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Abstract

The Semigroups package is a GAP package containing methods for semigroups, monoids, and inverse semi-
groups. There are particularly efficient methods for semigroups or ideals consisting of transformations, partial
permutations, bipartitions, partitioned binary relations, subsemigroups of regular Rees 0-matrix semigroups,
and matrices of various semirings including boolean matrices, matrices over finite fields, and certain tropical
matrices.

Semigroups contains efficient methods for creating semigroups, monoids, and inverse semigroup, calcu-
lating their Green’s structure, ideals, size, elements, group of units, small generating sets, testing membership,
finding the inverses of a regular element, factorizing elements over the generators, and so on. It is possible to
test if a semigroup satisfies a particular property, such as if it is regular, simple, inverse, completely regular, and
a variety of further properties.

There are methods for finding presentations for a semigroup, the congruences of a semigroup, the
normalizer of a semigroup in a permutation group, the maximal subsemigroups of a finite semigroup, smaller
degree partial permutation representations, and the character tables of inverse semigroups. There are functions
for producing pictures of the Green’s structure of a semigroup, and for drawing graphical representations of
certain types of elements.
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Semigroups is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
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Chapter 1

The Semigroups package

1.1 Introduction

This is the manual for the Semigroups package for GAP version 3.0.16. Semigroups 3.0.16 is a
distant descendant of the Monoid package for GAP 3 by Goetz Pfeiffer, Steve A. Linton, Edmund F.
Robertson, and Nik Ruskuc.

Semigroups 3.0.16 contains efficient methods for creating semigroups, monoids, inverse semi-
groups and their ideals, calculating their Green’s structure, size, elements, group of units, minimal
ideal, and testing membership, finding the inverses of a regular element, and factorizing elements
over the generators, and much more; see below for more details.

There are methods for finding: congruences of semigroups, the normalizer of a semigroup in
a permutation group (using the method from [ABMN10]), the maximal subsemigroups of a finite
semigroup (based on [GGR68] and described in [DMW 16]), smaller degree partial permutation rep-
resentations (based on [Sch92]) and the character table of an inverse semigroup. There are functions
for producing pictures of the Green’s structure of a semigroup (inspired by sgpviz), and for drawing
graphical representations of the elements of certain semigroups.

Many standard examples of semigroups and classes of semigroups are provided; see Section 8.
Semigroups also provides functions to read and write collections of elements of a semigroup to a
file; see ReadGenerators (19.1.1) and WriteGenerators (19.1.2).

There are functions in Semigroups to define and manipulate free inverse semigroups and free
bands; this part of the package was written by Julius JonusSas; see Chapters 10.

From Version 3.0.0, Semigroups includes a copy of the libsemigroups C++ library which con-
tains an implementation of the Froidure-Pin Algorithm.

MINOR NOTE OF CAUTION: Semigroups contains different methods for some GAP library func-
tions, and so you might notice that GAP behaves differently when Semigroups is loaded. For more
details about semigroups in GAP or Green’s relations in particular, see (Reference: Semigroups) or
(Reference: Green’s Relations).

If you find a bug or an issue with the package, then report this using the issue tracker.

1.2 Overview

This manual is organised as follows:

Part I: generators
the different types of generators that are introduced in Semigroups are described in Chap-


 http://schmidt.nuigalway.ie/monoid/index.html
https://www.gap-system.org/Packages/sgpviz.html
 https://james-d-mitchell.github.io/libsemigroups/
http://bitbucket.org/james-d-mitchell/semigroups/issues
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ters 3, 4, and 5. These include Bipartition (3.2.1), PBR (4.2.1), and Matrix (5.1.5), which
supplement those already defined in the GAP library, such as Transformation (Reference:
Transformation for an image list) or PartialPerm (Reference: PartialPerm for a domain
and image).

Part I1: semigroups and ideals
functions and operations for creating semigroups, monoids, and their ideals, in general, and
various options, are described in Chapters 6 and 7.

Part III: standard examples and constructions
standard examples of semigroups, such as FullBooleanMatMonoid (8.6.1) or
UniformBlockBijectionMonoid (8.3.8), are described in Chapter 8, and standard con-
structions, such as TrivialSemigroup (9.1.1), RightZeroSemigroup (9.1.5), are described
in Chapter 9.

Part IV: further classes of semigroups and monoids
free objects in the categories of inverse semigroups, and bands, are described in Chapter 10,
and graph inverse semigroups, which are a generalisation of polycyclic monoids, are described
in Chapter 11.

Part V: the structure of a semigroup or monoid
the functionality of the Semigroups package for determining various structural properties of a
given semigroup or monoid are described in Chapters 12, 13, and 14. Attributes and properties
specific to inverse semigroups are described in Chapter 15.

Part VI: congruences, quotients, and homomorphisms
methods for creating and manipulating congruences and homomorphisms are described by
Chapters 16 and 17.

Part VII: utilities and helper functions
functions for reading and writing semigroups and their elements, and for visualising semi-
groups, and some of their elements, can be found in Chapters 18 and 19.



Chapter 2

Installing Semigroups

2.1

For those in a hurry

In this section we give a brief description of how to start using Semigroups.

It is assumed that you have a working copy of GAP with version number 4.9.0 or higher. The
most up-to-date version of GAP and instructions on how to install it can be obtained from the main
GAP webpage http://www.gap-system. org.

The following is a summary of the steps that should lead to a successful installation of Semi-
groups:

ensure that the IO package version 4.5.1 or higher is available. IO must be compiled before
Semigroups can be loaded.

ensure that the Orb package version 4.8.0 or higher is available. Orb and Semigroups both
perform better if Orb is compiled.

ensure that the Digraphs package version 0.12.0 or higher is available. Digraphs must be com-
piled before Semigroups can be loaded.

ensure that the genss package version 1.6.5 or higher is available.

download the package archive semigroups-3.0.16.tar.gz from the Semigroups package
webpage.

unzip and untar the file, this should create a directory called semigroups-3.0.16.

locate the pkg directory of your GAP directory, which contains the directories 1ib, doc and so
on. Move the directory semigroups-3.0. 16 into the pkg directory.

from version 3.0.0, it is necessary to compile the Semigroups package. Semigroups uses
the libsemigroups C++ library, which requires a compiler implementing the C++11 standard.
Inside the pkg/semigroups-3.0.16 directory, type

./configure
make

Further information about this step can be found in Section 2.3.


http://www.gap-system.org
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html 
https://gap-packages.github.io/Digraphs
https://gap-packages.github.io/Digraphs
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html 
https://gap-packages.github.io/Semigroups
https://gap-packages.github.io/Semigroups
https://james-d-mitchell.github.io/libsemigroups/
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o start GAP in the usual way (i.e. type gap at the command line).
* type LoadPackage ("semigroups") ;

PLEASE NOTE THAT from version 3.0.0: Semigroups can only be loaded if it has been compiled.
If you want to check that the package is working correctly, you should run some of the tests
described in Section 2.5.

2.2 Package dependencies

The Semigroups package is written in GAP and C++ and requires the Orb, IO, Digraphs and genss
packages. The Orb package is used to efficiently compute components of actions, which underpin
many of the features of Semigroups. The IO package is used to read and write elements of a semi-
group to a file. The genss package is used in a non-deterministic version of the operation Normalizer
(13.11.1) and in calculating the stabiliser of a Rees 0-matrix semigroup’s matrix. The Digraphs pack-
age is used in a variety of ways in the Semigroups package, in particular, to apply standard graph
theoretic algorithms to certain data structures.

2.3 Compiling the kernel module

As of version 3.0.0, the Semigroups package has a GAP kernel module written in C/C++ and this
must be compiled. The kernel module contains low-level functions relating to the enumeration of
certain types of semigroups, and it is not possible to use the Semigroups package without compiling
it.

To compile the kernel component inside the pkg/semigroups-3.0. 16 directory, type

./configure
make

If you are using GCC to compile Semigroups, then version 5.0 or higher is required. Trying to
compile Semigroups with an earlier version of GCC will result in an error at compile time. Semi-
groups supports GCC version 5.0 or higher, and clang version 5.0 or higher.

If you installed the package in another pkg directory other than the standard pkg directory in your
GAP installation, then you have to do two things. Firstly during compilation you have to use the
option -with-gaproot=PATH of the configure script where PATH is a path to the main GAP root
directory (if not given the default . ./. . is assumed).

If you installed GAP on several architectures, you must execute the configure/make step for each
of the architectures. You can either do this immediately after configuring and compiling GAP itself
on this architecture, or alternatively set the environment variable CONFIGNAME to the name of the
configuration you used when compiling GAP before running . /configure. Note however that your
compiler choice and flags (environment variables CC and CFLAGS) need to be chosen to match the setup
of the original GAP compilation. For example you have to specify 32-bit or 64-bit mode correctly!


 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
https://gap-packages.github.io/Digraphs
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html 
https://gap-packages.github.io/Digraphs
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2.4 Rebuilding the documentation

The Semigroups package comes complete with pdf, html, and text versions of the documentation.
However, you might find it necessary, at some point, to rebuild the documentation. To rebuild the
documentation use the SemigroupsMakeDoc (2.4.1).

2.4.1 SemigroupsMakeDoc

> SemigroupsMakeDoc () (function)
Returns: Nothing.
This function should be called with no argument to compile the Semigroups documentation.

2.5 Testing your installation

In this section we describe how to test that Semigroups is working as intended. To quickly test
that Semigroups is installed correctly use SemigroupsTestInstall (2.5.1) - this will take a few
seconds. For more extensive tests use SemigroupsTestStandard (2.5.2) - this may take several
minutes. Finally, for lengthy benchmarking tests use SemigroupsTestExtreme (2.5.3) - this may
take more than half an hour.

If something goes wrong, then please review the instructions in Section 2.1 and ensure that Semi-
groups has been properly installed. If you continue having problems, please use the issue tracker to
report the issues you are having.

2.5.1 SemigroupsTestInstall

> SemigroupsTestInstall() (function)
Returns: true or false.
This function should be called with no argument to test your installation of Semigroups is work-
ing correctly. These tests should take no more than a few seconds to complete. To more comprehen-
sively test that Semigroups is installed correctly use SemigroupsTestStandard (2.5.2).

2.5.2 SemigroupsTestStandard

> SemigroupsTestStandard() (function)

Returns: A list indicating which tests passed and failed and the time take to run each file.

This function should be called with no argument to comprehensively test that Semigroups is
working correctly. These tests should take no more than a few minutes to complete. To quickly test
that Semigroups is installed correctly use SemigroupsTestInstall (2.5.1).

Each test file is run twice, once when the methods for IsActingSemigroup (6.1.3) are enabled
and once when they are disabled.

2.5.3 SemigroupsTestExtreme

> SemigroupsTestExtreme () (function)
Returns: A list indicating which tests passed and failed and the time take to run each file.
This function should be called with no argument to run some long-running tests, which
could be used to benchmark Semigroups or test your hardware. These tests should take


https://github.com/gap-packages/Semigroups/issues
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no more than around half an hour to complete. To quickly test that Semigroups is in-
stalled correctly use SemigroupsTestInstall (2.5.1), or to test all aspects of the package use
SemigroupsTestStandard (2.5.2).

Each test file is run twice, once when the methods for semigroups satisfying IsActingSemigroup
(6.1.3) are enabled and once when they are disabled.

2.6 More information during a computation

2.6.1 InfoSemigroups

> InfoSemigroups (info class)

InfoSemigroups is the info class of the Semigroups package. The info level is initially set
to 0 and no info messages are displayed. To increase the amount of information displayed during a
computation increase the info level to 2 or 3. To stop all info messages from being displayed, set the
info level to 0. See also (Reference: Info Functions) and SetInfolLevel (Reference: InfoLevel).



Chapter 3

Bipartitions and blocks

In this chapter we describe the functions in Semigroups for creating and manipulating bipartitions
and semigroups of bipartitions. We begin by describing what these objects are.

A partition of a set X is a set of pairwise disjoint non-empty subsets of X whose union is X. A
partition of X is the collection of equivalence classes of an equivalence relation on X, and vice versa.

Letn €N, letn={1,2,...,n},and let —n={—1,-2,...,—n}.

The partition monoid of degree n is the set of all partitions of nU-n with a multiplication we
describe below. To avoid conflict with other uses of the word "partition" in GAP, and to reflect their
definition, we have opted to refer to the elements of the partition monoid as bipartitions of degree n;
we will do so from this point on.

Let x be any bipartition of degree n. Then x is a set of pairwise disjoint non-empty subsets of nU-n
whose union is nU-n; these subsets are called the blocks of x. A block containing elements of both n
and -n is called a transverse block. If i, jenU-n belong to the same block of a bipartition x, then we
write (i, j)Ex.

Let x and y be bipartitions of degree n. Their product xy can be described as follows. Define
n’={1',2',... n'}. From x, create a partition x’ of the set nUn’ by replacing each negative point -i in
a block of x by the point i’, and create from y a partition y’ of the set n’U-n by replacing each positive
point i in a block of y by the point i’. Then define a relation on the set nuUn’U-n, where i and j are
related if they are related in either x” or y’, and let p be the transitive closure of this relation. Finally,
define xy to be the bipartition of degree n defined by the restriction of the equivalence relation p to the
set nU-n.

Equivalently, the product xy is defined to be the bipartition where i,jEnU-n (we assume without
loss of generality that i> j) belong to the same block of xy if either:

- i),
e i,j€nand (i,j)€ x, or
e i,j€-nand (i,j)€ y;

or there exists r €N and k(1),k(2),...,k(r) € n, and one of the following holds:

e r=2s—1forsomes>1,ien, j€ -nand

(i,—k(1)) € x, (k(1),k(2)) €y, (—k(2),—k(3)) €x, ...,

coey (—k(25=2),—k(2s—1)) €x, (k(2s—1),j) € y;

13
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e r=2s for some s > 1, and either 7, j€n, and
<l7_k(1)) € X, (k(1>7k(2)) eyv (_k(2)7_k(3)) € X, "'7<k(2s_ 1)7k(2‘9)) Ey7 (—k(ZS),J> € X,
or i,je-n, and

(i,k(1)) €y, (—k(1),—k(2)) € x, (k(2),k(3)) €Y, ...,(—k(2s—1),—k(25)) € x, (k(25),]) € y.

This multiplication can be shown to be associative, and so the collection of all bipartitions of any
particular degree is a monoid; the identity element of the partition monoid of degree 7 is the bipartition
{{i,—i} : i € n}. A bipartition is a unit if and only if each block is of the form {i,-j} for some i, jen.
Hence the group of units is isomorphic to the symmetric group on n.

Let x be a bipartition of degree n. Then we define x* to be the bipartition obtained from x by
replacing i by -i and -i by i in every block of x for all ien. It is routine to verify that if x and y are
arbitrary bipartitions of equal degree, then

) =x, xx'x=x, xxx"=x", (xy)"=yx".

In this way, the partition monoid is a regular *-semigroup.

A bipartition x of degree n is called planar if there do not exist distinct blocks A, U € x, along with
a,b €A and u,v € U, such that a < u < b < v. Define p to be the bipartition of degree n with blocks
{{i,—(i+1)}:ie{l,...,n—1}} and {n,—1} . Note that p is a unit. A bipartition x of degree n is
called annular if x = p'yp’ for some planar bipartition y of degree n, and some integers i and ;.

From a graphical perspective, as on Page 873 in [HRO05], a bipartition of degree # is planar if it can
be represented as a graph without edges crossing inside of the rectangle formed by its vertices nU-n.
Similarly, as shown in Figure 2 in [Auil2], a bipartition of degree n is annular if it can be represented
as a graph without edges crossing inside an annulus.

3.1 The family and categories of bipartitions

3.1.1 IsBipartition

> IsBipartition(obj) (Category)

Returns: true or false.

Every bipartition in GAP belongs to the category IsBipartition. Basic operations for biparti-
tions are RightBlocks (3.5.5), LeftBlocks (3.5.6), ExtRep0f0bj (3.5.3), LeftProjection (3.2.4),
RightProjection (3.2.5), Star0Op (3.2.6), Degree0fBipartition (3.5.1), RankOfBipartition
(3.5.2), multiplication of two bipartitions of equal degree is via *.

3.1.2 IsBipartitionCollection

> IsBipartitionCollection(obj) (Category)
> IsBipartitionCollColl(obj) (Category)

Returns: true or false.

Every collection of bipartitions belongs to the category IsBipartitionCollection. For exam-
ple, bipartition semigroups belong to IsBipartitionCollection.

Every collection of collections of bipartitions belongs to IsBipartitionCollColl. For example,
a list of bipartition semigroups belongs to IsBipartitionCollColl.
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3.2 Creating bipartitions

There are several ways of creating bipartitions in GAP, which are described in this section. The
maximum degree of a bipartition is set as 2 ~ 29 - 1. In reality, it is unlikely to be possible to create
bipartitions of degrees as small as 2 ~ 24 because they require too much memory.

3.2.1 Bipartition

> Bipartition(blocks) (function)
Returns: A bipartition.
Bipartition returns the bipartition x with equivalence classes blocks, which should be a list of

duplicate-free lists whose unionis [-n .. -1] union [1 .. n] for some positive integer n.
Bipartition returns an error if the argument does not define a bipartition.
Example

gap> x := Bipartition([[1, -1], [2, 3, -3], [-2]11);
<bipartition: [ 1, -1 1, [ 2, 3, -31, [ -2 1>

3.2.2 BipartitionByIntRep

> BipartitionByIntRep(list) (operation)
Returns: A bipartition.
It is possible to create a bipartition using its internal representation. The argument 1ist must be
a list of positive integers not greater than n, of length 2 * n, and where i appears in the list only if
i-1 occurs earlier in the list.

For example, the internal representation of the bipartition with blocks
Example

[1, _1], [2) 3, _2], [_3]

has internal representation
Example

(1, 2, 2, 1, 2, 3]

The internal representation indicates that the number 1 is in class 1, the number 2 is in class 2, the
number 3 is in class 2, the number -1 is in class 1, the number -2 is in class 2, and -3 is in class 3.
As another example, [1, 3, 2, 1] is not the internal representation of any bipartition since there is
no 2 before the 3 in the second position.

In its first form BipartitionByIntRep verifies that the argument 1ist is the internal represen-
tation of a bipartition.

See also IntRepO0fBipartition (3.5.4).

Example
gap> BipartitionByIntRep([1, 2, 2, 1, 3, 41);
<bipartition: [ 1, -1 1, [ 2,31, [ -21, [ -31>
3.2.3 IdentityBipartition
> IdentityBipartition(n) (operation)

Returns: The identity bipartition.
Returns the identity bipartition with degree n.
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Example

gap> IdentityBipartition(10);
<block bijection: [ 1, -1 1, [ 2, -21, [3, -31, [4, 41,
[5, '5]: [6: _6]: [7: _7], [8) _8]: [9: _9]: [10, _10]>

3.2.4 LeftOne (for a bipartition)

> LeftOne(x) (attribute)
> LeftProjection(x) (attribute)

Returns: A bipartition.

The LeftProjection of a bipartition x is the bipartition x * Star(x). It is so-named, since
the left and right blocks of the left projection equal the left blocks of x.

The left projection e of x is also a bipartition with the property that e * x = x. LeftOne and
LeftProjection are synonymous.

Example

gap> x := Bipartition([

> [1, 4, -1, -2, -61, [2, 3, 5, -41, [6, -31, [-5]11);;

gap> LeftOne(x);

<block bijection: [ 1, 4, -1, -41, [ 2, 3, 5, -2, -3, -5 1,
[ 6, -6 1>

gap> LeftBlocks(x);

<blocks: [ 1%, 4% ], [ 2%, 3%, 6% ], [ 6% ]>

gap> RightBlocks(LeftOne(x));

<blocks: [ 1%, 4% ], [ 2%, 3%, 5% ], [ 6% 1>

gap> LeftBlocks(LeftOne(x));

<blocks: [ 1*, 4% 1, [ 2%, 3%, 5x 1, [ 6% 1>

gap> LeftOne(x) * x = x;

true

3.2.5 RightOne (for a bipartition)

> RightOne (x) (attribute)
> RightProjection(x) (attribute)

Returns: A bipartition.

The RightProjection of a bipartition x is the bipartition Star (x) * x. It is so-named, since
the left and right blocks of the right projection equal the right blocks of x.

The right projection e of x is also a bipartition with the property that x * e = x. RightOne and
RightProjection are synonymous.

Example
gap> x := Bipartition([[1, -1, -41, [2, -2, -3], [3, 41, [5, -511);;
gap> RightOne(x) ;

<block bijection: [ 1, 4, -1, -41, [ 2, 3, -2, -31, [ 5, -5 1>
gap> RightBlocks(RightOne(x));

<blocks: [ 1%, 4% 1, [ 2%, 3x ], [ 5% 1>

gap> LeftBlocks(RightOne(x));

<blocks: [ 1%, 4x ], [ 2%, 3x ], [ 5% ]>

gap> RightBlocks(x);

<blocks: [ 1%, 4x 1, [ 2%, 3% 1, [ 5x 1>

gap> x * RightOne(x) = x;

true
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3.2.6 StarOp (for a bipartition)

> StarOp(X) (operation)
> Star(x) (attribute)
Returns: A bipartition.
StarOp returns the unique bipartition g with the property that: x * g * x = x,
RightBlocks(x) = LeftBlocks(g), and LeftBlocks(x) = RightBlocks(g). The star g can

be obtained from x by changing the sign of every integer in the external representation of x.
Example
gap> x := Bipartition([[1, -4], [2, 3, 4], [5], [-11, [-2, -31, [-5]11);
<bipartition: [ 1, -41, [ 2,3, 41, [51, [-11,[-2, -31,

[ -51>
gap> y := Star(x);
<bipartition: [ 1], [ 2,31, (4, -11, (51, [ -2, -3, 41,

[ 51>
gap> X * y ¥ X = X;
true
gap> LeftBlocks(x) = RightBlocks(y);
true
gap> RightBlocks(x) = LeftBlocks(y);
true

3.2.7 RandomBipartition

> RandomBipartition([rs, Jn) (operation)
> RandomBlockBijection([rs, Jn) (operation)

Returns: A bipartition.

If n is a positive integer, then RandomBipartition returns a random bipartition of degree n, and
RandomBlockBijection returns a random block bijection of degree n.

If the optional first argument rs is a random source, then this is used to generate the bipartition
returned by RandomBipartition and RandomBlockBijection.

Note that neither of these functions has a uniform distribution.
Example

gap> x := RandomBipartition(6);

<bipartition: [ 1, 2, 3, 41, [ 561, [6, -2, -3, -41, [ -1, -561, [ -61>
gap> x := RandomBlockBijection(4);

<block bijection: [ 1, 4, -21, [ 2, 41, [3, -1, -3 1>

3.3 Changing the representation of a bipartition

It is possible that a bipartition can be represented as another type of object, or that another type of GAP
object can be represented as a bipartition. In this section, we describe the functions in the Semigroups
package for changing the representation of bipartition, or for changing the representation of another
type of object to that of a bipartition.

The operations AsPermutation (3.3.5), AsPartialPerm(3.3.4), AsTransformation (3.3.3) can
be used to convert bipartitions into permutations, partial permutations, or transformations where ap-
propriate.
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3.3.1 AsBipartition

> AsBipartition(x[, n]J) (operation)
Returns: A bipartition.
AsBipartition returns the bipartition, permutation, transformation, or partial permutation x, as
a bipartition of degree n.
There are several possible arguments for AsBipartition:

permutations
If x is a permutation and n is a positive integer, then AsBipartition(x, n) returns the
bipartitionon [1 .. n] withclasses [i, i ~ x] foralli =1 .. n.

If no positive integer n is specified, then the largest moved point of x is used as the value for n;
see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).

transformations
If x is a transformation and n is a positive integer such that x is a transformation of [1
n], then AsTransformation returns the bipartition with classes (i)f~! U {i} for all i in the
image of x.

If the positive integer n is not specified, then the degree of x is used as the value for n.

partial permutations
If x is a partial permutation and n is a positive integer, then AsBipartition returns the biparti-
tion with classes [i, i ~ x] foriin [1 .. n]. Thus the degree of the returned bipartition
is the maximum of n and the values i ~ x whereiin [1 .. n].

If the optional argument n is not present, then the default value of the maximum of the largest
moved point and the largest image of a moved point of x plus 1 is used.

bipartitions
If x is a bipartition and n is a non-negative integer, then AsBipartition returns a bipartition
corresponding to x with degree n.

If n equals the degree of x, then x is returned. If n is less than the degree of x, then this
function returns the bipartition obtained from x by removing the values exceeding n or less
than -n from the blocks of x. If n is greater than the degree of x, then this function returns the
bipartition with the same blocks as x and the singleton blocks i and -i for all i greater than
the degree of x

pbrs If x is a pbr satisfying IsBipartitionPBR (4.5.8) and n is a non-negative integer, then
AsBipartition returns the bipartition corresponding to x with degree n.

Example
gap> x := Transformation([3, 5, 3, 4, 1, 2]1);;
gap> AsBipartition(x, 5);
<bipartition: [ 1, 3, -31, [ 2, -51, [ 4, -41, [5, -11, [ -21>
gap> AsBipartition(x);
<bipartition: [ 1, 3, -31, [ 2, -51, [ 4, -41, [5, -11,
(6, 21, [-61>
gap> AsBipartition(x, 10);
<bipartition: [ 1, 3, -3 1, [ 2, -5
(e, -21, 7, -71,[8, -81, [
gap> AsBipartition((1, 3)(2, 4));

1, 04, -41, [5, -11,
9, _9]5 [103 _1019[_6]>
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<block bijection: [ 1, -31, [ 2, -41, [ 3, -11, [4, -21>

gap> AsBipartition((1, 3)(2, 4), 10);

<block bijection: [ 1, -3 1, [ 2, -41, [3, -11, [4, -21,
[5,-51,[6,-61,07,-71,[8,-81,[9, -91, [ 10, -10 1>

gap> x := PartialPerm([1l, 2, 3, 4, 5, 6], [6, 7, 1, 4, 3, 2]);;

gap> AsBipartition(x, 11);

<bipartition: [ 1, -6 1, [ 2, -71, [ 3, -1 1, [ 4, -41, [ 5, -31,
(e, -21, 071,081,091, (101, 1171, [-51,1[-81,
[-91, [-101, [ -11 1>

gap> AsBipartition(x);

<bipartition: [ 1, -6 1, [ 2, -71, [ 3, -11, [ 4, -41, [ 5, -31,
Le, 21, [ 71, [-51>

gap> AsBipartition(Transformation([1, 1, 2]), 1);

<block bijection: [ 1, -1 1>

gap> x := Bipartition([[1, 2, -2], [3], [4, 5, 6, -1],

> (-3, -4, -5, -611);;

gap> AsBipartition(x, 0);

<empty bipartition>

gap> AsBipartition(x, 2);

<bipartitiomn: [ 1, 2, -2 ], [ -1 1>

gap> AsBipartition(x, 8);

<bipartition: [ 1, 2, -21, [ 31, [4,5,6, -11, [ 71, [81],
[ -3, -4, -5, 61, [-71, [ -81>

gap> x := PBR(

> [[-1, 1, 2, 3, 4], [-1, 1, 2, 3, 4],

> [-1, 1, 2, 3, 41, [-1, 1, 2, 3, 411,

> [[-1, 1, 2, 3, 4], [-2], [-31, [-41D);;

gap> AsBipartition(x);

<bipartition: [ 1, 2, 3, 4, -1 1, [ -21, [ -31, [ -4 1>

gap> AsBipartition(x, 2);

<bipartition: [ 1, 2, -1 1, [ -2 1>

gap> AsBipartition(x, 4);

<bipartition: [ 1, 2, 3, 4, -1 1, [ 21, [ -31, [ -41>

gap> AsBipartition(x, 5);

<bipartition: [ 1, 2, 3, 4, -1 1, [ 5], [-2],[-31,[-41,
[ -51>

gap> AsBipartition(x, 0);

<empty bipartition>

3.3.2 AsBlockBijection

> AsBlockBijection(x[, n])
Returns: A block bijection.
When the argument x is a partial perm and n is a positive integer which is greater than the max-

imum of the degree and codegree of x, this function returns a block bijection corresponding to x.

This block bijection has the same non-singleton classes as g := AsBipartition(x, n) and one

additional class which is the union the singleton classes of g.

If the optional second argument n is not present, then the maximum of the degree and codegree of

x plus 1 is used by default. If the second argument n is not greater than this maximum, then an error

is given.

This is the value at x of the embedding of the symmetric inverse monoid into the dual symmetric

(operation)
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When the argument x is a partial perm bipartition (see IsPartialPermBipartition (3.5.15))

then this operation returns AsBlockBijection(AsPartialPerm(x) [, nl).

Example
gap> x := PartialPerm([1, 2, 3, 6, 7, 101, [9, 5, 6, 1, 7, 81);
[2,5][3,6,1,9]1[10,8]1(7)
gap> AsBipartition(x, 11);
<bipartition: [ 1, -91, [ 2, -61, [ 3, -61, [ 41, [51],
te, -+1,07,-71, (81,091, [10,-81, [11], [-21,
(-31,0-41,[C-101, [-111>
gap> AsBlockBijection(x, 10);
Error, Semigroups: AsBlockBijection (for a partial perm and pos int):
the 2nd argument must be strictly greater than the maximum of the
degree and codegree of the 1st argument,
gap> AsBlockBijection(x, 11);
<block bijection: [ 1, -91, [ 2, -51, [ 3, -61,
[ 4,5, 8,9, 1, -2, -3, -4, -10, -11 1, [ 6, -1 1, [ 7, -71,
[ 10, -8 1>
gap> x := Bipartition([[1, -3], [2], [3, -2], [-111);;
gap> IsPartialPermBipartition(x);
true
gap> AsBlockBijection(x);
<block bijection: [ 1, -3 1, [ 2, 4, -1, -41, [ 3, -2 1>

3.3.3 AsTransformation (for a bipartition)

> AsTransformation(x)
Returns: A transformation.

(attribute)

When the argument x is a bipartition, that mathematically defines a transformation, this function
returns that transformation. A bipartition x defines a transformation if and only if its right blocks are

the image list of a permutation of [1 .. n] where n is the degree of x.
See IsTransBipartition (3.5.12).
Example
gap> x := Bipartition([[1, -3], [2, -2], [3, 5, 10, -71,
> (4, -121, [6, 7, -61, [8, -5]1, [9, -11],
> (11, 12, -10], [-11, [-4]1, [-81, [-911);;

gap> AsTransformation(x);
Transformation( [ 3, 2, 7, 12, 7, 6, 6, 5, 11, 7, 10, 10 ] )
gap> IsTransBipartition(x);

true

gap> x := Bipartition([[1, 5], [2, 4, 8, 10],

> (3, 6, 7, -1, -21, [9, -4, -6, -9],
> (-3, -51, [-7, -8], [-10]1);;

gap> AsTransformation(x);
Error, Semigroups: AsTransformation (for a bipartition):
the argument does not define a transformation,

3.3.4 AsPartialPerm (for a bipartition)

> AsPartialPerm(x)
Returns: A partial perm.

(operation)
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When the argument x is a bipartition that mathematically defines a partial perm, this function
returns that partial perm.
A bipartition x defines a partial perm if and only if its numbers of left and right blocks both equal

its degree.
See IsPartialPermBipartition (3.5.15).
Example
gap> x := Bipartition([[1, -4], [2, -2], [3, -10], [4, -5],
> (5, -91, [el1, (71, [8, -61, [9, -3], [10, -8],
> (-11, [-711)s;
gap> IsPartialPermBipartition(x);
true

gap> AsPartialPerm(x);

[1,4,5,9,3,10,8,6]1(2)

gap> x := Bipartition([[1, -2, -4], [2, 3, 4, -31, [-1]11);;
gap> IsPartialPermBipartition(x);

false

gap> AsPartialPerm(x);

Error, Semigroups: AsPartialPerm (for a bipartition):

the argument does not define a partial perm,

3.3.5 AsPermutation (for a bipartition)

> AsPermutation(x) (attribute)

Returns: A permutation.

When the argument x is a bipartition that mathematically defines a permutation, this function
returns that permutation.

A bipartition x defines a permutation if and only if its numbers of left, right, and transverse blocks
all equal its degree.

See IsPermBipartition (3.5.14).

Example
gap> x := Bipartition([[1, -61, [2, -4], [3, -21, [4, -5],
> (5, -31, [6, -111);;
gap> IsPermBipartition(x);
true

gap> AsPermutation(x);
(1,6)(2,4,5,3)

gap> AsBipartition(last) = x;
true

3.4 Operators for bipartitions

fxg
returns the composition of £ and g when f and g are bipartitions.

f<g
returns true if the internal representation of £ is lexicographically less than the internal repre-
sentation of g and false if it is not.

f=g
returns true if the bipartition f equals the bipartition g and returns false if it does not.
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3.4.1 PartialPermLeqBipartition

> PartialPermLegBipartition(x, y) (operation)
Returns: true or false.
If x and y are partial perm bipartitions, i.e. they satisfy IsPartialPermBipartition (3.5.15),
then this function returns AsPartialPerm(x) < AsPartialPerm(y).

3.4.2 NaturalLeqPartialPermBipartition

> NaturalleqPartialPermBipartition(x, y) (operation)

Returns: true or false.

The natural partial order < on an inverse semigroup S is defined by s < t if there exists an
idempotent e in S such that s = et. Hence if x and y are partial perm bipartitions, then x < y if and
only if AsPartialPerm(x) is a restriction of AsPartialPerm(y).

NaturallLeqPartialPermBipartition returns true if AsPartialPerm(x) is a restriction of
AsPartialPerm(y) and false if it is not. Note that since this is a partial order and not a total order,
it is possible that x and y are incomparable with respect to the natural partial order.

3.4.3 NaturalLeqBlockBijection

> NaturalLeqBlockBijection(x, y) (operation)

Returns: true or false.

The natural partial order < on an inverse semigroup S is defined by s < t if there exists an
idempotent e in S such that s = et. Hence if x and y are block bijections, then x < y if and only if
X contains y.

NaturallLeqBlockBijection returns true if x is contained in y and false if it is not. Note
that since this is a partial order and not a total order, it is possible that x and y are incomparable with
respect to the natural partial order.

Example
gap> x := Bipartition([[1, 2, -31, [3, -1, -21, [4, -41,
> (5, -51, [6, -61, [7, -71,
> (8, -81, [9, -9], [10, -10]11);;
gap> y := Bipartition([[1, -2], [2, -1], [3, -3],
> (4, -41, [5, -5], [6, -6], [7, -7],
> (8, -81, [9, -91, [10, -1011);;
gap> z := Bipartition([Union([1 .. 101, [-10 .. -11)1);;
gap> NaturalleqBlockBijection(x, y);
false
gap> NaturalLegBlockBijection(y, x);
false
gap> NaturalleqBlockBijection(z, x);
true
gap> NaturalleqBlockBijection(z, y);
true
3.4.4 PermLeftQuoBipartition
> PermlLeftQuoBipartition(x, y) (operation)

Returns: A permutation.
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If x and y are bipartitions with equal left and right blocks, then PermLeftQuoBipartition
returns the permutation of the indices of the right blocks of x (and y) induced by Star(x) * y.

PermLeftQuoBipartition verifies that x and y have equal left and right blocks, and returns an
error if they do not.

Example
gap> x := Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -1, -2, -8],
> (3, -3, -6, -7, -91, [9, -4, -5], [-1011);;
gap> y := Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -3, -6, -7, -9],
> (3, -4, -51, [9, -1, -2, -81, [-10]11);;
gap> PermLeftQuoBipartition(x, y);
(1,2,3)

gap> Star(x) * y;
<bipartition: [ 1, 2, 8, -3, -6, -7, -91, [ 3,6, 7,9, -4, -51,
(4,5, -1, -2, -81, [ 101, [ -10 1>

3.5 Attributes for bipartitons

In this section we describe various attributes that a bipartition can possess.

3.5.1 DegreeOfBipartition

> DegreeOfBipartition(x) (attribute)
> DegreeOfBipartitionCollection(x) (attribute)

Returns: A positive integer.

The degree of a bipartition is, roughly speaking, the number of points where it is defined. More
precisely, if x is a bipartition defined on 2 * n points, then the degree of x is n.

The degree of a collection coll of bipartitions of equal degree is just the degree of any (and every)
bipartition in col1. The degree of collection of bipartitions of unequal degrees is not defined.

Example
gap> x := Bipartition([[1, 7, -3, -8], [2, 6],
> (31, [4, -7, -91, [5, 9, -21,
> (8, -1, -4, -61, [-511);;
gap> DegreeOfBipartition(x);
9

gap> S := BrauerMonoid(5);

<regular bipartition *-monoid of degree 5 with 3 generators>
gap> IsBipartitionCollection(S);

true

gap> DegreeOfBipartitionCollection(S);

5

3.5.2 RankOfBipartition

> RankOfBipartition(x) (attribute)
> NrTransverseBlocks(x) (attribute)
Returns: The rank of a bipartition.
When the argument is a bipartition x, RankOfBipartition returns the number of blocks of x
containing both positive and negative entries, i.e. the number of transverse blocks of x.
NrTransverseBlocks is just a synonym for RankOfBipartition.



Semigroups 24

Example
gap> x := Bipartition([[1, 2, 6, 7, -4, -5, -7], [3, 4, 5, -1, -3],
> [8’ _9] }) [9’ _2] ) [‘6] ) ['8]]) 5

<bipartition: [ 1, 2, 6, 7, -4, -5, -7 1, [ 3, 4, 5, -1, -31,
(8, -91,[9, 21, [-61,[-81>

gap> RankOfBipartition(x);

4

3.5.3 ExtRepOfObj (for a bipartition)

> ExtRep0f0bj (x)
Returns: A partitionof [1 .. 2 * n].
If n is the degree of the bipartition x, then ExtRep0f0bj returns the partition of [-n .. -1]

union [1 .. n] corresponding to x as a sorted list of duplicate-free lists.
Example
gap> x := Bipartition([[1, 5, -3], [2, 4, -2, -4], [3, -1, -5]11);
<block bijection: [ 1, 5, -31, [ 2, 4, -2, -41, [3, -1, -5 1>
gap> ExtRep0f0bj (x);

[[1,5, -31,[2,4,-2,-41,[3, -1, -511]

(operation)

3.5.4 IntRepOfBipartition

> IntRepOfBipartition(x) (attribute)
Returns: A list of positive integers.
If x is a bipartition with degree n, then IntRep0fBipartition returns the internal representation
of x: alist of length 2 * n containing positive integers which correspond to the blocks of x.
Ifiisin [1 .. =n], then 1ist[i] refers to the point i; if i isin [m + 1 .. 2 * n], then
list[i] refers to the pointn - i (a negative point). Two points lie in the same block of the biparti-
tion if and only if their entries in the list are equal.
See also BipartitionByIntRep (3.2.2).

Example
gap> x := Bipartition([[1, -31, [3, 41, [2, -1, -21, [-411);
<bipartition: [ 1, -31, [ 2, -1, -21, [ 3,41, [ -4 1>
gap> IntRepOfBipartition(x);

[1,2,3,3,2, 2,1, 4]

3.5.5 RightBlocks

> RightBlocks(x) (attribute)

Returns: The right blocks of a bipartition.

RightBlocks returns the right blocks of the bipartition x.

The right blocks of a bipartition x are just the intersections of the blocks of x with [-n .. -1]
where n is the degree of x, the values in transverse blocks are positive, and the values in non-transverse
blocks are negative.

The right blocks of a bipartition are GAP objects in their own right, and are not simply a list of
blocks of x; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are .Z’-related in the partition
monoid if and only if they have equal right blocks.
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Example
gap> x := Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],
> 6, -11, [-3], [-5, -6, -811);;

gap> RightBlocks(x);

<blocks: [ 1x ], [ 2%, 7x 1, [ 31, [ 4«1, [ 5, 6, 81>
gap> LeftBlocks(x);

<blocks: [ 1%, 4%, 7%, 8x ], [ 2%, 3%, 5% ], [ 6% 1>

3.5.6 LeftBlocks

> LeftBlocks(x)
Returns: The left blocks of a bipartition.
LeftBlocks returns the left blocks of the bipartition x.

(attribute)

The left blocks of a bipartition x are just the intersections of the blocks of x with [1..n] where n
is the degree of x, the values in transverse blocks are positive, and the values in non-transverse blocks

are negative.

The left blocks of a bipartition are GAP objects in their own right, and are not simply a list of

blocks of x; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are %-related in the partition

monoid if and only if they have equal left blocks.

Example
gap> x := Bipartition([[1, 4, 7, 8, -41, [2, 3, 5, -2, -7],
> (6, -11, [-31, [-5, -6, -811);;

gap> RightBlocks(x);

<blocks: [ 1x 1, [ 2%, 7x 1, [ 31, [ 41, [ 5, 6, 81>
gap> LeftBlocks(x);

<blocks: [ 1%, 4x, 7%, 8+ ], [ 2%, 3%, 5x ], [ 6% ]>

3.5.7 NrLeftBlocks

> NrLeftBlocks(x)
Returns: A non-negative integer.

(attribute)

When the argument is a bipartition x, NrLeftBlocks returns the number of left blocks of x, i.e.

the number of blocks of x intersecting [1 .. n] non-trivially.
Example

gap> x := Bipartition([[1, 2, 3, 4, 5, 6, 8], [7, -2, -3],
> (-1, -4, -7, -8], [-5, -611);;
gap> NrLeftBlocks(x);
2
gap> LeftBlocks(x);
<blocks: [ 1, 2, 3, 4, 5, 6, 81, [ 7x 1>

3.5.8 NrRightBlocks

> NrRightBlocks(x)
Returns: A non-negative integer.

(attribute)

When the argument is a bipartition x, NrRightBlocks returns the number of right blocks of x,

i.e. the number of blocks of x intersecting [-n .. -1] non-trivially.
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Example
gap> x := Bipartition([[1, 2, 3, 4, 6, -2, -71, [5, -1, -3, -81,
> (7, -4, -61, [8], [-511);;

gap> RightBlocks(x);

<blocks: [ 1%, 3%, 8 ], [ 2%, 7x ], [ 4%, 6x ], [ 5 1>
gap> NrRightBlocks(x);

4

3.5.9 NrBlocks (for blocks)

> NrBlocks(blocks)
> NrBlocks(f)
Returns: A positive integer.

If blocks is some blocks or f is a bipartition, then NrBlocks returns the number of blocks in
blocks or f, respectively.

(attribute)

(attribute)

Example

gap> blocks := BlocksNC([[-1, -2, -3, -4], [-5], [6]1);

<blocks: [ 1, 2, 3,41, [ 51, [ 6% 1>

gap> NrBlocks(blocks);

3

gap> x := Bipartition([

> [1, 8], [2, 4, -2, -4], [3, 6, -1, -5, -6], [-311);

<bipartition: [ 1, 51, [ 2, 4, -2, -41, [ 3,6, -1, -5, -6 1,
[ -31>

gap> NrBlocks(x);

4

3.5.10 DomainOfBipartition

> DomainOfBipartition(x)
Returns: A list of positive integers.
If x is a bipartition, then DomainOfBipartition returns the domain of x. The domain of x

(attribute)

consists of those numbers i in [1 .. n] such that i is contained in a transverse block of x, where
n is the degree of x (see Degree0fBipartition (3.5.1)).
Example

gap> x := Bipartition([[1, 2], [3, 4, 5, -5], [6, -6],

> (-1, -2, =31, [-4]11);

<bipartition: [ 1, 21, [ 3, 4,5, -51, [6, -61, [ -1, -2, -31,

[ -4 1>
gap> DomainOfBipartition(x);
[ 3, 4, 5, 6]

3.5.11 CodomainOfBipartition

> CodomainOfBipartition(x)
Returns: A list of positive integers.
If x is a bipartition, then CodomainOfBipartition returns the codomain of x. The codomain of

x consists of those numbers i in [-n .. -1] such that i is contained in a transverse block of x,
where n is the degree of x (see Degree0fBipartition (3.5.1)).

(attribute)
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Example
gap> x := Bipartition([[1, 2], [3, 4, 5, -5], [6, -6],
> (-1, -2, -31, [-41D);
<bipartition: [ 1, 21, [ 3, 4, 5, -51, [6, -61, [ -1, -2, -31,
[ -41>
gap> CodomainOfBipartition(x);
[ -5, -61

3.5.12 IsTransBipartition

> IsTransBipartition(x)
Returns: true or false.
If the bipartition x defines a transformation, then IsTransBipartition returns true, and if not,
then false is returned.
A bipartition x defines a transformation if and only if the number of left blocks equals the number
of transverse blocks and the number of right blocks equals the degree.

(property)

Example
gap> x := Bipartition([[1, 4, -2], [2, 5, -6], [3, -7],
> 6, 7, -91, [8, 9, -11, [10, -5],
> [-31, [-41, [-8], [-10]11);;
gap> IsTransBipartition(x);
true
gap> x := Bipartition([[1, 4, -3, -6], [2, 5, -4, -5],
> [3, 6, -11, [-211);;
gap> IsTransBipartition(x);
false
gap> Number (PartitionMonoid(3), IsTransBipartition);
27

3.5.13 IsDualTransBipartition

> IsDualTransBipartition(x)

Returns: true or false.

If the star of the bipartition x defines a transformation, then IsDualTransBipartition returns
true, and if not, then false is returned.

A bipartition is the dual of a transformation if and only if its number of right blocks equals its
number of transverse blocks and its number of left blocks equals its degree.

(property)

Example
gap> x := Bipartition([[1, -8, -9], [2, -1, -4], [3],
> (41, (5, -101, [6, -2, -5], [7, -3],
> 81, 9, -6, -71, [1011);;
gap> IsDualTransBipartition(x);
true
gap> x := Bipartition([[1, 4, -3, -6], [2, 5, -4, -5],
> (3, 6, -11, [-211);;
gap> IsTransBipartition(x);
false
gap> Number (PartitionMonoid(3), IsDualTransBipartition);
27
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3.5.14 IsPermBipartition

> IsPermBipartition(x) (property)
Returns: true or false.
If the bipartition x defines a permutation, then IsPermBipartition returns true, and if not,
then false is returned.

A bipartition is a permutation if its numbers of left, right, and transverse blocks all equal its degree.
Example

gap> x := Bipartition([
> [1, 4, -11, [2, -3], [3, 6, -B], [5, -2, -4, -611);;
gap> IsPermBipartition(x);

false

gap> x := Bipartition([[1, -3], [2, -4], [3, -6], [4, -1],

> (5, -581, [6, -21, [7, -8], [8, -711);;
gap> IsPermBipartition(x);

true

3.5.15 IsPartialPermBipartition

> IsPartialPermBipartition(x) (property)

Returns: true or false.

If the bipartition x defines a partial permutation, then IsPartialPermBipartition returns
true, and if not, then false is returned.

A bipartition x defines a partial permutation if and only if the numbers of left and right blocks of
x equal the degree of x.

Example
gap> x := Bipartition([
> [1, 4, -11, [2, -3]1, [3, 6, -51, [5, -2, -4, -611);;
gap> IsPartialPermBipartition(x);
false
gap> x := Bipartition([[1, -31, [2], [-41, [3, -6], [4, -1],
> (5, -51, [6, -21, [7, -81, [8, -711);;
gap> IsPermBipartition(x);
false
gap> IsPartialPermBipartition(x);
true

3.5.16 IsBlockBijection

> IsBlockBijection(x) (property)
Returns: true or false.
If the bipartition x induces a bijection from the quotient of [1 .. n] by the blocks of f to the
quotient of [-n .. -1] by the blocks of £, then IsBlockBijection return true, and if not, then

it returns false.
A bipartition is a block bijection if and only if its number of blocks, left blocks and right blocks
are equal.

Example
gap> x := Bipartition([[1, 4, 5, -2], [2, 3, -1], [6, -5, -6],
> [-3, -411);;

gap> IsBlockBijection(x);
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false

gap> x := Bipartition([[1, 2, -31, [3, -1, -21, [4, -41, [5, -511);;
gap> IsBlockBijection(x);

true

3.5.17 IsUniformBlockBijection

> IsUniformBlockBijection(x) (property)

Returns: true or false.

If the bipartition x is a block bijection where every block contains an equal number of positive
and negative entries, then IsUniformBlockBijection returns true, and otherwise it returns false.
Example
gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -6],
> [5, -71, [6, -8], [7, -9], [8, -11, [9, -2]11);;
gap> IsBlockBijection(x);

true

gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],
>[5, -511);;

gap> IsUniformBlockBijection(x);

false

3.5.18 CanonicalBlocks

> CanonicalBlocks(blocks) (attribute)

Returns: Blocks of a bipartition.

If blocks is the blocks of a bipartition, then the function CanonicalBlocks returns a canonical
representative of blocks.

In particular, let C(n) be a largest class such that any element of C(n) is blocks of a bipartition of
degree n and such that for every pair of elements x and y of C(n) the number of signed, and similarly
unsigned, blocks of any given size in both x and y are the same. Then CanonicalBlocks returns a

canonical representative of a class C(n) containing blocks where n is the degree of blocks.
Example
gap> B := BlocksNC([[-1, -3], [2, 4, 7], [5, 6]11);
<blocks: [ 1, 3 1, [ 2%, 4%, 7x ], [ 5%, 6% ]>
gap> CanonicalBlocks(B);

<blocks: [ 1%, 2%, 3*x ], [ 4, 51, [ 6%, 7* 1>

3.6 Creating blocks and their attributes

As described above the left and right blocks of a bipartition characterise Green’s %- and . -relation
of the partition monoid; see LeftBlocks (3.5.6) and RightBlocks (3.5.5). The left or right blocks
of a bipartition are GAP objects in their own right.

In this section, we describe the functions in the Semigroups package for creating and manipulat-
ing the left or right blocks of a bipartition.
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3.6.1 IsBlocks

> ISBlOCkS(Obj) (Category)
Returns: true or false.
Every blocks object in GAP belongs to the category IsBlocks. Basic operations for blocks
are ExtRep0f0Dbj (3.6.3), Rank0fBlocks (3.6.4), Degree0fBlocks (3.6.5), OnRightBlocks (3.7.1),
and OnLeftBlocks (3.7.2).

3.6.2 BlocksNC

> BlocksNC(classes) (function)

Returns: A blocks.

This function makes it possible to create a GAP object corresponding to the left or right blocks of
a bipartition without reference to any bipartitions.

BlocksNC returns the blocks with equivalence classes classes, which should be a list of
duplicate-free lists consisting solely of positive or negative integers, where the union of the absolute
values of the listsis [1 .. n] for some n. The blocks with positive entries correspond to transverse
blocks and the classes with negative entries correspond to non-transverse blocks.

This method function does not check that its arguments are valid, and should be used with caution.

Example
gap> BlocksNC([[1], [2], [-3, -6], [-4, -511);
<blocks: [ 1x 1, [ 2«1, [ 3,61, [ 4, 51>

3.6.3 ExtRepOfObj (for a blocks)

> ExtRep0f0bj (blocks) (operation)
Returns: A list of integers.
If n is the degree of a bipartition with left or right blocks blocks, then ExtRep0£f0bj returns the
partition corresponding to blocks as a sorted list of duplicate-free lists.
Example
gap> blocks := BlocksNC([[1, 6], [2, 3, 7], [4, 5], [-8]11);;
gap> ExtRep0f0bj(blocks);
(r1,61, 02,3, 71, [4,51,[-811

3.6.4 RankOfBlocks

> RankOfBlocks(blocks) (attribute)
> NrTransverseBlocks(blocks) (attribute)

Returns: A non-negative integer.

When the argument blocks is the left or right blocks of a bipartition, Rank0fBlocks returns the
number of blocks of blocks containing only positive entries, i.e. the number of transverse blocks in
blocks.

NrTransverseBlocks is a synonym of RankOfBlocks in this context.

Example
gap> blocks := BlocksNC([[-1, -2, -4, -6], [3, 10, 12], [5, 71,
> (81, [91, [-1111);;

gap> RankOfBlocks(blocks);
4
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3.6.5 DegreeOfBlocks

> DegreeOfBlocks (blocks) (attribute)
Returns: A non-negative integer.
The degree of blocks is the number of points n where it is defined, i.e. the union of the blocks in
blocks willbe [1 .. n] after taking the absolute value of every element.
Example
gap> blocks := BlocksNC([[-1, -11], [2], [3, 5, 6, 71, [4, 81, [9, 10],
> [1211);;
gap> DegreeOfBlocks(blocks) ;
12

3.6.6 ProjectionFromBlocks

> ProjectionFromBlocks(blocks) (attribute)
Returns: A bipartition.
When the argument blocks is the left or right blocks of a bipartition, this operation returns the
unique bipartition whose left and right blocks are equal to blocks.
If blocks is the left blocks of a bipartition x, then this operation returns a bipartition equal to the

left projection of x. The analogous statement holds when blocks is the right blocks of a bipartition.
Example
gap> x := Bipartition([[1], [2, -2, -3], [3], [-111);
<bipartition: [ 1 ], [ 2, -2, -31, [ 31, [ -1 1>
gap> ProjectionFromBlocks(LeftBlocks(x));
<bipartition: [ 1], [ 2, -21, [ 31, [ -11, [ -31>
gap> LeftProjection(x);

<bipartition: [ 11, [ 2, -21, [ 31, [-11, [-31>
gap> ProjectionFromBlocks(RightBlocks(x));
<bipartition: [ 11, [ 2, 3, -2, -3 1, [ -1 1>

gap> RightProjection(x);

<bipartition: [ 11, [ 2, 3, -2, -3 1, [ -1 1>

3.7 Actions on blocks

Bipartitions act on left and right blocks in several ways, which are described in this section.

3.7.1 OnRightBlocks

> OnRightBlocks (blocks, x) (operation)
Returns: The blocks of a bipartition.
OnRightBlocks returns the right blocks of the product g * x where g is any bipartition whose
right blocks are equal to blocks.

Example
gap> x := Bipartition([[1, 4, 5, 8], [2, 3, 7], [6, -3, -4, -5],
> (-1, -2, -61, [-7, -811);;
gap> y := Bipartition([[1, 51, [2, 4, 8, -2], [3, 6, 7, -3, -4],
> (-1, -6, -8], [-5, -711);;
gap> RightBlocks(y * x);
<blocks: [ 1, 2, 6 1, [ 3%, 4%, 5« ], [ 7, 8 1>
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gap> OnRightBlocks(RightBlocks(y), x);
<blocks: [ 1, 2, 6 1, [ 3%, 4%, 5x 1, [ 7, 8 1>

3.7.2 OnLeftBlocks

> OnLeftBlocks(blocks, x) (operation)
Returns: The blocks of a bipartition.
OnLeftBlocks returns the left blocks of the product x * y where y is any bipartition whose left
blocks are equal to blocks.

Example
gap> x := Bipartition([[1, 5, 7, -1, -3, -4, -6], [2, 3, 6, 8],
> (4, -2, -5, -81, [-711);;
gap> y := Bipartition([[1, 3, -4, -5], [2, 4, 5, 8], [6, -1, -3],
> (7, -2, -6, -7, -811);;

gap> LeftBlocks(x * y);

<blocks: [ 1%, 4%, 5%, 7x ], [ 2, 3, 6, 8 ]>
gap> OnLeftBlocks(LeftBlocks(y), x);
<blocks: [ 1%, 4%, 5x, 7x ], [ 2, 3, 6, 8 1>

3.8 Semigroups of bipartitions

Semigroups and monoids of bipartitions can be created in the usual way in GAP using the functions
Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid); see Chapter 6 for more
details.

It is possible to create inverse semigroups and monoids of bipartitions using InverseSemigroup
(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the argu-
ment is a collection of block bijections or partial perm bipartions; see IsBlockBijection (3.5.16)
and IsPartialPermBipartition (3.5.15). Note that every bipartition semigroup in Semigroups is
finite.

3.8.1 IsBipartitionSemigroup

> IsBipartitionSemigroup(S) (filter)
> IsBipartitionMonoid(S) (filter)

Returns: true or false.

A bipartition semigroup is simply a semigroup consisting of bipartitions. An object obj
is a bipartition semigroup in GAP if it satisfies IsSemigroup (Reference: IsSemigroup) and
IsBipartitionCollection (3.1.2).

A bipartition monoid is a monoid consisting of bipartitions. An object obj is a bipartition monoid
in GAP if it satisfies IsMonoid (Reference: IsMonoid) and IsBipartitionCollection (3.1.2).

Note that it is possible for a bipartition semigroup to have a multiplicative neutral element (i.e. an
identity element) but not to satisfy IsBipartitionMonoid. For example,

Example

gap> x := Bipartition([

> [1, 4, -2], [2, 5, -61, [3, -71, [6, 7, -9], [8, 9, -1],

> [10, -5], [-3], [-4], [-8], [-10]11);;

gap> S := Semigroup(x, One(x));

<commutative bipartition monoid of degree 10 with 1 generator>
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gap> IsMonoid(S);

true

gap> IsBipartitionMonoid(S);

true

gap> S := Semigroup([

> Bipartition([

(1, -31, [2, -81, I[3, 8, -11, [4, -41, [5, -51, [6, -61,

> [z, -71, [9, 10, -101, [-21, [-911),

> Bipartition([

> [, -11, [2, -21, (3, -31, [4, -41, [5, -51, [6, -6],

> [7, -71, [8, -8], [9, 10, -10], [-911D1);;

gap> One(S);

fail

gap> MultiplicativeNeutralElement (S);

<bipartition: [ 1, -1 1, [ 2, -21, [ 3, -31, [ 4, -4
(e, 61, (7, -71,[8, -81, [9, 10, -101, [ -9

gap> IsMonoid(S);

false

\2

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since
the One (Reference: One) of any element in S differs from the multiplicative neutral element.
For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

3.8.2 IsBlockBijectionSemigroup

> IsBlockBijectionSemigroup(S) (property)
> IsBlockBijectionMonoid(S) (filter)

Returns: true or false.

A block bijection semigroup is simply a semigroup consisting of block bijections. A block bijec-
tion monoid is a monoid consisting of block bijections.

An object in GAP is a block bijection monoid if it satisfies IsMonoid (Reference: IsMonoid)
and IsBlockBijectionSemigroup.

See IsBlockBijection (3.5.16).

3.8.3 IsPartialPermBipartitionSemigroup

> IsPartialPermBipartitionSemigroup(S) (property)
> IsPartialPermBipartitionMonoid(S) (filter)

Returns: true or false.

A partial perm bipartition semigroup is simply a semigroup consisting of partial perm bipartitions.
A partial perm bipartition monoid is a monoid consisting of partial perm bipartitions.

An object in GAP is a partial perm bipartition monoid if it satisfies IsMonoid (Reference: Is-
Monoid) and IsPartialPermBipartitionSemigroup.

See IsPartialPermBipartition (3.5.15).

3.8.4 IsPermBipartitionGroup

> IsPermBipartitionGroup(S) (property)
Returns: true or false.



Semigroups 34

A perm bipartition group is simply a semigroup consisting of perm bipartitions.
See IsPermBipartition (3.5.14).

3.8.5 DegreeOfBipartitionSemigroup

> DegreeOfBipartitionSemigroup(S) (attribute)
Returns: A non-negative integer.
The degree of a bipartition semigroup S is just the degree of any (and every) element of S.

Example
gap> DegreeOfBipartitionSemigroup(JonesMonoid(8));
8




Chapter 4

Partitioned binary relations (PBRs)

In this chapter we describe the functions in Semigroups for creating and manipulating partitioned
binary relations, henceforth referred to by their acronym PBRs. We begin by describing what these
objects are.

PBRs were introduced in the paper [MM11] as, roughly speaking, the maximum generalization of
bipartitions and related objects. Although, mathematically, bipartitions are a special type of PBR, in
Semigroups bipartitions and PBRs are currently distinct types of objects. It is possible to change the
representation from bipartition to PBR, and from PBR to bipartition, when appropriate; see Section
4.3 for more details. The reason for this distinct is largely historical, bipartition appeared in the
literature, and in the Semigroups package, before PBRs.

4.1 The family and categories of PBRs

4.1.1 IsPBR

> IsPBR ( Obj) (Category)
Returns: true or false.
Every PBR in GAP belongs to the category IsPBR. Basic operations for PBRs are Degree0fPBR
(4.5.2), ExtRep0f0bj (4.5.3), PBRNumber (4.5.4), NumberPBR (4.5.4), StarQp (4.5.1), and multipli-
cation of two PBRs of equal degree is via *.

4.1.2 IsPBRCollection

> IsPBRCollection(obj) (Category)
> ISPBRCOllCOll(Obj) (Category)

Returns: true or false.

Every collection of PBRs belongs to the category IsPBRCollection. For example, PBR semi-
groups belong to IsPBRCollection.

Every collection of collections of PBRs belongs to IsPBRCo11Coll. For example, a list of PBR
semigroups belongs to IsPBRCo11Coll.

4.2 Creating PBRs

There are several ways of creating PBRs in GAP, which are described in this section.

35



Semigroups 36

4.2.1 PBR

> PBR(left, right) (operation)
Returns: A PBR.
The arguments left and right of this function should each be a list of length n whose entries
are lists of integers in the ranges [-n .. -1] and [1 .. =n] for some n greater than O.
Given such an argument, PBR returns the PBR x where:

 foreach i inthe range [1 .. n] there is an edge from i to every j in left[i];
e foreach i intherange [-n .. -1] there is an edge from i to every j in right[-i];

PBR returns an error if the argument does not define a PBR.

Example
gap> PBR([[-3, -2, -1, 2, 3], [-1], [-3, -2, 1, 2]],
> (-2, -1, 1, 2, 31, (3], [-3, -2, -1, 1, 3]]);

PBR([[—g, _2, _1’ 2:3], [_1]’ [_3: _2’ 1,2]]:
[[_2,'1:1’2,3],[3]:['3:_2:_1:1}3]])

4.2.2 RandomPBR

> RandomPBR (Il [, pJ ) (operation)

Returns: A PBR.

If n is a positive integer and p is an float between 0 and 1, then RandomPBR returns a random PBR
of degree n where the probability of there being an edge from i to j is approximately p.

If the optional second argument is not present, then a random value p is used (chosen with uniform
probability).

Example
gap> RandomPBR(6) ;
PBR(
((-5,1,2,31,[-6, -3, -1,2,51, [ -5, -2, 2, 3,51,
[ -6, -4, -1, 2,3,61, [-4, -1,2, 41,
[ -5, -3, -1, 1, 2, 3,511,
(r-6, -4, -2,1,3,5,61, [ -5, -2,1,2,3,51,
[ -6, -5, -2, 1,51, [ -6, -5, -3, -2, 1, 3, 41,
[ -6, -5, -4, -2, 3,51, [-6, -4, -2, -1, 1, 2,611

423 EmptyPBR

> EmptyPBR(n) (operation)
Returns: A PBR.
If n is a positive integer, then EmptyPBR returns the PBR of degree n with no edges.

Example

gap> x := EmptyPBR(3);

pBRCCC 1, C 1,0 11, CC 1,011,010
gap> IsEmptyPBR(x);

true
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4.2.4 IdentityPBR

> IdentityPBR(n) (operation)

Returns: A PBR.

If n is a positive integer, then IdentityPBR returns the identity PBR of degree n. This PBR has
2n edges: specifically, for each i in the ranges [1 .. n] and [-n .. -1], the identity PBR has
an edge from i to -1.

Example

gap> x := IdentityPBR(3);
PBR(L[-11,[-21,0-311,C0C011,C021, (310D
gap> IsIdentityPBR(x);

true

4.2.5 UniversalPBR

> UniversalPBR(n) (operation)
Returns: A PBR.
If n is a positive integer, then UniversalPBR returns the PBR of degree n with4 * n ~ 2edges,
i.e. every possible edge.

Example
gap> x := UniversalPBR(2);
PBR([ [ -2, -1, 1,217, [ -2, -1, 1,211,
tr-2,-1,1,21,0-2,-1,1,211D

gap> IsUniversalPBR(x);
true

4.3 Changing the representation of a PBR

It is possible that a PBR can be represented as another type of object, or that another type of GAP
object can be represented as a PBR. In this section, we describe the functions in the Semigroups
package for changing the representation of PBR, or for changing the representation of another type of
object to that of a PBR.

The operations AsPermutation (4.3.4), AsPartialPerm (4.3.3), AsTransformation (4.3.2),
AsBipartition (3.3.1), AsBooleanMat (5.3.2) can be used to convert PBRs into permutations, par-
tial permutations, transformations, bipartitions, and boolean matrices where appropriate.

4.3.1 AsPBR

> AsPBR(x[, n]) (operation)
Returns: A PBR.
AsPBR returns the boolean matrix, bipartition, transformation, partial permutation, or permutation
x as a PBR of degree n.
There are several possible arguments for AsPBR:

bipartitions
If x is a bipartition and n is a positive integer, then AsPBR returns a PBR corresponding to x
with degree n. The resulting PBR has an edge from i to j whenever i and j belong to the same
block of x.
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If the optional second argument n is not specified, then degree of the bipartition x is used by
default.

boolean matrices
If x is a boolean matrix of even dimension 2 * mand n is a positive integer, then AsPBR returns
a PBR corresponding to x with degree n. If the optional second argument n is not specified,
then dimension of the boolean matrix x is used by default.

transformations, partial perms, permutations
If x is a transformation, partial perm, or permutation and n is a positive integer, then AsPBR
is a synonym for AsPBR(AsBipartition(x, n)). If the optional second argument n is not
specified, then AsPBR is a synonym for AsPBR(AsBipartition(x)). See AsBipartition
(3.3.1) for more details.

Example

gap> x := Bipartition([[1, 2, -1], [3, -2], [4, -3, -411);

<block bijection: [ 1, 2, -1 1, [ 3, -2 1, [ 4, -3, -4 1>

gap> AsPBR(x, 2);

PBR(L [ -1, 1,271, [-1,1,2711, [[-1,1,21,[-2101

gap> AsPBR(x, 5);

PBR(L [ -1, 1,211, [-1,1,21,[-2,31,[-4,-3,41,[ 11,
(f-1,1,21,0-2,31,[-4, -3,41,[-4, -3,41,[ 1D

gap> AsPBR(x);

PBR(L [ -1, 1,271, [ -1,1,21, [-2,31, [-4, -3,411,
[C-1,1,21,[-2,31, [-4, -3,41, -4 -3,410D

gap> mat := Matrix(IsBooleanMat, [[1, O, O, 1],
> [o, 1, 1, o],
> [1, o, 1, 11,
> [0, 0, 0, 111);;

gap> AsPBR(mat) ;
PBR(L[-2,1]1, [-1,211, [C[-2,-1,11,[-2101
gap> AsPBR(mat, 2);
PBRCLLC111, [ L-11D1)
gap> AsPBR(mat, 6);
PBR(CL[-2,11,[-1,21,C 11, [0[-2,-1,11,[C-21,01 1D
gap> x := Transformation([2, 2, 1]);;
gap> AsPBR(x);
PBR(CL[-21,(-21,C-1171, (3171, 01,21,C 1D
gap> AsPBR(x, 2);
PBR(L[-21,[-211,C¢C 1, 1,211
gap> AsPBR(x, 4);
PBR(CL[-21,[C-21,[-11,[-411,
(31, 01,21, [ 1,041D
gap> x := PartialPerm([4, 3]);
[1,4]1[2,3]
gap> AsPBR(x);
PBRC(L[-41,(-31,C 31, C 11, CC 131,01, 021,C1]1D
gap> AsPBR(x, 2);
PBRCCC 1, C 11, CC 1,0 1D
gap> AsPBR(x, 5);
PBR([L[-41,(-31,C 31,01, 11,
tt 1,0 31,0271, 011, 1D
gap> x := (1, 3)(2, 4);
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(1,3)(2,4)

gap> AsPBR(x);

PBR([L [ -3, 11, [ 4,21, [-1,31,[-2,411,
([-1,31,[-2,41,[-3,11,[-4,2110D

gap> AsPBR(x, 5);

PBR(C[ [ -3, 11, [-4,21,[-1,3],[-2,41,[-5,511,
([-1,31,[-2,41,[-3,11,[-4,21,[-5,510D

4.3.2 AsTransformation (for a PBR)

> AsTransformation(x) (attribute)
Returns: A transformation.
When the argument x is a PBR which satisfies IsTransformationPBR (4.5.9), then this attribute

returns that transformation.
Example

gap> x := PBR([[-3], [-3], [-2]11, [0, (31, [1, 211);;
gap> IsTransformationPBR(x) ;

true

gap> AsTransformation(x);

Transformation( [ 3, 3, 2 1 )

gap> x := PBR([[1], [1, 211, [[-2, -1], [-2, -11D);;
gap> AsTransformation(x) ;

Error, Semigroups: AsTransformation: usage,

the argument <x> must be a transformation PBR,

4.3.3 AsPartialPerm (for a PBR)

> AsPartialPerm(x) (operation)
Returns: A partial perm.
When the argument x is a PBR which satisfies IsPartialPermPBR (4.5.11), then this function

returns that partial perm.

Example
gap> x := PBR([[-1, 1], [-3, 2], [-4, 3], [4], [51],

> (f-1, 11, [-21, (-3, 21, [-4, 31, [-511);;
gap> IsPartialPermPBR(x) ;

true

gap> AsPartialPerm(x);

[2,3,4] (1)

4.3.4 AsPermutation (for a PBR)

> AsPermutation(x) (attribute)
Returns: A permutation.
When the argument x is a PBR which satisfies IsPermPBR (4.5.12), then this attribute returns that
permutation.

Example
gap> x := PBR([[-1, 11, [-4, 21, [-2, 31, [-3, 411,
> [[_1, 1], [_2) 3]: [_3) 4]: [_4: 2]]);;

gap> IsPermPBR(x) ;
true
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gap> AsPermutation(x);
(2,4,3)

4.4 Operators for PBRs

X * y
returns the product of x and y when x and y are PBRs.

x <y
returns true if the degree of x is less than the degree of y, or the degrees are equal and the
out-neighbours of x (as a list of list of positive integers) is lexicographically less than the out-
neighbours of y.

X =y
returns true if the PBR x equals the PBR y and returns false if it does not.

4.5 Attributes for PBRs

In this section we describe various attributes that a PBR can possess.

4.5.1 StarOp (for a PBR)

> StarOp(X) (operation)
> Star(x) (attribute)
Returns: A PBR.
StarOp returns the unique PBR y obtained by exchanging the positive and negative numbers in x

(i.e. multiplying ExtRep0f0bj (4.5.3) by -1 and swapping its first and second components).
Example
gap> x := PBR([[], [-11, (11, [[-3, -2, 2, 3], [-2, 11, [OD);;
gap> Star(x);

PBR([ [ -3, -2, 2,31, [-1,21, [ 11, CC 1,011, 1D

4.5.2 DegreeOfPBR

> Degree0fPBR(x) (attribute)
> Degree0fPBRCollection(x) (attribute)

Returns: A positive integer.

The degree of a PBR is, roughly speaking, the number of points where it is defined. More pre-
cisely, if x is a PBR defined on 2 * n points, then the degree of x is n.

The degree of a collection coll of PBRs of equal degree is just the degree of any (and every)
PBR in coll. The degree of collection of PBRs of unequal degrees is not defined.

Example
gap> x := PBR([[-2], [-2, -1, 2, 3], [-1, 1, 2, 311,
> (-1, 11, 2, 31, [-3, 2, 311);

PBR([ [ -21, [ -2, -1, 2,31, [-1,1,2,311,
[[_1,1]’[2’3]’[_3)233]])

gap> Degree0fPBR(x) ;

3
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gap> S := FullPBRMonoid(2);

<pbr monoid of degree 2 with 10 generators>
gap> Degree0fPBRCollection(S);

2

4.5.3 ExtRepOfObj (for a PBR)

> EXtRepOfObj (x) (operation)
Returns: A pair of lists of lists of integers.
If n is the degree of the PBR x, then ExtRep0f0bj returns the argument required by PBR (4.2.1)

to create a PBR equal to x, i.e. PBR(ExtRep0f0bj (x)) returns a PBR equal to x.
Example

gap> x := PBR([[-1, 1], [-2, 2]],

> (f-2, -1, 11, [-1, 1, 211);
PBR(C[-1,11,[-2,211,[[-2,-1,11,[-1,1,211
gap> ExtRep0f0bj (x);
tff-1,11,0-2,211,[[-2,-1,11]1,[-1,1,271]1

4.5.4 PBRNumber

> PBRNumber (m, n) (operation)
> NumberPBR (mat) (operation)

Returns: A PBR, or a positive integer.

These functions implement a bijection from the set of all PBRs of degree n and the numbers [1

2~ (4 *xn "~ 2)].

More precisely, if m and n are positive integers such that m is at most 2 ~ (4 * n =~ 2), then
PBRNumber returns the mth PBR of degree n.

If mat is a PBR of degree n, then NumberPBR returns the numberin [1 .. 2 ~ (4 * n ~ 2)]

that corresponds to mat.
Example

gap> S := FullPBRMonoid(1);

<pbr monoid of degree 1 with 4 generators>

gap> List(S, NumberPBR);

[3, 15,5, 7,8, 1, 4, 11, 13, 16, 6, 2, 9, 12, 14, 10 ]

4.55 IsEmptyPBR

> ISEmptyPBR(X) (property)
Returns: true or false.
A PBR is EMPTY if it has no edges. IsEmptyPBR returns true if the PBR x is empty and false

if it is not.
Example

gap> x := PBR([[1]1, [[11);;

gap> IsEmptyPBR(x);

true

gap> x := PBR([[-2, 11, [2]]1, [[-11, [-2, 111);
PBRC[L [ -2, 11, 2711, [[-11,[-2,1101
gap> IsEmptyPBR(x) ;

false
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4.5.6 IsldentityPBR

> IsIdentityPBR(x) (property)
Returns: true or false.
A PBR of degree n is the IDENTITY PBR of degree n if it is the identity of the full PBR monoid
of degree n. The identity PBR of degree n has 2n edges. Specifically, for each i in the ranges [1 ..

n] and [-n .. -1], the identity PBR has an edge from i to -1i.
IsIdentityPBR returns true is the PBR x is an identity PBR and false if it is not.
Example

gap> x := PBR([[-2], [-111, [[11, [211);
PBR(L[-21, [-111, 011, 210D
gap> IsIdentityPBR(x);

false

gap> x := PBR([[-11], [[111);
PBR(CL-111, 011D

gap> IsIdentityPBR(x);

true

4.5.7 IsUniversalPBR

> IsUniversalPBR(x) (property)
Returns: true or false.

A PBR of degree n is UNIVERSAL if ithas 4 * n ~ 2 edges, i.e. every possible edge.
Example

gap> x := PBR([[]], [[11);

PBRCL L 11, CC 1D

gap> IsUniversalPBR(x);

false

gap> x := PBR([[-2, 1], [2]]1, [[-1], [-2, 111);
PBRCL[-2,11, 211, [[-11,[-2,1101
gap> IsUniversalPBR(x);

false

gap> x := PBR([[-1, 111, [[-1, 111);

PBR([ [ -1, 111, [ [-1, 11 D)

gap> IsUniversalPBR(x);

true

4.5.8 IsBipartitionPBR

> IsBipartitionPBR(x) (property)
> IsBlockBijectionPBR(x) (property)

Returns: true or false.

If the PBR x defines a bipartition, then IsBipartitionPBR returns true, and if not, then it
returns false.

A PBR x defines a bipartition if and only if when considered as a boolean matrix it is an equiva-
lence.

If x satisfies IsBipartitionPBR and when considered as a bipartition it is a block bijection, then
IsBlockBijectionPBR returns true.
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Example
gap> X = PBR([[—l, 3], [—1, 3:], [_2: 1, 2: 3]]3
> [[_2, _1) 2]: [_2: _1: 15 2, 3]:

> -2, -1, 1, 211);
PBR([ [ -1, 31, [ -1, 31, [ -2, 1,

(r-2,-1,21,0-2, -1, 1, 2,3
gap> IsBipartitionPBR(x) ;

false
gap> x := PBR([[-2, -1, 1], [2, 31, [2, 311,
> [[-2, -1, 11, [-2, -1, 11, [-311);

PBR([ [ -2, -1, 11, [2,31,[2, 311,
(-2, -1,11,0-2,-1,11, [-310D

gap> IsBipartitionPBR(x);

true

gap> IsBlockBijectionPBR(x);

false

4.5.9 IsTransformationPBR

> IsTransformationPBR(x) (property)

Returns: true or false.

If the PBR x defines a transformation, then IsTransformationPBR returns true, and if not, then
false is returned.

A PBR x defines a transformation if and only if it satisfies IsBipartitionPBR (4.5.8) and when
it is considered as a bipartition it satisfies IsTransBipartition (3.5.12).

With this definition, AsPBR (4.3.1) and AsTransformation (4.3.2) define mutually inverse iso-
morphisms from the full transformation monoid of degree n to the submonoid of the full PBR monoid
of degree n consisting of all the elements satisfying IsTransformationPBR.

Example
gap> x := PBR([[-3], [-11, [-311, [[2], 01, [1, 311);
PBR(L[-31, [-11,[-311, (021, 1,01,31D
gap> IsTransformationPBR(x) ;

true

gap> x := AsTransformation(x);

Transformation( [ 3, 1, 3 1)

gap> AsPBR(x) * AsPBR(x) = AsPBR(x ~ 2);

true

gap> Number (FullPBRMonoid(1), IsTransformationPBR);

1

gap> x := PBR([[-2, -1, 2], [-2, 1, 211, [[-1, 11, [-2]11);
PBR([L [ -2, -1, 21, [-2,1,211, [[-1,11,[-21D
gap> IsTransformationPBR(x) ;

false

4.5.10 IsDualTransformationPBR

> IsDualTransformationPBR(x) (property)
Returns: true or false.
If the PBR x defines a dual transformation, then IsDualTransformationPBR returns true, and
if not, then false is returned.
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A PBR x defines a dual transformation if and only if Star (x) satisfies IsTransformationPBR
(4.5.9).

Example

gap> x := PBR([[-3, 1, 3], [-1, 21, [-3, 1, 311,

> (-1, 21, [-21, [-3, 1, 311);

PBR(L [ -3,1,31,[-1,21,0[-3,1,311,
(rf-1,21,0-21,0-3,1,310D

gap> IsDualTransformationPBR(x);

false

gap> IsDualTransformationPBR(Star(x));

true

gap> Number (FullPBRMonoid (1), IsDualTransformationPBR);
1

4.5.11 IsPartialPermPBR

> IsPartialPermPBR(x) (property)

Returns: true or false.

If the PBR x defines a partial permutation, then IsPartialPermPBR returns true, and if not,
then false is returned.

A PBR x defines a partial perm if and only if it satisfies IsBipartitionPBR (4.5.8) and and when
it is considered as a bipartition it satisfies IsPartialPermBipartition (3.5.15).

With this definition, AsPBR (4.3.1) and AsPartialPerm (4.3.3) define mutually inverse isomor-
phisms from the symmetric inverse monoid of degree n to the submonoid of the full PBR monoid of

degree n consisting of all the elements satisfying IsPartialPermPBR.
Example

gap> x := PBR([[-1, 1], [2]]1, [[-1, 11, [-21D);
PBR(L [ -1, 171, 211, C(C-1,11,[-21D
gap> IsPartialPermPBR(x) ;

true

gap> x := PartialPerm([3, 1]);

[2,1,3]

gap> AsPBR(x) * AsPBR(x) = AsPBR(x ~ 2);

true

gap> Number (FullPBRMonoid(1), IsPartialPermPBR);
2

4.5.12 IsPermPBR

> IsPermPBR(x) (property)

Returns: true or false.

If the PBR x defines a permutation, then IsPermPBR returns true, and if not, then false is
returned.

A PBR x defines a permutation if and only if it satisfies IsBipartitionPBR (4.5.8) and and when
it is considered as a bipartition it satisfies IsPermBipartition (3.5.14).

With this definition, AsPBR (4.3.1) and AsPermutation (4.3.4) define mutually inverse isomor-
phisms from the symmetric group of degree n to the subgroup of the full PBR monoid of degree n
consisting of all the elements satisfying IsPermPBR (i.e. the Group0fUnits (13.8.1) of the full PBR
monoid of degree n).
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Example
gap> x := PBR([[-2, 11, [-4, 2], [-1, 31, [-3, 411,
> [[-1, 3], [-2, 11, [-3, 41, [-4, 211);;
gap> IsPermPBR(x);
true
gap> x := (1, 5)(2, 4, 3);
(1,5)(2,4,3)
gap> y := (1, 4, 3)(2, 5);
(1,4,3)(2,5)
gap> AsPBR(x) * AsPBR(y) = AsPBR(x * y);
true
gap> Number (FullPBRMonoid (1), IsPermPBR);
1

4.6 Semigroups of PBRs

Semigroups and monoids of PBRs can be created in the usual way in GAP using the functions
Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid); see Chapter 6 for more
details.

It is possible to create inverse semigroups and monoids of PBRs using InverseSemigroup
(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the ar-
gument is a collection of PBRs satisfying IsBipartitionPBR (4.5.8) and when considered as bipar-
titions, the collection satisfies IsGenerators0fInverseSemigroup.

Note that every PBR semigroup in Semigroups is finite.

4.6.1 IsPBRSemigroup

> IsPBRSemigroup(S) (filter)
> IsPBRMonoid(S) (filter)

Returns: true or false.

A PBR semigroup is simply a semigroup consisting of PBRs. An object obj is a PBR semigroup
in GAP if it satisfies IsSemigroup (Reference: IsSemigroup) and IsPBRCollection (4.1.2).

A PBR monoid is a monoid consisting of PBRs. An object obj is a PBR monoid in GAP if it
satisfies IsMonoid (Reference: IsMonoid) and IsPBRCollection (4.1.2).

Note that it is possible for a PBR semigroup to have a multiplicative neutral element (i.e. an
identity element) but not to satisfy IsPBRMonoid. For example,

Example
gap> x := PBR([[-2, -1, 3], [-2, 2], [-38, -2, 1, 2, 3]],
> [[_3, _2, _1, 2: 3]: [_3: _23 _1: 2’ 3]’ [_1]])3:

gap> S := Semigroup(x, One(x));
<commutative pbr monoid of degree 3 with 1 generator>
gap> IsMonoid(S);

true

gap> IsPBRMonoid(S);

true

gap> S := Semigroup([

> PBR([[-2, 1], [-3, 2], [-1, 3], [
> (f-1, 31, [-2, 11, [-3, 21, [
> PBR([[-2, 1], [-1, 2], [-3, 3], [

_4, 4) 5]: [_4) 4’ 5]]’
_4; 4, 5], [_5]])’
-4, 4, 51, [-4, 4, 511,

>



Semigroups 46

> [[_1: 2]’ [_2’ 1]’ [_31 3]; [_4; 4, 5], [_5]])’
> PBR([[—]., 1, 3], [—2, 2], [_1, 1, 3], [_4, 4, 5]’ [_4’ 4, 5]],
> (-1, 1, 31, [-2, 21, [-3], [-4, 4, 51, [-511)D);

<pbr semigroup of degree 5 with 3 generators>

gap> One(S);

fail

gap> MultiplicativeNeutralElement(S);

PBR([L [ -1, 11, [-2,27], [-3,31,[-4,4,51,10[-4 4,511,
tf-1,11,0-2,21,[-3,31,[-4,4,51,[-51D

gap> IsPBRMonoid(S);

false

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since
the One (Reference: One) of any element in S differs from the multiplicative neutral element.
For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

4.6.2 DegreeOfPBRSemigroup

> Degree0fPBRSemigroup(S) (attribute)
Returns: A non-negative integer.
The degree of a PBR semigroup S is just the degree of any (and every) element of S.

Example

ap> S := Semigroup(
PBR([[-1, 1], [-2, 2], [-3, 311,
(-1, 11, [-2, 21, [-3, 31D,
PBR([[1, 2], [1, 2], [-3, 311,
[[-2, -11, [-2, -11, [-3, 311D,
PBR([[-1, 1], [2, 3], [2, 311,
(-1, 11, [-3, -21, [-3, -211));
<pbr semigroup of degree 3 with 3 generators>
gap> Degree0fPBRSemigroup(S) ;
3

V V. V V V v




Chapter 5

Matrices over semirings

In this chapter we describe the functionality in Semigroups for creating matrices over semirings.
ONLY SQUARE MATRICES ARE CURRENTLY SUPPORTED. We use the term MATRIX to mean
SQUARE MATRIX everywhere in this manual.

For reference, matrices over the following semirings are currently supported:

the Boolean semiring
the set {0,1} where0+0=0,0+1=14+1=140=1,1-0=0-0=0-1=0,and 1-1=1.

the max-plus semiring
the set of integers and negative infinity Z U {—co} with operations max and plus.

the min-plus semiring
the set of integers and infinity Z U {eo} with operations min and plus;

tropical max-plus semirings
the set {—o0,0,1,...,7} for some threshold 7 with operations max and plus;

tropical min-plus semirings
the set {0, 1,...,¢,00} for some threshold ¢ with operations min and plus;

the semiring N; ,
the semiring N, , = {0,1,...,7,t+1,...,t + p— 1} for some threshold 7 and period p under
addition and multiplication modulo the congruence t = ¢ + p;

the integers
the usual ring of integers;

finite fields
the finite fields GF (9~d) for prime q and some positive integer d.

With the exception of matrices of finite fields, semigroups of matrices in Semigroups are of the
second type described in Section 1.1. In other words, a version of the Froidure-Pin Algorithm [FP97]
is used to compute semigroups of these types, i.e it is possible that all of the elements of such a
semigroup are enumerated and stored in the memory of your computer.

47
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5.1 Creating matrices over semirings

In this section we describe the two main operations for creating matrices over semirings in Semi-
groups, and the categories, attributes, and operations which apply to every matrix over one of the
semirings given at the start of this chapter.

There are several special methods for boolean matrices, which can be found in Section 5.3. There
are also several special methods for finite fields, which can be found in section 5.4.

5.1.1 IsMatrixOverSemiring

> IsMatrixQOverSemiring(obj) (Category)

Returns: true or false.

Every matrix over a semiring in Semigroups is a member of the category
IsMatrixOverSemiring, which is a subcategory of IsMultiplicativeElementWithOne
(Reference: IsMultiplicativeElementWithOne), IsAssociativeElement (Reference: IsAssocia-
tiveElement), and IsPositionalObjectRep; see (Reference: Representation).

Every matrix over a semiring in Semigroups is a square matrix.

Basic operations for matrices over semirings are: DimensionOfMatrixOverSemiring (5.1.3),
TransposedMat (Reference: TransposedMat), and One (Reference: One).

5.1.2 IsMatrixOverSemiringCollection

> IsMatrixOverSemiringCollection(obj) (Category)
> IsMatrixOverSemiringCollColl(obj) (Category)

Returns: true or false.

Every collection of matrices over the same semiring belongs to the category
IsMatrixOverSemiringCollection. For example, semigroups of matrices over a semiring
belong to IsMatrixOverSemiringCollection.

Every collection of collections of matrices over the same semiring belongs to the category
IsMatrixOverSemiringCollColl. For example, a list of semigroups of matrices over semirings
belongs to IsMatrix0OverSemiringCollColl.

5.1.3 DimensionOfMatrixOverSemiring

> DimensionOfMatrixOverSemiring(mat) (attribute)
Returns: A positive integer.
If mat is a matrix over a semiring (i.e. belongs to the category IsMatrixOverSemiring (5.1.1)),
then mat is a square n by n matrix. Dimension0fMatrixQOverSemiring returns the dimension n of
mat.

Example
gap> x := BooleanMat([[1, 0, 0, 1],
> (o, 1, 1, o1,
> [1, o, 1, 11,
> [0, 0, 0, 111);
Matrix(IsBooleanMat, [[1, O, O, 1], [0, 1, 1, O], [1, O, 1, 1],

[0, o, 0, 111
gap> DimensionOfMatrixOverSemiring(x) ;
4
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5.1.4 DimensionOfMatrixOverSemiringCollection

> DimensionOfMatrixOverSemiringCollection(coll) (attribute)
Returns: A positive integer.
If coll is a collection of matrices over a semiring (i.e.  belongs to the category
IsMatrixOverSemiringCollection (5.1.2)), then the elements of coll are square n by n matrices.
Dimension0fMatrixOverSemiringCollection returns the dimension n of these matrices.

Example
gap> x := BooleanMat([[1, 0, 0, 1],
> (o, 1, 1, o1,
> [1, o, 1, 11,
> [0, 0, 0, 111);
Matrix(IsBooleanMat, [[1, O, O, 1], [0, 1, 1, O], [1, O, 1, 11,

o, o, o, 111
gap> DimensionOfMatrixOverSemiringCollection(Semigroup(x));
4

5.1.5 Matrix (for a filter and a matrix)

> Matrix(filt, mat[, threshold[, period]]) (operation)
> Matrix(semiring, mat) (operation)

Returns: A matrix over semiring.

This operation can be used to construct a matrix over a semiring in Semigroups.

In its first form, the first argument filt specifies the filter to be used to create the matrix, the
second argument mat is a GAP matrix (i.e. a list of lists) compatible with filt, the third and fourth
arguments threshold and period (if required) must be positive integers.

filt
This must be one of the filters given in Section 5.1.8.

mat This must be a list of n lists each of length n (i.e. a square matrix), consisting of elements be-
longing to the underlying semiring described by filt, and threshold and period if present.
An error is given if mat is not compatible with the other arguments.

For example, if filt is IsMaxPlusMatrizx, then the entries of mat must belong to the max-plus
semiring, i.e. they must be integers or -co.

The supported semirings are fully described at the start of this chapter.

threshold
If filt is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8),
or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring
of the matrix being created.

period
If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semir-
ing of the matrix being created.

In its second form, the arguments should be a semiring semiring and matrix mat with entries in
semiring. Currently, the only supported semirings are finite fields of prime order, and the integers
Integers (Reference: Integers).

The function BooleanMat (5.3.1) is provided for specifically creating boolean matrices.
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Example
gap> Matrix(IsBooleanMat, [[1, O, O, 0],
> o, o, o, ol,
> (1, 1, 1, 17,
> [1, 0, 1, 111);

Matrix(IsBooleanMat, [[1, O, O, 0], [0, O, O, O], [1, 1, 1, 11,
[1, o, 1, 111)

gap> Matrix(IsMaxPlusMatrix, [[4, O, -2],

> (1, -3, 0],

> (5, -1, -411);

Matrix(IsMaxPlusMatrix, [[4, O, -2], [1, -3, 0], [5, -1, -4]11)

gap> Matrix(IsMinPlusMatrix, [[-1, infinity],

> (1, -111);

Matrix(IsMinPlusMatrix, [[-1, infinity], [1, -11])

gap> Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4],

> (3, 1, 11,
> [-infinity, 1, 117,
> 9);

Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4], [3, 1, 1],
[-infinity, 1, 111, 9)
gap> Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1],

> [o, 3, 0],
> [1, 1, 311,
> 9);

Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1], [0, 3, 01, [1, 1, 311, 9)
gap> Matrix(IsNTPMatrix, [[0, O, 0],

> (2, o, 11,
> [2, 2, 211,
> 2, 1);

Matrix(IsNTPMatrix, [[0, O, 0], [2, O, 11, [2, 2, 211, 2, 1)
gap> Matrix(IsIntegerMatrix, [[-1, -2, 0],

> [0, 3, -11,

> [1, 0, -311);
Matrix(IsIntegerMatrix, [[-1, -2, 01, [0, 3, -11, [1, O, -311)
gap> Matrix(Integers, [[-1, -2, 0],

> (o, 3, -11,

> (1, 0, -311);

Matrix(IsIntegerMatrix, [[-1, -2, 0], [0, 3, -1], [1, O, -311)

5.1.6 AsMatrix (for a filter and a matrix)

> AsMatrix(filt, mat) (operation)
> AsMatrix(filt, mat, threshold) (operation)
> AsMatrix(filt, mat, threshold, period) (operation)

Returns: A matrix.

This operation can be used to change the representation of certain matrices over semirings. If
mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsMatrix
returns a new matrix corresponding to mat of the type specified by the filter filt, and if applicable
the arguments threshold and period. The dimension of the matrix mat is not changed by this
operation.

The version of the operation with arguments filt and mat can be applied to:
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e IsMinPlusMatrix (5.1.8) and a tropical min-plus matrix (i.e. convert a tropical min-plus ma-
trix to a (non-tropical) min-plus matrix);

e IsMaxPlusMatrix (5.1.8) and a tropical max-plus matrix;
* IsIntegerMatrix (5.1.8) and an ntp matrix.
The version of the operation with arguments filt, mat, and threshold can be applied to:

* IsTropicalMinPlusMatrix (5.1.8), a tropical min-plus or min-plus matrix, and a value for
the threshold of the resulting matrix.

e IsTropicalMaxPlusMatrix (5.1.8) and a tropical max-plus, or max-plus matrix, and a value
for the threshold of the resulting matrix.

The version of the operation with arguments filt, mat, threshold, and period can be applied to
IsNTPMatrix (5.1.8) and an ntp matrix, or integer matrix.

When converting matrices with negative entries to an ntp, tropical max-plus, or tropical min-plus
matrix, the entry is replaced with its absolute value.

When converting non-tropical matrices to tropical matrices entries higher than the specified
threshold are reduced to the threshold.

Example
gap> mat := Matrix(IsTropicalMinPlusMatrix, [[0, 1, 3],
> 1, 1, 6],
> (0, 4, 211, 10);;

gap> AsMatrix(IsMinPlusMatrix, mat);

Matrix(IsMinPlusMatrix, [[O, 1, 3], [1, 1, 61, [0, 4, 2]11)

gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
> (o, 1, 31,

> (4, 1, 011, 10);;

gap> AsMatrix(IsMaxPlusMatrix, mat);

Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3], [0, 1, 3],

[4, 1, 011)
gap> mat := Matrix(IsNTPMatrix, [[1, 2, 2],
> [o, 2, o,
> [1, 3, 011, 4, 5);;

gap> AsMatrix(IsIntegerMatrix, mat);
Matrix(IsIntegerMatrix, [[1, 2, 2], [0, 2, 0], [1, 3, 011)
gap> mat := Matrix(IsMinPlusMatrix, [[O0, 1, 31, [1, 1, 6], [0, 4, 2]1);;
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 2);
Matrix(IsTropicalMinPlusMatrix, [[O, 1, 2], [1, 1, 2], [0, 2, 2]1, 2)
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 1);
Matrix(IsTropicalMinPlusMatrix, [[O, 1, 1], [1, 1, 1], [0, 1, 111, 1)
gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
> [o, 1, 31,
> [4, 1, 011, 10);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 4);
Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],

(o, 1, 31, [4, 1, 011, &
gap> mat := Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3],
> o, 1, 31,
> (4, 1, 011);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 10);
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Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
(o, 1, 31, [4, 1, 011, 10)

gap> mat := Matrix(IsNTPMatrix, [[O0, 1, O],

> [1, 3, 11,

> [1, 0, 111, 10, 10);;

gap> mat := AsMatrix(IsNTPMatrix, mat, 5, 6);

Matrix(IsNTPMatrix, [[O, 1, O], [1, 3, 11, [1, O, 111, 5, 6)

gap> mat := AsMatrix(IsNTPMatrix, mat, 2, 6);

Matrix(IsNTPMatrix, [[O, 1, O], [1, 3, 11, [1, O, 111, 2, 6)

gap> mat := AsMatrix(IsNTPMatrix, mat, 2, 1);

Matrix(IsNTPMatrix, [[O, 1, O], [1, 2, 11, [1, O, 111, 2, 1)

gap> mat := AsMatrix(IsIntegerMatrix, mat);

Matrix(IsIntegerMatrix, [[O, 1, 0], [1, 2, 11, [1, O, 111)

gap> AsMatrix(IsNTPMatrix, mat, 1, 2);

Matrix(IsNTPMatrix, [[O, 1, O], [1, 2, 11, [1, O, 111, 1, 2)

5.1.7 RandomMatrix (for a filter and a matrix)

> RandomMatrix(filt, dim[, threshold[, period]]) (function)
> RandomMatrix(semiring, dim) (function)

Returns: A matrix over semiring.

This operation can be used to construct a random matrix over a semiring in Semigroups. The
usage of RandomMatrix is similar to that of Matrix (5.1.5).

In its first form, the first argument filt specifies the filter to be used to create the matrix, the
second argument dim is dimension of the matrix, the third and fourth arguments threshold and
period (if required) must be positive integers.

filt
This must be one of the filters given in Section 5.1.8.

dim This must be a positive integer.

threshold
If filt is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8),
or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring
of the matrix being created.

period
If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semir-
ing of the matrix being created.

In its second form, the arguments should be a semiring semiring and dimension dim. Currently,
the only supported semirings are finite fields of prime order and the integers Integers (Reference:
Integers).

Example

gap> RandomMatrix(IsBooleanMat, 3);
Matrix(IsBooleanMat, [[1, O, 0], [1, O, 11, [1, O, 111)
gap> RandomMatrix(IsMaxPlusMatrix, 2);
Matrix(IsMaxPlusMatrix, [[1, -infinity], [1, 0]])

gap> RandomMatrix (IsMinPlusMatrix, 3);
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Matrix(IsMinPlusMatrix, [[infinity, 2, infinity], [4, 0, -2], [1, -3, 0]1)
gap> RandomMatrix (IsTropicalMaxPlusMatrix, 3, 5);
Matrix(IsTropicalMaxPlusMatrix, [[5, 1, 4], [1, -infinity, 1], [1, 0, 2]],
5)
gap> RandomMatrix (IsTropicalMinPlusMatrix, 3, 2);
Matrix(IsTropicalMinPlusMatrix, [[1, -infinity, -infinity], [1, 1, 1],
[2, 2, 111, 2)
gap> RandomMatrix (IsNTPMatrix, 3, 2, 5);
Matrix(IsNTPMatrix, [[1, 1, 1], [1, 1, O], [3, O, 111, 2, 5)
gap> RandomMatrix(IsIntegerMatrix, 2);
Matrix(IsIntegerMatrix, [[1, 3], [0, 0]1]1)
gap> RandomMatrix(Integers, 2);
Matrix(IsIntegerMatrix, [[-1, 0], [0, -111)
gap> RandomMatrix (GF(5), 1);
Matrix(GF(5), [[Z(5)~0]1)

5.1.8 Matrix filters

> IsBooleanMat (Obj) (Category)
> IsMatrixOverFiniteField(obj) (Category)
> IsMaxPlusMatrix(obj) (Category)
> IsMinPlusMatrix(obj) (Category)
> IsTropicalMatrix(obj) (Category)
> IsTropicalMaxPlusMatrix(obj) (Category)
> IsTropicalMinPlusMatrix(obj) (Category)
> IsNTPMatrix(obj) (Category)
> IsIntegerMatrix(obj) (Category)

Returns: true or false.

Every matrix over a semiring in Semigroups is a member of one of these categories, which are
subcategory of IsMatrixOverSemiring (5.1.1).

IsTropicalMatrix is a  supercategory of  IsTropicalMaxPlusMatrix  and
IsTropicalMinPlusMatrix.

Basic operations for matrices over semirings include: multiplication via \¥,
DimensionOfMatrixOverSemiring (5.1.3), One (Reference: One), the underlying list of
lists used to create the matrix can be accessed using AsList (5.1.10), the rows of mat can be accessed
using mat [i] where i is between 1 and the dimension of the matrix, it also possible to loop over
the rows of a matrix; for tropical matrices ThresholdTropicalMatrix (5.1.11); for ntp matrices
ThresholdNTPMatrix (5.1.12) and PeriodNTPMatrix (5.1.12).

For matrices over finite fields see Section 5.4; for Boolean matrices more details can be found in
Section 5.3.

5.1.9 Matrix collection filters

> IsBooleanMatCollection(obj) (Category)
> IsBooleanMatCollColl(obj) (Category)
> IsMatrixOverFiniteFieldCollection(obj) (Category)
> IsMatrixOverFiniteFieldCollColl (obj) (Category)
> IsMaxPlusMatrixCollection(obj) (Category)
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> IsMaxPlusMatrixCollColl(obj) (Category)
> IsMinPlusMatrixCollection(obj) (Category)
> IsMinPlusMatrixCollColl(obj) (Category)
> IsTropicalMatrixCollection(obj) (Category)
> IsTropicalMaxPlusMatrixCollection(obj) (Category)
> IsTropicalMaxPlusMatrixCollColl(obj) (Category)
> IsTropicalMinPlusMatrixCollection(obj) (Category)
> IsTropicalMinPlusMatrixCollColl(obj) (Category)
> IsNTPMatrixCollection(obj) (Category)
> IsNTPMatrixCollColl(obj) (Category)
> IsIntegerMatrixCollection(obj) (Category)
> IsIntegerMatrixCollColl(obj) (Category)

Returns: true or false.

Every collection of matrices over the same semiring in Semigroups belongs to one of the cate-
gories above. For example, semigroups of boolean matrices belong to IsBooleanMatCollection.

Similarly, every collection of collections of matrices over the same semiring in Semigroups
belongs to one of the categories above.

5.1.10 AsList

> AsList (mat) (attribute)
> AsMutableList (mat) (operation)

Returns: A list of lists.

If mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsList
returns the underlying list of lists of semiring elements corresponding to mat . In this case, the returned
list and all of its entries are immutable.

The operation AsMutableList returns a mutable copy of the underlying list of lists of the matrix
over semiring mat .

Example
gap> mat := Matrix(IsIntegerMatrix, [[0, 2],
> [3, 511);

Matrix(IsIntegerMatrix, [[0, 2], [3, 5]11)

gap> AsList(mat);

tfo,21, 03,511

gap> mat := Matrix(GF(7), [[Z2(7) -~ 3, Z(7) ~ 2],
> (Zz(7) ~ 4, z(M1D;
Matrix(GF(7), [[Z(7)~3, Z(7)~2], [Z2(7)~4, Z(T)1D
gap> list := AsList(mat);

L [z)3, 2()~21, [ 2Z(7)~4, Z(7) 11

gap> IsMutable(list);

false

gap> IsMutable(list[1]);

false

gap> list := AsMutableList(mat);

L [z)r-3, 2()~21, [ 2Z(7)~4, Z(7) 11

gap> IsMutable(list);

true

gap> IsMutable(list[1]);

true
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gap> mat = Matrix(BaseDomain(mat), AsList(mat));
true

5.1.11 ThresholdTropicalMatrix

> ThresholdTropicalMatrix(mat) (attribute)
Returns: A positive integer.
If mat is a tropical matrix (i.e. belongs to the category IsTropicalMatrix (5.1.8)), then
ThresholdTropicalMatrix returns the threshold (i.e. the largest integer) of the underlying semir-
ing.

Example

gap> mat := Matrix(IsTropicalMaxPlusMatrix,

> [[0, 3, 0, 2],

> [1, 1, 1, 0],

> [-infinity, 1, -infinity, 1],

> [0, -infinity, 2, -infinityl]l, 10);

Matrix(IsTropicalMaxPlusMatrix, [[O, 3, O, 2], [1, 1, 1, O],
[-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]]l, 10)

gap> ThresholdTropicalMatrix(mat) ;

10

gap> mat := Matrix(IsTropicalMaxPlusMatrix,

> [[o, 3, 0, 2],

> [1, 1, 1, 0],

> [-infinity, 1, -infinity, 1],

> [0, -infinity, 2, -infinityl]l, 3);

Matrix(IsTropicalMaxPlusMatrix, [[0, 3, O, 2], [1, 1, 1, O],
[-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]l], 3)

gap> ThresholdTropicalMatrix(mat) ;

3

5.1.12 ThresholdNTPMatrix

> ThresholdNTPMatrix (mat) (attribute)
> PeriodNTPMatrix(mat) (attribute)

Returns: A positive integer.

An NTP MATRIX is a matrix with entries in a semiring N, , = {0,1,...,#,t+1,...,t+p—1} for
some threshold ¢ and period p under addition and multiplication modulo the congruence t =t + p.

If mat is a ntp matrix (i.e. belongs to the category IsNTPMatrix (5.1.8)), then
ThresholdNTPMatrix and PeriodNTPMatrix return the threshold and period of the underlying
semiring, respectively.

Example
gap> mat := Matrix(IsNTPMatrix, [[1, 1, O],
> [2, 1, 0],
> [o, 1, 111,

> 1, 2);

Matrix(IsNTPMatrix, [[1, 1, 0], [2, 1, 01, [0, 1, 111, 1, 2)
gap> ThresholdNTPMatrix(mat) ;

1

gap> PeriodNTPMatrix(mat);

2




>

>

>

3

4

gap> mat := Matrix(IsNTPMatrix, [[2, 1, 3],

Matrix(IsNTPMatrix, [[2, 1, 31, [0, 5, 11, [4, 1, 011, 3, 4)
gap> ThresholdNTPMatrix(mat) ;

gap> PeriodNTPMatrix(mat);
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[O, 5: 1])
[4, 1, 011,
3, 4);

5.2

matl1

matl

matl1

5.3

Operators for matrices over semirings

* mat2
returns the product of the matrices mat1 and mat2 of equal dimension over the same semiring
using the usual matrix multiplication with the operations + and * from the underlying semiring.

< mat2

returns true if when considered as a list of rows, the matrix mat1 is short-lex less than the
matrix mat2, and false if this is not the case. This means that a matrix of lower dimension is
less than a matrix of higher dimension.

= mat2
returns true if the matrix matl equals the matrix mat2 (i.e. the entries are equal and the
underlying semirings are equal) and returns false if it does not.

Boolean matrices

In this section we describe the operations, properties, and attributes in Semigroups specifically for
Boolean matrices. These include:

NumberBooleanMat (5.3.6)
Successors (5.3.5)

IsRowTrimBooleanMat (5.3.9), IsColTrimBooleanMat (5.3.9), and IsTrimBooleanMat
(5.3.9),

CanonicalBooleanMat (5.3.8)
IsSymmetricBooleanMat (5.3.10)
IsAntiSymmetricBooleanMat (5.3.13)
IsTransitiveBooleanMat (5.3.12)
IsReflexiveBooleanMat (5.3.11)
IsTotalBooleanMat (5.3.14)

IsOntoBooleanMat (5.3.14)
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e IsPartialOrderBooleanMat (5.3.15)

* IsEquivalenceBooleanMat (5.3.16)

5.3.1 BooleanMat

> BooleanMat (arg) (function)
Returns: A boolean matrix.
BooleanMat returns the boolean matrix mat defined by its argument. The argument can be any of
the following:

a matrix with entries 0 and/or 1
the argument arg is list of n lists of length n consisting of the values 0 and 1;

a matrix with entries true and/or false
the argument arg is list of n lists of length n consisting of the values true and false;

successors
the argument arg is list of n sublists of consisting of positive integers not greater than n. In this
case, the entry j in the sublist in position i of arg indicates that the entry in position (i, j)
of the created boolean matrix is true.

BooleanMat returns an error if the argument is not one of the above types.
Example
gap> x := BooleanMat([[true, false], [true, truell);
Matrix(IsBooleanMat, [[1, 0], [1, 111)

gap> y := BooleanMat([[1, 0], [1, 111);
Matrix(IsBooleanMat, [[1, 0], [1, 111)

gap> z := BooleanMat([[1], [1, 2]11);
Matrix(IsBooleanMat, [[1, 0], [1, 1]1)

gap> x = y;

true

gap> y = z;

true

gap> Display(x);

10

11

5.3.2 AsBooleanMat

> AsBooleanMat(x[, n]) (operation)
Returns: A boolean matrix.
AsBooleanMat returns the pbr, bipartition, permutation, transformation, or partial permutation x,
as a boolean matrix of dimension n.
There are several possible arguments for AsBooleanMat:

permutations
If x is a permutation and n is a positive integer, then AsBooleanMat (x, n) returns the boolean

matrix mat of dimension n such that mat [i] [j] = trueifandonlyifj = i ~ x.

If no positive integer n is specified, then the largest moved point of x is used as the value for n;
see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).
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transformations
If x is a transformation and n is a positive integer such that x is a transformationof [1 .. n],
then AsTransformation returns the boolean matrix mat of dimension n such that mat [i] [j]

= trueifandonlyifj = i - x.

If the positive integer n is not specified, then the degree of £ is used as the value for n.

partial permutations
If x is a partial permutation and n is a positive integer such thati ~ x <= nforalliin [1
n], then AsBooleanMat returns the boolean matrix mat of dimension n such that mat [i] [j]

~

= trueifandonlyifj = i ~ x.

~

If the optional argument n is not present, then the default value of the maximum of degree and
the codegree of x is used.

bipartitions
If x is a bipartition and n is any non-negative integer, then AsBooleanMat returns the boolean
matrix mat of dimension n such that mat [i] [j] = true if and only if i and j belong to the
same block of x.

If the optional argument n is not present, then twice the degree of x is used by default.
pbrs If x is a pbr and n is any non-negative integer, then AsBooleanMat returns the boolean matrix
mat of dimension n such that mat [i] [j] = true if and only if i and j are related in x.

If the optional argument n is not present, then twice the degree of x is used by default.

Example
> Display(AsBooleanMat((1, 2), 5));

a

O O+ OO
O = O O O
= O O O O

ap> Display(AsBooleanMat ((1, 2)));

OO0 O O O+ OMm
=g O O OO rT

—
o

gap> x := Transformation([1, 3, 4, 1, 31);;
gap> Display(AsBooleanMat(x)) ;

10000

00100

00010

10000

00100

gap> Display(AsBooleanMat(x, 4));

1000

0010

0001

1000

gap> x := PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 51);

[3,7108,1,2,6,91[10,5]

gap> Display(AsBooleanMat(x));
0100000000
0000010000
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0000001000
0000000000

0000000000

0000000010

0000000000

1000000000

0000000000

0000100000

gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -51, [-1, -411);

<bipartition: [ 1, 4, -2, -31, [ 2, 3,5, -51, [ -1, -4 1>
gap> y := AsBooleanMat(x);

<10x10 boolean matrix>

gap> Display(y);

10 1001

Or P OOr OO
O O OO O - =
P O OO0OOFr OFr Pr O
oOr P OOkFr OO
O O O O O K =
P OORFr OO OO
O, Pk OO OO
Or P OO Fr OO
P O OKFr OO0OO0OO0OOo
OO0 O Or Or O

01 0100001

gap> IsEquivalenceBooleanMat (y);
true

gap> AsBooleanMat(x, 1);
Matrix(IsBooleanMat, [[1]])

gap> Display(AsBooleanMat(x, 1));
1

gap> Display(AsBooleanMat(x, 2));
10

01

gap> Display(AsBooleanMat(x, 3));

o
= = O

ap> Display(AsBooleanMat(x, 11));

1001100

OFr OO0 O0OO0Or OFr Fr O
O O0OORrP,r OO, OO
‘|]OHOOOOHOI—‘I—‘
OO Pr OO0OFr OO OO0
OO L, Pk OO+ OO
OO0 O Fr P, OO OO
OO r OO0OFr OO0 OO0
O, OO OO, O K
O OO OO0 OO O OO

0
x PBR.(

(-1, 11, [2, 31, [-3, 2, 311,

> [[-1, 1, 2], [-3, -1, 1, 3], [-3, -1, 1, 2, 311);;

gap> AsBooleanMat (x) ;

Matrix(IsBooleanMat, [[1, O, O, 1, O, O], [0, 1, 1, O, O, O],

\2

[]
/'8 OFr OO0 OO, ORFr PP OJY - -

VB O OO Fr P, OO, OOr(M@ OO

59
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(o, 1, t, o, o, 11, ¢, 1, 0, 1, O, O], [1, O, 1, 1, O, 1],
(1, 1, 1, 1, 0, 111D
gap> Display(AsBooleanMat(x));
100100
011000
011001
110100
101101
111101
5.3.3 \in
> \in(matl, mat2) (operation)

Returns: true or false.
If mat1 and mat2 are boolean matrices, then mat1 in mat2 returns true if the binary relation
defined by mat1 is a subset of that defined by mat2.

Example
gap> x := BooleanMat([[1, O, O, 1], [0, O, O, 0],
> [1, o, 1, 11, [0, 1, 1, 111);;
gap> y := BooleanMat([[1, O, 1, 0], [1, 1, 1, O],
> [o, 1, 1, ol, [1, 1, 1, 111);;
gap> X in y;
false
gap> y in y;
true
5.3.4 OnBlist
> OnBlist(blist, mat) (function)

Returns: A boolean list.
If blist is a boolean list of length n and mat is boolean matrices of dimension n, then OnBlist
returns the product of blist (thought of as a row vector over the boolean semiring) and mat.

Example
gap> mat := BooleanMat([[1, O, O, 1],
> [0, o, 0, 0I,
> [1, 0, 1, 11,
> o, 1, 1, 111);;

gap> blist := BlistList([1 .. 41, [1, 2]);
[ true, true, false, false ]

gap> OnBlist(blist, mat);

[ true, false, false, true ]

5.3.5 Successors

> Successors(mat) (attribute)

Returns: A list of lists of positive integers.

A row of a boolean matrix of dimension n can be thought of of as the characteristic function of a
subset Sof [1 .. mnl,ie. i in Sif and only if the ith component of the row equals 1. We refer to
the subset S as the SUCCESSORS of the row.

If mat is a boolean matrix, then Successors returns the list of successors of the rows of mat.
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Example
gap> mat := BooleanMat([[1, O, 1, 1],
> [1, 0, O, O],
> [0, o, 1, 0],
> (1, 1, 0, 011);;
gap> Successors(mat) ;
(rc1,3,41, 011,031, [1,21]1

5.3.6 BooleanMatNumber

> BooleanMatNumber (m, n) (operation)
> NumberBooleanMat (mat) (operation)

Returns: A boolean matrix, or a positive integer.

These functions implement a bijection from the set of all boolean matrices of dimension n and the
numbers [1 .. 2 =~ (n ~ 2)].

More precisely, if m and n are positive integers such that m is at most 2 ~ (n ~ 2), then
BooleanMatNumber returns the mth n by n boolean matrix.

If mat is an n by n boolean matrix, then NumberBooleanMat returns the numberin [1 .. 2 =
(n =~ 2)] that corresponds to mat.

Example
gap> mat := BooleanMat([[0, 1, 1, O],
> [1, 0, 1, 11,
> [1, 1, 0, 11,
> [0, 1, 0, 11133
gap> NumberBooleanMat (mat) ;
27606
gap> Display(BooleanMatNumber (27606, 4));
0110
1011
1101
0101

5.3.7 BlistNumber

> BlistNumber(m, n) (function)
> NumberBlist(blist) (function)

Returns: A boolean list, or a positive integer.

These functions implement a bijection from the set of all boolean lists of length n and the numbers
(1 .. 2~ nl

More precisely, if m and n are positive integers such that m is at most 2 ~ n, then BlistNumber
returns the mth boolean list of length n.

If blist is a boolean list of length n, then NumberBlist returns the numberin [1 .. 2
that corresponds to blist.

n]

Example

gap> blist := BlistList([1 .. 101, [1);

[ false, false, false, false, false, false, false, false, false,
false ]

gap> NumberBlist(blist);

1
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gap> blist := BlistList([1 .. 10], [10]);

[ false, false, false, false, false, false, false, false, false, true
]

gap> NumberBlist(blist);

2

gap> BlistNumber (1, 10);

[ false, false, false, false, false, false, false, false, false,
false ]

gap> BlistNumber(2, 10);

[ false, false, false, false, false, false, false, false, false, true

]

5.3.8 CanonicalBooleanMat (for a perm group, perm group and boolean matrix)

> CanonicalBooleanMat(G, H, mat) (operation)
> CanonicalBooleanMat (G, mat) (operation)
> CanonicalBooleanMat (mat) (attribute)

Returns: A boolean matrix.

This operation returns a fixed representative of the orbit of the boolean matrix mat under the
action of the permutation group G on its rows and the permutation group H on its columns.

In its second form, when only a single permutation group G is specified, G acts on the rows and
columns of mat independently.

In its third form, when only a boolean matrix is specified, CanonicalBooleanMat returns a fixed
representative of the orbit of mat under the action of the symmetric group on its rows, and, indepen-
dently, on its columns. In other words, CanonicalBooleanMat returns a canonical boolean matrix
equivalent to mat up to rearranging rows and columns. This version of CanonicalBooleanMat uses
Digraphs and its interface with the bliss library for computing automorphism groups and canonical
forms of graphs [JKO7]. As a consequence, CanonicalBooleanMat with a single argument is signif-
icantly faster than the versions with 2 or 3 arguments.

Example
gap> mat := BooleanMat([[1, 1, 1, O, O, O],
> [0, 0, 0, 1, 0O, 11,
> [1, 0, O, 1, O, 11,
> [o, o, o0, 0, 0, 01,
> [o, 1, 1, 1, 1, 17,
> o, 1, 1, 0, 1, 011);
Matrix(IsBooleanMat, [[1, 1, 1, O, O, O], [0, O, O, 1, O, 1],
[+, o, o, 1, o, 11, [0, 0, 0, 0, 0, O], [0, 1, 1, 1, 1, 1],

[0, 1, 1, 0, 1, 011)

gap> CanonicalBooleanMat (mat) ;

Matrix(IsBooleanMat, [[O, O, 1, 1, 1, O], [1, 1, O, O, 1, O],
to, o, o, o, o, o1, o, o, 1, 1, 0, 01, [1, 1, O, O, O, 1],
(1, 1, 1, 1, 0, 111)

gap> Display(CanonicalBooleanMat (mat)) ;

01110

= = O O~ O
= = O O =
, O R, O O -
B O BFr OO
O O O O W
= = O O O



https://gap-packages.github.io/Digraphs
http://www.tcs.tkk.fi/Software/bliss/
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gap> Display(CanonicalBooleanMat (Group((1, 3)), mat));
011001

001001

110100

000000O

101111

100110

gap> Display(CanonicalBooleanMat (Group((1, 3)), Group(()), mat));
111000

000101

010101

000000

101111

101010

5.3.9 IsRowTrimBooleanMat

> IsRowTrimBooleanMat (mat) (property)
> IsColTrimBooleanMat (mat) (property)
> IsTrimBooleanMat (mat) (property)

Returns: true or false.

A row or column of a boolean matrix of dimension n can be thought of of as the characteristic
function of a subset S of [1 .. nl,ie. i in S if and only if the ith component of the row or
column equals 1.

A boolean matrix is ROW TRIM if no subset induced by a row of mat is contained in the subset
induced by any other row of mat. COLUMN TRIM is defined analogously. A boolean matrix is TRIM
if it is both row and column trim.

Example
gap> mat := BooleanMat([[O, 1, 1, O],
> [1, 0, 1, 11,
> [1, 1, 0, 17,
> [o, 1, 1, 111;;
gap> IsTrimBooleanMat (mat) ;
true
gap> mat := BooleanMat([[O, 1, 1, O],
> [0, o0, 1, 0],
> (1, o, o, 11,
> (1, 0, 1, 011)3;;
gap> IsRowTrimBooleanMat (mat) ;
false
gap> IsColTrimBooleanMat (mat) ;
false
5.3.10 IsSymmetricBooleanMat
> IsSymmetricBooleanMat (mat) (property)

Returns: true or false.
A boolean matrix is SYMMETRIC if it is symmetric about the main diagonal, i.e. mat [i] [j] =
mat [j][i] foralli, jintherange [1 .. n] where nis the dimension of mat.
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Example
gap> mat := BooleanMat([[0O, 1, 1, O],
> [1, 0, 1, 17,
> (1, 1, o, 17,
> (0, 1, 0, 111);

Matrix(IsBooleanMat, [[O, 1, 1, O], [1, O, 1, 11, [1, 1, O, 1],
o, 1, o, 111
gap> IsSymmetricBooleanMat (mat) ;

false

gap> mat := BooleanMat([[0, 1, 1, 0],

> [1, 0, 1, 11,

> [1, 1, 0, 11,

> [o, 1, 1, 111);

Matrix(IsBooleanMat, [[O, 1, 1, 0], [1, O, 1, 1], [1, 1, O, 11,
(o, 1, 1, 111

gap> IsSymmetricBooleanMat (mat);

true

5.3.11 IsReflexiveBooleanMat

> IsReflexiveBooleanMat (mat) (property)
Returns: true or false.
A boolean matrix is REFLEXIVE if every entry in the main diagonal is true, i.e. mat [i] [i] =

true for all i in the range [1 .. n] where n is the dimension of mat.
Example
gap> mat := BooleanMat([[1, O, O, O],
> [1, 1, 0, 01,
> [o, 1, 0, 11,
> (1, 1, 1, 111);

Matrix(IsBooleanMat, [[1, O, O, 0], [1, 1, 0, 0], [0, 1, O, 1],
(1, 1, 1, 111
gap> IsReflexiveBooleanMat (mat) ;

false

gap> mat := BooleanMat([[1, 1, 1, O],

> 1, 1, 1, 11,
> [1, 1, 1, 11,
> [o, 1, 1, 111);

Matrix(IsBooleanMat, [[1, 1, 1, O], [1, 1, 1, 11, [1, 1, 1, 1],
[0, 1, 1, 111

gap> IsReflexiveBooleanMat (mat);

true

5.3.12 IsTransitiveBooleanMat

> IsTransitiveBooleanMat (mat) (property)
Returns: true or false.
A boolean matrix is TRANSITIVE if whenever mat [i] [j] = true andmat [j] [k] = true then

mat [i] [k] = true.
Example

gap> x := BooleanMat([[1, O, 0, 1],
> [17 O, 1: 1]:
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> [11 1, 1: O]’
> [0, 1, 1, 011);
Matrix(IsBooleanMat, [[1, O, O, 1], [1, O, 1, 1],

o, 1, 1, ol
gap> IsTransitiveBooleanMat (x) ;

false

gap> x := BooleanMat([[1, 1, 1, 1],

> (1, 1, 1, 11,

> (1, 1, 1, 11,

> (1, 1, 1, 111);
Matrix(IsBooleanMat, [[1, 1, 1, 11, [1, 1, 1, 1],

-

(1, 1, 1, 11D
gap> IsTransitiveBooleanMat (x);
true

1, 1, 1, o],

[1’ 1) 1’ 1]’
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5.3.13 IsAntiSymmetricBooleanMat

> IsAntiSymmetricBooleanMat (mat)
Returns: true or false.

(property)

A boolean matrix is ANTI-SYMMETRIC if whenever mat [i] [j] = true and mat [j][i] =

truetheni = j.

Example
gap> x := BooleanMat([[1, 0, 0, 1],
> [1, o, 1, 17,
> (1, 1, 1, 01,
> [0, 1, 1, 011);
Matrix(IsBooleanMat, [[1, O, O, 1], [1, O, 1, 11,

(o, 1, 1, oI
gap> IsAntiSymmetricBooleanMat (x);

false

gap> x := BooleanMat([[1, 0, 0, 1],

> (1, 0, 1, 0],

> (1, 0, 1, 0],

> (0, 1, 1, 011);
Matrix(IsBooleanMat, [[1, O, O, 1], [1, O, 1, O],

[0, 1, 1, 01D
gap> IsAntiSymmetricBooleanMat (x) ;
true

[1’ 13 1) o]’

[1’ O, 1’ O]’

5.3.14 IsTotalBooleanMat

> IsTotalBooleanMat (mat)
> IsOntoBooleanMat (mat)
Returns: true or false.

(property)
(property)

A boolean matrix is TOTAL if there is at least one entry in every row is true. Similarly, a boolean

matrix is ONTO if at least one entry in every column is true.
Example

gap> x := BooleanMat([[1, O, 0, 1],
> [11 0, 1: 1]:
> (1, 1, 1, 0],
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> o, 1, 011);

Matrix(IsBooleanMat, [[1, O, O, 11, [1, O, 1, 11, [1, 1, 1, O],
[0, 1, 1, o1l

gap> IsTotalBooleanMat(x);

e
-

true

gap> IsOntoBooleanMat (x);

true

gap> x := BooleanMat([[1, O, 0, 1],

> (1, 0, 1, 0],

> (o, o, 0, 0],

> o, 1, 1, 011);

Matrix(IsBooleanMat, [[1, O, O, 1], [1, O, 1, 0], [0, O, O, O],

o, 1, 1, 011
gap> IsTotalBooleanMat(x);
false
gap> IsOntoBooleanMat (x) ;
true

5.3.15 IsPartialOrderBooleanMat

> IsPartialOrderBooleanMat (mat) (property)
Returns: true or false.

A boolean matrix is a PARTIAL ORDER if it is reflexive, transitive, and anti-symmetric.

Example
gap> Number (FullBooleanMatMonoid(3), IsPartialOrderBooleanMat);
19

5.3.16 IsEquivalenceBooleanMat

> IsEquivalenceBooleanMat (mat) (property)
Returns: true or false.
A boolean matrix is an EQUIVALENCE if it is reflexive, transitive, and symmetric.

Example
gap> Number (FullBooleanMatMonoid(3), IsEquivalenceBooleanMat) ;
5
gap> Bell(3);
5

5.4 Matrices over finite fields

In this section we describe the operations, properties, and attributes in Semigroups specifically for
matrices over finite fields. These are in addition to those given elsewhere in this chapter for arbitrary
matrices over semirings.

5.4.1 NewMatrixOverFiniteField (for a filter, a field, an integer, and a list)

> NewMatrixOverFiniteField(filt, F, rows) (operation)
Returns: a new matrix object.
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Creates a new n-by-n matrix over the finite field F with constructing filter filt. The
matrix itself is given by a list rows of rows. Currently the only possible value for filt is

IsPlistMatrixOverFiniteFieldRep.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,
> GF(4),
> z(4) = [[1, o], [0, 111D;

Matrix(GF(2-2), [[z(2°2), 0xZ(2)1, [0%Z(2), Z(2°2)11)
gap> y := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,
> GF(4),

> [1;
Matrix(GF(2~2), [1)

5.4.2 IdentityMatrixOverFiniteField (for a finite field and a pos int)

> IdentityMatrixOverFiniteField(F, n)
> IdentityMatrixOverFiniteField(mat, n)

(operation)

(operation)

Given a finite field F and a positive integer n, this operation returns an n-by-n identity matrix with
entries in the finite field F. If instead the first argument is an n-by-n matrix mat whose BaseDomain
(5.4.7) is a finite field F, then IdentityMatrixOverFiniteField(mat, n) returns the same as

IdentityMatrixOverFiniteField(F, n).

Example
gap> x := NewldentityMatrixOverFiniteField(
> IsPlistMatrixOverFiniteFieldRep, GF(4), 2);

Matrix(GF(2~2), [[Z(2)~0, 0xZ(2)], [0*Z(2), Z(2)~0]1)

> GF(4), 2);
Matrix (GF(2~2), [[0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2)11)

gap> y := NewZeroMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,

5.4.3 NewldentityMatrixOverFiniteField

> NewIdentityMatrixOverFiniteField(filt, F, n)
> NewZeroMatrixOverFiniteField(filt, F, n)

Creates a new n-by-n zero or identity matrix with entries in the finite field F.

(operation)

(operation)

Example
gap> x := NewIdentityMatrixOverFiniteField(
> IsPlistMatrixOverFiniteFieldRep, GF(4), 2);

Matrix(GF(2°2), [[Z(2)"0, 0*Z(2)], [0%Z(2), Z(2)~011)

> GF(4), 2);
Matrix (GF(2°~2), [[0%Z(2), 0*Z(2)], [0*Z(2), 0xZ(2)11)

gap> y := NewZeroMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,

5.4.4 RowSpaceBasis (for a matrix over finite field)

> RowSpaceBasis(m)
> RowSpaceTransformation (m)

(attribute)
(attribute)
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> RowSpaceTransformationInv(m) (attribute)

To compute the value of any of the above attributes, a canonical basis for the row space
of m is computed along with an invertible matrix RowSpaceTransformation such that m *
RowSpaceTransformation(m) = RowSpaceBasis(m). RowSpaceTransformationInv(m) is the
inverse of RowSpaceTransformation (m).
Example
gap> x := Matrix(GF(4), Z(4) ~ 0 = [[1, 1, 0], [0, 1, 11, [1, 1, 111);
Matrix(GF(2~2), [[Z(2)-0, Z(2)~0, 0%Z(2)1, [0*Z(2), Z(2)~0, Z(2)~0],
[Z2(2)~0, Z(2)~0, Z(2)~0]1)
gap> RowSpaceBasis(x);
<rowbasis of rank 3 over GF(2°2)>
gap> RowSpaceTransformation(x) ;
[ [ 0xz(2), z(2)-0, z(2)~0 1, [ Z2(2)"0, Z(2)"0, Z(2)~0 1,
[ Z(2)~0, 0%Z(2), Z(2)~0 ] ]

5.4.5 RowRank (for a matrix over finite field)

> RowRank (m) (attribute)
Returns: Length of a basis of the row space of m.

Example

gap> x := Matrix(GF(5), Z(5) ~ 0 = [[1, 1, O], [0, O, O], [1, 1, 111);

Matrix(GF(5), [[Z(5)~0, Z(5)~0, 0*Z(5)], [0%Z(5), 0*Z(5), 0*Z(5)],
[z(58)~0, Z(5)~0, Z(5)~0]1)

gap> RowRank(x) ;

2

5.4.6 Rightlnverse (for a matrix over finite field)

> RightInverse (m) (attribute)
> LeftInverse(m) (attribute)
Returns: A matrix over a finite field.
These attributes contain a semigroup left-inverse, and a semigroup right-inverse of the matrix m

respectively.

Example

gap> x := Matrix(GF(4), Z(4) -~ 0 = [[1, 1, 0], [0, O, O], [1, 1, 111);

Matrix(GF(2-~2), [[Z2(2)"0, Z(2)~0, 0%Z(2)], [0*Z(2), 0%Z(2), 0*Z(2)],
[z(2)~0, Z(2)-0, Z(2)~011)

gap> LeftInverse(x);

Matrix(GF(2-2), [[Z(2)-0, Z(2)~0, 0%Z(2)], [0%Z(2), 0%Z(2), 0%Z(2)],
[Z(2)~0, 0%Z(2), Z(2)~0]1)

gap> Display(LeftInverse(x) * x);

Z(2)°0 Z(2)~0 0*Z(2)

0%Z(2) 0%Z(2) 0%Z(2)

0%Z(2) 0%Z(2) Z(2)-0

5.4.7 BaseDomain (for a matrix over finite field)

> BaseDomain(mat) (attribute)
Returns: If mat is a matrix over a finite field (in the category IsMatrixOverSemiring (5.1.1)),
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then BaseDomain returns the finite field specified at the point that mat was created. Every entry in

the matrix mat belongs to BaseDomain (mat).

Example

gap> x := Matrix(GF(5), Z(56) ~ 0 = [[1, 1, O], [0, O, O], [1, 1, 111);

Matrix(GF(5), [[Z(5)"0, Z(5)~0, 0xZ(5)], [0*Z(5), 0*Z(5), 0*Z(5)1,
[Z(5)~0, Z(5)~0, Z(5)~011)

gap> BaseDomain(x);

GF(5)

5.4.8 TransposedMatImmutable (for a matrix over finite field)

> TransposedMatImmutable (m) (attribute)
Returns: An immutable matrix.
This attribute contains an immutable copy of m. Note that matrices are immutable by default.
Example
gap> x := Matrix(GF(5), Z(6) ~ 0 = [[1, 1, O], [0, O, O], [1, 1, 111);
Matrix(GF(5), [[Z(5)~0, Z(5)~0, 0%Z(5)]1, [0%Z(5), 0*Z(5), 0*Z(5)1,
[Z2(5)~0, Z(5)~0, Z(5)~0]1)

gap> TransposedMatImmutable (x) ;

Matrix(GF(5), [[z(5)~0, 0*Z(5), Z(5)~0], [Z(5)~0, 0*Z(5), Z(5)~0],
[0*xZ(5), 0%Z(5), Z(5)~011)

5.5 Integer Matrices

In this section we describe operations in Semigroups specifically for integer matrices. These are in
addition to those given elsewhere in this chapter for arbitrary matrices over semirings. These include:

* InverseOp (5.5.1)
e IsTorsion (5.5.2)

e Order (5.5.3)

5.5.1 InverseOp (for an integer matrix)

> InverseOp(mat) (operation)
Returns: An integer matrix.
If mat is an integer matrix (i.e. belongs to the category IsIntegerMatrix (5.1.8)) whose inverse
(if it exists) is also an integer matrix, then InverseQp returns the inverse of mat.
An integer matrix has an integer matrix inverse if and only if it has determinant one.

Example
gap> mat := Matrix(IsIntegerMatrix, [[0, O, -1],
> (o, 1, o1,
> [1, 0, 011);;

gap> InverseOp(mat);

Matrix(IsIntegerMatrix, [[O, O, 1], [0, 1, 0], [-1, O, 0]11)
gap> mat * InverseOp(mat) = One(mat);

true
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5.5.2 IsTorsion (for an integer matrix)

> IsTorsion(mat) (attribute)

Returns: true or false

If mat is an integer matrix (i.e. belongs to the category IsIntegerMatrix (5.1.8)), then
IsTorsion returns true if mat is torsion and false otherwise.

An integer matrix mat is torsion if and only if there exists an integer n such that mat to the power
of n is equal to the identity matrix.

Example
gap> mat := Matrix(IsIntegerMatrix, [[0, O, -1],
> (o, 1, 0],
> (1, 0, 011);;
gap> IsTorsion(mat);
true
gap> mat := Matrix(IsIntegerMatrix, [[0, O, -1, 0],
> (0, -1, 0, 01,
> (4, 4, 2, -11,
> (1, 1, 0, 311);;
gap> IsTorsion(mat);
false
5.5.3 Order
> Order (mat) (attribute)

Returns: An integer or infinity.

If mat is an integer matrix (i.e. belongs to the category IsIntegerMatrix (5.1.8)), then
Inverse0Op returns the order of mat. The order of mat is the smallest integer power of mat equal to
the identity. If no such integer exists, the order is equal to infinity.

Example
gap> mat := Matrix(IsIntegerMatrix, [[0, O, -1, O],
> (o, -1, o, 0],
> 4, 4, 2, -11,
> (1, 1, 0, 311);;
gap> Order(mat) ;
infinity
gap> mat := Matrix(IsIntegerMatrix, [[0O, O, -1],
> (o, 1, ol,
> (1, 0, 011);;
gap> Order (mat) ;
4

5.6 Max-plus and min-plus matrices

In this section we describe operations in Semigroups specifically for max-plus and min-plus matri-
ces. These are in addition to those given elsewhere in this chapter for arbitrary matrices over semirings.
These include:

* InverseQOp (5.6.1)

* RadialEigenvector (5.6.2)



Semigroups 71

* SpectralRadius (5.6.3)

* UnweightedPrecedenceDigraph (5.6.4)

5.6.1 InverseOp

> InverseOp(mat) (operation)
Returns: A max-plus matrix.
If mat is an invertible max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)
and is a row permutation applied to the identity), then InverseQOp returns the inverse of mat. This
method is described in [Far09].

Example
gap> InverseOp(Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 0],
> [0, -infinity, -infinity],
> [-infinity, O, -infinityl]l));

Matrix(IsMaxPlusMatrix, [[-infinity, O, -infinity],
[-infinity, -infinity, 0], [0, -infinity, -infinity]l])

5.6.2 RadialEigenvector

> RadialEigenvector (mat) (operation)
Returns: A vector.
If mat is a n by n max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then
RadialEigenvector returns an eigenvector corresponding to the eigenvalue equal to the spectral

radius of mat. This method is described in [Far09].
Example
gap> RadialEigenvector (Matrix(IsMaxPlusMatrix, [[0, -3], [-2, -1011));

[0, -21

5.6.3 SpectralRadius

> SpectralRadius(mat) (operation)
Returns: A rational number.
If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then
SpectralRadius returns the supremum of the set of eigenvalues of mat. This method is described
in [BF92].

Example
gap> SpectralRadius(Matrix(IsMaxPlusMatrix, [[-infinity, 1, -4],
> [2, -infinity, O],
> o, 1, 111));
3/2

5.6.4 UnweightedPrecedenceDigraph

> UnweightedPrecedenceDigraph (mat) (operation)
Returns: A digraph.
If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then
UnweightedPrecedenceDigraph returns the unweighted precedence digraph corresponding to mat.
For an n by n matrix mat, the unweighted precedence digraph is defined as the digraph with n
vertices where vertex i is adjacent to vertex j if and only if mat [i] [j] is not equal to -infinity.
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Example
gap> UnweightedPrecedenceDigraph(Matrix(IsMaxPlusMatrix, [[2, -2, 0],
> [-infinity, 10, -2], [-infinity, 2, 111));

<digraph with 3 vertices, 7 edges>

5.7 Matrix semigroups

In this section we describe operations and attributes in Semigroups specifically for matrix semi-
groups. These are in addition to those given elsewhere in this chapter for arbitrary matrices over
semirings. These include:

* IsXMatrixSemigroup (5.7.1)
e IsFinite (5.7.3)

e IsTorsion (5.7.4)

* NormalizeSemigroup (5.7.5)

Random matrix semigroups can be created by using the function RandomSemigroup (6.6.1). We can
also create a matrix semigroup isomorphic to a given semigroup by using IsomorphismSemigroup
(6.5.1) and AsSemigroup (6.5.3). These functions require a filter, and accept any of the filters in
Section 5.7.1.

There are corresponding functions which can be used for matrix monoids: RandomMonoid (6.6.1),
IsomorphismMonoid (6.5.2), and AsMonoid (6.5.4). These can be used with the filters in Section
5.7.2.

5.7.1 Matrix semigroup filters

> IsMatrixOverSemiringSemigroup(obj) (Category)
> IsBooleanMatSemigroup(obj) (Category)
> IsMatrixQOverFiniteFieldSemigroup(obj) (Category)
> IsMaxPlusMatrixSemigroup(obj) (Category)
> IsMinPlusMatrixSemigroup(obj) (Category)
> IsTropicalMatrixSemigroup(obj) (Category)
> IsTropicalMaxPlusMatrixSemigroup(obj) (Category)
> IsTropicalMinPlusMatrixSemigroup(obj) (Category)
> IsNTPMatrixSemigroup(obj) (Category)
> IsIntegerMatrixSemigroup(obj) (Category)

Returns: true or false.
The above are the currently supported types of matrix semigroups. For monoids see Section 5.7.2.

5.7.2 Matrix monoid filters

> IsMatrixOverSemiringMonoid(obj) (Category)
> IsBooleanMatMonoid (obj) (Category)
> IsMatrixOverFiniteFieldMonoid(obj) (Category)

> IsMaxPlusMatrixMonoid(obj) (Category)



Semigroups 73

> IsMinPlusMatrixMonoid(obj) (Category)
> IsTropicalMatrixMonoid(obj) (Category)
> IsTropicalMaxPlusMatrixMonoid(obj) (Category)
> IsTropicalMinPlusMatrixMonoid(obj) (Category)
> IsNTPMatrixMonoid(obj) (Category)
> IsIntegerMatrixMonoid(obj) (Category)

Returns: true or false.

The above are the currently supported types of matrix monoids. They correspond to the ma-
trix semigroup types in Section 5.7.1. For matrix semigroups over finite fields there is also
IsMatrixOverFiniteFieldGroup (5.7.7).

5.7.3 IsFinite

> IsFinite(S) (property)
Returns: true or false.
If S is a max-plus or min-plus matrix semigroup (i.e. belongs to the category

IsMaxPlusMatrixSemigroup (5.7.1)), then IsFinite returns true if S is finite and false oth-
erwise. This method is based on [Gau96] (max-plus) and [Sim78] (min-plus). For min-plus matrix
semigroups, this method is only valid if each min-plus matrix in the semigroup contains only non-
negative integers. Note, this method is terminating and does not involve enumerating semigroups.

Example
gap> IsFinite(Semigroup(Matrix(IsMaxPlusMatrix,
> [fo, -31,
> [-2, -1011)));
true
gap> IsFinite(Semigroup(Matrix(IsMaxPlusMatrix,
> [[1, -infinity, 2],
> [-2, 4, -infinity],
> [1, 0, 311)));
false
gap> IsFinite(Semigroup(Matrix(IsMinPlusMatrix,
> [[infinity, 0],
> (5, 411)));
false
gap> IsFinite(Semigroup(Matrix(IsMinPlusMatrix,
> [[1, o],
> [0, infinityll)));
true
5.7.4 IsTorsion
> IsTorsion(S) (attribute)

Returns: true or false.

If S is a max-plus matrix semigroup (i.e. belongs to the category IsMaxPlusMatrixSemigroup
(5.7.1)), then IsTorsion returns true if S is torsion and false otherwise. This method is based on
[Gau96] and draws on [Burl6], [BF92] and [Far09].

Example
gap> IsTorsion(Semigroup(Matrix(IsMaxPlusMatrix,
> [[O’ _3]’

> (-2, -1011)));
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true

gap> IsTorsion(Semigroup(Matrix(IsMaxPlusMatrix,

> [[1, -infinity, 2],
> [-2, 4, -infinity],
> (1, 0, 31D));
false

5.7.5 NormalizeSemigroup

> NormalizeSemigroup(S) (operation)

Returns: A semigroup.

This method applies to max-plus matrix semigroups (i.e. those belonging to the category
IsMaxPlusMatrixSemigroup (5.7.1)) that are finitely generated, such that the spectral radius of
the matrix equal to the sum of the generators (with respect to the max-plus semiring) is zero.
NormalizeSemigroup returns a semigroup of matrices all with strictly non-positive entries. Note
that the output is isomorphic to a min-plus matrix semigroup. This method is based on [Gau96] and

[Burl6].

Example
gap> NormalizeSemigroup(Semigroup(Matrix(IsMaxPlusMatrix,
> [fo, -31,

> (-2, -10]11)));

<commutative semigroup of 2x2 max-plus matrices with 1 generator>

5.7.6 Matrix groups

For interfacing the semigroups code with GAP’s library code for matrix groups, the Semigroups
package implements matrix groups that delegate to the GAP library. These functions include:

e IsMatrixOverFiniteFieldGroup (5.7.7)

\" (5.7.8)
* IsomorphismMatrixGroup (5.7.9)
* AsMatrixGroup (5.7.10)

This type of group only applies to matrices over finite fields (see
IsMatrixOverFiniteFieldSemigroup (5.7.1)).

5.7.7 IsMatrixOverFiniteFieldGroup

> IsMatrixOverFiniteFieldGroup(G) (filter)

Returns: true or false.

A matrix group is simply a group of invertible matrices over a finite field. An ob-
ject in Semigroups is a matrix group if it satisfies IsGroup (Reference: IsGroup) and
IsMatrixOverFiniteFieldCollection (5.1.9).
Example
gap> x := Matrix(GF(4), Z(4) ~ 0 * [[1, 1, o], [0, 1, O], [1, 1, 111);;
gap> G := Group(x);
<group of 3x3 matrices over GF(2°2) with 1 generator>
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gap> IsMatrixOverFiniteFieldGroup(G);

true

gap> G := Group(z(4) ~ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 111);
Group([ <an immutable 3x3 matrix over GF2> ])

gap> IsGroup(G);

true

gap> IsMatrixOverFiniteFieldGroup(G);

false

5.7.8 \~ (for a matrix over finite field group and matrix over finite field)

> \" (G, mat) (operation)
Returns: A matrix group over a finite field.
The arguments of this operation, G and mat, must be  categories

IsMatrixOverFiniteFieldGroup (5.7.7) and IsMatrixOverFiniteField (5.1.8). If G consists
of d by d matrices over GF(q) and mat is a d by d matrix over GF(q), then G ~ mat returns the
conjugate of G by mat inside GL(d, q).

Example
gap> x := Matrix(GF(4), z(4) ~ 0 = [[1, 1, 0], [0, 1, O], [1, 1, 111);;
gap> y := Matrix(GF(4), Z(4) ~ 0 * [[1, O, 0], [1, O, 11, [1, 1, 111);;
gap> G := Group(x);

<group of 3x3 matrices over GF(272) with 1 generator>

gap> G ~ y;

<group of 3x3 matrices over GF(2°2) with 1 generator>

5.7.9 IsomorphismMatrixGroup

> IsomorphismMatrixGroup(G) (attribute)

Returns: An isomorphism.

If G Dbelongs to the category IsMatrixOverFiniteFieldGroup (5.7.7), then
IsomorphismMatrixGroup returns an isomorphism from G into a group consisting of GAP
library matrices.

Example
gap> x := Matrix(GF(4), Z(4) ~ 0 * [[1, 1, o], [0, 1, O], [1, 1, 111);;
gap> G := Group(x);;
gap> iso := IsomorphismMatrixGroup(G);;
gap> Source(iso); Range(iso);
<group of 3x3 matrices over GF(2°2) with 1 generator>
Group(
L

[ [ 2(2)70, 2(2)°0, 0*xz(2) 1, [ 0%Z(2), Z(2)"0, 0%Z(2) 1,

[ z(2)~0, Z(2)~0, z(2>~0 1 1 1D

5.7.10 AsMatrixGroup

> AsMatrixGroup(G) (attribute)
Returns: A group of GAP library matrices over a finite field.
Returns the image of the isomorphism returned by 5.7.9.
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gap> x := Matrix(GF(4), Z(4) ~ 0 = [[1, 1, 0], [0, 1, O], [1, 1, 111);;
gap> G := Group(x);
<group of 3x3 matrices over GF(2°2) with 1 generator>
gap> AsMatrixGroup(G);
Group(
L

[ [ z(2)~0, z(2)~0, 0xZ(2) 1, [ 0%Z2(2), Z(2)"0, 0%Z(2) 1,

[ 2(2)~0, Z2(2)-0, 2(2)~0 11 1D




Chapter 6

Creating semigroups and monoids

In this chapter we describe the various ways that semigroups and monoids can be created in Semi-
groups, and the options that are available at the time of creation.

6.1 Underlying algorithms and related representations

Computing the Green’s structure of a semigroup is fundamental to almost every other algorithm for
semigroups. There are two fundamental algorithms in the Semigroups package for computing the
Green’s structure of a semigroup, which are described in the next two subsections.

6.1.1 Acting semigroups

The first type of fundamental algorithms are those described in [EENMP15], which when applied to a
semigroup with relatively large subgroups are the most efficient methods in the Semigroups package.
For example, the complexity of computing, say, the size of a transformation semigroup that happens to
be a group, is the same as the complexity of the Schreier-Sims Algorithm (polynomial in the number
of points acted on by the transformations) for a permutation group.

In theory, these algorithms can be applied to compute any subsemigroup of a regular semigroup;
but so far in the Semigroups package they are only implemented for semigroups of: transformations
(see (Reference: Transformations)), partial permutations (see (Reference: Partial permutations)),
bipartitions (see Chapter 3), subsemigroups of regular Rees 0-matrix semigroups over permutation
groups (see Chapter (Reference: Rees Matrix Semigroups)), and matrices over a finite field (see
Section 5.4).

We refer to semigroups to which the algorithms in [EENMP15] can be applied as acting semi-
groups, and such semigroups belong to the category IsActingSemigroup (6.1.3).

If you know a priori that the semigroup you want to compute is large and _# -trivial, then you can
disable the special methods for acting semigroups when you create the semigroups; see Section 6.3
for more details.

It is harder for the acting semigroup algorithms to compute Green’s .Z- and .7#-classes of a
transformation semigroup and the methods used to compute with Green’s #- and Z-classes are the
most efficient in Semigroups. Thus, if you are computing with a transformation semigroup, wherever
possible, it is advisable to use the commands relating to Green’s Z- or Z-classes rather than those
relating to Green’s .- or .7/’-classes. No such difficulties are present when computing with the other
types of acting semigroups in Semigroups.

7
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There are methods in Semigroups for computing individual Green’s classes of an act-
ing semigroup without computing the entire data structure of the underlying semigroup; see
GreensRClassOfElementNC (12.1.3). It is also possible to compute the Z-classes, the num-
ber of elements and test membership in a semigroup without computing all the elements; see,
for example, GreensRClasses (12.1.4), RClassReps (12.1.5), Iterator0fRClassReps (12.2.1),
IteratorOfRClasses (12.2.2), or NrRClasses (12.1.9). This may be useful if you want to study a
very large semigroup where computing all the elements of the semigroup is not feasible.

6.1.2 Enumerable semigroups

The second fundamental algorithm is the Froidure-Pin Algorithm [FP97]. The Semigroups package
contains two implementations of the Froidure-Pin Algorithm: one in the libsemigroups C++ library
and the other within the Semigroups package kernel module.

Both implementations outperform the algorithms for acting semigroups when applied to semi-
groups with small (trivial) subgroups. This method is also used to determine the structure of a semi-
group when the algorithms described in [EENMP15] do not apply. It is possible to specify which
methods should be applied to a given semigroup; see Section 6.3.

We refer to semigroups to which the Froidure-Pin Algorithm can be applied in GAP as enumerable
semigroups, and such semigroups should belong to the representation IsEnumerableSemigroupRep
(6.1.4). Every acting semigroup in Semigroups is an enumerable semigroup since the acting semi-
group data structure does not readily admit computation of certain properties or attributes.

Currently, the libsemigroups implementation of the Froidure-Pin Algorithm can be applied to
semigroups consisting of the following types of elements: transformations (see (Reference: Trans-
formations)), partial permutations (see (Reference: Partial permutations)), bipartitions (see Chap-
ter 3), partitioned binary relations (see Chapter 4) as defined in [MM11]; and matrices over the fol-
lowing semirings:

* the Boolean semiring {0,1} where 04+0=0,04+1=14+1=140=1,and1:0=0-0=0-1=0
e finite fields;

o the max-plus semiring of natural numbers and negative infinity NU {—co} with operations max
and plus;

o the min-plus semiring of natural numbers and infinity NU {eo} with operations min and plus;

o the tropical max-plus semiring {—o0,0,1,... ¢t} for some threshold ¢ with operations max and
plus;
o the tropical min-plus semiring {0, 1, ...t o0} for some threshold ¢ with operations min and plus;

e the semiring N, , = {0,1,...,7,t+1,...,t+ p— 1} for some threshold 7 and period p under
addition and multiplication modulo the congruence t =t + p.

(see Chapter 5).

The version of the Froidure-Pin Algorithm [FP97] written in C within the Semigroups pack-
age kernel module can be used to compute any other semigroup in GAP with representation
IsEnumerableSemigroupRep (6.1.4). In theory, any finite semigroup can be computed using this al-
gorithm. However, the condition that the semigroup has representation IsEnumerableSemigroupRep
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(6.1.4) is imposed to avoid this method being used when it is inappropriate (such as for finitely pre-
sented semigroups which happen to be finite). If implementing a new type of semigroup in GAP, then
simply do

Example
InstallTrueMethod (IsGeneratorsOfEnumerableSemigroup,

MyNewSemigroupType) ;

to make your new semigroup type MyNewSemigroupType use this version of the Froidure-Pin Algo-
rithm.

Mostly due to the way that GAP handles memory, this implementation is approximately 4 times
slower than the implementation in libsemigroups. This version of the Froidure-Pin Algorithm is in-
cluded because it applies to a wider class of semigroups than those currently implemented in libsemi-
groups and it is more straightforward to extend the classes of semigroup to which it applies. From a
usage perspective there is no difference between those enumerable semigroups that are representable
in libsemigroups and those that are not, except that the latter has superior performance.

6.1.3 IsActingSemigroup

> IsActingSemigroup(obj) (Category)
Returns: true or false.

Every acting semigroup, as defined in Section 6.1.1, belongs to this category.
Example
gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> IsActingSemigroup(S);

true

gap> IsEnumerableSemigroupRep(S);

true

gap> S := FreeSemigroup(3);;

gap> IsActingSemigroup(S);

false

6.1.4 IsEnumerableSemigroupRep

> IsEnumerableSemigroupRep ( Obj) (Representation)

Returns: true or false.

Every semigroup with this representation can have the Froidure-Pin algorithm applied to it; see
Section 6.1.2 for more details.

Basic  operations for enumerable semigroups are AsListCanonical (13.1.1),
EnumeratorCanonical (13.1.1), IteratorCanonical (13.1.1), PositionCanonical (13.1.2),
Enumerate (13.1.3), and IsFullyEnumerated (13.1.4).

Example
gap> S := Semigroup(Transformation([1, 3, 2]1));;
gap> IsEnumerableSemigroupRep(S);

true

gap> S := FreeSemigroup(3);;

gap> IsEnumerableSemigroupRep(S);

false
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6.2 Semigroups represented by generators

6.2.1 InverseMonoidByGenerators

> InverseMonoidByGenerators(coll[, opts]) (operation)
> InverseSemigroupByGenerators(coll[, optsl]) (operation)

Returns: An inverse monoid or semigroup.

If coll is a collection satisfying IsGeneratorsOfInverseSemigroup, then
InverseMonoidByGenerators and InverseSemigroupByGenerators return the inverse monoid
and semigroup generated by coll, respectively.

If present, the optional second argument opts should be a record containing the values of the
options for the semigroup being created, as described in Section 6.3.

6.3 Options when creating semigroups

When using any of the functions:
* InverseSemigroup (Reference: InverseSemigroup),
¢ InverseMonoid (Reference: InverseMonoid),
* Semigroup (Reference: Semigroup),
¢ Monoid (Reference: Monoid),
* SemigroupByGenerators (Reference: SemigroupByGenerators),
* MonoidByGenerators (Reference: MonoidByGenerators),
* ClosureSemigroup (6.4.1),
¢ ClosureMonoid (6.4.1),
* ClosurelnverseSemigroup (6.4.1),
¢ ClosurelnverseMonoid (6.4.1),
* SemigroupIdeal (7.1.1)

arecord can be given as an optional final argument. The components of this record specify the values
of certain options for the semigroup being created. A list of these options and their default values is
given below.

Assume that S is the semigroup created by one of the functions given above and that either: S is
generated by a collection gens; or S is an ideal of such a semigroup.

acting
this component should be true or false. Roughly speaking, there are two types of methods in
the Semigroups package: those for semigroups which have to be fully enumerated, and those
for semigroups that do not; see Section 1.1. In order for a semigroup to use the latter meth-
ods in Semigroups it must satisfy IsActingSemigroup (6.1.3). By default any semigroup or
monoid of transformations, partial permutations, Rees 0-matrix elements, or bipartitions satis-
fies IsActingSemigroup.
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There are cases (such as when it is known a priori that the semigroup is Z-trivial), when it
might be preferable to use the methods that involve fully enumerating a semigroup. In other
words, it might be desirable to disable the more sophisticated methods for acting semigroups.
If this is the case, then the value of this component can be set false when the semigroup
is created. Following this none of the special methods for acting semigroup will be used to
compute anything about the semigroup.

regular
this component should be true or false. If it is known a priori that the semigroup S being
created is a regular semigroup, then this component can be set to true. In this case, S knows
it is a regular semigroup and can take advantage of the methods for regular semigroups in
Semigroups. It is usually much more efficient to compute with a regular semigroup that to
compute with a non-regular semigroup.

If this option is set to true when the semigroup being defined is NOT regular, then the results
might be unpredictable.

The default value for this option is false.

hashlen

this component should be a positive integer, which roughly specifies the lengths of the hash
tables used internally by Semigroups. Semigroups uses hash tables in several fundamental
methods. The lengths of these tables are a compromise between performance and memory
usage; larger tables provide better performance for large computations but use more memory.
Note that it is unlikely that you will need to specify this option unless you find that GAP runs
out of memory unexpectedly or that the performance of Semigroups is poorer than expected.
If you find that GAP runs out of memory unexpectedly, or you plan to do a large number of
computations with relatively small semigroups (say with tens of thousands of elements), then
you might consider setting hashlen to be less than the default value of 12517 for each of these
semigroups. If you find that the performance of Semigroups is unexpectedly poor, or you plan
to do a computation with a very large semigroup (say, more than 10 million elements), then you
might consider setting hashlen to be greater than the default value of 12517.

You might find it useful to set the info level of the info class InfoOrb to 2 or higher since
this will indicate when hash tables used by Semigroups are being grown; see SetInfoLevel
(Reference: InfoLevel).

small
if this component is set to true, then Semigroups will compute a small subset of gens that
generates S at the time that S is created. This will increase the amount of time required to create
S substantially, but may decrease the amount of time required for subsequent calculations with
S. If this component is set to false, then Semigroups will return the semigroup generated by
gens without modifying gens. The default value for this component is false.

This option is ignored when passed to ClosureSemigroup (6.4.1) or
ClosureInverseSemigroup (6.4.1).

cong_by_ker_trace_threshold
this should be a positive integer, which specifies a semigroup size. If S is a semigroup with
inverse op, and S has a size greater than or equal to this threshold, then any congruence defined
on it may use the "kernel and trace" method to perform calculations. If its size is less than the
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threshold, then other methods will be used instead. The "kernel and trace” method has better
complexity than the generic method, but has large overheads which make it a poor choice for
small semigroups. The default value for this component is 10 ~ 5. See Section 16.7 for more
information about the "kernel and trace" method.

report
this component should be either true or false. If this component is set to true, then some
additional information will be provided during computations performed by the libsemigroups
C++ library.

batch_size
this component should be a positive integer. If S is a semigroup with representation
IsEnumerableSemigroupRep (6.1.4), then when certain computations are performed with S
using the libsemigroups C++ library, then the computations will be executed in batches of size
at least batch_size. This value of this component changes the performance of the libsemi-
groups C++ library — you may wish to tweak this parameter if you experience sub-optimal
performance.

nr_threads
this component should be a positive integer. This number sets the maximum number of threads
that can be used by computations in the libsemigroups C++ library.

Example
gap> S := Semigroup(Transformation([1, 2, 3, 3]),
> rec(hashlen := 100003, small := false));

<commutative transformation semigroup of degree 4 with 1 generator>

The default values of the options described above are stored in a global variable named
SEMIGROUPS.DefaultOptionsRec (6.3.1). If you want to change the default values of these op-
tions for a single GAP session, then you can simply redefine the value in GAP. For example, to
change the option small from the default value of false use:

Example
gap> SEMIGROUPS.DefaultOptionsRec.small := true;
true

If you want to change the default values of the options stored in SEMIGROUPS.DefaultOptionsRec
(6.3.1) for all GAP sessions, then you can edit these values in the file semigroups/gap/options.g.

6.3.1 SEMIGROUPS.DefaultOptionsRec

> SEMIGROUPS.DefaultOptionsRec (global variable)

This global variable is a record whose components contain the default values of certain options
for semigroups. A description of these options is given above in Section 6.3.

The  value of SEMIGROUPS.DefaultOptionsRec is defined in the file
semigroups/gap/options.g.
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6.4 New semigroups from old

6.4.1 ClosureSemigroup

> ClosureSemigroup(S, colll[, opts]) (operation)
> ClosureMonoid(S, coll[, opts]) (operation)
> ClosureInverseSemigroup(S, coll[, opts]) (operation)
> ClosureInverseMonoid(S, coll[, opts]) (operation)

Returns: A semigroup, monoid, inverse semigroup, or inverse monoid.

These operations return the semigroup, monoid, inverse semigroup or inverse monoid generated
by the argument S and the collection of elements coll after removing duplicates and elements from
coll that are already in S. In most cases, the new semigroup knows at least as much information
about its structure as was already known about that of S.

When X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid), the argument S of the operation ClosureX must belong to the category IsX, and
ClosureX(S, coll) returns an object in the category IsX such that

Example
ClosureX(S, coll) = X(S, coll);

but may have fewer generators, if for example, coll contains a duplicates or elements already known
to belong to S.

For example, the argument S of ClosurelnverseSemigroup must be an inverse
semigroup in the category IsInverseSemigroup (Reference: IsInverseSemigroup).
ClosureInverseSemigroup(S, coll) returns an inverse semigroup which is equal to
InverseSemigroup(S, coll).

If present, the optional third argument opts should be a record containing the values of the options
for the semigroup being created as described in Section 6.3.

Example
gap> gens := [Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
> Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
> Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
> Transformation([7, 1, 7, 4, 2, 5, 6, 31)]1;;

gap> S := Monoid(gens[1]);;
gap> for x in gens do

> S := ClosureSemigroup(S, x);
> od;
gap> S;

<transformation monoid of degree 8 with 4 generators>
gap> Size(S);

233606

gap> S := Monoid(PartialPerm([1]));

<trivial partial perm group of rank 1 with 1 generator>
gap> T := ClosureMonoid(S, [PartialPerm([2 .. 5])]);
<partial perm monoid of rank 5 with 2 generators>

gap> One(T);

<identity partial perm on [ 1, 2, 3, 4, 5 1>

gap> T := ClosureSemigroup(S, [PartialPerm([2 .. 5]1)]1);
<partial perm semigroup of rank 4 with 2 generators>
gap> One(T);




Semigroups 84

fail

gap> ClosurelInverseMonoid(DualSymmetricInverseMonoid(3),

> DClass(DualSymmetricInverseMonoid(3),
> IdentityBipartition(3)));

<inverse block bijection monoid of degree 3 with 3 generators>

gap> S := InverseSemigroup(Bipartition([[1, -1, -3], [2, 3, -2]1),

> Bipartition([[1, -3], [2, -2], [3, -111));;
gap> T := ClosurelnverseSemigroup(S, DClass(PartitionMonoid(3),

> IdentityBipartition(3)));

<inverse block bijection semigroup of degree 3 with 3 generators>
gap> T := ClosurelnverseSemigroup(T, [T.1, T.1, T.1]);

<inverse block bijection semigroup of degree 3 with 3 generators>
gap> S := InverseMonoid([

> PartialPerm([5, 9, 10, 0, 6, 3, 8, 4, 01),

> PartialPerm([10, 7, 0, 8, 0, 0, 5, 9, 11D1);;

gap> x := PartialPerm([

>5,1, 7,3, 10, 0, 2, 12, 0, 14, 11, 0, 16, O, O, O, O, 6, 9, 15]);
(4,3,7,2,1,5,10,14] [8,12] [13,16] [18,6] [19,9] [20,15] (11)

gap> S := ClosurelnverseSemigroup(S, x);

<inverse partial perm semigroup of rank 19 with 4 generators>

gap> Size(8);

9744
gap> T := Idempotents(SymmetricInverseSemigroup(10));;
gap> S := ClosurelnverseSemigroup(S, T);

<inverse partial perm semigroup of rank 19 with 14 generators>

6.4.2 SubsemigroupByProperty (for a semigroup and function)

> SubsemigroupByProperty (S, func) (operation)
> SubsemigroupByProperty(S, func, limit) (operation)

Returns: A semigroup.

SubsemigroupByProperty returns the subsemigroup of the semigroup S generated by those
elements of S fulfilling func (which should be a function returning true or false).

If no elements of S fulfil func, then fail is returned.

If the optional third argument 1imit is present and a positive integer, then once the subsemigroup
has at least 1imit elements the computation stops.

Example
gap> func := function(x)
> local n;
> n := DegreeOfTransformation(x);
> return 1 ~ x <> 1 and ForAll([1 .. n], y ->y=1ory ~ x =7y);
> end;
function( x ) ... end

gap> T := SubsemigroupByProperty(FullTransformationSemigroup(3), func);
<transformation semigroup of size 2, degree 3 with 2 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(4), func);
<transformation semigroup of size 3, degree 4 with 3 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(5), func);
<transformation semigroup of size 4, degree 5 with 4 generators>
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6.4.3 InverseSubsemigroupByProperty

> InverseSubsemigroupByProperty(S, func) (operation)

Returns: An inverse semigroup.

InverseSubsemigroupByProperty returns the inverse subsemigroup of the inverse semigroup
S generated by those elements of S fulfilling func (which should be a function returning true or
false).

If no elements of S fulfil func, then fail is returned.

If the optional third argument 1imit is present and a positive integer, then once the subsemigroup
has at least 1imit elements the computation stops.
Example

gap> IsIsometry := function(f)
> local n, i, j, k, 1;

> n := RankOfPartialPerm(f);
> for iin [1 .. n - 1] do

> k := DomainOfPartialPerm(f) [i];

> for jin [i + 1 .. n] do

> 1 := DomainOfPartialPerm(f) [j];

> if not AbsInt(k -~ f - 1 = f) = AbsInt(k - 1) then

> return false;

> fi;

> od;

> od;

> return true;

> end;;

gap> S := InverseSubsemigroupByProperty(SymmetricInverseSemigroup(5),
> IsIsometry);;

gap> Size(S);

142

6.4.4 DirectProduct

> DirectProduct(S[, T, ...]) (function)
> DirectProductOp(list, S) (operation)

Returns: A transformation semigroup.

The function DirectProduct takes an arbitrary positive number of transformation semigroups
and returns another transformation semigroup isomorphic to their direct product. The opera-
tion DirectProductOp is included for consistency with the GAP library (see DirectProductOp
(Reference: DirectProductOp)). It takes exactly two arguments, namely a non-empty list 1ist of
transformation semigroups and one of these semigroups, S.

Example

gap> S := Semigroup(Transformation([2, 1]1));;

gap> T := Semigroup(Transformation([1, 2, 3, 3, 31));;

gap> DP := DirectProduct(S, T);

<commutative transformation semigroup of degree 7 with 2 generators>

gap> Elements(DP) ;

[ Transformation( [ 1, 2, 3, 4, 5, 5, 51 ),
Transformation( [ 2, 1, 3, 4, 5, 5, 51 ) 1]

gap> S := Monoid([Transformation([2, 4, 3, 4]),

> Transformation([3, 3, 2, 3, 31)1);;
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gap> T := Semigroup([Transformation([3, 5, 4, 2, 6, 31)1);;
gap> DP := DirectProduct(S, T);

<transformation semigroup of degree 11 with 4 generators>
gap> Size(DP);

35

6.5 Changing the representation of a semigroup

The Semigroups package provides two convenient constructors IsomorphismSemigroup (6.5.1)
and IsomorphismMonoid (6.5.2) for changing the representation of a given semigroup or monoid.
These methods can be used to find an isomorphism from any semigroup to a semigroup of any other
type, provided such an isomorphism exists.

Note that at present neither IsomorphismSemigroup (6.5.1) nor IsomorphismMonoid (6.5.2)
can be used to determine whether two given semigroups, or monoids, are isomorphic.

Some methods for IsomorphismSemigroup (6.5.1) and IsomorphismMonoid (6.5.2) are based
on methods for the GAP library operations:

* IsomorphismReesMatrixSemigroup (Reference: IsomorphismReesMatrixSemigroup),

e AntilsomorphismTransformationSemigroup (Reference: AntilsomorphismTransfor-
mationSemigroup),

* IsomorphismTransformationSemigroup (Reference: IsomorphismTransformationSemi-
group) and IsomorphismTransformationMonoid (Reference: IsomorphismTransforma-
tionMonoid),

* IsomorphismPartialPermSemigroup (Reference: IsomorphismPartialPermSemigroup)
and IsomorphismPartialPermMonoid (Reference: IsomorphismPartialPermMonoid),

* IsomorphismFpSemigroup (Reference: IsomorphismFpSemigroup) and
IsomorphismFpMonoid.

The operation IsomorphismMonoid (6.5.2) can be used to return an isomorphism from a semi-
group which is mathematically a monoid (but does not below to the category of monoids in GAP
IsMonoid (Reference: IsMonoid)) into a monoid. This is the primary purpose of the opera-
tion IsomorphismMonoid (6.5.2). Either IsomorphismSemigroup (6.5.1) or IsomorphismMonoid
(6.5.2) can be used to change the representation of a monoid, but only the latter is guaranteed to return
an object in the category of monoids.

Example
gap> S := Monoid(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91));;

gap> AsSemigroup(IsBooleanMatSemigroup, S);

<monoid of 10x10 boolean matrices with 2 generators>

gap> AsMonoid(IsBooleanMatMonoid, S);

<monoid of 10x10 boolean matrices with 2 generators>

gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),

> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91));;
gap> AsSemigroup(IsBooleanMatSemigroup, S);

<semigroup of 10x10 boolean matrices with 2 generators>

gap> AsMonoid (IsBooleanMatMonoid, S);
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<monoid of 8x8 boolean matrices with 2 generators>
gap> M := Monoid([
> Bipartition([[1, -3], [2, 3, 6], [4, 7, -6], [5, -8], [8, -4, -5],

> (-11, [-21, [-71D),

> Bipartition([[1, 3, -6], [2, -8], [4, 8, -11, [5], [6, -3, -4],
> (71, [-21, [-81, [-711),

> Bipartition([[1, 2, 4, -3, -7, -8], [3, 5, 6, 8, -4, -6],

> [7, -1, -2, -511D1);;

gap> AsMonoid(IsPBRMonoid, M);

<pbr monoid of size 163, degree 163 with 3 generators>
gap> AsSemigroup(IsPBRSemigroup, M);

<pbr semigroup of size 163, degree 8 with 4 generators>

There are some further methods in Semigroups for obtaining an isomorphism from a Rees matrix,
or 0-matrix, semigroup to another such semigroup with particular properties; RMSNormalization
(6.5.7) and RZMSNormalization (6.5.6).

6.5.1 IsomorphismSemigroup

> IsomorphismSemigroup(filt, S) (operation)

Returns: An isomorphism of semigroups.

IsomorphismSemigroup can be used to find an isomorphism from a given semigroup to a semi-
group of another type, provided such an isomorphism exists.

The first argument filt must be of the form IsXSemigroup, for example,
IsTransformationSemigroup (Reference: IsTransformationSemigroup), IsFpSemigroup
(Reference: IsFpSemigroup), and IsPBRSemigroup (4.6.1) are some possible values for filt.
Note that £i1t should not be of the form IsXMonoid; see IsomorphismMonoid (6.5.2). The second
argument S should be a semigroup.

IsomorphismSemigroup returns an isomorphism from S to a semigroup T of the type described
by filt, if such an isomorphism exists. More precisely, if T is the range of the returned isomorphism,
then £filt (T) will return true. For example, if filt is IsTransformationSemigroup, then the
range of the returned isomorphism will be a transformation semigroup.

An error is returned if there is no isomorphism from S to a semigroup satisfying filt. For exam-
ple, there is no method for IsomorphismSemigroup when filt is, say, IsReesMatrixSemigroup
(Reference: IsReesMatrixSemigroup) and when S is a non-simple semigroup. Similarly, there is
no method when filt is IsPartialPermSemigroup (Reference: IsPartialPermSemigroup) and
when S is a non-inverse semigroup.

In some cases, if no better method is installed, IsomorphismSemigroup returns an isomorphism
found by composing an isomorphism from S to a transformation semigroup T, and an isomorphism
from T to a semigroup of type filt.

Note that if the argument S belongs to the category of monoids IsMonoid (Reference: Is-
Monoid), then IsomorphismSemigroup will often, but not always, return a monoid isomorphism.
Example

gap> S := Semigroup([

> Bipartition([

> [1, 21, [3, 6, -21, [4, 5, -3, -41, [-1, -6], [-5]11),

> Bipartition([

> [1, -41, [2, 3, 4, &1, (6], [-1, -6], [-2, -3], [-511DD);
<bipartition semigroup of degree 6 with 2 generators>
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gap> IsomorphismSemigroup(IsTransformationSemigroup, S);
MappingByFunction( <bipartition semigroup of size 11, degree 6 with 2
generators>, <transformation semigroup of size 11, degree 12 with 2

generators>, function( x ) ... end, function( x ) ... end )

gap> IsomorphismSemigroup(IsBooleanMatSemigroup, S);
MappingByFunction( <bipartition semigroup of size 11, degree 6 with 2
generators>, <semigroup of size 11, 12x12 boolean matrices with 2
generators>, function( x ) ... end, function( x ) ... end )
gap> IsomorphismSemigroup(IsFpSemigroup, S);
MappingByFunction( <bipartition semigroup of size 11, degree 6 with 2
generators>, <fp semigroup on the generators

[ s1, s2 1>, function( x ) ... end, function( x ) ... end )
gap> S := InverseSemigroup ([

> PartialPerm([1, 2, 3, 6, 8, 10],

> [2, 6, 7, 9, 1, 5]),

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],

> (3, 8, 1, 9, 4, 10, 5, 61)1);;

gap> IsomorphismSemigroup(IsBipartitionSemigroup, S);
MappingByFunction( <inverse partial perm semigroup of rank 10 with 2
generators>, <inverse bipartition semigroup of degree 10 with 2
generators>, function( x ) ... end, <Operation "AsPartialPerm"> )
gap> S := SymmetricInverseMonoid(4);
<symmetric inverse monoid of degree 4>
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
MappingByFunction( <symmetric inverse monoid of degree 4>,
<inverse block bijection monoid of degree 5 with 3 generators>
, function( x ) ... end, function( x ) ... end )
gap> Size(Range(last));
209
gap> S := Semigroup([
> PartialPerm([3, 1]), PartialPerm([1, 3, 41)]1);;
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
MappingByFunction( <partial perm semigroup of rank 3 with 2
generators>, <block bijection semigroup of degree 5 with 2
generators>, function( x ) ... end, function( x ) ... end )

6.5.2 IsomorphismMonoid

> IsomorphismMonoid(filt, S) (operation)

Returns: An isomorphism of monoids.

IsomorphismMonoid can be used to find an isomorphism from a given semigroup which is math-
ematically a monoid (but might not belong to the category of monoids in GAP) to a monoid, provided
such an isomorphism exists.

The first argument filt must be of the form IsXMonoid, for example,
IsTransformationMonoid (Reference: IsTransformationMonoid), IsFpMonoid (Reference:
IsFpMonoid), and IsBipartitionMonoid (3.8.1) are some possible values for filt. Note that
filt should not be of the form IsXSemigroup; see IsomorphismSemigroup (6.5.1). The second
argument S should be a semigroup which is mathematically a monoid but which may or may not
belong to the category IsMonoid (Reference: IsMonoid) of monoids in GAP, i.e. S must satisfy
IsMonoidAsSemigroup (14.1.12).
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IsomorphismMonoid returns a monoid isomorphism from S to a semigroup T of the type de-
scribed by filt, if such an isomorphism exists. In this context, a monoid isomorphism is a semigroup
isomorphism that maps the MultiplicativeNeutralElement (Reference: MultiplicativeNeu-
tralElement) of S to the One (Reference: One) of T. If T is the range of the returned isomorphism,
then £filt (T) will return true. For example, if filt is IsTransformationMonoid, then the range
of the returned isomorphism will be a transformation monoid.

An error is returned if there is no isomorphism from S to a monoid satisfying filt. For exam-
ple, there is no method for IsomorphismMonoid when filt is, say, IsReesZeroMatrixSemigroup
(Reference: IsReesZeroMatrixSemigroup) and when S is a not O-simple. Similarly, there is no
method when filt is IsPartialPermMonoid (Reference: IsPartialPermMonoid) and when S is a
non-inverse monoid.

In some cases, if no better method is installed, IsomorphismMonoid returns an isomorphism
found by composing an isomorphism from S to a transformation monoid T, and an isomorphism from
T to a monoid of type filt.

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91));

<transformation semigroup of degree 10 with 2 generators>

gap> IsomorphismMonoid(IsTransformationMonoid, S);

MappingByFunction( <transformation semigroup of degree 10 with 2
generators>, <transformation monoid of degree 8 with 2 generators>
, function( x ) ... end, function( x ) ... end )

gap> IsomorphismMonoid(IsBooleanMatMonoid, S);

MappingByFunction( <transformation semigroup of degree 10 with 2
generators>, <monoid of 8x8 boolean matrices with 2 generators>
, function( x ) ... end, function( x ) ... end )

gap> IsomorphismMonoid(IsFpMonoid, S);

MappingByFunction( <transformation semigroup of degree 10 with 2
generators>, <fp monoid on the generators

[ m1, m2 1>, function( x ) ... end, function( x ) ... end )

6.5.3 AsSemigroup

> AsSemigroup (filt, S) (operation)

Returns: A semigroup.

AsSemigroup(filt, S) is just shorthand for Range (IsomorphismSemigroup(filt, S)),
when S is a semigroup; see IsomorphismSemigroup (6.5.1) for more details.

Note that if the argument S belongs to the category of monoids IsMonoid (Reference: Is-
Monoid), then AsSemigroup will often, but not always, return a monoid. A monoid is not returned if
there is not a good monoid isomorphism from S to a monoid of the required type, but there is a good
semigroup isomorphism.

If it is not possible to convert the semigroup S to a semigroup of type £filt, then an error is given.
Example

gap> S := Semigroup([

> Bipartition([

> [1, 21, [3, 6, -21, [4, 5, -3, -4]1, [-1, -6], [-511),

> Bipartition([

> [1, -4], [2, 38, 4, 5], [e], [-1, -6], [-2, -3], [-5]1DDD);
<bipartition semigroup of degree 6 with 2 generators>
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gap> AsSemigroup(IsTransformationSemigroup, S);

<transformation semigroup of size 11, degree 12 with 2 generators>
gap> S := Semigroup([

> Bipartition([

> [1, 21, [38, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]1),

> Bipartition([

> [1, -41, [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]1DD1);
<bipartition semigroup of degree 6 with 2 generators>

gap> AsSemigroup(IsTransformationSemigroup, S);

<transformation semigroup of size 11, degree 12 with 2 generators>
gap> T := Semigroup(Transformation([2, 2, 3]),

> Transformation([3, 1, 3]1));

<transformation semigroup of degree 3 with 2 generators>

gap> S := AsSemigroup(IsMatrixOverFiniteFieldSemigroup, GF(5), T);
<semigroup of 3x3 matrices over GF(5) with 2 generators>

gap> Size(S);

5

6.5.4 AsMonoid

> AsMonoid([filt R 19 (operation)

Returns: A monoid or fail.

AsMonoid(filt, S) is just shorthand for Range (IsomorphismMonoid(filt, S)), when S
is a semigroup or monoid; see IsomorphismMonoid (6.5.2) for more details.

If the first argument i1t is omitted and the semigroup S is mathematically a monoid which does
not belong to the category of monoids in GAP, then AsMonoid returns a monoid (in the category of
monoids) isomorphic to S and of the same type as S. If S is already in the category of monoids and
the first argument £filt is omitted, then S is returned.

If the first argument filt is omitted and the semigroup S is not a monoid, i.e. it does not satisfy
IsMonoidAsSemigroup (14.1.12), then fail is returned

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91));;

gap> AsMonoid(S) ;

<transformation monoid of degree 8 with 2 generators>

gap> AsSemigroup(IsBooleanMatSemigroup, S);

<semigroup of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);

<monoid of 8x8 boolean matrices with 2 generators>

gap> S := Monoid(Bipartition([[1, -1, -3], [2, 3], [-2]1),
> Bipartition([[1, -11, [2, 3, -31, [-2]11));
<bipartition monoid of degree 3 with 2 generators>

gap> AsMonoid(IsTransformationMonoid, S);

<transformation monoid of size 3, degree 3 with 2 generators>
gap> AsMonoid(S) ;

<bipartition monoid of size 3, degree 3 with 2 generators>
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6.5.5 IsomorphismPermGroup

> IsomorphismPermGroup (S) (attribute)
Returns: An isomorphism.
If the semigroup S is mathematically a group, so that it satisfies IsGroupAsSemigroup (14.1.6),
then IsomorphismPermGroup returns an isomorphism to a permutation group.
If S is not a group then an error is given.
See also IsomorphismPermGroup (Reference: IsomorphismPermGroup).

Example
gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5]),
> Transformation([3, 3, 8, 2, 5, 6, 4, 4]));;
gap> IsGroupAsSemigroup(S);
true

gap> Range (IsomorphismPermGroup(S));

Group([ (5,6,8), (2,3,8,4) 1)

gap> StructureDescription(Range (IsomorphismPermGroup(S)));

IISGH

gap> S := Range(IsomorphismPartialPermSemigroup(SymmetricGroup(4)));

<partial perm group of size 24, rank 4 with 2 generators>

gap> IsomorphismPermGroup(S) ;

MappingByFunction( <partial perm group of size 24, rank 4 with
2 generators>, Group([ (1,2,3,4), (1,

2) 1), <Attribute "AsPermutation">, function( x ) ... end )

gap> G := GroupOfUnits(PartitionMonoid(4));

<block bijection group of degree 4 with 2 generators>

gap> StructureDescription(G) ;

IIS4I|

gap> iso := IsomorphismPermGroup(G);;
gap> RespectsMultiplication(iso);

true

gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(G, x -> (x ~ iso) ~ inv = x);
true

gap> ForAll(G, x -> ForAll(G, y -> (x * y) ~ iso = x ~ iso * y ~ is0));
true

6.5.6 RZMSNormalization

> RZMSNormalization(R) (attribute)

Returns: An isomorphism.

If R is a Rees O-matrix semigroup M°[I,T,A;P] then RZMSNormalization returns an isomor-
phism from R to a normalized Rees 0-matrix semigroup S = MP° [I,T,A;Q]. The structure matrix Q
is obtained by normalizing the matrix P (see Matrix (Reference: Matrix)) and has the following
properties:

* The matrix Q is in block diagonal form, and the blocks are ordered by decreasing size along the
leading diagonal (the size of a block is defined to be the number of rows it contains multiplied
by the number of columns it contains).

If the index sets I/ and A are partitioned into k parts according to the
RZMSConnectedComponents (13.14.2) of S, giving a disjoint union / =1} U... Ul and
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A= A1 U...UAy, then the rth block corresponds to the sub-matrix Q, of Q defined by I, and
A

* The first non-zero entry in a row occurs no sooner than the first non-zero entry in any previous
row.

* The first non-zero entry in a column occurs no sooner than the first non-zero entry in any
previous column.

* The previous two items imply that if the matrix P has any rows/columns consisting entirely of
zeroes, then these will become the final rows/columns of Q.

Furthermore, if T is a group (i.e. a semigroup for which IsGroupAsSemigroup (14.1.6) returns
true), then the non-zero entries of the structure matrix Q are chosen such that the following hold:

* The first non-zero entry of every row and every column is equal to the identity of 7.

* For each r, let Q, be the sub-matrix of Q defined by I, and A, (as above), and let 7, be the
subsemigroup of 7 generated by the non-zero entries of Q,. Then the idempotent generated
subsemigroup of S is equal to:

- U’,‘:1 M° [, T, A, O], where the zeroes of these Rees O-matrix semigroups are all identi-
fied with the zero of S.

The normalization given by RZMSNormalization is based on Theorem 2 of [Gra68] and is sometimes
called Graham normal form. Note that isomorphic Rees 0-matrix semigroups can have normalizations
which are not equal.

Example
gap> R := ReesZeroMatrixSemigroup(Group(()),
> [[o, O, 0],
> [0, o0, 0],
> [0, 0, OI);

<Rees O-matrix semigroup 3x3 over Group(())>

gap> iso := RZMSNormalization(R);

MappingByFunction( <Rees O-matrix semigroup 3x3 over Group(())>,

<Rees O-matrix semigroup 3x3 over Group(())>
, function( x ) ... end, function( x ) ... end )

gap> S := Range(iso);

<Rees O-matrix semigroup 3x3 over Group(())>

gap> Matrix(S);

tto,0,01, 00, O,01, [0,0, O1]1

gap> R := ReesZeroMatrixSemigroup (SymmetricGroup(4),

> [[0, 0, O, (1, 3, 2)],

> [(2, 3), 0, 0, 07,

> [0, 0, (1, 3), (1, 21,

> [0, (4, 1, 2, 3), 0, 011);

<Rees O-matrix semigroup 4x4 over Sym( [ 1 .. 4] )>

gap> S := Range(RZMSNormalization(R));

<Rees O-matrix semigroup 4x4 over Sym( [ 1 .. 4] )>

gap> Matrix(S);

tro, o,o0,01, 0, G, 0,01, [0,0, O,01, [0,0,0, O]
]
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6.5.7 RMSNormalization

> RMSNormalization(R) (attribute)

Returns: An isomorphism.

If R is a Rees matrix semigroup over a group G (i.e. a semigroup for which IsGroupAsSemigroup
(14.1.6) returns true), then RMSNormalization returns an isomorphism from R to a normalized Rees
matrix semigroup S over G.

The semigroup S is normalized in the sense that the first entry of each row and column of the
Matrix (Reference: Matrix) of S is the identity element of G.

Example
gap> R := ReesMatrixSemigroup(SymmetricGroup(4),

> [[(1, 2), (2, 4, 3), (2, 1, DI,

> [, 3, 2), (1, 2@, 4, OI,

> [(2, 3), (1, 3, 2, 4), (2, )ID);

<Rees matrix semigroup 3x3 over Sym( [ 1 .. 41 )>

gap> iso := RMSNormalization(R);

MappingByFunction( <Rees matrix semigroup 3x3 over Sym( [ 1 .. 4] )>

, <Rees matrix semigroup 3x3 over Sym( [ 1 .. 4] )>
, function( x ) ... end, function( x ) ... end )
gap> S := Range(iso);
<Rees matrix semigroup 3x3 over Sym( [ 1 .. 41 )>

gap> Matrix(S);
LT O, O, O1, [0, (1,2, (1,4,2,3 1, [ O, (1,4,2,3), (2,4) 11

6.6 Random semigroups

6.6.1 RandomSemigroup

> RandomSemigroup(arg...) (function)
> RandomMonoid(arg...) (function)
> RandomInverseSemigroup(arg...) (function)
> RandomInverseMonoid(arg...) (function)

Returns: A semigroup.

The operations described in this section can be used to generate semigroups, in some sense, at
random. There is no guarantee given about the distribution of these semigroups, and this is only
intended as a means of generating semigroups for testing and other similar purposes.

Roughly speaking, the arguments of RandomSemigroup are a filter specifying the type of the
semigroup to be returned, together with some further parameters that describe some attributes of the
semigroup to be returned. For instance, we may want to specify the number of generators, and, say,
the degree, or dimension, of the elements, where appropriate. The arguments of RandomMonoid,
RandomInverseSemigroup, and RandomInverseMonoid are analogous.

If no arguments are specified, then they are all chosen at random, for a truly random experience.

The first argument, if present, should be a filter filter. For RandomSemigroup and
RandomInverseSemigroup the filter filter must be of the form IsXSemigroup. For exam-
ple, IsTransformationSemigroup (Reference: IsTransformationSemigroup), IsFpSemigroup
(Reference: IsFpSemigroup), and IsPBRSemigroup (4.6.1) are some possible values for filter.
For RandomMonoid and RandomInverseMonoid the argument filter must be of the form
IsXMonoid; such as IsBipartitionMonoid (3.8.1) or IsBooleanMatMonoid (5.7.2).



Semigroups 94

Suppose that the first argument filter is IsFpSemigroup (Reference: IsFpSemigroup). Then
the only other arguments that can be specified is (and this argument is also optional):

number of generators
The second argument, if present, should be a positive integer m indicating the number of gener-
ators that the semigroup should have. If the second argument m is not specified, then a number
is selected at random.

If filter is a filter such as IsTransformationSemigroup (Reference: IsTransformationSemi-
group) or IsIntegerMatrixSemigroup (5.7.1), then a further argument can be specified:

degree / dimension
The third argument, if present, should be a positive integer n, which specifies the de-
gree or dimension of the generators. For example, if the first argument filter is
IsTransformationSemigroup, then the value of this argument is the degree of the transfor-
mations in the returned semigroup; or if filter is IsMatrixOverFiniteFieldSemigroup,
then this argument is the dimension of the matrices in the returned semigroup.

If filter is IsTropicalMaxPlusMatrixSemigroup (5.7.1), for example, then a fourth argument
can be given (or not!):

threshold
The fourth argument, if present, should be a positive integer t, which specifies the threshold of
the semiring over which the matrices in the returned semigroup are defined.

You get the idea, the error messages are self-explanatory, and RandomSemigroup works for most of
the type of semigroups defined in GAP.

RandomMonoid is similar to RandomSemigroup except it returns a monoid. Likewise,
RandomInverseSemigroup and RandomInverseMonoid return inverse semigroups and monoids, re-
spectively.

Example
gap> RandomSemigroup() ;

<semigroup of 10x10 max-plus matrices with 12 generators>

gap> RandomMonoid(IsTransformationMonoid) ;

<transformation monoid of degree 9 with 7 generators>

gap> RandomMonoid(IsPartialPermMonoid, 2);

<partial perm monoid of rank 17 with 2 generators>

gap> RandomMonoid(IsPartialPermMonoid, 2, 3);

<partial perm monoid of rank 3 with 2 generators>

gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup) ;
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup, 1);
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomSemigroup (IsTropicalMinPlusMatrixSemigroup, 2);
<semigroup of 11x11 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1);
<semigroup of 1x1 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1, 3);
gap> last.1;

Matrix(IsTropicalMinPlusMatrix, [[infinity]]l, 3)

gap> RandomSemigroup (IsNTPMatrixSemigroup, 2, 1, 3, 4);
<semigroup of 1x1 ntp matrices with 2 generators>
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gap> last.1;
Matrix(IsNTPMatrix, [[2]], 3, 4)
gap> RandomSemigroup (IsReesMatrixSemigroup, 2, 2);
<Rees matrix semigroup 2x2 over
<permutation group of size 659 with 1 generators>>
gap> RandomSemigroup (IsReesZeroMatrixSemigroup, 2, 2, Group((1, 2), (3, 4)));
<Rees O-matrix semigroup 2x2 over Group([ (1,2), (3,4) 1)>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2);
<monoid of 3x3 matrices over GF(421°4) with 3 generators>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2, GF(7));
<monoid of 3x3 matrices over GF(7) with 2 generators>
gap> RandomSemigroup(IsBipartitionSemigroup, 5, 5);
<bipartition semigroup of degree 5 with 5 generators>
gap> RandomMonoid(IsBipartitionMonoid, 5, 5);
<bipartition monoid of degree 5 with 5 generators>
gap> RandomSemigroup (IsBooleanMatSemigroup) ;
<semigroup of 3x3 boolean matrices with 18 generators>
gap> RandomMonoid(IsBooleanMatMonoid) ;
<monoid of 11x11 boolean matrices with 19 generators>

6.7 Endomorphism monoid of a digraph

6.7.1 EndomorphismMonoid (for a digraph)

> EndomorphismMonoid (digraph) (attribute)
> EndomorphismMonoid(digraph, colors) (operation)

Returns: A monoid.

An endomorphism of digraph is a homomorphism DigraphHomomorphism (Digraphs: Di-
graphHomomorphism) from digraph back to itself.

EndomorphismMonoid, called with a single argument, returns the monoid of all endomorphisms
of digraph.

If the colors argument is specified, then it will return the monoid of endomorphisms which
respect the given colouring. The colouring colors can be in one of two forms:

* A list of positive integers of size the number of vertices of digraph, where colors [i] is the
colour of vertex i.

* A list of lists, such that colors [i] is a list of all vertices with colour i.

See also GeneratorsOfEndomorphismMonoid (Digraphs:  GeneratorsOfEndomorphism-
Monoid). Note that the performance of EndomorphismMonoid may differ from that of
GeneratorsOfEndomorphismMonoid  (Digraphs: GeneratorsOfEndomorphismMonoid)
since the former incrementally adds newly discovered endomorphisms to the monoid using
ClosureMonoid (6.4.1).

Example
gap> gr := Digraph(List([1 .. 3], x -> [1 .. 31));;
gap> EndomorphismMonoid(gr) ;

<transformation monoid of degree 3 with 3 generators>
gap> gr := CompleteDigraph(3);;

gap> EndomorphismMonoid(gr) ;
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<transformation group of size 6, degree 3 with 2 generators>
gap> EndomorphismMonoid(gr, [1, 2, 2]);

<transformation group of degree 3 with 1 generator>

gap> EndomorphismMonoid(gr, [[1]1, [2, 311);

<transformation group of degree 3 with 1 generator>

96




Chapter 7

Ideals

In this chapter we describe the various ways that an ideal of a semigroup can be created and manipu-
lated in Semigroups.

We write ideal to mean two-sided ideal everywhere in this chapter.

The methods in the Semigroups package apply to any ideal of a semigroup that is created using
the function SemigroupIdeal (7.1.1) or SemigroupIldealByGenerators. Anything that can be
calculated for a semigroup defined by a generating set can also be found for an ideal. This works
particularly well for regular ideals, since such an ideal can be represented using a similar data structure
to that used to represent a semigroup defined by a generating set but without the necessity to find a
generating set for the ideal. Many methods for non-regular ideals rely on first finding a generating
set for the ideal, which can be costly (but not nearly as costly as an exhaustive enumeration of the
elements of the ideal). We plan to improve the functionality of Semigroups for non-regular ideals in
the future.

7.1 Creating ideals

7.1.1 Semigroupldeal

> Semigroupldeal(S, objl, obj2, .., .) (function)
Returns: An ideal of a semigroup.
If obj1, obj2, .. . are (any combination) of elements of the semigroup S or collections of

elements of S (including subsemigroups and ideals of S), then SemigroupIdeal returns the 2-sided
ideal of the semigroup S generated by the union of obj1, obj2, .. ..

The Parent (Reference: Parent) of the ideal returned by this function is S.
Example
gap> S := SymmetricInverseMonoid(10);
<symmetric inverse monoid of degree 10>
gap> I := SemigroupIdeal(S, PartialPerm([1, 2]));
<inverse partial perm semigroup ideal of rank 10 with 1 generator>
gap> Size(I);
4151
gap> I := SemigroupIdeal(S, I, Idempotents(S));
<inverse partial perm semigroup ideal of rank 10 with 1025 generators>
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7.2 Attributes of ideals

7.2.1 GeneratorsOfSemigroupldeal

> GeneratorsOfSemigroupIdeal (I) (attribute)

Returns: The generators of an ideal of a semigroup.

This function returns the generators of the two-sided ideal I, which were used to defined I when
it was created.

If T is an ideal of a semigroup, then I is defined to be the least 2-sided ideal of a semigroup S
containing a set J of elements of S. The set J is said to generate I.

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup
or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example

gap> S := Semigroup(

> Bipartition([[1, 2, 3, 4, -11, [-2, -41, [-311),

> Bipartition([[1, 2, 3, -31, [4], [-1], [-2, -4]11),

> Bipartition([[1, 3, -2], [2, 4], [-1, -3, -4]11),

> Bipartition([[1], [2, 3, 4], [-1, -3, -4], [-211),

> Bipartition([[1], [2, 4, -2]1, [3, -41, [-11, [-311));;
gap> I := SemigroupIdeal(S, S.1 * S.2 * S.5);;

gap> GeneratorsOfSemigroupIdeal(I);

[ <bipartition: [ 1, 2, 3, 4, 41, [ -11, [-21, [ -31>1]
gap> I = Semigroup(GeneratorsOfSemigroupIdeal(I));

false

7.2.2 MinimalldealGeneratingSet

> MinimalIdealGeneratingSet (I) (attribute)

Returns: A minimal set ideal generators of an ideal.

This function returns a minimal set of elements of the parent of the semigroup ideal I required to
generate I as an ideal.

The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup
or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example

gap> S := Monoid([

> Bipartition([[1, 2, 3, -2], [4], [-1, -4]1, [-3]D),

> Bipartition([[1, 4, -2, -41, [2, -1, -3]1, [311)1);;

gap> I := SemigroupIdeal(S, S);;

gap> MinimalIdealGeneratingSet (I);

[ <block bijection: [ 1, -1 1, [ 2, -21, [ 3, -31, [4, -41>1]

7.2.3 SupersemigroupOfldeal

> Supersemigroup0fIdeal(I) (attribute)
Returns: An ideal of a semigroup.
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The Parent (Reference: Parent) of an ideal is the semigroup in which the ideal was created, i.e.
the first argument of SemigroupIdeal (7.1.1) or SemigroupIdealByGenerators. This function
returns the semigroup containing the generators of the semigroup (i.e. Generators0fSemigroup
(Reference: GeneratorsOfSemigroup)) which are used to compute the ideal.

For a regular semigroup ideal, Supersemigroup0fIdeal will always be the top most semigroup
used to create any of the predecessors of the current ideal. For example, if S is a semigroup, I is a
regular ideal of S, and J is an ideal of I, then Parent (J) is I and Supersemigroup0fIdeal (J) is S.
This is to avoid computing a generating set for I, in this example, which is expensive and unnecessary
since I is regular (in which case the Green’s relations of I are just restrictions of the Green’s relations
on S).

If S is a semigroup, I is a non-regular ideal of S, J is an ideal of I, then
Supersemigroup0fIdeal(J) is I, since we currently have to use Generators0fSemigroup (I)
to compute anything about I other than its size and membership.

Example
gap> S := FullTransformationSemigroup(8);
<full transformation monoid of degree 8>
gap> x := Transformation([2, 6, 7, 2, 6, 1, 1, B5]);;

gap> D := DClass(S, x);

<Green’s D-class: Transformation( [ 6, 3, 4, 6, 3, 5, 5, 1 1 )>

gap> R := PrincipalFactor(D);

<Rees O-matrix semigroup 1050x56 over Group([ (2,8,7,4,3), (3,4) 1)>
gap> S := Semigroup(List([1 .. 10], x -> Random(R)));

<subsemigroup of 1050x56 Rees O-matrix semigroup with 10 generators>
gap> I := SemigroupIdeal(S, MultiplicativeZero(S));

<regular Rees O-matrix semigroup ideal with 1 generator>

gap> SupersemigroupOfIdeal(I);

<subsemigroup of 1050x56 Rees O-matrix semigroup with 10 generators>
gap> J := SemigroupIdeal(I, Representative(MinimalDClass(S)));
<regular Rees O-matrix semigroup ideal with 1 generator>

gap> Parent(J) = I;

true

gap> SupersemigroupOfIdeal(J) = I;

false




Chapter 8

Standard examples

In this chapter we describe some standard examples of semigroups which are available in the Semi-
groups package.

8.1 Transformation semigroups

In this section, we describe the operations in Semigroups that can be used to create transformation
semigroups belonging to several standard classes of example. See (Reference: Transformations) for
more information about transformations.

8.1.1 CatalanMonoid

> CatalanMonoid(n) (operation)

Returns: A transformation monoid.

If n is a positive integer, then this operation returns the Catalan monoid of degree n. The Catalan
monoid is the semigroup of the order-preserving and order-decreasing transformations of [1 .. n]
with the usual ordering.

The Catalan monoid is generated by the n - 1 transformations f;:

123 - i i+l i+2 - n
1 23 -~ @ i i+2 -~ n)’
where i = 1,...,n— 1 and has size equal to the nth Catalan number.
Example

gap> S := CatalanMonoid(6);

<transformation monoid of degree 6 with 5 generators>
gap> Size(S);

132

8.1.2 EndomorphismsPartition

> EndomorphismsPartition(list) (operation)
Returns: A transformation monoid.
If 1ist is a list of positive integers, then EndomorphismsPartition returns a monoid of endo-
morphisms preserving a partition of [1 .. Sum(Ilist)] with a partof length 1ist [i] for every i.
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For example, if 1ist = [1, 2, 3], then EndomorphismsPartition returns the monoid of endo-
morphisms of the partition [[1], [2, 3], [4, 5, 6]].

If £ is a transformation of [1 .. n], then it is an ENDOMORPHISM of a partition P on [1
n] if (i, j) inPimpliesthat (i ~ £, j ~ f) isinP.

EndomorphismsPartition returns a monoid with a minimal size generating set, as described in
[ABMS14].

Example
gap> S := EndomorphismsPartition([3, 3, 3]);
<transformation semigroup of degree 9 with 4 generators>
gap> Size(S);

531441

8.1.3 PartialTransformationMonoid

> PartialTransformationMonoid(n) (operation)
Returns: A transformation monoid.
If n is a positive integer, then this function returns a semigroup of transformations on n + 1
points which is isomorphic to the semigroup consisting of all partial transformation on n points. This
monoid has (n + 1) ~ n elements.

Example
gap> S := PartialTransformationMonoid(5);

<regular transformation monoid of degree 6 with 4 generators>
gap> Size(S);
7776

8.1.4 SingularTransformationSemigroup

> SingularTransformationSemigroup(n) (operation)
> SingularTransformationMonoid(n) (operation)
Returns: The semigroup of non-invertible transformations.
If n is a integer greater than 1, then this function returns the semigroup of non-invertible trans-
formations, which is generated by the n (n - 1) idempotents of degree n and rank n - 1 and has

n'" —n! elements.

Example
gap> S := SingularTransformationSemigroup(4);

<regular transformation semigroup ideal of degree 4 with 1 generator>
gap> Size(8);

232

8.1.5 Semigroups of order-preserving transformations

> OrderEndomorphisms (n) (operation)
> SingularOrderEndomorphisms (n) (operation)
> OrderAntiEndomorphisms(n) (operation)
> PartialOrderEndomorphisms (n) (operation)
> PartialOrderAntiEndomorphisms(n) (operation)

Returns: A semigroup of transformations related to a linear order.
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OrderEndomorphisms(n)
OrderEndomorphisms (n) returns the monoid of transformations that preserve the usual order
on {1,2,...,n}, where n is a positive integer. OrderEndomorphisms(n) is generated by the
n + 1 transformations:

1 2 3 -~ n—1 n 1 2 - i—-1 i i+1 i+2 -+ n
112 -+ n=2 n-1)’ 12 - i—=1 i+1 i+1 i+2 --- n
2n—1

where i =0,...,n— 1, and has (n_l

) elements.

SingularOrderEndomorphisms (n)
SingularOrderEndomorphisms(n) returns the ideal of OrderEndomorphisms(n) con-
sisting of the non-invertible elements, when n is at least 2. The only invert-
ible element in OrderEndomorphisms(n) is the identity transformation.  Therefore

SingularOrderEndomorphisms(n) has (2,1":11) — 1 elements.

OrderAntiEndomorphisms(n)
OrderAntiEndomorphisms(n) returns the monoid of transformations that preserve or reverse
the usual order on {1,2,...,n}, where n is a positive integer. OrderAntiEndomorphisms(n)
is generated by the generators of OrderEndomorphisms (n) along with the bijective transfor-
mation that reverses the order on {1,2,...,n}. The monoid OrderAntiEndomorphisms(n)

has (2:—_11) — n elements.

PartialOrderEndomorphisms(n)
PartialOrderEndomorphisms(n) returns a monoid of transformations on n + 1 points that
is isomorphic to the monoid consisting of all partial transformations that preserve the usual
orderon {1,2,...,n}.

PartialOrderAntiEndomorphisms(n)
PartialAntiOrderEndomorphisms(n) returns a monoid of transformations onn + 1 points
that is isomorphic to the monoid consisting of all partial transformations that preserve or reverse
the usual order on {1,2,...,n}.

Example

gap> S := OrderEndomorphisms(5);

<regular transformation monoid of degree 5 with 5 generators>
gap> IsIdempotentGenerated(S);

true

gap> Size(S) = Binomial(2 * 5 - 1, 5 - 1);

true

gap> Difference(S, SingularOrderEndomorphisms(5));

[ IdentityTransformation ]

gap> SingularOrderEndomorphisms(10);

<regular transformation semigroup ideal of degree 10 with 1 generator>
gap> T := OrderAntiEndomorphisms(4);

<regular transformation monoid of degree 4 with 5 generators>
gap> Transformation([4, 2, 2, 1]) in T;

true

gap> U := PartialOrderEndomorphisms(6) ;

<regular transformation monoid of degree 7 with 12 generators>
gap> V := PartialOrderAntiEndomorphisms(6) ;

<regular transformation monoid of degree 7 with 13 generators>
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gap> IsSubsemigroup(V, U);
true

8.2 Semigroups of partial permutations

In this section, we describe the operations in Semigroups that can be used to create semigroups
of partial permutations belonging to several standard classes of example. See (Reference: Partial
permutations) for more information about partial permutations.

8.2.1 MunnSemigroup

> MunnSemigroup (S) (attribute)
Returns: The Munn semigroup of a semilattice.
If S is a semilattice, then MunnSemigroup returns the inverse semigroup of partial permutations
of isomorphisms of principal ideals of S; called the Munn semigroup of S.
This function was written jointly by J. D. Mitchell, Yann Péresse (St Andrews), Yanhui Wang
(York).
Example

gap> S := InverseSemigroup([

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 6, 7, 3, 8, 2, 9, 5]),
> PartialPerm([1, 2, 7, 91, [5, 6, 4, 31)1);

<inverse partial perm semigroup of rank 10 with 2 generators>
gap> T := IdempotentGeneratedSubsemigroup(S);;

gap> M := MunnSemigroup(T);

<inverse partial perm semigroup of rank 60 with 7 generators>
gap> NrIdempotents(M);

60

gap> NrIdempotents(S);

60

8.2.2 RookMonoid

> RookMonoid(n) (operation)
Returns: An inverse monoid of partial permutations.
RookMonoid is a synonym for SymmetricInverseMonoid (Reference: SymmetricInverse-
Monoid).

Example
gap> S := RookMonoid(4);

<symmetric inverse monoid of degree 4>

gap> S = SymmetricInverseMonoid(4);

true

8.2.3 Inverse monoids of order-preserving partial permutations

> POI(n) (operation)
> PODI(n) (operation)
> POPI(n) (operation)
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> PORI(n) (operation)
Returns: An inverse monoid of partial permutations related to a linear order.

POI(n)
POI(n) returns the inverse monoid of partial permutations that preserve the usual order on
{1,2,...,n}, where n is a positive integer. POI (n) is generated by the n partial permutations:
1 23 -+ n 1 2 .- i-1 i i4+1 i4+2 - n
- 12 - n=1) 1 2 - i-1 i+1 - i4+2 - n
where i =1,...,n— 1, and has (*") elements.
PODI(n)
PODI(n) returns the inverse monoid of partial permutations that preserve or reverse the usual
order on {1,2,...,n}, where n is a positive integer. PODI (n) is generated by the generators of

POI(n), along with the permutation that reverses the usual order on {1,2,...,n}. PODI(n) has
(2:) —n? —1 elements.

POPI(n)
POPI(n) returns the inverse monoid of partial permutations that preserve the orientation of
{1,2,...,n}, where n is a positive integer. POPI (n) is generated by the partial permutations:

1 2 -+ n—1 n 1 2 - n—2 n—1 n
23 -« n 1) 12 -+ n-2 n —)°

and has 1 + % (2:) elements.

PORI(n)
PORI (n) returns the inverse monoid of partial permutations that preserve or reverse the orien-
tation of {1,2,...,n}, where n is a positive integer. PORI (n) is generated by the generators of

POPI(n), along with the permutation that reverses the usual order on {1,2,...,n}. PORI(n)
has 2(*") —n(n+ 1) elements.

n

Example

gap> S := PORI(10);

<inverse partial perm monoid of rank 10 with 3 generators>
gap> S := POPI(10);

<inverse partial perm monoid of rank 10 with 2 generators>
gap> Size(S) = 1 + 5 * Binomial(20, 10);

true

gap> S := PODI(10);

<inverse partial perm monoid of rank 10 with 11 generators>
gap> S := POI(10);

<inverse partial perm monoid of rank 10 with 10 generators>
gap> Size(S) = Binomial(20, 10);

true

gap> IsSubsemigroup(PORI(10), PODI(10))

> and IsSubsemigroup(PORI(10), POPI(10))

> and IsSubsemigroup(PODI(10), POI(10))

> and IsSubsemigroup(POPI(10), POI(10));

true
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8.3 Semigroups of bipartitions
In this section, we describe the operations in Semigroups that can be used to create bipartition semi-

groups belonging to several standard classes of example. See Chapter 3 for more information about
bipartitions.

8.3.1 PartitionMonoid

> PartitionMonoid(n) (operation)
> RookPartitionMonoid(n) (operation)
> SingularPartitionMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the partition monoid of degree n. The
partition monoid of degree n is the monoid consisting of all the bipartitions of degree n.

SingularPartitionMonoid returns the ideal of the partition monoid consisting of the non-
invertible elements (i.e. those not in the group of units), when n is positive.

If n is positive, then RookPartitionMonoid returns submonoid of the partition monoid of de-
gree n + 1 consisting of those bipartitions with n + 1 and -n - 1 in the same block; see [HRO5],

[Gro06], and [Eas16].
Example

gap> S := PartitionMonoid(4);

<regular bipartition *-monoid of size 4140, degree 4 with 4
generators>

gap> Size(S);

4140

gap> T := SingularPartitionMonoid(4);

<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
gap> Size(S) - Size(T) = Factorial(4);

true

gap> S := RookPartitionMonoid(4);

<regular bipartition *-monoid of degree 5 with 5 generators>
gap> Size(8);

21147

8.3.2 BrauerMonoid

> BrauerMonoid(n) (operation)
> PartialBrauerMonoid(n) (operation)
> SingularBrauerMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the Brauer monoid of degree n. The
Brauer monoid is the submonoid of the partition monoid consisiting of those bipartitions where the
size of every block is 2.

PartialBrauerMonoid returns the partial Brauer monoid, which is the submonoid of the parti-
tion monoid consisting of those bipartitions where the size of every block is at most 2. The partial
Brauer monoid contains the Brauer monoid as a submonoid.

SingularBrauerMonoid returns the ideal of the Brauer monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when n is at least 2.
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Example
gap> S := BrauerMonoid(4);

<regular bipartition *-monoid of degree 4 with 3 generators>

gap> IsSubsemigroup(S, JonesMonoid(4));

true

gap> Size(S);

105

gap> SingularBrauerMonoid(8);

<regular bipartition *-semigroup ideal of degree 8 with 1 generator>
gap> S := PartialBrauerMonoid(3);

<regular bipartition *-monoid of degree 3 with 8 generators>

gap> IsSubsemigroup(S, BrauerMonoid(3));

true

gap> Size(S);

76

8.3.3 JonesMonoid

> JonesMonoid(n) (operation)
> TemperleyLiebMonoid(n) (operation)
> SingularJonesMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the Jones monoid of degree n. The Jones
monoid is the subsemigroup of the Brauer monoid consisting of those bipartitions that are planar; see
PlanarPartitionMonoid (8.3.9). The Jones monoid is sometimes referred to as the TEMPERLEY-
LIEB MONOID.

SingularJonesMonoid returns the ideal of the Jones monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when n is at least 2.
Example

gap> S := JonesMonoid(4);

<regular bipartition *-monoid of degree 4 with 3 generators>

gap> S = TemperleyLiebMonoid(4);

true

gap> SingularJonesMonoid(8);

<regular bipartition *-semigroup ideal of degree 8 with 1 generator>

8.3.4 PartialJonesMonoid

> PartialJonesMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then PartialJonesMonoid returns the partial Jones monoid of
degree n. The partial Jones monoid is a subsemigroup of the partial Brauer monoid. An element of
the partial Brauer monoid is contained in the partial Jones monoid if the partition that it defines is
finer than the partition defined by some element of the Jones monoid. In other words, an element of
the partial Jones monoid can be formed from some element x of the Jones monoid by replacing some
blocks [a, b] of x by singleton blocks [a], [b].

Note that, in general, the partial Jones monoid of degree n is strictly contained in the Motzkin
monoid of the same degree.

See PartialBrauerMonoid (8.3.2), JonesMonoid (8.3.3), and MotzkinMonoid (8.3.6).
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Example
gap> S := PartialJonesMonoid(4);

<regular bipartition *-monoid of degree 4 with 7 generators>
gap> T := JonesMonoid(4);

<regular bipartition *-monoid of degree 4 with 3 generators>
gap> U := MotzkinMonoid(4);

<regular bipartition *-monoid of degree 4 with 8 generators>
gap> IsSubsemigroup(U, S);

true

gap> IsSubsemigroup(S, T);

true

gap> Size(U);

323

gap> Size(S);

143

gap> Size(T);

14

8.3.5 AnnularJonesMonoid

> AnnularJonesMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then AnnularJonesMonoid returns the annular Jones monoid of
degree n. The annular Jones monoid is the subsemigroup of the partition monoid consisting of all
annular bipartitions whose blocks have size 2 (annular bipartitions are defined in Chapter 3). See
BrauerMonoid (8.3.2).

Example
gap> S := AnnularJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 2 generators>

8.3.6 MotzkinMonoid

> MotzkinMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a non-negative integer, then this operation returns the Motzkin monoid of degree n. The
Motzkin monoid is the subsemigroup of the partial Brauer monoid consisting of those bipartitions that
are planar (planar bipartitions are defined in Chapter 3).

Note that the Motzkin monoid of degree n contains the partial Jones monoid of degree n, but in

general, these monoids are not equal; see PartialJonesMonoid (8.3.4).
Example

gap> S := MotzkinMonoid(4);

<regular bipartition *-monoid of degree 4 with 8 generators>
gap> T := PartialJonesMonoid(4);

<regular bipartition *-monoid of degree 4 with 7 generators>
gap> IsSubsemigroup(S, T);

true

gap> Size(S);

323

gap> Size(T);

143
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8.3.7 DualSymmetricInverseSemigroup

> DualSymmetricInverseSemigroup(n) (operation)
> DualSymmetricInverseMonoid(zn) (operation)
> SingularDualSymmetricInverseMonoid(n) (operation)
> PartialDualSymmetricInverseMonoid (n) (operation)

Returns: An inverse bipartition monoid.

If n is a positive integer, then the operations DualSymmetricInverseSemigroup and
DualSymmetricInverseMonoid return the dual symmetric inverse monoid of degree n, which is
the subsemigroup of the partition monoid consisting of the block bijections of degree n.

SingularDualSymmetricInverseMonoid returns the ideal of the dual symmetric inverse
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is
at least 2.

PartialDualSymmetricInverseMonoid returns the submonoid of the dual symmetric inverse
monoid of degree n + 1 consisting of those block bijections with n + 1 and -n - 1 in the same
block; see [KM11] and [KMU15].

See IsBlockBijection (3.5.16).

Example
gap> Number (PartitionMonoid(3), IsBlockBijection);
25
gap> S := DualSymmetricInverseSemigroup(3);

<inverse block bijection monoid of degree 3 with 3 generators>
gap> Size(8);

25

gap> S := PartialDualSymmetricInverseMonoid(5);

<inverse block bijection monoid of degree 6 with 4 generators>
gap> Size(S);

29072

8.3.8 UniformBlockBijectionMonoid

> UniformBlockBijectionMonoid(n) (operation)
> FactorisableDualSymmetricInverseMonoid(n) (operation)
> SingularUniformBlockBijectionMonoid (n) (operation)
> PartialUniformBlockBijectionMonoid(n) (operation)
> SingularFactorisableDualSymmetricInverseMonoid (n) (operation)
> PlanarUniformBlockBijectionMonoid (n) (operation)
> SingularPlanarUniformBlockBijectionMonoid(n) (operation)

Returns: An inverse bipartition monoid.

If n is a positive integer, then this operation returns the uniform block bijection monoid of degree
n. The uniform block bijection monoid is the submonoid of the partition monoid consisting of the
block bijections of degree n where the number of positive integers in a block equals the number
of negative integers in that block. The uniform block bijection monoid is also referred to as the
factorisable dual symmetric inverse monoid.

SingularUniformBlockBijectionMonoid returns the ideal of the uniform block bijection
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is
at least 2.
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PlanarUniformBlockBijectionMonoid returns the submonoid of the uniform block bijec-
tion monoid consisting of the planar elements (i.e. those in the planar partition monoid, see
PlanarPartitionMonoid (8.3.9)).

SingularPlanarUniformBlockBijectionMonoid returns the ideal of the planar uniform block
bijection monoid consisting of the non-invertible elements (i.e. those not in the group of units), when
n is at least 2.

PartialUniformBlockBijectionMonoid returns the submonoid of the uniform block bijection
monoid of degree n + 1 consisting of those uniform block bijection withn + 1 and -n - 1in the
same block.

See IsUniformBlockBijection (3.5.17).
Example
gap> S := UniformBlockBijectionMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> Size(PlanarUniformBlockBijectionMonoid(8));

128

gap> S := DualSymmetricInverseMonoid(4);

<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);

false

gap> S := UniformBlockBijectionMonoid(4);

<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);

true
gap> S := AsSemigroup(IsBipartitionSemigroup,
> SymmetricInverseMonoid(5)) ;

<inverse bipartition monoid of degree 5 with 3 generators>
gap> IsFactorisableInverseMonoid(S);

true

gap> S := PartialUniformBlockBijectionMonoid(5);

<inverse block bijection monoid of degree 6 with 4 generators>
gap> NrIdempotents(S);

203

gap> IsFactorisableInverseMonoid(S);

true

8.3.9 PlanarPartitionMonoid

> PlanarPartitionMonoid(n) (operation)
> SingularPlanarPartitionMonoid(n) (operation)

Returns: A bipartition monoid.

If n is a positive integer, then this operation returns the planar partition monoid of degree n which
is the monoid consisting of all the planar bipartitions of degree n (planar bipartitions are defined in
Chapter 3).

SingularPlanarPartitionMonoid returns the ideal of the planar partition monoid consisting
of the non-invertible elements (i.e. those not in the group of units).

Example

gap> S := PlanarPartitionMonoid(3);

<regular bipartition *-monoid of degree 3 with 5 generators>
gap> Size(S);

132



Semigroups 110

gap> T := SingularPlanarPartitionMonoid(3);

<regular bipartition *-semigroup ideal of degree 3 with 1 generator>
gap> Size(T);

131

gap> Difference(S, T);

[ <block bijection: [ 1, -1 1, [ 2, -2 ], [ 3, -31>1]

8.3.10 ModularPartitionMonoid

> ModularPartitionMonoid(m, n) (operation)

> SingularModularPartitionMonoid(m, n) (operation)
> PlanarModularPartitionMonoid(m, n) (operation)
> SingularPlanarModularPartitionMonoid(m, n) (operation)

Returns: A bipartition monoid.

If m and n are positive integers, then this operation returns the modular-m partition monoid of
degree n. The modular-m partition monoid is the submonoid of the partition monoid such that the
numbers of positive and negative integers contained in each block are congruent mod m.

SingularModularPartitionMonoid returns the ideal of the modular partition monoid consist-
ing of the non-invertible elements (i.e. those not in the group of units), when eitherm = n = 1 or
m, n> 1.

PlanarModularPartitionMonoid returns the submonoid of the modular-m partition monoid
consisting of the planar elements (i.e. those in the planar partition monoid, see
PlanarPartitionMonoid (8.3.9)).

SingularPlanarModularPartitionMonoid returns the ideal of the planar modular partition

monoid consisting of the non-invertible elements (i.e. those not in the group of units), when either
m=n=1orm, n> 1.

Example
gap> S := ModularPartitionMonoid(3, 6);
<regular bipartition *-monoid of degree 6 with 4 generators>
gap> Size(S);
36243
gap> S := SingularModularPartitionMonoid(1l, 1);
<commutative inverse bipartition semigroup ideal of degree 1 with
1 generator>
gap> Size(SingularModularPartitionMonoid (2, 4));
355
gap> S := PlanarModularPartitionMonoid(4, 9);
<regular bipartition *-monoid of degree 9 with 14 generators>
gap> Size(S);
1795
gap> S := SingularPlanarModularPartitionMonoid(3, 5);
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
gap> Size(SingularPlanarModularPartitionMonoid (1, 2));
13

8.3.11 ApsisMonoid

> ApsisMonoid(m, n)
> SingularApsisMonoid(m, n)

(operation)

(operation)
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> CrossedApsisMonoid(m, n) (operation)
> SingularCrossedApsisMonoid(m, n) (operation)

Returns: A bipartition monoid.

If m and n are positive integers, then this operation returns the m-apsis monoid of degree n.
The m-apsis monoid is the monoid of bipartitions generated when the diapses in generators of the
Jones monoid are replaced with m-apses. Note that an m-apsis is a block that contains precisely m
consecutive integers.

SingularApsisMonoid returns the ideal of the apsis monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when m < n.

CrossedApsisGeneratedMonoid returns the semigroup generated by the symmetric group of
degree n and the m-apsis monoid of degree n.

SingularCrossedApsisMonoid returns the ideal of the crossed apsis monoid consisting of the
non-invertible elements (i.e. those not in the group of units), whenm <= n.

Example

gap> S := ApsisMonoid(3, 7);

<regular bipartition *-monoid of degree 7 with 5 generators>

gap> Size(8);

320

gap> T := SingularApsisMonoid(3, 7);

<regular bipartition *-semigroup ideal of degree 7 with 1 generator>
gap> Difference(S, T) = [One(S)];

true

gap> Size(CrossedApsisMonoid(2, 5));

945

gap> SingularCrossedApsisMonoid(4, 6);

<regular bipartition *-semigroup ideal of degree 6 with 1 generator>

8.4 Standard PBR semigroups

In this section, we describe the operations in Semigroups that can be used to create standard examples
of semigroups of partitioned binary relations (PBRs). See Chapter 4 for more information about PBRs.

8.4.1 FullPBRMonoid

> FullPBRMonoid(n) (operation)

Returns: A PBR monoid.

If n is a positive integer not greater than 2, then this operation returns the monoid consisting of all
of the partitioned binary relations (PBRs) of degree n; called the full PBR monoid. There are 2 ~ ((2
* n) ~ 2) PBRs of degree n. The full PBR monoid of degree n is currently too large to compute
when n > 3.

The full PBR monoid is not regular in general.
Example

gap> S := FullPBRMonoid(1);
<pbr monoid of degree 1 with 4 generators>
gap> S := FullPBRMonoid(2);
<pbr monoid of degree 2 with 10 generators>
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8.5 Semigroups of matrices over a finite field
In this section, we describe the operations in Semigroups that can be used to create semigroups of

matrices over a finite field that belonging to several standard classes of example. See the section
‘Matrices over finite fields’ for more information about matrices over a finite field.

8.5.1 FullMatrixMonoid

> FullMatrixMonoid(d, q) (operation)
> GeneralLinearMonoid(d, gq) (operation)
> GLM(d R q) (operation)

Returns: A matrix monoid.

These operations return the full matrix monoid of d by d matrices over the field with g elements.
The full matrix monoid, also known as the general linear monoid, with these parameters, is the monoid
consisting of all d by d matrices with entries from the field GF(q). This monoid has g ~ (d =~ 2)
elements.

Example
gap> S := FullMatrixMonoid(2, 4);

<general linear monoid 2x2 over GF(2°2)>
gap> Size(S);

256

gap> S = GenerallinearMonoid(2, 4);

true

gap> GLM(2, 2);

<general linear monoid 2x2 over GF(2)>

8.5.2 SpecialLinearMonoid

> SpeciallinearMonoid(d, gq) (operation)
> SLM(d, q) (operation)

Returns: A matrix monoid.

These operations return the special linear monoid of d by d matrices over the field with g ele-
ments. The special linear monoid is the monoid consisting of all d by d matrices with entries from
the field GF (q) that have determinant O or 1. In other words, the special linear monoid is formed from
the general linear monoid of the same parameters by replacing its group of units (the general linear
group) by the special linear group.

Example

gap> S := SpecialLinearMonoid(2, 4);

<regular monoid of 2x2 matrices over GF(2°2) with 3 generators>
gap> S = SLM(2, 4);

true

gap> Size(S);

136

8.5.3 IsFullMatrixMonoid

> IsFullMatrixMonoid(S) (property)
> IsGeneralLinearMonoid(S) (property)
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IsFullMatrixMonoid and IsGeneralLinearMonoid return true if the semigroup S was cre-
ated using either of the commands Ful1MatrixMonoid (8.5.1) or GeneralLinearMonoid (8.5.1) and
false otherwise.

Example
gap> S := RandomSemigroup(IsTransformationSemigroup, 4, 4);;
gap> IsFullMatrixMonoid(S);
false

gap> S := GeneralLinearMonoid(3, 3);
<general linear monoid 3x3 over GF(3)>
gap> IsFullMatrixMonoid(S);

true

8.6 Semigroups of boolean matrices

In this section, we describe the operations in Semigroups that can be used to create semigroups of
boolean matrices belonging to several standard classes of example. See the section ‘Boolean matrices’
for more information about boolean matrices.

8.6.1 FullBooleanMatMonoid

> FullBooleanMatMonoid(d) (operation)

Returns: The monoid of all boolean matrices of dimension d.

If d is a positive integer less than or equal to 5, then this operation returns the full boolean matrix
monoid of dimension d. The full boolean matrix monoid of dimension d is the monoid consisting of
all d by d boolean matrices, and has2 ~ (n ~ 2) matrices.

FullBooleanMatMonoid returns a monoid with a generating set that is minimal in size. These

generating sets are pre-computed.
Example

gap> S := FullBooleanMatMonoid(3);

<monoid of 3x3 boolean matrices with 5 generators>
gap> Size(S);

512

8.6.2 RegularBooleanMatMonoid

> RegularBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.

If d is a positive integer, then RegularBooleanMatMonoid returns the monoid generated
by the regular d by d boolean matrices. Note that this monoid is nor regular in general.
RegularBooleanMatMonoid(d) is generated by the four boolean matrices A, B, C, D, whose
true entries are:

* A[il[i + 1] and A[n] [1],forie {1,...,n—1};
e B[11[2],B[2][1], and B[i] [i] fori € {3,...,n};
e C[11[2] and C[i][i], fori€ {2,...,n—1}; and
e D[11[2],D[i][i], fori € {2,...,n}, and D[n] [1].

This monoid has nearly 2 ~ (n =~ 2) elements.
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8.6.3 ReflexiveBooleanMatMonoid

> ReflexiveBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.

If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting
of all reflexive d by d boolean matrices. A boolean matrix mat is reflexive if each entry of its leading
diagonal is true, i.e. if mat [1] [i] is true foralli € {1,...,d}.

The generating sets for the monoids returned by ReflexiveBooleanMatMonoid are pre-
computed, and read from a file. Small generating sets are not known for d > 6.

Example
gap> S := ReflexiveBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 8 generators>
gap> Size(S);

64

8.6.4 HallMonoid

> HallMonoid(d) (operation)

Returns: A monoid of boolean matrices.

If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting
Hall matrices of degree d. A Hall matrix is a boolean matrix in which every column and every row
contains at least one true entry. Equivalently, a Hall matrix is a boolean matrix than contains a
permutation.

A Hall matrix of dimension d corresponds to a solution to Hall’s Marriage Problem, when there
are two collection of d people. Thus the number of solutions to Hall’s Marriage Problem in this
instance is the number of elements of Hal1Monoid(d).

The operation HallMonoid returns a monoid with a generating set that is minimal in size. These

generating sets are pre-computed, and a minimal generating set is not known for larger dimensions.
Example

gap> S := HallMonoid(3);

<monoid of 3x3 boolean matrices with 4 generators>
gap> Size(S);

247

8.6.5 GossipMonoid

> GOSSipMOnOid(d) (operation)

Returns: A monoid of boolean matrices.

If d is a positive integer, then this operation returns the d by d gossip monoid. The gossip monoid
is defined to be the monoid generated by the collection of all d by d boolean matrices that define an
equivalence relation; see IsEquivalenceBooleanMat (5.3.16).

For d > 2, GossipMonoid(d) returns a monoid with (‘21) generators. The generating set is the
collection of boolean matrices that define an equivalence relation that has one equivalence class of
size 2, and no other non-trivial equivalence classes. Note that this generating set is strictly contained
within the collection of all equivalence relation boolean matrices.

The number of elements of GossipMonoid(d) is known for some small values of d — see
[BDF15] for more information about the gossip monoid, and its size for d < 9.
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Example

gap> S := GossipMonoid(3);

<monoid of 3x3 boolean matrices with 3 generators>
gap> Size(S);

11

8.6.6 TriangularBooleanMatMonoid

> TriangularBooleanMatMonoid(d) (operation)
> UnitriangularBooleanMatMonoid (d) (operation)

Returns: A monoid of boolean matrices.

If d is a positive integer, then TriangularBooleanMatMonoid returns the monoid consisting of
the upper-triangular d by d boolean matrices. A boolean matrix is upper-triangular if the entry in
row i, column j is false whenever i > j.

UnitriangularBooleanMatMonoid returns the subsemigroup of the
TriangularBooleanMatMonoid that consists of reflexive upper-triangular boolean matrices;
see ReflexiveBooleanMatMonoid (8.6.3).

Example
gap> S := TriangularBooleanMatMonoid(3);

<monoid of 3x3 boolean matrices with 6 generators>
gap> Size(S);

64

gap> T := UnitriangularBooleanMatMonoid(4);
<monoid of 4x4 boolean matrices with 6 generators>
gap> Size(T);

64

8.7 Semigroups of matrices over a semiring

In this section, we describe the operations in Semigroups that can be used to create semigroups of
matices over a semiring that belong to several standard classes of example. See Chapter 5 for more
information about matrices over a semiring.

8.7.1 FullTropicalMaxPlusMonoid

> FullTropicalMaxPlusMonoid(d, t) (operation)

Returns: A monoid of tropical max plus matrices.

If d = 2 and t is a positive integer, then FullTropicalMaxPlusMonoid returns the monoid
consisting of all d by d matrices with entries from the tropical max-plus semiring with threshold t.
A small generating set for larger values of d is not currently known.

This monoid contains (t + 2) ~ (d ~ 2) elements.

Example
gap> S := FullTropicalMaxPlusMonoid(2, 5);
<monoid of 2x2 tropical max-plus matrices with 24 generators>
gap> Size(S);

2401

gap> (6 + 2) ~ (2~ 2);

2401
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8.7.2 FullTropicalMinPlusMonoid

> FullTropicalMinPlusMonoid(d, t) (operation)

Returns: A monoid of tropical min plus matrices.

If d is equal to 2 or 3, and t is a positive integer, then FullTropicalMinPlusMonoid returns
the monoid consisting of all d by d matrices with entries from the tropical min-plus semiring with
threshold t. A small generating set for larger values of d is not currently known.

This monoid contains (t + 2) =~ (d ~ 2) elements.

Example
gap> S := FullTropicalMinPlusMonoid(2, 3);
<monoid of 2x2 tropical min-plus matrices with 7 generators>
gap> Size(8);

625

gap> (3 +2) =~ (2 =~ 2);

625




Chapter 9

Standard constructions

In this chapter we describe some standard semigroup constructions which are available in the Semi-
groups package.

9.1 Standard constructions

In this section, we describe the functions in Semigroups that can be used to create standard semigroup
constructions in various representations. For all of the constructions, the default representation is as
a semigroup of transformations. In general, these functions do not return a representation of minimal
degree.

9.1.1 TrivialSemigroup

> TrivialSemigroup([filt, ][degl) (function)

Returns: A trivial semigroup.

A TRIVIAL semigroup is a semigroup with precisely one element. This function returns a trivial
semigroup in the representation given by the filter filter, and (if possible) with the degree of the
representation given by the non-negative integer deg.

The optional argument filt may be one of the following:

* IsTransformationSemigroup (the default, if filt is not specified),
¢ IsPartialPermSemigroup,
* IsBipartitionSemigroup,

¢ IsBlockBijectionSemigroup,

IsPBRSemigroup,
¢ IsBooleanMatSemigroup.

If the optional argument deg is not specified, then the smallest possible degree will be used.

Example

gap> S := TrivialSemigroup();
<trivial transformation group of degree O with 1 generator>
gap> Size(8);

117
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1

gap> S := TrivialSemigroup(3);

<trivial transformation group of degree 3 with 1 generator>
gap> S := TrivialSemigroup(IsBipartitionSemigroup, 2);
<trivial block bijection group of degree 2 with 1 generator>
gap> Elements(S);

[ <block bijection: [ 1, 2, -1, -2 1> 1]

9.1.2 MonogenicSemigroup

> MonogenicSemigroup([filt, Im, r) (function)
Returns: A monogenic semigroup with index m and period r.
If m and r are positive integers, then this function returns a monogenic semigroup S with index m
and period r in the representation given by the filter filt.
The optional argument filt may be one of the following:

* IsTransformationSemigroup (the default, if filt is not specified),
¢ IsPartialPermSemigroup,
¢ IsBipartitionSemigroup,

¢ IsBlockBijectionSemigroup,

IsPBRSemigroup,
¢ IsBooleanMatSemigroup.

The semigroup S is generated by a single element, f. S consists of the elements
£ f% . f™ ..., f™ 1 The minimal ideal of S consists of the elements f™,..., ™! and is
isomorphic to the cyclic group of order r.

See IsMonogenicSemigroup (14.1.10) for more information about monogenic semigroups.
Example

gap> S := MonogenicSemigroup(5, 3);

<commutative non-regular transformation semigroup of size 7, degree 8
with 1 generator>

gap> IsMonogenicSemigroup(S);

true

gap> I := MinimalIdeal(S);;

gap> IsGroupAsSemigroup(I);

true

gap> StructureDescription(I);

n c3 n

gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 9, 1);
<commutative non-regular block bijection semigroup of size 9,
degree 10 with 1 generator>

9.1.3 RectangularBand

> RectangularBand([filt, Im, n) (function)
Returns: An m by n rectangular band.
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If m and n are positive integers, then this function returns a semigroup isomorphic to an m by n
rectangular band, in the representation given by the filter filt.
The optional argument filt may be one of the following:

e IsTransformationSemigroup (the default, if filt is not specified),
* IsBipartitionSemigroup,

* IsPBRSemigroup,

* IsBooleanMatSemigroup,

¢ IsReesMatrixSemigroup.

See IsRectangularBand (14.1.14) for more information about rectangular bands.
Example

gap> T := RectangularBand(5, 6);

<regular transformation semigroup of size 30, degree 10 with 6
generators>

gap> IsRectangularBand(T);

true

gap> S := RectangularBand(IsReesMatrixSemigroup, 4, 8);
<Rees matrix semigroup 4x8 over Group(())>

gap> IsRectangularBand(S) ;

true

gap> IsCompletelySimpleSemigroup(S) and IsHTrivial(S);
true

9.14 ZeroSemigroup

> ZeroSemigroup([filt, JIn) (function)
Returns: A zero semigroup of order n.
If n is a positive integer, then this function returns a zero semigroup of order n in the representation
given by the filter filt.
The optional argument filt may be one of the following:

* IsTransformationSemigroup (the default, if filt is not specified),
¢ IsPartialPermSemigroup,

* IsBipartitionSemigroup,

¢ IsBlockBijectionSemigroup,

* IsPBRSemigroup,

¢ IsBooleanMatSemigroup,

* IsReesZeroMatrixSemigroup (provided thatn > 1).

See IsZeroSemigroup (14.1.26) for more information about zero semigroups.



Semigroups 120

Example

gap> S := ZeroSemigroup(5);

<commutative non-regular transformation semigroup of size 5, degree 5
with 4 generators>

gap> IsZeroSemigroup(S);

true

gap> S := ZeroSemigroup(IsPartialPermSemigroup, 15);

<commutative non-regular partial perm semigroup of size 15, rank 14
with 14 generators>

gap> Size(S);

15

gap> z := MultiplicativeZero(S);

<empty partial perm>

gap> IsZeroSemigroup(S);

true

gap> ForAll(S, x -> ForAll(S, y -> x * y = 2));

true

9.1.5 LeftZeroSemigroup

> LeftZeroSemigroup([filt, ]n) (function)
> RightZeroSemigroup([filt, In) (function)

Returns: A left zero (or right zero) semigroup of order n.

If n is a positive integer, then this function returns a left zero (or right zero, as appropriate)
semigroup of order n in the representation given by the filter filt. If filt is not specified then the
default representation is IsTransformationSemigroup.

The function LeftZeroSemigroup([filt,] n) simply calls RectangularBand([filt,] n,
1) and the function RightZeroSemigroup([filt,] n) simply calls RectangularBand([filt,]
1, n).

For more information about RectangularBand, including its permitted values of filt, see
RectangularBand (9.1.3). See IsLeftZeroSemigroup (14.1.9) and IsRightZeroSemigroup

(14.1.17) for more information about left zero and right zero semigroups.
Example

gap> S := LeftZeroSemigroup(20);

<transformation semigroup of degree 6 with 20 generators>

gap> IsLeftZeroSemigroup(S);

true

gap> ForAll(Tuples(S, 2), p -> pl[1] * pl[2] = p[1]);

true

gap> S := RightZeroSemigroup(IsBipartitionSemigroup, 5);

<regular bipartition semigroup of size 5, degree 3 with 5 generators>
gap> IsRightZeroSemigroup(S);

true




Chapter 10

Free objects

This chapter describes the functions in Semigroups for dealing with free inverse semigroups and free
bands. This part of the manual and the functions described herein were written by Julius JonusSas.

10.1 Free inverse semigroups

An inverse semigroup F is said to be free on a non-empty set X if there is a map f from F to X such
that for every inverse semigroup S and a map g from X to S there exists a unique homomorphism g’
from F to S such that fg’ = g. Moreover, by this universal property, every inverse semigroup can be
expressed as a quotient of a free inverse semigroup.

The internal representation of an element of a free inverse semigroup uses a Munn tree. A Munn
tree is a directed tree with distinguished start and terminal vertices and where the edges are labeled
by generators so that two edges labeled by the same generator are only incident to the same vertex if
one of the edges is coming in and the other is leaving the vertex. For more information regarding free
inverse semigroups and the Munn representations see Section 5.10 of [How95].

See also (Reference: Inverse semigroups and monoids), (Reference: Partial permutations)
and (Reference: Free Groups, Monoids and Semigroups).

An element of a free inverse semigroup in Semigroups is displayed, by default, as a shortest
word corresponding to the element. However, there might be more than one word of the minimum
length. For example, if x and y are generators of a free inverse semigroups, then

1 1,.—1

Xyy xx x !

:xxx_lyy_ X .
See MinimalWord (10.3.2). Therefore we provide a another method for printing elements of a free
inverse semigroup: a unique canonical form. Suppose an element of a free inverse semigroup is given
as a Munn tree. Let L be the set of words corresponding to the shortest paths from the start vertex to
the leaves of the tree. Also let w be a word corresponding to the shortest path from start to terminal
vertices. The word vw~! is an idempotent for every v in L. The canonical form is given by multiplying
these idempotents, in shortlex order, and then postmultiplying by w. For example, consider the word
xyy~'xx~!x~! again. The words corresponding to the paths to the leaves are in this case xx and xy.
And w is an empty word since start and terminal vertices are the same. Therefore, the canonical form

1S

1 1,.—1

Xxx— x_lxyy_ x .

See CanonicalForm (10.3.1).

121
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10.1.1 FreelnverseSemigroup (for a given rank)

> FreelInverseSemigroup(rank[, name]) (function)
> FreeInverseSemigroup(namel, name2, ...) (function)
> FreelInverseSemigroup (names) (function)

Returns: A free inverse semigroup.
Returns a free inverse semigroup on rank generators, where rank is a positive integer. If rank is
not specified, the number of names is used. If S is a free inverse semigroup, then the generators can
be accessed by S.1, S.2 and so on.
Example

gap> S := FreelnverseSemigroup(7);

<free inverse semigroup on the generators
[ x1, x2, x3, x4, x5, x6, x7 1>

gap> S := FreelnverseSemigroup(7, "s");
<free inverse semigroup on the generators
[ s1, s2, s3, s4, s5, s6, s7 1>

gap> S := FreelnverseSemigroup("a", "b", "c");

<free inverse semigroup on the generators [ a, b, ¢ 1>
gap> S := FreelnverseSemigroup(["a", "b", "c"]);

<free inverse semigroup on the generators [ a, b, c 1>
gap> S.1;

a

gap> S.2;

b

10.1.2 IsFreelnverseSemigroupCategory

> IsFreelnverseSemigroupCategory(obj) (Category)

Every free inverse semigroup in GAP created by FreeInverseSemigroup (10.1.1) be-
longs to the category IsFreelnverseSemigroup. Basic operations for a free inverse semi-
group are: Generators0fInverseSemigroup (Reference: GeneratorsOfInverseSemigroup) and
GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup). Elements of a free inverse semi-
group belong to the category IsFreeInverseSemigroupElement (10.1.4).

10.1.3 IsFreelnverseSemigroup

> IsFreelInverseSemigroup(S) (property)
Returns: true or false
Attempts to determine whether the given semigroup S is a free inverse semigroup.

10.1.4 IsFreelnverseSemigroupElement

> IsFreelnverseSemigroupElement (Category)

Every element of a free inverse semigroup belongs to the category
IsFreelnverseSemigroupElement.
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10.1.5 IsFreelnverseSemigroupElementCollection

> IsFreelnverseSemigroupElementCollection (Category)

Every collection of elements of a free inverse semigroup belongs to the category
IsFreeInverseSemigroupElementCollection. For example, every free inverse semigroup be-
longs to IsFreeInverseSemigroupElementCollection.

10.2 Displaying free inverse semigroup elements

There is a way to change how GAP displays free inverse semigroup elements using the user preference
FreeInverseSemigroupElementDisplay. See UserPreference (Reference: UserPreference)
for more information about user preferences.

There are two possible values for FreeInverseSemigroupElementDisplay:

minimal
With this option selected, GAP will display a shortest word corresponding to the free inverse
semigroup element. However, this shortest word is not unique. This is a default setting.

canonical
With this option selected, GAP will display a free inverse semigroup element in the canonical
form.

Example

gap> SetUserPreference("semigroups",

> "FreeInverseSemigroupElementDisplay",
> "minimal") ;

gap> S := FreelnverseSemigroup(2);

<free inverse semigroup on the generators [ x1, x2 ]>

gap> S.1 * S8.2;

x1*x2

gap> SetUserPreference("semigroups",

> "FreeInverseSemigroupElementDisplay",
> "canonical");

gap> S.1 * S.2;
x1x2x27-1x1"-1x1x2

10.3 Operators and operations for free inverse semigroup elements

w - -1
returns the semigroup inverse of the free inverse semigroup element w.

u * v
returns the product of two free inverse semigroup elements u and v.

u=v
checks if two free inverse semigroup elements are equal, by comparing their canonical forms.
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10.3.1 CanonicalForm (for a free inverse semigroup element)

> CanonicalForm(w) (attribute)
Returns: A string.
Every element of a free inverse semigroup has a unique canonical form. If w is such an element,

then CanonicalForm returns the canonical form of w as a string.
Example

gap> S := FreelnverseSemigroup(3);

<free inverse semigroup on the generators [ x1, x2, x3 ]>
gap> x := S8.1; y := 85.2;

x1

x2

gap> CanonicalForm(x ~ 3 * y =~ 3);
"x1x1x1x2x2x2x27-1x27-1x27-1x1"-1x1"-1x1"-1x1x1x1x2x2x2"

10.3.2 MinimalWord (for free inverse semigroup element)

> MinimalWord (w) (attribute)
Returns: A string.
For an element w of a free inverse semigroup S, MinimalWord returns a word of minimal length
equal to w in S as a string.
Note that there maybe more than one word of minimal length which is equal to w in S.
Example

gap> S := FreelnverseSemigroup(3);

<free inverse semigroup on the generators [ x1, x2, x3 1>
gap> x := S.1;

x1

gap> y := S.2;

x2

gap> MinimalWord(x ~ 3 *x y ~ 3);

"x1kx1*kx1*X2*¥x2%x2"

10.4 Free bands

A semigroup B is a free band on a non-empty set X if B is a band with a map f from B to X such that
for every band S and every map g from X to B there exists a unique homomorphism g’ from B to §
such that fg’ = g. The free band on a set X is unique up to isomorphism. Moreover, by the universal
property, every band can be expressed as a quotient of a free band.

For an alternative description of a free band. Suppose that X is a non-empty set and X a free
semigroup on X. Also suppose that b is the smallest congurance on X * containing the set

{(W*w):weXT).

Then the free band on X is isomorphic to the quotient of X+ by b. See Section 4.5 of [How95] for
more information on free bands.
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10.4.1 FreeBand (for a given rank)

> FreeBand(rank[, name])
> FreeBand(namel, name2, .., .)
> FreeBand (names)

Returns: A free band.

Returns a free band on rank generators, for a positive integer rank.
number of names is used. The resulting semigroup is always finite.

gap> FreeBand(6) ;

<free band on the generators [ x1, x2, x3, x4, x5, x6 1>

gap> FreeBand(6, "b");

<free band on the generators [ bl, b2, b3, b4, b5, b6 ]>

gap> FreeBand("a", "b", "c");

<free band on the generators [ a, b,
gap> FreeBand("a", "b", "c");

<free band on the generators [ a, b,
gap> S := FreeBand(["a", "b", "c"]);
<free band on the generators [ a, b,
gap> Size(S);

159

gap> gens := Generators(S);
[a, b, c]

gap> S.1 * S.2;

ab

Example

c 1>
c 1>

c 1>
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(function)
(function)

(function)

If rank is not specified, the

10.4.2 IsFreeBandCategory

> IsFreeBandCategory

(Category)

IsFreeBandCategory is the category of semigroups created using FreeBand (10.4.1).

gap> IsFreeBandCategory(FreeBand(3))
true
gap> IsFreeBand(SymmetricGroup(6));
false

Example

B

10.4.3 IsFreeBand (for a given semigroup)

> IsFreeBand(S)
Returns: true or false.

IsFreeBand returns true if the given semigroup S is a free band.

gap> IsFreeBand(FreeBand(3));

true

gap> IsFreeBand(SymmetricGroup(6)) ;
false

gap> IsFreeBand(FullTransformationMonoid(7));

false

Example

(property)
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10.4.4 IsFreeBandElement

> IsFreeBandElement (Category)

IsFreeBandElement is a Category containing the elements of a free band.

Example
gap> IsFreeBandElement (Generators(FreeBand(4))[1]);
true
gap> IsFreeBandElement (Transformation([1, 3, 4, 11));
false
gap> IsFreeBandElement((1, 2, 3, 4));
false
10.4.5 IsFreeBandElementCollection
> IsFreeBandElementCollection (Category)

Every collection of elements of a free band Dbelongs to the category
IsFreeBandElementCollection. For example, every free band belongs to
IsFreeBandElementCollection.

10.4.6 IsFreeBandSubsemigroup

> IsFreeBandSubsemigroup (filter)

IsFreeBandSubsemigroup is a synonym for IsSemigroup and

IsFreeBandElementCollection.
Example

gap> S := FreeBand(2);
<free band on the generators [ x1, x2 ]>
gap> x := S.1;

x1

gap> y := S.2;

x2

gap> new := Semigroup([x * y, x1);

<semigroup with 2 generators>
gap> IsFreeBand(new) ;

false

gap> IsFreeBandSubsemigroup(new) ;
true

10.4.7 ContentOfFreeBandElement

> ContentOfFreeBandElement (x) (attribute)
> ContentOfFreeBandElementCollection(coll) (attribute)

Returns: A list of integers

The content of a free band element x is the set of generators appearing in the word representing
the element x of the free band.

The function Content0OfFreeBandElement returns the content of free band element x repre-
sented as a list of integers, where 1 represents the first generator, 2 the second generator, and so on.
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The function ContentOfFreeBandElementCollection returns the the least list C for the col-

lection of free band elements coll such that the content of every element in coll is contained in
C.

Example
gap> S := FreeBand(2);
<free band on the generators [ x1, x2 1>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> ContentOfFreeBandElement (x) ;
[11]
gap> ContentOfFreeBandElement(x * y);
[1,2]
gap> ContentOfFreeBandElement(x * y * x);
[1, 2]
gap> ContentOfFreeBandElementCollection([x, y]);
[1, 2]

10.5 Operators and operations for free band elements

u *x v
returns the product of two free band elements u and v.

u=1v
checks if two free band elements are equal.

u < v
compares the sizes of the internal representations of two free band elements.

10.5.1 GreensDClassOfElement (for a free band and element)

> GreensDClassOfElement (S, x) (operation)
Returns: A Green’s Z-class
Let S be a free band. Two elements of S are Z-related if and only if they have the same content
i.e. the set of generators appearing in any factorization of the elements. Therefore, a Z-class of a free

band element x is the set of elements of S which have the same content as x .
Example

gap> S := FreeBand(3, "b");

<free band on the generators [ bl, b2, b3 1>
gap> x := S.1 * §.2;

blb2

gap> D := GreensDClassOfElement (S, x);
<Green’s D-class: b1lb2>

gap> IsGreensDClass(D);

true
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Graph inverse semigroups

In this chapter we describe a class of semigroups arising from directed graphs.

11.1 Creating graph inverse semigroups

11.1.1 GraphlnverseSemigroup

> GraphInverseSemigroup (E) (operation)

Returns: A graph inverse semigroup.

If E is a digraph (.e. it satisfies IsDigraph (Digraphs: IsDigraph)), then
GraphInverseSemigroup returns the graph inverse semigroup G(E) where, roughly speaking, el-
ements correspond to paths in the graph E.

Let us describe E as a digraph E = (EY,E! r,5), where EV is the set of vertices, E' is the set
of edges, and r and s are functions E' — E° giving the range and source of an edge, respectively.
The graph inverse semigroup G(E) of E is the semigroup-with-zero generated by the sets E® and E!,
together with a set of variables {¢~! | e € E'}, satisfying the following relations for all v,w € E° and
e,f €En

(V) vw=20,-v,
(E1) s(e)-e=e-r(e)=e,
(E2) r(e)-e ' =e 1 s(e)=e"",

(CK1)
el f=238,-r(e).

(Here & is the Kronecker delta.) We define v=! = v for each v € E°, and for any path y = ¢;...e,
(e1...e, € EV) we let )Fl =e, 1 ...el’l. With this notation, every nonzero element of G(E) can be
written uniquely as xy~! for some paths x,y in E, by the CK1 relation.

For a more complete description, see [MM16].

Example
gap> gr := Digraph([[2, 5, 8, 10], [2, 3, 4, 5, 6, 8, 9, 10], [1],
> [3, 5, 7, 8, 101, [2, 5, 71, [3, 6, 7, 9, 10],
> (1, 41, [1, 5, 91, [1, 2, 7, 81, [3, 511);

<digraph with 10 vertices, 37 edges>
gap> S := GraphInverseSemigroup(gr);

128
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<infinite graph inverse semigroup with 10 vertices, 37 edges>

gap> GeneratorsOfInverseSemigroup(S);

[ e 1, e.2, e 3, e_4, e 5, e 6, e_7, e_8, e_9, e_10, e_11, e_12,
e_13, e_14, e_15, e_16, e_17, e_18, e_19, e_20, e_21, e_22, e_23,
e_24, e_25, e_26, e_27, e_28, e_29, e_30, e_31, e_32, e_33, e_34,
e_35, e_36, e 37, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_10

]

gap> AssignGeneratorVariables(S);

gap> e_1 *x e_1 =~ -1;

e_le_17-1

gap> e_1 = -1 x e_1 = -1;
0

gap> e_1 = -1 * e_1;

v_2

11.1.2 Range (for a graph inverse semigroup element)

> Range (x) (attribute)
> Source(x) (attribute)
Returns: A graph inverse semigroup element.
If x is an element of a graph inverse semigroup (i.e. it  satisfies

IsGraphInverseSemigroupElement (11.1.4)), then Range and Source give, respectively, the
start and end vertices of x when viewed as a path in the digraph over which the semigroup is defined.
For a fuller description, see GraphInverseSemigroup (11.1.1).

Example
gap> gr := Digraph([[], [11, [311);;

gap> S := GraphInverseSemigroup(gr);;

gap> e := S.1;

e_1

gap> Source(e);

v_2

gap> Range(e);

v_1

11.1.3 IsVertex (for a graph inverse semigroup element)

> IsVertex(x) (operation)
Returns: true or false.
If x is an element of a graph inverse semigroup (i.e. it  satisfies

IsGraphInverseSemigroupElement (11.1.4)), then this attribute returns true if x corresponds to
a vertex in the digraph over which the semigroup is defined, and false otherwise.
For a fuller description, see GraphInverseSemigroup (11.1.1).

Example

gap> gr := Digraph([[], [11, [311);;
gap> S := GraphInverseSemigroup(gr);;
gap> e := S.1;

e_1

gap> IsVertex(e);

false
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gap> v := S.3;
v_1

gap> IsVertex(v);
true

gap> z =V % e;
0

gap> IsVertex(z);
false

11.1.4 IsGraphlnverseSemigroup

> IsGraphInverseSemigroup (x) (filter)
> IsGraphInverseSemigroupElement (x) (filter)
Returns: true or false.
The category IsGraphInverseSemigroup contains any semigroup defined over

a digraph using the GraphInverseSemigroup (11.1.1) operation. The category
IsGraphInverseSemigroupElement contains any element contained in such a semigroup.
Example

gap> gr := Digraph([[], [11, [3]11);;

gap> S := GraphInverseSemigroup(gr);

<infinite graph inverse semigroup with 3 vertices, 2 edges>
gap> IsGraphInverseSemigroup(S);

true

gap> x := GeneratorsOfSemigroup(S) [1];
e_1

gap> IsGraphInverseSemigroupElement (x) ;
true

11.1.5 GraphOfGraphlnverseSemigroup

> GraphOfGraphInverseSemigroup(S) (attribute)

Returns: A digraph.

If S is a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup (11.1.4)), then this
attribute returns the original digraph over which S was defined (most likely the argument given to
GraphInverseSemigroup (11.1.1) to create S).
Example

gap> gr := Digraph([[], [1], [3]11);
<digraph with 3 vertices, 2 edges>
gap> S := GraphInverseSemigroup(gr);;
gap> GraphOfGraphInverseSemigroup(S);
<digraph with 3 vertices, 2 edges>

11.1.6 IsGraphlnverseSemigroupElementCollection
> IsGraphInverseSemigroupElementCollection (Category)
Every collection of elements of a graph inverse semigroup belongs to the category

IsGraphInverseSemigroupElementCollection. For example, every graph inverse semigroup be-
longs to IsGraphInverseSemigroupElementCollection.
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11.1.7 IsGraphlnverseSubsemigroup

> IsGraphInverseSubsemigroup

IsGraphInverseSubsemigroup is a synonym for IsSemigroup and IsInverseSemigroup and

IsGraphInverseSemigroupElementCollection.

See IsGraphInverseSemigroupElementCollection (11.1.6) and IsInverseSemigroup

(Reference: IsInverseSemigroup).

Example
gap> gr := Digraph([[], [11, [2]11);
<digraph with 3 vertices, 2 edges>

gap> S := GraphInverseSemigroup(gr);

<finite graph inverse semigroup with 3 vertices, 2 edges>

gap> Elements(S);

[ e.27-1, e_17-1, e_1"-1e_2"-1, 0, e_1, e_le_1"-1, e_le_1"-1e_2"-1,
e_2, e_ 2e_2"-1, e_2e_1, e_2e_le_1"-1, e_2e_1le_1"-1e_2"-1, v_1, v_2,
v_3 1]

gap> T := InverseSemigroup(Elements(S){[3, 5]1});;

gap> IsGraphInverseSubsemigroup(T);

true
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Green’s relations

In this chapter we describe the functions in Semigroups for computing Green’s classes and related
properties of semigroups.

12.1 Creating Green’s classes and representatives

In this section, we describe the methods in the Semigroups package for creating Green’s classes.

12.1.1 XClassOfYClass

> DClass0fHClass(class) (method)
> DClass0fLClass(class) (method)
> DClass0fRClass(class) (method)
> LClassOfHClass(class) (method)
> RClassOfHClass(class) (method)

Returns: A Green’s class.

XClass0fYClass returns the X-class containing the Y-class class where X and Y should be re-
placed by an appropriate choice of D, H, L, andR.

Note that if it is not known to GAP whether or not the representative of class is an element of
the semigroup containing class, then no attempt is made to check this.

The same result can be produced using:

Example
First (GreensXClasses(S), x -> Representative(x) in class);

but this might be substantially slower. Note that XClass0fYClass is also likely to be faster than

Example
GreensXClassOfElement (S, Representative(class));

DClass can also be used as a synonym for DClassOfHClass, DClass0fLClass, and
DClass0fRClass; LClass as a synonym for LClassO0fHClass; and RClass as a synonym for
RClassOfHClass. See also GreensDClassOfElement (Reference: GreensDClassOfElement) and
GreensDClassOfElementNC (12.1.3).

Example
gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([2, 1, 3]),

132
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> Transformation([3, 2, 1]),

> Transformation([1, 3, 11));;

gap> R := GreensRClassOfElement (S, Transformation([3, 2, 1]));
<Green’s R-class: Transformation( [ 3, 2, 11 )>

gap> DClassOfRClass(R);

<Green’s D-class: Transformation( [ 3, 2, 1 ] )>

gap> IsGreensDClass(DClassOfRClass(R)) ;

true

gap> S := InverseSemigroup(

> PartialPerm([2, 6, 7, O, O, 9, O, 1, O, 5]1),

> PartialPerm([3, 8, 1, 9, 0, 4, 10, 5, 0, 61));

<inverse partial perm semigroup of ramnk 10 with 2 generators>
gap> x := S.1;

[3,71[(8,1,2,6,9]1[10,5]

gap> H := HClass(S, x);

<Green’s H-class: [3,7]1[8,1,2,6,9]1[10,5]>

gap> R := RClassOfHClass(H);

<Green’s R-class: [3,7]1[8,1,2,6,9]1[10,5]>

gap> L := LClass(H);;

gap> L = LClass(S, PartialPerm([1, 2, O, O, 5, 6, 7, 0, 91));

true
gap> DClass(R) = DClass(L);
true
gap> DClass(H) = DClass(L);
true

12.1.2 GreensXClassOfElement

> GreensDClassOfElement (X, f) (operation)
> DClass (X, f) (operation)
> GreensHClassOfElement (X, f) (operation)
> GreensHClassOfElement(R, i, j) (operation)
> HClass (X, £) (operation)
> HClass (R, i, _]) (operation)
> GreensLClassOfElement (X, f) (operation)
> LClass (X, f) (operation)
> GreensRClassOfElement (X, f) (operation)
> RClass (X, f) (operation)

Returns: A Green’s class.

These functions produce essentially the same output as the GAP library functions with the same
names; see GreensDClass0fElement (Reference: GreensDClassOfElement). The main difference
is that these functions can be applied to a wider class of objects:

GreensDClassOfElement and DClass
X must be a semigroup.

GreensHClassOfElement and HClass
X can be a semigroup, #-class, Z-class, or Z-class. If R is a IxJ Rees matrix semigroup
or a Rees 0-matrix semigroup, and i and j are integers of the corresponding index sets, then
GreensHClassOfElement returns the 7#-class in row i and column j.
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GreensLClassOfElement and LClass
X can be a semigroup or Z-class.

GreensRClassOfElement and RClass
X can be a semigroup or Z-class.

Note that GreensXClassO0fElement and XClass are synonyms and have identical output. The shorter
command is provided for the sake of convenience.

12.1.3 GreensXClassOfElementNC

> GreensDClassOfElementNC(X, f) (operation)
> DClassNC (X, f) (operation)
> GreensHClassOfElementNC(X, f) (operation)
> HClassNC (X, f) (operation)
> GreensLClassOfElementNC(X, f) (operation)
> LClassNC (X, f) (operation)
> GreensRClassOfElementNC(X, f) (operation)
> RClassNC(X, f) (operation)

Returns: A Green’s class.

These functions are essentially the same as GreensDClassOfElement (12.1.2) except that no
effort is made to verify if £ is an element of X. More precisely, GreensXClassOfElementNC and
XClassNC first check if £ has already been shown to be an element of X. If it is not known to GAP if
f is an element of X, then no further attempt to verify this is made.

Note that GreensXClassOfElementNC and XClassNC are synonyms and have identical output.
The shorter command is provided for the sake of convenience.

It can be quicker to compute the class of an element using GreensRClass0fElementNC, say, than
using GreensRClass0fElement if it is known a priori that £ is an element of X. On the other hand,
if £ is not an element of X, then the results of this computation are unpredictable.

For example, if

Example
x := Transformation([15, 18, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2

in the semigroup X of order-preserving mappings on 20 points, then
Example

GreensRClassOfElementNC(X, x);

returns an answer relatively quickly, whereas
Example

GreensRClassOfElement (X, x)

can take a signficant amount of time to return a value.
See also GreensRClassOfElement (Reference: GreensRClassOfElement) and
RClassOfHClass (12.1.1).

Example
gap> S := RandomSemigroup(IsTransformationSemigroup, 2, 1000);;
gap> x := [1, 1, 2,2, 2,1, 1,1,1,1,2,2,2,2,1,1, 2,2, 1];;
gap> x := EvaluateWord(Generators(S), x);;
gap> R := GreensRClassOfElementNC(S, x);;

0, 20, 20, 20,
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gap> Size(R);

1

gap> L := GreensLClassOfElementNC(S, x);;

gap> Size(L);

1

gap> x := PartialPerm([2, 3, 4, 5, 0, 0, 6, 8, 10, 111);;
gap> L := LClass(POI(11), x);

<Green’s L-class: [1,2,3,4,5,6,8,11]1[7,10]>

gap> Size(L);

165

12.1.4 GreensXClasses

> GreensDClasses(obj) (method)
> DClasses(obj) (method)
> GreensHClasses(obj) (method)
> HClasses(obj) (method)
> GreensJClasses(obj) (method)
> JClasses(obj) (method)
> GreensLClasses(obj) (method)
> LClasses(obj) (method)
> GreensRClasses(obj) (method)
> RClasses(obj) (method)

Returns: A list of Green’s classes.

These functions produce essentially the same output as the GAP library functions with the same
names; see GreensDClasses (Reference: GreensDClasses). The main difference is that these func-
tions can be applied to a wider class of objects:

GreensDClasses and DClasses
X should be a semigroup.

GreensHClasses and HClasses
X can be a semigroup, Z-class, .Z-class, or Z-class.

GreensLClasses and LClasses
X can be a semigroup or Z-class.

GreensRClasses and RClasses
X can be a semigroup or Z-class.

Note that GreensXClasses and XClasses are synonyms and have identical output. The shorter
command is provided for the sake of convenience.

See also DClassReps (12.1.5), Iterator0fDClassReps (12.2.1), Iterator0fDClasses
(12.2.2), and NrDClasses (12.1.9).

Example
gap> S := Semigroup(Transformation([3, 4, 4, 41),
> Transformation([4, 3, 1, 21));;

gap> GreensDClasses(S);
[ <Green’s D-class: Transformation( [ 3, 4, 4, 4 ] )>
<Green’s D-class: Transformation( [ 4, 3, 1, 2 1 )>,

>
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<Green’s D-class: Transformation( [ 4, 4, 4, 4] )> ]
gap> GreensRClasses(S);

[ <Green’s R-class: Transformation( [ 3, 4, 4, 4 1 )>,
<Green’s R-class: Transformation( [ 4, 3, 1, 21 )>,
<Green’s R-class: Transformation( [ 4, 4, 4, 4] )>,
<Green’s R-class: Transformation( [ 4, 4, 3, 4 1 )>,
<Green’s R-class: Transformation( [ 4, 3, 4, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 4, 4, 31 )> ]

gap> D := GreensDClasses(S) [1];
<Green’s D-class: Transformation( [ 3, 4, 4, 4] )>
gap> GreensLClasses(D);

[ <Green’s L-class: Transformation( [ 3, 4, 4, 4 ] )>,
<Green’s L-class: Transformation( [ 1, 2, 2, 2 ] )> 1]

gap> GreensRClasses(D);

[ <Green’s R-class: Transformation( [ 3, 4, 4, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 4, 3, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 3, 4, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 4, 4, 31 )> ]

gap> R := GreensRClasses(D) [1];

<Green’s R-class: Transformation( [ 3, 4, 4, 4] )>

gap> GreensHClasses(R);

[ <Green’s H-class: Transformation( [ 3, 4, 4,
<Green’s H-class: Transformation( [ 1, 2, 2

gap> S := InverseSemigroup ([

> PartialPerm([2, 4, 1]), PartialPerm([3, 0, 4, 11)1);;

gap> GreensDClasses(S);

W

1)>,
1)>1

N

B > B

[ <Green’s D-class: <identity partial perm on [ 1, 2, 4 ]1>>,
<Green’s D-class: <identity partial perm on [ 1, 3, 4 1>>,
<Green’s D-class: <identity partial perm on [ 1, 3 1>>,
<Green’s D-class: <identity partial perm on [ 4 ]>>,

<Green’s D-class: <empty partial perm>> ]

gap> GreensLClasses(S);

[ <Green’s L-class: <identity partial perm on [ 1, 2, 4 I>>,
<Green’s L-class: [4,2,1,3]>,
<Green’s L-class: <identity partial perm on [ 1, 3, 4 1>>,
<Green’s L-class: <identity partial perm on [ 1, 3 1>>,
<Green’s L-class: [3,1,2]>, <Green’s L-class: [1,4][3,2]>,
<Green’s L-class: [1,3,4]>, <Green’s L-class: [3,1,4]>,
<Green’s L-class: [1,2](3)>,
<Green’s L-class: <identity partial perm on [ 4 ]>>,
<Green’s L-class: [4,1]>, <Green’s L-class: [4,3]>,
<Green’s L-class: [4,2]>, <Green’s L-class: <empty partial perm>> ]

gap> D := GreensDClasses(S) [3];

<Green’s D-class: <identity partial perm on [ 1, 3 ]1>>

gap> GreensLClasses(D);

[ <Green’s L-class: <identity partial perm on [ 1, 3 1>>,
<Green’s L-class: [3,1,2]>, <Green’s L-class: [1,4][3,2]>,
<Green’s L-class: [1,3,4]>, <Green’s L-class: [3,1,4]>,
<Green’s L-class: [1,2](3)> ]

gap> GreensRClasses(D);

[ <Green’s R-class: <identity
<Green’s R-class: [2,1,3]>,
<Green’s R-class: [4,3,1]>,

partial perm on [ 1, 3 1>>,
<Green’s R-class: [2,3][4,1]>,
<Green’s R-class: [4,1,3]>,
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<Green’s R-class: [2,1]1(3)> ]

137

12.1.5 XClassReps

> DClassReps(obj)
> HClassReps(obj)
> LClassReps(obj)
> RClassReps(obj)
Returns: A list of representatives.

(attribute)
(attribute)
(attribute)

(attribute)

XClassReps returns a list of the representatives of the Green’s classes of obj, which can be a

semigroup, -, .Z-, or %-class where appropriate.
The same output can be obtained by calling, for example:

Example
List(GreensXClasses(obj), Representative);

Note that if the Green’s classes themselves are not required, then XClassReps will return an answer

more quickly than the above, since the Green’s class objects are not created.

See also GreensDClasses (12.1.4), Iterator0fDClassReps (12.2.1), Iterator0fDClasses

(12.2.2), and NrDClasses (12.1.9).

gap> S := SymmetricInverseSemigroup(6);;

gap> e := InverseSemigroup(Idempotents(S));;

gap> M := MunnSemigroup(e);;

gap> L := LClassNC(M, PartialPerm([51, 63], [51, 471));;

gap> HClassReps(L);

[ <identity partial perm on [ 47, 51 1>, [27,47](51), [50,47](51),
(64,471 (51), [63,47]1(51), [59,471(51) ]

Example

gap> S := Semigroup(Transformation([3, 4, 4, 4]),

> Transformation([4, 3, 1, 2]1));;

gap> DClassReps(S);

[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 4, 3, 1, 21 ),
Transformation( [ 4, 4, 4, 4] ) 1

gap> LClassReps(S);

[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 21 ),
Transformation( [ 4, 3, 1, 2 1 ), Transformation( [ 4, 4, 4, 4 1] ),
Transformation( [ 2, 2, 2, 2 ] ), Transformation( [ 3, 3, 3, 31 ),
Transformation( [ 1, 1, 1, 1 ] ) ]

gap> D := GreensDClasses(S) [1];

<Green’s D-class: Transformation( [ 3, 4, 4, 4 ] )>

gap> LClassReps(D);

[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 2 1 ) 1]

gap> RClassReps(D);

[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 4, 4, 3, 4] ),
Transformation( [ 4, 3, 4, 4 ] ), Transformation( [ 4, 4, 4, 3] ) 1

gap> R := GreensRClasses(D) [1];;

gap> HClassReps(R);

[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 2 1 ) 1]
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12.1.6 MinimalDClass

> MinimalDClass(S) (attribute)

Returns: The minimal Z-class of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment. MinimalDClass
returns the Z-class corresponding to the minimal ideal of the semigroup S. Equivalently,
MinimalDClass returns the minimal Z-class with respect to the partial order of Z-classes.

It is significantly easier to find the minimal Z-class of a semigroup, than to find its Z-classes.

See also PartialOrder0fDClasses (12.1.10), IsGreensLessThanOrEqual (Reference:
IsGreensLessThanOrEqual), MinimalIdeal (13.7.1) and RepresentativeOfMinimalIdeal
(13.7.2).

Example

gap> D := MinimalDClass(JonesMonoid(8));

<Green’s D-class: <bipartition: [ 1, 21, [ 3, 41, [ 5, 61,
(7,81, (-1, -21,(0-3, -41,[-5,-61, [-7, -81>

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 5, 7, 8, 9], [2, 6, 9, 1, 5, 3, 8]),

> PartialPerm([1, 3, 4, 5, 7, 8, 9], [9, 4, 10, 5, 6, 7, 11));;

gap> MinimalDClass(S);

<Green’s D-class: <empty partial perm>>

12.1.7 MaximalDClasses

> MaximalDClasses (S) (attribute)
Returns: The maximal Z-classes of a semigroup.
MaximalDClasses returns the maximal Z-classes with respect to the partial order of Z-classes.
See also PartialOrderOfDClasses (12.1.10), IsGreensLessThanOrEqual (Reference: Is-
GreensLessThanOrEqual), and MinimalDClass (12.1.6).
Example
gap> MaximalDClasses (BrauerMonoid(8));
[ <Green’s D-class: <block bijection: [ 1, -1 1, [ 2, -2 17,
(3, 31,4, 41,5, 51,6, -61,[7, -71,
[ 8, -8 1> ]
gap> MaximalDClasses (FullTransformationMonoid(5));
[ <Green’s D-class: IdentityTransformation> ]
gap> S := Semigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 71, [3, 8 s
> PartialPerm([1, 2, 3, 6, 8], [2, 6, 7, 1, 5])
2
1

> PartialPerm([1, 2, 3, 4, 6, 81, [4, 3, 2, 7, 6, 51),

> PartialPerm([1, 2, 4, 5, 6, 7, 81, [7, 1, 4, 2, 5, 6, 31));;

gap> MaximalDClasses(S);

[ <Green’s D-class: [2,8](1,3)(4)(5)(6)(T7T)>,

<Green’s D-class: [8,3](1,7,6,5,2)(4)> ]

12.1.8 NrRegularDClasses
> NrRegularDClasses(S) (attribute)
> RegularDClasses(S) (attribute)

Returns: A positive integer, or a list.
NrRegularDClasses returns the number of regular Z-classes of the semigroup S.
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RegularDClasses returns a list of the regular Z-classes of the semigroup S.
See also IsRegularGreensClass (12.3.2) and IsRegularDClass (Reference: IsRegularD-
Class).

Example
gap> S := Semigroup(Transformation([1, 3, 4, 1, 3, 5]),
> Transformation([5, 1, 6, 1, 6, 31));;
gap> NrRegularDClasses(S);
3
gap> NrDClasses(S);
7

gap> AsSet(RegularDClasses(S));

[ <Green’s D-class: Transformation( [ 1, 3, 4, 1, 3, 31 )>,
<Green’s D-class: Transformation( [ 1, 1, 1, 1, 1 ] )>,
<Green’s D-class: Transformation( [ 1, 1, 1, 1, 1, 1] )> 1]

B

> >

12.1.9 NrXClasses

> NrDClasses(obj) (attribute)
> NrHClasses(obj) (attribute)
> NrLClasses(obj) (attribute)
> NrRClasses(obj) (attribute)

Returns: A positive integer.

NrXClasses returns the number of Green’s classes in obj where obj can be a semigroup, -,
-, or Z-class where appropriate. If the actual Green’s classes are not required, then it is more
efficient to use

Example
NrHClasses(obj)

than
Example

Length(HClasses (obj))

since the Green’s classes themselves are not created when NrXClasses is called.
See also GreensRClasses (12.1.4), GreensRClasses (Reference: GreensRClasses),
Iterator0fRClasses (12.2.2), and Iterator0fRClassReps (12.2.1).

Example
gap> S := Semigroup(
> Transformation([1l, 2, 5, 4, 3, 8, 7, 6]),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 41));;
gap> x := Transformation([2, 5, 4, 7, 4, 3, 6, 31);;

gap> R := RClass(S, x);

<Green’s R-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3] )>
gap> NrHClasses(R);

12

gap> D := DClass(R);

<Green’s D-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3 1 )>
gap> NrHClasses(D);

72




Semigroups 140

gap> L := LClass(S, x);
<Green’s L-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3] )>
gap> NrHClasses(L);

6

gap> NrHClasses(S);

1555

gap> S := Semigroup(Transformation([4, 6, 5, 2, 1, 3]),
> Transformation([6, 3, 2, 5, 4, 1]),
> Transformation([1, 2, 4, 3, 5, 61),
> Transformation([3, 5, 6, 1, 2, 3]),
> Transformation([5, 3, 6, 6, 6, 2]),
> Transformation([2, 3, 2, 6, 4, 6]),
> Transformation([2, 1, 2, 2, 2, 4]),
> Transformation([4, 4, 1, 2, 1, 21));;
gap> NrRClasses(S);

150

gap> Size(S);

6342

gap> x := Transformation([1, 3, 3, 1, 3, 51);;

gap> D := DClass(S, x);

<Green’s D-class: Transformation( [ 2, 4, 2, 2, 2, 1] )>
gap> NrRClasses(D);

87

gap> S := SymmetricInverseSemigroup(10);;

gap> NrDClasses(S); NrRClasses(S); NrHClasses(S); NrLClasses(S);
11

1024

184756

1024

gap> S := POPI(10);;

gap> NrDClasses(S);

11

gap> NrRClasses(S);

1024

12.1.10 PartialOrderOfDClasses

> PartialOrder0fDClasses(S) (attribute)

Returns: The partial order of the Z-classes of S.

Returns a list 1ist where 1ist[i] contains every j such that GreensDClasses(S) [j] is im-
mediately less than GreensDClasses (S) [i] in the partial order of - classes of S. There might be
other indices in 1ist, and it may or may not include i. The reflexive transitive closure of the relation
defined by 1ist is the partial order of Z-classes of S.

The partial order on the Z-classes is defined by x <y if and only if S'xS' is a subset of S'yS'.

See also GreensDClasses (12.1.4), GreensDClasses (Reference: GreensDClasses),
IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and \< (12.3.1).

Example
gap> S := Semigroup(Transformation([2, 4, 1, 2]),
> Transformation([3, 3, 4, 11));;

gap> PartialOrder0fDClasses(S);
[[3], [2)3]) [3’4]’ [4]]
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gap> IsGreensLessThanOrEqual (GreensDClasses(S) [1],

> GreensDClasses(S) [2]) ;
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [2],

> GreensDClasses(S) [1]);
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [3],

> GreensDClasses(S) [1]);
true

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3], [1, 3, 41),

> PartialPerm([1, 3, 5], [5, 1, 31));;

gap> Size(S);

58

gap> PartialOrder0fDClasses(S);
(rc1,31,02,31,[03,41,[4,51,[511
gap> IsGreensLessThanOrEqual (GreensDClasses(S) [1],

> GreensDClasses(S) [2]) ;
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [5],

> GreensDClasses(8) [2]);
true

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [3],

> GreensDClasses(S) [4]);
false

gap> IsGreensLessThanOrEqual (GreensDClasses(S) [4],

> GreensDClasses(S) [3]);
true

12.1.11 LengthOfLongestDClassChain

> LengthOfLongestDClassChain(S) (attribute)

Returns: A non-negative integer.

If S is a semigroup, then LengthOfLongestDClassChain returns the length of the longest chain
in the partial order defined by PartialOrder0fDClasses(S). See PartialOrder0fDClasses
(12.1.10).

The partial order on the Z-classes is defined by x < y if and only if S'xS! is a subset of S'yS!. A
chain of 9-classes is a collection of n Z-classes Dy,D5,...D, such that D; < D, < --- < D,. The

length of such a chainisn - 1.
Example

gap> S := TrivialSemigroup();;

gap> LengthOfLongestDClassChain(S);

0

gap> T := ZeroSemigroup(5);;

gap> LengthOfLongestDClassChain(T) ;

1

gap> U := MonogenicSemigroup(14, 7);;
gap> LengthOfLongestDClassChain(U) ;

13

gap> V := FullTransformationMonoid(6) ;
<full transformation monoid of degree 6>
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gap> LengthOfLongestDClassChain (V) ;
5

12.1.12 IsGreensDGreaterThanFunc

> IsGreensDGreaterThanFunc(S) (attribute)
Returns: A function.
IsGreensDGreaterThanFunc (S) returns a function func such that for any two elements x and
y of S, func(x, y) return true if the Z-class of x in S is greater than or equal to the Z-class of y
in S under the usual ordering of Green’s Z-classes of a semigroup.

Example
gap> S := Semigroup(Transformation([1, 3, 4, 1, 31),
> Transformation([2, 4, 1, 5, 5]),
> Transformation([2, 5, 3, 5, 3]),
> Transformation([5, 5, 1, 1, 31));;

gap> reps := ShallowCopy(AsSet(DClassReps(S)));

[ Transformation( [ 1, 1, 1, 1, 11 ),
Transformation( [ 1, 3, 1, 3, 31 ),
Transformation( [ 1, 3, 4, 1, 31 ),
Transformation( [ 2, 4, 1, 5, 51 ) 1

gap> Sort(reps, IsGreensDGreaterThanFunc(S));

gap> reps;

[ Transformation( [ 2, 4, 1, 5, 5] ),
Transformation( [ 1, 3, 4, 1, 31 ),
Transformation( [ 1, 3, 1, 3, 31 ),
Transformation( [ 1, 1, 1, 1, 11 ) 1]

gap> IsGreensLessThanOrEqual (DClass(S, reps[2]),

> DClass(S, reps[1]));
true

gap> S := DualSymmetricInverseMonoid(4);;
gap> IsGreensDGreaterThanFunc(S) (S.1, S.3);
true

gap> IsGreensDGreaterThanFunc(S) (S.3, S.1);
false

gap> IsGreensLessThanOrEqual(DClass(S, S.3),
> DClass(S, S.1));
true

gap> IsGreensLessThanOrEqual(DClass(S, S.1),
> DClass(S, S.3));
false

12.2 Iterators and enumerators of classes and representatives

In this section, we describe the methods in the Semigroups package for incrementally determining
Green’s classes or their representatives.

12.2.1 IteratorOfXClassReps

> Iterator0fDClassReps(S) (operation)
> Iterator0fHClassReps(S) (operation)
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> Iterator0fLClassReps(S) (operation)
> IteratorOfRClassReps(S) (operation)

Returns: An iterator.

Returns an iterator of the representatives of the Green’s classes contained in the semigroup S. See
(Reference: Iterators) for more information on iterators.

See also GreensRClasses (Reference: GreensRClasses), GreensRClasses (12.1.4), and
IteratorOfRClasses (12.2.2).

Example
gap> S := Semigroup(Transformation([3, 2, 1, 5, 4]),
> Transformation([5, 4, 3, 2, 11),
> Transformation([5, 4, 3, 2, 11),
> Transformation([5, 5, 4, 5, 1]),
> Transformation([4, 5, 4, 3, 31));;

gap> iter := Iterator0OfRClassReps(S);

<iterator of R-class reps>

gap> NextIterator(iter);

Transformation( [ 3, 2, 1, 5, 4 ] )

gap> NextIterator(iter);

Transformation( [ 5, 5, 4, 5, 1 ] )

gap> iter;

<iterator of R-class reps>

gap> file := PackageInfo("semigroups")[1]!.InstallationPath;;
gap> file := Concatenation(file, "/data/doc/greens.pickle");;
gap> S := InverseSemigroup(ReadGenerators(file, 1));

<inverse partial perm semigroup of rank 983 with 2 generators>
gap> NrMovedPoints(S);

983

gap> iter := IteratorOfLClassReps(S);

<iterator of L-class reps>

gap> NextIterator(iter);

<partial perm on 634 pts with degree 1000, codegree 1000>

12.2.2 IteratorOfXClasses

> Iterator0fDClasses(S) (operation)
> IteratorOfHClasses(S) (operation)
> Iterator0fLClasses(S) (operation)
> Iterator0fRClasses(S) (operation)

Returns: An iterator.

Returns an iterator of the Green’s classes in the semigroup S. See (Reference: Iterators) for
more information on iterators.

This function is useful if you are, for example, looking for an Z-class of a semigroup with a
particular property but do not necessarily want to compute all of the Z-classes.

See also GreensRClasses (12.1.4), GreensRClasses (Reference: GreensRClasses),
NrRClasses (12.1.9), and Iterator0fRClassReps (12.2.1).

The transformation semigroup in the example below has 25147892 elements but it only takes a
fraction of a second to find a non-trivial Z-class. The inverse semigroup of partial permutations in
the example below has size 158122047816 but it only takes a fraction of a second to find an #Z-class
with more than 1000 elements.
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e
gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 11),
4, 4, 8, 6

> Transformation([3, 2, 8, 8, 4, 4, 8, 6, 5, 7]),

> Transformation([4, 10, 6, 6, 1, 2, 4, 10, 9, 71),

> Transformation([6, 2, 2, 4, 9, 9, 5, 10, 1, 8]1),

> Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2]),

> Transformation([6, 8, 1, 10, 6, 4, 9, 1, 9, 41),

> Transformation([8, 6, 2, 3, 3, 4, 8, 6, 2, 9]),

> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),

> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),

> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 101)];;

gap> S := Semigroup(gens);;
gap> iter := IteratorOfRClasses(S);
<iterator of R-classes>
gap> for R in iter do
> if Size(R) > 1 then
> break;
> fi;
> od;
gap> R;
<Green’s R-class: Transformation( [ 6, 4, 1, 6, 6, 8, 9, 6, 2, 2 1 )>
gap> Size(R);
21600
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10, 11, 19, 20],
[19, 4, 11, 15, 3, 20, 1, 14, 8, 13, 171),
PartialPerm([1, 2, 3, 4, 6, 7, 8, 14, 15, 16, 17],
[15, 14, 20, 19, 4, 5, 1, 13, 11, 10, 31),
PartialPerm([1, 2, 4, 6, 7, 8, 9, 10, 14, 15, 18],
[z, 2, 17, 10, 1, 19, 9, 3, 11, 16, 18]),
PartialPerm([1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16],
[8, 3, 18, 1, 4, 13, 12, 7, 19, 20, 2, 11]1),
PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 16, 17, 20],
(7, 17, 13, 4, 6, 9, 18, 10, 11, 19, 5, 2, 8]),
PartialPerm([1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18],
[10, 20, 11, 7, 13, 8, 4, 9, 2, 18, 17, 6, 15]),
PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18],
[10, 20, 18, 1, 14, 16, 9, 5, 15, 4, 8, 12, 19, 111),
PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 19, 20],
[13, 6, 1, 2, 11, 7, 16, 18, 9, 10, 4, 14, 15, 5, 17]),
PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20],
[5, 3, 12, 9, 20, 15, 8, 16, 13, 1, 17, 11, 14, 10, 2]1),
PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20],
> [8, 3, 9, 20, 2, 12, 14, 15, 4, 18, 13, 1, 17, 19, 51));;
gap> iter := IteratorOfRClasses(S);
<iterator of R-classes>
gap> repeat
> R := NextIterator(iter);
> until Size(R) > 1000;
gap> R;
<Green’s R-class: [8,3]1[11,5]1[13,1]1[15,2]1[17,6]1[19,7]>
gap> Size(R);

VVVVVVVVVVYVVVVYVVVYV
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’ 10020240

12.3 Properties of Green’s classes

In this section, we describe the properties and operators of Green’s classes that are available in the
Semigroups package

12.3.1 Less than for Green’s classes

> \<(left-expr, right-expr) (method)

Returns: true or false.

The Green’s class left-expr is less than or equal to right-expr if they belong to the same
semigroup and the representative of left-expr is less than the representative of right-expr under
<; see also Representative (Reference: Representative).

Please note that this is not the usual order on the Green’s classes of a semigroup as defined in
(Reference: Green’s Relations). See also IsGreensLessThanOrEqual (Reference: IsGreens-
LessThanOrEqual).

Example
gap> S := FullTransformationSemigroup(4);;
gap> A := GreensRClassOfElement (S, Transformation([2, 1, 3, 1]1));
<Green’s R-class: Transformation( [ 2, 1, 3, 11 )>

gap> B := GreensRClassOfElement (S, Transformation([1l, 2, 3, 4]1));
<Green’s R-class: IdentityTransformation>

gap> A < B;

false

gap> B < A;

true

gap> IsGreensLessThanOrEqual(A, B);

true

gap> IsGreensLessThanOrEqual(B, A);

false

gap> S := SymmetricInverseSemigroup(4);;

gap> A := GreensJClassOfElement (S, PartialPerm([1, 3, 41));;

gap> B := GreensJClassOfElement (S, PartialPerm([3, 1]));;

gap> A < B;

true

gap> B < A;

false

gap> IsGreensLessThanOrEqual(A, B);

false

gap> IsGreensLessThanOrEqual(B, A);

true

12.3.2 IsRegularGreensClass

> IsRegularGreensClass(class) (property)
Returns: true or false.
This function returns true if class is a regular Green’s class and false if it
is not. See also IsRegularDClass (Reference: IsRegularDClass), IsGroupHClass
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(Reference: IsGroupHClass), GroupHClass0fGreensDClass (Reference: GroupHClassOf-
GreensDClass), GroupHClass (12.4.1), NrIdempotents (13.9.2), Idempotents (13.9.1), and

IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

The function IsRegularDClass produces the same output as the GAP library functions with the

same name; see IsRegularDClass (Reference: IsRegularDClass).
Example

gap> S := Monoid(Transformation([10, 8, 7, 4, 1, 4, 10, 10, 7, 2]),
> Transformation([5, 2, 5, 5, 9, 10, 8, 3, 8, 10]1));;
gap> f := Transformation([1, 1, 10, 8, 8, 8, 1, 1, 10, 81);;

gap> R := RClass(S, f);;
gap> IsRegularGreensClass(R);

true
gap> S := Monoid(Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
> Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 21));;

gap> f := Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 21);;

gap> R := RClass(S, f);;

gap> IsRegularGreensClass(R);

false

gap> NrIdempotents(R);

0

gap> S := Semigroup(Transformation([2, 1, 3, 1]),

> Transformation([3, 1, 2, 1]),

> Transformation([4, 2, 3, 3]));;

gap> f := Transformation([4, 2, 3, 31);;
gap> L := GreensLClassOfElement(S, £);;
gap> IsRegularGreensClass(L);

false

gap> R := GreensRClassOfElement(S, f);;
gap> IsRegularGreensClass(R);

false

gap> g := Transformation([4, 4, 4, 4]);;
gap> IsRegularSemigroupElement (S, g);
true

gap> IsRegularGreensClass(LClass(S, g));
true

gap> IsRegularGreensClass(RClass(S, g));
true

gap> IsRegularDClass(DClass(S, g));

true

gap> DClass(S, g) = RClass(S, g);

false

12.3.3 IsGreensClassNC

> IsGreensClassNC(class)
Returns: true or false.

(property)

A Green’s class class of a semigroup S satisfies IsGreensClassNC if it was not known to GAP

that the representative of class was an element of S at the point that class was created.
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12.4 Attributes of Green’s classes

In this section, we describe the attributes of Green’s classes that are available in the Semigroups
package

12.4.1 GroupHClass

> GroupHClass(class) (attribute)
Returns: A group 77 -class of the Z-class class if it is regular and fail if it is not.
GroupHClass is a synonym for GroupHClass0fGreensDClass (Reference: GroupHClassOf-
GreensDClass).
See also IsGroupHClass (Reference: IsGroupHClass), IsRegularDClass (Reference: Is-
RegularDClass), IsRegularGreensClass (12.3.2), and IsRegularSemigroup (14.1.16).

Example
gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
> Transformation([3, 8, 1, 4, 5, 6, 7, 11));;
gap> IsRegularSemigroup(S);
false

gap> iter := Iterator0fDClasses(S);;

gap> repeat D := NextIterator(iter); until IsRegularDClass(D);
gap> D;

<Green’s D-class: Transformation( [ 6, 1, 1, 6, 1, 2, 2, 6 1 )>
gap> NrIdempotents(D);

12

gap> NrRClasses(D);

8

gap> NrLClasses(D);

4

gap> GroupHClass (D) ;

<Green’s H-class: Transformation( [ 1, 2, 2, 1, 2, 6, 6, 1] )>
gap> GroupHClass0fGreensDClass(D);

<Green’s H-class: Transformation( [ 1, 2, 2, 1, 2, 6, 6, 1 1 )>
gap> StructureDescription(GroupHClass(D));

n SS n

gap> repeat D := NextIterator(iter); until not IsRegularDClass(D);
gap> D;

<Green’s D-class: Transformation( [ 7, 5, 2, 2, 6, 1, 1, 21 )>
gap> IsRegularDClass(D);

false

gap> GroupHClass (D) ;

fail

gap> S := InverseSemigroup(

> PartialPerm([2, 1, 6, 0, 3]), PartialPerm([3, 5, 2, 0, 0, 6]1));;
gap> x := PartialPerm([1 .. 3], [6, 3, 11);;

gap> First(DClasses(S), x -> not IsTrivial (GroupHClass(x)));
<Green’s D-class: <identity partial perm on [ 1, 2 ]>>

gap> StructureDescription(GroupHClass(last));

n C2 n
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12.4.2 SchutzenbergerGroup

> SchutzenbergerGroup(class) (attribute)

Returns: A group.

SchutzenbergerGroup returns the generalized Schutzenberger group (defined below) of the %-,
9D-, L-, or H-class class.

If £ is an element of a semigroup of transformations or partial permutations and im(f) denotes
the image of £, then the generalized Schutzenberger group of im(£) is the permutation group

{g|im(f) Dim(fxg) =im(f) }.

The generalized Schutzenberger group of the kernel ker (£) of a transformation £ or the domain
dom(f) of a partial permutation £ is defined analogously.
The generalized Schutzenberger group of a Green’s class is then defined as follows.

X -class
The generalized Schutzenberger group of the image or range of the representative of the Z-
class.

Z-class
The generalized Schutzenberger group of the kernel or domain of the representative of the .#-
class.

F-class
The intersection of the generalized Schutzenberger groups of the %- and .£-class containing
the 7 -class.

P-class
The intersection of the generalized Schutzenberger groups of the %Z- and .Z-class containing
the representative of the Z-class.

The output of this attribute is difficult to describe for other types of semigroup. However, a general
description is given in [EENMP15].

Example
gap> S := Semigroup(Transformation([4, 4, 3, 5, 3]),
> Transformation([5, 1, 1, 4, 1]),
> Transformation([5, 5, 4, 4, 51));;

gap> f := Transformation([5, 5, 4, 4, 5]);;
gap> SchutzenbergerGroup(RClass(S, f));
Group([ (4,5) 1)

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 7],

> [9, 2, 4, 8,

> PartialPerm([1, 2, 6, 7, 8, 9, 10],

> [6, 8, 4, 5, 9, 1, 3]),

> PartialPerm([1, 2, 3, 5, 6, 7, 8, 9],

> (7, 4, 1, 6, 9, 5, 2, 31));;

gap> List(DClasses(S), SchutzenbergerGroup) ;

[ Group(()), Group(()), Group(()), Group(()), Group([ (4,9) 1),
Group(()), Group(()), Group([ (5,8,6), (5,8) 1), Group(()),
Group((Q)), Group(()), Group(()), Group(()), Group((Q),

Group([ (1,7,5,6,9,3) 1), Group([ (1,6)(3,5) 1), Group(()),
Group(()), Group(()), Group(()), Group(()), Group(()), Group(()) ]
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12.4.3 StructureDescriptionSchutzenbergerGroups

> StructureDescriptionSchutzenbergerGroups (S) (attribute)
Returns: Distinct structure descriptions of the Schutzenberger groups of a semigroup.
StructureDescriptionSchutzenbergerGroups returns the  distinct  values  of
StructureDescription (Reference: StructureDescription) when it is applied to the Schutzen-
berger groups of the Z-classes of the semigroup S.
Example

ap> S := Semigroup(l[
PartialPerm([1, 2, 3], [2, 5, 4]),
PartialPerm([1, 2, 3], [4, 1, 2]),
PartialPerm([1, 2, 3], [5, 2, 31),

PartialPerm([1, 2, 4, 5], [2, 1, 4, 31),

PartialPerm([1, 2, 5], [2, 3, 5]),

PartialPerm([1, 2, 3, 5], [2, 3, 5, 4]),

PartialPerm([1, 2, 3, 5], [4, 2, 5, 11),

PartialPerm([1, 2, 3, 51, [5, 2, 4, 31),

> PartialPerm([1, 2, 51, [5, 4, 31)1);;

gap> StructureDescriptionSchutzenbergerGroups(S);

[ lllll’ IIC2|I, ng3n ]

gap> S := Monoid(

> Bipartition([[1, 2, 5, -1, -2, [3, 4, -3, -5], [-4]]),

> Bipartition([[1, 2, -2], [3, -11, [4], [5], [-3, -41, [-511),

> Bipartition([[1], [2, 3, -5], [4, -3], [5, -2], [-1, -411));

<bipartition monoid of degree 5 with 3 generators>

gap> StructureDescriptionSchutzenbergerGroups(S);

[mr, c2n ]

V V V V V V V V(R

12.4.4 StructureDescriptionMaximalSubgroups

> StructureDescriptionMaximalSubgroups(S) (attribute)
Returns: Distinct structure descriptions of the maximal subgroups of a semigroup.
StructureDescriptionMaximalSubgroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the maxi-
mal subgroups of the semigroup S.

Example
gap> S := DualSymmetricInverseSemigroup(6);
<inverse block bijection monoid of degree 6 with 3 generators>
gap> StructureDescriptionMaximalSubgroups(S);

[ lllll’ IIC2|I’ IISSII, IIS4II’ llSsll’ "SG" ]

gap> S := Semigroup(

> PartialPerm([1, 3, 4, 5, 8],

> [s, 3, 9, 4, 51),

> PartialPerm([1, 2, 3, 4, 8],

> [10, 4, 1, 9, 6]1),

> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10],
> (4, 1, 6, 7, 5, 3, 2, 101),
> PartialPerm([1, 2, 3, 4, 6, 8, 10],

> (4, 9, 10, 3, 1, 5, 21));;
gap> StructureDescriptionMaximalSubgroups(S);
[ lllll’ 1|C2|I’ IlC3l|, IIC4" ]
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12.4.5 MultiplicativeNeutralElement (for an H-class)

> MultiplicativeNeutralElement (H) (method)
Returns: A semigroup element or fail.
If the J#-class H of a semigroup S is a subgroup of S, then MultiplicativeNeutralElement
returns the identity of H. If H is not a subgroup of S, then fail is returned.
Example
gap> S := Semigroup([PartialPerm([1, 5, 2]),
> PartialPerm([2, O, 4]), PartialPerm([4, 1, 5]),
> PartialPerm([1, O, 3, 0, 4]), PartialPerm([1, 2, 0, 3, 5]),
> PartialPerm([1, 3, 2, 0, 5]), PartialPerm([5, 0, 0, 4, 3]1)1);;
gap> H := HClass(S, PartialPerm([1, 2]));;
gap> MultiplicativeNeutralElement (H) ;
<identity partial perm on [ 1, 2 1>
gap> H := HClass(S, PartialPerm([1, 4]));;
gap> MultiplicativeNeutralElement (H) ;
fail

12.4.6 StructureDescription (for an H-class)

> StructureDescription(class) (attribute)
Returns: A string or fail.
StructureDescription returns the value of StructureDescription (Reference: Structure-
Description) when it is applied to a group isomorphic to the group .7#-class class. If class is not
a group .77 -class, then fail is returned.

Example

gap> S := Semigroup(

> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9],

> [1, 9, 4, 3, 5, 2, 10, 71),

> PartialPerm([1, 2, 4, 7, 8, 9],

> (6, 2, 4, 9, 1, 31));;

gap> H := HClass(S, PartialPerm([1, 2, 3, 4, 7, 9],

> 1, 7, 3, 4, 9, 21));;

gap> StructureDescription(H) ;

I’C6l|
12.4.7 InjectionPrincipalFactor
> InjectionPrincipalFactor (D) (attribute)
> InjectionNormalizedPrincipalFactor (D) (attribute)
> IsomorphismReesMatrixSemigroup (D) (attribute)

Returns: A injective mapping.

If the Z-class D is a subsemigroup of a semigroup S, then the principal factor of D is just D itself.
If D is not a subsemigroup of S, then the principal factor of D is the semigroup with elements D and a
new element O with multiplication of x,y € D defined by:

[ xxy(inS) ifxxyeD
S ifxy & D.

InjectionPrincipalFactor returns an injective function from the &-class D to a Rees (0-)matrix
semigroup, which contains the principal factor of D as a subsemigroup.
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If D is a subsemigroup of its parent semigroup, then the function returned by
InjectionPrincipalFactor or IsomorphismReesMatrixSemigroup is an isomorphism from D
to a Rees matrix semigroup; see ReesMatrixSemigroup (Reference: ReesMatrixSemigroup).

If D is not a semigroup, then the function returned by InjectionPrincipalFactor is an
injective function from D to a Rees O-matrix semigroup isomorphic to the principal factor of
D; see ReesZeroMatrixSemigroup (Reference: ReesZeroMatrixSemigroup). In this case,
IsomorphismReesMatrixSemigroup and IsomorphismReesZeroMatrixSemigroup returns an er-
TOT.

InjectionNormalizedPrincipalFactor returns the composition of
InjectionPrincipalFactor with RZMSNormalization (6.5.6) or RMSNormalization (6.5.7) as
appropriate.

See also PrincipalFactor (12.4.8).

Example
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],
> (3, 8, 1, 9, 4, 10, 5, 61));;
gap> x := PartialPerm([1, 2, 5, 6, 7, 9],
> [1, 2, 5, 6, 7, 91);;
gap> D := GreensDClassOfElement(S, x);

<Green’s D-class: <identity partial perm on [ 1, 2, 5, 6, 7, 9 1>>

gap> R := Range(InjectionPrincipalFactor(D));

<Rees O-matrix semigroup 3x3 over Group(())>

gap> MatrixOfReesZeroMatrixSemigroup(R);

tco,0,01, [0, O,01, [0,0, O1]1

gap> Size(R);

10

gap> Size(D);

9

gap> S := Semigroup(

> Bipartition([[1, 2, 3, -3, -5], [4], [6, -2], [-1, -4]11),

> Bipartition([[1, 3, 5], [2, 4, -3], [-1, -2, -4, -5]11),

> Bipartition([[1, 5, -2, -41, [2, 3, 4, -1, -5], [-311),

> Bipartition([[1, 5, -1, -2, -31, [2, 4, -41, [3, -511));;

gap> D := GreensDClassOfElement (S,

> Bipartition([[1, 5, -2, -41, [2, 3, 4, -1, -5], [-311));

<Green’s D-class: <bipartition: [ 1, 5, -2, -4 1, [ 2, 3, 4, -1, -5 1]
,» [ -3 1>

gap> InjectionNormalizedPrincipalFactor (D) ;

MappingByFunction( <Green’s D-class: <bipartition: [ 1, 5, -2, -4 1],
[ 2, 3, 4, -1, -5 1, [ -3 1>>, <Rees matrix semigroup 1x1 over

Group([ (1,2) 1)>, function( x ) ... end, function( x ) ... end )

12.4.8 PrincipalFactor

> PrincipalFactor (D) (attribute)
> NormalizedPrincipalFactor (D) (attribute)
Returns: A Rees (0-)matrix semigroup.
If D is a 9-class of semigroup, then PrincipalFactor(D) is just shorthand for
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Range (InjectionPrincipalFactor(D)), and NormalizedPrincipalFactor (D) is shorthand

for Range (InjectionNormalizedPrincipalFactor(D)).

See InjectionPrincipalFactor (12.4.7) and InjectionNormalizedPrincipalFactor

(12.4.7) for more details.

Example
gap> S := Semigroup([PartialPerm([1, 2, 3], [1, 3, 41),

> PartialPerm([1, 2, 3], [2, 5, 31),

> PartialPerm([1, 2, 3, 4], [2, 4, 1, 51),

> PartialPerm([1, 3, 5], [5, 1, 31)1);;

gap> PrincipalFactor(MinimalDClass(S)) ;

<Rees matrix semigroup 1x1 over Group(())>

gap> MultiplicativeZero(S);

<empty partial perm>

gap> S := Semigroup(

> Bipartition([[1, 2, 3, 4, 5, -1, -31, [-2, -5], [-4]11),
> Bipartition([[1, -5], [2, 3, 4, 5, -1, -3], [-2, -411),

gap> D := MinimalDClass(S);
[_2: _5], [_4 ]>>

gap> NormalizedPrincipalFactor(D);
<Rees matrix semigroup 1x5 over Group(())>

> Bipartition([[1, 5, -4]1, [2, 4, -1, -5], [3, -2, -311));;

<Green’s D-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -3 1],




Chapter 13

Attributes and operations for semigroups

In this chapter we decribe the methods that are available in Semigroups for determining the attributes
of a semigroup, and the operations which can be applied to a semigroup.

13.1 Accessing the elements of a semigroup

13.1.1 AsListCanonical

> AsListCanonical(S) (attribute)
> EnumeratorCanonical(S) (attribute)
> IteratorCanonical(S) (operation)

Returns: A list, enumerator, or iterator.

When the argument S is a semigroup in the representation IsEnumerableSemigroupRep (6.1.4),
AsListCanonical returns a list of the elements of S in the order they are enumerated by the
Froidure-Pin Algorithm. This is the same as the order used to index the elements of S in
RightCayleyGraphSemigroup (13.2.1) and LeftCayleyGraphSemigroup (13.2.1).

EnumeratorCanonical and IteratorCanonical return an enumerator and an iterator where
the elements are ordered in the same way as AsListCanonical. Using EnumeratorCanonical
or IteratorCanonical will often use less memory than AsListCanonical, but may have
slightly worse performance if the elements of the semigroup are looped over repeatedly.
EnumeratorCanonical returns the same list as AsListCanonical if AsListCanonical has ever
been called for S.

If S is an acting semigroup, then the value returned by AsList may not equal the value re-
turned by AsListCanonical. AsListCanonical exists so that there is a method for obtain-
ing the elements of S in the particular order used by RightCayleyGraphSemigroup (13.2.1) and
LeftCayleyGraphSemigroup (13.2.1).

See also PositionCanonical (13.1.2).

Example
gap> S := Semigroup(Transformation([1, 3, 2]));;

gap> AsListCanonical(S);

[ Transformation( [ 1, 3, 2 ] ), IdentityTransformation ]
gap> IteratorCanonical(S);

<iterator>

gap> EnumeratorCanonical(S);

[ Transformation( [ 1, 3, 2 ] ), IdentityTransformation ]
gap> S := Monoid([Matrix(IsBooleanMat, [[1, 0, O],

153
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> (o, 1, ol,

> [0, 1, 011
<commutative monoid of 3x3 boolean matrices with 1 generator>
gap> it := IteratorCanonical(S);

<iterator>

gap> NextIterator(it);

Matrix(IsBooleanMat, [[1, O, 0], [0, 1, 0], [0, O, 111)
gap> en := EnumeratorCanonical(S);

<enumerator of <commutative monoid of 3x3 boolean matrices with 1
generator>>

gap> en[1];

Matrix(IsBooleanMat, [[1, O, 0], [0, 1, 0], [0, O, 111)
gap> Position(en, en[1]);

1

gap> Length(en) ;

2

13.1.2 PositionCanonical

> PositionCanonical(S, x) (operation)
Returns: true or false.
When the argument S is a semigroup in the representation IsEnumerableSemigroupRep (6.1.4)
and x is an element of S, PositionCanonical returns the position of x in AsListCanonical (S)
or equivalently the position of x in EnumeratorCanonical(S).

See also AsListCanonical (13.1.1) and EnumeratorCanonical (13.1.1).
Example
gap> S := FullTropicalMaxPlusMonoid(2, 3);
<monoid of 2x2 tropical max-plus matrices with 13 generators>
gap> x := Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]1], 3);
Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]], 3)

gap> PositionCanonical(S, x);

234

gap> EnumeratorCanonical(S) [234] = x;

true

13.1.3 Enumerate

> Enumerate(S[, limit]) (operation)

Returns: A semigroup (the argument).

If S is a semigroup with representation IsEnumerableSemigroupRep (6.1.4) and 1imit is a pos-
itive integer, then this operation can be used to enumerate at least 1imit elements of S, or Size(S)
elements if this is less than 1imit, using the Froidure-Pin Algorithm.

If the optional second argument 1imit is not given, then the semigroup is enumerated until all of
its elements have been found.

For reasons of performance, S is enumerated in batches according to the option batch_size,

which can be specified when S is created; see Section 6.3.
Example
gap> S := FullTransformationMonoid(7);
<full transformation monoid of degree 7>
gap> Enumerate(S, 1000);
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<full transformation monoid of degree 7>

gap> Display(S);

<partially enumerated semigroup with 8197 elements,
224 rules, max word length 11>

13.1.4 IsFullyEnumerated

> IsFullyEnumerated(S) (operation)

Returns: true or false.

If S is a semigroup with representation IsEnumerableSemigroupRep (6.1.4), then this operation
returns true if the Froidure-Pin Algorithm has been run to completion (i.e. all of the elements of S
have been found) and false if S has not been fully enumerated.

Example

gap> S := FullBooleanMatMonoid(4);

<monoid of 4x4 boolean matrices with 7 generators>
gap> Enumerate(S, 1000);

<monoid of 4x4 boolean matrices with 7 generators>
gap> IsFullyEnumerated(S);

false

gap> Size(8);

65536

gap> IsFullyEnumerated(S);

true

13.2 Cayley graphs

13.2.1 RightCayleyGraphSemigroup

> RightCayleyGraphSemigroup (S) (attribute)
> LeftCayleyGraphSemigroup(S) (attribute)

Returns: A list of lists of positive integers.

When the argument S is a semigroup in the representation IsEnumerableSemigroupRep
(6.1.4), RightCayleyGraphSemigroup returns the right Cayley graphs of S, as a list
graph where graph[i] [j] is equal to PositionCanonical(S, AsListCanonical(S)[i] *
GeneratorsOfSemigroup(S) [j1). The list returned by LeftCayleyGraphSemigroup is defined
analogously.

Example
gap> S := FullTransformationMonoid(2);
<full transformation monoid of degree 2>
gap> RightCayleyGraphSemigroup(S);

[+, 2,31, 02,111,371, [3,4,371,0[4,3,31]1
gap> LeftCayleyGraphSemigroup(S);
tf1,2,31,02,1,471,[3,3,31,1[4,4,41]
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13.3 Random elements of a semigroup

13.3.1 Random (for a semigroup)

> Random(S) (method)

Returns: A random element.

This function returns a random element of the semigroup S. If the elements of S have been
calculated, then one of these is chosen randomly. Otherwise, if the data structure for S is known, then
a random element of a randomly chosen Z#-class is returned. If the data structure for S has not been
calculated, then a short product (at most 2 * Length(GeneratorsOfSemigroup(S))) of generators
is returned.

13.4 Properties of elements in a semigroup

13.4.1 IndexPeriodOfSemigroupElement

> IndexPeriod0fSemigroupElement (x) (operation)

Returns: A list of two positive integers.

If x is a semigroup element, then IndexPeriod0fSemigroupElement (x) returns the pair [m,
r], where m and r are the least positive integers such that x~(m + r) = x =~ m. The number m is
known as the index of x, and the numberr is known as the period of x.

Example
gap> x := Transformation([2, 6, 3, 5, 6, 1]1);;
gap> IndexPeriodOfSemigroupElement (x) ;

[ 2, 3]

gap> m := IndexPeriodOfSemigroupElement (x) [1];;
gap> r := IndexPeriodOfSemigroupElement (x) [2];;
gap> x - (m + r) = x " m;

true

gap> x := PartialPerm([0, 2, 3, 0, 5]);
<identity partial perm on [ 2, 3, 5 1>

gap> IsIdempotent(x);

true

gap> IndexPeriodOfSemigroupElement (x) ;

[1, 1]

13.4.2 SmallestidempotentPower

> SmallestIdempotentPower (x) (attribute)
Returns: A positive integer.
If x is a semigroup element, then SmallestIdempotentPower (x) returns the least positive inte-
ger n such that x~n is an idempotent. The smallest idempotent power of x is the least multiple of the
period of x that is greater than or equal to the index of x; see IndexPeriod0fSemigroupElement

(13.4.1).

Example
gap> x := Transformation([4, 1, 4, 5, 1]);
Transformation( [ 4, 1, 4, 5, 1 1)

gap> SmallestIdempotentPower(x);

3

gap> ForA11([1 .. 2], i -> not IsIdempotent(x ~ i));
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true

gap> IsIdempotent(x ~ 3);

true

gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -1], [5, -2]11);
<block bijection: [ 1, 2, -3, -41, [ 3, -5]1, [ 4, -11, [ 5, -21]>
gap> SmallestIdempotentPower(x) ;

4

gap> ForAl11([1 .. 3], i -> not IsIdempotent(x ~ 1i));

true

gap> x := PartialPerm([]);

<empty partial perm>

gap> SmallestIdempotentPower (x) ;

1

gap> IsIdempotent(x);

true

13.5 Expressing semigroup elements as words in generators

It is possible to express an element of a semigroup as a word in the generators of that semigroup. This
section describes how to accomplish this in Semigroups.

13.5.1 EvaluateWord

> EvaluateWord(gens, w) (operation)

Returns: A semigroup element.

The argument gens should be a collection of generators of a semigroup and the argument w should
be a list of positive integers less than or equal to the length of gens. This operation evaluates the word
w in the generators gens. More precisely, EvaluateWord(gens, w) returns the equivalent of:
Example

Product(List(w, i -> gens[i]));

see also Factorization (13.5.2).

for elements of a semigroup
When gens is a list of elements of a semigroup and w is a list of positive integers less than or
equal to the length of gens, this operation returns the product gens [w[1]] * gens[w[2]] *
* gens [w[n]] when the length of w is n.

for elements of an inverse semigroup
When gens is a list of elements with a semigroup inverse and w is a list of non-zero in-
tegers whose absolute value does not exceed the length of gens, this operation returns
the product gens [AbsInt(w[1])] =~ SignInt(w[1]) * .. . * gens[AbsInt(w[n])]
~ SignInt(w[n]) where n is the length of w.

Note that EvaluateWord(gens, []) returns One(gens) if gens belongs to the category
IsMultiplicativeElementWithOne (Reference: IsMultiplicativeElementWithOne).
Example

gap> gens := [
> Transformation([2, 4, 4, 6, 8, 8, 6, 6]),
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> Transformation([2, 7, 4, 1, 4, 6, 5, 2]),
> Transformation([3, 6, 2, 4, 2, 2, 2, 8]),
> Transformation([4, 3, 6, 4, 2, 1, 2, 6]),
> Transformation([4, 5, 1, 3, 8, 5, 8, 21)1;;

gap> S := Semigroup(gens);;

gap> x := Transformation([1, 4, 6, 1, 7, 2, 7, 6]);;

gap> word := Factorization(S, x);

[ 4, 2]

gap> EvaluateWord(gens, word);

Transformation( [ 1, 4, 6, 1, 7, 2, 7, 6 1)

gap> S := SymmetricInverseMonoid(10);;

gap> x := PartialPerm([2, 6, 7, O, O, 9, O, 1, 0, 51);

[3,7108,1,2,6,91[10,5]

gap> word := Factorization(S, x);

[ -2, -2, -2, -2, -3, -2, -2, -2, -2, -2, 5, 2, 5,5
2, -3, 2,2,2,3,2,2,2,2,2,2,2, 2,3, 2, 3,

gap> EvaluateWord(GeneratorsOfSemigroup(S), word);

[3,7118,1,2,6,9]1[10,5]

b 23 5) 2’ 2, 2’
2]

13.5.2 Factorization

> Factorization(S, x) (operation)
Returns: A word in the generators.

for semigroups
When S is a semigroup and x belongs to S, Factorization return a word in the generators of
S that is equal to x. In this case, a word is a list of positive integers where an entry i corresponds

to Generators0fSemigroups(S) [i]. More specifically,
Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x)) = x;

for inverse semigroups
When S is an inverse semigroup and x belongs to S, Factorization return a word in
the generators of S that is equal to x. In this case, a word is a list of non-zero integers
where an entry i corresponds to GeneratorsO0fSemigroup(S) [i] and -i corresponds to
GeneratorsOfSemigroup(8) [i] ~ -1. Asin the previous case,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x)) = x;

Note that Factorization does not always return a word of minimum length; see
MinimalFactorization (13.5.3).

See also EvaluateWord (13.5.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

Example
gap> gens := [Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),
> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 21)1;;
gap> S := Semigroup(gens);;
gap> x := Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 71);;
gap> word := Factorization(S, x);
[2, 2,1, 2]
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gap> EvaluateWord(gens, word) ;

Transformation( [ 1, 10, 2, 10, 1, 2, 7, 10, 2, 7 1 )

gap> S := SymmetricInverseMonoid(8);

<symmetric inverse monoid of degree 8>

gap> x := PartialPerm([1, 2, 3, 4, 5, 8], [7, 1, 4, 3, 2, 6]);

[5,2,1,71[8,6]1(3,4)

gap> word := Factorization(S, x);

[ -2, -2, -2, -2, -2, -2, 2, 4, 4, 2, 3, 2, -3, -2, -2, 3, 2, -3, -2,
-2, 4, -3, -4, 2, 2, 3, -2, -3, 4, -3, -4, 2, 2, 3, -2, -3, 2, 2,
3, -2, -3, 2, 2, 3, -2, -3, 4, -3, -4, 3, 2, -3, -2, -2, 3, 2, -3,
-2, -2, 4, 3, -4, 3, 2, -3, -2, -2, 3, 2, -3, -2, -2, 3, 2, 2, 3,
2, 2,2, 2]

gap> EvaluateWord(Generators0fSemigroup(S), word);

(5,2,1,7108,61(3,4)

gap> S := DualSymmetricInverseMonoid(6);;

gap> x := S.1 * S.2 x S.3 x S.2 % S.1;

<block bijection: [ 1, 6, -41, [ 2, -2, -31, [ 3, -51, [ 4, -61,
[5, -1 1>

gap> word := Factorization(S, x);

[ -2, -2, -2, -2, -2, 4, 2]

gap> EvaluateWord(GeneratorsOfSemigroup(S), word);

<block bijection: [ 1, 6, -4 1, [ 2, -2, -31, [3, -51, [4, -61,
[ 5, -1 1>

13.5.3 MinimalFactorization

> MinimalFactorization(S, x) (operation)
Returns: A minimal word in the generators.
This operation returns a minimal length word in the generators of the semigroup S that equals
the element x. In this case, a word is a list of positive integers where an entry i corresponds to
GeneratorsOfSemigroups(S) [i]. More specifically,

Example
EvaluateWord(Generators0fSemigroup(S), MinimalFactorization(S, x)) = x;

MinimalFactorization involves exhaustively enumerating S until the element x is found, and
s0 MinimalFactorization may be less efficient than Factorization (13.5.2) for some semi-
groups.

Unlike Factorization (13.5.2) this operation does not distinguish between semigroups and
inverse semigroups. See also EvaluateWord (13.5.1) and GeneratorsOfSemigroup (Reference:
GeneratorsOfSemigroup).

Example
gap> S := Semigroup(Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),
> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 21));

<transformation semigroup of degree 10 with 2 generators>
gap> x := Transformation([8, 8, 2, 2, 9, 2, 8, 8, 9, 9]);
Transformation( [ 8, 8, 2, 2, 9, 2, 8, 8, 9, 91 )

gap> Factorization(S, x);
[1,2,1,1,1,2,1,1,1,2,1,1,1, 2, 1]

gap> MinimalFactorization(S, x);
[1,2,1,1, 1,1, 2,2, 1]
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13.6 Generating sets

13.6.1 Generators

> Generators(S) (attribute)

Returns: A list of generators.

Generators returns a generating set that can be used to define the semigroup S. The generators
of a monoid or inverse semigroup S, say, can be defined in several ways, for example, including or
excluding the identity element, including or not the inverses of the generators. Generators uses
the definition that returns the least number of generators. If no generating set for S is known, then
GeneratorsOfSemigroup is used by default.

for a group
Generators(S) is a synonym for Generators0fGroup (Reference: GeneratorsOfGroup).

for an ideal of semigroup
Generators(S) is a synonym for Generators0fSemigroupIdeal (7.2.1).

for a semigroup
Generators(S) is a synonym for GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

for a monoid
Generators(S) is a synonym for GeneratorsOfMonoid (Reference: GeneratorsOf-
Monoid).

for an inverse semigroup
Generators(S) is a synonym for Generators0fInverseSemigroup (Reference: Genera-
torsOfInverseSemigroup).

for an inverse monoid
Generators(S) is a synonym for GeneratorsOfInverseMonoid (Reference: Generator-
sOfInverseMonoid).

Example

gap> M := Monoid ([

> Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 91),

> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91)1);;

gap> GeneratorsOfSemigroup (M) ;

[ IdentityTransformation,
Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 1),
Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 91 ) 1

gap> GeneratorsOfMonoid (M) ;

[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 91 ),
Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 91 ) 1

gap> Generators(M);

[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 91 ),
Transformation( [ 6, 3, 2, 7, 5, 1

gap> S := Semigroup(Generators(M));;

gap> Generators(S);

[ Transformation( [ 1, 4, 6,

3, 2

2,5,3,7,8,9, 91),
Transformation( [ 6, 3, 2, 7, 5

,1,8,8,9,91) 1

B



Semigroups 161

gap> Generators0fSemigroup(S);

[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 91 ),
Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 91 ) 1

13.6.2 SmallGeneratingSet

> SmallGeneratingSet(coll) (attribute)
> SmallSemigroupGeneratingSet(coll) (attribute)
> SmallMonoidGeneratingSet(coll) (attribute)
> SmallInverseSemigroupGeneratingSet(coll) (attribute)
> SmallInverseMonoidGeneratingSet(coll) (attribute)

Returns: A small generating set for a semigroup.
The attributes SmallXGeneratingSet return a relatively small generating subset of the collection
of elements coll, which can also be a semigroup. The returned value of SmallXGeneratingSet,

where applicable, has the property that
Example
X(SmallXGeneratingSet(coll)) = X(coll);

where X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid).

If the number of generators for S is already relatively small, then these functions will often return
the original generating set. These functions may return different results in different GAP sessions.

SmallGeneratingSet returns the smallest of the returned values of SmallXGeneratingSet
which is applicable to coll; see Generators (13.6.1).

As neither irredundancy, nor minimal length are proven, these functions usually return an answer
much more quickly than IrredundantGeneratingSubset (13.6.3). These functions can be used

whenever a small generating set is desired which does not necessarily needs to be minimal.
Example

gap> S := Semigroup([

> Transformation([1, 2, 3, 2, 4]),
> Transformation([1, 5, 4, 3, 2]),
> Transformation([2, 1, 4, 2, 2]),
> Transformation([2, 4, 4, 2, 1]),
> Transformation([3, 1, 4, 3, 2]),
> Transformation([3, 2, 3, 4, 1]),
> Transformation([4, 4, 3, 3, 5]),
> Transformation([5, 1, 5, 5, 31),
> Transformation([5, 4, 3, 5, 2]),
> Transformation([5, 5, 4, 5, 5]1)1);;

~ .

gap> SmallGeneratingSet(S);

[ Transformation( [ 1, 5, 4, 3, 2 ] ), Transformation( [ 3, 2, 3, 4, 1
Transformation( [ 5, 4, 3, 5, 2 1 ), Transformation( [ 1, 2, 3, 2, 4
Transformation( [ 4, 4, 3, 3, 51 ) 1]

gap> S := RandomInverseMonoid(IsPartialPermMonoid, 10000, 10);;

gap> SmallGeneratingSet(S);

[[1..10]1 ->[3, 2, 4,5,6,1, 7, 10,
[1..10] -> [ 5, 10, 8, 9, 3, 2, 4, 7
[1, 3, 4, 5,6, 7,8,9, 101 ->[1, 6

gap> M := MathieuGroup(24);;

])3
1)

B B

9, 8
6, 1
4, 8

B

1,
]

-

, 2,10, 7, 3,911

B >
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gap> mat := List([1 .. 1000], x -> Random(M));;

gap> Append(mat, [1 .. 1000] * 0);

gap> mat := List([1 .. 138], x -> List([1 .. 57], x -> Random(mat)));;
gap> R := ReesZeroMatrixSemigroup(M, mat);;

gap> U := Semigroup(List([1 .. 200], x -> Random(R)));

<subsemigroup of 57x138 Rees O-matrix semigroup with 100 generators>
gap> Length(SmallGeneratingSet(U)) ;

84

gap> S := RandomSemigroup(IsBipartitionSemigroup, 100, 4);
<bipartition semigroup of degree 4 with 96 generators>

gap> Length(SmallGeneratingSet(S));

13

162

13.6.3 IrredundantGeneratingSubset

> IrredundantGeneratingSubset(coll)

Returns: A list of irredundant generators.

(operation)

If coll is a collection of elements of a semigroup, then this function returns a subset U of coll

such that no element of U is generated by the other elements of U.

Example
gap> S := Semigroup([

> Transformation([5, 1, 4, 6, 2, 31),

> Transformation([1, 2, 3, 4, 5, 6]),

> Transformation([4, 6, 3, 4, 2, 5]),

> Transformation([5, 4, 6, 3, 1, 3]),

> Transformation([2, 2, 6, 5, 4, 3]),

> Transformation([3, 5, 5, 1, 2, 4]),

> Transformation([6, 5, 1, 3, 3, 4]),

> Transformation([1, 3, 4, 3, 2, 11)1);;

gap> IrredundantGeneratingSubset(S);

[ Transformation( [ 1, 3, 4, 3, 2, 11 ),
Transformation( [ 2, 2, 6, 5, 4, 3] ),
Transformation( [ 3, 5, 5, 1, 2, 41 ),
Transformation( [ 5, 1, 4, 6, 2, 31 ),
Transformation( [ 5, 4, 6, 3, 1, 3] ),

Transformation( [ 6, 5, 1, 3, 3, 41 ) 1]

gap> S

:= RandomInverseMonoid(IsPartialPermMonoid, 1000, 10);

<inverse partial perm monoid of degree 10 with 1000 generators>

gap> SmallGeneratingSet(S);

[[t1..10]1->[6,5,1,9,8, 3,10, 4,7, 21,

[ 1 101 ->[1, 4,6, 2,8,5,7, 10, 3,91,
1, 2, 3, 4,6,7,8,9]1->[7,5, 10, 1, 8, 4, 9, 6]
1..9]1->1[4,3,5,7,10, 9,1, 6, 811

L
L
gap> IrredundantGeneratingSubset(last);
rft+..91->104,3,5,7,10,9,1, 6,81,
[1..10]1 >[1, 4,6, 2,8,5,7, 10, 3, 91,
[1 10] ->[6,5,1,9,8, 3,10, 4,7, 211
gap> S := RandomSemigroup(IsBipartitionSemigroup, 1000, 4);
<bipartition semigroup of degree 4 with 749 generators>
gap> SmallGeneratingSet(S);
[ <bipartition: [ 1, -3]1, [ 2, -21, [ 3, -11, [ 4, -4 1>,
<bipartition: [ 1, 3, -2 1, [ 2, -1, -3 1, [ 4, -4 1>,
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<bipartition: [ 1, -4 1, [ 2, 4, -1, -31, [ 3, -2 1>,
<bipartition: [ 1, -1, -3 1, [ 2, 41, [ 3, 4, -2 1>,
<bipartition: [ 1, -2, -4 1, [ 21, [ 3, -31, [ 4, -11>,
<bipartition: [ 1, -21, [ 2, -1, -3 1, [ 3, 4, -4 1>,
<bipartition: [ 1, 3, -1 1, [ 2, -31, [ 4, -2, -4 1>,
<bipartition: [ 1, -1 1, [ 2, 4, -41, [ 3, -2, -3 1>,
<bipartition: [ 1, 3, -1 1, [ 2, -21, [ 4, -3, -4 1>,
<bipartition: [ 1, 2, -2 1, [ 3, -1, -4 1, [ 4, -3 1>,
<bipartition: [ 1, -2, -831, [ 2, -4, [ 31, [4, -11>,
<bipartition: [ 1, -1 1, [ 2, 4, -31, [ 3, -21, [ -4 1>,
<bipartition: [ 1, -3 1, [ 2, -11, [ 3, 4, 41, [ -2 1>,
<bipartition: [ 1, 2, -4 1, [ 3, -11, [ 4, -21, [ -3 1>,
<bipartition: [ 1, -3 1, [ 2, -41, [ 3, -1, =21, [41>]

gap> IrredundantGeneratingSubset(last);
[ <bipartition: [ 1, 2, -4 1, [ 3, -11, [ 4, -21, [ -3 1>,

<bipartition: [ 1, 3, -1 1, [ 2, -2 1, [ 4, -3, -4 1>,

<bipartition: [ 1, 3, -2 1, [ 2, -1, -3 1, [ 4, -4 1>,

<bipartition: [ 1, -1 1, [ 2, 4, -31, [ 3, -2 1, [ -4 1>,
<bipartition: [ 1, -3 1, [ 2, -11, [ 3, 4, -41, [ -2 1>,
<bipartition: [ 1, -3 1, [ 2, -2 1, [ 3, -11, [ 4, -4 1>,
<bipartition: [ 1, -3 1, [ 2, -41, [ 3, -1, -21, [ 41>,
<bipartition: [ 1, -2, -3]1, [ 2, -41, [ 31, [4, -11>,
<bipartition: [ 1, -2, -41, [ 21, [ 3, -31, [4, -11>1

13.6.4 MinimalSemigroupGeneratingSet

> MinimalSemigroupGeneratingSet (S) (attribute)
> MinimalMonoidGeneratingSet (S) (attribute)
> MinimalInverseSemigroupGeneratingSet (S) (attribute)
> MinimalInverseMonoidGeneratingSet (S) (attribute)

Returns: A minimal generating set for a semigroup.

WARNING: currently, no methods are installed to compute these attributes.

The attributes MinimalXGeneratingSet return a minimal generating set for the semigroup S,
with respect to length. The returned value of MinimalXGeneratingSet, where applicable, is a

minimal-length list of elements of S with the property that

Example
X(MinimalXGeneratingSet(S)) = S;

where X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid).

For certain types of semigroup, for example monogenic semigroups, a MinimalXGeneratingSet
may be known a priori, or may be deduced as a by-product of other functions. However, since there
are no methods installed to compute these attributes directly, for most semigroups it is not currently
possible to find a MinimalXGeneratingSet with the Semigroups package.

See also SmallGeneratingSet (13.6.2) and IrredundantGeneratingSubset (13.6.3).
Example

gap> S := MonogenicSemigroup(3, 6);;
gap> MinimalSemigroupGeneratingSet(S);
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[ Transformation( [ 2, 3, 4, 5, 6, 1, 6, 7, 81 ) 1
gap> S := Semigroup([

> PartialPerm([1, 2, 3, 4, 5], [1, 2, 3, 4, 51),
> PartialPerm([1, 2, 3, 4], [5, 2, 4, 11),

> PartialPerm([1, 2, 4, 51, [4, 2, 3, 11)1);
<partial perm monoid of rank 5 with 2 generators>
gap> IsMonogenicInverseMonoid(S);

true

gap> MinimalInverseMonoidGeneratingSet(S);

[ [3,4,1,51(2) 1]

13.6.5 GeneratorsSmallest (for a semigroup)

> GeneratorsSmallest(S)
Returns: A set of elements.
For a semigroup S, GeneratorsSmallest returns the lexicographically least set of elements X
such that X generates S as a semigroup, and such that X is lexicographically ordered and has the
property that each X[1i] is not generated by X[1], X[2], ., X[i-11.
It can be difficult to find the set of generators X, and it might contain a substantial proportion of
the elements of S.
Two semigroups have the same set of elements if and only if their smallest generating sets are
equal. However, due to the complexity of determining the GeneratorsSmallest, this is not the

method used by the Semigroups package when comparing semigroups.
Example

(attribute)

gap> S := Monoid ([
> Transformation([1, 3, 4, 11),

> Transformation([2, 4, 1, 2]),

> Transformation([3, 1, 1, 3]),

> Transformation([3, 3, 4, 11)1);

<transformation monoid of degree 4 with 4 generators>
gap> GeneratorsSmallest(S)

[ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 1, 1, 21 ),
Transformation( [ 1, 1, 1, 3 ] ), Transformation( [ 1, 1, 1] ),
Transformation( [ 1, 1, 2, 1 ] ), Transformation( [ 1, 1, 2, 2] ),
Transformation( [ 1, 1, 3, 1 ] ), Transformation( [ 1, 1, 3, 3] ),
Transformation( [ 1, 1 ] ), Transformation( [ 1, 1, 4, 1),
Transformation( [ 1, 2, 1, 1 ] ), Transformation( [ 1

IdentityTransformation, Transformation( [ 1, 3, 1, 1 ]

B

1
1
1
1
1
2,2,11),
)
1
1
4

Transformation( [ 1, 3, 4, 1 ] ), Transformation( [ 2, 1, 1, 21 ),
Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 4, 1, 2 ] ),
Transformation( [ 3, 3, 3 ] ), Transformation( [ 3, 3, 4, 1 ] ) 1]
gap> T := Semigroup(Bipartition([[1, 2, 3], [4, -11, [-21, [-3], [-411),
> Bipartition([[1, -3, -41, [2, 3, 4, -2]1, [-111),
> Bipartition([[1, 2, 3, 4, -2], [-1, -4]1, [-311),
> Bipartition([[1, 2, 3, 41, [-11, [-21, [-3, -41D),
> Bipartition([[1, 2, -1, -2], [3, 4, -31, [-411));
<bipartition semigroup of degree 4 with 5 generators>
gap> GeneratorsSmallest(T);
[ <bipartitiom: [ 1, 2, 3, 4, -1, -2, -3 1, [ -4 1>,
<bipartition: [ 1, 2, 3, 4, -1, -2 1, [ -31, [ -4 1>,
<bipartition: [ 1, 2, 3, 4, -1 1, [ -21, [ -31, [ -4 1>,
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<bipartition: [ 1, 2, 3, 4, -2, -3, -4 1, [ -1 1>,

<bipartition: [ 1, 2, 3, 4, -2 1, [ -1, -4 1, [ -3 1>,
<bipartition: [ 1, 2, 3, 4, -2 1, [ -11, [ -3, -4 1>,
<bipartition: [ 1, 2, 3, 4, -3 1, [ -1, -21, [ -4 1>,
<bipartition: [ 1, 2, 3, 41, [ -1, -2, -3 1, [ -4 1>,
<bipartition: [ 1, 2, 3, 4, -3, -41, [ -1 1, [ -2 1>,
<bipartition: [ 1, 2, 31, [ 4, -1, -2, -3 1, [ -4 1>,
<bipartition: [ 1, 2, -1, -2 1, [ 3, 4, -31, [ -4 1>,
<bipartition: [ 1, -3 1, [ 2, 3, 4, -1, -2 1, [ -4 1>,
<bipartition: [ 1, -3, -41, [ 2, 3, 4, -2 1, [ -11>1]

13.7 Minimal ideals and multiplicative zeros

In this section we describe the attributes of a semigroup that can be found using the Semigroups
package.

13.7.1 Minimalldeal

> MinimalIdeal(S) (attribute)
Returns: The minimal ideal of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment.
It is significantly easier to find the minimal Z-class of a semigroup, than to find its Z-classes.
See also RepresentativeOfMinimalIdeal (13.7.2), PartialOrder0fDClasses (12.1.10),
IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and MinimalDClass
(12.1.6).

Example
gap> S := Semigroup(
> Transformation([3, 4, 1, 3, 6, 3, 4, 6, 10, 11),
> Transformation([8, 2, 3, 8, 4, 1, 3, 4, 9, 71));;

gap> MinimalIdeal(S);
<simple transformation semigroup ideal of degree 10 with 1 generator>
gap> Elements(MinimalIdeal(S));

[ Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1171 ),
Transformation( [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 1),
Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ] ),
Transformation( [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 1 ),
Transformation( [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 1) 1

gap> x := Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8]);;

gap> D := DClass(S, x);;

gap> ForAll(GreensDClasses(S), x -> IsGreensLessThanOrEqual(D, x));
true

gap> Minimalldeal (POI(10));

<partial perm group of ramnk 10>

gap> MinimalIdeal (BrauerMonoid(6)) ;

<simple bipartition *-semigroup ideal of degree 6 with 1 generator>

13.7.2 RepresentativeOfMinimalldeal

> Representative0fMinimalIdeal(S) (attribute)
> Representative0fMinimalDClass(S) (attribute)
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Returns: An element of the minimal ideal of a semigroup.

The minimal ideal of a semigroup is the least ideal with respect to containment.

This method returns a representative element of the minimal ideal of S without having to create the
minimal ideal itself. In general, beyond being a member of the minimal ideal, the returned element
is not guaranteed to have any special properties. However, the element will coincide with the zero
element of S if one exists.

This method works particularly well if S is a semigroup of transformations or partial permutations.

See also MinimalIdeal (13.7.1) and MinimalDClass (12.1.6).
Example
gap> S := SymmetricInverseSemigroup(10);;
gap> RepresentativeOfMinimalIdeal(S);
<empty partial perm>
gap> B := Semigroup([
> Bipartition([[1, 2], [3, 6, -2]1, [4, 5, -3, -4]1, [-1, -6], [-5]11),
> Bipartition([[1, -11, [2], [31, [4, -31, [5, 6, -5, -61,
> [-2, -41D1)s;
gap> RepresentativeOfMinimalIdeal(B);
<bipartition: [ 1, 21, [ 3,61, [ 4,51, [ -1, -5, -61,

(-2, -41,[-31>
gap> S := Semigroup(Transformation([5, 1
> Transformation([3, 5, 5, 1, 6, 21));;
gap> RepresentativeOfMinimalDClass(S);
Transformation( [ 1, 2, 2, 5, 5, 11 )
gap> MinimalDClass(S) ;
<Green’s D-class: Transformation( [ 1, 2, 2, 5, 5, 1 1 )>

13.7.3 MultiplicativeZero

> MultiplicativeZero(S) (attribute)
Returns: The zero element of a semigroup.
MultiplicativeZero returns the zero element of the semigroup S if it exists and fail if it does
not. See also MultiplicativeZero (Reference: MultiplicativeZero).

Example
gap> S := Semigroup(Transformation([1, 4, 2, 6, 6, 5, 2]),
> Transformation([1, 6, 3, 6, 2, 1, 61));;

gap> MultiplicativeZero(S);
Transformation( [ 1, 1, 1, 1, 1, 1, 1] )

gap> S := Semigroup(Transformation([2, 8, 3, 7, 1, 5, 2, 6]),

> Transformation([3, 5, 7, 2, 5, 6, 3, 8]),

> Transformation([6, 7, 4, 1, 4, 1, 6, 2]1),

> Transformation([8, 8, 5, 1, 7, 5, 2, 8]));;
gap> MultiplicativeZero(S);

fail

gap> S := InverseSemigroup(

> PartialPerm([1, 3, 41, [5, 3, 11),

> PartialPerm([1, 2, 3, 4], [4, 3, 1, 2]),

> PartialPerm([1, 3, 4, 51, [2, 4, 5, 31));;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> S := PartitionMonoid(6);

<regular bipartition *-monoid of size 4213597, degree 6 with 4
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generators>

gap> MultiplicativeZero(S);

fail

gap> S := DualSymmetricInverseMonoid(6) ;

<inverse block bijection monoid of degree 6 with 3 generators>
gap> MultiplicativeZero(S);

<block bijection: [ 1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6 1>

13.7.4 UnderlyingSemigroupOfSemigroupWithAdjoinedZero

> UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S) (attribute)

Returns: A semigroup, or fail.

If S is a semigroup for which the property IsSemigroupWithAdjoinedZero (14.1.19) is true,
(i.e. S has a MultiplicativeZero (13.7.3) and the set S\ {0} is a subsemigroup of S), then this
method returns the semigroup S \ {0}.

Otherwise, if S is a semigroup for which the property IsSemigroupWithAdjoinedZero

(14.1.19) is false, then this method returns fail.
Example

gap> S := Semigroup([

> Transformation([2, 3, 4, 5, 1, 6]),

> Transformation([2, 1, 3, 4, 5, 6]),

> Transformation([6, 6, 6, 6, 6, 6]1)]);

<transformation semigroup of degree 6 with 3 generators>
gap> MultiplicativeZero(S);

Transformation( [ 6, 6, 6, 6, 6, 6 ] )

gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
<transformation semigroup of degree 5 with 2 generators>
gap> IsGroupAsSemigroup(G) ;

true

gap> IsZeroGroup(S);

true

gap> S := SymmetricInverseMonoid(6);;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
fail

13.8 Group of units and identity elements

13.8.1 GroupOfUnits

> Group0fUnits(S) (attribute)

Returns: The group of units of a semigroup or fail.

GroupO0fUnits returns the group of units of the semigroup S as a subsemigroup of S if it exists
and returns fail if it does not. Use IsomorphismPermGroup (6.5.5) if you require a permutation
representation of the group of units.

If a semigroup S has an identity e, then the group of units of S is the set of those s in S such that
there exists t in S where s*t=t*s=e. Equivalently, the group of units is the .7-class of the identity
of S.
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See also GreensHClassOfElement (Reference: GreensHClassOfElement),
IsMonoidAsSemigroup (14.1.12), and MultiplicativeNeutralElement (Reference: Mul-
tiplicativeNeutralElement).

Example
gap> S := Semigroup(
> Transformation([1, 2, 5, 4, 3, 8, 7, 61),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 41));;
gap> Size(S);
5304
gap> StructureDescription(Group0fUnits(S));
"C2 x S4"
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
> [2, 4, 5, 3, 6, 7, 10, 9, 8, 11),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 10],
> (8, 2, 3, 1, 4, 5, 10, 6, 91));;
gap> StructureDescription(GroupOfUnits(S));
IICSH
gap> S := InverseSemigroup(
> PartialPerm([1, 3, 4], [4, 3, 5]),
> PartialPerm([1, 2, 3, 51, [3, 1, 5, 21));;
gap> Group0fUnits(S);
fail
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-211),
> Bipartition([[1, -11, [2, 3, -2, -3]1),
> Bipartition([[1, -2], [2, -3], [3, -111),
> Bipartition([[1], [2, 3, -2]1, [-1, -311));;
gap> StructureDescription(GroupOfUnits(S));
||CB||

13.9 Idempotents

13.9.1 Idempotents

> Idempotents(obj[, nl) (attribute)

Returns: A list of idempotents.

The argument obj should be a semigroup, Z-class, .7 -class, .Z-class, or Z-class.

If the optional second argument n is present and obj is a semigroup, then a list of the idempotents
in obj of rank n is returned. If you are only interested in the idempotents of a given rank, then the
second version of the function will probably be faster. However, if the optional second argument is
present, then nothing is stored in obj and so every time the function is called the computation must
be repeated.

This functions produce essentially the same output as the GAP library function with the same
name; see Idempotents (Reference: Idempotents). The main difference is that this function can be
applied to a wider class of objects as described above.
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See also IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (12.3.2)

IsGroupHClass (Reference:

(12.4.1).

gap> S
>

L]

gap> x

gap> X

gap> L

gap> D

gap> L

gap> H

gap> S

L]

gap> R :

gap> Idempotents(R) ;

[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 2, 2,

:= Transformation([4, 2, 2, 41);;

:= GreensLClassOfElement (S, x);;

gap> AsSet(Idempotents(L));

[ Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 4, 2,

:= DClass0fLClass(L);;

gap> AsSet(Idempotents(D));

[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3,
Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 4, 2,

:= GreensLClassOfElement (S, Transformation([3, 1, 1,

gap> AsSet(Idempotents(L));

[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3,

:= GroupHClass(D);

<Green’s H-class: Transformation( [ 1, 1, 3, 3 ] )>

gap> Idempotents(H);

[ Transformation( [ 1, 1, 3, 31 ) ]

IsGroupHClass), NrIdempotents (13.9.2), and GroupHClass

Example

:= Semigroup(Transformation([2, 3, 4, 1]),

Transformation([3, 3, 1, 11));;

gap> Idempotents(S, 1);

gap> AsSet(Idempotents(S, 2));
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3,
Transformation( [ 2, 2, 4, 4 ]
gap> AsSet(Idempotents(S));
[ Transformation( [ 1, 1, 3, 3 1]
Transformation( [ 1, 3, 3, 1 ] ), Transformation( [ 2, 2,
Transformation( [ 4, 2, 2, 4 ]
:= Transformation([2, 2, 4, 41);;

), Transformation( [ 4, 2,

), IdentityTransformation,

) ]

GreensRClassOfElement (S, x);;

:= InverseSemigroup(

> PartialPerm([10, 6, 3, 4, 9, 0, 11),

> PartialPerm([6, 10, 7, 4, 8, 2, 9, 11));;
gap> Idempotents(S, 1);

[ <identity partial perm on [ 4 1> ]

gap> Idempotents(S, 0);

3, 1]
2, 41
4, 4]
4, 4]
2, 4]
3, 1]
2, 4 1]
315
3, 1]

13.9.2 Nrldempotents

> NrIdempotents(obj)
Returns: A positive integer.
This function returns the number of idempotents in obj where obj can be a semigroup, Z-,
-, -, or Z-class. If the actual idempotents are not required, then it is more efficient to use
NrIdempotents(obj) than Length(Idempotents(obj)) since the idempotents themselves are not
created when NrIdempotents is called.

See

also Idempotents (Reference: Idempotents) and

Idempotents

(attribute)

(13.9.1),
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IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (12.3.2)
IsGroupHClass (Reference: IsGroupHClass), and GroupHClass (12.4.1).

Example
gap> S := Semigroup(Transformation([2, 3, 4, 1]),
> Transformation([3, 3, 1, 11));;
gap> NrIdempotents(S);
5
gap> f := Transformation([2, 2, 4, 41);;

gap> R := GreensRClassOfElement (S, f);;
gap> Nrldempotents(R);

2
gap> f := Transformation([4, 2, 2, 4]);;
gap> L := GreensLClassOfElement(S, £);;

gap> NrIdempotents(L);

2

gap> D := DClassOfLClass(L);;

gap> NrIdempotents(D);

4

gap> L := GreensLClassOfElement (S, Transformation([3, 1, 1, 31));;
gap> NrIdempotents(L);

2

gap> H := GroupHClass(D);;

gap> NrIdempotents(H);

1

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 5, 7, 9, 10],

> [6, 7, 2, 9, 1, 5, 31),

> PartialPerm([1, 2, 3, 5, 6, 7, 9, 10],

> (s, 1, 9, 4, 10, 5, 6, 71));;
gap> NrIdempotents(S);

236

gap> f := PartialPerm([2, 3, 7, 9, 10],

> [7, 2, 1, 5, 31);;

gap> D := DClassNC(S, £);;
gap> NrIdempotents(D);
13

13.9.3 IdempotentGeneratedSubsemigroup

> IdempotentGeneratedSubsemigroup (S) (attribute)
Returns: A semigroup.
IdempotentGeneratedSubsemigroup returns the subsemigroup of the semigroup S generated
by the idempotents of S.

See also Idempotents (13.9.1) and SmallGeneratingSet (13.6.2).
Example

gap> S := Semigroup(Transformation([1, 1]),

> Transformation([2, 1]1),

> Transformation([1, 2, 2]),

> Transformation([1, 2, 3, 4, 5, 1]),
> Transformation([1, 2, 3, 4, 5, 5]),
> Transformation([1, 2, 3, 4, 6, 5]),
> Transformation([1, 2, 3, 5, 4]),
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> Transformation([1, 2, 3, 7, 4, 5, 7]1),

> Transformation([1, 2, 4, 8, 8, 3, 8, 7]1),
> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),
> Transformation([7, 7, 7, 4, 5, 6, 11));;
gap> IdempotentGeneratedSubsemigroup(S) =

> Monoid(Transformation([1, 1]),

> Transformation([1, 2, 1]1),

> Transformation([1, 2, 2]),

> Transformation([1, 2, 3, 1]),

> Transformation([1, 2, 3, 2]),

> Transformation([1, 2, 3, 4, 1]),

> Transformation([1, 2, 3, 4, 2]),

> Transformation([1, 2, 3, 4, 4]),

> Transformation([1, 2, 3, 4, 5, 1]),

> Transformation([1, 2, 3, 4, 5, 2]),

> Transformation([1, 2, 3, 4, 5, 5]),

> Transformation([1, 2, 3, 4, 5, 7, 7]1),

> Transformation([1, 2, 3, 4, 7, 6, 7]),

> Transformation([1, 2, 3, 6, 5, 6]),

> Transformation([1, 2, 3, 7, 5, 6, 71),

> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),

> Transformation([2, 2]));

true

gap> S := SymmetricInverseSemigroup(5);

<symmetric inverse monoid of degree 5>

gap> IdempotentGeneratedSubsemigroup(S);

<inverse partial perm monoid of rank 5 with 5 generators>
gap> S := DualSymmetricInverseSemigroup(5);

<inverse block bijection monoid of degree 5 with 3 generators>
gap> IdempotentGeneratedSubsemigroup(S);

<inverse block bijection monoid of degree 5 with 10 generators>
gap> IsSemilattice(last);

true

13.10 Maximal subsemigroups

The Semigroups package provides methods to calculate the maximal subsemigroups of a finite semi-
group, subject to various conditions. A maximal subsemigroup of a semigroup is a proper subsemi-
group that is contained in no other proper subsemigroup of the semigroup.

When computing the maximal subsemigroups of a regular Rees (0-)matrix semigroup over a
group, additional functionality is available. As described in [GGR68], a maximal subsemigroup of
a finite regular Rees (0-)matrix semigroup over a group is one of 6 possible types. Using the Semi-
groups package, it is possible to search for only those maximal subsemigroups of certain types.

A maximal subsemigroup of such a Rees (0-)matrix semigroup R over a group G is either:

1. {0};
2. formed by removing 0;

3. formed by removing a column (a non-zero .Z’-class);
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4. formed by removing a row (a non-zero Z#-class);
5. formed by removing a set of both rows and columns;

6. isomorphic to a Rees (0-)matrix semigroup of the same dimensions over a maximal subgroup
of G (in particular, the maximal subsemigroup intersects every .77 -class of R).

Note that if R is a Rees matrix semigroup then it has no maximal subsemigroups of types 1, 2, or 5.
Only types 3, 4, and 6 are relevant to a Rees matrix semigroup.

13.10.1 MaximalSubsemigroups (for a finite semigroup)

> MaximalSubsemigroups(S) (attribute)
> MaximalSubsemigroups(S, opts) (operation)

Returns: The maximal subsemigroups of S.

If S is a finite semigroup, then the attribute MaximalSubsemigroups returns a list of the non-
empty maximal subsemigroups of S. The methods used by MaximalSubsemigroups are based on
[GGR68], and are described in [DMW16].

It is computationally expensive to search for the maximal subsemigroups of a semigroup, and
so computations involving MaximalSubsemigroups may be very lengthy. A substantial amount
of information on the progress of MaximalSubsemigroups is provided through the info class
InfoSemigroups (2.6.1), with increasingly detailed information given at levels 1, 2, and 3.

The behaviour of MaximalSubsemigroups can be altered via the second argument opts, which
should be a record. The optional components of opts are:

gens (a boolean)
If opts.gens is false or unspecified, then the maximal subsemigroups themselves are re-
turned and not just generating sets for these subsemigroups.

It can be more computationally expensive to return the generating sets for the maximal sub-
semigroups, than to return the maximal subsemigroups themselves.

contain (a list)
If opts.contain is duplicate-free list of elements of S, then MaximalSubsemigroups will
search for the maximal subsemigroups of S which contain those elements.

D (a Z-class)
For a maximal subsemigroup M of a finite semigroup S, there exists a unique Z-class which con-
tains the complement of M in S. In other words, the elements of S which M lacks are contained
in a unique Z-class.

If opts .Dis a Z-class of S, then MaximalSubsemigroups will search exclusively for those
maximal subsemigroups of S whose complement is contained in opts .D.

types (a list)
This option is relevant only if S is a regular Rees (0-)matrix semigroup over a group.

As described at the start of this subsection, 13.10, a maximal subsemigroup of a regular Rees
(0-)matrix semigroup over a group is one of 6 possible types.

If S is a regular Rees (0-)matrix semigroup over a group and opts .types is a subset of [1
6], then MaximalSubsemigroups will search for those maximal subsemigroups of S of
the types enumerated by opts . types.
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The default value for this optionis [1 .. 6] (i.e. no restriction).

Example

gap> S := FullTransformationSemigroup(3);

<full transformation monoid of degree 3>
gap> MaximalSubsemigroups(S);

[ <transformation semigroup of degree 3 with 7 generators>,
<transformation semigroup of degree 3 with 7 generators>,
<transformation semigroup of degree 3 with 7 generators>,
<transformation semigroup of degree 3 with 7 generators>,
<transformation monoid of degree 3 with 5 generators> ]

gap> MaximalSubsemigroups(S,

> rec(gens := true, D := DClass(S, Transformation([2, 2, 3]))));

[ [ Transformation( [ 1, 1, 1 ] ), Transformation( [ 3, 3, 3 ] ),
Transformation( [ 2, 2, 2 1 ), IdentityTransformation,
Transformation( [ 2, 3, 1 ] ), Transformation( [ 2, 11 ) 1 1]

gap> MaximalSubsemigroups(S,

> rec(contain := [Transformation([2, 3, 11)1));

[ <transformation semigroup of degree 3 with 7 generators>,
<transformation monoid of degree 3 with 5 generators> ]

gap> R := PrincipalFactor(

> DClass(FullTransformationMonoid(4), Transformation([2, 2])));

<Rees O-matrix semigroup 6x4 over Group([ (2,3,4), (2,4) 1)>

gap> MaximalSubsemigroups(R, rec(types := [5],

> contain := [RMSElement(R, 1, (), 1),

> RMSElement (R, 1, (2, 3), 2)1));

[ <subsemigroup of 6x4 Rees O-matrix semigroup with 10 generators>,
<subsemigroup of 6x4 Rees O-matrix semigroup with 10 generators>,
<subsemigroup of 6x4 Rees O-matrix semigroup with 10 generators>,
<subsemigroup of 6x4 Rees O-matrix semigroup with 10 generators> ]

13.10.2 NrMaximalSubsemigroups

> NrMaximalSubsemigroups (S) (attribute)

Returns: The number of maximal subsemigroups of S.

If S is a finite semigroup, then NrMaximalSubsemigroups returns the number of non-empty
maximal subsemigroups of S. The methods used by MaximalSubsemigroups are based on [GGR68],
and are described in [DMW16].

It can be significantly faster to find the number of maximal subsemigroups of a semigroup than to
find the maximal subsemigroups themselves.

Unless the maximal subsemigroups of S are already known, the command
NrMaximalSubsemigroups(S) simply calls the command MaximalSubsemigroups(S,
rec(number := true)).

For more information about searching for maximal subsemigroups of a finite semigroup in
the Semigroups package, and for information about the options available to alter the search, see
MaximalSubsemigroups (13.10.1). By supplying the additional option opts .number :=true, the
number of maximal subsemigroups will be returned rather than the subsemigroups themselves.
Example
gap> S := FullTransformationSemigroup(3);
<full transformation monoid of degree 3>
gap> NrMaximalSubsemigroups(S);
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5

gap> S := RectangularBand(3, 4);;

gap> NrMaximalSubsemigroups(S);

7

gap> R := PrincipalFactor(

> DClass(FullTransformationMonoid(4), Transformation([2, 2])));
<Rees O-matrix semigroup 6x4 over Group([ (2,3,4), (2,4) 1)>

gap> MaximalSubsemigroups(R, rec(number := true, types := [3, 4]));
10

13.10.3 IsMaximalSubsemigroup

> IsMaximalSubsemigroup(S, T) (operation)
Returns: true or false.
If S and T are semigroups, then IsMaximalSubsemigroup returns true if and only if T is a
maximal subsemigroup of S.
A maximal subsemigroup of S is a proper subsemigroup of S which is contained in no other proper
subsemigroup of S.
Example

gap> S := ZeroSemigroup(2);;

gap> IsMaximalSubsemigroup(S, Semigroup(MultiplicativeZero(S)));
true

gap> S := FullTransformationSemigroup(4);

<full transformation monoid of degree 4>

gap> T := Semigroup(Transformation([3, 4, 1, 2]),

> Transformation([1, 4, 2, 3]),

> Transformation([2, 1, 1, 31));
<transformation semigroup of degree 4 with 3 generators>

gap> IsMaximalSubsemigroup(S, T);

true

gap> R := Semigroup(Transformation([3, 4, 1, 2]),
> Transformation([1, 4, 2, 2]),
> Transformation([2, 1, 1, 3]1));

<transformation semigroup of degree 4 with 3 generators>
gap> IsMaximalSubsemigroup(S, R);
false

13.11 The normalizer of a semigroup

13.11.1 Normalizer (for a perm group, semigroup, record)

> Normalizer(G, S[, opts]) (operation)
> Normalizer(S[, opts]) (operation)

Returns: A permutation group.

In its first form, this function returns the normalizer of the transformation, partial perm, or biparti-
tion semigroup S in the permutation group G. In its second form, the normalizer of S in the symmetric
groupon [1 .. n] where n is the degree of S is returned.

The NORMALIZER of a transformation semigroup S in a permutation group G in the subgroup H
of G consisting of those elements in g in G conjugating S to S,i.e. S ~ g = S.
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Analogous definitions can be given for a partial perm and bipartition semigroups.

The method used by this operation is based on Section 3 in [ABMN10].

The optional final argument opts allows you to specify various options, which determine how the
normalizer is calculated. The values of these options can dramatically change the time it takes for this
operation to complete. In different situations, different options give the best performance.

The argument opts should be a record, and the available options are:

random
If this option has the value true, then the non-deterministic algorithms in genss are used in
Normalizer. So, there is some chance that Normalizer will return an incorrect result in this
case, but these methods can also be much faster than the deterministic algorithms which are
used if this option is false.

The default value for this option is false.

lambdastab
If this option has the value true, then Normalizer initially finds the setwise stabilizer of
the images or right blocks of the semigroup S. Sometimes this improves the performance of
Normalizer and sometimes it does not. If this option in false, then this setwise stabilizer is
not found.

The default value for this option is true.

rhostab
If this option has the value true, then Normalizer initially finds the setwise stabilizer of the
kernels, domains, or left blocks of the semigroup S. Sometimes this improves the performance
of Normalizer and sometimes it does not. If this option is false, the this setwise stabilizer is
not found.

If S is an inverse semigroup, then this option is ignored.

The default value for this option is true.
Example

gap> S := BrauerMonoid(8);
<regular bipartition *-monoid of degree 8 with 3 generators>
gap> StructureDescription(Normalizer(S));

n S8 n

gap> S := InverseSemigroup(PartialPerm([2, 5, 6, 3, 8]),

> PartialPerm([3, 6, 0, 2, 0, 0, 5, 71));;
gap> Normalizer(S, rec(random := true, lambdastab := false));

#I Have 33389 points.
#I Have 40136 points in new orbit.
Group((Q))

13.12 Attributes of transformations and transformation semigroups

13.12.1 ComponentRepsOfTransformationSemigroup

> ComponentRepsOfTransformationSemigroup(S) (attribute)
Returns: The representatives of components of a transformation semigroup.
This function returns the representatives of the components of the action of the transformation
semigroup S on the set of positive integers not greater than the degree of S.


 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html 
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The representatives are the least set of points such that every point can be reached from some
representative under the action of S.

Example

gap> S := Semigroup(

> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 121));;
gap> ComponentRepsOfTransformationSemigroup(S);

[ 2,3, 8]

13.12.2 ComponentsOfTransformationSemigroup

> ComponentsOfTransformationSemigroup(S)
Returns: The components of a transformation semigroup.
This function returns the components of the action of the transformation semigroup S on the set

of positive integers not greater than the degree of S; the components of S partition this set.
Example

(attribute)

gap> S := Semigroup(

> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),

> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]1));;
gap> ComponentsOfTransformationSemigroup(S) ;

Lt 2,3, 4,5,6,7,8,9, 10, 11, 12 ] ]

13.12.3 CyclesOfTransformationSemigroup

> CyclesOfTransformationSemigroup (S)
Returns: The cycles of a transformation semigroup.
This function returns the cycles, or strongly connected components, of the action of the transfor-

mation semigroup S on the set of positive integers not greater than the degree of S.
Example

(attribute)

gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]1));;
gap> CyclesOfTransformationSemigroup(S);
(121, (1, 121, [ 1, 11, 12, 5, 4, 6 1],
[ 1, 11, 12, 5, 4, 10, 9, 61, [ 1, 12, 5, 4, 6 1,
(1, 12, 5, 4, 10, 9, 61, [ 1, 12, 5, 4, 10, 9, 11 ],
(11, 12, 5, 4, 10, 91, [ 12, 5, 4, 10, 71, [ 4, 10, 711

13.12.4 DigraphOfActionOnPairs (for a transformation semigroup)

> DigraphOfActionOnPairs(S)
> DigraphOfActionOnPairs(S, n)

Returns: A digraph, or fail.

If S is a transformation semigroup and n is a non-negative integer such that S acts on the points
[1 .. nl], then DigraphOfActionOnPairs(S, n) returns a digraph representing the OnSets
(Reference: OnSets) action of S on the pairs of pointsin [1 .. =n].

If the optional argument n is not specified, then by default the degree of S will be chosen for n;
see Degree0fTransformationSemigroup (Reference: DegreeOfTransformationSemigroup). If
the semigroup S does notacton [1 .. =n],thenDigraphOfActionOnPairs(S, n) returns fail.

(attribute)
(attribute)
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The digraph returned by DigraphOfActionOnPairs has n + (5) vertices: the vertices [1
n] correspond to the points in [1 .. n], and the remaining vertices correspond to the pairs
of points in [1 .. n]. This correspondence is stored in the vertex labels of the digraph; see
DigraphVertexLabels (Digraphs: DigraphVertexLabels).

The edges of the digraph are defined as follows. For each pair {i, j}in [1 .. =], and for
each generator f in Generators0fSemigroup(S), there is an edge from the vertex corresponding
to {i, j} to the vertex corresponding to {i ~ £, j ~ f}. Since f is a transformation, the set {i
~ f, j ~ £} may correspond to a pair (in the case that i ~ £ <> j =~ f), or to a point (in the
case that i ~ £ = j =~ £f). The label of an edge is the position of the first transformation within
GeneratorsOfSemigroup(S) that maps the pair corresponding to the source vertex to the pair/point
corresponding to the range vertex. See Generators0fSemigroup (Reference: GeneratorsOfSemi-
group) and DigraphEdgeLabels (Digraphs: DigraphEdgeLabels) for further information.

Note that the digraph returned by DigraphOfActionOnPairs has no multiple edges; see
IsMultiDigraph (Digraphs: IsMultiDigraph).

Example
gap> x := Transformation([2, 4, 3, 4, 7, 1, 61);;
gap> y := Transformation([3, 3, 2, 3, 5, 1, 5]);;

gap> S := Semigroup(x, y);

<transformation semigroup of degree 7 with 2 generators>
gap> gr := DigraphOfActionOnPairs(S);

<digraph with 28 vertices, 41 edges>

gap> OnSets([2, 5], x);

[4, 7]

gap> DigraphVertexLabel(gr, 16);

[ 2, 5]

gap> DigraphVertexLabel(gr, 25);

[ 4, 7]

gap> DigraphEdgelLabel(gr, 16, 25);
1

gap> gr := DigraphOfActionOnPairs(S, 4);

<digraph with 10 vertices, 11 edges>

gap> DigraphVertexLabels(gr) ;

[1,2,3,4,[1,21, 1,31, (1,41, [2,31,0[2, 41,

[3,41]
gap> DigraphOfActionOnPairs(S, 5);
fail

13.12.5 DigraphOfActionOnPoints (for a transformation semigroup)

> DigraphOfActionOnPoints(S) (attribute)
> DigraphOfActionOnPoints(S, n) (attribute)

Returns: A digraph, or fail.

If S is a transformation semigroup and n is a non-negative integer such that S acts on the points
[1 .. n],thenDigraphOfActionOnPoints(S, n) returns a digraph representing the OnPoints
(Reference: OnPoints) action of S ontheset [1 .. nl.

If the optional argument n is not specified, then by default the degree of S will be chosen for n;
see Degree0fTransformationSemigroup (Reference: DegreeOfTransformationSemigroup). If
the semigroup S does notacton [1 .. =n],thenDigraphOfActionOnPairs(S, n) returns fail.

The digraph returned by DigraphOfActionOnPairs has n vertices, where the vertex i
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corresponds to the point i. For each point i in [1 .. n], and for each generator f in
GeneratorsOfSemigroup(S), there is an edge from the vertex i to the vertex i ~ f. See
GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) for further information.

Note that the digraph returned by DigraphOfActionOnPoints has no multiple edges; see
IsMultiDigraph (Digraphs: IsMultiDigraph).
Example
gap> x := Transformation([2, 4, 2, 4, 7, 1, 61);;
gap> y := Transformation([3, 3, 2, 3, 5, 1, 51);;
gap> S := Semigroup(x, y);
<transformation semigroup of degree 7 with 2 generators>
gap> gr := DigraphOfActionOnPoints(S);
<digraph with 7 vertices, 12 edges>
gap> OnPoints(2, x);

4

gap> gr2 := DigraphOfActionOnPoints(S, 4);
<digraph with 4 vertices, 7 edges>

gap> gr2 = InducedSubdigraph(gr, [1 .. 4]1);
true

gap> DigraphOfActionOnPoints(S, 5);

fail

13.12.6 FixedPointsOfTransformationSemigroup (for a transformation semigroup)

> FixedPointsOfTransformationSemigroup(S) (attribute)
Returns: A set of positive integers.
If S is a transformation semigroup, then FixedPointsOfTransformationSemigroup(S) re-
turns the set of points 1 in [1 .. DegreeOfTransformationSemigroup(S)] suchthati ~ f =
iforallfinS.

Example
gap> f := Transformation([1, 4, 2, 4, 3, 7, 71);

Transformation( [ 1, 4, 2, 4, 3, 7, 71 )

gap> S := Semigroup(f);

<commutative transformation semigroup of degree 7 with 1 generator>
gap> FixedPointsOfTransformationSemigroup(S);

[1, 4, 7]

13.12.7 IsTransitive (for a transformation semigroup and a set)

> IsTransitive(S[, XJ) (property)
> IsTransitive(S[, n]) (property)

Returns: true or false.

A transformation semigroup S is transitive or strongly connected on the set X if for every i, jin
X there is an element s in S such thati ~ s = j.

If the optional second argument is a positive integer n, then IsTransitive returns true if S is
transitive on [1 .. n], and false if it is not.

If the optional second argument is not provided, then the degree of S is used by default; see

Degree0fTransformationSemigroup (Reference: DegreeOfTransformationSemigroup).
Example

gap> S := Semigroup([
> Bipartition([
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> (1, 21, [3, 6, -21, [4, 5, -3, -41, [-1, -61, [-511),

> Bipartition([

> (1, -41, [2, 38, 4, &1, (6], [-1, -6], [-2, -3], [-511D1);
<bipartition semigroup of degree 6 with 2 generators>

gap> AsSemigroup(IsTransformationSemigroup, S);

<transformation semigroup of size 11, degree 12 with 2 generators>
gap> IsTransitive(last);

false

gap> IsTransitive (AsSemigroup(Group((1, 2, 3))));

true

13.12.8 SmallestElementSemigroup

> SmallestElementSemigroup(S) (attribute)
> LargestElementSemigroup (S) (attribute)

Returns: A transformation.

These attributes return the smallest and largest element of the transformation semigroup S, re-
spectively. Smallest means the first element in the sorted set of elements of S and largest means the
last element in the set of elements.

It is not necessary to find the elements of the semigroup to determine the smallest or largest
element, and this function has considerable better performance than the equivalent ELements (S) [1]

and Elements(S) [Size(S)].
Example

gap> S := Monoid(

> Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),

> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 71));
<transformation monoid of degree 11 with 2 generators>
gap> SmallestElementSemigroup(S);

IdentityTransformation

gap> LargestElementSemigroup(S);

Transformation( [ 11, 11, 10, 10, 7, 6, 5, 6, 2, 2, 4 ] )

13.12.9 CanonicalTransformation

> CanonicalTransformation(trans[, n]) (function)

Returns: A transformation.

If trans is a transformation, and n is a non-negative integer such that the restriction of trans
to [1 .. n] defines a transformation of [1 .. n], then CanonicalTransformation returns a
canonical representative of the transformation trans restricted to [1 .. n].

More specifically, let C(n) be a class of transformations of degree n such that AsDigraph returns
isomorphic digraphs for every pair of element elements in C(n). Recall that for a transformation
trans and integer n the function AsDigraph returns a digraph with n vertices and an edge with
source x and range x~trans for every x in [1 .. n]. See AsDigraph (Digraphs: AsDigraph).
Then CanonicalTransformation returns a canonical representative of the class C(n) that contains

trans.

Example
gap> x := Transformation([5, 1, 4, 1, 11);
Transformation( [ 5, 1, 4, 1, 1 1)

gap> y := Transformation([3, 3, 2, 3, 11);




Semigroups 180

Transformation( [ 3, 3, 2, 3, 1 ] )
gap> CanonicalTransformation(x);
Transformation( [ 5, 5, 1, 5, 4 ] )
gap> CanonicalTransformation(y);
Transformation( [ 6, 5, 1, 5, 4 1)

13.12.10 IsConnectedTransformationSemigroup (for a transformation semigroup)

> IsConnectedTransformationSemigroup(S) (property)

Returns: true or false.

A transformation semigroup S is connected if the digraph returned by the func-
tion DigraphOfActionOnPoints is connected. See IsConnectedDigraph (Digraphs:
IsConnectedDigraph) and DigraphOfActionOnPoints (13.12.5). The function
IsConnectedTransformationSemigroup returns true if the semigroup S is connected and

false otherwise.
Example

gap> S := Semigroup([

> Transformation([2, 4, 3, 41),

> Transformation([3, 3, 2, 3, 31)1);

<transformation semigroup of degree 5 with 2 generators>
gap> IsConnectedTransformationSemigroup(S);

true

13.13 Attributes of partial perm semigroups

13.13.1 ComponentRepsOfPartialPermSemigroup

> ComponentRepsOfPartialPermSemigroup(S) (attribute)

Returns: The representatives of components of a partial perm semigroup.

This function returns the representatives of the components of the action of the partial perm semi-
group S on the set of positive integers where it is defined.

The representatives are the least set of points such that every point can be reached from some
representative under the action of S.

Example
gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 11),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 191)1);;

gap> ComponentRepsOfPartialPermSemigroup(S) ;
[1, 4, 6, 10, 15, 17 ]

13.13.2 ComponentsOfPartialPermSemigroup

> ComponentsOfPartialPermSemigroup(S) (attribute)
Returns: The components of a partial perm semigroup.
This function returns the components of the action of the partial perm semigroup S on the set of
positive integers where it is defined; the components of S partition this set.
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Example

gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 191)1);;

gap> ComponentsOfPartialPermSemigroup(S);
rrs, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20 1,
(161, [ 1711

13.13.3 CyclesOfPartialPerm

> CyclesOfPartialPerm(x) (attribute)
Returns: The cycles of a partial perm.
This function returns the cycles, or strongly connected components, of the action of the partial
perm x on the set of positive integers where it is defined.
Example
gap> x := PartialPerm([3, 1, 4, 2, 5, 0, 0, 6, 0, 7]);
[8,6]1[10,7]1(1,3,4,2)(5)
gap> CyclesOfPartialPerm(x) ;
[[3,4,2,1]1,[51]1

13.13.4 CyclesOfPartialPermSemigroup

> CyclesOfPartialPermSemigroup (S) (attribute)
Returns: The cycles of a partial perm semigroup.
This function returns the cycles, or strongly connected components, of the action of the partial

perm semigroup S on the set of positive integers where it is defined.
Example

gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],

> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 11),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 191)1);;

gap> CyclesOfPartialPermSemigroup(S);
[[1, 9, 12, 14, 2, 20, 19, 3, 8, 11 ] 1]

The content in this chapter is based partly on work by Zachary Mesyan. A full description of the
objects described can be found in [MM16].

13.14 Attributes of Rees (0-)matrix semigroups

13.14.1 RZMSDigraph

> RZMSDigraph (R) (attribute)
Returns: A digraph.
If R is an n by m Rees O-matrix semigroup M°[I,T,A;P] (so that I = {1,2,...,n} and A =
{1,2,...,m}) then RZMSDigraph returns a symmetric bipartite digraph with n+ m vertices. An index
i € I corresponds to the vertex i and an index j € A corresponds to the vertex j+ n.
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Two vertices v and w in RZMSDigraph(R) are adjacentif and only ifve I, w—n € A, and P[w -
n] [v] #0.

This digraph is commonly called the Graham-Houghton graph of R.
Example

gap> R := PrincipalFactor(

> DClass(FullTransformationMonoid(5),

> Transformation([2, 4, 1, 5, 5]1)));

<Rees O-matrix semigroup 10x5 over Group([ (1,2,3,4), (1,2) 1)>
gap> gr := RZMSDigraph(R);

<digraph with 15 vertices, 40 edges>

gap> e := DigraphEdges(gr) [1];

[ 1, 11 ]

gap> Matrix(R) [e[2] - 10][e[1]1] <> 0;

true

13.14.2 RZMSConnectedComponents

> RZMSConnectedComponents (R) (attribute)

Returns: The connected components of a Rees 0-matrix semigroup.

If R is an n by m Rees O-matrix semigroup M°[I,T,A;P] (so that I = {1,2,...,n} and A =
{1,2,...,m}) then RZMSConnectedComponents returns the connected components of R.

Connectedness is an equivalence relation on the indices of R: the equivalence classes of the rela-
tion are called the connected components of R, and two indices in / U A are connected if and only if
their corresponding vertices in RZMSDigraph(R) are connected (see RZMSDigraph (13.14.1)). If R
has n connected components, then RZMSConnectedComponents will return a list of pairs:

CLh,A T, ooy [ LA 1]

where I =1 Ll--- UL, A= AjU---UAyg, and for each [ the set /; UA; is a connected component
of R. Note that at most one of /; and A; is possibly empty. The ordering of the connected components
in the result in unspecified.

Example
gap> R := ReesZeroMatrixSemigroup (SymmetricGroup(5),
> [[O, o, (1, 3), (4, 5, 0],

> [0, O, 0,0, (1, 3, 4, 5],

> [0, 0, (1, 5)(2, 3), 0, 01,

> [0, (2, 3)(, 4), 0, 0, 011);

<Rees O-matrix semigroup 5x4 over Sym( [ 1 .. 5] )>
gap> RZMSConnectedComponents (R) ;
tccf1,3,4131, 01,311, 002,571, T[2,411]1

13.15 Changing the representation of a semigroup

13.15.1 IsomorphismReesMatrixSemigroup (for a semigroup)

> IsomorphismReesMatrixSemigroup(S) (attribute)
> IsomorphismReesZeroMatrixSemigroup (S) (attribute)
> IsomorphismReesMatrixSemigroupOverPermGroup (S) (attribute)
> IsomorphismReesZeroMatrixSemigroupOverPermGroup (S) (attribute)

Returns: An isomorphism.
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If the semigroup S is finite and simple, then IsomorphismReesMatrixSemigroup returns an
isomorphism to a Rees matrix semigroup over some group (usually a permutation group), and
IsomorphismReesMatrixSemigroupOverPermGroup returns an isomorphism to a Rees matrix

semigroup over a permutation group.

If S is finite and O-simple, then IsomorphismReesZeroMatrixSemigroup returns an iso-
morphism to a Rees O-matrix semigroup over some group (usually a permutation group), and
IsomorphismReesZeroMatrixSemigroupOverPermGroup returns an isomorphism to a Rees O-

matrix semigroup over a permutation group.
See also InjectionPrincipalFactor (12.4.7).
Example

gap> S := Semigroup(PartialPerm([1]));

<trivial partial perm group of rank 1 with 1 generator>

gap> IsomorphismReesMatrixSemigroup(S);

MappingByFunction( <trivial partial perm group of rank 1 with
1 generator>, <Rees matrix semigroup 1x1 over Group(())>

, function( x ) ... end, function( x ) ... end )

gap> S := Semigroup(PartialPerm([1]), PartialPerm([]));

<partial perm monoid of rank 1 with 2 generators>

gap> Range (IsomorphismReesZeroMatrixSemigroup(S));

<Rees O-matrix semigroup 1x1 over Group(())>




Chapter 14

Properties of semigroups

In this chapter we decribe the methods that are available in Semigroups for determining various
properties of a semigroup.

14.1 Properties of semigroups

In this section we describe the properties of a semigroup that can be determined using the Semigroups
package.

14.1.1 IsBand

> IsBand(S) (property)
Returns: true or false.
IsBand returns true if every element of the semigroup S is an idempotent and false if it is not.
An inverse semigroup is band if and only if it is a semilattice; see IsSemilattice (14.1.20).

Example
gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 11),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]1),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 31),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 41),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 71));;

gap> IsBand(S);

true

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 4, 8, 91, [5, 8, 7, 6, 9, 11),

> PartialPerm([1, 3, 4, 7, 8, 9, 101, [2, 3, 8, 7, 10, 6, 11));;

gap> IsBand(S);

false

gap> IsBand(IdempotentGeneratedSubsemigroup(S));

true

gap> S := PartitionMonoid(4);

<regular bipartition *-monoid of size 4140, degree 4 with 4
generators>

gap> M := MinimalIdeal(S);

<simple bipartition *-semigroup ideal of degree 4 with 1 generator>

184
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gap> IsBand(M);
true
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14.1.2 IsBlockGroup

> IsBlockGroup(S)
Returns: true or false.

IsBlockGroup returns true if the semigroup S is a block group and false if it is not.

(property)

A semigroup S is a block group if every £-class and every #Z-class of S contains at most one

idempotent. Every semigroup of partial permutations is a block group.

Example
gap> S := Semigroup(Transformation([5, 6, 7, 3,

gap> IsBlockGroup(S);

true

gap> S := Semigroup(

> Transformation([2, 1, 10, 4, 5, 9, 7, 4, 8, 4]),
6, 1, 3, 9, 7

gap> T := AsSemigroup(IsBlockBijectionSemigroup, S);
<block bijection semigroup of degree 6 with 5 generators>
gap> IsBlockGroup(T);

true

gap> IsBlockGroup(AsSemigroup(IsBipartitionSemigroup, S));
true

gap> S := Semigroup(

> Bipartition([[1, -2], [2, -3], [3, -4], [4, -1]11),

> Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]11),

> Bipartition([[1, 2, -3], [3, -1, -2], [4, -411),

> Bipartition([[1, -11, [2, -21, [3, -31, [4, -411));;
gap> IsBlockGroup(S);

true

1, 4, 2, 81),
> Transformation([3, 6, 8, 5, 7, 4, 2, 81));;

> Transformation([10, 7, 5, 6, 1, 3, 9, 7, 10, 21));;

gap> IsBlockGroup(S);

false

gap> S := Semigroup(PartialPerm([1, 2], [5, 41),

> PartialPerm([1, 2, 31, [1, 2, 51),

> PartialPerm([1, 2, 3], [2, 1, 51),

> PartialPerm([1, 3, 41, [3, 1, 21),

> PartialPerm([1, 3, 4, 5], [5, 4, 3, 21));;

14.1.3 IsCommutativeSemigroup

> IsCommutativeSemigroup(S)
Returns: true or false.

(property)

IsCommutativeSemigroup returns true if the semigroup S is commutative and false if it is not.
The function IsCommutative (Reference: IsCommutative) can also be used to test if a semigroup

is commutative.
A semigroup S is commutative if x * y =y * xforallx, yinS.

Example
gap> S := Semigroup(Transformation([2, 4, 5, 3, 7, 8, 6, 9,
> Transformation([3, 5, 6, 7, 8, 1, 9, 2

, 2, 41)) 5



Semigroups 186

gap> IsCommutativeSemigroup(S) ;
true
gap> IsCommutative(S);
true
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6], [2, 5, 1, 3, 9, 6]),
> PartialPerm([1, 2, 3, 4, 6, 8], [8, 5, 7, 6, 2, 11));;
gap> IsCommutativeSemigroup(S);
false
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 6, 7, -1, -4, -6],
> 4, 5, 8, -2, -3, -5, -7, -811),
> Bipartition([[1, 2, -3, -41, [3, -51, [4, -6], [5, -71,
> (6, -81, [7, -11, [8, -211));;
gap> IsCommutativeSemigroup(S);
true
14.1.4 IsCompletelyRegularSemigroup
> IsCompletelyRegularSemigroup(S) (property)

Returns: true or false.

IsCompletelyRegularSemigroup returns true if every element of the semigroup S is contained
in a subgroup of S.

An inverse semigroup is completely regular if and only if it is a Clifford semigroup; see
IsCliffordSemigroup (15.2.1).

Example
gap> S := Semigroup(Transformation([1, 2, 4, 3, 6, 5, 4]),
> Transformation([1, 2, 5, 6, 3, 4, 5]),
> Transformation([2, 1, 2, 2, 2, 2, 2]));;
gap> IsCompletelyRegularSemigroup(S);
true
gap> IsInverseSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCompletelyRegularSemigroup(T);
true
gap> IsCliffordSemigroup(T);
true
gap> S := Semigroup(
> Bipartition([[1, 3, -41, [2, 4, -1, -2]1, [-311),
> Bipartition([[1, -11, [2, 3, 4, -3], [-2, -411));;
gap> IsCompletelyRegularSemigroup(S) ;
false
14.1.5 IsCongruenceFreeSemigroup
> IsCongruenceFreeSemigroup(S) (property)

Returns: true or false.
IsCongruenceFreeSemigroup returns true if the semigroup S is a congruence-free semigroup
and false if it is not.
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A semigroup S is congruence-free if it has no non-trivial proper congruences.

A semigroup with zero is congruence-free if and only if it is isomorphic to a regular Rees 0-
matrix semigroup R whose underlying semigroup is the trivial group, no two rows of the matrix of R
are identical, and no two columns are identical; see Theorem 3.7.1 in [How95].

A semigroup without zero is congruence-free if and only if it is a simple group or has order 2; see
Theorem 3.7.2 in [How95].

Example
gap> S := Semigroup(Transformation([4, 2, 3, 3, 4]));;
gap> IsCongruenceFreeSemigroup(S);

true

gap> S := Semigroup(Transformation([2, 2, 4, 4]),

> Transformation([5, 3, 4, 4, 6, 61));;
gap> IsCongruenceFreeSemigroup(S);

false

14.1.6 IsGroupAsSemigroup

> IsGroupAsSemigroup(S) (property)
Returns: true or false.
IsGroupAsSemigroup returns true if and only if the semigroup S is mathematically a group.

Example
gap> S := Semigroup(Transformation([2, 4, 5, 3, 7, 8, 6, 9, 11),
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 41));;
gap> IsGroupAsSemigroup(S);
true

gap> G := SymmetricGroup(5);;

gap> IsGroupAsSemigroup(G);

true

gap> S := AsSemigroup(IsPartialPermSemigroup, G);

<partial perm group of size 120, rank 5 with 2 generators>
gap> IsGroupAsSemigroup(S);

true

gap> G := SymmetricGroup([1, 2, 10]);;

gap> T := AsSemigroup(IsBlockBijectionSemigroup, G);

<inverse block bijection semigroup of size 6, degree 11 with 2
generators>

gap> IsGroupAsSemigroup(T) ;

true

14.1.7 IsldempotentGenerated

> IsIdempotentGenerated(S) (property)
> IsSemiband(S) (property)

Returns: true or false.

IsIdempotentGenerated and IsSemiband return true if the semigroup S is gener-
ated by its idempotents and false if it is not. See also Idempotents (13.9.1) and
IdempotentGeneratedSubsemigroup (13.9.3).

An inverse semigroup is idempotent-generated if and only if it is a semilattice; see
IsSemilattice (14.1.20).

The terms semiband and idempotent-generated are synonymous in this context.
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Example
gap> S := SingularTransformationSemigroup(4);

<regular transformation semigroup ideal of degree 4 with 1 generator>

gap> IsIdempotentGenerated(S) ;
true
gap> S := SingularBrauerMonoid(5);

<regular bipartition *-semigroup ideal of degree 5 with 1 generator>

gap> IsIdempotentGenerated(S);
true

14.1.8 IsLeftSimple

> IsLeftSimple(S)
> IsRightSimple(S)
Returns: true or false.

(property)
(property)

IsLeftSimple and IsRightSimple returns true if the semigroup S has only one .Z’-class or

one Z-class, respectively, and returns false if it has more than one.

An inverse semigroup is left simple if and only if it is right simple if and only if it is a group; see

IsGroupAsSemigroup (14.1.6).

Example
gap> S := Semigroup(Transformation([6, 7, 9, 6, 8, 9, 8, 7,
> Transformation([6, 8, 9, 6, 8, 8, 7, 9,
> Transformation([6, 8, 9, 7, 8, 8, 7, 9,
> Transformation([6, 9, 8, 6, 7, 9, 7, 8,
> Transformation([6, 9, 9, 6, 8, 8, 7, 9,
> Transformation([6, 9, 9, 7, 8, 8, 6, 9,
> Transformation([7, 8, 8, 7, 9, 9, 7, 8,
> Transformation([7, 9, 9, 7, 6, 9, 6, 8,
> Transformation([8, 7, 6, 9, 8, 6, 8, 7,
> Transformation([9, 6, 6, 7, 8, 8, 7, 6,
> Transformation([9, 6, 6, 7, 9, 6, 9, 8,
> Transformation([9, 6, 7, 9, 6, 6, 9, 7,
> Transformation([9, 6, 8, 7, 9, 6, 9, 8,
> Transformation([9, 7, 6, 8, 7, 7, 9, 6,
> Transformation([9, 7, 7, 8, 9, 6, 9, 7,
> Transformation([9, 8, 8, 9, 6, 7, 6, 8,
gap> IsRightSimple(S);
false
gap> IsLeftSimple(S);
true
gap> IsGroupAsSemigroup(S);
false
gap> NrRClasses(S);
16

gap> S := BrauerMonoid(6);;

gap> S := Semigroup(RClass(S, Random(MinimalDClass(S))));;
gap> IsLeftSimple(S);

false

gap> IsRightSimple(S);

true

61),
61),
61),
61),
61),
71,
61),
71),
91),
91),
71,
81),
71),
81),
81),
91));;
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14.1.9 IsLeftZeroSemigroup

> IsLeftZeroSemigroup(S) (property)

Returns: true or false.

IsLeftZeroSemigroup returns true if the semigroup S is a left zero semigroup and false if it
is not.

A semigroup is a left zero semigroup if x*y=x for all x,y. An inverse semigroup is a left zero
semigroup if and only if it is trivial.

Example
gap> S := Semigroup(Transformation([2, 1, 4, 3, 5]),
> Transformation([3, 2, 3, 1, 11));;
gap> IsRightZeroSemigroup(S);
false
gap> S := Semigroup(Transformation([1, 2, 3, 3, 11),
> Transformation([1, 2, 3, 3, 31));;
gap> IsLeftZeroSemigroup(S);
true
14.1.10 IsMonogenicSemigroup
> IsMonogenicSemigroup (S) (property)

Returns: true or false.

IsMonogenicSemigroup returns true if the semigroup S is monogenic and it returns false if it
is not.

A semigroup is monogenic if it is generated by a single element. See also IsMonogenicMonoid
(14.1.11), IsMonogenicInverseSemigroup (15.2.7), and IsMonogenicInverseMonoid (15.2.8).

Example
gap> S := Semigroup(
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 101),
> Transformation(
> [2, 2, 2, 8, 11, 15, 11, 10, 2, 10, 11, 2, 10, 4, 71),
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]1),
> Transformation(

> [2, 2, 12, 7, 8, 14, 8, 11, 2, 11, 10, 2, 11, 15, 41));;
gap> IsMonogenicSemigroup(S);

true

gap> S := Semigroup(

> Bipartition([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2, -5, -7, -9],

> (-1, -10], [-38, -4, -6, -81]),

> Bipartition([[1, 4, 7, 8, -2], [2, 3, 5, 10, -5],

> (6, 9, -7, -91, [-1, -10], [-3, -4, -6, -811));;
gap> IsMonogenicSemigroup(S);

true

gap> S := FullTransformationSemigroup(5);;

gap> IsMonogenicSemigroup(S);
false




Semigroups 190

14.1.11 IsMonogenicMonoid

> IsMonogenicMonoid(S) (property)
Returns: true or false.
IsMonogenicMonoid returns true if the monoid S is a monogenic monoid and it returns false
if it is not.
A monoid is monogenic if it is generated as a monoid by a single element. See also
IsMonogenicSemigroup (14.1.10) and IsMonogenicInverseMonoid (15.2.8).
Example

gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := Monoid(x, x =~ 2, x ~ 3);;

gap> IsMonogenicSemigroup(S);

false

gap> IsMonogenicMonoid(S);

true

gap> S := FullTransformationMonoid(5);;
gap> IsMonogenicMonoid(S);
false

14.1.12 IsMonoidAsSemigroup

> IsMonoidAsSemigroup(S) (property)

Returns: true or false.

IsMonoidAsSemigroup returns true if and only if the semigroup S is mathematically a monoid,
i.e. if and only if it contains a MultiplicativeNeutralElement (Reference: MultiplicativeNeu-
tralElement).

It is possible that a semigroup which satisfies IsMonoidAsSemigroup is not in the GAP cate-
gory IsMonoid (Reference: IsMonoid). This is possible if the MultiplicativeNeutralElement
(Reference: MultiplicativeNeutralElement) of S is not equal to the One (Reference: One) of any el-
ement in S. Therefore a semigroup satisfying IsMonoidAsSemigroup may not possess the attributes
of a monoid (such as, GeneratorsO0fMonoid (Reference: GeneratorsOfMonoid)).

See also One (Reference: One), IsInverseMonoid (Reference: IsInverseMonoid) and
IsomorphismTransformationMonoid (Reference: IsomorphismTransformationMonoid).

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 91));;
gap> IsMonoidAsSemigroup(S);
true
gap> IsMonoid(S);
false

gap> MultiplicativeNeutralElement (S);

Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 91 )

gap> T := AsSemigroup(IsBipartitionSemigroup, S);;

gap> IsMonoidAsSemigroup(T) ;

true

gap> IsMonoid(T);

false

gap> One(T);

fail

gap> S := Monoid(Transformation([8, 2, 8, 9, 10, 6, 2, 8, 7, 8]),
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> Transformation([9, 2, 6, 3, 6, 4, 5, 5, 3, 21));;
gap> IsMonoidAsSemigroup(S);
true

14.1.13 IsOrthodoxSemigroup

> IsOrthodoxSemigroup(S) (property)

Returns: true or false.

IsOrthodoxSemigroup returns true if the semigroup S is orthodox and false if it is not.

A semigroup is orthodox if it is regular and its idempotent elements form a subsemigroup. Every
inverse semigroup is also an orthodox semigroup.

See also IsRegularSemigroup (14.1.16) and IsRegularSemigroup (Reference: IsRegu-
larSemigroup).

Example
gap> S := Semigroup(Transformation([1, 1, 1, 4, 5, 4]1),
> Transformation([1, 2, 3, 1, 1, 2]),
> Transformation([1, 2, 3, 1, 1, 3]),
> Transformation([5, 5, 5, 5, 5, 5]1));;
gap> IsOrthodoxSemigroup(S);
true
gap> S := DualSymmetricInverseMonoid(5);;
gap> S := Semigroup(GeneratorsOfSemigroup(S));;
gap> IsOrthodoxSemigroup(S);
true
14.1.14 IsRectangularBand
> IsRectangularBand(S) (property)

Returns: true or false.

IsRectangularBand returns true if the semigroup S is a rectangular band and false if it is not.

A semigroup S is a rectangular band if for all x,y,z in S we have that x> = x and xyz = xz.

Equivalently, S is a rectangular band if S is isomorphic to a semigroup of the form / x A with
multiplication (i,A)(j, ) = (i, it). In this case, S is called an |I| x |A| rectangular band.

An inverse semigroup is a rectangular band if and only if it is a group.

Example
gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 11),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]1),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 31),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 41),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 71));;
gap> IsRectangularBand(S);
true
gap> IsRectangularBand(MinimalIdeal (PartitionMonoid(4)));
true
14.1.15 IsRectangularGroup
> IsRectangularGroup(S) (property)

Returns: true or false.
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A semigroup is rectangular group if it is the direct product of a group and a rectangular band. Or

equivalently, if it is orthodox and simple.
Example
gap> G := AsSemigroup(IsTransformationSemigroup, MathieuGroup(11));

<transformation group of size 7920, degree 11 with 2 generators>
gap> R := RectangularBand(3, 2);

<regular transformation semigroup of size 6, degree 6 with 3
generators>

gap> S := DirectProduct(G, R);;

gap> IsRectangularGroup(R);

true

gap> IsRectangularGroup(G);

true

gap> IsRectangularGroup(S);

true

gap> IsRectangularGroup(JonesMonoid(3));

false

14.1.16 IsRegularSemigroup

> IsRegularSemigroup(S) (property)

Returns: true or false.

IsRegularSemigroup returns true if the semigroup S is regular and false if it is not.

A semigroup S is regular if for all x in S there exists y in S such that x * y * x = x. Every
inverse semigroup is regular, and a semigroup of partial permutations is regular if and only if it is an
inverse semigroup.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (12.3.2),
and IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

Example
gap> IsRegularSemigroup(FullTransformationSemigroup(5));
true
gap> IsRegularSemigroup(JonesMonoid(5));
true
14.1.17 IsRightZeroSemigroup
> IsRightZeroSemigroup(S) (property)

Returns: true or false.

IsRightZeroSemigroup returns true if the S is a right zero semigroup and false if it is not.

A semigroup S is a right zero semigroup if x * y = yforall x, yin S. An inverse semigroup is
a right zero semigroup if and only if it is trivial.

Example
gap> S := Semigroup(Transformation([2, 1, 4, 3, 5]),
> Transformation([3, 2, 3, 1, 11));;
gap> IsRightZeroSemigroup(S);
false
gap> S := Semigroup(Transformation([1, 2, 3, 3, 1]),
> Transformation([1, 2, 4, 4, 11));;
gap> IsRightZeroSemigroup(S);
true
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14.1.18 IsXTrivial

v VvV vV VvV VvV V

IsRTrivial(S) (property)
IsLTrivial(S) (property)
IsHTrivial(S) (property)
IsDTrivial(S) (property)
IsAperiodicSemigroup(S) (property)
IsCombinatorialSemigroup(S) (property)

Returns: true or false.
IsXTrivial returns true if Green’s Z-relation, .Z-relation, .7 -relation, Z-relation, respec-

tively, on the semigroup S is trivial and false if it is not. These properties can also be applied to a
Green’s class instead of a semigroup where applicable.

For inverse semigroups, the properties of being #-trivial, .Z-trivial, Z-trivial, and a semilattice

are equivalent; see IsSemilattice (14.1.20).

A semigroup is aperiodic if its contains no non-trivial subgroups (equivalently, all of its group

F-classes are trivial). A finite semigroup is aperiodic if and only if it is 7 -trivial.

Combinatorial is a synonym for aperiodic in this context.
Example

gap> S := Semigroup(

> Transformation([1, 5, 1, 3, 7, 10, 6, 2, 7, 10]),
> Transformation([4, 4, 5, 6, 7, 7, 7, 4, 3, 10]1));;
gap> IsHTrivial(S);

true

gap> Size(S);

108

gap> IsRTrivial(S);

false

gap> IsLTrivial(S);

false

14.1.19 IsSemigroupWithAdjoinedZero

>

IsSemigroupWithAdjoinedZero (S) (property)
Returns: true or false.
IsSemigroupWithAdjoinedZero returns true if the semigroup S can be expressed as the dis-

joint union of subsemigroups S\ {0} and {0} (where O is the MultiplicativeZero (13.7.3) of S).

If this is not the case, then either S lacks a multiplicative zero, or the set S\ {0} is not a subsemi-

group of S, and so IsSemigroupWithAdjoinedZero returns false.

Example
gap> S := Semigroup(Transformation([2, 3, 4, 5, 1, 6]),
> Transformation([2, 1, 3, 4, 5, 6]),
> Transformation([6, 6, 6, 6, 6, 6]));

<transformation semigroup of degree 6 with 3 generators>
gap> IsZeroGroup(S);

true

gap> IsSemigroupWithAdjoinedZero(S);

true

gap> S := FullTransformationMonoid(4);;

gap> IsSemigroupWithAdjoinedZero(S);

false




Semigroups 194

14.1.20 IsSemilattice

> IsSemilattice(S) (property)
Returns: true or false.
IsSemilattice returns true if the semigroup S is a semilattice and false if it is not.
A semigroup is a semilattice if it is commutative and every element is an idempotent. The idem-
potents of an inverse semigroup form a semilattice.

Example
gap> S := Semigroup(Transformation([2, 5, 1, 7, 3, 7, 7]),
> Transformation([3, 6, 5, 7, 2, 1, 71));;
gap> Size(S);
631
gap> IsInverseSemigroup(S);
true

gap> A := Semigroup(Idempotents(S));

<transformation semigroup of degree 7 with 32 generators>
gap> IsSemilattice(A);

true

gap> S := FactorisableDualSymmetricInverseMonoid(5);;
gap> S := IdempotentGeneratedSubsemigroup(S);;

gap> IsSemilattice(S);

true

14.1.21 IsSimpleSemigroup

> IsSimpleSemigroup(S) (property)
> IsCompletelySimpleSemigroup(S) (property)

Returns: true or false.

IsSimpleSemigroup returns true if the semigroup S is simple and false if it is not.

A semigroup is simple if it has no proper 2-sided ideals. A semigroup is completely simple if it
is simple and possesses minimal left and right ideals. A finite semigroup is simple if and only if it is
completely simple. An inverse semigroup is simple if and only if it is a group.

Example

gap> S := Semigroup(

> Transformation([2, 2, 4,
> Transformation([1, 1, 3,
> Transformation([1, 7, 3,
> Transformation([7, 7, 9,
gap> IsSimpleSemigroup(S);
true

gap> IsCompletelySimpleSemigroup(S);
true

, 10, 10, 12, 12, 21),
, 7, 7,9, 9, 11, 11, 3]1),
i1, 7, 1, 9, 3, 11, 5, 51),
11, 1, 1, 3, 3, 5, 5, 71));;

© O© W b
= o oo
= 0o,

gap> IsSimpleSemigroup(MinimalIdeal (BrauerMonoid(6)));
true

gap> R := Range(IsomorphismReesMatrixSemigroup (

> MinimalIdeal (BrauerMonoid(6))));

<Rees matrix semigroup 15x15 over Group(())>
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14.1.22 IsSynchronizingSemigroup (for a transformation semigroup)

> IsSynchronizingSemigroup(S) (property)
> IsSynchronizingSemigroup(S, n) (property)

Returns: true or false.

For a positive integer n, IsSynchronizingSemigroup returns true if the semigroup of transfor-
mations S contains a transformation with constant value on [1 .. n]. Note that this function will
return true whenever n = 1. See also ConstantTransformation (Reference: ConstantTransfor-
mation).

If the optional second argument is not specified, then n will be taken to be the value of
Degree0fTransformationSemigroup (Reference: DegreeOfTransformationSemigroup) for S.

Note that the semigroup consisting of the identity transformation is the unique transformation
semigroup with degree 0. In this special case, the function IsSynchronizingSemigroup will return
false.

Example
gap> S := Semigroup(

> Transformation([1, 1, 8, 7, 6, 6, 4, 1, 8, 9]),

> Transformation([5, 8, 7, 6, 10, 8, 7, 6, 9, 71));;
gap> IsSynchronizingSemigroup(S, 10);

true

gap> S := Semigroup(

> Transformation([3, 8, 1, 1, 9, 9, 8, 7, 9, 6]),

> Transformation([7, 6, 8, 7, 5, 6, 8, 7, 8, 91));;
gap> IsSynchronizingSemigroup(S, 10);

false

gap> Representative(MinimalIdeal(S));
Transformation( [ 7, 8, 8, 7, 8, 8, 8, 7, 8, 8 1)

14.1.23 IsUnitRegularMonoid

> IsUnitRegularMonoid(S) (property)
Returns: true if the semigroup S is unit regular and false if it is not.
A monoid is unit regular if and only if for every >x in S there exists an element y in the group of
units of S such that x*y*x=x.

Example
gap> IsUnitRegularMonoid(FullTransformationMonoid(3));
true
14.1.24 IsZeroGroup
> IsZeroGroup(S) (property)

Returns: true or false.

IsZeroGroup returns true if the semigroup S is a zero group and false if it is not.

A semigroup S is a zero group if there exists an element z in S such that S without z is a group
and x*xz=z*x=z for all x in S. Every zero group is an inverse semigroup.

Example
gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5, 9]),
> Transformation([3, 3, 8, 2, 5, 6, 4, 4, 9]),
> ConstantTransformation(9, 9));;
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gap> IsZeroGroup(S) ;

true

gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsZeroGroup(T);

true

gap> IsZeroGroup(JonesMonoid(2));

true

14.1.25 IsZeroRectangularBand

> IsZeroRectangularBand(S) (property)

Returns: true or false.

IsZeroRectangularBand returns true if the semigroup S is a zero rectangular band and false
if it is not.

A semigroup is a O-rectangular band if it is O-simple and JZ-trivial; see also
IsZeroSimpleSemigroup (14.1.27) and IsHTrivial (14.1.18). An inverse semigroup is a O-
rectangular band if and only if it is a O-group; see IsZeroGroup (14.1.24).

Example

ap> S := Semigroup(
Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1, 13,
1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 11),
Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1,
11, 1, 1, 1, 23, 1, 16, 19, 1, 1, 1]1),
Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1,
20, 1, 22, 1, 8, 1, 1, 1, 1, 11D,
Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1,
6, 1, 1, 24, 1, 1, 1, 1, 61));;
gap> D := DClass(S,
> Transformation([1, 8, 1, 1, 8, 1, 1, 1, 1, 1, 8, 1, 1, 8, 1, 1, 1,
> 1, 1, 1, 1, 1, 1, 1, 1, 11));;
gap> IsZeroRectangularBand (Semigroup(D));
true
gap> IsZeroRectangularBand(Semigroup(GreensDClasses(S) [1]1));
false

V V.V V V V V V(R

14.1.26 IsZeroSemigroup

> IsZeroSemigroup(S) (property)
Returns: true or false.
IsZeroSemigroup returns true if the semigroup S is a zero semigroup and false if it is not.
A semigroup S is a zero semigroup if there exists an element z in S such that x*y=z for all x,y in
S. An inverse semigroup is a zero semigroup if and only if it is trivial.

Example
gap> S := Semigroup(
> Transformation([4, 7, 6, 3, 1, 5, 3, 6, 5, 9]),
> Transformation([5, 3, 5, 1, 9, 3, 8, 7, 4, 31));;

gap> IsZeroSemigroup(S);

false

gap> S := Semigroup(

> Transformation([7, 8, 8, 8, 5, 8, 8, 8]),
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> Transformation([8, 8, 8, 8, 5, 7, 8, 81),
> Transformation([8, 7, 8, 8, 5, 8, 8, 81),
> Transformation([8, 8, 8, 7, 5, 8, 8, 81),
> Transformation([8, 8, 7, 8, 5, 8, 8, 81));;

gap> IsZeroSemigroup(S);

true

gap> MultiplicativeZero(S);

Transformation( [ 8, 8, 8, 8, 5, 8, 8, 8 1 )

14.1.27 IsZeroSimpleSemigroup

> IsZeroSimpleSemigroup(S) (property)

Returns: true or false.

IsZeroSimpleSemigroup returns true if the semigroup S is O-simple and false if it is not.

A semigroup is a 0-simple if it has no two-sided ideals other than itself and the set containing the
zero element; see also MultiplicativeZero (13.7.3). An inverse semigroup is O-simple if and only
if it is a Brandt semigroup; see IsBrandtSemigroup (15.2.2).

Example
gap> S := Semigroup(
> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 5, 17,
> 17, 17, 17, 17, 171),
> Transformation([1, 17, 17, 17, 11, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 171),
> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 4, 17,
> 17, 17, 17, 17, 171),
> Transformation([1, 17, 17, 5, 17, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 171));;
gap> IsZeroSimpleSemigroup(S);
true
gap> S := Semigroup(
> Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 71),
> Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 21));;
gap> IsZeroSimpleSemigroup(S);
false




Chapter 15

Properties and attributes specific to
inverse semigroups

In this chapter we describe the attributes which are specific to inverse semigroups that can be deter-
mined using Semigroups.
The functions

e IsJoinIrreducible (15.2.5)

* IsMajorantlyClosed (15.2.6)

e JoinIrreducibleDClasses (15.1.2)

* MajorantClosure (15.1.3)

e Minorants (15.1.4)

* RightCosetsOfInverseSemigroup (15.1.6)

* SmallerDegreePartialPermRepresentation (15.1.8)
* VagnerPrestonRepresentation (15.1.9)

were written by Wilf A. Wilson and Robert Hancock.
The function CharacterTableOfInverseSemigroup (15.1.10) was written by Jhevon Smith and
Ben Steinberg.

15.1 Attributes specific to inverse semigroups

15.1.1 NaturalLeqInverseSemigroup

> NaturallLeqInverseSemigroup(S) (attribute)
Returns: An function.
NaturallLeqInverseSemigroup returns a function that, when given two elements x, y of the
inverse semigroup S, returns true if x is less than or equal to y in the natural partial order on S.

198
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Example
gap> S := Monoid(Transformation([1, 3, 4, 4]),
> Transformation([1, 4, 2, 41));

<transformation monoid of degree 4 with 2 generators>
gap> IsInverseSemigroup(S);

true

gap> Size(S);

6

gap> NaturalPartialOrder(S);

(l2 5,6]1,[61]1,[61,[61,[61,[ 11

15.1.2 JoinIrreducibleDClasses

> JoinIrreducibleDClasses(S) (attribute)

Returns: A list of Z-classes.

JoinIrreducibleDClasses returns a list of the join irreducible Z-classes of the inverse semi-
group of partial permutations, block bijections or partial permutation bipartitions S.

A join irreducible 9-class is a P-class containing only join irreducible elements. See
IsJoinIrreducible (15.2.5). If a ZY-class contains one join irreducible element, then all of the
elements in the Z-class are join irreducible.

Example

gap> S := SymmetricInverseSemigroup(3);

<symmetric inverse monoid of degree 3>

gap> JoinIrreducibleDClasses(S);

[ <Green’s D-class: <identity partial perm on [ 2 ]1>> ]

gap> T := InverseSemigroup([

>  PartialPerm([1, 2, 4, 31),

>  PartialPerm([1]),

>  PartialPerm([0, 21)1);

<inverse partial perm semigroup of rank 4 with 3 generators>

gap> JoinIrreducibleDClasses(T);

[ <Green’s D-class: <identity partial perm on [ 1, 2, 3, 4 1>>,
<Green’s D-class: <identity partial perm on [ 1 ]>>,
<Green’s D-class: <identity partial perm on [ 2 ]1>> ]

gap> D := DualSymmetricInverseSemigroup(3);

<inverse block bijection monoid of degree 3 with 3 generators>

gap> JoinIrreducibleDClasses(D);

[ <Green’s D-class: <block bijection: [ 1, 2, -1, -2 ], [ 3, -3 1>> 1]

15.1.3 MajorantClosure

> MajorantClosure (s, D (operation)

Returns: A majorantly closed list of elements.

MajorantClosure returns a majorantly closed subset of an inverse semigroup of partial permu-
tations, block bijections or partial permutation bipartitions, S, as a list. See IsMajorantlyClosed
(15.2.6).

The result contains all elements of S which are greater than or equal to any element of T (with re-
spect to the natural partial order NaturallLeqPartialPerm (Reference: NaturalLeqPartialPerm)).
In particular, the result is a superset of T.

Note that T can be a subset of S or a subsemigroup of S.
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Example
gap> S := SymmetricInverseSemigroup(4) ;
<symmetric inverse monoid of degree 4>

gap> T := [PartialPerm([1, O, 3, 0])];

[ <identity partial perm on [ 1, 3 I> ]

gap> U := MajorantClosure(S, T);

[ <identity partial perm on [ 1
<identity partial perm on [ 1, , [2,41(1)(3), [4,21(1)(3),
<identity partial perm on [ 1
<identity partial perm on [ 1

gap> B := InverseSemigroup ([

> Bipartition([[1, -21, [2, -11, [3, -31, [4, 5, -4, -511),

> Bipartition([[1, -3], [2, -4], [3, -2]1, [4, -1]1, [5, -511D1);;

gap> T := [Bipartition([[1, -2], [2, 3, 5, -1, -3, -5], [4, -4]1]),

> Bipartition([[1, -4], [2, 3, 5, -1, -3, -51, [4, -211)1;;

gap> IsMajorantlyClosed(B, T);

false

gap> MajorantClosure(B, T);

[ <block bijection: [ 1, -21, [ 2, 3, 5, -1, -3, -5 1, [ 4, -4 1>,
<block bijection: [ 1, -41, [ 2, 3, 5, -1, -3, -51, [ 4, -2 1>,
<block bijection: [ 1, -21, [ 2, 5, -1, -51, [ 3, -31, [ 4, -41>

, <block bijection: [ 1, -21, [ 2, -1 ], [ 3,5, -3, -51,
[ 4, -4 1>,
<block bijection: [ 1, -4 1, [ 2, 5, -3, -5 ]
, <block bijection: [ 1, -4 1, [ 2, -31, [
[ 4, -2 1>, <block bijection: [ 1, -4 1, [
[4, -21, [5, -51>1
gap> IsMajorantlyClosed(B, last);
true

1>, (2,9 ]

> [ 3, _1 ]: [ 4, _2 ]>
3: 5’ _1, -5 ]:
2: _3 ]; [ 3; _1 ]’

15.1.4 Minorants

> Minorants(S, f)
Returns: A list of elements.

(operation)

Minorants takes an element f from an inverse semigroup of partial permutations, block bijections

or partial permutation bipartitions S, and returns a list of the minorants of £ in S.

A minorant of £ is an element of S which is strictly less than £ in the natural partial order of S.

See NaturallLeqPartialPerm (Reference: NaturalLeqPartialPerm).
Example

gap> S := SymmetricInverseSemigroup(3);

<symmetric inverse monoid of degree 3>

gap> x := Elements(S) [13];

[1,3]1(2)

gap> Minorants(S, x);

[ <empty partial perm>, [1,3], <identity partial perm on [ 2 1> ]
gap> x := PartialPerm([3, 2, 4, 0]);

[1,3,41(2)

gap> S := InverseSemigroup(x);

<inverse partial perm semigroup of rank 4 with 1 generator>
gap> Minorants(S, x);

[ <identity partial perm on [ 2 1>, [1,3]1(2), [3,4]1(2) ]
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15.1.5 Primitiveldempotents

> PrimitiveIdempotents(S) (attribute)

Returns: A list of elements.

An idempotent in an inverse semigroup S is primitive if it is non-zero and minimal with respect
to the NaturalPartialOrder (Reference: NaturalPartialOrder) on S. PrimitiveIdempotents
returns the list of primitive idempotents in the inverse semigroup S.

Example

gap> S := InverseMonoid(

> PartialPerm([1], [4]),

> PartialPerm([1, 2, 3], [2, 1, 3]),

> PartialPerm([1, 2, 31, [3, 1, 21));;

gap> MultiplicativeZero(S);

<empty partial perm>

gap> Set(PrimitiveIdempotents(S));

[ <identity partial perm on [ 1 ]>, <identity partial perm on [ 2 1>,
<identity partial perm on [ 3 ]>, <identity partial perm on [ 4 1> ]

gap> S := DualSymmetricInverseMonoid(4);

<inverse block bijection monoid of degree 4 with 3 generators>

gap> Set(PrimitiveIdempotents(S));

[ <block bijection: [ 1, 2, 3, -1, -2, -31, [ 4, -4 1>,
<block bijection: [ 1, 2, 4, -1, -2, -4 1, [ 3, -3 1>,
<block bijection: [ 1, 2, -1, -2 1, [ 3, 4, -3, -4 1>,
<block bijection: [ 1, 3, 4, -1, -3, -4 1, [ 2, -2 1>,
<block bijection: [ 1, 3, -1, -3 1, [ 2, 4, -2, -4 1>,
<block bijection: [ 1, 4, -1, -41, [ 2, 3, -2, -3 1>,
<block bijection: [ 1, -1 1, [ 2, 3, 4, -2, -3, -4 1> ]

15.1.6 RightCosetsOfInverseSemigroup

> RightCosetsOfInverseSemigroup(S, T) (operation)

Returns: A list of lists of elements.

RightCosetsOfInverseSemigroup takes a majorantly closed inverse subsemigroup T of an in-
verse semigroup of partial permutations, block bijections or partial permutation bipartitions S. See
IsMajorantlyClosed (15.2.6). The result is a list of the right cosets of T in S.

For s € S, the right coset T's is defined if and only if ss~! € T, in which case it is defined to be the
majorant closure of the set T's. See MajorantClosure (15.1.3). Distinct cosets are disjoint but do not
necessarily partition S.

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> T := InverseSemigroup(MajorantClosure(S, [PartialPerm([1])]));
<inverse partial perm monoid of rank 3 with 6 generators>
gap> IsMajorantlyClosed(S, T);
true
gap> RC := RightCosetsOfInverseSemigroup(S, T);
[ [ <identity partial perm on [ 1 1>,
<identity partial perm on [ 1, 2 1>, [2,3](1), [3,2]1(1),
<identity partial perm on [ 1, 3 1>,
<identity partial perm on [ 1, 2, 3 1>, (1)(2,3) 1,
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[ [1,3], [2,1,3], [1,3](2), (1,3), [1,3,2], (1,3,2), (1,3)(2) 1,
[ [1,2], (1,2), [1,2,3], [3,1,2], [1,2](3), (1,2)(3), (1,2,3) 11

15.1.7 SameMinorantsSubgroup

> SameMinorantsSubgroup (H) (attribute)

Returns: A list of elements of the group 7#’-class H.

Given a group .77-class H in an inverse semigroup of partial permutations, block bijections or
partial permutation bipartitions S, SameMinorantsSubgroup returns a list of the elements of H which
have the same strict minorants as the identity element of H. A strict minorant of x in H is an element
of S which is less than x (with respect to the natural partial order), but is not equal to x.

The returned list of elements of H describe a subgroup of H.

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> H := GroupHClass(DClass(S, PartialPerm([1, 2, 3]1)));
<Green’s H-class: <identity partial perm on [ 1, 2, 3 I>>
gap> Elements (H) ;
[ <identity partial perm on [ 1, 2, 3 1>, (1)(2,3), (1,2)(3),
(1,2,3), (1,3,2), (1,3)(2) ]
gap> SameMinorantsSubgroup (H) ;
[ <identity partial perm on [ 1, 2, 3 1> ]
gap> T := InverseSemigroup(
> PartialPerm([1, 2, 3, 41, [1, 2, 4, 31),
> PartialPerm([1], [1]), PartialPerm([2], [2]));
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> Elements(T);
[ <empty partial perm>, <identity partial perm on [ 1 1>,
<identity partial perm on [ 2 1>,
<identity partial perm on [ 1, 2, 3, 4 1>, (1)(2)(3,4) ]
gap> x := GroupHClass(DClass(T, PartialPerm([1, 2, 3, 4])));
<Green’s H-class: <identity partial permon [ 1, 2, 3, 4 1>>
gap> Elements(x);
[ <identity partial perm on [ 1, 2, 3, 4 1>, (1)(2)(3,4) 1]
gap> AsSet(SameMinorantsSubgroup(x)) ;
[ <identity partial perm on [ 1, 2, 3, 4 1>, (1)(2)(3,4) ]

15.1.8 SmallerDegreePartialPermRepresentation

> SmallerDegreePartialPermRepresentation(S) (attribute)

Returns: An isomorphism.

SmallerDegreePartialPermRepresentation attempts to find an isomorphism from the in-
verse semigroup S to an inverse semigroup of partial permutations with small degree. If S is already
a partial permutation semigroup, and the function cannot reduce the degree, the identity mapping is
returned.

There is no guarantee that the smallest possible degree representation is returned. For more infor-

mation see [Sch92].

Example
gap> S := InverseSemigroup(PartialPerm([2, 1, 4, 3, 6, 5, 8, 71));
<partial perm group of rank 8 with 1 generator>
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gap> Elements(S) ;
[ <identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 8 1>,
(1,2)(3,4)(5,6)(7,8) 1
gap> T := SmallerDegreePartialPermRepresentation(S);
MappingByFunction( <partial perm group of size 2, rank 8 with
1 generator>, <partial perm group of rank 2 with 1 generator>
, function( x ) ... end, function( x ) ... end )
gap> R := Range(T);
<partial perm group of rank 2 with 1 generator>
gap> Elements(R);
[ <identity partial permon [ 1, 2 1>, (1,2) ]
gap> S := DualSymmetricInverseMonoid(5);;
gap> T := Range(IsomorphismPartialPermSemigroup(S));
<inverse partial perm monoid of size 6721, rank 6721 with 3
generators>
gap> SmallerDegreePartialPermRepresentation(T) ;
MappingByFunction( <inverse partial perm monoid of size 6721,
rank 6721 with 3 generators>, <inverse partial perm semigroup of
rank 30 with 3 generators>
, function( x ) ... end, function( x ) ... end )

15.1.9 VagnerPrestonRepresentation

> VagnerPrestonRepresentation(S) (attribute)

Returns: An isomorphism to an inverse semigroup of partial permutations.

VagnerPrestonRepresentation returns an isomorphism from an inverse semigroup S where
the elements of S have a unique semigroup inverse accessible via Inverse (Reference: Inverse), to
the inverse semigroup of partial permutations T of degree equal to the size of S, which is obtained
using the Vagner-Preston Representation Theorem.

More  precisely, ift f : S — T is the isomorphism returned by
VagnerPrestonRepresentation(S) and x is in S, then f(x) is the partial permutation with
domain Sx~! and range Sx~'x defined by f(x) : sx~ ! sx~'x.

In many cases, it is possible to find a smaller degree representation than that provided by
VagnerPrestonRepresentation using IsomorphismPartialPermSemigroup (Reference: Iso-
morphismPartialPermSemigroup) or SmallerDegreePartialPermRepresentation (15.1.8).
Example
gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>
gap> Size(S);

7

gap> iso := VagnerPrestonRepresentation(S);
MappingByFunction( <symmetric inverse monoid of degree 2>,
<inverse partial perm monoid of rank 7 with 2 generators>

, function( x ) ... end, function( x ) ... end )
gap> RespectsMultiplication(iso);
true
gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(S, x -> (x ~ iso) ~ inv = x);
true

gap> V := InverseSemigroup(
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> Bipartition([[1, -41, [2, -1], [3, -5], [4], [5], [-2]1, [-311),

> Bipartition([[1, -51, [2, -11, [3, -3], [4]1, (5], [-21, [-411),

> Bipartition([[1, -2], [2, -4], [3, -5], [4, -11, [5, -311));

<inverse bipartition semigroup of degree 5 with 3 generators>

gap> IsInverseSemigroup(V);

true

gap> VagnerPrestonRepresentation(V);

MappingByFunction( <inverse bipartition semigroup of size 394,
degree 5 with 3 generators>, <inverse partial perm semigroup of
rank 394 with 5 generators>
, function( x ) . end, function( x )

. end )

15.1.10 CharacterTableOfInverseSemigroup

> CharacterTableOf InverseSemigroup(S) (attribute)

Returns: The character table of the inverse semigroup S and a list of conjugacy class represen-
tatives of S.

Returns a list with two entries: the first entry being the character table of the inverse semigroup S
as a matrix, while the second entry is a list of conjugacy class representatives of S.

The order of the columns in the character table matrix follows the order of the conjugacy class
representatives list. The conjugacy representatives are grouped by Z-class and then sorted by rank.
Also, as is typical of character tables, the rows of the matrix correspond to the irreducible characters
and the columns correspond to the conjugacy classes.

This function was contributed by Jhevon Smith and Ben Steinberg.

Example
gap> S := InverseMonoid([
>  PartialPerm([1, 2], [3, 1]1),
> PartialPerm([1, 2, 31, [1, 3, 41),
> PartialPerm([1, 2, 31, [2, 4, 11),

> PartialPerm([1, 3, 41, [3, 4, 11D1);;
gap> CharacterTableOf InverseSemigroup(S);
tcct, 0,0,0,0,0,0,01, [3,1,1,1,0,0,0,01,

[ 3, 1, E(3, E(3)"2, 0, 0, 0, 01,

[ 3, 1, E(3~2, E(3), 0, 0, 0,01, [6,3,0,0,1, -1, 0, 01,
(6,3,0,0,1,1,0,01, [4,3,0,0,2,0,1, 01,

(1, 1,1, 1,1, 1,1, 111,

[ <identity partial perm on [ 1, 2, 3, 4 1>,
<identity partial perm on [ 1, 3, 4 1>, (1,3,4), (1,4,3),
<identity partial perm on [ 1, 3 1>, (1,3),
<identity partial perm on [ 3 ]>, <empty partial perm> ] ]
gap> S := SymmetricInverseMonoid(4);;
gap> CharacterTableOf InverseSemigroup(S);
rrfct, -1, 1,1, -1, 0, 0, 0, 0, 0, O, 01,

L
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, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 01,
0, -1, 2, 0, 0, 0, 0, 0, 0, 0, 01,

i, 0, -1, -1, 0, 0, 0, 0, 0, 0, 01,

1,1, 1,1, 0, 0, 0, 0, 0, 0, 0]

1, 0, 0,1, -1, 1, 0, 0, 0, 0

0, 0, 0, 0

]
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[6,2,0,2,0,3,1,0,1,1, 0,01,
[4,2,1,0,0,3,1,0,2,0,1,01,
[1, 1, 1,1, 1, 1,1, 1,1, 1,1, 111,

[ <identity partial perm on [ 1, 2, 3, 4 1>, (1)(2)(3,4),
(1)(2,3,4), (1,2)(3,4), (1,2,3,4),

b bl 4
<identity partial perm on [ 1, 2, 3 1>, (1)(2,3), (1,2,3),
<identity partial perm on [ 2, 3 1>, (2,3),
<identity partial perm on [ 1 1>, <empty partial perm> ] ]

15.2 Properties of inverse semigroups

15.2.1 IsCliffordSemigroup

> IsCliffordSemigroup(S) (property)
Returns: true or false.
IsCliffordSemigroup returns true if the semigroup S is regular and its idempotents are central,
and false if it is not.

Example
gap> S := Semigroup(Transformation([1, 2, 4, 5, 6, 3, 7, 8]),
> Transformation([3, 3, 4, 5, 6, 2, 7, 81),
> Transformation([1, 2, 5, 3, 6, 8, 4, 41));;
gap> IsCliffordSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCliffordSemigroup(S);
true
gap> S := DualSymmetricInverseMonoid(5);;
gap> T := IdempotentGeneratedSubsemigroup(S);;
gap> IsCliffordSemigroup(T);
true
15.2.2 IsBrandtSemigroup
> IsBrandtSemigroup(S) (property)

Returns: true or false.
IsBrandtSemigroup return true if the semigroup S is a finite O-simple inverse semigroup,
and false if it is not. See also IsZeroSimpleSemigroup (14.1.27) and IsInverseSemigroup
(Reference: IsInverseSemigroup).
Example

gap> S := Semigroup(

> Transformation([2, 8, 8, 8, 8, 8, 8, 8]),

> Transformation([5, 8, 8, 8, 8, 8, 8, 8]1),

> Transformation([8, 3, 8, 8, 8, 8, 8, 8]),

> Transformation([8, 6, 8, 8, 8, 8, 8, 8]),

> Transformation([8, 8, 1, 8, 8, 8, 8, 8]),

> Transformation([8, 8, 8, 1, 8, 8, 8, 8]),

> Transformation([8, 8, 8, 8, 4, 8, 8, 8]1),

> Transformation([8, 8, 8, 8, 8, 7, 8, 8]1),

> Transformation([8, 8, 8, 8, 8, 8, 2, 81));;
gap> IsBrandtSemigroup(S);
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true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsBrandtSemigroup(T);

true

gap> S := DualSymmetricInverseMonoid(4);;

gap> D := DClass(S,

> Bipartition([[1, 2, 3, -1, -2, -3]1, [4, -411));;

gap> R := InjectionPrincipalFactor(D);;

gap> S := Semigroup(PreImages(R, GeneratorsOfSemigroup(Range(R))));;
gap> IsBrandtSemigroup(S);

true

15.2.3 IsEUnitaryInverseSemigroup

> IsEUnitaryInverseSemigroup(S) (property)
Returns: true or false.
As described in Section 5.9 of [How95], an inverse semigroup S with semilattice of idempotents
E is E-unitary if for
sc€cSandecE:esc E=scE.

Equivalently, S is E-unitary if E is closed in the natural partial order (see Proposition 5.9.1 in
[How95]):
forseSandecE:e<s=s€eE.

This condition is equivalent to E being majorantly closed in S. See
IdempotentGeneratedSubsemigroup (13.9.3) and IsMajorantlyClosed (15.2.6). Hence
an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions is

E-unitary if and only if the idempotent semilattice is majorantly closed.
Example

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 3, 4], [2, 3, 1, 6]),

> PartialPerm([1, 2, 3, 5], [3, 2, 1, 61));;
gap> IsEUnitaryInverseSemigroup(S);

true

gap> e := IdempotentGeneratedSubsemigroup(S);;

gap> ForAll(Difference(S, e), x -> not ForAny(e, y -> y * x in e));
true

gap> T := InverseSemigroup ([

> PartialPerm([1, 3, 4, 6, 8], [2, 5, 10, 7, 91),

> PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 8, 9, 2, 10, 1, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 91, [9, 8, 4, 1, 6, 7, 21)1);;
gap> IsEUnitaryInverseSemigroup(T);

false

gap> U := InverseSemigroup([

> PartialPerm([1, 2, 3, 4, 5], [2, 3, 4, 5, 11),

> PartialPerm([1, 2, 3, 4, 5], [2, 1, 3, 4, 51)1);;

gap> IsEUnitaryInverseSemigroup (U);

true

gap> IsGroupAsSemigroup (U);

true

gap> StructureDescription(U);

"SSH
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15.2.4 IsFactorisableInverseMonoid

> IsFactorisableInverseMonoid(S) (property)
Returns: true or false.
An inverse monoid is factorisable if every element is the product of an element of the group
of units and an idempotent; see also Group0fUnits (13.8.1) and Idempotents (13.9.1). Hence an
inverse semigroup of partial permutations is factorisable if and only if each of its generators is the

restriction of some element in the group of units.
Example

gap> S := InverseSemigroup(

> PartialPerm([1, 2, 4], [3, 1, 4]),

> PartialPerm([1, 2, 3, 5], [4, 1, 5, 21));;

gap> IsFactorisableInverseMonoid(S);

false

gap> IsFactorisableInverseMonoid(SymmetricInverseSemigroup(5));
true

gap> IsFactorisableInverseMonoid(DualSymmetricInverseMonoid(5));
false

gap> S := FactorisableDualSymmetricInverseMonoid(5);;
gap> IsFactorisableInverseMonoid(S);
true

15.2.5 IsJoinlrreducible

> IsJoinIrreducible(S, x) (operation)

Returns: true or false.

IsJoinIrreducible determines whether an element x of an inverse semigroup S of partial per-
mutations, block bijections or partial permutation bipartitions is join irreducible.

An element x is join irreducible when it is not the least upper bound (with respect to the natural
partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)) of any subset of S
not containing x.

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>

gap> x := PartialPerm([1, 2, 3]);

<identity partial perm on [ 1, 2, 3 ]>

gap> IsJoinIrreducible(S, x);

false

gap> T := InverseSemigroup ([

> PartialPerm([1, 2, 4, 31),

> PartialPerm([1]),

> PartialPerm([0, 2])1);

<inverse partial perm semigroup of rank 4 with 3 generators>
gap> y := PartialPerm([1, 2, 3, 4]);

<identity partial perm on [ 1, 2, 3, 4 1>

gap> IsJoinIrreducible(T, y);

true

gap> B := InverseSemigroup ([

> Bipartition([

> (1, -51, [2, -21, [3, 5, 6, 7, -1, -4, -6, -71, [4, -311),
> Bipartition([
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(1, -11, [2, -31, [3, -41, [4, 5, 7, -2, -6, -71, [6, -511),
Bipartition([

(1, -21, (2, -41, [3, -61, [4, -11, [5, 7, -3, -7]1, [6, -511),
Bipartition([

(1, -51, [2, -11, [3, -6], [4, 5, 7, -2, -4, -71, [6, -311D1);
<inverse block bijection semigroup of degree 7 with 4 generators>
gap> x := Bipartition([
> [1, 2,3,5,6,7, -2, -3, -4, -5, -6, -71, [4, -111);
<block bijection: [ 1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7 1,

vV V V V V

[ 4, -1 1>
gap> IsJoinIrreducible(B, x);
true
gap> IsJoinIrreducible(B, B.1);
false

15.2.6 IsMajorantlyClosed

> IsMajorantlyClosed(S, T) (operation)

Returns: true or false.

IsMajorantlyClosed determines whether the subset T of the inverse semigroup of partial per-
mutations, block bijections or partial permutation bipartitions S is majorantly closed in S. See also
MajorantClosure (15.1.3).

We say that T is majorantly closed in S if it contains all elements of S which are greater than or
equal to any element of T, with respect to the natural partial order. See NaturalleqPartialPerm
(Reference: NaturalLeqPartialPerm).

Note that T can be a subset of S or a subsemigroup of S.

Example
gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>

gap> T := [Elements(S)[2]];

[ <identity partial perm on [ 1 1> ]

gap> IsMajorantlyClosed(S, T);

false

gap> U := [Elements(S)[2], Elements(S)[6]];
[ <identity partial perm on [ 1 ]>, <identity partial perm on [ 1, 2 ]

> ]
gap> IsMajorantlyClosed(S, U);
true
gap> D := DualSymmetricInverseSemigroup(3);

<inverse block bijection monoid of degree 3 with 3 generators>
gap> x := Bipartition([[1, -21, [2, -3], [3, -111);;

gap> IsMajorantlyClosed(D, [x]);

true

gap> y := Bipartition([[1, 2, -1, -21, [3, -311);;

gap> IsMajorantlyClosed(D, [x, y1);

false
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15.2.7 IsMonogenicInverseSemigroup

> IsMonogenicInverseSemigroup(S) (property)

Returns: true or false.

IsMonogenicInverseSemigroup returns true if the semigroup S is a monogenic inverse semi-
group and it returns false if it is not.

A inverse semigroup is monogenic if it is generated as an inverse semigroup by a single element.
See also IsMonogenicSemigroup (14.1.10) and IsMonogenicInverseMonoid (15.2.8).

Example
gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := InverseSemigroup(x, x =~ 2, x ~ 3);;
gap> IsMonogenicSemigroup(S);
false
gap> IsMonogenicInverseSemigroup(S);
true

gap> x := RandomBlockBijection(100);;

gap> S := InverseSemigroup(x, x ~ 2, x ~ 20);;
gap> IsMonogenicInverseSemigroup(S);

true

gap> S := SymmetricInverseSemigroup(5);;

gap> IsMonogenicInverseSemigroup(S);

false

15.2.8 IsMonogenicInverseMonoid

> IsMonogenicInverseMonoid(S) (property)

Returns: true or false.

IsMonogenicInverseMonoid returns true if the monoid S is a monogenic inverse monoid and
it returns false if it is not.

A inverse monoid is monogenic if it is generated as an inverse monoid by a single element. See
also IsMonogenicInverseSemigroup (15.2.7) and IsMonogenicMonoid (14.1.11).

Example
gap> x := PartialPerm([1l, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 51);;
gap> S := InverseMonoid(x, x ~ 2, x ~ 3);;
gap> IsMonogenicMonoid(S);
false
gap> IsMonogenicInverseSemigroup(S);
false
gap> IsMonogenicInverseMonoid(S) ;
true
gap> x := RandomBlockBijection(100);;
gap> S := InverseMonoid(x, x ~ 2, x ~ 20);;
gap> IsMonogenicInverseMonoid(S);
true
gap> S := SymmetricInverseMonoid(5);;
gap> IsMonogenicInverseMonoid(S);
false




Chapter 16

Congruences

Congruences in Semigroups can be described in several different ways:

» Generating pairs — the minimal congruence which contains these pairs
* Rees congruences — the congruence specified by a given ideal

» Universal congruences — the unique congruence with only one class

* Linked triples — only for simple or O-simple semigroups (see below)

» Kernel and trace — only for inverse semigroups

The operation SemigroupCongruence (16.2.1) can be used to create any of these, interpreting the
arguments in a smart way. The usual way of specifying a congruence will be by giving a set of gener-
ating pairs, but a user with an ideal could instead create a Rees congruence or universal congruence.

If a congruence is specified by generating pairs on a simple, O-simple, or inverse semigroup, then
the congruence may be converted automatically to one of the last two items in the above list, to reduce
the complexity of any calculations to be performed. The user need not manually specify, or even be
aware of, the congruence’s linked triple or kernel and trace.

We can also create left congruences and right congruences, using the
LeftSemigroupCongruence (16.2.2) and RightSemigroupCongruence (16.2.3) functions.

Please note that congruence objects made in GAP before loading the Semigroups package may
not behave correctly after Semigroups is loaded. If Semigroups is loaded at the beginning of the
session, or before any congruence work is done, then the objects should behave correctly.

16.1 Semigroup congruence objects

16.1.1 IsSemigroupCongruence

> IsSemigroupCongruence (obj) (property)
A semigroup congruence cong is an equivalence relation on a semigroup S which respects left
and right multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (ax,bx) and (xa,xb) are both in
cong.

210
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The simplest way of creating a congruence in Semigroups is by a set of generating pairs. See
SemigroupCongruence (16.2.1).

Example
gap> S := Semigroup([

>  Transformation([2, 1, 1, 2, 1]),

> Transformation([3, 4, 3, 4, 4]),

> Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 41)1);;
gap> pairl := [Transformation([3, 4, 3, 4, 31),

> Transformation([1, 2, 1, 2, 11)]1;;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),

> Transformation([3, 4, 3, 4, 31)]1;;
gap> cong := SemigroupCongruence(S, [pairl, pair2]);

<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

gap> IsSemigroupCongruence (cong) ;

true

16.1.2 IsLeftSemigroupCongruence

> IsLeftSemigroupCongruence (obj) (property)

A left semigroup congruence cong is an equivalence relation on a semigroup S which respects left
multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (xa,xb) is also in cong.

The simplest way of creating a left congruence in Semigroups is by a set of generating pairs.
See LeftSemigroupCongruence (16.2.2).

Example

gap> S := Semigroup([

>  Transformation([2, 1, 1, 2, 1]1),

> Transformation([3, 4, 3, 4, 4]),

>  Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 41)1);;

gap> pairl := [Transformation([3, 4, 3, 4, 3]),

> Transformation([1, 2, 1, 2, 11)]1;;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 31)]1;;

gap> cong := LeftSemigroupCongruence(S, [pairl, pair2]);

<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> IsLeftSemigroupCongruence(cong) ;

true

16.1.3 IsRightSemigroupCongruence

> IsRightSemigroupCongruence(obj) (property)

A right semigroup congruence cong is an equivalence relation on a semigroup S which respects

right multiplication.
That is, if (a,b) is a pair in cong, and x is an element of S, then (ax, bx) is also in cong.
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The simplest way of creating a right congruence in Semigroups is by a set of generating pairs.
See RightSemigroupCongruence (16.2.3).

Example
gap> S := Semigroup([

>  Transformation([2, 1, 1, 2, 1]1),

> Transformation([3, 4, 3, 4, 4]),

> Transformation([3, 4, 3, 4, 31),

> Transformation([4, 3, 3, 4, 41)1);;
gap> pairl := [Transformation([3, 4, 3, 4, 31),

> Transformation([1, 2, 1, 2, 11)];;
gap> pair2 := [Transformation([4, 3, 4, 3, 41),
> Transformation([3, 4, 3, 4, 31)]1;;

gap> RightSemigroupCongruence(S, [pairl, pair2]);

<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> IsRightSemigroupCongruence(cong) ;

true

16.2 Creating congruences

16.2.1 SemigroupCongruence

> SemigroupCongruence(S, pairs) (function)

Returns: A semigroup congruence.

This function returns a semigroup congruence over the semigroup S.

If pairs is a list of lists of size 2 with elements from S, then this function will return the semi-
group congruence defined by these generating pairs. The individual pairs may instead be given as
separate arguments.

Example

gap> S := Semigroup([

>  Transformation([2, 1, 1, 2, 1]1),

> Transformation([3, 4, 3, 4, 4]),

> Transformation([3, 4, 3, 4, 31),

>  Transformation([4, 3, 3, 4, 41)1);;

gap> pairl := [Transformation([3, 4, 3, 4, 31),

> Transformation([1, 2, 1, 2, 11)];;
gap> pair2 := [Transformation([4, 3, 4, 3, 41),
> Transformation([3, 4, 3, 4, 31)]1;;

gap> SemigroupCongruence(S, [pairl, pair2]);

<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

gap> SemigroupCongruence(S, pairl, pair2);

<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

16.2.2 LeftSemigroupCongruence

> LeftSemigroupCongruence(S, pairs) (function)
Returns: A left semigroup congruence.
This function returns a left semigroup congruence over the semigroup S.
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If pairs is alist of lists of size 2 with elements from S, then this function will return the least left
semigroup congruence on S which contains these generating pairs. The individual pairs may instead
be given as separate arguments.

Example

gap> S := Semigroup([

>  Transformation([2, 1, 1, 2, 1]),

> Transformation([3, 4, 3, 4, 41),

> Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 41)1);;

gap> pairl := [Transformation([3, 4, 3, 4, 3]),

> Transformation([1, 2, 1, 2, 11)]1;;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]1),
> Transformation([3, 4, 3, 4, 31)]1;;

gap> LeftSemigroupCongruence(S, [pairl, pair2]);

<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> LeftSemigroupCongruence(S, pairl, pair2);

<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

16.2.3 RightSemigroupCongruence

> RightSemigroupCongruence(S, pairs) (function)

Returns: A right semigroup congruence.

This function returns a right semigroup congruence over the semigroup S.

If pairs is a list of lists of size 2 with elements from S, then this function will return the least
right semigroup congruence on S which contains these generating pairs. The individual pairs may
instead be given as separate arguments.

Example

gap> S := Semigroup([

> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 41),
> Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 41)1);;

gap> pairl := [Transformation([3, 4, 3, 4, 3]),

> Transformation([1, 2, 1, 2, 11)1;;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 31)1;;

gap> RightSemigroupCongruence(S, [pairl, pair2]);

<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> RightSemigroupCongruence(S, pairl, pair2);

<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

16.2.4 GeneratingPairsOfSemigroupCongruence

> GeneratingPairsOfSemigroupCongruence (cong) (attribute)
> GeneratingPairsOfLeftSemigroupCongruence (cong) (attribute)
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> GeneratingPairsOfRightSemigroupCongruence (cong) (attribute)

Returns: A list of lists.

If cong is a semigroup congruence, then GeneratingPairsOfSemigroupCongruence returns
a list of pairs of elements from Range (cong) that generates the congruence; i.e. cong is the least
congruence on the semigroup which contains all the pairs in the list.

If cong is a left or right semigroup congruence, then
GeneratingPairsOfLeft/RightSemigroupCongruence will instead give a list of pairs which
generate it as a left or right congruence. Note that, although a congruence is also a left and right
congruence, its generating pairs as a left or right congruence may differ from its generating pairs as a
two-sided congruence.

A congruence can be defined using a set of generating pairs: see SemigroupCongruence (16.2.1),
LeftSemigroupCongruence (16.2.2), and RightSemigroupCongruence (16.2.3).

Example
gap> S := Semigroup([Transformation([3, 3, 2, 3]),
> Transformation([3, 4, 4, 11)1);;
gap> pairs :=
> [[Transformation([1, 1, 1, 1]), Tramsformation([2, 2, 2, 31)],
> [Transformation([2, 2, 3, 2]), Transformation([3, 3, 2, 31)1]1;;
gap> cong := SemigroupCongruence(S, pairs);;
gap> GeneratingPairsOfSemigroupCongruence(cong) ;
[ [ Transformation( [ 1, 1, 1, 11 ),
Transformation( [ 2, 2, 2, 31 ) 1,
[ Transformation( [ 2, 2, 3, 21 ),
Transformation( [ 3, 3, 2, 31 ) 11

16.3 Congruence classes

16.3.1 IsCongruenceClass

> IsCongruenceClass(obj) (category)

This category contains any object which is an equivalence class of a semigroup congruence (see
IsSemigroupCongruence (16.1.1)). An object will only be in this category if the relation is known

to be a semigroup congruence when the congruence class is created.
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 31)1);;

gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1]),

> Transformation([2, 1, 21)1);;
gap> class := EquivalenceClass0OfElement (cong,

> Transformation([3, 1, 11));

<congruence class of Transformation( [ 3, 1, 1] )>
gap> IsCongruenceClass(class);
true

16.3.2 IsLeftCongruenceClass

> IsLeftCongruenceClass(obj) (category)
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This category contains any object which is an equivalence class of a left semigroup congruence
(see IsLeftSemigroupCongruence (16.1.2)). An object will only be in this category if the relation

is known to be a left semigroup congruence when the class is created.
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 31)1);;

gap> pairs := [Transformation([1, 2, 1]),

> Transformation([2, 1, 2])];;

gap> cong := LeftSemigroupCongruence(S, pairs);;

gap> class := EquivalenceClassOfElement (cong,

> Transformation([3, 1, 1]1));

<left congruence class of Transformation( [ 3, 1, 1 ] )>
gap> IsLeftCongruenceClass(class);
true

16.3.3 IsRightCongruenceClass

> IsRightCongruenceClass (Obj) (category)

This category contains any object which is an equivalence class of a right semigroup congruence
(see IsRightSemigroupCongruence (16.1.3)). An object will only be in this category if the relation

is known to be a right semigroup congruence when the class is created.

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 31)1);;

gap> pairs := [Transformation([1, 2, 1]),

> Transformation([2, 1, 21)];;

gap> cong := RightSemigroupCongruence(S, pairs);;

gap> class := EquivalenceClassOfElement (cong,

> Transformation([3, 1, 1]1));

<right congruence class of Transformation( [ 3, 1, 1] )>
gap> IsRightCongruenceClass(class);
true

16.3.4 CongruenceClassOfElement

> CongruenceClassOfElement (cong, elm) (operation)
> LeftCongruenceClass0fElement (cong, elm) (operation)
> RightCongruenceClassOfElement (cong, elm) (operation)

Returns: An equivalence class.

These operations act as a synonym of EquivalenceClass0fElement in the case that the argu-

ment cong is a congruence, left congruence, or right congruence (respectively) of a semigroup.

See IsLeftSemigroupCongruence (16.1.2), IsRightSemigroupCongruence (16.1.3),

IsSemigroupCongruence (16.1.1).
Example

and

gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[O, (1, 3, 201, [(1, 2), 011);;

gap> cong := Congruences0fSemigroup(S) [3];;

gap> elm := ReesZeroMatrixSemigroupElement(S, 1, (1, 3, 2), 1);;
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gap> CongruenceClassOfElement (cong, elm);
<congruence class of (1,(1,3,2),1)>
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16.3.5 CongruenceClasses

> CongruenceClasses(cong)

> LeftCongruenceClasses(cong)

> RightCongruenceClasses (cong)
Returns: A list of equivalence classes.

(operation)
(operation)

(operation)

These operations act as a synonym of EquivalenceClasses in the case that the argument cong

is a congruence, left congruence, or right congruence (respectively) of a semigroup.

See IsLeftSemigroupCongruence (16.1.2), IsRightSemigroupCongruence (16.1.3), and

IsSemigroupCongruence (16.1.1).

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 31)1);;

gap> pair := [Transformation([1, 2, 1]), Transformation([2, 1, 2])];;
gap> cong := SemigroupCongruence(S, pair);;
gap> classes := CongruenceClasses(cong);;

gap> Set(classes);

[ <congruence class of Transformation( [ 3, 3, 31 )>,
<congruence class of Transformation( [ 2, 1, 2 ] )>,
<congruence class of Transformation( [ 1, 2, 2 ] )>,
<congruence class of IdentityTransformation>,
<congruence class of Transformation( [ 3, 1, 3] )>,
<congruence class of Transformation( [ 3, 1, 1] )> ]

B

16.3.6 NonTrivialEquivalenceClasses

> NonTrivialEquivalenceClasses(eq)
Returns: A list of equivalence classes.

(attribute)

If eq is an equivalence relation, then this attribute returns a list of all equivalence classes of eq

which contain more than one element.

Example
gap> S := Monoid([Transformation([1, 2, 2]),
> Transformation([3, 1, 31)1);;
gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 21)1);;
gap> classes := NonTrivialEquivalenceClasses(cong);;

gap> Set(classes);

[ <congruence class of Transformation( [ 3, 3, 31 )>,
<congruence class of Transformation( [ 2, 1, 2 ] )>,
<congruence class of Transformation( [ 1, 2, 2] )>,
<congruence class of Transformation( [ 3, 1, 3] )>,
<congruence class of Transformation( [ 3, 1, 1] )> ]

16.3.7 NonTrivialCongruenceClasses

> NonTrivialCongruenceClasses(cong)
> NonTrivialLeftCongruenceClasses(cong)

(operation)

(operation)
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> NonTrivialRightCongruenceClasses(cong) (operation)
Returns: A list of equivalence classes.
These operations act as a synonym of NonTrivialEquivalenceClasses in the case that the
argument cong is a congruence, left congruence, or right congruence (respectively) of a semigroup.
See IsLeftSemigroupCongruence (16.1.2), IsRightSemigroupCongruence (16.1.3), and
IsSemigroupCongruence (16.1.1).
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3]1)1);;
gap> cong := RightSemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 21)1);;
gap> classes := NonTrivialRightCongruenceClasses(cong);;
gap> Set(classes);
[ <right congruence class of Transformation( [ 2, 1, 2 ] )>,
<right congruence class of Transformation( [ 3, 1, 3] )> 1]

16.3.8 NrEquivalenceClasses

> NrEquivalenceClasses(eq) (attribute)
Returns: A positive integer.
If eq is an equivalence relation, then this attribute describes the number of equivalence classes it
has.

Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> (ro, @, 3, 21, 0, 2), 011;;

gap> cong := CongruencesOfSemigroup(S) [3];;
gap> NrEquivalenceClasses(cong) ;
9

16.3.9 NrCongruenceClasses

> NrCongruenceClasses(cong) (operation)
> NrLeftCongruenceClasses(cong) (operation)
> NrRightCongruenceClasses(cong) (operation)

Returns: A list of equivalence classes.

These operations act as a synonym of NrEquivalenceClasses in the case that the argument
cong is a congruence, left congruence, or right congruence (respectively) of a semigroup.

See IsLeftSemigroupCongruence (16.1.2), IsRightSemigroupCongruence (16.1.3), and
IsSemigroupCongruence (16.1.1).

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 31)1);;

gap> pair := [Transformation([1, 2, 1]), Transformation([2, 1, 2])];;
gap> cong := SemigroupCongruence(S, pair);;

gap> NrCongruenceClasses(cong) ;

6

gap> cong := RightSemigroupCongruence(S, pair);;
gap> NrRightCongruenceClasses(cong);
10
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16.3.10 EquivalenceRelationLookup

> EquivalenceRelationLookup(cong) (attribute)

Returns: A list.

This attribute describes the (left, right or two-sided) semigroup congruence cong as a list of
positive integers with length the size of the finite semigroup over which cong is defined.

Each position in the list corresponds to an element of the semigroup (in a consistent canonical
order) and the integer at that position is a unique identifier for that element’s congruence class un-
der cong. Two elements of the semigroup on which the congruence is defined are related in the
congruence if and only if they have the same number at their respective positions in the lookup.

Note that the order in which numbers appear in the list is non-deterministic, and two congruence
objects which describe the same equivalence relation might therefore have different lookups. Note
also that the maximum value of the list may not be the number of classes of cong, and that any
integer might not be included. However, see EquivalenceRelationCanonicalLookup (16.3.11).

See also EquivalenceRelationPartition (Reference: EquivalenceRelationPartition).
Example

gap> S := Monoid([

> Transformation([1, 2, 2]), Transformation([3, 1, 3]1)]1);;
gap> cong := SemigroupCongruence (S,

> [Transformation([1, 2, 1]), Transformation([2, 1, 2])1);;
gap> lookup := EquivalenceRelationLookup(cong);;

gap> lookup[3] = lookup[8];

true

gap> lookup[2] = lookup[9];

false

16.3.11 EquivalenceRelationCanonicalLLookup

> EquivalenceRelationCanonicallookup(cong) (attribute)

Returns: A list.

This attribute describes the semigroup congruence cong as a list of positive integers with length
the size of the finite semigroup over which cong is defined.

Each position in the list corresponds to an element of the semigroup (in a consistent canonical
order) and the integer at that position is a unique identifier for that element’s congruence class under
cong. The value of EquivalenceRelationCanonicalLookup has the property that the first appear-
ance of the value 1 is strictly later than the first appearance of i-1, and that all entries in the list will
be from the range [1 .. NrEquivalenceClasses(cong)]. As such, two congruences on a given
semigroup are equal if and only if their canonical lookups are equal.

Two elements of the semigroup on which the congruence is defined are related in the congruence
if and only if they have the same number at their respective positions in the lookup.

See also EquivalenceRelationLookup (16.3.10) and EquivalenceRelationPartition

(Reference: EquivalenceRelationPartition).
Example

gap> S := Monoid([

> Transformation([1, 2, 2]), Transformation([3, 1, 3]1)1);;
gap> cong := SemigroupCongruence(S,

> [Transformation([1, 2, 1]), Transformation([2, 1, 2]1)1);;
gap> EquivalenceRelationCanonicalLookup(cong) ;

(1,2, 3, 4,5,6,2,3,6, 4,5, 6]
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16.3.12 EquivalenceRelationCanonicalPartition

> EquivalenceRelationCanonicalPartition(cong) (attribute)

Returns: A list of lists.

This attribute returns a list of lists of elements of the underlying set of the semigroup congruence
cong. These lists are precisely the nontrivial equivalence classes of cong. The order in which the
classes appear is deterministic, and the order of the elements inside each class is also deterministic.
Hence, two congruence objects have the same EquivalenceRelationCanonicalPartition if and
only if they describe the same relation.

See also EquivalenceRelationPartition (Reference: EquivalenceRelationPartition), a
similar attribute which does not have canonical ordering, but which is likely to be faster.

Example
gap> S := Semigroup(Transformation([1, 4, 3, 3]),
> Transformation([2, 4, 3, 31));;
gap> cong := SemigroupCongruence(S, [Transformation([1, 4, 3, 3]1),
> Transformation([1, 3, 3, 31)1);;

gap> EquivalenceRelationCanonicalPartition(cong) ;
[ [ Transformation( [ 1, 3, 3, 31 ),
Transformation( [ 1, 4, 3, 31 ) 1,
[ Transformation( [ 3, 3, 3, 3] ),
Transformation( [ 4, 3, 3, 31 ) 11

16.3.13 OnLeftCongruenceClasses

> OnLeftCongruenceClasses(class, elm) (operation)

Returns: A left congruence class.

If class is an equivalence class of the left semigroup congruence cong on the semigroup S,
and elm is an element of S, then this operation returns the equivalence class of cong containing the
element elm * x, where x is any element of class. The result is well-defined by the definition of a
left congruence.

See IsLeftSemigroupCongruence (16.1.2) and IsLeftCongruenceClass (16.3.2).

Example

gap> S := Semigroup([

>  Transformation([2, 1, 1, 2, 1]),

>  Transformation([3, 4, 3, 4, 4]),

> Transformation([3, 4, 3, 4, 3]),

> Transformation([4, 3, 3, 4, 41)1);;

gap> pairl := [Transformation([3, 4, 3, 4, 31),

> Transformation([1, 2, 1, 2, 11)]1;;
gap> pair2 := [Transformation([4, 3, 4, 3, 41),
> Transformation([3, 4, 3, 4, 31)]1;;

gap> cong := LeftSemigroupCongruence(S, [pairl, pair2]);

<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> x := Transformation([3, 4, 3, 4, 31);;

gap> class := LeftCongruenceClassOfElement(cong, x);

<left congruence class of Transformation( [ 3, 4, 3, 4, 3] )>

gap> elm := Transformation([1, 2, 2, 1, 2]);;

gap> OnLeftCongruenceClasses(class, elm);

<left congruence class of Transformation( [ 3, 4, 4, 3, 4] )>
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16.3.14 OnRightCongruenceClasses

> OnRightCongruenceClasses(class, elm) (operation)

Returns: A right congruence class.

If class is an equivalence class of the right semigroup congruence cong on the semigroup S,
and elm is an element of S, then this operation returns the equivalence class of cong containing the
element x * elm, where x is any element of class. The result is well-defined by the definition of a
right congruence.

See IsRightSemigroupCongruence (16.1.3) and IsRightCongruenceClass (16.3.3).

Example
gap> S := Semigroup([

> Transformation([2, 1, 1, 2, 1]),

> Transformation([3, 4, 3, 4, 4]),

> Transformation([3, 4, 3, 4, 31),

> Transformation([4, 3, 3, 4, 41)1);;
gap> pairl := [Transformation([3, 4, 3, 4, 31),

> Transformation([1, 2, 1, 2, 11)];;
gap> pair2 := [Transformation([4, 3, 4, 3, 41),
> Transformation([3, 4, 3, 4, 31)1;;

gap> cong := RightSemigroupCongruence(S, [pairl, pair2]);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> x := Transformation([3, 4, 3, 4, 31);;

gap> class := RightCongruenceClassOfElement (cong, x);

<right congruence class of Transformation( [ 3, 4, 3, 4, 31 )>
gap> elm := Transformation([1l, 2, 2, 1, 2]);;

gap> OnRightCongruenceClasses(class, elm);

<right congruence class of Transformation( [ 2, 1, 2, 1, 2] )>

16.4 Finding the congruences of a semigroup

16.4.1 CongruencesOfSemigroup (for a semigroup)

> Congruences0fSemigroup (S) (attribute)
> LeftCongruencesOfSemigroup(S) (attribute)
> RightCongruences0fSemigroup(S) (attribute)
> Congruences0fSemigroup(S, restriction) (operation)
> LeftCongruencesOfSemigroup(S, restriction) (operation)
> RightCongruences0fSemigroup(S, restriction) (operation)

Returns: The congruences of a semigroup.

This attribute gives a list of the left, right, or 2-sided congruences of the semigroup S.

If restriction is specified and is a collection of elements from S, then the result will only
include congruences generated by pairs of elements from restriction. Otherwise, all congruences
will be calculated.

See also LatticeOfCongruences (16.4.5).

Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> (Lo, @, 3, 201, [(1, 2), 011);;

gap> congs := CongruencesOfSemigroup(S);;
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gap> Length(congs) ;

4

gap> Set(congs, NrCongruenceClasses);

[ 1, 5, 9, 25 ]

gap> pos := Position(congs, UniversalSemigroupCongruence(S));;
gap> congs [pos];

<universal semigroup congruence over

<Rees O-matrix semigroup 2x2 over Sym( [ 1 .. 3 ] )>>

16.4.2 MinimalCongruencesOfSemigroup (for a semigroup)

> MinimalCongruences0fSemigroup (S) (attribute)
> MinimalLeftCongruences0fSemigroup(S) (attribute)
> MinimalRightCongruences0fSemigroup(S) (attribute)
> MinimalCongruencesOfSemigroup(S, restriction) (operation)
> MinimalLeftCongruencesOfSemigroup (S, restriction) (operation)
> MinimalRightCongruences0fSemigroup(S, restriction) (operation)

Returns: The congruences of a semigroup.

If S is a semigroup, then the attribute MinimalCongruences0fSemigroup gives a list of all the
congruences on S which are minimal. A congruence is minimal iff it is non-trivial and contains no
other congruences as subrelations (apart from the trivial congruence).

MinimalLeftCongruencesO0fSemigroup and MinimalRightCongruences0fSemigroup do
the same thing, but for left congruences and right congruences respectively. Note that any congru-
ence is also a left congruence, but that a minimal congruence may not be a minimal left congruence.

If restriction is specified and is a collection of elements from S, then the result will only
include congruences generated by pairs of elements from restriction. Otherwise, all congruences
will be calculated.

See also Congruences0fSemigroup (16.4.1) and PrincipalCongruencesOfSemigroup

(16.4.3).

Example
gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([3, 1, 31));;
gap> min := MinimalCongruencesOfSemigroup(S);

[ <semigroup congruence over <transformation semigroup of size 13,
degree 3 with 2 generators> with 1 generating pairs> ]
gap> minl := MinimalLeftCongruences0fSemigroup(S);
[ <left semigroup congruence over <transformation semigroup
of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<left semigroup congruence over <transformation semigroup
of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<left semigroup congruence over <transformation semigroup
of size 13, degree 3 with 2 generators> with 1 generating pairs>

16.4.3 PrincipalCongruencesOfSemigroup (for a semigroup)

> PrincipalCongruences0fSemigroup(S) (attribute)
> PrincipalleftCongruencesOfSemigroup(S) (attribute)
> PrincipalRightCongruences0fSemigroup (S) (attribute)
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> PrincipalCongruences0fSemigroup(S, restriction) (operation)
> PrincipalleftCongruencesOfSemigroup(S, restriction) (operation)
> PrincipalRightCongruences0fSemigroup(S, restriction) (operation)

Returns: A list.

If S is a semigroup, then the attribute PrincipalCongruences0fSemigroup gives a list of all
the congruences on S which are principal. A congruence is principal if and only if it is non-trivial and
can be defined by a single generating pair.

PrincipalLeftCongruencesOfSemigroup and PrincipalRightCongruences0fSemigroup
do the same thing, but for left congruences and right congruences respectively. Note that any con-
gruence is a left congruence and a right congruence, but that a principal congruence may not be a
principal left congruence or a principal right congruence.

If restriction is specified and is a collection of elements from S, then the result will only
include congruences generated by pairs of elements from restriction. Otherwise, all congruences
will be calculated.

See also Congruences0fSemigroup (16.4.1) and MinimalCongruences0fSemigroup (16.4.2).

Example
gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([3, 1, 3]));;
gap> congs := PrincipalCongruencesOfSemigroup(S);

[ <semigroup congruence over <transformation semigroup of size 13,
degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,
degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,
degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,
degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,
degree 3 with 2 generators> with 1 generating pairs> ]

16.4.4 IsCongruencePoset

> IsCongruencePoset (poset) (Category)

Returns: true or false.

This category contains all congruence posets. A congruence poset is a partially ordered set of
congruences over a specific semigroup, where the ordering is defined by containment according to
IsSubrelation (16.5.1): given two congruences congl and cong2, we say that congl < cong? if
and only if congl is a subrelation (a refinement) of cong2. The congruences in a congruence poset
can be left, right, or two-sided.

A congruence poset is displayed as a list of lists, which describes the partial order of its
congruences: the integer j appears in list i if and only if the congruence numbered j is a
subrelation of the congruence numbered i. The list of congruences can be obtained using
CongruencesOfPoset (16.4.7). Congruence posets can be created using PosetOfCongruences
(16.4.9), JoinSemilattice0fCongruences (16.4.10), and Lattice0fCongruences (16.4.5).
Example
gap> S := SymmetricInverseMonoid(2);;

gap> poset := LatticeOfCongruences(S);
tc 1,011, 01,2,41,[1,2]]
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gap> IsCongruencePoset (poset);

true

gap> poset[3];

(1,2, 4]

gap> T := FullTransformationMonoid(3);;

gap> congs := PrincipalCongruencesOfSemigroup(T);;

gap> poset := JoinSemilatticeOfCongruences(congs,

> JoinSemigroupCongruences) ;

(l4,61,[01,3,4,5,61, [1,4,5,61,[61,[1,4,61,
L 11

gap> IsCongruencePoset(poset);

true

gap> Length(poset);

6

16.4.5 LatticeOfCongruences (for a semigroup)

> LatticeOfCongruences(S) (attribute)
> LatticeOfLeftCongruences(S) (attribute)
> LatticeOfRightCongruences(S) (attribute)
> LatticeOfCongruences(S, restriction) (operation)
> LatticeOfLeftCongruences(S, restriction) (operation)
> LatticeOfRightCongruences(S, restriction) (operation)

Returns: A list of lists.

If S is a semigroup, then Lattice0fCongruences gives a list of lists showing how the con-
gruences of S are contained in each other. The congruence numbered i is a subcongruence of the
congruence numbered j if and only if i is in the jth list. The numbering is according to the order in
Congruences0fPoset (16.4.7).

LatticeOfLeftCongruences and Lattice0fRightCongruences do the same thing for left and
right congruences respectively.

If restriction is specified and is a collection of elements from S, then the result will only
include congruences generated by pairs of elements from restriction. Otherwise, all congruences
will be calculated.

See CongruencesOfSemigroup (16.4.1).

Example
gap> S := OrderEndomorphisms(2);;

gap> LatticeOfCongruences(S);

tct 1,011,371, 0111

gap> LatticeOfLeftCongruences(S);

tct 1,011,331, 0111

gap> LatticeOfRightCongruences(S);

tr 1,011, 011,011, 01,2,3,41]1

gap> S := FullTransformationMonoid(4);;

gap> restriction := [Transformation([1, 1, 1, 1]),
> Transformation([1, 1, 1, 2]),
> Transformation([1, 1, 1, 31)];;
gap> latt := LatticeOfCongruences(S, restriction);

tc 1, 0111
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16.4.6 PosetOfPrincipalCongruences (for a semigroup)

> Poset0fPrincipalCongruences(S) (attribute)
> Poset0fPrincipalleftCongruences(S) (attribute)
> PosetOfPrincipalRightCongruences(S) (attribute)
> Poset0fPrincipalCongruences(S, restriction) (operation)
> PosetOfPrincipalLeftCongruences(S, restriction) (operation)
> Poset0fPrincipalRightCongruences(S, restriction) (operation)

Returns: A congruence poset.

If S is a semigroup, then PosetOfPrincipalCongruences returns a congruence poset ob-
ject which contains all the principal congruences of S, ordered by containment according to
IsSubrelation (16.5.1). A congruence is principal if it can be defined by a single generating
pair. PosetOfPrincipallLeftCongruences and PosetOfPrincipalRightCongruences do the
same thing for left and right congruences respectively.

If restriction is specified and is a collection of elements from S, then the result will only
include principal congruences generated by pairs of elements from restriction. Otherwise, all
principal congruences will be calculated.

See also LatticeOfCongruences (16.4.5) and PrincipalCongruences0fSemigroup (16.4.3).

Example
gap> S := Semigroup([Transformation([1, 3, 1]),
> Transformation([2, 3, 31)1);;

gap> PosetOfPrincipallLeftCongruences(S);

rrs,111, ¢ 1,01, 2,8, 1,121, [ 2,7, 10, 11, 12 ], [ 2],
(1,2, 3,4,5,7,8,9, 10, 11, 121, [ 10, 121, [ 111,
(2,11,12171, 0121, C 1, [ 11

gap> Poset0fPrincipalCongruences(S);

tf2,31, 0 1,211

gap> restriction := [Transformation([3, 2, 3]),

> Transformation([3, 1, 3]),

> Transformation([2, 2, 21)]1;;

gap> poset := PosetOfPrincipalRightCongruences(S, restriction);

tc2,31,01, 011

16.4.7 CongruencesOfPoset

> Congruences0fPoset (poset) (attribute)

Returns: A list.

If poset is a congruence poset object, then this attribute returns a list of all the congruence objects
in the poset (these may be left, right, or two-sided). The order of this list corresponds to the order of
the entries in the poset.

See also Lattice0fCongruences (16.4.5) and Congruences0fSemigroup (16.4.1).

Example
gap> S := OrderEndomorphisms(2);;
gap> latt := LatticeOfRightCongruences(S);
tc 1,011,011, 011, [01,2,3,41]1]
gap> Congruences0fPoset(latt);
[ <right semigroup congruence over <regular transformation monoid
of size 3, degree 2 with 2 generators> with O generating pairs>,
<right semigroup congruence over <regular transformation monoid
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of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 2 generating pairs> ]

16.4.8 UnderlyingSemigroupOfCongruencePoset

> UnderlyingSemigroup0OfCongruencePoset (poset) (attribute)
Returns: A semigroup.
If poset is a congruence poset object, then this attribute returns the semigroup on which all its

congruences are defined.
Example

gap> S := OrderEndomorphisms(2);

<regular transformation monoid of degree 2 with 2 generators>
gap> latt := LatticeOfRightCongruences(S);

tc 1, 011,01, 011, C[C1,2,3,4171]1

gap> UnderlyingSemigroupOfCongruencePoset(latt) = S;

true

16.4.9 PosetOfCongruences

> PosetOfCongruences(coll) (operation)

Returns: A congruence poset.

If coll is a list or collection of semigroup congruences (which may be left, right, or two-sided)
then this operation returns the congruence poset formed by these congruences partially ordered by
containment.

This operation does not create any new congruences or take any joins. However,
see JoinSemilatticeOfCongruences (16.4.10). See also IsCongruencePoset (16.4.4) and
LatticeOfCongruences (16.4.5).

Example
gap> S := OrderEndomorphisms(2);;
gap> pairl := [Transformation([1, 1]), IdentityTransformation];;
gap> pair2 := [IdentityTransformation, Transformation([2, 2])];;
gap> coll := [RightSemigroupCongruence(S, pairl),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, [1)];;
gap> Poset0fCongruences(coll);
(31,031, 0 11

16.4.10 JoinSemilatticeOfCongruences (for a list or collection and a function)

> JoinSemilatticeOfCongruences(coll, join_func) (operation)
> JoinSemilatticeOfCongruences(poset, join_func) (operation)
Returns: A congruence poset.
If coll is a list or collection of semigroup congruences (which may be left, right, or two-
sided) and join_func is a function for taking the join of two of the congruences (such as
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JoinSemigroupCongruences (16.5.4)) then this operation returns the congruence poset formed by
these congruences partially ordered by containment, along with all their joins.

Alternatively, a congruence poset poset can be specified; in this case, the congruences contained
in poset will be used in place of coll, and information already known about their containments will
be used.

See also IsCongruencePoset (16.4.4) and Poset0fCongruences (16.4.9).
Example
gap> S := SymmetricInverseMonoid(2);;

gap> pairl := [PartialPerm([1], [1]), PartialPerm([2], [11)];;

gap> pair2 := [PartialPerm([1], [1]), PartialPerm([1, 2], [1, 21)];;
gap> pair3 := [PartialPerm([1, 2], [1, 21),

> PartialPerm([1, 2], [2, 11)];;

gap> coll := [RightSemigroupCongruence(S, pairl),

> RightSemigroupCongruence(S, pair2),

> RightSemigroupCongruence(S, pair3)];;

gap> JoinSemilatticeOfCongruences(coll, JoinRightSemigroupCongruences) ;

tt 1,011,011, 01,2,31]1

16.4.11 MinimalCongruences (for a list or collection)

> MinimalCongruences(coll) (attribute)
> MinimalCongruences (poset) (attribute)

Returns: A list.

If coll is a list or collection of semigroup congruences (which may be left, right, or two-sided)
then this attribute returns a list of all the congruences from coll which do not contain any of the
others as subrelations.

Alternatively, a congruence poset poset can be specified; in this case, the congruences contained
in poset will be used in place of coll, and information already known about their containments will
be used.

This function should not be confused with MinimalCongruences0fSemigroup (16.4.2). See
also IsCongruencePoset (16.4.4) and Poset0fCongruences (16.4.9).

Example
gap> S := SymmetricInverseMonoid(2);;
gap> pairl := [PartialPerm([1], [1]), PartialPerm([2], [11)];;
gap> pair2 := [PartialPerm([1], [1]), PartialPerm([1, 2], [1, 21)];;
gap> pair3 := [PartialPerm([1, 2], [1, 2]),
> PartialPerm([1, 2], [2, 11)];;
gap> coll := [RightSemigroupCongruence(S, pairl),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, pair3)];;

gap> MinimalCongruences(coll);

[ <right semigroup congruence over <symmetric inverse monoid of degree\
2> with 1 generating pairs>,
<right semigroup congruence over <symmetric inverse monoid of degree\
2> with 1 generating pairs> ]

gap> poset := LatticeOfCongruences(S);

cr 1,011, 01,2,41,[1,211

gap> MinimalCongruences(poset) ;

[ <semigroup congruence over <symmetric inverse monoid of degree 2> wi\

th O generating pairs> ]




Semigroups 227

16.5 Comparing congruences

16.5.1 IsSubrelation

> IsSubrelation(congl, cong2) (operation)
Returns: True or false.
If cong1 and cong?2 are congruences over the same semigroup, then this operation returns whether
cong? is a refinement of congl, i.e. whether every pair in cong? is contained in congl.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[O, (1, 3, 2)1, [, 2), 011);;

gap> congl := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement (S, 1, O, 1)1);;
gap> cong2 := SemigroupCongruence(S, [1);;

gap> IsSubrelation(congl, cong2);

true

gap> IsSubrelation(cong2, congl);

false

16.5.2 IsSuperrelation

> IsSuperrelation(congl, cong2) (operation)
Returns: True or false.
If cong1 and cong2 are congruences over the same semigroup, then this operation returns whether
congl is a refinement of cong?2, i.e. whether every pair in cong1 is contained in cong2.
See IsSubrelation (16.5.1).

Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[O, (1, 3, 2)1, [(1, 2), 011);;

gap> congl := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement (S, 1, O, 1)1);;
gap> cong2 := SemigroupCongruence(S, []);;

gap> IsSuperrelation(congl, cong2);

false

gap> IsSuperrelation(cong2, congl);

true

16.5.3 MeetSemigroupCongruences

> MeetSemigroupCongruences(cl, c2) (operation)
Returns: A semigroup congruence.
This operation returns the meet of the two semigroup congruences c1 and c2 — that is, the largest
semigroup congruence contained in both c1 and c2.

Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),

> [[O, (1, 3, 2)1, [, 2), 011);;

gap> congl := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
N RMSElement (S, 1, O, 1)1);;
gap> cong2 := SemigroupCongruence(S, [1);;

gap> MeetSemigroupCongruences(congl, cong2) ;
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<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym( [ 1 .. 3] )> with linked triple (1,2,2)>
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16.5.4 JoinSemigroupCongruences

> JoinSemigroupCongruences(cl, c2)

> JoinLeftSemigroupCongruences(cl, c2)

> JoinRightSemigroupCongruences(cl, c2)
Returns: A semigroup congruence.

(operation)
(operation)

(operation)

This operation returns the join of the two semigroup congruences c1 and c2 — that is, the smallest

semigroup congruence containing all the relations in both c1 and c2.
Example

gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> [[O, (1, 3, 2)1, [(1, 2), 011);;
gap> congl := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement (S, 1, O, 1)1);;
gap> cong2 := SemigroupCongruence(S, [1);;
gap> JoinSemigroupCongruences(congl, cong2);
<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym( [ 1 .. 31 )> with linked triple (3,2,2)>

16.6 Congruences on Rees matrix semigroups

This section describes the implementation of congruences of simple and 0-simple semigroups in the
Semigroups package, and the functions associated with them. This code and this part of the manual
were written by Michael Torpey. Most of the theorems used in this chapter are from Section 3.5 of

[How95].

By the Rees Theorem, any 0-simple semigroup S is isomorphic to a Rees 0-matrix semigroup (see
(Reference: Rees Matrix Semigroups)) over a group, with a regular sandwich matrix. That is,

S=.#°[G;I,A;P],

where G is a group, A and [ are non-empty sets, and P is regular in the sense that it has no rows or

columns consisting solely of zeroes.

The congruences of a Rees 0-matrix semigroup are in 1-1 correspondence with the linked triple,

which is a triple of the form [N, S, T] where:
* Nis a normal subgroup of the underlying group G,
* Sis an equivalence relation on the columns of P,
T is an equivalence relation on the rows of P,
satisfying the following conditions:
* a pair of S-related columns must contain zeroes in precisely the same rows,

* a pair of T-related rows must contain zeroes in precisely the same columns,
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* if i and j are S-related, k and 1 are T-related and the matrix entries py.i, pi.j, Pri; P1.j 7 0, then
q.,i,j € N, where
-1 1
qk,li,j = PkiPy; PLjPy ;-

By Theorem 3.5.9 in [How95], for any finite O-simple Rees 0-matrix semigroup, there is a bijection
between its non-universal congruences and its linked triples. In this way, we can internally represent
any congruence of such a semigroup by storing its associated linked triple instead of a set of generating
pairs, and thus perform many calculations on it more efficiently.

If a congruence is defined by a linked triple (N, S, T), then a single class of that congruence can
be defined by a triple (Nx, i / S, k / 8), where Nx is aright coset of N, i / S is the equivalence
classof iin S,and k / Sis the equivalence class of k in T. Thus we can internally represent any class
of such a congruence as a triple simply consisting of a right coset and two positive integers.

An analogous condition exists for finite simple Rees matrix semigroups without zero.

16.6.1 IsRMSCongruenceByLinkedTriple

> IsRMSCongruenceByLinkedTriple(obj) (category)
> IsRZMSCongruenceByLinkedTriple(obj) (category)

Returns: true or false.

These categories describe a type of semigroup congruence over a Rees matrix or O-matrix semi-
group. Externally, an object of this type may be used in the same way as any other object in the
category IsSemigroupCongruence (Reference: IsSemigroupCongruence) but it is represented in-
ternally by its linked triple, and certain functions may take advantage of this information to reduce
computation times.

An object of this type may be constructed with RMSCongruenceByLinkedTriple or
RZMSCongruenceByLinkedTriple, or this representation may be selected automatically by
SemigroupCongruence (16.2.1).

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)1);;
gap> mat := [[0, O, (1, 4, 5), 0, 0, (1, 4, 3, 5)],

> o, O, o0, 0, (3, 5), 0],
> (O, 0, 0, (3, ), 0, 0113;;
gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1, 4)(3, 5), (1, 5)(3, )1);;

gap> colBlocks := [[1], [2, 5], [3, 6], [41];;

gap> rowBlocks := [[1], [2], [31];;

gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> IsRZMSCongruenceByLinkedTriple(cong);

true

16.6.2 RMSCongruenceByLinkedTriple

> RMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)
> RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)
Returns: A Rees matrix or O-matrix semigroup congruence by linked triple.
This function returns a semigroup congruence over the Rees matrix or O-matrix semigroup S
corresponding to the linked triple (N, colBlocks, rowBlocks). The argument N should be a normal
subgroup of the underlying semigroup of S; colBlocks should be a partition of the columns of the
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matrix of S; and rowBlocks should be a partition of the rows of the matrix of S. For example, if the
matrix has 5 rows, then a possibility for rowBlocks mightbe [[1, 3], [2, 5], [4]].

If the arguments describe a valid linked triple on S, then an object in the category
IsRZMSCongruenceByLinkedTriple is returned. This object can be used like any other semigroup
congruence in GAP.

If the arguments describe a triple which is not linked in the sense described above, then this

function returns an error.
Example

gap> G := Group([(1, 4, 5), (1, 5, 3, )1);;
gap> mat := [[0, O, (1, 4, 6), 0, O, (1, 4, 3, 5)],

> (o, O, o, 0, (3, 5), 0],
> (O, o, 0, (3, 5, 0, 011;;
gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1, 4)(3, 5), (1, 5)(3, ) 1);;
gap> colBlocks := [[1], [2, 5], [3, 61, [4]1];;
gap> rowBlocks := [[1], [2], [3]1]1;;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);
<semigroup congruence over <Rees O-matrix semigroup 6x3 over
Group([ (1,4,5), (1,5,3,4) 1)> with linked triple (2°2,4,3)>

16.6.3 IsRMSCongruenceClassByLinkedTriple

> IsRMSCongruenceClassByLinkedTriple (obj) (category)
> IsRZMSCongruenceClassByLinkedTriple(obj) (category)

Returns: true or false.

These categories contain the congruence classes of a semigroup congruence of the categories
IsRMSCongruenceByLinkedTriple (16.6.1) and IsRZMSCongruenceByLinkedTriple (16.6.1) re-
spectively.

An object of one of these types may be used in the same way as any other object in the category
IsCongruenceClass (16.3.1), but the class is represented internally by information related to the
congruence’s linked triple, and certain functions may take advantage of this information to reduce
computation times.

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)1);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5],

> o, O, o0, o, (3, 5), 0],
> (G, 0, 0, (3, 5), 0, 011;;
gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)1);;

gap> colBlocks := [[1], [2, 5], [3, 61, [41]1;;

gap> rowBlocks := [[1], [2], [3]1]1;;

gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;

gap> classes := CongruenceClasses(cong);;
gap> IsRZMSCongruenceClassByLinkedTriple(classes[1]);
true

16.6.4 RMSCongruenceClassByLinkedTriple

> RMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)
> RZMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)
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Returns: A Rees matrix or 0-matrix semigroup congruence class by linked triple.

This operation returns one congruence class of the congruence cong, as defined by the other three
parameters.

The argument cong must be a Rees matrix or 0-matrix semigroup congruence by linked triple.
If the linked triple consists of the three parameters N, colBlocks and rowBlocks, then nCoset
must be a right coset of N, colClass must be a positive integer corresponding to a position in the
list colBlocks, and rowClass must be a positive integer corresponding to a position in the list
rowBlocks.

If the arguments are valid, an IsRMSCongruenceClassByLinkedTriple or
IsRZMSCongruenceClassByLinkedTriple object is returned, which can be used like any

other equivalence class in GAP. Otherwise, an error is returned.
Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)1);;
gap> mat := [[0, O, (1, 4, 5), 0, 0, (1, 4, 3, 5],

> o, O, o, 0, (3, 5), 0],
> LG, 0, 0, (3, 5), 0, 011;;
gap> S := ReesZeroMatrixSemigroup(G, mat);;

gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)1);;

gap> colBlocks := [[1], [2, 5], [3, 61, [41];;

gap> rowBlocks := [[1], [2], [3]1]1;;

gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> class := RZMSCongruenceClassByLinkedTriple(cong,

> RightCoset(N, (1, 5)), 2, 3);

<congruence class of (2,(3,4),3)>

16.6.5 IsLinkedTriple

> IsLinkedTriple(S, N, colBlocks, rowBlocks) (operation)
Returns: true or false.
This operation returns true if and only if the arguments (N, colBlocks, rowBlocks) describe a

linked triple of the Rees matrix or O-matrix semigroup S, as described above.
Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)1);;
gap> mat := [[0O, O, (1, 4, 6), 0, O, (1, 4, 3, 5)],

> o, o, o, o, (3, 5), 0],

> (O, o, 0, (3, 5, 0, 011;;

gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)1);;

gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [311;;

gap> IsLinkedTriple(S, N, colBlocks, rowBlocks);
true

16.6.6 CanonicalRepresentative

> CanonicalRepresentative(class) (attribute)
Returns: A congruence class.
This attribute gives a canonical representative for the semigroup congruence class class. This
representative can be used to identify a class uniquely.
At present this only works for simple and O-simple semigroups.
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Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> [[O, (1, 3, 201, [(1, 2), 011);;

gap> cong := Congruences0fSemigroup(S) [3];;

gap> class := CongruenceClasses(cong) [3];;

gap> CanonicalRepresentative(class);

(1,(1,2,3),2)

16.6.7 AsSemigroupCongruenceByGeneratingPairs

> AsSemigroupCongruenceByGeneratingPairs(cong) (operation)
Returns: A semigroup congruence.
This operation takes cong, a semigroup congruence, and returns the same congruence relation,
but described by GAP’s default method of defining semigroup congruences: a set of generating pairs
for the congruence.

Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> (Lo, @, 3, 201, (1, 2), 011);;

gap> cong := Congruences0fSemigroup(S) [3];;

gap> AsSemigroupCongruenceByGeneratingPairs(cong) ;

<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym( [ 1 .. 31 )> with 1 generating pairs>

16.6.8 AsRMSCongruenceByLinkedTriple

> AsRMSCongruenceByLinkedTriple (cong) (operation)
> AsRZMSCongruenceByLinkedTriple(cong) (operation)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.

This operation takes a semigroup congruence cong over a finite simple or 0-simple Rees 0-matrix
semigroup, and returns that congruence relation in a new form: as either a congruence by linked triple,
or a universal congruence.

If the congruence is not defined over an appropriate type of semigroup, then this function returns
an error.

Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),

> [[O, 1, 3, 21, (1, 2), 011);;

gap> x := ReesZeroMatrixSemigroupElement(S, 1, (1, 3, 2), 1);;

gap> y := ReesZeroMatrixSemigroupElement(S, 1, (O, 1);;

gap> cong := SemigroupCongruenceByGeneratingPairs(S, [[x, yl1);;

gap> AsRZMSCongruenceByLinkedTriple(cong) ;

<semigroup congruence over <Rees O-matrix semigroup 2x2 over
Sym( [ 1 .. 31 )> with linked triple (3,2,2)>

16.7 Congruences on inverse semigroups

This section describes the implementation of congruences of inverse semigroups in the Semigroups
package, and the functions associated with them. This code and this part of the manual were written
by Michael Torpey. Most of the theorems used in this chapter are from Section 5.3 of [How95].
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The congruences of an inverse semigroup are in 1-1 correspondence with its congruence pairs. A
congruence pair is a pair (N, t) such that:

* Nis a normal subsemigroup of S — that is, a self-conjugate subsemigroup which contains all the
idempotents of S,

* tis a normal congruence on E, the subsemigroup of all idempotents in S — that is, a congruence

on E such that if (e, f) is a pair in t, then the pair (a~'ea,a™! fa) is also in t,

satisfying the following conditions:
s Ifae € N and (e,a'a) €t,thena € N,
s Ifa €N, then (aa!,a 'a) €t.

By Theorem 5.3.3 in [How95], for any inverse semigroup, there is a bijection between its congruences
and its congruence pairs. In this way, we can internally represent any congruence of such a semigroup
by storing its associated congruence pair instead of a set of generating pairs, and thus perform many
calculations on it more efficiently.

If we have a congruence C with congruence pair (N, t), it turns out that N is its kernel (that is,
the set of all elements congruent to an idempotent) and that t is its trace (that is, the restriction of C
to the idempotents). Hence, we refer to a congruence stored in this format as a "congruence by kernel
and trace".

See cong_by_ker_trace_threshold in Section 6.3 for details on when this method is used.

16.7.1 IsInverseSemigroupCongruenceByKernelTrace

> IsInverseSemigroupCongruenceByKernelTrace(cong) (Category)

Returns: true or false.

This category contains any inverse semigroup congruence cong which is represented internally
by its kernel and trace. The SemigroupCongruence (16.2.1) function may create an object of this
category if its first argument S is an inverse semigroup and has sufficiently large size. It can be treated
like any other semigroup congruence object.

See [How95] Section 5.3 for more details. See also
InverseSemigroupCongruenceByKernelTrace (16.7.2).
Example
gap> S := InverseSemigroup([

> PartialPerm([4, 3, 1, 2]),
> PartialPerm([1, 4, 2, 0, 31)],
> rec(cong_by_ker_trace_threshold := 0));;
gap> cong := SemigroupCongruence(S, []);
<semigroup congruence over <inverse partial perm semigroup
of size 351, rank 5 with 2 generators> with congruence pair (24,24)>
gap> IsInverseSemigroupCongruenceByKernelTrace (cong) ;

true

16.7.2 InverseSemigroupCongruenceByKernelTrace

> InverseSemigroupCongruenceByKernelTrace(S, kernel, traceBlocks) (function)
Returns: An inverse semigroup congruence by kernel and trace.
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If S is an inverse semigroup, kernel is a subsemigroup of S, traceBlocks is a list of lists
describing a congruence on the idempotents of S, and (kernel, trace) describes a valid congruence
pair for S (see [How95] Section 5.3) then this function returns the semigroup congruence defined by

that congruence pair.

See also KernelOfSemigroupCongruence (16.7.4) and TraceOfSemigroupCongruence

(16.7.5).
Example
gap> S := InverseSemigroup ([
>  PartialPerm([2, 3]), PartialPerm([2, O, 3]1)]1);;
gap> kernel := InverseSemigroup([

> PartialPerm([1, 0, 3]), PartialPerm([O0, 2, 3]1),

> PartialPerm([1, 2]), PartialPerm([3]),

> PartialPerm([2])]);;

gap> trace := [

> [PartialPerm([0, 2, 31)],

[PartialPerm([1, 2])],

[PartialPerm([1, 0, 31)],

[PartialPerm([0, O, 3]), PartialPerm([0, 2]),

> PartialPerm([1]), PartialPerm([], [1)1];;

gap> cong := InverseSemigroupCongruenceByKernelTrace(S, kernel, trace);
<semigroup congruence over <inverse partial perm semigroup of rank 3
with 2 generators> with congruence pair (13,4)>

vV V V

16.7.3 AsInverseSemigroupCongruenceByKernelTrace

> AsInverseSemigroupCongruenceByKernelTrace(cong)
Returns: An inverse semigroup congruence by kernel and trace.

(attribute)

If cong is a semigroup congruence over an inverse semigroup, then this attribute returns an object
which describes the same congruence, but with an internal representation defined by that congruence’s

kernel and trace.

See [How95] section 5.3 for more details.
Example

gap> I := InverseSemigroup([

> PartialPerm([2, 3]), PartialPerm([2, 0, 3]1)1);;

gap> cong := SemigroupCongruenceByGeneratingPairs(I,

> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],

> [PartialPerm([]), PartialPerm([1, 2]1)11);

<semigroup congruence over <inverse partial perm semigroup of rank 3
with 2 generators> with 2 generating pairs>

gap> cong?2 := AsInverseSemigroupCongruenceByKernelTrace (cong) ;
<semigroup congruence over <inverse partial perm semigroup of rank 3
with 2 generators> with congruence pair (19,1)>

16.7.4 KernelOfSemigroupCongruence

> KernelOfSemigroupCongruence (cong)
Returns: An inverse semigroup.

(attribute)

If cong is a congruence over a semigroup with inverse op, then this attribute returns the kernel of
that congruence; that is, the inverse subsemigroup consisting of all elements which are related to an

idempotent by cong.
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Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 31)1);;
gap> cong := SemigroupCongruence (I,

> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2]1)11);
<semigroup congruence over <inverse partial perm semigroup
of size 19, rank 3 with 2 generators> with 2 generating pairs>
gap> KernelOfSemigroupCongruence (cong) ;
<inverse partial perm semigroup of rank 3 with 5 generators>

16.7.5 TraceOfSemigroupCongruence

> TraceOfSemigroupCongruence (cong) (attribute)

Returns: A list of lists.

If cong is an inverse semigroup congruence by kernel and trace, then this attribute returns the
restriction of cong to the idempotents of the semigroup. This is in block form: each idempotent will
appear in precisely one list, and two idempotents will be in the same list if and only if they are related
by cong.

Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 31)1);;
gap> cong := SemigroupCongruence (I,

> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2]1)11);
<semigroup congruence over <inverse partial perm semigroup
of size 19, rank 3 with 2 generators> with 2 generating pairs>
gap> TraceOfSemigroupCongruence(cong) ;
[ [ <empty partial perm>, <identity partial perm on [ 1 1>,
<identity partial perm on [ 2 1>,

<identity partial perm on [ 1, 2 1>,
<identity partial perm on [ 3 1>,
<identity partial perm on [ 2, 3 1>,
<identity partial perm on [ 1, 3 1> ] ]

16.7.6 IsInverseSemigroupCongruenceClassByKernelTrace

> IsInverseSemigroupCongruenceClassByKernelTrace(obj) (Category)
Returns: true or false.
This category contains any congruence class which belongs to a congruence which is represented
internally by its kernel and trace. See InverseSemigroupCongruenceByKernelTrace (16.7.2).
See [How95] Section 5.3 for more details.
Example

gap> I := InverseSemigroup([

> PartialPerm([2, 3]), PartialPerm([2, O, 3])],
> rec(cong_by_ker_trace_threshold := 0));;

gap> cong := SemigroupCongruence(I,

> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2]1)11);;
gap> class := CongruenceClassOfElement(cong,
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> PartialPerm([1, 2], [2, 31));;
gap> IsInverseSemigroupCongruenceClassByKernelTrace(class);
true

16.7.7 MinimumGroupCongruence

> MinimumGroupCongruence (S) (attribute)
Returns: An inverse semigroup congruence by kernel and trace.
If S is an inverse semigroup, then this function returns the least congruence on S whose quotient
is a group.
Example

gap> S := InverseSemigroup ([

>  PartialPerm([5, 2, 0, 0, 1, 4]),

> PartialPerm([1, 4, 6, 3, 5, 0, 21)1);;

gap> cong := MinimumGroupCongruence(S) ;

<semigroup congruence over <inverse partial perm semigroup of rank 7
with 2 generators> with congruence pair (59,1)>

gap> IsGroupAsSemigroup(S / cong);

true

16.8 Rees congruences

A Rees congruence is defined by a semigroup ideal. It is a congruence on a semigroup S which has
one congruence class equal to a semigroup ideal I of S, and every other congruence class being a
singleton.

16.8.1 SemigroupldealOfReesCongruence

> SemigroupIdealOfReesCongruence (cong) (attribute)
Returns: A semigroup ideal.
If cong is a rees congruence (see IsReesCongruence (Reference: IsReesCongruence)) then
this attribute returns the two-sided ideal that was used to define it, i.e."the ideal of elements in the

only non-trivial congruence class of cong.
Example

gap> S := Semigroup([

> Transformation([2, 3, 4, 3, 1, 11),

> Transformation([6, 4, 4, 4, 6, 11)1);;

gap> I := SemigroupIdeal(S,

> Transformation([4, 4, 4, 4, 4, 2]),

> Transformation([3, 3, 3, 3, 3, 21));;

gap> cong := ReesCongruenceOfSemigroupIdeal(I);;

gap> SemigroupIdealOfReesCongruence(cong) ;

<non-regular transformation semigroup ideal of degree 6 with
2 generators>

16.8.2 IsReesCongruenceClass

> IsReesCongruenceClass(obj) (category)
Returns: true or false.
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This category describes a congruence class of a Rees congruence. A congruence class of a Rees
congruence either contains all the elements of an ideal, or is a singleton (see IsReesCongruence
(Reference: IsReesCongruence)).

An object of this type may be used in the same way as any other congruence class object.
Example

gap> S := Semigroup(

> Transformation([2, 3, 4, 3, 1, 1]1),

> Transformation([6, 4, 4, 4, 6, 11));;

gap> I := Semigroupldeal(S,

> Transformation([4, 4, 4, 4, 4, 2]),

> Transformation([3, 3, 3, 3, 3, 2]1));;

gap> cong := ReesCongruenceOfSemigroupIdeal(I);;

gap> classes := CongruenceClasses(cong);;
gap> IsReesCongruenceClass(classes[1]);
true

16.9 Universal congruences

The linked triples of a completely 0-simple Rees O-matrix semigroup describe only its non-universal
congruences. In any one of these, the zero element of the semigroup is related only to itself. However,
for any semigroup S the universal relation S x § is a congruence; called the universal congruence. The
universal congruence on a semigroup has its own unique representation.

Since many things we want to calculate about congruences are trivial in the case
of the universal congruence, this package contains a category specifically designed for it,
IsUniversalSemigroupCongruence. We also define IsUniversalSemigroupCongruenceClass,
which represents the single congruence class of the universal congruence.

16.9.1 IsUniversalSemigroupCongruence

> IsUniversalSemigroupCongruence (obj) (property)

Returns: true or false.

This property describes a type of semigroup congruence, which must refer to the universal semi-
group congruence S x S. Externally, an object of this type may be used in the same way as any other
object in the category IsSemigroupCongruence (Reference: IsSemigroupCongruence).

An object of this type may be constructed with UniversalSemigroupCongruence or this repre-
sentation may be selected automatically as an alternative to an IsRZMSCongruenceByLinkedTriple
object (since the universal congruence cannot be represented by a linked triple).

Example
gap> S := Semigroup([Transformation([3, 2, 31)1);;
gap> U := UniversalSemigroupCongruence(S);;
gap> IsUniversalSemigroupCongruence (U);
true

16.9.2 IsUniversalSemigroupCongruenceClass

> IsUniversalSemigroupCongruenceClass(obj) (category)
Returns: true or false.
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This category describes a class of the wuniversal semigroup congruence (see
IsUniversalSemigroupCongruence (16.9.1)). A universal semigroup congruence by defini-
tion has precisely one congruence class, which contains all of the elements of the semigroup in
question.

Example
gap> S := Semigroup([Transformation([3, 2, 3])]1);;
gap> U := UniversalSemigroupCongruence(S);;

gap> classes := CongruenceClasses(U);;

gap> IsUniversalSemigroupCongruenceClass(classes[1]);
true

16.9.3 UniversalSemigroupCongruence

> UniversalSemigroupCongruence (S) (operation)
Returns: A universal semigroup congruence.
This operation returns the universal semigroup congruence for the semigroup S. It can be used in
the same way as any other semigroup congruence object.
Example
gap> S := ReesZeroMatrixSemigroup (SymmetricGroup(3),
> [[O, 1, 3, 21, (1, 2), 011);;
gap> UniversalSemigroupCongruence(S) ;
<universal semigroup congruence over
<Rees O-matrix semigroup 2x2 over Sym( [ 1 .. 3 ] )>>
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Semigroup homomorphisms

In this chapter we describe the various ways to define a homomorphism from a semigroup to another
semigroup.

17.1 Isomorphisms of arbitrary semigroups

17.1.1 IsIsomorphicSemigroup

> IsIsomorphicSemigroup(S, T) (operation)

Returns: true or false.

If S and T are semigroups, then this operation attempts to determine whether S and T
are isomorphic semigroups by using the operation IsomorphismSemigroups (17.1.3). If
IsomorphismSemigroups (S, T) returns an isomorphism, then IsIsomorphicSemigroup(S,
T) returns true, while if IsomorphismSemigroups(S, T) returns fail, then
IsIsomorphicSemigroup(S, T) returns false. Note that in some cases, at present, there is
no method for determining whether S is isomorphic to T, even if it is obvious to the user whether or
not S and T are isomorphic. There are plans to improve this in the future.

If the size of S and T is rather small — with approximately 50 or fewer elements — then it is possi-
ble to calculate whether S and T are isomorphic by using SmallestMultiplicationTable (17.1.2),
but this is not currently done by IsIsomorphicSemigroup. In particular, S and T are isomorphic if
and only if SmallestMultiplicationTable(S) = SmallestMultiplicationTable(T).

Example
gap> S := Semigroup(PartialPerm([1, 2, 4], [1, 3, 5]),
> PartialPerm([1, 3, 5], [1, 2, 4]1));;
gap> T := AsSemigroup(IsTransformationSemigroup, S);;
gap> IsIsomorphicSemigroup(S, T);
true

gap> IsIsomorphicSemigroup(FullTransformationMonoid(4),
> PartitionMonoid(4));
false

17.1.2 SmallestMultiplicationTable

> SmallestMultiplicationTable(S) (attribute)
Returns: The lex-least multiplication table of a semigroup.

239
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This function returns the lex-least multiplication table of a semigroup isomorphic to the semigroup
S. SmallestMultiplicationTable is an isomorphism invariant of semigroups, and so it can, for
example, be used to check if two semigroups are isomorphic.

Due to the high complexity of computing the smallest multiplication table of a semigroup, this
function only performs well for semigroups with at most approximately 50 elements.

SmallestMultiplicationTable is based on the function IdSmallSemigroup (Smallsemi:
IdSmallSemigroup) by Andreas Distler.
Example

gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]1),

> Bipartition([[1, 2, 3, -11, [-2], [-3]11),
> Bipartition([[1, 2, 31, [-1], [-2, -3]11),
> Bipartition([[1, 2, -11, [3, -21, [-3]11));;
gap> Size(8);

8

gap> SmallestMultiplicationTable(S)

trit+ 1,3,4,5,6,7,81, [1,1,3,4,5,6,7,81,
(1, 1,3, 4,5,6,7,81,[1,3,3,465,6,7,81,
[5, 5’ 6’ 7, 5, 6’ 7, 8 ], [ 5, 5’ 6’ 7, 5, 6’ 7’ 8 ],
[5’ 6, 6’ 7} 5) 6’ 7, 8 ]’ [ 5’ 6) 6’ 7, 5) 6’ 7, 8] ]
17.1.3 IsomorphismSemigroups
> IsomorphismSemigroups(S, T) (operation)

Returns: An isomorphism, or fail.

This operation attempts to find an isomorphism from the semigroup S to the semigroup T. If it
finds one, then it is returned, and if not, then fail is returned.

For many types of semigroup, IsomorphismSemigroups is not able to determine whether or
not S and T are isomorphic, and so this operation may result in an "Error, no method found".
IsomorphismSemigroups may be able deduce that S and T are not isomorphic by finding that some
of their semigroup-theoretic properties differ; however it is harder to construct an isomorphism for
semigroups that are isomorphic.

At present, IsomorphismSemigroups is only able to return an isomorphism when S and T
are finite simple, O-simple, or monogenic semigroups, or when S = T. See IsSimpleSemigroup
(14.1.21), IsZeroSimpleSemigroup (14.1.27), and IsMonogenicSemigroup (14.1.10) for more in-
formation about these types of semigroups.

Example
gap> S := RectangularBand(IsTransformationSemigroup, 4, 5);
<regular transformation semigroup of size 20, degree 9 with 5

generators>

gap> T := RectangularBand(IsBipartitionSemigroup, 4, 5);

<regular bipartition semigroup of size 20, degree 3 with 5 generators>
gap> IsomorphismSemigroups(S, T) <> fail;

true
gap> D := DClass(FullTransformationMonoid(5),
> Transformation([1, 2, 3, 4, 11));;

gap> S := PrincipalFactor(D);;

gap> StructureDescription(UnderlyingSemigroup(S));
|’S4l|

gap> S;
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<Rees O-matrix semigroup 10x5 over S4>

gap> D := DClass(PartitionMonoid(5),

> Bipartition([[1], [2, -2], [3, -3], [4, -4]1, [5, -5], [-111));;
gap> T := PrincipalFactor(D);;

gap> StructureDescription(UnderlyingSemigroup(T));

IIS4II

gap> T;

<Rees O-matrix semigroup 15x15 over S4>

gap> IsomorphismSemigroups(S, T);

fail
gap> I := SemigroupIdeal (FullTransformationMonoid(5),
> Transformation([1, 1, 2, 3, 4]1));;

gap> T := PrincipalFactor(DClass(I, I.1));;

gap> StructureDescription(UnderlyingSemigroup(T));
IIS4||

gap> T;

<Rees O-matrix semigroup 10x5 over S4>

gap> IsomorphismSemigroups(S, T) <> fail;

true

17.2 Isomorphisms of Rees (0-)matrix semigroups

An isomorphism between two regular finite Rees (0-)matrix semigroups whose underlying semigroups
are groups can be described by a triple defined in terms of the matrices and underlying groups of the
semigroups. For a full description of the theory involved, see Section 3.4 of [How95].

An isomorphism described in this way can be constructed using RMSIsoByTriple (17.2.2)
or RZMSIsoByTriple (17.2.2), and will satisfy the filter IsRMSIsoByTriple (17.2.1) or
IsRZMSIsoByTriple (17.2.1).

17.2.1 IsRMSIsoByTriple

> IsRMSIsoByTriple (Category)
> IsRZMSIsoByTriple (Category)

The isomorphisms between finite Rees matrix or O-matrix semigroups S and T over groups G and
H, respectively, specified by a triple consisting of:

1. an isomorphism of the underlying graph of S to the underlying graph of of T
2. an isomorphism from G to H
3. afunction from Rows (S) union Columns(S) to H

belong to the categories IsRMSIsoByTriple and IsRZMSIsoByTriple. Basic operators for
such isomorphism are given in 17.2.6, and basic operations are: Range (Reference: range),
Source (Reference: Source), ELM_LIST (17.2.3), CompositionMapping (Reference: Composi-
tionMapping), ImagesElm (17.2.5), ImagesRepresentative (17.2.5), InverseGeneralMapping
(Reference: InverseGeneralMapping), PreImagesRepresentative (Reference: PrelmagesRep-
resentative), IsOne (Reference: IsOne).
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17.2.2 RMSIsoByTriple

> RMSIsoByTriple(R1, R2, triple) (operation)
> RZMSIsoByTriple(R1, R2, triple) (operation)
Returns: An isomorphism.
If R1 and R2 are isomorphic regular Rees O-matrix semigroups whose underlying semigroups
are groups then RZMSIsoByTriple returns the isomorphism between R1 and R2 defined by triple,
which should be a list consisting of the following:

e triple[1] should be a permutation describing an isomorphism from the graph of R1 to
the graph of R2, i.e. it should satisfy OnDigraphs(RZMSDigraph(R1), triple[1]) =
RZMSDigraph(R2).

* triple [2] should be an isomorphism from the underlying group of R1 to the underlying group
of R2 (see UnderlyingSemigroup (Reference: UnderlyingSemigroup for a rees 0-matrix
semigroup)).

e triple [3] should be a list of elements from the underlying group of R2. If the Matrix
(Reference: Matrix) of R1 has m columns and n rows, then the list should have length m + n,
where the first m entries should correspond to the columns of R1’s matrix, and the last n entries
should correspond to the rows. These column and row entries should correspond to the u; and
v, elements in Theorem 3.4.1 of [How95].

If triple describes a valid isomorphism from R1 to R2 then this will return an object in the category
IsRZMSIsoByTriple (17.2.1); otherwise an error will be returned.

If R1 and R2 are instead Rees matrix semigroups (without zero) then RMSIsoByTriple should be
used instead. This operation is used in the same way, but it should be noted that since an RMS’s graph

is a complete bipartite graph, triple [1] can be any permutation on [1 .. m + n], solong as no
pointin [1 .. m] ismappedtoapointin [m + 1 .. m + n].
Example

gap> g := SymmetricGroup(3);;

gap> mat := [[0, O, (1, 3)1, [(1, 2, 3), O, (2, 3)1, [0, 0, OI11;;
gap> R := ReesZeroMatrixSemigroup(g, mat);;

gap> id := IdentityMapping(g);;

gap> g_elms_list := [O, O, O, O, O, Ol;;

gap> RZMSIsoByTriple(R, R, [(), id, g_elms_list]);

(O, IdentityMapping( SymmetricGroup( [ 1 .. 3 1) ),

L O, O, O, O, O, OD

17.2.3 ELM_LIST (for IsSRMSIsoByTriple)

> ELM_LIST (map, pOS) (operation)
Returns: A component of an isomorphism of Rees (0-)matrix semigroups by triple.
ELM_LIST(map, i) returns the ith component of the Rees (0-)matrix semigroup isomorphism
by triple map wheni = 1, 2, 3.
The components of an isomorphism of Rees (0-)matrix semigroups by triple are:

1. An isomorphism of the underlying graphs of the source and range of map, respectively.

2. An isomorphism of the underlying groups of the source and range of map, respectively.
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3. An function from the union of the rows and columns of the source of map to the underlying
group of the range of map.

17.2.4 CompositionMapping2 (for ISRMSIsoByTriple)

> CompositionMapping2(mapl, map2) (operation)
> CompositionMapping2(mapl, map2) (operation)

Returns: A Rees (0-)matrix semigroup by triple.

If map1 and map2 are isomorphisms of Rees matrix or O-matrix semigroups specified by triples
and the range of map2 is contained in the source of map1, then CompositionMapping2(map1,
map2) returns the isomorphism from Source (map2) to Range (map1) specified by the triple with
components:

1. map1[1] * map2[1]
2. map1[2] * map2[2]

3. the componentwise product of map1 [1] * map2[3] and map1 [3] * map2[2].

Example

ap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3, 4)]1),
[0, 3@, o, 1, 4, 3, 2, O, 1, 2,3, 49, (1, 3)(2, 4, 0],
(1, 4,3, 2,0, O, (1, 4, 3, 2), (1, 2, 3, 4, (1, 2, 3, ],
(0, O, (1, 4, 3,2, (1, 2,3,4,0, 1, 2,3, D],
[, 2, 3, 4, (1, 4, 3,2, (1, 2, 3, 4, 0, O, (1, 2, 3, 4],
(1, 32, 9, (1, 2, 3, 49,0, O, (1, 4, 3, 2), 1, 2, 3, D],
[o, (1, 2, 3, 4, (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), O1D;

<Rees O-matrix semigroup 6x6 over Group([ (1,2,3,4) 1)>

gap> G := AutomorphismGroup(R);

<automorphism group of <Rees O-matrix semigroup 6x6 over Group([ (1,2,

3,4) 1)> with 4 generators>

gap> G.2;

(O, IdentityMapping( Group( [ (1,2,3,4) 1) ),

L O, O, O, O, O, O, O, O, O, O, O, O D

gap> G.3;

(2, 4, 6, 3)( 7,11, 8,10), GroupHomomorphismByImages( Group/(

[ (1,2,3,4) 1), Group( [ (1,2,3,4) 1), [ (1,2,3,4) 1,

[ (1,2,3,4) 1), [ O, (1,4,3,2), (1,4,3,2), O, (1,4,3,2),
(1,3)(2,49), O, 1,32,9, O, (1,2,3,4, (1,2,3,4), (1,4,3,2) 1

gap> CompositionMapping2(G.2, G.3);

(2, 4, 6, 3)( 7,11, 8,10), GroupHomomorphismByImages( Group/(

[ (1,2,3,4) 1), Group( [ (1,2,3,4) 1), [ (1,2,3,4) 1,

[ (1,2,3,4 1), [ O, (1,4,3,2), (1,4,3,2), O, (1,4,3,2),
(1,3)(2,4), O, 1,32,49, O, (1,2,3,4, (1,2,3,4), (1,4,3,2) 1)

V V V V V V0

17.2.5 ImagesElm (for ISRMSIsoByTriple)

> ImagesElm(map, pt) (operation)
> ImagesRepresentative(map, pt) (operation)
Returns: An element of a Rees (0-)matrix semigroup or a list containing such an element.
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If map is an isomorphism of Rees matrix or O-matrix semigroups specified by a triple and pt is an
element of the source of map, then ImagesRepresentative(map, pt) = pt ~ map returns the
image of pt under map.

The image of pt under map of Range (map) is the element with components:

1. pt[1] ~ map[1]
2. (pt[1] =~ map[3]) * (pt[2] ~ map([2]) * (pt[3] ~ map[3]) ~ -1
3. pt[3] ~ mapl[1].

ImagesElm(map, pt) simply returns [ImagesRepresentative(map, pt)].
Example
gap> R := ReesZeroMatrixSemigroup(Group([(2, 8), (2, 8, 6)]),
[[o, (2, 8), 0, 0, 0, (2, 8, 6)1,

O, o, (2, 8, 6), (2, 6), (2, 6, 8), 0],

[(2, 8, 6), 0, (2, 6, 8, (2, 8, O, 0],

[(2, 8, 6), 0, (2, 6, 8), (2, 8, O, 0],

[o, (2, 8, 6), 0, 0, 0, (2, 81,

[(2, 8, 6), 0, (2, 6, 8, (2, 8, O, 011);

<Rees O-matrix semigroup 6x6 over Group([ (2,8), (2,8,6) 1)>
gap> map := RZMSIsoByTriple(R, R,

> [, IdentityMapping(Group([(2, 8), (2, 8, 6)1)),

> [O, (2,6, 8, O, O, O, (2,8, 6),

> (2, 8,6, O, O, O, (2,6, 8, 0O1D;;

gap> ImagesElm(map, RMSElement(R, 1, (2, 8), 2));

[ (1,(2,8),2) 1]

V V V V V V

17.2.6 Operators for isomorphisms of Rees (0-)matrix semigroup by triples

map [1]
map [1] returns the ith component of the Rees (0-)matrix semigroup isomorphism by triple
map wheni = 1, 2, 3;see ELM_LIST (17.2.3).

mapl * map2
returns the composition of map2 and map1; see CompositionMapping?2 (17.2.4).

mapl < map2
returns true if map1 is lexicographically less than map2.

mapl = map2
returns true if the Rees (0-)matrix semigroup isomorphisms by triple mapl and map2 have
equal source and range, and are equal as functions, and false otherwise.

It is possible for map1 and map2 to be equal but to have distinct components.

~

pt = map
returns the image of the element pt of the source of map under the isomorphism map; see
ImagesElm (17.2.5).
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Visualising semigroups and elements

There are two operations TikzString (18.4.1) and DotString (18.2.1) in Semigroups for creating
I&TEX and dot (also known as GraphViz) format pictures of the Green’s class structure of a semigroup
and for visualising certain types of elements of a semigroup. There is also a function Splash (18.1.1)
for automatically processing the output of TikzString (18.4.1) and DotString (18.2.1) and opening
the resulting pdf file.

18.1 Automatic viewing

In this section we describe the function Splash (18.1.1) for automatically processing and opening the
strings output by TikzString (18.4.1) and DotString (18.2.1)

18.1.1 Splash

> Splash(str[, opts]) (function)

Returns: Nothing.

This function attempts to convert the string str into a pdf document and open this document, i.e.
to splash it all over your monitor.

The string str must correspond to a valid dot or LaTeX text file and you must have have
GraphViz and pdflatex installed on your computer. For details about these file formats, see
http://www.latex-project.organd http://www.graphviz.org.

This function is provided to allow convenient, immediate viewing of the pictures produced by the
functions: TikzString (18.4.1), TikzString (18.4.1), DotSemilattice0fIdempotents (18.2.2),
and DotString (18.2.1).

The optional second argument opts should be a record with components corresponding to various
options, given below.

path this should be a string representing the path to the directory where you want Splash to do its
work. The default value of this optionis "~/".

directory
this should be a string representing the name of the directory in path where you want Splash
to do its work. This function will create this directory if does not already exist.

The default value of this option is "tmp.viz" if the option path is present, and the result of
DirectoryTemporary (Reference: DirectoryTemporary) is used otherwise.
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filename
this should be a string representing the name of the file where str will be written. The default
value of this option is "vizpicture".

viewer
this should be a string representing the name of the program which should open the files pro-
duced by GraphViz or pdflatex.

type this option can be used to specify that the string str contains a IAIEX or dot document. You
can specify this option in str directly by making the first line "%latex" or "//dot". There is
no default value for this option, this option must be specified in str or in opt. type.

filetype
this should be a string representing the type of file which Splash should produce. For IAEX
files, this option is ignored and the default value "pdf" is used.

This function was written by Attila Egri-Nagy and Manuel Delgado with some minor changes by J.
D. Mitchell.

Example
gap> Splash(DotString(FullTransformationMonoid(4)));

18.2 dot pictures

In this section, we describe the operations in Semigroups for creating pictures in dot format.
The operations described in this section return strings, which can be written to a file using the
function FileString (GAPDoc: FileString) or viewed using Splash (18.1.1).

18.2.1 DotString

> DotString(S[, options]) (operation)

Returns: A string.

If the argument S is a semigroup, and the optional second argument options is a record, then this
operation produces a graphical representation of the partial order of the Z-classes of the semigroup
S together with the eggbox diagram of each Z-class. The output is in dot format (also known as
GraphViz) format. For details about this file format, and information about how to display or edit this
format see http://www.graphviz.org.

The string returned by DotString can be written to a file using the command FileString
(GAPDoc: FileString).

The Z-classes are shown as eggbox diagrams with .Z-classes as rows and Z-classes as
columns; group .7-classes are shaded gray and contain an asterisk. The .Z-classes and Z-classes
within a Z-class are arranged to correspond to the normalization of the principal factor given by
NormalizedPrincipalFactor (12.4.8). The Z-classes are numbered according to their index in
GreensDClasses(S), so that an i appears next to the eggbox diagram of GreensDClasses(S) [i].
A line from one Z-class to another indicates that the higher Z-class is greater than the lower one in
the Z-order on S.

If the optional second argument options is present, it can be used to specify some options for
output.
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if options .number is false, then the Z-classes in the diagram are not numbered according

to their index in the list of Z-classes of S. The default value for this option is true.

maximal

if options .maximal is true, then the structure description of the group .77-classes is dis-
played; see StructureDescription (Reference: StructureDescription). Setting this at-
tribute to true can adversely affect the performance of DotString. The default value for

this option is false.

normal

if options.normal is false, then the .Z- and Z-classes within each Z-class arranged
to correspond to PrincipalFactor (12.4.8). If options.normal is true, they are in-
stead arranged to correspond to NormalizedPrincipalFactor (12.4.8). Setting this at-
tribute to false may improve the performance of DotString as it avoids the computation of
InjectionNormalizedPrincipalFactor (12.4.7). The default value for this option is true.

Example

gap> S := FullTransformationMonoid(3);
<full transformation monoid of degree 3>
gap> DotString(S);
"//dot\ndigraph DClasses {\nnode [shape=plaintext]\nedge [color=blac\
k,arrowhead=none]\nl [shape=box style=invisible label=<\n<TABLE BORDE\
R=\"O\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPACING=\"O\" PORT=\"\
1\">\n<TR BORDER=\"O\"><TD COLSPAN=\"1\" BORDER = \"O\" > 1</TD></TR>\
<TR><TD BGCOLOR=\"gray\">#*</TD></TR>\n</TABLE>>] ;\n2 [shape=box style\
=invisible label=<\n<TABLE BORDER=\"O\" CELLBORDER=\"1\" CELLPADDING=\
\"10\" CELLSPACING=\"O\" PORT=\"2\">\n<TR BORDER=\"O\"><TD COLSPAN=\"\
3\" BORDER = \"O\" > 2</TD></TR><TR><TD BGCOLOR=\"gray\">*</TD><TD BG\
COLOR=\"gray\">*</TD><TD BGCOLOR=\"white\"></TD></TR>\n<TR><TD BGCOLO\
R=\"gray\">*</TD><TD BGCOLOR=\"white\"></TD><TD BGCOLOR=\"gray\">*</T\
D></TR>\n<TR><TD BGCOLOR=\"white\"></TD><TD BGCOLOR=\"gray\">*</TD><T\
D BGCOLOR=\"gray\">*</TD></TR>\n</TABLE>>] ;\n3 [shape=box style=invis\
ible label=<\n<TABLE BORDER=\"O\" CELLBORDER=\"1\" CELLPADDING=\"10\"\
CELLSPACING=\"O\" PORT=\"3\">\n<TR BORDER=\"O\"><TD COLSPAN=\"1\" BO\
RDER = \"O\" > 3</TD></TR><TR><TD BGCOLOR=\"gray\">*</TD></TR>\n<TR><\
TD BGCOLOR=\"gray\">*</TD></TR>\n<TR><TD BGCOLOR=\"gray\">*</TD></TR>\
\n</TABLE>>] ;\n1 -> 2\n2 -> 3\n }"
gap> FileString("t3.dot", DotString(S));
1040

18.2.2 DotSemilatticeOfldempotents

> DotSemilatticeOfIdempotents(S)
Returns: A string.

(attribute)

This function produces a graphical representation of the semilattice of the idempotents of an in-
verse semigroup S where the elements of S have a unique semigroup inverse accessible via Inverse

(Reference: Inverse). The idempotents are grouped by the Z-class they belong to.

The output is in dot format (also known as GraphViz) format. For details about this file format,

and information about how to display or edit this format see http://www.graphviz.org.
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Example
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>

gap> DotSemilatticeOfIdempotents(S);

"//dot\ngraph graphname {\n node [shape=point]\nranksep=2;\nsubgraph \
cluster_1{\n15 \n}\nsubgraph cluster_2{\n5 11 14 12 13 8 \n}\nsubgraph\
cluster_3{\n2 10 6 3 4 9 7 \n}\nsubgraph cluster_4{\nl \n}\n2 -- 1\n3\
-- 1\n4 -- 1\n5 -- 2\n5 -- 3\n5 -- 4\n6 -- 1\n7 -- 1\n8 -- 2\n8 -- 6\
\n8 -- 7\n9 -- 1\n10 -- 1\ni11 -- 2\n11 -- 9\nl11 -- 10\n12 -- 3\n12 -- \
6\n12 -- 9\n13 -- 3\n13 -- 7\n13 -- 10\nl4 -- 4\nl4 -- 6\nl4 -- 10\nib5\

-- 5\n15 -- 8\n15 -- 11\n15 -- 12\n15 -- 13\n15 -- 14\n }"

18.3 tex output

In this section, we describe the operations in Semigroups for creating I&TEX representations of GAP
objects. For pictures of GAP objects please see Section 18.4.

18.3.1 TexString

> TexString(f [, n]) (operation)

Returns: A string.

This function produces a string containing LaTeX code for the transformation f. If the optional
paramater n is used, then this is taken to be the degree of the transformation f, if the parameter n
is not given, then Degree0fTransformation (Reference: DegreeOfTransformation) is used by
default. If n is less than the degree of £, then an error is given.

Example
gap> TexString(Transformation([6, 2, 4, 3, 6, 4]));

"\\begin{pmatrix}\n 1 & 2 & 3 &4 &5 &6 \\\\\n 6 & 2&4&3&6 &\
4\n\\end{pmatrix}"

gap> TexString(Transformation([1, 2, 1, 3]), 5);

"\\begin{pmatrix}\n 1 & 2 & 3 & 4 &5 \\\\\n 1 & 2 & 1 & 3 & 5\n\\en\
d{pmatrix}"

18.4 tikz pictures

In this section, we describe the operations in Semigroups for creating pictures in tikz format.
The functions described in this section return a string, which can be written to a file using the
function FileString (GAPDoc: FileString) or viewed using Splash (18.1.1).

18.4.1 TikzString

> TikzString(obj[, options]) (operation)

Returns: A string.

This function produces a graphical representation of the object obj using the tikz package for
IKTEX. More precisely, this operation outputs a string containing a minimal IATEX document which
can be compiled using IATEX to produce a picture of obj.

Currently the following types of objects are supported:
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blocks
If obj is the left or right blocks of a bipartition, then TikzString returns a graphical represen-
tation of these blocks; see Section 3.6.

bipartitions
If obj is a bipartition, then TikzString returns a graphical representation of obj.

If the optional second argument options is a record with the component colors set to true,
then the blocks of £ will be colored using the standard tikz colors. Due to the limited number
of colors available in tikz this option only works when the degree of obj is less than 20. See
Chapter 3 for more details about bipartitions.

pbrs If obj is a PBR, then TikzString returns a graphical representation obj ; see Section 3.6.
Example
gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -411);;
gap> TikzString(RightBlocks(x));
"Y%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
tH\n\\begin{tikzpicture}\n \\draw[ultra thick](5,2)circle(.115);\n \
\\draw(1.8,5) node [top] {{$1$}};\n \\fill(4,2)circle(.125);\n \\dr\
aw(1.8,4) node [top] {{$2%$}};\n \\fill(3,2)circle(.125);\n \\draw(1\
.8,3) node [top] {{$3$}};\n \\draw[ultra thick](2,2)circle(.115);\n \
\\draw(1.8,2) node [top] {{$4$}};\n \\fill(1,2)circle(.125);\n \\d\
raw(1.8,1) node [top] {{$5$}};\n\n \\draw (5,2.125) .. controls (5,2\
.8) and (2,2.8) .. (2,2.125);\n \\draw (4,2.125) .. controls (4,2.6)\
and (3,2.6) .. (3,2.125);\n\\end{tikzpicture}\n\n\\end{document}"
gap> x := Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]11);;
gap> TikzString(x);
"Y%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
tH\n\\begin{tikzpicture}\n\n Yblock #1\n Yvertices and labels\n \\\
£i11(1,2)circle(.125);\n \\draw(0.95, 2.2) node [above]l {{ $1$}};\n \
\\£fill(5,2)circle(.125);\n \\draw(4.95, 2.2) node [above] {{ $5%$}};\
\n\n Ylines\n \\draw(1,1.875) .. controls (1,1.1) and (5,1.1) .. (5\
,1.875) ;\n\n Y%block #2\n Yvertices and labels\n \\fill(2,2)circle(\
.125);\n  \\draw(1.95, 2.2) node [above]l {{ $2$}};\n \\fill(4,2)circ\
1le(.125);\n \\draw(3.95, 2.2) node [above] {{ $4$}};\n \\fill(3,0)c\
ircle(.125);\n \\draw(3, -0.2) node [below] {{ $-3$}};\n \\£fill(5,0\
Jcircle(.125);\n \\draw(5, -0.2) node [below] {{ $-5$}};\n\n ¥%lines\
\n \\draw(2,1.875) .. controls (2,1.3) and (4,1.3) .. (4,1.875);\n \
\\draw(3,0.125) .. controls (3,0.7) and (5,0.7) .. (5,0.125);\n \\dr\
aw(2,2)--(3,0);\n\n %block #3\n Y%vertices and labels\n \\fill(3,2)\
circle(.125);\n \\draw(2.95, 2.2) node [above]l {{ $3$}};\n \\fill(1\
,0)circle(.125);\n \\draw(1, -0.2) node [below] {{ $-1$}};\n \\fill\
(2,0)circle(.125);\n \\draw(2, -0.2) node [below] {{ $-2$}};\n\n %1\
ines\n \\draw(1,0.125) .. controls (1,0.6) and (2,0.6) .. (2,0.125);\
\n \\draw(3,2)--(2,0);\n\n %block #4\n Jvertices and labels\n \\f\
i11(4,0)circle(.125) ;\n \\draw(4, -0.2) node [below] {{ $-4$}};\n\n \
%lines\n\\end{tikzpicture}\n\n\\end{document}"
gap> TikzString(UniversalPBR(2));
"Y%latex\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{docume\
ntH\n\\usetikzlibrary{arrows}\n\\usetikzlibrary{arrows.meta}\n\\newco\
mmand{\\arc}{\\draw[semithick, -{>[width = 1.5mm, length = 2.5mm]}]}\
\n\\begin{tikzpicture}[\n vertex/.style={circle, draw, fill=black, i\
nner sep =0.04cm},\n ghost/.style={circle, draw = none, inner sep = \
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0.14cm},\n Dbotloop/.style={min distance = 8mm, out = -70, in = -110}\
,\n toploop/.style={min distance = 8mm, out = 70, in = 110}]\n\n % \
vertices and labels\n \\foreach \\i in {1,...,2} {\n \\node [vert\
ex] at (\\i/1.5, 3) {};\n \\node [ghost] (\\i) at (\\i/1.5, 3) {};\
\n }\n\n \\foreach \\i in {1,...,2} {\n \\node [vertex] at (\\i/\
1.5, 00 {};\n \\node [ghost] (-\\i) at (\\i/1.5, 0) {};\n F\n\n \
% arcs from vertex 1\n \\arc (1) to (-2);\n \\arc (1) to (-1);\n \
\\arc (1) edge [toploop] (1);\n \\arc (1) .. controls (1.06666666666\
66667, 2.125) and (0.93333333333333324, 2.125) .. (2);\n\n % arcs fr\
om vertex -1\n \\arc (-1) .. controls (1.0666666666666667, 0.875) an\
d (0.93333333333333324, 0.875) .. (-2);\n \\arc (-1) edge [botloop] \
(-1);\n \\arc (-1) to (1);\n \\arc (-1) to (2);\n\n % arcs from ve\
rtex 2\n \\arc (2) to (-2);\n \\arc (2) to (-1);\n \\arc (2) .. co\
ntrols (0.93333333333333324, 2.125) and (1.0666666666666667, 2.125) .\
. (D;\n \\arc (2) edge [toploop]l (2);\n\n 7% arcs from vertex -2\n \
\\arc (-2) edge [botloop] (-2);\n \\arc (-2) .. controls (0.9333333\
3333333324, 0.875) and (1.0666666666666667, 0.875) .. (-1);\n \\arc \
(-2) to (1);\n \\arc (-2) to (2);\n\n\\end{tikzpicture}\n\\end{docum\
ent}"
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10

19.1 Reading and writing elements to a file

The functions ReadGenerators (19.1.1) and WriteGenerators (19.1.2) can be used to read or write,
respectively, elements of a semigroup to a file.

19.1.1 ReadGenerators

> ReadGenerators(filename[, nr]) (function)
> Read0ldGenerators(filename[, nr]) (function)

Returns: A list of lists of semigroup elements.

If filename is the name of a file created using WriteGenerators (19.1.2), then
ReadGenerators returns the contents of this file as a list of lists of elements of a semigroup.

If the optional second argument nr is present, then ReadGenerators returns the elements stored
in the nrth line of filename.

If you want to read generators from a file written using WriteGenerators from a version of
Semigroups before version 3.0.0, then you can use Read01dGenerators.
Example
gap> file := Concatenation(SEMIGROUPS.PackageDir,
> "/data/tst/testdata");;
gap> ReadGenerators(file, 13);

[ <identity partial perm on [ 2, 3, 4, 5, 6 1>,
<identity partial perm on [ 2, 3, 5, 6 1>, [1,2]1(5)(6) ]
19.1.2 WriteGenerators
> WriteGenerators(filename, list[, append]) (function)

Returns: I0_0K or I0_ERROR.

This function provides a method for writing collections of elements of a semigroup to a file. The
resulting file can be further compressed using gzip or xz.

The argument 1ist should be a list of elements, a semigroup, or a list of lists of elements, or
semigroups.

The argument filename should be a string containing the name of a file where the entries in 1ist
will be written or an 10 package file object; see I0_File (IO_File???) and I0_CompressedFile
(I0_CompressedFile??7?).

251
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If the optional third argument append is given and equals "w", then the previous content of the
file is deleted and overwritten. If the optional third argument is "a" or is not present, then list is
appended to the file. This function returns I0_0K (I0_OK???) if everything went well or I0_ERROR
(I0_ERROR???) if something went wrong.

WriteGenerators appends a line to the file filename for every entry in 1ist. If any ele-
ment of 1ist is a semigroup, then the generators of that semigroup are written to filename. More
specifically, the list returned by GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup)
is written to the file.

The file filename can be read using ReadGenerators (19.1.1).

From Version 3.0.0 onwards the Semigroups package used the 10 package pickling functionality;
see (Pickling and unpickling???) for more details. This approach is used because it is more general
and more robust than the methods used by earlier versions of Semigroups, although the performance
is somewhat worse, and the resulting files are somewhat larger.

A file written in the old format can be read using Read0ldGenerators (19.1.1).

19.1.3 IteratorFromPickledFile

> IteratorFromPickledFile(filename) (function)
> IteratorFromOldGeneratorsFile(filename) (function)

Returns: An iterator.

If filename is a string containing the name of a file created using WriteGenerators (19.1.2),
then IteratorFromPickledFile returns an iterator iter such that NextIterator (iter) returns
the next collection of generators stored in the file filename.

This function is a convenient way of, for example, looping over a collection of generators in a file
without loading every object in the file into memory. This might be useful if the file contains more
information than there is available memory.

If you want to get an iterator for a file written using WriteGenerators from a version of Semi-
groups before version 3.0.0, then you can use IteratorFrom0ldGeneratorsFile.
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* (for PBRs), 40
* (for Rees (0-)matrix semigroup isomor-
phisms by triples), 244
* (for bipartitions), 21
* (for matrices over a semiring), 56
\<
for Green’s classes, 145
< (for PBRs), 40
< (for Rees (0-)matrix semigroup isomorphisms
by triples), 244
< (for bipartitions), 21
< (for matrices over a semiring), 56
= (for Rees (0-)matrix semigroup isomor-
phisms by triples), 244
= (for PBRs), 40
= (for bipartitions), 21
= (for matrices over a semiring), 56
\~
for a matrix over finite field group and matrix
over finite field, 75
(for Rees (0-)matrix semigroup isomor-
phisms by triples), 244

AnnularJonesMonoid, 107
ApsisMonoid, 110
AsBipartition, 18
AsBlockBijection, 19
AsBooleanMat, 57
AsInverseSemigroupCongruenceByKernel-
Trace, 234
AsList, 54
AsListCanonical, 153
AsMatrix
for a filter and a matrix, 50
for a filter, matrix, and threshold, 50
for a filter, matrix, threshold, and period, 50
AsMatrixGroup, 75
AsMonoid, 90
AsMutablelList, 54

AsPartialPerm

for a bipartition, 20

for a PBR, 39
AsPBR, 37
AsPermutation

for a bipartition, 21

for a PBR, 39
AsRMSCongruenceByLinkedTriple, 232
AsRZMSCongruenceByLinkedTriple, 232
AsSemigroup, 89
AsSemigroupCongruenceByGenerating-

Pairs, 232

AsTransformation

for a bipartition, 20

for a PBR, 39

BaseDomain

for a matrix over finite field, 68
Bipartition, 15
BipartitionByIntRep, 15
BlistNumber, 61
BlocksNC, 30
BooleanMat, 57
BooleanMatNumber, 61
BrauerMonoid, 105

CanonicalBlocks, 29
CanonicalBooleanMat, 62

for a perm group and boolean matrix, 62

for a perm group, perm group and boolean

matrix, 62

CanonicalForm

for a free inverse semigroup element, 124
CanonicalRepresentative, 231
CanonicalTransformation, 179
CatalanMonoid, 100
CharacterTableOfInverseSemigroup, 204
ClosurelnverseMonoid, 83
ClosureInverseSemigroup, 83
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ClosureMonoid, 83 for a transformation semigroup and an inte-
ClosureSemigroup, 83 ger, 177
CodomainOfBipartition, 26 DimensionOfMatrixOverSemiring, 48
ComponentReps0fPartialPermSemigroup, DimensionOfMatrixOverSemiring-
180 Collection, 49
ComponentReps0fTransformation- DirectProduct, 85
Semigroup, 175 DirectProductOp, 85
ComponentsOfPartialPermSemigroup, 180 DomainOfBipartition, 26
ComponentsOfTransformationSemigroup, DotSemilatticeOfIdempotents, 247
176 DotString, 246
CompositionMapping?2 DualSymmetricInverseMonoid, 108
for ISRMSIsoByTriple, 243 DualSymmetricInverseSemigroup, 108

for IsSRZMSIsoByTriple, 243
CongruenceClasses, 216
CongruenceClass0OfElement, 215

ELM_LIST (for Rees (0-)matrix semigroup iso-
morphisms by triples), 244

CongruencesOfPoset, 224 ELM_LIST
Congruences0fSemigroup for ISRMSIsoByTriple, 242
for a semigroup, 220 EmptyPBR, 36
for a semigroup and a multiplicative element EndomorphismMonoid
collection, 220 for a digraph, 95
Content0fFreeBandElement, 126 for a digraph and vertex coloring, 95

ContentOfFreeBandElementCollection, 126 EndomorphismsPartition, 100
CrossedApsisMonoid, 111 Enumerate, 154

CyclesOfPartialPerm, 181 EnumeratorCanonical, 153
CyclesOfPartialPermSemigroup, 181 EquivalenceRelationCanonicalLookup, 218

CyclesOfTransformationSemigroup, 176 EquivalenceRelationCanonicalPartition,

219
DClass, 133 EquivalenceRelationLookup, 218
DClasses, 135 EvaluateWord, 157
DClassNC, 134 ExtRep0f0bj
DClassOfHClass, 132 for a bipartition, 24
DClassOfLClass, 132 for a blocks, 30
DClassOfRClass, 132 for a PBR, 41

DClassReps, 137
DegreeOfBipartition, 23
DegreeOfBipartitionCollection, 23
DegreeOfBipartitionSemigroup, 34

FactorisableDualSymmetricInverse-
Monoid, 108
Factorization, 158

Degree0fBlocks, 31 FixedPointsOfTransformationSemigroup
Degree0fPBR, 40 for a transformation semigroup, 178
Degree0fPBRCollection, 40 FreeBand

for a given rank, 125

Degree0fPBRSemigroup, 46
for a list of names, 125

DigraphOfActionOnPairs _
for a transformation semigroup, 176 for various names, 125

for a transformation semigroup and an inte- FreeInver'seSemigroup
ger, 176 for a given rank, 122

for a list of names, 122

DigraphOfActionOnPoints
for various names, 122

for a transformation semigroup, 177
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FullBooleanMatMonoid, 113
FullMatrixMonoid, 112
FullPBRMonoid, 111
FullTropicalMaxPlusMonoid, 115
FullTropicalMinPlusMonoid, 116

GeneralLinearMonoid, 112
GeneratingPairsOfLeftSemigroup-
Congruence, 213
GeneratingPairsOfRightSemigroup-
Congruence, 214
GeneratingPairs0fSemigroupCongruence,
213
Generators, 160
GeneratorsOfSemigroupIdeal, 98
GeneratorsSmallest
for a semigroup, 164
GLM, 112
GossipMonoid, 114
GraphInverseSemigroup, 128
GraphOfGraphInverseSemigroup, 130
GreensDClasses, 135
GreensDClassOfElement, 133
for a free band and element, 127
GreensDClass0fElementNC, 134
GreensHClasses, 135
GreensHClassOfElement, 133
for a Rees matrix semigroup, 133
GreensHClassOfElementNC, 134
GreensJClasses, 135
GreensLClasses, 135
GreensLClassOfElement, 133
GreensLClassOfElementNC, 134
GreensRClasses, 135
GreensRClassOfElement, 133
GreensRClass0fElementNC, 134
GroupHClass, 147
Group0fUnits, 167

HallMonoid, 114
HClass, 133
for a Rees matrix semigroup, 133
HClasses, 135
HClassNC, 134
HClassReps, 137

IdempotentGeneratedSubsemigroup, 170
Idempotents, 168

IdentityBipartition, 15
IdentityMatrixOverFiniteField

for a finite field and a pos int, 67

for a matrix over finite field and pos int, 67
IdentityPBR, 37
ImagesElm

for ISRMSIsoByTriple, 243
ImagesRepresentative

for IsSRMSIsoByTriple, 243
\in, 60
IndexPeriod0fSemigroupElement, 156
InfoSemigroups, 12
InjectionNormalizedPrincipalFactor, 150
InjectionPrincipalFactor, 150
IntRepOfBipartition, 24
InverseMonoidByGenerators, 80
InverseQOp, 71

for an integer matrix, 69
InverseSemigroupByGenerators, 80
InverseSemigroupCongruenceByKernel-

Trace, 233

InverseSubsemigroupByProperty, 85
IrredundantGeneratingSubset, 162
IsActingSemigroup, 79
IsAntiSymmetricBooleanMat, 65
IsAperiodicSemigroup, 193
IsBand, 184
IsBipartition, 14
IsBipartitionCollColl, 14
IsBipartitionCollection, 14
IsBipartitionMonoid, 32
IsBipartitionPBR, 42
IsBipartitionSemigroup, 32
IsBlockBijection, 28
IsBlockBijectionMonoid, 33
IsBlockBijectionPBR, 42
IsBlockBijectionSemigroup, 33
IsBlockGroup, 185
IsBlocks, 30
IsBooleanMat, 53
IsBooleanMatCollColl, 53
IsBooleanMatCollection, 53
IsBooleanMatMonoid, 72
IsBooleanMatSemigroup, 72
IsBrandtSemigroup, 205
IsCliffordSemigroup, 205
IsColTrimBooleanMat, 63
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IsCombinatorialSemigroup, 193
IsCommutativeSemigroup, 185
IsCompletelyRegularSemigroup, 186
IsCompletelySimpleSemigroup, 194
IsCongruenceClass, 214
IsCongruenceFreeSemigroup, 186
IsCongruencePoset, 222
IsConnectedTransformationSemigroup

for a transformation semigroup, 180
IsDTrivial, 193
IsDualTransBipartition, 27
IsDualTransformationPBR, 43
IsEmptyPBR, 41
IsEnumerableSemigroupRep, 79
IsEquivalenceBooleanMat, 66
IsEUnitaryInverseSemigroup, 206
IsFactorisableInverseMonoid, 207
IsFinite, 73
IsFreeBand

for a given semigroup, 125
IsFreeBandCategory, 125
IsFreeBandElement, 126
IsFreeBandElementCollection, 126
IsFreeBandSubsemigroup, 126
IsFreelInverseSemigroup, 122
IsFreeInverseSemigroupCategory, 122
IsFreeInverseSemigroupElement, 122
IsFreelnverseSemigroupElement-

Collection, 123
IsFullMatrixMonoid, 112
IsFullyEnumerated, 155
IsGenerallLinearMonoid, 112
IsGraphInverseSemigroup, 130
IsGraphInverseSemigroupElement, 130
IsGraphInverseSemigroupElement-
Collection, 130

IsGraphInverseSubsemigroup, 131
IsGreensClassNC, 146
IsGreensDGreaterThanFunc, 142
IsGroupAsSemigroup, 187
IsHTrivial, 193
IsIdempotentGenerated, 187
IsIdentityPBR, 42
IsIntegerMatrix, 53
IsIntegerMatrixCollColl, 54
IsIntegerMatrixCollection, 54
IsIntegerMatrixMonoid, 73

IsIntegerMatrixSemigroup, 72
IsInverseSemigroupCongruenceByKernel-
Trace, 233
IsInverseSemigroupCongruenceClassBy-
KernelTrace, 235
IsIsomorphicSemigroup, 239
IsJoinIrreducible, 207
IsLeftCongruenceClass, 214
IsLeftSemigroupCongruence, 211
IsLeftSimple, 188
IsLeftZeroSemigroup, 189
IsLinkedTriple, 231
IsLTrivial, 193
IsMajorantlyClosed, 208
IsMatrixOverFiniteField, 53
IsMatrixOverFiniteFieldCol1lColl, 53
IsMatrix0OverFiniteFieldCollection, 53
IsMatrixOverFiniteFieldGroup, 74
IsMatrix0OverFiniteFieldMonoid, 72
IsMatrixOverFiniteFieldSemigroup, 72
IsMatrixOverSemiring, 48
IsMatrixOverSemiringCollColl, 48
IsMatrixOverSemiringCollection,48
IsMatrixOverSemiringMonoid, 72
IsMatrixOverSemiringSemigroup, 72
IsMaximalSubsemigroup, 174
IsMaxPlusMatrix, 53
IsMaxPlusMatrixCollColl, 54
IsMaxPlusMatrixCollection, 53
IsMaxPlusMatrixMonoid, 72
IsMaxPlusMatrixSemigroup, 72
IsMinPlusMatrix, 53
IsMinPlusMatrixCollColl, 54
IsMinPlusMatrixCollection, 54
IsMinPlusMatrixMonoid, 73
IsMinPlusMatrixSemigroup, 72
IsMonogenicInverseMonoid, 209
IsMonogenicInverseSemigroup, 209
IsMonogenicMonoid, 190
IsMonogenicSemigroup, 189
IsMonoidAsSemigroup, 190
IsNTPMatrix, 53
IsNTPMatrixCollColl, 54
IsNTPMatrixCollection, 54
IsNTPMatrixMonoid, 73
IsNTPMatrixSemigroup, 72
IsomorphismMatrixGroup, 75
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IsomorphismMonoid, 88
IsomorphismPermGroup, 91
IsomorphismReesMatrixSemigroup
for a D-class, 150
for a semigroup, 182
IsomorphismReesMatrixSemigroupOver-
PermGroup, 182
IsomorphismReesZeroMatrixSemigroup, 182
IsomorphismReesZeroMatrixSemigroup-
OverPermGroup, 182
IsomorphismSemigroup, 87
IsomorphismSemigroups, 240
IsOntoBooleanMat, 65
IsOrthodoxSemigroup, 191
IsPartialOrderBooleanMat, 66
IsPartialPermBipartition, 28
IsPartialPermBipartitionMonoid, 33
IsPartialPermBipartitionSemigroup, 33
IsPartialPermPBR, 44
IsPBR, 35
IsPBRCol1lColl, 35
IsPBRCollection, 35
IsPBRMonoid, 45
IsPBRSemigroup, 45
IsPermBipartition, 28
IsPermBipartitionGroup, 33
IsPermPBR, 44
IsRectangularBand, 191
IsRectangularGroup, 191
IsReesCongruenceClass, 236
IsReflexiveBooleanMat, 64
IsRegularGreensClass, 145
IsRegularSemigroup, 192
IsRightCongruenceClass, 215
IsRightSemigroupCongruence, 211
IsRightSimple, 188
IsRightZeroSemigroup, 192
IsRMSCongruenceByLinkedTriple, 229
IsRMSCongruenceClassByLinkedTriple, 230
IsRMSIsoByTriple, 241
IsRowTrimBooleanMat, 63
IsRTrivial, 193
IsRZMSCongruenceByLinkedTriple, 229
IsRZMSCongruenceClassByLinkedTriple,
230
IsRZMSIsoByTriple, 241
IsSemiband, 187
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IsSemigroupCongruence, 210
IsSemigroupWithAdjoinedZero, 193
IsSemilattice, 194
IsSimpleSemigroup, 194
IsSubrelation, 227
IsSuperrelation, 227
IsSymmetricBooleanMat, 63
IsSynchronizingSemigroup
for a transformation semigroup, 195
for a transformation semigroup and a positive
integer, 195
IsTorsion, 73
for an integer matrix, 70
IsTotalBooleanMat, 65
IsTransBipartition, 27
IsTransformationPBR, 43
IsTransitive
for a transformation semigroup and a pos int,
178
for a transformation semigroup and a set, 178
IsTransitiveBooleanMat, 64
IsTrimBooleanMat, 63
IsTropicalMatrix, 53
IsTropicalMatrixCollection, 54
IsTropicalMatrixMonoid, 73
IsTropicalMatrixSemigroup, 72
IsTropicalMaxPlusMatrix, 53
IsTropicalMaxPlusMatrixCollColl, 54
IsTropicalMaxPlusMatrixCollection, 54
IsTropicalMaxPlusMatrixMonoid, 73
IsTropicalMaxPlusMatrixSemigroup, 72
IsTropicalMinPlusMatrix, 53
IsTropicalMinPlusMatrixCollColl, 54
IsTropicalMinPlusMatrixCollection, 54
IsTropicalMinPlusMatrixMonoid, 73
IsTropicalMinPlusMatrixSemigroup, 72
IsUniformBlockBijection, 29
IsUnitRegularMonoid, 195
IsUniversalPBR, 42
IsUniversalSemigroupCongruence, 237
IsUniversalSemigroupCongruenceClass,
237
IsVertex
for a graph inverse semigroup element, 129
IsZeroGroup, 195
IsZeroRectangularBand, 196
IsZeroSemigroup, 196
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IsZeroSimpleSemigroup, 197 for a semigroup, 220
IteratorCanonical, 153 for a semigroup and a multiplicative element
IteratorFrom0OldGeneratorsFile, 252 collection, 220
IteratorFromPickledFile, 252 LeftInverse
IteratorOfDClasses, 143 for a matrix over finite field, 68
Iterator0fDClassReps, 142 LeftOne

IteratorOfHClasses, 143
IteratorOfHClassReps, 142
Iterator0fLClasses, 143
IteratorOfLClassReps, 143
IteratorO0OfRClasses, 143
Iterator0fRClassReps, 143

JClasses, 135
JoinIrreducibleDClasses, 199
JoinLeftSemigroupCongruences, 228
JoinRightSemigroupCongruences, 228
JoinSemigroupCongruences, 228
JoinSemilatticeOfCongruences

for a congruence poset and a function, 225

for a list or collection and a function, 225
JonesMonoid, 106

KernelOfSemigroupCongruence, 234

LargestElementSemigroup, 179
LatticeOfCongruences
for a semigroup, 223
for a semigroup and a multiplicative element
collection, 223
LatticeOfLeftCongruences
for a semigroup, 223
for a semigroup and a multiplicative element
collection, 223
LatticeOfRightCongruences
for a semigroup, 223
for a semigroup and a multiplicative element
collection, 223
LClass, 133
LClasses, 135
LClassNC, 134
LClassOfHClass, 132
LClassReps, 137
LeftBlocks, 25
LeftCayleyGraphSemigroup, 155
LeftCongruenceClasses, 216
LeftCongruenceClass0fElement, 215
LeftCongruences0fSemigroup

for a bipartition, 16
LeftProjection, 16
LeftSemigroupCongruence, 212
LeftZeroSemigroup, 120
LengthOfLongestDClassChain, 141

MajorantClosure, 199
Matrix
for a filter and a matrix, 49
for a semiring and a matrix, 49
MaximalDClasses, 138
MaximalSubsemigroups
for a finite semigroup, 172
for a finite semigroup and a record, 172
MeetSemigroupCongruences, 227
MinimalCongruences
for a congruence poset, 226
for a list or collection, 226
MinimalCongruencesOfSemigroup
for a semigroup, 221
for a semigroup and a multiplicative element
collection, 221
MinimalDClass, 138
MinimalFactorization, 159
MinimalIdeal, 165
MinimalIdealGeneratingSet, 98
MinimalInverseMonoidGeneratingSet, 163
MinimalInverseSemigroupGeneratingSet,
163
MinimalLeftCongruencesOfSemigroup
for a semigroup, 221
for a semigroup and a multiplicative element
collection, 221
MinimalMonoidGeneratingSet, 163
MinimalRightCongruencesOfSemigroup
for a semigroup, 221
for a semigroup and a multiplicative element
collection, 221
MinimalSemigroupGeneratingSet, 163
MinimalWord
for free inverse semigroup element, 124
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MinimumGroupCongruence, 236
Minorants, 200
ModularPartitionMonoid, 110
MonogenicSemigroup, 118
MotzkinMonoid, 107
MultiplicativeNeutralElement
for an H-class, 150
MultiplicativeZero, 166
MunnSemigroup, 103

NaturallLeqBlockBijection, 22
NaturallLeqInverseSemigroup, 198
NaturallLeqPartialPermBipartition, 22
NewIdentityMatrixOverFiniteField, 67
NewMatrixOverFiniteField

for a filter, a field, an integer, and a list, 66
NewZeroMatrixOverFiniteField, 67
NonTrivialCongruenceClasses, 216
NonTrivialEquivalenceClasses, 216
NonTrivialLeftCongruenceClasses, 216
NonTrivialRightCongruenceClasses, 217
NormalizedPrincipalFactor, 151
Normalizer

for a perm group, semigroup, record, 174

for a semigroup, record, 174
NormalizeSemigroup, 74
NrBlocks

for a bipartition, 26

for blocks, 26
NrCongruenceClasses, 217
NrDClasses, 139
NrEquivalenceClasses, 217
NrHClasses, 139
NrIdempotents, 169
NrLClasses, 139
NrLeftBlocks, 25
NrLeftCongruenceClasses, 217
NrMaximalSubsemigroups, 173
NrRClasses, 139
NrRegularDClasses, 138
NrRightBlocks, 25
NrRightCongruenceClasses, 217
NrTransverseBlocks

for a bipartition, 23

for blocks, 30
NumberBlist, 61
NumberBooleanMat, 61

NumberPBR, 41

OnBlist, 60

OnLeftBlocks, 32

OnLeftCongruenceClasses, 219

OnRightBlocks, 31

OnRightCongruenceClasses, 220

Order, 70

OrderAntiEndomorphisms, 101

OrderEndomorphisms

monoid of order preserving transformations,

101

PartialBrauerMonoid, 105
PartialDualSymmetricInverseMonoid, 108
PartialJonesMonoid, 106
PartialOrderAntiEndomorphisms, 101
PartialOrderEndomorphisms, 101
PartialOrder0OfDClasses, 140
PartialPermleqBipartition, 22
PartialTransformationMonoid, 101
PartialUniformBlockBijectionMonoid, 108
PartitionMonoid, 105
PBR, 36
PBRNumber, 41
PeriodNTPMatrix, 55
PermLeftQuoBipartition, 22
PlanarModularPartitionMonoid, 110
PlanarPartitionMonoid, 109
PlanarUniformBlockBijectionMonoid, 108
PODI
monoid of order preserving or reversing par-
tial perms, 103
POI
monoid of order preserving partial perms,
103
POPI
monoid of orientation preserving partial
perms, 103
PORI
monoid of orientation preserving or reversing
partial perms, 104
Poset0fCongruences, 225
PosetOfPrincipalCongruences
for a semigroup, 224
for a semigroup and a multiplicative element
collection, 224
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PosetOfPrincipalleftCongruences
for a semigroup, 224
for a semigroup and a multiplicative element
collection, 224
PosetOfPrincipalRightCongruences
for a semigroup, 224
for a semigroup and a multiplicative element
collection, 224
PositionCanonical, 154
PrimitiveIdempotents, 201
PrincipalCongruences0fSemigroup
for a semigroup, 221
for a semigroup and a multiplicative element
collection, 222
PrincipalFactor, 151
PrincipalleftCongruencesOfSemigroup
for a semigroup, 221
for a semigroup and a multiplicative element
collection, 222
PrincipalRightCongruencesOfSemigroup
for a semigroup, 221
for a semigroup and a multiplicative element
collection, 222
ProjectionFromBlocks, 31

RadialEigenvector, 71
Random

for a semigroup, 156
RandomBipartition, 17
RandomBlockBijection, 17
RandomInverseMonoid, 93
RandomInverseSemigroup, 93
RandomMatrix

for a filter and a matrix, 52

for a semiring and a matrix, 52
RandomMonoid, 93
RandomPBR, 36
RandomSemigroup, 93
Range

for a graph inverse semigroup element, 129
RankOfBipartition, 23
Rank0fBlocks, 30
RClass, 133
RClasses, 135
RClassNC, 134
RClassOfHClass, 132
RClassReps, 137
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ReadGenerators, 251
Read0ldGenerators, 251
RectangularBand, 118
ReflexiveBooleanMatMonoid, 114
RegularBooleanMatMonoid, 113
RegularDClasses, 138
Representative0fMinimalDClass, 165
RepresentativeO0fMinimalIdeal, 165
RightBlocks, 24
RightCayleyGraphSemigroup, 155
RightCongruenceClasses, 216
RightCongruenceClass0fElement, 215
RightCongruences0OfSemigroup

for a semigroup, 220

for a semigroup and a multiplicative element

collection, 220

RightCosetsOfInverseSemigroup, 201
RightInverse

for a matrix over finite field, 68
RightOne

for a bipartition, 16
RightProjection, 16
RightSemigroupCongruence, 213
RightZeroSemigroup, 120
RMSCongruenceByLinkedTriple, 229
RMSCongruenceClassByLinkedTriple, 230
RMSIsoByTriple, 242
RMSNormalization, 93
RookMonoid, 103
RookPartitionMonoid, 105
RowRank

for a matrix over finite field, 68
RowSpaceBasis

for a matrix over finite field, 67
RowSpaceTransformation

for a matrix over finite field, 67
RowSpaceTransformationInv

for a matrix over finite field, 68
RZMSCongruenceByLinkedTriple, 229
RZMSCongruenceClassByLinkedTriple, 230
RZMSConnectedComponents, 182
RZMSDigraph, 181
RZMSIsoByTriple, 242
RZMSNormalization, 91

SameMinorantsSubgroup, 202
SchutzenbergerGroup, 148
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SemigroupCongruence, 212 StarOp
Semigroupldeal, 97 for a bipartition, 17
SemigroupIdealOfReesCongruence, 236 for a PBR, 40

Semigroups package overview, 7
SEMIGROUPS.DefaultOptionsRec, 82
SemigroupsMakeDoc, 11
SemigroupsTestExtreme, 11
SemigroupsTestInstall, 11
SemigroupsTestStandard, 11
SingularApsisMonoid, 110
SingularBrauerMonoid, 105
SingularCrossedApsisMonoid, 111
SingularDualSymmetricInverseMonoid, 108
SingularFactorisableDualSymmetric-
InverseMonoid, 108
SingularJonesMonoid, 106
SingularModularPartitionMonoid, 110
SingularOrderEndomorphisms, 101
SingularPartitionMonoid, 105
SingularPlanarModularPartitionMonoid,
110
SingularPlanarPartitionMonoid, 109
SingularPlanarUniformBlockBijection-
Monoid, 108
SingularTransformationMonoid, 101
SingularTransformationSemigroup, 101
SingularUniformBlockBijectionMonoid,
108
SLM, 112
SmallerDegreePartialPerm-
Representation, 202
SmallestElementSemigroup, 179
SmallestIdempotentPower, 156
SmallestMultiplicationTable, 239
SmallGeneratingSet, 161
SmallInverseMonoidGeneratingSet, 161
SmallInverseSemigroupGeneratingSet, 161
SmallMonoidGeneratingSet, 161
SmallSemigroupGeneratingSet, 161
Source
for a graph inverse semigroup element, 129
SpeciallinearMonoid, 112
SpectralRadius, 71
Splash, 245
Star
for a bipartition, 17
for a PBR, 40

StructureDescription
for an H-class, 150
StructureDescriptionMaximalSubgroups,
149
StructureDescriptionSchutzenberger-
Groups, 149
SubsemigroupByProperty
for a semigroup and function, 84
for a semigroup, function, and limit on the
size of the subsemigroup, 84
Successors, 60
Supersemigroup0fIdeal, 98

TemperleyLiebMonoid, 106
TexString, 248
ThresholdNTPMatrix, 55
ThresholdTropicalMatrix, 55
TikzString, 248
TraceOfSemigroupCongruence, 235
TransposedMatImmutable

for a matrix over finite field, 69
TriangularBooleanMatMonoid, 115
TrivialSemigroup, 117

UnderlyingSemigroupOfCongruencePoset,
225
UnderlyingSemigroupOfSemigroupWith-
AdjoinedZero, 167
UniformBlockBijectionMonoid, 108
UnitriangularBooleanMatMonoid, 115
UniversalPBR, 37
UniversalSemigroupCongruence, 238
UnweightedPrecedenceDigraph, 71

VagnerPrestonRepresentation, 203
WriteGenerators, 251

ZeroSemigroup, 119
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