare the subject and inputs as references. Precisely how this
is done depends on the form of the rule. For example, the rules provided by a RuleSource declare
references as method parameters.

A reference is either “by-path” or “by-type”.

A “by-type” reference identifies a particular model element by its type. For example, a reference to
the TaskContainer effectively identifies the "tasks" element in the project model space. The model
space is not exhaustively searched for candidates for by-type binding; rather, a rule is given a scope
(discussed later) that determines the search space for a by-type binding.

A “by-path” reference identifies a particular model element by its path in model space. By-path
references are always relative to the rule scope; there is currently no way to path “out” of the scope.
All by-path references also have an associated type, but this does not influence what the reference
binds to. The element identified by the path must however by type compatible with the reference,
or a fatal “binding failure” will occur.

Binding scope

Rules are bound within a “scope”, which determines how references bind. Most rules are bound at
the project scope (i.e. the root of the model graph for the project). However, rules can be scoped to a
node within the graph. The ModelMap.named(java.lang.String, java.lang.Class) method is an
example of a mechanism for applying scoped rules. Rules declared in the build script using the
model {} block, or via a RuleSource applied as a plugin use the root of the model space as the scope.
This can be considered the default scope.

By-path references are always relative to the rule scope. When the scope is the root, this effectively
allows binding to any element in the graph. When it is not, then only the children of the scope can
be referenced using "by-path" notation.

When binding by-type references, the following elements are considered:

» The scope element itself.
* The immediate children of the scope element.

* The immediate children of the model space (i.e. project space) root.

For the common case, where the rule is effectively scoped to the root, only the immediate children
of the root need to be considered.

Binding to all elements in a scope matching type

Mutating or validating all elements of a given type in some scope is a common use-case. To

../javadoc/org/gradle/model/RuleSource.html
../javadoc/org/gradle/api/tasks/TaskContainer.html
../javadoc/org/gradle/model/ModelMap.html#named-java.lang.String,%20java.lang.Class-

accommodate this, rules can be applied via the @Each annotation.

In the example below, a @Defaults rule is applied to each FileItem in the model setting a default file
size of "1024". Another rule applies a RuleSource to every DirectoryItem that makes sure all file
sizes are positive and divisible by "16".

Example: a DSL example applying a rule to every element in a scope

../javadoc/org/gradle/model/RuleSource.html

build.gradle

interface Item extends Named {}
interface Fileltem extends Item {
void setSize(int size)
int getSize()

interface Directoryltem extends Item {
ModelMap<Item> getChildren()

}

class PluginRules extends RuleSource {
void setDefaultFileSize(FileItem file) {
file.size = 1024

void applyValidateRules(ValidateRules rules, DirectoryItem directory)
{}

}
apply plugin: PluginRules

abstract class ValidateRules extends RuleSource {

void validateSizeIsPositive(ModelMap<FileItem> files) {
files.each { file ->
assert file.size > 0

}

void validateSizeDivisibleBySixteen(ModelMap<Fileltem> files) {
files.each { file ->
assert file.size % 16 ==

}
}
}
model {
root(DirectoryItem) {
children {
dir(DirectoryItem) {
children {
file1(FileItem)
file2(FileItem) { size = 2048 }
}
}
file3(FileItem)
}
}

The code for this example can be found at samples/modelRules/ruleSourcePluginEach

NOTE
in the “all’ distribution of Gradle.

The model DSL

In addition to using a RuleSource, it is also possible to declare a model and rules directly in a build
script using the “model DSL”.

The model DSL makes heavy use of various Groovy DSL features. Please have a read of

TIP
Groovy DSL basics for an introduction to these Groovy features.

The general form of the model DSL is:

model {
«rule-definitions»

All rules are nested inside a model block. There may be any number of rule definitions inside each
model block, and there may be any number of model blocks in a build script. You can also use a model
block in build scripts that are applied using apply from: $uri.

There are currently 2 kinds of rule that you can define using the model DSL: configuration rules,
and creation rules.

Configuration rules

You can define a rule that configures a particular model element. A configuration rule has the
following form:

model {
«model-path-to-subject>» {
«configuration code»

}

Continuing with the example so far of the model element "person” of type Person being present, the
following DSL snippet adds a configuration rule for the person that sets its lastName property.

Example: DSL configuration rule

build.gradle

model {
person {
lastName = "Smith"
}

A configuration rule specifies a path to the subject that should be configured and a closure
containing the code to run when the subject is configured. The closure is executed with the subject
passed as the closure delegate. Exactly what code you can provide in the closure depends on the
type of the subject. This is discussed below.

You should note that the configuration code is not executed immediately but is instead executed
only when the subject is required. This is an important behaviour of model rules and allows Gradle
to configure only those elements that are required for the build, which helps reduce build time. For
example, let’s run a task that uses the "person” object:

Example: Configuration run when required

build.gradle

model {
person {
println "configuring person"
lastName = "Smith"

Output of gradle showPerson

> gradle showPerson
configuring person

> Task :showPerson
Hello John Smith!

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You can see that before the task is run, the "person" element is configured by running the rule
closure. Now let’s run a task that does not require the "person” element:

Example: Configuration not run when not required

Output of gradle somethingElse
> gradle somethingElse

> Task :somethingElse
Not using person

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

In this instance, you can see that the "person” element is not configured at all.

Creation rules

It is also possible to create model elements at the root level. The general form of a creation rule is:

model {
«element-name> («element-type>») {
«initialization code>»

}

The following model rule creates the "person” element:

Example: DSL creation rule

build.gradle

model {
person(Person) {
firstName = "John"

}

A creation rule definition specifies the path of the element to create, plus its public type,
represented as a Java interface or class. Only certain types of model elements can be created.

A creation rule may also provide a closure containing the initialization code to run when the
element is created. The closure is executed with the element passed as the closure delegate. Exactly
what code you can provide in the closure depends on the type of the subject. This is discussed
below.

The initialization closure is optional and can be omitted, for example:

Example: DSL creation rule without initialization

build.gradle

model {
barry(Person)

}

You should note that the initialization code is not executed immediately but is instead executed
only when the element is required. The initialization code is executed before any configuration
rules are run. For example:

Example: Initialization before configuration

build.gradle

model {
person {
println "configuring person”
println "last name is $lastName, should be Smythe"
lastName = "Smythe"
}

person(Person) {
println "creating person”
firstName = "John"
lastName = "Smith"

Output of gradle showPerson

> gradle showPerson

creating person

configuring person

last name is Smith, should be Smythe

> Task :showPerson
Hello John Smythe!

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Notice that the creation rule appears in the build script after the configuration rule, but its code
runs before the code of the configuration rule. Gradle collects up all the rules for a particular
subject before running any of them, then runs the rules in the appropriate order.

Model rule closures

Most DSL rules take a closure containing some code to run to configure the subject. The code you
can use in this closure depends on the type of the subject of the rule.

TIP You can use the model report to determine the type of a particular model element.

In general, a rule closure may contain arbitrary code, mixed with some type specific DSL syntax.

ModelMap<T> subject

A ModelMap is basically a map of model elements, indexed by some name. When a ModelMap is used
as the subject of a DSL rule, the rule closure can use any of the methods defined on the ModelMap
interface.

A rule closure with ModelMap as a subject can also include nested creation or configuration rules.
These behave in a similar way to the creation and configuration rules that appear directly under
the model block.

Here is an example of a nested creation rule:

Example: Nested DSL creation rule

build.gradle

model {
people {
john(Person) {
firstName = "John"

}

As before, a nested creation rule defines a name and public type for the element, and optionally, a
closure containing code to use to initialize the element. The code is run only when the element is
required in the build.

Here is an example of a nested configuration rule:

Example: Nested DSL configuration rule

build.gradle

model {
people {
john {
lastName = "Smith"
}

As before, a nested configuration rule defines the name of the element to configure and a closure
containing code to use to configure the element. The code is run only when the element is required
in the build.

../javadoc/org/gradle/model/ModelMap.html
../javadoc/org/gradle/model/ModelMap.html

ModelMap introduces several other kinds of rules. For example, you can define a rule that targets
each of the elements in the map. The code in the rule closure is executed once for each element in
the map, when that element is required. Let’s run a task that requires all of the children of the
"people” element:

Example: DSL configuration rule for each element in a map

build.gradle

model {
people {
john(Person) {
println "creating $it"
firstName = "John"
lastName = "Smith"

}
all {

println "confiquring §it"
}

barry(Person) {
println "creating $it"
firstName = "Barry"
lastName = "Barry"

Output of gradle listPeople

> gradle listPeople

creating Person 'people.barry’
configuring Person 'people.barry'’
creating Person 'people.john'
configuring Person 'people.john'

> Task :listPeople
Hello Barry Barry!
Hello John Smith!

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Any method on ModelMap that accepts an Action as its last parameter can also be used to define a
nested rule.

@Managed type subject

When a managed type is used as the subject of a DSL rule, the rule closure can use any of the
methods defined on the managed type interface.

../javadoc/org/gradle/model/ModelMap.html
../javadoc/org/gradle/api/Action.html

A rule closure can also configure the properties of the element using nested closures. For example:

Example: Nested DSL property configuration

build.gradle
model {
person {
address {
city = "Melbourne"
}
}
}
Currently, the nested closures do not define rules and are executed immediately.
NOTE
Please be aware that this behaviour will change in a future Gradle release.
All other subjects

For all other types, the rule closure can use any of the methods defined by the type. There is no
special DSL defined for these elements.

Automatic type coercion

Scalar properties in managed types can be assigned CharSequence values (e.g. String, GString, etc.)
and they will be converted to the actual property type for you. This works for all scalar types
including "File s, which will be resolved relative to the current project.

Example: a DSL example showing type conversions
build.gradle
enum Temperature {
TOO0_HOT,

T00_COLD,
JUST_RIGHT

interface Item {
void setName(String n); String getName()

void setQuantity(int q); int getQuantity()
void setPrice(float p); float getPrice()

void setTemperature(Temperature t)
Temperature getTemperature()

void setDataFile(File f); File getDataFile()

}

class ItemRules extends RuleSource {

void item(Item item) {
def data = item.dataFile.text.trim()
def (name, quantity, price, temp) = data.split(',’
item.name = name
item.quantity = quantity
item.price = price
item.temperature = temp

void setDefaults(Item item) {
item.dataFile = 'data.csv'

}

void createDataTask(ModelMap<Task> tasks, Item item) {
tasks.create('showData') {
dolast {
println
Item '§item.name’
quantity: $item.quantity

nmmn

price: $item.price
temperature: $item.temperature"""
¥
}
¥

}

apply plugin: ItemRules

model {
item {
price = "${price * (quantity < 10?2 2 : 0.5)}"
}
}
NOTE The code for this example can be found at samples/modelRules/modelDs1Coercion in

the “-all’ distribution of Gradle.

In the above example, an Item is created and is initialized in setDefaults() by providing the path to
the data file. In the item() method the resolved File is parsed to extract and set the data. In the DSL
block at the end, the price is adjusted based on the quantity; if there are fewer than 10 remaining
the price is doubled, otherwise it is reduced by 50%. The GString expression is a valid value since it
resolves to a float value in string form.

Finally, in createDataTask() we add the showData task to display all of the configured values.

Declaring input dependencies

Rules declared in the DSL may depend on other model elements through the use of a special syntax,
which is of the form:

$.«path-to-model-element>

Paths are a period separated list of identifiers. To directly depend on the firstName of the person,
the following could be used:

$.person.firstName

Example: a DSL rule using inputs

build.gradle

model {
tasks {
hello(Task) {
def p = $.person
dolLast {
println "Hello $p.firstName $p.lastName!"

The code for this example can be found at samples/modelRules/modelDsl in the ‘-all’
NOTE NP
distribution of Gradle.
In the above snippet, the $.person construct is an input reference. The construct returns the value
of the model element at the specified path, as its default type (i.e. the type advertised by the Model
Report). It may appear anywhere in the rule that an expression may normally appear. It is not
limited to the right hand side of variable assignments.

The input element is guaranteed to be fully configured before the rule executes. That is, all of the
rules that mutate the element are guaranteed to have been previously executed, leaving the target
element in its final, immutable, state.

Most model elements enforce immutability when being used as inputs. Any attempt to mutate such
an element will result in a runtime error. However, some legacy type objects do not currently
implement such checks. Regardless, it is always invalid to attempt to mutate an input to a rule.

Using ModelMap<T> as an input

When you use a ModelMap as input, each item in the map is made available as a property.

../javadoc/org/gradle/model/ModelMap.html

The model report

The built-in ModelReport task displays a hierarchical view of the elements in the model space. Each
item prefixed with a + on the model report is a model element and the visual nesting of these
elements correlates to the model path (e.g. tasks.help). The model report displays the following
details about each model element:

Table 13. Model report - model element details

Detail Description

Type This is the underlying type of the model element and is typically a fully qualified class
name.

Value Is conditionally displayed on the report when a model element can be represented as a
string.

Creato Every model element has a creator. A creator signifies the origin of the model element (i.e.
r what created the model element).

Rules Is alisting of the rules, excluding the creator rule, which are executed for a given model
element. The order in which the rules are displayed reflects the order in which they are
executed.

Example: Model task output
Output of gradle model
> gradle model

> Task :model

+ person
| Type: Person
| Creator: PersonRules#person(Person)
| Rules:
person { ... } @ build.gradle line 97, column 3
PersonRules#isetFirstName(Person)
+ age
| Type: int
| Value: 0
| Creator: PersonRules#person(Person)
+ children
| Type: org.gradle.model.ModelSet<Person>
| Creator: PersonRules#person(Person)
+ employed
| Type: boolean
| Value: false

| Creator: PersonRules#person(Person)

../dsl/org.gradle.api.reporting.model.ModelReport.html

father

| Type:
| Value:

| Creator:

firstName

| Type:
| Value:

| Creator:

homeDirectory

| Type:
| Value:

| Creator:

id
| Type:
| Value:

| Creator:

lastName

| Type:
| Value:

| Creator:

maritalStatus
| Type:

| Creator:

mother

| Type:
| Value:

| Creator:

userGroups

| Type:
| Value:

| Creator:
+ tasks

| Type:
| Creator:
| Rules:

Person
null
PersonRules#person(Person)

java.lang.String
John
PersonRules#iperson(Person)

java.io.File
null
PersonRules#iperson(Person)

java.lang.Llong
null
PersonRules#person(Person)

java.lang.String
Smith
PersonRules#iperson(Person)

MaritalStatus
PersonRules#person(Person)

Person
null
PersonRules#iperson(Person)

java.util.List<java.lang.String>
null
PersonRules#person(Person)

org.gradle.model.ModelMap<org.gradle.api.Task>
Project.<init>.tasks()

PersonRulest#icreateHelloTask(ModelMap<Task>, Person)

+ buildEnvironment

| Type: org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask
| Value: task ':buildEnvironment'
| Creator: Project.<init>.tasks.buildEnvironment()
| Rules:
copyToTaskContainer
+ components
| Type: org.gradle.api.reporting.components.ComponentReport
| Value: task ':components'
| Creator: Project.<init>.tasks.components()
| Rules:
copyToTaskContainer
+ dependencies
| Type: org.gradle.api.tasks.diagnostics.DependencyReportTask
| Value: task ':dependencies'’

| Creator: Project.<init>.tasks.dependencies()

| Rules:
copyToTaskContainer
+ dependencylInsight
| Type: org.gradle.api.tasks.diagnostics.DependencyInsightReportTask
| Value: task ':dependencyInsight'
| Creator: Project.<init>.tasks.dependencyInsight()
| Rules:
copyToTaskContainer
+ dependentComponents
| Type: org.gradle.api.reporting.dependents.DependentComponentsReport
| Value: task ':dependentComponents’
| Creator: Project.<init>.tasks.dependentComponents()
| Rules:
copyToTaskContainer
+ hello
| Type: org.gradle.api.Task
| Value: task ':hello’
| Creator: PersonRulesticreateHelloTask(ModelMap<Task>, Person) >
create(hello)
| Rules:
copyToTaskContainer
+ help
| Type: org.gradle.configuration.Help
| Value: task ':help'
| Creator: Project.<init>.tasks.help()
| Rules:
copyToTaskContainer
+ init
| Type: org.gradle.buildinit.tasks.InitBuild
| Value: task ':init’
| Creator: Project.<init>.tasks.init()
| Rules:
copyToTaskContainer
+ model
| Type: org.gradle.api.reporting.model.ModelReport
| Value: task ':model’
| Creator: Project.<init>.tasks.model()
| Rules:
copyToTaskContainer
+ projects
| Type: org.gradle.api.tasks.diagnostics.ProjectReportTask
| Value: task ':projects’
| Creator: Project.<init>.tasks.projects()
| Rules:
copyToTaskContainer
+ properties
| Type: org.gradle.api.tasks.diagnostics.PropertyReportTask
| Value: task ':properties’
| Creator: Project.<init>.tasks.properties()

| Rules:

copyToTaskContainer

+ tasks
| Type: org.gradle.api.tasks.diagnostics.TaskReportTask
| Value: task ':tasks'
| Creator: Project.<init>.tasks.tasks()
| Rules:
copyToTaskContainer
+ wrapper
| Type: org.gradle.api.tasks.wrapper.Wrapper
| Value: task ':wrapper'
| Creator: Project.<init>.tasks.wrapper()
| Rules:
copyToTaskContainer

Limitations and future direction

The rule engine that was part of the Software Model will be deprecated. Everything under the model
block will be ported as extensions to the current model. Native users will no longer have a separate
extension model compared to the rest of the Gradle community, and they will be able to make use
of the new variant aware dependency management. For more information, see the blog post on the
state and future of the software model.

Implementing model rules in a plugin

A plugin can define rules by extending RuleSource and adding methods that define the rules. The
plugin class can either extend RuleSource directly or can implement Plugin and include a nested
RuleSource subclass.

Refer to the API docs for RuleSource for more details.

Applying additional rules

A rule method annotated with Rules can apply a RuleSource to a target model element.

Extending the software model

Rule based configuration will be deprecated. New plugins should not use this
concept.

CAUTION

Introduction

One of the strengths of Gradle has always been its extensibility, and its adaptability to new
domains. The software model takes this extensibility to a new level, enabling the deep modeling of
specific domains via richly typed DSLs. The following chapter describes how the model and the
corresponding DSLs can be extended to support domains like the Play Framework or native
software development. Before reading this you should be familiar with the Gradle software model
rule based configuration and concepts.

https://blog.gradle.org/state-and-future-of-the-gradle-software-model
../javadoc/org/gradle/model/RuleSource.html
../javadoc/org/gradle/model/RuleSource.html
../javadoc/org/gradle/api/Plugin.html
../javadoc/org/gradle/model/RuleSource.html
../javadoc/org/gradle/model/RuleSource.html
../javadoc/org/gradle/model/Rules.html
../javadoc/org/gradle/model/RuleSource.html
https://blog.gradle.org/state-and-future-of-the-gradle-software-model

The following build script is an example of using a custom software model for building Markdown
based documentation:

Example: an example of using a custom software model

build.gradle

import sample.documentation.DocumentationComponent
import sample.documentation.TextSourceSet
import sample.markdown.MarkdownSourceSet

apply plugin:sample.documentation.DocumentationPlugin
apply plugin:sample.markdown.MarkdownPlugin

model {
components {
docs(DocumentationComponent) {
sources {
reference(TextSourceSet)
userguide(MarkdownSourceSet) {
generatelndex = true
smartQuotes = true

The code for this example can be found at samples/customModel/1languageType/ in the

NOTE
‘-all’ distribution of Gradle.

The rest of this chapter is dedicated to explaining what is going on behind this build script.

Concepts

A custom software model type has a public type, a base interface and internal views. Multiple such
types then collaborate to define a custom software model.

Public type and base interfaces

Extended types declare a public type that extends a base interface:

* Components extend the ComponentSpec base interface
* Binaries extend the BinarySpec base interface

» Source sets extend the LanguageSourceSet base interface

The public type is exposed to build logic.

../javadoc/org/gradle/platform/base/ComponentSpec.html
../javadoc/org/gradle/platform/base/BinarySpec.html
../javadoc/org/gradle/language/base/LanguageSourceSet.html

Internal views

Adding internal views to your model type, you can make some data visible to build logic via a
public type, while hiding the rest of the data behind the internal view types. This is covered in a
dedicated section below.

Components all the way down

Components are composed of other components. A source set is just a special kind of component
representing sources. It might be that the sources are provided, or generated. Similarly, some
components are composed of different binaries, which are built by tasks. All buildable components
are built by tasks. In the software model, you will write rules to generate both binaries from
components and tasks from binaries.

Components

To declare a custom component type one must extend ComponentSpec, or one of the following,
depending on the use case:
* SourceComponentSpec represents a component which has sources

» VariantComponentSpec represents a component which generates different binaries based on
context (target platforms, build flavors, ...). Such a component generally produces multiple
binaries.

* GeneralComponentSpec is a convenient base interface for components that are built from
sources and variant-aware. This is the typical case for a lot of software components, and
therefore it should be in most of the cases the base type to be extended.

The core software model includes more types that can be used as base for extension. For example:
LibrarySpec and ApplicationSpec can also be extended in this manner. Theses are no-op extensions
of GeneralComponentSpec used to describe a software model better by distinguishing libraries and
applications components. TestSuiteSpec should be used for all components that describe a test suite.

Example: Declare a custom component

DocumentationComponent.groovy

interface DocumentationComponent extends GeneralComponentSpec {}

Types extending ComponentSpec are registered via a rule annotated with ComponentType:

Example: Register a custom component

../javadoc/org/gradle/platform/base/ComponentSpec.html
../javadoc/org/gradle/platform/base/SourceComponentSpec.html
../javadoc/org/gradle/platform/base/VariantComponentSpec.html
../javadoc/org/gradle/platform/base/GeneralComponentSpec.html
../javadoc/org/gradle/platform/base/LibrarySpec.html
../javadoc/org/gradle/platform/base/ApplicationSpec.html
../javadoc/org/gradle/testing/base/TestSuiteSpec.html
../javadoc/org/gradle/platform/base/ComponentType.html

DocumentationPlugin.groovy
class DocumentationPlugin extends RuleSource {

void registerComponent(TypeBuilder<DocumentationComponent> builder) {}

Binaries

To declare a custom binary type one must extend BinarySpec.

Example: Declare a custom binary

DocumentationBinary.groovy

interface DocumentationBinary extends BinarySpec {
File getOutputDir()
void setOutputDir(File outputDir)

Types extending BinarySpec are registered via a rule annotated with ComponentType:
Example: Register a custom binary
DocumentationPlugin.groovy

class DocumentationPlugin extends RuleSource {

void registerBinary(TypeBuilder<DocumentationBinary> builder) {}

Source sets

To declare a custom source set type one must extend LanguageSourceSet.

Example: Declare a custom source set

MarkdownSourceSet.groovy

interface MarkdownSourceSet extends LanguageSourceSet {
boolean isGenerateIndex()
void setGenerateIndex(boolean generateIndex)

boolean isSmartQuotes()
void setSmartQuotes(boolean smartQuotes)

../javadoc/org/gradle/platform/base/BinarySpec.html
../javadoc/org/gradle/platform/base/ComponentType.html
../javadoc/org/gradle/language/base/LanguageSourceSet.html

Types extending LanguageSourceSet are registered via a rule annotated with ComponentType:
Example: Register a custom source set
MarkdownPlugin.groovy

class MarkdownPlugin extends RuleSource {

void registerMarkdownlLanguage(TypeBuilder<MarkdownSourceSet> builder) {}

Setting the language name is mandatory.

Putting it all together

Generating binaries from components

Binaries generation from components is done via rules annotated with ComponentBinaries. This
rule generates a DocumentationBinary named exploded for each DocumentationComponent and sets its
outputDir property:

Example: Generates documentation binaries

DocumentationPlugin.groovy
class DocumentationPlugin extends RuleSource {

void generateDocBinaries(ModelMap<DocumentationBinary> binaries,
VariantComponentSpec component, ("buildDir") File buildDir) {
binaries.create("exploded") { binary ->
outputDir = new File(buildDir, "%{component.name}/${binary.name}")

}

Generating tasks from binaries

Tasks generation from binaries is done via rules annotated with BinaryTasks. This rule generates a
Copy task for each TextSourceSet of each DocumentationBinary:

Example: Generates tasks for text source sets

../javadoc/org/gradle/platform/base/ComponentType.html
../javadoc/org/gradle/platform/base/ComponentBinaries.html
../javadoc/org/gradle/platform/base/BinaryTasks.html

DocumentationPlugin.groovy

class DocumentationPlugin extends RuleSource {

void generateTextTasks(ModelMap<Task> tasks, final DocumentationBinary binary) {
binary.inputs.withType(TextSourceSet) { textSourceSet ->
def taskName = binary.tasks.taskName("compile", textSourceSet.name)
def outputDir = new File(binary.outputDir, textSourceSet.name)
tasks.create(taskName, Copy) {
from textSourceSet.source
destinationDir = outputDir

This rule generates a MarkdownCompileTask task for each MarkdownSourceSet of each
DocumentationBinary:

Example: Register a custom source set

MarkdownPlugin.groovy
class MarkdownPlugin extends RuleSource {

void processMarkdownDocumentation(ModelMap<Task> tasks, final DocumentationBinary
binary) {
binary.inputs.withType(MarkdownSourceSet) { markdownSourceSet ->

def taskName = binary.tasks.taskName("compile", markdownSourceSet.name)

def outputDir = new File(binary.outputDir, markdownSourceSet.name)

tasks.create(taskName, MarkdownHtmlCompile) { compileTask ->
compileTask.source = markdownSourceSet.source
compileTask.destinationDir = outputDir
compileTask.smartQuotes = markdownSourceSet.smartQuotes
compileTask.generateIndex = markdownSourceSet.generateIndex

See the sample source for more on the MarkdownCompileTask task.

Using your custom model

This build script demonstrate usage of the custom model defined in the sections above:

Example: an example of using a custom software model

build.gradle

import sample.documentation.DocumentationComponent
import sample.documentation.TextSourceSet
import sample.markdown.MarkdownSourceSet

apply plugin:sample.documentation.DocumentationPlugin
apply plugin:sample.markdown.MarkdownPlugin

model {
components {
docs(DocumentationComponent) {
sources {
reference(TextSourceSet)
userguide(MarkdownSourceSet) {
generatelndex = true
smartQuotes = true

The code for this example can be found at samples/customModel/1languageType/ in the

NOTE
‘-all’ distribution of Gradle.

And in the components reports for such a build script we can see our model types properly
registered:

Example: components report

Output of gradle -q components

> gradle -q components

Source sets
Markdown source 'docs:userguide’
srcDir: src/docs/userquide
Text source 'docs:reference'
srcDir: src/docs/reference

Binaries
DocumentationBinary 'docs:exploded'
build using task: :docsExploded

Note: currently not all plugins register their components, so some components may not
be visible here.

About internal views

Internal views can be added to an already registered type or to a new custom type. In other words,
using internal views, you can attach extra properties to already registered components, binaries
and source sets types like JvmLibrarySpec, JarBinarySpec or JavaSourceSet and to the custom types
you write.

Let’s start with a simple component public type and its internal view declarations:

Example: public type and internal view declaration

build.gradle

interface MyComponent extends ComponentSpec {
String getPublicData()
void setPublicData(String data)

¥
interface MyComponentInternal extends MyComponent {
String getInternalData()
void setInternalData(String internal)
}

The type registration is as follows:

Example: type registration

build.gradle
class MyPlugin extends RuleSource {

void registerMyComponent(TypeBuilder<MyComponent> builder) {
builder.internalView(MyComponentInternal)

}

The internalView(type) method of the type builder can be called several times. This is how you
would add several internal views to a type.

Now, let’s mutate both public and internal data using some rule:
Example: public and internal data mutation
build.gradle
class MyPlugin extends RuleSource {
void mutateMyComponents(ModelMap<MyComponentInternal> components) {
components.all { component ->

component.publicData = "Some PUBLIC data"
component.internalData = "Some INTERNAL data"

Our internalData property should not be exposed to build logic. Let’s check this using the model task
on the following build file:

Example: Build script and model report output

build.gradle

apply plugin: MyPlugin

model {
components {
my (MyComponent)
}
}

Output of gradle -q model

> gradle -q model

Root project

+ components

| Type: org.gradle.platform.base.ComponentSpecContainer
| Creator: ComponentBasePlugin.PluginRules#components(ComponentSpecContainer)
| Rules:

components { ... } @ build.gradle line 53, column 5
MyPlugin#mutateMyComponents(ModelMap<MyComponentInternal>)

+ my

| Type: MyComponent

| Creator: components { ... } @ build.gradle line 53, column 5 >
create(my)

| Rules:

MyPlugin#imutateMyComponents(ModelMap<MyComponentInternal>) > all()
+ publicData

| Type: java.lang.String
| Value: Some PUBLIC data
| Creator: components { ... } @ build.gradle line 53, column 5 >
create(my)
+ tasks
| Type: org.gradle.model.ModelMap<org.gradle.api.Task>
| Creator: Project.<init>.tasks()
+ assemble
| Type: org.gradle.api.DefaultTask
| Value: task ':assemble’
| Creator: Project.<init>.tasks.assemble()
| Rules:
copyToTaskContainer
+ build
| Type: org.gradle.api.DefaultTask
| Value: task ':build’
| Creator: Project.<init>.tasks.build()
| Rules:
copyToTaskContainer
+ buildEnvironment
| Type: org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask
| Value: task ':buildEnvironment'
| Creator: Project.<init>.tasks.buildEnvironment()
| Rules:
copyToTaskContainer
+ check
| Type: org.gradle.api.DefaultTask
| Value: task ':check'
| Creator: Project.<init>.tasks.check()
| Rules:
copyToTaskContainer
+ clean
| Type: org.gradle.api.tasks.Delete
| Value: task ':clean'

| Creator: Project.<init>.tasks.clean()

| Rules:

copyToTaskContainer
components
| Type: org.gradle.api.reporting.components.ComponentReport
| Value: task ':components'’
| Creator: Project.<init>.tasks.components()
| Rules:
copyToTaskContainer
dependencies
| Type: org.gradle.api.tasks.diagnostics.DependencyReportTask
| Value: task ':dependencies’
| Creator: Project.<init>.tasks.dependencies()
| Rules:
copyToTaskContainer
dependencyInsight
| Type: org.gradle.api.tasks.diagnostics.DependencyInsightReportTask
| Value: task ':dependencyInsight’
| Creator: Project.<init>.tasks.dependencyInsight()
| Rules:
copyToTaskContainer
dependentComponents
| Type: org.gradle.api.reporting.dependents.DependentComponentsReport
| Value: task ':dependentComponents’
| Creator: Project.<init>.tasks.dependentComponents()
| Rules:
copyToTaskContainer
help
| Type: org.gradle.configuration.Help
| Value: task ':help'
| Creator: Project.<init>.tasks.help()
| Rules:
copyToTaskContainer
init
| Type: org.gradle.buildinit.tasks.InitBuild
| Value: task ':init’
| Creator: Project.<init>.tasks.init()
| Rules:
copyToTaskContainer
model
| Type: org.gradle.api.reporting.model.ModelReport
| Value: task ':model’
| Creator: Project.<init>.tasks.model()
| Rules:
copyToTaskContainer
projects
| Type: org.gradle.api.tasks.diagnostics.ProjectReportTask
| Value: task ':projects'
| Creator: Project.<init>.tasks.projects()
| Rules:
copyToTaskContainer

properties

| Type: org.gradle.api.tasks
| Value: task ':properties’
| Creator: Project.<init>.tasks
| Rules:
copyToTaskContainer
+ tasks
| Type: org.gradle.api.tasks
| Value: task ':tasks'
| Creator: Project.<init>.tasks
| Rules:
copyToTaskContainer
+ wrapper
| Type: org.gradle.api.tasks
| Value: task ':wrapper'
| Creator: Project.<init>.tasks
| Rules:
copyToTaskContainer

.diagnostics.PropertyReportTask

.properties()

.diagnostics.TaskReportTask

.tasks()

.wrapper.Wrapper

.wrapper()

We can see in this report that publicData is present and that internalData is not.

Groovy Projects

Groovy Quickstart

To build a Groovy project, you use the Groovy plugin. This plugin extends the Java plugin to add
Groovy compilation capabilities to your project. Your project can contain Groovy source code, Java
source code, or a mix of the two. In every other respect, a Groovy project is identical to a Java
project, which we have already seen in the Java projects tutorial.

A basic Groovy project

Let’s look at an example. To use the Groovy plugin, add the following to your build file:

Example: Groovy plugin

build.gradle

apply plugin: 'groovy'

The code for this example can be found at samples/groovy/quickstart in the “all’
NOTE e
distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy
plugin extends the compile task to look for source files in directory src/main/groovy, and the
compileTest task to look for test source files in directory src/test/groovy. The compile tasks use joint
compilation for these directories, which means they can contain a mixture of Java and Groovy
source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to
find the Groovy libraries. You do this by adding a dependency to the groovy configuration. The
compile configuration inherits this dependency, so the Groovy libraries will be included in classpath
when compiling Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public
Maven repository:

Example: Dependency on Groovy

build.gradle

repositories {
mavenCentral()

}

dependencies {
compile 'org.codehaus.groovy:groovy-all:2.4.15"

}

Here is our complete build file:

Example: Groovy example - complete build file

build.gradle

apply plugin: 'groovy'
repositories {
mavenCentral()

}

dependencies {
compile 'org.codehaus.groovy:groovy-all:2.4.15"

}

Running gradle build will compile, test and JAR your project.

Summary

This chapter describes a very simple Groovy project. Usually, a real project will require more than
this. Because a Groovy project is a Java project, whatever you can do with a Java project, you can
also do with a Groovy project.

You can find out more about the Groovy plugin, and you can find more sample Groovy projects in
the samples/groovy directory in the Gradle distribution.

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with
Groovy code, mixed Groovy and Java code, and even pure Java code (although we don’t necessarily
recommend to use it for the latter). The plugin supports joint compilation, which allows you to
freely mix and match Groovy and Java code, with dependencies in both directions. For example, a
Groovy class can extend a Java class that in turn extends a Groovy class. This makes it possible to
use the best language for the job, and to rewrite any class in the other language if needed.

Usage
To use the Groovy plugin, include the following in your build script:

Example: Using the Groovy plugin

build.gradle

apply plugin: 'groovy'

Tasks
The Groovy plugin adds the following tasks to the project.

compileGroovy — GroovyCompile

../dsl/org.gradle.api.tasks.compile.GroovyCompile.html

Depends on: compileJava
Compiles production Groovy source files.

compileTestGroovy — GroovyCompile

Depends on: compileTestJava
Compiles test Groovy source files.

compileSourceSetGroovy — GroovyCompile

Depends on: compileSourceSetJava
Compiles the given source set’s Groovy source files.

groovydoc — Groovydoc

Generates API documentation for the production Groovy source files.
The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 14. Groovy plugin - additional task dependencies

Task name Depends on
classes compileGroovy
testClasses compileTestGroovy

sourceSet(Classes compileSourceSetGroovy

processTestResources

CompileTestGroovy

testClasses

classes

compileTestJava

compileGroovy

Figure 25. Groovy plugin - tasks

Project layout

The Groovy plugin assumes the project layout shown in Groovy Layout. All the Groovy source
directories can contain Groovy and Java code. The Java source directories may only contain Java
source code. [9: Gradle uses the same conventions as introduced by Russel Winder’s Gant tool.]
None of these directories need to exist or have anything in them; the Groovy plugin will simply
compile whatever it finds.

src/main/java

Production Java source.

src/main/resources
Production resources, such as XML and properties files.

../dsl/org.gradle.api.tasks.compile.GroovyCompile.html
../dsl/org.gradle.api.tasks.compile.GroovyCompile.html
../dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
https://gant.github.io/

src/main/groovy
Production Groovy source. May also contain Java source files for joint compilation.

src/test/java
Test Java source.

src/test/resources
Test resources.

src/test/groovy
Test Groovy source. May also contain Java source files for joint compilation.

src/sourceSet/java
Java source for the source set named sourceSet.

src/sourceSet/resources
Resources for the source set named sourceSet.

src/sourceSet/groovy
Groovy source files for the given source set. May also contain Java source files for joint
compilation.

Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy
production and test source files.

Example: Custom Groovy source layout

build.gradle

sourceSets {

main {
groovy {
srcDirs = ['src/groovy']
}
}
test {
groovy {
srcDirs = ['test/groovy']
}
}

Dependency management

Because Gradle’s build language is based on Groovy, and parts of Gradle are implemented in
Groovy, Gradle already ships with a Groovy library. Nevertheless, Groovy projects need to explicitly
declare a Groovy dependency. This dependency will then be used on compile and runtime class

paths. It will also be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the compile
configuration:

Example: Configuration of Groovy dependency

build.gradle

repositories {
mavenCentral()

}

dependencies {
compile 'org.codehaus.groovy:groovy-all:2.4.15"

}

If Groovy is only used for test code, the Groovy dependency should be added to the testCompile
configuration:

Example: Configuration of Groovy test dependency

build.gradle

dependencies {
testCompile 'org.codehaus.groovy:groovy-all:2.4.15'

}

To use the Groovy library that ships with Gradle, declare a localGroovy() dependency. Note that
different Gradle versions ship with different Groovy versions; as such, using localGroovy() is less
safe then declaring a regular Groovy dependency.

Example: Configuration of bundled Groovy dependency

build.gradle

dependencies {
compile localGroovy()

}

The Groovy library doesn’t necessarily have to come from a remote repository. It could also come
from a local 1ib directory, perhaps checked in to source control:

Example: Configuration of Groovy file dependency

build.gradle

repositories {
flatDir { dirs 'lib" }
}

dependencies {
compile module('org.codehaus.groovy:groovy:2.4.15") {

dependency('org.ow2.asm:asm-all:5.0.3")

dependency('antlr:antlr:2.7.7")

dependency('commons-cli:commons-cli:1.2")

module('org.apache.ant:ant:1.9.4") {
dependencies('org.apache.ant:ant-junit:1.9.4@jar",

'org.apache.ant:ant-launcher:1.9.4")

Automatic configuration of groovyClasspath

The GroovyCompile and Groovydoc tasks consume Groovy code in two ways: on their classpath, and
on their groovyClasspath. The former is used to locate classes referenced by the source code, and
will typically contain the Groovy library along with other libraries. The latter is used to load and
execute the Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy
library and its dependencies.

Unless a task’s groovyClasspath is configured explicitly, the Groovy (base) plugin will try to infer it
from the task’s classpath. This is done as follows:

» If a groovy-all(-indy) Jar is found on classpath, that jar will be added to groovyClasspath.

» If a groovy(-indy) jar is found on classpath, and the project has at least one repository declared,
a corresponding groovy(-indy) repository dependency will be added to groovyClasspath.

* Otherwise, execution of the task will fail with a message saying that groovyClasspath could not
be inferred.

Note that the “-indy” variation of each jar refers to the version with invokedynamic support.

Convention properties

The Groovy plugin does not add any convention properties to the project.

Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. You
can use these properties in your build script as though they were properties of the source set object.

Groovy Plugin — source set properties

groovy — SourceDirectorySet (read-only)
Default value: Not null

The Groovy source files of this source set. Contains all .groovy and .java files found in the
Groovy source directories, and excludes all other types of files.

groovy.srcDirs — Set<File>

Default value: [projectDir/src/name/groovy]

The source directories containing the Groovy source files of this source set. May also contain
Java source files for joint compilation. Can set using anything described in Specifying Multiple
Files.

allGroovy — FileTree (read-only)

Default value: Not null

All Groovy source files of this source set. Contains only the .groovy files found in the Groovy
source directories.

These properties are provided by a convention object of type GroovySourceSet.

The Groovy plugin also modifies some source set properties:

Groovy Plugin - modified source set properties

Property Change

name

allJava Adds all . java files found in the Groovy source directories.
allSource Adds all source files found in the Groovy source directories.
GroovyCompile

The Groovy plugin adds a GroovyCompile task for each source set in the project. The task type
extends the JavaCompile task (see the relevant Java Plugin section). The GroovyCompile task supports
most configuration options of the official Groovy compiler.

Table 15. Groovy plugin - GroovyCompile properties

Task Type Default Value

Property

classpath FileCollection sourceSet.compileClasspath
source FileTree. Can set using anything sourceSet.groovy

described in Specifying Multiple Files.

destinati Fite. sourceSet.groovy.outputDir
onDir

../dsl/org.gradle.api.file.SourceDirectorySet.html
../javadoc/org/gradle/api/file/FileTree.html
../dsl/org.gradle.api.tasks.GroovySourceSet.html
../dsl/org.gradle.api.tasks.compile.GroovyCompile.html
../javadoc/org/gradle/api/file/FileCollection.html
../javadoc/org/gradle/api/file/FileTree.html

Task Type Default Value
Property

groovyCla FileCollection groovy configuration if non-empty; Groovy
sspath library found on classpath otherwise
Compiling and testing for Java 6 or Java 7

The Groovy compiler will always be executed with the same version of Java that was used to start
Gradle. You should set sourceCompatibility and targetCompatibility to 1.6 or 1.7. If you also have
Java source files, you can follow the same steps as for the Java plugin to ensure the correct Java
compiler is used.

Example: Configure Java 6 build for Groovy

gradle.properties

in $HOME/.gradle/gradle.properties
javabHome=/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

build.gradle

sourceCompatibility
targetCompatibility

I
_
[=2l=)}

assert hasProperty('javabHome') : "Set the property 'javabHome' in your your
gradle.properties pointing to a Java 6 installation”
def javaExecutablesPath = new File(javabHome, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new File(javaExecutablesPath, execName)
assert executable.exists() : "There is no ${execName} executable in
${javaExecutablesPath}"
executable
}
tasks.withType(AbstractCompile) {
options.with {
fork = true
forkOptions.javaHome = file(javabHome)
}
}
tasks.withType(Javadoc) {
executable = javaExecutables.javadoc
}
tasks.withType(Test) {
executable = javaExecutables.java
}
tasks.withType(JavaExec) {
executable = javaExecutables.java

}

../javadoc/org/gradle/api/file/FileCollection.html

The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project’s Groovy source files using CodeNarc
and generates reports from these checks.

Usage

To use the CodeNarc plugin, include the following in your build script:

Example: Using the CodeNarc plugin

build.gradle

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks when used with
the Groovy Plugin. You can execute the checks by running gradle check.

Tasks
The CodeNarc plugin adds the following tasks to the project:

codenarcMain — CodeNarc

Runs CodeNarc against the production Java source files.

codenarcTest — CodeNarc

Runs CodeNarc against the test Java source files.

codenarcSourceSet — CodeNarc
Runs CodeNarc against the given source set’s Java source files.
Dependencies added to other tasks
The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.
check
Depends on: All CodeNarc tasks, including codenarcMain and codenarcTest.
Project layout

The CodeNarc plugin expects the following project layout:

<root>
L—— config

L—— codenarc @
L—— codenarc.xml @

@ CodeNarc configuration files go here

http://codenarc.sourceforge.net/index.html
../dsl/org.gradle.api.plugins.quality.CodeNarc.html
../dsl/org.gradle.api.plugins.quality.CodeNarc.html
../dsl/org.gradle.api.plugins.quality.CodeNarc.html

@ Primary CodeNarc configuration file

Dependency management
The CodeNarc plugin adds the following dependency configurations:

Table 16. CodeNarc plugin - dependency configurations

Name Meaning
‘codenarc” The CodeNarc libraries to use
Configuration

See the CodeNarcExtension class in the API documentation.

../dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

Java Projects

Java Quickstart

The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care
to implement in your build script. Out-of-the-box, however, it doesn’t build anything unless you add
code to your build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source
files, run some unit tests, and create a JAR file containing your classes. It would be nice if you didn’t
have to code all this up for every project. Luckily, you don’t have to. Gradle solves this problem
through the use of plugins. A plugin is an extension to Gradle which configures your project in some
way, typically by adding some pre-configured tasks which together do something useful. Gradle
ships with a number of plugins, and you can easily write your own and share them with others.
One such plugin is the Java plugin. This plugin adds some tasks to your project which will compile
and unit test your Java source code, and bundle it into a JAR file.

The Java plugin is convention based. This means that the plugin defines default values for many
aspects of the project, such as where the Java source files are located. If you follow the convention
in your project, you generally don’t need to do much in your build script to get a useful build.
Gradle allows you to customize your project if you don’t want to or cannot follow the convention in
some way. In fact, because support for Java projects is implemented as a plugin, you don’t have to
use the plugin at all to build a Java project, if you don’t want to.

We have in-depth coverage with many examples about the Java plugin, dependency management
and multi-project builds in later chapters. In this chapter we want to give you an initial idea of how
to use the Java plugin to build a Java project.

A basic Java project
Let’s look at a simple example. To use the Java plugin, add the following to your build file:

Example: Using the Java plugin

build.gradle

apply plugin: 'java'

NOTE The code for this example can be found at samples/java/quickstart in the “all’
distribution of Gradle.

This is all you need to define a Java project. This will apply the Java plugin to your project, which

adds a number of tasks to your project.

What tasks are available?

TIP You can use gradle tasks to list the tasks of a project. This will let you see the tasks that
the Java plugin has added to your project.

Gradle expects to find your production source code under src/main/java and your test source code
under src/test/java. In addition, any files under src/main/resources will be included in the JAR file
as resources, and any files under src/test/resources will be included in the classpath used to run
the tests. All output files are created under the build directory, with the JAR file ending up in the
build/1ibs directory.

Building the project

The Java plugin adds quite a few tasks to your project. However, there are only a handful of tasks
that you will need to use to build the project. The most commonly used task is the build task, which
does a full build of the project. When you run gradle build, Gradle will compile and test your code,
and create a JAR file containing your main classes and resources:

Example: Building a Java project

Output of gradle build

> gradle build

> Task :compilelava

> Task :processResources
> Task :classes

> Task :jar

> Task :assemble

> Task :compileTestJava
> Task :processTestResources
> Task :test(Classes

> Task :test

> Task :check

> Task :build

BUILD SUCCESSFUL in @s
6 actionable tasks: 6 executed

Some other useful tasks are:

clean

Deletes the build directory, removing all built files.

assemble

Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to
this task. For example, if you use the War plugin, this task will also build the WAR file for your
project.

check

Compiles and tests your code. Other plugins add more checks to this task. For example, if you
use the checkstyle plugin, this task will also run Checkstyle against your source code.

External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR
files in the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files,
are located in a repository. A repository can be used for fetching the dependencies of a project, or
for publishing the artifacts of a project, or both. For this example, we will use the public Maven
repository:

Example: Adding Maven repository

build.gradle

repositories {
mavenCentral()

}

Let’s add some dependencies. Here, we will declare that our production classes have a compile-time
dependency on commons collections, and that our test classes have a compile-time dependency on
junit:

Example: Adding dependencies

build.gradle

dependencies {

compile group: 'commons-collections', name: 'commons-collections', version: '
3.2.2'

testCompile group: 'junit', name: 'junit', version: '4.+'

You can find out more in Dependency Management for Java Projects.

Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values
which are usually sufficient to get started. It’s easy to change these values if they don’t suit. Let’s
look at this for our sample. Here we will specify the version number for our Java project, along with
some attributes to the JAR manifest.

Example: Customization of MANIFEST.MF

build.gradle

version = '1.0'

jar {
manifest {
attributes 'Implementation-Title': 'Gradle Quickstart',
'Implementation-Version': version
}
}

What properties are available?

TIP You can use gradle properties to list the properties of a project. This will allow you to
see the properties added by the Java plugin, and their default values.

The tasks which the Java plugin adds are regular tasks, exactly the same as if they were declared in
the build file. This means you can use any of the mechanisms shown in earlier chapters to
customize these tasks. For example, you can set the properties of a task, add behaviour to a task,
change the dependencies of a task, or replace a task entirely. In our sample, we will configure the
test task, which is of type Test, to add a system property when the tests are executed:

Example: Adding a test system property

build.gradle

test {
systemProperties 'property': 'value'

}

Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to
publish the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our
sample, we will publish to a local directory. You can also publish to a remote location, or multiple
locations.

Example: Publishing the JAR file

build.gradle

uploadArchives {
repositories {
flatDir {
dirs 'repos'

}

To publish the JAR file, run gradle uploadArchives.

../dsl/org.gradle.api.tasks.testing.Test.html

Creating an Eclipse project

To create the Eclipse-specific descriptor files, like .project, you need to add another plugin to your
build file:

Example: Eclipse plugin

build.gradle

apply plugin: 'eclipse’

Now execute gradle eclipse command to generate Eclipse project files. More information about the
eclipse task can be found in the Eclipse Plugin chapter.

Summary

Here’s the complete build file for our sample:

Example: Java example - complete build file

build.gradle

apply plugin: 'java'
apply plugin: ‘'eclipse’
version = '1.0'

jar {

manifest {

attributes 'Implementation-Title': 'Gradle Quickstart',
'Implementation-Version': version

}
}
repositories {

mavenCentral()
}

dependencies {

compile group: 'commons-collections', name: 'commons-collections', version: '
3.2.2'

testCompile group: 'junit', name: 'junit', version: '4.+'

}
test {

systemProperties 'property': 'value'
}

uploadArchives {
repositories {
flatDir {
dirs 'repos'

}

Multi-project Java build

Now let’s look at a typical multi-project build. Below is the layout for the project:

Multi-project build - hierarchical layout

—— api
——— services
| —— shared

| L—— webservice
L—— shared

Here we have four projects. Project api produces a JAR file which is shipped to the client to provide
them a Java client for your XML webservice. Project webservice is a webapp which returns XML.
Project shared contains code used both by api and webservice. Project services/shared has code that
depends on the shared project.

Defining a multi-project build

To define a multi-project build, you need to create a settings file. The settings file lives in the root
directory of the source tree, and specifies which projects to include in the build. It must be called
settings.gradle. For this example, we are using a simple hierarchical layout. Here is the
corresponding settings file:

Example: Multi-project build - settings.gradle file
settings.gradle

n =1

include "shared", "api", "services:webservice", "services:shared"

You can find out more about the settings file in Authoring Multi-Project Builds.

Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our
sample, we will define this common configuration in the root project, using a technique called
configuration injection. Here, the root project is like a container and the subprojects method iterates
over the elements of this container - the projects in this instance - and injects the specified
configuration. This way we can easily define the manifest content for all archives, and some
common dependencies:

Example: Multi-project build - common configuration

build.gradle

subprojects {
apply plugin: 'java'
apply plugin: 'eclipse-wtp'

repositories {
mavenCentral()

}

dependencies {
testCompile 'junit:junit:4.12'
}

version = '1.0'

jar {
manifest.attributes provider: 'gradle'

}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and
configuration properties we have seen in the previous section are available in each subproject. So,
you can compile, test, and JAR all the projects by running gradle build from the root project
directory.

Also note that these plugins are only applied within the subprojects section, not at the root level, so
the root build will not expect to find Java source files in the root project, only in the subprojects.

Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of
one project is used to compile another project. In the api build file we will add a dependency on the
shared project. Due to this dependency, Gradle will ensure that project shared always gets built
before project api.

Example: Multi-project build - dependencies between projects
api/build.gradle
dependencies {

compile project(':shared")

}

Creating a distribution

We also add a distribution, that gets shipped to the client:

Example: Multi-project build - distribution file

api/build.gradle

task dist(type: Zip) {
dependsOn spiJar
from 'src/dist’
into('libs") {
from spilar.archivePath
from configurations.runtime

}

artifacts {
archives dist

}

Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java
based project. This chapter is not exhaustive, and there are many other things you can do with Java
projects in Gradle. You can find out more about the Java plugin, and you can find more sample Java
projects in the samples/java directory in the Gradle distribution.

Otherwise, continue on to Dependency Management for Java Projects.

Building Java & JVM projects

Gradle uses a convention-over-configuration approach to building JVM-based projects that borrows
several conventions from Apache Maven. In particular, it uses the same default directory structure
for source files and resources, and it works with Maven-compatible repositories.

We will look at Java projects in detail in this chapter, but most of the topics apply to other
supported JVM languages as well, such as Kotlin, Groovy and Scala. If you don’t have much
experience with building JVM-based projects with Gradle, take a look at the Java Quickstart first as
it will give you a good overview of the basics.

Introduction

The simplest build script for a Java project applies the Java Plugin and optionally sets the project
version and Java compatibility versions:

Example: Applying the Java Plugin

https://guides.gradle.org/building-kotlin-jvm-libraries/

build.gradle

plugins {
id 'java'
}
sourceCompatibility = '1.8'
targetCompatibility = '1.8'

version = '1.2.1"

By applying the Java Plugin, you get a whole host of features:

A compileJava task that compiles all the Java source files under sr¢/main/java

* A compileTestJava task for source files under src/test/java

A test task that runs the tests from src/test/java

* A jar task that packages the main compiled classes and resources from sr¢/main/resources into a
single JAR named <project>-<version>.jar

* A javadoc task that generates Javadoc for the main classes

This isn’t sufficient to build any non-trivial Java project — at the very least, you’ll probably have
some file dependencies. But it means that your build script only needs the information that is
specific to your project.

Although the properties in the example are optional, we recommend that you
specify them in your projects. The compatibility options mitigate against problems

NOTE with the project being built with different Java compiler versions, and the version
string is important for tracking the progression of the project. The project version is
also used in archive names by default.

The Java Plugin also integrates the above tasks into the standard Base Plugin lifecycle tasks:

* jar is attached to assemble [10: In fact, any artifact added to the archives configuration will be
built by assemble]

e test is attached to check

The rest of the chapter explains the different avenues for customizing the build to your
requirements. You will also see later how to adjust the build for libraries, applications, web apps
and enterprise apps.

Declaring your source files via source sets

Gradle’s Java support was the first to introduce a new concept for building source-based projects:
source sets. The main idea is that source files and resources are often logically grouped by type,
such as application code, unit tests and integration tests. Each logical group typically has its own
sets of file dependencies, classpaths, and more. Significantly, the files that form a source set don’t
have to be located in the same directory!

Source sets are a powerful concept that tie together several aspects of compilation:

* the source files and where they’re located
 the compilation classpath, including any required dependencies (via Gradle configurations)

» where the compiled class files are placed

You can see how these relate to one another in this diagram:

sourceSetCompileOnly
(configuration)

 sourceSetImplementation
| (configuration)

Compilation
classpath

Source files compileSourceSet]ava Output directory

Figure 26. Source sets and Java compilation

The shaded boxes represent properties of the source set itself. On top of that, the Java Plugin
automatically creates a compilation task for every source set you or a plugin defines — named
compileSourceSetJava — and several dependency configurations.

The main source set

Most language plugins, Java included, automatically create a source set called main,
which is used for the project’s production code. This source set is special in that its
name is not included in the names of the configurations and tasks, hence why you
have just a compilelava task and compileOnly and implementation configurations
rather than compileMainJava, mainCompileOnly and mainImplementation respectively.

NOTE

Java projects typically include resources other than source files, such as properties files, that may
need processing — for example by replacing tokens within the files — and packaging within the
final JAR. The Java Plugin handles this by automatically creating a dedicated task for each defined
source set called processSourceSetResources (or processResources for the main source set). The
following diagram shows how the source set fits in with this task:

Resource files P processSourceSetResources Output directory

J

Figure 27. Processing non-source files for a source set

As before, the shaded boxes represent properties of the source set, which in this case comprises the
locations of the resource files and where they are copied to.

In addition to the main source set, the Java Plugin defines a test source set that represents the
project’s tests. This source set is used by the test task, which runs the tests. You can learn more
about this task and related topics in the Java testing chapter.

Projects typically use this source set for unit tests, but you can also use it for integration, acceptance
and other types of test if you wish. The alternative approach is to define a new source set for each
of your other test types, which is typically done for one or both of the following reasons:

* You want to keep the tests separate from one another for aesthetics and manageability

* The different test types require different compilation or runtime classpaths or some other

difference in setup

You can see an example of this approach in the Java testing chapter, which shows you how to set up
integration tests in a project.

You’ll learn more about source sets and the features they provide in:

* Customizing file and directory locations

* Configuring Java integration tests

Managing your dependencies

The vast majority of Java projects rely on libraries, so managing a project’s dependencies is an
important part of building a Java project. Dependency management is a big topic, so we will focus
on the basics for Java projects here. If you’d like to dive into the detail, check out the introduction to
dependency management.

Specifying the dependencies for your Java project requires just three pieces of information:

* Which dependency you need, such as a name and version

» What it’s needed for, e.g. compilation or running

* Where to look for it
The first two are specified in a dependencies {} block and the third in a repositories {} block. For
example, to tell Gradle that your project requires version 3.6.7 of Hibernate Core to compile and

run your production code, and that you want to download the library from the Maven Central
repository, you can use the following fragment:

http://hibernate.org/

Example: Declaring dependencies

build.gradle

repositories {
mavenCentral()

}

dependencies {
implementation 'org.hibernate:hibernate-core:3.6.7.Final’

}

The Gradle terminology for the three elements is as follows:

* Repository (ex: mavenCentral()) — where to look for the modules you declare as dependencies

* Configuration (ex: implementation) - a named collection of dependencies, grouped together for a
specific goal such as compiling or running a module — a more flexible form of Maven scopes

* Module coordinate (ex: org.hibernate:hibernate-core-3.6.7.Final) — the ID of the dependency,
usually in the form '<group>:<module>:<version>' (or '<groupld>:<artifactld>:<version>' in
Maven terminology)

You can find a more comprehensive glossary of dependency management terms here.
As far as configurations go, the main ones of interest are:

» compileOnly — for dependencies that are necessary to compile your production code but
shouldn’t be part of the runtime classpath

» implementation (supersedes compile) — used for compilation and runtime

runtimeOnly (supersedes runtime) — only used at runtime, not for compilation
» testCompileOnly — same as compileOnly except it’s for the tests

» testImplementation — test equivalent of implementation

testRuntimeOnly — test equivalent of runtimeOnly
You can learn more about these and how they relate to one another in the plugin reference chapter.

Be aware that the Java Library Plugin creates an additional configuration — api — for
dependencies that are required for compiling both the module and any modules that depend on it.

Why no compile configuration?

The Java Plugin has historically used the compile configuration for dependencies
that are required to both compile and run a project’s production code. It is now

NOTE deprecated — although it won’t be going away any time soon — because it doesn’t
distinguish between dependencies that impact the public API of a Java library
project and those that don’t. You can learn more about the importance of this
distinction in Building Java libraries.

We have only scratched the surface here, so we recommend that you read the dedicated

dependency management chapters once you’re comfortable with the basics of building Java
projects with Gradle. Some common scenarios that require further reading include:

* Defining a custom Maven- or Ivy-compatible repository

» Using dependencies from a local filesystem directory

* Declaring dependencies with changing (e.g. SNAPSHOT) and dynamic (range) versions

* Declaring a sibling project as a dependency

» Controlling transitive dependencies and their versions

» Testing your fixes to a 3rd-party dependency via composite builds (a better alternative to

publishing to and consuming from Maven Local)

You’ll discover that Gradle has a rich API for working with dependencies — one that takes time to
master, but is straightforward to use for common scenarios.

Compiling your code
Compiling both your production and test code can be trivially easy if you follow the conventions:

1. Put your production source code under the sr¢/main/java directory
2. Put your test source code under src/test/java

3. Declare your production compile dependencies in the compileOnly or implementation
configurations (see previous section)

4. Declare your test compile dependencies in the testCompileOnly or testImplementation
configurations

5. Run the compileJava task for the production code and compileTestJava for the tests

Other JVM language plugins, such as the one for Groovy, follow the same pattern of conventions.
We recommend that you follow these conventions wherever possible, but you don’t have to. There
are several options for customization, as you’ll see next.

Customizing file and directory locations

Imagine you have a legacy project that uses an src directory for the production code and test for the
test code. The conventional directory structure won’t work, so you need to tell Gradle where to find
the source files. You do that via source set configuration.

Each source set defines where its source code resides, along with the resources and the output
directory for the class files. You can override the convention values by using the following syntax:

Example: Declaring custom source directories

build.gradle

sourceSets {

main {
java {
srcDirs = ['src']
}
}
test {
java {
srcDirs = ["test']
}
}

Now Gradle will only search directly in src and test for the respective source code. What if you
don’t want to override the convention, but simply want to add an extra source directory, perhaps
one that contains some third-party source code you want to keep separate? The syntax is similar:

Example: Declaring custom source directories additively

build.gradle

sourceSets {
main {
java {
srcDir "thirdParty/src/main/java’

Crucially, we’re using the method srcDir() here to append a directory path, whereas setting the
srcDirs property replaces any existing values. This is a common convention in Gradle: setting a
property replaces values, while the corresponding method appends values.

You can see all the properties and methods available on source sets in the DSL reference for
SourceSet and SourceDirectorySet. Note that srcDirs and srcDir() are both on SourceDirectorySet.

Changing compiler options

Most of the compiler options are accessible through the corresponding task, such as compileJava
and compileTestJava. These tasks are of type JavaCompile, so read the task reference for an up-to-
date and comprehensive list of the options.

For example, if you want to use a separate JVM process for the compiler and prevent compilation
failures from failing the build, you can use this configuration:

../dsl/org.gradle.api.tasks.SourceSet.html
../dsl/org.gradle.api.file.SourceDirectorySet.html
../dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example: Setting Java compiler options

build.gradle

compileJava {
options.incremental
options.fork = true
options.failOnError = false

true

That’s also how you can change the verbosity of the compiler, disable debug output in the byte code
and configure where the compiler can find annotation processors.

Two common options for the Java compiler are defined at the project level:

sourceCompatibility
Defines which language version of Java your source files should be treated as.

targetCompatibility
Defines the minimum JVM version your code should run on, i.e. it determines the version of byte
code the compiler generates.

If you need or want more than one compilation task for any reason, you can either create a new
source set or simply define a new task of type JavaCompile. We look at setting up a new source set
next.

Compiling and testing Java 6/7

Gradle can only run on Java version 7 or higher. However, support for running Gradle on Java 7
has been deprecated and is scheduled to be removed in Gradle 5.0. There are two reasons for
deprecating support for Java 7:

» Java 7 reached end of life. Therefore, Oracle ceased public availability of security fixes and
upgrades for Java 7 as of April 2015.
* Once support for Java 7 has ceased (likely with Gradle 5.0), Gradle’s implementation can start to

use Java 8 APIs optimized for performance and usability.

Gradle still supports compiling, testing, generating Javadoc and executing applications for Java 6
and Java 7. Java 5 is not supported.

To use Java 6 or Java 7, the following tasks need to be configured:

» JavaCompile task to fork and use the correct Java home
 Javadoc task to use the correct javadoc executable
* Test and the JavaExec task to use the correct java executable.
The following sample shows how the build.gradle needs to be adjusted. In order to be able to make

the build machine-independent, the location of the old Java home and target version should be
configured in GRADLE_USER_HOME/gradle.properties [11: For more details on gradle.properties see

../dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.oracle.com/technetwork/java/javase/eol-135779.html

Gradle configuration properties] in the user’s home directory on each developer machine, as shown
in the example.

Example: Configure Java 6 build

gradle.properties

in $HOME/.gradle/gradle.properties
javaHome=/Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home
targetJavaVersion=1.7

build.gradle

assert hasProperty('javaHome'): "Set the property 'javaHome' in your your
gradle.properties pointing to a Java 6 or 7 installation"

assert hasProperty('targetJavaVersion'): "Set the property 'targetJavaVersion' in your
your gradle.properties to '1.6' or '1.7"'"

sourceCompatibility = targetJavaVersion

def javaExecutablesPath = new File(javaHome, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new File(javaExecutablesPath, execName)
assert executable.exists(): "There is no ${execName} executable in
${javaExecutablesPath}"
executable
}
tasks.withType(AbstractCompile) {
options.with {
fork = true
forkOptions.javaHome = file(javaHome)
}

}
tasks.withType(Javadoc) {
executable = javaExecutables.javadoc

}
tasks.withType(Test) {

executable = javaExecutables.java

}
tasks.withType(JavaExec) {

executable = javaExecutables.java

}

Compiling independent sources separately

Most projects have at least two independent sets of sources: the production code and the test code.
Gradle already makes this scenario part of its Java convention, but what if you have other sets of
sources? One of the most common scenarios is when you have separate integration tests of some
form or other. In that case, a custom source set may be just what you need.

You can see a complete example for setting up integration tests in the Java testing chapter. You can
set up other source sets that fulfil different roles in the same way. The question then becomes:
when should you define a custom source set?

To answer that question, consider whether the sources:

1. Need to be compiled with a unique classpath
2. Generate classes that are handled differently from the main and test ones

3. Form a natural part of the project

If your answer to both 3 and either one of the others is yes, then a custom source set is probably the
right approach. For example, integration tests are typically part of the project because they test the
code in main. In addition, they often have either their own dependencies independent of the test
source set or they need to be run with a custom Test task.

Other common scenarios are less clear cut and may have better solutions. For example:

» Separate API and implementation JARs — it may make sense to have these as separate projects,
particularly if you already have a multi-project build

* Generated sources — if the resulting sources should be compiled with the production code, add
their path(s) to the main source set and make sure that the compileJava task depends on the task
that generates the sources

If you’re unsure whether to create a custom source set or not, then go ahead and do so. It should be
straightforward and if it’s not, then it’s probably not the right tool for the job.

Managing resources

Many Java projects make use of resources beyond source files, such as images, configuration files
and localization data. Sometimes these files simply need to be packaged unchanged and sometimes
they need to be processed as template files or in some other way. Either way, the Java Plugin adds a
specific Copy task for each source set that handles the processing of its associated resources.

The task’s name follows the convention of processSourceSetResources — or processResources for the
main source set — and it will automatically copy any files in sr¢/[sourceSet]/resources to a directory
that will be included in the production JAR. This target directory will also be included in the
runtime classpath of the tests.

Since processResources is an instance of the Copy task, you can perform any of the processing
described in the Working With Files chapter.

Java properties files and reproducible builds

You can easily create Java properties files via the WriteProperties task, which fixes a well-known
problem with Properties.store() that can reduce the usefulness of incremental builds.

The standard Java API for writing properties files produces a unique file every time, even when the
same properties and values are used, because it includes a timestamp in the comments. Gradle’s
WriteProperties task generates exactly the same output byte-for-byte if none of the properties have

../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.tasks.WriteProperties.html

changed. This is achieved by a few tweaks to how a properties file is generated:

* no timestamp comment is added to the output
* the line separator is system independent, but can be configured explicitly (it defaults to '\n")
* the properties are sorted alphabetically
Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. You

want to be sure that building an artifact from source code produces the same result, byte for byte,
no matter when and where it is built. This is necessary for projects like reproducible-builds.org.

These tweaks not only lead to better incremental build integration, but they also help with
reproducible builds. In essence, reproducible builds guarantee that you will see the same results
from a build execution — including test results and production binaries — no matter when or on
what system you run it.

Running tests

Alongside providing automatic compilation of unit tests in src/test/java, the Java Plugin has native
support for running tests that use JUnit 3, 4 & 5 (JUnit 5 support came in Gradle 4.6) and TestNG.
You get:

* An automatic test task of type Test, using the test source set

An HTML test report that includes the results from all Test tasks that run
* Eagy filtering of which tests to run
* Fine-grained control over how the tests are run
* The opportunity to create your own test execution and test reporting tasks
You do not get a Test task for every source set you declare, since not every source set represents

tests! That’s why you typically need to create your own Test tasks for things like integration and
acceptance tests if they can’t be included with the test source set.

As there is a lot to cover when it comes to testing, the topic has its own chapter in which we look at:

¢ How tests are run

* How to run a subset of tests via filtering

How Gradle discovers tests
* How to configure test reporting and add your own reporting tasks

* How to make use of specific JUnit and TestNG features

You can also learn more about configuring tests in the DSL reference for Test.

Packaging and publishing

How you package and potentially publish your Java project depends on what type of project it is.
Libraries, applications, web applications and enterprise applications all have differing
requirements. In this section, we will focus on the bare bones provided by the Java Plugin.

https://reproducible-builds.org
https://docs.gradle.org/4.6/release-notes.html#junit-5-support
../dsl/org.gradle.api.tasks.testing.Test.html
../dsl/org.gradle.api.tasks.testing.Test.html

The one and only packaging feature provided by the Java Plugin directly is a jar task that packages
all the compiled production classes and resources into a single JAR. This JAR is then added as an
artifact — as opposed to a dependency —in the archives configuration, hence why it is
automatically built by the assemble task.

If you want any other JAR or alternative archive built, you either have to apply an appropriate
plugin or create the task manually. For example, if you want a task that generates a 'sources' JAR,
define your own Jar task like so:

Example: Defining a custom task to create a 'sources' JAR

build.gradle

task sourcesJar(type: Jar) {
classifier = 'sources'
from sourceSets.main.alllava

See Jar for more details on the configuration options available to you. And note that you need to use
classifier rather than appendix here for correct publication of the JAR.

If you instead want to create an 'uber' (AKA 'fat’) JAR, then you can use a task definition like this:

Example: Creating a Java uber or fat JAR

build.gradle

plugins {
id 'java'

}
version = '1.0.0'

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-io:2.6'

}

task uberJar(type: Jar) {
appendix = 'uber'

from sourceSets.main.output

from configurations.runtimeClasspath.
findA1l { it.name.endsWith('jar") }.
collect { zipTree(it) }

../dsl/org.gradle.api.tasks.bundling.Jar.html

There are several options for publishing a JAR once it has been created:

 the Maven Publish Plugin
* the Ivy Publish Plugin

* the uploadArchives task — the original publishing mechanism — which works with both Ivy and
(if you apply the Maven Plugin) Maven

The former two "Publish” plugins are the preferred options.

Modifying the JAR manifest

Each instance of the Jar, War and Ear tasks has a manifest property that allows you to customize the
MANIFEST.MF file that goes into the corresponding archive. The following example demonstrates
how to set attributes in the JAR’s manifest:

Example: Customization of MANIFEST.MF

build.gradle

jar {
manifest {
attributes("Implementation-Title": "Gradle",
"Implementation-Version": version)

See Manifest for the configuration options it provides.

You can also create standalone instances of Manifest. One reason for doing so is to share manifest
information between JARs. The following example demonstrates how to share common attributes
between JARs:

Example: Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {
attributes("Implementation-Title": "Gradle",
“Implementation-Version": version)

}
task fooJar(type: Jar) {
manifest = project.manifest {
from sharedManifest

}

Another option available to you is to merge manifests into a single Manifest object. Those source
manifests can take the form of a text for or another Manifest object. In the following example, the
source manifests are all text files except for sharedManifest, which is the Manifest object from the

../javadoc/org/gradle/api/java/archives/Manifest.html

previous example:

Example: Separate MANIFEST.MF for a particular archive

build.gradle

task barJar(type: Jar) {
manifest {

attributes keyl1: 'valuel'

from sharedManifest, 'src/config/basemanifest.txt’
from('src/config/javabasemanifest.txt',

"src/config/libbasemanifest.txt') {
eachEntry { details ->
if (details.baseValue != details.mergeValue) {
details.value = baseValue

}

if (details.key == 'foo') {
details.exclude()

}

Manifests are merged in the order they are declared in the from statement. If the base manifest and
the merged manifest both define values for the same key, the merged manifest wins by default. You
can fully customize the merge behavior by adding eachEntry actions in which you have access to a
ManifestMergeDetails instance for each entry of the resulting manifest. Note that the merge is done
lazily, either = when generating the JAR or when Manifest.writeTo() or
Manifest.getEffectiveManifest() are called.

Speaking of writeTo(), you can use that to easily write a manifest to disk at any time, like so:

Example: Saving a MANIFEST.MF to disk

build.gradle

jar.manifest.writeTo("$buildDir/mymanifest.mf")

Generating API documentation

The Java Plugin provides a javadoc task of type Javadoc, that will generate standard Javadocs for all
your production code, i.e. whatever source is in the main source set. The task supports the core
Javadoc and standard doclet options described in the Javadoc reference documentation. See
CoreJavadocOptions and StandardJavadocDocletOptions for a complete list of those options.

As an example of what you can do, imagine you want to use Asciidoc syntax in your Javadoc
comments. To do this, you need to add Asciidoclet to Javadoc’s doclet path. Here’s an example that
does just that:

../javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
../dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#options
../javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
../javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

Example: Using a custom doclet with Javadoc

build.gradle

configurations {
asciidoclet

}

dependencies {
asciidoclet 'org.asciidoctor:asciidoclet:1.+'

}

javadoc {
options.docletpath = configurations.asciidoclet.files.tolist()
options.doclet = 'org.asciidoctor.Asciidoclet’

}

You don’t have to create a configuration for this, but it’s an elegant way to handle dependencies
that are required for a unique purpose.

You might also want to create your own Javadoc tasks, for example to generate API docs for the
tests:

Example: Defining a custom Javadoc task

build.gradle

task testJavadoc(type: Javadoc) {
source = sourceSets.test.alllava

}

These are just two non-trivial but common customizations that you might come across.

Cleaning the build

The Java Plugin adds a clean task to your project by virtue of applying the Base Plugin. This task
simply deletes everything in the $buildDir directory, hence why you should always put files
generated by the build in there. The task is an instance of Delete and you can change what directory
it deletes by setting its dir property.

Building Java libraries

The unique aspect of library projects is that they are used (or "consumed") by other Java projects.
That means the dependency metadata published with the JAR file — usually in the form of a Maven
POM — is crucial. In particular, consumers of your library should be able to distinguish between
two different types of dependencies: those that are only required to compile your library and those
that are also required to compile the consumer.

Gradle manages this distinction via the Java Library Plugin, which introduces an api configuration

../dsl/org.gradle.api.tasks.Delete.html

in addition to the implementation one covered in this chapter. If the types from a dependency
appear in public fields or methods of your library’s public classes, then that dependency is exposed
via your library’s public API and should therefore be added to the api configuration. Otherwise, the
dependency is an internal implementation detail and should be added to implementation.

NOTE The Java Library Plugin automatically applies the standard Java Plugin as well.

If you’re unsure of the difference between an API and implementation dependency, the Java
Library Plugin chapter has a detailed explanation. In addition, you can see a basic, practical
example of building a Java library in the corresponding guide.

Building Java applications

Java applications packaged as a JAR aren’t set up for easy launching from the command line or a
desktop environment. The Application Plugin solves the command line aspect by creating a
distribution that includes the production JAR, its dependencies and launch scripts Unix-like and
Windows systems.

See the plugin’s chapter for more details, but here’s a quick summary of what you get:
» assemble creates ZIP and TAR distributions of the application containing everything needed to
run it
* A run task that starts the application from the build (for easy testing)

» Shell and Windows Batch scripts to start the application
Note that you will need to explicitly apply the Java Plugin in your build script.

You can see a basic example of building a Java application in the corresponding guide.

Building Java web applications

Java web applications can be packaged and deployed in a number of ways depending on the
technology you use. For example, you might use Spring Boot with a fat JAR or a Reactive-based
system running on Netty. Whatever technology you use, Gradle and its large community of plugins
will satisfy your needs. Core Gradle, though, only directly supports traditional Servlet-based webh
applications deployed as WAR files.

That support comes via the War Plugin, which automatically applies the Java Plugin and adds an
extra packaging step that does the following:

* Copies static resources from sr¢/main/webapp into the root of the WAR

* Copies the compiled production classes into a WEB-INF/classes subdirectory of the WAR

* Copies the library dependencies into a WEB-INF/lib subdirectory of the WAR
This is done by the war task, which effectively replaces the jar task — although that task remains

—and is attached to the assemble lifecycle task. See the plugin’s chapter for more details and
configuration options.

https://guides.gradle.org/building-java-libraries/
https://guides.gradle.org/building-java-applications/
https://projects.spring.io/spring-boot/
https://www.reactivemanifesto.org/
https://netty.io/

There is no core support for running your web application directly from the build, but we do
recommend that you try the Gretty community plugin, which provides an embedded Servlet
container.

Building Java EE applications

Java enterprise systems have changed a lot over the years, but if you’re still deploying to JEE
application servers, you can make use of the Ear Plugin. This adds conventions and a task for
building EAR files. The plugin’s chapter has more details.

Testing in Java & JVM projects

Testing on the JVM is a rich subject matter. There are many different testing libraries and
frameworks, as well as many different types of test. All need to be part of the build, whether they
are executed frequently or infrequently. This chapter is dedicated to explaining how Gradle
handles differing requirements between and within builds, with significant coverage of how it
integrates with the two most common testing frameworks: JUnit and TestNG.

It explains:

* Ways to control how the tests are run (Test execution)

* How to select specific tests to run (Test filtering)

* What test reports are generated and how to influence the process (Test reporting)

* How Gradle finds tests to run (Test detection)

* How to make use of the major frameworks' mechanisms for grouping tests together (Test

grouping)

But first, we look at the basics of JVM testing in Gradle.

The basics

All JVM testing revolves around a single task type: Test. This runs a collection of test cases using any
supported test library — JUnit, JUnit Platform or TestNG — and collates the results. You can then
turn those results into a report via an instance of the TestReport task type.

In order to operate, the Test task type requires just two pieces of information:

* Where to find the compiled test classes (property: Test.getTestClassesDirs())
* The execution classpath, which should include the classes under test as well as the test library

that you’re using (property: Test.getClasspath())

When you’re using a JVM language plugin — such as the Java Plugin — you will automatically get
the following:

» A dedicated test source set for unit tests

» A test task of type Test that runs those unit tests

https://plugins.gradle.org/plugin/org.gretty
https://junit.org/
https://testng.org/
../dsl/org.gradle.api.tasks.testing.Test.html
../dsl/org.gradle.api.tasks.testing.TestReport.html
../dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
../dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:classpath

The JVM language plugins use the source set to configure the task with the appropriate execution
classpath and the directory containing the compiled test classes. In addition, they attach the test
task to the check lifecycle task.

It’s also worth bearing in mind that the test source set automatically creates corresponding
dependency configurations — of which the most useful are testImplementation and testRuntimeOnly
— that the plugins tie into the test task’s classpath.

All you need to do in most cases is configure the appropriate compilation and runtime
dependencies and add any necessary configuration to the test task. The following example shows a
simple setup that uses JUnit 4.x and changes the maximum heap size for the tests' JVM to 1 gigabyte:

Example: A basic configuration for the 'test' task

build.gradle

dependencies {
testImplementation 'junit:junit:4.12'

}
test {
useJUnit()
maxHeapSize = '1G'
}

The Test task has many generic configuration options as well as several framework-specific ones
that you can find described in JUnitOptions, JUnitPlatformOptions and TestNGOptions. We cover a
significant number of them in the rest of the chapter.

If you want to set up your own Test task with its own set of test classes, then the easiest approach is
to create your own source set and Test task instance, as shown in Configuring integration tests.

Test execution

Gradle executes tests in a separate (‘forked') JVM, isolated from the main build process. This
prevents classpath pollution and excessive memory consumption for the build process. It also
allows you to run the tests with different JVM arguments than the build is using.

You can control how the test process is launched via several properties on the Test task, including
the following:

maxParallelForks — default: 1

You can run your tests in parallel by setting this property to a value greater than 1. This may
make your test suites complete faster, particularly if you run them on a multi-core CPU. When
using parallel test execution, make sure your tests are properly isolated from one another. Tests
that interact with the filesystem are particularly prone to conflict, causing intermittent test
failures.

Your tests can distinguish between parallel test processes by using the value of the

../dsl/org.gradle.api.tasks.testing.Test.html
../javadoc/org/gradle/api/tasks/testing/junit/JUnitOptions.html
../javadoc/org/gradle/api/tasks/testing/junitplatform/JUnitPlatformOptions.html
../javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html

org.gradle.test.worker property, which is unique for each process. You can use this for anything
you want, but it’s particularly useful for filenames and other resource identifiers to prevent the
kind of conflict we just mentioned.

forkEvery - default: 0 (no maximum)

This property specifies the maximum number of test classes that Gradle should run on a test
process before its disposed of and a fresh one created. This is mainly used as a way to manage
leaky tests or frameworks that have static state that can’t be cleared or reset between tests.

Warning: a low value (other than 0) can severely hurt the performance of the tests

ignoreFailures — default: false

If this property is true, Gradle will continue with the project’s build once the tests have
completed, even if some of them have failed. Note that, by default, the Test task always executes
every test that it detects, irrespective of this setting.

failFast — (since Gradle 4.6) default: false

Set this to true if you want the build to fail and finish as soon as one of your tests fails. This can
save a lot of time when you have a long-running test suite and is particularly useful when
running the build on continuous integration servers. When a build fails before all tests have run,
the test reports only include the results of the tests that have completed, successfully or not.

You can also enable this behavior by using the --fail-fast command line option.

testLogging — default: not set

This property represents a set of options that control which test events are logged and at what
level. You can also configure other logging behavior via this property. See TestLoggingContainer
for more detail.

See Test for details on all the available configuration options.

The test process can exit unexpectedly if configured incorrectly. For instance, if the
Java executable does not exist or an invalid JVM argument is provided, the test
process will fail to start. Similarly, if a test makes programmatic changes to the test
process, this can also cause unexpected failures.

NOTE For example, issues may occur if a SecurityManager is modified in a test because

Gradle’s internal messaging depends on reflection and socket communication,
which may be disrupted if the permissions on the security manager change. In this
particular case, you should restore the original SecurityManager after the test so that
the gradle test worker process can continue to function.

Test filtering

I’s a common requirement to run subsets of a test suite, such as when you’re fixing a bug or
developing a new test case. Gradle provides two mechanisms to do this:

» Filtering (the preferred option)

../javadoc/org/gradle/api/tasks/testing/logging/TestLoggingContainer.html
../dsl/org.gradle.api.tasks.testing.Test.html
https://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html

Test inclusion/exclusion

Filtering supersedes the inclusion/exclusion mechanism, but you may still come across the latter in
the wild.

With Gradle’s test filtering you can select tests to run based on:

* A fully-qualified class name or fully qualified method name, e.g. org.gradle.SomeTest,
org.gradle.SomeTest.someMethod

* A simple class name or method name if the pattern starts with an upper-case letter, e.g.
SomeTest, SomeTest.someMethod (since Gradle 4.7)

» "' wildcard matching

You can enable filtering either in the build script or via the --tests command-line option. Here’s an
example of some filters that are applied every time the build runs:

Example: Filtering tests in the build script

build.gradle

test {
filter {
//include specific method in any of the tests
includeTestsMatching "*UiCheck"

//include all tests from package
includeTestsMatching "org.gradle.internal.*"

//include all integration tests
includeTestsMatching "*IntegTest"

For more details and examples of declaring filters in the build script, please see the TestFilter
reference.

The command-line option is especially useful to execute a single test method. When you use --
tests, be aware that the inclusions declared in the build script are still honored. It is also possible to
supply multiple --tests options, all of whose patterns will take effect. The following sections have
several examples of using the command-line option.

Not all test frameworks play well with filtering. Some advanced, synthetic tests may
NOTE not be fully compatible. However, the vast majority of tests and use cases work
perfectly well with Gradle’s filtering mechanism.

The following two sections look at the specific cases of simple class/method names and fully-
qualified names.

../javadoc/org/gradle/api/tasks/testing/TestFilter.html

Simple name pattern

Since 4.7, Gradle has treated a pattern starting with an uppercase letter as a simple class name, or a
class name + method name. For example, the following command lines run either all or exactly one
of the tests in the SomeTest(1ass test case, regardless of what package it’s in:

Executes all tests in SomeTestClass
gradle test --tests SomeTest(Class

Executes a single specified test in SomeTest(Class
gradle test --tests SomeTest(Class.someSpecificMethod

gradle test --tests SomeTest(Class.*someMethod*

Fully-qualified name pattern

Prior to 4.7 or if the pattern doesn’t start with an uppercase letter, Gradle treats the pattern as fully-
qualified. So if you want to use the test class name irrespective of its package, you would use
--tests *.SomeTest(Class. Here are some more examples:

specific class
gradle test --tests org.gradle.SomeTest(Class

specific class and method
gradle test --tests org.gradle.SomeTest(lass.someSpecificMethod

method name containing spaces
gradle test --tests "org.gradle.SomeTest(Class.some method containing spaces”

all classes at specific package (recursively)
gradle test --tests 'all.in.specific.package*'

specific method at specific package (recursively)
gradle test --tests 'all.in.specific.package*.someSpecificMethod'

gradle test --tests '*IntegTest’
gradle test --tests '*IntegTest*ui*'
gradle test --tests '*ParameterizedTest.foo*'

the second iteration of a parameterized test
gradle test --tests '*ParameterizedTest.*[2]'

Note that the wildcard "' has no special understanding of the "' package separator. It’s purely text
based. So --tests *.SomeTest(lass will match any package, regardless of its 'depth'.

You can also combine filters defined at the command line with continuous build to re-execute a

subset of tests immediately after every change to a production or test source file. The following
executes all tests in the 'com.mypackage.foo' package or subpackages whenever a change triggers
the tests to run:

gradle test --continuous --tests "com.mypackage.foo.*"

Single test execution via System Properties

This mechanism has been superseded by 'Test Filtering', described above. We only

NOTE . o - .
include it in case you encounter it in online forums and blogs.

Test inclusions/exclusions are a file-based — as opposed to a class name-based — mechanism for
selecting tests to run. It’s activated when you use the -DtaskName.single=<pattern> option on the
command line, e.g. -Dtest.single=MyTest.

Test reporting

The Test task generates the following results by default:

¢ An HTML test report

* XML test results in a format compatible with the Ant JUnit report task — one that is supported
by many other tools, such as CI servers

* An efficient binary format of the results used by the Test task to generate the other formats

In most cases, youw’ll work with the standard HTML report, which automatically includes the results
from all your Test tasks, even the ones you explicitly add to the build yourself. For example, if you
add a Test task for integration tests, the report will include the results of both the unit tests and the
integration tests if both tasks are run.

Unlike with many of the testing configuration options, there are several project-level convention
properties that affect the test reports. For example, you can change the destination of the test
results and reports like so:

Example: Changing the default test report and results directories

build.gradle

reporting.baseDir = "my-reports"”
testResultsDirName = "$buildDir/my-test-results"

task showDirs {
dolast {
logger.quiet(rootDir.toPath().relativize(project.reportsDir.toPath()).
toString())
logger.quiet(rootDir.toPath().relativize(project.testResultsDir.toPath())
.toString())
}
}

Output of gradle -q showDirs

> gradle -q showDirs
my-reports
build/my-test-results

Follow the link to the convention properties for more details.

There is also a standalone TestReport task type that you can use to generate a custom HTML test
report. All it requires are a value for destinationDir and the test results you want included in the
report. Here is a sample which generates a combined report for the unit tests from all subprojects:

Example: Creating a unit test report for subprojects

build.gradle

subprojects {
apply plugin: 'java'

// Disable the test report for the individual test task
test {
reports.html.enabled = false

}
}

task testReport(type: TestReport) {
destinationDir = file("$buildDir/reports/allTests")
// Include the results from the ‘test' task in all subprojects
reportOn subprojects*.test

You should note that the TestReport type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by
multiple test tasks, then the test report will include executions of that class, but it can be hard to
distinguish individual executions of that class and their output.

../dsl/org.gradle.api.tasks.testing.TestReport.html

Test detection

By default, Gradle will run all tests that it detects, which it does by inspecting the compiled test
classes. This detection uses different criteria depending on the test framework used.

For JUnit, Gradle scans for both JUnit 3 and 4 test classes. A class is considered to be a JUnit test if it:

* Ultimately inherits from TestCase or GroovyTest(ase
* Is annotated with @RunWith

* Contains a method annotated with @Test or a super class does
For TestNG, Gradle scans for methods annotated with @Test.

Note that abstract classes are not executed. In addition, be aware that Gradle scans up the
inheritance tree into jar files on the test classpath. So if those JARs contain test classes, they will also
be run.

If you don’t want to use test class detection, you can disable it by setting the scanForTest(lasses
property on Test to false. When you do that, the test task uses only the includes and excludes
properties to find test classes.

If scanForTestClasses is false and no include or exclude patterns are specified, Gradle defaults to
running any class that matches the patterns **/*Tests.class and **/*Test.class, excluding those
that match **/Abstract*.class.

With JUnit Platform, only includes and excludes are used to filter test classes —

NOTE
scanfForTest(Classes has no effect.

Test grouping
JUnit, JUnit Platform and TestNG allow sophisticated groupings of test methods.

JUnit 4.8 introduced the concept of categories for grouping JUnit 4 tests classes and methods. [12:
The JUnit wiki contains a detailed description on how to work with JUnit categories:
https://github.com/junit-team/junit/wiki/Categories.] Test.useJUnit(org.gradle.api.Action) allows you
to specify the JUnit categories you want to include and exclude. For example, the following
configuration includes tests in CategoryA and excludes those in CategoryB for the test task:

Example: JUnit Categories

build.gradle

test {
useJUnit {
includeCategories 'org.gradle.junit.CategoryA’
excludeCategories 'org.gradle.junit.CategoryB'

../dsl/org.gradle.api.tasks.testing.Test.html
http://junit.org/junit5/docs/current/user-guide
https://github.com/junit-team/junit/wiki/Categories
../dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useJUnit(org.gradle.api.Action)

JUnit Platform introduced tagging to replace categories. You can specify the included/excluded tags
via Test.useJUnitPlatform(org.gradle.api.Action), as follows:

Example: JUnit Platform Tags

build.gradle

test {
useJUnitPlatform {
includeTags 'fast'
excludeTags 'slow'

The TestNG framework uses the concept of test groups for a similar effect. [13: The TestNG
documentation contains more details about test groups: http://testng.org/doc/documentation-
main.html#test-groups.] You can configure which test groups to include or exclude during the test
execution via the Test.useTestNG(org.gradle.api.Action) setting, as seen here:

Example: Grouping TestNG tests

build.gradle

test {
useTestNG {
excludeGroups 'integrationTests'
includeGroups 'unitTests'

Using JUnit 5

JUnit 5 is the latest version of the well-known JUnit test framework. Unlike its predecessor, JUnit 5 is
modularized and composed of several modules:

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage

The JUnit Platform serves as a foundation for launching testing frameworks on the JVM. JUnit
Jupiter is the combination of the new programming model and extension model for writing tests
and extensions in JUnit 5. JUnit Vintage provides a TestEngine for running JUnit 3 and JUnit 4 based
tests on the platform.

The following code enables JUnit Platform support in build.gradle:

Example: Enabling JUnit Platform to run your tests

http://junit.org/junit5/docs/current/user-guide
http://junit.org/junit5/docs/current/user-guide/#writing-tests-tagging-and-filtering
../javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform-org.gradle.api.Action-
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#test-groups
../dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useTestNG(org.gradle.api.Action)
http://junit.org/junit5
http://junit.org/junit5/docs/current/user-guide/#writing-tests
http://junit.org/junit5/docs/current/user-guide/#extensions

build.gradle

test {
useJUnitPlatform()

}

See Test.useJUnitPlatform() for more details.

There are some known limitations of using JUnit 5 with Gradle, for example that
tests in static nested classes won’t be discovered and classes are still displayed by
their class name instead of @DisplayName. These will be fixed in future version of
Gradle. If you find more, please tell us at https://github.com/gradle/gradle/issues/new

NOTE

Compiling and executing JUnit Jupiter tests

To enable JUnit Jupiter support in Gradle, all you need to do is add the following dependencies:

Example: JUnit Jupiter dependencies

build.gradle

dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.1.0'
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.1.0'

You can then put your test cases into src/test/java as normal and execute them with gradle test.

Executing legacy tests with JUnit Vintage

If you want to run JUnit 3/4 tests on JUnit Platform, or even mix them with Jupiter tests, you should
add extra JUnit Vintage Engine dependencies:

Example: JUnit Vintage dependencies

build.gradle

dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.1.0'
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.1.0'
testCompileOnly 'junit:junit:4.12'
testRuntimeOnly 'org.junit.vintage:junit-vintage-engine:5.1.0'

In this way, you can use gradle test to test JUnit 3/4 tests on JUnit Platform, without the need to
rewrite them.

A sample of mixed tests can be found at samples/testing/junitplatform/mix in the "-all' distribution
of Gradle.

../javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform
https://github.com/gradle/gradle/issues/new

Filtering test engine

JUnit Platform allows you to use different test engines. JUnit currently provides two TestEngine
implementations out of the box: junit-jupiter-engine and junit-vintage-engine. You can also write
and plug in your own TestEngine implementation as documented here.

By default, all test engines on the test runtime classpath will be used. To control specific test engine
implementations explicitly, you can add the following setting to your build script:

Example: Filter specific engines

build.gradle

test {
useJUnitPlatform {
includeEngines 'junit-vintage'
// excludeEngines 'junit-jupiter'

A test engine filtering sample can be found at samples/testing/junitplatform/engine in the '-all'
distribution of Gradle.

Test execution order in TestNG

TestNG allows explicit control of the execution order of tests when you use a testng.xml file.
Without such a file — or an equivalent one configured by TestNGOptions.getSuiteXmlBuilder() —
you can’t specify the test execution order. However, what you can do is control whether all aspects
of a test — including its associated @BeforeXXX and @After XXX methods, such as those annotated with
@Before/AfterClass and @Before/AfterMethod — are executed before the next test starts. You do this
by setting the TestNGOptions.getPreserveOrder() property to true. If you set it to false, you may
encounter scenarios in which the execution order is something like: TestA.doBeforeClass() -
TestB.doBeforeClass() — TestA tests.

While preserving the order of tests is the default behavior when directly working with testng.xml
files, the TestNG API that is used by Gradle’s TestNG integration executes tests in unpredictable
order by default. [14: The TestNG documentation contains more details about test ordering when
working with testng.xml files: http://testng.org/doc/documentation-main.html#testng-xml.] The
ability to preserve test execution order was introduced with TestNG version 5.14.5. Setting the
preserveOrder property to true for an older TestNG version will cause the build to fail.

Example: Preserving order of TestNG tests

https://junit.org/junit5/docs/current/api/org/junit/jupiter/engine/package-summary.html
https://junit.org/junit5/docs/current/api/org/junit/vintage/engine/package-summary.html
https://junit.org/junit5/docs/current/user-guide/#launcher-api-engines-custom
../javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getSuiteXmlBuilder--
../javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getPreserveOrder--
https://jitpack.io/com/github/cbeust/testng/master/javadoc/org/testng/TestNG.html
http://testng.org/doc/documentation-main.html#testng-xml

build.gradle

test {
useTestNG {
preserveOrder true

The groupByInstance property controls whether tests should be grouped by instance rather than by
class. The TestNG documentation explains the difference in more detail, but essentially, if you have
a test method A() that depends on B(), grouping by instance ensures that each A-B pairing, e.g. B(1)-
A(1), is executed before the next pairing. With group by class, all B() methods are run and then all
A() ones.

Note that you typically only have more than one instance of a test if you’re using a data provider to
parameterize it. Also, grouping tests by instances was introduced with TestNG version 6.1. Setting
the groupByInstances property to true for an older TestNG version will cause the build to fail.

Example: Grouping TestNG tests by instances

build.gradle

test {
useTestNG {
groupByInstances = true

TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed
multiple times with different inputs. Gradle includes the parameter values in its reporting of the
test method execution.

Given a parameterized test method named aTestMethod that takes two parameters, it will be
reported with the name aTestMethod(toStringValueOfParam1, toStringValueOfParam2). This makes it
easy to identify the parameter values for a particular iteration.

Configuring integration tests

A common requirement for projects is to incorporate integration tests in one form or another. Their
aim is to verify that the various parts of the project are working together properly. This often
means that they require special execution setup and dependencies compared to unit tests.

The simplest way to add integration tests to your build is by taking these steps:

1. Create a new source set for them

2. Add the dependencies you need to the appropriate configurations for that source set

http://testng.org/doc/documentation-main.html#dependencies-with-annotations
http://testng.org/doc/documentation-main.html#parameters

3. Configure the compilation and runtime classpaths for that source set
4. Create a task to run the integration tests

You may also need to perform some additional configuration depending on what form the
integration tests take. We will discuss those as we go.

Let’s start with a practical example that implements the first three steps in a build script, centered
around a new source set intTest:

Example: Setting up working integration tests

build.gradle

sourceSets {

intTest {
compileClasspath += sourceSets.main.output
runtimeClasspath += sourceSets.main.output

configurations {
intTestImplementation.extendsFrom implementation
intTestRuntimeOnly.extendsFrom runtimeOnly

dependencies {
intTestImplementation 'junit:junit:4.12'

This will set up a new source set called intTest that automatically creates:
* intTestImplementation, intTestCompileOnly, intTestRuntimeOnly configurations (and a few others
that are less commonly needed)
* A compilelntTestJava task that will compile all the source files under src/intTest/java

The example also does the following, not all of which you may need for your specific integration
tests:

* Adds the production classes from the main source set to the compilation and runtime classpaths
of the integration tests — sourceSets.main.output is a file collection of all the directories
containing compiled production classes and resources

* Makes the intTestImplementation configuration extend from implementation, which means that
all the declared dependencies of the production code also become dependencies of the
integration tests

* Does the same for the intTestRuntimeOnly configuration

In most cases, you want your integration tests to have access to the classes under test, which is why
we ensure that those are included on the compilation and runtime classpaths in this example. But

some types of test interact with the production code in a different way. For example, you may have
tests that run your application as an executable and verify the output. In the case of web
applications, the tests may interact with your application via HTTP. Since the tests don’t need direct
access to the classes under test in such cases, you don’t need to add the production classes to the
test classpath.

Another common step is to attach all the unit test dependencies to the integration tests as well —
via intTestImplementation.extendsFrom testImplementation — but that only makes sense if the
integration tests require all or nearly all the same dependencies that the unit tests have.

There are a couple of other facets of the example you should take note of:

* += allows you to append paths and collections of paths to compileClasspath and runtimeClasspath
instead of overwriting them

» If you want to use the convention-based configurations, such as intTestImplementation, you
must declare the dependencies after the new source set

Creating and configuring a source set automatically sets up the compilation stage, but it does
nothing with respect to running the integration tests. So the last piece of the puzzle is a custom test
task that uses the information from the new source set to configure its runtime classpath and the
test classes:

Example: Defining a working integration test task

build.gradle

task integrationTest(type: Test) {
description = 'Runs integration tests.'
group = 'verification'

testClassesDirs = sourceSets.intTest.output.classesDirs
classpath = sourceSets.intTest.runtimeClasspath
shouldRunAfter test

check.dependsOn integrationTest

Again, we’re accessing a source set to get the relevant information, i.e. where the compiled test
classes are — the test(ClassesDir property — and what needs to be on the classpath when running
them — classpath.

Users commonly want to run integration tests after the unit tests, because they are often slower to
run and you want the build to fail early on the unit tests rather than later on the integration tests.
That's why the above example adds a shouldRunAfter() declaration. This is preferred over
mustRunAfter () so that Gradle has more flexibility in executing the build in parallel.

Skipping the tests

If you want to skip the tests when running a build, you have a few options. You can either do it via

command line arguments or in the build script. To do it on the command line, you can use the -x or
--exclude-task option like so:

gradle build -x test

This excludes the test task and any other task that it exclusively depends on, i.e. no other task
depends on the same task. Those tasks will not be marked "SKIPPED" by Gradle, but will simply not
appear in the list of tasks executed.

Skipping a test via the build script can be done a few ways. One common approach is to make test
execution conditional via the Task.onlyIf(org.gradle.api.specs.Spec) method. The following sample
skips the test task if the project has a property called mySkipTests:

Example: Skipping the unit tests based on a project property

build.gradle

test.onlyIf { !project.hasProperty('mySkipTests') }

In this case, Gradle will mark the skipped tests as "SKIPPED" rather than exclude them from the
build.

Forcing tests to run

In well-defined builds, you can rely on Gradle to only run tests if the tests themselves or the
production code change. However, you may encounter situations where the tests rely on a third-
party service or something else that might change but can’t be modeled in the build.

You can force tests to run in this situation by cleaning the output of the relevant Test task — say
test — and running the tests again, like so:

gradle cleanTest test

cleanTest is based on a task rule provided by the Base Plugin. You can use it for any task.

Debugging when running tests

On the few occasions that you want to debug your code while the tests are running, it can be
helpful if you can attach a debugger at that point. You can either set the Test.getDebug() property to
true or use the --debug-jvm command line option.

When debugging for tests is enabled, Gradle will start the test process suspended and listening on
port 5005.

../dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(org.gradle.api.specs.Spec)
../dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It
serves as the basis for many of the other JVM language Gradle plugins. You can find a
comprehensive introduction and overview to the Java Plugin in the Building Java Projects chapter.

Usage

To use the Java plugin, include the following in your build script:

Example: Using the Java plugin

build.gradle

apply plugin: 'java'

Project layout

The Java plugin assumes the project layout shown below. None of these directories need to exist or
have anything in them. The Java plugin will compile whatever it finds, and handles anything which
is missing.

src/main/java
Production Java source.

src/main/resources
Production resources, such as XML and properties files.

src/test/java
Test Java source.

src/test/resources
Test resources.

src/sourceSet/java
Java source for the source set named sourceSet.

src/sourceSet/resources
Resources for the source set named sourceSet.

Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in
more detail in the following sections. Here is a brief example which changes the main Java and
resource source directories.

Example: Custom Java source layout

build.gradle

sourceSets {

main {
java {
srcDirs = ['sre/java']
}
resources {
srcDirs = ['src/resources']
}
}

Source sets
The plugin adds the following source sets:
main
Contains the production source code of the project, which is compiled and assembled into a JAR.

test

Contains your test source code, which is compiled and executed using JUnit or TestNG. These are
typically unit tests, but you can include any test in this source set as long as they all share the
same compilation and runtime classpaths.

Source set properties

The following table lists some of the important properties of a source set. You can find more details
in the API documentation for SourceSet.

name — (read-only) String

The name of the source set, used to identify it.

output — (read-only) SourceSetOutput

The output files of the source set, containing its compiled classes and resources.

output.classesDirs — (read-only) FileCollection

Default value: $buildDir/classes/java/$name, e.g. build/classes/java/main

The directories to generate the classes of this source set into. May contain directories for other
JVM languages, e.g. build/classes/kotlin/main.

output.resourcesDir —File

Default value: $buildDir/resources/$name, e.g. build/resources/main
The directory to generate the resources of this source set into.

compileClasspath — FileCollection

Default value: ${name}CompileClasspath configuration

../dsl/org.gradle.api.tasks.SourceSet.html
../dsl/org.gradle.api.tasks.SourceSetOutput.html
../javadoc/org/gradle/api/file/FileCollection.html
../javadoc/org/gradle/api/file/FileCollection.html

The classpath to use when compiling the source files of this source set.

annotationProcessorPath — FileCollection

Default value: ${name}AnnotationProcessor configuration
The processor path to use when compiling the source files of this source set.

runtimeClasspath — FileCollection

Default value: $output, ${name}RuntimeClasspath configuration
The classpath to use when executing the classes of this source set.

java — (read-only) SourceDirectorySet

The Java source files of this source set. Contains only .java files found in the Java source
directories, and excludes all other files.

java.srcDirs — Set<File>

Default value: src/$name/java, e.g. sre/main/java

The source directories containing the Java source files of this source set. You can set this to any
value that is described in sec:specifying_multiple_filesthis section.

java.outputDir —File

Default value: $buildDir/classes/java/$name, e.g. build/classes/java/main

The directory to generate compiled Java sources into. You can set this to any value that is
described in this section.

resources — (read-only) SourceDirectorySet

The resources of this source set. Contains only resources, and excludes any .java files found in
the resource directories. Other plugins, such as the Groovy Plugin, exclude additional types of
files from this collection.

resources.srcDirs — Set<File>

Default value: [src/$name/resources]

The directories containing the resources of this source set. You can set this to any type of value
that is described in this section.

alllava — (read-only) SourceDirectorySet

Default value: Same as java property

All Java files of this source set. Some plugins, such as the Groovy Plugin, add additional Java
source files to this collection.

allSource — (read-only) SourceDirectorySet

Default value: Sum of everything in the resources and java properties

All source files of this source set of any language. This includes all resource files and all Java
source files. Some plugins, such as the Groovy Plugin, add additional source files to this

../javadoc/org/gradle/api/file/FileCollection.html
../javadoc/org/gradle/api/file/FileCollection.html
../dsl/org.gradle.api.file.SourceDirectorySet.html
../dsl/org.gradle.api.file.SourceDirectorySet.html
../dsl/org.gradle.api.file.SourceDirectorySet.html
../dsl/org.gradle.api.file.SourceDirectorySet.html

collection.

Defining new source sets

See the integration test example in the Testing in Java & JVM projects chapter.

Some other simple source set examples

Adding a JAR containing the classes of a source set:

Example: Assembling a JAR for a source set

build.gradle

task intTestJar(type: Jar) {
from sourceSets.intTest.output

}

Generating Javadoc for a source set:

Example: Generating the Javadoc for a source set

build.gradle

task intTestJavadoc(type: Javadoc) {
source sourceSets.intTest.allJava

}

Adding a test suite to run the tests in a source set:

Example: Running tests in a source set

build.gradle

task intTest(type: Test) {
testClassesDirs = sourceSets.intTest.output.classesDirs
classpath = sourceSets.intTest.runtimeClasspath

Tasks
The Java plugin adds a number of tasks to your project, as shown below.

compilelava — JavaCompile

Depends on: All tasks which contribute to the compilation classpath, including jar tasks from
projects that are on the classpath via project dependencies

Compiles production Java source files using the JDK compiler.

../dsl/org.gradle.api.tasks.compile.JavaCompile.html

processResources — Copy

Copies production resources into the production resources directory.

classes
Depends on: compileJava, processResources

This is an aggregate task that just depends on other tasks. Other plugins may attach additional
compilation tasks to it.

compileTestJava — JavaCompile

Depends on: classes, and all tasks that contribute to the test compilation classpath
Compiles test Java source files using the JDK compiler.

processTestResources — Copy

Copies test resources into the test resources directory.

test(Classes

Depends on: compileTestlava, processTestResources

This is an aggregate task that just depends on other tasks. Other plugins may attach additional
test compilation tasks to it.

jar — jJar

Depends on: classes

Assembles the production JAR file, based on the classes and resources attached to the main
source set.

javadoc — Javadoc

Depends on: classes
Generates API documentation for the production Java source using Javadoc.

test — Test

Depends on: test(lasses, and all tasks which produce the test runtime classpath
Runs the unit tests using JUnit or TestNG.

uploadArchives — Upload

Depends on: jar, and any other task that produces an artifact attached to the archives
configuration

Uploads artifacts in the archives configuration — including the production JAR file — to the
configured repositories.

clean — Delete

Deletes the project build directory.

cleanTaskName — Delete

../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.tasks.compile.JavaCompile.html
../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.tasks.bundling.Jar.html
../dsl/org.gradle.api.tasks.javadoc.Javadoc.html
../dsl/org.gradle.api.tasks.testing.Test.html
../dsl/org.gradle.api.tasks.Upload.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html

Deletes files created by the specified task. For example, cleanJar will delete the JAR file created
by the jar task and cleanTest will delete the test results created by the test task.

SourceSet Tasks

For each source set you add to the project, the Java plugin adds the following tasks:

compileSourceSetJava — JavaCompile

Depends on: All tasks which contribute to the source set’s compilation classpath
Compiles the given source set’s Java source files using the JDK compiler.

processSourceSetResources — Copy

Copies the given source set’s resources into the resources directory.

sourceSetClasses — Task

Depends on: compileSourceSetJava, processSourceSetResources

Prepares the given source set’s classes and resources for packaging and execution. Some plugins
may add additional compilation tasks for the source set.

Lifecycle Tasks

The Java plugin attaches some of its tasks to the lifecycle tasks defined by the Base Plugin — which
the Java Plugin applies automatically — and it also adds a few other lifecycle tasks:

assemble
Depends on: jar, and all other tasks that create artifacts attached to the archives configuration

Aggregate task that assembles all the archives in the project. This task is added by the Base
Plugin.

check
Depends on: test

Aggregate task that performs verification tasks, such as running the tests. Some plugins add
their own verification tasks to check. You should also attach any custom Test tasks to this
lifecycle task if you want them to execute for a full build. This task is added by the Base Plugin.

build
Depends on: check, assemble

Aggregate tasks that performs a full build of the project. This task is added by the Base Plugin.

buildNeeded

Depends on: build, and buildNeeded tasks in all projects that are dependencies in the
testRuntimeClasspath configuration.

Performs a full build of the project and all projects it depends on.

buildDependents

../dsl/org.gradle.api.tasks.compile.JavaCompile.html
../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.Task.html

Depends on: build, and buildDependents tasks in all projects that have this project as a
dependency in theeir testRuntimeClasspath configurations

Performs a full build of the project and all projects which depend upon it.

buildConfigName — task rule

Depends on: all tasks that generate the artifacts attached to the named — ConfigName —
configuration

Assembles the artifacts for the specified configuration. This rule is added by the Base Plugin.

uploadConfigName — task rule, type: Upload

Depends on: all tasks that generate the artifacts attached to the named — ConfigName —
configuration

Assembles and uploads the artifacts in the specified configuration. This rule is added by the Base
Plugin.

The following diagram shows the relationships between these tasks.

test]ﬂ—[check

testClasses

uploadArchives

A

clean

Figure 28. Java plugin - tasks

Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below. It
assigns those configurations to tasks such as compilelava and test.

Dependency configurations

To find information on the api configuration, please consult the Java Library Plugin

NOTE . .
reference documentation and the Dependency Management Tutorial.

compile(Deprecated)

Compile time dependencies. Superseded by implementation.

implementation extends compile

Implementation only dependencies.

compileOnly
Compile time only dependencies, not used at runtime.

../dsl/org.gradle.api.tasks.Upload.html

compileClasspath extends compile, compileOnly, implementation

Compile classpath, used when compiling source. Used by task compileJlava.

annotationProcessor
Annotation processors used during compilation.

runtime(Deprecated) extends compile

Runtime dependencies. Superseded by runtimeOnly.

runtimeOnly
Runtime only dependencies.

runtimeClasspath extends runtimeOnly, runtime, implementation

Runtime classpath contains elements of the implementation, as well as runtime only elements.

testCompile(Deprecated) extends compile

Additional dependencies for compiling tests. Superseded by testImplementation.

testImplementation extends testCompile, implementation

Implementation only dependencies for tests.

testCompileOnly
Additional dependencies only for compiling tests, not used at runtime.

testCompileClasspath extends testCompile, testCompileOnly, testImplementation

Test compile classpath, used when compiling test sources. Used by task compileTestJava.

testRuntime(Deprecated) extends runtime, testCompile

Additional dependencies for running tests only. Used by task test. Superseded by
testRuntimeOnly.

testRuntimeOnly extends runtimeOnly

Runtime only dependencies for running tests. Used by task test.

testRuntimeClasspath extends testRuntimeOnly, testRuntime, testImplementation

Runtime classpath for running tests.

archives
Artifacts (e.g. jars) produced by this project. Used by tasks uploadArchives.

default extends runtime

The default configuration used by a project dependency on this project. Contains the artifacts
and dependencies required by this project at runtime.

runtimeClasspath

testCompileClasspath

L |
[compileTesd ava laskj [teleompilerﬂyj

testRuntimeClasspath

e stRuntimej (le stl.mplementat.ionj

default testRuntimeOnly compileClasspath

uploadArchives task

| - A
wploads ,‘adds jar S adds jar
N .

RN

N
® wsed by

N
test task

Figure 29. Java plugin - dependency configurations

For each source set you add to the project, the Java plugins adds the following dependency
configurations:

SourceSet dependency configurations

sourceSetCompile(Deprecated)

Compile time dependencies for the given source set. Superseded by sourceSetImplementation.

sourceSetImplementation extends sourceSetCompile

Compile time dependencies for the given source set. Used by sourceSetCompileClasspath,
sourceSetRuntimeClasspath.

sourceSetCompileOnly
Compile time only dependencies for the given source set, not used at runtime.

sourceSetCompileClasspath extends compileSourceSetJava

Compile classpath, used when compiling source. Used by sourceSetCompile,
sourceSetCompileOnly, sourceSetImplementation

sourceSetAnnotationProcessor
Annotation processors used during compilation of this source set.

sourceSetRuntime(Deprecated)

Runtime dependencies for the given source set. Used by sourceSetCompile. Superseded by
sourceSetRuntimeOnly.

sourceSetRuntimeOnly
Runtime only dependencies for the given source set.

sourceSetRuntimeClasspath extends sourceSetRuntimeOnly, sourceSetRuntime,
sourceSetImplementation

Runtime classpath contains elements of the implementation, as well as runtime only elements.

Publishing

components. java
A SoftwareComponent for publishing the production JAR created by the jar task. This
component includes the runtime dependency information for the JAR.

../javadoc/org/gradle/api/component/SoftwareComponent.html

Convention properties

The Java Plugin adds a number of convention properties to the project, shown below. You can use
these properties in your build script as though they were properties of the project object.

Directory properties

String reporting.baseDir

The name of the directory to generate reports into, relative to the build directory. Default value:
reports

(read-only) File reportsDir
The directory to generate reports into. Default value: buildDir/reporting.baseDir

String testResultsDirName

The name of the directory to generate test result .xml files into, relative to the build directory.
Default value: test-results

(read-only) File testResultsDir
The directory to generate test result .xml files into. Default value: buildDir/testResultsDirName

String testReportDirName

The name of the directory to generate the test report into, relative to the reports directory.
Default value: tests

(read-only) File testReportDir
The directory to generate the test report into. Default value: reportsDir/testReportDirName

String libsDirName

The name of the directory to generate libraries into, relative to the build directory. Default value:
libs

(read-only) File 1ibsDir
The directory to generate libraries into. Default value: buildDir/1ibsDirName

String distsDirName

The name of the directory to generate distributions into, relative to the build directory. Default
value: distributions

(read-only) File distsDir
The directory to generate distributions into. Default value: buildDir/distsDirName

String docsDirName

The name of the directory to generate documentation into, relative to the build directory. Default
value: docs

(read-only) File docsDir
The directory to generate documentation into. Default value: buildDir/docsDirName

String dependencyCacheDirName

The name of the directory to use to cache source dependency information, relative to the build
directory. Default value: dependency-cache

Other convention properties

(read-only) SourceSetContainer sourceSets
Contains the project’s source sets. Default value: Not null SourceSetContainer

JavaVersion sourceCompatibility

Java version compatibility to use when compiling Java source. Default value: version of the
current JVM in use JavaVersion. Can also set using a String or a Number, e.g. '1.5" or 1.5.

JavaVersion targetCompatibility

Java version to generate classes for. Default value: sourceCompatibility. Can also set using a
String or Number, e.g. '1.5" or 1.5.

String archivesBaseName
The basename to use for archives, such as JAR or ZIP files. Default value: projectName

Manifest manifest
The manifest to include in all JAR files. Default value: an empty manifest.

These properties are provided by convention objects of type JavaPluginConvention, and
BasePluginConvention.

Javadoc

The javadoc task is an instance of Javadoc. It supports the core Javadoc options and the options of
the standard doclet described in the reference documentation of the Javadoc executable. For a
complete list of supported Javadoc options consult the API documentation of the following classes:
CoreJavadocOptions and Standard]JavadocDocletOptions.

Javadoc properties

FileCollection classpath
Default value: sourceSets.main.output + sourceSets.main.compileClasspath

FileTree source

Default value: sourceSets.main.allJava. Can set using anything described in Understanding
implicit conversion to file collections.

File destinationDir

Default value: docsDir/javadoc

String title
Default value: The name and version of the project

Clean

The clean task is an instance of Delete. It simply removes the directory denoted by its dir property.

Clean properties

File dir

../javadoc/org/gradle/api/tasks/SourceSetContainer.html
../javadoc/org/gradle/api/tasks/SourceSetContainer.html
../javadoc/org/gradle/api/JavaVersion.html
../javadoc/org/gradle/api/JavaVersion.html
../javadoc/org/gradle/api/JavaVersion.html
../javadoc/org/gradle/api/java/archives/Manifest.html
../javadoc/org/gradle/api/plugins/JavaPluginConvention.html
../javadoc/org/gradle/api/plugins/BasePluginConvention.html
../dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
../javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
../javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
../javadoc/org/gradle/api/file/FileCollection.html
../javadoc/org/gradle/api/file/FileTree.html
../dsl/org.gradle.api.tasks.Delete.html

Default value: buildDir

Resources

The Java plugin uses the Copy task for resource handling. It adds an instance for each source set in
the project. You can find out more about the copy task in File copying in depth.

ProcessResources properties

Object srcDirs
Default value: sourceSet.resources. Can set using anything described in Understanding implicit
conversion to file collections.

File destinationDir

Default value: sourceSet.output.resourcesDir. Can set using anything described in file paths in
depth.

CompileJava

The Java plugin adds a JavaCompile instance for each source set in the project. Some of the most
common configuration options are shown below.

Compile properties

FileCollection classpath
Default value: sourceSet.compileClasspath

FileTree source

Default value: sourceSet.java. Can set using anything described in Understanding implicit
conversion to file collections.

File destinationDir
Default value: sourceSet.java.outputDir

By default, the Java compiler runs in the Gradle process. Setting options.fork to true causes
compilation to occur in a separate process. In the case of the Ant javac task, this means that a new
process will be forked for each compile task, which can slow down compilation. Conversely,
Gradle’s direct compiler integration (see above) will reuse the same compiler process as much as
possible. In both cases, all fork options specified with options.forkOptions will be honored.

Incremental Java compilation

Gradle comes with a sophisticated incremental Java compiler that is active by default.
This gives you the following benefits

e Incremental builds are much faster.

* The smallest possible number of class files are changed. Classes that don’t need to be
recompiled remain unchanged in the output directory. An example scenario when this is really
useful is using JRebel - the fewer output classes are changed the quicker the JVM can use

../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.tasks.compile.JavaCompile.html
../javadoc/org/gradle/api/file/FileCollection.html
../javadoc/org/gradle/api/file/FileTree.html

refreshed classes.

To help you understand how incremental compilation works, the following provides a high-level
overview:

* Gradle will recompile all classes affected by a change.

* A class is affected if it has been changed or if it depends on another affected class. This works no
matter if the other class is defined in the same project, another project or even an external
library.

* A class’s dependencies are determined from type references in its bytecode.

» Since constants can be inlined, any change to a constant will result in Gradle recompiling all
source files. For that reason, you should try to minimize the use of constants in your source
code and replace them with static methods where possible.

» Since source-retention annotations are not visible in bytecode, changes to a source-retention
annotation will result in full recompilation.

* You can improve incremental compilation performance by applying good software desing
principles like loose coupling. For instance, if you put an interface between a concrete class and
its dependents, the dependent classes are only recompiled when the interface changes, but not
when the implementation changes.

* The class analysis is cached in the project directory, so the first build after a clean checkout can
be slower. Consider turning off the incremental compiler on your build server.

Known issues

* If a compile task fails due to a compile error, it will do a full compilation again the next time it is
invoked.

Incremental annotation processing

Starting with Gradle 4.7, the incremental compiler also supports incremental annotation
processing. Annotation processors need to opt in to this feature, otherwise they will trigger a full
recompilation.

As a user you can see which annotation processors are triggering full recompilations in the --info
log. Incremental annotation processing will be deactivated if a custom executable or javaHome is
configured on the compile task.

Making an annotation processor incremental

Please first have a look at incremental Java compilation, as incremental annotation processing
builds on top of it.

Gradle supports incremental compilation for two common categories of annotation processors:
"isolating" and "aggregating". Please consult the information below to decide which category fits
your processor.

You can then register your processor for incremental compilation using a file in the processor’s
META-INF directory. The format is one line per processor, with the fully qualified name of the

processor class and its category separated by a comma.

Example: Registering incremental annotation processors

processor/src¢/main/resources/META-INF/gradle/incremental.annotation.processors

EntityProcessor,isolating
ServiceRegistryProcessor,dynamic

If your processor can only decide at runtime whether it is incremental or not, you can declare it as
"dynamic" in the META-INF descriptor and return its true type at runtime using the
Processor#getSupportedOptions() method.

Example: Registering incremental annotation processors dynamically

processor/src/main/java/ServiceRegistryProcessor.java

public Set<String> getSupportedOptions() {
return Collections.singleton("org.gradle.annotation.processing.aggregating");

}

Both categories have the following limitations:

* They must generate their files using the Filer API. Writing files any other way will result in
silent failures later on, as these files won’t be cleaned up correctly. If your processor does this, it
cannot be incremental.

* They must not depend on compiler-specific APIs like com.sun.source.util.Trees. Gradle wraps
the processing APIs, so attempts to cast to compiler-specific types will fail. If your processor
does this, it cannot be incremental, unless you have some fallback mechanism.

o If they use Filer#getResource, Gradle will recompile all source files. See gradle/issues/4701

o If they use Filer#createResource, Gradle will recompile all source files. See gradle/issues/4702

"Isolating" annotation processors

The fastest category, these look at each annotated element in isolation, creating generated files or
validation messages for it. For instance an EntityProcessor could create a <TypeName>Repository for
each type annotated with @Entity.

Example: An isolated annotation processor

processor/sr¢/main/java/EntityProcessor.java

Set<? extends Element> entities = roundEnv.getElementsAnnotatedWith(entityAnnotation);
for (Element entity : entities) {

createRepository((TypeElement) entity);
}

https://docs.oracle.com/javase/10/docs/api/javax/annotation/processing/Processor.html#getSupportedOptions()
https://docs.oracle.com/javase/10/docs/api/javax/annotation/processing/Filer.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/util/Trees.html
https://docs.oracle.com/javase/10/docs/api/javax/annotation/processing/Filer.html#getResource(javax.tools.JavaFileManager.Location,java.lang.CharSequence,java.lang.CharSequence)
https://github.com/gradle/gradle/issues/4701
https://docs.oracle.com/javase/10/docs/api/javax/annotation/processing/Filer.html#createResource(javax.tools.JavaFileManager.Location,java.lang.CharSequence,java.lang.CharSequence,javax.lang.model.element.Element...)
https://github.com/gradle/gradle/issues/4702

"Isolating" processors have the following limitations:

* They must make all decisions (code generation, validation messages) for an annotated type
based on information reachable from its AST. This means you can analyze the types' super-class,
method return types, annotations etc., even transitively. But you cannot make decisions based
on unrelated elements in the RoundEnvironment. Doing so will result in silent failures because
too few files will be recompiled later. If your processor needs to make decisions based on a
combination of otherwise unrelated elements, mark it as "aggregating" instead.

» They must provide exactly one originating element for each file generated with the Filer APL If
zero or many originating elements are provided, Gradle will recompile all source files.

When a source file is recompiled, Gradle will recompile all files generated from it. When a source
file is deleted, the files generated from it are deleted.

"Aggregating" annotation processors

These can aggregate several source files into one ore more output files or validation messages. For
instance, a ServiceRegistryProcessor could create a single ServiceRegistry with one method for
each type annotated with @Service

Example: An aggregating annotation processor

processor/src/main/java/ServiceRegistryProcessor.java

JavaFileObject serviceRegistry = filer.createSourceFile("ServiceRegistry");

Writer writer = serviceRegistry.openWriter();

writer.write("public class ServiceRegistry {");

for (Element service : roundEnv.getElementsAnnotatedWith(serviceAnnotation)) {
addServiceCreationMethod(writer, (TypeElement) service);

}
writer.write("}");
writer.close();

"Aggregating" processors have the following limitations:

* They can only read CLASS or RUNTIME retention annotations

* They can only read parameter names if the user passes the -parameters compiler argument.

Gradle will always reprocess (but not recompile) all annotated files that the processor was
registered for. Gradle will always recompile any files the processor generates.

Compile avoidance

If a dependent project has changed in an ABI-compatible way (only its private API has changed),
then Java compilation tasks will be up-to-date. This means that if project A depends on project B and
a class in B is changed in an ABI-compatible way (typically, changing only the body of a method),
then Gradle won’t recompile A.

Some of the types of changes that do not affect the public API and are ignored:

https://en.wikipedia.org/wiki/Application_binary_interface

* Changing a method body
* Changing a comment
* Adding, removing or changing private methods, fields, or inner classes

* Adding, removing or changing a resource

Changing the name of jars or directories in the classpath

* Renaming a parameter

Compile-avoidance is deactivated if annotation processors are found on the compile classpath,
because for annotation processors the implementation details matter. Annotation processors
should be declared on the annotation processor path instead. Gradle 5.0 will ignore processors on
the compile classpath.

Example: Declaring annotation processors

build.gradle

dependencies {

// The dagger compiler and its transitive dependencies will only be found on
annotation processing classpath

annotationProcessor 'com.google.dagger:dagger-compiler:2.8'

// And we still need the Dagger library on the compile classpath itself
implementation 'com.google.dagger:dagger:2.8'

Test

The test task is an instance of Test. It automatically detects and executes all unit tests in the test
source set. It also generates a report once test execution is complete. JUnit and TestNG are both
supported. Have a look at Test for the complete API.

See the Testing in Java & JVM projects chapter for more details.

Jar

The jar task creates a JAR file containing the class files and resources of the project. The JAR file is
declared as an artifact in the archives dependency configuration. This means that the JAR is
available in the classpath of a dependent project. If you upload your project into a repository, this
JAR is declared as part of the dependency descriptor. You can learn more about how to work with
archives in Archive creation in depth and artifact configurations in Legacy Publishing.

Manifest

Each jar or war object has a manifest property with a separate instance of Manifest. When the
archive is generated, a corresponding MANIFEST.MF file is written into the archive.

../dsl/org.gradle.api.tasks.testing.Test.html
../dsl/org.gradle.api.tasks.testing.Test.html
../javadoc/org/gradle/api/java/archives/Manifest.html

Example: Customization of MANIFEST.MF

build.gradle

jar {
manifest {
attributes("Implementation-Title": "Gradle",
"Implementation-Version": version)

You can create stand-alone instances of a Manifest. You can use that for example, to share manifest
information between jars.

Example: Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {
attributes("Implementation-Title": "Gradle",
"Implementation-Version": version)

}
task fooJar(type: Jar) {
manifest = project.manifest {
from sharedManifest

}

You can merge other manifests into any Manifest object. The other manifests might be either
described by a file path or, like in the example above, by a reference to another Manifest object.

Example: Separate MANIFEST.MF for a particular archive

build.gradle

task barJar(type: Jar) {
manifest {

attributes key1: 'valuel'

from sharedManifest, 'src/config/basemanifest.txt'
from('src/config/javabasemanifest.txt',

"src/config/libbasemanifest.txt') {
eachEntry { details ->
if (details.baseValue != details.mergeValue) {
details.value = baseValue

}

if (details.key == 'foo') {
details.exclude()

}

Manifests are merged in the order they are declared by the from statement. If the base manifest and
the merged manifest both define values for the same key, the merged manifest wins by default. You
can fully customize the merge behavior by adding eachEntry actions in which you have access to a
ManifestMergeDetails instance for each entry of the resulting manifest. The merge is not
immediately triggered by the from statement. It is done lazily, either when generating the jar, or by
calling writeTo or effectiveManifest

You can easily write a manifest to disk.

Example: Saving a MANIFEST.MF to disk

build.gradle

jar.manifest.writeTo("$buildDir/mymanifest.mf")

The Java Library Plugin

The Java Library plugin expands the capabilities of the Java plugin by providing specific knowledge
about Java libraries. In particular, a Java library exposes an API to consumers (i.e., other projects
using the Java or the Java Library plugin). All the source sets, tasks and configurations exposed by
the Java plugin are implicitly available when using this plugin.

Usage

To use the Java Library plugin, include the following in your build script:

../javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

Example: Using the Java Library plugin

build.gradle

apply plugin: 'java-library'

API and implementation separation

The key difference between the standard Java plugin and the Java Library plugin is that the latter
introduces the concept of an API exposed to consumers. A library is a Java component meant to be
consumed by other components. It’s a very common use case in multi-project builds, but also as
soon as you have external dependencies.

The plugin exposes two configurations that can be used to declare dependencies: api and
implementation. The api configuration should be used to declare dependencies which are exported
by the library API, whereas the implementation configuration should be used to declare
dependencies which are internal to the component.

Example: Declaring API and implementation dependencies

build.gradle

dependencies {
api 'commons-httpclient:commons-httpclient:3.1'
implementation 'org.apache.commons:commons-lang3:3.5"

Dependencies appearing in the api configurations will be transitively exposed to consumers of the
library, and as such will appear on the compile classpath of consumers. Dependencies found in the
implementation configuration will, on the other hand, not be exposed to consumers, and therefore
not leak into the consumers' compile classpath. This comes with several benefits:

» dependencies do not leak into the compile classpath of consumers anymore, so you will never
accidentally depend on a transitive dependency

« faster compilation thanks to reduced classpath size

* less recompilations when implementation dependencies change: consumers would not need to
be recompiled

* cleaner publishing: when used in conjunction with the new maven-publish plugin, Java libraries
produce POM files that distinguish exactly between what is required to compile against the
library and what is required to use the library at runtime (in other words, don’t mix what is
needed to compile the library itself and what is needed to compile against the library).

NOTE The compile configuration still exists but should not be used as it will not offer the
guarantees that the api and implementation configurations provide.

If your build consumes a published module with POM metadata, the Java and Java Library plugins

both honor api and implementation separation through the scopes used in the pom. Meaning that

the compile classpath only includes compile scoped dependencies, while the runtime classpath adds
the runtime scoped dependencies as well.

This often does not have an effect on modules published with Maven, where the POM that defines
the project is directly published as metadata. There, the compile scope includes both dependencies
that were required to compile the project (i.e. implementation dependencies) and dependencies
required to compile against the published library (i.e. API dependencies). For most published
libraries, this means that all dependencies belong to the compile scope. However, as mentioned
above, if the library is published with Gradle, the produced POM file only puts api dependencies
into the compile scope and the remaining implementation dependencies into the runtime scope.

Separating compile and runtime scope of modules is active by default in Gradle 5.0+.
NOTE In Gradle 4.6+, you need to activate it by adding
enableFeaturePreview('IMPROVED_POM_SUPPORT') in settings.gradle.

Recognizing API and implementation dependencies

This section will help you identify API and Implementation dependencies in your code using simple
rules of thumb. The first of these is:

* Prefer the implementation configuration over api when possible

This keeps the dependencies off of the consumer’s compilation classpath. In addition, the
consumers will immediately fail to compile if any implementation types accidentally leak into the
public API.

So when should you use the api configuration? An API dependency is one that contains at least one
type that is exposed in the library binary interface, often referred to as its ABI (Application Binary
Interface). This includes, but is not limited to:

* types used in super classes or interfaces

* types used in public method parameters, including generic parameter types (where public is
something that is visible to compilers. IL.e. , public, protected and package private members in the
Java world)

* types used in public fields

* public annotation types
By contrast, any type that is used in the following list is irrelevant to the ABIL, and therefore should
be declared as an implementation dependency:

* types exclusively used in method bodies

* types exclusively used in private members

* types exclusively found in internal classes (future versions of Gradle will let you declare which

packages belong to the public API)

The following class makes use of a couple of third-party libraries, one of which is exposed in the
class’s public API and the other is only used internally. The import statements don’t help us

determine which is which, so we have to look at the fields, constructors and methods instead:

Example: Making the difference between API and implementation

src/main/java/org/gradle/HttpClientWrapper.java

// The following types can appear anywhere in the code
// but say nothing about API or implementation usage
import org.apache.commons.httpclient.*;

import org.apache.commons.httpclient.methods.*;

import org.apache.commons.lang3.exception.ExceptionUtils;
import java.io.IOException;

import java.io.UnsupportedEncodingException;

public class HttpClientWrapper {
private final HttpClient client; // private member: implementation details

// HttpClient is used as a parameter of a public method

// so "leaks" into the public API of this component

public HttpClientWrapper(HttpClient client) {
this.client = client;

}

// public methods belongs to your API
public byte[] doRawGet(String url) {
GetMethod method = new GetMethod(url);
try {
int statusCode = doGet(method);
return method.getResponseBody();

} catch (Exception e) {

ExceptionUtils.rethrow(e); // this dependency is internal only
} finally {

method.releaseConnection();

}

return null;

}

// GetMethod is used in a private method, so doesn't belong to the API
private int doGet(GetMethod method) throws Exception {
int statusCode = client.executeMethod(method);
if (statusCode != HttpStatus.SC_OK) {
System.err.println("Method failed: " + method.getStatuslLine());
}

return statusCode;

The public constructor of HttpClientWrapper uses HttpClient as a parameter, so it is exposed to

consumers and therefore belongs to the API. Note that GetMethod is used in the signature of a private
method, and so it doesn’t count towards making HttpClient an API dependency.

On the other hand, the ExceptionUtils type, coming from the commons-1lang library, is only used in a
method body (not in its signature), so it’s an implementation dependency.

Therefore, we can deduce that commons-httpclient is an API dependency, whereas commons-1ang is an
implementation dependency. This conclusion translates into the following declaration in the build
script:

Example: Declaring API and implementation dependencies
build.gradle
dependencies {

api 'commons-httpclient:commons-httpclient:3.1"
implementation 'org.apache.commons:commons-lang3:3.5"

The Java Library plugin configurations

The following graph describes the main configurations setup when the Java Library plugin is in use.

apiElements(C) compileOnly(C, R)

f

compileClasspath(R) runtimeElements(C) runtimeClasspath(R)

* The configurations in green are the ones a user should use to declare dependencies

* The configurations in pink are the ones used when a component compiles, or runs against the
library

* The configurations in blue are internal to the component, for its own use

» The configurations in white are configurations inherited from the Java plugin

And the next graph describes the test configurations setup:

testCompileOnly(C, R)

"\

testCompileClasspath(R)

testRuntimeClasspath(R)

The compile, testCompile, runtime and testRuntime configurations inherited from the
NOTE Java plugin are still available but are deprecated. You should avoid using them, as
they are only kept for backwards compatibility.

The role of each configuration is described in the following tables:

Table 17. Java Library plugin - configurations used to declare dependencies

Configura Role
tion name

api Declaring API
dependencies

implementa Declaring
tion implementation
dependencies

compileOnl Declaring compile
y only dependencies

runtimeOnl Declaring runtime
Y dependencies

testImplem Test dependencies
entation

Consu Resol Description

mable vable

?

no

no

yes

no

no

?

no

no

yes

no

no

This is where you should declare dependencies
which are transitively exported to consumers,
for compile.

This is where you should declare dependencies
which are purely internal and not meant to be
exposed to consumers.

This is where you should declare dependencies
which are only required at compile time, but
should not leak into the runtime. This typically
includes dependencies which are shaded when
found at runtime.

This is where you should declare dependencies
which are only required at runtime, and not at
compile time.

This is where you should declare dependencies
which are used to compile tests.

Configura Role Consu Resol Description

tion name mable vable
? ?
testCompil Declaring test yes yes This is where you should declare dependencies
eOnly compile only which are only required at test compile time,
dependencies but should not leak into the runtime. This
typically includes dependencies which are
shaded when found at runtime.
testRuntim Declaring test no no This is where you should declare dependencies
eOnly runtime which are only required at test runtime, and not
dependencies at test compile time.

Table 18. Java Library plugin — configurations used by consumers

Configura Role Consu Resolv Description

tion name mable? able?

apiklement For compiling yes no This configuration is meant to be used by

> against this consumers, to retrieve all the elements necessary
library to compile against this library. Unlike the default

configuration, this doesn’t leak implementation or
runtime dependencies.

runtimeEle For executing yes no This configuration is meant to be used by
TS this library consumers, to retrieve all the elements necessary
to run against this library.

Table 19. Java Library plugin - configurations used by the library itself

Configurat Role Consu Resol Description
ion name mable vable
? ?
compileCla For compiling this no yes This configuration contains the compile
sspath library classpath of this library, and is therefore used

when invoking the java compiler to compile it.

runtimeCla For executing this no yes This configuration contains the runtime
sspath library classpath of this library

testCompil For compiling the no yes This configuration contains the test compile
eClasspath tests of this library classpath of this library.

testRuntim For executing tests no yes This configuration contains the test runtime
eClasspath of this library classpath of this library

Known issues

Compatibility with other plugins

At the moment the Java Library plugin is only wired to behave correctly with the java plugin. Other
plugins, such as the Groovy plugin, may not behave correctly. In particular, if the Groovy plugin is
used in addition to the java-library plugin, then consumers may not get the Groovy classes when

they consume the library. To workaround this, you need to explicitly wire the Groovy compile
dependency, like this:

Example: Configuring the Groovy plugin to work with Java Library

a/build.gradle

configurations {
apiElements {
outgoing.variants.getByName('classes"').artifact(
file: compileGroovy.destinationDir,
type: ArtifactTypeDefinition.JVM_CLASS_DIRECTORY,
builtBy: compileGroovy)

Increased memory usage for consumers

When a project uses the Java Library plugin, consumers will use the output classes directory of this
project directly on their compile classpath, instead of the jar file if the project uses the Java plugin.
An indirect consequence is that up-to-date checking will require more memory, because Gradle will
snapshot individual class files instead of a single jar. This may lead to increased memory
consumption for large projects.

The Java Library Distribution Plugin

The Java library distribution plugin is currently incubating. Please be aware that the

NOTE
DSL and other configuration may change in later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library.
The distribution contains the JAR file for the library and its dependencies.

Usage

To use the Java library distribution plugin, include the following in your build script:

Example: Using the Java library distribution plugin

build.gradle

apply plugin: 'java-library-distribution’

To define the name for the distribution you have to set the baseName property as shown below:

Example: Configure the distribution name

build.gradle

distributions {
main{
baseName = 'my-name'

}

The plugin builds a distribution for your library. The distribution will package up the runtime
dependencies of the library. All files stored in src/main/dist will be added to the root of the archive
distribution. You can run “gradle distZip” to create a ZIP file containing the distribution.

Tasks

The Java library distribution plugin adds the following tasks to the project.

distZip—Zip

Depends on: jar

Creates a full distribution ZIP archive including runtime libraries.

Including other resources in the distribution

All of the files from the src/dist directory are copied. To include any static files in the distribution,
simply arrange them in the src/dist directory, or add them to the content of the distribution.

Example: Include files in the distribution

build.gradle

distributions {
main {
baseName = 'my-name'
contents {
from { 'src/dist' }
}

Dependency Management for Java Projects

This chapter explains how to apply basic dependency management concepts to Java-based projects.
For a detailed introduction to dependency management, see Introduction to Dependency
Management.

Dissecting a typical build script

Let’s have a look at a very simple build script for a Java-based project. It applies the Java Library

../dsl/org.gradle.api.tasks.bundling.Zip.html

plugin which automatically introduces a standard project layout, provides tasks for performing
typical work and adequate support for dependency management.

Example: Dependency declarations for a Java-based project

build.gradle
apply plugin: 'java-library'

repositories {
mavenCentral()

}

dependencies {
implementation 'org.hibernate:hibernate-core:3.6.7.Final’
api 'com.google.guava:guava:23.0'
testImplementation 'junit:junit:4.+'

The Project.dependencies{} code block declares that Hibernate core 3.6.7.Final is required to
compile the project’s production source code. It also states that junit >= 4.0 is required to compile
the project’s tests. All dependencies are supposed to be looked up in the Maven Central repository
as defined by Project.repositories{}. The following sections explain each aspect in more detail.

Declaring module dependencies

There are various types of dependencies that you can declare. One such type is a module
dependency. A module dependency represents a dependency on a module with a specific version
built outside the current build. Modules are usually stored in a repository, such as Maven Central, a
corporate Maven or Ivy repository, or a directory in the local file system.

To define an module dependency, you add it to a dependency configuration:

Example: Definition of a module dependency

build.gradle

dependencies {
implementation 'org.hibernate:hibernate-core:3.6.7.Final’

}

To find out more about defining dependencies, have a look at Declaring Dependencies.

Using dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a
configuration:

Declaring dependencies

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
../dsl/org.gradle.api.artifacts.Configuration.html

A plugin uses configurations to make it easy for build authors to declare what other subprojects
or external artifacts are needed for various purposes during the execution of tasks defined by
the plugin. For example a plugin may need the Spring web framework dependency to compile
the source code.

Resolving dependencies

A plugin uses configurations to find (and possibly download) inputs to the tasks it defines. For
example Gradle needs to download Spring web framework JAR files from Maven Central.

Exposing artifacts for consumption

A plugin uses configurations to define what artifacts it generates for other projects to consume.
For example the project would like to publish its compiled source code packaged in the JAR file
to an in-house Artifactory repository.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined
by the Java Library Plugin.

implementation

The dependencies required to compile the production source of the project which are not part of
the API exposed by the project. For example the project uses Hibernate for its internal
persistence layer implementation.

api
The dependencies required to compile the production source of the project which are part of the
API exposed by the project. For example the project uses Guava and exposes public interfaces
with Guava classes in their method signatures.

testiImplementation

The dependencies required to compile and run the test source of the project. For example the
project decided to write test code with the test framework JUnit.

Various plugins add further standard configurations. You can also define your own custom
configurations in your build via Project.configurations{}. See Managing Dependency Configurations
for the details of defining and customizing dependency configurations.

Declaring common Java repositories

How does Gradle know where to find the files for external dependencies? Gradle looks for them in
a repository. A repository is a collection of modules, organized by group, name and version. Gradle
understands different repository types, such as Maven and Ivy, and supports various ways of
accessing the repository via HTTP or other protocols.

By default, Gradle does not define any repositories. You need to define at least one with the help of
Project.repositories{} before you can use module dependencies. One option is use the Maven
Central repository:

Example: Usage of Maven central repository

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

build.gradle

repositories {
mavenCentral()

}

You can also have repositories on the local file system. This works for both Maven and Ivy
repositories.

Example: Usage of a local Ivy directory

build.gradle

repositories {
ivy {
// URL can refer to a local directory
url "../local-repo"

A project can have multiple repositories. Gradle will look for a dependency in each repository in
the order they are specified, stopping at the first repository that contains the requested module.

To find out more about defining repositories, have a look at Declaring Repositories.

Publishing artifacts

Dependency configurations are also used to publish files. Gradle calls these files publication
artifacts, or usually just artifacts. As a user you will need to tell Gradle where to publish the
artifacts. You do this by declaring repositories for the uploadArchives task. Here’s an example of
publishing to a Maven repository:

Example: Publishing to a Maven repository

build.gradle
apply plugin: 'maven’

uploadArchives {
repositories {
mavenDeployer {
repository(url: "file://localhost/tmp/myRepo/")
}

Now, when you run gradle uploadArchives, Gradle will build the JAR file, generate a .pom file and
upload the artifacts.

To learn more about publishing artifacts, have a look at Legacy Publishing.

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant
builds in your Gradle builds. In fact, you will find that it’s far easier and more powerful using Ant
tasks in a Gradle build script, than it is to use Ant’s XML format. You could even use Gradle simply
as a powerful Ant task scripting tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the
build.xml file, the handling of the targets, special constructs like macrodefs, and so on. In other
words, everything except the Ant tasks and types. Gradle understands this language, and allows you
to import your Ant build.xml directly into a Gradle project. You can then use the targets of your Ant
build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like javac, copy or jar. For this layer
Gradle provides integration simply by relying on Groovy, and the fantastic AntBuilder.

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external
process. Your build script may contain statements like: "ant clean compile".execute(). [15: In
Groovy you can execute Strings. To learn more about executing external processes with Groovy
have a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki]

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For
example, you could start by importing your existing Ant build. Then you could move your
dependency declarations from the Ant script to your build file. Finally, you could move your tasks
across to your build file, or replace them with some of Gradle’s plugins. This process can be done in
parts over time, and you can have a working Gradle build during the entire process.

Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an AntBuilder
instance. This AntBuilder is used to access Ant tasks, types and properties from your build script.
There is a very simple mapping from Ant’s build.xml format to Groovy, which is explained below.

You execute an Ant task by calling a method on the AntBuilder instance. You use the task name as
the method name. For example, you execute the Ant echo task by calling the ant.echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the
echo task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely
powerful.

Example: Using an Ant task

../javadoc/org/gradle/api/AntBuilder.html

build.gradle

task hello {
dolLast {
String greeting = "hello from Ant'
ant.echo(message: greeting)

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this
example, we pass the message for the echo task as nested text:

Example: Passing nested text to an Ant task

build.gradle

task hello {
dolast {
ant.echo('hello from Ant')
}

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same
way as tasks, by calling a method with the same name as the element we want to define.

Example: Passing nested elements to an Ant task

build.gradle

task zip {
dolLast {
ant.zip(destfile: 'archive.zip') {
fileset(dir: 'src') {
include(name: "**.xml")
exclude(name: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the
method name. The method call returns the Ant data type, which you can then use directly in your
build script. In the following example, we create an Ant path object, then iterate over the contents
of it.

Example: Using an Ant type

build.gradle

task list {
dolast {
def path = ant.path {
fileset(dir: 'libs', includes: '*.jar')

}

path.list().each {
println it

}

More information about AntBuilder can be found in 'Groovy in Action' 8.4 or at the Groovy Wiki.

Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the taskdef (usually easier) or typedef
Ant task, just as you would in a build.xml file. You can then refer to the custom Ant task as you
would a built-in Ant task.

Example: Using a custom Ant task

http://groovy-lang.org/scripting-ant.html

build.gradle

task check {
dolLast {
ant.taskdef(resource: 'checkstyletask.properties') {
classpath {
fileset(dir: 'libs', includes: '*.jar')
}

}
ant.checkstyle(config: 'checkstyle.xml") {

fileset(dir: 'src')

}

You can use Gradle’s dependency management to assemble the classpath to use for the custom
tasks. To do this, you need to define a custom configuration for the classpath, then add some
dependencies to the configuration. This is described in more detail in Declaring Dependencies.

Example: Declaring the classpath for a custom Ant task

build.gradle
configurations {

pmd
}

dependencies {
pmd group: 'pmd', name: 'pmd', version: '4.2.5'

}

To use the classpath configuration, use the asPath property of the custom configuration.

Example: Using a custom Ant task and dependency management together

declaring_dependencies.html

build.gradle

task check {
dolLast {
ant.taskdef(name: 'pmd',
classname: 'net.sourceforge.pmd.ant.PMDTask',
classpath: configurations.pmd.asPath)
ant.pmd(shortFilenames: 'true',
failonruleviolation: 'true',
rulesetfiles: file('pmd-rules.xml').toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: 'src')

Importing an Ant build

You can use the ant.importBuild() method to import an Ant build into your Gradle project. When
you import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate
and execute the Ant targets in exactly the same way as Gradle tasks.

Example: Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>
<target name="hello">
<echo>Hello, from Ant</echo>
</target>
</project>

Output of gradle hello
> gradle hello

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Example: Task that depends on Ant target
build.gradle

ant.importBuild 'build.xml'

task intro(dependsOn: hello) {

dolast {
println 'Hello, from Gradle'

}

Output of gradle intro
> gradle intro

> Task :hello
[ant:echo] Hello, from Ant

> Task :intro
Hello, from Gradle

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Or, you can add behaviour to an Ant target:

Example: Adding behaviour to an Ant target

build.gradle

ant.importBuild 'build.xml'

hello {
dolast {
println 'Hello, from Gradle'
}
}

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Example: Ant target that depends on Gradle task

build.gradle
ant.importBuild 'build.xml'

task intro {
doLast {
println 'Hello, from Gradle'

}

build.xml

<project>
<target name="hello" depends="intro">
<echo>Hello, from Ant</echo>
</target>
</project>

Output of gradle hello
> gradle hello

> Task :intro
Hello, from Gradle

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming
collision with existing Gradle tasks. To do this, use the AntBuilder.importBuild(java.lang.Object,
org.gradle.api.Transformer) method.

Example: Renaming imported Ant targets

build.gradle

ant.importBuild('build.xml"') { antTargetName ->

a-' + antTargetName

}

../javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-
../javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-

build.xml

<project>
<target name="hello">
<echo>Hello, from Ant</echo>
</target>
</project>

Output of gradle a-hello

> gradle a-hello

> Task :a-hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Note that while the second argument to this method should be a Transformer, when programming
in Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to
Groovy’s support for automatically coercing closures to single-abstract-method types.

Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You
can set the property directly on the AntBuilder instance. The Ant properties are also available as a
Map which you can change. You can also use the Ant property task. Below are some examples of
how to do this.

Example: Setting an Ant property

build.gradle

ant.buildDir = buildDir

ant.properties.buildDir = buildDir
ant.properties['buildDir'] = buildDir
ant.property(name: 'buildDir', location: buildDir)

build.xml

<echo>buildDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the AntBuilder instance. The Ant properties are
also available as a Map. Below are some examples.

../javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Example: Getting an Ant property

build.xml

<property name="antProp" value="a property defined in an Ant build"/>

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example: Setting an Ant reference

build.gradle
ant.path(id: 'classpath', location: 'libs")

ant.references.classpath = ant.path(location: 'libs")
ant.references['classpath'] = ant.path(location: 'libs")

build.xml

<path refid="classpath"/>

There are several ways to get an Ant reference:

Example: Getting an Ant reference

build.xml

<path id="antPath" location="1ibs"/>

build.gradle

println ant.references.antPath
println ant.references['antPath']

Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in
the Gradle output. By default, these are mapped as follows:

Table 20. Ant message priority mapping

Ant Message Priority Gradle Log Level

VERBOSE "DEBUG"
DEBUG "DEBUG"
INFO "INFO®
WARN "WARN"
ERROR "ERROR"
Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LIFECYCLE log level, which is the
default for Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those
messages from Gradle, a build would have to be run with the log level set to INFO, potentially
logging much more output than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would
require the build to be run at a higher log level, such as QUIET. However, this could result in other,
desirable output being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of
message priority to Gradle log level. This is done by setting the priority that should map to the
default Gradle LIFECYCLE log level using the AntBuilder.setLifecycleLoglLevel(java.lang.String)
method. When this value is set, any Ant message logged at the configured priority or above will be
logged at least at LIFECYCLE. Any Ant message logged below this priority will be logged at most at
INFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed
at the LIFECYCLE log level.

Example: Fine tuning Ant logging

build.gradle
ant.lifecycleloglLevel = "INFQ"

task hello {
dolast {
ant.echo(level: "info", message: "hello from info priority!"

}

../javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] hello from info priority!

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

On the other hand, if the lifecycleLoglevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the INFO level
and would be suppressed by default.

API

The Ant integration is provided by AntBuilder.

The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsers using ANTLR.

NOTE The ANTLR plugin supports ANTLR version 2, 3 and 4.

Usage

To use the ANTLR plugin, include the following in your build script:

Example: Using the ANTLR plugin

build.gradle

apply plugin: 'antlr'

Tasks
The ANTLR plugin adds a number of tasks to your project, as shown below.

generateGrammarSource — AntlrTask

Generates the source files for all production ANTLR grammars.

generateTestGrammarSource — AntlrTask

Generates the source files for all test ANTLR grammars.

generateSourceSetGrammarSource — AntlrTask

Generates the source files for all ANTLR grammars for the given source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

../javadoc/org/gradle/api/AntBuilder.html
http://www.antlr.org/
../dsl/org.gradle.api.plugins.antlr.AntlrTask.html
../dsl/org.gradle.api.plugins.antlr.AntlrTask.html
../dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Table 21. ANTLR plugin - additional task dependencies

Task name Depends on
“compileJava® ‘generateGrammarSource |
“compileTestJava" ‘generateTestGrammarSource
“compile__SourceSet_ Java" “generate_ SourceSet__GrammarSource"

Project layout

src/main/antlr

Production ANTLR grammar files. If the ANTLR grammar is organized in packages, the structure
in the antlr folder should reflect the package structure. This ensures that the generated sources
end up in the correct target subfolder.

src/test/antlr
Test ANTLR grammar files.

src/sourceSet/antlr
ANTLR grammar files for the given source set.

Dependency management

The ANTLR plugin adds an antlr dependency configuration which provides the ANTLR
implementation to use. The following example shows how to use ANTLR version 3.

Example: Declare ANTLR version

build.gradle

repositories {
mavenCentral()

}

dependencies {
antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3
// antlr "org.antlr:antlr4:4.5" // use ANTLR version 4

If no dependency is declared, antlr:antlr:2.7.7 will be used as the default. To use a different
ANTLR version add the appropriate dependency to the antlr dependency configuration as above.

Convention properties

The ANTLR plugin does not add any convention properties.

Source set properties

The ANTLR plugin adds the following properties to each source set in the project.

antlr — SourceDirectorySet

The ANTLR grammar files of this source set. Contains all .g or .g4 files found in the ANTLR
source directories, and excludes all other types of files. Default value is non-null.

antlr.srcDirs — Set<File>

The source directories containing the ANTLR grammar files of this source set. Can set using
anything that implicitly converts to a file collection. Default value is [projectDir/src/name
/antlr].

Controlling the ANTLR generator process

The ANTLR tool is executed in a forked process. This allows fine grained control over memory
settings for the ANTLR process. To set the heap size of an ANTLR process, the maxHeapSize property
of AntlrTask can be used. To pass additional command-line arguments, append to the arguments
property of AntlrTask.

Example: Setting custom max heap size and extra arguments for ANTLR

build.gradle

generateGrammarSource {
maxHeapSize = "64m"
arguments += ["-visitor", "-long-messages"]

The Application Plugin

The Application plugin facilitates creating an executable JVM application. It makes it easy to start
the application locally during development, and to package the application as a TAR and/or ZIP
including operating system specific start scripts.

Applying the Application plugin also implicitly applies the Java plugin. The main source set is
effectively the “application”.

Applying the Application plugin also implicitly applies the Distribution plugin. A main distribution is
created that packages up the application, including code dependencies and generated start scripts.

Usage

To use the application plugin, include the following in your build script:

Example: Using the application plugin

build.gradle

apply plugin: 'application'

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry

../dsl/org.gradle.api.file.SourceDirectorySet.html
../dsl/org.gradle.api.plugins.antlr.AntlrTask.html
../dsl/org.gradle.api.plugins.antlr.AntlrTask.html

point) of the application.

Example: Configure the application main class

build.gradle

mainClassName = "org.gradle.sample.Main"

You can run the application by executing the run task (type: JavaExec). This will compile the main
source set, and launch a new JVM with its classes (along with all runtime dependencies) as the
classpath and using the specified main class. You can launch the application in debug mode with
gradle run --debug-jvm (see JavaExec.setDebug(boolean)).

Since Gradle 4.9, the command line arguments can be passed with --args. For example, if you want
to launch the application with command line arguments foo --bar, you can use gradle run
--args="foo --bar" (see JavaExec.setArgsString(java.lang.String).

If your application requires a specific set of JVM settings or system properties, you can configure
the applicationDefaultJvmArgs property. These JVM arguments are applied to the run task and also
considered in the generated start scripts of your distribution.

Example: Configure default JVM settings

build.gradle

applicationDefaultJvmArgs = ["-Dgreeting.language=en"]

If your application’s start scripts should be in a different directory than bin, you can configure the
executableDir property.

Example: Configure custom directory for start scripts

build.gradle

executableDir = "custom _bin dir"

The distribution

A distribution of the application can be created, by way of the Distribution plugin (which is
automatically applied). A main distribution is created with the following content:

Table 22. Distribution content

Location Content

(root dir) src/dist

Lib All runtime dependencies and main source set class files.

bin Start scripts (generated by createStartScripts task).

../javadoc/org.gradle.api.tasks.JavaExec.html
../javadoc/org/gradle/api/tasks/JavaExec.html#setDebug-boolean-
../javadoc/org/gradle/api/tasks/JavaExec.html#setArgsString-java.lang.String-

Static files to be added to the distribution can be simply added to src/dist. More advanced
customization can be done by configuring the CopySpec exposed by the main distribution.

Example: Include output from other tasks in the application distribution

build.gradle

task createDocs {
def docs = file("$buildDir/docs")
outputs.dir docs
dolast {
docs.mkdirs()
new File(docs, "readme.txt").write("Read me!")

}
}
distributions {
main {
contents {
from(createDocs) {
into "docs"
}
}
}

By specifying that the distribution should include the task’s output files (see more about tasks),
Gradle knows that the task that produces the files must be invoked before the distribution can be
assembled and will take care of this for you.

Example: Automatically creating files for distribution

Output of gradle distZip

gradle distZip

Task :createDocs

Task :compilelava

Task :processResources NO-SOURCE
Task :classes

Task :jar

Task :startScripts

Task :distZip

V V V V V V V V

BUILD SUCCESSFUL in @s
5 actionable tasks: 5 executed

You can run gradle installDist to create an image of the application in build/install/projectName.
You can run gradle distZip to create a ZIP containing the distribution, gradle distTar to create an
application TAR or gradle assemble to build both.

../javadoc/org.gradle.api.file.file.CopySpec.html

Customizing start script generation

The application plugin can generate Unix (suitable for Linux, macOS etc.) and Windows start scripts
out of the box. The start scripts launch a JVM with the specified settings defined as part of the
original build and runtime environment (e.g. JAVA_OPTS env var). The default script templates are
based on the same scripts used to launch Gradle itself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of
CreateStartScripts for more details and customization examples.

Tasks
The Application plugin adds the following tasks to the project.

run — JavaExec

Depends on: classes
Starts the application.

startScripts — CreateStartScripts

Depends on: jar
Creates OS specific scripts to run the project as a JVM application.

installDist — Sync

Depends on: jar, startScripts
Installs the application into a specified directory.

distZip—Zip

Depends on: jar, startScripts
Creates a full distribution ZIP archive including runtime libraries and OS specific scripts.

distTar — Tar

Depends on: jar, startScripts

Creates a full distribution TAR archive including runtime libraries and OS specific scripts.

Convention properties

The application plugin adds some properties to the project, which you can use to configure its
behaviour. See the Project class in the API documentation.

The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project’s Java source files using Checkstyle
and generates reports from these checks.

../dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
../dsl/org.gradle.api.tasks.JavaExec.html
../dsl/org.gradle.api.tasks.application.tasks.application.CreateStartScripts.html
../dsl/org.gradle.api.tasks.Sync.html
../dsl/org.gradle.api.tasks.bundling.tasks.bundling.Zip.html
../dsl/org.gradle.api.tasks.bundling.tasks.bundling.Tar.html
../dsl/org.gradle.api.Project.html
http://checkstyle.sourceforge.net/index.html

Usage

To use the Checkstyle plugin, include the following in your build script:

Example: Using the Checkstyle plugin

build.gradle

apply plugin: 'checkstyle'
The plugin adds a number of tasks to the project that perform the quality checks. You can execute
the checks by running gradle check.

Note that Checkstyle will run with the same Java version used to run Gradle.

Tasks
The Checkstyle plugin adds the following tasks to the project:

checkstyleMain — Checkstyle

Depends on: classes
Runs Checkstyle against the production Java source files.

checkstyleTest — Checkstyle

Depends on: test(lasses
Runs Checkstyle against the test Java source files.

checkstyleSourceSet — Checkstyle

Depends on: sourceSetClasses

Runs Checkstyle against the given source set’s Java source files.

Dependencies added to other tasks
The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.
check

Depends on: All Checkstyle tasks, including checkstyleMain and checkstyleTest.
Project layout

By default, the Checkstyle plugin expects configuration files to be placed in the root project, but this
can be changed.

../dsl/org.gradle.api.plugins.quality.Checkstyle.html
../dsl/org.gradle.api.plugins.quality.Checkstyle.html
../dsl/org.gradle.api.plugins.quality.Checkstyle.html

<root>
L—— config

L—— checkstyle ©)
L—— checkstyle.xnl @
L—— suppressions.xml

@ Checkstyle configuration files go here

@ Primary Checkstyle configuration file

Dependency management
The Checkstyle plugin adds the following dependency configurations:

Table 23. Checkstyle plugin - dependency configurations

Name Meaning
“checkstyle” The Checkstyle libraries to use
Configuration

See the CheckstyleExtension class in the API documentation.

Built-in variables

The Checkstyle plugin defines a config_loc property that can be used in Checkstyle configuration
files to define paths to other configuration files like suppressions.xml.

Example: Using the config_loc property
config/checkstyle/checkstyle.xml
<module name="SuppressionFilter">

<property name="file" value="%{config_loc}/suppressions.xml"/>
</module>

Customizing the HTML report

The HTML report generated by the Checkstyle task can be customized using a XSLT stylesheet, for
example to highlight specific errors or change its appearance:

Example: Customizing the HTML report

../dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html
../dsl/org.gradle.api.plugins.quality.Checkstyle.html

build.gradle

tasks.withType(Checkstyle) {
reports {
xml.enabled false
html.enabled true
html.stylesheet resources.text.fromFile('config/xsl/checkstyle-custom.xsl")

View a sample Checkstyle stylesheet.

The FindBugs Plugin

The FindBugs plugin performs quality checks on your project’s Java source files using FindBugs and
generates reports from these checks.

Usage
To use the FindBugs plugin, include the following in your build script:

Example: Using the FindBugs plugin

build.gradle

apply plugin: 'findbugs'
The plugin adds a number of tasks to the project that perform the quality checks. You can execute
the checks by running gradle check.

Note that Findbugs will run with the same Java version used to run Gradle.

Tasks
The FindBugs plugin adds the following tasks to the project:

findbugsMain — FindBugs

Depends on: classes
Runs FindBugs against the production Java source files.

findbugsTest — FindBugs

Depends on: test(lasses
Runs FindBugs against the test Java source files.

findbugsSourceSet — FindBugs

Depends on: sourceSetClasses

https://github.com/checkstyle/contribution/tree/master/xsl
http://findbugs.sourceforge.net
../dsl/org.gradle.api.plugins.quality.FindBugs.html
../dsl/org.gradle.api.plugins.quality.FindBugs.html
../dsl/org.gradle.api.plugins.quality.FindBugs.html

Runs FindBugs against the given source set’s Java source files.
The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

Table 24. FindBugs plugin - additional task dependencies

Task Depends on
name
check All FindBugs tasks, including findbugsMain and findbugsTest.

Dependency management
The FindBugs plugin adds the following dependency configurations:

Table 25. FindBugs plugin - dependency configurations
Name Meaning

findbugs The FindBugs libraries to use

Configuration

See the FindBugsExtension class in the API documentation.

Customizing the HTML report

The HTML report generated by the FindBugs task can be customized using a XSLT stylesheet, for
example to highlight specific errors or change its appearance:

Example: Customizing the HTML report

build.gradle

tasks.withType(FindBugs) {
reports {
xml.enabled false
html.enabled true
html.stylesheet resources.text.fromFile('config/xsl/findbugs-custom.xsl")

View a sample FindBugs stylesheet.

The JaCoCo Plugin

The JaCoCo plugin is currently incubating. Please be aware that the DSL and other

NOTE
configuration may change in later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code via integration with JaCoCo.

../dsl/org.gradle.api.plugins.quality.FindBugsExtension.html
../dsl/org.gradle.api.plugins.quality.FindBugs.html
https://github.com/findbugsproject/findbugs/tree/master/findbugs/src/xsl
http://www.eclemma.org/jacoco/

Getting Started

To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.

Example: Applying the JaCoCo plugin

build.gradle

apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named jacocoTestReport is created that
depends on the test task. The report is available at $buildDir/reports/jacoco/test. By default, a
HTML report is generated.

Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named jacoco of type JacocoPluginExtension, which
allows configuring defaults for JaCoCo usage in your build.

Example: Configuring JaCoCo plugin settings

build.gradle

jacoco {
toolVersion = "0.8.1"
reportsDir = file("$buildDir/customJacocoReportDir™)

Table 26. Gradle defaults for JaCoCo properties

Property Gradle default

reportsDir $buildDir/reports/jacoco

JaCoCo Report configuration

The JacocoReport task can be used to generate code coverage reports in different formats. It
implements the standard Gradle type Reporting and exposes a report container of type
JacocoReportsContainer.

Example: Configuring test task

../dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html
../dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
../dsl/org.gradle.api.reporting.Reporting.html
../javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html

build.gradle

jacocoTestReport {
reports {
xml.enabled false
csv.enabled false
html.destination file("${buildDir}/jacocoHtml")

(Ha¥) guickstart |
[——— _ s R R _uﬁ‘

e quickstart @?Sessions
quickstart

Element Missed Instructions+~ Cov.- Missed Branches+ Cov.. Missed Cxty Missed - Lines® Missed Methods - Missed Classes

org.gradle 100% nfa 0 5 0 7 0 5 0 1

Total 0of17 100% Oof0 nfa 0 5 0 7 0 5 0 1

Created with JaCoCo 0,6.2.201302030002

Enforcing code coverage metrics
NOTE This feature requires the use of JaCoCo version 0.6.3 or higher.

The JacocoCoverageVerification task can be used to verify if code coverage metrics are met based
on configured rules. Its API exposes the method
JacocoCoverageVerification.violationRules(org.gradle.api.Action) which is used as main entry point
for configuring rules. Invoking any of those methods returns an instance of
JacocoViolationRulesContainer providing extensive configuration options. The build fails if any of
the configured rules are not met. JaCoCo only reports the first violated rule.

Code coverage requirements can be specified for a project as a whole, for individual files, and for
particular JaCoCo-specific types of coverage, e.g., lines covered or branches covered. The following
example describes the syntax.

Example: Configuring violation rules

../dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
../javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules-org.gradle.api.Action-
../javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html

build.gradle

jacocoTestCoverageVerification {
violationRules {

rule {
Timit {
minimum = 0.5
}
}
rule {

enabled = false
element = 'CLASS'
includes = ['org.gradle.*']

limit {
counter = 'LINE'
value = '"TOTALCOUNT'
maximum = 0.3

NOTE The code for this example can be found at samples/testing/jacoco/quickstart in the
“-all’ distribution of Gradle.

The JacocoCoverageVerification task is not a task dependency of the check task provided by the Java

plugin. There is a good reason for it. The task is currently not incremental as it doesn’t declare any

outputs. Any violation of the declared rules would automatically result in a failed build when

executing the check task. This behavior might not be desirable for all users. Future versions of

Gradle might change the behavior.

JaCoCo specific task configuration

The JaCoCo plugin adds a JacocoTaskExtension extension to all tasks of type Test. This extension
allows the configuration of the JaCoCo specific properties of the test task.

Example: Configuring test task

build.gradle

test {
jacoco {
append = false
destinationFile = file("$buildDir/jacoco/jacocoTest.exec")
classDumpDir = file("$buildDir/jacoco/classpathdumps")

../dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
../dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
../dsl/org.gradle.api.tasks.testing.Test.html

Using the configuration append = true (the default) causes the JaCoCo agent to
append to a shared output file that may be left over from a different test execution.
If append = true, Gradle disables caching for the Test task since it cannot guarantee
the same results each time.

NOTE

Default values of the JaCoCo Task extension

test {
jacoco {
append = true
enabled = true

destPath = "$buildDir/jacoco"
includes = []
excludes = []

excludeClasslLoaders = []
includeNoLocationClasses = false
sessionld = "<auto-generated value>"
dumpOnExit = true

classDumpDir = null

output = Output.FILE

address = "localhost"

port = 6300

jmx = false

While all tasks of type Test are automatically enhanced to provide coverage information when the
java plugin has been applied, any task that implements JavaForkOptions can be enhanced by the
JaCoCo plugin. That is, any task that forks Java processes can be used to generate coverage
information.

For example you can configure your build to generate code coverage using the application plugin.

Example: Using application plugin to generate code coverage data

../dsl/org.gradle.api.tasks.testing.Test.html
../javadoc/org/gradle/process/JavaForkOptions.html

build.gradle

apply plugin: "application"
apply plugin: "jacoco"

mainClassName = "org.gradle.MyMain"

jacoco {
applyTo run
}

task applicationCodeCoverageReport(type:JacocoReport){
executionData run
sourceSets sourceSets.main

The code for this example can be found at samples/testing/jacoco/application in the

NOTE
‘-all’ distribution of Gradle.

Coverage reports generated by applicationCodeCoverageReport

L—— build

—— jacoco
| L—— run.exec

L—— reports
L—— jacoco

L—— applicationCodeCoverageReport
L—— html

L—— index.html

Tasks

For projects that also apply the Java Plugin, the JaCoCo plugin automatically adds the following
tasks:

jacocoTestReport — JacocoReport

Generates code coverage report for the test task.

jacocoTestCoverageVerification — JacocoCoverageVerification

Verifies code coverage metrics based on specified rules for the test task.

Dependency management
The JaCoCo plugin adds the following dependency configurations:

Table 27. JaCoCo plugin - dependency configurations

../dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
../dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html

Name Meaning

jacocoAnt The JaCoCo Ant library used for running the JacocoReport, JacocoMerge and
JacocoCoverageVerification tasks.

}; acocoAgen The JaCoCo agent library used for instrumenting the code under test.

The JDepend Plugin

The JDepend plugin performs quality checks on your project’s source files using JDepend and
generates reports from these checks.

Usage
To use the JDepend plugin, include the following in your build script:
Example: Using the JDepend plugin

build.gradle

apply plugin: 'jdepend'
The plugin adds a number of tasks to the project that perform the quality checks. You can execute
the checks by running gradle check.

Note that JDepend will run with the same Java version used to run Gradle.

Tasks
The JDepend plugin adds the following tasks to the project:

jdependMain — JDepend

Depends on: classes
Runs JDepend against the production Java source files.

jdependTest — JDepend

Depends on: test(Classes
Runs JDepend against the test Java source files.

jdependSourceSet — JDepend

Depends on: sourceSetClasses
Runs JDepend against the given source set’s Java source files.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

http://clarkware.com/software/JDepend.html
../dsl/org.gradle.api.plugins.quality.JDepend.html
../dsl/org.gradle.api.plugins.quality.JDepend.html
../dsl/org.gradle.api.plugins.quality.JDepend.html

Additional task dependencies

check
All JDepend tasks, including jdependMain and jdependTest.

Dependency management

The JDepend plugin adds the following dependency configurations:

Dependency configurations

jdepend
The JDepend libraries to use

Configuration

See the J[DependExtension class in the API documentation.

The 0SGi Plugin

The OSGi plugin provides a factory method to create an OsgiManifest object. OsgiManifest extends
Manifest. To learn more about generic manifest handling, see more about Java manifests. If the
Java plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an
OsgiManifest object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of the BND tool. A separate plugin

NOTE
implementation is maintained by the BND authors that has more advanced features.

Usage

To use the OSGi plugin, include the following in your build script:
Example: Using the OSGi plugin

build.gradle

apply plugin: 'osgi'

Implicitly applied plugins

Applies the Java base plugin.

Tasks
The OSGi plugin adds the following tasks to the project:

osgiClasses — Sync

Depends on: classes

../dsl/org.gradle.api.plugins.quality.()JDependExtension.html
../javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
../javadoc/org/gradle/api/java/archives/Manifest.html
http://bnd.bndtools.org/
https://github.com/bndtools/bnd/blob/master/biz.aQute.bnd.gradle/README.md
https://github.com/bndtools/bnd/blob/master/biz.aQute.bnd.gradle/README.md
../dsl/org.gradle.api.tasks.Sync.html

Copies all classes from the main source set to a single directory that is processed by BND.

Convention object

The OSGi plugin adds the following convention object: OsgiPluginConvention

Convention properties

The OSGi plugin does not add any convention properties to the project.

Convention methods

The OSGi plugin adds the following methods. For more details, see the API documentation of the
convention object.

Table 28. OSGi methods
Method Return Type Description
osgiManifest() OsgiManifest Returns an OsgiManifest object.

osgiManifest(Closure cl) OsgiManifest Returns an OsgiManifest object configured by the closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages
they expose. Based on this the Import-Package and the Export-Package values of the OSGi Manifest
are calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to
specify version information for the Import-Package value. Beside the explicit properties of the
OsgiManifest object you can add instructions.

Example: Configuration of 0SGi MANIFEST.MF file

build.gradle

jar {
manifest { // the manifest of the default jar is of type OsgiManifest
name = 'overwrittenSpecialOsgiName'
instruction 'Private-Package',
‘org.mycomp.packagel’,
‘org.mycomp.package2’
instruction 'Bundle-Vendor', 'MyCompany'
instruction 'Bundle-Description', 'Platform2: Metrics 2 Measures Framework'
instruction 'Bundle-DocURL', 'http://www.mycompany.com'
}
¥
task fooJar(type: Jar) {
manifest = osgiManifest {
instruction 'Bundle-Vendor', 'MyCompany'

}

The first argument of the instruction call is the key of the property. The other arguments form the

../javadoc/org/gradle/api/plugins/osgi/OsgiPluginConvention.html
../javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
../javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html

value. To learn more about the available instructions have a look at the BND tool.

The PMD Plugin

The PMD plugin performs quality checks on your project’s Java source files using PMD and
generates reports from these checks.

Usage
To use the PMD plugin, include the following in your build script:

Example: Using the PMD plugin

build.gradle

apply plugin: 'pmd'
The plugin adds a number of tasks to the project that perform the quality checks. You can execute
the checks by running gradle check.

Note that PMD will run with the same Java version used to run Gradle.

Tasks
The PMD plugin adds the following tasks to the project:

pmdMain — Pmd

Runs PMD against the production Java source files.

pmdTest — Pmd

Runs PMD against the test Java source files.

pmdSourceSet — Pmd

Runs PMD against the given source set’s Java source files.
The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Table 29. PMD plugin - additional task dependencies

Task Depends on
name
check All PMD tasks, including pmdMain and pmdTest.

Dependency management
The PMD plugin adds the following dependency configurations:

Table 30. PMD plugin - dependency configurations

http://bnd.bndtools.org/
http://pmd.sourceforge.net
../dsl/org.gradle.api.plugins.quality.Pmd.html
../dsl/org.gradle.api.plugins.quality.Pmd.html
../dsl/org.gradle.api.plugins.quality.Pmd.html

Nam Meaning
e

pnd The PMD libraries to use

Configuration

See the PmdExtension class in the API documentation.

../dsl/org.gradle.api.plugins.quality.PmdExtension.html

Java Web Projects

The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive
task. It doesn’t require the Java plugin, but for projects that also use the Java plugin it disables the
default JAR archive generation.

Usage
To use the Ear plugin, include the following in your build script:
Example: Using the Ear plugin

build.gradle

apply plugin: 'ear'

Tasks
The Ear plugin adds the following tasks to the project.

ear — Ear

Depends on: compile (only if the Java plugin is also applied)

Assembles the application EAR file.

Dependencies added to other tasks
The Ear plugin adds the following dependencies to tasks added by the Base Plugin.

assemble
Depends on: ear.

Project layout

L—— application @
@ Ear resources, such as a META-INF directory

Dependency management

The Ear plugin adds two dependency configurations: deploy and earlib. All dependencies in the
deploy configuration are placed in the root of the EAR archive, and are not transitive. All

../dsl/org.gradle.plugins.ear.Ear.html

dependencies in the earlib configuration are placed in the 'lib' directory in the EAR archive and are
transitive.

Convention properties

appDirName — String

The name of the application source directory, relative to the project directory. Default value:
‘src¢/main/application .

1ibDirName — String
The name of the lib directory inside the generated EAR. Default value: “lib .

deploymentDescriptor — DeploymentDescriptor

Metadata to generate a deployment descriptor file, e.g. application.xml. Default value: A
deployment descriptor with sensible defaults named application.xml'. If this file already exists in
the ‘appDirName/META-INF then the existing file contents will be used and the explicit
configuration in the ear.deploymentDescriptor will be ignored.

These properties are provided by a EarPluginConvention convention object.

Ear

The default behavior of the Ear task is to copy the content of src/main/application to the root of the
archive. If your application directory doesn’t contain a META-INF/application.xml deployment
descriptor then one will be generated for you.

The Ear class in the API documentation has additional useful information.

Customizing

Here is an example with the most important customization options:

Example: Customization of ear plugin

../javadoc/org/gradle/plugins/ear/descriptor/DeploymentDescriptor.html
../dsl/org.gradle.plugins.ear.EarPluginConvention.html
../dsl/org.gradle.plugins.ear.Ear.html

build.gradle

apply plugin: 'ear'
apply plugin: 'java'

repositories { mavenCentral() }

dependencies {
// The following dependencies will be the ear modules and
// will be placed in the ear root
deploy project(path: ':war', configuration: 'archives')

// The following dependencies will become ear 1libs and will
// be placed in a dir confiqured via the 1ibDirName property
earlib group: 'log4j', name: 'log4j', version: '1.2.15', ext: 'jar'

}
ear {
appDirName 'src/main/app' // use application metadata found in this folder
// put dependent libraries into APP-INF/1ib inside the generated EAR
libDirName 'APP-INF/1ib'
deploymentDescriptor { // custom entries for application.xml:
// fileName = "application.xml" // same as the default value
// version = "6" // same as the default value
applicationName = "customear"
initializeInOrder = true
displayName = "Custom Ear" // defaults to project.name
// defaults to project.description if not set
description = "My customized EAR for the Gradle documentation”
// libraryDirectory = "APP-INF/1ib" // not needed, above 1libDirName setting does
this
// module("my.jar", "java") // won't deploy as my.jar isn't deploy dependency
// webModule("my.war", "/") // won't deploy as my.war isn't deploy dependency
securityRole "admin"
securityRole "superadmin"
withXml { provider -> // add a custom node to the XML
provider.asNode().appendNode("data-source", "my/data/source")
¥
}
}

You can also use customization options that the Ear task provides, such as from and metaInf.

Using custom descriptor file

You may already have appropriate settings in a application.xml file and want to use that instead of
configuring the ear.deploymentDescriptor section of the build script. To accommodate that goal,
place the META-INF/application.xml in the right place inside your source folders (see the appDirName
property). The file contents will be wused and the explicit configuration in the
ear.deploymentDescriptor will be ignored.

../dsl/org.gradle.plugins.ear.Ear.html

Building Play applications

NOTE Support for building Play applications is currently incubating. Please be aware that
the DSL, APIs and other configuration may change in later Gradle versions.

Play is a modern web application framework. The Play plugin adds support for building, testing and

running Play applications with Gradle.

The Play plugin makes use of the Gradle software model.

Usage

To use the Play plugin, include the following in your build script to apply the play plugin and add
the Lightbend repositories:

Example: Using the Play plugin

build.gradle

plugins {
id 'play’
+

repositories {
jecenter()
maven {
name "lightbend-maven-release”
url "https://repo.lightbend.com/1ightbend/maven-releases”

}

ivy {
name "lightbend-ivy-release"
url "https://repo.lightbend.com/1lightbend/ivy-releases”
layout "ivy"

}

Note that defining the Lightbend repositories is necessary. In future versions of Gradle, this will be
replaced with a more convenient syntax.

Limitations
The Play plugin currently has a few limitations.

* Gradle does not yet support aggregate reverse routes introduced in Play 2.4.x.

* A given project may only define a single Play application. This means that a single project
cannot build more than one Play application. However, a multi-project build can have many
projects that each define their own Play application.

* Play applications can only target a single “platform” (combination of Play, Scala and Java

https://www.playframework.com/

version) at a time. This means that it is currently not possible to define multiple variants of a
Play application that, for example, produce jars for both Scala 2.10 and 2.11. This limitation may
be lifted in future Gradle versions.

 Support for generating IDE configurations for Play applications is limited to IDEA.

Software Model

The Play plugin uses a software model to describe a Play application and how to build it. The Play
software model extends the base Gradle software model to add support for building Play
applications. A Play application is represented by a PlayApplicationSpec component type. The
plugin automatically creates a single PlayApplicationBinarySpec instance when it is applied.
Additional Play components cannot be added to a project.

[PlayApplicationSpec 1

Target Platform
binaries
SOUFCEs

B 5 <] Scala Source Set

g ’ b

Java Source Set

A

[PlayApplicatio nBinarys pec] 5 I <] Resources Source Set
Compiled Assets
Compiled Source L

A

Target Platform JavaScript Source Set

Figure 30. Play plugin - software model

The Play application component

A Play application component describes the application to be built and consists of several
configuration elements. One type of element that describes the application are the source sets that
define where the application controller, route, template and model class source files should be
found. These source sets are logical groupings of files of a particular type and a default source set
for each type is created when the play plugin is applied.

Table 31. Default Play source sets

Source Set Type Directory Filters

java JavaSourceSet app **[*java

scala ScalaLanguageSourceSet app **[*scala
routes RoutesSourceSet conf routes, *routes
twirlTemplates TwirlSourceSet app **[*scala.*
javaScript JavaScriptSourceSet app/assets **/*js

These source sets can be configured or additional source sets can be added to the Play component.
See Configuring Play for further information.

../javadoc/org/gradle/play/PlayApplicationSpec.html
../javadoc/org/gradle/play/PlayApplicationBinarySpec.html
../javadoc/org/gradle/language/java/JavaSourceSet.html
../javadoc/org/gradle/language/scala/ScalaLanguageSourceSet.html
../javadoc/org/gradle/language/routes/RoutesSourceSet.html
../javadoc/org/gradle/language/twirl/TwirlSourceSet.html
../javadoc/org/gradle/language/javascript/JavaScriptSourceSet.html

Another element of configuring a Play application is the platform. To build a Play application,
Gradle needs to understand which versions of Play, Scala and Java to use. The Play component
specifies this requirement as a PlayPlatform. If these values are not configured, a default version of
Play, Scala and Java will be used. See Targeting a certain version of Play for information on
configuring the Play platform.

Note that only a single platform can be specified for a given Play component. This means that only a
single version of Play, Scala and Java can be used to build a Play component. In other words, a Play
component can only produce one set of outputs, and those outputs will be built using the versions
specified by the platform configured on the component.

The Play application binary

A Play application component is compiled and packaged to produce a set of outputs which are
represented by a PlayApplicationBinarySpec. The Play binary specifies the jar files produced by
building the component as well as providing elements by which additional content can be added to
those jar files. It also exposes the tasks involved in building the component and creating the binary.

See Configuring Play for examples of configuring the Play binary.

Project Layout

The Play plugin follows the typical Play application layout. You can configure source sets to include
additional directories or change the defaults.

—— app - Application source code.

—— assets - Assets that require compilation.

| L—— javascripts = JavaScript source code to be minified.
—— controllers - Application controller source code.
——

models - Application business source code.
| L—— views - Application UI templates.
—— build.gradle - Your project's build script.
—— conf - Main application configuration file and routes files.
—— public - Public assets.
| —— images - Application image files.
| —— javascripts - Typically JavaScript source code.
| L—— stylesheets - Typically CSS source code.
L—— test - Test source code.

Tasks

The Play plugin hooks into the normal Gradle lifecycle tasks such as assemble, check and build, but it
also adds several additional tasks which form the lifecycle of a Play project:

Play Plugin — lifecycle tasks

playBinary — Task

Depends on: All compile tasks for source sets added to the Play application.

../javadoc/org/gradle/play/platform/PlayPlatform.html
../javadoc/org/gradle/play/PlayApplicationBinarySpec.html
../dsl/org.gradle.api.Task.html

Performs a build of just the Play application.

dist — Task
Depends on: createPlayBinaryZipDist, createPlayBinaryTarDist

Assembles the Play distribution.

stage — Task
Depends on: stagePlayBinaryDist

Stages the Play distribution.

The plugin also provides tasks for running, testing and packaging your Play application:

Play Plugin — running and testing tasks

runPlayBinary — PlayRun
Depends on: playBinary to build Play application.

Runs the Play application for local development. See how this works with continuous build.

testPlayBinary — Test
Depends on: playBinary to build Play application and compilePlayBinaryTests.

Runs JUnit/TestNG tests for the Play application.

For the different types of sources in a Play application, the plugin adds the following compilation
tasks:

Play Plugin — source set tasks

compilePlayBinaryScala — PlatformScalaCompile

Depends on: Scala and Java
Compiles all Scala and Java sources defined by the Play application.

compilePlayBinaryPlayTwirlTemplates — TwirlCompile

Depends on: Twirl templates

Compiles Twirl templates with the Twirl compiler. Gradle supports all of the built-in Twirl
template formats (HTML, XML, TXT and JavaScript). Twirl templates need to match the pattern
.scala..

compilePlayBinaryPlayRoutes — RoutesCompile
Depends on: Play Route files

Compiles routes files into Scala sources.

minifyPlayBinaryJlavaScript — JavaScriptMinify

Depends on: JavaScript files

../dsl/org.gradle.api.Task.html
../dsl/org.gradle.api.Task.html
../dsl/org.gradle.play.tasks.PlayRun.html
../dsl/org.gradle.api.tasks.testing.Test.html
../javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
../dsl/org.gradle.play.tasks.TwirlCompile.html
../dsl/org.gradle.play.tasks.RoutesCompile.html
../dsl/org.gradle.play.tasks.JavaScriptMinify.html

Minifies JavaScript files with the Google Closure compiler.

Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about
the components and binaries that your project produces. To use this report, just run gradle
components. Below is an example of running this report for one of the sample projects:

Example: The components report

Output of gradle components
> gradle components

> Task :components

Source sets
Java source 'play:java’
srcDir: app
includes: **/*.java
JavaScript source 'play:javaScript'
srcDir: app/assets
includes: **/*.js
JUM resources 'play:resources’
srcDir: conf
Routes source 'play:routes'
srcDir: conf
includes: routes, *.routes
Scala source 'play:scala’
srcDir: app
includes: **/*.scala
Twirl template source 'play:twirlTemplates'
srcDir: app
includes: **/*.scala.*

Binaries

Play Application Jar 'play:binary'
build using task: :playBinary
target platform: Play Platform (Play 2.6.15, Scala: 2.12, Java: Java SE 8)
toolchain: Default Play Toolchain
classes dir: build/playBinary/classes
resources dir: build/playBinary/resources
JAR file: build/playBinary/lib/basic.jar

Note: currently not all plugins register their components, so some components may not
be visible here.

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Running a Play application

The runPlayBinary task starts the Play application under development. During development it is

beneficial to execute this task as a continuous build. Continuous build is a generic feature that
supports automatically re-running a build when inputs change. The runPlayBinary task is
“continuous build aware” in that it behaves differently when run as part of a continuous build.

When not run as part of a continuous build, the runPlayBinary task will block the build. That is, the
task will not complete as long as the application is running. When running as part of a continuous
build, the task will start the application if not running and otherwise propagate any changes to the
code of the application to the running instance. This is useful for quickly iterating on your Play
application with an edit->rebuild->refresh cycle. Changes to your application will not take affect
until the end of the overall build.

To enable continuous build, run Gradle with -t runPlayBinary or --continuous runPlayBinary.

Users of Play used to such a workflow with Play’s default build system should note that compile
errors are handled differently. If a build failure occurs during a continuous build, the Play
application will not be reloaded. Instead, you will be presented with an exception message. The
exception message will only contain the overall cause of the build failure. More detailed
information will only be available from the console.

Configuring a Play application

Targeting a certain version of Play

By default, Gradle uses Play 2.6.15, Scala 2.12 and the version of Java used to start the build. A Play
application can select a different version by specifying a target
PlayApplicationSpec.platform(java.lang.Object) on the Play application component.

Example: Selecting a version of the Play Framework

build.gradle
model {
components {
play {
platform play: '2.6.15', scala: '2.12', java: '1.8'
injectedRoutesGenerator = true
}
}
}

The following versions of Play and Scala are supported:

Table 32. Play supported versions
Play Scala Java

2.6.x 2.11 and 2.12 1.8

2.5.x 211 1.8

24x 2.10and 2.11 1.8

../dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)

Play Scala Java

2.3x 2.10and 2.11 1.6,1.7 and 1.8

Adding dependencies

You can add compile, test and runtime dependencies to a Play application through Configuration
created by the Play plugin.

If you are coming from SBT, the Play SBT plugin provides short names for common dependencies.
For instance, if your project has a dependency on ws, you will need to add a dependency to
com.typesafe.play:play-ws_2.11:2.3.9 where 2.11 is your Scala version and 2.3.9 is your Play
framework version.

Other dependencies that have short names, such as jacksons may actually be multiple
dependencies. For those dependencies, you will need to work out the dependency coordinates from
a dependency report.

* play is used for compile time dependencies.

* playTest is used for test compile time dependencies.

* playRunis used for run time dependencies.

Example: Adding dependencies to a Play application

build.gradle

dependencies {
play "commons-lang:commons-lang:2.6"
play "com.typesafe.play:play-guice_2.12:2.6.15"
play "ch.qos.logback:logback-classic:1.2.3"

Play 2.6 has a more modular architecture and, because of that, you may need to add some
dependencies manually. For example, Guice support was moved to a separated module.
Considering the following definition for a Play 2.6 project:

Example: A Play 2.6 project

build.gradle
model {
components {
play {
platform play: '2.6.7', scala: '2.12', java: '1.8'
injectedRoutesGenerator = true
}
}

../dsl/org.gradle.api.artifacts.Configuration.html
https://playframework.com/documentation/2.6.x/Migration26#Guice-DI-support-moved-to-separate-module

You can add Guice dependency like:

Example: Adding Guice dependency in Play 2.6 project

build.gradle

dependencies {
play "com.typesafe.play:play-quice_2.12:2.6.7"
}

Of course, pay attention to keep the Play version and Scala version for the dependency consistent
with the platform versions.

Configuring the default source sets

You can further configure the default source sets to do things like add new directories, add filters,
etc.

Example: Configuring extra source sets to a Play application

build.gradle

model {
components {
play {
sources {
java {
source.srcDir "additional/java"
}
javaScript {
source {
srcDir "additional/javascript”
exclude "**/old_*.js"

Adding extra source sets

If your Play application has additional sources that exist in non-standard directories, you can add
extra source sets that Gradle will automatically add to the appropriate compile tasks.

Example: Adding extra source sets to a Play application

build.gradle

model {
components {
play {
sources {
extralava(JavaSourceSet) {
source.srcDir "extra/java"
I
extraTwirl(TwirlSourceSet) {
source.srcDir "extra/twirl"
}
extraRoutes(RoutesSourceSet) {
source.srcDir "extra/routes”
Iy
+
}
}
}

Configuring compiler options

If your Play application requires additional Scala compiler flags, you can add these arguments
directly to the Scala compiler task.

Example: Configuring Scala compiler options

build.gradle

model {
components {
play {
binaries.all {
tasks.withType(PlatformScalaCompile) {
scalaCompileOptions.additionalParameters = ["-feature",
-language:implicitConversions"]

}

}

Configuring routes style

NOTE The injected router is only supported in Play Framework 2.4 or better.

If your Play application’s router uses dependency injection to access your controllers, you’ll need to
configure your application to not use the default static router. Under the covers, the Play plugin is
using the InjectedRoutesGenerator instead of the default StaticRoutesGenerator to generate the

router classes.

Example: Configuring routes style

build.gradle

model {
components {

play {
injectedRoutesGenerator = true

}

Configuring Twirl templates

A custom Twirl template format can be configured independently for each Twirl source set. See the
TwirlSourceSet for an example.

Injecting a custom asset pipeline

Gradle Play support comes with a simplistic asset processing pipeline that minifies JavaScript
assets. However, many organizations have their own custom pipeline for processing assets. You can
easily hook the results of your pipeline into the Play binary by utilizing the PublicAssets property
on the binary.

Example: Configuring a custom asset pipeline

../javadoc/org/gradle/language/twirl/TwirlSourceSet.html
../javadoc/org/gradle/play/PublicAssets.html

build.gradle

model {
components {
play {
binaries.all { binary ->
tasks.create("addCopyrightToPlay${binary.name.capitalize()}Assets",

AddCopyrights) { copyrightTask ->

source "raw-assets"

copyrightFile = project.file('copyright.txt")

destinationDir = project.file("${buildDir}/play${binary.name
.capitalize()}/addCopyRights")

// Hook this task into the binary

binary.assets.addAssetDir destinationDir
binary.assets.builtBy copyrightTask

}
class AddCopyrights extends SourceTask {

File copyrightFile

File destinationDir

void generateAssets() {
String copyright = copyrightFile.text
getSource().each { File file ->
File outputFile = new File(destinationDir, file.name)
outputFile.text = "${copyright}\n¥{file.text}"

Multi-project Play applications

Play applications can be built in multi-project builds as well. Simply apply the play plugin in the
appropriate subprojects and create any project dependencies on the play configuration.

Example: Configuring dependencies on Play subprojects

build.gradle

dependencies {
play project(":admin")
play project(":user")
play project(":util")

See the play/multiproject sample provided in the Gradle distribution for a working example.

Packaging a Play application for distribution

Gradle provides the capability to package your Play application so that it can easily be distributed
and run in a target environment. The distribution package (zip file) contains the Play binary jars,
all dependencies, and generated scripts that set up the classpath and run the application in a Play-
specific Netty container.

The distribution can be created by running the dist lifecycle task and places the distribution in the
$buildDir/distributions directory. Alternatively, one can validate the contents by running the stage
lifecycle task which copies the files to the $buildDir/stage directory using the layout of the
distribution package.

Play Plugin — distribution tasks

createPlayBinaryStartScripts — CreateStartScripts

Generates scripts to run the Play application distribution.

stagePlayBinaryDist — Copy
Depends on: playBinary, createPlayBinaryStartScripts

Copies all jar files, dependencies and scripts into a staging directory.

createPlayBinaryZipDist — Zip

Bundles the Play application as a standalone distribution packaged as a zip.

createPlayBinaryTarDist — Tar

Bundles the Play application as a standalone distribution packaged as a tar.

stage — Task
Depends on: stagePlayBinaryDist

Lifecycle task for staging a Play distribution.

dist — Task
Depends on: createPlayBinaryZipDist, createPlayBinaryTarDist

Lifecycle task for creating a Play distribution.

http://netty.io
../javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
../dsl/org.gradle.api.tasks.Copy.html
../dsl/org.gradle.api.tasks.bundling.Zip.html
../dsl/org.gradle.api.tasks.bundling.Tar.html
../dsl/org.gradle.api.Task.html
../dsl/org.gradle.api.Task.html

Adding additional files to your Play application distribution

You can add additional files to the distribution package using the Distribution APIL.

Example: Add extra files to a Play application distribution

build.gradle

model {
distributions {
playBinary {
contents {
from("README.md")
from("scripts") {
into "bin"

}

Building a Play application with an IDE

If you want to generate IDE metadata configuration for your Play project, you need to apply the
appropriate IDE plugin. Gradle supports generating IDE metadata for IDEA only for Play projects at
this time.

To generate IDEA’s metadata, apply the idea plugin along with the play plugin.

Example: Applying both the Play and IDEA plugins

build.gradle

plugins {
id 'play’
id 'idea'

Source code generated by routes and Twirl templates cannot be generated by IDEA directly, so
changes made to those files will not affect compilation until the next Gradle build. You can run the
Play application with Gradle in continuous build to automatically rebuild and reload the
application whenever something changes.

Resources
For additional information about developing Play applications:

 Play types in the Gradle DSL Guide:
» PlayApplicationBinarySpec

../javadoc/org/gradle/api/distribution/Distribution.html
../javadoc/org/gradle/play/PlayApplicationBinarySpec.html

» PlayApplicationSpec
 PlayPlatform

* JvmClasses

» PublicAssets

* PlayDistributionContainer
* JavaScriptMinify

* PlayRun

* RoutesCompile

* TwirlCompile

* Play Framework Documentation.

The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It
disables the default JAR archive generation of the Java plugin and adds a default WAR archive task.

Usage
To use the War plugin, include the following in your build script:

Example: Using the War plugin

build.gradle

plugins {
id 'war'
}
Project layout
In addition to the standard Java project layout, the War Plugin adds:

src/main/webapp
Web application sources

Tasks
The War plugin adds and modifies the following tasks:

war — War

Depends on: compile

Assembles the application WAR file.

../javadoc/org/gradle/play/PlayApplicationSpec.html
../javadoc/org/gradle/play/platform/PlayPlatform.html
../javadoc/org/gradle/play/JvmClasses.html
../javadoc/org/gradle/play/PublicAssets.html
../javadoc/org/gradle/play/distribution/PlayDistributionContainer.html
../dsl/org.gradle.play.tasks.JavaScriptMinify.html
../dsl/org.gradle.play.tasks.PlayRun.html
../dsl/org.gradle.play.tasks.RoutesCompile.html
../dsl/org.gradle.play.tasks.TwirlCompile.html
https://www.playframework.com/documentation
../dsl/org.gradle.api.tasks.bundling.War.html

assemble - lifecycle task

Depends on: war

The War plugin adds the following dependencies to tasks added by the Java plugin;

classes H war]4—[assemble

Figure 31. War plugin - tasks

Dependency management
The War plugin adds two dependency configurations:

o providedCompile

« providedRuntime

These two configurations have the same scope as the respective compile and runtime configurations,
except that they are not added to the WAR archive.

It is important to note that these provided configurations work transitively. Let’s say you add
commons-httpclient:commons-httpclient:3.0 to any of the provided configurations. This dependency
has a dependency on commons-codec. Because this is a “provided” configuration, this means that
neither of these dependencies will be added to your WAR, even if the commons-codec library is an
explicit dependency of your compile configuration. If you don’t want this transitive behavior,
simply declare your provided dependencies like commons-httpclient:commons-httpclient:3.0@jar.

Publishing

components.web
A SoftwareComponent for publishing the production WAR created by the war task.

Convention properties

webAppDirName — String

Default value: src/main/webapp
The name of the web application source directory, relative to the project directory.

webAppDir — (read-only) File
Default value: $webAppDirName, e.g. sr¢/main/webapp

The path to the web application source directory.

These properties are provided by a WarPluginConvention object.

War

The default behavior of the War task is to copy the content of src/main/webapp to the root of the
archive. Your webapp directory may of course contain a WEB-INF sub-directory, which may contain a

../javadoc/org/gradle/api/component/SoftwareComponent.html
../dsl/org.gradle.api.plugins.WarPluginConvention.html

web.xml file. Your compiled classes are compiled to WEB-INF/classes. All the dependencies of the
runtime [16: The runtime configuration extends the compile configuration.] configuration are copied
to WEB-INF/1ib.

The War class in the API documentation has additional useful information.

Customizing

Here is an example with the most important customization options:

Example: Customization of war plugin

build.gradle

configurations {
moreLibs

}

repositories {
flatDir { dirs "1ib" }
jeenter()

}

dependencies {
compile module(":compile:1.0") {
dependency ":compile-transitive-1.0@jar"
dependency ":providedCompile-transitive:1.0@jar'

}

providedCompile "javax.servlet:servlet-api:2.5"
providedCompile module(":providedCompile:1.0") {
dependency ":providedCompile-transitive:1.0@jar'

}
runtime ":runtime:1.0"
providedRuntime ":providedRuntime:1.0@jar"

testCompile "junit:junit:4.12"
morelLibs ":otherLib:1.0"

}

war {
from 'src/rootContent' // adds a file-set to the root of the archive
webInf { from 'src/additionalWebInf' } // adds a file-set to the WEB-INF dir.
classpath fileTree('additionallLibs') // adds a file-set to the WEB-INF/1ib dir.
classpath configurations.morelLibs // adds a configuration to the WEB-INF/1ib dir.
webXml = file('src/someWeb.xml') // copies a file to WEB-INF/web.xml

}

Of course one can configure the different file-sets with a closure to define excludes and includes.

../dsl/org.gradle.api.tasks.bundling.War.html

Scala Projects

The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala
code, mixed Scala and Java code, and even pure Java code (although we don’t necessarily
recommend to use it for the latter). The plugin supports joint compilation, which allows you to
freely mix and match Scala and Java code, with dependencies in both directions. For example, a
Scala class can extend a Java class that in turn extends a Scala class. This makes it possible to use
the best language for the job, and to rewrite any class in the other language if needed.

Usage

To use the Scala plugin, include the following in your build script:

Example: Using the Scala plugin

build.gradle

apply plugin: 'scala'

Tasks
The Scala plugin adds the following tasks to the project.

compileScala — ScalaCompile

Depends on: compileJava
Compiles production Scala source files.

compileTestScala — ScalaCompile

Depends on: compileTestlava
Compiles test Scala source files.

compileSourceSetScala — ScalaCompile

Depends on: compileSourceSetJava
Compiles the given source set’s Scala source files.

scaladoc — ScalaDoc

Generates API documentation for the production Scala source files.
The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Table 33. Scala plugin - additional task dependencies

../dsl/org.gradle.api.tasks.scala.ScalaCompile.html
../dsl/org.gradle.api.tasks.scala.ScalaCompile.html
../dsl/org.gradle.api.tasks.scala.ScalaCompile.html
../dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Task name Depends on

“classes” “compileScala®
“testClasses” “compileTestScala”
*__sourceSet__Classes” “compile__SourceSet__Scala®

processTestResources

compileTestScala

testClasses

classes

compileTestJava

compileScala

scaladoc

Figure 32. Scala plugin - tasks

Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can
contain Scala and Java code. The Java source directories may only contain Java source code. None
of these directories need to exist or have anything in them; the Scala plugin will simply compile
whatever it finds.

src/main/java

Production Java source.

src/main/resources
Production resources, such as XML and properties files.

src/main/scala

Production Scala source. May also contain Java source files for joint compilation.

src/test/java
Test Java source.

src/test/resources
Test resources.

src/test/scala
Test Scala source. May also contain Java source files for joint compilation.

src/sourceSet/java
Java source for the source set named sourceSet.

src/sourceSet/resources
Resources for the source set named sourceSet.

src/sourceSet/scala

Scala source files for the given source set. May also contain Java source files for joint
compilation.

Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala
production and test source files.

Example: Custom Scala source layout

build.gradle

sourceSets {

main {
scala {
srcDirs = ['src/scala']
}
}
test {
scala {
srcDirs = ['test/scala']
}
}

Dependency management

Scala projects need to declare a scala-library dependency. This dependency will then be used on
compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc
tool, respectively. [17: See Automatic configuration of Scala classpath.]

If Scala is used for production code, the scala-library dependency should be added to the compile
configuration:

Example: Declaring a Scala dependency for production code

build.gradle

repositories {
mavenCentral()

}

dependencies {
compile 'org.scala-lang:scala-library:2.11.12'
testCompile 'org.scalatest:scalatest_2.11:3.0.0'
testCompile 'junit:junit:4.12'

If Scala is only used for test code, the scala-library dependency should be added to the testCompile
configuration:

Example: Declaring a Scala dependency for test code

build.gradle

dependencies {
testCompile "org.scala-lang:scala-library:2.11.1"

}

Automatic configuration of scalaClasspath

The ScalaCompile and ScalaDoc tasks consume Scala code in two ways: on their classpath, and on
their scalaClasspath. The former is used to locate classes referenced by the source code, and will
typically contain scala-library along with other libraries. The latter is used to load and execute the
Scala compiler and Scaladoc tool, respectively, and should only contain the scala-compiler library
and its dependencies.

Unless a task’s scalaClasspath is configured explicitly, the Scala (base) plugin will try to infer it from
the task’s classpath. This is done as follows:

» If a scala-library jar is found on classpath, and the project has at least one repository declared,
a corresponding scala-compiler repository dependency will be added to scalaClasspath.

» Otherwise, execution of the task will fail with a message saying that scalaClasspath could not be
inferred.

Configuring the Zinc compiler

The Scala plugin uses a configuration named zinc to resolve the Zinc compiler and its
dependencies. Gradle will provide a default version of Zinc, but if you need to use a particular Zinc
version, you can add an explicit dependency like “com.typesafe.zinc:zinc:0.3.6” to the zinc
configuration. Gradle supports version 0.3.0 of Zinc and above; however, due to a regression in the
Zinc compiler, versions 0.3.2 through 0.3.5.2 cannot be used.

Example: Declaring a version of the Zinc compiler to use

build.gradle

dependencies {
zinc 'com.typesafe.zinc:zinc:0.3.9'

}

It is important to take care when declaring your scala-library dependency. The Zinc compiler itself
needs a compatible version of scala-library that may be different from the version required by
your application. Gradle takes care of adding a compatible version of scala-library for you, but
over-broad dependency resolution rules could force an incompatible version to be used instead.

For example, using configurations.all to force a particular version of scala-library would also
override the version used by the Zinc compiler:

https://github.com/typesafehub/zinc

Example: Forcing a scala-library dependency for all configurations

build.gradle

configurations.all {
resolutionStrategy.force "org.scala-lang:scala-library:2.11.12"

}

The best way to avoid this problem is to be more selective when configuring the scala-library
dependency (such as not using a configuration.all rule or using a conditional to prevent the rule
from being applied to the zinc configuration). Sometimes this rule may come from a plugin or other
code that you do not have control over. In such a case, you can force a correct version of the library
on the zinc configuration only:

Example: Forcing a scala-library dependency for the zinc configuration

build.gradle

configurations.zinc {
resolutionStrategy.force "org.scala-lang:scala-library:2.10.5"

}

You can diagnose problems with the version of the Zinc compiler selected by running
dependencylnsight for the zinc configuration.

Convention properties

The Scala plugin does not add any convention properties to the project.

Source set properties

The Scala plugin adds the following convention properties to each source set in the project. You can
use these properties in your build script as though they were properties of the source set object.

scala — SourceDirectorySet (read-only)

The Scala source files of this source set. Contains all .scala and .java files found in the Scala
source directories, and excludes all other types of files. Default value: non-null.

scala.srcDirs — Set<File>

The source directories containing the Scala source files of this source set. May also contain Java
source files for joint compilation. Can set using anything described in Understanding implicit
conversion to file collections. Default value: [projectDir/src/name/scala].

allScala — FileTree (read-only)

All Scala source files of this source set. Contains only the .scala files found in the Scala source
directories. Default value: non-null.

These convention properties are provided by a convention object of type ScalaSourceSet.

../dsl/org.gradle.api.file.SourceDirectorySet.html
../javadoc/org/gradle/api/file/FileTree.html
../dsl/org.gradle.api.tasks.ScalaSourceSet.html

The Scala plugin also modifies some source set properties:

Table 34. Scala plugin - source set properties

Property Change

name

allJava Adds all . java files found in the Scala source directories.
allSource Adds all source files found in the Scala source directories.

Compiling in external process
Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the JVM. To adjust memory
settings, configure the scalaCompileOptions.forkOptions property as needed:

Example: Adjusting memory settings

build.gradle

tasks.withType(ScalaCompile) {
configure(scalaCompileOptions.forkOptions) {
memoryMaximumSize = '1g'
jvmArgs = ['-XX:MaxPermSize=512m"]

Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and
classes affected by these changes, incremental compilation can significantly reduce Scala
compilation time. It is particularly effective when frequently compiling small code increments, as is
often done at development time.

The Scala plugin defaults to incremental compilation by integrating with Zinc, a standalone version
of sbt's incremental Scala compiler. If you want to disable the incremental compilation, set force =
true in your build file:

Example: Forcing all code to be compiled

build.gradle

tasks.withType(ScalaCompile) {
scalaCompileOptions.with {
force = true

}

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt

Note: This will only cause all classes to be recompiled if at least one input source file has changed. If
there are no changes to the source files, the compileScala task will still be considered UP-TO-DATE as
usual.

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all
Java and Scala code under src/main/scala will participate in joint compilation. Even Java code will
be compiled incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this
analysis are stored in the file designated by scalaCompileOptions.incrementalOptions.analysisFile
(which has a sensible default). In a multi-project build, analysis files are passed on to downstream
ScalaCompile tasks to enable incremental compilation across project boundaries. For ScalaCompile
tasks added by the Scala plugin, no configuration is necessary to make this work. For other
ScalaCompile tasks that you might add, the property
scalaCompileOptions.incrementalOptions.publishedCode needs to be configured to point to the
classes folder or Jar archive by which the code is passed on to compile class paths of downstream
ScalaCompile tasks. Note that if publishedCode is not set correctly, downstream tasks may not
recompile code affected by upstream changes, leading to incorrect compilation results.

Note that Zinc’s Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle’s
own compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler.
This is expected to yield another significant speedup for Scala compilation.

Compiling and testing for Java 6 or Java 7

The Scala compiler ignores Gradle’s targetCompatibility and sourceCompatibility settings. In Scala
2.11, the Scala compiler always compiles to Java 6 compatible bytecode. In Scala 2.12, the Scala
compiler always compiles to Java 8 compatible bytecode. If you also have Java source, you can
follow the same steps as for the Java plugin to ensure the correct Java compiler is used.

Example: Configure Java 6 build for Scala

gradle.properties

in $HOME/.gradle/gradle.properties
javabHome=/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

build.gradle

sourceCompatibility = 1.6

assert hasProperty('javabHome') : "Set the property 'javabHome' in your your
gradle.properties pointing to a Java 6 installation"
def javaExecutablesPath = new File(javabHome, 'bin')
def javaExecutables = [:].withDefault { execName ->

def executable = new File(javaExecutablesPath, execName)

assert executable.exists() : "There is no ${execName} executable in
${javaExecutablesPath}"

executable

}

tasks.withType(AbstractCompile) {
options.with {
fork = true
forkOptions.javaHome = file(javabHome)

}

}
tasks.withType(Test) {
executable = javaExecutables.java

}
tasks.withType(JavaExec) {

executable = javaExecutables.java

}
tasks.withType(Javadoc) {
executable = javaExecutables.javadoc

}

Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the
project work with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and
dependency container.

Intelli] IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the
project work with IDEA out of the box. Specifically, the plugin adds a Scala SDK (Intelli] IDEA 14+)
and a Scala compiler library that matches the Scala version on the project’s class path. The Scala
plugin is backwards compatible with earlier versions of Intelli] IDEA and it is possible to add a
Scala facet instead of the default Scala SDK by configuring targetVersion on IdeaModel.

Example: Explicitly specify a target Intelli] IDEA version

../dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html

build.gradle

idea {
targetVersion = "13"

}

Integrating Gradle

The Eclipse Plugins

The Eclipse plugins generate files that are used by the Eclipse IDE, thus making it possible to import
the project into Eclipse (File - Import::- - Existing Projects into Workspace).

The eclipse-wtp is automatically applied whenever the eclipse plugin is applied to a War or Ear
project. For utility projects (i.e. Java projects used by other web projects), you need to apply the
eclipse-wtp plugin explicitly.

What exactly the eclipse plugin generates depends on which other plugins are used:
Table 35. Eclipse plugin behavior

Plugin Description

None Generates minimal .project file.

Java Adds Java configuration to .project. Generates .classpath and JDT settings file.
Groovy Adds Groovy configuration to .project file.

Scala Adds Scala support to .project and .classpath files.

War Adds web application support to .project file.

Ear Adds ear application support to .project file.

The eclipse-wtp plugin generates all WTP settings files and enhances the .project file. If a Java or
War is applied, .classpath will be extended to get a proper packaging structure for this utility
library or web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding
and removing content from the generated files.

Usage
To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:

Example: Using the Eclipse plugin

build.gradle

apply plugin: ‘'eclipse’

Example: Using the Eclipse WTP plugin

build.gradle

apply plugin: ‘'eclipse-wtp'

http://eclipse.org

Note: Internally, the eclipse-wtp plugin also applies the eclipse plugin so you don’t need to apply
both.

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use are
the eclipse and cleanEclipse tasks.

Tasks

The Eclipse plugins add the tasks shown below to a project.

Eclipse Plugin tasks

eclipse — Task

Depends on: all Eclipse configuration file generation tasks
Generates all Eclipse configuration files

cleanEclipse — Delete

Depends on: all Eclipse configuration file clean tasks
Removes all Eclipse configuration files

cleanEclipseProject — Delete

Removes the .project file.

cleanEclipseClasspath — Delete

Removes the .classpath file.

cleanEclipseldt — Delete

Removes the .settings/org.eclipse.jdt.core.prefs file.

eclipseProject — GenerateEclipseProject

Generates the .project file.

eclipseClasspath — GenerateEclipseClasspath

Generates the .classpath file.

eclipseldt — GenerateEclipsejdt

Generates the .settings/org.eclipse.jdt.core.prefs file.

Eclipse WTP Plugin — additional tasks

cleanEclipseWtpComponent — Delete

Removes the .settings/org.eclipse.wst.common.component file.

cleanEclipseWtpFacet — Delete

Removes the .settings/org.eclipse.wst.common.project.facet.core.xml file.

eclipseWtpComponent — GenerateEclipseWtpComponent

../dsl/org.gradle.api.Task.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
../dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
../dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html

Generates the .settings/org.eclipse.wst.common.component file.

eclipseWtpFacet — GenerateEclipseWtpFacet

Generates the .settings/org.eclipse.wst.common.project.facet.core.xml file.

Configuration

Table 36. Configuration of the Eclipse plugins

Model Reference Description
name
EclipseModel eclipse Top level element that enables configuration of the Eclipse

plugin in a DSL-friendly fashion.
EclipseProject ~ eclipse.project Allows configuring project information

EclipseClasspath iﬁ“ pse.classpa Allows configuring classpath information.

Eclipse]dt eclipse.jdt Allows configuring jdt information (source/target Java
compatibility).

EclipseWtpCom eclipse.wtp.com Allows configuring wtp component information only if eclipse-
ponent ponent wtp plugin was applied.

EclipseWtpFacet eclipse.wtp.fac Allows configuring wtp facet information only if eclipse-wtp
e plugin was applied.

Customizing the generated files

The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL
for configuring model objects that model the Eclipse view of the project. These model objects are
then merged with the existing Eclipse XML metadata to ultimately generate new metadata. The
model objects provide lower level hooks for working with domain objects representing the file
content before and after merging with the model configuration. They also provide a very low level
hook for working directly with the raw XML for adjustment before it is persisted, for fine tuning
and configuration that the Eclipse and Eclipse WTP plugins do not model.

Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding
generation task, like “gradle cleanEclipse eclipse” (in that order). If you want to make this the
default behavior, add “tasks.eclipse.dependsOn(cleanEclipse)” to your build script. This makes it
unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this
can be done for the “.classpath” file with “gradle cleanEclipseClasspath eclipseClasspath”.

../dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by
Gradle. The generation lifecycle is as follows:

1
2.

The file is read; or a default version provided by Gradle is used if it does not exist
The beforeMerged hook is executed with a domain object representing the existing file

The existing content is merged with the configuration inferred from the Gradle build or defined
explicitly in the eclipse DSL

The whenMerged hook is executed with a domain object representing contents of the file to be
persisted

The withXml hook is executed with a raw representation of the XML that will be persisted

The final XML is persisted

Advanced configuration hooks

The following list covers the domain object used for each of the Eclipse model types:

EclipseProject

o beforeMerged { Project arg -> -+ }
o« whenMerged { Project arg -> -+ }
o withXml { XmlProvider arg -> -+ }

EclipseClasspath

» beforeMerged { Classpath arg -> «-+ }
o« whenMerged { Classpath arg -> -+ }
o withXml { XmlProvider arg -> -+ }

EclipseWtpComponent

o beforeMerged { WtpComponent arg -> -+ }
« whenMerged { WtpComponent arg -> -+ }
o withXml { XmlProvider arg -> ++ }

EclipseWtpFacet

o beforeMerged { WtpFacet arg -> -+ }
« whenMerged { WtpFacet arg -> -+ }
o withXml { XmlProvider arg -> -+ }

Eclipsejdt

« beforeMerged { Jdt arg -> -+ }
« whenMerged { Jdt arg -> -+ }

» withProperties { arg -> } argument type = java.util.Properties

Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes made
directly in the IDE. Alternatively, the beforeMerged hook makes it possible to overwrite just certain

../dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
../javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
../javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
../javadoc/org/gradle/api/XmlProvider.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
../javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
../javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
../javadoc/org/gradle/api/XmlProvider.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
../javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
../javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
../javadoc/org/gradle/api/XmlProvider.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
../javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
../javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
../javadoc/org/gradle/api/XmlProvider.html
../dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
../javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
../javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

parts of the existing content. The following example removes all existing dependencies from the
(lasspath domain object:

Example: Partial Overwrite for Classpath

build.gradle

eclipse.classpath.file {
beforeMerged { classpath ->
classpath.entries.removeAll { entry -> entry.kind == '1ib" || entry.kind ==
var' }

}

The resulting .classpath file will only contain Gradle-generated dependency entries, but not any
other dependency entries that may have been present in the original file. (In the case of
dependency entries, this is also the default behavior.) Other sections of the .classpath file will be
either left as-is or merged. The same could be done for the natures in the .project file:

Example: Partial Overwrite for Project

build.gradle

eclipse.project.file.beforeMerged { project ->
project.natures.clear()

}

Modifying the fully populated domain objects

The whenMerged hook allows to manipulate the fully populated domain objects. Often this is the
preferred way to customize Eclipse files. Here is how you would export all the dependencies of an
Eclipse project:

Example: Export Classpath Entries

build.gradle

eclipse.classpath.file {
whenMerged { classpath ->
classpath.entries.findAll { entry -> entry.kind == '"1ib" }*.exported = false

}

Modifying the XML representation

The withXml hook allows to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy’s XML support makes up for a lot, this approach is less convenient
than manipulating the domain objects. In return, you get total control over the generated file,
including sections not modeled by the domain objects.

Example: Customizing the XML

build.gradle
apply plugin: 'eclipse-wtp'

eclipse.wtp.facet.file.withXml { provider ->
provider.asNode().fixed.find { it.@facet == 'jst.java' }.@facet = 'jst2.java’
}

The IDEA Plugin

The IDEA plugin generates files that are used by Intelli] IDEA, thus making it possible to open the
project from IDEA (File - Open Project). Both external dependencies (including associated source
and Javadoc files) and project dependencies are considered.

If you simply want to load a Gradle project into Intelli] IDEA, then use the IDE’s
import facility. You do not need to apply this plugin to import your project into

NOTE IDEA, although if you do, the import will take account of any extra IDEA
configuration you have that doesn’t directly modify the generated files — see the
Configuration section for more details.

What exactly the IDEA plugin generates depends on which other plugins are used:

Always

Generates an IDEA module file. Also generates an IDEA project and workspace file if the project
is the root project.

Java Plugin

Additionally adds Java configuration to the IDEA module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set
of hooks for adding and removing content from the generated files.

Usage
To use the IDEA plugin, include this in your build script:

Example: Using the IDEA plugin

build.gradle

apply plugin: 'idea’

The IDEA plugin adds a number of tasks to your project. The idea task generates an IDEA module
file for the project. When the project is the root project, the idea task also generates an IDEA project
and workspace. The IDEA project includes modules for each of the projects in the Gradle build.

http://www.jetbrains.com/idea/
https://www.jetbrains.com/help/idea/gradle.html#gradle_import

The IDEA plugin also adds an openldea task when the project is the root project. This task generates
the IDEA configuration files and opens the result in IDEA. This means you can simply run ./gradlew
openIdea from the root project to generate and open the IDEA project in one convenient step.

The IDEA plugin also adds a cleanldea task to the project. This task deletes the generated files, if
present.

Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the clean task does not depend
on the cleanldeaWorkspace task. This is because the workspace typically contains a lot of user
specific temporary data and it is not desirable to manipulate it outside IDEA.

idea
Depends on: ideaProject, ideaModule, ideaWorkspace

Generates all IDEA configuration files

openldea
Depends on: idea

Generates all IDEA configuration files and opens the project in IDEA

cleanldea — Delete

Depends on: cleanldeaProject, cleanIdeaModule
Removes all IDEA configuration files

cleanIdeaProject — Delete

Removes the IDEA project file

cleanIdeaModule — Delete
Removes the IDEA module file

cleanIdealorkspace — Delete

Removes the IDEA workspace file

ideaProject — GenerateldeaProject

Generates the .ipr file. This task is only added to the root project.

ideaModule — GenerateldeaModule

Generates the .iml file

ideaWorkspace — GenerateldeaWorkspace

Generates the .iws file. This task is only added to the root project.

Configuration

The plugin adds some configuration options that allow to customize the IDEA project and module
files that it generates. These take the form of both model properties and lower-level mechanisms

../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.api.tasks.Delete.html
../dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
../dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
../dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

that modify the generated files directly. For example, you can add source and resource directories,
as well as inject your own fragments of XML. The former type of configuration is honored by IDEA’s
import facility, whereas the latter is not.

Here are the configuration properties you can use:

idea — IdeaModel

Top level element that enables configuration of the idea plugin in a DSL-friendly fashion

idea.project IdeaProject

Allows configuring project information

idea.module IdeaModule

Allows configuring module information

idea.workspace IdeaWorkspace

Allows configuring the workspace XML

Follow the links to the types for examples of using these configuration properties.

Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content in a more
controlled and detailed way. In addition, the withXml hook is the only practical way to modify the
workspace file because its corresponding domain object is essentially empty.

NOTE The techniques we discuss in this section don’t work with IDEA’s import facility
The tasks recognize existing IDEA files and merge them with the generated content.

Merging

Sections of existing IDEA files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding
generation task, like “gradle cleanldea idea” (in that order). If you want to make this the default
behavior, add “tasks.idea.dependsOn(cleanIdea)” to your build script. This makes it unnecessary to
execute the clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this
can be done for the “.iml” file with “gradle cleanIdeaModule ideaModule”.

Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by
Gradle. The generation lifecycle is as follows:

../dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
../dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
../dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
../dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

1. The file is read; or a default version provided by Gradle is used if it does not exist
2. The beforeMerged hook is executed with a domain object representing the existing file

3. The existing content is merged with the configuration inferred from the Gradle build or defined
explicitly in the eclipse DSL

4. The whenMerged hook is executed with a domain object representing contents of the file to be
persisted

5. The withXml hook is executed with a raw representation of the XML that will be persisted

6. The final XML is persisted
The following are the domain objects used for each of the model types:

IdeaProject
« beforeMerged { Project arg -> -+ }
« whenMerged { Project arg -> -+ }
o withXml { XmlProvider arg -> --- }

IdeaModule
o beforeMerged { Module arg -> -+ }
o« whenMerged { Module arg -> «+ }
o withXml { XmlProvider arg -> -+ }

IdeaWorkspace
o beforeMerged { Workspace arg -> -+ }
« whenMerged { Workspace arg -> -+ }
o withXml { XmlProvider arg -> - }

Partial rewrite of existing content

A "complete rewrite" causes all existing content to be discarded, thereby losing any changes made
directly in the IDE. The beforeMerged hook makes it possible to overwrite just certain parts of the
existing content. The following example removes all existing dependencies from the Module domain
object:

Example: Partial Rewrite for Module

build.gradle

idea.module.iml {
beforeMerged { module ->
module.dependencies.clear()

}

The resulting module file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency
entries, this is also the default behavior.) Other sections of the module file will be either left as-is or
merged. The same could be done for the module paths in the project file:

../dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
../javadoc/org/gradle/plugins/ide/idea/model/Project.html
../javadoc/org/gradle/plugins/ide/idea/model/Project.html
../javadoc/org/gradle/api/XmlProvider.html
../javadoc/org/gradle/plugins/ide/idea/model/IdeaModule.html
../javadoc/org/gradle/plugins/ide/idea/model/Module.html
../javadoc/org/gradle/plugins/ide/idea/model/Module.html
../javadoc/org/gradle/api/XmlProvider.html
../javadoc/org/gradle/plugins/ide/idea/model/IdeaWorkspace.html
../javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
../javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
../javadoc/org/gradle/api/XmlProvider.html

Example: Partial Rewrite for Project

build.gradle

idea.project.ipr {
beforeMerged { project ->
project.modulePaths.clear()
}

Modifying the fully populated domain objects

The whenMerged hook allows you to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export all the dependencies of an
IDEA module:

Example: Export Dependencies

build.gradle

idea.module.iml {
whenMerged { module ->
module.dependencies*.exported = true

}

Modifying the XML representation

The withXml hook allows you to manipulate the in-memory XML representation just before the file
gets written to disk. Although Groovy’s XML support makes up for a lot, this approach is less
convenient than manipulating the domain objects. In return, you get total control over the
generated file, including sections not modeled by the domain objects.

Example: Customizing the XML

build.gradle

idea.project.ipr {
withXml { provider ->
provider.node.component
.find { it.ename == 'VcsDirectoryMappings' }
.mapping.@ves = 'Git’

Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path
variable pointing to the Gradle dependency cache, IDEA will automatically replace the absolute

dependency paths with this path variable. you can configure this path variable via the
“idea.pathVariables” property, so that it can do a proper merge without creating duplicates.

Embedding Gradle using the Tooling API

Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding
Gradle into your own software. This API allows you to execute and monitor builds and to query
Gradle about the details of a build. The main audience for this API is IDE, CI server, other Ul
authors; however, the API is open for anyone who needs to embed Gradle in their application.

» Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.

» Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.

* Intelli] IDEA uses the Tooling API for importing your Gradle project and running tasks.

Tooling API Features

A fundamental characteristic of the Tooling API is that it operates in a version independent way.
This means that you can use the same API to work with builds that use different versions of Gradle,
including versions that are newer or older than the version of the Tooling API that you are using.
The Tooling API is Gradle wrapper aware and, by default, uses the same Gradle version as that used
by the wrapper-powered build.

Some features that the Tooling API provides:

* Query the details of a build, including the project hierarchy and the project dependencies,
external dependencies (including source and Javadoc jars), source directories and tasks of each
project.

* Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages
shown in the 'status bar' when you run on the command line).

* Execute a specific test class or test method.

* Receive interesting events as a build executes, such as project configuration, task execution or
test execution.

* Cancel a build that is running.
* Combine multiple separate Gradle builds into a single composite build.

* The Tooling API can download and install the appropriate Gradle version, similar to the
wrapper.

* The implementation is lightweight, with only a small number of dependencies. It is also a well-
behaved library, and makes no assumptions about your classloader structure or logging
configuration. This makes the API easy to embed in your application.

Tooling API and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

API, be it model building requests or task executing requests will be executed in the same long-
living process. Gradle Daemon contains more details about the daemon, specifically information on
situations when new daemons are forked.

Quickstart

As the Tooling API is an interface for developers, the Javadoc is the main documentation for it. We
provide several samples that live in samples/toolingApi in your Gradle distribution. These samples
specify all of the required dependencies for the Tooling API with examples for querying
information from Gradle builds and executing tasks from the Tooling API.

To use the Tooling API, add the following repository and dependency declarations to your build
script:

Example: Using the tooling API

build.gradle

repositories {
maven { url 'https://repo.gradle.org/gradle/libs-releases' }
}

dependencies {

compile "org.gradle:gradle-tooling-api:${toolingApiVersion}"

// The tooling API need an SLF4] implementation available at runtime, replace this
with any other implementation

runtime 'org.s1f4j:slf4j-simple:1.7.10'
}

The main entry point to the Tooling API is the GradleConnector. You can navigate from there to find
code samples and explore the available Tooling API models. You can use GradleConnector.connect()
to create a ProjectConnection. A ProjectConnection connects to a single Gradle project. Using the
connection you can execute tasks, tests and retrieve models relative to this project.

Gradle version and Java version compatibility

Provider side

The current version of Tooling API supports running builds using Gradle versions 1.2 and later.
However, support for running builds with Gradle versions older than 2.6 is deprecated and will be
removed in Tooling API version 5.0.

Consumer side

The current version of Gradle supports running builds via Tooling API versions 2.0 and later.
However, support for running builds via Tooling API versions older than 3.0 is deprecated and will
be removed in Gradle 5.0.

You should note that not all features of the Tooling API are available for all versions of Gradle. For

../javadoc/org/gradle/tooling/GradleConnector.html
https://docs.gradle.org/nightly/javadoc/org/gradle/tooling/GradleConnector.html#connect--
../javadoc/org/gradle/tooling/ProjectConnection.html

example, build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the
documentation for each class and method for more details.

Java version

The Tooling API requires Java 8 or later. Java 7 is currently still supported but will be removed in
Gradle 5.0. The Gradle version used by builds may have additional Java version requirements.

Extending Gradle

Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many
different projects and builds. Gradle allows you to implement your own plugins, so you can reuse
your build logic, and share it with others.

You can implement a Gradle plugin in any language you like, provided the implementation ends up
compiled as bytecode. In our examples, we are going to use Groovy as the implementation
language. Groovy, Java or Kotlin are all good choices as the language to use to implement a plugin,
as the Gradle API has been designed to work well with these languages. In general, a plugin
implemented using Java or Kotlin, which are statically typed, will perform better than the same
plugin implemented using Groovy.

Packaging a plugin
There are several places where you can put the source for the plugin.

Build script

You can include the source for the plugin directly in the build script. This has the benefit that the
plugin is automatically compiled and included in the classpath of the build script without you
having to do anything. However, the plugin is not visible outside the build script, and so you
cannot reuse the plugin outside the build script it is defined in.

buildSrc project

You can put the source for the plugin in the rootProjectDir/buildSrc/src/main/groovy directory.
Gradle will take care of compiling and testing the plugin and making it available on the
classpath of the build script. The plugin is visible to every build script used by the build.
However, it is not visible outside the build, and so you cannot reuse the plugin outside the build
it is defined in.

See Organizing Gradle Projects for more details about the buildSrc project.

Standalone project

You can create a separate project for your plugin. This project produces and publishes a JAR
which you can then use in multiple builds and share with others. Generally, this JAR might
include some plugins, or bundle several related task classes into a single library. Or some
combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we
will look at creating a standalone project.

Writing a simple plugin

To create a Gradle plugin, you need to write a class that implements the Plugin interface. When the
plugin is applied to a project, Gradle creates an instance of the plugin class and calls the instance’s
Plugin.apply() method. The project object is passed as a parameter, which the plugin can use to

../javadoc/org/gradle/api/Plugin.html
../javadoc/org/gradle/api/Plugin.html#apply-T-

configure the project however it needs to. The following sample contains a greeting plugin, which
adds a hello task to the project.

Example: A custom plugin

build.gradle

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
project.task('hello") {
dolLast {
println 'Hello from the GreetingPlugin'

}

}

// Apply the plugin
apply plugin: GreetingPlugin

Output of gradle -q hello

> gradle -q hello
Hello from the GreetingPlugin

One thing to note is that a new instance of a plugin is created for each project it is applied to. Also
note that the Plugin class is a generic type. This example has it receiving the Project type as a type
parameter. A plugin can instead receive a parameter of type Settings, in which case the plugin can
be applied in a settings script, or a parameter of type Gradle, in which case the plugin can be
applied in an initialization script.

Making the plugin configurable

Most plugins need to obtain some configuration from the build script. One method for doing this is
to use extension objects. The Gradle Project has an associated ExtensionContainer object that
contains all the settings and properties for the plugins that have been applied to the project. You
can provide configuration for your plugin by adding an extension object to this container. An
extension object is simply a Java Bean compliant class. Groovy is a good language choice to
implement an extension object because plain old Groovy objects contain all the getter and setter
methods that a Java Bean requires. Java and Kotlin are other good choices.

Let’s add a simple extension object to the project. Here we add a greeting extension object to the
project, which allows you to configure the greeting.

Example: A custom plugin extension

../javadoc/org/gradle/api/Plugin.html
../dsl/org.gradle.api.Project.html
../dsl/org.gradle.api.initialization.Settings.html
../dsl/org.gradle.api.invocation.Gradle.html
../dsl/org.gradle.api.Project.html
../javadoc/org/gradle/api/plugins/ExtensionContainer.html

build.gradle

class GreetingPluginExtension {
String message = 'Hello from GreetingPlugin'

}

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
// Add the 'greeting' extension object
def extension = project.extensions.create('greeting', GreetingPluginExtension)
// Add a task that uses configuration from the extension object
project.task('hello") {
dolast {
println extension.message

}

}
apply plugin: GreetingPlugin

// Configure the extension
greeting.message = 'Hi from Gradle

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, GreetingPluginExtension is a plain old Groovy object with a property called message.
The extension object is added to the plugin list with the name greeting. This object then becomes
available as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds
a configuration closure block for each extension object, so you can group settings together. The
following example shows you how this works.

Example: A custom plugin with configuration closure

build.gradle

class GreetingPluginExtension {
String message
String greeter

}

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
def extension = project.extensions.create('greeting', GreetingPluginExtension)
project.task('hello") {
dolLast {
println "${extension.message} from ${extension.greeter}"

}

}
apply plugin: GreetingPlugin

// Configure the extension using a DSL block

greeting {
message = 'Hi'
greeter = 'Gradle’
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, several settings can be grouped together within the greeting closure. The name of
the closure block in the build script (greeting) needs to match the extension object name. Then,
when the closure is executed, the fields on the extension object will be mapped to the variables
within the closure based on the standard Groovy closure delegate feature.

Working with files in custom tasks and plugins

When developing custom tasks and plugins, it’s a good idea to be very flexible when accepting
input configuration for file locations. To do this, you can leverage the Project.file(java.lang.Object)
method to resolve values to files as late as possible.

Example: Evaluating file properties lazily

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

build.gradle
class GreetingToFileTask extends DefaultTask {
def destination

File getDestination() {
project.file(destination)

}

def greet() {
def file = getDestination()
file.parentFile.mkdirs()
file.write 'Hello!'

}

}
task greet(type: GreetingToFileTask) {

destination = { project.greetingFile }

}

task sayGreeting(dependsOn: greet) {
dolLast {
println file(greetingFile).text
}
¥

ext.greetingFile = "$buildDir/hello.txt"

Output of gradle -q sayGreeting

> gradle -q sayGreeting
Hello!

In this example, we configure the greet task destination property as a closure, which is evaluated
with the Project.file(java.lang.Object) method to turn the return value of the closure into a File
object at the last minute. You will notice that in the example above we specify the greetingFile
property value after we have configured to use it for the task. This kind of lazy evaluation is a key
benefit of accepting any value when setting a file property, then resolving that value when reading
the property.

Mapping extension properties to task properties

Capturing user input from the build script through an extension and mapping it to input/output
properties of a custom task is considered a best practice. The end user only interacts with the
exposed DSL defined by the extension. The imperative logic is hidden in the plugin implementation.

The extension declaration in the build script as well as the mapping between extension properties
and custom task properties occurs during Gradle’s configuration phase of the build lifecycle. To

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

avoid evaluation order issues, the actual value of a mapped property has to be resolved during the
execution phase. For more information please see the section on build phases. Gradle’s API offers
types for representing a property that should be lazily evaluated e.g. during execution time. Refer
to Lazy Configuration for more information.

The following demonstrates the usage of the type for mapping an extension property to a task
property:

Example: Mapping extension properties to task properties

build.gradle

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
def extension = project.extensions.create('greeting', GreetingPluginExtension,
project)
project.tasks.create('hello’, Greeting) {
message = extension.message
outputFiles = extension.outputFiles

}

class GreetingPluginExtension {
final Property<String> message
final ConfigurableFileCollection outputFiles

GreetingPluginExtension(Project project) {
message = project.objects.property(String)
message.set('Hello from GreetingPlugin')
outputFiles = project.layout.confiqurableFiles()

}

void setOutputFiles(FileCollection outputFiles) {
this.outputFiles.setFrom(outputFiles)
}
}

class Greeting extends DefaultTask {
final Property<String> message = project.objects.property(String)
final ConfigurableFileCollection outputFiles = project.layout.configurableFiles()

void setQutputFiles(FileCollection outputFiles) {
this.outputFiles.setFrom(outputFiles)
}

void printMessage() {
outputFiles.each {
logger.quiet "Writing message 'Hi from Gradle' to file"
it.text = message.get()

}
apply plugin: GreetingPlugin

greeting {
message = 'Hi from Gradle'
outputFiles = layout.files('a.txt', 'b.txt")

The code for this example can be found at
NOTE samples/userquide/tasks/mapExtensionPropertiesToTaskProperties in the “all’
distribution of Gradle.

Output of gradle -q hello

> gradle -q hello
Writing message 'Hi from Gradle' to file
Writing message 'Hi from Gradle' to file

A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others.
This project is simply a Groovy project that produces a JAR containing the plugin classes. Here is a
simple build script for the project. It applies the Groovy plugin, and adds the Gradle API as a
compile-time dependency.

Example: A build for a custom plugin

build.gradle

plugins {
id "groovy'

}

dependencies {
compile gradleApi()
compile localGroovy()

NOTE The code for this example can be found at samples/customPlugin/plugin in the ‘“-all’
distribution of Gradle.

So how does Gradle find the Plugin implementation? The answer is you need to provide a

properties file in the jar’s META-INF/gradle-plugins directory that matches the id of your plugin.

../javadoc/org/gradle/api/Plugin.html

Example: Wiring for a custom plugin

src/main/resources/META-INF/gradle-plugins/org.samples.greeting.properties

implementation-class=org.gradle.GreetingPlugin

Notice that the properties filename matches the plugin id and is placed in the resources folder, and
that the implementation-class property identifies the Plugin implementation class.

Creating a plugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name).
This helps to avoid collisions and provides a way to group plugins with similar ownership.

Your plugin id should be a combination of components that reflect namespace (a reasonable
pointer to you or your organization) and the name of the plugin it provides. For example if you had
a Github account named "foo" and your plugin was named "bar", a suitable plugin id might be
com.github.foo.bar. Similarly, if the plugin was developed at the baz organization, the plugin id
might be org.baz.bar.

Plugin ids should conform to the following:

* May contain any alphanumeric character, ., and '-'.

* Must contain at least one "' character separating the namespace from the name of the plugin.

* Conventionally use a lowercase reverse domain name convention for the namespace.

* Conventionally use only lowercase characters in the name.

* org.gradle and com.gradleware namespaces may not be used.

* Cannot start or end with a "' character.

* Cannot contain consecutive ' characters (i.e."..").
Although there are conventional similarities between plugin ids and package names, package
names are generally more detailed than is necessary for a plugin id. For instance, it might seem
reasonable to add "gradle" as a component of your plugin id, but since plugin ids are only used for

Gradle plugins, this would be superfluous. Generally, a namespace that identifies ownership and a
name are all that are needed for a good plugin id.

Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it
like any other code artifact. See the Ivy and Maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can
publish it to the Gradle Plugin Portal. This site provides the ability to search for and gather
information about plugins contributed by the Gradle community. Please refer to the corresponding
guide on how to make your plugin available on this site.

../javadoc/org/gradle/api/Plugin.html
http://plugins.gradle.org
https://guides.gradle.org/publishing-plugins-to-gradle-plugin-portal/

Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script’s classpath. To
do this, you use a “buildscript { }” block, as described in see Applying plugins using the buildscript
block. The following example shows how you might do this when the JAR containing the plugin has
been published to a local repository:

Example: Using a custom plugin in another project

build.gradle

buildscript {
repositories {
maven {
// END SNIPPET use-plugin
// END SNIPPET use-task
def producerName
def repolocation
// START SNIPPET use-plugin
// START SNIPPET use-task
url = uri(repolLocation)

findProperty('producerName') ?: 'plugin'
"../$producerName/build/repo"

}
}
dependencies {
classpath group: 'org.gradle', name: 'customPlugin',
version: '1.0-SNAPSHOT'
}

}
apply plugin: 'org.samples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins
DSL (see Applying plugins using the plugins DSL) to apply the plugin:

Example: Applying a community plugin with the plugins DSL

build.gradle

plugins {
id 'com.jfrog.bintray' version '0.4.1'

}

Writing tests for your plugin

You can use the ProjectBuilder class to create Project instances to use when you test your plugin
implementation.

Example: Testing a custom plugin

../javadoc/org/gradle/testfixtures/ProjectBuilder.html
../dsl/org.gradle.api.Project.html

src/test/groovy/org/gradle/GreetingPluginTest.groovy
class GreetingPluginTest {

public void greeterPluginAddsGreetingTaskToProject() {
Project project = ProjectBuilder.builder().build()
project.pluginManager.apply 'org.samples.greeting’

assertTrue(project.tasks.hello instanceof GreetingTask)

Using the Java Gradle Plugin Development Plugin

You can use the incubating Java Gradle Plugin Development Plugin to eliminate some of the
boilerplate declarations in your build script and provide some basic validations of plugin metadata.
This plugin will automatically apply the Java Plugin, add the gradleApi() dependency to the compile
configuration, and perform plugin metadata validations as part of the jar task execution, and
generate plugin descriptors in the resulting JAR’s META-INF directory.

Example: Using the Java Gradle Plugin Development plugin

build.gradle

plugins {
id "java-gradle-plugin’
id 'groovy'

}

gradlePlugin {
plugins {
simplePlugin {
id = 'org.samples.greeting’
implementationClass = 'org.gradle.GreetingPlugin'

When publishing plugins to custom plugin repositories using the Ivy or Maven publish plugins, the
Java Gradle Plugin Development Plugin will also generate plugin marker artifacts named based on
the plugin id which depend on the plugin’s implementation artifact.

Providing a configuration DSL for the plugin

As we saw above, you can use an extension object to provide configuration for your plugin. Using
an extension object also extends the Gradle DSL to add a project property and DSL block for the
plugin. An extension object is simply a regular object, and so you can provide DSL elements nested
inside this block by adding properties and methods to the extension object.

Gradle provides several conveniences to help create a well-behaved DSL for your plugin.

Nested DSL elements

When Gradle creates a task or extension object, Gradle decorates the implementation class to mix in
DSL support. To create a nested DSL element you can use the ObjectFactory type to create objects
that are similarly decorated. These decorated objects can then be made visible to the DSL through
properties and methods of the plugin’s extension:

Example: Nested DSL elements

../javadoc/org/gradle/api/model/ObjectFactory.html

build.gradle

class Person {
String name

}

class GreetingPluginExtension {
String message
final Person greeter

@javax.inject.Inject
GreetingPluginExtension(ObjectFactory objectFactory) {
// Create a Person instance
greeter = objectFactory.newInstance(Person)

}

void greeter(Action<? super Person> action) {
action.execute(greeter)
}
}

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {

// Create the extension, passing in an ObjectFactory for it to use

def extension = project.extensions.create('greeting', GreetingPluginExtension,
project.objects)

project.task('hello") {

dolLast {
println "¢{extension.message} from ${extension.greeter.name}"

}

}
apply plugin: GreetingPlugin

greeting {
message = 'Hi'
greeter {
name = 'Gradle’

}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, the plugin passes the project’s ObjectFactory to the extension object through its
constructor. The constructor uses this to create a nested object and makes this object available to

the DSL through the greeter property.

Configuring a collection of objects

Gradle provides some utility classes for maintaining collections of objects, intended to work well
with the Gradle DSL.

Example: Managing a collection of objects

build.gradle

class Book {
final String name
File sourceFile

Book(String name) {
this.name = name
I
}

class DocumentationPlugin implements Plugin<Project> {
void apply(Project project) {
// Create a container of Book instances
def books = project.container(Book)
books.all {
sourceFile = project.file("src/docs/$name")
}
// Add the container as an extension object
project.extensions.books = books

}
apply plugin: DocumentationPlugin

// Configure the container
books {
quickStart {
sourceFile = file('src/docs/quick-start')
}

userGuide {

}
developerGuide {

}
}

task books {
dolLast {
books.each { book ->
println "$book.name -> $book.sourceFile"

}

Output of gradle -q books

> gradle -q books

developerGuide -> /home/user/gradle/samples/src/docs/developerGuide
quickStart -> /home/user/gradle/samples/src/docs/quick-start
userGuide -> /home/user/gradle/samples/src/docs/userGuide

The Project.container(java.lang.Class) methods create instances of NamedDomainObjectContainer,
that have many useful methods for managing and configuring the objects. In order to use a type
with any of the project.container methods, it MUST expose a property named “name” as the
unique, and constant, name for the object. The project.container(Class) variant of the container
method creates new instances by attempting to invoke the constructor of the class that takes a
single string argument, which is the desired name of the object. See the above link for
project.container method variants that allow custom instantiation strategies.

Gradle Plugin Development Plugin

The Java Gradle plugin development plugin is currently incubating. Please be aware

NOTE
that the DSL and other configuration may change in later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle
plugins. It automatically applies the Java plugin, adds the gradleApi() dependency to the compile
configuration and performs validation of plugin metadata during jar task execution.

The plugin also integrates with TestKit, a library that aids in writing and executing functional tests
for plugin code. It automatically adds the gradleTestKit() dependency to the test compile
configuration and generates a plugin classpath manifest file consumed by a GradleRunner instance if
found. Please refer to Automatic classpath injection with the Plugin Development Plugin for more
on its usage, configuration options and samples.

Usage

To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example: Using the Java Gradle Plugin Development plugin

build.gradle

plugins {
id 'java-gradle-plugin’
¥

Applying the plugin automatically applies the Java plugin and adds the gradleApi() dependency to
the compile configuration. It also adds some validations to the build.

The following validations are performed:

* There is a plugin descriptor defined for the plugin.

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
../dsl/org.gradle.api.NamedDomainObjectContainer.html

* The plugin descriptor contains an implementation-class property.
* The implementation-class property references a valid class file in the jar.

* Each property getter or the corresponding field must be annotated with a property annotation
like @InputFile and @OutputDirectory. Properties that don’t participate in up-to-date checks
should be annotated with @Internal.

Any failed validations will result in a warning message.

For each plugin you are developing, add an entry to the gradlePlugin {} script block:

Example: Using the gradlePlugin {} block.

build.gradle

gradlePlugin {
plugins {
simplePlugin {
id = 'org.gradle.sample.simple-plugin’
implementationClass = 'org.gradle.sample.SimplePlugin'

The gradlePlugin {} block defines the plugins being built by the project including the id and
implementationClass of the plugin. From this data about the plugins being developed, Gradle can
automatically:

* Generate the plugin descriptor in the jar file’s META-INF directory.

* Configure the Maven or Ivy Publish Plugins publishing plugins to publish a Plugin Marker
Artifact for each plugin.

* Moreover, if the Plugin Publishing Plugin is applied, it will publish each plugin using the same
name, plugin id, display name, and description to the Gradle Plugin Portal (see Publishing
Plugins to Gradle Plugin Portal for details).

Lazy Configuration

As a build grows in complexity, knowing when and where a particular value is configured can
become difficult to reason about. Gradle provides several ways to manage this complexity using
lazy configuration.

Lazy properties

NOTE The Provider API is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

Gradle provides lazy properties, which delay the calculation of a property’s value until it’s

absolutely required. Lazy types are faster, more understandable and better instrumented than the

https://plugins.gradle.org/docs/publish-plugin
https://guides.gradle.org/publishing-plugins-to-gradle-plugin-portal/
https://guides.gradle.org/publishing-plugins-to-gradle-plugin-portal/

internal convention mapping mechanisms. This provides two main benefits to build script and
plugin authors:

1. Build authors can wire together Gradle models without worrying when a particular property’s
value will be known. For example, when you want to map properties in an extension to task
properties but the values aren’t known until the build script configures them.

2. Build authors can avoid resource intensive work during the configuration phase, which can
have a direct impact on maximum build performance. For example, when a property value
comes from parsing a file.

Gradle represents lazy properties with two interfaces:

» Provider are properties that can only be queried and cannot be changed.
* Properties with these types are read-only.
* The method Provider.get() returns the current value of the property.
* A Provider can be created by the factory method
ProviderFactory.provider(java.util.concurrent.Callable).
* Property are properties that can be queried and overwritten.
* Properties with these types are configurable.

* Property implements the Provider interface.

The method Property.set(T) specifies a value for the property, overwriting whatever value
may have been present.

The method Property.set(org.gradle.api.provider.Provider) specifies a Provider for the value
for the property, overwriting whatever value may have been present. This allows you to
wire together Provider and Property instances before the values are configured.

» A Property can be created by the factory method ObjectFactory.property(java.lang.Class).

Neither of these types nor their subtypes are intended to be implemented by a build script or plugin
author. Gradle provides several factory methods to create instances of these types. See the Quick
Reference for all of the types and factories available.

Lazy properties are intended to be passed around and only evaluated when required (usually,
during the execution phase). For more information about the Gradle build phases, please see Build
Lifecycle.

The following demonstrates a task with a read-only property and a configurable property:

Example: Using a read-only and configurable property

../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/provider/Provider.html#get--
../javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
../javadoc/org/gradle/api/provider/Property.html
../javadoc/org/gradle/api/provider/Property.html#set-T-
../javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
../javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

build.gradle

class Greeting extends DefaultTask {
// Configurable by the user
@Input
final Property<String> message = project.objects.property(String)

// Read-only property calculated from the message
@Internal
final Provider<String> fullMessage = message.map { it + " from Gradle" }

@TaskAction
void printMessage() {
logger.quiet(fullMessage.get())
Iy
+

task greeting(type: Greeting) {
// Note that this is effectively calling Property.set()
message = 'Hi'

Output of gradle greeting

> gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

The Greeting task has a Property<String> for the mutable part of the message and a
Provider<String> for the calculated, read-only, message.

Note that Groovy Gradle DSL will generate setter methods for each Property-typed
NOTE property in a task implementation. These setter methods allow you to configure the
property using the assignment (=) operator as a convenience.

Creating a Property or Provider

If provider types are not intended to be implemented directly by build script or plugin authors, how
do you create a new one? Gradle provides various factory APIs to create new instances of both
Provider and Property:

* ProviderFactory.provider(java.util.concurrent.Callable) instantiates a new Provider. An instance
of the ProviderFactory can be referenced from Project.getProviders() or by injecting
ProviderFactory through a constructor or method.

../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/provider/Property.html
../javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
../javadoc/org/gradle/api/provider/ProviderFactory.html
../javadoc/org/gradle/api/Project.html#getProviders--

* ObjectFactory.property(java.lang.Class) instantiates a new Property. An instance of the
ObjectFactory can be referenced from Project.getObjects() or by injecting ObjectFactory through
a constructor or method.

Project does not provide a specific method signature for creating a provider from a
groovy.lang.Closure. When writing a plugin with Groovy, you can use the method
signature accepting a java.util.concurrent.Callable parameter. Groovy’s Closure to
type coercion will take care of the rest.

NOTE

Working with files and Providers
In Working with Files, we introduced four collection types for File-like objects:

Table 37. Collection of files recap

Read-only Configurable Type
Type

FileCollection ConfigurableFileCollection

FileTree ConfigurableFileTree

All of these types are also considered Provider types.

In this section, we are going to introduce more strongly typed models for a FileSystemLocation:
Directory and RegularFile. These types shouldn’t be confused with the standard Java java.io.File
type as they tell Gradle to expect more specific values (a directory or a non-directory, regular file).

Gradle provides two specialized Property subtypes for dealing with these types:
RegularFileProperty and DirectoryProperty. ProjectLayout has methods to create these:
ProjectLayout.fileProperty() and ProjectLayout.directoryProperty().

A DirectoryProperty can also be used to create a lazily evaluated Provider for a Directory and
RegularFile via DirectoryProperty.dir(java.lang.String) and DirectoryProperty.file(java.lang.String)
respectively. These methods create paths that are relative to the location set for the original
DirectoryProperty.

Example: Using file and directory property

../javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
../javadoc/org/gradle/api/model/ObjectFactory.html
../javadoc/org/gradle/api/Project.html#getObjects--
../dsl/org.gradle.api.Project.html
http://docs.groovy-lang.org/next/html/documentation/core-semantics.html#_assigning_a_closure_to_a_sam_type
http://docs.groovy-lang.org/next/html/documentation/core-semantics.html#_assigning_a_closure_to_a_sam_type
../javadoc/org/gradle/api/file/FileCollection.html
../javadoc/org/gradle/api/file/ConfigurableFileCollection.html
../javadoc/org/gradle/api/file/FileTree.html
../javadoc/org/gradle/api/file/ConfigurableFileTree.html
../javadoc/org/gradle/api/file/FileSystemLocation.html
../javadoc/org/gradle/api/file/Directory.html
../javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/7/docs/api/java/io/File.html
../javadoc/org/gradle/api/file/RegularFileProperty.html
../javadoc/org/gradle/api/file/DirectoryProperty.html
../javadoc/org/gradle/api/file/ProjectLayout.html
../javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
../javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
../javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
../javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

build.gradle

class FooExtension {
final DirectoryProperty someDirectory
final ReqularFileProperty someFile
final ConfigurableFileCollection someFiles

FooExtension(Project project) {
someDirectory = project.layout.directoryProperty()
someFile = project.layout.fileProperty()
someFiles = project.layout.configurableFiles()

}

project.extensions.create('foo', FooExtension, project)

foo {
someDirectory = project.layout.projectDirectory.dir('some-directory')
someFile = project.layout.buildDirectory.file('some-file")
someFiles.from project.layout.configurableFiles(someDirectory, someFile)

}

task print {
dolast {
def someDirectory = project.foo.someDirectory.get().asFile
logger.quiet("foo.someDirectory = " + someDirectory)
logger.quiet("foo.someFiles contains someDirectory? " + project.foo.someFiles
.contains(someDirectory))

def someFile = project.foo.someFile.get().asFile

logger.quiet("foo.someFile = " + someFile)

logger.quiet("foo.someFiles contains someFile? " + project.foo.someFiles
.contains(someFile))

}
}

Output of gradle print
> gradle print

> Task :print

foo.someDirectory = /home/user/gradle/samples/some-directory
foo.someFiles contains someDirectory? true

foo.someFile = /home/user/gradle/samples/build/some-file
foo.someFiles contains someFile? true

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

This example shows how Provider types can be used inside an extension. Lazy values for

Project.getBuildDir() and Project.getProjectDir() can be accessed through Project.getLayout() with
ProjectLayout.getBuildDirectory() and ProjectLayout.getProjectDirectory().

Working with task dependencies and Providers

Many builds have several tasks that depend on each other. This usually means that one task
processes the outputs of another task as an input. For these outputs and inputs, we need to know
their locations on the file system and appropriately configure each task to know where to look. This
can be cumbersome if any of these values are configurable by a user or configured by multiple
plugins.

To make this easier, Gradle offers convenient APIs for defining files or directories as task inputs
and outputs in a descriptive way. As an example consider the following plugin with a producer and
consumer task, which are wired together via inputs and outputs:

Example: Implicit task dependency

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:projectDir
../javadoc/org/gradle/api/Project.html#getLayout--
../javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
../javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--

build.gradle

class Producer extends DefaultTask {
@0utputFile
final ReqularFileProperty outputFile = newOutputFile()

@TaskAction
void produce() {
String message = 'Hello, World!'
def output = outputFile.get().asFile
output.text = message
logger.quiet("Wrote '${message}' to ${output}")

}

class Consumer extends DefaultTask {
@InputFile
final ReqularFileProperty inputFile = newInputFile()

@TaskAction
void consume() {
def input = inputFile.get().asFile
def message = input.text
logger.quiet("Read '${message}' from ${input}")

}

task producer(type: Producer)
task consumer(type: Consumer)

// Wire property from producer to consumer task
consumer.inputFile = producer.outputFile

// Set values for the producer lazily
// Note that the consumer does not need to be changed again.
producer.outputFile = layout.buildDirectory.file('file.txt")

// Change the base output directory.
// Note that this automatically changes producer.outputFile and consumer.inputFile
buildDir = 'output'

Output of gradle consumer

> gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/output/file.txt

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

In the example above, the task outputs and inputs are connected before any location is defined.
This is possible because the input and output properties use the Provider API. The output property
is created with DefaultTasknewOutputFile() and the input property is created with
DefaultTask.newInputFile(). Values are only resolved when they are needed during execution. The
setters can be called at any time before the task is executed and the change will automatically affect
all related input and output properties.

Another thing to note is the absence of any explicit task dependency. Properties created via
newOutputFile() and newOutputDirectory() bring knowledge about which task is generating them, so
using them as task input will implicitly link tasks together.

Working with collection Providers

In this section, we are going to explore lazy collections. They work exactly like any other Provider
and, just like FileSystemLocation providers, they have additional modeling around them. There are
two provider interfaces available, one for List values and another for Set values:

» For List values the interface is called ListProperty. You can create a new ListProperty using
ObjectFactory.listProperty(java.lang.Class) and specifying the element’s type.

* For Set values the interface is called SetProperty. You can create a new SetProperty using
ObjectFactory.setProperty(java.lang.Class) and specifying the element’s type.

This type of property allows you to overwrite the entire collection value with
HasMultipleValues.set(java.lang.Iterable) and
HasMultipleValues.set(org.gradle.api.provider.Provider) or add new elements through the various
add methods:

» HasMultipleValues.add(T): Add a single concrete element to the collection

* HasMultipleValues.add(org.gradle.api.provider.Provider): Add a lazily evaluated element to the
collection

» HasMultipleValues.addAll(org.gradle.api.provider.Provider): Add a lazily evaluated collection of

elements to the list

Just like every Provider, the collection is calculated when Provider.get() is called. The following
example show the ListProperty in action:

../javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
../javadoc/org/gradle/api/DefaultTask.html#newInputFile--
../javadoc/org/gradle/api/provider/ListProperty.html
../javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
../javadoc/org/gradle/api/provider/SetProperty.html
../javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
../javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
../javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
../javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
../javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-
../javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
../javadoc/org/gradle/api/provider/Provider.html#get--
../javadoc/org/gradle/api/provider/ListProperty.html

Example: List property

build.gradle

task print {
dolast {
ListProperty<String> list = project.objects.listProperty(String)

// Resolve the list
logger.quiet('The list contains: ' + list.get())

// Add elements to the empty list
list.add(project.provider { 'element-1' }) // Add a provider element
list.add('element-2") // Add a concrete element

// Resolve the list
logger.quiet('The list contains: ' + list.get())

// Qverwrite the entire list with a new list
list.set(['element-3', 'element-4'])

// Resolve the list
logger.quiet('The list contains: ' + list.get())

// Add more elements through a list provider
list.addA11(project.provider { ['element-5', 'element-6'] })

// Resolve the list
logger.quiet('The list contains: ' + list.get())

Output of gradle print
> gradle print

> Task :print

The 1list contains: []

The list contains: [element-1, element-2]

The list contains: [element-3, element-4]

The list contains: [element-3, element-4, element-5, element-6]

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Guidelines

This section will introduce guidelines to be successful with the Provider API. To see those guidelines
in action, have a look at gradle-site-plugin, a Gradle plugin demonstrating established techniques

https://github.com/gradle-guides/gradle-site-plugin

and practices for plugin development.
* The Property and Provider types have all of the overloads you need to query or configure a
value. For this reason, you should follow the following guidelines:
 For configurable properties, expose the Property directly through a single getter.
* For non-configurable properties, expose an Provider directly through a single getter.
* Avoid simplifying calls like obj.getProperty().get() and obj.getProperty().set(T) in your code
by introducing additional getters and setters.
* When migrating your plugin to use providers, follow these guidelines:
 Ifit’'s a new property, expose it as a Property or Provider using a single getter.
 Ifit’s incubating, change it to use a Property or Provider using a single getter.

 If it’s a stable property, add a new Property or Provider and deprecate the old one. You
should wire the old getter/setters into the new property as appropriate.

Future development

Going forward, new properties will use the Provider API. The Groovy Gradle DSL adds convenience
methods to make the use of Providers mostly transparent in build scripts. Existing tasks will have
their existing "raw" properties replaced by Providers as needed and in a backwards compatible
way. New tasks will be designed with the Provider API

The Provider API is incubating. Please create new issues at gradle/gradle to report bugs or to submit
use cases for new features.

Provider Files API Reference
Use these types for read-only values:

Provider<RegularFile>
File on disk

Factories

» ProjectLayout.fileProperty()

 DirectoryProperty.file(java.lang.String)

Provider<Directory>

Directory on disk

Factories

* ProjectLayout.directoryProperty()

* DirectoryProperty.dir(java.lang.String)

FileCollection

Unstructured collection of files

../javadoc/org/gradle/api/provider/Property.html
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/provider/Property.html
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/provider/Property.html
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/provider/Property.html
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/provider/Property.html
../javadoc/org/gradle/api/provider/Provider.html
https://github.com/gradle/gradle/issues/new
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/file/RegularFile.html
../javadoc/org/gradle/api/file/ProjectLayout.html#fileProperty--
../javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
../javadoc/org/gradle/api/provider/Provider.html
../javadoc/org/gradle/api/file/Directory.html
../javadoc/org/gradle/api/file/ProjectLayout.html#directoryProperty--
../javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
../javadoc/org/gradle/api/file/FileCollection.html

Factories

* Project.files(java.lang.Object[])

» ProjectLayout.files(java.lang.Object...)

FileTree
Hierarchy of files

Factories

* Project.fileTree(java.lang.Object) will produce a ConfigurableFileTree, or you can use
Project.zipTree(Object) and Project.tarTree(Object)

Property Files API Reference

Use these types for mutable values:

RegularFileProperty
File on disk

Factories

» DefaultTask.newInputFile() and DefaultTask.newOutputFile() if used as task input/output

* Directory.file(java.lang.String) otherwise

DirectoryProperty

Directory on disk

Factories

* DefaultTask.newInputDirectory() and DefaultTask.newOutputDirectory() if used as task
input/output

 Directory.dir(java.lang.String) otherwise

ConfigurableFileCollection

Unstructured collection of files

Factories

* ProjectLayout.configurableFiles(java.lang.Object...)

ConfigurableFileTree

Hierarchy of files
Factories
* Project.fileTree(java.lang.Object)
Lazy Collections API Reference

 For lists, use ObjectFactorylistProperty(java.lang.Class) to get a ListProperty which is also a
Provider<List<T>>

* For sets, use ObjectFactory.setProperty(java.lang.Class) to get a SetProperty which is a

../dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
../javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
../javadoc/org/gradle/api/file/FileTree.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
../javadoc/org/gradle/api/file/ConfigurableFileTree.html
../javadoc/org/gradle/api/Project.html#zipTree-java.lang.Object-
../javadoc/org/gradle/api/Project.html#tarTree-java.lang.Object-
../javadoc/org/gradle/api/file/RegularFileProperty.html
../javadoc/org/gradle/api/DefaultTask.html#newInputFile--
../javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
../javadoc/org/gradle/api/file/Directory.html#file-java.lang.String-
../javadoc/org/gradle/api/file/DirectoryProperty.html
../javadoc/org/gradle/api/DefaultTask.html#newInputDirectory--
../javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
../javadoc/org/gradle/api/file/Directory.html#dir-java.lang.String-
../javadoc/org/gradle/api/file/ConfigurableFileCollection.html
../javadoc/org/gradle/api/file/ProjectLayout.html#configurableFiles-java.lang.Object...-
../javadoc/org/gradle/api/file/ConfigurableFileTree.html
../dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
../javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
../javadoc/org/gradle/api/provider/ListProperty.html
../javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
../javadoc/org/gradle/api/provider/SetProperty.html

Provider<Set<T>>

Lazy Objects API Reference

Use ObjectFactory.property(java.lang.Class) to construct a Property<T> which is a Provider<T>.

../javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Licenses

Documentation licenses

Gradle Documentation
Copyright © 2007-2018 Gradle, Inc.

Gradle build tool source code is open and licensed under the Apache License 2.0. Gradle user
manual and DSL references are licensed under Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

https://github.com/gradle/gradle/blob/master/LICENSE
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Gradle User Manual: Version 4.10
	Table of Contents
	About Gradle
	Overview

	Getting Started
	Installing Gradle

	Using Gradle Builds
	Command-Line Interface
	Build Environment
	Directory Layout
	The Gradle Daemon
	Initialization Scripts
	Executing Multi-Project Builds
	The Gradle Wrapper
	Troubleshooting

	Authoring Gradle Builds
	The Feature Lifecycle
	Authoring Maintainable Build Scripts
	Organizing Gradle Projects
	Build Cache
	Build Init Plugin
	Build Lifecycle
	Build Script Basics
	Composite builds
	Authoring Multi-Project Builds
	Authoring Tasks
	Logging
	Standard Gradle plugins
	Testing Build Logic with TestKit
	Using Gradle Plugins
	Working With Files
	Writing Build Scripts
	Writing Custom Task Classes
	The Base Plugin

	Dependency Management
	Introduction to Dependency Management
	Dependency Management Terminology
	Dependency Types
	Repository Types
	Declaring Dependencies
	Declaring Repositories
	Inspecting Dependencies
	Managing Dependency Configurations
	Managing Transitive Dependencies
	Dependency Locking
	Troubleshooting Dependency Resolution
	Customizing Dependency Resolution Behavior
	The Dependency Cache
	Working with Dependencies

	Publishing Artifacts
	Publishing
	Maven Publish Plugin
	Ivy Publish Plugin
	Legacy publishing
	Maven Plugin
	The Signing Plugin
	The Distribution Plugin

	Native Projects
	Building native software
	Software model concepts
	Rule based model configuration
	Implementing model rules in a plugin
	Extending the software model

	Groovy Projects
	Groovy Quickstart
	The Groovy Plugin
	The CodeNarc Plugin

	Java Projects
	Java Quickstart
	Building Java & JVM projects
	Testing in Java & JVM projects
	The Java Plugin
	The Java Library Plugin
	The Java Library Distribution Plugin
	Dependency Management for Java Projects
	Using Ant from Gradle
	The ANTLR Plugin
	The Application Plugin
	The Checkstyle Plugin
	The FindBugs Plugin
	The JaCoCo Plugin
	The JDepend Plugin
	The OSGi Plugin
	The PMD Plugin

	Java Web Projects
	The Ear Plugin
	Building Play applications
	The War Plugin

	Scala Projects
	The Scala Plugin

	Integrating Gradle
	The Eclipse Plugins
	The IDEA Plugin
	Embedding Gradle using the Tooling API

	Extending Gradle
	Writing Custom Plugins
	Gradle Plugin Development Plugin
	Lazy Configuration

	Licenses
	Documentation licenses
	Gradle Documentation

