The Canonical Csound
Reference Manual

Version 6.11.0

Barry Vercoe, MIT Media Lab
et. al.

The Canonical Csound Reference Manual: Version 6.11.0
by Barry Vercoe and et. al.

Table of Contents

1= = o PP XXXV
Preface to the CSouNd Manualcoouiuiiiiiiie e XXXV
History of the Canonical Csound Reference Manualoovvviiiiiiiiiiiieici e, XXXVi
COPYHIGNE NOICE ...ttt ettt e e et e e e e eeeans XXXVil
Getting Started With CSOUNGiiiiiieiei e XXXiX
What's NeW iN CSOUN B.11.0ccevuiiiiiiieieiti et et e e xli

[@Y 1= PP 1
T gL oo (1 1o o RSP 4
The CSOUNA COMMEBNG ...ttt ettt e et e e e e e e e ena s 5

Order Of PreCEOBNCEovvuieiiii ettt 5
Description of the command SYNEAXccoeuuuiiiiiiieeiiii e 5
Csound COMMANG TNuiieii e e e 7
Command-line Flags (DY CaEJONY)uuiiiiiiiieeiiiii et e e e 18
Csound Environment VariableSuuuiiiiiiiicii e 29
Unified File Format for Orchestras and SCOMeScceuvuieiiiiiiieiiiiiiieeeei e 31
DESCHIPLION ..ttt et 31
EXBIMPIE . 34
Command Line Parameter File (.CSOUNAICT)ccuuurieiiiiiieiiiiie e 34
SCOrE File PrePrOCESSING . .ccevvueiiiie ettt ettt et e e 35
The EXIraCt FEALUIEceeiii et 35
Independent Pre-Processing With SCSOMuuvvviiiiiiiiiiiiieie e 35
USING CSOUNG ...ttt ettt e e ettt e ettt e et ettt e e ettt e e e e erb e e eeebb e eeen 37
CsoUN'S CONSOIE OULPULeeeeiiee ettt e ettt e e e et e e eeneaeeees 37
HOW CSOUN WOTKS ...t e e et e e e e e e eees 38
Amplitude ValueS in CSOUNGccovvuiiiiiiieeeii e e 39
REAI-TIME AUTIO ..t e e e e e e 41
REAITIME 1/0O 0N LINUX ..eitiieeieee et e e e e e eenns 41
VLB OSX ittt 47
AT T 0T [0TSR 48
Realtime 1/0 with JACK Connection Kitcooouuiiiiiiiiieeiiii e 49
Optimizing AUAIO [/O LBIENCYcevvveeieiiie ettt 50
1600]01 1T |01] ol RSP PP PP UPPPPTNN 52
Syntax Of the OFChESIIa i 53
Orchestra Header SEAEMENTSuuiiiiii e 53
Instrument and Opcode BIOCK StaleMENtSccevvuieiiiiiiieeiii e 54
Ordinary SEALEIMENTS oeeeeti et et e e et e et e e e et e e e aaa s 55
Types, Constants and Variablesc.uuviiiiiiiii e 55
Variable INtTalizationoouiiii e 56
EXIIESSIONS ...ttt ettt aaas 56
Directories and FilESoeuiiii e 57
[N To g0 oot P (1 = PP 57
= o (0L PPN 58
NaMEd INSEFUMENES ...t et e et e e e e eeenns 58
User Defined Opcodes (UDO)cveeuieiiiie ettt e s 61
VECLOIS BNT ATTAYS ...ttt ettt ettt ettt ettt et et e e e e e nb e e enaens 61
FUNCtion Syntax iN CSOUNBceverunieeiiiieeeeit ettt 61
UDP SB VRS .ttt ettt ettt 62
The Standard NUMEIC SCOMEccuuiiiiii et 65
Preprocessing of Standard SCOMESccuuuieiiiiiieiii e 65
ATy e 65
TEIMPO e 66

The Canonica Csound

Reference Manual
S0 S TSPPPTR P SPPN 66
SCOME SEALEIMENLS ... e ettt et e e e e e et e e e e e e e neenns 67
Next-P and Previous-P SymbOoISooiiiiiiic e 67
L 10101 1o P 68
SCOME MBCIOS ...ttt ettt et et e e e e r e e e e et e et e en e eenns 69
MUIIPIE FIlE SCOE ...t e e e e 71
Evaluation Of EXPrESSIONSuiiiiiiiiieeiieeeiie e e e e e e e e e e e e e e e e et e e ean e aen s 71
SHINGS IN P-FIEAS ..o 73
0] 1 = 0o PSP 74
L0 o 1113 o /AN PSP 75
L0 o 10110 |V PSP 77
10 TH Lo [T Ko 11 oo 79
L0 o101 o I I 0SSP 80
[1. OPCOUES OVEIVIEW ...uiiiieiii e et e e e e e e e e e e e et e e et e e et e e et e e et e e et e et e eaaeeenneeeens 81
o7z I €T 0= (] (= 85
Additive SynthesiSRESYNTNESISuiiiii e 85
[2F S ol @ S ol | = o) = PR 85
Dynamic Spectrum OSCIHIBEOISuuiiiiii e e e e 85
LIS 011 === N 86
Granular SYNNESISuiii e e 86
Hyper Vectorial SyNtheSISc.vuiiiiiiii e e 87
Linear and EXponential GENEratorSc.uuiiiuuieiiiieeiii e e e e e e e e e e e e e eaens 87
ENVEIOPE GENEIALONS .. .ovi it e e e e e e e e e e e e e e e eeen 88
Models and EMUIBLIONSiiiiiiiieeiii e e e e e e e 88
0= 0 TSP 89
RaNdom (NOISE) GENEIAIOISuuiiiieiiieeei e e e e e e e e e e e e e e e e e ean e eaas 90
SamPle Playbackoouiiii i 91
S o 090 0] (=3P 91
SCANNEA SYNMENESIS . .eve i e e e e e e e 93
TADIE ACCESS ..ttt ettt aaaan 94
Wave Terrain SYNthESIS 95
Waveguide Physical MOElINGcovuiiiiiiiii e 95
S 7= I o 10 =g To B0 14 o LU | 96
File INPUt @0 OULPULceveeii e e e e e e e e e e et e e e e e aanaees 96
RS0 7= I 1 oL | 96
S 7= O 14 o 11 | PN 96
SOFTWEAIE BUS ...ttt ettt et e et e e e e e eeas 97
Printing and DiSPlayccuueiiieiii e 97
SOUNd FilE QUETIES .. vvi e e e e e e e e eeas 97
7= 1Y, oo [11 99
Amplitude Modifiers and DynamiC ProCeSSINGccuueeunierruieriiieeaiieeeiieeeiieeeeeeeaneenes 99
Convolution and MOFPhINGeiuiieiii e e e e e e e e 99
DAY et 99
Panning and SpatialiZationiiiiiiiiiiie e 100
REVEIDEIELION ...eeviii e 101
SaMPIE LEVE OPEIatOrS .. .cvuiiii et e e e e e e aas 102
S o 7= T 411 (= N 102
SPECIAl EFfECLS .. i 102
SEANAAIT FIIEEIS ..ueeeii e 103
SPECIAlIZEA FTEIS .o i 105
WaAVEGUIAESeieiiiee e e e e e e e e et e e e e e e e aanas 105
Waveshaping and Phase DiStortionvviiiiiiiiiccii e 105
INSEIUMENE CONEFOL ...t e et e e e et e e e e et e e e e et e e e entenaeeees 107
L0 o: L @0 i o PPN 107

The Canonica Csound

Reference Manual

CoNAitioNal VEAIUESuuiiiiiii e 107
Duration Control SEALEMENESuuuieiiiiiie e r e e s 107
FLTK Widgets and GUI CONLrollErScouuviiiiiiiiii e 107

[I I Q041 7= 114 1= £ PP 110

FLTK VAIUBLOTS .ottt e e e et eeeaees 110

Other FLTK WIAGELS ...eevvvieeiiii e eei e e 111

Modifying FLTK Widget APPEAraNCeoevuniiiiieiiieeeii i e e e e e e 111

General FLTK Widget-related OpCodesccoovvvviiiiiiiiiieciiieceeeee e, 112

INSEFUMENE TNVOCELION ...evvtieeeii e ettt e et e e e eab e e e eatn s eeeene 112
Program FIOW CONtrolccouuiiiiiie e e e e e e e e e e e 113
Real-time Performance CONtroluiiiiiiiiiiiiii e 114
Initidlization and REINItIaliZaliONcccvviiiiiiii e 114
SenSiNG and CONLIOlouvniiii e e e e e e e e e e aanas 115

S = oL PSP 116
SUB-INSErUMENt COMEIOL ...eeveee e 116
TIME REAAING .vuiii i e e e e e e e e e e 116
FUNCEION Table CONLIOloeueeeieii e e et e 118
TaAhIE QUEIIES ...t 118
REAANVIITE OPErAtiONS ... cvvieii i eiie e e e e e e e e e e e e e et e e e e eaanees 118
Table Reading with Dynamic SEleCtionccoovviiiiiiiiiii e 119
MathematiCal OPEIELIONSc.uuiiieiieiiie i e e e e e e e e e e e e e e e et e e et e e eanaeeeas 120
AMPLITUAE CONVEITENSuniiii e e e e e e e e e aeas 120
Arithmetic and LOgIC OPEratioNSccvuuieiiiieiieeeii e e e e e e e e e e e e e ae 120
Comparators and ACCUMUIGLOTScvvueiiieeiii e e e e e e e e e e e e e e e eanes 120
Mathematical FUNCLIONSiiiiiiie e 121
Opcode Equivalents of FUNCHONScccouiiiiiiciie e 121
RANAOM FUNCLIONS ...evvie e e e e e r e 121
TrIQONOMELNIC FUNCHIONS .. .ovuiiiii e et e e e e e e e e e e eenas 122
Linear AlQera OPCOUEScviuieii e 123

F N = YO o oo o = PPN 131

[(e N O 01V = 4 1= £ PP 138
0 1o PP 138

LI 10110 T o wTo o L= 138
ReAl-tiME MIDI SUPPOITietieiiii e e e e e e e e e r e e e e e et e e et e e st e e e aaeaannaees 139
Virtual MIDI Keyboardcc.uoiiiiiiiii e 140
] T o O 143
MIDI MESSAGE OULPUL v uevieeiieie ettt e e e e e et e e e e e ans 143
Generic INPUE and OULPULvveiiii e e e e e e e e e e e e e e aane s 144
10010177 1 (< = T PP PPPT 144
EVENE EXLENAEIS .. .oieeiiieeee et e et 144
NOtE-ON/NOLE-OFff OULPULevuiiii i e e e e e e aaas 144
MIDI/Score Interoperability OPCOUESocvvviiiiiiiii e 145
System ReAltiME MESSAJESuuiiiiiiiii e ie e e e e e e e e e e e e e e e et 146
SHAEr BaANKS ... 146

S oo = 0o 1o [P 147
Short-time Fourier Transform (STFT) ReSYNtheSIScccvvviiiiiiiiiiiiiiecii e 147
Linear Predictive Coding (LPC) ReSYNthESIScvviiiiiiiiie e 147
Non-standard Spectral ProCESSINGcccuuiviiiiiiiiieiie e e e e e e 148
Tools for Real-time Spectral Processing (PVS OPCOAES)uvvvniiiiiieiiieeiiiieeiieeeineens 148

ATS SPECHral PrOCESSING ...vuiiiiiii et e e e e e e e e et e eeaneeee 149
[0 FY O oot o (= 150
Array-based Spectral OPCOAEScvvuiiiiei e 153

S 10 155
String Manipulation OPCOAESccvvuiiiii i 156

The Canonica Csound

Reference Manual

String ConVErsion OPCOUEScovvuiiiiieiii e e e e e e e e e e eaneees 157
VA= v (0 = O ool o [158
Tables Of VECIOrS OPEraIOrSvivii it eii e e e e e e e e e e e eaen 158
Operations Between a Vectorial and a Scalar Signalccovevviviiiiieiiiiciie e, 158
Operations Between two Vectorial SIgnalScocovieiiiiiiiiiiiiiiccce e 159
Vectorial ENVEIOPE GENEIAIOrSiivi e eiii e e e e e e e e e e e e e 159
Limiting and wrapping of vectorial control SignalScoccoveviiiiiiii i, 160
Vectorial Control-rate Delay Pathscc.ooiiiiiiiiiiice e 160
Vectorial Random Signal GENEratorSc.uuieiiiiiiiiieiie e e e e e 160

ZaK PafCh SYSEEIM ... 161
L T o TR 01 1 o 162
DSSI| and LADSPA fOr CSOUNG ...cevviiiiiiiie et e e e e e e e e eni e eennes 162

VST FOF CSOUN ...ttt e et e e et e e e e ae s 162
OSC ANA NEIWOTK ...eueeeiiii et e et e ettt s e e e ettt e e e ebtaeeeerenaaeaes 164
ADbIeton LiNK OPCOOESuiiiiiiiiici e e e e e e e e e e aens 164

S S P 164

[N Ao PSP 165

RS 11101 (= I @] 0 w0 o === T 165
Tt G @] 0o === N 166
Signal FIow Graph OPCOAEScvvvniiii e e e e e e e aaas 167
0= o (o T O o o0 o == 170
[T RO o oo o - 173
Y010 g T @0 e o L= 178
g1 7o 18 ot [o U 178
OFCNESIIA SYNEAX ..evuiciiieeii e e et e e e e e e e e e et e e et e e e et e e ean e e et 178
IMage ProCeSSING OPCOOESuuiiit it et e et e et e e e et e e e e e e e e et e e e et e e e e e st e e e anaeeaneeeen 180
Y I oo [181
MiSCEIlANEOUS OPCOES ... cviiiiii e e e e e e et e e e e aaaees 183
T REFEIEINCE ... ettt e et et e et e et e eean e 184
Orchestra Opcodes and OPEratOrSovvuueiiieeii et e e e e e e e e e e et e e e e e e aaanaaes 213
PP 214
FHEFINE .o e 216

2] 00 10 o L= PSPPSR 220
FHUNGER L. e 222
FTAE Lo e 223

1 0o L= PP 224

BN AIME oo e 225

L PSP 228

B e 230
DU SPPRT 232

D PP 234

S U SPPR 236
PP 238

S PP 240
OSSP 243
PP 246
PR 249

i itttereerere e er e e et et e ere e e e et e e e et et e et et ee e et ee et et r e et et e e et et e e et e e e et aera s 252
PP 254
RSO RPN 256
PP 258

| PP 260
PP 263
00 PSP 265

Vi

The Canonica Csound

Reference Manual
A s 268
S 269
> et e e e eeteeteetee et eea et et et taeetie et e et aaaaaa 271
L PR 272
PP 274
TP 275
TP 276
PR 277
A0S e 279
o £V TP 281
0 [PP 285
=015V o PN 288
=015V | 290
=015V) 2P 293
AT OUCI et 296
o 0= PN 298
o Y= Y £ o 300
0] oo | o P 303
AMPADTS L. 305
0o 0 1o 307
BMPMIAIA ... 309
2 1<) 1 311
= 00| P PTPSPTN 313
= 1) = PP 315
(0] 0= TP 317
= 1] = S 319
AT SO oot 321
YN = (o [0 AP 325
PN B U (== o [PPSR 328
AN B o 01PN 330
72N B 110 TP 333
F NS T 1= o (== 336
F N B == o 338
F N B = o [A PTRPTNRN 342
F IS o g = o TN 345
F N S 1 Vo PSP 347
0= oo TR 351
DAlANCE .. et 355
DAIANCEZ ..o 357
DAMDIOO0 ... e 359
DAMMOE] ... oo 361
0] 0oL 1 10 0 TR 363
0] 0011 | PSP 368
DELArANG ...eviee e 371
0724 o 1P 374
0] 104 011 o (o KU PPRPSTRN 376
0] 104 0190 (= o PRSP 379
o] 1 1 TSP 382
DIGUAH ..o 384
DIUAOA ... e 389
o] 1 2 To [T PTP 392
o] o P 394
DOTEZ .o 396
01011 o o TP 398

Vii

The Canonica Csound

Reference Manual
DULDE . e 399
01011 o P 400
010111 T 401
0101111 o] o 1 402
010111 o] P 404
0101111 o 406
o101 1= 1 | o TP 408
01011 o o P 410
BUZZ ..o e 412
021 PP 414
(07 7= L R OO PR 416
Lo 1 (o VPPN 418
(o7 1 o Y/ P 420
o= P 422
CE | e e 424
00 0 | PP PPRPRN 427
(o= 110 P 429
(0= o1 PP 431
(o= 01 1Y 433
(000 [0 [0 TN PP 435
o =1 1 PN 437
ChaNQEd .. cee i 439
ChaNQEO2o 441
ChBNI oo 444
ChaNO ... 445
ot o] o P 446
ChEBYShEVPOLY ..o 448
ChECKBIOX ..oeecii 451
NN L 453
CRNCIEAN ... e e 455
CRNEXPOIT <. e 457
CRNGEL oo e 459
CRNIMIEX e 462
ChNPAIAMS ... e 464
NS o 465
CNUD .. 468
01T To o 1 472
(012 (0] (0 T 474
(01 P 476
o RN 478
ot 1 o TP 481
(ot otXCo FPN 483
ClOCKON L. 485
(o1 o PP PP 487
ot 107 0] D14 o £ o P 489
(0110 [0 (o TN PP 491
o0 101 o PR 493
o0 101 011 1Y/ 495
(o] 0] 0] 1= oo [497
(or0] 0101 071 1= o o 499
(o0 101 0] 1= 1 501
(00001 01> T PRSP 503
(00 0] 01>V PRP 506
(00 0] 1 = o S 509

The Canonica Csound

Reference Manual
(010311 (o) TP 512
(010 017/ P 513
(000 017/ 0] Y T 514
(o0])Y 24 1 = o 518
(00])] 271 - Y 520
o0 1= 522
(o015 < o [PP ORI 524
L0015 | o 526
(00155 o | PP 528
(010 o PN 530
(o0 T 1 0 P 532
ot 015724 oo . P 534
ot 01 211 538
CPSMIAID .o 540
(ot 01 2101 1 o o 542
(0f 0150 o S PP 546
o101 oo o [P 549
ot 01511 1o [552
[of 1= L1 PP PP 554
ot 011 b57
ot 0174 oo . P 560
(o: 1010 0= (= PP 564
(0F 11 o o PP 566
(08 10155 PP 569
o 10753 0 571
(ot 11 o 574
o {1 1 PN 576
o {1 2 PN 578
o {1 1PN 580
ot {3 T P 583
(ot 01 = 1 o P 584
0= PSP 587
0 PRSP 590
0 S PP 592
0] o SN 594
(07 1 1] o T 596
(0155201 TP 598
o (o o] o G 600
(0 [0 o] o 022 602
o (0o 1 VPN 604
0o PR 606
o (o2 (10 1Y P 608
B A e s 610
ElAY L e e 612
EIAYK e 614
(01 1/ 617
E AW e et a e 619
(01 7= o 1 PP 621
01 7= 2 T PP 624
(011 7= o PP 627
(01 =10 o 630
01 7= o) PSP 632
(01 =10)|, 634
01070 0 o P 636

The Canonica Csound

Reference Manual
0 PSP 638
iode 1adder 640
Lo T = (o Y/ 643
(011 1o = 1 PR 645
(0 TES 1 o PP 648
GISKINZ L.t 651
0T ES o i 1 PSP 655
0TS0 657
(0T o] o PP 659
0T o] o P 661
[0 74PN 663
(0 [0 o] o] = P 665
0 [0 S PT 667
0 (01115 o P 668
(oL oYz (= 670
ASSIBCHVALE ...t e et 672
ASSIBUAIO ...t 675
OSSICHIS et 677
[0 LSS T T SR SPPPTPRUP 679
[0 1SS] SR 681
(0 111070 683
0 11 0T o] 022 686
[0 11107 0] G J 689
(0 11 0102 692
0 11 = 1 o USRS 695
USE Lo e a et a s 697
011 2SR 699
Bl B Lttt e 701
Bl BT 703
<07 T PP 705
<07 T PP 707
<20 (o o PPN 709
L= 017710 712
L= 017710 P 715
< 0] 7= o P 718
<o 11 PP 720
L= 1 PSP 722
12 Y= o | PP PPP 723
=YL= 3| P 727
Lo = PP 729
EXITNOW .ttt e ettt ettt et ettt e et n et e b reat e e aannn 731
L2 o PSPPSR 733
L2010 Y= PPN 735
2L 00 PPN 737
Lo 1o PN 739
oo 741
(20 o PP PP 743
(0SS o = L PP 745
Lo 015 o |« P 747
Lo 1S o |0 PP 749
LS8 o | 751
1= 0= 11 o o SR 753
L= 0 (0101011 1 754
FAUSICEL et 755

The Canonica Csound

Reference Manual
L2010 = P 756
L= (=54 = P 758
FAIEYIENI Loeie 760
LT o = = 763
L1 1= o S P 765
LRI e e 767
FHENCHNIS ... e 769
FHIEPEEK ..t 771
FHLESCAl ...ttt e 773
L1 1= PP 775
FHEVAIIT oo 777
L1 = Y 779
L PSP 781
L] L= 72 SR 783
L PSP 785
Il e e 787
I e e 789
L0 = 791
L= 8T 1= P 793
1= S g PP 795
FLB0X ettt 797
I o TH 11 = | PP 802
[I 10 1 805
[o 01T ST 1 (o o PN 810
L oo o G 813
[o0 o 72 815
L COUNE ..ttt 816
FLEXECBULIONei e e e e e e e a e en 819
L [S T PSPPI 822
[I (01 o PP 823
L I 010 o = o 825
[e 018 o = oo [826
LRI ..t 827
L I 01V 2o ST 828
FLRAVSBOXSEIVAIUEvuiciiii ettt e s 829
PP 830
L IV o PP 834
[I o P 836
L = PP 841
L I o= o 0 =0 S 843
L I OUSE ettt 844
1100 = P 846
1100 0= 22 P 848
100 850
[07 o: N 852
[I 7= o 4 = o P 855
L 07 o Q= o o 856
L 07 141 857
L I 7= 11 1= oo PP 861
[7= 11 = o o P 862
[I 111 N 863
L I 1011 02PN 864
o)1= 865
L U e 868

Xi

The Canonica Csound

Reference Manual
L S Y - o L 869
L e (o | PP 875
[e 0 o o PP 878
[o £ | = oo 879
[IS AN [o o N 880
[IS o) TN 881
[IS (@] o PP 883
[IS (@00] o 2 PP 885
L {00 | PSP 886
[IS 0T 1 o TP 888
L S S (PP 889
[I = 0= o PP 890
LSt SNADGIOUD .ttt 892
[S = PSPPI 893
L S = (O] Lo PP 895
[S S (= PSSR 896
[I = S)Y/ 02U UPR PR 897
LIRS AV 900
LBV Al .ot 901
L SNOW . et 902
[IS [T | =] ol PP 903
[IS 10| =] o122 P 907
FLIIABNKGEIHANAIEoniitieiiiiiiee e et eaaas 910
[IS 1o | =] 0l AT 911
FLSIABNKSELK ..vuiviiitiiiiieee e e e e e e e eas 912
FLSIABNK2SELcviiitiiiiiiieee e e e e e e e e e e eas 914
FLIIABNK2SELK .. .euiieiiiiiei ettt e e e e e e 915
[= 1o L= PP 918
[I = | o P 924
[I = 0 = o [P S 930
FLEEIS BN ..oeii e 931
[I 0 TP 932
[I = 935
LTV TTo 7A@ T | TP 936
L U1 To | O 938
1LV TTo | OO PP 940
1LV 1To (@01 i o) TP 942
LT T =g T = P 945
LTV TTo | I PP 948
LU0 [N Lo (= PP 950
(LU 1Yo (@ | PPN 952
fIUIAPrOgramSEIECTceveciii e e e 955
flUIdSEINErPMELNOT ... e e 958
FLVAIUE ..ottt 960
L IR =Y oo 963
[IRV TTo [2] o P 964
[IRV TTo [2] o1 o T 968
DT 1 o PN 970
FINANAL .o e 973
L0 975
100103 977
1100107 | PP 979
110011 T PPN 982
11001001 = P 984

Xii

The Canonica Csound

Reference Manual
12070 o N 986
L8011 (P 988
FMMNOOE ... e 990
L8077 =S 992
L0007 T4 L 994
) PPN 996
L) 72O SPPPTTR 999
1] 111 1005
L0 P 1007
L Lo PPN 1010
L0] 1 o Pt 1012
FOOWZ oo 1014
07 o | PN 1016
10 o | 1018
L L L PPN 1020
L0 P 1024
(01011 PN 1026
1011 PP 1028
L1011 11 PP 1030
L1011 1036
L= 1038
L= o = 00T = S 1040
FrAMEDUTTEY ... 1042
L= =YL= £ oS 1044
1 10 PN 1046
L1001 1048
L1001 1051
L1810 1053
L1001 1 1055
L1001 1.0 1= 1058
L1001 110 o 1060
1111 P 1062
1110 = PP 1064
1110 = | 1065
0 o110 0 PN 1066
L0107 P 1068
L1011 1070
FESAMPIEDANKveiei e 1072
L1555 Y/ 1074
1552 Y PP UOPPRTRSP 1076
1155 PP 1077
7= 1079
0= 1 1S o L= N 1081
(072 LS PP RPP PP 1083
0= 105 1085
(0= 0SS (o 1087
0] 010 .74 1090
(07 0= 1 = PP PRPRPRN 1092
[01< 7= 11 - Y/ 1094
0= 10 |V 1096
0= 010 Yo S 1100
(01010 7 G 1103
0T (o o 1107
01 (oo N 1109

The Canonica Csound

Reference Manual
0170 1111
[0 {01 PP 1113
0 1= 5= <o LR 1116
000 (0] o= XS 1117
0 0] PP 1119
0 (7= o PP 1121
0] =11 122N 1123
0 =11 1 NS 1128
0] =010 = P 1133
[0 0 1 o PPN 1136
RBIMION L. e eaaa 1138
RBIMONZ ... e e et e et e e e ene 1140
0101151 1= o PSPPSRI 1143
010113 (PP 1145
RITDEIT .. e 1147
RITDEI2 ..o e 1152
RIFEAITY . e 1154
RIEEMIOVE .. e 1158
RIEMOVEZ ..o e e e e 1161
RIETEVEID L. 1164
041 - P 1167
NSDOSCI .. 1170
1Y PP 1173
PV S e e 1177
1Y PP 1183
01770 | PN 1186
PP 1188
PP 1189
L1101V PSP 1194
0T {0 R 1196
127 o PRI 1198
L 0= I= e (= (= T 1200
L= L= =P 1202
L gaT=T0 1= 1= o (= 1204
L= 1= = 1207
g =T 1= P 1209
IMBOESELPIXE] . vutieie et e e e e e e e e 1211
L 0= 1= 1213
1 PP 1215
11722 PP 1217
10 SR 1218
120 P 1220
] S 1221
(ot P 1224
1 (o722 P 1225
1 (PP 1226
01 = P 1228
TNTEEK ettt aaan 1231
1= 1o PP 1233
0L PR 1234
0] A PN 1235
Lo T PPN 1236
3T PP PP 1237
o P P 1239

Xiv

The Canonica Csound

Reference Manual
ED1S 1ttt e 1240
TS = 1.1 | P 1242
INSTIODEL ... 1245
o N 1247
1 PSPPSR 1249
1o PP 1251
91 1 T 1253
101772 10T 1256
2P 1258
1072 1259
B = o 0 AN 1 o 0] 1 o T 1260
7= o 0 A W To [T0] 1 g0 0= 1261
= Tot (oY AN 1 o e[[P 1262
JACKOAUAIOOULCONNECEuiiiii i e e e e e e e e e e e e e e e e aaaaees 1263
JACKOFTEEWNEE] ... 1264
JACKOINTO et e 1265
= ot (o) 1 o 1 PP 1267
JACKOMIAIINCONNECEuiciiicei e e e e e e 1269
JACKOMIdIOULCONNECEiiiicei e e e e e e e e e een 1270
= ot (o)1 T T | PP 1271
= ot (o) [0 1 O L | PP 1272
= ot (@ | PSPPSRI 1273
= o0] = 11 010 S 1274
[1 = o L 1275
L= PP 1277
L= 2P 1279
[0221 1281
JS oL 11PN 1284
K e et a s 1286
[0S 1S T 1] o USRI 1287
[0S T | o) PSPPSRI 1291
00 (TN 1295
U OPPPTR 1297
S 1110 P 1298
=107 - Y N 1299
o SR 1301
T 0 1303
T o PR 1305
T P 1307
T 3= o 1309
T 3= o 1311
1T = (o PN 1314
T oo 1316
T gL o= o o= 1318
T g 2 o= o = 1319
g g o= A = o L1 S 1320
1T g v (=" (= 1321
INK ENADIE ...t 1323
lINK_iS @NADIEcoeii e 1325
1T 2 4= (o S 1327
1T gL o= N 1329
T gL (] o[0T = 1331
g G (] o [0 R = P 1333
1T 0= o P 1335

XV

The Canonica Csound

Reference Manual
1T 0= 1337
10 =" | o S 1339
LT 0= | P 1341
FY = oo Y S SPPN 1343
10Tt oo S PRS 1346
o o= o 1349
oo N 1352
oo O PPN 1354
oo 2 1356
o111 1358
oo B Y/ 1360
oo o I o 1= 2SR 1362
oo o T o | N 1364
oo o T =P 1366
oo o T 1369
oo 0= o 1372
Lo o]0’ = o | o S 1374
o0 5" o 1376
FoT0] 0) 6 = N 1378
=2 -2 1380
Lo TS == o PP 1383
Lo TS 1970 o] o S 1386
Lo = o] Y 1389
1o PP 1392
101 o1] PSPPI 1395
101 PSPPI 1398
L0 0= 2 1401
10T =SSP 1403
LT =S G PP 1405
o)1 T PR 1407
011 =< o o N 1409
0] 7= o 1411
o011 o 1413
001 o 1 1414
o T0 1S o1 7P 1416
o T0 1S o1 - P 1418
o T0 1S o1 = P 1420
0 T0 1S 1= 22 1422
0= S 1424
0= o o 1427
0= 7o 1430
10 70T | o 1432
07 o 1433
L= == 1434
1= T o o L= 1435
[UB OPCAIL .eeiie e 1441
11T o PP 1444
01T o= RPN 1446
00 = SRS 1448
00720 3PP PP UPRPR 1452
0010 L= PRSP 1455
0107 (o) P 1458
QT2 - Y PP 1460
00)= PO RPPPI 1463

XVi

The Canonica Csound

Reference Manual
0= o o 1466
17 1469
(1172 o PP 1471
QT 0 oo 0 ST 1473
7= 01 | 0 1475
(11720 1 Lo TP 1477
007 G PP 1479
0T e - Y PP 1481
11702 oo TP 1483
0101 1485
(10150 = PR 1487
(01150 [T PP 1489
17 0 P 1491
0011 o PP 1493
MIAGIODEL ... 1495
00 T= 4 o 1496
00T 1 7 TSP 1498
00T 1o PPN 1500
00T [PPSR 1502
MIdiChaNNE aftErTOUCK ... vt 1504
00T To [T oo TP 1506
MIdiCONITOICNANGE . ..ve i e eaens 1509
100 [{ o PP 1511
00TTo o (<=0 L PP 1513
000 11 o PPN 1515
00T To 1= = LU PP 1518
00T Ko 1 3T0] 10 PP 1519
0T T1 1) (=10 Tox o1 1521
00T TR 10) (=100 Y P 1523
(00Ko] 3011010 v AP PTRN 1525
00T [0 10) =100 o [P 1527
(00To o] 12 PP 1529
L0010 o] o [P 1531
0o [T | 1534
0010 10T PP 1536
MIdIPITCNDENG .. .oeee e 1538
MIdiPOIYAItEITOUCK .. .eviiiee e 1540
MIdiPrOGramMCNANGEuu i e e e e e e e et e aaa s 1543
0T TR = 1017 T 1545
[101T0 (1= 11010 AP 1547
1071 TP 1550
00117 oL 1552
MENADSACCUIM ...uiieie e et e e et e e et e e e e et e et e et e et e et e eaeens 1554
001107 oo U [0 RPN 1556
] T P 1558
0T 7= - Y/ 1560
0011 o TP 1562
MIXEISEELEVELoeiieiiiie e e 1564
MIXEFSELEVEL 1 coveniiieiii e 1567
MIXETGEILEVE ... iveiieiiii et aas 1568
Y DS 5= 1 o TP 1570
MIXEIRECEIVE ...ouiviiiieiee ettt ettt e e e e e e e et e et e aeeras 1572
Y D (== PP 1574
10707 [PP 1576

The Canonica Csound

Reference Manual
001070 |17 14) TP 1579
10707071 (o PP 1584
1700 PP 1586
000 =T (o[PN 1588
0070 =T [0 (= 2 PPN 1590
170700 o1 1592
1070700 o 1594
00707 o | RPN 1596
101251 o P 1598
012G = o P 1600
0] 02C1S o | 1602
0] 10 S PS 1604
L0110 015 o PPN 1606
0100 PSP 1607
1010 0 P 1609
0101 =" o 1611
1S 1613
017/ 2 PN 1615
10177 o 5 1617
01771 o 72 1619
01771 o 1 1621
01770 o P 1623
100G o = TP 1625
NCNINIS Lt 1628
NCANIS W L. ee e e e e e aens 1630
0070 £ 1631
1S =0 o T 1633
0] PP 1636
011 1 2T 1639
010 PP 1642
10 =0 i PP 1645
1011) 1 1646
(91010<0] 010 U 7 PP 1647
(01010<;0] 010 LU PP 1649
70151 o PN 1651
(010 /= 1 o PPN 1653
] PPN 1656
0152 3 PP 1658
1S =1 0 S 1660
1] 0 P 1663
150110 1665
0111 0o P 1666
00 = 1Y P 1668
0 {001 PP 1670
(ol 10 11| PPN 1673
(ol 10 41T |1 « PSRN 1675
(o110 410 [1o S PRURN 1677
o011 oo o 1680
(o= o111 1= SR 1683
(071070 L= S 1685
(01w o] 3| TP 1690
(01 o 1 i P 1696
(015 o1 i PP 1698
(01 w11 1 P 1700

The Canonica Csound

Reference Manual
(015 o/ 1 P 1702
(01 o/ 1 PR 1704
(01 w1 11« U TORNPRN 1706
(01 1 11 TP 1708
(01 o] 11 PP 1710
(01 w11 o P 1712
(01 w11 £ PP 1714
(01 o] P 1716
(O O 1 1 PP 1717
(O 1S O 1 111 PP 1719
(O O 1= (< o PP 1721
(O 01 - Y PP 1725
(O 015 o o I 1727
(010 | 2 TP 1729
(o1 | PP 1730
0 (o 1732
(o1 (o o TP 1734
(o]0 1 o [P 1737
0 P 1738
(o0 1o ST PTP 1740
0 o 1741
(0111 N 1743
(o101 o N 1744
0110 1746
(010 1= PR 1748
(010 |1 (o1 I TP 1750
(010 |1 (o TP 1751
L0111 P 1753
(0101 4 o] J PN 1754
(0101 4o o 1756
(o0 1 = - NPT 1759
(010 1 = 1 PP 1761
(010 1 =1 PP 1762
(o0 1 =1 (o [P TRPTRN 1764
(010 1 = Y P TPS 1765
0 (o 1766
L0 1o 1 PRSPPI 1767
[0 1o 122 PRSPPI 1769
(010 10 X T PRSPPI 1771
(00 1o 2 PRSPPI 1773
01 1o [PP 1775
(010 11 o PP RPN 1777
01 1779
(011 | PP 1781
0PN 1783
(010 |17 | 11 =Y PTNPR 1785
0 1787
072 1788
01370010 10T o! 1789
O1ST0 o = - P 1791
o PP 1793
721112/ PP RPPRPRR 1795
072 PSPPI 1797
72 = o [PP 1799

XiX

The Canonica Csound

Reference Manual

partiaScooceeeiiiiiiiieenn,
e 1802
P g 1804
P ey 1813
B o, 1816
B Y 1819
By 1823
Dy 1825
By 1827
By 1829
By 1831
By, 1833
B 1835
Py 1838
B iy 1841
P& 1843
DD 1846
Py 1849
ety 1852
DY 1855
AR 1858
B 1860
By 1864
B 1867
B 1871
PRI v 1873
B 1875
By 1878
By 1882
B 1883
B g 1886
g T 1889
Dy 1892
g 1895
D 1897
By 1899
P oy 1901
S 1905
By 1908
PONMOMIEL v 1910
SRS 1913
B 1915
Y 1917
Bl 1920
B 1922
o 1924
O 1926
D 1928
DT 1930
R 1933
D 1935
Y 1937
D 1939
Dl 1941

... 1944

XX

The Canonica Csound

Reference Manual

PrintS ...ooovviiiiiieiiieeeieeeaenn,
D 1946
By 1948
DL 1950
B 1951
AR 1953
Db 1955
Dby 1958
D 1959
D 1962
SRS 1964
] 1966
SRS 1970
R 1972
D P 1975
SR 1978
Dy 1980
e 1982
B 1984
B 1987
B 1990
B 1992
By 1994
By 1996
]| 1998
ey | 1999
Bt 2002
D 2004
B 2006
B 2008
B 2010
By 2012
B 2014
By 2016
Doy 2018
e 2021
By oo 2023
By 2025
i 2027
B i . 2029
R 2031
B 2033
By 2035
R 2037
DL 2039
RO 2040
B 2041
B 2043
By 2045
et 2047
B 2050
B 2052
By 2053
B 2056

... 2059

XXi

The Canonica Csound

Reference Manual

pvstencilcoooeiiiiiiiiiie,
D 2061
B 2063
R 2065
Dy 2067
psttab ... 2069
i Opcodes......................: ... 2071
i 2072
Dy 2073
D ey 2077
D o 2078
D ey 2081
DY OPEOUES 2082
P 2084
R 2086
I 2088
2 2090
O 2092
PO 2094
oL 2096
OO 2098
FONCOMIY 2100
T 2103
o 2106
MO vt 2109
O 2111
O 2113
O 2115
O 2118
MU o 2121
MO 2124
OISO 2127
a7 2129
FEUBPOL 2131
O 2133
oo 2135
PEMOLEOTL 2136
o 2137
FEPIUCK 2138
O 2140
OO 2142
O 2144
OO0 2147
o 2149
SO 2151
e 2153
O 2156
PO 2158
O 2159
VMDD 2161
VIR 2162
oSO 2164
22 2166
[l o 2168

... 2170

The Canonica Csound

Reference Manual
o) (o 2172
LT 101 o P 2173
0 2175
100 PP 2177
L1071 3 PP 2179
L0111 o PP 2185
0oL 1T 0 P 2187
(100 oo PPN 2189
S TP PPN 2191
LY o P 2192
L 24 o 1 P 2194
SAMPNOIA ..ee 2196
LSS 1010 0710 = 2198
LS o= TP 2200
LS = = 14 - Y P 2202
L= P00 0= PP 2204
S0 01 2205
SCANMEADIE vt e 2209
LS 7= 11 O PP 2211
LS 0= | = o PP 2213
SChEAKWINENNAMEDiieiiii e e e s 2216
[0= 0 LU 2218
[0= 1Y T o [PP 2221
[0 (= 1Y 2223
LS 0] (= 11 0 2225
1S o = o 2227
S o = o (1 o 2229
SC PRBSOT ...ttt 2231
£ o 1 o PN 2233
LSS o [T 2235
LS (TP 2237
LS < o PP 2239
LS 00 = TP 2241
S 115 2243
1SS 15 Y P 2244
1S = 1 S7=o 1 S 2248
SEMHAIENG ..o 2250
SENHAIFIUSN .o 2251
LS S (= 1 1) RPN 2252
SEMHAIREAM .. .vucivc e 2253
1S L AT (= PN 2255
LSS L= KT PP 2256
LSS0 1110 17PN 2258
LSS0 (1] P 2261
LS (oo | PN 2264
LS (o 1 ¢ [P 2266
LSS 1 1] 01 2269
LSS0, P 2271
S S S 0] (= 0L PP 2274
LS T PPN 2276
LS T 0 1 T PP 2278
LS 1S 2] TP 2281
LS 10 1 P 2284
LS 1S 1 TR 2287

The Canonica Csound

Reference Manual
£ 1o PP 2289
£ oo o= P 2292
LS 7255 Ko | PN 2295
LS 0] = Y2 T 2298
LS o] = 1Y .o P 2301
LS 0] = Y 2304
£ 0] = 1Y/ 1 N 2306
LS o) PP 2309
LS = 2311
LS 7= = PSP 2314
LS T 1 S 2316
LS T | SR 2318
LS o 10 o 2320
LS TP 2322
LS o o O 2324
S T 00 PP 2326
LS 10153 0 2328
SOIGNDEIIS ..t e 2330
LS o= - Y 2332
LS T (< o1 TSP 2334
£ T 1= o1) P 2336
LS T (< G = o = PP 2338
S LBEADIEf ...t 2340
LS T (< 72U SPPPR 2342
£ T 1< 724 P 2344
S B2LADI @ v 2346
SHAErB2LADIEf ..t 2348
LS T (= PSPPI 2350
SHAEIBAT .o 2352
SHAErBALADI ... 2354
SHAErBALADIE ... e 2356
£ T (< PP 2358
LS T (<SP 2360
SHAEIBLADIE ..o 2362
SHAErBLADIET ... et 2364
LS Lo (= = T P 2366
1S 07 | oo o N 2367
LS 010 L1V o 2369
LS 010 V7= o1 P 2373
LS00 (= xS 2377
LS00 < o PP 2379
S] = PPN 2381
Lo o PSPPSRI 2382
LS o0 0 [o PP 2383
S 0 o PPN 2386
LS 7= 11 o [P PPPP 2391
LS 7= 11 o USRS 2400
LS 7= 11 o | PRSP 2404
LS oo 1 S PP 2409
LS 0707 [0 .3 2413
S 0= [2414
LS 0= = o T 2415
S 0= o 1 1 P 2416
LS 0= 111 N 2417

The Canonica Csound

Reference Manual
S 0= 11 2418
LS 0= = o PN 2420
S 02 o= 1 1 PSPPI 2421
S o< o1 11 .0 PP PP 2422
S oL 11 o 2424
S 0111 P 2426
LS 011011 PP 2428
LS 015 <1010 N 2430
LS | PP 2433
1S o 0 TT g1 T = 2435
L PR 2440
LS = 1=,V 2442
SN 2444
STKBANAEAWGcviiiiiiicee et e e e e e e eans 2446
STRKBEETNIEE ...ieiiieee et e e eas 2448
STKBIOWBOoviiiiiie e r e e 2450
STKBIOWHOIE ...cvivci e 2452
STKBOWEuiiiiiiiiiie e ettt e et e e anes 2454
S I 2] = S PR 2456
S I (O -1 = P 2458
S I 3 (1011117 P 2460
ST KU ottt e e e e 2462
STKMYOICES . oviiitiii et e et et r e ens 2464
STKHEVYMEL .. e e e e e ees 2466
S I NV F= 110 (o] 1T o PP 2468
STKMOUAIBA ...uiviiiiiitii et e e e e e e e e et et e e aaeras 2470
STIKIMOOQ .ttt ittt et e et a e 2472
STRKPEICFIUL «.ovniitiei e e e e e e ens 2474
S I N (0o 2= o P 2476
STKRESONGLE ... et e e e et e e et e e eeaaenas 2478
Y 1 110 L= 2480
S IS = o 0] 1 Y/ 2482
ST SNAKENS . et 2484
Y I 1S 1101 1 2486
S I S - TP 2488
Y 1 1S (11 o T 2490
STKTUBEBEI .. .ceiiii e 2492
S I QYo e o) o TSP 2494
STRKWHRISHIE ..ot 2496
Y I L0 1 = 2498
LS (ol 7= TP 2500
SECNAIK vt 2502
S o)Y PP 2503
LS (o1 0)Y/ 2504
S0 | 2506
LS (o= 1 P 2508
S 1 0] PP 2510
LS 1010 N 2512
LS == o PP 2513
LS [(o010 T TP 2515
S o = PPN 2517
LS U100 (= SRR 2519
LS U100 (PR 2520
LS (1= o [P PTNPR 2522

XXV

The Canonica Csound

Reference Manual
LS =0 N 2523
LS L 0 2524
SETOWETK ..ot e 2526
LS LT 010 L= 2527
LS L1010 L= 2529
LSS PP 2530
LS LT 2532
SEPSUDK ..ot 2534
LS 0o 2535
S 0 (P 2536
S o) 2537
LS 0] 2538
LS L]0 0= PRSP 2539
SETUPPEIK et 2540
S o 1 2541
LS oS (0 2544
S 0 PP 2545
SUIMIBITAY vttt e e et e e e et e e e e e e e e e et e e e e e e e e e e e e e et e e et e e e en 2547
LS Y4111 (= P 2549
LS Yot = 1 2552
LS Y100 TP 2555
LYot o] 7= o 2557
LS [0 PPN 2561
12! o PP 2563
122! o o PP 2565
Lo = S 2567
L2210 = C PP 2569
L= 0] 1= o1 oY 2570
L= o)L= {1 (= USSP 2573
1= o)L= {1 (o PP 2575
1= 0] =0 2577
12210 = PSP 2578
1¢=10] 1= ol oY 2 2581
1= 0] 1= 0| . P 2582
L= o) =] APPSR 2583
FBDIBIMIX et e 2586
BB BIW e 2588
12510 =1 PP 2592
FBDIEIMIX e e e aea 2595
1¢=10] 1= oo [2597
17=10] 1= - 1SN 2599
122 o= <o P 2602
tADIESNUTTIE L. 2604
1= o)L= PP 2607
L6210 =11V T 2610
FBDIBWKE e 2613
BBDIEXKE ..ot e e 2615
1620 1= TS o [P 2618
TADMOIPN e 2620
tADMOIPNA ... 2623
tADMOIPEK ... 2625
tADMOTPNI ... 2628
1721 0] 0 - Y 2631
L= 0] (= o 2632

The Canonica Csound

Reference Manual
L6201 U 0 0 [P 2634
L= 224 0 V£ 3P 2636
1221010 Lo 10 [T oL TP 2637
1= [P 2639
L= 2| T TSRNPRN 2641
1= 0101 2643
L= 11 01V 7Z2 TP 2645
L1 0)Y/o: PP 2647
1010107 R 2650
1510170 2653
1= 0010701 o= | 2655
1= 00197017 RPN 2657
111 [0 (o TP 2659
L0010 S o [P 2661
L= L PR 2664
LT 0= L C PPN 2666
LLT 1= TP 2668
L1 2670
L0040 LU RPN 2673
LAY TP 2675
L1121 o TP 2677
10] = PN 2679
L(6101=: SRR 2681
L0] = GOt 2683
L1070 (o)1 0 [P PTN 2685
L0 Y o [2687
LU= <o PP 2689
L 01 < | o 2691
LU= = | PSPPI 2693
L0 05\ 2695
L0 11 TP 2697
T GNESE ..o 2699
1o o= 2701
1005 <o N 2703
LU L= o P 2707
L0 0T SRR 2709
L1001 PP 2711
L1 o= [RTSPTRN 2713
LU 111 L TSP 2715
1S o] 1 PN 2717
L0010 1 PN 2719
TUNNIO T 2 e e 2721
L0110 o PPN 2724
L8770) P 2725
01011 7= 15 1o PPN 2727
8o 1 PP 2729
00017 =0 PP 2731
010752 10 01 o 2734
0170 o (o]0 s TR TP 2736
01 o PP 2739
A7 o o | TSP 2742
LTz [o PP 2744
(T2 (o [2747
(VZ o [0 VPP 2749

The Canonica Csound

Reference Manual
A= o oV PP 2752
A= o = PPN 2754
A2 0 2757
A S <. P 2760
VB 2762
(T4 07=T0) 11010 V= 2765
17400 o P 2768
A 0= o0 1070V T 2771
VDBDLO ..o 2774
A 0= o)1 T30 Y 2776
VDB e 2778
A 0= 072 00 Y S 2781
VB8 e 2784
VOBPBIMOVE ... et 2786
[T 07=T o] S 1 T 2789
VBZ e 2792
AV 070740110 Y 2794
A= | - PSP 2796
Ao o PP 2799
L0072 PP PRSPPI 2802
(o0 124 S PP UPPTRPPT 2806
L0 24 | O 2808
A0 24 o PPN 2810
Lo 1|« TP 2813
Lo o oY PP 2816
Ao oY P 2819
A L= - Y PPN 2821
A0 L= = Y2 PSPPSRI 2823
A 1= 2825
Ao 1= - (o 2827
Ao 1= - 2829
AL 1= ALY PN 2831
(000 1= o 2 1Yo 2833
(VL L= o 0 ATt 2835
VOBIAYK e ae 2837
10T A 2838
10T AT P 2841
(=0 = - LY 2843
A Lo oSSR 2844
LV (o PRSPPI 2846
AV (o PP 2849
LTS0S o PP 2851
LV 0 Y PRSP 2853
A L2240V P 2856
VB e 2858
A o) 2860
(] o= o TSP 2862
AV ST 2864
£ T S PP 2867
(AL = 2868
VIOWIES L. et e ettt e et e e e e 2870
L7007 o PP PRPRP 2872
1Y 01T 1 (o RSP 2874
12210 N 2875

XXVii

The Canonica Csound

Reference Manual
A0 210 2879
1748010 2881
1748210 1Y 2884
10 o 2886
177075 1 PP 2889
A 0] 7= S =S o N 2894
1770 PP PP 2896
VPOW ettt ettt aas 2897
17700 P 2901
VPOWY ettt ettt ettt e et e et e et et e et e e et e e e e e e e 2004
110 Y N 2907
VPVOC ettt ettt ettt e e e e e e e e e e e e e e e e 2909
1= 1o | 2912
L= 1o 2915
AVES =100 T MY =0 (o oo 2918
VStDANKIOAH ... ccviiii e 2920
A (<o) ORI 2921
A2 3 PPN 2923
L2 (01 (o Pt 2925
L2 100 oL | Pt 2927
A1 L0 (=PRI 2929
VSIPAramSEL, VSIPArAMIGELveieii e 2031
AV 0] (00 S < PP 2933
1T T PN 2934
1S U 2937
A= o =1 SO 2939
A= o = PP 2941
VEBDLEK et 2943
(= o= PP 2945
VEBDIOWI Lo 2947
VEBDIEUWK .t e e aaa 2948
VEBDIEWA ... 2950
L= o PP 2952
1= oSS 2954
1Y = o 7= LU 2956
L4 01 2958
VEAOWK e 2959
(4011 2960
A LT o PP 2961
1= === < PP 2962
(VL= 15 0 o . P 2964
1TL= oL N 2966
1T | o0 P 2969
WODOWEDELeeii e 2971
(VL0 o= 5 2973
1o o - 2975
1T o 1 0= P 2977
WOPIUCK oot e e e 2979
WOPIUCKZ .. e e e e e e 2982
1T 8 o L= U 2984
1T 8 10 L= 2987
WHETE L e 2990
1T T o) = o 2992
1T Lo 7= - 2994

The Canonica Csound

Reference Manual
LT =0 (= N 2997
LTS = 0 PP 2998
1711 o P 3000
1= PP 3003
(T (== - (o o PN 3005
1T LC=: £ -1 o PN 3007
D= 0 L PP 3009
(L PPN 3011
(0] | PRV 3013
DS = 0117 1 3015
D = 5 7= o PRSPPI 3018
D 0= T PP PP PP UPRPP 3019
D o= 1 [PPN 3023
D41 =11 0 3027
D4V 1 PRV 3031
DS o | 1S 3033
ZACL 3035
2| (1 411 S SPPSPPPN 3037
. 11100 [3040
2 | ST SPPRSPPPN 3042
2 o PSPPI 3044
2 1O 3046
2 11T 1 [P PRPRUPRPR 3048
0| N 1 o - 3051
ZAf AP0IE MOAE .. ceecii e 3053
ZAT 2P0l i 3055
ZAf 2P0IE MOAE .. ceecii e 3057
P20 | =" [0 = S 3059
A 1L = 2SR 3061
2 PP 3063
ZIWV et e e et e et e et e et e et e e et e et e e et e e e aanaaes 3065
4 1LY/ 0 PP RPP PPN 3067
2 (o PP 3069
ZKIMOO ..o 3071
2 PP 3073
311 P 3075
3111 2 N 3077
Score Statements and GEN ROULINESoivuniiiiieiiie e e e e e e e e eens 3080
SCOME SEALEIMBNLS ..ttt 3080
a Statement (or Advance StAEMENE)vivvniiiii e 3081
TS - 1= 111 0| P 3083
OIS = < 1 11 o | PSPPSRI 3085
d Statement (De NOte SEAEMENT)vuiviinieiiee e e e e e e e e e 3087
L = 1.0 o S PR 3089
f Statement (or Function Table Statement)ccocviiiiiii i 3091
i Statement (Instrument or Note Statement)coovieiiiiiii i 3093
m Statement (Mark Statement)ooveiiiiiii i 3097
S = 1 10T o | PPN 3099
(0[RS = = 01 o | PP PP 3101
r Statement (RePeat SEAEMENL)vuiivniiii e e e 3103
SRS (=01 | PP PPP 3105
t Statement (TEMPO SEALEMENL)vven i e 3107
AV = 1 1 01 | PP PPN 3109
DS - =1 01 | PP 3111

XXX

The Canonica Csound

Reference Manual
y Statement (0r Seed SEAEMENT)uuiiieiiii e e 3113
S = = 1.1 | 3115
S = .1 | 3118
GEN ROULINES ... ittt e e e et e e e e e e e e b 3118
L N P 3122
GENDZ ..t 3125
GEN DS L.t 3127
GEND . 3130
GENDD L.t 3133
GENDB ..ottt 3135
LN P 3137
GENDB ..t 3139
GENDD L.t 3141
GENLD Lt 3144
LN PP 3146
GENLZ L. 3148
L N P 3151
GEN LA < s 3155
L N P 3158
L N P 3166
GEN L7 e 3169
L N P 3171
GENLD L.t 3174
GEN 20 <.t 3176
GEN 2L ..t 3179
GEN 23 L. e 3183
GEN 22 . s 3185
GEN 2D . e 3187
GEN 27 s 3189
GEN 28 .. 3191
GEN B ittt 3194
GEN B L. e 3196
GEN B e e 3197
GEN B e e et 3199
GEN B e s 3202
GENAD ..o 3205
GENAL .. e 3207
GENAZ . 3209
GEN S .t s 3211
GENAD L. s 3212
GEN D L L.t 3214
GEN 2 .t e 3217
L TN P 3220
GENLANN L. 3222
GEN XD ettt e e 3224
GENSONE ...ttt ettt 3226
GENQUAODEZIESceiiiei e e e e e 3228
GENTAIBY .t e e 3231
GENWEVE ... e et 3236
GENPEASYNLNcevice e 3239
Experimental Orchestra Opcodes and GEN ROULINEScccovvviviiiiiieiiiicceeci e, 3243
Experimental Orchestra OPCOEScuuiiiiiiiiiii e 3243
o = P 3244
(ot 80 7=)Y 1 o PN 3247

The Canonica Csound

Reference Manual
(or 80 1= S T o (1 0 3249
Deprecated Orchestra Opcodes and GEN ROULINESvevevieiiiiieiiiieiiieeeiieeieeaines 3251
Deprecated Orchestra OPCOUESvuiiiii e e e 3251
BDELATANG .. .ceece e 3252
BDEXPINA L. 3253
o7 L1 0P 3254
0] = 1 3255
=0 = 01 PP PP 3256
=T (00 0] o1 U 3257
BlINTANG ..o e 3258
=0 Tor= 1[0 0|V 3259
=10 T0 1SS o P 3260
BIDOW ettt ettt et 3261
S - PP 3262
1 0o P 3264
011 o 3265
BVEIDUIL .o et 3266
BEOIMAEC ...oeecee e 3267
DO MENC .. 3269
oot~ 3271
011 = 3272
TDELArANG .. .cove e 3274
TDEXPIN L. 3275
7= 18 o 0 3276
04 SRR 3277
14 2 PP 3278
o1 3279
1= o] = o 3280
[0 1SS 3281
1121 = 1 o 3282
14T Lo PSPPI 3283
1 0o oo 3284
2o o/ 3285
1S 111 3286
1S 1= 3287
) 1 PRI 3288
o] o PP 3289
0] 1o 2P 3290
o) o 0 PPN 3291
[0 1= | PP 3292
0L 1o PR 3293
[0 | Lo PP 3294
[0 0 11 o 7= PP 3295
0011 o P 3296
01011 3297
] oo 1 (o Y/ 3298
] 0 L0 1TSS o 3299
] 00 P 3300
1S 1] o 1 PP 3301
1S 722 o 1 PP 3302
1S [T = PP 3303
1S o T 1 722 PP 3304
1S o T PP 3305
1S [T L= P 3306

The Canonica Csound

Reference Manual

=01 =0 3307
=01 = o o 1Y 3308
=0 1= 0 41PN 3309
7= o] = 1 PSPPI 3310
1= o 3311
10T 3312
LY=o L N 3313
[0 1= =1 1o [3314
011 01 1 PN 3315
o 1 [Y/ 3316
0 L1 0 22N 3317
0 L1 0] 2 3318
N 110 o PR 3319
R0 L1 0 o N 3320
S04 o 3321
1 7P 3322
0= 115 P 3323
ST o 3324
0] P 3325
0111 = P 3326
R0 1o 7SR 3327
011 (P 3328
0111 o P 3329
01111 o) o N 3330
0111 oo P 3331
010 (o 1|V 3332
10 =S o o 3333
410 3334
=0 12 PP 3335
=0 X PP 3336
= o PP 3337
= PP 3338
KEADIESEY vt 3339
T = o P 3340
0 1T =" o 3341
KWEIDUIL ..o e e e e e e e e e aeas 3342
S 07 | 0= o P 3343
PEAKK .ttt 3345
10 o PP 3346
10 o T P 3348
810 o PP 3349
010 o PR 3351
LS00 o (0| 3352
LS00 (01 = 3354
LS = o P 3355
L1 RSP R 3357
Deprecated GEN ROULINESoivuieiiii e e e e e e e e e e e aan s 3359
GEN 22 .. 3360
The ULty PrOgramS et e e e e e e e e e e et e e e e eeas 3361
[T €= (o = 3361
SOUNFIlE FOMMELS.uiiiteiii e e e e e e e e e eees 3361
Analysis File Generation (ATSA, CVANAL, HETRO, LPANAL, PVANAL) ... 3362

File QUEries (SNDINFO)covuviiieiiiii e 3372

XXXl

The Canonica Csound
Reference Manud

File Conversion (HET_IMPORT, HET_EXPORT, PVLOOK, PV_EXPORT,

PV_IMPORT, SDIF2AD, SRCONV) ...uuiiiiiiiiiieiiiiieeee e e et 3373

Other Csound Utilities (CS, CSB64ENC, ENVEXT, EXTRACTOR,
MAKECSD, MIXER, SCALE, MKDB) ...cccuuiiiiiiiieiciiiieeeei e 3392
L1 oo PP 3406
Events, Lists, and OPErationscc.uuviiueiiiieiie e e e e e e e e e et e e e eens 3406
Writing a Cscore Control Programccouuieiiiieeiie e e e e e e e e e e anas 3409
Compiling & CSCOMe Programcvuuueiiiiieeiee e e ee e e e e e e e e e e et e st eeaaeeaanaes 3413
More Advanced EXaMPIESoviiiiii e 3416
L0 o= L3P 3418
V. Opcode QUICK REFEIENCEuu it e e e e e e e eens 3423
Opcode QUICK REFEIENCEuuiiii et e e e e e e e e e e e e aaaees 3425
AL LISt Of EXAMPIES ..oeeii e 3487
|2 1 (e T 0] 1Y/ =T o PR 3532
C. SoUNd INENSILY VAIUESuuiii it e e e e e e e et e et e e et e e e e eaens 3536
D. FOrMENE VBIUES .. .ceeiit ettt et e et r e e ettt e e e e et neeaeatnnaeeestnnaeeees 3537
E. Modal FreqUENCY RAIOSciuiiiiieeii et et e e e e e e e e e e e et e et e e e e e aanaees 3541
Fo WINAOW FUNCLIONS ...ttt e e e e et e e e et e e e e aan s 3543
G. SOUNAFONE2 FIlE FOMMELiiieiis e e e et e e e et e e eeaaaeeeee 3548
H. Csound Double (64-bit) vs. Float (32-Dit)ccoueiiiniiiiicii e 3549
L1105 3550

XXXIV

Preface

Table of Contents

Preface to the CsoUNd ManUELoooiiiiiiii e et e e e e e e XXXV
History of the Canonical Csound Reference Manualcoouvveiiiiiiiiiiviii e XXXVi
100 0)Y/ 1T |01 01N [1! R XXXVii
Getting Started With CSOUNGovvniiiiceee e e e e e e e ea e eaes XXXIX
What's NEW 1N CSOUN B.11.0ceeuuniiiiiie ettt e e et e e et e e e et e e e e aan s xli

Preface to the Csound Manual

Barry Vercoe, MIT MediaLab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different man-
ner of control. Direct synthesis generates waveforms by sampling a stored function representing asingle
cycle; additive synthesis generates the many partials of a complex tone, each with its own loudness enve-
lope; subtractive synthesis begins with a complex tone and filtersit. Non-linear synthesis uses frequency
modulation and waveshaping to give simple signals complex characteristics, while sampling and storage
of anatural sound alowsit to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instrumentsin an orchestra, and 2) from the events within ascore. An orchestraisreally
acomputer program that can produce sound, while ascoreis abody of data which that program can react
to. Whether arise-time characteristic isafixed constant in an instrument, or avariable of each notein the
score, depends on how the user wants to control it.

The instruments in a Csound orchestra (see Syntax of the Orchestra) are defined in a simple syntax that
invokes complex audio processing routines. A score (see The Standard Numeric Score) passed to this
orchestra contains numerically coded pitch and control information, in standard numeric score format.
Although many users are content with this format, higher level score processing languages are often con-
venient.

The programs making up the Csound system have along history of development, beginning withthe Music
4 program written at Bell Telephone Laboratoriesin the early 1960's by Max Mathews. That initiated the
stored table concept and much of the terminology that has since enabled computer music researchers to
communicate. Valuable additions were made at Princeton by the late Godfrey Winham in Music 4B; my
own Music 360 (1968) was very indebted to hiswork. With Music 11 (1973) | took adifferent tack: thetwo
distinct networks of control and audio signal processing stemmed from my intensive involvement in the
preceding yearsin hardware synthesizer concepts and design. This division has been retained in Csound.

Becauseit iswritten entirely in C, Csound is easily installed on any machine running Unix or C. At MIT it
runs on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGl's under 5.0, on IBM PC's under
DOS 6.2 and Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single language for
defining the audio signal processing, and portable audio formats like AIFF and WAV, users can move
easily from machine to machine.

The 1991 version added phase vocoder, FOF, and spectral datatypes. 1992 saw MIDI converter and control
units, enabling Csound to be run from MIDI score-filesand external keyboards. In 1994 the sound analysis
programs (Ipc, pvoc) were integrated into the main load module, enabling all Csound processing to be run

XXXV

Preface

from a single executable, and Cscore could pass scores directly to the orchestrafor iterative performance.
The 1995 release introduced an expanded MIDI set with MIDI-based linseg, butterworth filters, granular
synthesis, and an improved spectral-based pitch tracker. Of special importance was the addition of run-
time event generating tools (Cscore and MIDI) alowing run-time sensing and response setups that enable
interactive composition and experiment. It appeared that real-time software synthesis was now showing
some real promise.

History of the Canonical Csound Reference
Manual

Thisinitia version of thismanual for early versions of Csound was started at MIT by Barry L. Vercoeand
maintained there during the 1980's and start of the 1990's. Some of the manual comes from documents for
programs like Music11 from the 1970's. This original manua was improved and worked on by Richard
Boulanger, John ffitch, Jean Piché and Rasmus Ekman.

This manual led to the Official Csound Reference Manual, still located at: http://www.lakewood-
sound.com/csound [http://www.lakewoodsound.com/csound/hypertext/manual .htm], for Csound version
4.16, November, 1999, which was maintained by David M. Boothe.

A pardlel version of the manual called the Alternative Csound Reference Manual, was developed by
Kevin Conder using DocBook/SGML [http://www.docbook.org/]. Thisversion later becamethe Canonical
version.

When Csound was licenced as LGPL by MIT in 2003, the manua was licenced GFDL and placed on
Sourceforge along with the sources of Csound.

In the winter of 2004, the Canonical Manual was converted to DocBook/XML by Steven Yi to alow for
more people to be able to compile and maintain the manual.

The manual is currently maintained by Andrés Cabrera with continuous contributions from the Csound
Community.

The manua continues to be a community run project that depends on the contributions of developers
and users to help refine the coverage and accuracy of its contents. All contributions are welcome and
appreciated.

Table 1. Other Contributors

Mike Berry

Eli Breder
Michael Casey
Michael Clark
Perry Cook
Sean Costello
Richard Dobson
Mark Dolson
Dan Ellis
Tom Erbe

Bill Gardner

XXXVi

http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.docbook.org/
http://www.docbook.org/

Preface

Michael Gogins
Matt Ingalls
Richard Karpen

Anthony Kozar

Victor Lazzarini

Allan Lee

David Macintyre
Gabriel Maldonado
Max Mathews
Hans Mikelson
Peter Neubécker
Peter Nix

Ville Pulkki
Maurizio Umberto Puxeddu
John Ramsdell
Marc Resibois

Rob Shaw

Paris Smaragdis
Greg Sullivan

Istvan Varga
Bill Verplank
Robin Whittle
Steven Yi

Francois Pinot
Andrés Cabrera
Gareth Edwards
Joachim Heintz
John ffitch

Oeyvind Brandtsegg

Menno Knevel
Felipe Sateler
And many others.

This list is by no means complete. More information can be gathered from the Changelog file in the
manual's sources repository.

Copyright Notice

This version of the Csound Manual ("The Canonical Csound Manual") is released under the GNU Free
Documentation Licence [http://www.gnu.org/licenses/fdl.txt]. Below are listed, for historical purposes,
previous copyrights and requests for credit from previous authors.

XXXVii

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

Preface

Previous copyright notices

Copyright (c) 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.1.T., Cambridge,
Massachusetts, with partial support from the System Development Foundation and from National Science
Foundation Grant # |RI-8704665.

Manual

Copyright (c) 2003 by Kevin Conder for modifications made to the Public Csound Reference Manual.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of thislicenseisavailable
in the examples sub-directory [examples/fdl.txt] or at: www.gnu.org/licenses/fdl.txt [http://www.gnu.org/
licenses/fdl.txt].

This Csound language documentation in this manual is derived from Kevin Conder's Alternative Csound
Reference Manual, which in turn is derived from the Public Csound Reference Manual.

Copyright 2004-2005 by Michael Gogins for modifications made to the Alternative Csound Reference
Manual.

Thislegal noticeisfrom the Public Csound Reference Manual: “ The original Hypertext Edition of theMIT
Csound Manual was prepared for the World Wide Web by Peter J. Nix of the Department of Music at the
University of Leedsand Jean Piché of the Faculté de musique del'Université de Montréal. A Print Edition,
in Adobe Acrobat format, was then maintained by David M. Boothe. The editors fully acknowledge the
rights of the authors of the original documentation and programs, as set out above, and further request that
this notice appear wherever this material isheld.”

The Public Csound Reference Manua's last known network location was http://www.lakewood-
sound.com/csound/hypertext/manual .htm.

The Alternative Csound Reference Manual's network location, for both the Transparent and Opaque
copies, is http://kevindumpscore.com/downl oad.html#csound-manual .

The Csound and CsoundAC Manual's network location is http://sourceforge.net/projects/csound.

Csound and CsoundAC

Csound is copyright 1991-2008 by Barry Vercoe, John ffitch and others.
CsoundAC is copyright 2001-2008 by Michael Gogins.

Csound and CsoundAC (formerly CsoundV ST) are free software; you can redistribute them and/or mod-
ify them under the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version.

Csound and CsoundAC are distributed in the hope that they will be useful, but WITHOUT ANY WAR-
RANTY ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. Seethe GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser Genera Public License along with Csound and
CsoundAC; if not, write to the Free Software Foundation, Inc., 51 Franklin S, Fifth Floor, Boston, MA
02110-1301 USA.

XXXViii

examples/fdl.txt
examples/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://kevindumpscore.com/download.html#csound-manual
http://sourceforge.net/projects/csound

Preface

Virtual Synthesis Technology

Virtual Synthesis Technology (V ST) Pluglninterfacetechnology by Steinberg Soft- und Hardware GmbH.

Getting Started with Csound

Downloading

In case you don't already have Csound (or have an older version) download the appropriate Csound ver-
sion for your platform from the Github Csound Download Page [http://csound.github.io/download.html].
Installers for Windows have '.exe' extension and for Mac .dmg'. If the installer's filename ends in '-d' it
means theinstaller has been built with double precision (64-bit) which provides higher quality output than
the ordinary float precision (32-bit). The float versions provide quicker output, which may be important
if you're using Csound in areal-time setting. Y ou can also download the sources and build them, but this
requires more expertise (See the section Building Csound).

It may also be useful to download the most recent version of this manual, which you will aso find there.

Running

Csound can berun in different ways. Since Csound isacommand line program (DOS in Windows terms),
just clicking on the csound executable will have no effect. Csound must be called either from the comput-
er's command line or from a front end. To use Csound from the command line, you must open a Termi-
nal (Command Prompt or DOS Prompt on Windows, or Terminal on MacOS). Using Csound from the
command line can be difficult if you've never used aterminal, so you may want to try to use one of the
front ends, either QuteCsound, which isincluded with the latest distributions, or another front end. A front
end is awindow-based (not necessarily Windows-based) program that assists running Csound. Most front
ends include text editors with which you can edit csound files, and many include other useful features.

Whether being run from a front end or being executed from the command line, Csound needs two things:
* A Csound file (".csd' or possibly an ".orc' and a'.sco' file)

» A list of command lineflags (or configuration options) that configure execution. They determine things
like output filename and format, whether real-time audio and MIDI are enabled, which audio output to
usefor real-time audio, the buffer size, the types of messages printed, etc. These options can beincluded
in the ".csd' file itself, so for the examples included in this manual you shouldn't need to worry about
them. Front end programs often have dialog boxes in which the command line flags can be set. The
complete and very long list of available command flags can be found here, but you might want to have
alook therelater...

See the section Configuring if Csound is giving you trouble.

This documentation includes many '.csd' fileswhich you can try out, and which should work directly from
the command line or from any front end. A simple example is oscil.csd [examples/oscil.csd], which can
be found in the examples folder of this documentation. Y our front end should allow you to load the file,
and the front end should have a 'play' or ‘render' button that will alow you to hear the file. If you want
to experiment with the file, you're well advised to use the front end's 'Save As..." command to copy it to
some other directory on your hard drive, such as a'csound scores' directory that you create.

Note for MacCsound users

Y ou might need to remove al thelinesfrom the command options slot in order for the manual
examplesto work.

XXXIX

http://csound.github.io/download.html
http://csound.github.io/download.html
examples/oscil.csd
examples/oscil.csd

Preface

Y ou can also try the manual examples from the command line. To do this, navigate to the examples direc-
tory of the manual using something like this on Windows (assuming the manual is located at c:\Program
Files\Csound\manual\):

cd "c:\Program Fil es\ Csound\ doc\ manual \ exanpl es"

or something like:

cd /manual di rect ory/ manual / exanpl es

for the Mac or linux Terminal. Then type:

csound oscil.csd

The example files are configured to run in real time by default, so with this command you should hear
atwo-second sine wave.

Writing your own .csd files

A .cd filelooks like this (thisfile is oscils.csd [examples/oscil s.csd]):

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/nmdi flags here according to platform

- odac ;;;realtine audi o out

;-1 adc ;;;uncomment -iadc if realtinme audio input is needed too
For Non-realtine ouput |eave only the line bel ow
-0 oscils.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nst runent s>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

instr 1

iflg = p4

asig oscils .7, 220, 0, iflg
outs asig, asig

endi n
</ Csl nst runent s>
<CsScor e>

i
i
e
</ CsScor e>

</ CsoundSynt hesi zer >

1020
1322

; doubl e precision

Csound's .csd files have three main sections between the < CsSynthesizer> and </CsSynthesizer> tags:

e CsOptions - Includes the Command Line flags specific to this particular file. These options can also be
set using the .csoundrc file, which you can edit in atext editor, or directly in the command line. Some
front ends also provide ways to specify global or local options.

e Cslnstruments - Contains the instruments or processes available in the file. Instruments are defined
using theinstr and endin opcodes. The Csl nstruments section also containsthe Orchestra Header, which

xl

examples/oscils.csd
examples/oscils.csd

Preface

defines things like sample rate, the number of samples in a control period, and the number of output
channels.

» CsScore - Contains the 'notes' to be played, and optionally the definition of f-tables. Notes are created
using the i statement, and f-tables are created using the f statement. Several other score statements are
available,

Anything after a semicolon (;) until the end of the line is a comment, and isignored by Csound.

Y ou can write .csd filesin any plain text editor, such as Notepad or Textedit. If you use aword processor

(not recommended), be sure to save the file as plain text (not rich text). Many front ends include advanced

editing capabilities, such as syntax highlighting and auto-completion of code.

You can find an in-depth tutorial on getting started with Csound written by Michael Gogins here [http://
michael -gogins.com/archivesitutorial .pdf].

What's new in Csound 6.11.0
Release Notes for Csound 6.11 (2018 May)

There has been a great amount of internal reorganisation, which should not affect most users. Some com-
ponents are now independently managed and will eventually be installable via a new package manager.
The realtime option is now considered stable and has the "experimental” tag removed. There have been
more steps towards completing the arithmetic operations involving a-arrays.

Note

Note that changes to GENO1 and diskin2 may not be backward compatible if a none zero
valueis given for the format.

» New opcodes:
* loscilphs, loscil3phs are like loscil but return the phase in addition to the audio.

* More arithmetic between a-rate arrays and a-rate values; this completes the arithmetic where one or
more argument is an audio array.

« balance? islike balance but scales the output at a-rate, rather than k-rate.
» Score:

« Characters following a\ in a score string are treated as escaped, so \n is a newline rather than two
characters. It handlesescaped a, b, f, n, r, t and v. Other characters following a\ ignore the backslash.

» Modified Opcodes and Gens.

* print, printk2 now take an additional optional argument which if non-zero causes the k-variable name
to be printed as well asthe value.

 getrow, setrow, getcol, and setcol can now act on i-rate arrays.

« diskin2 wasincorrectly described in the manual with respect to theiformat parameter. Now if iformat
is zero the file is expected to have an audio header; if in the range 1-10 (rather than 0-9 as before)
then it is opened as raw with the specified sample format. THIS MAY BE INCOMPATIBLE. For
most users the value of zero will be correct.

xli

http://michael-gogins.com/archives/tutorial.pdf
http://michael-gogins.com/archives/tutorial.pdf
http://michael-gogins.com/archives/tutorial.pdf

Preface

GENO1 now uses format 0 to get the file type from the header; any other value indicates araw file.
THISMAY BE INCOMPATIBLE. For most users the value of zero will be correct.

GENO1 was incorrectly documented with respect to the format argument. There are 9 raw formats
whereas the earlier manual stated 6.

Small changein dlicearray should allow it to be used in functional form in most cases.

Thefamily of opcodestb0 to th15 and their initialisation opcodestb0 init to tb15 init are deprecated
as multi-argument functions are allowed.

The mode filter now does not allow a frequency in the unstable region.

In scanu and xscanu the value of kpos is supposed to be in the range [0,1]. Thisis now enforced by
treating all negative values as 0 and all values bigger than 1 as 1.

* Bugs Fixed:

linen was reworked to allow for long durations and overlaps.
Resetting csound caused a crash if Lua opcodes were used; fixed.

Theposcil family of opcodescould giveincorrect resultsif used in multi-core orchestras AND another
instrument changed the f-table. Thisis now corrected.

Use of out with an audio array did not check that the array dimension was not greater than the number
of channels, which caused a crash. It is now checked and truncated if too large with awarning.

Bug in stereo versions of loscil introduced distortion; now fixed.
Fencepost error in phsfixed.
gend9 read deleted memory if the file was not found; fixed.

Loading of LADSPA plugins when relying on search paths was wrong and mangled the name; now
fixed.

» System Changes:

OPCODE6DIR{ 64} now can contain a colon-separated list of directories.

The somewhat curious distinction between k-rate and a-rate perf-time has been removed throughput,
so only threads 1, 2 and 3 are used, the s-type output is not used, and some x-type inputs have been
changed for direct polymorphism. This only matters for opcode writers as the s, and x codes and
threads 4, 5, 6 and 7 will be removed in awhile.

» Trandations:

As ever the French trandlations are compl ete.

Release Notes for Csound 6.10 (2017 December)

Thisis mostly a bugfix release, including a major bug introduced in loscil recently. New and improved
opcodes and a long orphaned GEN (53) are here, as well as many small internal improvements. Internal
changes have removed a number of memory leaks.

» New opcodes:

xlii

Preface

e midiout_i which islike midiout, but works at i-rate.
« chngetks and chnsetks -- versions of chnget and chnset for string channels that only run at perf-time.

e squinewave, a mostly bandlimited shape-shifting square-pulse-saw-sinewave oscillator with
hardsync.

New Gen and Macros:

» GENS53 (which has been in the code but not documented for years) is now acknowledged. It creates
alinear-phase or minimum-phase impul se response table from a source table containing a frequency
response or an impul se response.

Orchestra:

* Incorrect use of k-rateif..then.. in instrument O is now treated asi-rate.

« Incorrect use of k-rate operationsin instrument O are no longer treated as an error but awarning.

« Inacsd filecommented-out tags were acted upon in some cases, leading to truncated orchestras. This
isnow fixed.

* Arrays can be assigned from i-rate and k-rate to krate and i-rate; previously rates had to match.

» Theuseof ! asaBoolean operation (meaning negation) is now supported, where previously the parser
accepted it but did not use it.

» Constant folding now implemented on awide range of arithmetic.

» Attempts to use an undefined macro produce a syntax error now.

e Missing " (or other terminator) in #include is noticed and the #include isignored.
Score:

« In acsd file commented-out tags were acted upon in some cases, leading to truncated scores. This
isnow fixed.

e Theevaluation form [..] can now be nested.

» The extract feature (-x from command line) now works.

» Use of the score opcode x could cause spurious error messages which are now suppressed.
« After caling aundefined macro the rest of the lineisignored.

< A couple of bugsin repeated sections (r opcode) have been removed.

e Missing " (or other terminator) in #include is noticed and the #include isignored.

Options:

¢ The --tempo (and -t) option now can be fractional; was previously limited to an integer.

* new option: --udp-consol e=address.port redirects console to a remote address:port.

* new option: --udp-mirror-consol e=address.port mirrors the console to a remote address.port.

xliii

Preface

new option: --udp-echo echoes messages sent to the UDP server.

Modified Opcodes and Gens:

loscil/loscil 3 accept floating point increment.

OSCraw closes socket after use.

fout can now generate ogg format, as well as accepting -1 to mean the same format as -0 uses.
bitwise and opcode (&) at a-rate corrected for sample-accurate mode.

slicearray has an optional additional argument to give a stride to the slice.

chnset now can have variable channel names.

arrate arrays may be added, subtracted, multiplied and scaled. Thisisastart on a-rate array arithmetic.
dssiinit improved removing some crashes.

partials improved to remove afencepost issue.

vcozift fixed when an existing table is used.

Frontends:

Emscripten: Now compiled as WebAssembly (runsin all major browsers). APl now somewhat more
conformed to other HTML5 APIs.

CsoundQT: Now built from master branch for improved stability.

Bug fixed:

L]

The optionality of the last argument in sc_phasor now works.

Freezing in dconv fixed.

looptseg no longer crashes if presented with too few arguments.

schedule etc now work correctly with double-quoted strings within {{ }} strings.
problem with CLI frontend interrupt handler fixed.

outs2 was broken (always wrote to channel 1 like outsl).

Various errors in the DSSI/ladspa system fixed.

vbap was broken in all cases except 4-speakers, now corrected.

Live evalution of Csound Orchestra code code could result in hard to diagnose, odd errors (e.g.,
crashes, division by zeros, NaNs). This was due to a bug in merging of newly found constants into
the global constant pool.

System Changes:

The GNU Lesser General Public License, version 2.1, for CsoundVST and the vstdcs
opcodes has been modified to grant an exception for compiling and linking with the
VST2 SDK, which is available from https.//github.com/steinbergmedia/vst3sdk. For more in-

xliv

https://github.com/steinbergmedia/vst3sdk

Preface

formation, see https://github.com/csound/csound/bl ob/devel op/Opcodes/vst4cs/licensing_considera
tions for_csoundvst_and vst4cs.md.

* UDP Server now accepts some new commands, which are prefixed by an opcode. These include
support for events (&) and scores ($); setting control channels (@); setting string channels (%);
getting control channel valuesvia UDP (:@) and string channel contents (:%).

» Trangdations:
» Asever the French trandlations are complete.

« Theltalian translations of messages are greatly improved in scope; about a half of error and warning
messages are now done.

¢ Some progress as been made in German trand ations.
* API:
e CompileCsdText now always returns a value indicating success/failure.

< Eight new asynchronous versions of APl functions now available: csoundCompileTreeAsync(),
csoundCompileOrcAsync(), csoundReadScoreAsync(), csoundlinputMessageAsync(), csoundS-
coreEventAsync(), csoundScoreEventAbsoluteAsync(), csoundTableCopyOutAsync(), and csound-
TableCopylnAsync().

e For server use, three new API functions. csoundUDPServerStart, csoundUDPServerStatus and
csoundUDPServerClose.

 Platform Specific:
¢ Windows
» Now compiled with Microsoft Visual Studio 2017 or later.
 Continuous integration for Windows with AppVeyor.

» The AppVeyor build and installer now includes CsoundV ST and the vst4cs opcodes that enable
hosting VST plugins in Csound. The LGPL v2.1 license for that code has been modified, with
permission of Hermann Seib the original author of the VSTHost code, to permit use with the sep-
arately downloaded VST2 SDK from Steinberg.

¢ GNU/Linux

* GNU/Linux ALSA MIDI backend now ignores some spurious ENOENT error codes.

Release Notes for Csound 6.09 (2017 May)

A mixed bag of new opcodes and many fixes and improvements.

Also as usual there are anumber of internal changes, including many memory leaks fixed and more robust
code.

» New opcodes:
* select -- sample-by-sample comparison of audio selecting the output.

< midiarp -- generates arpeggios based on currently held MIDI notes.

xlv

https://github.com/csound/csound/blob/develop/Opcodes/vst4cs/licensing_considerations_for_csoundvst_and_vst4cs.md
https://github.com/csound/csound/blob/develop/Opcodes/vst4cs/licensing_considerations_for_csoundvst_and_vst4cs.md

Preface

hilbert2 -- a DFT-based implementation of a Hilbert transformer.
Ableton Link opcodes -- for synchronizing tempo and beat across local area networks.
pvstrace -- retain only the N loudest hins.

several new unary functions/opcodes for k-rate and i-time numeric arrays: ceil, floor, round, int, frac,
powoftwo, abs, log2, 10910, log, exp, sgrt, cos, sin, tan, acos, asin, atan, sinh, cosh, tanh, cbrt, limitl.

several new binary functions/opcodes for k-rate and i-time numeric arrays. atan2, pow, hypot, fmod,
fmax, fmin.

limit -- numeric limiting within agiven range (for arrays).

tvconv -- atime-varying convolution (FIR filter) opcode.

liveconv -- partitioned convolution with dynamically rel oadabl e impul se response.
bpf, xyscale, ntom, mton -- (from SuperCollider?).

OSCsend -- now implemented directly using system sockets. Old version using liblo has been kept
as OSCsend lo.

OSCraw -- to listen for all OSC messages at a given port.
sorta and sortd-- sort elements of an array.
dot -- calculates the dot product of two arrays.

zero delay filters -- zdf 1pole mode, zdf 2pole mode, zdf ladder, zdf 1pole and zdf 2pole,
diode ladder, K35 hpf and K35_|pf.

product -- takes anumeric array (k or i-rate) and calculates its product.

supercollider ugens -- sc_phasor, sc_lag, sc_lagud, sc_trig.

Orchestra:

Including a directory of UDO files no longer fails if more than about 20 entries.
It was possible for kr, sr, and ksmps to be inconsistent in one case, no more.
Macro names better policed and bracket matching.

Octal values as\000 can bein strings.

(from 6.09.1) In aUDO the out* opcodes now work, where before it was working only sometimes.

Score:

Improved line number reporting in r opcode and case with no macro implemented.
m and n opcodes fixed.

Expansion of [...] corrected and improved.

Strings in scores improved. xlvi

Preface

The) character can bein amacro argument if it is escaped with \.

Use of the characters e or s could lead to errors; now fixed.

Macro names better policed, and bracket matching.

p2 and p3 are now at higher precision, no longer truncated to 6 decimal places.
new opcode d to switch off infinite notes (denote); same asi with negative pl.
named instruments can be turned off with i if a- followsthe".

(from 6.09.1) if an r-opcode section ended in e-opcode it used to stop early.

Options:

jack midi module now can report available devices under --midi-devices.
(from 6.09.1) defining smacros and omacros on command line only happens once.

(from 6.09.1) defining smacros from command line now works.

Modified Opcodes and Gens:

ftgentmp improved string arguments.

hdf5read opcode now reads entire data sets when dataset name string is suffixed with an asterisk.
use of non power-of-two lengths now acceptable where before it was inconsistent.

ampmidid optionally can be aware of Odbfs.

dust and dust2 at k-rate now conform to the manual (NOTE: thisis an incompatible change).

In prints the format %% now prints one %.

OSClisten can be used with no data outputs.

GEN18 corrected to write to requested range.

sockrev now can read strings.

vbap system can in some cases allow arbitrary number of speakers via arrays (work in progress).
Websocket server can only accept one protocol output, so limiting intype to just a single argument.
sum opcode will also sum elements of an array.

Overloaded pvs2tab and tab2pvs now can create and use split magnitude and phase arrays.

Utilities:

dnoise fixed.

Frontends:

Removed HTML5 Csound editor whictxhas quit working.

Preface

Emscripten: Emscripten Csound (asm.js) now requires sourcing in CsoundObj.js and FileList.js sep-
arately from libcsound.js. Thisisto accommodate using the same JS API with either asm.js or wasm
backends.

CsoundQT: CsoundQt 0.9.4 is announced: https://github.com/CsoundQt/CsoundQt/blob/devel -
op/release_notes/Release notes 0.9.4.md [https://github.com/CsoundQt/CsoundQt/blob/devel op/re-
lease notes/Release%20n0tes¥6200.9.4.md].

Windows installer with CsoundQt includes PythonQt.

* Bugs Fixed:

pwd works on OSX.

Fencepost error in sensLine fixed.

OSCsend corrected for caching of host name.

Bug in push/pop opcodes fixed (this opcode is now a plugin and deprecated).

Bug in sprintf removed.

Bug in soundin removed.

losci/losci3 fixed in case of long tables.

inrg was broke for awhile.

Partikkel channelmask panning laws had an indexing error, now fixed.

jack audio module now allows for independent numbers of in and out channels.

Bug in string copying fixed.

Bug in hdf5read where if two hdf5read opcodes were placed in seriesin an instrument, the argument
names of the second opcode instance would be incorrect due to directly changing the last string

character of the first when reading an entire dataset.

Memory leaks fixed in some plugin opcodes.

e System Changes:

soundin now uses the diskin2 code.
out family of opcodes reworked to reduceinterleaving costs and to take proper regard if nchnlsvalue.

(from 6.09.1) a crash on Linux i386 removed relating to server mode.

* AP

New csound_threaded.hpp header-only facility, obviating need for csPerf Thread.cpp object in some
projects.

Added GetA4 function.

New framework for plugin opcode development in C++ using Csound's allocator.

xIviii

https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20notes%200.9.4.md

Preface

* Added StrDup function.

» Boost dependencies removed from Csound interfaces, CsoundAC, and CsoundV ST.

¢ (from 6.09.1) Two new API function, csoundSetSpinSample and csoundClearSpin.
 Platform Specific:

* i0S

« iPad portrait SplitView fix+animation, info popover resizing, stop button fix in Soundfile Pitch
Shifter.

* Csound-iOS API updates; Examples cleaned up, enhanced/expanded, and reordered. Manual re-
vised, expanded, updated. Updates to APl and examples support iOS 10 and Xcode 8.

* Android
« Multichannel input and output allowed.
¢ Windows

 csound64.lib import library added to Windows installer.

Release Notes for Csound 6.08 (2016 November)

Asusual there are anumber of opcode fixes and improvements, but the major changes are in the language
structures. First the score language has all-new treatment of macros and preprocessing, bringing itinline
with those of the orchestra. The parsing of the orchestra has had a number of fixes as outlined below.

A magjor, and not totally compatible change as been made in reading and writing array elements. Therate
of the index now often determines the time of processing; check the entry below under Orchestra. This
simplifies much code and seems to capture expectations; the earlier ad hoc code had many anomalies.

Also asusual there are anumber of new opcodes and internal fixesto memory leaks and more robust code.
* New opcodes:

* dct: Discrete Cosine Transform of asample array (type-1l DCT).

« getftargs. copy arguments of agen to an S-variable.

« mfb: implements a mel-frequency filterbank for an array of input magnitudes.
* New Gen and Macros:

« quadbezier: generating Bezier curvesin atable.
* Orchestra:

e The character — is now correctly treated as a variant of ~ for bitwise not.

 Lexing bug which could corrupt strings fixed.

» Ensure no newlinesin string-lexing.

* Small improvement in reported line numbers.

xlix

Preface

Better checking of macro syntax.

Improved parsing of setting of labels.

Added error handling for unmatched brackets for UDO arg specification.
Check that #included file is not a directory.

Deeply nested macro calls better policed.

For years Csound has fixed the pitch of A4 at 440Hz. Now this can be set in the header using the new
r-variable A4, and a so read with that variable.

Floating point values can use e or E for exponent.

Array access semantics have been clarified:

e i[i] => reading at i-time and perf-time, writing at i-time only.
* i[k] => reading at perf-time, writing yields a runtime error.
 K[i], K[k] => reading at perf-time, writing at perf-time.

o di], ak] => reading at perf-time, writing at perf-time.

* other (5[], f[]) => reading and writing according to index type (i k).
In particular, i(k[i]) will continue not to work, as before, but the new operator i(k[],i) is provided to
cover this case.

xout validation no longer fails when constants are given.

Score:

New codeto handle macros and other preprocessor commands. Bringsit into line with orchestracode.

New score opcode C introduced as away of switching automatic carry off (C 0) or on (default) (C 1).

Options:

L]

The tempo setting can now be a floating point value (previously fixed to integer).

New option --version prints version information and exits.

Modified Opcodes and Gens:

Problemsin centroid fixed.

Better treatment of rounding in printks.

OSC extended to include multicast.

Faust opcodes brought up to date with faust.
oscill and oscili can take a negative duration.
fout opcode documentation clarified.

Release time in mxadsr fixed.

Preface

« centroid opcode extended to take array inputsin addition.
« ptable opcodes are now identical to table family.

« ftgen now as array input option.

« subinstr can now have string arguments.

« thei() format is extended to work on k-rate arrays with the first argument being an array, followed
by the indices.

* Utilities:
» pvlook now always prints explicit analysis window name.
+ Frontends:
e HTMLS5
« csound.node: Implemented for Linux, minor API fix.
 pnacl: Added compileCsdText method to csound object.
» Genera Usage:
» Checking of valid macro names improved.
o #undef fixed.
* Bugs Fixed:
» Fixesto printsin format use.
* jitter2 reworked to make it more like the manual.
 oschank has had multiple fixes and now works as advertised.
» bformdecl with arrays and type 4 fixed.
* Bug in pvsceps fixed.
 Invarious formatted print opcodes extra trash characters might appear -- fixed.
» Assigning variables with --sample-accurate could give unexpected results; thisis believed fixed now.
 padsynth square profile fix, and opcode prints less depending on warn level.
» gen3l fixed.
e gendl fixed.
* Bug in sensekey fixed.
* A number of issuesin centroid fixed.
» System changes:

» New score lexing and preprocessor.

Preface

* MAC line endings now work again.
e System information messages (system sampling rate, etc) are now directed to stdout.
* rtjack reworked to deal with names and numbers.

* The version printing now includes the commit as so the developers know which patches have been
applied.

* API:
* API version now 4.0.
» Now supports named gens.
« fterror now in API.
¢ API functions SetOutput and GetOutputFormat fixed.
e Many API functions now use const where appropriate.
» Messages can now be directed to stdout from the APl by using CSOUNDMSG_STDOUT attribute.

« New Lisp CFFI and FFI interfaces tested with Steel Bank Common Lisp (64 bit CPU architecture),
runs in separate thread.

« ctcesound.py, a new FFI interface for Python was introduced in version 6.07. It is now the recom-
manded interface for Python, csnd6.py being deprecated.

 Platform Specific:
* Android.
« Multichannel input and output allowed.
e Windows.

 csound64.lib import library added to Windows installer.

Release Notes for Csound 6.07 (2016 March)

A large number of bug fixes, some quite major, someinternal are included, as well as some new facilities
and extensions. As ever there are coding improvements as well.

» New opcodes:
« compress2: like compress but using amore normal use of dB (0.0 for full scale).
* (Experimental, source code-only) New cuda opcodes: cudasynth2 and cudanal 2.

« directory opcode: reads a directory and outputsto astring array alist of file names.

ftsamplebank: to load a sample library from a directory.

« mvclpfl, mvclpf2, mvclpf3, mvclpf4, mvchpf: Moog voltage-controlled filter emulations from Fons
Andriaensen.

Preface

» S converter from k-rate and i-time number to a string.
 cepsinv opcode to calculate the inverse cepstrum of an array.
« moogladder2, is afaster, |ess accurate implementation of moogladder.

 paulstretch opcode is a lightweight implementation of the Paul Stretch time-stretching algorithm by
Nasca Octavian Paul. It isideal for timestretching asignal by very large amounts.

» mp3scal implements phase-locked vocoder processing from mp3-format disk files, resampling if nec-
essary.

« filescal implements phase-locked vocoder processing from disk files, resampling if necessary.
Orchestra:
e Theboolean?..: .. construction can now havestring results, whilepreviously it only allowed numbers.

« The line number reported when an error is detected at the end of aline is now correct. Also more
improvements in line numbers for complex syntax.

» whileloop improved/fixed.

 Better and consistent reading of comments.

» Continuation lines handled better, especially respecting line numbers.

» opcode: §.) syntax now allowed.

Score:

e Thelist of tempo pointsin score opcodet is now arbitrarily long.

e A stupidity in r and { opcodes fixed.

Options:

e The -z option now suppresses deprecated opcodes, unless given a2 or 3 argument.

* The new option --fftlib controls which real fft library to use internally (FFTLIB = 0, PFFFT = 1,
vDSP=2)

Modified Opcodes and Gens:

* In OSC opcodesit is now possible to send and receive arrays, tables and audio.
» Better diagnostic if diskin2 fails.

» rezzy now checks for unstable filter and modifies to close stable version.

» adsr rewritten so it gives an error if the segments are longer than p3.

» Useof diskinto an array now resizes the output array if necessary.

« chnget now checks for a change in channel name as well as data.

* interp can take an optional extraargument to give aninitial value.

Preface

« oscilikts uses amore liberal table lookup.
 opcode in can read mono or stereo, obviating the in/ins distinction.
 sensekey rewritten to provide better diagnostics and fixes aminor bug.
» Fix to acase of defining a macro with arguments.
* sockrecv now works at aand k rate.
* GEN49 now works from ftgen calls.
* GEN34 liberalised in tables it accepts.
 chnget now allows channel names to be changed at perf time.
* iceps has been renamed cepsinv to avoid name clashes.
« mp3 support improved in a number of minor ways.
* A minor fix to alow aladspa plugin to be re-loaded by the host.
Frontends:
 csdebugger:
« Some memory issues fixed.
e HTMLS:

e CsoundQT has its own notes at https://github.com/CsoundQt/CsoundQt/blob/devel op/re-
lease_notes/Release%20Notes%200.9.2.1.md [https://github.com/CsoundQt/CsoundQt/blob/de-
velop/release_notes/Rel ease%20Notes¥%6200.9.2.1.md].

General usage:

» The multicore options somewhat improved.

* When replacing instruments the new version inherits maxalloc and active flags.
» Multicore code now works with midi instruments.

« MIDI operations now available viaanew rtmidi jack module (-+rtmidi=jack).
Bugs fixed:

» Fix totrigseq.

* Magjor error in rezzy fixed.

» p() fixed for high numbers of p-arguments.

¢ p() now works from MIDI events.

» The 31-bit random number generator could give avery short loop if seeded with zero; fixed.

* Macrosin .orc files now work. liv

https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md

Preface

A long-standing bug in display of graphs fixed.

Fixes to the envelope opcodes linen, expsegr, linsegr, cossegr, transegr, envlpx, including new warn-
ings.

Many fixesin string opcodes (strsub, strcpy and others).
Fixed bugs in print formats (sprintf, printf, prints).
pvsmooth had amissing initialisation.

Array initialisation now robust.

Bug in copya2ftab fixed.

Fix in cudapvsana (EXPERIMENTAL).

partikkel fix to subsample grain placement.

Opcodes that require an odd number of arguments are now properly checked.
pvswrite now takes proper notice of Odbfs.

GEN34 now allowing non-power-of-two source tables.
vstdcs will now work on 64bit architecture.

strcat mended.

nstance mended.

fixed small issuesin rtauhal module.

Windows installer for 64 bit CPU architecture now sets environment variables on system level as
it should.

transeg at k-rate with itype non-zero had an initial delay if one cycle.
log function on arrays fixed.
Rescaling of named GENs fixed.

A fencepost error in reading ATSfiles believed fixed; it generated spurious errors about filefinishing
early.

Initialisation error in pvbandp fixed.

readfi string allocation fixed.

System changes:

Extensive use made of in-memory files. Orc and sco arealwaysthus, asare .csoundérc. Thissimplifies
much internally.

Nested longjmps fixed which affected some APl use.

If anon-existent .csd fileis presented Cdaund no longer crashes.

Preface

» The kcounter value is now consistently an unsigned 64bit value, allowing for long performances.
e API:
« csoundCompileCsdText: New function to compile a CSD from a string of text.

» Thefunction call csound->GetK counter(csound) now returns an unsigned 64 bit integer. Previously
it returned along which is unclear.

* ctcsound.py isanew wrapper file to the Csound API for the Python language. It is apure Python file
using the FFI (Foreign Function Interface) module ctypes. It does not depend on Swig, and it works
with Python2 and Python3 aswell. It uses numpy for itsdata structures, numpy being the fundamental
package for scientific computing with Python.

 Platform Specific:
* Windows.
» The Windows installer for Csound now contains all executables built for 64 bit CPU architecture.

» The Windows installer for 64 bit CPU architecture now provides NW.js "out of the box.” It runs
all features of Csound, aswell asall features of HTMLYS5, in abrowser-like runtime with JavaScript
scripting, and includes a Csound editor implemented in HTML. The editor will run pieces ei-
ther as .csd files with embedded <html> or as .html files calling the csound object, and includes
JavaScript debugging.

* A new simplified build system has been implemented in the csound/mingw64 directory for building
Csound using the MSY S2/mingw64 toolchain.

« Linking to pthreads and other libraries now static.

» Some limited support for non-ASCII charactersin file names.
» OSX.

« Insaller fixed for link namesfor _csnd6 and _CsoundAC.
¢ GNU/Linux.

« date opcode more accurate.

Release Notes for Csound 6.06 (2015 September)

A number of bug fixes, some quite major, are included, as well as some new facilities and extensions.
» New opcodes:

« getseed reads the state of the PRN generator; opposite of seed opcode.

« tabifd — Instantaneous Frequency Distribution, magnitude and phase analysis.

« websocket — Read and write signals and arrays using a websocket connection.

» framebuffer — Read audio signals into 1 dimensional k-rate arrays and vice-versa with a specified
buffer size.

« olabuffer — Sum overlapping frames of audio as k-rate arrays and read as an audio signa

Ivi

Preface

* Orchestra:

Labels are allowed in instrument 0.

e Score:

Maximum string length in scores increased to 1024.

» Modified Opcodes and Gens:.

diskin2 array version uses array size to give number of channelsin raw file form.
diskin2 now has the kpitch parameter defaulting to 1 for simple use.

Vibrato f-table in wgflute and wgcar optional, defaulting to sine wave.

schedule now accept string arguments.

urandom now available on OSX platforms.

GEN18 had fencepost problem; largely rewritten.

In poscil family of opcodesit is possible to skip initialisation of phase.

svfilter now can skip initialisation.

When opening an input file nchncls i is used rather than nchnls. This is a change that should have
followed the existence of nchnls i

rtjack module now reports the sampling rate.
The opcodes rfft, rifft, fft, fftinv, r2c and c2r now havei-rate array versions.
New optional threshhold parameter in opcodes tradsyn, sinsyn and resyn.

New thresholding option for partials.

* Utilities:

extract fixed.
src_conv improved and integrated with -U options.

fixesin atsa, and heti.

» Frontends:

pnacl:
* Support for 48000 sample rate fixed.
csound-~:

» Changesto the threading system. String channel initialisation fixed. A number of other bugs were
fixed.

Emscripten:

 Csound Javascript object can now receive data from the outvalue opcode.

Ivii

Preface

HTMLS:

* Integrate HTML, JavaScript, and other features of HTML5 with Csound, either by embedding a
Web page as an <html> element in the CSD filefor CsoundQt or Csound for Android, or by hosting
Csound in the JavaScript context of a standalone Web browser (Emscripten, PNaCl) or embedded
Web browser (csound.node).

» General usage:

I11-formatted macros in the orchestra now trapped.

» Bugsfixed:

Use of Windows-style environments for INCDIR etc now works with device numbers.
vibrato opcode fixed.

Clicking in real-time sample accurate case fixed.

Copying of strings now correct; did confuse memory sometimes.

Bug in pvstanal fixed.

Rounding error in cpspch fixed.

Removed crash on recompiling anamed instrument.

Fix interpolation bug in tablexkt.

Fix to plltrack when ksmpsis 1.

» System changes:

The "error" message from STK plugin is now awarning.

* AP

Redefinition of opcodes and UDOs fixed.

 Platform Specific:

OSX.
e csnd6.jar link installed in the correct location.
» Java NI linking issues solved.

« fixed link name for libpng in libfltk_image.

Release Notes for Csound 6.05 (2015 April)

As ever there are new facilities and numerous bug-fixes. A major part of this release is the removal of
a number of memory leaks and over use of memory. Naturally these changes are all but invisible, just a
smaller memory foot-print. Note that we track bugs and requests for enhancements via the github issues
system, and these had a significant affect on this release.

* Opcodes:

Iviii

Preface

» The opcode sndload is now deprecated.

New Gen and Macros:

 Paul Octavian Nasca's padsynth algorithm implemented as a gen.

Score:

* Fixed string location cal cul ation bug when processing score lines [fixes #443]
Options:

A short-format copyright option is available, with afixed number of well-known licences (CC, etc)
* New command-line option to report MIDI devicesin simple format

* New command-line option to set ksmps

Modified Opcodes and Gens:

« adsynt handles amplitude changes better

« sfont has better checking for corruptions

« better checking in physical models for out-of-range frequencies

« ftgenonce and others allows string parameters

» gausstrig reworked and extended with new features

« use of p() function no longer complains overrides the pcnt warning

* fix to midirecv

» OSCsend cleans up after use improved

« fillarrayislimitedto 1 or 2 dimensional arrays; infact it failed silently previously for 3D and higher.
« oschnk now works when the equaliser is used.

« mp3in now works with both mono and stereo input files

« flooper & flooper2 now allow stereo tables

» Release phase of expsegr fixed

« f-tables created by alarge number of arguments could overwrite memory, now fixed
« performance of plltrack improved

* init of arrays clarified and checked

» gen23 corrected to stop an infinite loop

 alwayson now startsfrom score offset; thisis part of afix to thelong-standing problem with alwayson
in CsoundV ST

lix

Preface

« invalue now checks for output string size and reallocates memory if smaller than default string size
(set at 256 bytes for backwards compatibility)

Utilities:

» The srconv utility has been improved but it does not work well, with groups of noise in otherwise
good output. We recommend the use of Erik de Castro Lopo's Secret Rabbit Code (akalibsamplerate)
as providing sample rate conversion at high quality. srconv will be removed shortly possibly to be
replaced by an SRC-based utility.

Frontends:
e pnacl
* Added interface to alow the use of Csound's MIDI input system.
* Fixed audio input to conform to the latest Pepper API spec.
Bugs fixed:
 bugsin fastabi,oscktp, phasorbnk, adsr, xadsr, hrtfer fixed.
 bugsin the harmon. harmon2, harmon3 and harmon4 fixed.
¢ Csound could crash after aparsing error, a case now removed.
System changes:
e There are now checks that xin/xout types match those defined as part of UDO definition.
 jack now has atimeout.
Internal Changes:

« Many defectsindicated by coverity fixed or code changed. Should make csound more robust in edge
Cases.

 Parser-related changes simplifies allocation of temporary variables, with some new optimisations.
« code for multi-thread rendering improved and stablised vis-a-vis redefinition of instruments.
Platform Specific:
« i0S.

* Fixed audio callback to work correctly with lightning output and Apple TV.
e Android.

* New experimental audio 10 mode: csoundPerformKsmps() is called from the OpenSL ES output
callback. This mode can be optionally enabled by passing avalue of "false" to a new second para
meter to the CsoundObj constructor (bool isAsync). The default constructor and the one-parameter
setsthisto "true" (keeping backwards compatibility with existing code).

» The OSC opcodes are included in distribution.

e Android app

Preface

e Therearenew file open and save dialogs that permit the user to accessthe SD card on the device,
if thereisone, in addition to internal storage.

» Thereisanew "Saveas..." button that permits the user to save the csd as a new file with a new
name.

» Many of the examples in the archive of Android examples are now built into the app and can
be run from the app's menu.

* Includes now the exciter opcode.

* OSX.

Installation now places cdadspa.so rather than csladspa.dylib on disk.

e Linux.

Linux is now build without FLTK threads. This removes system hangs and is in line with other
builds.

Release Notes for Csound 6.04 (2014 November)

This new version has many extensions and fixes; many new opcodes and significant numbers of internal
reworking. Thereis anew frontend and iOS and Android version have seen many improvements.

As ever we track bugs and requests for enhancements via the github issues system. Already proposals for
the next release are being made but the volume of changes require arelease now.

» New opcodes:

pinker generates high quality pink noise.

power opcode now works with array arguments.

exciter opcode, modelled on the calf plugin.

vactrol opcode simulates an analog envel ope follower.

family of hdf5 opcodes to handle hdf5 format files.

(experimental undocumented) buchla opcode models the lowgate filter of Buchla.

New k-rate opcodes acting on arrays:

transforms: rfft, rifft, fft, fftinv

complex product: complxprod

polar - rectangular conversion: rect2pol, pol 2rect, mags, phs
real - complex: r2c, c2r

windowing: window

cepstrum: pvscpes, iceps, ceps

column / row access. getrow, getcol, setrow, setcol

IXi

Preface

» aratedata- k-array copy: shiftin, shiftout

* phase unwraping: unwrap

* New Gen and Macros:

Line numbers corrected in instr statements.

New control operation, while, for looping.

A long-standing bug with macros which use the same name for an argument has been corrected.
Redefinition of an instrument in asingle call to compileisflagged as an error.

ID3 header skip for mp3 files now properly implemented.

Errorsinduced by not defining the location of STK's raw wave files has been removed.

bug fixed where UDO's could not read strings from pfields.

» Modified Opcodes and Gens:

stackops opcodes deprecated.

lenarray extended to handle multi-dimensional arrays.

ftgenonce accepts string arguments correctly and multiple string arguments.

max and min now have initialisation-time versions.

gen23 improved regarding comments and reporting problems.

in OSCsend the port is now a k-rate value.

socksend now works at k-rate.

anumber of envelope-generating opcodes are now correct in sample-accurate mode.
faust compilation is now lock-protected.

mp3 fixed to alow reinit to be used with it.

In remote opcode the name of the network can be set via the environment variable CS NETWORK.
Defaults to en0 (OSX) or ethO.

* Frontends:

icsound: New frontend icsound is now ready for general use. icsound is a python interface for inter-
active work in the ipython notebook.

csdebugger: A number of changes and improvements have been made, like stepping through active
instruments, better line number use.

» Genera usage:

Jack module now does not stop Csound if autoconnect fails.

» Bugsfixed:

Ixii

Preface

» atsinnoi fixed.
» ftsavek fixed.
o gprintf fixed.

» gen27 fixed, especially with extended arguments, as well as fixed a number of errors in extended
score arguments.

» Physem opcodes (guiro cabasa, sekere) fixed so second call works.
« flooper fixed in mode 2.

¢ OSCsend multiple fixes.

e UDO fix for case of local ksmps of 1.

« More changes/fixesto dssi code.

* xscanu and scanu fixed.

 temposcal and mincer fixed.

« crashin ftload fixed.

System changes:

* In server mode exit is now clean.

 Fixesto rtalsamodule.

* Pulseaudio rt module fixes.

 Fix to remove fluidEngine entries for csound instance (prevents crash on moduleDestroy).

» Opcodes called through function calls that returned arrays did not correctly synthesize args as array
types due to not converting the arg specifier to the internal format.

« fixed crashing issue during note initialization for tied notes due to goto skipping over code.

« fixed incorrect initialization of pfields when note's pfields length were less than instrument expected
(off-by-one).

Internal Changes:

* Added Runtime Type I dentification for instrument variables; removed use of XINCODE/XOUTCO.
« fix malloc length in negative number parsing, and improved handling of negative numbers.

* writing to circularBuffer is now atomic.

< anumber of memory leaks and potential dangerous code have been fixed.

« type-inference has been extensively reworked, as have afew parsing areas.

API:

» Added API function for retrieving GEN parameters used for creating atable.

Ixiii

Preface

 Platform Specific:
« i0OS.

» API Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundVaueCacheable).

 Updated to remove deprecated code.
A significant amount of reworking has been done on the code.
¢ Android.

» API Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundVaueCacheable).

» Changesto enable HTML 5 with JavaScript and it is to be hoped WebGL in the Csound6é Android
app.

» Enabled change of screen orientation in the Csound6 app without forcing a restart of the app.
» Enabled local storage (useful for saving and restoring widget values, €tc.).
e Windows.
« fixed pointer arithmetic that caused crashing on Windows.
 pyexec changed to use python's file opening functions to prevent crash on Windows.
» OSX.
* CsoundAC now compiles.
 Linux.

* threadlocks bug fix on linux.

Release Notes for Csound 6.03 (2014 May)

This new version has a large number of bug fixes (including clearing many tickets on SourceForge and
GitHub) aswell internal changes to improve performance.

» New opcodes:

e prinks2
. prints a new value every time a control variable changes using a printf() style syntax

* mp3sr, mp3bitrate, and mp3nchnls to get information on mp3 files

« EXPERIMENTAL: CUDA opcodesfor partitioned convolution direct convolution and sliding phase
vocoding; OpenCL opcode for additive synthesis

e compilecd
to compile instruments from a standard CSD file

* Orchestra:

» Theargument for i() is supposed to be avariable not an expression. Thisis now enforced. (bug #90)

Ixiv

Preface

Score:

New score opcode y sets the random seed (for ~) at read time

Options:

There was a bug in CsOptions; the last argument was missed being read(i ssue #296)

As command-line options expression-opt and no-expression-opt do nothing in Csound6 a warning
is printed

Modified Opcodes and Gens:

For ogg output it is possible to specify aVBR (variable block rate) quality.
dssi4cs code has been extensively reworked to avoid potential memory faults.
Many array operations now available for i-arrays as well as k-arrays.
fillarray will work for string arrays

Displays of FFT (via dispfft) improved with scaling/zooming options

Signal flow graph opcodes are now working with a-rate array signals.

In alsaRT code the samplerate is taken from the device

Faust opcode system updated to latest faust AP

Utilities:

fixed bug in Ipana

csound-~:

OSX - fix for running with 32-bit cpu architecture

Windows - csound~ now available for Windows

Emscripten:

Thisis now generally merged into the code-base

General usage:

--displays now switches graphs on, as expected
New commandline option --get-system-sr added to obtain the machine's sample rate

New command-line option --devices[=infout] gives alist of available audio devices and then exit

Bug fixes:

fixed the bug when tables were replaced but the size did not change

A number of bugs in --sample-accurate have been detected and fixed. This includes opcodes out,
outn, and line

A number of bugsin grain3 were fixed

Ixv

Preface

Bug in str_chanel could cause a crash; fixed

Small bug in rtjack fixed

Error in resize opcode corrected

Fixed an unlikely bug in atsa

Fixed rtauhal pause issue

A number of bugs/untidiness fixed in GEN23

Array bound checks fixed

strings channels were not correctly set for dynamic-size strings, now fixed
memory allocation for string formatting in printfsk was fixed, stopping string truncation
strcat safe against overflow

error in compilation of arrays fixed (issue #293)

GetPvsChannel fixed against a crash

System Changes:

L]

turnoff opcode now checks that the instrument being affected is active
lenarray can accept any array type
the way of rounding a table number to an integer was changed and is now more as expected

thereisanew possible sectionin acsd file called <CsFile...> whichislike csFileB but with unencoded
text.

UDO compilation now uses the type system. This means that UDOs now alow any array type to
be used

Improved orchestra parsing speeds with better algorithms

Internal Changes:

The whole system has been checked by the Coverity static checker which identified a number of
(mainly minor) problems. These have been reviewed and checked. In particular better use of printing
and string copying should prevent overflows

Thetypeand variable system has been extensively rewritten; thisallows better array and UDO support

Alignment of variables got right in all cases

Array copying is now using the type system to copy values; fixes issues with copying string arrays,
f-sigs, etc

Always reset Csound when stopping to ensure state is clean; was not being reset when there was a
compile error, so that next successful run would start with an invalid Csound engine (issue #305)

API:

Ixvi

Preface

« All opcodes etc now use the API memory all ocation operations, so it is possible to replace the whole
memory allocator

» Added csoundCompileCsd to API and associated new compilecsd opcode
* Protected csoundGetStringChannel against null and short strings and added a check for string size

« A number of API functions have had char* changed to const char* which reflect the usage

The performance engine now includes debugging capabilities to allow interrupting rendering and pro-
viding introspection into the engine's state and instrument variables. The following new functions are
available by including the csdebug.h header:

voi d csoundDebuggerlnit (CSOUND *csound);
voi d csoundDebugger C ean (CSOUND *csound);
voi d csoundSet | nstrunent Breakpoi nt (CSOUND *csound, MYFLT instr, int skip);
voi d csoundRenovel nstrunent Breakpoi nt (CSOUND *csound, MYFLT instr);
voi d csoundd ear Breakpoi nts (CSOUND *csound) ;
voi d csoundSet Br eakpoi nt Cal | back (CSOUND *csound, breakpoint_cb_t bkpt_cb, void *userdata);
voi d csoundDebugConti nue (CSOUND *csound);
voi d csoundDebugSt op (CSOUND *csound) ;
debug_instr_t *csoundDebugGet I nstrlnstances(CSOUND *csound);
voi d csoundDebugFreel nstrlnstances(CSOUND *csound, debug_instr_t *instr);
debug_variabl e_t *csoundDebugGet Vari abl es(CSOUND *csound, debug_instr_t *instr);
voi d csoundDebugFreeVari abl es(CSOUND *csound, debug_variable_t *varHead);
* Windows:

» Soundfontsin Windows had an internal alignement problem which is fixed

Release Notes for Csound 6.02

This new version has alarge number of bug fixes (including clearing al general tickets on SourceForge).
It also introduces some major new facilities such as use as a server, code to run Csound in a browser and
alarge generalisation of filter opcodes to have parameters changeable at audio rate.

» New opcodes:
 nstance opcode schedules a new instrument instance, storing the instance handle.
« turnoff nw variant to stop a given instrument instance.
 strfromurl to set astring from a URL.
* Orchestra:
« If building supportsit, a#include string can be aURL or afile.

» A spaceisagain permitted between afunction name and the opening bracket for al functionsallowed
in Csound5 (but not in general).

¢ The Csound command can start with an empty CSD in daemon mode (--daemon): do not exit if CSD/
orchestrais not given, is empty or does not compile).

» Score:
« If building supportsit, a#include string can be a URL or afile.

» Modified Opcodes and Gens:

Ixvii

Preface

« Many filters generalised to allow k- or a-rate parameters. In particular it includes these;

areson atonex
butterworth filters fofilter
lowres lowresx
Ipf18 mode
moogladder moogvcf
reson resonr
resonx resonz
statevar tonex

¢ The maximum number of presetsin sfont increased to 16384.
¢ cpsmidinn is now more accurate.
« max_k now behaves like the documentation. There were cases when it gave strange results.

» The vst4cs opcodes have been re-factored. FLTK code has been encapsulated. The build system has
been updated for Csound 6.

« In alwayson opcode changes for better handling of pfields, more reliable insert of an instrument
instance for repeating or re-started score sections.

» Thesignal flow graph opcodes have replaced OpenM P multi-threading with pthreads, using one-time
initialization of static structures.

Frontends:

« PNaCl is now supported as a platform, allowing Csound to run under the Chrome browser in all
enabled operating systems.

Bugs fixed:

 adsynt2 opcode fixed.

« ftgentmp opcode fixed.

« dates opcode fixed.

« fixed abug in pvdfilter.

« fixed stereo out in temposcal and mincer.
¢ pan2 opcode fixed.

* index overflow in randh and randi fixed.

* A number of fixesto CsoundV ST: initialization, score handling, and MIDI driver initialization, so
it now works for Csound 6.

« fixed pycalln for no inputs.

¢ TiIXed/revised setting and use ot KSl’ﬂpSWhl’ I UbDOs.

Preface

fixed problem in sending a score event from max to csound via csound~ (Ticket #58).

If itype in chn_k was set to 3 and values are set less than 1, Csound6 used to give an INIT Error.
(Ticket #67).

A number of reported seg faults have been dealt with.

xtratim opcode was using incorrect ekr value from csound instead of from instance; when used in
conjunction with setksmps, was causing notes to have very long xtratim set and thus notes were
effectively not getting turned off

» System changes.

L]

A server mode is now available, accepting input via UDP (with --port option).
A longstanding bug in extract was detected and fixed. It does suggest that this facility islittle used!

The way the external score generator was coded is substantially changed. In particular this should
fix avery strange bug in Windows.

Fixed crashing bug with invalue channel callback due to wrong data object being pulled from csound
host data.

Fixed bug in UDOs with no local ksmps where kcounter was being used incorrectly.
Better checking in channels.

(Experimental) If the environment variable CS_UDO_DIR is set then any files in the directory that
have an .udo extension are automatically included at the start of the orchestra. This facility needs
review to seeif it iswhat isrequired.

(Experimental) There are new cuda GPGPU opcodes (source only): cudasynth (3 versionsfor additive
synthesis, additive synthesis of fsigs and phase vocoder resynthesis) and cudanal (a GPGPU version
of pvsanal).

* Internal changes:

Many attempts at faster code.

Type inference and parsing still improving.

* i0S:

L]

Fixed crash where no csoundSetHostlmplementedMIDIIO is used on iOS and no _RTMIDI value
iS set.

 OSX:

Fixed input device name for auhal.

Release Notes for Csound6

Csound6 is a significant rewrite of much of the code. In particular the API is not compatible, although all
orc/sco/csd works should still run.

There are new facilities, like sample accuracy and realtime mode, described below.

Ixix

Preface

IMPORTANT: The environment variable to find plugins are called or
(note the 6) so it can co-exist with Csound5.

Similarly isrenamed

Arrays are now mainstream, with syntax and opcode support. They also exist in multidimensional format.
They are created (usually) with init opcode or fillarray.

Ki[] init 4

generates a k-rate 1-D array of length 4. Similarly

a2[][] init 4, 4

creates a square 4x4 a-rate array.

k2[] fillarray 1, 2, 3, 4
creates a 4-element vector filled with 1,..4, which also defines the length.

Elements are used viaindexing in [] such as k1[2] or a2[2][3]. One dimensional arrays replace tvars, and
can be used in opcodes like maxtab, mintab and sumtab (see below). Array setting can be done in | eft-
hand side of opcodes, i.e.:

aSigs[0] vco2 .1, 440
aSigs[1] vco2 .1, 880

The new realtime priority mode can be switched on with by passing the --redtime or setting the
CSOUND_PARAMSfield realtime_mode to 1. This has the following effects:

1. all opcode audio file reading/writing is handled asynchronously by a separate thread.
2. dl init-pass operations are also performed asynchronously.

Multicore support is totally rewritten using a different algorithm for task-dispatch, which should use less
memory and fewer locks.

» New opcodes:
« faustgen
e array -- many new or revised opcodes -- see Array Opcodes.

« compileorc takes a filename containing a collection of instrument definitions and compiles them,
replacing existing versions. It returns O on success.

» compilestr is like compileorc but takes a string.

* readscore runs the score preprocessor on a string and then schedules new events via the RT event
mechanism, returning O if successful.

» Orchestra

» Note events can start and end in mid-kcycle. As this is an incompatible change it is only invoked
when the command-line option --sample-accurate is specified. Note that this does not work for tied
notes, and use of skipping initialisation has questionable use.

Ixx

Preface

 Instruments can run at local ksmps values using set ksnps i ksnps asin Csound 5 UDOs.

» Compilation can be done at any stage, new instruments are added or replace old ones. Running in-
stances of old instrument definitions are not affected. Only limitation is that header constantsin in-
str 0 are read only once at the time of the first compilation. Init-time code can be placed outside
instruments in the global space, and this will be executed once-only following the compilation. In
this case, score event generation can be completely replaced by orchestra code. See also new opcodes
compileorc and compilestr.

* New syntax operators +=, -=, *= and /=. These are more than syntactic sugar; please use += and -=
for accumulating reverbs as it gives better multicore behaviour.

» The opcodes add, sub, mul and div have been deleted; use the forms + - * /. Not many people were
aware of these opcodes.

» Any opcode with a single output or with no outputs can be used as a function. Some opcodes might
reguire type annotation to resolve ambiguities, more details on the Function syntax in Csound 6.

« A statement can be broken across lines after a, = or arithmetic operation.

» There are arange of new or recoded operations on k-valued arrays, most restricted to 1 dimensional

arrays (vectors):
kans m narray ktab returns the snmallest value in the
(possi bly) multidi mensional array
kans nmaxarray ktab is like mntab
kabs sumarray ktab returns sumof all values in the array
ktab genarray imn, imax[, inc]

generates vector of values fromimn

to imax by increments of inc (default 1)
kt ab2 maparray ktabl, "sin" maps the k-rate l-arg function in

the string to every element of the vector
kt ab2 maparray_i ktabl, "sin" naps the i-rate 1-arg function

inthe string to every elenent of the vector
ktab2 slicearray ktabl, istart, iend

returns a slice of ktabl fromktabl[istart]

to ktabl[iend]
copyf2array ktab, kfn copies data froman ftable to a vector
copya2ftab ktab, kfn copies data froma vector to an ftable

Arithmetic on arraysis alowed. In particular addition, subtraction, multiplication, division on aele-
ment-by-element version is provided in arithmetic format. Similar operations between an array and
ascalar are allowed.

< Each instance of any instrument has a scratchpad of 4 values that persist; alows values to carry to
next use of the instrument; hope it may be useful in legato etc.

* If atable number is given as -1 then an internal sine wave equivalenttof. 0 16382 10 1 isused.
Attempts to write to this table will give unpredictable results, but is not policed. The 16382 can be
change by command line option --sine-size=# where the # is rounded up to a power of two.

< A number of oscil opcodes now have the f-table parameter as optional, defaulting to the internal sine
wave. (oscil1, oscil1i, oscil, oscil3, oscili, foscil, foscill, loscil, loscil3).

» Score:

» Score lines can have multiple strings.

Ixxi

Preface

» Change to escape charactersin score strings -- they do not happen.

* Also note the readscor

e opcode.

Modified Opcodes and Gens:

» Thek() function can take an a-rate argument in which caseit isacall to downsamp.

Utilities

 Hetro/adsyn analysisfiles can be machine byte-order independent if created with -X. Down sideisa
longer file and alittle slower loading. The het_export utility will create the independent format from

the old, and het_import is no longer necessary.

» cvanal and Ipanal will produce machine independent files if -X option is used. The convolve and
Ipread etc opcodes will accept either format. Y ou are encouraged to use the machine independent

form. Analysisfiles produced with -X can be used on other systems.

Frontends

Bugs fixed:

System Changes:

e InLinux and OSX the
Platform Changes:

API:

New API functions...

treatment of localesis now thread-safe and local.

* new configuration/parameter setting functions

PUBLI C i nt

PUBLI C voi d
PUBLI C voi d
PUBLI C voi d

PUBLI C voi d
PUBLI C voi d
PUBLI C voi d
PUBLI C voi d
PUBLI C voi d

csoundSet Opti on(CSOUND *csound, char *option);
csoundSet Par ans(CSOUND *csound, CSOUND_PARAMS *p);
csoundGet Par ans(CSOUND *csound, CSOUND_PARAMS *p);
csoundSet Qut put (CSOUND *csound, char *nane, char *type,

char *fornat);

csoundSet | nput (CSOUND *csound, char *nane);
csoundSet M DI | nput (CSOUND *csound, char *nane);
csoundSet M DI Fi | el nput (CSOUND *csound, char *nane);
csoundSet M DI Qut put (CSOUND *csound, char *nane);
csoundSet M DI Fi | eQut put (CSOQUND *csound, char *nane);

¢ new parsing/compilation functions

PUBLI C TREE *csoundParseOr c(CSOUND *csound, char *str);

PUBLI C i nt
PUBLI C i nt
PUBLI C i nt
PUBLI C i nt

csoundConpi | eTree(CSOUND *csound, TREE *root);
csoundConpi | eOr c(CSOUND *csound, const char *str);
csoundReadScor e(CSOUND *csound, char *str);
csoundConpi | eArgs(CSOUND *, int argc, char **argv);

» new function for starting csound after first compilation

PUBLI C i nt

csoundSt art (CSOUND *csound) ;

< new software bus threadsafe getters/setters

Ixxii

Preface

PUBLI C MYFLT csoundGet Cont r ol Channel (CSOUND *csound, const char *nane);

PUBLI C voi d csoundSet Cont r ol Channel (CSOUND *csound, const char *name, MYFLT val);
PUBLI C voi d csoundCet Audi oChannel (CSCUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet Audi oChannel (CSCUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet Stri ngChannel (CSOUND *csound, const char *name, char *string);
PUBLI C voi d csoundCet Stri ngChannel (CSOUND *csound, const char *name, char *string);

* new table threadsafe copy functions

PUBLI C voi d csoundTabl eCopyQut (CSOUND *csound, int table, MYFLT *dest);
PUBLI C voi d csoundTabl eCopyl n(CSOUND *csound, int table, MFLT *src);

API has been made threadsafe so that performance and control can occur in separate threads (after acall
to csoundStart() or csoundCompile()). Threadsafety is ensure by

1. use of atomic read/writing to control channels

2. spinlocksin audio and string channels

3. mutexes protecting compilation, score events and table access.
Internal:

¢ Thebuild system is now cmake (and not scons asin Csound5).

* A number of table access opcodes have been rewritten but should behave the same. Similarly diskin
and diskin2 now use the same code and so diskin should be more stable.

e Theold parser is completely removed.

New internal functionsin Csound

void (*FlushGircul arBuffer)(CSOUND *, void *);
void *(*Fil eOpenAsync) (CSOUND *, void *, int, const char *, void *,
const char *, int, int, int);
unsi gned int (*ReadAsync)(CSOUND *, void *, MYFLT *, int);
unsigned int (*WiteAsync)(CSOUND *, void *, MYFLT *, int);
int (*FSeekAsync)(CSOUND *, void *, int, int);
char *(*Get String) (CSOUND *, MYFLT);
Extract a string originating froma score-event argunent.

Functions removed

void *(*FileOpen) (CSOUND *, void*, int, const char*, void*, const char*);

The "private" parts of the APl have been changed considerably. Also structures like EVTBLK have
changed.

The LINKAGELVFLINKAGEL macros are renamed as LINKAGE_BUILTIN/FLINKAGE_BUILTIN.

Template for a-rate perf-pass opcodes is

int perf_nyopcode(CSOUND *csound, MYOPCODE *p)

uint32_t offset p- >h. i nsdshead- >ksnps_of f set ;
uint32_t early p- >h. i nsdshead- >ksnps_no_end;
uint32_t nsnps = CS_KSMPS;

Ixxiii

Preface

if (UNLI KELY(offset)) menset(p->res, '\0', offset*sizeof (MYFLT));
if (UNLI KELY(early)) {
nsnps -= early;
menset (&p->res[nsnps], '\0', early*sizeof (MYFLT));
}
for (n=offset; n<nsnps; n++) {

p->res[n] =

return OK;
}

String variables re-implemented

OENTRY structure has changed and has a new dependency field; please use thisfield asit is required
for multicore semantics. You could set it to -1 and disallow all parallelism, but at least it is safe.

All opcodes that touch audio should take note of sample-accurate code.

A number of previous API functionsare removed; OpenFile and OpenFile2 both replaced by new Open-
File2 with additiona argument.

Additions have been made for arg type specifications for opcodes.
» Any-types have been added, as follows:

« ''gignifiesarequired arg of any-type

» '? signifies an optiona arg of any-type

o "*'gignifiesavar-arg list of any-type

» Arraysare now specified using "[x]" where x is atype-specifier. The type-specifier can be any of the
of the current specifiers, including any-types. See Opcodeg/arrays.c for example usage.

New Type System

A new type system has been added to Csound6, and significant changes have been madeto the compiler.
The previous system for handling typesinvolved depending on thefirst-letter of avariable'sname every
timeit was used to determine type. This meant there was alot of re-checking of types. Also, adding new
typeswasdifficult, astherewasalot of custom code that had to be updated to check for new type | etters.

In Csound6, a separate system of types was added. Types are defined as CS_TYPE's. The creation of
variablesfrom typesand theinitialisation of memory has been encapsulated withinthe CS_TY PE's. This
change allows easier addition of new types, as well as generic calculations of memory pools, amongst
other things.

The compiler has been modified since Csound5 to now use the type system as an integral part of its
semantic checking phase. Variables are now registered into aCS_VAR_POOL when they are first de-
fined, with the CS_VARIABLE having areference to its CS_TY PE. After first time definition within
the pool, the typeinformation isthen looked up in consegquent variabl e lookups, rather than re-cal cul ated
from the variable name. This opens up possibilities for new variable naming and typing strategies, i.e.
using "myVar:K" to denote ak-rate arg. This also opens up possihilities for user-defined types, such as
"data myType kval, aval", then using "myVar:myType" to define a var of that type. (The previousis
speculative, and is not an active proposal at thistime.)

The addition of the type system has formalised the static type system that has existed in Csound prior to
Csoundé. It has, arguably, simplified the code-base in terms of type handling, aswell aslaid the ground
work for future type-related research to be integrated into Csound.

Ixxiv

Preface

New in Version 5.19 (2013 January 7)

Thisismainly abug-fixing release but with a number of new opcodes and enhanced features.
» New opcodes:
 ipmidi module for MIDI over network.
 ppltrack opcode.
* combinv opcode.
* New Gen and Macros:
 Better checking in GEN28.
» Check range in outrg, and optionally allow wrapping.
* Orchestra:
¢ Change empty statement to awarning.
¢ Added line numbers to many input args message (new parser).
» Modified Opcodes and GENSs:
 Better error and warning messages.
* loopseg now checks argument count.
* harmon2/3/4 improved.
« active: added the option to skip the instances in rel ease phase.
» New and more tested implementation of ChordSpace.
* Bug fixed:
* Fix botched optimisation in lowpass filters.
e Chn opcodes fixed in Linux.
« Fix bug in loscil with silence.
» Correct GEN23 when comment does not end in newline.
 Correcting loopseg.
« Number of input and output channels fixed in new parser.
* Fixed GEN43 issue.
* Fixed fout.
« centroid was likely to crash.
e Minor bug in printing which lost %.
e Anuninitialised value in fold fixed.

IXxv

Preface

Uninitalised values in dconv fixed.

Assignment of fsigs now works.

e System Changes:

Avoid seg fault on some user errors.

Faster modal4 opcodes.

Allow cabbage compilation.

Made pfield size dynamic in event message csoundapi~.
The default output format with pipe and double float is AU.
Change to ircam with default format, '-o stdout' and pipe.

Added double float precision for output format.

 Platform Changes:

Linux:

 Spinlocksinitialised (fixes bug in chn opcodes).

OSX:

 Improved selection of devicesin rtauhal module.

« Added acircular buffer interface and lock-free operation to rtauhal.
» Fixed MacOSX installer (creating symlinksto lib_csnd.dylib).
Haiku:

* New platform

Android:

« Using -B now in android to set circular buffer size.

« Added fluid synth opcodes for android.

» Added inputMessage method to CsoundOb;.

« Allow CSDPlayer to be installed on SD Card.

iOS:

 Improved audio routing.

 Bottom speaker the default for iOS.

* AP

Added new API function csoundCompibeRriomStrings().

Preface

New in Version 5.18 (2012 August 29)

Thisis mainly a bug-fixing release but with a number of new opcodes and enhanced features.

» New opcodes:

centroid opcode like pvscent but acting on audio signals

cosseg like linseg but with cosine interpolation

cosseghb like linsegb but with cosine interpolation

cossegr like linsegr but with cosine interpolation

joystick to read input values from an external joystick (Linux only)
log2 function for logarithms base 2

platerev opcode to model areverberating square plate

pwd opcode to determine the current working directory

readf opcode to read strings from afile

readfi opcode to read strings from afile on initialisation

vbap opcode like other vbap family but flexible about number of speakers and choice of layouts.

vbapg opcode like vbap but only calculate the gains on the channels.

* New functionality

L]

Changes to <CsOptions> to allow spaces between words, and escaped characters.

fout and fin use a better buffering strategy, and so are faster

It is possibleto specify just an orchestrawith the --orc flag. Thisisuseful when a score isnot needed.
A new command-line flag --ogg flag has been added for easy use of ogg/vorbis outpuit.

Added alsaseq real-time midi

* Bug fixes and improvements:

dates opcode could crash on 64bit architecture; thisis fixed

Some multicore interlocks were wrong. It is believed that thiswas not actually a problem, but would
be in the future.

There were cases when afile was double closed, |eading to a crash on exit.

Two new features added in partikkel. Panning law for channelmasks can now be set using afunction
table (second optional argument to partikkel) and new support opcodes partikkelget and partikkel set,
to access and modify the internal mask indices of partikkel.

follow2 was reworked do the i-rate and k-rate cal culations are the same.

pvscent is corrected asit returned half the correct value.

Ixxvii

Preface

 vbaplsinit can create more than one speaker layout which vbap/vbapg can use. Also much better
diagnostics on incorrect layouts.

* Internal Changes:
¢ Code changed so bison 2.6 can be used.
« Itisassumed that libsndfile version 1.0.19 or later is available.

« If the score is omitted a near-infinite wait is generated.

New in Version 5.17 (March 2012)

Thisis mainly a bug-fixing release with no major changes, but the number of fixes warrants arelease.
» New opcodes:
« cell opcode, for cellular automata
» Modified Opcodes and Gens.
« active now will report total number of active or allocated instruments if argument in zero
 stsend and strecv the TCP socket opcodes reworked to alogical design
e DSSI system now will take up to 9 channels
» FLsavesnap works with other widgets where imin > imax
* Utilities:
* csheats better documented and built by default; also more note lengths available
» Some security holesin utilities fixed
* Bugfixes:
 unirand opcode at a-rate fixed
« Localefix for floating point literalsin orchestra
* transegr fixed
» System Changes:
« Score can now last longer (change to size of time variable)
« An empty score gives avery long performance time (years and years)
* Android code released

« Changes to use of tmp files; now all are deleted at end of run (previously some were left) and the
environment variable TMPDIR is used.

* interaction between Comments, end of line and end of file fixed

¢ Hexadecima numbers now allowed in orchestra

Ixxviii

Preface

Empty orchestra now not a crash

change to macro expansion inside a string

avoid infinite loop when eof in malformed score macro
fixed macroname-with-args diagnostics and memory leak

change to preprocessor: {{ }} inside"..." and better diagnostics

fix windows installer so it removes full $INSTDIR\bin from PATH during uninstall: this cleans up
the PATH environment variable when uninstalling on Windows. Previously, it was leaving atrailing
"\bin" on the PATH.

CsoundAC MusicModel class more usable by C++ programs

ftcps had been missed as afunction

* Internal Changes:

Many! Some messages quietened, code improvements etc

New in Version 5.16 (February 2012)

The major change is that the new parser is now the default. The old parser is still available in case of
difficulty but the new has been given extensive testing since the start of the year, including complete
restructuring of macro expansion. A side effect is that the runtime of most orchestras is faster, although
parsing is slower. There are afew optimisations implemented like constant folding in simple cases. Line
numbers and file names are traced better than before.

Some memory |eaks also fixed.

» New opcodes:

Opcodes adapted from SuperCollider by Tito Latini: dust, dust2, gausstrig, gendy, gendyc, and
gendyx.

Fractal noise generator by Tito Latini: fractalnoise.

Opcodes for accessing table values by direct indexing, by John ffitch; ptable, ptablei, ptable3, and
ptablew. These opcodes are respectively like table, tablei, table3, and tablew, but they do not require
apower-of-2 table size.

» Modified Opcodes and Gens.

There was a fence post problem in tab opcode that could falsely report a reference out of range.

GEN15 mis-called gens 13 and 14 internally, using uninitialised values voice amplitude. Problem
fixed.

fmbell now takes an optional argument to control the sustain time.
Change to pvshasic for tab to table conversions.
poscil is now polymorphic, allowing k- or a-rate amplitude and frequency.

p() and i() changed when argument at k-rate.

Ixxix

Preface

» gend9 deferred now works.

* gen23 now available deferred.
 Utilities:

» Checked for use with the new parser in memory files.
 Frontends:

» Table access added to csoundapi~ via new get/set methods.
* Bug fixes and improvements:

e Many in new parser related to precedence and multicore.

 Better diagnostics when orchestrafile/csd is missing.

« csdfile: fix CsFileB and CsSampleB.

 Fixed score statement 'n'.

* Fixed bug in diskin2 leading to infinite loop.

« Fixed bug causing crossfade noisein hrtfmove.

 Fixed unlikely buffer overflows in some utilities.

* Avoid segfault in midicN.

e Bugin mp3inin skip=0 case fixed.

* 'r' score statement fixed with respect to macros.

 sndwarp could segfault.
» System Changes:

* Preprocessor #if #else #endin working.

* #includes depth now limited rather than infinite recursion.

« Redlyturnoff al displaysif --nodisplaysor -disused; fixesbug where using -d or --nodisplayswould
still cause the winFLTK.c csoundM odul el nit to setup display callbacks; bug caused with python TK
apps and CsoundYield FLTK being called.

* Memory leak in mp3in and mp3len fixed.
* Internal Changes:

e Very, very, very many! And the new parser...

New in Version 5.15 (December 2011)

» New opcodes:

« ftab2tab opcode.

IXxX

Preface

tab2pvs opcode.

pvs2tab opcode.

cpumeter opcode, (not really new but now available in OSX)
minmax opcode.

(EXPERIMENTAL) ftresize opcode.

(EXPERIMENTAL) ftresizei opcode.

hrtfearly opcode.

hrtfreverb opcode.

New Gen and Macros

Code to allow GEN49 to be deferred [NB does not seem to work]

Modified Opcodes and Gens

socksend and sockrecv no longer uses MTFU check and work on Windows
mpulse changed so if next event is at negative time use the absolute value
serial opcode now runs on Windows as will as Un*x

out, out2, outq, outh, outo outx and out32 are now identical opcodes and will take up to as many
arguments as nchnls. This replaces the current remapping of opcodes

turnoff2 now polymorphic wrt S and k types (ie accepts instrumnet names)

Bugs fixed:

L]

GENA42 fixed

jacko: fixed a segfault removing the unused JackSessionl D option
doppler memory leak fixed

transegr fixed in release mode when skipping most of envelope
FLPack now agrees with manual

max_k now agrees with manual

hrtfreverb fixed

atsa code now works on Windows in more cases

tabmorph bug fixed

fixed problem with user-defined opcodes having no outputs

Variousfixesto* ... */ comments

System Changes:

IXXXi

Preface

L]

Various licence issues sorted

Lorisisno longer part of the Csound tree

Memory leaks fixed

If no scoreis given adummy that runs for over 100 yearsis created
All score processing takes place in memory without temporary files
String memory now expandable and no size limitation

#if #else #end now in new parser

Adjustments to MIDI file precision in output

On OSX move from Coreaudio to AUHAL

Multicore now safe for ZAK, Channels and modifying tables

New coremidi module

Virtual Keyboard improved: 1) Dropdown for choosing base octave (the one that starts with the
virtual key mapped to physical key Z). Default value is 5 which is backwards compatible. 2) Shift-X
mappings which add two octaves to X mappings for atotal of 4 octaves playable from the physical
keyboard (starting from sel ected base octave). 3) Control-N / Control-Shift-N mappingsto increment /

decrement slider for control N. 4) Mouse wheel how controls sliders.
tsig type for vectors
tsigs and fsigs allowed as argumentsin UDOs

API: Minor version upped

* Internal Changes:

Very, very, very many!

New in Version 5.14 (October 2011)

New opcodes:

mp3len opcode.
gnan opcode.
ginf opcode.
exprandi opcode.
cauchyi opcode.

gaussi opcode.

IXxxii

Preface

e cpumeter opcode.

* linsegb opcode.

» expsegb opcode.

* transegb opcode.

» expsegba opcode.

 pvsgain opcode.

 pvsbufread? opcode.

 serial opcodes.

« |ua opcodes opcodes.

« plustab opcode.

« multtab opcode.

e maxarray opcode.

e minarray opcode.

e sumarray opcode.

« scalearray opcode.

New functionality

* beats processor renamed to csbeats and distributed

« mkdb utility to provide a catalogue of plugin libraries/opcodes

« ladspalibrary build in default system

* macros are now expanded inside string in the score

 thereinanuntil .. do .. od looping syntax (in the new parser only)

» SIGPIPE signals are ignored rather than causing Csound to exit

 Itis possible to use vectors of k-rate values, named t-variable. They are initialised to a fixed sizw
with init adncan be read with asimple[] syntax. assignment to elementsisonly via=. Thereare also
afew new opcodes that provide wider functionality.

Bug fixes and improvements:;

« reading valuesto fill tables was broken with respect to comments

* internal error in wii_data fixed

 pvsshift fixed

* jacko fixed IXxxiii

Preface

gen23 minor fixes

wiimote fixed

atsaadd fixed

compress fixed to work with Odbfs

pvsbufread corrected with respect to position counting

tempo opcode fixed

CsFileB sectionin .csd files had a bug, now fixed

deferred genO1 tables could have wrong size

vbap zak made to work(!)

fixed memory issue in ATSsinoi

various fixes to cscore

various fixesto partials and tradsyn

transegr could crash in some cases

loris opcodes updated to latest version

date opcode has new base in some platforms to avoid overflow
pvsblur now works over reinit

diskin, diskin2 and soundin now can read up to 40 channels
prints behaves better with rounding

fmpercfl now has working vibrato

atreson now has gain parameter at k-rate

comb opcode made safe if in and out arguments the same
better accuracy in line and expon

OSCsend recovers space previously lost

OSCsend can send atable asablob with the T tag -- experimental and untested.
Ipf18 now has an optional iskip argument

i() will also accept an i-rate value in which caseit isano-op
makecsd revised and extended to have options for MIDI and score processing and licenses

Ipanal reworked to remove bugs and oddities

an issue with noisein alsafixed and a btkokivn portaudio fixed

Preface

« portaudio driver changed to be more robust on stop/exit
* Internal Changes:
« Many many changesto the new parser so it is now operational, but should be used with care

» The multicore system is distributed in an experimental mode and should be used with great care.

New in Version 5.13 (January 2011)

» New opcodes:

« median opcode.

filevalid opcode.
 pvstanal, pvswarp, temposcal, pvslock spectral processing opcodes.
e mincer opcode
« fareylen sequence opcodes.
* New functionality
* Real random number generators using /dev/random (Linux only).
« INF macro added to orchestras; z read as infinity in scores
* init changed to allow multiple initsin on statement
* GEN for support of farey sequences
« maxalloc,cpuprc, active now accept named instruments.
* If normalisation in pow opcodesis zero treat as 1
« inch can take upto 20 inputs and outputs.

* pvscale, pvsvoc and pvsmix now have very good spectral envel ope preservation modes (1 = filtered
cepstrum, 2 = true envelope).

* 0scill could be static if the duration was long; now there is a positive minimum increment.

GEN49 now uses search paths.
* Bug fixes and improvements:
» Count of linesfixed in orchestras, and \ inside strings

 Fast tab opcodes made safe from crashes

* % informated printing could crash | yyxy

Preface

» Doublefreeinfgen fixed

 sndwarp quietened (gave too many messages)

» gendl deals with positive probabilities

 adsynt reworked removing many bugs

 adsynt2 phase error fixed

* Bug in max number of gensfixed

 Better checking in graind

 Better checking in adsyn

* modulus was wrong in new parser

« atonex/tonex did wrong operation

» mp3in could repeat sound at end of file

 changed opcode initialised to zero

 Serious bug in tabmorpha fixed

» GEN49 has serious bug removed, so no longer incorrect silences.

« partikkel opcode: fixed bug in sub-sample grain placement when using grain rate FM
* Internal Changes:

* In the new parser only there are operator @ and @@ to round up the next integer to a power of 2
or powerof2+1

 Score sorting made much faster

* lineto improved

» Named gens allowed

» Various printing include instrument name if available

» Command option to omit loading alibrary

« Number of out channels no longer constrained to be number of in

e Many fixesto new parser

* More use of Warnings than Messages (allows for them to be switched off)

» csoundSetM essageCallback reset if callback set to null

New in Version 5.12 (January 2010)

» New opcodes: IXXXVi

Preface

transegr isaversion of the transeg opcode which has a release section which istriggered by midi, a
turnoff2 opcode or a negative instrument number i score event.

ftgenonce generates afunction table from within an instrument definition, without duplication of data.
passign allows quick initialization of i-rate variables from p-fields

crossfm implements crossed fm synthesis.

loopxseg is like loopseg but with exponentia envelope.

looptseg is like loopseg but with a flexible envelope like transeg

Bug fixes and improvements:

pvshift would overwrite in double mode.

pan2 case 3 fixed.

clockon and clockoff now work again.

cross2 and interp could have divided by zero

linecount for error messages no longer includes text from .csoundrc
p5gconnect changed to use a separate thread to avoid timeout problem.
transeg checks argument count.

sfload used to be limited to 10 sound fonts and was not policed. Now open-ended.

Internal Changes:

L]

\" allowed as an escape in orchestral strings

New parser fixed on optional arguments

Better checking of f statement with negative number

Soundfonts only initialise pitches array once, in the soundfont opcodes.

Usual collection of gratuitous minor changes, layout and comments

New in Version 5.11 (June 2009)

New opcodes:

L]

mp3in allows reading of mp3 files directly in the orchestra.

wiiconnect, wiidata, wiisend, wiirange opcodes by john ffitch to receive and send data to a wiimote
controller.

New opcodes to receive data directly from a p5glove by john ffitch p5gdata
tabsum sums sections of ftables

MixerSetLevel i an init-time only version of Mixer SetLevel

IXxxvii

Preface

doppler implements a simulation of the doppler effect.
filebit reports the file depth of afile.

The new Signal Flow opcodes enable the usage of signal flow graphsin Csound.

New functionality

New panning type for pan2 opcode

New csd score tag <CsExScore>.

New -Maoption for ALSA RT MIDI module which listensto all devices.
Thereisagend9 to read mp3 files

Added rounding bin code to pvscale

Added non-power-of-2 table support for ftload and ftsave

GENZ23 totally rewritten to be more consistent in what constitutes a separator and comments. (Still
no /* */ comments)

Bug fixes and improvements:;

New examplesfor pvs opcodes by Joachim Heintz: pvsarp, pvscent, pvsbandp, pvsbandr, pvsbufread,
pvsadsyn, pvsynth, pvsblur, pvscale, pvscross, pvsfilter, pvsfreeze, pvshift, pvsmaska, pvsmorph

Use of automatic numbering of ftables reuses table numbers
seed with positive argument was wrong

sprintf with an empty string printed wrong data

mute now works with both numeric and named instruments

Small fixesin diskin, and in tablexkt

Internal Changes:

SConstruct now builds completely independent shared libraries for Python, Lua, and Java wrappers.
New Parser aimost usable

Redrawing of graphs fixed so that only selected ones get redrawn.

RT-alsamore forgiving on near sample rates

It is possible to have the score generated by an external program rather than using standard score
format using <CScore hin="translater"> to call the program trandlater on the score data

Ipc_export fixed
Removed limit on macro names length

PMAX, the number of arguments to a score event has been reduced by 2, and an overflow system

introduced so GENSs can have arbitrarixrmibers of arguments.

Preface

Increased APl versionto 2.1.

New API function pointer [dmemfile2withCB() which isaversion of Idmemfile() allowing acallback
to be set and called exactly once to process the MEMFIL buffer after it isloaded.

csound->floatsize set; zero in earlier versions

GetChannelLock added

New in Version 5.10 (December 2008)

* New functionality

New option to listen to all MIDI devices using the portmidi realtime module. To enable listening to
all devicesuse "-+rtmidi=portmidi -Ma".

Dither on output implemented; rectangular and triangular dither available in some cases

GEN20 type 6 now has option to set variance

* Bug fixes and improvements:

Locale set to C numeric to avoid , versus . problems.
diskin fixed

outo was broken regarding channel 6

pitchamdf fixed

Zilter2 intialization fixed

s32b14 fixed

Fixed other bugs fixed that have not been reported publicly.

* Internal Changes:

The major version of the Csound API isincreased to 2; affected csound.so as well. This means that
Csound 5.10 is incompatible with applications ("front ends’, "clients', or "hosts") that were built
for Csound 5.08 and earlier and that use API version 1.x. These applications will need to be rebuilt
to work with the current and future versions of Csound. Csound front ends written in interpreted
languages such as Python or Javamay continue to work without modification. It may also be possible
to keep both an earlier version of the Csound library and an API 2.0 version on the same machine
together so that new and old Csound-based appli cations can run side-by-side. These changesdo notin
any way affect the compatibility of Csound orchestras and scores: al old documents should continue
to work as before.

Time now counted internally in samples, overcoming a longstanding bug with rounding of time to
k-rate.

Many internal changes related to branch prediction. Some opcodes are substantially quicker.

[XxXix

Preface

New in Version 5.09 (October 2008)

New opcodes:

New vosim opcode by Rasmus Ekman which recreates the historic VOSIM (VOca SIMulator) tech-
nique.

New dcblock2 opcode by Victor Lazzarini.
New Chua's oscillator model: chuap by Michagl Gogins.

New Linear Algebra opcodes by Michagl Gogins. Standard Linear algebra over real and complex
vectors and matrices: elementwise arithmetic, norms, transpose and conjugate, inner products, matrix
inverse, LU decomposition, QR decomposition, and QR-based eigenvalue decomposition. Includes
copying vectors to and from a-rate signals, function tables, and f-signals.

New ambisonic opcodes: bformdecl and bformencl. These opcodes deprecate the older bformdec
and bformenc.

New Score control opcodes by Victor Lazzarini: rewindscore and setscorepos.

New functionality:

The vbap family of opcodes (vbap4, vbap8, vbapl16 and vbapz) now accept k-rate variables for all
their input arguments.

New pulseaudio 1/0 module on Linux.

New optional ienv parameter to generate envel opesfor the soundfont opcodes: sfplay, sfplay3, sfplaym
and sfplay3m.

Added 'skip normalisation argument' to "tanh" named GEN routine. (See Named GEN Routines)

Added scheduler priority option on asa.

Bug fixes and improvements:

L]

L]

Allow scientific notation (as was in csound4!) in GEN23.

Fixed bug in FLTK initialization. Should make FLTK usage more stable.
Error on /* */ comments in orchestra fixed.

poscil no longer overwrites frequency if variable is shared.

printk and printks check that opcode isinitialised.

Deprecate soundout and soundouts in favour of fout.

Fixed space opcode to accept non-pow-2 (deferred) tables.

Fixed pvsmorph bug.

Internal Changes:

New parser has #include and argumentless macros.

Less casting between floats and doubles in float version.

XC

Preface

L]

L]

Includes experimental multicore support.
buzz opcode rewritten.

Many other internal changes and small bug fixes.

New in Version 5.08 (February 2008)

» New opcodes:

imagecreate, imagesize, imagegetpixel, imagesetpixel, imagesave, imageload and imagefree: New
image file processing opcodes by Cesare Marilungo to read/write png images from Csound.

pvsbandp and pvsbandr by John ffitch, which perform band-pass and band-reject filtering in the
spectral domain on apvssignal.

New HRTF opcodes by Brian Carty:hrtfmove, hrtfmove2 and hrtfstat.

New waveshaping opcodes. powershape, polynomial, chebyshevpoly, pdclip, pdhalf, pdhalfy, and
syncphasor

New jack transport control opcode: jacktransport

* New functionality

L]

Added --csd-line-nums= command line option to select mode for error line reporting.

New "no-carry" operator (!) for score language that preventsimplicit carrying of p-fieldsin i-state-
ments.

Added --syntax-check-only commandline flag (exclusive with --i-only)

<Cslicence> tag for CSDs. <CsLicense> is accepted as an aternative to <CsLicence>.

* Bug fixes and improvements:

Changed order of outputs for hilbert. This change breaks compatibility with previous versions, but
fixes the opcode and now works as documented.

M essages about |oading opcode plugins modified so can be suppressed with message level flag.

Major changesto score error reporting; now accurately reportstheline numbersfor the chain of inputs
for most errors.

Corrected pan2 so it agrees with documentation.
<CsVersion> tag works again according to the manual .

Fixed the{ and } score looping statements. Added missing documentation for them and ~, &, |, and
operators in score expressions.

hilbert had its outputs reversed, now correct. Manual example updated.

* Internal Changes:

Change to gettext localisation; French and Columbian-Spanish translations available.

XCi

Preface

Internal changesto partikkel, interpolation of waveform read and windowing, allowing more precise
pitch synchronous granular synthesis. Updated examples for partikkel.

pvscale: Improved algorithm for SDFT case so no ampltitude variation.

New in Version 5.07 (October 2007)

New opcodes:

pan2: a stereo panning opcode

cpsmidinn, pchmidinn, octmidinn: converters for MIDI note numbers
fluidSetlnter pMethod: interpolation in fluid sound fonts

sflooper: a soundfont version of flooper2

pvsbuffer and pvsbufread: buffering/reading of fsigs for delays/timescale changes.

New functionality

SDFT - the Sliding Discrete Fourier Transform -- added seamlessly to pvsanal, etc opcodes if the
overlap isless than the ksmps or less than 10. Some pvsX XX opcodes extended to take a-rate para-
meters when dliding.

New feature (-O null / --logfile=null) that disables all messages and printing to the console.

Bug fixes and improvements:

partikkel -- particle synthesis had an inadvertent bug, now fixed.
Closing of MIDI input on Windows(MM) failed; now fixed

fluidEngine opcode now takes optional number of channels (range 16-256, default to 256) and
polyphony (range 16-4096, default to 4096) to use.

atsa utility safer when given silence.

ATSaddnz: improved checking.

Ambisonics (bformdec, bformenc) has more options for controlled opposites.
Bug in turnoff2 fixed.

het_export: invalid check caused export to fail.

Internal Changes:

Improved Windows installer.
CsoundV ST replaced by CsoundAC, that does not depend on the VST SDK headers.
Less messages in Windows(MM) startup.

P argument type added (k-rate defaults to 1) for opcode in and out types.

XCii

Preface

New in Version 5.06 (June 2007)

» New granular opcodes. partikkel, partikkelsync and diskgrain.

» New opcode for event dispatch: scoreline.

* Many new opcodes from Gabriel Maldonado's CsoundAV: hvsl, hvs2, hvs3, vphaseseg, inrg, outrg,
Iposcila, Iposcilsa, Iposcilsa2, tabmor ph, tabmor pha, tabmor phi, tabmor phak, trandom, vtablelk, slid-
er8table, dider16table, slider32table, sider64table, slider8tablef, slider16tablef, slider32tablef, dlid-
er64tablef, sliderKawai and the a-rate version of ctrl7.

» Also from CsoundAV, many new FLTK widget opcodes: FLkeyln, FLdidBnk2, FLvslidBnk, FLvs-
lidBnk2, FLmouse, FLxyin, FLhvsBox, FLslidBnkSet, FLdlidBnkSetk, FLslidBnk2Set, FLSlidBnk2Setk,
FLSlidBnkGetHandle,

» New pvs opcodes. pvsdiskin, pvsmorph,

* eqfil

* New command line options (--m-warnings)to control messages
» cdadspa: aCSD to LADSPA plugin kit.

» And many bug fixesincluding (but not limited to): fixed k-rate version of system; fixed scaling problems
of vrandh and vrandi; fixed ocasiona failure of turnoff; fixed OS X bug; fixed ATScross and fixed mod.

Csound5GUI now works properly on al platforms and csoundapi~ (pd object) has been updated.

Xciii

Part |. Overview

Table of Contents

gL oo (1 1o o 4
The CSOUNA COMMEBNG ...ttt e e et e et et e e et et e e e e et e e e e ana s 5
Order Of PrECEOEBNCEvui ettt e e e e e e e s 5
Description of the COMMENd SYNEEXccoeuuueiiiiieiiii e 5
CsouNd COMMANG TN ...ttt e et e eeeaa s 7
Command-line Flags (DY CalEJONY)uieirrrnieeiii ettt e e e e et e eeees 18
Csound Environment VariableSuiiiiiiiie e 29
Unified File Format for Orchestras and SCOMeSc..uuviiiiiiiiiiiiiii e 31
DESCIIBLION ...ttt ettt e e et e 31

EXBIMPIE ..t e 34

Command Line Parameter File (.CSOUNICT)uiiiiiiiiiiiii e 34
SCOME File PrEPrOCESSING .. .ceevtuetiiii ettt ettt ettt ettt ettt e e e eeere s 35

THE EXIFACt FEBIUIE ...ttt e e e e e e ena e e 35
Independent Pre-Processing With SCSOMc.uuuiiiiiiiiieiiiiie e 35

USING CSOUNG ...ttt ettt ettt e ettt e ettt e e e e e et e e et e bt e e e eebbneeeenaaeeeee 37
CSOUNA'S CONSOIE OUELPULeeeetiee ettt ettt ettt e et e e e et e e e e et e e e enbaaaeeees 37

HOW CSOUND WOTKS ...ttt ettt e e et e et e e et e e e naa s 38
Amplitude ValuES iN CSOUNGcoevuuiiiiiiieeeit e 39

REAI-TIME AUTIO ..o et e e et e e e een s 41
REBITIME 1/O ON LINUX ...ttt e e e 41

VLB OSX ittt e et 47
WINAOWS ..ot e et e et e e et e e et e e et e e et e e e et e e eaneeenns 48
Realtime 1/0 with JACK Connection Kitcoouuiiiiiiiiiiiiiiieeei e 49
Optimizing AUAIO [/O LELENCYeevveeiiiiii ettt 50
1600]01 1T U111 oo IO PP PPTTRPPPPTINN 52
Syntax Of the OFChESIIA i e e 53
Orchestra Header SEAIEMENTScouueieiiii et 53
Instrument and Opcode BIOCK SEAEMENLSccuuuiiiiiiieiiiii e 54
OrdiNary SEALEIMENTSeeieeteeeeit et e ettt e et e e ettt e e et e e e et e e e e et e e e eabaes 55
Types, Constants and Variablesccouuiiiiiiiii e 55
Variable INITaliZaHIONcooeueiiei e 56
EXIIESSIONS ...ttt et 56
DireCtories @nd FIlESuuiiiiii et 57
NOMENCIBEUNE ..ttt ettt e et e e et e e e e e e e e e 57
= o (0L PP TPPRN 58
NBMED INSIIUMENES ...ttt e e e et e et e et eeeeaa s 58

User Defined OpcodeS (UDQ)ccuuuueiiiiiieieei ettt ettt e e e 61
VECLOIS BINO ATTYS ... eeete ettt ettt ettt et e et et e et e st e e et e e e e enn e e e enanns 61
FUNCtion Syntax iN CSOUNGccoeuuuiiiiii et 61
UDP S VS . ittt ettt ettt 62

The Standard NUMEIIC SCOIEc.uuuiieiiii et et e e e ea s 65
Preprocessing Of Standard SCOTESccouuuiiiiiiiie e 65

L0 4 TP UPT T PPTRPPTPPN 65

TBIMPIO et 66

S0 PP UP PP SPPPTTRUPPPN 66

SCOME SEAIEIMENTS ...ttt ettt e e e e e e e e e e e en e eeneees 67
Next-P and Previous-P SYMDOIS ... 67

e 011011 oo R PSP POPPTTR 68
o0 = |V - ol (oS PP PP PPTPN 69
MUITIPIE FIlE SCOME ...ttt 71
Evaluation Of EXPrESSIONScciiitieiiiii et 71

Overview

SHINGS IN P-FIEIAS ..o e 73
L 00 =100 PP 74
(=0 U 0o N TP 75
(L= o000 LY PPN 77
[T0TH o [T T K o 11 oo 79
(LS00 o I 01PN 80

Introduction

Csound isaunit generator-based, user-programmable computer music system. It was originally written by
Barry Vercoe at the Massachusetts I nstitute of Technology in 1984 as the first C language version of this
type of software. Since then Csound has received numerous contributions from researchers, programmers,
and musicians from around the world.

Around 1991, John ffitch ported Csound to Microsoft DOS. Csound currently runs on many varieties of
UNIX and Linux, Microsoft DOS and Windows, all versions of the Macintosh operating system including
Mac OS X, and others.

There are newer computer music systems that have graphical patch editors (e.g. Max/MSP, PD, jMax,
or Open Sound World), or that use more advanced techniques of software engineering (e.g. Nyquist or
SuperCollider). Yet Csound still has the largest and most varied set of unit generators, is the best docu-
mented, runs on the most platforms, and is the easiest to extend. It is possible to compile Csound using
double-precision arithmetic throughout for superior sound quality. In short, Csound must be considered
one of the most powerful musical instruments ever created.

In addition to this "canonica" version of Csound and CsoundAC, there are other versions of Csound and
other front ends for Csound, many of which can be found at http://csound.github.io.

http://csound.github.io

The Csound Command

The command csound is a basic frontend to the system that can be used to generate a sound output from
an orchestra file and a score file (or aunified csd file). It is designed to be called from atermina or DOS
window. In addition to it, there are other front-ends, which might be simpler to use. The score file can
be in one of many different formats, according to user preference. Tranglation, sorting, and formatting
into orchestra-readable numeric text is handled by various preprocessors; all or part of the score is then
sent on to the orchestra. Orchestra performance is influenced by command flags, which set the level of
displays and console reports, specify 1/0 filenames and sample formats, and declare the nature of real-time
sensing and control.

Order of Precedence

There are five places where options for Csound performance may be set. They are processed in the fol-
lowing order:

1. Csound's own defaults

2. File defined by the CSOUNDRC environment variable, or .csoundrc file in the HOME directory
3. A .csoundrc filein the current directory

4. <CsOptions>tagin a.csd file

5. Passed on the Csound command line

Thelater optionsinthelist will override any earlier ones. Asof version 5.01 of Csound, sample and control
rate overrideflags (-r and -k) specified anywhere override sr, kr, and ksmps defined in the orchestraheader.

Description of the command syntax

The csound command is followed by a set of Command Line Flags and the name of the orchestra (.orc)
and score (.sco) files or the Unified csd file (containing both orchestra and score) to process. Command
Line Flags to control input and output configuration may appear anywhere in the command line, either
separately or bundled together. A flag taking a Name or Number will find it in that argument, or in the
immediately subsequent one. The following are thus equivalent commands:

csound -nnB8 orchnane -Sxxfil ename scorenane
csound -n -m 3 orchnane -x xfilenane -S scorenane

All flags and names are optional. The default values are:

csound -s -otest -bl024 -B1024 -n¥ -P128 orchnanme scorenane

where orchnameisafile containing Csound orchestracode, and scorenameisafileof scoredatain standard
numeric scoreformat, optionally presorted and time-warped. If scorenameis omitted, there aretwo default
options:

1. if real-timeinput is expected (e.g. -L, -M, -iadc or -F), a dummy score file is substituted consisting of
the single statement 'f 0 3600 (i.e. listen for RT input for one hour)

2. else Csound uses the previously processed score.srt in the current directory.

The Csound Command

Csound reports on the various stages of score and orchestra processing as it executes, performing various
syntax and error checks along the way. Once the actual performance has begun, any error messages will
derive from either the instrument loader or the unit generators themselves. A CSound command may
include any rational combination of flag arguments.

Running the examples in this manual from the command
line

Most of the manual's examples come ready to run without the need of adding any command line flags
since they specify options within the csd file's <CsOptions> tag, so you only need to type something like:

csound oscil.csd

within the examples folder, and realtime audio output should be generated.

The Csound Command

Csound command line

csound

Description

The csound command executes Csound.

Syntax

csound [flags] [orchnane] [scorenane]

csound [flags] [csdfilenane]

Csound command line flags

Listed below are the command line flags available in Csound6 in alphabetical order. Various platform
implementations may not react the same way to different flags! You can view the command line flags
organized by category in Command-line Flags (by Category).

The command line arguments are of 2 types: flags arguments (beginningwitha“-"“--" or “-+"), and name

arguments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags
that start with “--" and “-+" usually take an argument themselves using “=".

Command-line Flags

-@FILE Provide an extended command-linein file“FILE"

-3, --format=24bit Use 24-hit audio samples.

-8, --format=uchar Use 8-bit unsigned character audio samples.

--format=type Set the audio file output format to one of the formats available in

libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, MPC, nist, ogg, paf, pvf, raw, sd2, sds, svx, voc, wé4,
W64, wav, wavex, WVE, xi. Can also be used as--format=type:for-
mat or --format=format:typeto set both thefiletype (wav, aiff, etc.)
and sample format (short, long, float, etc.) at the same time.

-A, --aiff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -I, or -f flags.

-3, --format=alaw Use a-law audio samples.

--aft-zero Use zero asinitial value of after-touch.

-B NUM, --hardwarebufsamp- Number of audio sample-frames held in the DAC hardware buffer.
s=NUM This is a threshold on which software audio /O (above) will wait

before returning. A small number reduces audio 1/0 delay; but the
valueisoften hardwarelimited, and small valueswill risk datalates.
In the case of portaudio output (the default real-time output), the -
B parameter (more precisely, -B / &) is passed as the "suggested
latency" value. Other than that, Csound has no control over how

The Csound Command

-b NUM, --iobufsamps=NUM

-C, --cscore
-c, --format=schar

--csd-line-nums=NUM

-D, --defer-genl

-d, --nodisplays

-d

--deviceg[=X]

--displays
--default-paths

PortAudio interprets the parameter. The default is 1024 on Linux,
4096 on Mac OS X and 16384 on Windows.

Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio 1/0 delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In re-
al-time performance, Csound waits on audio 1/0 on NUM bound-
aries. It also processes audio (and polls for other input like MIDI)
on orchestra ksmps boundaries. The two can be made synchronous.
For convenience, if NUM isnegative, the effective valueisksmps *
-NUM (audio synchronous with k-period boundaries). With NUM
small (e.g. 1) polling isthen frequent and also locked to fixed DAC
sample boundaries.

Note: if both -iadc and -odac are used at the same time (full duplex
real time audio), the -b option should be set to an integer multiple
of ksmps.

Use Cscore processing of the scorefile.
Use 8-hit signed character audio samples.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file (.csd).
Thisflag hasno effect if separate orchestraand score files are used.
(Csound 5.08 and later).

* 0=linenumbers are relative to the beginning of the orchestra or
score sections of the CSD

* 1 =line numbers are relative to the beginning of the CSD file.
Thisis the default as of Csound 5.08.

Defer GENOL soundfile loads until performance time.

Suppress all displays. See -O if you want to save the log to afile.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.

list audio devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

Enables displays, reverting the effect of any previous -d flag.

Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

The Csound Command

--env:NAME=VALUE Set environment variable NAME to VALUE. Note: not al environ-
ment variables can be set this way, because some are read before
parsing the command line. INCDIR, SADIR, SFDIR, and SSDIR
are known to work.

--env:NAME+=VALUE Append VALUE to ;' separated list of search pathsin environment
variable NAME (should be INCDIR, SADIR, SFDIR, or SSDIR).
If afileisfound in multiple directories, the last will be used.

--expression-opt Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. Thismeansthat for examplethislineal = a2 + a3 will com-
pileasal Add a2, a3 instead of #a0 Add a2, a3 al = #a0 saving a
temporary variable and an opcode call. Less opcode calls result
in reduced CPU usage (an average orchestra may compile about
10% faster with --expression-opt, but it depends largely on how
many expressions are used, what the control rateis (see also be-
low), etc.; thus, the difference may be less, but also much more).

e number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of |ess temporary variables are:

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control
rate (e.g. ksmps = 100)

« large orchestras may load faster due to less different identifier
names

« index overflow errors (i.e. when messages like this Case2: in-
dx=-56004 (ffff253c); (short)indx = 9532 (253c) are printed
and odd behavior or a Csound crash occurs) may be fixed, be-
cause such errors are triggered by too many different (espe-
ciadly arate) variable namesin asingle instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

9

The Csound Command

-F FILE, --midifile=FILE

-f, --format=float

-G, --postscriptdisplay
-g, --asciidisplay

--get-system-sr

-H#, --heartbeat=NUM

-h, --noheader

--help

-1, --i-only

-i FILE, --input=FILE

Warning
When --expression-opt isturned on, it is not allowed

to use the i() function with an expression argument,
and relying onthevaue of k-rate expressionsat i-time
isunsafe.

Read MIDI events from MIDI file FILE. The file should have on-
ly one track in Csound versions 4.xx and earlier; this limitation is
removed in Csound 5.00.

Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displaysinstead.

printssystem sr and exits, requires previous-o dac. |f the audio does
not support this request then -1 is reported.

Print a heartbeat after each soundfile buffer write:
¢ no NUM, arotating bar.

* NUM =1, arotating bar.

NUM =2, adot (.)
* NUM = 3, filesize in seconds.
* NUM =4, sound a bell.

No header on output soundfile. Don't write afile header, just binary
samples.

Display on-line help message.

i-time only. Allocate and initialize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides afast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

Input soundfile name. If not afull pathname, the file will be sought
first in the current directory, then in that given by the environment
variable SDIR (if defined), then by SFDIR. The name stdin will
cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer valuein the range 0 to 1023, or a device name separated
by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the host
audio interface whether adevice number or aname should be used.
In the first case, an out of range number usualy resultsin an error
and listing the valid device numbers.

10

The Csound Command

The audio coming in using -i can be received using opcodes like
inch.

-+id_artist=string (max. length = 200 characters) Artist tag in output soundfile (no
spaces)

-+id_comment=string (max. length = 200 characters) Comment tag in output soundfile
(no spaces)

-+id_copyright=string (max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

-+id_scopyright=integer (Since version 6.05) Simple copyright/licence encoded as an inte-
ger. Coding is:

0: "All rights reserved" (default)

1. "Creative Commons Attribution-NonCommercial-NoDeriva-
tives (CC BY-NC-ND)"

2: "Creative Commons Attribution-NonCommercial-ShareAlike
(CCBY-NC-SA)"

3: "Creative Commons Attribution-NonCommercial (CCBY-NC)"
4: "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

5: "Creative Commons Attribution-ShareAlike (CC BY-SA)"
6: " Creative Commons Attribution-ShareAlike (CC BY)"
7: "Licenced under BSD"

-+id_date=string
(max. length = 200 characters) Date tag in output soundfile (no
spaces)

-+id_software=string (max. length = 200 characters) Software tag in output soundfile (no
spaces)

-+id_title=string (max. length = 200 characters) Title tag in output soundfile (no
spaces)

-+ignore_csopts=integer If set to 1, Csound will ignore all options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

-+input_stream=string Pulseaudio input stream name.

-J, --ircam, --format=ircam Write an IRCAM format soundfile.

-i NUM Make NUM processes available for rendering. Thisis only advan-
tageous if the number of processors on the computer is the same
or more that the number of requested processes. It also may slow
rendering down if ksmpsistoo small.

-+jack_client=[client_name] The client name used by Csound, defaults to 'csounds'. If multiple

instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac OS
X only)

11

The Csound Command

-+jack_inportname=[input port
name prefix], -+jack_outport-
name=[output port name prefix]

-K, --nopeaks
-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

-1, --format=long

-M DEVICE, --midi-device=DE-
VICE

-m NUM, --messagelevel=NUM

Name prefix of Csound JACK input/output ports; the default is'in-
put' and ‘output’. The actual port name is the channel number ap-
pended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these ports in full duplex operation:

csound5: i nput 1 (record left)
csound5: i nput 2 (record right)
csound5: out put 1 (pl ayback left)
csound5: out put 2 (pl ayback right)

Do not generate any PEAK chunks.
Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your termi-
nal, or piped from another process. Each line-event is terminated
by acarriage-return. Events are coded just like those in a standard
numeric score, except that an event with p2=0 will be performed
immediately, and an event with p2=T will be performed T seconds
after arrival. Events can arrive at any time, and in any order. The
score carry featureislegal here, asare held notes (p3 negative) and
string arguments, but ramps and pp or np references are not.

Note

The-L flagisonly valid on*NIX systemswhich have
pipes. It doesn't work on Windows.

Use long integer audio samples.

Read MIDI events from device DEVICE. If using ALSA MIDI
(-+rtmidi=alsa), devices are selected by name and not number.
So, you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid de-
vice numbers are printed.When using PortMidi, you can use '-Ma
to enable all devices. Thisis also convenient when you don't have
devicesasit will not generate an error.

Message level for standard (terminal) output. Takes the sum of any
of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 =warning messages

128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0=raw amplitudes, no colours

12

The Csound Command

* 32=dB, nocolors

* 64 =dB, out of range highlighted with red

96 = dB, al colors
» 256 = raw, out of range highlighted with red

e 512 =raw, al colours

The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perfor-
mance. The coloring of raw amplitudes was introduced in version
5.04.

--m-amps=NUM Message level for amplitudes on standard (terminal) output.
< 0= no note amplitude messages
¢ 1= note amplitude messages

--m-range=NUM Messagelevel for out of range messages on standard (terminal) out-
put.

* 0= no samples out of range message
¢ 1=samples out of range message
--m-warnings=NUM Message level for warnings on standard (terminal) output.
« 0= no warning messages
« 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
« 0 = absolute amplitude messages
¢ 1=dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
* 0=no colouring of amplitude messages
e 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
¢ 1= print benchnark numbers

-+max_str_len=integer (min: 10, max: 10000) Maximum length of string variables + 1;
defaults to 256 allowing a length of 255 characters. The length of
string constantsis not limited by this parameter.

--midi-devices[=X] list midi devices (x=out, output devicesonly; x=in, input; elseinput
and output) and exit.

13

The Csound Command

--midi-key=N Route MIDI note on message key number to pfield N asMIDI value
[0-127].

--midi-key-cps=N Route MIDI note on message key number to pfield N as cycles per
second.

--midi-key-oct=N Route MIDI note on message key number to pfield N as linear oc-
tave.

--midi-key-pch=N Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

--midi-velocity=N Route MIDI note on message velocity number to pfield N as MIDI
value [0-127].

--midi-velocity-amp=N Route MIDI note on message velocity number to pfield N as am-
plitude [0-OdbFS].

--midioutfile=FILENAME Save MIDI output to afile (Csound 5.00 and later only).

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled

on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-+mute_tracks=string (max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

-N, --notify Notify (ring the bell) when score or MIDI track is done.
-n, --nosound No sound. Do all processing, but bypass writing of sound to disk.

This flag does not change the execution in any other way.

--num-threads=NUM Make NUM processes available for rendering. Thisis only advan-
tageousif the number of processors on the computer ismorethat the
number of requested processes. It also may slow rendering down if
ksmpsistoo small.

--no-default-paths Disables adding of directory of CSD/ORC/SCO to search paths.
--no-expression-opt Disables expression optimization.
-O FILE, --logfile=FILE LogoutputtofileFILE. If FILEisnull (i.e.-O null or --logfile=null)

all printing of messages to the consoleis disabled.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

-0 FILE, --output=FILE Output soundfile name. If not afull pathname, the soundfilewill be
placed inthedirectory given by the environment variable SFDIR (if
defined), else in the current directory. The name stdout will cause
audio to bewritten to standard output, while null resultsin no sound

14

The Csound Command

--0g9
--omacro:XXX=YYY
--opcode-lib=LIBNAME

--0rc orchame

--ksmps=N
-+output_stream=string

--port=N

--udp-echo

--udp-consol e=address.port

--udp-mirror-console=address:port

-Q DEVICE

-R, --rewrite

-r NUM, --sample-rate=NUM

-+raw_controller_mode=boolean

output similarly to the -n flag. If no nameisgiven, the default name
will be test.

The name devaudio or dac (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible to
select a device number by appending an integer value in the range
0to 1023, or adevice name separated by a: character (e.g. -odac3,
-odac:hw:1,1). It depends on the host audio interface whether a de-
vice number or a hame should be used. In the first case, an out of
range number usually resultsin an error and listing the valid device
numbers.

Set output file format to ogg. (csound 5.18 and later)
Set orchestramacro XXX tovalue YYY
Load plugin library LIBNAME.

Set the argument as the orchestrra file. Used when not scoreisre-
quired>. (Csound 5.18 and later).

Set ksmps override to N (6.05 and later).
Pulseaudio output stream name.

Set UDP port on which to listen for commands and instruments/or-
chestra code (implies --daemon)

Switches on printing of UDP commands on the terminal. Any mes-
sages received by the UDP server are echoed (whether they are
valid commands or not).

Redirects the console messages to a remote address.port via UDP.
Mirrors the console messages to a remote address:port via UDP.

Enables MIDI OUT operationsto device id DEVICE. Thisflag al-
lowsparallel MIDI OUT and DAC performance. Unfortunately the
real -time timing implemented in Csound is completely managed by
DAC buffer sample flow. So MIDI OUT operations can present
sometimeirregularities. These irregularities can be reduced by us-
ing alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
devicenumbers(e.g. -Q hw:1,0). Inthe case of PortMidi and MME,
DEVICE should be a number, and if it is out of range, an error oc-
curs and the valid device numbers are printed.

Continually rewrite the header while writing the soundfile (WAV/
AIFF).

Override the sampling rate (SR) supplied by the orchestra.

Disable specia handling of MIDI controllers like sustain pedal, al
notes off etc., allowing the use of al the 128 controllers for any

15

The Csound Command

--reatime

-+rtaudio=string

-+rtmidi=string

-s, --format=short

--sample-accurate

--sched

--sched=N

-+server=string

-+skip_seconds=float

--smacro: XXX=YYY

--strset

purpose. Thiswill also set theinitial value of all controllersto zero.
Default: no.

realtime priority mode is switched on which the following effects:

1. al opcode audio file reading/writing is handled asynchronously
by a separate thread.

2. al init-pass operations are also performed asynchronously.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio. Also available, depending on platform and
build options; Linux: alsa, jack; Windows. mme; Mac OS X: Core-
Audio. In addition, null can be used on all platforms, to disable the
use of any real time audio plugin.

(max. length = 20 characters) Real time MIDI module name. De-
faultsto PortMidi, other options (depending on build options): Lin-
ux: alsa; Windows. mme, winmm. In addition, null can be used on
all platforms, to disable the use of any real time MIDI plugin.

ALSA MIDI devices are selected by name and not number. So, you
need to use an option like -M hw:CARD,DEVICE where CARD
and DEVICE are the card and device numbers (e.g. -M hw:1,0).

Use short integer audio samples.

Start and stop instances of instruments at the nearest sample to
the requested time. Thisisin contrast to traditional Csound which
roundsthetimesto the nearest k-cycle. Note that this does not work
with tied notes.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -o dac or -0 devaudio). See also --sched=N be-
low.

Linux only. Same as --sched, but allows specifying a priority val-
ue: if N is positive (in the range 1 to 99) the scheduling pol-
icy SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Pulseaudio server name.

(min: 0) Start playback at the specified time (in seconds), skipping
earlier eventsin the score and MIDI file.

Set score macro XXX tovalueYYY
Csound 5. The--strset option all ows setting strset string valuesfrom

the command line, intheformat '--strsetN=VALUE'. It isuseful for
passing parameters to the orchestra (e.g. file names).

16

The Csound Command

--syntax-check-only

-T, --terminate-on-midi

-t0, --keep-sorted-score

-t NUM, --tempo=NUM

-U UTILITY, --utility=UTILITY

-u, --format=ulaw

--vbr-quality=X

-v, --verbose

--version
-W, --wave, --format=wave

-X FILE, --extract-score=FILE

-Z, --dither

-Z, --dither--triangular, --dither--
uniform

-z NUM, --list-opcodesNUM

Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestraperformsthe score. Thisoption isexclusive of the--i-only
flag. (Csound 5.08 and later).

Terminate the performance when the end of MIDI fileis reached.

Prevents Csound from deleting the sorted scorefile, score.srt, upon
exit.

Use the uninterpreted beats of score.srt for this performance, and
set theinitia tempo at NUM beats per minute. When thisflag is set,
the tempo of score performanceisaso controllable from within the

orchestra. WARNING: this mode of operation is experimental and
may be unreliable.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Use u-law audio samples.

Set variable bit-rate quality for output to ogg. (Csound 6.03 and
|ater).

Verbosetranslate and run. Prints details of orch trandlation and per-
formance, enabling errorsto be more clearly located.

Exits after printing version information.
WriteaWAYV format soundfile.

Extract a portion of the sorted score, score.srt, using the extract file
FILE (see Extract).

Switch on dithering of audio conversion frominternal floating point
to 32, 16 and 8-bit formats. The default form of the dither is trian-
gular.

Switch ondithering of audio conversion frominternal floating point
to 32, 16 and 8-bit formats. In the case of -Z the next digit should
beal (for trangular) or a2 (for uniform). The exact interpretation
depends on the output system.

List opcodesin this version:

¢ no NUM, just show names

« NUM =0, just show names

* NUM =1, show argumentsto each opcode using the format <op-
name> <outargs> <inargs>

« NUM = 2, show names including deprecated ones

* NUM = 3, show argumentsto each opcode, including deprecated
ones, using the format <opname> <outargs> <inargs>

17

The Csound Command

Command-line Flags (by Category)

Listed below are the command line available in Csound5 organized by categories. Various platform im-
plementations may not react the same way to different flags!

Y ou can view the command line flags organized alphabetically in Command-line Flags (Alphabetically).
The format of acommand is either:

csound [f | ags] [orchname] [scorename]
or

csound [f1 ags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a“-",“--" or “-+"), and name argu-
ments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags that
start with “--" and “-+" usually take an argument themselves using “=".

Audio File Ouput

-3, --format=24bit Use 24-bit audio samples.

-8, --format=uchar Use 8-bit unsigned character audio samples.

-A, --aff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -1, or -f flags.
-3, --format=alaw Use a-law audio samples.

-c, --format=schar Use 8-hit signed character audio samples.

-f, --format=float Use single-format float audio samples (not playable on some sys-

tems, but can be read by -i, soundin and GENO1

--format=type Set the audio file output format to one of the formats available in
libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, nis, paf, pvf, raw, sd2, sds, svx, voc, w64, wav, wavex
and xi. Can aso be used as --format=type:format or --format=for-
mat:typeto set both the file type (wav, aiff, etc.) and sample format
(short, long, float, etc.) at the same time.

-h, --noheader No header on output soundfile. Don't write afile header, just binary
samples.
-i FILE, --input=FILE Input soundfile name. If not afull pathname, the file will be sought

first in the current directory, then in that given by the environment
variable SSDIR (if defined), then by SFDIR. The name stdin will
cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer valuein the range 0 to 1023, or a device name separated
by a: character. It depends on the host audio interface whether a
device number or aname should be used. In thefirst case, an out of
range number usually resultsin an error and listing the valid device
numbers,

18

The Csound Command

-J, --ircam, --format=ircam

-K, --nopeaks
-1, --format=long
-n, --nosound

-0 FILE, --output=FILE

--099

--vbr-quality=X

-R, --rewrite

-s, --format=short
-u, --format=ulaw
-W, --wave, --format=wave

-Z, --dither

-Z, --dither--triangular, --dither--
uniform

Output Fileld tags

-+id_artist=string

The audio coming in using -i can be received using opcodes like
inch.

Write an IRCAM format soundfile.
Do not generate any PEAK chunks.
Use long integer audio samples.

No sound. Do all processing, but bypass writing of sound to disk.
This flag does not change the execution in any other way.

Output soundfile name. If not afull pathname, the soundfile will be
placed inthedirectory given by the environment variable SFDIR (if
defined), elsein the current directory. The name stdout will cause
audio to bewritten to standard output, while null resultsin no sound
output similarly to the -n flag. If no nameisgiven, the default name
will be test.

Thename dac or devaudio (you can use-odac or -0 dac) will request
writing sound to the host audio output device. It ispossibleto select
a device number by appending an integer value in the range 0 to
1023, or adevice name separated by a: character. It depends on the
host audio interface whether a device number or a name should be
used. In thefirst case, an out of range number usualy resultsin an
error and listing the valid device numbers.

Set output file format to ogg. (Csound 5.18 and later).

Set variable bit-rate quality for output to ogg. (Csound 6.03 and
|ater).

Continually rewrite the header while writing the soundfile (WAV/
AIFF).

Use short integer audio samples.
Use u-law audio samples.
WriteaWAYV format soundfile.

Switch on dithering of audio conversion frominternal floating point
to 32, 16 and 8-bit formats. The default form of the dither is trian-
gular.

Switch ondithering of audio conversionfrominternal floating point
to 32, 16 and 8-hit formats. In the case of -Z the next digit should
beal (for trangular) or a2 (for uniform). The exact interpretation
depends on the output system.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

19

The Csound Command

-+id_comment=string

-+id_copyright=string

-+id_scopyright=integer

-+id_date=string

-+id_software=string

-+id_title=string

(max. length = 200 characters) Comment tag in output soundfile (no
spaces)

(max. length = 200 characters) Copyright tag in output soundfile (no
spaces)

(Sincleversion 6.05) Simple copyright/licence encoded asan integer.
Coding is:

0: "All rights reserved" (default)

1: "Creative Commons Attribution-NonCommercial-NoDerivatives
(CCBY-NC-ND)"

2: "Creative Commons Attribution-NonCommercial-ShareAlike
(CCBY-NC-SA)"

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"
"Creative Commons Attribution-NoDerivatives (CC BY-ND)"
"Creative Commons Attribution-ShareAlike (CC BY -SA)"
"Creative Commons Attribution-ShareAlike (CC BY)"

"Licenced under BSD"

NoaRA®

(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile (no
spaces)

(max. length = 200 characters) Title tag in output soundfile (no
spaces)

Realtime Audio I nput/Output

-i adc[DEVICE], --input=adc[DE-
VICE]

-0 dac[DEVICE], --out-
put=dac[DEVICE]

-+rtaudio=string

--redtime

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range O to 1023, or a device name separated
by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the host
audio interface whether a device number or a name should be used.
In the first case, an out of range number usually resultsin an error
and listing the valid device numbers.

The name dac or devaudio (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It ispossible to
select a device number by appending an integer value in the range
0to 1023, or adevice name separated by a: character (e.g. -odac3,
-odac:hw:1,1). It depends on the host audio interface whether a de-
vice number or a name should be used. In the first case, an out of
range number usually resultsin an error and listing the valid device
numbers.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio (all platforms). Also available, depending on
platform and build options: Linux: alsa, jack; Windows: mme; Mac
OS X: CoreAudio. In addition, null can be used on all platforms, to
disable the use of any real time audio plugin.

realtime priority mode is switched on which the following effects:

20

The Csound Command

-+server=string
-+output_stream=string
-+input_stream=string

-+jack_client=[client_name]

-+jack_inportname=[input port
name prefix], -+jack_outport-
name=[output port name prefix]

MIDI File Input/Ouput
--aft-zero

-F FILE, --midifile=FILE

--midioutfile=FILENAME

-+mute_tracks=string

-+raw_controller_mode=boolean

-+skip_seconds=float

-T, --terminate-on-midi

MIDI Realtime I nput/Ouput

-M DEVICE, --midi-device=DE-
VICE

1. al opcode audio file reading/writing is handled asynchronously
by a separate thread.

2. al init-pass operations are also performed asynchronously.
Pulseaudio server name.

Pulseaudio output stream name.

Pulseaudio input stream name.

The client name used by Csound, defaults to 'csound5'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac OS
X only)

Name prefix of Csound JACK input/output ports; the default is'in-
put' and ‘output’. The actual port name is the channel number ap-
pended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nput 1
csound5: i nput 2
csound5: out put 1
csound5: out put 2

(record left)
(record right)
(pl ayback left)
(pl ayback right)

Use zero asinitial value of after-touch.

Read MIDI events from MIDI file FILE. The file should have on-
ly one track in Csound versions 4.xx and earlier; this limitation is
removed in Csound 5.00.

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Disable specia handling of MIDI controllers like sustain pedal, all
notes off etc., allowing the use of al the 128 controllers for any
purpose. Thiswill also set theinitial value of all controllersto zero.
Default: no.

(min: 0) Start playback at the specified time (in seconds), skipping
earlier eventsin the score and MIDI file.

Terminate the performance when the end of MIDI fileis reached.

Read MIDI events from device DEVICE. If using ALSA MIDI
(-+rtmidi=alsa), devices are selected by name and not number.

21

The Csound Command

So, you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid de-
vice numbers are printed. When using PortMidi, you can use '-Ma
to enable all devices. Thisis also convenient when you don't have
devicesasit will not generate an error.

--midi-key=N Route MIDI note on message key number to pfield N asMIDI value
[0-127].

--midi-key-cps=N Route MIDI note on message key number to pfield N as cycles per
second.

--midi-key-oct=N Route MIDI note on message key number to pfield N as linear oc-
tave.

--midi-key-pch=N Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

--midi-velocity=N Route MIDI note on message velocity number to pfield N as MIDI
value [0-127].

--midi-velocity-amp=N Route MIDI note on message velocity number to pfield N as am-
plitude [0-OdbFS].

--midioutfile=FILENAME Save MIDI output to afile (Csound 5.00 and later only).

-+rtmidi=string (max. length = 20 characters) Real time MIDI module name. De-

faultsto PortMidi, other options (depending on build options): Lin-
ux: asa; Windows: mme, winmm. In addition, null can be used on
al platforms, to disable the use of any real time MIDI plugin.

ALSA MIDI devices are selected by name and not number. So, you
need to use an option like -M hw:CARD,DEVICE where CARD
and DEVICE are the card and device numbers (e.g. -M hw:1,0).

-QDEVICE Enables MIDI OUT operationsto device id DEVICE. Thisflag al-
lowsparallel MIDI OUT and DAC performance. Unfortunately the
real-time timing implemented in Csound is completely managed by
DAC buffer sample flow. So MIDI OUT operations can present
sometimeirregularities. These irregularities can be reduced by us-
ing alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
devicenumbers(e.g. -Q hw:1,0). Inthe case of PortMidi and MME,
DEVICE should be a number, and if it is out of range, an error oc-
curs and the valid device numbers are printed.

Display

--csd-line-nums=NUM Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file (.csd).

22

The Csound Command

Thisflag has no effect if separate orchestraand scorefilesare used.
(Csound 5.08 and later).

« 0=line numbers are relative to the beginning of the orchestra or
score sections of the CSD

¢ 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

-d, --nodisplays Suppress all displays. See -O if you want to save the log to afile.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

--displays Enables displays, reverting the effect of any previous -d flag.
-G, --postscriptdisplay Suppress graphics, use PostScript displays instead.

-g, --asciidisplay Suppress graphics, use ASCII displaysinstead.

-H#, --heartbeat=NUM Print a heartbeat after each soundfile buffer write:

* no NUM, arotating bar.

* NUM =1, arotating bar.

NUM =2, adot (.)

NUM = 3, filesize in seconds.
* NUM =4, sound a bell.

-m NUM, --messagelevel=NUM Message level for standard (terminal) output. Takes the sum of any
of the following values:

¢ 1= note amplitude messages
« 2 =samples out of range message
e 4 =warning messages

e 128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0=raw amplitudes, no colours
e 32=dB, no colors

» 64 =dB, out of range highlighted with red

96 = dB, all colors

» 256 = raw, out of range highlighted with red

512 = raw, all colours

23

The Csound Command

The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perfor-
mance. The coloring of raw amplitudes was introduced in version
5.04

--m-amps=NUM Message level for amplitudes on standard (terminal) output.
* 0= no note amplitude messages
1= note amplitude messages

--m-range=NUM Messagelevel for out of range messages on standard (terminal) out-
put.

* 0= no samples out of range message
» 1 =samples out of range message
--m-warnings=NUM Message level for warnings on standard (terminal) output.
¢ 0= no warning messages
e 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
¢ 0 = absolute amplitude messages
« 1=dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
* 0=no colouring of amplitude messages
» 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
1= print benchnark numbers

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled
on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-v, --verbose Verbose translate and run. Prints details of orch trandlation and per-
formance, enabling errorsto be more clearly located.

-z NUM, --list-opcodesNUM List opcodesin this version:
* no NUM, just show names
¢ NUM =0, just show names

* NUM =1, show argumentsto each opcode using the format <op-
name> <outargs> <inargs>

24

The Csound Command

* NUM = 2, show names including deprecated ones

* NUM = 3, show argumentsto each opcode, including deprecated
ones, using the format <opname> <outargs> <inargs>

Performance Configuration and Control

-B NUM, --hardwarebufsamp- Number of audio sample-frames held in the DAC hardware buffer.

s=NUM This is a threshold on which software audio I/O (above) will wait
before returning. A small number reduces audio I/O delay; but the
valueisoften hardwarelimited, and small valueswill risk datalates.
In the case of portaudio output (the default real-time output), the -
B parameter (more precisely, -B / sr) is passed as the "suggested
latency" value. Other than that, Csound has no control over how
PortAudio interprets the parameter. The default is 1024 on Linux,
4096 on Mac OS X and 16384 on Windows.

-b NUM, --iobufsamps=NUM Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio I/O delay and im-
prove the accuracy of the timing of real time events. The default
is256 on Linux, 1024 on MacOS X, and 4096 on Windows. In re-
a-time performance, Csound waits on audio 1/0 on NUM bound-
aries. It also processes audio (and polls for other input like MIDI)
on orchestra ksmps boundaries. The two can be made synchronous.
For convenience, if NUM isnegative, the effective valueis ksmps*
-NUM (audio synchronous with k-period boundaries). With NUM
small (e.g. 1) polling isthen frequent and also locked to fixed DAC
sample boundaries.

Note: if both -iadc and -odac are used at the same time (full duplex
real time audio), the -b option should be set to an integer multiple
of ksmps.

-d Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.

-k NUM, --control-rate=NUM Override the control rate (KR) supplied by the orchestra.

-L DEVICE, --score-in=DEVICE Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your termi-
nal, or piped from another process. Each line-event is terminated
by acarriage-return. Events are coded just like those in a standard
numeric score, except that an event with p2=0 will be performed
immediately, and an event with p2=T will be performed T seconds
after arrival. Events can arrive at any time, and in any order. The
score carry featureislegal here, as are held notes (p3 negative) and
string arguments, but ramps and pp or np references are not.

Note

The-L flagisonly valid on*NIX systemswhich have
pipes. It doesn't work on Windows.

--omacro:XXX=YYY Set orchestramacro XXX tovalueYYY

25

The Csound Command

--port=N Set UDP port on which to listen for commands and instruments/or-
chestra code (implies --daemon)

--udp-echo Switches on printing of UDP commands on the terminal. Any mes-
sages received by the UDP server are echoed (whether they are
valid commands or not).

--udp-consol e=address:port Redirects the console messages to a remote address:port via UDP.
--udp-mirror-console=address.port ~ Mirrors the console messages to a remote address:port via UDP.
-r NUM, --sample-rate=NUM Override the sampling rate (SR) supplied by the orchestra.

--sample-accurate Start and stop instances of instruments at the nearest sample to
the requested time. Thisisin contrast to traditional Csound which
roundsthetimesto the nearest k-cycle. Note that this does not work

with tied notes.

--sched Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -o dac or -0 devaudio). See also --sched=N be-
low.

--sched=N Linux only. Same as --sched, but alows specifying a priority val-

ue: if N is positive (in the range 1 to 99) the scheduling pol-
icy SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

--smacro: XXX=YYY Set score macro XXX tovaueYYY

--strset Csound 5. The--strset option all ows setting strset string valuesfrom
the command line, inthe format '--strsetN=VALUE'. It isuseful for
passing parameters to the orchestra (e.g. file names).

-+skip_seconds=float (min: 0) Start playback at the specified time (in seconds), skipping
earlier eventsin the score and MIDI file.

-t NUM, --tempo=NUM Use the uninterpreted beats of score.srt for this performance, and
set theinitial tempo at NUM beats per minute. When thisflagis set,
the tempo of score performanceisalso controllable from within the
orchestra. WARNING: this mode of operation is experimental and
may be unreliable.

-j NUM, --num-threads=NUM Make NUM processes available for rendering. Thisis only advan-
tageous if the number of processors on the computer is the same
or more that the number of requested processes. It also may slow
rendering down if ksmpsistoo small.

Miscellaneous

-@FILE Provide an extended command-linein file “FILE"
-C, --cscore Use Cscore processing of the scorefile.

26

The Csound Command

--default-paths Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

-D, --defer-genl Defer GENO1 soundfile loads until performance time.

--env:NAME=VALUE Set environment variable NAME to VALUE. Note: not all environ-

ment variables can be set this way, because some are read before
parsing the command line. INCDIR, SADIR, SFDIR, and SSDIR
are known to work.

--env:NAME+=VALUE Append VALUE to ;' separated list of search pathsin environment
variable NAME (should be INCDIR, SADIR, SFDIR, or SSDIR).
If afileisfound in multiple directories, the last will be used.

--expression-opt Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. Thismeansthat for examplethislineal = a2 + a3 will com-
pileasal Add a2, a3 instead of #a0 Add a2, a3 al = #a0 saving a
temporary variable and an opcode call. Less opcode calls result
in reduced CPU usage (an average orchestra may compile about
10% faster with --expression-opt, but it depends largely on how
many expressions are used, what the control rateis (see also be-
low), etc.; thus, the difference may be less, but a'so much more).

e number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0O, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0O, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of |ess temporary variables are:

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control
rate (e.g. ksmps = 100)

* large orchestras may load faster dueto less different identifier
names

« index overflow errors (i.e. when messages like this Case2: in-
dx=-56004 (ffff253c); (short)indx = 9532 (253c) are printed
and odd behavior or a Csound crash occurs) may be fixed, be-

27

The Csound Command

cause such errors are triggered by too many different (espe-
ciadly arate) variable namesin a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

. Warning
When --expression-opt is turned on, it is not allowed

to use the i() function with an expression argument,
and relying onthevalue of k-rate expressionsat i-time

is unsafe.
--version Exits after printing version information.
--get-system-sr printssystem sr and exits, requires previous-o dac. If the audio does

not support this request then -1 is reported.
--help Display on-line help message.

--deviceg[=X] List audio devices (x=out, output devices only; x=in, input; else
input and output) and exit.

-1, --i-only i-time only. Allocate and initialize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

-+ignore_csopts=integer If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

--ksmps=N Set ksmps override to N (6.05 and later).

-+max_str_len=integer (min: 10, max: 10000) Maximum length of string variables + 1,

defaults to 256 allowing a length of 255 characters. The length of
string constants is not limited by this parameter.

-N, --notify Notify (ring the bell) when score or MIDI track is done.
--no-default-paths Disables adding of directory of CSD/ORC/SCO to search paths.
--No-expression-opt Disables expression optimization.

-O FILE, --logfile=FILE LogoutputtofileFILE. If FILEisnull (i.e.-O null or --logfile=null)

all printing of messages to the consoleis disabled.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

--opcode-lib=LIBNAME Load plugin library LIBNAME.

28

The Csound Command

--0rc orcname Set the argument as the orchestra file. Used when not score is re-

quired>. (Csound 5.18 and later).

--syntax-check-only Causes Csound to exit immediately after the orchestra and score

parsers finish checking the syntax of the input files and before the
orchestraperformsthe score. Thisoption isexclusive of the--i-only
flag. (Csound 5.08 and later).

-0, --keep-sorted-score Prevents Csound from deleting the sorted score file, score.srt, upon

exit.

-U UTILITY, --utility=UTILITY Invoke the utility program UTILITY. Use any invalid name to list

the available utilities.

-X FILE, --extract-score=FILE Extract aportion of the sorted score, score.srt, using the extract file

FILE (see Extract).

Csound Environment Variables

The following environment variables can be used by Csound:

SFDIR: Default directory for sound files. Used if no full path is given for sound files.

SSDIR: Default directory for input (source) audio and MIDI files. Used if no full pathis given for sound
files. May be used in conjunction with SFDIR to set separate input and output directories. Please note
that MIDI files aswell as audio files are a'so sought inside SSDIR.

SADIR: Default directory for analysisfiles. Used if no full path is given for analysisfiles.

SFOUTY P: Setsthe default output file type. Currently only 'WAV', 'AlFF and 'IRCAM' arevalid. This
flag is checked by the csound executable and the utilities and is used if no file output type is specified.

INCDIR: Include directory. Specifies the location of files used by #include statements.

OPCODES6DIR: Defines the location of csound opcode plugins for the single precision float (32-bit)
version.

OPCODEG6DIR64: Defines the location of csound opcode plugins for the double precision float (64-
bit) version.

SNAPDIR: Is used by the FLTK widget opcodes when loading and saving snapshots.

CSOUNDRC: Defines the csound resource (or configuration) file. A full path and filename containing
csound flags must be specified. This variable defaults to .csoundrc if not present.

CSSTRNGS: In Csound 5.00 and later versions, the localisation of messages is controlled by two en-
vironment variables CSSTRNGS and CS_LANG, both of which are optional. CSSTRNGS points to a
directory containing .xmg files.

CS LANG: Selects alanguage for csound messages.

RAWWAVE PATH: Isused by the STK opcodes to find the raw wave files. Only relevant if you are
using STK wrapper opcodes like STKBowed or STKBrass.

CSNOSTORP: If this environment variable is set to "yes", then any graph displays are closed automati-
cally at the end of performance (meaning that you possibly will not see much of them in the case of a
short non-realtime render). Otherwise, you need to click "Quit" in the FLTK display window to exit,
alowing for viewing the graphs even after the end of score is reached.

29

The Csound Command

e MFDIR: Default directory for MIDI files. Used if no full path is given for MIDI files. Please note that
MIDI files are sought in SSDIR and SFDIR as well.

* CS OMIT_LIBS: Allows defining a list of plugin libraries that should be skipped. Libraries can be
separated with commas, and don't require the "lib" prefix.

For more information about SFDIR, SSDIR, SADIR, MFDIR and INCDIR see Directories and files.

The only mandatory environment variables are OPCODEGDIR and OPCODEGDIR64. It isvery important
to set them correctly, otherwise most of the opcodes will not be available. Make sure you set the path
correctly depending on the precision of your binary. if you run csound on a command line without any
arguments you should see some text like : Csound version 6.03.1 (double samples) May 10 2014. This
text refersto the double precision version.

CSSTRNGS and CS_LANG currently have very limited use since Csound has not yet been completely
trandlated into other languages.

Other environment variables which are not exclusive to Csound but which might be of importance are;
» PATH: The directory containing csound executables should be listed in this variable.

» PYTHONPATH: If youintend to use CsoundV ST and python, the directory containingthe CsoundV ST
shared library and the CsoundV ST.py file must bein your PYTHONPATH environment variable (or the
default path python searchesin), so that the Python runtime knows how to load these files.

* LADSPA PATH and DSS_PATH: Theseenvironment variablesarerequired if you are using the dssi4cs
(LADSPA and DSSI host) plug-in opcodes.

* CSDOCDIR: specifiesthe directory where the html help files are located. Though not used by Csound
directly, this environment variable can help front-ends and editors (which implement it) to find the
csound manual.

Setting environment variables

On the command line

Y ou can set environment variables on the command line or the configuration file .csoundrc by using the
command line flag --env:NAME=VALUE or --env.NAME+=VALUE, where NAME is the environment
variable name, and VALUE isits value. See Command-line Flags

Note

Please note that this method of setting environment variables will not work for variables
which are parsed before the command line arguments. SADIR, SSDIR, SFDIR, INCDIR,
SNAPDIR, RAWWAVE_PATH, CSNOSTOP, SFOUTY P should work, but the following
environment variables must be set on the system prior to running csound: OPCODEGDIR,
OPCODES6DIR64, CSSTRINGS, and CS_LANG. CSOUNDRC can currently (v. 5.02) be
set using --env, but this behavior is not guaranteed for future versions.

Windows

To set a csound environment on Windows XP and 2000 go to Control Panel->System->Advanced and
click on the button 'Environment Variables. On other versions of Windows earlier than Windows XP and
Windows 2000 you set environment variables in the autoexec.bat file. Go to 'My Computer', select C:
drive, right click on autoexec.bat, and select 'Edit'. The statement format is: SET NAME=VALUE.

30

The Csound Command

Linux

You can set environment variables on Linux in many ways. You can set them using the export shell
command, by setting them on .bashrc or similar files or by adding them to the /etc/profilefile.

Mac

~$ export OPCODE6DI R64=/ User s/ you/ your/ Csound6/ bui | d
in addition if the bash shell isthe default, then it is usually easier to edit your .bashrc or /etc/profile.

Notethat if userschoose one of the above methods, ie editing the .bashrc filethen the environment variables
are executed when anew shell is created. This can be problematic if your application implements a Quartz
or Aquainterface and does not use the commandline.

If thisisthe case, then the standard solution (up to OS 10.3.9 and unless the application usesthe csoundAPI
and sets the environ variables directly) is to create an XML property list file (called a .plist file by the
QS). This file should nominally be located at ~/.MacOSX/Environment.plist. This has been a solution
specifically for the[csoundapi~] object for Pd on OS X. Since Pd usesan OS X native .app style packaging,
and runs off of the Aqua interface, the standard means of supplying environment variables to Csound do
not work. The solution isto set Csound's environment variables for the Agua environment.

Likely, most users will not have the hidden folder .MacOSX located in their SHOME directory (aka ~/)
Thisfolder must first be created and the Environment.plist added to this folder. The contents of the Envi-
ronment.plist file should be something like:

<?xm version="1.0" encodi ng=' UTF- 8" ?>

<! DOCTYPE plist PUBLIC "-//Apple Conputer//DTD PLI ST 1.0//EN'
"http://ww. appl e. com DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<di ct >

<key>OPCODEDI R</ key>

<string>/Li brary/ Framewor ks/ CsoundLi b. f ramewor k/ Ver si ons/ 5. 1/ Resour ces/ Opcodes</ stri ng>

<key>OPCODEDI R64</ key>

<string>/ Vol unes/ Ext er nal HDY devel / csound5/ | i b64</ string>

<key>| NCDI R</ key>

<string>/ Vol umes/ Ext er nal HOY CSOUNDY i ncl ude</ stri ng>

<key>SFDI R</ key>

<string>/ Vol umes/ Ext er nal HY i Tunes/ csoundaudi o</ stri ng>

</dict>

</plist>

and so on, using the XML <key> tag for each environment variable required by the API and the <string>
tag for it's corresponding path on the system.

Please note that you must login out and login in for these changes to take effect.

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as
well as command line flags, to be combined in one file. The file has the extension .csd. This format was
originally introduced by Michagl Goginsin AXCsound.

Thefileis astructured datafile which uses markup language, similar to any SGML such asHTML. Start
tags (<tag>) and end tags (</tag>) are used to delimit the various elements. Thefileis saved as atext file.

31

The Csound Command

Structured Data File Format

Mandatory Elements

Thefirst taginthefilemust bethe start tag < CsoundSynthesizer> . Thelast tag in thefilemust betheend tag
</CsoundSynthesizer>. Thiselement isused to a ert the csound compiler to the .csd format. All text before
the start tag and after the end tag isignored by Csound. The tag may also be spelled < CsoundSynthesiser>.

Options (<CsOptions>)

Csound command line flags are put in the Options Element. This section is delimited by the start tag
<CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Orchestra (<CsInstruments>)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax
in this section are identical to the Csound orchestra file, and have the same requirements, including the
header statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < Cslnstruments>
and the end tag </Cslnstruments>.

Score (<CsScore>)

Csound score statements are put in the Score Element. The statements and syntax in this section are iden-
tical to the Csound scorefile, and have the same requirements. The Score Element is delimited by the start
tag <CsScore> and the end tag </CsScore>.

Asan aternative Csound score statements can also be generated by an external program using the CsScore
schemewith an attribute bin. Thelines upto the closing tag </CsScore> are copied to afile and the external
program named is called with that file name and the destination score file. The external program should
create a standard Csound score.

Optional Elements

Included Base64 Files (<CsFileB>)

Base64-encoded files may be included with the tag < CsFileB filename=filename>, where filenameisthe
name of the file to be included. The Base64-encoded data should be terminated with a </CsFileB> tag.
For encoding files, the csh64enc and makecsd utilities (included with Csound 5.00 and newer) can be used.
Thefile will be extracted to the current directory, and deleted at end of performance. If there is an already
existing file with the same name, it is not overwritten, but an error will occur instead.

Base64-encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, where file-
name is the name of the file containing the MIDI information. There is no matching end tag. This was
added in Csound version 4.07. Note: using thistag is not recommended; use <CsFileB> instead.

Base64-encoded sample files may be included with the tag < CsSampl eB filename=filename>, wherefile-
nameisthe name of thefile containing the sample. Thereisno matching end tag. Thiswasadded in Csound
version 4.07. Note: using thistag is not recommended; use <CsFileB> instead.

Included Unencoded Files (<CsFile>)

Unencoded files may be included with the tag < CsFile filename=filename>, where filename is the name
of thefileto be included. The data should be terminated with a</CsFile> tag doneon aline. Thefilewill

32

The Csound Command

be extracted to the current directory, and deleted at end of performance. If there isan already existing file
with the same name, it is not overwritten, but an error will occur instead.

Version Blocking (<CsVersion>)

Versions of Csound may blocked by placing one of the following statements between the start tag <CsVer-
sion> and the end tag </CsVersion>:

Before #.#

or

After #. #

where #.# is the requested Csound version number. The second statement may be written simply as:

#.#

Thiswas added in Csound version 4.09.

Licence Information (<CsLicence> or <CsLicense>)

Licencing details can be included in between the start tag <CsLicence> and the end tag </CsLicence>.
Thereis no format for this information, any text is acceptable. This text will be printed by Csound to the
console when the CSD is run.

Licence Information (<CsShortLicence> or <CsShortLicense>)

From version 6.05 licencing details can be also included in between the start tag <CsShortLicence> and
the end tag </CsShortLicence>. This offers seven well-known licences, coded as as an integer.

"All rights reserved" (default)

"Creative Commons Attribution-NonCommercia-NoDerivatives (CC BY-NC-ND)"
"Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)"
"Creative Commons Attribution-NonCommercial (CC BY-NC)"

"Creative Commons Attribution-NoDerivatives (CC BY-ND)"

"Creative Commons Attribution-ShareAlike (CC BY-SA)"

"Creative Commons Attribution-ShareAlike (CC BY)"

"Licenced under BSD"

Embedded HTML (<html>)

Any valid HTML code can be embedded in the CSD file. This code should be structured exactly like an
ordinary Web page. This code can contain any valid HTML, JavaScript, Cascading Style Sheet, WebGL,
etc., etc. code.

NogaRwNMRO

In some Csound front ends and programming environments, including at least CsoundQt or Csound for
Android, thispagewill be parsed, executed, and displayed by aWeb browser embedded in the environment.
JavaScript code in this page will have access to a global csound object that implements the following
functions, which areasel ected subset of the Csound API. The names, datatypes, and uses of thesefunctions
are exactly the same as detailed in the Csound API Reference Manual.

[int] getVersion ();
conpi l eOrc (orchestra_text);
[doubl e] eval Code (orchestra_expression);

33

The Csound Command

readScore (score_text)

set Cont r ol Channel (channel _nane, nuneric_val ue)

[doubl e] get Control Channel (channel _nane)

message (message_string)

[int] getSr ();

[int] getKsnps ();

[int] getNchnls ();

/1 Not a part of the Csound APl -- called by the environment to detect whether Csound is running
[int] isPlaying ();

The HTML element of the CSD file can be used to create custom user interfaces for the piece, to generate
score events and even orchestra code using JavaSscript, to store presets for widgets, and for many oth-
er purposes. The GameOfLife3D.csd [examples/GameOfLife3D.csd] and Lindenmayer Canvas.csd [exam-
ples/LindenmayerCanvas.csd] examples demonstrate these uses (tested in CsoundQt; running these exam-
ples requires additional resources found in the Csound examples directory in GIT).

Example

Below isasamplefile, test.csd, which renders a .wav file at 44.1 kHz sample rate containing one second
of a1 kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and tone.sco,
with the addition of command line flags.

<CsoundSynt hesi zer >;
; test.csd - a Csound structured data file

<CsOpti ons>
-W-d -0 tone.wav

</ CsOpti ons>

<CsVer si on> ; optional section
Before 4.10 ; these two statenments check for
After 4.08 ; Csound version 4.09

</ CsVer si on>

<Csl nst runent s>
originally tone.orc
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
instr 1
al oscil p4, p5, 1 ; sinple oscillator
out al
endi n
</ Csl nst runent s>

<CsScor e>

originally tone.sco

10 8192 10 1

1 0 1 20000 1000 ; play one second of one kHz tone
</ CsScor e>

</ CsoundSynt hesi zer >

Command Line Parameter File (.csoundrc)

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden.
Csound 5.00 and newer versions read this file from the HOME directory first (or the full path file name
defined by the CSOUNDRC environment variable), and then the current directory. If both exist, options

34

examples/GameOfLife3D.csd
examples/GameOfLife3D.csd
examples/LindenmayerCanvas.csd
examples/LindenmayerCanvas.csd
examples/LindenmayerCanvas.csd

The Csound Command

in the .csoundrc in the current directory will have higher precedence. It uses the same form as a.csd file,
but no tags are needed. Lines beginning with # or ; are treated as comments.

A .csoundrc file can contain something like this:
-+rtaudio=portaudio -odac2 -iadc2 -+rtmidi=winmme -M1 -Q1 -m0

Inthiscase, csound will generate real-time output and take realtimeinput from device 2, using the portaudio
driver interface. It will input and output realtime MIDI on interface 1. It will print very few messages (-
m0). These options will be used by default when other options are not given inside the <CsOptions> of
the .csd file or the command line (See Order of precendence).

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated asi, f and t. The time points denote the beginning and end of
the extract in terms of :

[section no.] : [beat no.].
Each of the three parts of the argument is optional. The default values for missing i, f or t are:

all instruments, beginning of score, end of score.

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance
(it exists as soon as score preprocessing has completed), the user may sometimes want to run these phases
independently. The command

scot filenane

will process the Scot formatted filename, and leave a standard numeric score result in afile named score
for perusal or later processing.

The command
scsort < infile > outfile
will put anumeric scoreinfile through Carry, Tempo, and Sort preprocessing, leaving the result in outfile.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an already sorted score. An unsorted score should first be sent through Scsort then
piped to the extract program:

35

The Csound Command

scsort < scorefile | extract xfile > score.extract

36

Using Csound

Csound can be operated in avariety of modes and configurations. The original method for running Csound
was asaconsole program (DOS prompt for Windows, Terminal for Mac OS X). This, of course, still works.
Running csound without any arguments prints out a list of command-line options, which are more fully
explained in the Command Line Flags (by Category) section. Normally, the user executes something like:

csound nyfile.csd
or separate orchestra (orc) and score (sco) files can be used:
csound myorchestra. orc nyscore.sco

You can find many .csd files in the examples folder. Most opcode entries in this manual also include
simple .csd files showing the usage of the opcode.

There are also many Front-Ends which can be used to run csound. A Front-End is a graphical program
that eases the process of running csound, and sometimes provides editing and composing functions.

Csound also has severa ways of producing output. It can:

» Read and write soundfiles (off-line rendering) - Using the -0 and -i flags specifying an output filename.
» Read and write digital audio using a sound card (real-time rendering) - Using the -odac and -iadc flags
» Read and write MIDI files (non-realtime) - Using the -F and --midioutfile flags.

* Read and write MIDI using a MIDI interface and controller (real-time control) - Using the -M and -
Qflags.

Csound's Console Output

When Csound runs, it prints a text output to the console, which shows data about the Csound run. A
Console output looks something like this:

time resolution is 0.455 ns
PortMDI real time MDl plugin for Csound
virtual _keyboard real time MD plugin for Csound
Port Audi o real -tine audi o nodul e for Csound
0dBFS | evel = 32768.0
Csound version 5.10 beta (float sanples) Apr 19 2009
I'ibsndfile-1.0.17
Readi ng options from $HOVE/ . csoundrc
Uni fi edCSD: oscil.csd
STARTI NG FI LE
Creating options
Creating orchestra
Creating score
orchname: /tnp/ csound- XYACV6. or c
scorenane: /tnp/csound-1YtLAJ. sco
rtaudi o: ALSA nodul e enabl ed
rtmdi: PortM D nodul e enabl ed
orch conpiler
17 lines read

instr 1
El apsed time at end of orchestra conpile: real: 0.129s, CPU. 0.020s
sorting score ...

done

El apsed time at end of score sort: real: 0.130s, CPU. 0.020s

37

Using Csound

How

Csound version 5.10 beta (float sanples) Apr 19 2009
di spl ays suppressed

0dBFS | evel = 32768.0

orch now | oaded

audi o buffered in 256 sanpl e-frame bl ocks

ALSA input: total buffer size: 1024, period size: 256
readi ng 1024-byte bl ks of shorts from adc (RAW

ALSA output: total buffer size: 1024, period size: 256
witing 1024-byte bl ks of shorts to dac

SECTI ON 1

ftable 1

new alloc for instr 1

B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Score finished in csoundPerforn()

inactive allocs returned to freespace

end of score. overall anps: 10000.0 10000.0
overal |l sanples out of range: 0 0

0 errors in performance

El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

345 1024-byte soundbl ks of shorts witten to dac

Renmovi ng tenporary file /tnp/csound-CoVcrm srt

Renmoving tenporary file /tnp/csound-1YtLAJ.sco ...

Renmovi ng tenporary file /tnp/csound- XYACV6. orc ...

The console output of Csound is quite verbose, particularly before the actual performance (like version,
plugins loaded, etc.). Performance actually started when the console printed:

SECTI ON 1

In this particular run, the lines:

new alloc for instr 1
B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Show that a single note for instrument 1, that lasted 2 seconds starting at time 0.000, was produced with
an amplitude of 10000 for both channel 1 and 2. An important section of the console output is:

end of score. overall anps: 10000.0 10000.0
overal |l sanples out of range: 0 0

Which shows the overall amplitude and the number of samples which were clipped because they were
out of range.

Theline:
El apsed time at end of performance: real: 2.341s, CPU. 0.050s

Shows the clock time and the CPU time it takes for the processor to complete the task. If CPU time is
lower than clock timeit meansthe csd can runin realtime (unlessit has some sections which are extremely
CPU intensive). The "real time" figureisthetotal running time and it is larger because it acounts for disk
access. module loading, etc. (CPU time s strictly number-crunching time). If you have a sound that lasts
for 100s and it takes 5s to generate it offline, it means that you are taking around 5% of CPU, and that
it runs on 0.05 of realtime.

Csound works

Csound processes and generates output using "unit generators” (ugens) called opcodes. These opcodes are
used to define instruments in the orchestra. When you run Csound, the engine loads the base Opcodes,
and the opcodes contained in separate loadable "opcode libraries' . It then interprets the orchestra (through
the orchestra reader). The engine sets up an instrument processing chain, which then receives events from
the score or in real-time. The processing chain uses the input/output modules to generate output. There are
modules that can write to file, or generate real-time audio output.

38

Using Csound

[Orchestra reader]

[Input/Output] - ‘J
v

External libraries

‘i Engine] ~Base npcudes]

L Ty o
r,f]_| Y Messages |

r

Loadble IlbrariEE]dl' _

The Csound Modular structure.

Csound's processing buffers

Csound processes audio in sample blocks called buffers. There are three separate buffer layers:

1. spout = Csound'sinnermost software buffer, contains ksmps sample frames. Csound processesreal -time
control events once every ksmps sample frames.

2. -b = Csound's intermediate software buffer (the "software" buffer), in sample frames. Should be (but
does not need to be) an integral multiple of ksmps (can equal ksmps too). Once per ksmps sample
frames, Csound copies spout to the -b buffer. Once per -b sample frames, Csound copies the -b buffer
to the -B "hardware" buffer.

3. -B = The sound card's internal buffer (the "hardware" buffer), in sample frames. Should be (and may
need to be) an integral multiple of -b. If Csound misses delivering a -b one time, the extra -b sample
framesin -b are till there for the sound card to keep playing while Csound catches up. But they can be
the same size if you're willing to bet Csound can always keep up with the sound card.

Amplitude values in Csound

Amplitude valuesin Csound are always relative to a"0dbfs" value representing the peak available ampli-
tude before clipping, in either an AD/DA codec, or in asoundfile with adefined range (which both WAVE
and AIFF are). In the original Csound, this value was always 32767, corresponding to the bipolar range
of a 16bit soundfile or 16bit AD/DA codec, Csound's only possible output back then. This remains the
default peak amplitude for Csound, for backward compatibility and you will find some of this manual's
examples still use this value (hence you find large amplitude values like 10000).

The 0dbfs value enables Csound to produce appropriately scaled valuesto whatever output format isbeing
used, whether 24hit integer, 32bit floats, or even 32hit integers. Put another way, the literal amplitude
values you write in a Csound instrument only match those written literally to the file if the Odbfs value

39

Using Csound

in Csound corresponds exactly to that of the output sample format. The consequence of this approach is
that you can write a piece with a certain amplitude and have it render correctly and identically (setting
aside of course the better dynamic range of the high-res formats) whether written to an integer or floats
file, or rendered in real-time.

Note

The one exception to thisis if you choose to write to a "raw" (headerless) file format. In
such cases the internal Odbfs value is meaningless, and whatever values you use are written
unmodified. This does enable arbitrary data to be generated or processed by Csound. Itisa
relatively exotic thing to do, but some users need it.

Y ou can choose to redefine the Odbfs value in the orchestra header, purely for your own convenience or
preference. Many people will choose 1.0 (the standard for SAOL, other software like Pure Data, and for
many plugin standards such as VST, LADSPA, CoreAudio AudioUnits, etc), but any valueis possible.

The common factor in defining amplitudes is the decibel (dB) scale, with 0dBgs always understood as
digital peak; hence "0dbfs' means "0dB Full-Scale value". This measure is different to actual amplitude
values, since amplitude values are alinear scale which show the actual oscillation around 0, so they can be
positive or negative. Decibel values are an absolute logarithmic scale, but can be useful for most opcodes
aswell. You can convert amplitude to and from decibels using the ampdb,ampdbfs, dbamp and dbfsamp
functions. This way, Csound enables the programmer to express al amplitudesin dB - lower amplitudes
will then be represented by negative dB values. This reflects industry practice (e.g. in level meters in
MmiXers, etc).

For example the same dB level of -6dB (half the amplitude) or -20dB are actually a different linear am-
plitude according to Odbfs like this:

Table 2. dBgsin relation to amplitude

dBgs O0dbfs= 32767 (default) |0dbfs=1 0dbfs = 1000 (unusual)
0dB 32767 1 1000

-6 dB 16384 05 500

-20dB 3276.7 0.1 100

Some Csound users might therefore be minded to express al levels in dBgs, and obviate any confusion
or ambiguity of level that may otherwise arise when using explicit amplitude values. The decibel scale
reflects the response of the ear pretty closely, and that when you want to express a really quiet level, it
might be easier and more expressive to write "-46dB" than "0.005" or "163.8".

The reason for using Odbfs is very ssimple: digital peak equates to maximum level regardless of sample
resolution. If you then define asignal at -110dB you will lose it if rendering to a 16hit file, but retain it
(audibly or not) if rendering to 24bit or better. In other words, thereisafixed ceiling, but amoveable floor
- you can define sounds as quietly asyou like (e.g. envelopetails), in apredictable way,and preserve them
or not (without changing the orch code at all), depending on the resolution (file or audio i/0) you render to.

A note on digital amplitude, decibels and dynamic range

A convenient aproximation of dynamic range for a certain digital precision isto calculate
the decibel interval between the minimum value and the maximum value for asample. Asa
rule of thumb, 1 bit (doubling of level) is 6dB, so 16bits = 96dB.

This is not entirely accurate since audio sample values are represented on a bipolar scale
with positive and negative values, and 1 bit is used for the sign. Therefore, for 16bit integer

40

Using Csound

samples actually use 1 bit for the sign and 15 bits for the values, so the actual dynamic range
is 90dB.

Real-Time Audio

The following information applies mostly to csound being run directly from the command line. Front-ends
implement these features in different ways, but knowledge of them is necessary in some of them.

The-i and -o flags can are used to specify realtime output instead of the ordinary non-realtime file output.
You should use - o dac for realtime output and -i adc for realtime input. Naturally, you can use either
one or both if your hardware supportsit. Y ou can a so specify the hardware you want to use by appending
a device number or name to the flag (See -i and -0).

Y ou might also need to use the -+rtaudio flag to specify the driver interface to be used. Csound defaults
to using Portaudio, which is cross-plaform and reliable, but for better performance, you might need to use
ALSA or JACK on linux, and CoreAudio on Mac. You can use ASIO on Windows if your version of
Portaudio has been compiled with ASIO support.

You can see alist of available devices by giving a device number which is out of range, for instance - o
dac99. Thiswill also reved if you have ASIO availableif you are using PortAudio.

Period & Buffer Sizes

Period and buffer sizes will vary greatly from one machine to another. Lower buffer sizes will result in
lower latency, but might cause breakups or clicks in the audio. The Csound flags which control period
and buffer sizesare -b and -B, respectively. Buffer size is hardware dependant, and some experimentation
may be necessary to find the optimal balance between low latency performance and uninterrupted audio
output. The values given to -b and -B should be powers of two, and the value of -B should be at least one
power of two higher than that of -b.

Currently, with - B set to 512, audio output latency is about 12 milliseconds, fast enough for reasonably
responsive keyboad playing. Even shorter latencies, are feasible on some systems.

Control Rate

Low values for ksmps will in general give a higher quality of synthesis, but will consume more system
resources. There is no hard and fast rule for setting ksmps - different orchestras will require different
control rates. A waveguide instrument will need a ksmps of 1 (and may not be suitable for realtime use),
whereas a simple FM synth may be run with a higher ksmps without noticeable degradation of sound. If
the FM synth were to be used to play a monophonic bassline, a very low ksmps may be used, however
more complex note clusters will require a higher ksmps. A well-tuned Linux system should be capable
of running even complex polyphonic synths with ksmps values as low as 4 or 8. If full duplex audio is
required, -b must be an integer multiple of ksmps. Bearing thisin mind, arule of thumb might be to only
use powers of two for ksmps.

Some settings differ according to platform. See further below for information for each platform.

Realtime I/O on Linux

Under Linux, the default portaudio/portmidi settings will result in higher latency than that which can be
achieved using AL SA and/or JACK (see aseparate manual section onthis). The portaudio/portmidi plugins
areaudio and MIDI servers, which provide an interface to the ALSA drivers, inamanner whichisin some
respects similar but fundamentally different from that provided by JACK.

41

Using Csound

Using ALSA

The highest level of control and the lowest possible level of latency are to be achieved using the ALSA
plugins in combination with the --sched flag. Using --sched requires that Csound be run as the root user,
which may be impossible or undesirable in some circumstances.

The ALSA plugins require the "name" of a"card" and a "device". Unless you have named your "cards"
in ~/.asoundrc (or /etc/asound.conf), the "names" will actually be numbers. In order to obtain alist of the
possible configurations, use the command line utilities "aplay", "arecord" and "amidi". These utilities are
included with most Linux distros, or can be downloaded and built from source here:

ftp://ftp.alsa-project.org/pub/utils/

Note

On every boot, the soundcard may have adifferent hardware order number, especially when
there are more soundcards in the system. This can be awkward as every time you have to
set the right number again. Y ou can assign a fixed order by adding some lines to /etc/mod-
probe.d/alsa-base-conf, for example for a card with the icel712 chip :

ALSA module ordering for soundcard
options snd slots=snd_icel712

Audio Output

Running the following command:

apl ay -

will give you alist of the audio playback devices available on your system. Typically this list will look
something like:

[....]
x% | st of PLAYBACK Hardware Devices **

card 0: A5451 [ALI 5451], device 0: ALI 5451 [ALI 5451]
[...]

If you have more than one card on your system, or if thereis morethan one device on your card, thelist will
of course be more complicated, however in all cases the information that is pertinent is the number/name
of the card/device. In order to use the above soundcard for audio output, the following flag would be added
to the Csound command line, ~/.csoundrc, or the <CsOptions>section of a CSD:

-+rtaudi o=al sa -0 dac

Output with dmix

If you would like to use Csound with dmix and your soundcard does not support hardware mixing of
audio streams, specia careis needed in setting up of software (-b) and hardware (-B) buffers. If you get
amessage from Csound's ALSA driver that ooks like the following:

42

ftp://ftp.alsa-project.org/pub/utils/

Using Csound

ALSA: -B 8192 not allowed on this device; use 7526 instead

thereisagood chance that you may be using dmix. If you are using dmix, the -b and -B settings of Csound
must be synced the period_size and buffer_size of dmix respectively, using aratio of the sr for the Csound
project to the sample rate that dmix is set up to. The following formula will determine what settings to
use for Csound given the settings of dmix:

-b
-B

(csound_sr/dm x_sanpl e_rate) * dm x_peri od_size
(csound_sr/dmi x_sanple_rate) * dm x_buffer_size

For example, if dmix is set to 48000 sample rate, aperiod_size of 1024, and a buffer_size of 8192, when
running a Csound project with sr=48000, the settings for buffers should be "-b 1024 -B8192". If the
sr=24000, the settings for buffers should be "-b 512 -B4096".

Because of this relationship, if a Csound project's sr does not evenly divide into the sample_rate used by
dmix, then it may be difficult if not imposible to set the correct setting for -b and -B due to rounding
errors. It is suggested then that if you are using sample rates different than what your setting is for dmix,
then you may want to configure dmix to have a period_size and buffer_size that can be evenly divided
by the ratio between the csound sr and dmix sample rate. For example, to run a project with sr=16000,
the following dmix setting:

pcm am x {
type dmi x
i pc_key 50557
sl ave {
pcm "hw 0, 0"
period_time O
#peri od_si ze 1024
#buf fer_size 8192
period_si ze 1536
buf fer_size 12288
}
bi ndi ngs {
00
11
}
}

route ALSA software through pcm am x
pcm !default {

type plug
sl ave. pcm "am x"

}

with period_size 1536 and buffer_size 12288 will divide nicely by 3 (the ratio of the csound sr to the dmix
sample _rate) to get "-b 512 -B4096" ((16000/48000) * 1536 = 512, (16000/48000) * 12288 = 4096).

Note

For most soundcards that this affects, the default sample rate for the card will be 48000 and
the defaults for dmix will be 1024 and 8192.

Audio Input

Typically the same card will be used for both input and output, so to continue using the foregoing example,
theflag:

-i adc:hw 0,0

43

Using Csound

MIDI

would be added for audio input from Card 0 Device 0. To use the default card employ one of the following
flags, with the forementioned warning that this will not necessarily work:

-i adc

If you wish to use a different card or device for input, running the following utility from the command
line will provide alist of input devices:

arecord -1

If, by way of an example, you wanted to use a USB audio interface, which is the second "card" in your
system, for output, but wanted to use your internal soundcard, the first card in your setup, for input, you
would put the following flags somewhere useful:

-+rtaudio=alsa -i adc:hw 0,0 -0 dac:hw 1,0

If you wanted to use the second device on your USB interface, to send audio to a specific channel, for
instance, you would use the following flags:

-+rtaudi o=al sa -i adc:hw. 0,0 -0 dac:hw 1,1

2 Midi drivers are available;
* Raw Midi.

» AlsaSequencer (since version 5.18).

MIDI Input (Raw Midi driver)

In order to enable your orchestrato receive MIDI input you can use VirMIDI or MIDIThru, whichever you
prefer. Setting up these virtual MIDI portsisatopic that has been covered extensively elsewhere, see The
Linux MIDI how-to [http://www.midi-howto.com/] or browse your distro's documentation or the ALSA
documentation for instructions on how to install and configure either VirMIDI or MIDIThru (seqdummy).
Once you have done so run:

amdi -|
for alist of available devices. Typically thiswill look something like the following:

[..]

Device Name

hw:1,0 Virtual Raw MIDI (16 subdevices)
hw:1,1 Virtual Raw MIDI (16 subdevices)
hw:1,2 Virtual Raw MIDI (16 subdevices)
hw:1,3 Virtual Raw MIDI (16 subdevices)
hw:2,0,0 PCR MIDI

hw:2,0,1 PCR 1

In this example, Csound can connect to any of the four available Virtual Raw MIDI ports, where it will
listen for MIDI input. The following flag instructs Csound to listen on the first of these ports:

http://www.midi-howto.com/
http://www.midi-howto.com/
http://www.midi-howto.com/

Using Csound

-+rtmdi=alsa -Mw 1,0

You will then need to connect your hardware or software controller to the port which is hosting your
Csound synthesizer. The simplest way to do thisis using the "aconnect" utility. Run:

aconnect -1li

for alist of available input devices, and:

aconnect -lo

for alist of available output devices (including the port to which Csound has been connected). These
should give something like the following:

#aconnect -li

client O: 'System' [type=kernel]
0 'Timer '
1'Announce

Connecting To: 15:0

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirmIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirmiDI 1-1

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirmIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirmIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '
2'PCR?2 '

#aconnect -10

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirmIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirmiDI 1-1

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirmIDI 1-2

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirmIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '

In the following example, the USB keyboard which is listed above as client 24 will be connected to a
Csound synthesizer which islistening on thefirst VirMIDI port. The keyboard has three output ports. The
first (24:0) transmits messages received on the MIDI in port, the second (24:1) transmits keyboard and
controller messages, and the third (24:2) transmits system exclusive messages. The following command
connects the second port of the keyboard to the Csound synthesizer:

aconnect 24:1 20:0

45

Using Csound

Remember that Csound acts asaraw MIDI device and is not an ALSA sequencer client. This means that
Csound will not appear in MIDI device listings and will not be available for use directly with aconnect, so
you must connect to avirtual device (like 'virtual raw MIDI" or 'MIDI through') for persistent connections,
or conect directly to the destination using command line flags.

MIDI Output (Raw Midi driver)

Csound can be connected to any device which shows up on the ALSA sequencer list of output ports,
obtained by "amidi -1" as above. In order to connect a Csound synthesizer to the MIDI out port of the
keyboard listed above, the following flag would be used:

-Chw 2,0, 0

MIDI Input and Output (Midi Sequencer driver)

Thisdriver isto be preferred over the Raw Midi driver. It has these advantages:
» Multiple concurrent access.
» Scheduled by priority queues.

» Real-time event dispatching i.e., the role of the Midi Sequencer is to deliver events at the right time
(sequence) to the right destination (device).

The following command will call the Midi Sequencer. Here it listens to midi port 20. The midi output
port is also 20:

-+rtm di =al saseq - M20 - Q0

Csound will automatically create its own ALSA sequencer port. For alist of available devices, use the
following command:

aconnect -i -0
Thiswill create output that will look something like the following:

client 0: 'System' [type=kernel]
0 Timer
1'Announce
client 14: 'Midi Through' [type=kernel]
0 'Midi Through Port-0'
client 20: 'M Audio Delta 1010’ [type=kernel]
0'M Audio Delta 1010 MIDI'
client 130: 'Csound' [type=user]
0 'Csound

The output of Csound will contain lineslike:

ALSASEQ: opened MIDI output sequencer
ALSASEQ: created output port 'Csound' 130:0
ALSASEQ: connected to 20:0

46

Using Csound

ALSASEQ: opened MIDI input sequencer
ALSASEQ: created input port ‘Csound' 130:0
ALSASEQ: connected from 20:0

Scheduling

If you are able to run Csound as the root user, using the "--sched" flag will dramatically improve reatime
performance, when using AL SA, however you may hang your systemif you do something stupid. DONOT
use"--sched" if you areusing JACK for audio output. JACK controls scheduling for the audio applications
connected to it, and also tries to run at the highest possible priority. If the "--sched" flag is used, Csound
and JACK will be competing rather than cooperating, resulting in extremely poor performance.

Using Pulseaudio

Support for Pulseaudio [http://www.pul seaudio.org/] was added in Csound 5.09. Y ou can specify the fol-
lowing settings:

1. Sink names: it's possible to use a number instead of the full name, so -odac:1 would select your second
device (count starts at 0).

2. Server name: it's possibleto connect to a specific server by using -+server=<server_string>where serv-
er_string is a name of a server or a more complex server selection string (see pulseaudio.org [http://
www. pul seaudio.org/] on server strings). This should be network transparent and should allow connec-
tions to remote machines.

3. Stream names. it is possible to label the streams generated by csound, by using -+out-
put_stream=<stream-name> and -+input_stream=<stream-name>

Here's an example command line:

csound -odac:1 examples/trapped.csd -+rtaudi o=pul se -+server=unix:/tmp/pul se-victor/native -+output_stream=trapped

Mac OSX

Real-time Audio

OSX users can use either the PortAudio (default),auhal (or coreaudio), or the Jack realtime audio modul es.
The auhal moduleis a native OSX module which provides good latency, but it might not work with some
external hardware. The Jack module can be used for interconnecting with other applications, but you will
need to install the JackOSX software in order to use it. To activate a realtime module, you can use the -
+rtaudio flag with value of portaudio, auhal, or jack. The default value is portaudio, which is activated
by default without specifying it.

Y ou also need to specify the sound device you want to use, and specify that you want to generate real-time
audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -0 dac flag, which
tells csound to output to the Digital-to-Analog converters instead of afile. By adding a number after the
flag (e.g. -odac2), you can choose the device number you want. To find out available devices in your
system, you can use a large out of range number (e.g. -odac99), and Csound will report an error, and list

47

http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/

Using Csound

available devices. This numbering convention works for portaudio and auhal, but for Jack, you will need
to pass the name of the desired output device after a colon (e.g. -odac:system:playback).

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio inputs.
Y ou can again select the device by its number (or name), and check for available devices using an out of
range number. Note that for input you use 'adc' instead of 'dac’. Make sure you have the appropriate input
selected in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on OSX, you can use the -M flag for MIDI input and the -Q flag for MIDI
output. Y ou might need to specify the device number after the flag (e.g. -M2), and again, you can find the
available devices by giving an out of range humber.

Csound will use PortMidi as the default MIDI module, but there's al'so a native coremidi module, which
can be activated with the flag:

-+rtmidi=cmidi

The coremidi module corrently only supports MIDI input.

A typical set of flagsto enable Real-time Audio and MIDI 1/O can look like:

-+rtmidi=cmidi -M1 -+rtaudio=auhal -odac3 -iadc3

Windows

Real-time Audio

Windows users can use either the default PortAudio Realtime module, or the winmm Realtime Audio
Module. The winmm module is a native windows module which provides great stahility, but latency will
usually be too high for realtime interaction. To activate a realtime module, you can use the -+ rtaudio flag
with value of portaudio or winmme. The default value is portaudio, which is activated by default without

specifying it.

Y ou also need to specify the sound device you want to use, and specify that you want to generate real-time
audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -0 dac flag, which
tells csound to output to the Digital-to-Analog converters instead of afile. By adding a number after the
flag (e.g. -odac2), you can choose the device number you want. To find out available devices in your
system, you can use alarge out of range number (e.g. -odac99), and csound will report an error, and list
available devices.

When choosing the device number under Portaudio, you are also choosing the driver interface, since Por-
taudio supports WinMME, DirectX and ASIO. If you have an ASIO capable interface or an ASIO driver
emulator like ASIO4ALL [http://www.asiodall.com], the device will show multiple times, once for each
driver interface. ASIO will give you the best latency on your system, so if available it should be your
choice for realtime audio output.

Enabling realtime audio input isdone using -iadc, which makes csound listen to the realtime audio outputs.
You can again select the device by its number, and check for available devices using an out of range

48

http://www.asio4all.com
http://www.asio4all.com

Using Csound

number. Note that for input you use'adc’ instead of ‘dac’. Make sure you have the appropriate input selected
in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on Windows, you can use the -M flag for MIDI input and the -Q flag for MIDI
output. Y ou might need to specify the device number after the flag (e.g. -M2), and again, you can find the
available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's also a native winmme module, which
can be activated with the flag:

-+rtmidi=winmme
A typical set of flagsto enable Real-time Audio and MIDI 1/0O can look like:

-+rtmidi=winmme -M 1 -Q1 -+rtaudio=portaudio -odac3 -iadc3

Realtime I/0O with JACK Connection Kit

Under a number of systems the JACK connection kit can be used for both audio and MIDI input/output.
For more details on this, see

http://jackaudio.org/faq

Using JACK

The simplest way to use the JACK plugin enabling input and output is as follows:

-+rtaudi o=jack -i adc -o dac

Additionally, there are some command line options specific to JACK:

JACK Command-line Flags

-+jack_client=[client_name] The client name used by Csound, defaults to ‘'csound6'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts.

-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is'in-
name prefix], -+jack_outport- put' and ‘output’. The actual port name is the channel number ap-
name=[output port name prefix] pended to the name prefix. Example: with the above default set-

tings, a stereo orchestra will create these portsin full duplex oper-

ation:

csound6: i nput 1 (record left)

csound6: i nput 2 (record right)

csound6: out put 1 (pl ayback left)

csound6: out put 2 (pl ayback right)

49

http://jackaudio.org/faq

Using Csound

Connecting Csound to other JACK clients

By default, connections are made to the first ports on the jack port list (generally these default to system
physical ports).The plugin can connect to ports specified as names or numbers.

As names:. the port name prefix is used, e.g. "system:playback ", "system:capture ", "asa pcm:play-
back " or"alsa_pcm:capture ". For example: -odac:system:playback (for output), -iadc:system:capture .
The port name prefix excludes channel names.

As numbers: the base port number is given, where the connection is made to this and subsequent ports
up to the number of channels. For a base port number N we will have the connections as N+0, N+1, ...,
N-+nchnls-1. For instance -odac2 with nchnls=1 will connect outputs to ports 2 and 3. Ports are listed as
in other input/output backends.

Note that ports can be prevented from autoconnecting by passing -odac:null and -iadc:null, for output and
input, respectively. Connections can aso be made manually using jack connection tools.

Notes on buffer sizes

Audio datais received from and sent to the JACK server by Csound using aring buffer that is controlled
by the-b and -B flags. -B isthetotal size of the buffer, while -b isthe size of asingle period. These values
are rounded so that the total size is an integer multiple of, and greater than the period size. The difference
of the Csound buffer and period size must be greater than or equal to the JACK period size.

If both -iadc and -odac are used at the sametime, the -b option should be set to an integer multiple of ksmps.

An example of buffer settings for low latency on afast Linux system:
jackd -d alsa -P -r 48000 -p 64 -n 4 -zt &
csound -+rtaudio=jack -b 64 -B 256 [...]
with real time scheduling (as root):
jackd -R -P 90 -d alsa -P -r 48000 -p 64 -n 2 -zt &
csound --sched=80, 90,10 -d -+rtaudio=jack -b 64 -B 192 [...]

To improve performance, use ksmps values like 32 and 64.
The sample rate of the orchestra must be the same as that of the JACK server.

Jack canalso beused for MIDI |O. For this-+rtmidi=jack isneeded. For input -M followed by therequested
jack MIDI port name is used to connect directly to an input stream. For output -Q followed by the jack
port nameis used. The options -+jack_midi_inportname= and -+jack_midi_outportname= can be used to
rename Csound's MIDI 10 ports.

Optimizing Audio I/O Latency

To achieve the lowest latency possible without audio break ups, a combination of variables needs to be
tweaked. The final valueswill be platform and system dependent, and will also depend on the complexity
of the audio calculations performed. Y ou need to adjust ksmps in the orchestra, as well as the software (-
b) and harware buffer (-B) sizes.

Usually the simplest solution is the following:

1. Set ksmpsto avalue with agood tradeoff between quality and performance, without adjusting -B at all.

50

Using Csound

2. Set -b to anegative power of two of thisvalue.

To get the optimal values, start with something you think isgoing to betoo low, ie-1, and then continue
"upwards', -2, -4 and so on, until you stop getting x-runs (glitches). The real value of -b will be the
absolute value of -b * ksmps.

3. Reduce the hardware buffer (-B). Bring it down from the default (1024 on Linux, 4096 on Mac OS X,
16384 on Windows), halving it each time, until you start to get x-runs (glitches) again. Then take it
back up again until performance is continuous.

This process assumes you have a 16-bit soundcard. If you have a 24-bit soundcard, then -B should be 3/2,
or 3 times -b, rather than 2 or 4 times. Csound works with 32-bit floats, or 64-bit doubles whereas most
soundcards are 16 or 24-bit integer. -b is the internal buffer, so it's dealing with the 32 or 64-bit side of
things, whereas -B is the hardware buffer, so it's dealing with the 16 or 24-hit side. The csound default for
floatsis-B = 4 * -h. Thisisasane value for a 16 bit card. Y ou can usually get away with -B = 2* -b, but
thisis the absolute minimum. For example, if you set -b1024 -B2048, csound will tell you that:

audi o buffered in 1024 sanpl e-frame bl ocks
writing 4096-byte blocks to dac

4096 bytesis 32768 bits. 32768/32 = 1024, our sample-frame size, 1024 * 32/16 = 2048, our buffer size.
Were we to reduce the value of -B, we would need to reduce the value of -b by a corresponding amount
in order to continue to write 16-bit integers to dac. The minimum size of -b is (-B * bitrate)/32. That is
to say that the minimum ratio of -b to -B should be;

e 16-bit;: 1:2
o 24-bit: 2:3
e 32-hit: 1:1

While there is no theoretical maximum ratio, it makes no sense to have a very high ratio here, as the
software buffer hasto fill the hardware buffer before returning. If theratio ishigh, it will take along time,
defeating the purpose of setting asmall value for -b.

The value of -b is something that will need to be varied depending on the complexity of the instrument
you're working with, but because it's intimately related to the value of ksmps, it's better to synchronise it
with ksmps and go from there. One way to do it isto decide how long the release on your envelopes might
need to be at maximum (for desired effect), set the release on all envelopes to maximum, give yourself
agenerous value for -b, and then play. If it breaks up, double ksmps, repeat until smooth, then bring the
value of -b down asfar as possible.

The value of -B is primarily determined by operating system and soundcard. Figure out (using above
method) how low you can go, and use that value (or one higher for safety). If you have problems you'll
know that it's probably because of an inappropriate value for ksmps, too low avalue for -b, or denormals
(see denorm).

51

Configuring

Once you have either unpacked a binary distribution, or built Csound from sources, you will need to
configure Csound so that it will run properly on your system. Installers usually perform these steps for
you automatically.

On al platforms, make sure the directory or directories containing Csound's plugin libraries are in an
OPCCDE6DI R O OPCODE6GDI R64 environment variable depending on the precision of the compiled binary.
(Note that for csound5 these environment variables were OPCODEDI R and OPCODEDI R64.)

The Python opcodes currently require at least Python 2.4, which can be downloaded from www.python.org
[http://www.python.org] if it is not already on your system. You can check if it is available by typing
‘python’ on a command prompt or DOS window.

Windows

On Windows, make sure the directory or directories (normally the C: \ Progr am Fi | es\ Csound directory)
containing the Csound executables directory are in your PATH variable, or else copy all the executable
files to your Windows syst eng2 directory. Depending on your installation method, you might also need
to set the oPCODE6DI R and OPCODEGDI R64 environment variables. Assuming that Csound isinstalled to the
default location of C:\ Program Fi | es\ Csound you can use (otherwise set the paths accordingly):

set OPCODE6DI R=C: \ Program Fi | es\ Csound\ pl ugi ns
set OPCODE6DI R64=C: \ Program Fi | es\ Csound\ pl ugi ns64
set PATH=%PATH% C. \ Program Fi | es\ Csound\ bi n

Missing python24.dll or python25.dll

If you get a pop-up about the missing Python library (python24.dll or python25.dll) and
don't need the python opcodes, just delete C: \ Progr am Fi | es\ Csound\ pl ugi ns\ py. dI | and
C:\ Program Fil es\ Csound\ pl ugi ns64\ py. dl |, and the pop-up about the missing Python
library should be gone.

Unix and Linux

On Unix and Linux, either install the Csound program in one of the system bi n directories, typically / usr/
I ocal / bi n, and the Csound and plugin shared libraries in places like / usr/ 1 ocal /I 'i b/ csound/ pl ugi ns
or /usr/local /1ib/csound/ pl ugi ns64 and make sure that OPCODEGDI R and OPCODE6DI R64 environment
variable are set correctly.

CsoundAC

CsoundAC requires some additional configuration. On all platforms, CsoundAC requires that you have
Python installed on your computer. The directory containing the _csoundAC shared library and the
CsoundAC. py file must be in your PYTHONPATH environment variable, so that the Python runtime knows
how to load thesefiles.

52

http://www.python.org
http://www.python.org

Syntax of the Orchestra

The Csound orchestra (.orc) or the <Cslnstruments> section of acsd file, contains:

» A header section, which specifies global options for instrument performance

» A list of User defined opcodes and instrument blocks containing UDO and instrument definitions.

The orchestraheader, instrument blocks, and UDOs contain Or chestra statements. An orchestra statement

in Csound has the format:

| abel : result opcode argunentl, argunent2, ... ;comments

Thelabel is optional and identifies the basic statement that follows as the potential target of a go-to oper-
ation (see Program Flow Contral). A label has no effect on the statement per se.

Depending on their function, some opcodes produce no output, so they have no result value. Others take
no arguments and only produce aresult.

Every orchestra statement must be on asingle line, however long lines can be wrapped to anew line using
the '\ character. This character indicates that the next line is part of the current one, this way you can split
alinefor easier reading, like this:

a2 oschnk kcps, 1.0, kfndl, 0.0, 40, 203, 0.1, 0.2, kanfr, kanfr2, 148, \
0o, 0, 0,0 O, O, O, -1, \
kfnum 3, 4

Comments are optional and are for the purpose of letting the user document his orchestra code. Comments
begin with a semicolon (;) or // and extend to the end of the line. Comments can optionally be in C-style,
spanning multiple lines like this:

/* Anything in here --------
is a comrent which can span
several lines --------- */

The remainder (result, opcode, and arguments) form the basic statement. This also is optional, i.e. aline
may have only alabel or comment or be entirely blank. If present, the basic statement must be complete
on oneline, and isterminated by a carriage return and line feed.

The opcode determines the operation to be performed; it usually takes some number of input values (or
arguments, with amaximum value of about 800); and it usually has aresult field variable to which it sends
output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)

2. once at the beginning of each note (at initialization (init) time: i-rate)

3. once every performance-time control loop (perf-time control rate, or k-rate)
4.

once each sound sample of every control loop (perf-time audio rate, or a-rate)

Orchestra Header Statements

The Orchestra Header contains global information that applies to al instruments and defines aspects of
Csound output. It is sometimes referred to asinstr O, because it behaves as an instrument, but without k-
or a-rate processing (i.e. only opcodes and instructions that work at i-rate are allowed).

53

Syntax of the Orchestra

An orchestra header statement operates once only, at orchestra setup time. It ismost commonly an assign-
ment of some value to a global reserved symbol , e.g. sr = 20000. All orchestra header statements belong
to a pseudo instrument O, an init pass of which is run prior to all other instruments at score time 0. Any
ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09) provided it isan
init-time only operation. Statements that are normally placed in an orchestra header are;

* 0dbfs

« A4

* ctrlinit
« ftgen

o kr

* ksmps
* massign
* nchnls
* pgmassign
+ pset

» seed

o o

e strset

For example, a Csound header may look like:

xXXsr = 44100
kr = 4410
ksmps = 10
nchnls = 2
Odbfs =1

massign 1, 10

Instrument and Opcode Block Statements

Aninstrument block iscomprised of ordinary statementsthat set values, control thelogical flow, or invoke
the various signal processing subroutines that lead to audio output. Statements that define an instrument
block are:

e instr
e endin

An instrument block looks like this:

instr 1 ;A sinple sine wave oscill ator
aout oscils 10000, 440, O
out aout

Syntax of the Orchestra

endin
Statements that define a user defined opcode (UDO) block are
» opcode
* endop

See the UDO section for more information.

Ordinary Statements

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for
k- and a-rate results), with the sole exception of the init opcode. Most generators and modifiers, however,
produce signals that depend not only on the instantaneous value of their arguments but also on some
preserved internal state. These performance-time units therefore have an implicit init-time component to
set up that state. The run time of an operation which produces no result is apparent in the opcode.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and condi-
tional values.

Types, Constants and Variables

Constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and
do not change in value.

Variables are named cells containing numbers. They are available continuously and may be updated at
one of the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e.
they take on only one value at any given time) and are primarily used to store and recall controlling data,
that is, data that changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables).
i- and k-variables are therefore useful for storing note parameter values, pitches, durations, slow-moving
frequencies, vibratos, etc. a-rate variables, on the other hand, are arrays or vectors of information. Though
renewed on the same perf-time control passask-rate variables, these array cellsrepresent afiner resolution
of time by dividing the control period into sample periods (see ksmps). a-rate variables are used to store
and recall data changing at the audio sampling rate (e.g. output signals of oscillators, filters, etc.).

Some types of variables can be thought of as signals. For example a-rate and k-rate variables are signals
that have a constant update frequency (see kr and sr). This abstraction is generally quite useful, but be
aware that a-rate signals are actually vectors which are processed at k-rate, i.e. Csound works at k-rate
internally but processes ksmps number samples for each a-rate variable on every control pass.

There are other types of signals that require rates that don't match kr or sr. f-rate and w-rate signals are
used for spectral processing and their rate is determined by the window size and overlap factor.

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved,
and they may carry information from passto pass (e.g. from initialization timeto performancetime) within
asingleinstrument. Local variable names begin with the letter p, i, k, or a. The same local variable name
may appear in two or more different instrument blocks without conflict.

Global variables are cells that are accessible by all instruments. The names are either like local names
preceded by theletter g, or are special reserved symbols. Global variables are used for broadcasting general

55

Syntax of the Orchestra

values, for communicating between instruments (semaphores), or for sending sound from one instrument
to another (e.g. mixing prior to reverberation).

Given these distinctions, there are nine forms of local and global variables:

Table 3. Typesof Variables

Type When Renewable Local Global

reserved symbols permanent -- rsymbol

score pfields i-time p number --

init variables i-time i name gi name

control signals p-time, k-rate k name gk name

audio signals p-time, k-rate (all audio|aname ganame
samplesin ak-pass)

spectral datatypes k-rate W name --

streaming spectral data| k-rate f name of name

types

string variables i-time and optionally k-|S name gS name
rate

vector variables k-rate t name

Where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring to a score
pfield or sequence number, and name is a string of letters, the underscore character, and/or digits with
local or global meaning. As might be apparent, score parameters are local i-rate variables whose values
are copied from the invoking score statement just prior to theinit pass through an instrument, while MIDI
controllers are variables which can be updated asynchronously from aMIDI file or MIDI device.

Variable Initialization

Opcodes that let oneinitialize variables are:
e assign
o divz
* init
* tival
Predefined Math Constant Macros

Csound defines several important math constants as Macros. Y ou can see the full list here.

Expressions

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper rate.
For instance, if thetermswithin asub-expression al change at the control rate or slower, the sub-expression
will be evaluated only at the control rate; that result might then be used in an audio-rate evaluation. For
example, in

56

Syntax of the Orchestra

k1 + abs(int(p5) + frac(p5) * 100/12 + sqrt(kl))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the remainder
of the expression evaluated every k-period. The whole might occur in a unit generator argument position,
or be part of an assignment statement.

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These
areoptionally full pathnames, whose target directory isfully specified. When not afull path, filenames are
sought in several directories in order, depending on their type and on the setting of certain environment
variables. Thelatter are optional, but they can serve to partition and organize the directories so that source
files can be shared rather than duplicated in several user directories. The environment variables can define
directories for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include files for
orchestra and score files INCDIR.

In Csound version 5.00 and later, these environment variables can specify multiple directories as a ; sep-
arated list. If afileisfound in more than one location, the first one has the highest precedence.

The search order is:
1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.

2. Soundfilesfor reading are sought in the current directory. If default paths are not disabled, fileswill next
be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SSDIR and then SFDIR.

3. Analysis control files for reading are sought in the current directory. If default paths are not disabled,
fileswill next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SADIR.

4. MIDI files for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in MFDIR, SSDIR
and SFDIR.

5. Files of code to be included in orchestra and score files (with #include) are sought first in the current
directory, then inthe samedirectory asthe orchestraor scorefile (as appropriate), then finally INCDIR.

Nomenclature

Throughout this document, opcodes are indicated in and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs),
and the result is usually denoted by the letter r. Both are preceded by a type qualifier i, k, a, or x (e.g.
kamp, iphs, ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control
(scalar) and audio (vector) values, modified and referenced continuously throughout performance (i.e. at
every control period while the instrument is active). Arguments are used at the prefix-listed times; results
are created at their listed times, then remain available for use as inputs elsewhere. With few exceptions,
argument rates may not exceed the rate of the result. The validity of inputsis defined by the following:

» arguments with prefix i must be valid at init time;
» arguments with prefix k can be either control or init values (which remain valid);
 arguments with prefix a must be vector inputs;

 arguments with prefix x may be either vector or scalar (the compiler will distinguish).

57

Syntax of the Orchestra

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most
opcodes (such as and) can be used in more than one mode, which one being determined by the
prefix of the result symbol.

Thoughout this manual, the term "opcode” is used to indicate acommand that usually produces an &, k-,
or i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as"+"
or"sin(x)" or,"(a>=b?c: d)" arecaled "operators."

Macros

Orchestra macros work like C preprocessor macros, and replace the content of the macro in the orchestra
before it is compiled. The opcodes one can use to create, call, or undefine orchestra macros are:

* #define

* $NAME

o #Hifdef

o #ifndef

 #end

o #else

* #include

o #undef

Orchestra macros can also be defined using the command line flag --omacro:.

More information and examples on the usage of orchestra macros can be found in the entry for #define.

These opcodes refer to orchestra macros; for score macros, refer to Score Macros.

Named Instruments

As arecent addition to the orchestra syntax, instruments can be defined with string names. Such named
instruments are callable from the score, and are supported by a number of opcodes.

Syntax

A named instrument is declared as shown below:

instr Name[, Name2[, Nane3[, ...]]]
[...]

endin

A single instrument can have any number of names, and any of these names can be used to call theinstru-
ment. Additionally, it is possible to use numbers as name, denoting a standard numbered instrument, so
the following declaration is also valid:

58

Syntax of the Orchestra

instr 100, Nanel, 99, Nane2, 1, 2, 3

Aninstrument namemay consist of any number of |etters, digits, and theunderscore (_) character, however,
thefirst character must not beadigit. Optionally, theinstrument name may be prefixed withthe'+' character
(see below), for example:

instr +Reverb

For al instrument names, a number is automatically assigned (note: if the message level (-m) is not zero,
these numbers are printed to the console during orchestra compilation), following these rules:

* any unused instrument numbers are taken up in ascending order, starting from 1

* the numbers are assigned in the order of instrument name definition, so named instruments that are
defined later will always have a higher number (except if the '+' modifier is used)

« if the instrument name was prefixed with '+, the assigned number will be higher than that of any of
the (both numbered and named) other instruments without '+'. If there are multiple '+' instruments, the
numbering of these will follow the order of definition, according to the aboverule.

Using '+ ismainly useful for global output or effect instruments, that must be performed after the other
instruments.

An example for instrument numbers:
instr 1, 2
endi n

instr Instrl
endin

instr +Effectl, Instr2
endin

instr 100, Instr3, +Effect2, Instr4, 5
endin

In this example, the instrument numbers are assigned as follows:

Instrl: 3
Effectl: 101
Instr2: 4
Instr3:. 6
Effect2: 102
Instr4. 7

Using Named Instruments

Named instruments can be called by using the name in double quotes as the instrument number (note: the
'+' character should be omitted). Currently (as of Csound 4.22.4), named instruments are supported by:

 'i"and'q' score events
Notes

1. in score files, unmatched quotes, and spaces or other invalid characters in the strings
should be avoided, otherwise (at |east with current version) unpredictabl e behavior may

59

Syntax of the Orchestra

occur (this problem does not exist for -L line events). However, there is checking for
undefined instruments, and in such cases, the event is simply ignored with awarning.

2. Stand-alone utilities (score sort and extract) do not support named instruments. It isstill
possible to sort such scores by using the -t0 option of the main Csound executable)

* rea-timeline events (-L)
* event, schedkwhen, subinstr, and subinstrinit opcodes
* massign, pgmassign, prealloc, and mute opcodes

Additionaly, there is a new opcode (nstrnum) that returns the number of a named instrument:

insno nstrnum "nane"

With the above example, nstrnum "Effect1" would return 101. If an instrument with the specified name
does not exist, aninit error occurs, and -1 is returned.

Example
; ---- orchestra ----
sr = 44100
ksnps = 10
nchnls = 1
preal | oc "Si neVave", 20
prealloc "M Dl Si neWave", 20
massign 1, "M DI Si neWave"
gaQut Send init O
instr +Qutputlnstr
out gaCut Send
cl ear gaQut Send
endin
instr SineWave
al oscils p4, p5, 0
vi ncr gaQut Send, al
endin
instr M DI Si neWave
i anp vel oc
inote not num
icps = cpsoct(inote / 12 + 3)
al oscils ianp * 100, icps, O
vincr gaQut Send, al
endin
; ---- score ----

"Si neWave" 0 2 12000 440
"Qutputinstr" 0 3

60

Syntax of the Orchestra

Author

Istvan Varga

2002

User Defined Opcodes (UDO)

Csound allows the definition of opcodes inside the orchestra header using the opcodes opcode and endop.
The defined opcode may run with a different number of control samples (ksmps) using setksmps.

To connect inputs and outputs for the UDO, use xin and xout.

An UDO looks like this:

opcode Lowpass, a, akk

setksmps 1 ; need sr=kr
ain, kal, ka2 xin ; read input paraneters
aout init O ; initialize output
aout = ain*kal + aout*ka2 ; sinple tone-like filter
xout aout ; write output
endop

This UDO called Lowpass takes 3 inputs (the first is a-rate, and the next two are k-rate), and delivers
1 arate output. Notice the use of xin to receive inputs and xout to deliver outputs. Also note the use of
setksmps, which is needed for the filter to work properly.

To use this UDO within an instrument, you would do something like:

afiltered Lowpass asource, kvaluel, kval ue2
See the entry for opcode for detailed information on UDO definition.

You can find many ready made UDO's (or contribute your own) at Csounds.com [http://www.csound-
s.com/]'s User Defined Opcode Database [http://www.csounds.com/udo/].

Vectors and Arrays

Vectorsand arrays of i-rate, k-rate or a-rate values can be used in many cases. They are created by the init
opcode and others, and can be used in most arithmetic situations as well as special array opcodes.

For a short time Csound had a more limited scheme of one dimensional vectors at k-rate, but these are
subsummed in the arrays, and t-variables are deprecated.

Function Syntax in Csound6

Csound 6 has introduced a new alternative syntax for orchestra code. This is initially an experimental
feature, which has some limitations, as explained below. It will also allow the introduction of some non-
backwards-compatible language features.

61

http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/udo/
http://www.csounds.com/udo/

Syntax of the Orchestra

Overview

The main aspect of the new syntax isthat some opcodes can be called asfunctions, and inlined in orchestra
code. The general form of thisis the expression:

var* = op(exprlist*)

where * indicates optional, var is a single variable in one of Csound6 types, and exprlist is a comma
separated list of expressions (or asingleexpression or variable). These expressions can be placed anywhere
inside instrument or opcode blocks. I-time operations can aso be placed outside instrument blocks. The
functional syntax can be intermixed with standard Csound code.

Here are some examples of these expressions:

al = oscil(p4,p5)
out(vco2(p4*linen(1,0.1,p3,0.1),p5)
outs(oscili(in(),p5), in())

Limitations

The main limitation is that only opcodes with single outputs (or no outputs) are alowed. In addition,
opcodes with multiple optional outputswill not be parsed successfully inthisform. An aternativeto allow
for these is to wrap them in user-defined opcodes, or just to intermix standard Csound syntax with this
new style.

To resolve opcode ambiguities, we have introduced type annotations, in the form of op:type(exprlist). For
instance the code:

al = oscili(oscili:k(p4,p5), 440)

will choose a control-rate opcode to modulate the amplitude of the audio carrier, rather than an audio rate
one. There will be cases where the type annotation will be required, when the input arguments cannot be
used to determine the correct type of opcode to be applied.

UDP Server

Csound 6 includes afully-functional UDP server, which can accept arange of commands and/or orchestra.

Overview

The UDP server can be started with the following option:

--port=N

62

Syntax of the Orchestra

where N indicates a port number to listen to UDP messages. Csound does not necessarily need to be given
aCSD or orchestra, although it is also possible to do so.

Commands

Commands take the form of an opcode followed by one or more arguments. The following commands
are accepted by the server:

&[line event]

Sends in a line event [live event]. Multiple events can be send on multiple lines. Use this command for
single or multiple events that do not need preprocessing.

$[score]

Sends in a score [score], to which most preprocessing (except for tempo) can be applied. Use this option
for larger blocks of score events.

@[channel_name] [value]

Set acontrol channel [channel_name] with the value [valug].

%[channel_name] [string]

Set a string channel [channel_name] with the string [string].

:@[channel_name] [address] [port]

Request the value of the control channel [channel_name] to be sent asastring viaUDPto address[address]
port [port]. The string will contain the channel name followed by two colons (::) and its current value.

:%[channel_name] [address] [port]

Request the contents of the string channel [channel_name] to be sent as a string via UDP to address [ad-
dress] port [port]. The string will contain the channel name followed by two colons (::) and its current
contents.

Orchestra code

In addition to the above commands, the UDP server also accepts a string containing orchestra code, which
is compiled immediately. The orchestra string is not prefixed with any special command opcode. This
string should be sent in asingle UDP message.

63

Syntax of the Orchestra

If the orchestra code length exceeds the number of characters that are possible in a single message, it can
be broken in separate messages. For thisto work, the whole orchestra code needs to enclosed in brackets
({ 1. The open brackets ({) starts the server taking the code in and the close brackets (}) sends the code
for compilation. This way the code can be sent in multiple messages.

Closing the server

The server (and Csound) can be closed with one of the following commands:
#Hcl osett
or

llclose!!

The Standard Numeric Score

The score section contains events that instatiate instruments from the orchestra. There are various score
statements that enable complex score building within the csound language.

Currently, the maximum length of the score depends on the platform's architecture; on a 32bit system tis
is 2311 control periods; so for example, with kr=1500, you can run a score for amaximum of about 16.5
days before problems occur due to overflowing signed 32-bit integer variables. On a 64bit machine the
same condition would be just about 9 billion years. The input token 'z' is read as a number with the value
of approximately 25367 years.

Note also that when using single precision floats (i.e. the 'f' installers rather than the 'd' ones), the accuracy
of timing becomes worse after performing for along time.

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s statement. Be-
fore being read by the orchestra, a score is preprocessed one section at a time. Each section is normally
processed by 3 routines: Carry, Tempo, and Sort.

Carry

Within a group of consecutive i statements whose p1 whole numbers correspond, any pfield left empty
will take its value from the same pfield of the preceding statement. An empty pfield can be denoted by a
single point (.) delimited by spaces. No point isrequired after the last nonempty pfield. The output of Carry
preprocessing will show the carried values explicitly. The Carry Feature is not affected by intervening
comments or blank lines; it is turned off only by a non- i statement or by an i statement with unlike p1
whole number.

Three additional features are available for p2 alone: +, *+x, and *-x. The symbol + in p2 will be given
the value of p2 + p3 from the preceding i statement. This enables note action times to be automatically
determined from the sum of preceding durations. The + symbol can itself be carried. It is lega only in
p2. E.g.: the statements

1 0 .5 100
+
will result in
1 0 .5 100
1 .5 .5 100
1 1 .5 100

The symbols *+x and "-x determine the current p2 by adding or subtracting, respectively, the value of x
from the preceding p2. These may be used in p2 only and are not carried like the + symbol. Note also that
there should be no spaces following the #, the +, or the - parts of these symbols -- the number must come
directly after asin ~+2.3. If the example above had been

1 0 .5 100
/\+1
/\+1

65

The Standard Numeric Score

the result would instead be

1 0 .5 100
1 1 .5 100
1 2 .5 100

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input
typing and will simplify later changes.

There can sometimes be circumstances where you do not want "missing" pfields after the last one entered
to be implicitly carried. An example would be an instrument that is designed to take a variable number
of pfields. Beginning with Csound 5.08, you can prevent the implicit carrying of pfields at the end of an
i statement by using the symbol ! (called the "no-carry symbol"). The ! must appear at the end of an i
statement and it cannot be used in pl, p2, or p3, since these pfields are required. Here is an example:

1 0 .5 100

This score would be interpreted as

100
100
; no p4

5
.5
.5

5 ; only pl to p3 are carried here

[E Y

1.5

An dternative to using ! is to switch automatic carrying off apart from p1, p2 and p3. This can be done
with the score opcode statement "C 0", and can be restored with "C 1".

Tempo

Sort

This operation time warps a score section according to the information in at statement. The tempo oper-
ation converts p2 (and, for i statements, p3) from original beatsinto real seconds, since those are the units
required by the orchestra. After time warping, score files will be seen to have orchestra-readable format
demonstrated by the following:

pl p2beats p2seconds p3beats p3seconds p4 p5

This routine sorts al action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted
into ascending pl value order. If they also have the same pl value, they will be sorted into ascending p3
value order. Score sorting is done section by section (see s statement). Automatic sorting impliesthat score
statements may appear in any order within a section.

Note

Theoperations Carry, Tempo and Sort are combined in a3-phase single passover ascorefile,
to produce anew filein orchestra-readable format (see the Tempo example). Processing can

66

The Standard Numeric Score

beinvoked either explicitly by the Scsort command, or implicitly by Csound which processes
the score before calling the orchestra. Source-format files and orchestra-readable files are
both in ASCII character form, and may be either perused or further modified by standard
text editors. User-written routines can be used to modify score files before or after the above
processes, provided the final orchestra-readable statement format is not violated. Sections
of different formats can be sequentially batched; and sections of like format can be merged
for automatic sorting.

Score Statements

The statements used in scores are:

» a- Advance score time by a specified amount

* b- Resetsthe clock

» C- Toggles carry facility

* d - Deletes an infinite instrument

* e- Marksthe end of the last section of the score

« f- Causes a GEN subroutine to place valuesin a stored function table

* i - Makesan instrument active at a specific time and for a certain duration
* m- Setsanamed mark in the score

* n - Repeats a section

* (- Used to quiet an instrument

* 1 - Starts arepeated section

* s- Marksthe end of asection

* t- Setsthetempo

» v- Providesfor locally variable time warping of score events

* Xx- Skip therest of the current section

* y- Set seed for random numbers, either from pl or, if omitted, the clock
» { - Beginsanon-sectional, nestable loop.

 } - Ends anon-sectional, nestable loop.

Comments are denoted by semicolon (;), double slash (//) or the character ¢ and last until anewline. Also
C-style comments /* ... */ are allowed.

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features areinterpreted
during file writeout: next-p, previous-p, and ramping.

67

The Standard Numeric Score

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previousi statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played
by this instrument. np and pp symbols are recursive and can reference other np and pp symbols which can
reference others, etc. References must eventually terminatein areal number or aramp symbol. Closed loop
references should be avoided. np and pp symbolsareillegal in pl, p2 and p3 (although they may reference
these). np and pp symbols may be Carried. np and pp references cannot cross a Section boundary. Any
forward or backward reference to a non-existent note-statement will be given the value zero.

E.g.: the statements

1 0 1 10 np4 pp5
1 1 1 20
1 1 1 30

will result in

1 0 1 10 20 O
1 1 1 20 30 20
1 2 1 30 O 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to glis-
sando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may not
be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsorted
statements, the operation that interprets these symbolsis acting on afully sorted version of the score. The
tempo operation is applied after the pp and/or np processing.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation
of atime-based ramp. Ramps are anchored at each end by the first real number found in the same pfield
of apreceding and following note played by the same instrument. E.g.: the statements

100
<
<
400
<
0

PR R R R
OBRWNRO
PR R R R

will result in

100
200
300
400
200
0

PR R RR R
OhWN RO
PR R RR R

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although they
may be referenced by these). Ramp symbols areillegal in pl, p2 and p3. Ramp symbols may be Carried.
Note, however, that while the Carry feature will propagate ramp symbols through unsorted statements, the
operation that interprets these symbolsis acting on atime-warped and fully sorted version of the score. In
fact, time-based linear interpolation is based on warped score-time, so that aramp which spans a group of
accelerating notes will remain linear with respect to strict chronological time.

68

The Standard Numeric Score

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation ramp,
similar to expon. Using the symbol ~ (atilde) will result in uniform, random distribution between the first
and last values of the ramp. Use of these functions must follow the samerules asthe linear ramp function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros.
This can can alow for simpler score writing, and provide an elementary alternative to full score genera
tion systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a simple macro. The name of the macro must begin with aletter and can consist
of any combination of |etters and numbers. Case is significant. This form is limiting, in that the variable
names are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a' b' ¢') -- defines a macro with arguments. This can be used in more complex situations.
The name of the macro must begin with aletter and can consist of any combination of |etters and numbers.
Within the replacement text, the arguments can be substituted by theform: $A. In fact, theimplementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any
choice of letters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The name
is terminated by the first character which is neither a letter nor a number. If it is necessary for the name
not to terminate with a space, a period, which will be ignored, can be used to terminate the name. The
string, SNAME., is replaced by the replacement text from the definition. The replacement text can also
include macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with
#undef NAME.

Syntax

#define NAME # repl acenment text #
#define NAME(a' b' c') # replacenent text #
SNAME.

#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend
over mutliplelines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, asthey can sometimes do strange things. They take
no notice of any meaning, so spaces are significant. Thisiswhy, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this smple macro system
isapowerful concept, but it can be abused.

69

The Standard Numeric Score

Another UseFor Macros. When writing acomplex scoreit is sometimes all too easy to forget to what
the various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #i1#
#define Whoop #i2#

$Flute. 0 10 4000 440
$Whoop. 5 1

Examples

Example 1. Smple Macro

A note-event has a set of p-fields which are repeated:

ine ARGS # 1.01 2.33 138#
8.00 1000 $ARGS
8.01 1500 $ARGS
8.02 1200 $ARGS
8.03 1000 $ARGS
Thiswill get expanded before sorting into:

00 1000 1.01 2.33 138
01 1500 1.01 2.33 138
02 1200 1.01 2.33 138
03 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a
second macro (thereisno real limit on the number of macros one can define).

#define ARGSL # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
101 8.00 1000 $ARGS1L

1 8.01 1500 $ARGS2

8.02 1200 $ARGS1

8.03 1000 $ARGS2

Example 2. Macroswith arguments

#define ARG(A) # 2.345 1.03 $A 234.9#
101 8.00 1000 $ARG 2.0)
1+ 1 8.01 1200 $ARE3.0)

which expandsto

234.9

0 00 1000 2.345 1.03 .0
+ 0 234.9

1 1 8. 2
1 1 8.01 1200 2.345 1.03 3.

Credits

Author: John ffitch
University of Bath/Codemist Ltd.

Bath, UK

70

The Standard Numeric Score

April, 1998 (New in Csound version 3.48)

Multiple File Score

Description

Using the score in more than onefile.

Syntax

#i ncl ude "fil enane"

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text
#i nclude "fil enanme"

where the character " can be replaced by any suitable character. For most uses the double quote symbol
will probably be the most convenient. The file name can include a full path.

Thistakesinput fromthe named fileuntil it ends, when input revertsto the previousinput. Thereiscurrently
alimit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer's style. It
could also be used to provide repeated sections.

#i ncl ude :sectionl:
;; Repeat that

#i ncl ude :sectionl:

Alternative methods of doing repeats, usethe r statement, m statement, and n statement.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions
when some simple evaluation would be easier. This need is increased when there are macros. To assist in

71

The Standard Numeric Score

this area the syntax of arithmetic expressions within square brackets|[] has been introduced. Expressions
built from the operations +, -, *, /, % ("modul0"), and ~ ("power of") are allowed, together with grouping
with (). Unary minus and plus are also supported. The expressions can include numbers, and naturally
macroswhosevaluesare numeric or arithmetic strings. All cal culationsare madein floating point numbers.
The usual precedence rules are followed when eval uating: expressionswithin parantheses () are evaluated
first and ~ is evaluated before *, /, and % which are evaluated before + and -.

In addition to arithmetic operations, the following bitwise logical operators are also available: & (AND),
| (OR), and # (XOR, exclusive-OR). These operators round their operands to the nearest (long) integer
before evaluating. The logical operators have the same precedence asthe *, /, and % arithmetic operators.

Finally, the tilde symbol ~ can be used in an expression wherever a number is permissible to use. Each ™
will evaluate to a random value between zero (0) and one (1).

Example

3 CNT

0 [0.3*$CNT.]
+

1
1 [($ONT. / 3) +0. 2]

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this
expands to

1 0 0.3
1 0.3 0.533333

1 0 0.6
1 0.6 0.866667

1 0 0.9
1 0.9 1.2

Thisis an extreme form, but the evaluation system can be used to ensure that repeated sections are subtly
different.

Here are some simple examples of each operator:

1 0 1 [110 + 220] ; evaluates to 330
1+ . [330 - 55] ;275

1 + [44 * 10] ;440

1 + [1100 / 2] ; 550

1 + [5~ 4] ; 625

1 + [5660 % 1000] ; 660

1 + [110 & 220] ; 76

1 + [110 | 220] ; 254

1 + [110 # 220] ; 178

1 + [~ ; random between 0-1
1 + [~* 4 + 1] ; random between 1-5
1 + [~* 95 + 5] ; random bet ween 5-100
1 + [8/ 2* 3] ;12

1 + [4+3-2+1] ,; 6

1 + [4+3*2+1] ; 11

1 0+ [(4 +3)*(2 +1)] ; 21

72

The Standard Numeric Score

1+ [2*2 &3] 4
1+ [3&2* 2] 0
1+ [4] 3* 3] 13

The @ operator

New in Csound version 3.56 are @x (next power-of-two greater than or equal to X) and @@x (next pow-
er-of-two-plus-one greater than or equal to x).

[@11] will evaluate to 16
[@11] to 17

Credits

Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK

April, 1998 (New in Csound version 3.48)
Strings in p-fields
You can pass astring as a p-field instead of a number, like this:

i 1010 "A4"

The string can be received by the instrument and further processed using the string opcodes.

Note

Currently only one p-field can contain a string (i.e. no more than one string per line is al-
lowed). Y ou can overcome this using strset and strget.

73

Front Ends

Front ends are programs that provide some form of user interface for Csound. Within these programs,
Csound is used to generate sound, and familiarity with Csound codeisrequired in order to use them. Front
endstypically add helpful features, such as syntax coloring, graphic widgets, or toolsfor algorithmic score
generation, that are not part of Csound itself. Most of these programs were created by a single person, so
some of them are not being maintained. Below isalist (certainly not complete, and perhaps not up to date)
of front ends available for Csound.

Most often, you'll want to download and install Csound itself before downloading and installing afront end.
Some front ends require particular versions of Csound, so if you plan to use afront end, it's recommended
that you verify its compatibility before installing Csound.

CsoundQt

Blue

CsoundQt isaversatile, cross-platform GUI (graphical user interface) which is bundled with the standard
Csound distribution. Created and maintained by Andres Cabrera, QuteCsound provides a multi-tabbed
editor, graphic widgets for real-time sound control, and an opcode help system that links to this manual.
At this writing (2013) CsoundQt is in active development, so the version installed in your system when
you install Csound may not be the most current. The most recent version can be found at http://qutec-
sound.sourceforge.net/.

A cross-platform composition-oriented front end written by Steven Yi in Java. The user interface provides
a timeline structured somewhat like a digital multitrack, but differs in that timelines can be embedded
within timelines (polyObjects). This allows for a compositional organization in time that many users will
find intuitive, informative, and flexible. Each instrument and score section in a blue project has its own
editing window, which makes organizing large projects easier. Blue can be downloaded at Blue Home
Page [http://csounds.com/stevenyi/blue/].

Cabbage

Cabbage is a Csound frontend that provides users with the means to devel op audio plugins and standalone
software across the three major operating systems. While Cabbage makes use of underlying plugin tech-
nologies such as Steinberg's VST SDK, ASIO, etc, Csound is used to process all incoming and outgoing
audio. Cabbage al so provides agrowing collection of GUI widgets ranging from simple sidersto automat-
able XY-pads. All GUI widgets in a Cabbage plugin can be controlled via host automation in a plugin
host, thereby providing a quick and effective means of automating Csound instrument parameters in both
commercial and non-commercial DAWSs. Cabbage can be downloaded at Cabbage Home Page [https://
github.com/cabbageaudi o/cabbage/rel eases].

WinXound

WinXound isafreeand open-source Front-End GUI Editor with syntax highlighting for CSound 6, CSoun-
dAV, CSoundAC, with Python and Lua support, devel oped by Stefano Bonetti. It runs on Microsoft Win-
dows, Apple Mac OsX and Linux. You can get it at the WinXsound Front Page [http://winxound.code-
plex.com/].

74

http://qutecsound.sourceforge.net/
http://qutecsound.sourceforge.net/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
https://github.com/cabbageaudio/cabbage/releases
https://github.com/cabbageaudio/cabbage/releases
https://github.com/cabbageaudio/cabbage/releases
http://winxound.codeplex.com/
http://winxound.codeplex.com/
http://winxound.codeplex.com/

Front Ends

Winsound

Winsound was formerly part of the main Csound tree. It isnow available only as source code. Winsound is
across-platform FLTK port of an early Windows front-end for csound. Some partially sighted or unsighted
users report success using Winsound with text-to-speech software.

CsoundAC
Python Scripting

Y ou can use CsoundAC as a Python extension module. Y ou can do thisin a standard Python interpreter,
such as Python command line or the Idle Python GUI.

To use CsoundAC in a standard Python interpreter, import CsoundAC.

i mport CsoundAC

The CsoundAC module automatically creates an instance of CppSound named csound, which provides
an object-oriented interface to the Csound API. In a standard Python interpreter, you can load a Csound
. csd fileand perform it like this:

C:.\ Docunents and Settings\nkg>pyt hon

Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on w n32
Type "hel p*, "copyright", "credits" or "license" for nore information
>>> jnport CsoundAC

>>> csound. | oad("c:/ projects/csound5/ exanpl es/ trapped. csd")

1

>>> csound. export For Per f or mance()

1

>>> csound. perforn()

BEGAN CppSound: : perform(5, 988ee0)...

BEGAN CppSound: : conpi |l e(5, 988ee0). ..

Usi ng default | anguage

0dBFS | evel = 32767.0

Csound version 5.00 beta (float sanples) Jun 7 2004
l'ibsndfile-1.0.10pre6

orchname: tenp.orc

scor enane: tenp.sco

orch conpiler

398 lines read

instr 1
instr 2
instr 3
instr 4
instr 5
instr 6
instr 7
instr 8
instr 9
instr 10
instr 11
instr 12
instr 13
instr 98
instr 99
sorting score ...
done

Csound version 5.00 beta (float sanples) Jun 6 2004
di spl ays suppressed
0dBFS | evel = 32767.0

75

Front Ends

orch now | oaded

audi o buffered in 16384 sanpl e-frane bl ocks
SFDI R undefined. wusing current directory
witing 131072-byte bl ks of shorts to test.wav
VWAV

SECTI ON 1

ENDED CppSound: : conpil e

ftable
ftable
ftable
ftable
ftabl e
ftable
ftabl e
ftable
ftable
ftable 10

ftable 11:

ftable 12:

ftable 13

ftable 14

ftable 15

ftabl e 16:

ftable 17:

ftable 18

ftable 19:

ftable 20

ftable 21:

ftable 22:

new alloc for instr 1

B 0.000 .. 1.000 T 1.000 TT 1.000 M 32.7 0.0
new alloc for instr 1

B 1.000 .. 3.600 T 3.600 TT 3.600 M 207.6 0.1

ecxNonhAONR

B 93.940 .. 94.418 T 98.799 TT281.799 M 477.6 85
B 94.418 ..100.000 T107.172 TT290.172 M 118.9 11.
end of section 4 sect peak anps: 25950.8 26877
inactive allocs returned to freespace

end of score. overal |l anps: 32204.8 31469.6
overal |l sanples out of range: 0 0

0 errors in performance

782 131072-byte soundbl ks of shorts witten to test.wav WAV
El apsed time = 13.469000 seconds

ENDED CppSound: : perform

1

>>>

» 01O

The koch. py script shows how to use Python to do algorithmic composition for Csound. Y ou can use
Python triple-quoted string literals to hold your Csound files right in your script, and assign them to
Csound:

csound. set O chestra(sr = 44100

kr = 441

ksmps = 100

nchnls = 2

0dbfs = .1

instr 1,2,3,4,5 ; FluidSynth General M D

I'; I NITI ALI ZATI ON

; Channel, bank, and program determine the preset, that is, the actual sound

i channel = pl
i program = p6
i key = p4
ivelocity = p5 + 12

76

Front Ends

i j unk6 = p6

ijunk? = p7

; AUDI O

i status = 144,

print i program istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/ proj ects/csound5/ sanpl es/ Vi nt ageDr eansWaves-v2. sf 2", \\
i program istatus, ichannel, ikey, ivelocity, 1

outs aleft, arightendin''"')

csound. set Command(" csound --opcode-Iib=c:/projects/csound5/fluid.dlIl \\
-RwWifo ./koch.wav ./tenp.orc ./tenp.sco")

csound. export For Per f or mance()

csound. perform)

CsoundVST

CsoundV ST is a multi-function front end for Csound, based on the Csound API. CsoundV ST runs as a
stand-alone graphical user interface to Csound, and it also runs as a VST instrument or effect plugin in
VST hosts such as Cubase with the same user interface. CsoundV ST is part of the main csound source
tree, but is not included in standard distributions, due to licensing limitations of Steinberg's VST SDK.

Standalone

To run CsoundV ST as a stand-alone front end to Csound, execute CsoundV ST. When the program has
loaded, you will see a graphical user interface with arow of buttons along the top. Click on the Open...
button to load a. csd file. You can also click on the Open... button and load a.. or ¢ file, then click on the
Import... button to add a. sco file. You can edit the Csound command, the orchestrafile, or the score file
in the respective tabs of the user interface. When al is satisfactory, click on the Perform button to run
Csound. Y ou can stop a performance at any time by clicking on the Stop button.

VST Plugin

Thefollowinginstructionsare for Cubase 4.0. Y ouwould follow roughly similar proceduresin other hosts.

Use the Devices menu, Plug-1n Information dialog, VST Plug-Ins tab, VST 2.x Plug-in Paths dialog, Add
button to add your csound/ bi n directory to Cubase's plugin path. Y ou can have multiple directories sep-
arated by semicolons. Then select the CsoundV ST path and click on the Set as Shared Folder button.

Quit Cubase, and start it again.
Use the File menu, New Project dialog to create a new song.
Use the Project menu, Add Track submenu, to add anew MIDI track.

Use the pencil tool to draw a Part on the track a few measures long. Write some music in the Part using
the Event editor or the Score editor.

Use the Devices menu (or the F11 key) to open the VST Instruments dialog.
Click on one of the No VST Instrument labels, and select CsoundVST from the list that pops up.
Click on the e (for edit) button to open the CsoundVST dialog.

Onthe Settings page, check the Instrument box inthe VST Plugin group, and the Classic box in the Csound
performance mode group. Then click on the Apply button.

Click on the Open button to bring up the file selector dialog. Navigate to a directory containing a Csound
csdfilesuitablefor MIDI performance, such ascsound/ exanpl es/ CsoundVsT. csd. Click onthe OK button
to load the file. Y ou can also open and import a suitable . orc and . sco file as described above.

77

Front Ends

In any event, the command linein the Classic Csound command line text box must specify - +r t ni di =nul |
- M, and should read something like this:

csound -f -h -+rtmdi=null -M -d -n -n¥ --mdi-key-oct=4 --mdi-velocity=5 tenp.orc tenp.sco
Click onthe VST Instruments dial og's on/off button to turnit on. This should compilethe Csound orchestra.

In the Cubase Track Inspector, click on the out: Not Assigned label and select CsoundVST from the list
that pops up.

Ontheruler at the top of the Arrangement window, select the loop end point and drag it to the end of your
part, then click on the loop button to enable [ooping.

Click on the play button on the Transport bar. Y ou should hear your music played by CsoundV ST.
Try assigning your track to different channels; a different Csound instrument will perform each channel.

When you save your song, your Csound orchestra will be saved as part of the song and re-loaded when
you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments while CsoundV ST is playing. To
hear your changes, just click on the CsoundV ST Perform button to recompile the orchestra.

You can assign up to 16 channels to a single CsoundV ST plugin.

78

Building Csound

Csound has become a complex project and can involve many dependencies. Unless you are a Csound
developer or need to develop Csound plugins, you should try to use one of the precompiled distributions
from http://www.sourceforge.net/projects/csound.

Detailed and up to date information about building Csound from source can be found in the BUILD.md
[https://github.com/csound/csound/blob/devel op/BUILD.md] file in the Csound6 sources.

79

http://www.sourceforge.net/projects/csound
https://github.com/csound/csound/blob/develop/BUILD.md
https://github.com/csound/csound/blob/develop/BUILD.md

Csound Links

Csound's "home page" can be found at http://csound.github.io.
Another Csound page, maintained by Richard Boulanger, can be found at http://csounds.com.

The Csound source code is maintained by John ffitch and others at https://github.com/csound. The most
recent versions and precompiled packages for most platforms also can be downloaded here [http://source-
forge.net/project/showfiles.php?group_id=81968].

A Csound mailing list exists to discuss Csound. It is run by John ffitch and Victor Lazzarini of Maynooth
University, Ireland. To have your name put on the mailing list send a message to: listserv@heanet.ie
[mailto:listserv@listserv.heanet.i€] with body "subscribe csound™. Y ou can also subscribe to the digest (1
message per day) by sending an email to: listserv@listserv.heanet.ie [mailto:listserv@listserv.heanet.i€]
with body "subscribe csound set digest”. Posts sent to csound@listserv.heanet.ie [mailto:csound@list-
serv.eanet.i€] go to all subscribed members of the list.

Similarly, the Csound- devel mailing list exists to discuss Csound development. For more information on
this list, go to http://listserv.heanet.ie [http://listserv.heanet.ie/] and follow the link to csound-dev. Posts
sent to csound-dev@listserv.heanet.ie [mailto:csound-dev@listserv.heanet.i€] go to al subscribed mem-
bers of thelist.

Suspected bugsin the code may be entered using the bug tracking system at the github [https://github.com/
csound/csound/issues).

80

http://csound.github.io
http://csounds.com
https://github.com/csound
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:csound@listserv.eanet.ie
mailto:csound@listserv.eanet.ie
mailto:csound@listserv.eanet.ie
http://listserv.heanet.ie/
http://listserv.heanet.ie/
mailto:csound-dev@listserv.heanet.ie
mailto:csound-dev@listserv.heanet.ie
https://github.com/csound/csound/issues
https://github.com/csound/csound/issues
https://github.com/csound/csound/issues

Part Il. Opcodes Overview

Table of Contents

SIGNAI GENEIAIONS ... ettt et ettt e e ettt e ittt e et e et e et e nnaas 85
Additive SyntheSiS/RESYNINESIS ... oo e 85
BaSiC OSCIIAIOIS ...ttt e e et e et e e e et e e e e e eeee 85
Dynamic SPectrum OSCIHIALONScoouueiiiiii e 85
FIM SYNENESIS .ttt 86
Granular SYNENESISu.iei e e 86
Hyper Vectorial SYNthESISiiiiii e 87
Linear and EXPONENtial GENEIEIONScuuuueiertieeeiii e et e et e e e e e e e e eeeaaaes 87
ENVEIOPE GENEIEIONSeetti ettt ettt sttt s ettt et e e e e e e e enaa e e ennes 88
ModelS @and EMUIBLTONSuiiiiii et e et e e et e e e e e eees 88
PRIGSONS ... et e et et et e e e e e aeae 89
RaNAOM (NOISE) GENEIBIOIS cieeei ettt ettt ettt ettt e et eeena s 90
SaAMPIE PLAYDACK ... 91

SOUNTFONES ...ttt et e et e et e e e 91
SCANNEA SYNENESISee ettt e et e et e e ent e eees 93
TADIE ACCESS ...ttt et eaaas 94
Wave Tamain SYNTNESISoooui e 95
Waveguide PhysiCal MOOEIINGuiiiiiieiiii e 95

Signal INPUE AN OULPULceeeenei ettt ettt e et e et e e e eaa s 96
File INPUE 8N OULPULeeeeie e ettt e e e e e eaeens 96
SIGNAL TNPUL L. 96
SIGNEAI OULPUL ...ttt ettt ettt ettt et e a et e n e e enaas 96
SOFIWEIE BUS ...ttt ettt et 97
PriNting and DiSPlayccoeeunieiiii e 97
SOUNA FilE QUENTES ...ttt e et e et e e e e et e e e e eaneaes 97

SIGNAE MOGITTEIS ... ettt e e e e 99
Amplitude Modifiers and DYNamiC PrOCESSING ... cevvrureeerineeeeiiieeeeii e eeeniaeeeeni e eennanns 99
Convolution and MOFPRINGceeeee et e s 99
(D= - PP PR TS UPPTN 99
Panning and SPatialiZationcoouuiiiiiiii e 100
REVEIDEIBIION ... 101
SAMPIE LEVEL OPEIBIOIS ... eeeeti ettt ettt ettt e et e et e e e et e e eentaeeeees 102
SIGNEAL LIMITEIS ..ttt e et e et e e e a e 102
SPECIAI EFFECLS ..ot 102
SEANAAIT FIITEIS ...ttt et 103
SPECIAIIZEA FIITEIS ...t 105
WEVEGUITES ...ttt ettt ettt e e ettt e e et et e e et et e e e eeanaeeees 105
Waveshaping and Phase DiStOrtioNeieeueneriiiieeeii e e e e eeees 105

INSEIUMENE CONEFOL ...ttt e et e et e e et et e e e eete e eeenbaaaeeees 107
ClIOCK CONIOL ...ttt ettt ettt e e et e et et e e e e rb e e e entaeeeees 107
CoNAItiONAl VBIUBS ...t e e 107
Duration Control SEEIEMENTSuiiiiiee e 107
FLTK Widgets and GUI CONIOIEISccuuuiiiiiiieeiiii et 107

FLTK CONMAINEIS ..ttt ettt et e et e et e e et eeeeaa s 110

FLTK VBIUBLOTS ...ttt ettt e e e e e e enaes 110

Other FLTK WIOGELS ...covviieiiiii ettt e e e e e e e 111

Modifying FLTK Widget APPEAIANCEcceevuueiiiiiieieeiie et 111

General FLTK Widget-related OPCOTEScccvuuiiiiiiiieiiii e 112
INSETUMENE TNVOCELION ...ttt et ettt e et e e et e e e e e eeees 112
Program FIOW CONIOLoouuuiiiiii ettt e eer e e eeaans 113
Real-time Performance CONTIOluiiiiiiiieiii et 114

82

Opcodes Overview

Initilization and REINIIAIIZAIIONcoovviieiii e 114
S = a1 T (o = 1o g1 (o) PN 115
RS = o PSP 116
SUB-INSEFUMENt COMEIOI ...eeieee e e e e et e e eaa s 116
0L = o 1 P 116
FUNCEION Tahle CONLIOL ...ciieeieee e e e et e e e et e e e e aae s 118
TADIE QUEIES .. ettt e e e e e e e e e e 118
RS o AT) (SN @)1= - 1o 118
Table Reading with DynamiC SElECHIONcccvuiiiiii e e 119
MathematiCal OPEIELIONSuuiiei it e et e e e e e e e e e e e e e et e e et eeat e e et e e st eeaneeanaees 120
AMPLITUAE CONVEITEIS .. .ouiiii e e e e e e e e et e e et e e eanas 120
Arithmetic and LOGIC OPEratioNSccvuuiiii i et e e e e e e e e e e e e aaeees 120
Comparators and ACCUMUIGLOTSccuuieiiieeii e e ee e e e e e e e e e e e eaa e eaes 120
Mathematical FUNCHIONSiiiiii e e s 121
Opcode Equivalents of FUNCLIONSccouiiiiiiciii e e e 121
RANAOM FUNCLIONS ..ottt e et e e et e e e e eae s 121
TrIgONOMELIIC FUNCHIONS .. coviiiiiieii e e e e e e e e e e e e et e e e e e anaeeaen 122
Linear AlQera OPCOUESciviieiii e e e e e e e e e e aes 123
F N 4 = YA O o oo o = 131
e N e 1Y = 4 1= £ PP 138
L1 1o PP 138
LI 10110 O oo o L= 138
REA-TIME MIDI SUPPOITieii et e e e e e e e e e e et e e e e et e e et e e et e e e aa e eaneeaens 139
Virtual MIDI KeYBoardccouuiiiiiiiii e e e 140
] T oo PP 143
MIDI MESSAGE OULPUL ...uetieitei ittt et et e e e e e e e e e e es 143
Generic INPUE and OULPULovvniii e e e e e e e e e e e et e e e e aanas 144
10010177 1 (< = TP 144
EVENE EXLENAEIS ...ttt e et e et 144
NOtE-ON/NOLE-OFff OULPULuvtiiiiieii e e e e e e e et e e et e eea e eees 144
MIDI/Score Interoperability OPCOUESuivviiiiiii e e 145
System REAtiME MESSAGESuuiiie et e e e e e e e e e e e e e e e e aanas 146
SHAEN BaANKS ... 146
S o Lc o = 0o = o [147
Short-time Fourier Transform (STFT) ReSyNtheSiScovviiiiiiii e, 147
Linear Predictive Coding (LPC) ReSYNhESIS ... ccvviiiiiiiie e 147
Non-standard SPectral PrOCESSINGccuuiiiieeiiii e e e e e 148
Tools for Real-time Spectral Processing (PVS OPCOAES)cvvvueviieiiiiieiiieeeiieeeieeeeieeaies 148
ATS SPECHrAl PrOCESSING ...uuiiiiiiiiiieeie et e e e e e e e e e e e e et e e eanaeeanaes 149
[0 FY O o oo o (PN 150
Array-based SPectral OPCOTEScivviiiiii e 153
S 1 01 155
String Manipulation OPCOUESccvuiiiiieiie e e e e e e e eeas 156
String CoNVErSION OPCOUESiiieeiiieii e et e e e e e e e e e e e e e e e e e et e e et e eanaas 157
V2= v (0 = @ ool o L= 158
Tables Of VECIOIS OPEraIOrSu.iiiiii et e e e e e e e e et e e e eaaas 158
Operations Between a Vectorial and a Scalar Signalccoovvieiiiiiiiiiiiin e, 158
Operations Between two Vectorial SIgnalSccuiiiiiiiiiiiciii e 159
Vectorial ENVEIOPE GENEIAIOISuuiiiiiiii e et e e e e e e e e e e e e e eaans 159
Limiting and wrapping of vectorial control Signalscc.coovviiiiiiiieiiii e 160
Vectorial Control-rate Delay Pathsco.uiiiiiiiiiiii e 160
Vectorial Random Signal GENEratOrScvvuiiiiieiieee e e e e e e e e e e e e e eaneens 160
ZaAK PaCN SYSLEIM ...t 161
L T o T 01 1 o 162

83

Opcodes Overview

DSSl and LADSPA fOr CSOUNGuuiiiiiiieeiiiis e et e et e e e e e e eae e e eenanns 162
VS I o g = 1o o [PPSR 162
(@S O 0o NN = 1o PSPPSR 164
PN o = (o a T T QO o oo o = 164
1 PR 164
[N T= Ao PP 165
R 11101 (= I @] 0 w0 o L=< TP 165
Dt G @0 o o L= R 166
Signal FIOW Graph OPCOAEScvvuiiiiii et e e e e e e e e e e e et e e et e e e e e saaees 167
= o o T o oo o == 170
[T IO o oo o =P 173
Y aT0 g T @ 0o o L= 178
g1 [0 ot [o PSPPI 178
(O o g1 Y 1 - O 178
IMAage ProCESSING OPCOUESu.ivteeiti ettt ettt et e et e e et e e et e e et eeat e e et e e et e esta e eaneeataeennaaennaes 180
Y I S oo 1= 181
MiISCEIlANEOUS OPCOUESieiiiiiie i e e e e e e e e e e e e e e e et e e et e e e e eeannes 183

Signal Generators
Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are;
* adsyn

» adsynt

* adsynt2

* hsboscil

See the section Spectral processing for more information and further additive/resynthesis opcodes.

Basic Oscillators

The basic oscillator opcodes are: (note that opcodes that end with 'i* implement linear interpolation and
those that end with ‘3" implement cubic interpolation)

* Ogcillator Banks: oschnk

» Simpletable oscillators: oscil, oscil3 and oscili.

» Simple, fast sine oscilator: oscils

* Precision oscilators: poscil and poscil 3.

» Moreflexible oscillators: oscilikt, osciliktp, oscilikts and osciln (also called oscilx).

Oscillators can also be constructed from generic table read opcodes. See the Table Read/Write operations
section.

LFOs

* |fo
e vibr
* vibrato

See the section Table access for other table reading opcodes that can be used as oscillators. Also see the
section Dynamic spectrum Oscillators.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are:
» Harmonic spectra: buzz and gbuzz

 Impulse generator: mpulse

85

Signal Generators

» Band limited oscillators (analog modelled): vco and vco2

The following opcodes can be used to generate band-limited waveforms for use with vco2 and other os-
cillators:

* vco2init
» vco2ft

* vco2ift

FM Synthesis

The FM synthesis opcodes are;
* foscil
» foscili

* crossfm, crossfmi, crosspm, crosspmi, crossfmpm, and crossfmpmi.

FM instrument models

+ fmb3
o fmbell
o fmmetal
 fmpercfl
 fmrhode
» fmvoice

e fmwurlie

Granular Synthesis

The granular synthesis opcodes are:
 diskgrain

o fof

 fof2

» fog

e grain

e grain2

e grain3

e granule

86

Signal Generators

* partikkel
* partikkelsync
» sndwarp
» sndwarpst
* syncgrain
 syncloop

e vosSim

Hyper Vectorial Synthesis

* vphaseseg
* hvsl
* hvs2

* hvs3

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are:
* expon

* expcurve
* expseg

* expsega
° expsegr
» gaindider
* jspline

* line

* linseg

* linsegr

* logcurve
* loopseg
* loopsegp
* |pshold

* |psholdp

87

Signal Generators

e rspline
» scale
* transeg
e bpf

¢ linlin

» Xxyscale

Envelope Generators

The following envel ope generators are available;
o adsr

o madsr
o mxadsr
* Xadsr
* linen
* linenr
* envipx
o envipxr
* lineto
* tlineto

Consult the Linear and exponential generators section for additional methods to create envel opes.

Models and Emulations

The following opcodes model or emulate the sounds of other instruments (some based on the STK toolkit
by Perry Cook):

* bamboo
» barmodel
+ cabasa
 crunch
 dripwater
 gogobel

e guiro

88

Signal Generators

* mandol

* marimba

* moog

 sandpaper

* sekere

* shaker

* deighbells

o dtix

* tambourine

* vibes

* voice

Also, see the STK Opcodes section for information on the STK opcodes.
Other models and emulations
* lorenz

» planet

* prepiano

» Fractal Number (Mandelbrot set) generator: mandel
 chuap

* gendy

e gendyc

* gendyx

A section on physical modeling using the waveguide principles can be found here: Waveguide Physical
Modeling

Phasors

The opcodes that generate a moving phase value:
* ephasor

 phasor

* phasorbnk

* syncphasor

 phasor

89

Signal Generators

These opcodes are useful in combination with the Table access opcodes.

Random (Noise) Generators

Opcodes that generate random numbers are:
* betarnd
» bexprnd
 cauchy
* cuserrnd
* duserrnd
* dust

* dust2

e exprand
* fractalnoise
* gauss

* gausstrig
* linrand
* noise
 pcauchy
¢ pinkish
* pinker

* poisson
e rand

+ randh

* randi

* rnd31

* random
* randomh
* randomi
e trirand
* unirand

e urd

90

Signal Generators

* weibull
o jitter

o jitter2

* trandom

See seed which setsthe global seed valuefor all x-class noise generators, aswell as other opcodesthat use
arandom call, such as grain. rand, randh, randi, rnd(x) and birnd(x) are not affected by seed.

See also functions which generate random numbers in the section Random Functions.

Sample Playback

Opcodes that implement sample playback and looping are:
* bbcutm

* bbcuts

* flooper

« flooper2
* loscil

* loscil3

* loscilx

* Iphasor

* |poscil

* |poscil3
* |poscila
* |poscilsa
* |poscilsa2
 sndloop
* waveset

See also the Signal Input section for other ways to input sound.

Soundfonts

Fluid Opcodes

The fluid family of opcodes wraps Peter Hannape's SoundFont 2 player, FluidSynth: fluidEngine for in-
stantiating a FluidSynth engine, fluidSetinterpMethod for setting interpolation method for a channel in a
FluidSynth engine, fluidLoad for loading SoundFonts, fluidProgramSelect for assigning presets from a

91

Signal Generators

SoundFont to a FluidSynth engine's MIDI channel, fluidNote for playing a note on a FluidSynth engine's
MIDI channel, fluidCCi for sending a controller message at i-time to a FluidSynth engine's MIDI channel,
fluidCCk for sending a controller message at k-rate to a FluidSynth engine's MIDI channdl. fluidControl
for playing and controlling loaded Soundfonts (using 'raw' MIDI messages), fluidOut for receiving audio
from asingle FluidSynth engine, and fluidAllOut for receiving audio from all FluidSynth engines.

e fluidAllOut

fluidCCi

o fluidCCk

* fluidControl

« fluidEngine

* fluidLoad

+ fluidNote

o fluidOut

« fluidProgramSelect

o fluidSetlnterpMethod

"Old" Soundfont opcodes

These opcodes can a so use soundfonts to generate sound. sfplay etc. were created for one purpose -- to use
the samplesin SoundFonts. The fluid opcodes were created for another purpose -- to use SoundFonts more
or less the way they were designed to be used, i.e. using keyboard mappings, layers, internal processing,
etc.

o dfilist

o dfinstr

o Sfinstr3

* dfinstr3m

* sfinstrm

* sfload

* sfpassign

» sfplay

» sfplay3

* sfplay3m

o sfplaym

* sflooper

o Sfplist

92

Signal Generators

o dfpreset

Scanned Synthesis

Scanned synthesis is a variant of physical modeling, where a network of masses connected by springs
is used to generate a dynamic waveform. The opcode scanu defines the mass/spring network and sets it
in motion. The opcode scans follows a predefined path (trajectory) around the network and outputs the
detected waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio,
or as controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentially, this offers the possi-
bility of reconnecting the massesin different orders, causing the signal to propagate quite differently. They
do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the effect of
“molding” this surfaceinto aradically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the fol-
lowing grid describing the possible connections:

1 2 3 4

NEFIENE

Whenever two masses are connected, the point they defineis 1. If two masses are not connected, then
the point they defineis 0. For example, aunidirectional string has the following connections: (1,2), (2,3),
(3,4). If itisbidirectional, it also has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix appears:

1 2 3 4
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

The above table format of the connection matrix is for conceptual convenience only. The actual values
shown in te table are obtained by scans from an ASCI| file using GEN23. The actual ASCII fileis created
from the table model row by row. Therefore the ASCI| file for the example table shown above becomes:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use
many more masses than four, so their matrices will be much larger and more complex. See the example
in the scans documentation.

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, centering,
and damping can cause the system to “blow up” and the most interesting sounds to emerge from your
loudspeakers!

93

Signal Generators

The supplement to this manual contains atutorial on scanned synthesis. The tutorial, examples, and other
information on scanned synthesisis avail able from the Scanned Synthesis page at cSounds.com.

Scanned synthesis devel oped by Bill Verplank, Max Mathews and Rob Shaw at Interval Research between
1998 and 2000.

Opcodes that implement scanned synthesis are:
* scanhammer

* scans

* scantable

* scanu

* Xscanmap

* Xscans

* Xscansmap

* XScanu

Table Access

The opcodes that access tables are:
* oscill
* oscilli
» osciln
» oscilx
* table
* table3
* tablei

Opcodes ending in ‘i implement linear interpolation and opcodes ending in '3' implement cubic interpo-
lation.

The following opcodes implement fast table reading/writing without boundary checks:
* tab

o tab i

* tabw

o tabw i

See the sections Table Queries, Read/Write Operationsand Table Reading with Dynamic Selection for
other table operations.

94

Signal Generators

Note

Although tables with a size which is not a power of two can be created using anegative size
(seef score statement), some opcodes will not accept them.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesisiswterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are:
* pluck
 repluck

» wgbow

» wgbowedbar
e wgbrass

* wgclar

* wgflute

« wgpluck

» wgpluck2

* wguidel

e wguide2

95

Signal Input and Output
File Input and Output

The opcodes for file input and output are:

* File open/close: fiopen and ficlose.

File output: dumpk, dumpk2, dumpk3, dumpk4, fout, fouti, foutir foutk and hdfSwrite

Fileinput: readk, readk2, readk3, readk4, fin, fini and fink

Utilities for use with the fout opcodes: clear, vincr

 Printing to afile: fprints and fprintks

Signal Input

The opcodes that receive audio signals are:

» Synchronousinput: in, in32, inch, inh, ino, ing, inrg, ins and inx
* File streaming: diskin, diskin2 soundin and hdf5read

» User defined channel input: invalue

* Streaming input: soundin

» Websocket input: websocket

* Direct to zak input: inz

See the section Software Bus for input and output through the API.

The mp3in alows reading of mp3 files, which are currently not supported by ordinary reading methods
inside Csound.

Signal Output

The opcodes that write audio signals are:

 Synchronous output; out, out32, outc, outch, outh, outo, outrg, outg, outql, outg2, outg3, outg4, out-
s,outsl, outs2 outx and hdfSwrite

* Streaming output: soundout and soundouts
» User defined channel output: outvalue

« Direct from zak output: outz

» Websocket output: websocket

The opcode monitor can be used for monitoring the complete output of csound (the output spout frame).

96

Signal Input and Output

See the section Software Bus for input and output through the API.

Software Bus

Csound implements a software bus for internal routing or routing to external software calling the Csound
API.

The opcodes to use the software bus are:
e chn k

e chn a

e chn_S

* chnclear

* chnexport

o chnmix

e chnparams

Printing and Display
Opcodes for printing and displaying values are:
o dispfft
« display
« flashtxt
e print
o printf
o printf_i
o printk
e printk2
* printks

e prints

Sound File Queries

The opcodes that query information about files are:
« filelen
« filenchnls

. filepeak

97

Signal Input and Output

o filesr

* filevalid

98

Signal Modifiers

Amplitude Modifiers and Dynamic processing

The opcodes that modify amplitude are:
* balance

¢ compress

» clip

* dam

e gain

The opcode Odbfs facilitates the use of amplitude by removing the need to use of explicit sample values.

Convolution and Morphing

The opcodes that convolve and morph signals are:
» convolve also called convie

* Cross2

* dconv

* ftconv

o ftmorf

* pconvolve

Delay
Fixed delays

» delay

» delayl

 delayk
Delay Lines

. delayr

. delayw

 deltap

99

Signal Modifiers

 deltap3
* deltapi
 deltapn
 deltapx

* deltapxw

Variable delays
e vdelay
* vdelay3
* vdelayx
» vdelayxs
 vdelayxq
* vdelayxw
* vdelayxwq

» vdelayxws

Multitap delays

o multitap
Panning and Spatialization

Amplitude spatialization

* locsend
* locsig
* pan

e pan2
* space
e spdist

* gpsend

3D spatialization with simulation of room acoustics

e spat3d

100

Signal Modifiers

* spat3di

* spat3dt

Vector Base Amplitude Panning

» vbapl6

 vbapl6move

* vbap4

* vbapdmove

» vbap8

« vbap8move

« vbaplsinit

* vbapz

 vbapzmove

Binaural spatialization

e hrtfer
e hrtfmove
e hrtfmove2

o hrtfstat

Ambisonics

» bformdec

* bformenc

Reverberation

The opcodes one can use for reverberation are:
» alpass

* babo

» comb

* freeverb

* nestedap

e nreverb (also called reverb2)

101

Signal Modifiers

reverb
reverbsc
valpass

vcomb

Sample Level Operators

The opcodes one may use to modify signals are:

a(k)
denorm
diff
downsamp
fold

i(k)

integ
interp

k(i)

ntrpol
samphold
upsamp
vaget

vaset

Signal Limiters

Opcodes that can be used to limit signals are:

limit
mirror

wrap

Special Effects

Opcodes that generate special effects are:

distort

102

Signal Modifiers

distortl
exciter
flanger
harmon
phaserl

phaser2

Standard Filters

Resonant Low-pass filters

areson
lowpass2
lowres
lowresx
Ipf18
moogvcf
moogladder
mvclpfl
mvclpf2
mvclpf3
mvclpfd
reson
resonr
resonx
resony
resonz
rezy
statevar
svfilter
tbvcf

viowres

103

Signal Modifiers

barez

Standard filters

Hi-pass filters: atone, atonex, mvchpf
Low-pass filters: tone, tonex
Biquad filters: biquad and biquada.

Butterworth filters: butterbp, butterbr, butterhp, butterlp (which are also called butbp, butbr, buthp,
butlp)

Generadl filters; clfilt

Zero-delay Feedback Filters (Virtual Analog)

zdf 1pole

zdf _1pole mode
zdf_2pole
zdf_2pole_mode
zdf _ladder
diode_|ladder
K35_hpf

K35_Ipf

Control signal filters

aresonk
atonek
lineto
port
portk
resonk
resonxk
tlineto
tonek
sc lag

sc_lagud

104

Signal Modifiers

Specialized Filters
High pass filters

» dcblock

* dcblock2
Parametric EQ

* pareq

* rbjeq

« eqfil
Other filters

* nifilt

* filter2

fofilter
* hilbert
* mode

o Zilter2

Waveguides

The opcodes that use waveguides to modify asignal are:
e streson
* wguidel

* wguide2

Waveshaping and Phase Distortion

These opcodes can perform dynamic waveshaping or phaseshaping (a.k.a. phase distortion). They differ
from traditional table-based methods of waveshaping by directly calculating the transfer function with
one or more variable parameters for affecting the amount or results of the shaping. Most of these opcodes
could be used on either an audio signal (for waveshaping) or a phasor (for phaseshaping) but tend to work
best for one of these applications.

These opcodes are good for waveshaping:
* chebyshevpoly

e clip

105

Signal Modifiers

* distort

* distortl

* polynomial

 powershape

These opcodes are good for phaseshaping:
* pdclip

* pdhalf

* pdhalfy

106

Instrument Control
Clock Control

The opcodes to start and stop internal clocks are:
* clockoff
» clockon

These clocks count CPU time. There are 32 independent clocks available. Y ou can use the opcode read-
clock to read current values of a clock. See Time Reading for other timing opcodes.

Conditional Values

The opcodes for conditional valuesare==,>=,>,<,<=,and !=.

Duration Control Statements

The opcodes one can use to manipulate a note's duration are:
* ihold

* turnoff

* turnoff2

e turnon

For other realtime instrument control see Real-time Performance Control and I nstrument I nvocation.

FLTK Widgets and GUI controllers

Widgets allow the design of a custom Graphical User Interface (GUI) to control an orchestrain real-time.
They are derived from the open-sourcelibrary FLTK (Fast Light Tool Kit). Thislibrary isone of the fastest
graphic libraries available, supports OpenGL and should be source compatible with different platforms
(Windows, Linux, Unix and Mac OS). The subset of FL TK implemented in Csound providesthefollowing
types of objects:

Containers FLTK Containers are widgets that contain other widgets such as panels, windows,
etc. Csound provides the following container objects:

* Panels
 Scroll areas
* Pack

e Tabs

e Groups

107

Instrument Control

Vauators The most useful objects are named FLTK Valuators. These objects alow the user to
vary synthesisparameter valuesin real-time. Csound providesthefollowing val uator
objects:

o Sliders
* Knobs
* Rollers
» Textfields
e Joysticks
» Counters
Other widgets There are other FTLK widgets that are not valuators nor containers:

¢ Buttons

Button banks
e Labels
» Keyboard and Mouse sensing
Also there are some other opcodes useful to modify the widget appearance:
» Updating widget value.
* Setting primary and selection colors of awidget.
 Setting font type, size and color of widgets.
» Resizing awidget.
* Hiding and showing a widget.
There are also these general opcodes that allow the following actions:
* Running the widget thread: FLrun
* Loading snapshots containing the status of all valuators of an orchestra: FLgetsnap and FLIoadsnap.
 Saving snapshots containing the status of all valuators of an orchestra: FLsavesnap and FLsetsnap
* Setting the snapshot group of a declared valuator: FLsetShapGroup

Below is a simple example of Csound code to create a window. Notice that all opcodes are init-rate and
must be called only once per session. The best way to use them is to place them in the header section
of an orchestra, before any instrument. Even though placing them inside an instrument is not prohibited,
unpredictable results can occur if that instrument is called more than once.

Each container is made up of a couple of opcodes: the first indicating the start of the container block and
the last indicating the end of that container block. Some container blocks can be nested but they must not
be crossed. After defining all containers, a widget thread must be run by using the special FLrun opcode
that takes no arguments.

108

Instrument Control

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/mdi flags here according to platform
; Audi o out Audio in No nmessages

- odac -iadc -d ;o RT audio 1/0

; For Non-realtime ouput |eave only the Iine bel ow

; -0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

ckkkkkkkhkhkhkhkkhkkhkhkhhkhkhkkhkhkhkkhkk kK
’

sr=48000
kr =480

ksmps=100
nchnl s=1

;*** |t is recomrended to put alnost all GU code in the
; *** header section of an orchestra

FLpanel "Panel 1", 450, 550 ;***** start of contai ner
; some widgets should contained here
FLpanel End ;***xx end of container
FLrun ;*¥**** runs the widget thread, it is always required
instr 1
; put sone synthesis code here
endi n

ckkkkkkkhkkhkhkkhkkhkhkhkkkhkkhkhkhkkkkk kK
’

</ Csl nst runent s>
<CsScor e>
0 3600 ;dunmy table for realtime input

</ CsScor e>
</ CsoundSynt hesi zer >

The previous code simply creates a panel (an empty window because no widgets are defined inside the
container).

The following example creates two panels and inserts a slider inside each of them:

<CsoundSynt hesi zer >

<CsOpt i ons>

; Select audio/mdi flags here according to platform
; Audi o out Audio in No messages

- odac -iadc ; -d v RT audio I/0

; For Non-realtime ouput |eave only the Iine bel ow

; -0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

ckkkkkkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkk kK
’

sr=48000
kr =480
ksmps=100
nchnl s=1
FLpanel " Panel 1", 450, 550, 100, 100 ; ***** start of contai ner
gkl,iha FLslider "FLslider 1", 500, 1000, O ,1, -1, 300,15, 20,50
FLpanel End ;***xx end of container
FLpanel " Panel 2", 450, 550, 100, 100 ; ***** start of contai ner
gk2,ihb FLslider "FLslider 2", 100, 200, 0,1, -1, 300,15, 20,50
FLpanel End ;***xx end of container
FLrun ;*¥**** runs the widget thread, it is always required

109

Instrument Control

instr 1

; gkl and gk2 variables that contain the output of val uator

; Wi dgets previously defined, can be used inside any instrunent
printk2 gkl

printk2 gk2 ;print the values of the val uators whenever they change
endi n

ckkkkkkkhkkhkhkkhkkhkhkhkkhkhkhkhkhkhkkhkk kK
’

</ Csl nst runent s>
<CsScor e>
0 3600 ;dunmy table for realtinme input

</ CsScor e>
</ CsoundSynt hesi zer >

All widget opcodes are init-rate opcodes, even if valuators output k-rate variables. This happens because
an independent thread is run based on a callback mechanism. It consumes very few processing resources
since thereisno need of polling. (This differsfrom other MIDI based controller opcodes.) So you can use
any number of windows and valuators without degrading the real -time performance.

FLTK Containers

The opcodes for FLTK containers are:
* FLgroup

» FLgroupEnd

* FLpack

* FLpackend

* FLpane

* FLpanelEnd

* FLscrall

* FLscrollEnd

* FLtabs

* FLtabsEnd

FLTK Valuators

The opcodes for FLTK valuators are:
* FLcount
* FlLjoy

* FLknob

FLroller
* FLdlider

* FLtext

110

Instrument Control

Other FLTK Widgets

Other FLTK widget opcodes are:
» FLbox

* FLbutBank

* FLbutton

* FLexecButton

* FLkeyln

» FLhvsBox

* FLhvsBoxSetValue
* FLmouse

e FLprintk

e FLprintk2

» FLdlidBnk

» FLdlidBnk2

» FLdlidBnkGetHandle
» FLdlidBnkSet

» FLdidBnk2Set

* FLdidBnk2Setk

* FLvalue

» FLvkeybd

» FLvslidBnk

* FLvslidBnk2

* FlLxyin

Modifying FLTK Widget Appearance

The following opcodes modify FLTK widget appearance:
* FLcolor

* FLcolor2

¢ FLhide

* FLlabel

111

Instrument Control

General FLTK Widget-related Opcodes

FLsetAlign
FLsetBox
FLsetColor
FLsetColor2
FLsetFont
FLsetPosition
FLsetSze
FLsetText
FLsetTextColor
FLsetTextSze
FLsetTextType
FLsetVal_i
FLsetVal

FLshow

The general FLTK widget-related opcodes are:

FLgetsnap
FLloadsnap
FLrun
FLsavesnap
FLsetsnap
FLupdate

FLsetShapGroup

Instrument Invocation

The opcodes one can use to create score events from within a orchestra are:

* event

e event |

e scordine i

112

Instrument Control

* scoreline

» schedule

* schedwhen

* schedkwhen

* schedkwhennamed

The mute opcode can be used to mute/unmute instruments during a performance.

Instruments definitions can be removed using the remove opcode.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are:
* cggoto

* cigoto

 ckgoto

* cngoto

 esaf

* ese

* endif

 goto

o if

* igoto

» kgoto

* tigoto

* timout

Opcodes to create looping constructions are:
» loop_ge

* loop gt

* loop_le

* loop_lt

o until

+ while

113

Instrument Control

Warning
Some of these opcodes work at i-rate even if they contain k- or a rate comparisons. See the
Reinitialization section.

Real-time Performance Control

Opcodes that monitor and control real-time performance are:
* active

* cpuprc

* maxalloc

 prealloc

* jacktransport

The running csound process can be terminated using exitnow.

Initialization and Reinitialization

Opcodes used for the initialization of variables:
* init
o tival

e passign

o pset

The opcodes that can generate another initialization pass are:
* reinit

* rigoto

* rireturn

The opcode p can be used to find score p-fields at i- or k-rate.

nstrnum returns the instrument number for a named instrument.

Note

Note that a instrument may modify the p3 (duration) parameter at initialisation time. For
example statements like

iattack = 0.02

irel ease = 0.04

isustain = p3

p3 = iattack + isustain + irel ease

114

Instrument Control

arevalid.

Sensing and Control
TCL/TK widgets

 button
» checkbox
» control

o setetrl

Keyboard and mouse sensing

* sensekey (also called sense)
. xyin
Envelope followers
« follow
» follow2
. peak

e rms

Tempo and Pitch estimation

* ptrack
 pitch
e pitchamdf

. tempest

Tempo and Sequencing
e tempo
» miditempo
* tempoval
. seqtime
* seqgtime2

* trigger

115

Instrument Control

* trigseq
* timedseq

 changed

System

* getcfg

Score control

* rewindscore

* setscorepos

Stacks

Csound implements a global stack that can be accessed with the following opcodes:
+ stack

* pop

* push

* pop_f

* push f

Sub-instrument Control

These opcodes | et one define and use a sub-instrument:
* subinstr
* subinstrinit

See also the UDO and Orchestra Macros Macros section for similar functionality.

Time Reading

Opcodes one can use to read time values are:
* readclock

* rtclock

* timeinstk

* timeinsts

e times

116

Instrument Control

* timek

Y ou can obtain the system date using:

* date - Returns the number seconds since 1 January 1970.
* dates- Returns as a string the date and time specified.

Y ou can aso set up counters using clockoff and clockon.

117

Function Table Control

Refer to the f score statement, ftgen, ftgentmp, ftgenonce and the GEN Routines section for information
on creating tables.

Tables can be removed from memory using the ftfree opcode.

Tables by default, require a size which is a power of two. However tables with any size can be generated
by specifying the size as a negative number (see f score statement).

Note

Not all opcodes accept tables whose size is not a power of two, as this may be arequirement
for internal processing.

For information on table access, consult the section Table Access.

Tables for use with the loscilx opcode can be loaded using sndload.

Table Queries

Opcodes the query tables for information are:
* For tablesloaded from a sound file (using GENO1): ftchnls, ftcps,ftlen, ftiptim and ftsr
* For any table: nsamp, ftlen, tableng

The opcode tabsum cal culates the sum of valuesin atable.

Read/Write Operations

Opcodes that read and write to atable are:
« ftloadk

* ftload

o ftsavek

o ftsave

* tablecopy
* tablegpw
* tableicopy
* tableigpw
* tableimix
* tableiw

* tablemix

118

Function Table Control

* tablera

* tablew

* tablewa

* tablewkt
 tabmorph

* tabmorpha
« tabmorphak
* tabmorphi
* tabrec

* tabplay

o ftmorf
Table values can be accessed within expressions using the tb family of opcodes.

Many oscillators are in fact specialized table readers. See the Basic oscillators section.

Table Reading with Dynamic Selection

Opcodes that let one dynamically (at k-rate) select tables are:
* tableikt

o tablekt

o tablexkt

119

Mathematical Operations

Amplitude Converters

Opcodes to convert between different amplitude measurements are:
e ampdb

o ampdbfs

o db

» dbamp

 dbfsamp

Use rmsto find the rms value of asignal. See also Odbfs for another way to handle amplitudes in csound.

Arithmetic and Logic Operations

Opcodes that perform arithmetic and logic operationsare -, +, &&, ||, *, /, *, and %.

See the Conditional Values section and the if family of opcodes for usage of logical operators.

Comparators and Accumulators

The following opcodes perform comparisons between signals at a-rate or k-rate, find maxima or minima,
or accumulate the results of several computations or comparisons:

* max
e max_k

* maxabs

» maxabsaccum
e maxaccum

e min

e minabs

* minabsaccum
e minaccum

* vincr

» clear

s cmp

120

Mathematical Operations

Mathematical Functions

Opcodes that perform mathematical functions are:

abs

ceil

exp

floor

frac

int

log

log10
logbtwo
pow
power shape
powoftwo

round

sgrt

Opcode Equivalents of Functions

Opcodes that perform the equivalent of mathematical functions are:

chebyshevpoly
divz

mac

maca
polynomial
pow

product

sum

taninv2

Random Functions

Opcodes that perform random functions are:

121

Mathematical Operations

e birnd
e rnd

See the section Random (Noise) Generators for opcodes that generate random signals.

Trigonometric Functions

Opcodes that perform trigonometric functions are;
* cos, cosh and cosinv
* sin, sinh and sininv

 tan, tanh, taninv, and taninv2.

122

Mathematical Operations

Linear Algebra Opcodes

Linear Algebra Opcodes — Scalar, vector, and matrix arithmetic on real and complex values.

Description

These opcodes implement many linear algebra operations, from scalar, vector, and matrix arithmetic up to
and including QR based eigenvalue decompositions. The opcodes are designed for digital signal process-
ing, and of course other mathematical operations, in the Csound orchestra language.

The numerical implementation uses the gmm-++ library from home.gna.org/getfemygmm intro [http://
home.gna.org/getfem/gmm_intro].

. Warning
For applications with f-sig variables, array arithmetic must be performed only when the f-
sig is"current,” because f-rate is some fraction of k-rate; currency can be determined with
thela_k_current_f opcode.

For applications using assignments between real vectorsand a-rate variables, array arithmetic
must be performed only when the vectors are "current", because the size of the vector may
be some integral multiple of ksmps; currency can be determined by means of the la_k_cur-
rent_vr opcode.

Table4. Linear Algebra Data Types

Mathematical Type Code Corresponding Csound Type or
Types

real scalar r i-rate or k-rate variable

complex scalar c pair of i-rate or k-rate variables,
e.g. "kr, ki"

real vector vr i-rate variable holding address of
array

real vector a arate variable

real vector t function table number

complex vector vC i-rate variable holding address of
array

complex vector f fsig variable

real matrix mr i-rate variable holding address of
array

complex matrix mc i-rate variable holding address of
array

All arrays are O-based; the first index iterates rows to give columns, the second index iterates columns
to give elements.

All arrays are general and dense; banded, Hermitian, symmetric and sparse routines are not implemented.

123

http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro

Mathematical Operations

An array can be of type codevr, vc, mr, or mc and is stored in ani-rate object. In orchestracode, an array is
passed asaMYFLT i-rate variable that contains the address of the array object, whichisactually stored in
the allocator opcode instance. Although array variables are i-rate, of course their values and even shapes
may change at i-rate or k-rate.

All operands must be pre-allocated; except for the creation opcodes, no opcode ever allocates any arrays.
Thisistrue even if the array appears on the | eft-hand side of an opcode! However, some operations may
reshape arrays to hold results.

Arrays are automatically deallocated when their instrument is deall ocated.

Not only for more efficient performance, but also to make it easier to remember opcode names, the per-
formance rate, output value types, operation names, and input value types are deterministically encoded
into the opcode name:

1. "Ia" for "linear algebra opcode family".
2. "i" or "k" for performance rate.

3. Type code(s) (see above table) for output value(s), but only if the type is not implicit from the input
values.

4. Operation name: common mathematical name (preferred) or abbreviation.
5. Type code(s) for input values, if not implicit.

For additional details, see the gmm++ documentation at http://download.gna.org/getfem/doc/gm-
muser.pdf.

Syntax

Array Creation
ivr la_i_vr_create irows
Create areal vector with irows rows.
ive la_i_vc_create irows
Create a complex vector with irows rows.
inm la_i_nr_create irows, icolums [, odiagonal]
Create areal matrix with irows rows and icolumns columns, with an optional value on the diagonal.
inmc la_i_nt_create irows, icolums [, odiagonal _r, odiagonal _i]

Create a complex matrix with irows rows and icolumns columns, with an optional complex value on the
diagonal.

Array Introspection
i rows la_i_size_vr ivr
Return the number of rowsin real vector ivr.
i rows la_i _size_vc ive

Return the number of rows in complex vector ivc.

124

http://download.gna.org/getfem/doc/gmmuser.pdf
http://download.gna.org/getfem/doc/gmmuser.pdf

Mathematical Operations

irows, icolums la_i_size_nr inr

Return the number of rows and columnsin real matrix imr.

irows, icolums la_i_size_nt inmc

Return the number of rows and columns in complex matrix imc.

kfiscurrent la_k_current _f fsig

Return 1 if fsig is current, that is, if the value of fsig will change on the next kperiod.

kvri scurrent la_k_current _vr ivr

Return 1 if the real vector ivr is current, that is, if Csound's current audio sample frame stands at index
0 of the vector.

la_i_print_vr ivr
Print the value of real vector ivr.

la_i _print_vc ive
Print the value of complex vector ivc.

la_i_print_nr i
Print the value of real matrix imr.

la_i_print_nt imc

Print the value of complex matrix imc.

Array Assignment and Conversion
ivr | a_i _assign_vr ivr
Assign the value of the real vector on the right-hand side to the real vector on the left-hand side, at i-rate.
ivr | a_k_assi gn_vr ivr

Assign the value of thereal vector on the right-hand side to the real vector on the left-hand side, at k-rate.

ive la_i _assign_vc ive

ive la_k_assign_vc ivr

inr la_i _assign_nr inr

inr la_k_assign_nr i

imc la_i _assign_nt imc

imc la_k_assign_nt inr
Warning

Assignments to vectors from tables or fsigs may resize the vectors.

Assignmentsto vectors from a-rate variables, or to a-rate variablesfrom vectors, will be per-
formed incrementally, one chunk of ksmps elements per kperiod. Therefore, array arithmetic
on such vectors should only be performed when the vectors are current, as determined by
thela k_currrent_vr opcode.

125

Mathematical Operations

ivr

ivr

ivr

ive

asig

i tabl enum
i tabl enum

fsig

la_k_assign_a
la_i_assign_t
la_k_assign_t
| a_k_assign_f
la_k_a_assign
la_i_t_assign
la_k_t_assign

la_k_f_assign

Fill Arrays with Random Elements

ivr

ivr

ive

ive

inr

inr

i nc

inc

Array Element Access

ivr

kvr

ive

kve

inr

knr

i nc

knc

i val ue

kval ue

ivalue_r, ivalue_i
kval ue_r, kval ue_i
i val ue

kval ue

ivalue_r, ivalue_i

kval ue_r, kval ue_i

Single Array Operations

inr

la_i _randomvr
la_k_randomvr
la_i _randomyvc
| a_k_random vc
la_i _randomnr
la_k_random nr
la_i _randomnt

la_k_random nt

la_i_vr_set
la_k_vr_set
la_i_vc_set
la_k_vc_set
la_i nr_set
la_k nr_set
la_i_nt_set
la_k_nt_set
la_i_get_vr
la_k_get_vr
la_i _get_vc
la_k_get_vc
la_i_get_m
la_k_get_nr
la_i_get_nt

la_k_get_nt

la_i _transpose_nr

asig
i t abl enunber

i tabl enunber

fsig

ivr

ivr

ivr

ive
[ifill_fracti
[kfill_fracti
[ifill_fracti
[kfill_fracti
[ifill_fracti
[kfill_fracti
[ifill_fracti
[kfill_fracti

irow, ivalue

krow, kval ue

irow, ivalue_

krow, kval ue_

on]
on]
on]
on]
on]
on]
on]

on]

r, ivalue_i

r, kval ue_i

irow, icolum, ivalue

krow, kcol um, ival ue

irow, icolum, ivalue_r,

krow, kcolum, kval ue_r,

ivr, irow
ivr, krow
ive, irow
ive, krow

inmr, irow, icolum

inr, krow, kcolum

inmc, irow, icolum

inmc, krow, kcolum

inr

ival ue_i

kval ue_i

126

Mathematical Operations

inr la_k_transpose_nr inr
inmc la_i _transpose_nt inmc
inmc la_k_transpose_nt inmc
ivr la_i _conjugate_vr ivr
ivr I a_k_conjugate_vr ivr
ive la_i _conjugate_vc ive
ive | a_k_conjugate_vc ive
inm la_i _conjugate_nr inm
inm la_k_conjugate_nr inm
imc | a_i _conjugate_nt imc
inmc | a_k_conjugate_nt inmc

Scalar Operations

ir la_i _nornl_vr ivr
kr la_k_nornil_vr ive
ir la_i _norml_vc ive
kr la_k_norml_vc ive
ir la_i _norml_nr i
kr la_k_norml_nr inm
ir la_i _norml_nt imc
kr la_k_nornil_nt inc
ir la_i _normeuclid_vr ivr
kr l'a_k_norm euclid_vr ivr
ir la_i _normeuclid_vc ive
kr la_k_normeuclid_vc ive
ir la_i _norm euclid_nr nmr
kr l'a_k_norm euclid_nr mr
ir la_i_normeuclid_nt m/c
kr la_k_normeuclid_nt m/c
ir la_i _di stance_vr ivr
kr la_k_di stance_vr ivr
ir la_i _distance_vc ive
kr I a_k_di stance_vc ive
ir l'a_i _nor m nmax inr
kr I a_k_nor m max inmc
ir I a_i _norm max i
kr l'a_k_nor m nmax imc
ir la_i _norm.inf_vr ivr

127

Mathematical Operations

la_k_norm.inf_vr
la_i_norminf_vc
la_k_norm.inf_vc
la_i _norm.inf_nr
la_k _norm.inf_nr
la_i_norm.inf_nc
la_k_norm.inf_nc
la_i_trace_nr
la_k_trace_nr
la_i_trace_nt
la_k_trace_nt
la_i_lu_det
la_k_lu_det

la_i _|u_det

la_k_lu_det

Elementwise Array-Array Operations

ivr

ive

inmc

Inner Products

ir

kr

la_i _add_vr
la_k_add_vc

la_i _add_nr
la_k_add_nt

la_i _subtract _vr
|l a_k_subtract_vc
la_i_subtract_nr
la_k_subtract_nc
la_i _multiply_vr
la_k_multiply_vc
la_i_multiply_nr
la_k_multiply_nc
la_i_divide_vr
la_k_divide_vc
la_i _divide_nr

la_k_divide_nt

la_i_dot _vr
la_k_dot _vr

la_i _dot_vc

3 3 3 3 3 3 33 3 3 3 3

ivr_a,
ivec_a,
inr_a
inc_a
ivr_a,
ivc_a,
inr_a,
inmc_a
ivr_a,
ivc_a,
inr_a,
inmc_a
ivr_a,
ivc_a,
inr_a,

inc_a

ivr_a,
ivr_a,

ivc_a,

ivr_b
ivc_b
inr_b
inmc_b
ivr_b
ivc_b
inr_b
inmc_b
ivr_b
ivc_b
inr_b
inmc_b
ivr_b
ivc_b
inr_b

inmc_b

ivr_b
ivr_b

ivc_b

128

Mathematical Operations

kr, Ki
i
inr
inc
inmc
ivr
ivr
ive

ive

Matrix Inversion
inr, icondition
inr, kcondition
imc, icondition

inmc, kcondition

la_k_dot _vc
la_i_dot_nmr
la_k_dot_nmr
la_i _dot_nt
la_k_dot_nt
la_i_dot_nr _vr
la_k_dot_nr_vr
la_i _dot_nt_vc

la_k_dot_nt_vc

la_i_invert_nr
la_k_invert_nr
la_i_invert_nt

la_k_invert_nt

Matrix Decompositions and Solvers

ivr
ivr
ive
ive
ivr
ivr
ive

ive

inr, ivr_pivot,
inr, ivr_pivot,
imc, ivr_pivot,

inmc, ivr_pivot,

ivr_x
ivr_x
ivc_x
ive_x
inr_q,
inr_q
int_q
inmc_q

ivr_ei

inmr_r
inmr_r
inmc_r
imc_r

g_vals

i size
ksi ze
isize

ksi ze

I a_i _upper_sol ve_nr
| a_k_upper_sol ve_nr
la_i _upper_solve_nt
| a_k_upper_sol ve_nt
la_i _| ower_sol ve_nr
la_k_|l oner _sol ve_nr
la_i _| owner_solve_nt
la_k_| ower _sol ve_nt
la_i _lu_ factor_nmr
la_k_lu_factor_m
la_i _lu_factor_nt
la_k_lu_factor_nt
la_i _lu_solve_m
la_k_lu_solve_nr
la_i_lu_solve_nt
la_k_lu_solve_nt
la_i_qr_factor_mr
la_k_qr_factor_nr
la_i_qgr_factor_nt
la_k_qgr_factor_nt

la_i _qr_eigen_nr

ivc_a, ivc_b

inr_a, inmr_b

inr_a, inr_b

imc_a, inmc_b

inc_a, inc_b

inr_a, ivr_b

inr_a, ivr_b

inc_a, ivc_b

inmc_a, ivc_b

3 3 3 3

3 3 3 2 3 3 3 3% 82 3 3 3 3 3 3 3 3 38 3 =2 3

[, j_1_diagonal]
[, j_1_diagonal]
[, j_1 diagonal]
[, j_1_diagonal]
[, j_1_diagonal]
[, j_1 _diagonal]
[, j_1_diagonal]
[, j_1_diagonal]

ivr_b

ivr_b

ivc_b

ivc_b

i _tolerance

129

Mathematical Operations

ivr_eig_vals la_k_qr_eigen_nr inr, k_tolerance

ivr_eig_vals la_i_qgr_eigen_nt inmc, i_tolerance

ivr_eig_vals la_k_qgr_eigen_nt inmc, k_tolerance
Warning

Matrix must be Hermitian in order to compute eigenvectors.

ivr_eig vals, im_eig_vecs la_i_gr_symeigen_nr inr, i_tolerance
ivr_eig_vals, inmr_eig_vecs la_k_gr_symeigen_nr inr, k_tolerance
ivc_eig_vals, inc_eig_vecs la_i_gr_symeigen_nc int, i_tolerance

ivc_eig vals, inc_eig_vecs la_k gr_symeigen_nc int, k_tolerance

Credits

Michael Gogins

New in Csound version 5.09

130

Mathematical Operations

Array Opcodes

Array Opcodes

Variable Name

An array must be created (viainit or fillarray) askMyName ending brackets. The brackets determine
the dimensions of the array. So,
kArr[] init 10

creates aone-dimensional array of length 10, whereas

KArr[][] init 10, 10
creates atwo-dimensional array with 10 rows and 10 columns.

After theinitalization of the array, referring to the array asawholeis done any brackets. Brackets
areonly used if an element isindexed:

KArr[] init 10 ;with brackets because of initialization
kLen = |l enarray(kArr) ;W thout brackets
kFirstEl = kArr[0] ;indexing with brackets

The same syntax is used for asimple copy viathe '=" operator:

kArr1[] fillarray 1, 2, 3, 4, 5
kArr2[] = kArrl ;creates kArr2 as copy of kArrl

k-rate

Note that most array operations are currently k-rate only. So like any other k-rate opcode, an operation on
arrayswill be automatically repeated every k-cycle. For instance, this code will repeat re-writing the array
with different random values every k-cycle, aslong as the instrument runs:

kArr[] init 10

klndx =20

until klndx == lenarray(kArr) do
kArr[klndx] rnd31 10, O
klndx += 1

od

If you want to avoid this, you must organizeit in one of the usual ways, for instance by using atrigger:

kArr[] init 10
kTrig metro 1

if kTrig == 1 then ;do the follow ng once a second
klndx =0
until klndx == lenarray(kArr) do
kArr[klndx] rnd31 10, O
kl ndx += 1
od
endi f

131

Mathematical Operations

Creation/Initialization

The usual way to create an array iswith init:

KArr[] init 10 ;creates one-di nensional array with length 10
KArr[][] init 10, 10 ;creates two-di nensional array

A one-dimensional array can also be created and filled with distinct values by the opcode fillarray. This
line creates a vector with length 4 and putsin the numbers[1, 2, 3, 4]:

kArr[] fillarray 1, 2, 3, 4

Length

The function lenarray(kArr) reports the length of an array. See example for function lenarray.

Copy Arrays to/from Tables

copyf2array kArr, kfn

copies data from an ftable to a vector.

copya2ftab kArr, kfn

copies data from a vector to an function table.

See examples for opcodes copyf2array and copya2ftab.

Array Operations: Math

+, -, * /on a Number

If the four basic math operators are used between an array and a scalar (number), the operation is applied
to each element. The safest way to do thisisto store the result in anew array:

kArr1[] fillarray 1, 2, 3

kArr2[] = kKArrl + 10 i (kArr2 is now [11, 12, 13])

Here is an example of array/scalar operations. It uses the file array_scalar_math.csd [exampledarray_s-
calar_math.csd].

Example 3. Example of array operations

<CsoundSynt hesi zer >
<CsOpt i ons>

-n -m28

</ CsOpti ons>

<Csl nst runment s>

instr 1

;create array and fill wth nunmbers 1..10
kArr1[] fillarray 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

;print content

132

examples/array_scalar_math.csd
examples/array_scalar_math.csd
examples/array_scalar_math.csd

Mathematical Operations

printf "9%", 1, "\nlnitial content:\n"

kndx = 0
until kndx == lenarray(kArrl) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KArr1[kndx]
kndx += 1
od
;add 10
kArr2[] = kArrl + 10

;print content
printf "%", 1, "\nAfter adding 10:\n"

kndx = 0
until kndx == lenarray(kArr2) do
printf "kKArr[%l] = %\n", kndx+1l, kndx, KArr2[kndx]
kndx += 1
od

;subtract 5
kArr3[] = kArr2 - 5

;print content
printf "%", 1, "\nAfter subtracting 5:\n"

kndx = 0
until kndx == lenarray(kArr3) do
printf "kKArr[%l] = %\n", kndx+1l, kndx, KArr3[kndx]
kndx += 1
od

;multiply by -1.5
kArr4[] = kArr3 * -1.5

;print content
printf "%", 1, "\nAfter multiplying by -1.5:\n"

kndx = 0
until kndx == lenarray(kArr4) do
printf "KArr[%l] = %\n", kndx+1l, kndx, KArr4[kndx]
kndx += 1
od

;divide by -3/2
kArr5[] = kArrd | -(3/2)

;print content
printf "%", 1, "\nAfter dividing by -3/2:\n"

kndx = 0
until kndx == lenarray(kArr5) do
printf "kKArr[%l] = %\n", kndx+1l, kndx, KArr5[kndx]
kndx += 1
od
;turnof f
turnof f
endin

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

+, -, ¥,/ on a Second Array

If the four basic math operators are used between two arrays, the operation is applied element by element.
Theresult can be straightforward stored in anew array:

133

Mathematical Operations

kArr1[] fillarray 1, 2, 3
kArr2[] fillarray 10, 20, 30
kArr3[] = KArrl + kArr2 i (kArr3 is now [11, 22, 33])

Here is an example of array operations. It uses the file array_array _math.csd [examples/array_ar-
ray_math.csd].

Example 4. Example of array operations

<CsoundSynt hesi zer >
<CsOpti ons>

-n -m28

</ CsOpti ons>

<Csl nstrunent s>

instr 1
;create array and fill with numbers 1..10 resp .1..1
kArr1[] fillarray 1, 2, 3, 4, 5 6, 7, 8, 9, 10
kArr2[] fillarray 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

;print contents
printf "o%", 1, "\nkArrl:\n"

kndx = 0
until kndx == lenarray(kArrl) do
printf "kArr1[%l] = %\n", kndx+1, kndx, KArr1[kndx]
kndx += 1
od
printf "o%", 1, "\nkArr2:\n"
kndx = 0
until kndx == lenarray(kArr2) do
printf "kArr2[%l = %\n", kndx+1, kndx, KArr2[kndx]
kndx += 1
od

;add arrays
kArr3[] = kArrl + KArr2

;print content
printf "9%", 1, "\nkArrl + kArr2:\n"

kndx = 0
until kndx == lenarray(kArr3) do
printf "kArr3[%l] = %\n", kndx+1, kndx, KArr3[kndx]
kndx += 1
od

;subtract arrays
kArr4[] = kArrl - KArr2

;print content
printf "9%", 1, "\nkArrl - kArr2:\n"

kndx = 0
until kndx == lenarray(kArr4) do
printf "kArr4[%l = %\n", kndx+1, kndx, KArr4[kndx]
kndx += 1
od

;multiply arrays
kArr5[] = kArrl * KArr2

;print content
printf "9%", 1, "\nkArrl * kArr2:\n"
kndx = 0
until kndx == lenarray(kArr5) do

134

examples/array_array_math.csd
examples/array_array_math.csd
examples/array_array_math.csd

Mathematical Operations

printf , kndx+1, kndx, kArr5[kndx]
kndx += 1
od
;divide arrays
kArr6[] = kArrl / KArr2
;print content
printf Y
kndx = 0
until kndx == lenarray(kArr6) do
printf , kndx+1, kndx, kArr6[kndx]
kndx += 1
od
; turnof f
t ur nof f
endi n

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

Map a Function to an Array

kArr Res maparray kArrSrc, "fun"
maps the k-rate 1-arg function in the string to every element of the vector.
Possible functions are for instance abs, ceil, exp, floor, frac, int, log, 10910, round, sgrt. Thisisasimple

example:

kArrSrc[] fillarray 1, 2, 3, 4, 5
kArrRes[] init 5
kArr Res maparray KkArrSrc, "sqrt"

See example for opcode maparray.
Array Operations: min, max, sum, scale, slice
Minimum and Maximum

kMn [,kM nlndx] mnarray kArr

returns the smallest value in an array, and optionally its index.

kMax [, kMaxl ndx] nmaxarray KArr

returns the largest value in an array, and optionally its index. See examples for opcodes minarray and
maxarray.

Sum

135

Mathematical Operations

kSum sumarray KArr

returns the sum of all valuesin kArr. See example for opcode sumarray.

Scale
scal earray kArr, kM n, kMax
scales all valuesin kArr between kMin and kMax.
kArr[] fillarray 1, 3, 9, 5, 6
scalearray kArr, 1, 3
changeskArr to [1, 1.5, 3, 2, 2.25]. See example for opcode scalearray.
Slice

slicearray kArr, iStart, iEnd
returns aslice of kArr from index iStart to index iEnd (included).

The array for receiving the slice must have been created in advance:

KArr[] fillarray 1, 2, 3, 4, 5 6, 7, 8 9

KArri1[] init 5

KArr2[] init 4

kArr1 slicearray kArr, 0, 4 [1, 2, 3, 4, 5]
kArr2 slicearray kArr, 5, 8 [6, 7, 8, 9]

See example for opcode dlicearray.

Arrays in UDOs

The dimension of an input array must be declared in two places:
» ask[] or k[][] in the type input list
» askName[], kName[][] etc in the xin list.

For instance :

opcode FirstEl, k, K[]
;returns the first elenent of vector KArr
kKArr[] xin
xout kArr[0]
endop

Here isan example of an array in an UDO. It uses the file array_udo.csd [examples/array_udo.csd].

Example 5. Example of an array in an UDO

<CsoundSynt hesi zer >
<CsOpti ons>
-nnl28

136

examples/array_udo.csd
examples/array_udo.csd

Mathematical Operations

</ CsOpti ons>
<Csl nstrunent s>

opcode FirstEl, k, Kk[]

;returns the first elenent of vector KArr
kKArr[] xin
xout KkArr[0]

endop

instr 1
kArr[] fillarray 6, 3, 9, 5, 1
kFirst FirstEl KArr
printf "kFirst = %\n", 1, kFirst
t ur nof f

endi n

</ Csl nstrunent s>
<CsScor e>

i 10.1

</ CsScor e>

</ CsoundSynt hesi zer >

Note that if an opcode (for example inrg), alters arguments on its right hand argument list, an array index
should not be used there. Unlike anormal variable, the array won't changed by the opcode.

Credits

This manual page has been written by Joachim Heintz.
July 2013

New in Csound 6.00

137

Pitch Converters

Functions

Opcodes that provide common pitch functions are:
 cent

e cpsmidinn
* cpsoct

* cpspch

* octave

* octcps

» octmidinn
 octpch

e pchmidinn
* pchoct

* semitone

Tuning Opcodes

Opcodes that provide tuning functions are:
* cps2pch
* cpsxpch
* cpstun

* cpstuni

138

Real-time MIDI Support

Csound supports realtime MIDI input and output, as well as input from MIDI files. Reatime MIDI input
is activated using the -M (or --midi-device=DEVICE) command line flag. Y ou must specify the device
number or name after the -M. For example to use device number 2, you would use something like:

csound -M2 myrtmidi.csd
Y ou can find out the available devices by using an out of range device:

csound -M99 myrtmidi.csd

Note

This will only work if the MIDI module can be accessed by device number. For alsa, you
must first find the device name using:

cat /proc/asound/cards
Y ou must then use something like:
csound -+rtmidi=alsa-M hw:3 myrtmidi.csd
Realtime MIDI output is activated using -Q, using device number or names as shown above.

Y ou can also load aMIDI file using the -F or --midifile=FILE command lineflag. The MIDI fileisreadin
realtime, and behaves as if it was being performed or received in realtime. So the csound program is not
aware if MIDI input comes from aMIDI file or directly from aMIDI interface.

Once realtime MIDI input and/or output has been activated, opcodes like MIDI Input and MIDI Output
will have effect.

When MIDI input is enabled (with -M or -F), each incoming noteon message will generate anote event for
an instrument which has the same number as the channel of the event (This means that MIDI controlled
instruments are polyphonic by default, since each note will generate a new instance of the instrument.) If
you have 1 instrument only, Csound works in omni mode, ie. it responds to all channelsinto that single
instrument. If you have more than oneinstrument and instrs 1 - 16 , then by default instr 1 -> chn 1, instr 2
-> chn 2, unless you alter the mapping (see massign and pgmassign to change this behavior). If you have
more than one instrument, but instr N in between 1 - 16 is missing, then chn N will be routed by default
to the lowest order instrument.

Seethe MIDI/Score Interoperability opcodes for information on designing instruments which can be used
from the score or driven by MIDI.

There are several reatime MIDI modules available, you must use the -+rtmidi flag (See -+rtmidi), to
specify the module. The default module is portmidi which provides adegquate MIDI 1/0 on all platforms,
however for improved performance and reliability some platform specific modules are also provided.

Currently the midi modules available are:

» alsa- Tousethe ALSA midi system (Linux only)

* jack - To usethe Jack midi system

» winmme - To use the windows MME system (Windows only)

 portmidi - To use the portmidi system (al platforms). Thisis the default setting.

139

Real-time MIDI Support

e virtual - To use avirtual graphical keyboard (See below) as MIDI input (all platforms)

Tip

When csound runs, it will process the score and then quit. If there are no eventsin the score,
Csound will exit immediately. If you want to use only MIDI eventsinstead of score events,
you need to tell Csound to run for acertain amount of time. This can be done with adummy
f-statement like "f 0 3600".

Virtual MIDI Keyboard

1 Ao [] [&[0 []
2 Ao [] 7 & [o []
3 4 [o [] B 4 [o []
[4 [o [] El=-REERN
- 10 | SN

Channel [1 £ Bank [Bank 1 ~|Pragram [Acoustic ¢

All Motes Off

Virtual MIDI keyboard.

Thevirtual MIDI keyboard module (activated using -+rtmidi=virtual on the command line flags) provides
away of sending realtime MIDI information to Csound without the need of aMIDI device. It can send note
information, control changes, bank and program changes on a specified channel. The MIDI information
fromthevirtual keyboard isprocessed by Csound in exactly the sameway asMIDI information that comes
fromthe other MIDI drivers, so if your Csound orchestrais designed to work with hardware MIDI devices,
thiswill also work.

For the device flag (-M), the virtual keyboard uses this to take in the name of a keyboard mapping files.
Like all MIDI drivers, a device must be given to activate the driver. If you would like to just use the
default settings of the keyboard, smply passingin O (i.e. -MO0) and the virtual keyboard will useits default
settings. If instead of the 0 aname of afileisgiven, the keyboard will attempt to load thefile as akeyboard
mapping. If the file could not be opened or read correctly, the default settings will be used.

Keyboard Mapping files allow the user to customize the name and number of banks as well as the name
and number of programs per bank. The following example keyboard mapping (named keyboard.map) has
inline comments on the file format. Thisfile is also available with the Csound source distribution in the
InOut/virtual_keyboard folder.

140

Real-time MIDI Support

Cust om Keyboard Map for Virtual Keyboard
Steven Yi

USAGE

When using the Virtual Keyboard, you can supply a filename for a nmapping
of banks and prograns via the -Mflag, for exanple:

csound -+rtmdi=virtual -Meyboard.map nmy_project.csd
| NFORVATI ON ON THE FORVAT

#

#

#

#

#

#

#

#

#

#

#

#

-lines that start with '# are comments

-lines that have [] start new bank definitions,

the contents are bankNunrbankNanme, with bankNume[1, 16384]

-lines follow ng bank statements are program definitions

1in the format programNun¥progranmName, wi th progranmNume[1, 128]
-bankNunbers and programNunbers are defined in this file

starting with 1, but are converted to midi values (starting
wth 0) when read

#
#
#
#
#
#
#
#
#
#
#

NOTES

-if an invalid bank definition is found, all program
defintions that follow will be ignored until a new
valid bank definition is found

-if a valid bank is defined by no valid prograns found
for that bank, it will default to General M DI program
definitions

-if an invalid programdefinition is found, it will be
i gnored

[1=y Bank]

1=My Test Patch 1
2=My Test Patch 2
30=My Test Patch 30

[2=My Bank2]

1=My Test Patch 1(bank2)
2=My Test Patch 2(bank2)
30=My Test Patch 30(bank3)

The ten diders up top are by default set to MIDI Controller number 1-10 though they can be changed to
whatever one wishes to use. The controller numbers and values of each slider are set per channel, so one
may use different settings and values for each channel.

By default there are 128 banks and for each bank 128 patches defaulting to General Midi names. The MIDI
bank standard uses 14-hit resol ution to support 16384 possible banks, but the bank numbers by default are
0-127. To use values higher than 127, one should use a custom keyboard map and set the desired bank
number value for the bank name. The virtual keyboard will correctly transmit the bank number as MSB
and L SB with controller numbers 0 and 32.

Beyond the input available from interacting with the GUI viamouse, one may a so trigger off MIDI notes
by using the ASCII keyboard when the virtual keyboard window is focused. The layout is done much like
atracker and offers two octaves and amajor third to trigger, starting from Middle-C (MIDI note 60). The
ASCII keyboard MIDI note values are given in the following table.

Table5. ASCII Keyboard MIDI Note Values

Keyboard Key MIDI Value
Z 60

141

Real-time MIDI Support

Keyboard Key MIDI Value
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

S|oS|]o|lQ|<|o|a| X|n

—

o|wls[Nv[a]g

=

C I NI<|O| | O

T |O| 0| ©

Here'san example of usage of the virtual MIDI keyboard. It usesthefilevirtual.csd [examples/virtual .csd].

<CsoundSynt hesi zer >
<CsOptions>; Select audio/mdi flags here according to platform

; Audi o out Audio in Virtual M DI -M) is needed anyway
- odac -iadc -+rtmdi=virtual -M
</ CsOpti ons>

<Csl nstrunent s>
; By Mark Janerson 2007

sr=44100
ksnps=10
nchnl s=2

142

examples/virtual.csd
examples/virtual.csd

Real-time MIDI Support

massign 1,1
prealloc 1,10

instr 1 ;Mdi FMsynth
inote cpsmd
ivel oc anmpmi di 10000
idur = 2

xtratim1
kgate oscil 1,10,2
anoi se noi se 100*i note, .99
acps sanphol d anoi se, kgate
aosc oscili 1000, acps, 1
aout = aosc

Use controller 7 to control vol une
kvol ctrl7 1, 7, 0.2, 1

outs kvol * aout, kvol * aout
endi n
</ Csl nstrunent s>

<CsScor e>

f0 3600

f1 0 1024 10 1

f2 016 718 0 8

f3 01024 101 .5 .6 .3 .2 .5

e
</ CsScor e>
</ CsoundSynt hesi zer >

MIDI input

The following opcodes can receive MIDI information:

» MIDI information for any instruments: aftouch, chanctrl and polyaft, pchbend.

* MIDI information for MIDI-triggered instruments: veloc , midictrl and notnum. See also Converters.
* MIDI Controller input for any instrument: ctrl7, ctrl14 and ctrl21.

* MIDI Controller input for MIDI-triggered instruments only: midic7, midic14 and midic21.

* MIDI controller value initialization: initc7, initc14, initc21 and ctrlinit.

* Generic MIDI input: midiin.

massign can be used to specify the csound instrument to be triggered by a particular MIDI channel. pg-
massign can be use to assign a csound instrument to a specific MIDI program.

MIDI Message Output

Opcodes that produce MIDI output are:
* mdelay

s nrpn

143

Real-time MIDI Support

* outiat
* outic
+ outicl4
* outipat
e outipb
e outipc
* outkat
 outkc
* outkcl4
* outkpat
* outkpb
 outkpc

* midiout

Generic Input and Output

Opcodes for generic MIDI input and output are midiin and midiout.

Converters

The following opcodes can convert MIDI information from a MIDI-triggered instrument instance:

« MIDI note number to frequency converters. cpsmidi, cpsmidib, cpstmid, octmidi, octmidib, pchmidi and
pchmidib.

» MIDI velocity to amplitude converters: ampmidi and ampmidid.

Event Extenders

Opcodes that let one extend the duration of an event are;
* release

e xtratim

Note-on/Note-off Output

Opcodes to output MIDI note on or off messages are:
e midion

e midion2

144

Real-time MIDI Support

moscil

noteoff

noteon

noteondur

noteondur2

MIDI/Score Interoperability opcodes

The following opcodes can be used to design instruments that work interchangably for real-time MIDI
and score events:

midichannel aftertouch
midichn
midicontrolchange
mididefault
midinoteoff
midinoteoncps
midinoteonkey
midinoteonoct
midinoteonpch
midipitchbend
midipolyaftertouch

midiprogramchange.
Adapting a score-activated Csound instrument.

To adapt an ordinary Csound instrument designed for score activation for score/MIDI inter-
operability:

» Changeal linen, linseg, and expseg opcodesto linenr, linsegr, and expsegr, respectively,
except for ade-clicking or damping envelope. Thiswill not materially change score-driven
performance.

» Add thefollowing lines at the beginning of the instrument definition:

; Ensures that a MDI-activated instrunent

; Will have a positive p3 field.

m di default 60, p3

; Puts M DI key translated to cycles per

; second into p4, and MDI velocity into p5
m di not eoncps p4, p5

145

Real-time MIDI Support

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options,
and the choice of p-fieldsis arbitrary.

MIDI Realtime Input/Ouput command line options

New MIDI 1/0 flagsin Csound 5.02, can replace most uses of these MIDI interop opcodes,
and make usage easier.

System Realtime Messages

Opcodes for System Realtime MIDI messages are: mclock and mrtmsg.

Slider Banks

Opcodes for slider banks of MIDI controls are:
* dlider8

* dider8f

* dlider16

o dider16f

o dlider32

o dider32f

* dider64

* dlider64f

» sl6b14

» s32bl4

* dliderKawai

Opcodes for storing slider banks of MIDI controls to tables are:
 dlider8table

* dlider8tablef

+ dliderl6table

* dider16tablef

+ dlider32table

* dider32tablef

+ dlider64table

+ dlider64tablef

146

Spectral Processing

See the section Additive Synthesis/Resynthesis for the basic resynthesis opcodes.

Short-time Fourier Transform (STFT) Resynthe-

SIS

Use of PVOC-EX fileswith the old Csound pvoc opcodes

All the original pvoc opcodes can now read a PVOC-EX file, as well as the native non-
portable file format. As the PVOC-EX file uses a double-size analysis window, users may
find that this gives a useful improvement in quality, for some sounds and processes, despite
the fact that the resynthesis does not use the same window size.

Apart from the window size parameter, the main difference between the original .pv format
and PVOC-EX isin the amplitude range of analysis frames. While rescaling is applied, so
that no significant difference in output level is experienced, whichever file format is used,
somedlight loss of amplitude can still arise, asthe double window usageitself modifiesframe
amplitudes, of which theresynthesis codeis unaware. Notethat all the original pvoc opcodes
expect amono analysis file, and multi-channel PV OC-EX fileswill accordingly be rejected.

Opcodes the implement STFT resynthesis are;

mincer
temposcal
tableseg
pvadd
pvbufread
pvcross
pvinterp
pvoc
pvread
tableseg
tablexseg

vpvoc

Use the utility PVANAL to generate pv analysisfiles.

Linear Predictive Coding (LPC) Resynthesis

The linear predictive coding resynthesis opcodes are:

147

Spectral Processing

* |pfreson
* |pinterp
* |pread
* |preson
* |pslot

LPC analysisfiles can be created using the LPANAL utility.

Non-standard Spectral Processing

These units generate and process non-standard signal datatypes, such as down-sampled time-domain con-
trol signals and audio signals, and their frequency-domain (spectral) representations. The data types (d-,
w-) are self-defining, and the contents are not processable by any other Csound units.

The opcodes for non-standard spectral processing are specaddm, specdiff, specdisp, specfilt, spechist,
specptrk, specscal, specsum, and spectrum.

Tools for Real-time Spectral Processing (pvs
opcodes)

With these opcodes, two new core facilities are added to Csound. They offer improved audio quality,
and fast performance, enabling high-quality analysis and resynthesis (together with transformations) to
be applied in real-time to live signals. The original Csound phase vocoder remains unaltered; the new
opcodes use an entirely separate set of functions based on “pvoc.c” in the CARL distribution, written by
Mark Dolson.

The Csound dnoise and srconv utilities (also by Dolson, from CARL) aso use this pvoc engine. CARL
pvoc is aso the basis for the phase vocoder included in the Composer's Desktop Project. A few small but
important modifications have been made to the original CARL code to support real-time streaming.

1. Support for the new PVOC-EX analysisfile format. Thisisafully portable (cross-platform) open file
format, supporting three analysisformats, and multi-channel signals. Currently only the standard ampli-
tude+frequency format has been implemented in the opcodes, but the file format itself supports ampli-
tude+phase and complex (real-imaginary) formats. In addition to the new opcodes, the original Csound
pvoc opcodes have been extended (and thereby with enhanced audio quality in some cases) to read
PVOC-EX filesaswell asthe original (non-portable) format.

Full details of the structure of a PVOC-EX file are available via the website: http://www.c-
s.bath.ac.uk/~j pff/NOS-DREAM /researchdev/pvocex/pvocex.html. This site also gives details of the
freely available console programs pvocex and pvocex2 which can be used to create PV OC-EX files
in al supported formats.

2. A new frequency-domain signal type, fully streamable, with f as the leading character. In this docu-
ment it is conveniently referred to as an fsig. Primary support for fsigs is provided by the opcodes
pvsana and pvsynth, which perform conventional phase vocoder overlap-add analysis and resynthesis,
independently of the orchestra control-rate. The only requirement is that the control-rate kr be higher
than or equal to the analysis rate, whch can be expressed by the requirement that ksmps <= overlap,
where overlap is the distance in samples between analysis frames, as specified for pvsanal. As overlap

148

http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html
http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html

Spectral Processing

ATS

istypicaly at least 128, and more usually 256, thisis not an onerous restriction in practice. The opcode
pvsinfo can be used at init time to acquire the properties of an fsig.

The fsig enables the nominal separation between the analysis and resynthesis stages of the phase
vocoder to be exposed to the Csound programmer, so that not only can alternatives be employed for
either or both of these stages (not only oscillator-bank resynthesis, but also the generation of synthet-
ic fsig streams), but opcodes, operating on the fsig stream, can themselves become more elemental.
Thus the fsig enables the creation of atrue streaming plugin framework for frequency domain signals.
With the old pvoc opcodes, each opcode is required to act as a resynthesiser, so that facilities such as
pitch scaling are duplicated in each opcode; and in many cases the opcodes are parameter-rich. The
separation of analysis and synthesis stages by means of the fsig encourages the development of awide
range of simple building-block opcodesimplementing one or two functions, with which more elaborate
processes can be constructed.

Thisis very much a preliminary and experimental release, and it is possible that the precise definition of
the opcodes may change, in response to user feedback. Also, clearly, many new possibilities for opcodes
are opened up; these factors may also have a retrospective influence on the opcodes presented here.

Note that some opcode parameters currently have restricted or missing implementation. Thisisat least in
part in order to keep the opcodes simple at this stage, and also because they highlight important design
issues on which no decision has yet been made, and on which opinions from users are sought.

Oneimportant point about the new signal typeisthat because the analysisrateistypically much lower than
kr, new analysis frames are not available on each k-cycle. Internally, the opcodes track ksmps, and also
maintain aframe counter, so that frames are read and written at the correct times; this processis generally
transparent to the user. However, it means that k-rate signals only act on an fsig at the analysisrate, not at
each k-cycle. The opocde pvsftw returns a k-rate flag that is set when new fsig datais valid.

Because of the nature of the overlap-add system, the use of these opcodesincursasmall but significant de-
lay, or latency, determined by the window size (max(ifftsize,iwinsize)). Thisistypically around 23msecs.
In thisfirst release, the delay is dlightly in excess of the theoretical minimum, and it is hoped that it can
be reduced, as the opcodes are further optimized for real-time streaming.

The opcodes for real-time spectral processing are pvsadsyn, pvsanal, pvscross, pvsfread, pvsftr, pvsftw,
pvsinfo, pvsmaska, and pvsynth.

In addition there are a number of opcodes available as plugins in Csound5,and in the core for Csound6.
These are pvstanal, pvsdiskin, pvscent, pvsdemix, pvsfreeze, pvsbuffer, pvsbufread, pvsbufread?2, pvs-
cale, pvshift, pvsifd, pvsinit, pvsin, pvsout, pvsosc, pvshin, pvsdisp, pvsfwrite, pvslock, pvsmix, pvsmooth,
pvsfilter, pvsblur, pvstencil, pvsarp, pvsvoc, pvsmorph, pvsbandp, pvsbandr, pvswarp, pvsgain, pvs2tab,
tab2pvs.

A number of opcodes are designed to generate and process streaming partialstracks data. these are partials,
treross, trfilter, trsplit, trmix, trscale, trshift, trlowest, trhighest tradsyn, sinsyn, resyn, binit

See the Stacks section for information on the stack opcodes which can stack f-signals.

Spectral Processing

These opcodes can read, transform and resynthesize ATS analysisfiles. Please note that you need the ATS
application to produce analysis files. From the ATS Reference Manual:

"ATSisasoftwarelibrary of functionsfor spectral Analysis, Transformation, and Synthesis of sound based
onasinusoidal pluscritical-band noise model. A sound in ATSisa symbolic object representing a spectral
model that can be sculpted using a variety of transformation functions.”

149

Spectral Processing

For more information on ATS visit: http://www-ccrma.stanford.edu/~juan/ATS.html.

ATS analysisfiles can be produced using the ATS software or the csound utility ATSA.

The opcodes for ATS processing are:

» ATSinfo: reads data out of the header of an ATSfile.

» ATSread, ATSeadnz, ATSbufread, ATSinterpread, ATSpartialtap: read datafrom an ATSfile or buffer.

» ATSadd, ATSaddnz, ATScross, ATSsinnoi: Resynthesize sound.

Credits

Author: Alex Norman
Seattle,Washington
2004

Loris Opcodes

Note

These opcodes are an optional component of CsoundS. Y ou can check if they are installed
by using the command 'csound -Z' which lists all available opcodes.

The Loris family of opcodes wraps: lorisread which imports a set of bandwidth-enhanced partials from
a SDIF-format data file, applying control-rate frequency, amplitude, and bandwidth scaling envelopes,
and stores the modified partials in memory; lorismorph, which morphs two stored sets of bandwidth-en-
hanced partials and stores a new set of partias representing the morphed sound. The morph is performed
by linearly interpolating the parameter envelopes (frequency, amplitude, and bandwidth, or noisiness) of
the bandwidth-enhanced partials according to control-rate frequency, amplitude, and bandwidth morph-
ing functions, and lorisplay, which renders a stored set of bandwidth-enhanced partials using the method
of Bandwidth-Enhanced Additive Synthesisimplemented in the L oris software, applying control-rate fre-
guency, amplitude, and bandwidth scaling envel opes.

For more information about sound morphing and manipulation using Loris and the Reassigned Band-
width-Enhanced Additive Model, visit the Loris web site at www.cerlsoundgroup.org/Loris [http://
www.cerlsoundgroup.org/Lorisg].

Examples

Example 6. Play the partials wihtout modification

; Play the partials in clarinet.sdif
; fromO to 3 sec with 1 ns fadetine
; and no frequency , anplitude, or

; bandwi dth nodification

instr 1

ktime linseg 0, p3, 3.0 ; linear tine function fromO to 3 seconds
| orisread ktime, "clarinet.sdif", 1, 1, 1, 1, .001

asi g |l orisplay 1, 1, 1, 1
out asi g

150

http://www-ccrma.stanford.edu/~juan/ATS.html
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris

Spectral Processing

endin

Example 7. Add tuning and vibrato

Play the partials in clarinet.sdif
fromO to 3 sec with 1 ns fadetine

addi ng tuni ng and vi brato,
"breat hi ness"

anp

instr
kt

if

kv
kv
kb

al
a2

endi n

The instrument in the first example synthesizes a clarinet tone from beginning to end using partials de-
rived from reassigned bandwidth-enhanced analysis of athree-second clarinet tone, stored in afile, cl ar -

i net . sdi f . Theinstrument in Example 2 adds tuning and vibrato to the clarinet tone synthesized by instr
1, boosts its amplitde and noisiness, and applies a highpass filter to the result. The following score can be

i ncreasing the
(noi si ness) and overal

itude, and adding a highpass filter

2
ime linseg

0, p3, 3.0

linear time function fromO to 3 seconds

conpute frequency scale for tuning

(original pitch was G#4)

scale =

make a vibrato envel ope
0, p3/6, 0, p3/6
4, 1 ; table 1

env linseg
ib osci |

wenv linseg

| ori sread
| ori spl ay

at one
out

cpspch(p4)/ cpspch(8.08)

kvenv,

1, p3/6, 1, p3/6, 2, 2*p3/3, 2
"clarinet.sdif",
i fscal etkvi b, 2, kbwenv

hi ghpass filter

kti me,

1,

al, 1000

a2

used to test both of the instruments described above.

Example 8. Morph partials

make sinusoid in table 1

1 0 4096 10 1

play instr 1

strt dur
1 0 3
1 + 1
1 + 6

play instr 2

strt dur
2 1 3
2 3.5 1
2 4 6
2 4 6

ptch
8.08
8.04
8. 00
8.07

; Morph the partials in clarinet.sdif into the
; partials in flute.sdif over the duration of

; the sustained portion of the two tones (from
; .2 to 2.0 seconds in the clarinet, and from

; .5 to 2.1 seconds in the flute)

The onset

; and decay portions in the norphed sound are
; specified by paraneters p4 and p5, respectively.

151

.02, p3/3, .02, p3/6, 0, p3/6, O

1, 1, 1, 1,

cutof f 1000 Hz

Spectral Processing

; The norphing time is the time between the

; onset and the decay. The clarinet partials are

; shfited in pitch to match the pitch of the flute
; tone (D above nmiddle Q).

instr 1

i onset = p4
i decay = p5
itmorph = p3 - (ionset + idecay)
ipshift = cpspch(8.02)/cpspch(8.08)
; clarinet tine function, norph from.2 to 2.0 seconds
kt cl linseg 0, ionset, .2, itnmorph, 2.0, idecay, 2.1
; flute time function, morph from.5 to 2.1 seconds
kt fl linseg 0, ionset, .5, itnmorph, 2.1, idecay, 2.3
krrur ph linseg 0, ionset, 0, itnorph, 1, idecay, 1
| ori sread ktcl, "clarinet.sdif", 1, ipshift, 2, 1, .001
|l orisread ktfl, "flute.sdif", 2, 1, 1, 1, .001
lorisnmorph 1, 2, 3, kmurph, knurph, kmnurph
asig | ori spl ay 3, 1, 1, 1
out asig
endi n

Example 9. More morphing

; Morph the partials in tronbone.sdif into the

; partials in nmeow. sdif. The start and end tines

; for the nmorph are specified by paraneters p4

; and p5, respectively. The norph occurs over the
; second of four pitches in each of the sounds

; from.75 to 1.2 seconds in the flutter-tongued

; tronbone tone, and from1l.7 to 2.2 seconds in

; the cat's neow. Different norphing functions are
; used for the frequency and anplitude envel opes

; so that the partial anplitudes make a faster

; transition fromtronmbone to cat than the frequencies
; (The bandwi dt h envel opes use the same norphing

; function as the anplitudes.)

instr 2
i onset = p4
i mor ph = p5 - p4
irel ease = p3 - p5
kttbn linseg 0, ionset, .75, inmorph, 1.2, irelease, 2.4
kt meow |inseg 0, ionset, 1.7, inmorph, 2.2, irelease, 3.4
knfreq linseg 0, ionset, 0, .75*i nmorph, .25, .25*inorph, 1, irelease, 1
kmanp linseg 0, ionset, 0, .75*imorph, .9, .25%inorph, 1, irelease, 1
|l orisread kttbn, "tronmbone.sdif", 1, 1, 1, 1, .001
|l orisread kt meow, "meow. sdif", 2, 1, 1, 1, .001
lorisnmorph 1, 2, 3, knfreq, kmanp, kmanp
asig | ori spl ay 3, 1, 1, 1
out asig
endi n

Theinstrument in the first morphing example performs a sound morph between a clarinet tone and aflute
tone using reassigned bandwidth-enhanced partials stored incl ari net. sdi f andflute. sdif.

The morph is performed over the sustain portions of the tones, 2. seconds to 2.0 seconds in the case of
the clarinet tone and .5 seconds to 2.1 seconds in the case of the flute tone. The time index functions,
ktcl and ktfl, align the onset and decay portions of the tones with the specified onset and decay times for
the morphed sound, specified by parameters p4 and p5, respectively. The onset in the morphed soundsis

152

Spectral Processing

purely clarinet partial data, and the decay is purely flute data. The clarinet partials are shifted in pitch to
match the pitch of the flute tone (D above middle C).

Theinstrument in the second morphing example performs a sound morph between aflutter-tongued trom-
bone tone and a cat's meow using reassigned bandwidth-enhanced partials stored in t r onbone. sdi f and
meow. sdi f . The datain these SDIF files have been channelized and distilled to establish correspondences
between partials.

The two sets of partials are imported and stored in memory locations labeled 1 and 2, respectively. Both
of the original sounds have four notes, and the morph is performed over the second note in each sound
(from .75 to 1.2 seconds in the flutter-tongued trombone tone, and from 1.7 to 2.2 seconds in the cat's
meow). The different time index functions, kttbn and ktmeow, align those segments of the source and tar-
get partia sets with the specified morph start, morph end, and overall duration parameters. Two different
morphing functions are used, so that the partial ammplitudes and bandwidth coefficients morph quickly
from the trombone values to the cat's-meow values, and the frequencies make a more gradual transition.
The morphed partials are stored in amemory location labeled 3 and rendered by the subsequent lorisplay
instruction. They could also have been used as a source for another morph in a three-way morphing in-
strument. The following score can be used to test both of the instruments described above.

; play instr 1
strt dur onset decay

1 0 3 .25 .15
1 + 1 .10 .10
1 + 6 1. 1.

; play instr 2
strt dur norph_start nmor ph_end
2 0 4 .75 2.75

Credits

This implementation of the Loris unit generators was written by Kelly Fitz (loris@cerlsoundgroup.org
[mailto:loris@cerlsoundgroup.org]).

It is patterned after a prototype implementation of the lorisplay unit generator written by Corbin Cham-
pion, and based on the method of Bandwidth-Enhanced Additive Synthesis and on the sound morphing

algorithmsimplemented in the Lorislibrary for sound modeling and manipulation. The opcodes were fur-
ther adapted as a plugin for Csound 5 by Michael Gogins.

Array-based spectral opcodes

Note

These opcodes are designed to work with k-rate arrays for spectral data manipulation.

o fftinv,
o rfft,

* rifft,

153

mailto:loris@cerlsoundgroup.org
mailto:loris@cerlsoundgroup.org

Spectral Processing

pvs2array,
pvsfromarray,
cmplxprod,
rect2pol,

pol 2rect,
window,

r2c,

czr,

mags, and

phs.

154

Strings

String variables are variables with a name starting with S or gS (for a local or global string variable,
respectively). These variables can be used as input argument to any opcode that expects a quoted string
constant, and can be manipulated at initialization or performance time with the opcodes listed below.

Itisalso possibleto use string p-fields. The string p-field can be used by many orchestra opcodes directly,
or it can be copied to a string variablefirst:

al di skin2 p5, 1

Sname strget p5
al di skin2 Sname, 1

Strings within Csound can be expressed using traditional double quotes (" "), and also using {{ }}. The
second method isuseful to allow ;' and'$' characters within the string without having to used ASCI| codes.

Note
String variables and related opcodes are hot available in Csound versions older than 5.00.

Strings can aso be linked to a number using strset and strget.

Csound 5 also has improvements in parsing string constants. It is possible to specify a multi-line string
by enclosing it within {{ and }} instead of the usua double quote characters, and the following escape
seguences are automatically converted:

* \aadert bell

* \b backspace

* \nnew line

 \r carriage return

e \ttab

* \asingle'\' character

« \nnn the character of which the ASCII code (in octal) is nnn

Note

If the user does not want an escaped sequence to be automatically converted, she has to
escapeit with an additiona '\' character so that Csound knowsit does not haveto interpret the
escaped sequence. For examplethestring " Not escaped\ nl i ne ret ur n" will be converted to

"Not escaped
line return”

before being used, while the string * Escaped\\ nl i ne return" will be converted to

155

Strings

"Escaped\nline return”

before being used.

It can be useful together with the system opcode:

instr 1
; csound5 lets you nake a string with line returns inside double brackets
system {{ ps
date
cd ~/ Deskt op
pwd
Is -1
whoi s csounds. com
1}
endi n

And the python opcodes, among others:

pyruni {{
i mport random

pool =[(1 +i/10.0) ** 1.2 for i in range(100)]

def get_nunber _from pool (n, p):
if randomrandom() < p:
i = int(randomrandonm() * |en(pool))
pool[i] =n
return random choi ce(pool)

H

String Manipulation Opcodes

These opcodes perform operations on string variables (note: most of the opcodes run at init time only,
and have a version with a "k" suffix that runs at both init and performance time; exceptions to this rule
include puts and strget):

* strepy and strepyk - Assignsto astring variable.

* strcat and strcatk - Concatenates strings, and stores the result in avariable.

* stremp and strempk - Compares strings.

* strget - Assignsto astring variable, from strset table at the specified index, or string score p-field.
* strlen and strlenk - Returns the length of a string.

« gsprintf - printf-style formatted output conversion, storing the result in astring variable.

 gsprintfk - printf-style formatted output conversion, storing the result in a string variable at k-rate.
* puts - Prints astring constant or variable.

* strindex and strindexk - Returns the first occurence of a string in another string.

* strrindex and strrindexk - Returns the last occurence of a string in another string.

* strsub and strsubk - Returns a substring of the input string.

156

Strings

String Conversion Opcodes

These opcodes convert string variables (note: most of the opcodesrun at init time only, and have aversion
witha"k" suffix that runsat both init and performancetime; exceptionsto thisruleinclude puts and strget):

* strtod and strtodk - Converts string value to a floating point value at i-rate.
* dtrtol and strtolk - Converts string value to signed integer at i-rate.

* strchar and strchark - Returns the ASCII code of a character in astring.

* strlower and strlowerk - Converts a string to lower case.

* strupper and strupperk - Converts a string to upper case.

157

Vectorial Opcodes

The vectorial opcode family is designed to allow sections of f-tables to be treated as vectors for diverse
operations on them.

Tables of vectors operators

The following Vectorial opocodes support read/write access to arrays of vectors (or arrays of arrays):
 vtablel

* vtablelk
* vtablek
+ vtablea
o vtablewi
* vtablewk
* vtablewa
* vtabi

* vtabk

*+ vtaba

* vtabwi
 vtabwk

» vtabwa

Operations Between a Vectorial and a Scalar
Signal

These opcodes perform numeric operations between a vectorial control signal (hosted inside a function
table), and a scalar signal. Result is a new vector that overrides old values of the table. There are k-rate
and i-rate versions of the opcodes.

All these operators are designed to be used together with other opcodes that operate with vectoria signals
such as vcella, adsynt, adsynt2, etc.

Operations Between a Vectoria and a Scalar Signal:
* vadd
o vmult
> vpow

* vexp

158

Vectorial Opcodes

* vadd i
o vmult_i
* VPOW_i

o vexp i

Operations Between two Vectorial Signals

These opcodes perform operations between two vectors, that is, each element of thefirst vector is processed
with the corresponding element of the other vector. Theresult isanew vector that overridesthe old values
of the source vector.

Operations Between two Vectorial Signals:

* vaddv

» vsubv

o vmultv

o vdiw

* Vpowv

* vexpv

* vcopy

* vmap

e vaddv i

e vaubv i

o vmultv_i

o vdiw i

* VPOWV_i

o vexpv_i

* vcopy_i

All these operators are designed to be used together with other opcodes that operate with vectoria signals
such as vcella, adsynt, adsynt2, etc.

Vectorial Envelope Generators

The opcodes to generate vectors containing envelopes are vliinseg and vexpseg.

These opcodes are similar to linseg and expseg, but operate with vectorial signals instead of with scalar
signals.

159

Vectorial Opcodes

Output is a vector hosted by an f-table (that must be previously alocated), while each break-point of
the envelope is actually a vector of values. All break-points must contain the same number of elements
(ielements).

These operators are designed to be used together with other opcodes that operate with vectorial signals
such as vcella, adsynt, adsynt2, etc.

Limiting and wrapping of vectorial control sig-
nals

The opcodes to perform limiting and wrapping of elements within a vector are:
e vlimit

e wwrap

e vmirror

These opcodes are similar to limit, wrap and mirror, but operate on avector instead of ascalar signal. The
old values of the vector contained in an f-table are over-written if they are out of min/max interval. If you
want to keep the original values of the input vector, use the vcopy opcode to copy it in another table.

All these opcodes work at k-rate.

All these operators are designed to be used together with other opcodes that operate with vectoria signals
such as vcella, adsynt, adsynt2 etc.

Vectorial Control-rate Delay Paths

Vectorial Control-rate Delay Paths:
» vdelayk
* vport

 vecdelay

Vectorial Random Signal Generators

These opcodes generate vectors of random numbersto be stored in tables. They generate asort of 'vectorial
band-limited noise. All these opcodes work at k-rate.

Vectorial random signal generators: vrandh and vrandi.

Cellular automata vectors can be generated using: vcella.

160

Zak Patch System

The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak system can be
thought of as a global array of variables. These opcodes are useful for performing flexible patching or
routing from one instrument to another. The system is similar to a patching matrix on a mixing console or
to amodulation matrix on a synthesizer. It is aso useful whenever an array of variablesis required.

The zak system is initialized by the zakinit opcode, which is usually placed just after the other global
initializations: sr, kr, ksmps, nchnls. The zakinit opcode defines two areas of memory, one areafor i- and
k-rate patching, and the other area for a-rate patching. The zakinit opcode may only be called once. Once
the zak spaceisinitialized, other zak opcodes can be used to read from, and write to the zak memory space,
aswell as perform various other tasks.

Zak channels count from 0, so if you define 1 channel, the only valid channel is channel 0.
Opcodes for the zak patch system are:

» Audio Rate: zacl, zakinit, zamod, zar, zarg, zaw and zawm.

» Control Rate: zkcl, zkmod, zkr, zkw, and zkwm.

e Atinitialization: zir, zZiw and Zziwm

161

Plugin Hosting

Csound currently hosts external plugins using dssi4cs (for LADSPA plugins) on Linux and vst4cs (for
VST plugins) on Windows and Mac OS X.

DSSI and LADSPA for Csound

dssi4cs enables the use of DSSI and LADSPA plugin effects and synthesizers within Csound on Linux.
The following opcodes are available:

dssiinit - Loads a plugin.

dssiactivate - Activates or deactivates aplugin if it has this facility

dssilist - Lists all available pluginsfound inthe LADSPA_PATH and DSSI_PATH global variables.
dssiaudio - Process audio using a Plugin.

dssictls - Send control information to a plugin's control port.

See the entry for dssiinit for a usage example.

Note

Currently only LADSPA plugins are supported, but DSSI support is planned.

VST for Csound

vst4cs enables the use of VST plugin effects and synthesizers within Csound. The following opcodes are
available:

vstinit - Loads a plugin.

vstaudio, vstaudiog - Returns a plugin's output.

vstmidiout - Sends MIDI datato a plugin.

vstparamset, vstparamget - Sends and receives automation data to and from the plugin.
vstnote - Sends a MIDI note with definite duration.

vstinfo - Outputs the Parameter and Program names for aplugin.

vstbankload - Loads an . f xb Bank.

vstprogset - SetsaProgram in an . f xb Bank.

vstedit - Opens the GUI editor for the plugin, when available.

Credits

By: Andres Cabrera and Michael Gogins

Uses code from Hermann Seib's VSTHost and Thomas Grill's vst~ object.

162

Plugin Hosting

VST isatrademark of Steinberg Media Technologies GmbH. VST Plug-In Technology by Steinberg.

163

OSC and Network
Ableton Link Opcodes

The purpose of Ableton Link isto synchronize musical time, beat, and phase between musical applications
performing in real time from separate programs, processes, and network addresses. This is useful, eg.,
for laptop orchestras.

Ableton Liveisnot required to use the Ableton Link protocol, asit is a peer-to-peer protocol. Thereisone
Link session on thelocal areanetwork that maintains aglobal time, tempo, and beat. Any peer may set the
tempo, and thereafter all peersin the session share that tempo. A process may have any humber of peers
(i.e.,, any number of Link objects). Each peer may also defineits own "quantum" i.e. some multiple of the
beat, e.g. a quantum of 4 might imply 1 beat every measure of 4/4 time. The phase of the time is defined
w.r.t the quantum, e.g. phase 0.5 of a quantum of 4 would be the second beat of the measure. Peers may
read and write timelines with local time, beat, and phase, counting from when the peer is enabled, but the
tempo and beat on all timelines for all peersin the session will coincide.

Thefirst peer in asession determinestheinitial tempo. After that, thetempo is changed only, and whenever,
any peer explicity cals the set tempo functon (link_tempo_set, in Csound).

The Link tempo is independent of the Csound score tempo. Performances that need to synchronize the
score tempo with the Link tempo may use the tempo opcode to set the score tempo from the Link tempo;
or conversely, set the Link tempo from the score tempo using the tempoval opcode.

Please note, the phase and beat obtained or set by these opcodes is only as precise as alowed by the
duration of Csound's kperiod, the audio driver used by Csound, network latency and stability, and the
system's most precise clock.

« link create - Creates an Ableton Link peer object.

* link_enable - Enable/disable synchronization with the network Ableton Link session tempo and beat.
* link_is_enabled - Returns whether or not this Ableton Link peer has joined the network session.

* link_tempo_set - Sets the tempo for the network’s Ableton Link session.

* link_tempo_set - Returns the tempo of the network's Ableton Link session.

¢ link_beat_get - Returns the beat, phase, and current time of Ableton Link for this session for a given
quantum.

* link_metro- Returnsatrigger that is 1 on the beat and O otherwi se along with the beat, phase, and current
time of Ableton Link for this session for a given guantum.

« link _beat request - Requests a beat with a specific number at a specific time at a given quantum.

« link _beat force - Forces the network Ableton Link session to adopt a beat with a specific number at a
specific time at a given quantum.

* link_peers - Returns the number of peers currently joined in the network Ableton Link session.

OSC

OSC enables interaction between different audio processes, and in particular between Csound and other
synthesis engines. The following opcodes are available:

164

OSC and Network

e OSCinit - Start an OSC listener thread.

* OClisten - Receive OSC messages.

* OSCsend - Send an OSC message.

Credits

By: John ffitch with the liblo library as inspiration and support.

Network

The following opcodes can stream or receive audio through UDP:

sockrecv

socksend

Remote Opcodes

The Remote opcodes enable transmission of score or MIDI events through a network, so remote instances
(or adifferent local instance) can process them. The following opcodes are available:

insglobal - Used to implement a remote orchestra.
insremot - Used to implement a remote orchestra.
midiglobal - Used to implement aremote MIDI orchestra.
midiremot - Used to implement aremote MIDI orchestra.

remoteport - Defines the port for use with the remote system.

165

Mixer Opcodes

The Mixer family of opcodes provides aglobal mixer for Csound. The Mixer opcodes include Mixer Send
for sending (that is, mixing in) an arate signal from any instrument to a channel of a mixer buss, Mixer-
Receive for receiving an arate signal from a channel of any mixer bussin any instrument, Mixer SetLevel
(krate) and MixerSetLevel i (irate) for controlling the level of the signal sent from a particular send to a
particular buss, Mixer GetLevel for reading (at krate) the level for sending asignal from aparticular send to
aparticular buss, and MixerClear for resetting the busses to zero before the next kperiod of a performance.

166

Signal Flow Graph Opcodes

These opcodes enable the use of signal flow graphs (AKA asynchronous data flow graphs) in Csound
orchestras. Signals flow from the outlets of source instruments and are summed in theinlets of sink instru-
ments. Signals may be krate, arate, frate, or arate arrays. Any number of outlets may be connected to any
number of inlets. When a new instance of an instrument is instantiated during performance, the declared
connections also are automatically instantiated.

Signal flow graphs simplify the construction of complex mixers, signal processing chains, and the like.
They aso simplify the re-use of "plug and play" instrument definitions and even entire sub-orchestras,
which can simply be #included and then "plugged in" to existing orchestras.

Note that inlets and outlets are defined in instruments without reference to how they are connected. Con-
nections are defined in the orchestra header. It is this separation that enables plug-in instruments.

Inlets must be named. Instruments may be named or numbered, but in either case each source instrument
must be defined in the orchestra before any of its sinks. Naming instruments makes it easier to connect
outletsand inletsin any higher-level orchestrato inlets and outletsin any lower-level #included orchestra.

The signa flow graph opcodes include: outleta, for sending an arate signal from any instrument out a
named port. outletk, for sending a krate signal from any instrument out a named port. outletkid, similar
to outletk, but receiving a krate signal only from an identified instance of a port. outletf, for sending an
frate signal from any instrument out a named port. outletv, for sending an arate array signal from any
instrument out anamed port. inleta, for receiving an arate signal through anamed port. inletk, for receiving
a krate signal through a named port. inletkid, similiar to inletk, but transmitting a signal only between
inlet and outlet opcodes . inletf, for receiving an frate signal through a named port. inletv, for receiving an
arate array signal through a named port. connect, for routing the signal from a named outlet in a source
instrument to a named inlet in asink instrument. alwayson for permanently activating an instrument from
the orchestra header, without need of a score statement, e.g. for use as an effect processor receiving inputs
from a number of sources. ftgenonce for instantiating function tables from within instrument definitions,
without need for f-statements in the score or ftgen opcodes in the orchestra header.

A typical scenario for the use of these opcodes would be something like this. A set of instruments would
be defined, each in its own orchestra file, and each instrument would define inlet ports, outlet ports, and
function tables within itself. Such instruments are completely self-contained. Then, aset of effects proces-
sors, such as equalizers, reverbs, compressors, and so on, would also be defined, each initsown file. Then,
a customized master orchestra would #include the instruments and effects to be used, route the outputs of
some instruments into one equalizer and the outputs of other effects into another equalizer, then route the
outputs of both equalizersinto areverb, the output of the reverb into a compressor, and the output of the
compressor into a stereo output soundfile.

Example

Here is an example of the signal flow graph opcodes. It uses the file signalflowgraph.csd [examples/sig-
nalflowgraph.csd].

Example 10. Example of the signal flow graph opcodes.

<CsoundSynt hesi zer >

<CsOpt i ons>
; Select audio/mdi flags here according to platform
; Audi o out Audio in No nmessages
- odac -iadc -d ;o RT audio 1/0
For Non-real tine ouput |eave only the |line bel ow
; -0 madsr.wav -W;;; for file output any platform

167

examples/signalflowgraph.csd
examples/signalflowgraph.csd
examples/signalflowgraph.csd

Signal Flow Graph Opcodes

</ CsOpti ons>
<Csl nstrunent s>

/* Witten by M chael Cogins */

; Initialize the global variables
sr = 44100

ksmps = 100

nchnls = 2

; Connect up the instruments to create a signal flow graph

connect "SinpleSine", "l eftout", "Reverberator", "leftin"
connect "SinpleSine", "rightout", "Reverberator", "rightin"
connect "Mbogy", "l eftout", "Reverberator", "leftin"
connect "Mbogy", "rightout", "Reverberator", "rightin"
connect "Reverberator", "leftout", " Conpressor", "leftin"
connect "Reverberator", "rightout", " Conpressor", "rightin"
connect " Conpressor”, "l eftout", "Soundfile", "leftin"
connect " Conpressor”, "rightout", "Soundfile", "rightin"

; Turn on the "effect” units in the signal flow graph

al wayson "Reverberator”, 0.91, 12000
al wayson " Conpressor”
al wayson " Soundfile"

instr SinpleSine
i hz = cpsmi di nn(p4)
ianmplitude = anmpdb(p5)
print ihz, ianplitude
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent.
i sine ftgenonce 0, 0, 4096, 10, 1

al oscili ianplitude, ihz, isine
aenv madsr 0.05, 0.1, 0.5, 0.2
asignal = al * aenv

; Stereo audio outlet to be routed in the orchestra header
outleta "leftout”, asignal * 0.25
outleta "rightout”, asignal * 0.75

endin

instr Moogy
i hz = cpsmi di nn(p4)
iamplitude = anpdb(p5)
; Use ftgenonce instead of ftgen, ftgentnp, or f statenent.
i sine ftgenonce 0, 0, 4096, 10, 1
asignal vco ianplitude, ihz, 1, 0.5, isine
kfco I'ine 200, p3, 2000
krez init 0.9
asi gnal noogvcf asignal, kfco, krez, 100000
; Stereo audio outlet to be routed in the orchestra header
outleta "leftout”, asignal * 0.75
outleta "rightout”, asignal * 0.25
endi n

instr Reverberator
; Stereo input.
aleftin inleta "leftin”
arightin inleta "rightin”
idelay = p4
icutoff = p5
al eftout, arightout reverbsc aleftin, arightin, idelay, icutoff
; Stereo output.
outleta "leftout”, aleftout
outleta "rightout", arightout

168

Signal Flow Graph Opcodes

endin

instr Conpressor
; Stereo input.
aleftin inleta "leftin”
arightin inleta "rightin”
kt hreshol d = 25000
icompl =
i conp2
irtim
iftime =
al eftout damaleftin, kthreshold, iconmpl, iconp2, irtine, iftine
arightout dam arightin, kthreshold, iconpl, iconp2, irtinme, iftime
; Stereo output.
outleta "leftout”, aleftout
outleta "rightout”, arightout

endi n

0.5
0.763
0.1
0.1

instr Soundfile
; Stereo input.
aleftininleta "leftin”
arightin inleta "rightin”
outs aleftin, arightin
endin

</ Csl nst runment s>

<CsScor e>

; Not necessary to activate "effects" or create f-tables in the score!
; Overlapping notes to create new i nstances of instrunents.
i "SinpleSine” 15 60 85

i "SinpleSine" 25 64 80

i "Mogy" 3 5 67 75

i "Mogy" 4 5 71 70

el

</ CsScor e>

</ CsoundSynt hesi zer >

169

Jacko Opcodes

These opcodes enable the use of Jack ports from within Csound orchestras and instruments. Ports can
receive or send audio or MIDI data, and send note data.

The Jacko opcodes do not replace the Jack driver and Jack command-line options for Csound, nor do the
Jacko opcodes work with them (hence the name "Jacko" instead of "Jack"). The Jacko opcodes are an
independent facility that offers greater flexibility in signal routing.

In addition, the Jacko opcodes can work with the Jack system in "freewheeling” mode, which enables
the use of Jack-enabled external synthesizers, such as Aeolus or Pianoteq, to render Csound pieces either
faster or, even more importantly, slower than real time. This is extremely useful for rendering complex
pieces without dropouts using instruments, such as Aeolus, that may not be available except through Jack.

The Jacko opcodes include: Jackolnit, for initializing the current instance of Csound as a Jack client.
Jackolnfo, for printing information about the Jack daemon, its clients, their ports, and their connections.
JackoFreewheel, for turning Jack's freewheeling mode on or off. JackoAudiolnConnect, for creating a
connection from an external Jack audio output port to a Jack port in Csound. JackoAudi oOutConnect, for
creating aconnection from aJack port in Csound to an external Jack audio input port. JackoMidilnConnect,
for creating aconnection from an external Jack MIDI port. MIDI eventsfrom Jack are received by Csound's
regular MIDI opcodes and MIDI interop system. JackoMidiOutConnect, for creating a connection from a
Jack port in Csound to an external Jack MIDI input port. JackoOn, for turning Jack portsin Csound on or
off. JackoAudioln, for receiving audio from a Jack input port in Csound, which in turn has received the
audio from its connected external port. JackoAudioOut, for sending audio to a Jack output port in Csound,
which in turn will send the audio on to its connected external port. JackoMidiOut, for sending MIDI
channel messages to a Jack output port in Csound, which in turn will send the MIDI on to its connected
external port. JackoNoteOut, for sending a note (with duration) to a Jack output port in Csound, whichin
turn will send the note on to its connected external port. JackoTransport, for controlling the Jack transport.

A typical scenario for the use of the Jacko opcodes would be something like this.

Example

Hereis an example of the Jacko opcodes. It uses the file jacko.csd [examples/jacko.csd].

Example 11. Example of the Jacko opcodes.

<CsoundSynt hesi zer >

<CsOpt i ons>

csound -nR55 -MD -+rtmidi=null -RW --mdi-key=4 --mdi-velocity=5 -0 jacko_test.wav
</ CsOpti ons>

<Csl nst runment s>

NOTE: this csd nmust be run after starting "aeolus -t".

Sr = 48000
; The control rate nust be BOTH a power of 2 (for Jack)
; AND go evenly into sr. This is about the only one that works

ksmps = 128

nchnl s =2

Odbfs =1
Jackol ni t

; To use ALSA nmidi ports, use "jackd -Xseq"

170

examples/jacko.csd
examples/jacko.csd

Jacko Opcodes

; and use "jack_Isp -A -c" or aliases from Jacklnfo
; probably together with information fromthe sequencer
; to figure out the damm port nanes

; JackoM di I nConnect "al sa_pcmin-131-0-Master", "mdiin"
JackoAudi ol nConnect "aeolus:out.L", "leftin"
JackoAudi ol nConnect "aeol us:out.R', "rightin"

JackoM di Qut Connect "nmidiout”, "aeolus:Mdi/in"

; Note that Jack enabl es audio to be output to a regul ar
; Csound soundfile and, at the sane tine, to a sound
; card inreal time to the systemclient via Jack

JackoAudi oQut Connect "leftout”, "system playback 1"
JackoAudi oQut Connect "rightout™, "system playback 2"
Jackol nfo

; Turning freewheeling on seens automatically
; to turn system playback off. This is good

JackoFreewheel 1
JackoOn

al wayson "] ackin"

instr 1

i channel = pl - 1

itime = p2

iduration = p3

i key = p4

ivelocity = p5
JackoNoteQut "nmidiout”, ichannel, ikey, ivelocity
print itime, iduration, ichannel, ikey, ivelocity
endi n

instr jackin

JackoTransport 3, 1.0
al ef t JackoAudioln "leftin"
ari ght JackoAudioln "rightin”

; Aeolus uses M DI controller 98 to control stops
; Only 1 data value byte is used, not the 2 data
; bytes often used with NRPNs.
; The format for control node is 01lmmDggg
; mm 10 to set stops, 0, ggg group (or Division, 0 based)
; The format for stop selection is 000bbbbb
; bbbbb for button nunmber (0 based)

; Mode to enable stops for Divison |: b1100010 (98
; [this controller VALUE is a pure coincidence])

JackoM di Qut “mdiout", 176, 0, 98, 98

; Stops: Principal 8 (0), Principal 4 (1) , Flote 8 (8) , Flote 2 (10)

JackoM di Qut “mdiout", 176, 0, 98, 0
JackoM di Qut “mdiout", 176, 0, 98, 1
JackoM di Qut “mdiout", 176, 0, 98, 8
JackoM di Qut “mdiout", 176, 0, 98, 10

; Sends audio com ng in from Aeol us out

; not only to the Jack system out (sound card)

; but also to the output soundfile
; Note that in freewheeling node, "leftout"
; and "rightout" sinply go silent.

171

Jacko Opcodes

JackoAudi oQut “leftout”, aleft
JackoAudi oQut “"rightout", aright
outs aright, aleft
endin

</ Csl nstrunent s>
<CsScor e>

f 0 30

i 11 30 60 60

i 12 30 64 60

i 1330 71 60

e 2

</ CsScor e>

</ CsoundSynt hesi zer >

Credits

By: Michael Gogins 2010

172

Lua Opcodes

The purposes of the Lua opcodes are:

1. Makeit possible to write Csound code in a user-friendly, high-level language with full lexical scoping,
structures and classes, and support for functional programming, using LuaJlT (the Lua programming
language, implemented with ajust-in-time compiler and foreign function interface).

2. Require the installation of no third party software packages, or at least a minimum installation; also,
require no build system or external compilation.

3. Runreally fagt; typically, amost asfast as compiled C code, and several times faster than user-defined
opcodes.

Using the Lua opcode family, you can interact with the Lua interpreter and just-in-time compiler (lugjit)
embedded in Csound as follows:

1. Execute any arbitrary block of Lua code (the lua_exec opcode),

2. Define an opcode in Lua taking any number or type of parameters, and returning any number or type
of parameters (the lua_opdef opcode),

3. Call aLuaopcode at i-rate (the lua_iopcall opcode),
4. Call aLuaopcode at i-rate and k-rate (the lua_ikopcall opcods), or
5. Call aLuaopcode at i-rate and a-rate (the lua_iaopcall opcode).

Luais Portuguese for "moon." And Lua (http://www.lua.org) isalightweight, efficient dynamic program-
ming language, designed for embedding in C/C++ and extending with C/C++. Lua has a stack-based call-
ing mechanism and provides atoolkit of features (tables, metatables, anonymous functions, and closures)
with which many styles of object-oriented and functional programming may be implemented. L ua's syntax
isonly dlightly harder than Python's.

Luaisalready one of the fastest dynamic languages; yet Luall T by Mike Pall (http://lugjit.org) goes much
further, giving Lua a just-in-time optimizing trace compiler for Intel architectures. LuallT includes an
efficient foreign function interface (FFI) with the ability to define C arrays, structures, and other types
in Lua The speed of LuallT/FFI ranges from several times as fast as Lua, to faster (in some contexts)
than optimized C.

Example

Here is an example of a Lua opcode, implementing a Moog ladder filter. For purposes of comparison, a
user-defined opcode and the native Csound opcode that compute the same sound using the same algorithm
also are shown, and timed.. The example uses the file luamoog.csd [examples/luamoog.csd].

Example 12. Example of a L ua opcode.

<CsoundSynt hesi zer >
<Csl nstrunent s>

sr = 48000

ksmps = 100
nchnls = 1

gi began rtcl ock

| ua_opdef

173

http://www.lua.org
http://luajit.org
examples/luamoog.csd
examples/luamoog.csd

Lua Opcodes

local ffi = require("ffi")
local math = require("math")
local string = require("string")
| ocal csoundApi = ffi.load(' csound64.dl|.5. 2")
ffi.cdef[[
int csoundGet Ksnps(void *)
doubl e csoundGet Sr(void *)
struct noogl adder _t {
doubl e *out;
doubl e *inp
doubl e *freq
doubl e *res
doubl e *istor
doubl e sr;
doubl e ksnps
doubl e thermal
doubl e f;
doubl e fc;
doubl e fc2
doubl e fc3
doubl e fcr
doubl e acr
doubl e tune
doubl e res4
doubl e i nput;
doubl e i;
doubl e j;
doubl e k
doubl e kk
doubl e stg[6];
doubl e del ay[6] ;
doubl e tanhstg[6] ;
s
1]

| ocal moogl adder _ct = ffi.typeof (' struct moogladder t *")

function noogl adder _i nit(csound, opcode, carguments)
local p = ffi.cast(noogl adder_ct, cargunents)
p. sr = csoundApi . csoundCet Sr (csound)
p. ksnps = csoundApi . csoundGet Ksnps(csound)
if p.istor[0] == 0 then
for i =0, 5 do
p.delay[i] = 0.0
end
for i =0, 3 do
p.tanhstg[i] = 0.0
end
end
return O
end

function noogl adder _kontrol (csound, opcode, cargunents)
local p = ffi.cast(noogl adder_ct, cargunents)
-- transistor thernmal voltage
p.thermal = 1.0 / 40000.0
if p.res[0] < 0.0 then
p.res[0] = 0.0
end
-- sr is half the actual filter sanpling rate
p.fc = p.freq[0] / p.sr

p.f =p.fc/ 2.0
p.fc2 = p.fc * p.fc
p.fc3 = p.fc2 * p.fc

-- frequency & anplitude correction
p.fer 1.873 * p.fc3 + 0.4955 * p.fc2 - 0.6490 * p.fc + 0.9988
p. acr -3.9364 * p.fc2 + 1.8409 * p.fc + 0.9968

174

Lua Opcodes

-- filter tuning

p.tune = (1.0 - math.exp(-(2.0 * math.pi * p.f * p.fcr))) / p.thermal
p.res4d = 4.0 * p.res[0] * p.acr

-- Nested 'for' |oops crash, not sure why.

-- Local l|oop variables also are problematic.

-- Lower-level loop constructs don't crash.

p.i =0
while p.i < p.ksnps do
p.j =0
while p.j < 2 do
p.k =0

while p.k < 4 do
if p.k == 0 then
p.input = p.inp[p.i] - p.resd4 * p.delay[5]
p.stg[p. k] = p.delay[p.k] + p.tune * (math.tanh(p.input * p.thermal) - p.tanhstg[p.
el se
p.input = p.stg[p.k - 1]
p.tanhstg[p.k - 1] = math.tanh(p.input * p.thermal)

if p.k <3 then

p. kk = p.tanhstg[p. k]
el se

p. kk = math.tanh(p.delay[p. k] * p.thermal)
end

p.stg[p.k] = p.delay[p.k] + p.tune * (p.tanhstg[p.k - 1] - p.kk)
end
p.delay[p. k] = p.stg[p.K]
p.k =p.k +1
end
-- 1/ 2-sanple delay for phase conpensation
p.delay[5] = (p.stg[3] + p.delay[4]) * 0.5
p.del ay[4] = p.stg[3]

p.j =p.j +1
end
p.out[p.i] = p.delay[5]
p.i =p.i +1
end
return 0
end
1}
/*

Mbogl adder - An inproved inplenmentati on of the Mbog | adder filter

DESCRI PTI ON

This is an new digital inplenentation of the Mog |adder filter based on the work of Antti Huovil ai nen,
described in the paper \"Non-Linear Digital |nplenentation of the Mog Ladder Filter\" (Proceedings of
This inplenentation is probably a nore accurate digital representation of the original analogue filter.
This is version 2 (revised 14/ DEC/04), with inproved anplitude/resonance scaling and frequency correcti

SYNTAX
ar Moogl adder asig, kcf, kres

PERFORVANCE

asig - input signal

kecf - cutoff frequency (Hz)
kres - resonance (0 - 1).

CREDI TS
Vi ctor Lazzari ni
*/

opcode noogl adderu, a, akk
asi g, kcf, kres xin
set ksnps 1

i pi 4 * taninv(l)
/* filter delays */
azl init 0

175

Lua Opcodes

az2 init 0
az3 init 0
az4 init 0
az5 init 0
ay4 init 0
anf init 0

if kres > 1 then
kres = 1

el sei f kres < 0 then
kres = 0

endi f
/* twice the \'"thernal voltage of a transistor\' */
i 2v = 40000
/* sr is half the actual filter sanpling rate */
kfc = kef/sr
kf = kef/ (sr*2)

/* frequency & anplitude correction */

kfcr = 1.8730 * (kfc”3) + 0.4955 * (kfcn2) - 0.6490 * kfc + 0.9988
kacr = -3.9364 * (kfc”2) + 1.8409 * kfc + 0.9968
/* filter tuning */
k2vg = i2v * (1 - exp(-2 * ipi * kfcr * kf))
/* cascade of 4 1st order sections */
ayl = azl + k2vg * (tanh((asig - 4 * kres * anf * kacr) / i2v) - tanh(azl /
azl = ayl
ay2 = az2 + k2vg * (tanh(ayl / i2v) - tanh(az2 / i2v))
az2 = ay?2
ay3 = az3 + k2vg * (tanh(ay2 / i2v) - tanh(az3 / i2v))
az3 = ay3
ay4 = az4 + k2vg * (tanh(ay3 / i2v) - tanh(az4 / i2v))
az4 = ay4
/* 1/ 2-sanpl e del ay for phase conpensation */
anf = (ay4 + azb) *0.5
az5 = ay4
/* oversanmpling */
ayl = azl + k2vg * (tanh((asig - 4 * kres * anf * kacr) / i2v) - tanh(azl /
azl = ayl
ay2 = az2 + k2vg * (tanh(ayl / i2v) - tanh(az2 / i2v))
az2 = ay?2
ay3 = az3 + k2vg * (tanh(ay2 / i2v) - tanh(az3 / i2v))
az3 = ay3
ay4 = az4 + k2vg * (tanh(ay3 / i2v) - tanh(az4 / i2v))
az4 = ay4
anf = (ay4 + azb5) * 0.5
az5 = ay4
xout antf
endop
instr 1
prints "No filter.\n"
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv I'inen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
afil nmoogl adder asig, kfe, 1
out asig
endi n
instr 2
prints "Nati ve noogl adder.\n"
kfe expseg 500, p3*0.9, 1800, p3*0.1, 3000
kenv I'inen 10000, 0.05, p3, 0.05
asig buzz kenv, 100, sr/(200), 1
afil nmoogl adder asig, kfe, 1
out afil
endi n
instr 3
prints "UDO npogl adder .\ n"

176

Lua Opcodes

kfe expseg
kenv I'inen
asig buzz
afil nmoogl adderu
out
endi n
instr 4
prints
kres init
i stor init
kfe expseg
kenv I'i nen
asig buzz
afil init
| ua_i kopcal
out
endi n
instr 5
gi ended rtcl ock
i el apsed =
print
gi began rtcl ock
endi n

</ Csl nstrunent s>

<CsScor e>

f1 0 65536 10 1
i 5.1 0 1
i 4 1 20
i 5.2 21 1
i 4 22 20
i 5.3 42 1
i 2 43 20
i 5.4 63 1
i 2 64 20
i 5.5 84 1
i 3 85 20
i 5.6 105 1
i 3 106 20
i 5.7 126 1
i1 127 20
i 5.8 147 1
i1 148 20
i 5.9 168 1
i 4 169 20
i 4 170 20
i 4 171 20
e

</ CsScor e>

</ CsoundSynt hesi zer >

Credits

500, p3*0.9, 1800, p3*0.1, 3000

10000, 0.05, p3, 0.05
kenv, 100, sr/(200), 1
asig, kfe, 1

afil

"Lua noogl adder.\n"
1
0

500, p3*0.9, 1800, p3*0.1, 3000

10000, 0.05, p3, 0.05

kenv, 100, sr/(200), 1
0

“moogl adder™, afil, asig, kfe, kres
afil

gi ended - gi began
i el apsed

Copyright (c) 2011 by Michael Gogins. All rights reserved.

i stor

177

Python Opcodes

Introduction

Using the Python opcode family, you can interact with a Python interpreter embedded in Csound in five
ways:

1. Initialize the Python interpreter (the pyinit opcodes),

2. Run a statement (the pyrun opcodes),

3. Execute a script (the pyexec opcodes),

4. Invoke a callable and pass arguments (the pycall opcodes),

5. Evaluate an expression (the pyeval opcodes), or

6. Change the value of a Python object, possibly creating a new Python object (the pyassign opcodes);
and you can do any of these things:

1. Ati-timeor at k-time,

2. In the global Python namespace, or in a namespace specific to an individual instance of a Csound
instrument (local or "I" context),

3. And can you can retrieve from O to 8 return values from callables that accept N parameters.

...thismeansthat there are many Python-related opcodes. But all of these opcodes share the same py prefix,
and have aregular naming scheme:

"py" + [optional context prefix] + [action nanme] + [optional x-time suffix]

Orchestra Syntax

Blocksof Python code, and indeed entire scripts, can be embedded in Csound orchestrasusingthe{{ and } }
directives to enclose the script, as follows:

sr=44100
kr=4410
ksmps=10
nchnl s=1
pyi nit

gi Sinusoid ftgen 0, 0, 8192, 10, 1

pyruni {{
i mport random

pool = [(1 +i/10.0) ** 1.2 for i in range(100)]

def get_nunber_from pool (n, p)
if randomrandom() < p
i = int(randomrandom() * |en(pool))
pool[i] =n
return random choi ce(pool)

178

Python Opcodes

1}

instr 1

k1l oscil 1, 3, giSinusoid

k2 pycall1 "get_nunber_frompool", k1 + 2, p4
printk 0.01, k2

endi n

Credits

Copyright (c) 2002 by Maurizio Umberto Puxeddu. All rights reserved.

Portions copyright (c) 2004 and 2005 by Michael Gogins.

179

Image processing opcodes

Hereisalist of opcodes that read/write imagefiles:
» imagecreate

* imagesize

* imagegetpixel

 imagesetpixel

» imagesave

* imageload

» imagefree

180

STK Opcodes

Note

These opcodes are an optional component of Csound6. Y ou can check if they are installed
by using the command 'csound -Z' which lists all available opcodes.

The STK opcodes can be built in several ways. If you are aready building Csound, simply follow the
directions at the top of the Opcodes/stk/stkOpcodes.cpp file.

The STK family of opcodes wraps:
+ STKBandedWG
» STKBeeThree
» STKBlowBotl
» STKBlowHole
» STKBowed

» STKBrass

» STKClarinet

» STKDrummer
» STKFlute

» STKFMVoices
+ STKHevyMetl
» STKMandolin
» STKModalBar
« STKMoog

» STKPercFlut

» STKPlucked

» STKResonate
» STKRhodey

» STKSaxofony
» STKShakers

* STKSmple

» STKStar

o STKSifKarp

181

STK Opcodes

» STKTubeBell

STKVoicForm
» STKWhistle
e STKWurley

For more information about the STK opcodes, visit The Synthesis ToolKit in C++ (STK) web site at
https://ccrma.stanford.edu/software/stk.

Credits

Thisimplementation of the STK unit generators was written by Perry R. Cook and Gary P. Scavone.

The opcodes were further adapted as a plugin for Csound 5 by Michael Gogins.

182

https://ccrma.stanford.edu/software/stk

Miscellaneous opcodes

Hereisalist of opcodesthat don't fall in any category:
» system- Call an external program viathe system call.

» modmatrix - modulation matrix opcode with optimizations for sparse matrices.

183

Part Ill. Reference

Table of Contents

Orchestra OpCOAES AN OPEIEIOISccvvuueeiiti e eeeei e ettt e et e et e et e et e e e et eeeaaa s 213
TSSO PPTTTTRR 214
00 (< 1 0 PP 216
2 oo [0 To (PP 220
BUNAEE ... e e 222
BTOET e 223
] 00 = PP PP SPPPTN 224
BNAME e e e et a e et a e 225
PP PT T SUPPTT 228
BBt e 230
DTSR 232
b TP TP PP PP TPPPPTR 234
ST 236
S TSSO PTTTPR 238
ST PP PPPPTT 240
TSP 243
ST PPPPT 246
PP P PP PPPPTT 249
TP TOPPR 252
TP PP TPPPPTR 254
TP PP PP TPPPPTR 256
PO PTTUPOPPPTTRTPPPIN 258
| PP UPPTTRN 260
PP SPPPTTR 263
OODFS e et aaans 265
A et 268
ST PP PP 269
b PP 271
TS OPTUPP PP POPPPTRUPPPTN 272
PSSP UPUPTTTPR 274
T TP PSPPSR 275
TP TPPP TR SOPPTRN 276
= O PP T SP PP PPPPTRN 277
B e 279
oY P 281
20 PRSP P PO SPPPTT 285
BOOYIN et 288
BOSYNE et enaas 290
BOSYNEZ e e e et e e e ene 293
(01 (o o PP 296
BlIASS ettt et 298
BIWEAYSON ...ttt 300
= 0107 | o I PP PPPPT 303
BMPADTS <. et 305
201001 1T | PP PP PR 307
BMPMITIT ..t 309
2T cC o] o E PP PPN 311
1= S'o | PP 313
= (0] 01T PP PR PP 315
0] 1= PPN 317
= (0] 0] PP P P TPRUPRPR 319

185

Reference

F N = (o PP 321
F N = (o [0 AP 325
F N B LU 1 (== o [P PTNPPN 328
N B o 01 330
F N B 11 o TP 333
F N S T 1= o (== 336
PN B == o PP 338
YN B == o AR 342
F NS o g = o 345
F N = 1 o PP 347
0721 oo TP 351
DAIANCE .. e 355
DAIANCEZ ..o 357
DAMDI00 ... e e 359
DAMIOE] ... et 361
0] 0 w11 10 0 TR 363
0] 0oL | P SPTPPRN 368
0S = r= 0o KOS 371
0724 o N 374
o] 104 011= 1 (o KPP 376
o] 104 040 (<o KRR 379
o] 1 PRSP 382
o]0 117 o 384
o]0 (U7="o - P 389
o] 14 2 To [TP 392
o] o 394
00 =4 396
01011 o o P 398
o111 o) TP 399
01011 o P 400
01011 1 401
0101111 o] o S P 402
01U 1= o PP 404
0101111 o P 406
010111 | o 408
o111 () o [T 410
UZZ ..o 412
072 S 414
(o 0= PP 416
(o 1 (o Y/ 418
(o 1 o Y/ I 420
(o= TP 422
(o= TP 424
0 0 | N 427
(o= 011 (0] o [SRPRPRN 429
0= o1 PP 431
(0= 01 1Y 433
(000 [0 (o TN PPN 435
(o 7= 1o o 1 PP 437
ChaNGE ... 439
ChaNQEOZ ... e 441
(o 7= o PP 444
(o 7= T2 o PPN 445
(oo A PP 446

186

Reference

ChEBYSNEVPOLY ..o e 448
(0107 o 40) SR PP 451
o 0 PP 453
o010 = PP 455
(013111 0 o A 457
(o010 = PN 459
0101070 0T SRS 462
CRNPAIAIMIS .. e 464
0010 PP 465
(o211 o 468
(ot To (o J P 472
(012 (0 (0 1P 474
o= PP 476
o SR 478
o 1T o P 481
(ol (o) i PP 483
(oo (o o PP 485
o1 o PP 487
ot 101 0] D14 o (o P 489
[0 10 [0 (o TN PPN 491
o1 oo PP 493
(01000100 1Y SRR SPPP 495
(o] 001071 1= o= o 497
(o0 01071 1= o o P 499
(o0 0] 0T =1 501
(00001 0 1= T PSPPSR PPPR 503
(0001 01>V PP PPRPPR 506
(00] 0010t APPSR 509
o1 011 PP 512
(070 01V = PP 513
(000 01Y/0] AV PP 514
(00])Y 74 1 = o PN 518
(00])V 271 - Y 520
0001 PP 522
(001 < o [PP PPRPRPRPR 524
(o015 | o T 526
(0015 o [PP 528
0101 o PP 530
(o101 1Y PSPPI 532
o0 15724 oo . N 534
ot 01 1101 538
ot 01 1101 1 o PP 540
ot 01 110110 1 o] o PN 542
(0: 0150 o L PP 546
o101 oo o PPN 549
ot 0111 1o [552
(o¢ 1= L1 PPN 554
ot 011 PPN b57
o017 0o . N 560
(0F 1010 0 (= PPN 564
[0X o1 o o PPN 566
(000157 PP 569
o (01 1 1 PP P PR UOPTR PPNt 571
(o1 1o o PP 574

187

Reference

(o1 1 PP 576
(o1 220 PP 578
(o4 PP 580
(o1 1T o T PTPR 583
(o US4 oo [P 584
[0 7=1 2 0 587
0= 590
(0= <R 592
o« T 594
(07 1 1] o TP 596
01 0155-= 01 T 598
(001 [oTo: PP 600
(0010 o2 o2 PRSP 602
(0670 0 1Y PP 604
oo 606
(0 0111 0|V TR 608
E Y .. 610
EIAYL ..o 612
EIAYK .o 614
01 1/ 617
E AW oot e e 619
BB . a s 621
(01 1 7= 10 T PP P PSPPSR 624
(01 1 7= o PSP PPPSRUPPPPI 627
(01 1o o PN 630
(01 1 7= 1) G PP PRSPPSO 632
(0121 =10)|, P 634
(01 070 1 1 KRR 636
o TR 638
AIOde 1aOAEreceec 640
(0T = (oY P 643
(0TS (o = 1 645
(0TS T o T 648
(0TS (] 2R 651
(011 o SOOI PPPUPI 655
0TS0 PP 657
(0 = (o) AT 659
(0 = (o) 41 PP 661
IV Z e 663
(007 o] o] = 665
o[TR 667
o (011 15" o P 668
(0T oY (= 670
(0L T= o V7= (< 672
(0SS =0 To o PP 675
(015 T £ 677
(015 T o 679
(015 1= T 681
0 L1 1070 PPN 683
(011 13T 0] 022N 686
(011197 0] G J N 689
(01137 0] N 692
(0 (855 1 1 o P TPTRR 695
o L1 697

188

Reference

011 2P 699
Bl B Lttt e 701
Bl BT e e e 703
=0T T PP 705
=07 T PP 707
<20 (o o T 709
L= 017710 712
L= 017710 715
< 0] 7= o 718
L= 11 PR 720
Lo 1 PSP 722
<Y< 1| PP PTPPRP 723
L= VL= 2| RN 727
LS = PP 729
EXITNOW ettt ettt ettt ettt e et et a b e e e et e et e et e e eannnn 731
L2 o PSPPI 733
L2010 BV PP 735
2L 00 PP 737
Lo o 739
Lo 1o P 741
L0 o PP P PP 743
(0SS o = PP 745
Lo 015 o | o N 747
o015 e |- 749
LS8 o | PP 751
L= 0= 11 To o S U SPN 753
L= 0 (010101 1 =S 754
L=.1 (o 1 PRSP P 755
L2010 756
L= (=54 L= 758
L= =4 L= 2 N 760
L o1 PP 763
L1 1= o PP 765
L1 1= = T PR 767
111 1 01 0 K= PP 769
L= o= PP 771
L= o= PR 773
111 PP 775
11,2 Lo PP 777
L= = Y PN 779
L PP 781
1] = 2P 783
T PP 785
S 787
0L ST 789
0] 0= 791
118 [~ P 793
L1 0 PP 795
oo PP 797
L I o011 = PP 802
[I o111 (o o PPN 805
FLCIOSEBULLON ...ttt ettt e e et n e et n e et n e e e et aeeeaenns 810
[oo o PP 813
[7o 2SN 815

189

Reference

[I oTo | o | PRSPPI 816
FLEXECBULION ...ttt ettt et e e e e e e et e et e e e enennnas 819
[I [S 7= o PP PTPRPTPR 822
[I (0| o PSPPSRI 823
[I 01U o] = o P 825
[e 01U o = oo [826
[0T L= PP 827
L I 01V 2 o) S UPPPSPPN 828
FLRAVSBOXSEVAIUEeuieiiii ettt e e e et e e e e s 829
L 0 PP 830
L IV o 834
FLKNOD . e 836
L = PP 841
I o= o £ = TP 843
L 01010 PP 844
100 = P 846
L1000 2 848
L1 PP 850
L 07 o 852
L I 7 o 4 = o P 855
L 07 o Q= o P 856
o 07 11 P 857
L I 7= 11 = oo 861
L 7= 11 = o P 862
L 111 863
L 1011 02 864
o o | = SRRSO 865
[I o PP UPTPT 868
L IS Y = o L 869
o o PP 875
[ot 0] 1 o o PP 878
[IR =ox (]| = oo 879
LI 7N [T o PP 880
L I 12 o PP 881
[= (0o o PP 883
[I (0o o 2SR 885
I {0 | PSPPI 886
I {01 1o o [PP 888
I 1S < PP 889
L S = 0= o PPN 890
L I = R 0= 0[] (0| o PPN 892
[I I S SPPRTSPPN 893
I = (0o o PP 895
IS oS = PSP 896
L I = = Y/ 0P 897
I AV PP 900
FLSEIV @l .. i e e e e aan 901
L 0o PSP 902
L IS [T 12 o] PP 903
L IS [T 12 o1 2 PP 907
FLSIABNKGEIHANAIE ...ttt e et e e et s e e e eaeneeaes 910
IS 101201 = PP 911
LIS 012101 | PP 912
FLSIABNK2SEL ...ttt e et e e et e e e e et e e e eab e eeenenas 914

190

Reference

FLSIABNK2SELK .. ovuiiiiiiiii ettt et e e e e e et e e e e e eans 915
[I [T L= PRSP 918
[I = o PP 924
[I = 0 = o [PP 930
FLEBIS BNA oo 931
[I (= 932
[I = 935
LTV ITo 7N 11 1 | PP 936
L LU To [O T 938
L LV 1To [OOSR 940
LTV 1To (@0)i {o) TP 942
LT T =g T = N 945
LU TTo | = PP 948
LU0 |\ Lo (= TP 950
LU TTo [| TR 952
FIUIAPrOgramSEIECL ... e e 955
L0 TT0 RT=) C= oA =21 oo 958
FLVAIUE .. .cecee ettt e e e e e 960
L IR =Y oo PPN 963
[IRV TTo [2] o P 964
[IRV Lo [2] o1 o PP 968
0T 1 o 970
1007107 TR 973
L1107 975
L0010 X PP 977
L0010 =: | PSP 979
L0011 TR 982
1001001 = PP 984
L1070 o PP 986
1100101 (U 988
110012707 [T PPN 990
11001770 o= SRR 992
L0000 g TSR 994
L0 NPT 996
L0, 22 PRSP 999
L0, {11 (= SRS 1005
L0 P 1007
0] o TR 1010
0] 1 o T RPN 1012
0] 1o 1T TR 1014
L0 1S w1 PP 1016
101 o 1 | PPN 1018
{010 | TR 1020
L0 |1 PRSPPI 1024
L0 111 PP 1026
L0101 PP 1028
L1 01011 P 1030
L1 0] 1)1 PPN 1036
L= 1038
L= = 10T T PP 1040
L= 001= 001 (= PP 1042
LSSV £ TP PR 1044
L0 01| £ 1046
L1001V PP 1048

191

Reference

1001 1051
LU (=TSP PP PPN PPTRPPN 1053
10011 1055
L1001 1] 1= 1058
L1001 1110 o PP 1060
111 PP 1062
11 = o PP 1064
11 = PP 1065
4 oL 1066
L0000 o ST PP PT PR 1068
L1001 0 TP PP PP RUPTRPPT 1070
FESAMPIEDANK ...eeeeec e 1072
L2 Y ST TUPT P UPPT PP 1074
1552 Y/ SO PTTRPPIN 1076
155 PP 1077
0= 0 P 1079
o= 1 1S o L= 1081
[0 LS PP 1083
072 115 RSP 1085
[0 T= 105 [o 1087
0] 010 .74 PP 1090
[0 0= 1 = PP 1092
(01 7= 11 - Y/ P 1094
01010 |V 1096
0= 10 Yo 1100
0110 | G P 1103
0T (o o 1107
01 (oo P 1109
01 7= P 1111
[0 {01 PP 1113
0= 5= <o ST 1116
00 (0] o= XSSP 1117
00 PP 1119
0 (7= T T 1121
0] =1 122 1123
0] =1 PP 1128
0110101 = N 1133
0 0 T o T PP PRPRPR 1136
00 o o PPN 1138
RBIMONZ ... e e et e et e e e e e e et aaane 1140
0101151 1=o PP 1143
01011 (PSP 1145
T o= o PP 1147
T o= 2P 1152
=" Y 1154
ROV <.t e 1158
RIEEMOVEZ ... e e e 1161
R TEVEID ..o 1164
01 = P 1167
NSDOSCI ..t e 1170
1Y PP 1173
PV S e e 1177
0175 PP 1183
01770 | 1186

192

Reference

I+ttt ettt e e e e et ettt eeteeeteeeaeeaaeeaeeteetieet e ea ettt eet e et e ettt e e eraaeaaaaetaas 1188
EF ettt et e e e e e et aans 1189
LU PP 1194
[0 {0 R 1196
7o o 1198
L a2 T=w (= (PN 1200
a0 1= =P 1202
L aT=T 1= 1= o (= PP 1204
=T 1= = P 1207
L= 1= Y N 1209
L gT=T0Tc =L oD = PP 1211
0= 1= 1213
TR 1215
1 72PN 1217
1 To: o TP 1218
1] o T PSRN 1220
I Lot e et ea e e a et 1221
1T (ot PPN 1224
T (o2 PPN 1225
1) (o2 1226
1= = T 1228
10 1= 1 PR 1231
101 1= 1 (T TP 1233
101 =: 1 ST 1234
101 1= YRR 1235
0 1236
T PPN 1237
4o P PP 1239
1S ettt et ea et e ee e et ea ettt eeeaee e te e e aeaeara e taranen 1240
LIS = 11T) PP 1242
INSTIODEL ..o 1245
S 1 PR 1247
TR 1249
1o PP PRTPRP 1251
1 PP 1253
1AY=L L TP 1256
P 1258
2P 1259
= o (o YA U o [To] o TSP 1260
o (o YA U0 [To] [O]y Tl P 1261
o (o VA U o (101 I | PP 1262
JACKOAUAIOOULCONNECEvviietiii et e e ettt et e et e e e e e e et e et e et e abaeaaans 1263
JACKOFTEEWNEE! . ..eiiiiiii e e et 1264
N =0 (o] 1) {0 PP 1265
N =0 (o] 1 o TR 1267
JACKOMIAITNCONNECE ...viivtiie ittt e e e e e et e et e et eaanas 1269
JACKOMIAIOULCONNECEceviiviieie ittt et e e e e e e et e et e e e e e e e e eans 1270
JACKOMITIOUL ...vuitiit it e e e e e e e e e e et e e e e e s e eaeeraees 1271
N o (0 N[0 1O LU | TP 1272
N o (0[O o TP 1273
= o 0] = 11 0o TP 1274
[= o L P 1275
L 1277
L= 22 PPN 1279

193

Reference

0221 PP 1281
J1S oL 101 1284
K ettt e e e e et et e e e et e et e e et e et aaees 1286
[1 SRR 1287
1 T 1 o PRSPPI 1291
00 (0 PP 1295
SRR 1297
S 110 P 1298
1= 0T - Y P 1299
o PSSP 1301
T 0 P 1303
T 0 1305
T P 1307
1T 07 o PR 1309
1T 0T o | SO 1311
1T 0T (o PP 1314
T T PSP 1316
T gL o= o (o= P 1318
LT g 2 o= o = 1319
g g o= A = o L1 P 1320
1] g 2w (=" (= P 1321
INK BNADIE ...t 1323
INK_0S @NEIDIEM ... coveiie e 1325
1T g2 4= (o P 1327
T g 2 o= P 1329
T g o (o[0T = P 1331
1T gL (] o[0T AP 1333
1T =" o P 1335
1T 0= 1337
1T 0= | o P 1339
1T 0= | N 1341
TV oo 1Y U SP 1343
0TS oo PPN 1346
o= o 1349
oo P 1352
oo 1 PP 1354
oo 2P 1356
0T 11 P 1358
o (o1 Y/ P 1360
oo o T o 1= 2SN 1362
oo o T o | P 1364
oo o T = 1366
oo o T P 1369
oo == o 1372
Lo o]0’ = o | o 1S P 1374
oo 55" o [1376
Fo 0] 0) 6 =" P 1378
=2 .2 1380
Lo TS == o P 1383
Lo 1= 1270 o) o P 1386
Lo 1= o] Y PP 1389
01 PP 1392
101 o1 OSSP 1395
101 PRSP 1398

194

Reference

L0 0= 2 1401
0 =P 1403
Lo = P 1405
o)1 PSP 1407
0= o) o 1P 1409
0] 7= o P 1411
o0 1= o 1413
001 o 1 P 1414
o0 1= o 1 P 1416
o0 1S o 1 - P 1418
o T0 1S 1= P 1420
o L0 1S 1= 22 1422
0o 1424
0] (== o o P 1427
0= 7o P 1430
0= 7o | o P 1432
07 oS 1433
L= = = 1434
7= T o o L= 1435
1 7= o | 1 1441
7= o PP TPRPRPRRY 1444
7= PSPPI 1446
0= U 1448
7= PP 1452
0= [P 1455
0= (o 1458
QT2 - Y PP 1460
0= o P 1463
0= o o P 1466
7= PP 1469
NBXBIS ... ettt a e aaa 1471
QT2 0)= ot 1 | P 1473
T2 = ool U 0 P 1475
0= oo 1477
0= G N 1479
0T e = Y PPN 1481
00t oo P 1483
0101 P 1485
07 [0 P 1487
0= [0 P 1489
1 (o T PP 1491
1011 TP 1493
MIAGIODEAL ... e 1495
00T o 1496
0T o PP 1498
0T o2 PP PPT 1500
0o T/ P 1502
MidiChanNElGftEITOUCKo e 1504
0o [T oo o P 1506
g0 To oo 1 o] For 7= g o L= N 1509
0o o i 4 P 1511
0o [0 T 1513
00T P 1515
0T TN =S = 1518

195

Reference

00T T110) (=10) PPN 1519
0T [0 1) (=10 Tox o 1= 1521
00101 10) =100 =Y P 1523
001 10) (=10 To o AP 1525
00T T110) =100 o o [1527
00T 122 1529
00T TP 1531
0o [T | 1534
00T | 1536
MIdIPIECNDENG ... oeeece e e 1538
MIdIPOIYAItEITOUCK .. .oee e e e 1540
MIdiPrOGIraMCNANGE . ..vvi i e e e e e e e et e e et e e et e e et e e aaeeanns 1543
00T TR (= 1017 TP 1545
00 1= 2T 1547
0 P 1550
0T 7= o1 1552
AT T= 1S oot o o 1554
0= oo 1 0 P 1556
0o P 1558
00T = Y/ P 1560
0T o] P 1562
D = = Y= PR 1564
D = = Y PP 1567
D (T (I Y= PP 1568
D 5= 0o PPN 1570
Dt L= = Y/ TP 1572
D (O P 1574
10700 L 1576
000 10T {1 PP 1579
010 1 (o P 1584
170 PR 1586
000 =T (o[P 1588
L pT0T0 o =T (o[2 P 1590
70700 o1 1592
110700 o1 1594
0101 o 1 P 1596
0] 25 1 o PP 1598
0] 25 o P 1600
0] 2GS o | S 1602
0] 10 =P 1604
011 01 o PP PP 1606
1010 P 1607
01 1609
010) =T o 1611
10 1= PSPPSR 1613
01772) P 1615
0177 o 5 S 1617
01771 o 72 1619
01771 o1 S 1621
0177 o S 1623
D1 0 £ P 1625
00T 0 £ 1628
x0T 0 KT 0P 1630
x0T | K 1631

196

Reference

1S =0 o T 1633
0] P 1636
011 {1 2 TSTPRN 1639
107 S 1642
10 =0 PPN 1645
1101) 1 P 1646
(910100100 (U 2 TSP 1647
(91010000 LU G TP 1649
10101 P 1651
1LY /= o o TP 1653
] PRSPPI 1656
152 1 PP 1658
15721 0 1660
10] 0 1663
11510 o 1665
111 0o 1666
00t = 1Y PPN 1668
[0 (010 1 PRSP 1670
(o110 1 o | I PPN 1673
(0110 41T |1 « PPN 1675
(0T 10 410 [1o ST 1677
o011 oo o 1680
(o= oL 1 (= PP 1683
(o]0 L= TP 1685
(01w o] 0| TR 1690
(015 o/ 1 i T 1696
(01 o1 i PP 1698
(015 w11 1 T 1700
(01 o/ 1 TP 1702
(01 o/ 1 PP 1704
(01 o1 11« TR 1706
(011 11 TP 1708
(01 o] 11 PP 1710
(015 w11 | o T 1712
(01 w11 £ PP 1714
(015 w11 PP 1716
(O O 1 1 PP 1717
(@S O 1 111 PP 1719
(O O 11 (= o PP 1721
(O O - PPt 1725
(0 015 o o PP 1727
(011 | 2 PP 1729
(011 | PP 1730
0 (oS 1732
(010 (oo H P 1734
(011 1 o 1P 1737
0 1738
(o]0 1 o TP 1740
(011 (o2 TP 1741
(o111 1743
(010110 o P 1744
o111 P 1746
(010 |1 = PR 1748
(010 |1 (ot I TP 1750

197

Reference

OULKC vvvvniiieiicicieeee,
gy 1751
gy 1753
e 1754
QUKD 1756
QLB 1759
O 1761
O 1762
OUIBIIC o 1764
OUIEIV 1765
SRS 1766
g 1767
D 1769
e 1771
e 1773
R 1775
QUG 1777
S 1779
D 1781
S 1783
QUVEIL 1785
oux ... 1787
e 1788
D o 1789
POOURIR - 1791
D 1793
B 1795
S 1797
S 1799
Py 1802
Pl 18