utils

Utility functions in GAP

0.57

2 June 2018

Sebastian Gutsche
Max Horn
Alexander Hulpke
Stefan Kohl
Frank Liubeck

Christopher D. Wensley

utils

Sebastian Gutsche
Email: gutsche@mathematik.uni-kl.de
Homepage: http://wwwb.math.rwth-aachen.de/~gutsche/

Max Horn
Email: max.horn@math.uni-giessen.de
Homepage: http://www.quendi.de/math

Alexander Hulpke
Email: hulpke®@math.colostate.edu
Homepage: http://www.math.colostate.edu/ hulpke

Stefan Kohl
Email: stefan@mcs.st-and.ac.uk
Homepage: https://www.gap-system. org/DevelopersPages/StefanKohl/

Frank Liibeck
Email: Frank.Luebeck@Math.RWTH-Aachen.De
Homepage: http://www.math.rwth-aachen.de/ Frank.Luebeck

Christopher D. Wensley
Email: c.d.wensley@bangor.ac.uk
Homepage: http://pages.bangor.ac.uk/ " mas023/

mailto://gutsche@mathematik.uni-kl.de
http://wwwb.math.rwth-aachen.de/~gutsche/
mailto://max.horn@math.uni-giessen.de
http://www.quendi.de/math
mailto://hulpke@math.colostate.edu
http://www.math.colostate.edu/~hulpke
mailto://stefan@mcs.st-and.ac.uk
https://www.gap-system.org/DevelopersPages/StefanKohl/
mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck
mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

utils 2

Abstract

The Utils package provides a space for utility functions in a variety of GAP packages to be collected together
into a single package. In this way it is hoped that they will become more visible to package authors.

Any package author who transfers a function to Utils will become an author of Utils.

If deemed appropriate, functions may also be transferred from the main library.

Bug reports, suggestions and comments are, of course, welcome. Please contact the
last author at c.d.wensley@bangor.ac.uk or submit an issue at the GitHub repository
https://github.com/gap-packages/utils/issues/.

Copyright

© 2015-2018, The GAP Group.

The Utils package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements

This documentation was prepared with the GAPDoc [LN17] and AutoDoc [GH16] packages.
The procedure used to produce new releases uses the package GitHubPagesForGAP [Horl7] and the
package ReleaseTools.

mailto://c.d.wensley@bangor.ac.uk
https://github.com/gap-packages/utils/issues/

Contents

1 Introduction
2 Printing Lists and Iterators
2.1 Printing selected items . . .
3 Lists, Sets and Strings
3.1 Functions for lists
3.3 Functions for strings
4 Number-theoretic functions
4.1 Functions for integers
5 Groups and homomorphisms
5.1 Functions for groups
6 Records
6.1 Functions for records
7 Various other functions
7.1 Operations on folders
7.2 File operations
7.3 IAIEXstrings.
7.4 Applicable methods
7.5 Conversion to Magma string
8 The transfer procedure
References
Index

1.1 Information for package authors

3.2 Distinct and Common Representatives

5.2 Functions for group homomorphisms L.

10
11

12
12

15
15
17

18
18

19
19
19
20
20
21

23

25

26

Chapter 1

Introduction

The Utils package provides a space for utility functions from a variety of GAP packages to be collected
together into a single package. In this way it is hoped that they will become more visible to other
package authors. This package was first distributed as part of the GAP 4.8.2 distribution.

The package is loaded with the command
Example

gap> LoadPackage("utils");

Functions have been transferred from the following packages:

 Conversion of a GAP group to a Magma output string, taken from various sources including
other.gi in the main library.

Transfer is complete (for now) for functions from the following packages:
» AutoDoc [GH16] (with function names changed);

» ResClasses [Koh17b];

 RCWA [Kohl7a];

* XMod [WAOU17].

The package may be obtained either as a compressed .tar file or as a .zip file,
utils-version_number.tar.gz, by ftp from one of the following sites:

* the Utils GitHub release site: https://gap-packages.github.io/utils/.
» any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/utils.
Once the package is loaded, the manual doc/manual.pdf can be found in the documentation
folder. The html versions, with or without MathJax, may be rebuilt as follows:

Example

gap> ReadPackage("utils", "makedoc.g");

https://gap-packages.github.io/utils/
https://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/utils

utils 5

It is possible to check that the package has been installed correctly by running the test files (which
terminates the GAP session):

Example

gap> ReadPackage("utils", "tst/testall.g");
Architecture:
testing:

#I No errors detected while testing

Note that functions listed in this manual that are currently in the process of being transferred are
only read from the source package Home (say), and so can only be used if Home has already been
loaded.

1.1

Information for package authors

A function (or collection of functions) is suitable for transfer from a package Home to Utils if the
following conditions are satisfied.

The function is sufficiently non-specialised so that it might be of use to other authors.
The function does not depend on the remaining functions in Home

The function does not do what can already be done with a GAP library function.
Documentation of the function and test examples are available.

When there is more than one active author of Home, they should all be aware (and content) that
the transfer is taking place.

Authors of packages may be reluctant to let go of their utility functions. The following principles
may help to reassure them. (Suggestions for more items here are welcome.)

A function that has been transferred to Utils will not be changed without the approval of the
original author.

The current package maintainer has every intention of continuing to maintain Utils. In the event
that this proves impossible, the GAP development team will surely find someone to take over.

Function names will not be changed unless specifically requested by Home’s author(s) or unless
they have the form HOME_FunctionName.

In order to speed up the transfer process, only functions from one package will be in transition
at any given time. Hopefully a week or two will suffice for most packages.

Any package author who transfers a function to Utils will become an author of Utils. (In truth,
Utils does not have authors, just a large number of contributors.)

The process for transferring utility functions from Home to Utils is described in Chapter 8.

Chapter 2

Printing Lists and Iterators

2.1 Printing selected items

The functions described here print lists or objects with an iterator with one item per line, either the
whole list/iterator or certain subsets:

* by giving a list of positions of items to be printed, or

* by specifying a first item and then a regular step.

2.1.1 PrintOneltemPerLine

> PrintOneltemPerLine(obj) (function)

This function calls operations PrintListOneItemPerLine (which has been transferred from
package XMod) or PrintIteratorOneltemPerLine.

Printing lists vertically, rather than horizontally, may be useful when the entries are lengthy. This
function does this for lists, iterators, and objects which have an iterator.

Example

gap> s3 := SymmetricGroup(3);;

gap> L := KnownProperties0fObject(GeneratorsOfGroup(s3));;

gap> PrintOneltemPerLine(L);

[IsFinite,
IsSmalllist,
IsGeneratorsOfMagmaWithInverses,
IsGeneratorsOfSemigroup,
IsSubsetLocallyFiniteGroup]

gap> PrintOneItemPerLine(s3);

O

(2,3)

(1,3)

(1,3,2)

(1,2,3)

(1,2)

utils

2.1.2 PrintSelection

> PrintSelection(obj, first, step[, last])
> PrintSelection(obj, list)

This function, given three (or four) parameters, calls operations PrintSelectionFromList or
PrintSelectionFromIterator which prints the first item specified, and then the item at every step.

The fourth parameter is essential when the object being printed is infinite.

Alternatively, given two parameters, with the second parameter a list L of positive integers, only

the items at positions in L are printed.

Example

gap> L := List([1..20], n -> n"5);;
gap> PrintSelection(L, [18..20]);

18 : 1889568

19 : 2476099

20 : 3200000

gap> PrintSelection(L, 2, 9);
2 : 32

11 : 161051

20 : 3200000

gap> PrintSelection(L, 2, 3, 11);
2 : 32

5 : 3125

8 : 32768

11 : 161051

gap> sb := SymmetricGroup(5);;

gap> PrintSelection(s5, [30,31,100,101]);
30 : (1,5)(3,4)

31 : (1,5,2)

100 : (1,4,3)

101 : (1,4)(3,5)

gap> PrintSelection(s5, 1, 30);

1: 0
31 : (1,5,2)
61 : (1,2,3)

91 : (1,3,5,2,4)
gap> PrintSelection(s5, 9, 11, 43);

9 : (2,5,3)
20 : (2,4)
31 : (1,5,2)

42 : (1,5,2,3,4)

Chapter 3

Lists, Sets and Strings

3.1 Functions for lists

3.1.1 DifferencesList

> DifferencesList (L) (function)

This function has been transferred from package ResClasses.
It takes a list L of length n and outputs the list of length n — 1 containing all the differences
L[i]—L[i—1].

Example

gap> List([1..12], n->n"3);

[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728]
gap> DifferencesList(last);

(7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397]

gap> DifferencesList(last);

[12, 18, 24, 30, 36, 42, 48, 54, 60, 66]

gap> DifferencesList(last);

[6, 6, 6,6,6,6,6,6,6]

3.1.2 QuotientsList

> QuotientsList (L) (function)
> FloatQuotientsList (L) (function)

These functions have been transferred from package ResClasses.
They take a list L of length n and output the quotients L[] /L[i — 1] of consecutive entries in L. An
error is returned if an entry is zero.

Example

gap> List([0..10], n -> Factorial(n));

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
gap> QuotientsList(last);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

utils 9

gap> L := [1, 3, 5, -1, -3, -5 1;;

gap> QuotientsList(L);

[3, 5/3, -1/5, 3, 5/3 1]

gap> FloatQuotientsList(L);

[3., 1.66667, -0.2, 3., 1.66667]

gap> QuotientsList([2, 1, 0, -1, -2]);
[1/2, 0, fail, 2]

gap> FloatQuotientsList([1..10]);

[2., 1.5, 1.33333, 1.25, 1.2, 1.16667, 1.14286, 1.125, 1.11111]
gap> Product(last);

10.

3.1.3 SearchCycle

> SearchCycle(L) (operation)

This function has been transferred from package RCWA.

SearchCycle is a tool to find likely cycles in lists. What, precisely, a cycle is, is deliberately
fuzzy here, and may possibly even change. The idea is that the beginning of the list may be anything,
following that the same pattern needs to be repeated several times in order to be recognized as a cycle.

Example
gap> L := [1..20];; L[1]:=13;;
gap> for i in [1..19] do
> if Is0ddInt(L[i]) then L[i+1]:=3%L[i]+1; else L[i+1]:=L[il/2; fi;
> od;
gap> L;

[13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4]

gap> SearchCycle(L);

[1, 4, 2]

gap> n := 1;; L := [n];;

gap> for i in [1..100] do n:=(n"2+1) mod 1093; Add(L,n); od;

gap> L;

[1, 2, 5, 26, 677, 363, 610, 481, 739, 715, 795, 272, 754, 157, 604, 848,
1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271,
211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521,
378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272,
754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604,
848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004,
271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004]

gap> C := SearchCycle(L);

[167, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754]

gap> P := Positions(L, 157);

[14, 26, 38, 50, 62, 74, 86, 98]

gap> Length(C); DifferencesList(P);

12

[12, 12, 12, 12, 12, 12, 12]

utils 10

3.1.4 RandomCombination

> RandomCombination(S, k) (operation)

This function has been transferred from package ResClasses.
It returns a random unordered k-tuple of distinct elements of a set S.

Example

gap> ## "6 aus 49" is a common lottery in Germany
gap> RandomCombination([1..49], 6);
[2, 16, 24, 26, 37, 47]

3.2 Distinct and Common Representatives

3.2.1 DistinctRepresentatives

> DistinctRepresentatives(list) (operation)
> CommonRepresentatives(list) (operation)
> CommonTransversal (grp, subgrp) (operation)
> IsCommonTransversal(grp, subgrp, list) (operation)

These operations have been transferred from package XMod.

They deal with lists of subsets of [1...n] and construct systems of distinct and common represen-
tatives using simple, non-recursive, combinatorial algorithms.

When L is a set of n subsets of [1...n] and the Hall condition is satisfied (the union of any k subsets
has at least k elements), a set of DistinctRepresentatives exists.

When J, K are both lists of n sets, the operation CommonRepresentatives returns two lists: the
set of representatives, and a permutation of the subsets of the second list.

The operation CommonTransversal may be used to provide a common transversal for the sets of
left and right cosets of a subgroup H of a group G, although a greedy algorithm is usually quicker.

Example

gap> J := [[1,2,3], [3,4], [3,4], [1,2,4] 1;;

gap> DistinctRepresentatives(J);

[1, 3, 4, 2]

gap> K := [[3,4], [1,2], [2,3], [2,3,4] 1;;

gap> CommonRepresentatives(J, K);

(033,311, [1,3,4,21]1

gap> d16 := DihedralGroup(IsPermGroup, 16);

Group([(1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) 1)

gap> SetName(d16, "d16");

gap> c4 := Subgroup(di6, [d16.1°2]);

Group([(1,3,5,7)(2,4,6,8) 1)

gap> SetName(c4, "c4");

gap> RightCosets(di16, c4);

[RightCoset(c4,()), RightCoset(c4,(2,8)(3,7)(4,6)), RightCoset(c4,(1,8,7,6,5,
4,3,2)), RightCoset(c4,(1,8)(2,7)(3,6)(4,5))]

gap> trans := CommonTransversal(di6, c4);

utils 11

[O, (2,8)@3,7)4,6), (1,2,3,4,5,6,7,8), (1,2)(3,8)(4,7)(5,6) 1]
gap> IsCommonTransversal(di16, c4, trans);
true

3.3 Functions for strings

3.3.1 BlankFreeString

> BlankFreeString(obj) (function)

This function has been transferred from package ResClasses.
The result of BlankFreeString(obj); is a composite of the functions String(obj) and
RemoveCharacters(obj, " ");.

Example

gap> gens := Generators0fGroup(DihedralGroup(12));
[£f1, £2, £3]

gap> String(gens);

“[f1, £2, £3 1"

gap> BlankFreeString(gens);

"[f1,f2,f3]"

3.3.2 StringDotSuffix

> StringDotSuffix(str, suf) (operation)

This function has been transferred from package AutoDoc, where it was originally named
AUTODOC_GetSuffix.

When StringDotSuffix is given a string containing a "." it return its extension, i.e. the bit after
the last ".".

Example
gap> StringDotSuffix("file.ext");
n eXt n
gap> StringDotSuffix("file.ext.bak");
n bak n

gap> StringDotSuffix("file.");
gap> StringDotSuffix("Hello");
fail

Chapter 4

Number-theoretic functions

4.1 Functions for integers

4.1.1 AllSmoothIntegers

> AllSmoothIntegers(maxp, maxn) (function)
> AllSmoothIntegers(maxp, L) (function)

This function has been transferred from package RCWA.

The function A11SmoothIntegers (maxp ,maxn) returns the list of all positive integers less than
or equal to maxn whose prime factors are all in the list L = {p | p < maxp, p prime}.

In the alternative form, when L is a list of primes, the function returns the list of all positive integers
whose prime factors lie in L.

Example

gap> AllSmoothIntegers(3, 1000);

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96,
108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576,
648, 729, 768, 864, 972]

gap> AllSmoothIntegers([5,11,17], 1000);

[1, 5, 11, 17, 25, 55, 85, 121, 125, 187, 275, 289, 425, 605, 625, 935]

gap> Length(last);

16

gap> List([3..20], n -> Length(AllSmoothIntegers([5,11,17], 10°n)));

[16, 29, 50, 78, 114, 155, 212, 282, 359, 452, 565, 691, 831, 992, 1173,
1374, 1595, 1843]

4.1.2 AllProducts

> AllProducts(L, k) (function)
This function has been transferred from package RCWA.
The command A11Products (L, k) returns the list of all products of k entries of the list L. Note

that every ordering of the entries is used so that, in the commuting case, there are bound to be repeti-
tions.

12

utils

Example

13

gap> AllProducts([1..4],3);

[1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12, 4, 8, 12, 16, 2, 4, 6, 8, 4, 8, 12,
16, 6, 12, 18, 24, 8, 16, 24, 32, 3, 6, 9, 12, 6, 12, 18, 24, 9, 18, 27,
36, 12, 24, 36, 48, 4, 8, 12, 16, 8, 16, 24, 32, 12, 24, 36, 48, 16, 32,
48, 64]

gap> Set(last);

(1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 64]

gap> AllProducts([(1,2,3),(2,3,4)], 2);

[(2,4,3), (1,2)(3,4), (1,3)(2,4), (1,3,2) 1]

4.1.3 RestrictedPartitionsWithoutRepetitions

> RestrictedPartitionsWithoutRepetitions(n, S) (function)

This function has been transferred from package RCWA.

For a positive integer n and a set of positive integers S, this function returns the list of partitions

of n into distinct elements of S. Unlike RestrictedPartitions, no repetitions are allowed.

Example
gap> RestrictedPartitions(20, [4..10]);
[[4’ 4’ 4, 4, 4]’ [5’ 5’ 5, 5], [6’ 5’ 5, 4], [6, 6’ 4’ 4]’
[7, 5’ 4’ 4]’ [7’ 7, 6], [8, 4’ 4’ 4]’ [8’ 6, 6]’ [8, 7’ 5]’
(s, 8,41,09,6,51]1,[9,7,41, [10,5,51], [10,6, 4],

[10, 101 1
gap> RestrictedPartitionsWithoutRepetitions(20, [4..10]);
[[10,6,4]1,[09,7,41,[9,6,51, [8, 7,511
gap> RestrictedPartitionsWithoutRepetitions(1072, List([1..10], n->n"2));
[[1001, [64, 361, [49, 25, 16, 9, 1] 1]

4.1.4 ExponentOfPrime

> Exponent0fPrime(n, p) (function)

This function has been transferred from package RCWA.
Exponent0fPrime(n,p) returns the exponent of the prime p in the prime factorization of n.

Example

gap> ExponentOfPrime(13577531, 11);

3

gap> List([1..40], n -> ExponentOfPrime(3°n-1, 2));

r+ 3,1, 4,1,3,1,5,1, 3,1, 4,1,3,1,6,1, 3,1, 4,1, 3,1, 5,1,
3,1, 4,1,3,1,7,1,3,1, 4,1, 3,1, 5]

gap> List([1..40], n -> ExponentOfPrime(n~2-1, 2));

[infinity, 0, 3, 0, 3, 0, 4, 0, 4, 0, 3, 0, 3, 0, 5, 0, 5, 0, 3, 0, 3, O, 4,
o, 4, 0, 3, 0, 3, 0, 6, 0, 6, 0, 3,0, 3, 0, 4, 0]

utils 14

4.1.5 NextProbablyPrimelnt

> NextProbablyPrimelInt (n) (function)

This function has been transferred from package RCWA.

The function NextProbablyPrimeInt(n) does the same as NextPrimeInt(n) except that
for reasons of performance it tests numbers only for IsProbablyPrimelInt(n) instead of
IsPrimeInt (n). For large n, this function is much faster than NextPrimeInt (n)

Example

gap> n := 272561;
3618502788666131106986593281521497120414687020801267626233049500247285301248
gap> time;

0

gap> NextProbablyPrimeInt(n);
3618502788666131106986593281521497120414687020801267626233049500247285301313
gap> time;

1

gap> NextPrimeInt(n);
3618502788666131106986593281521497120414687020801267626233049500247285301313
gap> time;

12346

4.1.6 PrimeNumberslterator

> PrimeNumbersIterator ([chunksize]) (function)

This function has been transferred from package RCWA.

This function returns an iterator which runs over the prime numbers n ascending order; it takes an
optional argument chunksize which specifies the length of the interval which is sieved in one go (the
default is 107), and which can be used to balance runtime vs. memory consumption. It is assumed that
chunksize is larger than any gap between two consecutive primes within the range one intends to run
the iterator over.

Example
gap> iter := PrimeNumbersIterator();;
gap> for i in [1..100] do p := NextIterator(iter); od;
gap> p;
541
gap> sum := 0;;

gap> ## "prime number race" 1 vs. 3 mod 4
gap> for p in PrimeNumbersIterator() do

> if p <> 2 then sum := sum + E(4)~(p-1); fi;
> if sum > O then break; fi;

> od;

gap> p;

26861

Chapter 5

Groups and homomorphisms

5.1 Functions for groups
5.1.1 Comm

> Comm(L) (operation)

This method has been transferred from package ResClasses.
It provides a method for Comm when the argument is a list (enclosed in square brackets), and calls
the function LeftNormedComm.

Example
gap> Comm([(1,2), (2,3) 1);
(1,2,3)
gap> Comm([(1,2),(2,3),(3,4),(4,5),(5,6)]);
(1,5,6)

gap> Comm(Comm (Comm(Comm((1,2),(2,3)),(3,4)),(4,5)),(5,6)); ## the same
(1,5,6)

5.1.2 IsCommuting

> IsCommut ing (a , b) (operation)

This function has been transferred from package ResClasses.
It tests whether two elements in a group commute.

Example

gap> D12 := DihedralGroup(12);

<pc group of size 12 with 3 generators>
gap> SetName(D12, "D12");

gap> a := D12.1;; b := D12.2;;

gap> IsCommuting(a, b);

false

15

utils 16

5.1.3 ListOfPowers

> ListOfPowers(g, exp) (operation)
This function has been transferred from package RCWA.

The operation List0fPowers (g, exp) returns the list [g, g2, ..., g%"] of powers of the element g.

Example

gap> List0fPowers(2, 20);

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288, 1048576]

gap> ListOfPowers((1,2,3)(4,5), 12);

[(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5, O,
(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), O 1]

gap> List0fPowers(D12.2, 6);

[£2, £3, f2*xf3, £3~2, £f2*f3"2, <identity> of ...]

5.1.4 GeneratorsAndInverses

> GeneratorsAndInverses(G) (operation)

This function has been transferred from package RCWA.

This operation returns a list containing the generators of G followed by the inverses of these
generators.

Example

gap> GeneratorsAndInverses(D12);

[£f1, £2, £3, f1, £2x£f3~2, £3°2]

gap> GeneratorsAndInverses(SymmetricGroup(5));
[(1,2,3,4,5), (1,2), (1,5,4,3,2), (1,2)]

5.1.5 UpperFittingSeries

> UpperFittingSeries(G)

(attribute)
> LowerFittingSeries(G) (attribute)
> FittingLength(G) (attribute)

These three functions have been transferred from package ResClasses.

The upper and lower Fitting series and the Fitting length of a solvable group are described here:
https://en.wikipedia.org/wiki/Fitting_length.

Example

gap> UpperFittingSeries(D12); LowerFittingSeries(D12);

[Group([1), Group([£3, £f2%£f3 1), Group([£f3, f2*f3, f1 1)]
[D12, Group([£3 1), Group([1)]

gap> Fittinglength(D12);

2

https://en.wikipedia.org/wiki/Fitting_length

utils

gap> S4 := SymmetricGroup(4);;

gap> UpperFittingSeries(S4);

[Group((Q)), Group([(1,2)(3,4), (1,4)(2,3) 1), Group([(1,2)(3,4), (1,4)
(2,3), (2,4,3) 1), Group([(3,4), (2,3,4), (1,2)(3,4) 1)]

gap> List(last, StructureDescription);

["1", "C2 x C2", "A4", "S4"]

gap> LowerFittingSeries(S4);

[Sym([1..41), AtC[1..47), Group([(1,4)(2,3), (1,3)
(2,4) 1), Group((Q))]

gap> List(last, StructureDescription);

["s4", "a4", "C2 x C2", "1"]

gap> FittingLength(S4);

3

17

5.2 Functions for group homomorphisms

5.2.1 EpimorphismByGenerators

> EpimorphismByGenerators(G, H)

This function has been transferred from package RCWA.

(operation)

It constructs a group homomorphism which maps the generators of G to those of H. Its intended
use is when G is a free group, and a warning is printed when this is not the case. Note that anything

may happen if the resulting map is not a homomorphism!

Example

gap> G := Group((1,2,3), (3,4,5), (5,6,7), (7,8,9));;

gap> phi := EpimorphismByGenerators(FreeGroup("a","b","c","d"), G);
la, b,c,d]l ->1T[(1,2,3), (38,4,5), (5,6,7), (7,8,9)]

gap> PrelImagesRepresentative(phi, (1,2,3,4,5,6,7,8,9));

dxcxbxa

gap> a := G.1;; b := G.2;; c := G.3;; d := G.4;;

gap> d*cx*b*a;

(1,2,3,4,5,6,7,8,9)

gap> ## note that it is easy to produce nonsense:

gap> epi := EpimorphismByGenerators(Group((1,2,3)), Group((8,9)));
Warning: calling GroupHomomorphismByImagesNC without checks

[(1,2,3) 1 > [(8,9 1

gap> IsGroupHomomorphism(epi);

true

gap> Image(epi, (1,2,3));

0O

gap> Image(epi, (1,3,2));

(8,9)

Chapter 6

Records

6.1 Functions for records

6.1.1 SetIfMissing

> SetIfMissing(rec, name, val)

This function has been transferred from package AutoDoc, where

AUTODOC_WriteOnce. It writes into a record provided the position is not yet bound.

Example

was

(function)

called

gap> r :=rec(a =1, b :=2);;
gap> SetIfMissing(r, "c", 3);
gap> names := RecNames(r);;
gap> Set(names);

["a", "b", "c"]

gap> SetIfMissing(r, "c", 4);
gap> r;

rec(a :=1, b :=2, ¢ :=3)

6.1.2 AssignGlobals

> AssignGlobals(rec)

This function has been transferred from package RCWA.

It assigns the record components of rec to global variables with the same names.

(function)

Example

gap> AssignGlobals(r);

The following global variables have been assigned:
Ilall, Ilbll, llcll]

gap> [a,b,c];

(1,2, 3]

18

Chapter 7

Various other functions

7.1 Operations on folders

7.1.1 FindMatchingFiles

> FindMatchingFiles(pkg, dirs, extns) (function)
> CreateDirIfMissing(str) (function)

These functions have been transferred from package AutoDoc where they were named
AutoDoc_FindMatchingFiles and AutoDoc_CreateDirIfMissing.

FindMatchingFiles scans the given (by name) subdirectories of a package directory for files
with one of the given extensions, and returns the corresponding filenames, as paths relative to the
package directory.

CreateDirIfMissing checks whether the given directory exists and, if not, attempts to create it.
In either case true is returned.

Warning: this function relies on the undocumented library function CreateDir, so use it with
caution.

Example

gap> FindMatchingFiles("utils", ["/", "tst" 1, ["g", "txt" 1);

["/LICENSE.txt", "/PackageInfo.g", "/init.g", "/makedoc.g", "/read.g",
"tst/testall.g"]

gap> CreateDirIfMissing("/Applications/gap/temp/");

true

7.2 File operations

7.2.1 Log2HTML
> Log2HTML (filename) (function)
This function has been transferred from package RCWA.

This function converts the GAP logfile filename to HTML. The extension of the input file must
be *.1log. The name of the output file is the same as the one of the input file except that the extension

19

utils

20

* . log is replaced by *.html. There is a sample CSS file in utils/doc/gaplog. css, which you can
adjust to your taste.

Example

gap> LogTo("mar2.log");
gap> FindMatchingFiles("utils", [""], ["g"]1);

["/PackageInfo.g", "/init.g", "/makedoc.g", "/read.g"]
gap> LogTo();

gap> Log2HTML("mar2.log");

gap> FindMatchingFiles("utils", [""],

[llhtmlll’ ||logl|]) ;
["/mar2.html", "/mar2.log"]

7.3 IATEX strings

7.3.1 IntOrOnfinityToLaTeX

> IntOrOnfinityTolLaTeX (n)

(function)
This function has been transferred from package ResClasses.
IntOrInfinityToLaTeX(n) returns the ISIEX string for n.
Example
gap> IntOrInfinityToLaTeX(1073);
n 1000 n
gap> IntOrInfinityToLaTeX(infinity);
"\\infty"
7.3.2 LaTeXStringFactorsInt
> LaTeXStringFactorsInt(n) (function)

This function has been transferred from package RCWA.
It returns the prime factorization of the integer » as a string in I&[EX format.

Example

gap> LaTeXStringFactorsInt(Factorial(12));
"2~{10} \\cdot 375 \\cdot 5°2 \\cdot 7 \\cdot 11"

7.4 Applicable methods

7.4.1 PrintApplicableMethod

> PrintApplicableMethod (arg)

(function)

utils

21

This function combines calls to ApplicableMethod, FilenameFunc, StartlineFunc and
EndlineFunc and prints the location of the file containing the method found, and a listing of that
method. In its simplest form it is called as PrintApplicableMethod (f,L) for a function f and a list
of parameters L. Alternatively, it is called as PrintApplicableMethod(f,L,0,n) and then prints

the method returned by ApplicableMethod(f,L,0,n).

Example

gap> PrintApplicableMethod(IsCyclic, [Group((1,2,3),(4,5)) 1);
this method is contained in lines [30,36] of file:
/Applications/gap/gapdev/lib/grp.gi
function (G)
if Length(Generators0fGroup(G)) = 1 then
return true;
else
return TRY_NEXT_METHOD;
fi;
return;
end
gap> PrintApplicableMethod(IsCyclic, [Group((1,2,3),(4,5)) 1, 0, 2);
this method is contained in lines [41,63] of file:
/Applications/gap/gapdev/lib/grp.gi
function (G)

if HasGeneratorsOfGroup(G) and Length(GeneratorsOfGroup(G)) =1
then

SetMinimalGeneratingSet(G, GeneratorsOfGroup(G));

return true;
elif not IsCommutative(G) then

return false;
elif IsFinite(G) then

return ForAll(Set(FactorsInt(Size(G))), function (p)

return
Index(G,
SubgroupNC(G,
List(Generators0fGroup(G), function (g)
return g = p;
end))) = p;

end);
else
return AbelianInvariants(G) = [0];
fi;
return;

end

7.5 Conversion to Magma string

7.5.1 ConvertToMagmalnputString

> ConvertToMagmaInputString(arg)

(function)

utils 22

The function ConvertToMagmaInputString(obj [, str]) attempts to output a string s
which can be read into Magma [BCP97] so as to produce the same group in that computer al-
gebra system. In the second form the user specifies the name of the resulting object, so that
the output string has the form "str := ...". When obj is a permutation group, the operation
PermGroupToMagmaFormat (obj) is called. This function has been taken from other.gi in the
main library where it was called MagmaInputString. When obj is a pc-group, the operation
PcGroupToMagmaFormat (obj) is called. This function was private code of Max Horn. When obj is
a matrix group over a finite field, the operation MatrixGroupToMagmaFormat (obj) is called. This
function is a modification of private code of Frank Liibeck.

Hopefully code for other types of group will be added in due course.

These functions should be considered experimental, and more testing is desirable.

Example

gap> ConvertToMagmaInputString(Group((1,2,3,4,5), (3,4,5)));
"PermutationGroup<5|(1,2,3,4,5),\n(3,4,5)>;\n"

gap> ConvertToMagmaInputString(Group((1,2,3,4,5)), "c5");
"c5:=PermutationGroup<5|(1,2,3,4,5)>;\n"

gap> ConvertToMagmaInputString(SmallGroup(24, 12));

"PolycyclicGroup< f1,f2,£3,f4 [\nf1~2,\nf2°3,\nf372,\nf4"2,\nf2"f1 = £2°2,\nf3\
~f1 = £f4,\nf3"f2 = f4,\nf4"f1 = £3,\nf4"f2 = £3*f4\n>;\n"

gap> ConvertToMagmaInputString(CyclicGroup(IsPcGroup, 7), "c7");
"c7:=PolycyclicGroup< f1 [\nf1~7\n>;\n"

gap> M := GL(2,5);; Size(M);

480

gap> sl := ConvertToMagmaInputString(M);

"F := GF(5);\nP := GL(2,F);\ngens := [\nP![2,0,0,1],\nP![4,1,4,0]\n];\nsub<P |\
gens>;\n"

gap> Print(sl1);

F := GF(5);

P := GL(2,F);

gens := [

P![2,0,0,1],

P![4,1,4,0]

1;

sub<P | gens>;

gap> nl := [[Z(9)"0, Z(9)~0 1, [2(9)-0, 2(9) 1 1;

gap> n2 := [[Z(9)°0, 2(9)~3 1, [Z(9"4, 2(9)"2 1]

gap> N := Group(n1, n2);; Size(N);

5760

gap> s2 := ConvertToMagmaInputString(N, "gpN");;

gap> Print(s2);

>
]’:

F := GF(372);

P := GL(2,F);

w := PrimitiveElement (F);
gens := [

P'[1, 1, 1,w"1],

P'[1,w"3, 2,w" 2]

1;

gpN := sub<P | gens>;

Chapter 8

The transfer procedure

We consider here the process for transferring utility functions from a package Home to Utils which
has to avoid the potential problem of duplicate declarations of a function causing loading problems in
GAP.

If the functions in Home all have names of the form HOME_FunctionName then, in Utils, these
functions are likely to be renamed as FunctionName or something similar. In this case the problem
of duplicate declarations does not arise. This is what has happened with transfers from the AutoDoc
package.

The case where the function names are unchanged is more complicated. Initially we tried out
a process which allowed repeated declarations and installations of the functions being transferred.
This involved additions to the main library files global.g and oper.g. Since there were misgivings
about interfering in this way with basic operations such as BIND_GLOBAL, a simpler (but slightly less
convenient) process has been adopted.

Using this alternative procedure, the following steps will be followed when making transfers from
Home to Utils.

1. (Home:) Offer functions for inclusion. This may be simply done by emailing a list of func-
tions. More usefully, email the declaration, implementation, test and documentation files, e.g.:
home.gd, home.gi, home.tst and home.xml. (All active authors should be involved.)

2. (Home:) Declare that M.N is the last version of Home to contain these functions, so that M.N+1
(or similar) will be the first version of Home to have all these functions removed, and to specify
Utils as a required package.

3. (Utils:) Add strings "home" and "m.n" to the list UtilsPackageVersions in the file

utils/lib/start.gd.
Example

UtilsPackageVersions :=

["autodoc", "2016.01.31",
"resclasses", "4.2.5",
Ilhomell s Ilm.nll s

1;

23

utils 24

While the transfers are being made, it is essential that any new versions of Home should be
tested with the latest version of Utils before they are released, so as to avoid loading failures.

4. (Utils:) Include the function declaration and implementation sections in suitable files, enclosed

within a conditional clause of the form:
Example

if OKtoReadFromUtils("Home") then
<the code>

fi;

The function OKtoReadFromUtils returns true only if there is an installed version of Home
and if this version is greater than M.N. So, at this stage, the copied code will not be read, and
the transferred functions can only be called if Home has been installed.

5. (Utils:) Add the test and documentation material to the appropriate files. The copied code can
be tested by temporarily moving Home away from GAP’s package directory.

6. (Utils:) Release a new version of Utils containing all the transferred material.

7. (Home:) Edit out the declarations and implementations of all the transferred functions, and
remove references to them in the manual and tests. Possibly add a note to the manual that
these functions have been transferred. Add Utils to the list of Home’s required packages in
PackageInfo.g. Release a new version of Home.

8. (Utils:) In due course, when the new version(s) of Home are well established, it may be
safe to remove the conditional clauses mentioned in item 4 above. The entry for Home in
UtilsPackagelLists may then be removed.

Finally, a note on the procedure for testing these functions. As long as a function being transferred
still exists in the Home package, the code will not be read from Utils. So, when the tests are run, it is
necessary to LoadPackage ("home") before the function is called. The file utils/tst/testall.g
makes sure that all the necessary packages are loaded before the individual tests are called.

References

[BCPI97]

[GH16]

[Horl7]

[Koh17a]

[Koh17b]

[LN17]

[WAOU17]

W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. {I}. The
user language, 1997. Computational algebra and number theory (London, 1993)}
http://dx.doi.org/10.1006/jsco.1996.0125. 22

S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code
(Version 2016.12.04), 2016. GAP package, https://github.com/gap-packages/
AutoDoc. 2,4

M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within GAP
packages (Version 0.2), 2017. GAP package, https://gap-system.github.io/
GitHubPagesForGAP/. 2

S. Kohl. RCWA - Residue-Class-Wise Affine Groups (Version 4.5.1), 2017. GAP package,
https://stefan-kohl.github.io/rcwa.html. 4

S. Kohl. ResClasses - Set-Theoretic Computations with Residue Classes (Version 4.6.0),
2017. GAP package, https://stefan-kohl.github.io/resclasses.html. 4

F. Liibeck and M. Neunhoffer. GAPDoc (Version 1.6). RWTH Aachen, 2017. GAP pack-
age, http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/index.html. 2

C. D. Wensley, M. Alp, A. Odabas, and E. O. Uslu. XMod - Crossed Modules and
Catl-groups in GAP (Version 2.64), 2017. GAP package, https://github.com/
gap-packages/xmod. 4

25

http://dx.doi.org/10.1006/jsco.1996.0125
https://github.com/gap-packages/AutoDoc
https://github.com/gap-packages/AutoDoc
https://gap-system.github.io/GitHubPagesForGAP/
https://gap-system.github.io/GitHubPagesForGAP/
https://stefan-kohl.github.io/rcwa.html
https://stefan-kohl.github.io/resclasses.html
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html
https://github.com/gap-packages/xmod
https://github.com/gap-packages/xmod

Index

All1Products, 12
Al1SmoothIntegers, 12
AssignGlobals, 18

BlankFreeString, 11

Comm, 15
CommonRepresentatives, 10
CommonTransversal, 10
ConvertToMagmalInputString, 21
CreateDirIfMissing, 19

DifferencesList, 8
distinct and common representatives, 10
DistinctRepresentatives, 10

EpimorphismByGenerators, 17
Exponent0fPrime, 13

FindMatchingFiles, 19
Fitting series, 16
Fittinglength, 16
FloatQuotientsList, 8

GeneratorsAndInverses, 16
GitHub repository, 4

IntO0rOnfinityToLaTeX, 20
IsCommonTransversal, 10
IsCommuting, 15

LaTeXStringFactorsInt, 20
ListOfPowers, 16
Log2HTML, 19
LowerFittingSeries, 16

NextProbablyPrimelInt, 14
OKtoReadFromUtils, 24

PrimeNumbersIterator, 14
PrintApplicableMethod, 20

PrintOneItemPerLine, 6
PrintSelection, 7

QuotientsList, 8

RandomCombination, 10
RestrictedPartitionsWithout-
Repetitions, 13

SearchCycle, 9
SetIfMissing, 18
smooth integer, 12
StringDotSuffix, 11

UpperFittingSeries, 16

26

	Introduction
	Information for package authors

	Printing Lists and Iterators
	Printing selected items

	Lists, Sets and Strings
	Functions for lists
	Distinct and Common Representatives
	Functions for strings

	Number-theoretic functions
	Functions for integers

	Groups and homomorphisms
	Functions for groups
	Functions for group homomorphisms

	Records
	Functions for records

	Various other functions
	Operations on folders
	File operations
	LaTeX strings
	Applicable methods
	Conversion to Magma string

	The transfer procedure
	References
	Index

