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Preamble

Abstract: This package gives access to the database of Lie p-rings of order at most p’ as determined by Mike Newman,
Eamonn O’Brien and Michael Vaughan-Lee, see [NOVLO03] and [OVLO05], and it provides some functionality to work
with these Lie p-rings.

Copyright: The LiePRing package is free software; you can redistribute it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your opinion) any later
version. The LiePRing package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

How to cite this package: If you use the LiePRing package, then please cite it as: Michael Vaughan-Lee and Bettina
Eick, LiePRing — A GAP Package for computing with nilpotent Lie rings of prime-power order (2014), see www.gap-
system.org/Packages

Acknowledgements: The Lazard correspondence induces a one-to-one correspondence between the Lie p-rings of
order p" and class less than p and the p-groups of order p” and class less than p. This package provides a function to
evaluate this correspondence; this function has been implemented and given to us by Willem de Graaf.



Lie p-rings

In this preliminary chapter we recall some of theoretic background of Lie rings and Lie p-rings. We refer to Chapter
5 in [Khu] for some further details. Throughout we assume that p stands for a rational prime.

A Lie ring L is an additive abelian group with a multiplication that is alternating, bilinear and satisfies the Jacobi
identity. We denote the product of two elements g and & of L with gh.

A subset I C L is an ideal in the Lie ring L if it is a subgroup of the additive group of L and it satisfies al € [ for all
a € I and ] € L. As the multiplication in L is alternating, it follows that la € I for all / € L and a € I. Note that if /
and J are ideals in L, then [ +J ={a+b|acl,beJ}and lJ = (ab|a € I,b € J), are ideals in L.

A subset U C L is a subring of the Lie ring L if U is a Lie ring with respect to the addition and the multiplication of
L. Every ideal in L is also a subring of L. As usual, for an ideal I in L the quotient L/I has the structure of a Lie ring,
but this does not hold for subrings.

The lower central series of the Lie ring L is the series of ideals L = ¥, (L) > 1»(L) > ... defined by %(L) = %—1(L)L.
We say that L is nilpotent if there exists a natural number ¢ with y..;(L) = {0}. The smallest natural number with
this property is the class of L.

The notion of nilpotence now allows to state the central definition of this package. A Lie p-ring is a Lie ring that is
nilpotent and has p" elements for some natural number 7.

Every finite dimensional Lie algebra over a field with p elements is an example for a Lie ring with p" elements. Note
that there exist non-nilpotent Lie algebras of this type: the Lie algebra consisting of all n X n matrices with trace 0
and n > 3 is an example. Thus not every Lie ring with p" elements is nilpotent. (In contrast to the group case, where
every group with p” elements is nilpotent!)

For a Lie p-ring L we define the series L = A;(L) > A(L) > ... via ;1 (L) = A(L)L + pA;(L). This series is the
lower exponent-p central series of L. Its length is the p-class of L. If |[L/A,(L)| = p¢, then d is the minimal generator
number of L. Similar to the p-group case, one can observe that this is indeed the cardinality of a generating set of
smallest possible size.

Each Lie p-ring L has a central series L = L; > ... > L, > {0} with quotients of order p. Choose [; € L; \ L;y for
1 <i<n. Then (I,...,1I,) is a generating set of L satisfying that p/; € L;; and Lili € Liyyfor 1 <j <i<n We
call such a generating sequence a basis for L and we say that L has dimension n.



LiePRings in GAP

This package introduces a new datastructure that allows to define and compute with Lie p-rings in GAP. We first
describe this datastructure in the case of ordinary Lie p-rings; that is, Lie p-rings for a fixed prime p with given
structure constants. Then we show how this datastructure can also be used to define so-called ’generic’ Lie p-rings;
that is, Lie p-rings with indeterminate prime p.

3.1 Ordinary Lie p-rings

Let p be a prime and let L be a Lie p-ring of order p”. Let (i, ...,1,) be a basis for L. Then there exist coefficients
cijx €{0,...,p — 1} so that the following relations hold in L for 1 <i,j < n with i # j:

n
li- ;= Z Cijxlr,
k=it

n
pli="Y ciikh
k=it

These structure constants define the Lie p-ring L. As the multiplication in a Lie p-ring is anticommutative, it follows
that ¢;jx = —c;,ix holds for each k and each i # j. Thus the structure constants c;; for i > j are sufficient to define
the Lie p-ring L.

This package contains the new datastructure LiePRing that allows to define Lie p-rings via their structure constants
cijk- To use this datastructure, we first collect all relevant information into a record as follows:

dim
the dimension n of L;
prime
the prime p of L;
tab
a list with structure constants [c; 1, ¢2.1,¢22,€3.1,€32,C33, - - -
Each entry ¢;; in the list tab is a list [kl 2 Cijdir k2, Cijys - - ] so that ky < k < ... and the entries c;jy,, Cijk,,- - - are

the non-zero structure contants in the product /; - [;. Thus if /; - [; = 0, then ¢;; is the empty list. If an entry in the list
tab is not bound, then it is assumed to be the empty list.

LiePRingBySCTable( SC )
LiePRingBySCTableNC( SC )

These functions create a LiePRing from the structure constants table record SC. The first version checks that the
multiplication defined by tab is alternating and satisfies the Jacobi-identity, the second version assumes that this is the
case and omits these checks. These checks can also be carried out independently via the following function.

CheckIsLiePRing( L )

This function takes as input an object L created via LiePRingBySCTableNC and checks that the Jacobi identity holds
in this ring.
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The following example creates the Lie 2-ring of order 8 with trivial multiplication.

gap> SC := rec( dim := 3, prime := 2, tab := [] );;
gap> L := LiePRingBySCTable(SC);
<LiePRing of dimension 3 over prime 2>
gap> 1 := BasisOfLiePRing(L);

[ 11, 12, 13 1]

gap> 1[11%1[2];

0

gap> 2%1[1];

0

gap> 1[1] + 1[2];

11 + 12

The next example creates a LiePRing of order 5* with non-trivial multiplication.

gap> SC := rec( dim := 4, prime := 5, tab := [ [1, [3, 11, [1, [4, 111);;
gap> L := LiePRingBySCTableNC(SC);;

gap> ViewPCPresentation(L);

[12,11] = 13

[13,11] = 14

3.2 Generic Lie p-rings

In a generic Lie p-ring, p is allowed to be an indeterminate and the structure constants are allowed to be polynomials
in a finite set of commuting indeterminates. It is generally assumed that the indeterminate with name p represents the
prime, the indeterminate with name w represents the smallest primitive root modulo the prime and there are further
predefined indeterminates with the names x, y, z, ¢, j, k, m, n, r, s, u and v. These indeterminates are used in the
database of Lie p-rings and they can be obtained via

IndeterminateByName( string )

The structure constants records for generic Lie p-rings are similar to those for ordinary Lie p-rings, but have the
additional entry param which is a list containing all indeterminates used in the considered Lie p-ring. We exhibit an
example.

gap> p := IndeterminateByName("p");;

gap> x := IndeterminateByName("x");;

gap> S := rec( dim := 5,

> param := [ x ],

> prime := p,

> tab := [ [ 4,11, [3,11,[5,x1, [4,1]1, [5,111);;

gap> L := LiePRingBySCTable(S);
<LiePRing of dimension 5 over prime p with parameters [ x 1>
gap> ViewPCPresentation(L);

p*ll = 14

p¥12 = x*15

[12,11] = 13

[13,11] = 14

[13,12] = 15

gap> 1 := BasisOfLiePRing(L);

[ 11, 12, 13, 14, 15 ]
gap> p*1[1];
14
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gap> 1[11+1[2];

11 + 12

gap> 1[1]1*1[2];

-1%13

3.3 Specialising Lie p-rings

A generic Lie p-ring defines a family of ordinary Lie p-rings by evaluating the parameters contained in its presentation.
It is generally assumed that the indeterminate p is evaluated to a rational prime P and the indeterminate w is evaluated
to the smallest primitive root modulo P (this can be determined via PrimitiveRootMod(P)). All other indeterminates
can take arbitrary integer values (usually these values are in {0, ..., P — 1}, but other choices are possible as well).

The following functions allow to evaluate the indeterminates.

SpecialiselLiePRing(L, P, para, vals)

takes as input a generic Lie p-ring L, a rational prime P, a list of indeterminates para and a corresponding list of values
vals. The function returns a new Lie p-ring in which the prime p is evaluated to P, the parameter w is evaluated to

PrimitiveRootMod(P) and the parameters in para are evaluated to vals.

SpecialisePrime0fLiePRing(L, P)

this is a shortcut for SpecialiseLiePRing(L, P, [], []). We exhibit a some example applications.

gap>
gap>
gap>
gap>
gap>
>
>
>
>

gap>

p

L :

W
X
y o
S

IndeterminateByName ("p");;
IndeterminateByName ("w");;
IndeterminateByName ("x");;
IndeterminateByName ("y");;

rec( dim := 7,
param := [ w, x, y 1,
prime := p,
tab := [ [ 1, [ 6,

[ 6, x,
LiePRingBySCTable(S) ;

6
7

>

1]
y 1]

>

>

(6,11,

[

1,

(7,11,

7,11, [ 1,

L6, w]l]1);;

<LiePRing of dimension 7 over prime p with parameters [ w, x, y 1>
gap> ViewPCPresentation(L);

p*l2 = 16

p*13 = x*16 + yx*17
[12,11] = 16
[13,11] = 17
[14,12] = 17
[14,13] = wx16
gap>

gap> SpecialiseLiePRing(L, 7, [x, yl, [0,01);

<LiePRing of dimension 7 over prime 7>

gap> ViewPCPresentation(last);
7*12 = 16

[12,11]
[13,11]
[14,12]
[14,13]

gap>

16
17
17
3*16

gap> SpecialiseLiePRing(L, 11, [x, y], [0,101);

<LiePRing of dimension 7 over prime 11>

gap> ViewPCPresentation(last);
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1112 = 16
11%13 = 10%17
[12,11] = 16
[13,11] = 17
[14,12] = 17
[14,13] = 2%16
gap>

gap> Cartesian([0,1],[0,1]);
tfto,o01l1, 00,121, 01,071, [1,1]]
gap> List(last, v -> SpecialiseLiePRing(L, 2, [x,yl, v));
[ <LiePRing of dimension 7 over prime 2>,
<LiePRing of dimension 7 over prime 2>,
<LiePRing of dimension 7 over prime 2>,
<LiePRing of dimension 7 over prime 2> ]

It is not necessary to specialise all parameters at once. In particular, it is possible to leave the prime p as indeterminate
and specialize only some of the parameters. (Except for w which is linked to p.)

gap> SpecialiselLiePRing(L, p, [x], [0]);
<LiePRing of dimension 7 over prime p with parameters [ y, w 1>
gap> ViewPCPresentation(last);

p*12 = 16
p*13 = y*17
[12,11] = 16
[13,11] = 17
[14,12] = 17
[14,13] = w16

gap> SpecialiseLiePRing(L, p, [yl, [31);
<LiePRing of dimension 7 over prime p with parameters [ x, w 1>
gap> ViewPCPresentation(last);

p*12 = 16

p*13 = x*16 + 3%17
[12,11] = 16
[13,11] = 17
[14,12] = 17
[14,13] = wxl6

It is also possible to specialise the prime only, but leave all or some of the parameters indeterminate. Note that
specialising p also specialises w. Again, we continue to use the generic Lie p-ring L as above.

gap> SpecialisePrime0fLiePRing(L, 29);
<LiePRing of dimension 7 over prime 29 with parameters [ y, x 1>
gap> ViewPCPresentation(last);

29%12 = 16

29%13 = x*16 + y*17
[12,11] = 16
[13,11] = 17
[14,12] = 17
[14,13] = 2x16

3» LiePValues (K)

if K is obtained by specialising, then this attribute is set and contains the parameters that have been specialised and
their values.
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gap> L := LiePRingsByLibrary(6)[14];

<LiePRing of dimension 6 over prime p with parameters [ x 1>
gap> K := SpecialisePrimeOfLiePRing(L, 5);

<LiePRing of dimension 6 over prime 5 with parameters [ x 1>
gap> LiePValues(K);

(lp,wl, [5,21]

3.4 Subrings of Lie p-rings

Let L be a Lie p-ring with basis (1, ...,1,) and let U be a subring of L. Then U is a Lie p-ring and thus also has a
basis (uy,...,uy). For 1 <i < m we define the coefficients a;; € {0,...,p — 1} via

n
u; = ZaiJli
=1

and we denote with A the matrix with entries a;;. We say that the basis (u1,...,u,) is induced if A is in upper
triangular form. Further, the basis (i1, . .., u,,) is canonical if A is in upper echelon form; that is, it is upper triangular,
each row in A has leading entry 1 and there are 0’s above the leading entry. Note that a canonical basis is unique for
the subring.

LiePSubring(L, gens)

Let L be a (generic or ordinary) Lie p-ring and let gens be a set of elements in L. This function determines a canonical
basis for the subring generated by gens in L and returns the LiePSubring of L generated by gens. Note that this function
may have strange effects for generic Lie p-rings as the following example shows.

gap> L := LiePRingsByLibrary(6) [100];
<LiePRing of dimension 6 over prime p>
gap> 1 := BasisOfLiePRing(L);

[ 11, 12, 13, 14, 15, 16 ]

gap> U := LiePSubring(L, [5%1[1]11);
WARNING: Dividing by 1/5 in 6.464
<LiePRing of dimension 3 over prime p>
gap> Basis0fLiePRing(U);

[ 11, 14, 16 1]

gap>

gap> K := SpecialisePrimeOfLiePRing(L, 5);
<LiePRing of dimension 6 over prime 5>
gap> b := BasisOfLiePRing(X);

[ 11, 12, 13, 14, 15, 16 ]

gap> LiePSubring(K, [5xb[1]]);
<LiePRing of dimension 2 over prime 5>
gap> BasisOfLiePRing(last);

[ 14, 16 1

gap>

gap> K := SpecialisePrimeOfLiePRing(L, 7);
<LiePRing of dimension 6 over prime 7>
gap> b := BasisOfLiePRing(K) ;

[ 11, 12, 13, 14, 15, 16 ]

gap> U := LiePSubring(L, [5*b[1]]);
<LiePRing of dimension 1 over prime p>
gap> Basis0fLiePRing(U);

[ 11 + 2%14 ]
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LiePIdeal(L, gens)
return the ideal of L generated by gens. This function computes a an induced basis for the ideal.

gap> LiePIdeal(L, [1[111);

<LiePRing of dimension 5 over prime p>
gap> BasisOfLiePRing(last);

[ 11, 13, 14, 15, 16 ]

LiePQuotient (L, U)

return a Lie p-ring isomorphic to L/U where U must be an ideal of L. This function requires that L is an ordinary Lie
p-ring.

gap> LiePIdeal(X, [b[111);

<LiePRing of dimension 5 over prime 7>

gap> LiePIdeal(X, [b[2]]1);

<LiePRing of dimension 4 over prime 7>

gap> LiePQuotient(K,last);

<LiePRing of dimension 2 over prime 7>

3.5 Elementary functions

The functions described in this section work for ordinary and generic Lie p-rings and their subrings.
PrimeOfLiePRing(L)

returns the underlying prime. This can either be an integer or an indeterminate.
BasisOfLiePRing(L)

returns a basis for L.

DimensionOfLiePRing(L)

returns the dimension of L.

ParametersOfLiePRing(L)

returns the list of indeterminates involved in L. If L is a subring of a Lie p-ring defined by structure constants, then the
parameters of the parent are returned.

ViewPCPresentation(L)

prints the presentation for L with respect to its basis.

3.6 Series of subrings

Let L be a generic or ordinary Lie p-ring or a subring of such such a Lie p-ring.
LiePLowerCentralSeries(L)

returns the lower central series of L.

LiePLowerPCentralSeries (L)

returns the lower exponent-p central series of L.

LiePDerivedSeries(L)

returns the derived series of L.

LiePMinimalGeneratingSet (L)

returns a minimal generating set of L; that is, a generating set of smallest possible size.
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3.7 The Lazard correspondence

The following function has been implemented by Willem de Graaf. It uses the Baker-Campbell-Hausdorff formula as
described in [CAGVL12] and it is based on the Liering package [CdG10].

1» PGroupByLiePRing(L)

Let L be an ordinary Lie p-ring with c/(L) < p. Then this function returns the p-group G obtained from L via the
Lazard correspondence.



The Database

This package gives access to the database of Lie p-rings of order at most p’ as determined by Mike Newman, Eamonn
O’Brien and Michael Vaughan-Lee, see [NOVLO03] and [OVLO5]. A description of the database can also be found in
[VLI13].

For each n € {1,...,7} this package contains a (finite) list of generic presentations of Lie p-rings. For each prime
p > 5, each of the generic Lie p-rings gives rise to a family of Lie p-rings over the considered prime p by specialising
the indeterminates to a certain list of values. The resulting lists of Lie p-rings provides a complete and irredundant set
of isomorphism type representatives of the Lie p-rings of order p”. The generic Lie p-rings of p-class at most 2 can
also be considered for the prime p = 3 and yield a list of isomorphism type representatives for the Lie p-rings of order
3" and p-class at most 2.

The Lazard correspondence has been used to check the correctness of the database of Lie p-rings: for various small
primes it has been checked that the Lie p-rings of this database define non-isomorphic finite p-groups.

In the following we describe functions to access the database. Throughout this chapter, we assume that dim &
{1,...,7} and P is a prime with P # 2.

4.1 Accessing Lie p-rings

LiePRingsByLibrary( dim )
LiePRingsByLibrary( dim, gen, cl )

returns the generic Lie p-rings of dimension dim in the database. The second form returns the Lie p-rings of minimal
generator number gen and p-class cl only.

LiePRingsByLibrary( dim, P )
LiePRingsByLibrary( dim, P, gen, cl )

returns isomorphism type representatives of ordinary Lie p-rings of dimension dim for the prime P. The second form
returns the Lie p-rings of minimal generator number gen and p-class ¢/ only. The function assumes P > 3 and for
P = 3 there are only the Lie p-rings of p-class at most 2 available.

The first example yields the generic Lie p-rings of dimension 4.

gap> LiePRingsByLibrary(4);

[ <LiePRing of dimension 4 over prime p>,
<LiePRing of dimension 4 over prime p>,
<LiePRing of dimension 4 over prime p>,
<LiePRing of dimension 4 over prime p>,
<LiePRing of dimension over prime p>,
<LiePRing of dimension over prime p>,
<LiePRing of dimension 4 over prime p>,
<LiePRing of dimension 4 over prime p with parameters [ w 1>,
<LiePRing of dimension 4 over prime p>,
<LiePRing of dimension 4 over prime p>,
<LiePRing of dimension over prime p>,

L L a a a al
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<LiePRing of dimension
<LiePRing of dimension
<LiePRing of dimension
<LiePRing of dimension

4 over prime p>,
4 over prime p>,
4 over prime p>,
4 over prime p> ]

The next example yields the isomorphism type representatives of Lie p-rings of dimension 3 for the prime 5.

gap> LiePRingsByLibrary(3, 5);

[ <LiePRing of dimension 3 over prime 5>,
<LiePRing of dimension 3 over prime 5>,
<LiePRing of dimension 3 over prime 5>,
<LiePRing of dimension 3 over prime 5>,
<LiePRing of dimension 3 over prime 5> ]

The following example extracts the generic Lie p-rings of dimension 5 with minimal generator number 2 and p-class
4.

gap> LiePRingsByLibrary(5, 2, 4);
[ <LiePRing of dimension over prime p>,
<LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p with parameters [
<LiePRing of dimension 5 over prime p with parameters [
<LiePRing of dimension over prime p>,
<LiePRing of dimension over prime p>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,

]>}
1>,

s =

<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,

<LiePRing of dimension
<LiePRing of dimension

over prime p>,
over prime p> ]

(G2 ¢2 B2 G2 ¢ B2 BNG L I e ) BO2 IG 2 G2 6 BN G BN e e |

Finally, we determine the isomorphism type representatives of Lie p-rings of dimension 5, minimal generator number
2 and p-class 4 for the prime 7.

gap> LiePRingsByLibrary(5, 7, 2, 4);

[ <LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension over prime 7>,
<LiePRing of dimension over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7>,
<LiePRing of dimension 5 over prime 7> ]

oo o oo oo oo oo On
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4.2 Numbers of Lie p-rings
NumberOfLiePRings( dim )
returns the number of generic Lie p-rings in the database of the considered dimension for dim{1,...,7}.

gap> List([1..7], x -> NumberOfLiePRings(x));
[ 1, 2, 5, 15, 75, 542, 4773 ]

NumberOfLiePRings( dim, P )

returns the number of isomorphism types of ordinary Lie p-rings of order P¥"" in the database. If P > 5, then this is the
number of all isomorphism types of Lie p-rings of order P%" and if P = 3 then this is the number of all isomorphism
types of Lie p-rings of p-class at most 2. If P > 7, then this number coincides with NumberSmallGroups(P%™).

NumberOfLiePRingsInFamily( L )
returns the number of Lie p-rings associated to L as a polynomial in p and possibly some residue classes.

gap> L := LiePRingsByLibrary(7) [780];

<LiePRing of dimension 7 over prime p with parameters

[w, x, y, 2z, t, s, u, vJ]>

gap> NumberOfLiePRingsInFamily (L) ;
-1/3%p~5*(p-1,3)+p~5-1/3*p~4x*(p-1,3)+p~4-1/3*p~3*(p-1,3) +p~3-1/3*p~2* (p-1,3)
+p~2-p*(p-1,3)+3%p-3/2%(p-1,3)+9/2

4.3 Searching the database

We now consider a generic Lie p-ring L from the database and consider the family of ordinary Lie p-rings that arise
from it.

LiePRingsInFamily( L, P )

takes as input a generic Lie p-ring L from the database and a prime P and returns all Lie p-rings determined by L and
P up to isomorphism. This function returns fail if the generic Lie p-ring does not exist for the special prime P; this
may be due to the conditions on the prime or (if P = 3) to the p-class of the Lie p-ring.

gap> L := LiePRingsByLibrary(7) [118];
<LiePRing of dimension 7 over prime p with parameters [ x, y 1>
gap> LibraryConditions(L);

[ "all x,y, y~-y", "p=1 mod 4" ]

gap> LiePRingsInFamily(L,3);

fail

gap> Length(LiePRingsInFamily(L,5));
15

gap> LiePRingsInFamily(L, 7);

fail

gap> Length(LiePRingsInFamily(L,13));
91

gap> 1372;

169

The following example shows how to determine all Lie p-rings of dimension 5 and p-class 4 over the prime 29 up to
isomorphism.
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gap> L := LiePRingsByLibrary(5);;

gap> L := Filtered(L, x -> PClass0fLiePRing(x)=4);

[ <LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p with parameters [ w 1>,
<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p> ]
gap> K := List(L, x—> LiePRingsInFamily(x, 29));
[ [ <LiePRing of dimension 5 over prime 29> ],
<LiePRing of dimension 5 over prime 29> ],
<LiePRing of dimension 5 over prime 29> ],
<LiePRing of dimension 5 over prime 29> ],
<LiePRing of dimension 5 over prime 29> ],
<LiePRing of dimension 5 over prime 29> 1,
1,
1,
1,
1,

]

/M

fail, fail,

<LiePRing of dimension 5 over prime 29>
<LiePRing of dimension 5 over prime 29>
<LiePRing of dimension 5 over prime 29>
<LiePRing of dimension 5 over prime 29>
<LiePRing of dimension 5 over prime 29>
gap> K := Filtered(Flat(K), x -> x<>fail);
[ <LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29>,
<LiePRing of dimension 5 over prime 29> ]

fail, fail,
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—

]

4.4 More details

Let L be a Lie p-ring from the database. Then the following additional attributes are available.
1» LibraryName (L)

returns a string with the name of L in the database. See p567.pdf for further background.
2» ShortPresentation(L)

returns a string exhibiting a short presentation of L.
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1»

2»
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LibraryConditions (L)

returns the conditions on L. This is a list of two strings. The first string exhibits the conditions on the parameters of L,
the second shows the conditions on primes.

MinimalGeneratorNumberOfLiePRing (L)
returns the minimial generator number of L.
PClassOfLiePRing(L)

returns the p-class of L.

gap> L := LiePRingsByLibrary(7) [118];

<LiePRing of dimension 7 over prime p with parameters [ x, y 1>
gap> LibraryName (L) ;

"7.118"

gap> LibraryConditions(L);

[ "all x,y, y™-y", "p=1 mod 4" ]

All of the information listed in this section is inherited when L is specialised.

gap> L := LiePRingsByLibrary(7) [118];

<LiePRing of dimension 7 over prime p with parameters [ x, y 1>
gap> K := SpecialiseLiePRing(L, 5, Parameters0fLiePRing(L), [0,0]);
<LiePRing of dimension 7 over prime 5>

gap> LibraryName () ;

"7.118"

gap> LibraryConditions(K) ;

[ "all x,y, y™-y", "p=1 mod 4" ]

The following example shows how to find a Lie p-ring with a given name in the database.

gap> L := LiePRingsByLibrary(7);;
gap> Filtered(L, x -> LibraryName(x) = "7.1010") [1];
<LiePRing of dimension 7 over prime p>

4.5 Special functions for dimension 7

The database of Lie p-rings of dimension 7 is very large and it may be time-consuming (or even impossible due to
storage problems) to generate all Lie p-rings of dimension 7 for a given prime P.

Thus there are some special functions available that can be used to access a particular set of Lie p-rings of dimension
7 only. In particular, it is possible to consider the descendants of a single Lie p-ring of smaller dimension by itself.
The Lie p-rings of this type are all stored in one file of the library. Thus, equivalently, it is possible to access the Lie
p-rings in one single file only.

The table LIE_TABLE contains a list of all possible files together with the number of Lie p-rings generated by their
corresponding Lie p-rings.

LiePRingsDim7ByFile( nr )
returns the generic Lie p-rings in file number nr.
LiePRingsDim7ByFile( nr, P )

returns the isomorphism types of Lie p-rings in file number nr for the prime P.
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gap> LIE_TABLE[100];
[ "3gen/gapdec6.139", 1/2*p+(p-1,3)+3/2 ]
gap> LiePRingsDim7ByFile(100);
of dimension 7

[ <LiePRing
<LiePRing
<LiePRing
<LiePRing
<LiePRing

[ <LiePRing
<LiePRing
<LiePRing
<LiePRing
<LiePRing
<LiePRing
<LiePRing
<LiePRing

of dimension 7
of dimension 7
of dimension 7
of dimension 7
gap> LiePRingsDim7ByFile (100, 7);

of
of
of
of
of
of
of
of

dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension

7

N NN NN NN

over
over
over
over
over

over
over
over
over
over
over
over
over

prime
prime
prime
prime
prime

prime
prime
prime
prime
prime
prime
prime
prime

P>,
P>,
p with parameters [ w 1>,
p with parameters [ w 1>,
p with parameters [ x 1> ]

7>,
7>,
7>,
7,
7>,
7>,
7>,
7> ]
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