idrel

Identities among relations

2.41

18 March 2018

Anne Heyworth

Christopher D. Wensley

Christopher D. Wensley
Email: c.d.wensley@bangor.ac.uk
Homepage: http://pages.bangor.ac.uk/ " mas023/
Address: Dr. C.D. Wensley
School of Computer Science
Bangor University
Dean Street
Bangor
Gwynedd LL57 1UT
UK

mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

idrel 2

Abstract

IdRel is a GAP package originally implemented in 1999, using the GAP 3 language, when the first author was
studying for a Ph.D. in Bangor.

This package is designed to compute a minimal set of generators for the module of the identities among
relators of a group presentation. It does this using

* rewriting and logged rewriting: a self-contained implementation of the Knuth-Bendix process using the
monoid presentation associated to the group presentation;

* monoid polynomials: an implementation of the monoid ring;
* module polynomials: an implementation of the right module over this monoid generated by the relators.

* Y-sequences: used as a rewriting way of representing elements of a free crossed module (products of
conjugates of group relators and inverse relators).

IdRel became an accepted GAP package in May 2015.

Bug reports, suggestions and comments are, of course, welcome. Please contact the
last author at c.d.wensley@bangor.ac.uk or submit an issue at the GitHub repository
https://github.com/gap-packages/idrel/issues/.

Copyright

© 1999-2018 Anne Heyworth and Chris Wensley

The IdRel package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements

This documentation was prepared with the GAPDoc [LN17] and AutoDoc [GH17] packages.
The procedure used to produce new releases uses the package GitHubPagesForGAP [Hor14] and the
package ReleaseTools.

mailto://c.d.wensley@bangor.ac.uk
https://github.com/gap-packages/idrel/issues/

Contents

1 Introduction
1.1 Anillustrative example . .

2 Rewriting Systems

2.1 Monoid Presentations of FpGroups
2.2 Rewriting systems for FpGroups oL oo

2.3 Enumerating elements . .

3 Logged Rewriting Systems

3.1 Logged Knuth-Bendix Completion

3.2 Logged reduction of a word

4 Monoid Polynomials

4.1 Construction of monoid polynomials L.
4.2 Components of apolynomial,
4.3 Monoid Polynomial Operations
4.4 Reduction of a Monoid Polynomial

5 Module Polynomials

5.1 Construction of module polynomials
5.2 Components of a module polynomial,
5.3 Module Polynomial Operations vt

6 Identities Among Relators
6.1 The original approach . . .
6.2 Knuth-Bendix identities . .
6.3 Partial lists of elements . .
6.4 Identities for infinite groups

References

Index

9,1

[\STCIIE NN |

13

15

19
19
20
21
22

23
23
24
25

26
27
29
30
30

31

32

Chapter 1

Introduction

This manual describes the IdRel package for GAP 4.7 for computing the identities among relators of
a group presentation using rewriting, logged rewriting, monoid polynomials, module polynomials and
Y-sequences.

The theoretical background for these computations is contained in Brown and Huebschumann
[BH82], Brown and Razak Salleh [BRS99] and is surveyed in the first author’s thesis [Hey99].

IdRel is primarily designed for the computation of a minimal set of generators for the module
of identities among relators. It also contains functions which compute logged rewrite systems for
group presentations (and complete them where possible); functions for operations involving elements
of monoid rings; and functions for operations with elements of right modules over monoid rings. The
Y-sequences are used as a rewriting way of representing elements of a free crossed module (products
of conjugates of group relators and inverse relators). The package is written entirely in GAP4, and
requires no compilation.

The package is loaded into GAP with the LoadPackage command, and on-line help is available

in the usual way.
Example

gap> LoadPackage("idrel");
gap> 7idrel

A pdf version of the IdRel manual is available in the doc directory of the home directory of IdRel.
The information parameter InfoIdRel has default value 0. When raised to a higher value, additional
information is printed out. |dRel was originally developed in 1999 using GAP3, partially supported
by a University of Wales Research Assistantship for the first author, Anne Heyworth.

If you use |dRel to solve a problem then please send a short email to the second author, to whom
bug reports, suggestions and other comments should also be sent. You may reference the package by
mentioning [HWO03] and [Hey99].

The package may be obtained as a compressed tar file idrel-version.number.tar.gz by ftp
from one of the following sites:

* the |IdRel GitHub site: https://github.com/gap-packages.github.io/idrel/.
» any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/idrel/.

https://github.com/gap-packages.github.io/idrel/
https://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/idrel/

idrel 5

1.1 An illustrative example

A typical input for IdRel is an fp-group presentation. This requires a free group F on a set of generators
and a set of relators R (words in the free group). The module of identities among relators for this
presentation has as its elements the Peiffer equivalence classes of all products of conjugates of relators
which represent the identity in the free group.

In this package the identities among relators are represented by Y-sequences, which are lists
[[r1,u1],...,[re,ux]] where ry,... ry are the group relators or their inverses, and uy,...,u; are words
in the free group F. A Y-sequence is evaluated in F as the product (u; 'riuy)... (u; 'reue) and is an
identity Y-sequence if it evaluates to the identity in F. An identity Y-sequence represents an identity
among the relators of the group presentation. The main function of the package is to produce a set
of Y-sequences which generate the module of identites among relators, and further, that this set be
minimal in the sense that every element in it is needed to generate the module.

Before starting on the main example, we consider a simpler example illustrating the use of IdRel.
All the functions used are described in detail in this manual. We compute a reduced set of identi-
ties among relators for the presentation of the symmetric group s3 with generators a,b and relators
[a®,b?, (ab)?]. In the listings below, s3_R1 is the i-th relator for s3, and £1,£2 are the generators a, b.
Example

gap> F := FreeGroup(2);;
gap> a := F.1;; b:= F.2;;
gap> rels3 := [a~3 , b~2, axbxaxb];
[£1°3, f272, (f1x£2)"2]
gap> s3 := F/rels3;
<fp group on the generators [fl, f2]>
gap> SetName(s3, "s3");
gap> idrels3 := IdentitiesAmongRelators(s3);;
gap> Display(idrels3);
[[[s3_R1"-1, <identity ...
[[s3_R2"-1, <identity ...
[[s3_R3"-1, <identity ... , [s3_R3, f1xf2] 1],
[[s3_.R3"-1, <identity ...> 1, [s3_R1, f1 1, [s3_R3~-1, f1°2 1],
[s3_R2, f1~-1xf2~-1xf1], [s3_R1, f2~-1xf1],
[s3_R3~-1, fi1xf2~-1xf1], [s3_R2, f1], [s3_R2, <identity ...> 1 1]

1, [s3_R1, f1~-1 11,
1, [s3_R2, 211,
]
]

vV V V V

If we write p = a®, 6 = b?, T = (ab)? then the first identity becomes p ! p“il. Similarly, the second
and third identities are the root identities 6~! 6% and t~! 7%. The fourth identity, which is not a root
identity, is obtained by walking around the Schreier diagram of the presentation, a somewhat truncated
triangular prism. Taking the appropriate conjugate of each face in turn, we get:

T71 pa (,L.fl)a2 Ga’lb’la pb’la (Tfl)ab’la oo

In order to form the module of identities for s3 the identities are transformed into module poly-
nomials. The first is y; = p(—1+a~') or —yja = p(a—1). The second and third are y, = o(b— 1)
and y; = t(ab — 1), while the fourth is p(a+ ba) + o(1 +a+ab) — t(1 +a ' +b). Note that,
in the fourth polynomial, the conjugators are converted to their normal forms in s3, namely a*> =
a',a'b~'a=ab, b'a = ba and ab~'a = b. Generators for this module are returned by the opera-

tion IdentityYSequences.

idrel

Example

gap> idyseq3 := IdentityYSequences(s3);
[(s3_Y1x(-s3_M1), s3_Rix(s3_M1 - <identity ...>)),

(s3_Y2x(<identity ...>), s3_R2*(s3_M2 - <identity ...>)),

(83_Y3%(s3_M1), s3_R3*(s3_M2 - s3_M1)),

(s3_Y9%(-<identity ...>), s3_R1*(-s3_M2*s3_M1 - s3_M1) + s3_R2*(-s3_Mlxs\
3_M2 - s3_M1 - <identity ...>) + s3_R3*(s3_M3 + s3_M2 + <identity ...>))]

Further examples are given in chapter 6.

Chapter 2

Rewriting Systems

This chapter describes functions to construct rewriting systems for finitely presented groups which
store rewriting information. The main example used is a presentation of the quaternion group q8 with
generators a, b and relators [a*, b*,abab™!,a*b?).

2.1 Monoid Presentations of FpGroups

2.1.1 FreeRelatorGroup

> FreeRelatorGroup(grp) (attribute)
> FreeRelatorHomomorphism(grp) (attribute)

The function FreeRelatorGroup returns a free group on the set of relators of the given fp-group
G. If HasName (G) is true then a name is automatically assigned to the free group.

The function FreeRelatorHomomorphism returns the group homomorphism from the free group
on the relators to the free group on the generators of G, mapping each generator to the corresponding
word.

Example

gap> F := FreeGroup(2);;

gap> a := F.1;; b:= F.2;;

gap> rels := [a4, b~4, axb*xaxb~-1, a~2xb~2];;
gap> q8 := F/rels;;

gap> SetName(g8, "q8");

gap> frq8 := FreeRelatorGroup(g8);

q8_R

gap> GeneratorsOfGroup(frq8);

[g8_R1, q8_R2, g8_R3, q8_R4]

gap> frhomg8 := FreeRelatorHomomorphism(g8) ;
[g8_R1, 98_R2, g8_R3, q8_R4] -> [f1°4, £274, f1xf2xf1xf2~-1, £1~2%f2~2]

2.1.2 MonoidPresentationFpGroup

> MonoidPresentationFpGroup(grp) (attribute)
> ArrangementOfMonoidGenerators (grp) (attribute)

idrel 8

> FreeGroupOfPresentation(mon) (attribute)
> GroupRelatorsOfPresentation(mon) (attribute)
> InverseRelatorsOfPresentation (mon) (attribute)
> HomomorphismOfPresentation (mon) (attribute)

A monoid presentation for a finitely presented group G has two monoid generators g+, g~ for each
group generator g. The relators of the monoid presentation comprise the group relators, and rela-
tors g" g~ specifying the inverses. The function MonoidPresentationFpGroup returns the monoid
presentation derived in this way from an fp-presentation.

The function FreeGroupO0fPresentation returns the free group on the monoid generators.

The function GroupRelators0fPresentation returns those relators of the monoid which corre-
spond to the relators of the group. All negative powers in the group relators are converted to positive
powers of the g~. The function InverseRelators0fPresentation returns relators which specify
the inverse pairs of the monoid generators.

The function Homomorphism0OfPresentation returns the homomorphism from the free group of
the monoid presentation to the free group of the group presentation.

The attribute Arrangement0fMonoidGenerators will be discussed before the second example
in the next section.

In the example below, the four monoid generators a*,b*,a~,b~ are named q8_M1, q8_M2,
98_M3, g8_M4 respectively.

Example

gap> mon := MonoidPresentationFpGroup(g8);

monoid presentation with group relators

[98_M1~4, 98_M2"4, q8_M1%q8_M2*q8_M1*q8_M4, q8_M1"2%q8_M2"2]
gap> fgmon := FreeGroupOfPresentation(mon);

<free group on the generators [q8_M1, gq8_M2, q8_M3, q8_M4 1>
gap> genfgmon := GeneratorsOfGroup(fgmon);;

gap> gprels := GroupRelatorsOfPresentation(mon) ;

[q8_M1"4, q8_M2"4, q8_M1*q8_M2%q8_M1*q8_M4, q8_M1"2*q8_M2"2]
gap> invrels := InverseRelatorsOfPresentation(mon);

[98_M1%q8_M3, q8_M2*q8_M4, gq8_M3*q8_M1, q8_M4%q8_M2]

gap> hompres := HomomorphismOfPresentation(mon) ;

[g8_M1, q8_M2, q8_M3, q8_ M4 1 -> [f1, £2, f1~-1, f2°-1]

2.2 Rewriting systems for FpGroups

These functions duplicate the standard Knuth Bendix functions which are available in the GAP library.
There are two reasons for this: (1) these functions were first written before the standard functions were
available; (2) we require logged versions of the functions, and these are most conveniently extended
versions of the non-logged code.

2.2.1 RewritingSystemFpGroup

> RewritingSystemFpGroup(grp) (attribute)

idrel 9

This function attempts to return a complete rewrite system for the group G obtained from the
monoid presentation mon, with a length-lexicographical ordering on the words in fgmon, by applying
Knuth-Bendix completion. Such a rewrite system can be obtained for all finite groups. The rewrite
rules are (partially) ordered, starting with the inverse relators, followed by the rules which reduce the
word length the most.

In our g8 example there are 16 rewrite rules in the rewriting system rws:

ia —id, b'b —id aal —id, b b’ >id,
at?h” = b, abt —=b", aP—=a, b?—=a? ba —a'b, ba"—abt,
ab”-—abt, a?*—a? abt—ab, bta —atbt, b?—a?, btat —atb .

Example

gap> rws := RewritingSystemFpGroup(g8);

[[98_M1%q8_M3, <identity ...>], [98_M2*q8_M4, <identity ...>],
[q8_M3%q8_M1, <identity ...>], [98_M4*q8_M2, <identity ...>],
[g8_M1~2%q8_M4, q8_M2], [q8_M1~2%q8_M2, q8_M4], [q8_M1~3, g8_M3],
[q8_M4~2, q8_M1~2], [q8_M4*q8_M3, q8_Ml*q8_M4],

[g8_M4*g8_M1, q8_M1*q8_M2], [q8_M3*q8_M4, q8_Ml*q8_M2],
[g8_M3~2, q8_M1-2], [q8_M3*q8_M2, g8_Ml*q8_M4],

[q8_M2%q8_M3, q8_M1xq8_M2], [q8_M2~2, g8_M1-2],

[q8_M2%*q8_M1, q8_M1*q8_M4] 1]

The default ordering of the 2n monoid generators is [gf,gz+ vees 8. 81+85 5,8,). In the case of
the two-generator abelian group T = (a,b | [a,b]) the Knuth-Bendix process starts to generate infinite
sets of relations such as {ab™a~! — b™, m > 1}. If, using the ArrangementOfMonoidGenerators
function, we specify the alternative ordering [g{, 8] .45 ;&> |, then a finite set of rules is obtained.

Example

gap> F := FreeGroup(2);;

gap> T := F/[Comm(a,b)];

<fp group of size infinity on the generators [f1, f2]>

gap> SetName(T, "T");

gap> SetArrangementOfMonoidGenerators(T, [1,-1,2,-2]);

gap> monT := MonoidPresentationFpGroup(T);

monoid presentation with group relators [T_M2*T_M4*T_M1%T_M3]

gap> rwsT := RewritingSystemFpGroup(T);

[[T_M1*T_M2, <identity ...>], [T_M2*T_M1, <identity ...>],
[T_M3*T_M4, <identity ...>], [T_M4*T_M3, <identity ...>]
[T_M4xT_M2, T_M2+xT_M4 1, [T_M4*T_M1, T_MI1xT_M4],
[T_M3*T_M2, T_M2+T_M3], [T_M3*T_M1, T_M1*T_M3]]

B

The eight rules can be written as follows, showing that the a* and b* commute:

aa —id, aa —id bbb —id b b oid
ba —ab, ba"—ab, b'a —ab", bTat—=a'b".

The functions called by RewritingSystemFpGroup are as follows.

idrel 10

2.2.2 OnePassReduceWord

> OnePassReduceWord(word, rules) (operation)
> ReduceWordKB(word, rules) (operation)

Assuming that word is an element of a free monoid and rules is a list of ordered pairs of such
words, the function OnePassReduceWord searches the list of rules until it finds that the left-hand side
of a rule is a subword of word, whereupon it replaces that subword with the right-hand side of
the matching rule. The search is continued from the next rule in rules, but using the new word.
When the end of rules is reached, one pass is considered to have been made and the reduced word is
returned. If no matches are found then the original word is returned.

The function ReduceWordKB repeatedly applies the function OnePassReduceWord until the word
remaining contains no left-hand side of a rule as a subword. If rules is a complete rewrite system,
then the irreducible word that is returned is unique, otherwise the order of the rules in rules will
determine which irreducible word is returned. In the example we see that b°a° reduces to ba which is

not a normal form as we have seen in 2.2.1, where bTa™ — a™ b~ is the last rule.
Example

gap> monrels := Concatenation(gprels, invrels);

[98_M1-4, g8_M2"4, g8_M1*q8_M2%q8_M1*q8_M4, q8_M1~2*q8_M2"2, g8_M1%q8_M3,
q8_M2%q8_M4, g8_M3%q8_M1, q8_M4xqS_M2]

gap> id := One(monrels[1]);;

gap> rO := List(monrels, r -> [r, id]);

[[g8_M1"4, <identity ...>], [q8_M2"4, <identity ...> 1],
[98_M1%*g8_M2#q8_M1xq8_M4, <identity ...>],
[98_M1-2*q8_M2~2, <identity ...>], [98_M1%q8_M3, <identity ...>],
[g8_M2*q8_M4, <identity ...>], [g8_M3*q8_M1, <identity ...>],
[g8_M4*q8_M2, <identity ...]

gap> ap := genfgmon[1];;

>]
>]

gap> bp := genfgmon[2];;
gap> am := genfgmon[3];;
gap> bm := genfgmon[4];;

gap> w0 := bp~9 * ap~9;

q8_M2~9%q8_M1~9

gap> wl := OnePassReduceWord(w0, r0);
q8_M2"5%q8_M1"5

gap> w2 := ReduceWordKB(w0, r0);
q8_M2%q8_M1

2.2.3 OnePasskB

> OnePassKB(rules) (operation)
> RewriteReduce(rules) (operation)
> KnuthBendix(rules) (operation)
> ShorterRule(rulel, rule2) (operation)

The function OnePassKB implements the main loop of the Knuth-Bendix completion algorithm.
Rules are compared with each other; all critical pairs are calculated; and the irreducible critical pairs
are orientated with respect to the length-lexicographical ordering and added to the rewrite system.

idrel 11

The function RewriteReduce will remove unnecessary rules from a rewrite system. A rule is
deemed to be unnecessary if it is implied by the other rules, i.e. if both sides can be reduced to the
same thing by the remaining rules.

The function KnuthBendix implements the Knuth-Bendix algorithm, attempting to complete a
rewrite system with respect to a length-lexicographic ordering. It calls first OnePassKB, which adds
rules, and then (for efficiency) RewriteReduce which removes any unnecessary ones. This procedure
is repeated until OnePassKB adds no more rules. It will not always terminate, but for many examples
(all finite groups) it will be successful. The rewrite system returned is complete, that is: it will rewrite
any given word in the free monoid to a unique irreducible; there is one irreducible for each element of
the quotient monoid; and any two elements of the free monoid which are in the same class will rewrite
to the same irreducible.

The function ShorterRule gives an ordering on rules. Rules (g;g2,id) that identify two generators
(or one generator with the inverse of another) come first in the ordering. Otherwise one precedes
another if it reduces the length of a word by a greater amount.

One pass of this procedure for our g8 example adds 13 relators to the original 8, and these 21
are then reduced to 9. A second pass and reduction gives the list of 16 rules seen above, forming a

complete rewrite system for the group. Now b°a° correctly reduces to ab™!.
Example

gap> rl := OnePasskB(r0);
[[g8_M1"4, <identity ...>], [q8_M2"4, <identity ...> 1],
[98_M1%*q8_M2#q8_M1%q8_M4, <identity ...>],
q8_M1~2%q8_M2"2, <identity ...>], [98_M1%q8_M3, <identity ...>],
q8_M2*q8_M4, <identity ...>], [g8_M3%q8_M1, <identity ...>],
q8_M4*q8_M2, <identity ...>], [q8_M2%q8_M1*q8_M4, q8_M1-3],
q8_M1xq8_M2-2, q8_M1~3], [q8_M2~2, q8_M1~2], [g8_M1~3, q8_M3],
q8_M2-3, q8_M4], [g8_M1*q8_M2xq8_M1, q8_M2],
q8_M2°3, g8_M1~2%q8_M2 1, [q8_M2"2, q8_M1~2], [g8_M1-2%q8_M2, q8_M4 1,
q8_M1°3, q8_M3 1, [g8_M2%q8_M1xq8_M4, q8_M3 1, [g8_M1xq8_M2°2, q8_M3 1,
[g8_M2°3, q8_M4]]
gap> Length(rl);
21
gap> rl := RewriteReduce(rl);
[[g8_M1%g8_M3, <identity ...
[g8_M2*q8_M4, <identity ...
[q8_M4*q8_M2, <identity ...>], [g8_M1~3, q8_M3],
[g8_M1-2%q8_M2, q8_M& 1, [g8_Mi*q8_M2xq8_M1, q8_M2 1,
[gq8_M2%q8_M1%q8_M4, q8_M3]]
gap> Length(rl1);
9
gap> r2 := KnuthBendix(rl);
[[g8_M1%q8_M3, <identity ...> 1, [q8_M2%q8_M1, q8_M1xq8_M4 1],
[g8_M2"2, ¢8_M1-2], [g8_M2*q8_M3, gq8_M1x%q8_M2 1],
q8_M2%q8_M4, <identity ...>], [gq8_M3*q8_M1, <identity ...>],
q8_M3*q8_M2, q8_M1%q8_M4], [q8_M3"2, g8_M1-2],
q8_M3*q8_M4, q8_Mi*q8_M2], [q8_M4*q8_M1, q8_Mi*q8_M2 1,
q8_M4*q8_M2, <identity ...> 1, [9q8_M4*q8_M3, q8_M1%q8_M4],
q8_M4~2, q8_M1~2 1, [q8_M1-3, q8_M3], [q8_M1-2%q8_M2, q8_M4],
[q8_M1~2*q8_M4, gq8_M2]]
gap> Length(r2);
16

L IO e T s Y s A s I s B |

>7], [q8_M2~2, gq8_M1-2],

> 1, [q8_M3%q8_M1, <identity ...>],
>]

q

L B e B B e B e |

idrel 12

gap> w2 := ReduceWordKB(w0, r2);
q8_M1%q8_M4

2.3 Enumerating elements

2.3.1 ElementsOfMonoidPresentation

> ElementsOfMonoidPresentation (mon) (attribute)
The function ElementsO0fMonoidPresentation returns a list of normal forms for the elements

of the group given by the monoid presentation mon. The normal forms are the least elements in each

equivalence class (with respect to length-lex order). When rules is a complete rewrite system for G
the list returned is a set of normal forms for the group elements. For g8 this list is

lid, a™, b", a”, b, a*? a"b", ath .

Example

gap> elg8 := Elements(g8);

[<identity ...>, f1, £173, £2, f1-2*%f2, f1°2, f1xf2, f1°3%f2]

gap> elmong8 := ElementsOfMonoidPresentation(mong8);

[<identity. ..>, 98_M1, q8_M2, q8_M3, q8_M4, q8_M1~"2, q8_M1*q8_M2,
q8_M1*q8_M4]

Chapter 3

Logged Rewriting Systems

A logged rewrite system is associated with a group presentation. Each logged rewrite rule contains,
in addition to the standard rewrite rule, a record or log component which expresses the rule in terms
of the original relators of the group. We represent such a rule by a triple [u, [L1,L2,..,Lk], v],
where [u,v] is a rewrite rule and L; = [n;, w;] where n; is a group relator and w; is a word. These three
components obey the identity u = n}" ...n*v.

Rules of the form g*¢~ — id apply to the monoid presentation, but not to the group presentation,
so are given an empty logged component.

3.1 Logged Knuth-Bendix Completion

The functions in this section are the logged versions of those in the previous chapter.

3.1.1 LoggedOnePassKB

> LoggedOnePassKB(grp, loggedrules) (operation)

Given a logged rewrite system for the group grp, this function finds all the rules that would be
added to complete the rewrite system of OnePassKB in 2.2.3, and also the logs which relate the new
rules to the originals. The result of applying this function to loggedrules is to add new logged rules
to the system without changing the monoid it defines.

In the example, we first convert the presentation for g8 into an initial set of logged rules, and then
apply one pass of Knuth-Bendix.

The function returns a two-element list of lists. The first element is a set of logged rules and the
second element is an empty list of r-sequences, which will be explained later.

Example

gap> 10 := ListWithIdenticalEntries(8, 0);;
gap> for j in [1..8] do
> r := r0[j];

> if (j<56) then

> 10031 := [(11, [[j,id]l 1, r[2] 1;
> else

> 10031 := [(11, [1, r[2] 1;

> fi;

13

idrel 14

> od;

gap> 10;

[[g8_M1-4, [[1, <identity ...>]], <identity. ..>],
[g8_M2-4, [[2, <identity ...>]], <identity ...>],

q8_M1xq8_M2xq8_M1xq8_M4, [[3, <identity ...>]], <identity ...>],

q8_M1~2*q8_M2-2, [[4, <identity ...>]], <idemtity ...> 1,

q8_M1%q8_M3, [1, <identity ...> 1, [q8_M2*xq8_M4, [], <identity ...>]

[g8_M3*q8_M1, [1, <identity ...> 1, [98_M4*q8_M2, [], <identity ...>]]

gap> 11 := LoggedOnePassKB(g8, 10);;

gap> Length(11[1]);

21

gap> 11[1][16];

[g8_M2~2, [[-4, <identity ...> 1, [2, q8_.M3°2 1 1, q8_M1~2]

[B e B e |
Q Q

Note that the length 21 of 11 is, as expected, the same as that of r1 in 2.2.3. If we write a*,b",a™ ,b~
for M1,M2,M3,M4 and label the four original relators as ¢ = a™,r = b** s =aTbtatb~,t = a*?b*?
then the sixteenth identity (for example) says that b*> = (flr“*z)a”. To verify this, we may expand
the right-hand side as follows:

<b72a72)'a+2<b+4)a72.a+2 — b72(+2a72)b+4(a72a+2) — b72b+4 — b+2.

3.1.2 LoggedKnuthBendix

> LoggedKnuthBendix(grp, loggedrules) (operation)
> LoggedRewriteReduce(grp, loggedrules) (operation)

The function LoggedRewriteReduce removes unnecessary rules from a logged rewrite system.
It works on the same principle as RewriteReduce in 2.2.3.

The function LoggedKnuthBendix repeatedly applies functions LoggedOnePassKB and
LoggedRewriteReduce until no new rules are added and no unnecessary ones are included. The
output is a reduced complete logged rewrite system.

As a further example, consider the second rule in 12 which shows how b"a™ reduces to a™b™.
For this rule [u,L,v] we will verify that u = n}"n3?n}*v, as in the introduction to this chapter. The
rule is:

[q8_M2*q8_M1, [[3,9q8_M1], [-1,<identity...>], [4,98_M3]], q8_M1*q8_M4].

The relators 3 = s, 4 =t and the inverse relator —1 = ¢~ are atb*a*b™, a*?b*? and a—*, and
these are conjugated by (a~)~! =a",(a")~! = a~ and the identity respectively. So the second and

third parts of the rule expand to:
(a (@bt a™b)at) (a) (a (a™b™)a)a b = (a a")bTat (b (aTa *a)bT) (b (a"a")b")

which reduces to the first part of the rule, b™a™.

In version 2.41 of this package the function LoggedOnePassKB was modified to return a two-
element list of lists. The first element is a set of logged rules (as has been returned by earlier versions)
while the second element is a list of 51 identities. See chapter 6 for more information about identities.

idrel 15

Example

gap> 111 := LoggedRewriteReduce(q8, 11[1]);;
gap> PrintOneltemPerLine(111);

[[g8_M1%q8_M3, [1], <identity ...> 1],
[g8_M2~2, [[-4, <identity ...> 1, [2, q8_M3"2 1], g8_M1"2],
q8_M2xq8_M4, [], <identity ...> 1],
q8_M3*q8_M1, [1, <identity ...>],
q8_M4*q8_M2, [], <identity > 1],

q8_M1~3, [[1, <identity ...> 1 1, q8_M3 1,
q8_M1-2*%q8_M2, [[4, <identity ...>]], q8_M4],
q8_M1*q8_M2%q8_M1, [[3, <identity ...>]], q8_M2],
[q8_M2%q8_Mixq8_M4, [[3, q8_ M1] 1, gq8_M3]]
gap> Length(111);
9
gap> 12 := LoggedKnuthBendix(g8, 111);;
gap> 12[1];
[[q8_M1%q8_M3, [1, <identity ...> 1,
[g8_M2%q8_M1, [[3, q8_.M1 1, [-1, <identity ...> 1, [4, q8_.M3] 1,

q8_M1%q8_M4 1,

[g8_M2°2, [[-4, <identity ...> 1, [2, g8_M3~2 1 1, q8_M1°2 1,

[g8_M2*q8_M3, [[-3, <idemtity ...> 1], gq8_M1*q8_M2 1],

[g8_M2*q8_M4, [], <identity ...>], [q8_M3%q8_M1, [1, <identity ...>]
, [g8_M3*q8_M2, [[-1, <identity ...> 1, [4, q8_M3] 1, q8_M1*q8_M4],

[g8_M3~2, [[-1, <identity ...> 1 1, q8_M1°2 1,

[q8_M3%q8_M4,

[[-1, <identity ...> 1, [-2, q8_M3~2], [4, <identity ...>],

[3, g8_M1*q8_M4 1, [-3, <identity ...>]], q8_M1%q8_M2],
q8_M4xq8_M1, [[-4, <identity ...> 1, [3, q8_M3] 1, q8_M1%q8_M2],
q8_M4xq8_M2, [], <identity ...>],
q8_Ma*q8_M3, [[-3, g8_Mixq8_M2 1 1, g8_Mixq8_M4 1,
q8_M4~2, [[-4, <identity ...>]], q8_M1-2 1],
q8_M1-3, [[1, <identity ...> 1 1, g8_M3 1,
q8_M1-2*q8_M2, [[4, <identity ...> 1 1, q8_M4 1],

[q8_M1~2%q8_M4, [[-4, g8_M3~2 1, [1, <identity ...> 1 1, q8_M2]]
gap> Length(12[1]);
16
gap> Length(12[2]);
51

L T e Y s T s B e B |

L T e B s B s B e B |

3.2 Logged reduction of a word

3.2.1 LoggedReduceWordKB

> LoggedReduceWordKB(word, loggedrules) (operation)
> LoggedOnePassReduceWord (word, loggedrules) (operation)
> ShorterLoggedRule(logrulel, logrule2) (operation)

Given a word and a logged rewrite system, the function LoggedOnePassReduceWord makes one
reduction pass of the word (possibly involving several reductions) (as does OnePassReduceWord in

idrel 16

2.2.2) and records this, using the log part of the rule(s) used and the position in the original word of
the replaced part.

The function LoggedReduceWordKB repeatedly applies OnePassLoggedReduceWord until the
word can no longer be reduced. Each step of the reduction is logged, showing how the original
word can be expressed in terms of the original relators and the irreducible word. When loggedrules
is complete the reduced word is a unique normal form for that group element. The log of the reduction
depends on the order in which the rules are applied.

The function ShorterLoggedrule decides whether one logged rule is better than another, using
the same criteria as ShorterRule in 2.2.3. In the example we perform logged reductions of wy = a’b°
corresponding to the ordinary reductions performed in the previous chapter (section 2.2.2).

In order to clarify the following output, note that, in the log below, b»?a° reduces to b>a® in 1w1
and to ba in the first 1w2. These expand to the initial w0 using the given logged parts as follows:

(b+9a+4b79) (b+4)b+5a+5 — b+9a+9 — (b+9a+4b79) (b+4) (b+5a+4b75)(b+4)b+a+)

The corresponding expansion of the final 1w2 is too lengthy to include here. (It’s hard to believe that
the logged part of this identity is the simplest possible. Further investigation is needed to determine
whether or not this logged part can be simplified.)

Example

gap> w0;
q8_M2~9%q8_M1~9
gap> lwl := LoggedOnePassReduceWord(w0, 10);
[[[1, q8.M2°-9 1, [2, <identity ...> 1 1, gq8_M2"5%q8_M1"5]
gap> lw2 := LoggedReduceWordKB(w0, 10);
[LL[1, g8_.M2~-9], [2, <identity ...> 1, [1, gq8_M2"-51],

[2, <identity ...> 1 1, q8_M2*q8_M1]
gap> lw2 := LoggedReduceWordKB(w0, 12[1]);
[[[3, q8_ Mi*q8_M2~-8 1, [-1, q8_M2~-8 1, [4, q8_M3%q8_M2"-8 1,

[-4, <identity ...> 1, [2, q8_M3°2 1,
-4, g8_M1~-1%q8_M2~-6%q8_M1~-2],
, q8_M3%q8_M1~-1%q8_M2"-6%q8_M1~-2],
, 98_M27-1%q8_M1~-2%q8_M2~-6%q8_M1~-2 1, [4, <identity ...>],
, q8_M1%q8_M2~-4%q8_M4~-1], [-1, q8_M2~-4xq8_M4~-1],
, qQ8_M3%q8_M2~-4%q8_M4~-1 1, [-4, gq8_M&~-1 1,
, q8_M3~2xq8_M4~-1 1,
-3, q8_M1~-1%q8_M4~-1%q8_M1~-1%q8_M2~-2%q8_M1~-2%q8_M4~-1],
-4, <identity ...> 1, [3, g8_M3 1],
1, q8_M2"-1%q8_M1~-2%q8_M4~-1%q8_M1~-1%q8_M2"-1%(q8_M2"-1%q8_M1~-1)"2
1, [4, q8_M4~-1%q8_M1~-1%q8_M2~-1%(q8_M2~-1%q8_M1~-1)~2 1,
3, <identity ...> 1, [-1, g8_M1~-1 1, [4, q8_M3%q8_M1~-1 1,
-4, q8_M4~-1%q8_M1~-2 1, [2, q8_M3"2%q8_M4~-1%q8_M1~-2],
4, g8_M1~-2 1, [3, q8_M3%q8_M1~-2 1,
-4, g8_M1~-2%q8_M2~-1%q8_M1~-3], [1, <identity ...>],
3, g8_M1%q8_M3~-1 1, [-1, g8_M3~-1 1, [4, <identity ...> 1,
-4, <identity ...> 1, [3, ¢8_.M3 1, [3, <identity ...> 1,
-1, g8_M1~-1 1, [4, q8_M3*q8_M1~-1 1, [-4, q8_M1~-2 1,
3, q8_M3*q8_M1~-2], [1, <identity ...>], [-1, <identity ...>],
4, q8_M3] 1, q8_M1%*q8_M4]

e e B W e W e B s W e B |
N D WEE W

L T s Y s TN s N e IO s Y s B e B |

idrel 17

3.2.2 LoggedRewritingSystemFpGroup

> LoggedRewritingSystemFpGroup (grp) (attribute)

Given a group presentation, the function LoggedRewritingSystemFpGroup determines a logged
rewrite system based on the relators. The initial logged rewrite system associated with a group
presentation consists of two types of rule. These are logged versions of the two types of rule in
the monoid presentation. Corresponding to the j-th relator rel of the group there is a logged rule
[rel, [[j,id]],id]. For each inverse relator there is a logged rule [gen*inv, [], id 1. The
function then attempts a completion of the logged rewrite system. The rules in the final system are
partially ordered by the function ShorterLoggedRule.
Example

gap> lrws := LoggedRewritingSystemFpGroup(g8);;
gap> PrintOneltemPerLine(lrws);

[[g8_M4xq8_M2, [1, <identity ...>],
[q8_M3%q8_M1, [1, <identity ...> 1,
[g8_M2*q8_M4, [], <identity ...>],
[g8_M1*q8_M3, [], <identity ...>],
[g8_M1~2xq8_M4, [[-8, q8_M3~2 1, [5, <identity ...>]], g8_M2 1,
[g8_M1~2%q8_M2, [[8, <identity ...> 1 1, q8_M4],
[g8_M1~3, [[5, <identity ...>] 1, q8_M3 I,
[g8_M4~2, [[-8, <identity ...>] 1, q8_M1-2],
[g8_M4*q8_M3, [[-7, q8_Mi*q8_M2]], q8_M1*q8_M4],
[q8_M4xq8_M1, [[-8, <identity ...> 1, [7, q8_M3] 1, g8_M1%*q8_M2],

[g8_M3%q8_M4,
[[-5, <identity ...> 1, [-6, 98_M3"2], [8, <identity ...>],
[7, @8_M1*q8_M4 1, [-7, <identity ...> 1 1, q8_M1xq8_M2],

[@8_M3~2, [[-5, <identity ...>]], g8_M1-2],

[g8_M3*q8_M2, [[-5, <identity ...> 1, [8, q8_M3] 1, q8_M1%q8_M4 1],
[g8_M2*q8_M3, [[-7, <identity ...> 1], gq8_M1*q8_M2 1],

[g8_M2~2, [[-8, <identity ...> 1, [6, q8.M3°2] 1, q8_M1~2 1,

[g8_M2%q8_M1, [[7, g8_M1 1, [-5, <identity ...> 1, [8, q8_M3] 1,
q8_M1*q8_M4]]

gap> Length(lrws);

16

Consider now the two-generator abelian group 7 considered in the previous chapter (2.2.1). Using
the alternative ordering on the monoid generators, [T_Ml=a", T_M2=a , T_M3=b", T_M4=b"],
we obtain the following set of 8 logged rules. The last of these may be checked as follows:

(bta"(b~a bTat)a b)atht = bta" (b~ (a (bT(aTa)b)a")b")

and is a logged version of the rule b at — ath™.

Example

gap> 1lrusT := LoggedRewritingSystemFpGroup(T);
[[T_M4xT_M3, [], <identity ...>], [T_M3+*T_M4, [], <identity ...
[T_M2¢T_M1, [1, <identity ...>], [T_M1*T_M2, [], <identity ...

vV Vv

—_
-

-

[T_M4*T_M2,
[T_M4*T_M1,
[T_M3*T_M2,
[T_M3*T_M1,

idrel

-5, <identity ...> 1 1, T_M2+T_M4],
5, T_.M2] 1, T_M1%T_M4],

5, T_M4] 1, T_M2xT_M3],

-5, T_M2*T_M4]], T_M1xT_M3]]

18

Chapter 4

Monoid Polynomials

This chapter describes functions to compute with elements of a free noncommutative algebra. The
elements of the algebra are sums of rational multiples of words in a free monoid. These are called
monoid polynomials, and are stored as lists of pairs [coefficient, word].

4.1 Construction of monoid polynomials

4.1.1 MonoidPolyFromCoeffsWords

> MonoidPolyFromCoeffsWords(coeffs, words) (operation)
> MonoidPoly (terms) (operation)
> ZeroMonoidPoly(F) (operation)

There are two ways to input a monoid polynomial: by listing the coefficients and then the words;
or by listing the terms as a list of pairs [coefficient, word]. If a word occurs more than once in
the input list, the coefficients will be added so that the terms of the monoid polynomial recorded do
not contain any duplicates. The zero monoid polynomial is the polynomial with no terms.

Example

gap> rels := RelatorsOfFpGroup(g8);

[£1~4, £2~4, f1*f2*f1*f2~-1, £1~2*f2"2]

gap> freeq8 := FreeGroupOfFpGroup(g8);;

gap> gens := Generators0fGroup(freeq8);;

gap> famfree := ElementsFamily(FamilyObj(freeq8));;
gap> famfree!.monoidPolyFam := MonoidPolyFam;;
gap> cg := [6,7];;

gap> pg := MonoidPolyFromCoeffsWords(cg, gens);;
gap> Print(pg, "\n");

7x£2 + 6%f1

gap> cr := [3,4,-5,-2];;

gap> pr := MonoidPolyFromCoeffsWords(cr, rels);;
gap> Print(pr, "\n");

4xf2~4 - Bxf1xf2xf1+x£f27-1 - 2x£f1°2%£27°2 + 3xf1°4
gap> Print(ZeroMonoidPoly(freeq8), "\n");

zero monpoly

19

idrel 20

4.2 Components of a polynomial

4.2.1 Terms (for monoid polynomials)

> Terms(poly) (attribute)
> Coeffs(poly) (attribute)
> Words(poly) (attribute)
> LeadTerm(poly) (attribute)
> LeadCoeffMonoidPoly(poly) (attribute)

The function Terms returns the terms of a polynomial as a list of pairs of the form [word,
coefficient]. The function Coeffs returns the coefficients of a polynomial as a list, and the func-
tion Words returns the words of a polynomial as a list. The function LeadTerm returns the term of the
polynomial whose word component is the largest with respect to the length-lexicographical ordering.
The function LeadCoeffMonoidPoly returns the coefficient of the leading term of a polynomial.
Example

gap> Coeffs(pr);

[4, -5, -2, 31

gap> Terms(pr);

[[4, £274 1, [-5, fi1xf2*f1xf2~-1 1, [-2, f1~2%xf2~2], [3, f1~4]]
gap> Words(pr);

[£274, f1*f2*f1%f2~-1, £1~2*%f2"2, f1°4]

gap> LeadTerm(pr);

[4, £2~4]
gap> LeadCoeffMonoidPoly(pr);
4

4.2.2 Monic

> Monic (poly) (operation)

A monoid polynomial is called monic if the coefficient of its leading polynomial is one. The
function Monic converts a polynomial into a monic polynomial by dividing all the coefficients by the
leading coefficient.

Example

gap> mpr := Monic(pr);;
gap> Print(mpr, "\n");
£274 - 5/4*f1*£2*f1*%£27-1 - 1/2%£172%f2~2 + 3/4*xf1°4

4.2.3 AddTermMonoidPoly

> AddTermMonoidPoly(poly, coeff, word) (operation)

The function AddTermMonoidPoly adds a new term, given by its coeffiecient and word, to an
existing polynomial.

idrel

Example

21

gap> w := gens[1]-gens[2];

£27-1xf1%£f2

gap> cw := 3/4;;

gap> wpg:= AddTermMonoidPoly(pg, cw, w);;
gap> Print(wpg, "\n");

3/4xf2"-1xf1+f2 + Txf2 + 6*f1

4.3 Monoid Polynomial Operations

Tests for equality and arithmetic operations are performed in the usual way.

The operation polyl = poly2 returns true if the monoid polynomials have the same terms,
and false otherwise. Multiplication of a monoid polynomial (on the left or right) by a coefficient;
the addition or subtraction of two monoid polynomials; multiplication (on the right) of a monoid

polynomial by a word; and multiplication of two monoid polynomials; are all implemented.
Example

gap> [pg = pg, pg = pr 1;

[true, false]

gap> prcw := pr*cw;;

gap> Print(prcw, "\n");

3%f274 - 15/4xf1*f2*f1*£f2°-1 - 3/2*f17°2xf2~2 + 9/4*xf1°4

gap> CWpr := CW*pr;;

gap> Print(cwpr, "\n");

3xf2~4 - 15/4*f1*f2*f1*£2~-1 - 3/2%f1°2xf2~2 + 9/4*xf1~4

gap> [pr = prcw, prcw = cwpr J;

[false, true]

gap> Print(pg + pr, "\n");

4xf274 - Bxf1xf2xf1+£27-1 - 2x£f1°2x£27°2 + 3*xf17°4 + 7x£f2 + 6xf1l
gap> Print(pg - pr, "\n");

- 4x£274 + Bxf1*f2xf1xf27-1 + 2%xf172xf272 - 3xf1°4 + 7*f2 + 6xf1
gap> Print(pg * w, "\n");

6xf1xf27-1xf1%£2 + 7Txf1xf2

gap> Print(pg * pr, "\n");

28*%£f2°5 - 35*(£2+f1)"24f2~-1 - 14*f2xf17°2+f272 + 21xf2xf1~4 + 24xf1xf274 -
30*f172+%£2xf1%f27-1 - 12xf1°3%f272 + 18%f1°5

4.3.1 Length (for monoid polynomials)
> Length(poly)

This function returns the number of distinct terms in the monoid polynomial.

Example

(method)

gap> Length(pr);

idrel 22

The boolean function polyl > poly2 returns true if the first polynomial has more terms than
the second. If the polynomials are the same length it will compare their leading terms. If the leading
word of the first is lengthlexicographically greater than the leading word of the second, or if the words
are equal but the coefficient of the first is greater than the coefficient of the second then true is returned.
If the leading terms are equal then the next terms are compared in the same way. If all terms are the
same then false is returned.

Example

gap> [pr > 3#*pr, pr > pg 1;
[false, true]

4.4 Reduction of a Monoid Polynomial

4.4.1 ReduceMonoidPoly

> ReduceMonoidPoly(poly, rules) (operation)

Recall that the words of a monoid polynomial are elements of a free monoid. Given a rewrite
system (set of rules) on the free monoid the words can be reduced. This allows us to simulate calcula-
tion in monoid rings where the monoid is given by a complete presentation. This function reduces the
words of the polynomial (elements of the free monoid) with respect to the complete rewrite system.
The words of the reduced polynomial are normal forms for the elements of the monoid presented by
that rewite system. The list of rules r2 is displayed in section 2.3.3.

Example

gap> M := genfgmon;;
gap> mpl := MonoidPolyFromCoeffsWords(
> [9,-7,51, [M[11«M[31, M[2]1~3, M[4]1*M[3]*M[2]]);;
gap> Print(mpl, "\n");
5%q8_MAxq8_M3*q8_M2 - T*q8_M2°3 + 9xq8_M1%qS_M3
gap> rmpl := ReduceMonoidPoly(mpl, r2);;
gap> Print(rmpl, "\n");
- T*q8_M4 + 5*q8_M1 + 9*<identity ...>

Chapter 5

Module Polynomials

In this chapter we consider finitely generated modules over the monoid rings considered previously.
We call an element of this module a module polynomial, and we describe functions to construct module
polynomials and the standard algebraic operations for such polynomials.

A module polynomial modpoly is recorded as a list of pairs, [gen, monpoly], where gen is
a module generator (basis element), and monpoly is a monoid polynomial. The module polynomial
is printed as the formal sum of monoid polynomial multiples of the generators. Note that the monoid
polynomials are the coefficients of the module polynomials and appear to the right of the generator, as
we choose to work with right modules.

The examples we are aiming for are the identities among the relators of a finitely presented group
(see section 5.4).

5.1 Construction of module polynomials

5.1.1 ModulePoly (with input gens, polys)

> ModulePoly(gens, monpolys) (operation)
> ModulePoly (args) (operation)
> ZeroModulePoly(Fgens, Fmon) (operation)

The function ModulePoly returns a module polynomial. The terms of the polynomial may be
input as a list of generators followed by a list of monoid polynomials or as one list of [generator,
monoid polynomial] pairs.

Assuming that Fgens is the free group on the module generators and Fmon is the free group on the
monoid generators, the function ZeroModulePoly returns the zero module polynomial, which has no
terms, and is an element of the module.

Example

gap> frq8 := FreeRelatorGroup(g8);;
gap> genfrq8 := Generators0fGroup(frg8);
[q8_R1, q8_R2, q8_R3, q8_R4]
gap> Print(rmpl, "\n"); ## defined in section 4.4.1
- 7*q8_M4 + 5%q8_M1 + 9*<identity ...>
gap> mp2 := MonoidPolyFromCoeffsWords([4,-5], [M[4], M[1] 1);;
gap> Print(mp2, "\n");
4%q8_M4 - 5%q8_M1

23

idrel 24

gap> sl := ModulePoly([genfrq8[4], genfrq8[1] 1, [rmpl, mp2]);
q8_R1%(4%q8_M4 - 5%q8_M1) + q8_R4x(- 7*q8_M4 + 5¥q8_M1 + Ox<identity ...>)
gap> s2 := ModulePoly([genfrq8[3], genfrq8[2], genfrq8[1]],

> [-1*rmpl, 3*mp2, (rmpl+mp2) 1);

q8_R1*(- 3%q8_M4 + 9*<identity ...>) + q8_R2*(12%q8_M4 - 15%xq8_M1) + q8_R3*(
7Tq8_M4 - 5%q8_M1 - 9*<identity ...>)

gap> zeromp := ZeroModulePoly(frq8, freeq8);

zero modpoly

5.2 Components of a module polynomial

5.2.1 Terms (for module polynomials)

>
>
>
>
>

Terms (modpoly) (attribute)
LeadTerm(modpoly) (attribute)
LeadMonoidPoly (modpoly) (attribute)
Length (modpoly) (method)
One (modpoly) (attribute)

The function Terms returns the terms of a module polynomial as a list of pairs. In LeadTerm, the

generators are ordered, and the term of modpoly with the highest value generator is defined to be the
leading term. The monoid polynomial (coefficient) part of the leading term is returned by the function
LeadMonoidPoly.

The function Length counts the number of module generators which occur in modpoly (a gener-

ator occurs in a polynomial if it has nonzero coefficient). The function One returns the identity in the
free group on the generators.

Example

gap> [Length(sl), Length(s2) 1;
[2, 3]
gap> One(sl);
<identity ...>
gap> Terms(sl);
[[q8_R1, 4%q8_M4 - 5%q8_Mi 1,

[98_R4, - 7%q8_M4 + 5*q8_M1 + 9x<identity ...>]]
gap> Print(LeadTerm(s1), "\n");
[98_R4, - 7*q8_M4 + 5%q8_M1 + 9*<identity ...>]

gap> Print(LeadTerm(s2), "\n");

[98_R3, 7*q8_M4 - 5%q8_M1 - 9*<identity ...>]
gap> Print(LeadMonoidPoly(s1), "\n");

- T*q8_M4 + 5*q8_M1 + 9<identity ...>
gap> Print(LeadMonoidPoly(s2), "\n");
7*q8_M4 - 5%q8_M1 - 9*<identity ...>

idrel

5.3 Module Polynomial Operations

5.3.1 AddTermModulePoly

> AddTermModulePoly (modpoly, gen, monpoly)

The function AddTermModulePoly adds a term [gen, monpoly] to a module polynomial

modpoly.

Tests for equality and arithmetic operations are performed in the usual way. Module polynomials
may be added or subtracted. A module polynomial can also be multiplied on the right by a word or
by a scalar. The effect of this is to multiply the monoid polynomial parts of each term by the word or

scalar. This is made clearer in the example.
Example

gap> mp0 := MonoidPolyFromCoeffsWords([6], [M[2] 1);;

gap> Print(mpO, "\n");

6*q8_M2

gap> sO := AddTermModulePoly(sl1, genfrq8[3], mpO);

q8_R1*(4%q8_M4 - 5%q8_M1) + q8_R3*(6%q8_M2) + q8_R4*(- 7+q8_M4 + 5%q8_M1 +
9*<identity ...>)

gap> Print(s1 + s2, "\n");

q8_R1*(q8_M4 - 5xq8_M1 + 9*<identity ...>) + gq8_R2x(12%q8_M4 -

156%q8_M1) + q8_R3*(7*q8_M4 - 5%q8_M1 - 9x<identity ...>) + q8_R4*(-
7*q8_M4 + 5xq8_M1 + 9*<identity ...>)

gap> Print(s1 - sO, "\n");

q8_R3*(- 6%q8_M2)

gap> Print(s1 * 1/2, "\n");

q8_R1%(2%q8_M4 - 5/2%q8_M1) + q8_R4*(- 7/2%q8_M4 + 5/2%q8_M1 + 9/
2%<identity ...>)

gap> Print(s1 * M[1], "\n");

Q8_R1*(4%q8_M4*q8_M1 - 5xq8_M1~2) + q8_R4*(- T*q8_M4*q8_M1 + B*q8_M1~2 +
9%q8_M1)

Chapter 6

Identities Among Relators

The identities among the relators for a finitely presented group G are constructed as logged module
polynomials. The procedure, described in [HWO03] and based on work in [BRS99], is to construct a
full set of group relator sequences for the group; convert these into module polynomials (eliminating
empty sequences); and then apply simplification rules (including the primary identity property) to
eliminate obvious duplicates and conjugates.

When a reduced set of polynomials has been obtained, the relator sequences from which they were
formed are returned as the identities among relators for G.

Here are some of the details when working with the group S3 = (a,b | p = a®,0 = b*,7 = (ab)?).
The monoid presentation has generators {a™,b",a~,b~ } and relators

[1=a"a,2=b"b",3=aa",4=b"b",5=a", 6=0b"%7T=(a"h")?],

and the elements are {id,a™,b*,a",a™b~,b"a"}. The logged rewriting system has relations

ata =id, b'bh = id7 aa"=id, b b" =id,
~[5, id] o, a?=[-5ida*, b*?=[6,idlid, b =[—6,idb"
bta” =[-7,a"b7][6,idla"b", a bT =[-7,a"][6,a b |bTa",

[6
atbtat =1, ld][6,idb*, bratbt =[1,a*)a

To construct the identity monoid relator sequences we follow in turn the relators 5 =p,6 = 0,7 =
7 at each of the elements of S3. For example, applying 7T at a™ gives the cycle:

+_ pt +
a2 a —>b+a+a—>a+b+—>a

Each of these edges has a non-trivial logged rewrite, particularly the third edge where b™a*a®™ —
bTa~ — a*b*. Combining this log information we obtain the sequence:

[5,id].[—7,a+][6,a_b_].[5,id]b7[—7,a+b_][6,id].[6,id]“7
Expanding this gives:
atatat.a b a b aa btatbtbta b bTatatath .bta b a b aath bTht.atbThta

which cancels to leave, as expected, a®™ (atbtatb™)a™ = [7,a”|. Adding the inverse [—7,a"] to the
front of the log expression gives the identity

(~7,a].[5,id].[-7,a*)[6,a b7).[5,67][~7,a*b7[6,id].[6,a7] .

26

idrel 27

Converting this back to the group presentation, and conjugating by a, we obtain the identity group
relator sequence given in the introduction (1.1):

_ _1\a? —1p-1 -1 _1yab!
T lpa (T l)“ o b apb a (T l)a a oo
This is then transformed into the module polynomial

pla™+bta")+o(id+at +a"b")—t(id+a +b"),

where the monoid elements are transformed into their normal forms.

The collection of saturated sets of these module polynomials is then reduced as far as possible,
and the minimal set obtained returned as the IdentityYSequences of the group. The group relator
sequences corresponding to these module polynomials form the IdentitiesAmongRelators for the
group.

6.1 The original approach
This section describes the approach used from the earliest versions of IdRel up to version 2.38 in

2017. For version 2.39 the methods were revised so as to produce some data for infinite groups. This
experimental work is described in later sections.

6.1.1 IdentitiesAmongRelators

> IdentitiesAmongRelators(grp) (attribute)
> IdentityYSequences(grp) (attribute)
> IdentityRelatorSequences(grp) (attribute)

It is not guaranteed that a minimal set of identities is obtained. For g8 a set of seven identities is
returned, whereas a minimal set contains only six. See Example 5.1 of [HWO03] for further details.

Example

gap> gseq8 := IdentityRelatorSequences(g8);;
gap> Length(gseq8);
19
gap> gseq8[1];
[1, 9, [[g8_R1~-1, <identity ...>], [q8_R1, f1~-11 1]
gap> idsq8 := IdentitiesAmongRelators(g8);;
gap> Length(idsq8);
7
gap> Display(idsq8);
[[[g8_R1"-1, <identity ...> 1, [g8_R1, f1~-1 1 1,
[[g8_R2°-1, <identity ...> 1, [q8_R4~-1, £2°-1 1, [q8_R2, f1~-2%f2"-1 1,
[g8_R4, f2°-11 1,
[[g8_R1~-1, <identity ...> 1, [q8_R4~-1, £2~-1 1, [g8_R3, f1~-1%f2~-1 1,
[@8_R3, f2°-1 1, [98_R3, f1*xf2~-1], [g8_R1~-1, f2°-1 1],
[q8_R3, f1~-2*%f2~-1 1, [q8_R4, f2~-1 1 1,
[[g8_R3~-1, <identity ...> 1, [q8_R4~-1, £2~-1 1, [q8_R3, f1~-1%f2~-1],
[g8_R4, fixf2~-1 1] 1],
[[g8_R4~-1, <identity ...> 1, [q8_R4~-1, £2~-1 1, [g8_R3, f1~-1%f2~-1 1,

idrel 28

[g8_R3, f2°-1 1, [q8_R4~-1, f2~-1 1, [g8_R2, f1~-2%f2"-11],
[g8_R4, f2°-1] 1],
[[98_R4"-1, <idemntity ...> 1, [g8_R3, f1xf2], [g8_R1~-1, f2 1],
[8_R3, f1~-2%f2], [q8_R4, f2 1] 1],
[[98_R4"-1, <identity ...>], [g8_R4~-1, f1~-2 1, [g8_R2, f1~-4 1],
[g8_R1, f1~-1 1 11
gap> idyseq8 := IdentityYSequences(g8);
[(g8_Y1*(-q8_M1), g8_R1*(g8_M1 - <identity ...>)),
(g8_Y5*(<identity ...>), q8_R2x(g8_M2 - <identity ...>)),
(g8_Y18*(g8_M2), q8_R1*(-q8_M2 - <idemntity ...>) + g8_R3*(q8_M1"2 + g8_M\
3 + g8_M1 + <identity ...>)),
(g8_Y8+(gq8_M2), g8_R3*(q8_M3 - q8_M2) + q8_R4x(g8_M1 - <identity ...>))

(q8_Y17*(-q8_M2), g8_R2x(-q8_M1"2) + g8_R3*(-q8_M3 - <identity ...>) + g\
8_R4x(g8_M2 + <identity ...>)),
(g8_Y11%(<identity ...>), q8_R1*(-q8_M2) + q8_R3*(q8_M1¥q8_M2 + q8_M4) +\
q8_R4*(q8_M2 - <identity ...>)),
(98_Y10*(-g8_M1), g8_R1*(-<identity ...>) + q8_R2*(-q8_M1) + g8_R4x*(q8_\
M3 + g8_M1))]

6.1.2 Rootldentities

> RootIdentities(grp) (attribute)

The root identities are identities of the form rr~! where r = w" is a relator and n > 1. (For
equivalent forms invert, or permute the factors cyclically, or act with w™!.)

For g8 only two of the four relators are proper powers, & = a* and p = b*, so the root identities are
mew~ and p?p~'. In the listing below the second of these is displayed as p~1(E~1)0" pa b7 g0
where & = a?b?. Because the second term is the inverse of the fourth, we may convert the final three
terms into a conjugate of the third, so that the identity is equivalent to p~!p?:

(pafzbfl) éhil

(pa2b1>b(a2b2)bl _ pb.

Example

gap> RootIdentities(g8);
[[[9g8_R1~-1, <identity ...> 1, [g8_R1, f1~-11 1,
[[g8_R2°-1, <identity ...>], [q8_R4~-1, £2°-1], [q8_R2, f1~-2xf2~-1],
[g8_R4, f2°-11 11
gap> RootIdentities(s3);
[[[s3_R1"-1, <identity ...> 1, [s3_R1, f1~-1 1 1,
[[s3_R2"-1, <identity ...>], [s3_R2, f2 1 1,
[[s3_R3"-1, <identity ...>], [s3_R3, f1xf2]]]

idrel 29

6.2 Knuth-Bendix identities

Given an initial set of rules, the logged Knuth-Bendix procedure considers overlaps between pairs of

logged rules /1 = Liry and I, = Lrry. In the case u;l; = lpv, for some words u;,v,, the critical pair

resulting from the overlap is (u;r1,72v2). Logged reduction is then applied to these two words giving
1

uyry = Myzy and rpvy = Mbzp, say. Then, if z; > z;, the additional rule z; = (MI’IL1 " LyM>)z; is

added. There is a similar formula when zo > z;.

6.2.1 IdentitiesAmongRelatorsKB

> IdentitiesAmongRelatorsKB(grp) (attribute)
> IdentityYSequencesKB(grp) (attribute)
> IdentityRelatorSequencesKB(grp) (attribute)

The third possibility is that z; = z;, and in this case there is no reduction rule to be added. However

the log expression M, lLl_M1 leMz must reduce to the identity, and so is an identity relator sequence.
Since version 2.41 of this package, the function LoggedRewritingSystemFpGroup returns two lists:
a complete set of reduction rules, and a set of identity relator sequences produced in this way. In the
case of the quaternion group g8 a total of 42 sequences are produced by logged Knuth-Bendix, and
these are then reduced to 8 identities.

Example

gap> gseqKB8 := IdentityRelatorSequencesKB(g8);;
gap> Length(last) ;
42
gap> idrelsKB8 := IdentitiesAmongRelatorsKB(g8);;
gap> Display(idrelsKB8);
[[[g8_R1~-1, <identity ...> 1, [q8_R1, f1~-1 11,
[[g8_R3~-1, f1~-1 1, [q8_R3~-1, £f1~-2 1, [q8_R1, <identity ...> 1,
[g8_R3~-1, f1 1, [g8_R1, f2°-1], [g8_R3"-1, <identity ...> 1] 1],
[[g8_R3, f1xf2], [q8_R4"-1, <identity ...> 1, [q8_R3"-1, f1~-2 1],
[g8_R4, f1~-1 11,
[[q8_R2~-1, f1~-3 1, [q8_R4, f1~-1 1, [q8_R3, <identity ...> 1,
[g8_R3"-1, f1xf2~-1], [q8_R4"-1, <identity ...>], [gq8_R2, f1~-2]]
, [[g8_R4~-1, £2 1, [q8_R2, f1~-2%f2], [g8_R4~-1, <idemntity ...>],
[g8_R3, f1~-1 1, [g8_R3, <identity ...> 1 1,
[[g8_R4"-1, <identity ...> 1, [g8_R3"-1, f1~-2 1,
[g8_R1, <identity ...> 1, [g8_R3~-1, f1 1, [q8_R4, f2~-1 1 1,
[[g8_R4~-1, <identity ...>], [g8_R4~-1, f1~-2 1, [g8_R2, f1~-4],
[98_R1, <identity ...> 1 1,
[[g8_R4, f1~-1 1, [q8_R3, f1x£f2 1, [q8_R1~-1, £2 1,
[g8_R2~-1, f1~-2xf2 1, [q8_R4, f2 1, [g8_R3, f1 1, [q8_R3~-1, £2 1],
[g8_R4~-1, <identity ...>], [q8_R3, f1~-1 1, [q8_R4~-1, f1~-1],
[g8_R2, f1~-3 1 11

idrel 30

6.3 Partial lists of elements

As we have seen, the procedure for obtaining identities involves applying each relator at each element
of the group. Since this will not terminate when the group is infinite, we include an operation to
construct words up to a given length in the monoid representation of the group.

6.3.1 PartialElementsOfMonoidRepresentation

> PartialElementsOfMonoidRepresentation(G, len) (operation)

As an example we take the group (u,v,w | u?,v?,w?, (uv)?, (vw)?).
Example

gap> F := FreeGroup(3);;

gap> u := F.1;; v :=F.2;; w :=F.3;;

gap> rels := [u~3, v~2, w2, (uxv)~2, (v¥w)~2];;

gap> q0 := F/rels;;

gap> SetArrangementOfMonoidGenerators(q0, [1,-1,2,-2,3,-3]);

gap> SetName(g0, "qO0");

gap> monq0 := MonoidPresentationFpGroup(q0);

monoid presentation with group relators

[q0_M1"3, g0_M3"2, q0_M5-2, (q0_M1%q0_M3)~2, (q0_M3*q0_M5)~2]

gap> lrws := LoggedRewritingSystemFpGroup(q0);;

gap> PartialElementsOfMonoidPresentation(g0, 1);

[<identity ...>, qO_M1, qO_M2, q0_M3, qO_M5]

gap> PartialElementsOfMonoidPresentation(q0, 2);

[<identity ...>, q0_M1, qO_M2, qO_M3, qO_M5, qO_M1xq0_M3, qO0_M1%qO_M5,
q0_M2*q0_M3, q0_M2*q0_M5, qO_M3*q0_M5, qO_M5%q0_M1, qO_M5%q0_M2]

6.4 Identities for infinite groups

Because the list of elements is incomplete, it is not guaranteed that the list of identities is complete.
Example

gap> idsq0 := IdentitiesAmongRelators(q0);
[[[g0_R1~-1, <identity ...> 1, [qO_R1, f1~-1 1 1,
[[g0_R2"-1, <identity ...> 1, [qO_R2, £2 1 1,
[qO_R3~-1, <identity ...> 1, [qO_R3, £3 1 1,
[Q0_R4~-1, <identity ...>], [q0_R2~-1, fi1~-1], [qO_R4, fi1xf2],
[gO_R2, fi1xf2] 1,
[[Q0_R5~-1, <identity ...>], [q0_R3~-1, £2~-1 1, [qO_R5, £2*£3],
[qQO_R3, f2%£f3 1 1,
[[q0_R1~-1, <identity ...>], [qO_R2~-1, f1~-1 1, [qO_R4, f1xf2],
[QO_R2~-1, f1~-1%f2~-1xf1*f2 1, [qO_R4, f1~2%f2 1, [qO_R1~-1, £2 1,
[q0_R2~-1, f1~-1%f2~-1%f1~-1%xf2], [qO_R4, f2 1 1],
[[90_R2"~-1, <identity ...>], [qO0_R3~-1, £2~-1], [qO_R5, £2x%f3],
[O_R2~-1, £3 1, [qO_R3~-1, £2~-1%f3~-1%f2~-1%£f3 1, [qO_R5, £3 1 1]

C
L

References

[BHS2]

[BRS99]

[GH17]

[Hey99]

[Hor14]

[HWO03]

[LN17]

R. Brown and J. Huebschumann. Identities among relations. In R. Brown and T. L. Thick-
stun, editors, Low-Dimensional Topology, volume 46 of London Math. Soc. Lecture Note
Series, page 153-202. Cambridge University Press, 1982. 4

R. Brown and A. Razak Salleh. On the computation of identities among relations and of
free crossed resolutions of groups. London Math. Soc. J. Comput. Math., 2:28-61, 1999. 4,
26

S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code (Ver-
sion 2017.09.15), 2017. GAP package, https://github.com/gap-packages/AutoDoc.
2

A. Heyworth. Applications of Rewriting Systems and Groebner Bases to Computing Kan
Extensions and Identities Among Relations. PhD thesis, University of Wales, Bangor, 1999.
http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz. 4

M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within
GAP packages (Version 0.1), 2014. GAP package, https://github.com/fingolfin/
GitHubPagesForGAP/. 2

A. Heyworth and C. D. Wensley. Logged rewriting and identities among relators. In C. M.
Campbell, E. F. Robertson, and G. C. Smith, editors, Groups St Andrews 2001 in Oxford,
volume 304 of London Math. Soc. Lecture Note Series, page 256-276. Cambridge Univer-
sity Press, 2003. 4, 26, 27

F. Liibeck and M. Neunhoffer. GAPDoc (version 1.6). RWTH Aachen, 2017. GAP package,
http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/index.html. 2

31

https://github.com/gap-packages/AutoDoc
http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz
https://github.com/fingolfin/GitHubPagesForGAP/
https://github.com/fingolfin/GitHubPagesForGAP/
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html

Index

=,+,* for module polynomials, 25
=,+,* for monoid polynomials, 21

AddTermModulePoly, 25
AddTermMonoidPoly, 20
ArrangementOfMonoidGenerators, 7

Coeffs, 20
Elements0fMonoidPresentation, 12

FreeGroupOfPresentation, 8
FreeRelatorGroup, 7
FreeRelatorHomomorphism, 7

GroupRelatorsOfPresentation, 8
HomomorphismOfPresentation, 8

IdentitiesAmongRelators, 27
IdentitiesAmongRelatorsKB, 29
IdentityRelatorSequences, 27
IdentityRelatorSequencesKB, 29
IdentityYSequences, 27
IdentityYSequenceskB, 29
InverseRelatorsOfPresentation, 8

KnuthBendix, 10

LeadCoeffMonoidPoly, 20
LeadMonoidPoly, 24
LeadTerm

for module polynomials, 24

for monoid polynomials, 20
Length

for module polynomials, 24

for monoid polynomials, 21
LoggedKnuthBendix, 14
LoggedOnePassKB, 13
LoggedOnePassReduceWord, 15
LoggedReduceWordKB, 15

LoggedRewriteReduce, 14
LoggedRewritingSystemFpGroup, 17

ModulePoly
with input [gen,poly] list, 23
with input gens, polys, 23
Monic, 20
MonoidPoly, 19
MonoidPolyFromCoeffsWords, 19
MonoidPresentationFpGroup, 7

One, 24
OnePassKB, 10
OnePassReduceWord, 10

PartialElementsOfMonoidRepresentation,

30

ReduceMonoidPoly, 22
ReduceWordKB, 10
RewriteReduce, 10
RewritingSystemFpGroup, 8
RootIdentities, 28

ShorterLoggedRule, 15
ShorterRule, 10

Terms
for module polynomials, 24
for monoid polynomials, 20

Words, 20

ZeroModulePoly, 23
ZeroMonoidPoly, 19

32

	Introduction
	An illustrative example

	Rewriting Systems
	Monoid Presentations of FpGroups
	Rewriting systems for FpGroups
	Enumerating elements

	Logged Rewriting Systems
	Logged Knuth-Bendix Completion
	Logged reduction of a word

	Monoid Polynomials
	Construction of monoid polynomials
	Components of a polynomial
	Monoid Polynomial Operations
	Reduction of a Monoid Polynomial

	Module Polynomials
	Construction of module polynomials
	Components of a module polynomial
	Module Polynomial Operations

	Identities Among Relators
	The original approach
	Knuth-Bendix identities
	Partial lists of elements
	Identities for infinite groups

	References
	Index

