fontsize3638selectfontGAP - Reference Manual

Release 4.10.0, 01-Nov-2018

The GAP Group

The GAP Group Email: support@gap-system.org
Homepage: https://www.gap-system.org

mailto://support@gap-system.org
https://www.gap-system.org

GAP - Reference Manual 2

Copyright

Copyright © (1987-2018) for the core part of the GAP system by the GAP Group.

Most parts of this distribution, including the core part of the GAP system are distributed under the terms of
the GNU General Public License, see http://www.gnu.org/licenses/gpl.html or the file GPL in the etc
directory of the GAP installation.

More detailed information about copyright and licenses of parts of this distribution can be found in Section
1.4 of this manual.

GAP is developed over a long time and has many authors and contributors. More detailed information can

be found in Section 1.2 of this manual.

http://www.gnu.org/licenses/gpl.html

Contents

1 Preface 23
1.1 The GAP System 23
1.2 Authors and Maintainers e e e e e e e 25
1.3 Acknowledgements 26
1.4 Copyrightand License i 26
1.5 Further Information about GAP 27
2 The Help System 28
2.1 InvokingtheHelp 28
2.2 Browsing through the Sections oL 28
2.3 Changingthe Help Viewer. 29
24 ThePager Command 31
3 Running GAP 33
3.1 Command Line Options v it 33
3.2 Thegap.iniand gaprcfiles. 38
3.3 Saving and Loading a Workspace 41
3.4 Testing for the System Architecture 42
3.5 Global Values that Control the GAP Session 42
3.6 Coloring the PromptandInput 42
4 The Programming Language 45
4.1 Language Overview oo e e 45
42 Lexical Structure 46
43 Symbols 46
4.4 WhItespaces o v v i e e e e e e 47
4.5 Keywords e 48
4.6 Identifiers e e 48
477 EXPressions i e e e e e e e e e e e e 49
4.8 Variables L e 50
4.9 More About Global Variables 51
4.10 Namespaces for GAP packages L. 55
411 FunctionCalls e 55
412 CompariSONS v v vt e e e e e e e e e e e e e e e 57
4.13 Arithmetic Operators v i e e e e e 58
414 Statements e e e e e e e e e e 59

GAP - Reference Manual
415 ASSIZNMENLSo e e e e e e e e e e e e
416 Procedure Calls e
407 IE . e
418 While.
4.19 Repeat e e e e
420 FOor o . e e
421 Break e e e
422 ContinuUe v v vt e e e e e e e e e e e e e e e e e e
423 Function e e e e e
424 Return (With or without Value)
Functions
5.1 Information abouta function
5.2 Calling a function with a list argument that is interpreted as several arguments . . .
5.3 Wrapping a function, so the values produced are cached
54 Functionsthatdonothing
5.5 FunctionTypes« e
5.6 Naming Conventions v v v v v v it e e e
Main Loop and Break Loop
6.1 MainLoop
6.2 Special Rules for InputLines
6.3 ViewandPrint
6.4 BreakLoops e
6.5 Variable AccessinaBreakLoop
6.6 Errorand ErrorCount
6.7 Leaving GAP e
6.8 LineEditing L
6.9 Editing using the readlinelibrary
6.10 EditingFiles L
6.11 Editor Support e
6.12 Changing the Screen Size
6.13 TeachingMode
Debugging and Profiling Facilities
7.1 Recovery from NoMethodFound-Errors
7.2 Inspecting Applicable Methods
7.3 TracingMethods
7.4 InfoFunctions e
7.5 ASSEIHONS e e e e
7.6 Timing e e e
7.7 Tracking Memory Usage i
7.8 Profiling
7.9 Information about the versionused
7.10 TestFiles e e e
7.11 Debugging Recursion
7.12 Global Memory Information oL oo

60
61
61
62
63
63
65
66
66
70

71
71
74
75
76
77
78

80
80
82
82
86
91
92
93
94
97
100
100
101
101

8

10

11

12

13

GAP - Reference Manual
Options Stack
8.1 Functions Dealing with the Options Stack
8.2 Options Stack —anExample
Files and Filenames
9.1 Portability
9.2 GAPRootDirectories
9.3 Directorieso e
94 FileNames
9.5 Special Filenames
9.6 FileAccess. e
9.7 FileOperations.
Streams
10.1 Categories for Streams and the StreamsFamily
10.2 Operations applicable to All Streams
10.3 Operations for Input Streams
10.4 Operations for Output Streams
10.5 FileStreams L
10.6 UserStreams« .ot v i i
10.7 String Streams oL oL
10.8 Input-Output Streams
109 Dummy Streams
10.10 Handling of Streams in the Background
10.11 Commaseparatedfiles,
Processes
11.1 ProcessandExec
Objects and Elements
12.1 Objects v oo
12.2 Elements as equivalence classes
123 Sets. . . . o e
124 Domains o i e e e e e
12.5 Identical Objects i
12.6 Mutability and Copyability
127 Duplicationof Objects
12.8 Other Operations Applicable to any Object
Types of Objects
13.1 Families e
132 Filters
13.3 Categorieso e e
13.4 Representation
13.5 Attributes
13.6 Setter and Tester for Attributes

137 Properties

129
129
131

132
132
132
133
135
136
136
137

141
141
143
143
146
149
150
150
151
153
153
154

155
155

158
158
158
159
159
159
161
163
164

14

15

16

17

18

19

GAP - Reference Manual
13.8 OtherFilters
139 TYPES . . o o o e e e e e e
Integers
14.1 Integers: Global Variables
14.2 Elementary Operations for Integers
14.3 Quotients and Remainders
14.4 Prime Integers and Factorization,
145 ResidueClassRings
14.6 Check Digits e
147 Random Sources e e
14.8 Bitfields e
Number Theory
15.1 InfoNumtheor (Info Class)
152 PrimeResidues
15.3 Primitive Roots and Discrete Logarithms
154 Roots Modulo Integers
15.5 Multiplicative Arithmetic Functions
15.6 Continued Fractions L
1577 Miscellaneous L e e
Combinatorics
16.1 Combinatorial Numbers
16.2 Combinations, Arrangements and Tuples
16.3 Fibonacci and Lucas Sequences
164 Permanentof aMatriX e e
Rational Numbers
17.1 Rationals: Global Variables
17.2 Elementary Operations for Rationals
Cyclotomic Numbers
18.1 Operations for Cyclotomics o i
18.2 Infinity and negative Infinity oo oo
18.3 Comparisons of Cyclotomics o
18.4 ATLAS Irrationalities e
18.5 Galois Conjugacy of Cyclotomics,
18.6 Internally Represented Cyclotomics
Floats
19.1 Asamplerun. e
19.2 Methods e
19.3 High-precision-specific methods
19.4 Complex arithmetic

19.5 Imterval-specificmethods,

177
178

179
179
180
183
186
191
193
194
197

199
199
199
201
202
205
206
207

209
209
212
221
222

224
224
225

227
227
232
233
233
236
239

GAP - Reference Manual
20 Booleans
20.1 IsBool (Filter) e
20.2 Fail (Variable) e
20.3 Comparisonsof Booleans L oL
20.4 Operations forBooleans
21 Lists
21.1 ListCategories o o i i e e e e e
21.2 Basic Operations for Lists
21.3 ListElements e
21.4 List ASSignment e e e e e e e e
21.5 IsBound and Unbind for Lists
21.6 Identical Lists e
217 Duplication of Lists e
21.8 Membership Test for Lists
21.9 Enlarging Internally Represented Lists
21.10 Comparisons of Lists
21.11 Arithmetic for Lists o L e
21.12 Filters Controlling the Arithmetic Behaviourof Lists
21.13 Additive Arithmetic for Lists oL o
21.14 Multiplicative Arithmetic for Lists
21.15 Mutability Status and List Arithmetic
21.16 Finding Positionsin Lists Lo
21.17 Properties and Attributes for Lists L.
21.18 Sorting Lists L e e e
21.19 Sorted Listsand Sets
21.20 Operations for Lists e
21.21 Advanced List Manipulations
21.22 RaNZES . . . o o o e e e e e
21.23 Enumeratorso e e e e e e e e e e e
22 Boolean Lists
22.1 IsBlist (Filter) e
22.2 Boolean Lists Representing Subsets 0.
22.3 SetOperations viaBoolean Lists
22.4 Function that Modify Boolean Lists
22.5 Moreabout Boolean Lists L o
23 Row Vectors
23.1 IsRowVector (Filter) e
23.2 Operators for Row Vectors Lo
23.3 Row Vectors over Finite Fields
23.4 Coefficient List Arithmetic
23.5 Shifting and Trimming Coefficient Lists
23.6 Functions for Coding Theory
23.7 Vectors as coefficients of polynomials

250
250
250
251
251

254
254
256
257
258
262
263
265
266
266
267
268
269
271
272
275
277
281
283
286
289
299
300
303

304
304
305
306
307
308

GAP - Reference Manual

24 Matrices

25

26

27

24.1 InfoMatrix (Info Class) e
242 Categories of Matrices Lo
243 Operators for Matrices o
24.4 Properties and Attributes of Matrices
24.5 Matrix ConstrucCtions i e e e e e e e e e e e e e
24.6 Random Matrices L e
2477 Matrices Representing Linear Equations and the Gaussian Algorithm
24.8 Eigenvectors and eigenvalues
249 Elementary Divisors e
24.10 Echelonized Matrices i
24.11 Matrices as BasisofaRow Spaceo,
24.12 Triangular Matrices i e e e e
24.13 Matrices as Linear Mappings o e
24.14 Matrices over Finite Fields,
24.15 Inverse and Nullspace of an Integer Matrix Moduloan Ideal
24.16 Special Multiplication Algorithms for Matrices over GF(2)
2417 Block Matrices« . o i e e
Integral matrices and lattices

25.1 Linear equations over the integers and Integral Matrices
25.2 Normal Forms over the Integers
25.3 Determinant of an integer matrixo
254 DecompoSitions i i e e e e e e e e e
25.5 Lattice Reduction
25.6 Orthogonal Embeddings
Vector and Matrix Objects

26.1 Fundamental IdeasandRules oL
26.2 Categories of Vectors and Matrices
26.3 Constructing Vector and Matrix Objects
26.4 Operations for Vector Objects
26.5 Operations for Row List Matrix Objects
26.6 Operations for Flat Matrix Objects,
Strings and Characters

27.1 IsCharandIsString
27.2 Special Characters e e e e e
27.3 Triple Quoted Strings L. e e e
27.4 Internally Represented Strings
27.5 Recognizing Characters
27.6 Comparisons of Strings
27.7 Operations to Produce or Manipulate Strings
27.8 Character Conversionttt
27.9 Operations to Evaluate Strings L o
27.10 Calendar Arithmetic
27.11 Obtaining LaTeX Representations of Objects

320
320
320
322
324
326
329
330
332
333
335
336
338
338
340
343
344
344

346
346
348
351
351
353
355

357
357
358
358
358
360
360

28

29

30

31

GAP - Reference Manual

Dictionaries and General Hash Tables

28.1 Using Dictionaries e e e e
282 Dictionaries e e e e e e e e
28.3 Dictionaries via Binary Lists oL oo
284 GeneralHashTables
285 Hashkeys e
28.6 Densehashtables
2877 Sparse hashtables
Records

29.1 IsRecordand RecNames
29.2 Accessing RecordElements o o
29.3 Record Assignment e e e
29.4 Identical Records
29.5 Comparisonsof Records L
29.6 IsBound and Unbind forRecords
29.7 Record Access Operations e
Collections

30.1 IsCollection (Filter) e
30.2 Collection Families
303 Listsand Collections e
30.4 Attributes and Properties for Collections
30.5 Operations for Collections
30.6 Membership Test for Collections,
30.7 Random Elements L
30.8 Iterators L e e e e e
Domains and their Elements

31.1 Operational Structure of Domains
31.2 Equality and Comparison of Domains
31.3 Constructing Domains
31.4 Changing the Structure
31.5 Changing the Representation
31.6 Domain Categories e e e e e e
317 Parents e e e
31.8 Constructing Subdomains
31.9 Operations forDomains
31.10 Attributes and Properties of Elements
31.11 Comparison Operations for Elements
31.12 Arithmetic Operations for Elements
31.13 Relations Between Domains Lo
31.14 Useful Categories of Elements

31.15 Useful Categories for all ElementsofaFamily

382
382
384
384
385
386
386
386

388
388
389
390
390
392
393
394

396
396
396
397
403
405
407
408
409

32

33

34

35

36

GAP - Reference Manual

Mappings

32.1 IsDirectProductElement (Filter)
322 Creating Mappingso e e e e e e e
32.3 Properties and Attributes of (General) Mappings
32.4 Imagesunder Mappings v i it e e e e e e e e
32.5 Preimages under Mappings Lo
32.6 Arithmetic Operations for General Mappings
327 Mappings which are Compatible with Algebraic Structures
32.8 Magma Homomorphisms
32.9 Mappings that Respect Multiplication
32.10 Mappings that Respect Addition
32.11 Linear Mappings o o i i e e e e e e
32.12 Ring Homomorphisms
32.13 General Mappings e e e e e e
32.14 Technical Matters Concerning General Mappings

Relations

33.1 General Binary Relations
33.2 Properties and Attributes of Binary Relations
33.3 Binary Relationson Points
33.4 Closure Operations and Other Constructors
33.5 Equivalence Relations
33.6 Attributes of and Operations on Equivalence Relations
33.7 Equivalence Classes o i e e e

Orderings

34.1 IsOrdering (Filter) e e e e e
342 Building new orderings Lo
34.3 Properties and basic functionality
34.4 Orderings on families of associative words

Magmas

35.1 Magma Categories o u e e e e e e e e e e e e e
352 Magma Generation u e e e e e e e e e e
35.3 Magmas Defined by Multiplication Tables
35.4 Attributes and Properties for Magmas Lo

Words

36.1 Categories of Words and Nonassociative Words
36.2 Comparisonof Words
36.3 Operations for Words L
36.4 FreeMagmas e e e
36.5 External Representation for Nonassociative Words

10

435
435
436
439
440
442
444
444
445
445
447
448
449
450
450

453
453
454
456
457
458
460
460

462
462
462
463
464

469
469
470
473
475

GAP - Reference Manual

37 Associative Words

38

39

37.1
37.2
37.3
374
37.5
37.6
37.7
37.8
37.9

Categories of Associative Words
Free Groups, Monoids and Semigroups
Comparison of Associative Words oo
Operations for Associative Words
Operations for Associative Words by their Syllables
Representations for Associative Words
The External Representation for Associative Words
Straight Line Programs
Straight Line Program Elements,

Rewriting Systems

38.1
38.2
38.3
38.4
38.5

Operations on rewriting SyStems v v vttt
Operations on elements of the algebra.
Properties of rewriting systems Lo Lo
Rewriting in Groups and Monoids,
Developing rewriting Systems oo e

Groups

39.1
39.2
39.3
39.4
39.5
39.6
39.7
39.8
39.9
39.10
39.11
39.12
39.13
39.14
39.15
39.16
39.17
39.18
39.19
39.20
39.21
39.22
39.23
39.24
39.25
39.26

Group Elements
Creating Groups o v v i it e e e e e e e
Subgroups e e e
Closures of (Sub)groups
Expressing Group Elements as Words in Generators
Structure Descriptions L. e e e e
COSBLS . . o o o
Transversals L
Double Cosets e
Conjugacy CIasses o v v i i e e e e e e e
Normal Structure o e
Specific and Parametrized Subgroups
Sylow Subgroups and Hall Subgroups
Subgroups characterized by prime powers
Group Properties L
Numerical Group Attributes
Subgroup Series e e e
Factor Groups e
Sets of Subgroups e
Subgroup Lattice
Specific Methods for Subgroup Lattice Computations
Special Generating Sets
I1-Cohomology e
Schur Covers and Multipliers L
Tests for the Availability of Methods
Specific functions for Normalizer calculation

11

485
485
486
487
488
491
492
494
494
500

502
502
504
505
505
506

40

41

42

43

GAP - Reference Manual

Group Homomorphisms

40.1 Creating Group Homomorphisms
40.2 Operations for Group Homomorphisms
40.3 Efficiency of Homomorphismso
40.4 Homomorphism for very large groups
40.5 Nice Monomorphisms oL e
40.6 Group Automorphisms e e
40.7 Groups of Automorphisms
40.8 Calculating with Group Automorphisms
40.9 Searching for Homomorphisms o oo
40.10 Representations for Group Homomorphisms
Group Actions

41.1 About Group ACHONS« v v v vt e e e e e e e e e e e
412 BasiCACHONS e e
41.3 Action on canonical representatives oo e
41.4 Orbits o o e e
41.5 Stabilizers e
41.6 Elements with Prescribed Images
41.7 The Permutation Image of an Action
41.8 Actionofagrouponitself oo
41.9 Permutations Induced by Elements and Cycles
41.10 Testsfor Actions L e e e e e e e
41.11 Block Systems L e e e
41.12 External Sets L e e
Permutations

42.1 IsPerm (Filter) e
42.2 Comparison of Permutations
42.3 Moved Points of Permutations Lo
424 Signand Cycle Structure e
42.5 Creating Permutations L Lo
Permutation Groups

43.1 IsPermGroup (Filter)
432 The Natural Action e
43.3 Computing a Permutation Representation
434 Symmetric and Alternating Groupso
43.5 Primitive Groups e e e
43.6 Stabilizer Chains
43.7 Randomized Methods for Permutation Groups
43.8 Construction of Stabilizer Chains L.
439 Stabilizer ChainRecords oL o
43.10 Operations for Stabilizer Chains
43.11 Low Level Routines to Modify and Create Stabilizer Chains
43.12 Backtrack L.

43.13 Working with large degree permutation groups

12

570
570
573
574
575
576
577
579
580
581
584

587
587
588
592
592
594
596
596
598
599
601
603
604

610
610
612
612
614
614

44

45

46

47

GAP - Reference Manual

Matrix Groups

44.1 IsMatrixGroup (Filter)
44.2 Attributes and Properties for Matrix Groups oL
443 Actions of Matrix Groups oL
444 GLandSL
44.5 Invariant Forms
44.6 Matrix Groups in CharacteristicO
447 Acting OnRightand OnLeft

Polycyclic Groups

45.1 Polycyclic Generating Systemso
452 ComputingaPecgs
45.3 Defining a Pcgs Yourself
454 Elementary Operations foraPcgs L.
45.5 Elementary Operations for a Pcgs and an Element
45.6 Exponents of Special Products
45.7 Subgroups of Polycyclic Groups - Induced Pcgs
45.8 Subgroups of Polycyclic Groups — Canonical Pcgs
45.9 Factor Groups of Polycyclic Groups —ModuloPcgs
45.10 Factor Groups of Polycyclic Groups in their Own Representation
45.11 Pcgs and Normal Series Lo
45.12 Sum and Intersectionof Pcgs
45.13 Special Pcgs
45.14 Action on Subfactors DefinedbyaPcgs
45.15 Orbit Stabilizer Methods for Polycyclic Groups
45.16 Operations which have Special Methods for Groups with Pcgs
45.17 Conjugacy Classes in Solvable Groups

Pc Groups

46.1 Thefamily pcgs L.
46.2 Elements of pc groups e e e
46.3 Pcgroups versus fpgroups oL
46.4 Constructing Pc Groups
46.5 Computing PcGroups e
46.6 SavingaPcGroup
46.7 Operations for Pc Groups L
46.8 2-Cohomology and Extensions
46.9 CodingaPcPresentation
46.10 Random Isomorphism Testing

Finitely Presented Groups

47.1 IsSubgroupFpGroup and IsFpGroup
47.2 Creating Finitely Presented Groups
47.3 Comparison of Elements of Finitely Presented Groups
474 Preimagesinthe Free Group
47.5 Operations for Finitely Presented Groups
47.6 Coset Tables and Coset Enumeration

13

636
636
637
638
638
640
641
644

645
645
646
647
647
648
650
651
653
654
656
657
661
662
664
666
666
666

668
669
670
670
671
674
675
675
675
679
680

48

49

50

51

GAP - Reference Manual

47.7 Standardization of cosettables oL oL oL
47.8 Coset tables for subgroups in the whole group
47.9 Augmented Coset Tables and Rewriting
47.10 Low Index Subgroups
47.11 Converting Groups to Finitely Presented Groups
47.12 New Presentations and Presentations for Subgroups
47.13 Preimages under Homomorphisms from an FpGroup
47.14 Quotient Methods
47.15 Abelian Invariants for Subgroups Lo
47.16 Testing Finiteness of Finitely Presented Groups

Presentations and Tietze Transformations

48.1 Creating Presentations
48.2 Subgroup Presentations Lo
48.3 RelatorsinaPresentation L L o
48.4 Printing Presentations e e e
48.5 Changing Presentations L. L
48.6 Tietze Transformationso
48.7 Elementary Tietze Transformations
48.8 Tietze Transformations that introduce new Generators
48.9 Tracing generator images through Tietze transformations
48.10 The Decoding Tree Procedure
48.11 Tietze Options o v v v v e i e e e e e e e e e e

Group Products

49.1 DirectProducts e e
49.2 Semidirect Products
493 Subdirect Products
494 Wreath Products e
495 FreeProducts
49.6 Embeddings and Projections for Group Products

Group Libraries

50.1 BasicGroups. o e e e e
50.2 Classical Groups v v v i e e e e e
50.3 Conjugacy Classes in Classical Groups
50.4 Constructors for Basic Groupso
50.5 Selection Functions L
50.6 Finite Perfect Groups
50.7 Irreducible Maximal Finite Integral Matrix Groups

Semigroups and Monoids

ST.T Semigroups oL e e e e e e e
512 Monoids
51.3 Inverse semigroups and monoids
51.4 Properties of Semigroups
51.5 Ideals of semigroups L. e e e e

14

691
693
693
694
695
698
699
700
703
705

707
707
710
714
715
717
718
721
723
726
728
731

734
734
735
736
737
739
740

741
742
746
752
753
753
755
760

51.6
51.7
51.8
519

GAP - Reference Manual

Congruences for sSemigroupso et e e e
QUOLIENES e e
Green’s Relations L L
Rees Matrix Semigroups o ... e e

52 Finitely Presented Semigroups and Monoids

52.1
52.2
523
524
525
52.6

IsSubsemigroupFpSemigroup (Filter)
Creating Finitely Presented Semigroups and Monoids
Comparison of Elements of Finitely Presented Semigroups
Preimages in the Free Semigroup or Monoid
Rewriting Systems and the Knuth-Bendix Procedure
Todd-Coxeter Procedure

53 Transformations

53.1
53.2
533
534
535
53.6
53.7

The family and categories of transformations
Creating transformations
Changing the representation of a transformation
Operators for transformations
Attributes for transformations oL Lo
Displaying transformations
Semigroups of transformations Lo Lo

54 Partial permutations

54.1
54.2
54.3
54.4
54.5
54.6
54.7

The family and categories of partial permutations
Creating partial permutationso
Attributes for partial permutations oL oL
Changing the representation of a partial permutation
Operators and operations for partial permutations
Displaying partial permutations e
Semigroups and inverse semigroups of partial permutations

55 Additive Magmas

55.1
55.2
553
554

56 Rings
56.1
56.2
56.3
56.4
56.5
56.6
56.7
56.8
56.9

(Near-)Additive Magma Categories v v v v v i vt
(Near-)Additive Magma Generation
Attributes and Properties for (Near-)Additive Magmas
Operations for (Near-)Additive Magmas

Generating Rings
Idealsof Rings
Rings WithOne
Propertiesof Rings
Units and Factorizations e
EuclideanRings
GedandLem 00 oL
Homomorphisms of Rings,
Small Rings e

15

779
780
781
783

792
794
795
796
796
798
800

801
802
803
806
808
810
820
820

825
827
827
831
839
840
844
845

850
850
852
854
855

57

58

59

60

61

62

GAP - Reference Manual

Modules

57.1 Generatingmodules L
57.2 Submodules e e
573 FreeModules e e

Fields and Division Rings

58.1 GeneratingFields
58.2 Subfieldsof Fields e
583 GaloisS ACtioOn e e e

Finite Fields

59.1 Finite Field Elements
59.2 Operations for Finite Field Elements
59.3 Creating Finite Fields
59.4 Frobenius Automorphisms Lo L
59.5 Conway Polynomials
59.6 Printing, Viewing and Displaying Finite Field Elements

Abelian Number Fields

60.1 Construction of Abelian Number Fields,
60.2 Operations for Abelian Number Fields
60.3 Integral Bases of Abelian Number Fields
60.4 Galois Groups of Abelian Number Fields
60.5 Gaussians e e

Vector Spaces

61.1 IsLeftVectorSpace (Filter) i
61.2 Constructing Vector Spaces
61.3 Operations and Attributes for Vector Spaces
61.4 Domains of Subspaces of Vector Spaces
61.5 Basesof Vector Spaces
61.6 Operations for Vector Space Bases
61.7 Operations for Special Kindsof Bases
61.8 Mutable Bases
61.9 Rowand Matrix Spaces e
61.10 Vector Space Homomorphisms 0.
61.11 Vector Spaces Handled By Nice Bases
61.12 How to Implement New Kinds of Vector Spaces

Algebras

62.1 InfoAlgebra(InfoClass)
62.2 Constructing Algebras by Generators
62.3 Constructing Algebras as Free Algebras,
62.4 Constructing Algebras by Structure Constants
62.5 Some Special Algebras
62.6 Subalgebras e e
627 Idealsof Algebras L

16

876
876
878
879

882
882
884
886

890
890
892
895
896
897
898

900
900
902
903
905
907

908
908
908
910
910
911
913
915
916
918
922
925
927

63

64

65

66

GAP - Reference Manual

62.8 Categories and Properties of Algebras
62.9 Attributes and Operations for Algebras
62.10 Homomorphisms of Algebras
62.11 Representations of Algebras L

Finitely Presented Algebras

Lie Algebras

64.1 LieObjects e e e e e
64.2 Constructing Liealgebras oL o oo
64.3 Distinguished Subalgebras
64.4 Seriesofldeals L
64.5 Propertiesofalie Algebra
64.6 Semisimple Lie Algebras and Root Systems
64.7 Semisimple Lie Algebras and Weyl Groups of Root Systems
64.8 Restricted Lie algebras
64.9 The Adjoint Representation L o
64.10 Universal Enveloping Algebras
64.11 Finitely Presented Lie Algebras,
64.12 Modules over Lie Algebras and Their Cohomology
64.13 Modules over Semisimple Lie Algebras
64.14 Admissible Latticesin UEA o
64.15 Tensor Products and Exterior and Symmetric Powers

Magma Rings

65.1 FreeMagmaRings.
65.2 Elements of Free Magma Rings
65.3 Natural Embeddings related to MagmaRings
65.4 Magma Rings modulo Relations
65.5 Magma Rings modulo the Span of a Zero Element
65.6 Technical Details about the Implementation of Magma Rings

Polynomials and Rational Functions

66.1 Indeterminates e e e
66.2 Operations for Rational Functions
66.3 Comparison of Rational Functions
66.4 Properties and Attributes of Rational Functions
66.5 Univariate Polynomials
66.6 Polynomials as Univariate Polynomials in one Indeterminate
66.7 Multivariate Polynomials
66.8 Minimal Polynomials L
66.9 Cyclotomic Polynomials
66.10 Polynomial Factorization
66.11 Polynomials over the Rationals
66.12 Factorization of Polynomials over the Rationals
66.13 Laurent Polynomials
66.14 Univariate Rational Functions

17

938
941
948
953

964

965
965
967
970
972
973
974
977
980
982
984
985
986
989
990
993

67

68

69

70

GAP - Reference Manual

66.15 Polynomial Rings and Function Fields
66.16 Univariate Polynomial Rings
66.17 Monomial Orderings e e
66.18 Groebner Bases L
66.19 Rational Function Families
66.20 The Representations of Rational Functions
66.21 The Defining Attributes of Rational Functions
66.22 Creation of Rational Functions
66.23 Arithmetic for External Representations of Polynomials
66.24 Cancellation Tests for Rational Functions

Algebraic extensions of fields

67.1 Creation of Algebraic Extensions
67.2 Elements in Algebraic Extensions Lo
67.3 Finding Subfields

p-adic Numbers (preliminary)
68.1 Purep-adicNumbers
68.2 Extensions of the p-adicNumbers

The MeatAxe

69.1 MeatAxeModules
69.2 Module Constructions
69.3 Selecting a Different MeatAxe
69.4 AccessingaModule
69.5 Irreducibility Tests
69.6 Decompositionofmodules
69.7 Finding Submoduleso
69.8 Induced Actions
69.9 Module Homomorphisms L
69.10 Module Homomorphisms for irreducible modules
69.11 MeatAxe Functionality for Invariant Forms
69.12 The Smash MeatAxe i
69.13 Smash MeatAxe Flags L

Tables of Marks

70.1 More about Tablesof Marks
70.2 Table of Marks ObjectsinGAP
70.3 Constructing Tablesof Marks L o
70.4 Printing Tablesof Marks
70.5 Sorting Tablesof Marks oL o
70.6 Technical Details about Tablesof Marks
70.7 Attributes of Tablesof Marks
70.8 Properties of Tablesof Marks
70.9 Other Operations for Tablesof Marks
70.10 Accessing Subgroups via Tablesof Marks
70.11 The Interface between Tables of Marks and Character Tables

71

72

GAP - Reference Manual

70.12 Generic Construction of Tablesof Marks
70.13 The Library of Tablesof Marks

Character Tables

71.1 Some Remarks about Character Theory in GAP
71.2 History of Character Theory Stuffin GAP
71.3 Creating Character Tables
71.4 Character Table Categories
71.5 Conventions for Character Tables
71.6 The Interface between Character Tables and Groups
71.7 Operators for Character Tables
71.8 Attributes and Properties for Groups and Character Tables
71.9 Attributes and Properties only for Character Tables
71.10 Normal Subgroups Represented by Lists of Class Positions
71.11 Operations Concerning Blocks
71.12 Other Operations for Character Tables
71.13 Printing Character Tables L.
71.14 Computing the Irreducible Charactersof aGroup
71.15 Representations Givenby Modules oo
71.16 The Dixon-Schneider Algorithm
71.17 Advanced Methods for Dixon-Schneider Calculations
71.18 Components of aDixonRecord
71.19 An Example of Advanced Dixon-Schneider Calculations
71.20 Constructing Character Tables from Others
71.21 Sorted Character Tables
71.22 Automorphisms and Equivalence of Character Tables
71.23 Storing Normal Subgroup Information

Class Functions

72.1 Why Class Functions?
72.2 Basic Operations for Class Functions
72.3 Comparison of Class Functions
72.4 Arithmetic Operations for Class Functions
72.5 Printing Class Functions
72.6 Creating Class Functions from Values Lists
72.7 Creating Class Functions using Groups
72.8 Operations for Class Functions
72.9 Restricted and Induced Class Functions
72.10 Reducing Virtual Characters L
72.11 Symmetrizations of Class Functions
72.12 Molien Series e e e
72.13 Possible Permutation Characters
72.14 Computing Possible Permutation Characters
72.15 Operations for Brauer Characters
72.16 Domains Generated by Class Functions

GAP - Reference Manual

73 Maps Concerning Character Tables

74

75

76

73.1
73.2
73.3
73.4
73.5
73.6
73.7

Power Maps e
Orbits on Sets of Possible Power Maps
Class Fusions between Character Tables
Orbits on Sets of Possible Class Fusions
Parametrized Maps
Subroutines for the Construction of Power Maps
Subroutines for the Construction of Class Fusions

Unknowns

74.1

More about Unknowns

Monomiality Questions

75.1
75.2
75.3
75.4
75.5

InfoMonomial (InfoClass)
Character Degrees and Derived Length
Primitivity of Characters e
Testing Monomiality e
Minimal Nonmonomial Groups

Using and Developing GAP Packages

76.1
76.2
76.3
76.4
76.5
76.6
76.7
76.8
76.9
76.10
76.11
76.12
76.13
76.14
76.15
76.16
76.17
76.18
76.19
76.20
76.21
76.22
76.23
76.24
76.25

Installing a GAP Package
Loadinga GAPPackage
Functions for GAP Packages
Guidelines for Writing a GAP Package
Structure of a GAP Packageo L o
Writing Documentation and Tools Needed
An Example of a GAPPackage,
File Structure e
Creating the Packagelnfo.gFile
Functions and Variables and Choices of Their Names
Package Dependencies (Requesting one GAP Package from within Another)
Declaration and Implementation Part of a Package
Autoreadable Variables
Standalone Programs in a GAP Package
Having an InfoClass e
The Banner. e
Version Numbers
Testinga GAP package
Access to the GAP Development Version
Version control and continuous integration for GAP packages
Selecting a license fora GAP Package
Releasinga GAP Package
The homepage of aPackage
Some thingstokeepinmind
Package release checklists oL L o

GAP - Reference Manual

77 Replaced and Removed Command Names

78

79

80

77.1
77.2
77.3
77.4
77.5
77.6

Group Actions — Name Changes
Package Interface — Obsolete Functions and Name Changes
Normal Forms of Integer Matrices — Name Changes
Miscellaneous Name Changes or Removed Names
The former .gaprcfile
Semigroup properties e e e e e e e e e

Method Selection

78.1
78.2
78.3
78.4
78.5
78.6
78.7
78.8

Operations and Methods oL
Method Installation
Applicable Methods and Method Selection
Partial Methods
Redispatching
Immediate Methods
Logical Implications v i e e e e
Operations and Mathematical Terms

Creating New Objects

79.1
79.2
79.3
79.4
79.5
79.6
79.7
79.8
79.9
79.10
79.11
79.12
79.13
79.14
79.15
79.16
79.17
79.18
79.19

Creating Categories v v v v i e e e e e e e e e e
Creating Representations e
Creating Attributes and Properties
Creating Other Filters
Creating Operations v v v i vttt e e e e e
Creating Constructors v v v ittt e e e e e e e e
Creating Families
Creating Types o o i e e e e e
Creating Objects L i e
Component Objects i
Positional Objects L
Implementing New List Objects
Example — Constructing Enumerators
Example — Constructing Iterators
Arithmetic Issues in the Implementation of New Kinds of Lists
External Representation
Mutability and Copying oL
Global Variables in the Library
Declaration and Implementation Part

Examples of Extending the System

80.1
80.2
80.3
80.4
80.5
80.6
80.7

Additionof aMethod Lo
Extending the Range of Definition of an Existing Operation
Enforcing Property Tests L
Adding anew Operation e
Adding anew Attribute
Adding anew Representation
Components versus Attributes L L

GAP - Reference Manual

80.8 Addingnew Concepts
80.9 Creating Own Arithmetic Objects

81 An Example — Residue Class Rings
81.1 A First Attempt to Implement Elements of Residue Class Rings
81.2 Why Proceed in a Different Way? L L.
81.3 A Second Attempt to Implement Elements of Residue Class Rings
81.4 Compatibility of Residue Class Rings with Prime Fields
81.5 Further Improvements in Implementing Residue Class Rings

82 An Example — Designing Arithmetic Operations
82.1 New Arithmetic Operations vs. New Objects
82.2 Designing new Multiplicative Objects, .

83 Library Files
83.1 FileTypes o e e e e
83.2 Finding Implementations inthe Library
83.3 Undocumented Variables

84 Interface to the GAP Help System
84.1 Installing and RemovingaHelpBook
84.2 ThemanualsixFile
84.3 TheHelpBookHandler
84.4 Introducing new Viewer for the OnlineHelp

85 Function-Operation-Attribute Triples
85.1 Key Dependent Operations i
85.2 InParent Attributes L e
85.3 Operation Functions

86 Weak Pointers
86.1 Weak Pointer Objects
86.2 Low Level Access Functions for Weak Pointer Objects
86.3 Accessing Weak Pointer Objectsas Lists
86.4 Copying Weak Pointer Objects,
86.5 The GASMAN Interface for Weak Pointer Objects

87 More about Stabilizer Chains
87.1 Generalized Conjugation Technique
87.2 The General Backtrack Algorithm with Ordered Partitions
87.3 Stabilizer Chains for Automorphisms Acting on Enumerators

References

Index

Chapter 1

Preface

Welcome to GAP. This is one of three manuals documenting the core part of GAP, the other being
the GAP Tutorial . and the document called “GAP - Changes from Earlier Versions” .

This preface serves not only to introduce “The GAP Reference Manual”, but also as an introduc-
tion to the whole system.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the aim
of the system, which is introduced in this reference manual. Since that choice, the system has become
somewhat broader, and you will also find information about algorithms and programming for other
algebraic structures, such as semigroups and algebras.

This manual, the GAP reference manual contains the official definitions of GAP functions. It
should contain all the information needed to use GAP, and is not intended to be read cover-to-cover.

To get started a new user may first look at parts of the GAP Tutorial .

A lot of the functionality of the system and a number of contributed extensions are provided as
“GAP packages” which are developed independently of the core part of GAP and can be loaded into
a GAP session. Each package comes with a its own manual which is also available through the GAP
help system.

This manual is divided into chapters, sections and subsections. Chapter 2 describes the help sys-
tem, which provides access to all the manuals from a running GAP session. Chapter 3 gives technical
advice for running GAP. Chapter 4 introduces the GAP language, and the next chapters deal with the
environment provided by GAP for the user. These are followed by the main bulk of chapters which
are devoted to the various mathematical structures that GAP can handle.

Subsequent sections of this preface explain the structure of the system and provide copyright and
licensing information.

1.1 The GAP System

GAP is a free, open and extensible software package for computation in discrete abstract algebra. The
terms “free” and “open” describe the conditions under which the system is distributed — in brief, it is
free of charge (except possibly for the immediate costs of delivering it to you), you are free fo pass it
on within certain limits, and all of the workings of the system are open for you to examine and change.
Details of these conditions can be found in Section (Reference: Copyright and License).

The system is “extensible” in that you can write your own programs in the GAP language, and use
them in just the same way as the programs which form part of the system (the “library”). Indeed, we
actively support the contribution, refereeing and distribution of extensions to the system, in the form of

23

GAP - Reference Manual 24

“GAP packages”. Further details of this can be found in chapter (Reference: Using and Developing
GAP Packages), and on our website.

Development of GAP began at Lehrstuhl D fiir Mathematik, RWTH-Aachen, under the leadership
of Joachim Neubiiser in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In 1997
coordination of GAP development, now very much an international effort, was transferred to St An-
drews. A complete internal redesign and almost complete rewrite of the system was completed over
the following years and version 4.1 was released in July 1999. A sign of the further internationaliza-
tion of the project was the GAP 4.4 release in 2004, which has been coordinated from Colorado State
University, Fort Collins.

More information on the motivation and development of GAP to date, can be found on our Web
pages in a section entitled “Release history and Prefaces”.

For those readers who have used an earlier version of GAP, an overview of the changes from
GAP 4.4 and a brief summary of changes from earlier versions is given in a separate manual
(Changes: Changes between GAP 4.4 and GAP 4.5).

The system that you are getting now consists of a “core system” and a number of packages. The
core system consists of four main parts.

1. A kernel, written in C, which provides the user with

* automatic dynamic storage management, which the user needn’t bother about in his pro-
gramming;

* aset of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields,
permutations and words, as well as natural operations for lists and records;

* an interpreter for the GAP language, an untyped imperative programming language with
functions as first class objects and some extra built-in data types such as permutations and
finite field elements. The language supports a form of object-oriented programming, simi-
lar to that supported by languages like C++ and Java but with some important differences.

* a small set of system functions allowing the GAP programmer to handle files and execute
external programs in a uniform way, regardless of the particular operating system in use.

* a set of programming tools for testing, debugging, and timing algorithms.

* a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since
this is written entirely in the GAP language, the GAP language is both the main implementation
language and the user language of the system. Therefore the user can as easily as the original
programmers investigate and vary algorithms of the library and add new ones to it, first for own
use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the
library of small groups (containing all groups of order at most 2000, except those of order 1024)
and others. Large libraries of ordinary and Brauer character tables and Tables of Marks are
included as packages.

4. The documentation. This is available as on-line help, as printable files in PDF format and as
HTML for viewing with a Web browser.

Also included with the core system are some test files and a few small utilities which we hope you
will find useful.

GAP - Reference Manual 25

GAP packages are self-contained extensions to the core system. A package contains GAP
code and its own documentation and may also contain data files or external programs to which the
GAP code provides an interface. These packages may be loaded into GAP using the LoadPackage
(Reference: LoadPackage) command, and both the package and its documentation are then available
just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only
be available on the operating systems where those programs are available (usually UNIX). You should
note that, while the packages included with this release are the most recent versions ready for release
at this time, new packages and new versions may be released at any time and can be easily installed in
your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the
library of tables of marks) which contain functionality developed from parts of the GAP core system.
These have been moved into packages for ease of maintenance and to allow new versions to be released
independently of new releases of the core system. The library of small groups should also be regarded
as a package, although it does not currently use the standard package mechanism. Other packages
contain functionality which has never been part of the core system, and may extend it substantially,
implementing specific algorithms to enhance its capabilities, providing data libraries, interfaces to
other computer algebra systems and data sources such as the electronic version of the Atlas of Finite
Group Representations; therefore, installation and usage of packages is recommended.

Further details about GAP packages can be found in chapter (Reference:
Using and Developing GAP Packages)), and on the GAP website here:
https://wuw.gap-system.org/Packages/packages.html.

1.2 Authors and Maintainers

GAP is the work of very many people, many of whom still maintain parts of the system. A complete
list of authors, and an approximation to the current list of maintainers can be found on the GAP
World Wide Web site at https://www.gap-system.org/Contacts/People/authors.html and
https://www.gap-system.org/Contacts/People/modules.html. All GAP packages have their
own authors and maintainers. It should however be noted that some packages provide interfaces
between GAP and an external program, a copy of which is included for convenience, and that, in
these cases, we do not claim that the package authors or maintainers wrote, or maintain, this external
program. Similarly, the system and some packages include large data libraries that may have been
computed by many people. We try to make clear in each case what credit is attributable to whom.

We have, for some time, operated a refereeing system for contributed packages, both to ensure the
quality of the software we distribute, and to provide recognition for the authors. We now consider this
to be a refereeing system for modules, and we would note, in particular that, although it does not use
the standard package interface, the library of small groups has been refereed and accepted on exactly
the same basis as the accepted packages.

We also include with this distribution a number of packages which have not (yet) gone through
our refereeing process. Some may be accepted in the future, in other cases the authors have chosen
not to submit them. More information can be found on our World Wide Web site (see Section 1.5).

https://www.gap-system.org/Packages/packages.html
https://www.gap-system.org/Contacts/People/authors.html
https://www.gap-system.org/Contacts/People/modules.html

GAP - Reference Manual 26

1.3 Acknowledgements

Very many people have worked on, and contributed to, GAP over the years since its inception. On our
Web site you will find the prefaces to the previous releases, each of which acknowledges people who
have made special contributions to that release. Even so, it is appropriate to mention here Joachim
Neubiiser whose vision of a free, open and extensible system for computational algebra inspired GAP
in the first place, and Martin Schonert, who was the technical architect of GAP 3 and GAP 4.

1.4 Copyright and License

Copyright © (1987-2018) by the GAP Group,

incorporating the Copyright © 1999, 2000 by School of Mathematical and Computational Sci-
ences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright © 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany,
transferred to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In par-
ticular, the copyright of packages distributed with GAP is usually with the package authors or their
institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. For details, see the file LICENSE in the root directory of the GAP
distribution or see http://www.gnu.org/licenses/gpl.html.

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the
address support@gap-system.org. This helps us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as
you would cite another paper that you used (see below for sample citation). Also we would appreciate
if you could inform us about such a paper, which we will add to the GAP bibliography.

Specifically, please refer to

[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming,
Version 4.10.0; 2018 (https://www.gap-system.org)

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further
redistribution. That is to say proprietary modifications will not be allowed. We want all versions of
GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This
should specify what modifications you made in which files. We do not want to take credit or be
blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-
fixes, improvements and new functions. So again we would appreciate it if you would inform us about
all modifications you make.

In addition to the general copyright for GAP set forth above, the following terms apply to the
versions of GAP for Windows.

The executable of GAP for Windows that we distribute was compiled with the gcc compiler
supplied with Cygwin installation (http://cygwin.com/).

The GNU C compiler is

http://www.gnu.org/licenses/gpl.html
mailto://support@gap-system.org
https://www.gap-system.org/Doc/Bib/bib.html
http://cygwin.com/

GAP - Reference Manual 27

Copyright © 2010 Free Software Foundation, Inc.

under the terms of the GNU General Public License (GPL).

The Cygwin API library is also covered by the GNU GPL. The executable we provide is linked
against this library (and in the process includes GPL’d Cygwin glue code). This means that the exe-
cutable falls under the GPL too, which it does anyhow.

The cyggcc_s-1.d11l, cygncurses-10.d1l1l, cygncursesw-10.d11l, cygpanel-10.d11,
cygpopt-0.dll, cygreadline7.dll, cygstart.exe, cygwinl.dll, 1ibW11.d11, mintty.exe,
rxvt.exe and regtool.exe are taken unmodified from the Cygwin distribution. They are copy-
right by RedHat Software and released under the GPL. For more information on Cygwin, see
http://www.cygwin.com.

Please contact support@gap-system. org if you need further information.

1.5 Further Information about GAP

Information about GAP is best obtained from the GAP website
https://www.gap-system.org
There you will find, amongst other things

* directions to the sites from which you can download the current GAP distribution, all accepted
and deposited GAP packages, and a selection of other contributions.

* the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a
Web browser, and indexed for searching.

* information about GAP developers, and about the email addresses available for comment, dis-
cussion and support.

We would particularly ask you to note the following things:

e The GAP Forum - an email discussion forum for comments, discussions or questions about
GAP. You must subscribe to the list before you can post to it, see the website for details. In
particular we will announce new releases in this mailing list.

* The email address support@gap-system.org to which you are asked to send any questions or
bug reports which do not seem likely to be of interest to the whole GAP Forum. Please give
a (short, if possible) self-contained excerpt of a GAP session containing both input and output
that illustrates your problem (including comments of why you think it is a bug) and state the
type of the machine, operating system, (compiler used, if UNIX/Linux) and the version of GAP
you are using (the first line after the GAP 4 banner starting GAP, Version 4...).

* We also ask you to send a brief message to support@gap-system.org when you install GAP.

* The correct form of citation of GAP, which we ask you use whenever you publish scientific
results obtained using GAP.

It finally remains for us to wish you all pleasure and success in using GAP, and to invite your
constructive comment and criticism.

The GAP Group,

01-Nov-2018

http://www.cygwin.com
mailto://support@gap-system.org
https://www.gap-system.org
mailto://support@gap-system.org
mailto://support@gap-system.org

Chapter 2

The Help System

This chapter describes the GAP help system. The help system lets you read the documentation inter-
actively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.

?[book :]1[?]topic

For an explanation and some examples see (Tutorial: Help).

Note that the first question mark must appear in the first position after the gap> prompt. The
search strings book and topic are normalized in a certain way (see the end of this section for details)
before the search starts. This makes the search case insensitive and there can be arbitrary white space
after the first question mark.

When there are several manual sections that match the query a numbered list of topics is displayed.
These matches can be accessed with 7number.

There are some further specially handled commands which start with a question mark. They are
explained in Section 2.2.

By default GAP shows the help sections as text in the terminal (window), page by page if the
shown text does not fit on the screen. But there are several other choices to read (other formats of) the
documents: via a viewer for pdf files or via a web browser. This is explained below in Section 2.3.

Details of the string normalization process

Here is a precise description how the search strings book and topic are normalized before a
search starts: backslashes and double or single quotes are removed, parentheses and braces are substi-
tuted by blanks, non-ASCII characters are considered as ISO-latin1 characters and the accented letters
are substituted by their non-accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections, and subsections. There are a few special
commands starting with a question mark (in the first position after the gap> prompt) which allow
browsing a book section or chapter wise.

7>

7<

28

GAP - Reference Manual 29

The two help commands ?< and 7> allow one to browse through a whole help book. ?7< displays
the section or subsection preceding the previously shown (sub)section, and 7> takes you to the section
or subsection following the previously shown one.

>>

<<

7<< takes you back to the beginning of the current chapter. If you are already at the start of a
chapter 7<< takes you to the beginning of the previous chapter. ?>> takes you to the beginning of the
next chapter.

7-

°+

GAP remembers the last few sections that you have read. ?- takes you to the one that you have
read before the current one, and displays it again. Further applications of 7- take you further back in
this history. 7+ reverses this process, i.e., it takes you back to the section that you have read after the
current one. It is important to note that ?- and 7+ do not alter the history like the other help commands.

?books

This command shows a list of the books which are currently known to the help system. For each
book there is a short name which is used with the book part of the basic help query and there is a long
name which hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is
loaded but which needs a call of LoadPackage (76.2.1) before you can use the described functions.

?[book :]sections

7 [book :] [chapters]

These commands show tables of contents for all available, respectively the matching books. For
some books these commands show the same, namely the whole table of contents.

?

&

These commands redisplay the last shown help section. In the form 7& the next preferred help
viewer is used for the display (provided one has chosen several viewers), see SetHelpViewer (2.3.1)
below.

2.3 Changing the Help Viewer

Books of the GAP help system or package manuals can be available in several formats. Currently the
following formats occur (not all of them may be available for all books):

text This is used for display in the terminal window in which GAP is running. Complicated mathe-
matical expressions may not be easy to read in this format.

pdf Adobe’s pdf format. Can be used for printing and onscreen reading on most current systems
(with freely available software). Some manual books contain hyperlinks in this format.

HTML
The format of web pages. Can be used with any web browser. There may be hyperlink informa-
tion available which allows a convenient browsing through the book via cross-references. This
format has the problem that complicated formulae may be not be easy to read since there is no
syntax for formulae in HTML. (Some older manual books use special symbol fonts for formulae

GAP - Reference Manual 30

and need a particular configuration of the web browser for correct display. Some manuals may
use technology for quite sophisticated formula display.)

Depending on your operating system and available additional software you can use several of these
formats with GAP’s help system. This is configured with the following command.

2.3.1 SetHelpViewer

> SetHelpViewer(viewerl, viewer2, ...) (function)

This command takes an arbitrary number of arguments which must be strings describing a viewer.
The recognized viewers are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the
format needed by viewerl, this viewer is used. If not, availability of the format for viewer?2 is
checked and so on. Recall that the command 7& displays the last seen section again but with the next
possible viewer in your list, see 2.2.

The viewer "screen" (see below) is always silently appended since we assume that each help
book is available in text format.

If you want to change the default setting you can use a call of SetUserPreference(
"HelpViewers", [... 1); (the list in the second argument containing the viewers you want)
in your gap. ini file (see 3.2).

"screen"

This is the default setting. The help is shown in text format using the Pager (2.4.1) command.
Hint: Text versions of manuals are formatted assuming that your terminal displays at least 80
characters per line, if this is not the case some sections may look very bad. We suggest to
use a terminal in UTF-8 encoding with a fixed width font (this is the default on most modern
Linux/Windows/Mac systems anyway). Terminals in IS0-8859-X encoding will also work
reasonably well (so far, since we do not yet use many special characters which such terminals
could not display).

"firefox", "chrome", "mozilla", "netscape", "konqueror"
If a book is available in HTML format this is shown using the corresponding web browser.
How well this works, for example by using a running instance of this browser, depends on
your particular start script of this browser. (Note, that for some old books the browser must be
configured to use symbol fonts.)

"browser"
(for MS Windows) If a book is available in HTML format, it will be opened using the Windows
default application (typically, a web browser).

"links2", "w3m", "lynx"
If a book is available in HTML format this is shown using the text based "1inks2" (in graphics
mode), w3m or 1lynx web browser, respectively, inside the terminal running GAP. (Formulae in
some older books which use symbol fonts may be unreadable.)

"mac default browser", "browser", "safari", "firefox"
(for Mac OS X) If a book is available in HTML format this is shown in a web browser. The

GAP - Reference Manual 31

options "safari" and "firefox" use the corresponding browsers. The other two options use
the program default browser (which can be set in Safari’s preferences, in the "General" tab).

"Xpdf n
(on X-windows systems) If a book is available in pdf format it is shown with the onscreen
viewer program xpdf (which must be installed on your system). This is a nice program, once it
is running it is reused by GAP for the next displays of help sections.

"acroread"
If a book is available in pdf format it is shown with the onscreen viewer program acroread
(which must be available on your system). This program does not allow remote commands or
startup with a given page. Therefore the page numbers you have to visit are just printed on the
screen. When you are looking at several sections of the same book, this viewer assumes that
the acroread window still exists. When you go to another book a new acroread window is
launched.

"pdf viewer", "skim", "preview", "adobe reader"

(for Mac OS X)) If a book is available in pdf format this is shown in a pdf viewer. The options
"skim", "preview" and "adobe reader" use the corresponding viewers. The other two op-
tions use the pdf viewer which you have chosen to open pdf files from the Finder. Note that
only "Skim" seems to be capable to open a pdf file on a given page. For the other help viewers,
the page numbers where the information can be found will just be printed on the screen. None
of the help viewers seems to be capable of opening a pdf at a given named destination (i. e.,
jump to precisely the place where the information can be found). The pdf viewer "Skim" is
open source software, it can be downloaded from http://skim-app.sourceforge.net/.

"less" or "more"
This is the same as "screen" but additionally the user preferences "Pager" and
""PagerOptions" are set, see the section 2.4 for more details.

Please, send ideas for further viewer commands to support@gap-system.org.

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which does not fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there
are powerful external standard programs which do this job.

2.4.1 Pager

> Pager(lines) (function)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by
page.

There is a default builtin pager in GAP which has very limited capabilities but should work on any
system.

At least on a UNIX system one should use an external pager program like less or more. GAP
assumes that this program has a command line option +nr which starts the display of the text with line
number nr.

mailto://support@gap-system.org

GAP - Reference Manual 32

Which pager is used can be controlled by setting the user preference "Pager". The default value
is "builtin" which means that the internal pager is used.

On UNIX systems you probably want to set the user preference "Pager" to the value "less" or
"more", you can do this for example in your gap.ini file (see 3.2). In that case you can also tell
GAP a list of standard options for the external pager, via the user preference "PagerOptions".
Example

SetUserPreference("Pager", "less");
SetUserPreference("PagerOptions", ["-f","-r","-a","-i","-M","-j2"]);

The argument I1ines can have one of the following forms:

1. astring (i.e., lines are separated by newline characters)

2. a list of strings (without newline characters) which are interpreted as lines of the text to be
shown

3. arecord with component lines as in 1. or 2. and optional further components
In case 3. currently the following additional components are used:

formatted
can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAP’s automatic line breaking),

start
must be a positive integer. This is interpreted as the number of the first line shown by the pager
(one may see the beginning of the text via back scrolling).

exitAtEnd
can be false or true. If set to true (the default), the builtin pager is terminated as soon as the
end of the list is shown; otherwise entering the Q key is necessary in order to return from the

pager.

The Pager command is used by GAP’s help system for displaying help sections in text format.
But, of course, it may be used for other purposes as well.

Example

gap> s6 := SymmetricGroup(6);;

gap> words := ["This", "is", "a", "very", "stupid", "example"];;
gap> 1 := List(s6, p-> Permuted(words, p));;

gap> Pager(List(1l, a-> JoinStringsWithSeparator(a," ")));;

Chapter 3

Running GAP

This chapter informs about command line options for GAP (see 3.1), some files in user specific GAP
root directory (see 3.2) and saving and loading a GAP workspace (see 3.3).

3.1 Command Line Options

When you start GAP from a command line or from a script you may specify a number of options on
the command-line to change the default behaviour of GAP. All these options start with a hyphen -,
followed by a single letter. Options must not be grouped, e.g., gap -gq is invalid, use gap -g -q
instead. Some options require an argument, this must follow the option and must be separated by
whitespace, e.g., gap -m 256m, it is not correct to say gap -m256m instead. Certain Boolean options
(-b, -q, -e, -1, -A, -D, -M, -T, -X, -Y) toggle the current value so that gap -b -b is equivalent to
gap and to gap -b -q -b -qetc.

GAP for UNIX will distinguish between upper and lower case options.

As described in the GAP installation instructions (see the INSTALL file in the GAP root directory,
or at https://www.gap-system.org/Download/INSTALL), usually you will not execute GAP di-
rectly. Instead you will call a (shell) script, with the name gap, which in turn executes GAP. This
script sets some options which are necessary to make GAP work on your system. This means that the
default settings mentioned below may not be what you experience when you execute GAP on your
system.

During a GAP session, one can find the current values of command line options in the record
GAPInfo.CommandLineOptions (see GAPInfo (3.5.1)), whose component names are the command
line options (without the leading -).

-A By default, some needed and suggested GAP packages (see 76) are loaded, if present, into the
GAP session when it starts. This option disables (actually toggles) the loading of suggested
packages, which can be useful for debugging or testing. The needed packages (and their needed
packages, and so on) are loaded in any case.

-a memory
GASMAN, the storage manager of GAP uses sbrk to get blocks of memory from (certain)
operating systems and it is required that subsequent calls to sbrk produce adjacent blocks of
memory in this case because GAP only wants to deal with one large block of memory. If the
C function malloc is called for whatever reason, it is likely that sbrk will no longer produce
adjacent blocks, therefore GAP does not use malloc itself.

33

https://www.gap-system.org/Download/INSTALL

GAP - Reference Manual 34

However some operating systems insist on calling malloc to create a buffer when a file is
opened, or for some other reason. In order to catch these cases GAP preallocates a block of
memory with malloc which is immediately freed. The amount preallocated can be controlled
with the -a option. (Most users do not need this option.)

The option argument memory is specified as with the -m option.

-B architecture

Executable binary files that form part of GAP or of a GAP package are kept in a subdirectory
of the bin directory within the GAP or package root directory. The subdirectory name is deter-
mined from the operating system, processor and compiler details when GAP (resp. the package)
is installed. Under rare circumstances, it may be necessary to override this name, and this can
be done using the -B option.

tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This is
useful when, after a while, you get tired of the banner. This option can be repeated to enable the
banner; each -b toggles the state of banner display.

The -D option tells GAP to print short messages when it is reading files or loading modules.
This option may be repeated to toggle this behavior on and off. The message,

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ as GAP file

tells you that GAP has started to read the library file 1ib/kernel.g.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ statically

tells you that GAP has used the compiled version of the library file 1ib/kernel .g. This com-
piled module was statically linked to the GAP kernel at the time the kernel was created.

Example
#I READ_GAP_ROOT: loading ’lib/kernel.g’ dynamically

tells you that GAP has loaded the compiled version of the library file 1ib/kernel.g. This
compiled module was dynamically loaded to the GAP kernel at runtime from a corresponding
.so file.

Obviously, this is a debugging option and most users will not need it.

If your GAP installation uses the readline library for command line editing (see 6.9), this
may be disabled by using -E option. This option may be repeated to toggle this behavior
on and off. If your GAP installation does not use the readline library (you can check by
IsBound (GAPInfo.UseReadline) ; if this is the case), this option will have no effect at all.

tells GAP not to quit when receiving a CTRL-D on an empty input line (see 6.4.1). This option
should not be used when the input is a file or pipe. This option may be repeated to toggle this
behavior on and off.

GAP - Reference Manual 35

-f tells GAP to enable the line editing and history (see 6.8).
In general line editing will be enabled if the input is connected to a terminal. There are rare
circumstances, for example when using a remote session with a corrupted telnet implementation,
when this detection fails. Try using -£ in this case to enable line editing. This option does not
toggle; you must use -n to disable line editing.

-g tells GAP to print a message every time a full garbage collection is performed.

Example
#G FULL 44580/2479kb live 57304/4392kb dead 734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage col-
lection, that 57304 unused objects were reclaimed by it, and that 734 kilobytes from a total
allocated memory of 4096 kilobytes are available afterwards.

-8 -8
If you give the option -g twice, GAP prints a information message every time a partial or full
garbage collection is performed. The message,

Example
#G PART 9405/961kb+live 7525/1324kb+dead 2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 kilobytes from a total allocated memory of 4096 kilobytes are
available afterwards.

-h tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits
after printing the summary, all other options are ignored.

-K memory

is like the -o option. But while the latter actually allocates more memory if the system allows
it and then prints a warning inside a break loop the -K options tells GAP not even to try to
allocate more memory. Instead GAP just exits with an appropriate message. The default is that
this feature is switched off. You have to set it explicitly when you want to enable it.

-L filename

The option -L tells GAP to load a saved workspace. See section 3.3.

-1 path_list

can be used to set or modify GAP’s list of root directories (see 9.2). The defaultif no -1 option
is given is the current directory ./. This option can be used several times. Depending on the
-r option a further user specific path is prepended to the list of root directories (the path in
GAPInfo.UserGapRoot).

path_list should be a list of directories separated by semicolons. No whitespace is permit-
ted before or after a semicolon. If path_list does not start or end with a semicolon, then
path_list replaces the existing list of root directories. If path_list starts with a semicolon,
then path_list is appended to the existing list of root directories. If path_list ends with
a semicolon and does not start with one, then the new list of root directories is the concate-
nation of path_list and the existing list of root directories. After GAP has completed its

GAP - Reference Manual 36

startup procedure and displays the prompt, the list of root directories can be seen in the variable
GAPInfo.RootPaths, see GAPInfo (3.5.1).

Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -1 option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how
several root paths can be used to do this.

GAP will attempt to read the file root_dir/lib/init.g during startup where root_dir is
one of the directories in its list of root directories. If GAP cannot find its init.g file it will
print the following warning.

Example
gap: hmm, I cannot find ’lib/init.g’ maybe use option ’-1 <gaproot>’?

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -1 option.

tells GAP not to check for, nor to use, compiled versions of library files. This option may be
repeated to toggle this behavior on and off.

-m memory

tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it is
taken as kilobytes, if the last character is m or M memory is taken as megabytes and if it is g or G
it is taken as gigabytes.

This amount of memory should be large enough so that computations do not require too many
garbage collections. On the other hand, if GAP allocates more memory than is physically
available, it will spend most of the time paging.

tells GAP to disable the line editing and history (see 6.8).

You may want to do this if the command line editing is incompatible with another program that
is used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n
should be used since otherwise every input line will be echoed twice, once by Emacs and once
by GAP. This option does not toggle; you must use -f to enable line editing.

disables loading obsolete variables (see Chapter 77). This option is used mainly for testing
purposes, for example in order to make sure that a GAP package or one’s own GAP code does
not rely on the obsolete variables.

-0 memory

tells GAP to allocate at most memory bytes without asking. The option argument memory is
specified as with the -m option.

If more than this amount is required during the GAP session, GAP prints an error message and
enters a break loop. In that case you can enter return; which implicitly doubles the amount
given with this option.

tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>.
This is useful if you want to run GAP as a filter with input and output redirection and want to
avoid the banner and the prompts appearing in the output file. This option may be repeated to
disable quiet mode; each -q toggles quiet mode.

GAP - Reference Manual 37

-R The option -R tells GAP not to load a saved workspace previously specified via the -L option.
This option does not toggle.

-r The option -r tells GAP to ignore any user specific configuration files. In particular, the user
specific root directory GAPInfo.UserGapRoot is not added to the GAP root directories and so
gap.ini and gaprc files that may be contained in that directory are not read, see 3.2. Multiple
-r options toggle this behaviour.

-s memory
With this option GAP does not use sbrk to get memory from the operating system. Instead it
uses mmap, malloc or some other command for the amount given with this option to allocate
space for the GASMAN memory manager. Usually GAP does not really use all of this memory,
the options -m, -o, -K still work as documented. This feature assumes that the operating system
only assigns physical memory to the GAP process when it is accessed, so that specifying a large
amount of memory with -s should not cause any performance problem. The advantage of using
this option is that GAP can work together with kernel modules which allocate a lot of memory
with malloc.

The option argument memory is specified as with the -m option.

-T suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user
quit immediately from every break loop, and also suppresses displaying any error backtrace.
This is intended for automated testing of GAP. This option may be repeated to toggle this
behavior on and off.

-x length
With this option you can tell GAP how long lines are. GAP uses this value to decide when to
split long lines. After starting GAP you may use SizeScreen (6.12.1) to alter the line length.

The default value is 80, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

-y length
With this option you can tell GAP how many lines your screen has. GAP uses this value to
decide after how many lines of on-line help it should wait. After starting GAP you may use
SizeScreen (6.12.1) to alter the number of lines.

The default value is 24, unless another value can be obtained from the Operating System, which
is the right value if you have a standard terminal application. If you have a larger monitor, or
use a smaller font, or redirect the output to a printer, you may want to increase this value.

filename ...
Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. The files are read in
the order in which they appear on the command line. GAP only accepts up to 14 filenames on
the command line. If a file cannot be opened GAP will print an error message and will abort.

Additional options, -C, -P, -W, -p and -z are used internally by the gac script (see 76.3.11) and/or
on specific operating systems.

GAP - Reference Manual 38

3.2 The gap.ini and gaprec files

When you start GAP, it looks for files with the names gap.ini and gaprc in its root directories (see
9.2), and reads the first gap.ini and the first gaprc file it finds. These files are used for certain
initializations, as follows.

The file gap.ini is read early in the startup process. Therefore, the parameters set in this file
can influence the startup process, such as which packages are automatically loaded (see LoadPackage
(76.2.1)) and whether library files containing obsolete variables are read (see Chapter 77). On the
other hand, only calls to a restricted set of GAP functions are allowed in a gap.ini file. Usually,
it should only contain calls of SetUserPreference (3.2.3). This file can be generated (or updated
when new releases introduce further user preferences) with the command WriteGapIniFile (3.2.3).
This file is read whenever GAP is started, with or without a workspace.

The file gaprc is read after the startup process, before the first input file given on the command
line (see 3.1). So the contents of this file cannot influence the startup process, but all GAP library
functions can be called in this file. When GAP is started with a workspace then the file is read only if
no gaprc file had been read before the workspace was created. (With this setup, it is on the one hand
possible that administrators provide a GAP workspace for several users such that the user’s gaprc
file is read when GAP is started with the workspace, and on the other hand one can start GAP, read
one’s gaprc file, save a workspace, and then start from this workspace without reading one’s gaprc
file again.)

Note that by default, the user specific GAP root directory GAPInfo . UserGapRoot is the first GAP
root directory. So you can put your gap.ini and gaprc files into this directory.

This mechanism substitutes the much less flexible reading of a users .gaprc file in versions of
GAP up to 4.4. For compatibility this . gaprc file is still read if the directory GAPInfo.UserGapRoot
does not exist, see 77.5 how to migrate your old setup.

3.2.1 The gap.ini file

The file gap.ini is read after the declaration part of the GAP library is read, before the declaration
parts of the packages needed and suggested by GAP are read, and before the implementation parts of
GAP and of the packages are read.

The file gap.ini is expected to consist of calls to the function SetUserPreference (3.2.3), see
Section SetUserPreference (3.2.3).

Since the file gap.ini is read before the implementation part of GAP is read, not all GAP
functions may be called in the file. Assignments of numbers, lists, and records are admissible as
well as calls to basic functions such as Concatenation (21.20.1) and JoinStringsWithSeparator
(27.7.20).

Note that the file gap. ini is read also when GAP is started with a workspace.

3.2.2 The gaprec file

If a file gaprc is found it is read after GAP’s init.g, but before any of the files mentioned on the
command line are read. You can use this file for your private customizations. (Many users may be
happy with using just user preferences in the gap. ini file (see above) for private customization.) For
example, if you have a file containing functions or data that you always need, you could read this from
gaprc. Or if you find some of the names in the library too long, you could define abbreviations for
those names in gaprc. The following sample gaprc file does both.

GAP - Reference Manual 39

Example
Read("/usr/you/dat/mygroups.grp");
Ac := Action;
AcHom := ActionHomomorphism;
RepAc := RepresentativeAction;

Note that only one gaprec file is read when GAP is started. When a workspace is created in a GAP
session after a gaprc file has been read then no more gaprc file will be read when GAP is started
with this workspace.

Also note that the file must be called gaprc. If you use a Windows text editor, in particular if
your default is not to show file suffixes, you might accidentally create a file gaprc.txt or gaprc.doc
which GAP will not recognize.

3.2.3 Configuring User preferences

> SetUserPreference([package, Jname, value) (function)
> UserPreference([package, Jname) (function)
> ShowUserPreferences(packagel, package2, ...) (function)
> WriteGapIniFile([dir,][ignorecurrent]) (function)

Some aspects of the behaviour of GAP can be customized by the user via user preferences. Ex-
amples include the way help sections are displayed or the use of colors in the terminal.

User preferences are specified via a pair of strings, the first is the (case insensitive) name of a
package (or "GAP" for the core GAP library) and the second is some arbitrary case sensitive string.

User preferences can be set to some value with SetUserPreference. The current value of a
user preference can be found with UserPreference. In both cases, if no package name is given the
default "GAP" is used. If a user preference is not known or not set then UserPreference returns
fail.

The function ShowUserPreferences with no argument shows in a pager an overview of all
known user preferences together with some explanation and the current value. If one or more strings
packagel, ... are given then only the user preferences for these packages are shown.

The easiest way to make use of user preferences is probably to use the function
WriteGapIniFile, usually without argument. This function creates a file gap.ini in your user
specific GAP root directory (GAPInfo.UserGapRoot). If such a file already exists the function will
make a backup of it first. This newly created file contains descriptions of all known user preferences
and also calls of SetUserPreference for those user preferences which currently do not have their
default value. You can then edit that file to customize (further) the user preferences for future GAP
sessions.

Should a later version of GAP or some packages introduce new user preferences then you can
call WwriteGapIniFile again since it will set the previously known user preferences to their current
values.

Optionally, a different directory for the resulting gap . ini file can be specified as argument dir to
WriteGapIniFile. Another optional argument is the boolean value true, if this is given, the settings
of all user preferences in the current session are ignored.

Note that your gap.ini file is read by GAP very early during its startup process. A conse-
quence is that the value argument in a call of SetUserPreference must be some very basic GAP
object, usually a boolean, a number, a string or a list of those. A few user preferences support

GAP - Reference Manual 40

more complicated settings. For example, the user preference "UseColorPrompt" admits a record
as its value whose components are available only after the GAPDoc package has been loaded,
see ColorPrompt (3.6.1). If you want to specify such a complicated value, then move the correspond-
ing call of SetUserPreference from your gap.ini file into your gaprc file (also in the directory
GAPInfo.UserGapRoot). This file is read much later.

Example
gap> SetUserPreference("Pager", "less");
gap> SetUserPreference ("PagerOptions",
> ["-f", "-xr", "-a", "-i", "-M", "-j2"]);
gap> UserPreference("Pager");
"less"

The first two lines of this example will cause GAP to use the programm less as a pager. This is
highly recommended if less is available on your system. The last line displays the current setting.

3.2.4 DeclareUserPreference

> DeclareUserPreference(record) (function)

This function can be used (also in packages) to introduce new user preferences. It declares a user
preference, determines a default value and contains documentation of the user preference. After dec-
laration a user preference will be shown with ShowUserPreferences (3.2.3) and WriteGapIniFile
(3.2.3).

When this declaration is evaluated it is checked, if this user preference is already set in the current
session. If not the value of the user preference is set to its default. (Do not use fail as default value
since this indicated that a user preference is not set.)

The argument record of DeclareUserPreference must be a record with the following compo-
nents.

name
a string or a list of strings, the latter meaning several preferences which belong together,

description
a list of strings describing the preference(s), one string for each paragraph; if several preferences
are declared together then the description refers to all of them,

default
the default value that is used, or a function without arguments that computes this default value;
if several preferences are declared together then the value of this component must be the list of
default values for the individual preferences.

The following components of record are optional.

check
a function that takes a value as its argument and returns either true or false, depending on
whether the given value is admissible for this preference; if several preferences are declared
together then the number of arguments of the function must equal the length of the name list,

GAP - Reference Manual 41

values
the list of admissible values, or a function without arguments that returns this list,

multi
true or false, depending on whether one may choose several values from the given list or just
one; needed (and useful only) if the values component is present,

package
the name of the GAP package to which the preference is assigned; if the declaration happens
inside a file that belongs to this package then the value of this component is computed, using
GAPInfo.PackageCurrent; otherwise, the default value for package is "GAP",

omitFromGapIniFile
if the value is true then this user preference is ignored by WriteGapIniFile (3.2.3).

Example
gap> UserPreference("MyFavouritePrime");
fail
gap> DeclareUserPreference(rec(
> name:= "MyFavouritePrime",
> description:= ["is not used, serves as an example"],
> default:= 2,
> omitFromGapIniFile:= true));
gap> UserPreference("MyFavouritePrime");
2
gap> SetUserPreference("MyFavouritePrime", 17);
gap> UserPreference("MyFavouritePrime");
17

3.3 Saving and Loading a Workspace

GAP workspace files are binary files that contain the data of a GAP session. One can produce a
workspace file with SaveWorkspace (3.3.1), and load it into a new GAP session using the -L com-
mand line option, see Section 3.1.

One purpose of workspace files is of course the possibility to save a “snapshot” image of the
current GAP workspace in a file.

The recommended way to start GAP is to load an existing workspace file, because this reduces the
startup time of GAP drastically. So if you have installed GAP yourself then you should think about
creating a workspace file immediately after you have started GAP, and then using this workspace file
later on, whenever you start GAP. If your GAP installation is shared between several users, the system
administrator should think about providing such a workspace file.

3.3.1 SaveWorkspace

> SaveWorkspace(filename) (function)

will save a “snapshot” image of the current GAP workspace in the file filename. This image then
can be loaded by another copy of GAP which then will behave as at the point when SaveWorkspace
was called.

GAP - Reference Manual 42

Example

gap> a:=1;

gap> SaveWorkspace("savefile");
true

gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of
a loop or function, or called from a break loop.
3.4 Testing for the System Architecture
34.1 ARCH_IS_UNIX

> ARCH_IS_UNIX () (function)

tests whether GAP is running on a UNIX system (including Mac OS X).

34.2 ARCH_IS_MAC_OS_X

> ARCH_IS_MAC_0S_XQO) (function)

tests whether GAP is running on Mac OS X. Note that on Mac OS X, also ARCH_IS_UNIX (3.4.1)
will be true.

3.4.3 ARCH_IS_WINDOWS

> ARCH_IS_WINDOWS () (function)

tests whether GAP is running on a Windows system.

3.5 Global Values that Control the GAP Session

3.5.1 GAPInfo

> GAPInfo (global variable)

Several global values control the GAP session, such as the command line, the architecture, or
the information about available and loaded packages. Many of these values are accessible as compo-
nents of the global record GAPInfo. Typically, these components are set and read in low level GAP
functions, so changing the values of existing components of GAPInfo “by hand” is not recommended.

Important components are documented via index entries, try the input ??GAPInfo for getting an
overview of these components.

3.6 Coloring the Prompt and Input

GAP provides hooks for functions which are called when the prompt is to be printed and when an
input line is finished.

GAP - Reference Manual 43

An example of using this feature is the following function.

3.6.1 ColorPrompt

> ColorPrompt(bool[, optrec]) (function)

With ColorPrompt (true) ; GAP changes its user interface: The prompts and the user input are
displayed in different colors. Switch off the colored prompts with ColorPrompt (false) ;.

Note that this will only work if your terminal emulation in which you run GAP understands the so
called ANSI color escape sequences —almost all terminal emulations on current UNIX/Linux (xterm,
rxvt, konsole, ...) systems do so.

The colors shown depend on the terminal configuration and cannot be forced from an application.
If your terminal follows the ANSI conventions you see the standard prompt in bold blue and the break
loop prompt in bold red, as well as your input in red.

If it works for you and you like it, put a call of SetUserPreference("UseColorPrompt",
true); in your gap.ini file. If you want a more complicated setting as explained below then put
your SetUserPreference ("UseColorPrompt", rec(...)); callinto your gaprc file.

The optional second argument optrec allows one to further customize the behaviour. It must be
a record from which the following components are recognized:

MarkupStdPrompt
a string or no argument function returning a string containing the escape sequence used for the
main prompt gap> .

MarkupContPrompt
a string or no argument function returning a string containing the escape sequence used for the
continuation prompt > .

MarkupBrkPrompt
a string or no argument function returning a string containing the escape sequence used for the
break prompt brk...> .

MarkupInput
a string or no argument function returning a string containing the escape sequence used for user
input.

TextPrompt
a no argument function returning the string with the text of the prompt, but without any escape
sequences. The current standard prompt is returned by CPROMPT (). But note that changing the
standard prompts makes the automatic removal of prompts from input lines impossible (see 6.2).

PrePrompt
a function called before printing a prompt.

Here is an example.

LoadPackage ("GAPDoc") ;
timeSHOWMIN := 100;
ColorPrompt (true, rec(

GAP - Reference Manual 44

usually cyan bold, see 7TextAttr
MarkupStdPrompt := Concatenation(TextAttr.bold, TextAttr.6),
MarkupContPrompt := Concatenation(TextAttr.bold, TextAttr.6),
PrePrompt := function()

show the ’time’ automatically if at least timeSHOWMIN

if CPROMPT() = "gap> " and time >= timeSHOWMIN then

Print("Time of last command: ", time, " ms\n");

fi;

end))5

Chapter 4

The Programming Language

This chapter describes the GAP programming language. It should allow you in principle to predict
the result of each and every input. In order to know what we are talking about, we first have to look
more closely at the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP
is operating system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a
window, or read from a file. The mechanism does not matter. This representation of expressions by
characters is called the external representation of the expression. Every expression has at least one
external representation that can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal
representation. At this point the input is analyzed and inputs that are not legal external representations,
according to the rules given below, are rejected as errors. Those rules are usually called the syntax of
a programming language.

The internal representation created by reading is called either an expression or a statement. Later
we will distinguish between those two terms. However for now we will use them interchangeably. The
exact form of the internal representation does not matter. It could be a string of characters equal to the
external representation, in which case the reading would only need to check for errors. It could be a
series of machine instructions for the processor on which GAP is running, in which case the reading
would more appropriately be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution.
Later we will distinguish between those two terms too, but for the moment we will use them inter-
changeably. The name hints at the nature of this process, it replaces an expression with the value
of the expression. This works recursively, i.e., to evaluate an expression first the subexpressions are
evaluated and then the value of the expression is computed from those values according to rules given
below. Those rules are usually called the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a
value is represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an
external representation, i.e., a string of characters again. What you do with this external representation
is up to you. You can look at it, paste it with the mouse into another window, or write it to a file.

45

GAP - Reference Manual 46

Lets look at an example to make this more clear. Suppose you type in the following string of 8
characters

1+ 2 % 3

GAP takes this external representation and creates a tree-like internal representation, which we
can picture as follows

+

/ \

1 *
/\
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3.
Again, to do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they
are their own value, we say that they are self-evaluating. After this has been done, the rule for * tells
us that the value is the product of the values of the two subexpressions, which in this case is clearly 6.
Combining this with the value of the left operand of the +, which is self-evaluating, too, gives us the
value of the whole expression 7. This is then printed, i.e., converted into the external representation
consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that
govern the process of reading and the semantic rules that tell us for every expression how its value is
computed in terms of the values of the subexpressions. The syntactic rules are given in sections 4.2,
43,44, 4.5, and 4.6, the semantic rules are given in sections 4.7, 4.8, 4.11, 4.12, 4.13, 4.14, 4.15,
4.16,4.17, 4.18, 4.19, 4.20, 4.23, and the chapters describing the individual data types.

4.2 Lexical Structure

Most input of GAP consists of sequences of the following characters.
Digits, uppercase and lowercase letters, SPACE, TAB, NEWLINE, RETURN and the special char-
acters

" ¢ () *
. . <

—
)
|
A~ +
(o)

It is possible to use other characters in identifiers by escaping them with backslashes, but we do not
recommend to use this feature. Inside strings (see section 4.3 and chapter 27) and comments (see 4.4)
the full character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scan-
ning, that assembles the characters into symbols. A symbol is a sequence of characters that form a

GAP - Reference Manual 47

lexical unit. The set of symbols consists of keywords, identifiers, strings, integers, and operator and
delimiter symbols.

A keyword is areserved word (see 4.5). An identifier is a sequence of letters, digits and underscores
(or other characters escaped by backslashes) that contains at least one non-digit and is not a keyword
(see 4.6). An integer is a sequence of digits (see 14), possibly prepended by - and + sign characters.
A string is a sequence of arbitrary characters enclosed in double quotes (see 27).

Operator and delimiter symbols are

+ - * / - - !.
= <> < <= > >= I[
1= . .. -> s ; 1{
[] { } () :

Note also that during the process of scanning all whitespace is removed (see 4.4).

4.4 Whitespaces

The characters SPACE, TAB, NEWLINE, and RETURN are called whitespace characters. Whitespace is
used as necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example
Thorondor is a single identifier, while Th or ondor is the keyword or between the two identifiers
Th and ondor. Whitespace may occur between any two symbols, but not within a symbol. Two or
more adjacent whitespace characters are equivalent to a single whitespace. Apart from the role as
separator of symbols, whitespace characters are otherwise insignificant. Whitespace characters may
also occur inside a string, where they are significant. Whitespace characters should also be used freely
for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to
the end of the line on which the comment character appears. The whole comment, including # and the
NEWLINE character is treated as a single whitespace. Inside a string, the comment character # loses
its role and is just an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if 1 < 0 then # if i is negative

a := -i; # take its additive inverse
else # otherwise

a := i, # take itself
fi;

(which by the way shows that it is possible to write superfluous comments). However the first
statement is not equivalent to

ifi<Othena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then
and a, and else and a must be separated.

GAP - Reference Manual 48

4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The list of keywords is contained in the GAPInfo.Keywords compo-
nent of the GAPInfo record (see 3.5.1). We will show how to print it in a nice table, demonstrating at
the same time some list manipulation techniques:

Example

gap> keys:=SortedList(GAPInfo.Keywords);; l:=Length(keys);;
gap> arr:= List([0 .. Int(1/4)-1 1, i-> keys{ 4*xi + [1 .. 41 });;
gap> if 1 mod 4 <> O then Add(arr, keys{[4*Int(1/4) + 1 .. 1 1}); fi;
gap> Length(keys); PrintArray(arr);
35
[[Assert, Info, IsBound, QUIT 1,

[TryNextMethod, Unbind, and, atomic],

[break, continue, do, elif 1],

[else, end, false, fi],

[for, function, if, in],

[local, mod, not, od],

[or, quit, readonly, readwrite],

[rec, repeat, return, then],

[true, until, while] 1]

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For
example else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must
not contain whitespace, for example el if is not the same as elif.

Note: Several tokens from the list of keywords above may appear to be normal identifiers repre-
senting functions or literals of various kinds but are actually implemented as keywords for technical
reasons. The only consequence of this is that those identifiers cannot be re-assigned, and do not ac-
tually have function objects bound to them, which could be assigned to other variables or passed to
functions. These keywords are true, false, Assert (7.5.3), IsBound (4.8.1), Unbind (4.8.2), Info
(7.4.5) and TryNextMethod (78.4.1).

Keywords atomic, readonly, readwrite are not used at the moment. They are reserved for the
future version of GAP to prevent their accidental use as identifiers.

4.6 Identifiers

An identifier is used to refer to a variable (see 4.8). An identifier usually consists of letters, digits, un-
derscores _, and “at”-characters @, and must contain at least one non-digit. An identifier is terminated
by the first character not in this class. Note that the “at”-character @ is used to implement namespaces,
see Section 4.10 for details.

Examples of valid identifiers are

a foo alongIdentifier
hello Hello HELLO
x100 100x _100

some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords
abc@def

GAP - Reference Manual 49

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed by a
character is equivalent to the character, except that this escape sequence is considered to be an ordinary
letter. For example

G\ (2\,5\)

is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example * and \mod are
identifiers.

The length of identifiers is not limited, however only the first 1023 characters are significant. The
escape sequence \NEWLINE is ignored, making it possible to split long identifiers over multiple lines.

4.6.1 IsValidldentifier

> IsValidIdentifier(str) (function)

returns true if the string str would form a valid identifier consisting of letters, digits and under-
scores; otherwise it returns false. It does not check whether str contains characters escaped by a
backslash \.

Note that the “at”-character is used to implement namespaces for global variables in packages.
See 4.10 for details.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.14). Expressions appear as right hand
sides of assignments (see 4.15), as actual arguments in function calls (see 4.11), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose
value is the integer 12. The external representation of this integer is the character sequence 12, i.e.,
this sequence is output if the integer is printed. This sequence is another expression whose value is the
integer 12. The process of finding the value of an expression is done by the interpreter and is called
the evaluation of the expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals (see
4.8,4.11, 14, 42,27,4.23, 21, 29), are the simplest cases of expressions.

Expressions, for example the simple expressions mentioned above, can be combined with the
operators to form more complex expressions. Of course those expressions can then be combined
further with the operators to form even more complex expressions. The operators fall into three
classes. The comparisons are =, <>, <, <=, >, >=_and in (see 4.12 and 30.6). The arithmetic operators
are +, -, *, /, mod, and ~ (see 4.13). The logical operators are not, and, and or (see 20.4).

The following example shows a very simple expression with value 4 and a more complex expres-
sion.

Example

gap> 2 * 2;

4

gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true

GAP - Reference Manual 50

For the precedence of operators, see 4.12.

4.8 Variables

A variable is a location in a GAP program that points to a value. We say the variable is bound to this
value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by
assigning this value to the variable (see 4.15). Because of this we sometimes say that a variable that is
not bound to any value has no assigned value. Assignment is in fact the only way by which a variable,
which is not an argument of a function, can be bound to a value. After a variable has been bound to a
value an assignment can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other
variables, except they are bound to the value of the actual arguments upon a function call (see 4.11).

Each variable has a name that is also called its identifier. This is because in a given scope an
identifier identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There
is the global scope that encloses the entire program text, and there are local scopes that range from
the function keyword, denoting the beginning of a function definition, to the corresponding end
keyword. A local scope introduces new variables, whose identifiers are given in the formal argument
list and the local declaration of the function (see 4.23). Usage of an identifier in a program text
refers to the variable in the innermost scope that has this identifier as its name. Because this mapping
from identifiers to variables is done when the program is read, not when it is executed, GAP is said to
have lexical scoping. The following example shows how one identifier refers to different variables at
different points in the program text.

g := 0; # global variable g
x := function (a, b, c)
local vy;
g 1= C; # c refers to argument c of function x

y := function (y)
local d, e, f;
d :=y; # y refers to argument y of function

<

e := b; # b refers to argument b of function x
f :=g; # g refers to global variable g
return d + e + £f;
end;
return y(a); # y refers to local y of function x
end;

It is important to note that the concept of a variable in GAP is quite different from the concept of
a variable in most compiled programming languages.

In those languages a variable denotes a block of memory. The value of the variable is stored in this
block. So in those languages two variables can have the same value, but they can never have identical
values, because they denote different blocks of memory. Note that some languages have the concept of
a reference argument. It seems as if such an argument and the variable used in the actual function call
have the same value, since changing the argument’s value also changes the value of the variable used
in the actual function call. But this is not so; the reference argument is actually a pointer to the variable
used in the actual function call, and it is the compiler that inserts enough magic to make the pointer

GAP - Reference Manual 51

invisible. In order for this to work the compiler needs enough information to compute the amount of
memory needed for each variable in a program, which is readily available in the declarations.

In GAP on the other hand each variable just points to a value, and different variables can share the
same value.

4.8.1 IsBound (for a global variable)

> IsBound(ident) (function)

IsBound returns true if the variable ident points to a value, and false otherwise.
For records and lists IsBound can be used to check whether components or entries, respectively,
are bound (see Chapters 29 and 21).

4.8.2 Unbind (unbind a variable)

> Unbind(ident) (function)

deletes the identifier ident. If there is no other variable pointing to the same value as ident was,
this value will be removed by the next garbage collection. Therefore Unbind can be used to get rid of
unwanted large objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chap-
ters 29 and 21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used
to access functions and other objects created either in the GAP library or packages or in the user’s
code.

Note that for packages there is a mechanism to implement package local namespaces on top of
this global namespace. See Section 4.10 for details.

Certain special facilities are provided for manipulating global variables which are not available for
other types of variable (such as local variables or function arguments).

First, such variables may be marked read-only using MakeReadOnlyGlobal (4.9.2). In which
case attempts to change them will fail. Most of the global variables defined in the GAP library are so
marked. read-only variables can be made read-write again by calling MakeReadWriteGlobal (4.9.3).
GAP also features constant variables, which are created by calling MakeConstantGlobal (4.9.4).
Constant variables can never be changed. In some cases, GAP can optimise code which uses constant
variables, as their value never changes. In this version GAP these optimisations can be observed by
printing the function back out, but this behaviour may change in future.

Example

gap> globali := 1 + 2;;

gap> globalb := true;;

gap> MakeConstantGlobal("globali");
gap> MakeConstantGlobal("globalb");
gap> f := function()

> if globalb then

> return globali + 1;

> else

GAP - Reference Manual 52

> return globali + 2;
> fi;
> end;;
gap> Print(f);
function ()
return 3 + 1;

end

Second, a group of functions are supplied for accessing and altering the values assigned to global
variables. Use of these functions differs from the use of assignment, Unbind (4.8.2) and IsBound
(4.8.1) statements, in two ways. First, these functions always affect global variables, even if local
variables of the same names exist. Second, the variable names are passed as strings, rather than being
written directly into the statements.

Note that the functions NamesGVars (4.9.9), NamesSystemGVars (4.9.10), NamesUserGVars
(4.9.11), and TemporaryGlobalVarName (4.9.12) deal with the global namespace.

4.9.1 IsReadOnlyGlobal

> IsReadOnlyGlobal (name) (function)

returns true if the global variable named by the string name is read-only and false otherwise
(the default).

4.9.2 MakeReadOnlyGlobal

> MakeReadOnlyGlobal (name) (function)

marks the global variable named by the string name as read-only.
A warning is given if name has no value bound to it or if it is already read-only.

4.9.3 MakeReadWriteGlobal

> MakeReadWriteGlobal (name) (function)

marks the global variable named by the string name as read-write.
A warning is given if name is already read-write.

Example
gap> xx := 17;
17
gap> IsReadOnlyGlobal("xx");
false
gap> xx := 15;
15

gap> MakeReadOnlyGlobal ("xx");

gap> xx := 16;

Variable: ’xx’ is read only

not in any function

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or

GAP - Reference Manual 53

you can ’return;’ after making it writable to continue
brk> quit;

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal ("xx");

gap> xx := 16;

16

gap> IsReadOnlyGlobal ("xx");

false

4.9.4 MakeConstantGlobal

> MakeConstantGlobal (name) (function)

MakeConstantGlobal (name) marks the global variable named by the string name as constant.
A constant variable can never be changed or made read-write. Constant variables can only take an
integer value, true or false. There is a limit on the size of allowed integers.

A warning is given if name is already constant.

4.9.5 ValueGlobal

> ValueGlobal (name) (function)

returns the value currently bound to the global variable named by the string name. An error is
raised if no value is currently bound.

4.9.6 IsBoundGlobal

> IsBoundGlobal (name) (function)

returns true if a value currently bound to the global variable named by the string name and false
otherwise.
4.9.7 UnbindGlobal

> UnbindGlobal (name) (function)

removes any value currently bound to the global variable named by the string name. Nothing is
returned.

A warning is given if name was not bound. The global variable named by name must be writable,
otherwise an error is raised.

4.9.8 BindGlobal

> BindGlobal (name, val) (function)
> BindConstant (name, val) (function)

GAP - Reference Manual 54

BindGlobal and BindConstant set the global variable named by the string name to the value
val, provided that variable is writable. BindGlobal makes the resulting variable read-only, while
BindConstant makes it constant. If name already had a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as opera-
tions, filters and constants).

Caution should be exercised in using these functions, especially UnbindGlobal (4.9.7) as unex-
pected changes in global variables can be very confusing for the user.

Example
gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false
gap> ValueGlobal("xx");
16
gap> IsBoundGlobal("xx");
true

gap> BindGlobal ("xx",17);

#W BIND_GLOBAL: variable ‘xx’ already has a value
gap> xx;

17

gap> IsReadOnlyGlobal("xx");

true

gap> MakeReadWriteGlobal("xx");

gap> Unbind(xx) ;

4.9.9 NamesGVars

> NamesGVars () (function)

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable
names known to the system. This includes names of variables which were bound but have now been
unbound and some other names which have never been bound but have become known to the system
by various routes.

4.9.10 NamesSystemGVars

> NamesSystemGVars () (function)

This function returns an immutable sorted list of all the global variable names created by the GAP
library when GAP was started.

4.9.11 NamesUserGVars

> NamesUserGVars() (function)

This function returns an immutable sorted list of the global variable names created since the library
was read, to which a value is currently bound.

GAP - Reference Manual 55

4.9.12 TemporaryGlobalVarName

> TemporaryGlobalVarName ([prefix]) (function)

returns a string that can be used as the name of a global variable that is not bound at the time when
TemporaryGlobalVarName is called. The optional argument prefix can specify a string with which
the name of the global variable starts.

4.10 Namespaces for GAP packages

As mentioned in Section 4.9 above all global variables share a common namespace. This can relatively
easily lead to name clashes, in particular when many GAP packages are loaded at the same time. To
give package code a way to have a package local namespace without breaking backward compatibility
of the GAP language, the following simple rule has been devised:

If in package code a global variable that ends with an “at”-character @ is accessed in any way,
the name of the package is appended before accessing it. Here, “package code” refers to everything
which is read with ReadPackage (76.3.1). As the name of the package the entry PackageName in its
PackageInfo.g file is taken. As for all identifiers, this name is case sensitive.

For example, if the following is done in the code of a package with name xYz:

Example

gap> a@ := 12;

Then actually the global variable a@xYz is assigned. Further accesses to a@ within the package code
will all be redirected to a@xYz. This includes all the functions described in Section 4.9 and indeed all
the functions described Section 79.18 like for example DeclareCategory (79.18.1). Note that from
code in the same package it is still possible to access the same global variable via a@xYz explicitly.

All other code outside the package as well as interactive user input that wants to refer to that
variable a@xYz must do so explicitly by using a@xYz.

Since in earlier releases of GAP the “at”-character @ was not a legal character (without using
backslashes), this small extension of the language does not break any old code.

4.11 Function Calls

4.11.1 Function Call With Arguments

function-var ([arg-expr[, arg-expr, ...11)

The function call has the effect of calling the function function-var. The precise semantics are
as follows.

First GAP evaluates the function-var. Usually function-var is a variable, and GAP does
nothing more than taking the value of this variable. It is allowed though that function-var
is a more complex expression, such as a reference to an element of a list (see Chapter 21)
list-var [int-expr], or to a component of a record (see Chapter 29) record-var.ident. In
any case GAP tests whether the value is a function. If it is not, GAP signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of
formal arguments as given in the function definition. If they do not agree GAP signals an error. An
exception is the case when the function has a variable length argument list, which is denoted by adding

GAP - Reference Manual 56

. after the final argument. In this case there must be at least as many actual arguments as there are
formal arguments before the final argument and can be any larger number (see 4.23 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers in
the 1local declaration) a new variable. Remember that a variable is a location in a GAP program that
points to a value. Thus for each formal argument and for each formal local such a location is allocated.

Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created
variables corresponding to the formal arguments. Of course the first value is assigned to the new
variable corresponding to the first formal argument, the second value is assigned to the new variable
corresponding to the second formal argument, and so on. However, GAP does not make any guarantee
about the order in which the arguments are evaluated. They might be evaluated left to right, right to left,
or in any other order, but each argument is evaluated once. An exception again occurs if the last formal
argument has the name arg. In this case the values of all the actual arguments not assigned to the other
formal parameters are stored in a list and this list is assigned to the new variable corresponding to the
formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So
trying to evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the
formal arguments or formal locals appears in the body of the function it refers to the new variable that
was allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see
4.24) is executed, execution of the body is terminated and the value of the function call is the value
of the expression of the return. If during the execution of the body a return statement without an
expression is executed, execution of the body is terminated and the function call does not produce a
value, in which case we call this call a procedure call (see 4.16). If the execution of the body completes
without execution of a return statement, the function call again produces no value, and again we talk
about a procedure call.

Example

gap> Fibonacci(11);
89

The above example shows a call to the function Fibonacci (16.3.1) with actual argument 11, the
following one shows a call to the operation RightCosets (39.7.2) where the second actual argument

is another function call.
Example
gap> RightCosets(G, Intersection(U, V));;

4.11.2 Function Call With Options

function-var (arg-expr[, arg-expr, ...]1[: [option-expr [,option-expr,
11D

As well as passing arguments to a function, providing the mathematical input to its calculation,
it is sometimes useful to supply “hints” suggesting to GAP how the desired result may be computed
more quickly, or specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have
much the same syntax as the components of a record expression. The one exception to this is that a
component name may appear without a value, in which case the value true is silently inserted.

GAP - Reference Manual 57

The following example shows a call to Size (30.4.6) passing the options hard (with the value
true) and tcselection (with the string "external" as value).

Example
gap> Size(fpgrp : hard, tcselection := "external");

Options supplied with function calls in this way are passed down using the global options stack
described in chapter 8, so that the call above is exactly equivalent to
Example
gap> PushOptions(rec(hard := true, tcselection := "external"));
gap> Size(fpgrp);
gap> PopOptions();

Note that any option may be passed with any function, whether or not it has any actual meaning
for that function, or any function called by it. The system provides no safeguard against misspelled
option names.

4.12 Comparisons

left-expr = right-expr

left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and
to false otherwise. Likewise <> tests for inequality of its two operands. For each type of objects
the definition of equality is given in the respective chapter. Objects in different families (see 13.1) are
never equal, i.e., = evaluates in this case to false, and <> evaluates to true.

left-expr < right-expr

left-expr > right-expr

left-expr <= right-expr

left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two
operands. For each kind of objects the definition of the ordering is given in the respective chapter.

Note that < implements a total ordering of objects (which can be used for example to sort a list
of elements). Therefore in general < will not be compatible with any inclusion relation (which can be
tested using IsSubset (30.5.1)). (For example, it is possible to compare permutation groups with <
in a total ordering of all permutation groups, but this ordering is not compatible with the relation of
being a subgroup.)

Only for the following kinds of objects, an ordering via < of objects in different families (see 13.1)
is supported. Rationals (see IsRat (17.2.1)) are smallest, next are cyclotomics (see IsCyclotomic
(18.1.3)), followed by finite field elements (see ISFFE (59.1.1)); finite field elements in different
characteristics are compared via their characteristics, next are permutations (see IsPerm (42.1.1)),
followed by the boolean values true, false, and fail (see IsBool (20.1.1)), characters (such as
{}a{’}’, see IsChar (27.1.1)), and lists (see IsList (21.1.1)) are largest; note that two lists can be
compared with < if and only if their elements are again objects that can be compared with <.

For other objects, GAP does not provide an ordering via <. The reason for this is that a total
ordering of all GAP objects would be hard to maintain when new kinds of objects are introduced, and
such a total ordering is hardly used in its full generality.

GAP - Reference Manual 58

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For
example, one can form sorted lists containing integers and nested lists of integers, and then search in
them using PositionSorted (see 21.16).

Of course it would in principle be possible to define an ordering via < also for certain other objects,
by installing appropriate methods for the operation \<. But this may lead to problems at least as soon
as one loads GAP code in which the same is done, under the assumption that one is completely free to
define an ordering via < for other objects than the ones for which the “official” GAP provides already
an ordering via <.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not
allowed towritea = b <> ¢ = d,youmustuse (a = b) <> (¢ = d) instead. The comparison
operators have higher precedence than the logical operators (see 20.4), but lower precedence than the
arithmetic operators (see 4.13). Thus, for instance, a * b = ¢ and d is interpreted as ((a * b)
= ¢) and d).

The following example shows a comparison where the left operand is an expression.

Example

gap> 2 * 2 + 9 = Fibonacci(7);
true

For the underlying operations of the operators introduced above, see 31.11.

4.13 Arithmetic Operators

+ right-expr

- right-expr

left-expr + right-expr

left-expr - right-expr

left-expr * right-expr

left-expr / right-expr

left-expr mod right-expr

left-expr ~ right-expr

The arithmetic operators are +, -, *, /, mod, and ~. The meanings (semantics) of those operators
generally depend on the types of the operands involved, and they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b.

a - b denotes the addition of a and the additive inverse of b.

a * b denotes the multiplication of multiplicative elements a and b.

a / b denotes the multiplication of a with the multiplicative inverse of b.

a mod b, for integer or rational left operand a and for non-zero integer right operand b, is defined
as follows. If a and b are both integers, a mod b is the integer r in the integer range 0 .. |b]
- 1 satisfying a = r + bq, for some integer g (where the operations occurring have their usual
meaning over the integers, of course).

If a is a rational number and b is a non-zero integer, and a = m / n where m and n are coprime
integers with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such that
m is congruent to rn modulo b, and r is called the “modular remainder” of a modulo b. Also, 1 /
n mod b is called the “modular inverse” of n modulo b. (A pair of integers is said to be coprime (or
relatively prime) if their greatest common divisor is 1.)

GAP - Reference Manual 59

With the above definition, 4 / 6 mod 32equals2 / 3 mod 32 and hence exists (and is equal to
22), despite the fact that 6 has no inverse modulo 32.

Note: For rational a, a mod b could have been defined to be the non-negative rational c less than
|b| such that a - ¢ is a multiple of b. However this definition is seldom useful and not the one
chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the
additive inverse of its operand; over the integers it is equivalent to multiplication by -1.

~ denotes powering of a multiplicative element if the right operand is an integer, and is also used
to denote the action of a group element on a point of a set if the right operand is a group element.

The precedence of those operators is as follows. The powering operator ~ has the highest prece-
dence, followed by the unary operators + and -, which are followed by the multiplicative operators
*, /, and mod, and the additive binary operators + and - have the lowest precedence. That means
that the expression -2 ~ -2 * 3 + 1 is interpreted as (-(2 ~ (-2)) * 3) + 1. If in doubt use
parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ~ is not associative, i.e., it is invalid to
write 2~3~4, use parentheses to clarify whether you mean (2~3)~4 or 2~ (3~4). The unary operators
+ and - are right associative, because they are written to the left of their operands. *, /, mod, +, and
- are all left associative, i.e., 1-2-3 is interpreted as (1-2) -3 not as 1-(2-3). Again, if in doubt use
parentheses to clarify your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.12 and 30.6)
and the logical operators (see 20.4). Thus, for example,a * b = ¢ and d isinterpreted, ((a * b)
= ¢) and d.

Example

gap> 2 * 2 + 9; # a very simple arithmetic expression
13

For other arithmetic operations, and for the underlying operations of the operators introduced
above, see 31.12.

4.14 Statements

Assignments (see 4.15), Procedure calls (see 4.16), if statements (see 4.17), while (see 4.18), repeat
(see 4.19) and for loops (see 4.20), and the return statement (see 4.24) are called statements. They
can be entered interactively or be part of a function definition. Every statement must be terminated by
a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For
example an assignment has the effect of assigning a value to a variable, a for loop has the effect of
executing a statement sequence for all elements in a list and so on. We will talk about evaluation of
expressions but about execution of statements to emphasize this difference.

Using expressions as statements is treated as syntax error.

Example
gap> i :=7;;
gap> if i <> O then k = 16/1i; fi;
Syntax error: := expected

if i <> 0 then k = 16/i; fi;

gap>

GAP - Reference Manual 60

As you can see from the example this warning does in particular address those users who are used
to languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.

A sequence of one or more statements is a statement sequence, and may occur everywhere instead
of a single statement. Each construct is terminated by a keyword. The simplest statement sequence
is a single semicolon, which can be used as an empty statement sequence. In fact an empty statement
sequence as in for i in [1 .. 2] do od is also permitted and is silently translated into the
sequence containing just a semicolon.

4.15 Assignments

var := expr;
The assignment has the effect of assigning the value of the expressions expr to the variable var.
The variable var may be an ordinary variable (see 4.8), a list element selection
list-var [int-expr] (see 21.4) or a record component selection record-var . ident (see 29.3).
Since a list element or a record component may itself be a list or a record the left hand side of an
assignment may be arbitrarily complex.
Note that variables do not have a type. Thus any value may be assigned to any variable. For
example a variable with an integer value may be assigned a permutation or a list or anything else.

Example
gap> data:= rec(numbers:= [1, 2, 3]);
rec(numbers := [1, 2, 3])

gap> data.string:= "string";; data;

rec(numbers := [1, 2, 3], string := "string")
gap> data.numbers[2]:= 4;; data;
rec(numbers := [1, 4, 3], string := "string")

If the expression expr is a function call then this function must return a value. If the function
does not return a value an error is signalled and you enter a break loop (see 6.4). As usual you can
leave the break loop with quit;. If you enter return return-expr; the value of the expression
return-expr is assigned to the variable, and execution continues after the assignment.

Example
gap> f1:= function(x) Print("value: ", x, "\n"); end;;
gap> f2:= function(x) return f1(x); end;;
gap> f2(4);
value: 4

Function Calls: <func> must return a value at
return £f1(x);
called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can supply one by ’return <value>;’ to continue
brk> return "hello";
"hello"

In the above example, the function £2 calls £1 with argument 4, and since £1 does not return a
value (but only prints a line “value: ...”), the return statement of £2 cannot be executed. The

GAP - Reference Manual 61

error message says that it is possible to return an appropriate value, and the returned string "hello"
is used by £2 instead of the missing return value of £1.

4.16 Procedure Calls

procedure-var ([arg-expr [,arg-expr, ...11);

The procedure call has the effect of calling the procedure procedure-var. A procedure call is
done exactly like a function call (see 4.11). The distinction between functions and procedures is only
for the sake of the discussion, GAP does not distinguish between them. So we state the following
conventions.

A function does return a value but does not produce a side effect. As a convention the name
of a function is a noun, denoting what the function returns, e.g., "Length", "Concatenation" and
"Order".

A procedure is a function that does not return a value but produces some effect. Procedures are
called only for this effect. As a convention the name of a procedure is a verb, denoting what the
procedure does, e.g., "Print", "Append" and "Sort".

Example
gap> Read("myfile.g"); # a call to the procedure Read
gap> 1 := [1, 2 1;;

gap> Append(1, [3,4,5]); # a call to the procedure Append

There are a few exceptions of GAP functions that do both return a value and produce some effect.
An example is Sortex (21.18.3) which sorts a list and returns the corresponding permutation of the
entries.

417 It

if bool-exprl then statementsl { elif bool-expr2 then statements2 }[else
statements3] fi;

The if statement allows one to execute statements depending on the value of some boolean ex-
pression. The execution is done as follows.

First the expression bool-expril following the if is evaluated. If it evaluates to true the state-
ment sequence statements1 after the first then is executed, and the execution of the if statement is
complete.

Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may
be any number of elif parts, possibly none at all. As soon as an expression evaluates to true the
corresponding statement sequence statements2 is executed and execution of the if statement is
complete.

If the if expression and all, if any, elif expressions evaluate to false and there is an else
part, which is optional, its statement sequence statements3 is executed and the execution of the if
statement is complete. If there is no else part the if statement is complete without executing any
statement sequence.

Since the if statement is terminated by the £fi keyword there is no question where an else part
belongs, i.e., GAP has no “dangling else”. In

if exprl then if expr2 then statsl else stats2 fi; fi;

GAP - Reference Manual 62

the else part belongs to the second if statement, whereas in

if exprl then if expr2 then statsl fi; else stats2 fi;

the else part belongs to the first if statement.
Since an if statement is not an expression it is not possible to write

abs := if x > O then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a value
that could be assigned to abs.

If one of the expressions bool-exprl, bool-expr2 is evaluated and its value is neither true nor
false an error is signalled and a break loop (see 6.4) is entered. As usual you can leave the break loop
with quit;. If you enter return true;, execution of the if statement continues as if the expression
whose evaluation failed had evaluated to true. Likewise, if you enter return false;, execution of
the if statement continues as if the expression whose evaluation failed had evaluated to false.

Example
gap> i := 10;;
gap> if O < i then
> s :=1;
> elif i < O then
> s = -1;
> else
> s := 0;
> fi;
gap> s; # the sign of i
1

4.18 While

while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr
evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates
and the statement immediately following the while loop is executed next. Otherwise if it evaluates to
true the statements are executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 4.19) is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4)
is entered. As usual you can leave the break loop with quit ;. If you enter return false;, execution
continues with the next statement immediately following the while loop. If you enter return true;,
execution continues at statements, after which the next evaluation of bool-expr may cause another
erTor.

The following example shows a while loop that sums up the squares 12,22, ... until the sum
exceeds 200.

GAP - Reference Manual 63

Example

gap> i := 0;; s := 033

gap> while s <= 200 do

> i:=1i+1; s =8+ i~2;
> od;

gap> s;

204

A while loop may be left prematurely using break, see 4.21.

4.19 Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr
evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat
loop terminates and the statement immediately following the repeat loop is executed next. Otherwise
if it evaluates to false the whole process begins again with the execution of the statements.

The difference between the while loop (see 4.18) and the repeat until loop is that the
statements in the repeat until loop are executed at least once, while the statements in the
while loop are not executed at all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see
6.4) is entered. As usual you can leave the break loop with quit;. If you enter return true;,
execution continues with the next statement immediately following the repeat loop. If you enter
return false;, execution continues at statements, after which the next evaluation of bool-expr
may cause another error.

The repeat loop in the following example has the same purpose as the while loop in the preced-
ing example, namely to sum up the squares 12,22, ... until the sum exceeds 200.

Example

gap> i := 0;; s := 033
gap> repeat

> i:=1i+1; s :=8 + i~2;
> until s > 200;

gap> s;

204

A repeat loop may be left prematurely using break, see 4.21.

4.20 For

for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list
list-expr.

The statement sequence statements is first executed with simple-var bound to the first element
of the list 1ist-expr, then with simple-var bound to the second element of 1ist-expr and so on.
simple-var must be a simple variable, it must not be a list element selection 1ist-var [int-expr]
or a record component selection record-var . ident.

GAP - Reference Manual 64

The execution of the for loop over a list is exactly equivalent to the following while loop.

loop_list := list;

loop_index := 1;

while loop_index <= Length(loop_list) do
variable := loop_list[loop_index];
statements
loop_index := loop_index + 1;

od;

with the exception that “loop_list” and “loop_index” are different variables for each for loop, i.e.,
these variables of different for loops do not interfere with each other.

The list 1ist-expr is very often a range (see 21.22).

for variable in [from..to] do statements od;

corresponds to the more common

for variable from from to to do statements od;

in other programming languages.

Example
gap> s := 0;;

gap> for i in [1..100] do

> s :=s + i;

> od;

gap> s;

5050

Note in the following example how the modification of the /ist in the loop body causes the loop
body also to be executed for the new values.

Example

gap> 1 := [1, 2, 3, 4, 5, 6 1;;

gap> for i in 1 do

> Print(i, " ");

> if i mod 2 = 0 then Add(1, 3 * i / 2); fi;
> od; Print("\n");

12345636099

gap> 1;

[1, 2, 3, 4, 5, 6, 3, 6, 9, 9]

Note in the following example that the modification of the variable that holds the list has no
influence on the loop.

Example

gap> 1 := [1, 2, 3, 4, 5, 6 1;;
gap> for i in 1 do

> Print(i, " ");

> 1 :=[1;

> od; Print("\n");

123456

gap> 1;

[1]

GAP - Reference Manual 65

for variable in iterator do statements od;
It is also possible to have a for-loop run over an iterator (see 30.8). In this case the for-loop is
equivalent to

while not IsDonelterator(iterator) do
variable := NextIterator(iterator)
statements

od;

for variable in object do statements od;
Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will
attempt to evaluate the function call Iterator(object). If this is successful then the loop is taken
to run over the iterator returned.
Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)
gap> count := 0;; sumord := 0;;
gap> for x in g do
> count := count + 1; sumord := sumord + Order(x); od;
gap> count;
120
gap> sumord;
471

The effect of

for variable in domain do

should thus normally be the same as

for variable in AsList(domain) do

but may use much less storage, as the iterator may be more compact than a list of all the elements.

See 30.8 for details about iterators.

A for loop may be left prematurely using break, see 4.21. This combines especially well with
a loop over an iterator, as a way of searching through a domain for an element with some useful
property.

4.21 Break

break;
The statement break; causes an immediate exit from the innermost loop enclosing it.

Example
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6) 1)

gap> for x in g do

> if Order(x) 3 then

> break;

> fi; od;

gap> x;

(1,5,2)(3,4,6)

GAP - Reference Manual 66

It is an error to use this statement other than inside a loop.

Example

gap> break;
Syntax error: ’break’ statement not enclosed in a loop

4.22 Continue

continue;

The statement continue; causes the rest of the current iteration of the innermost loop enclosing
it to be skipped.

Example
gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2) 1)

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

O

(2,3)

(1,3)

(1,2)

It is an error to use this statement other than inside a loop.

Example
gap> continue;

Syntax error: ’continue’ statement not enclosed in a loop

4.23 Function

function([arg-ident {, arg-ident}])
[local loc-ident {, loc-ident} ;]
statements
end
A function is in fact a literal and not a statement. Such a function literal can be assigned to a
variable or to a list element or a record component. Later this function can be called as described in
4.11.
The following is an example of a function definition. It is a function to compute values of the
Fibonacci sequence (see Fibonacci (16.3.1)).

Example

gap> fib := function (n)
local f1, f2, £3, i;
f1 :=1; £2 := 1;
for i in [3..n] do
f3 = f1 + £2;
f1 := £2;
£f2 := £3;
od;

V V V V V V V

GAP - Reference Manual 67

> return f2;

> end;;

gap> List([1..10], fib);

(1,1, 2, 3,5, 8, 13, 21, 34, 55]

Because for each of the formal arguments arg-ident and for each of the formal locals
loc-ident a new variable is allocated when the function is called (see 4.11), it is possible that a
function calls itself. This is usually called recursion. The following is a recursive function that com-
putes values of the Fibonacci sequence.

Example
gap> fib := function (n)
if n < 3 then
return 1;
else
return fib(n-1) + fib(n-2);
fi;
end;;
ap> List([1..10], fib);
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 1]

—,0R V V V V V V

Note that the recursive version needs 2 * fib(n) -1 steps to compute £ib(n), while the iterative
version of £ib needs only n-2 steps. Both are not optimal however, the library function Fibonacci
(16.3.1) only needs about Log(n) steps.

As noted in Section 4.11, the case where a function’s last argument is followed by . . . is special.
It provides a way of defining a function with a variable number of arguments. The values of the actual
arguments are computed and the first ones are assigned to the new variables corresponding to the
formal arguments before the last argument, if any. The values of all the remaining actual arguments are
stored in a list and this list is assigned to the new variable corresponding to the final formal argument.
There are two typical scenarios for wanting such a possibility: having optional arguments and having
any number of arguments.

The following example shows one way that the function Position (21.16.1) might be encoded
and demonstrates the “optional argument” scenario.

Example
gap> position := function (list, obj, arg...)

local pos;

if 0 = Length(arg) then
pos := 0;

else
pos := arg[i];

fi;

repeat
pos := pos + 1;

if pos > Length(list) then
return fail;
fi;
until list[pos] = obj;
return pos;
end;
function(list, obj, arg...) ... end

V VVV VYV VYV VYV VYVVYV

GAP - Reference Manual 68

gap> position([1, 4, 2], 4);

2

gap> position([1, 4, 2], 3);
fail

gap> position([1, 4, 2], 4, 2);
fail

The following example demonstrates the “any number of arguments” scenario.

Example
gap> sum := function (1...)
> local total, x;
> total := 0;
> for x in 1 do
> total := total + x;
> od;
> return total;
> end;
function(1...) ... end
gap> sum(l, 2, 3);

6

gap> sum(1l, 2, 3, 4);
10

gap> sum();

0

The user should compare the above with the GAP function Sum (21.20.26) which, for example,
may take a list argument and optionally an initial element (which zero should the sum of an empty list
return?).

GAP will also special case a function with a single argument with the name arg as function with
a variable length list of arguments, as if the user had written arg. . ..

Note that if a function £ is defined as above then NumberArgumentsFunction(f) returns minus
the number of formal arguments (including the final argument) (see NumberArgumentsFunction
(5.1.2)).

Using the ... notation on a function £ with only a single named argument tells GAP that when
it encounters f that it should form a list out of the arguments of f. What if one wishes to do the
“opposite”: tell GAP that a list should be “unwrapped” and passed as several arguments to a function.
The function CallFuncList (5.2.1) is provided for this purpose.

Also see Chapter 5.

{ arg-list } -> expr

This is a shorthand for

function (arg-list) return expr; end.

arg-list is a (possibly empty) argument list. Any arguments list which would be valid for a
normal GAP function is also valid here (including variadic arguments).

The following gives a couple of examples of a typical use of such a function

Example
gap> Sum(List([1..100], {x} -> x"2));
338350

gap> list := [3, 5, 2, 1, 3];;

gap> Sort(list, {x,y} -> x > y);

GAP - Reference Manual

gap> list;

[5, 3, 3, 2, 11

gap> £ := {x,y...} -> vy;;
gap> £(1,2,3,4);

[2, 3, 4]
gap> f := {} -> 2;
function() ... end

gap> Print(f);

function ()
return 2;

end

gap> £0;

2

69

The { and } may be omitted for functions with one argument:

Example
gap> Sum(List([1..100], {x} -> x"2));
338350

gap> Sum(List([1..100], x -> x72));
338350

When the definition of a function fun1 is evaluated inside another function fun2, GAP binds all
the identifiers inside the function fun1 that are identifiers of an argument or a local of fun2 to the
corresponding variable. This set of bindings is called the environment of the function funl. When
funl is called, its body is executed in this environment. The following implementation of a simple
stack uses this. Values can be pushed onto the stack and then later be popped off again. The interesting
thing here is that the functions push and pop in the record returned by Stack access the local variable
stack of Stack. When Stack is called, a new variable for the identifier stack is created. When
the function definitions of push and pop are then evaluated (as part of the return statement) each
reference to stack is bound to this new variable. Note also that the two stacks A and B do not interfere,

because each call of Stack creates a new variable for stack.
Example

gap> Stack := function ()
local stack;

stack := [];
return rec(
push := function (value)
Add(stack, value);
end,

pop := function ()
local value;
value := stack[Length(stack)];
Unbind(stack[Length(stack)]);
return value;
end
)3
end;;
gap> A := StackQ;;
gap> B := Stack();;
gap> A.push(1); A.push(2); A.push(3);
gap> B.push(4); B.push(5); B.push(6);

V VVV VV VYV VYV VYVVYV

GAP - Reference Manual 70

gap> A.pop(); A.pop(); A.pop(O);
3
2
1
gap> B.pop(); B.pop(); B.pop();
6
5
4

This feature should be used rarely, since its implementation in GAP is not very efficient.

4.24 Return (With or without Value)

return;

In this form return terminates the call of the innermost function that is currently executing, and
control returns to the calling function. An error is signalled if no function is currently executing. No
value is returned by the function.

return expr;

In this form return terminates the call of the innermost function that is currently executing, and
returns the value of the expression expr. Control returns to the calling function. An error is signalled
if no function is currently executing.

Both statements can also be used in break loops (see 6.4). return; has the effect that the com-
putation continues where it was interrupted by an error or the user hitting CTRL-C. return expr;
can be used to continue execution after an error. What happens with the value expr depends on the
particular error.

For examples of return statements, see the functions £ib and Stack in Section 4.23.

Chapter 5

Functions

The section 4.23 describes how to define a function. In this chapter we describe functions that give in-
formation about functions, and various utility functions used either when defining functions or calling
functions.

5.1 Information about a function

5.1.1 NameFunction

> NameFunction(func) (operation)

returns the name of a function. For operations, this is the name used in their declaration. For
functions, this is the variable name they were first assigned to. (For some internal functions, this
might be a name different from the name that is documented.) If no such name exists, the string
"unknown" is returned.
Example

gap> NameFunction(SylowSubgroup) ;
"SylowSubgroup"

gap> Blubberflutsch:=x->x;;

gap> NameFunction(Blubberflutsch);
"Blubberflutsch"

gap> a:=Blubberflutsch;;

gap> NameFunction(a);
"Blubberflutsch"

gap> NameFunction(x->x);
"unknown"

gap> NameFunction(NameFunction) ;
"NameFunction"

5.1.2 NumberArgumentsFunction
> NumberArgumentsFunction(func) (operation)
returns the number of arguments the function func accepts. -1 is returned for all operations. For

functions that use . . . or arg to take a variable number of arguments, the number returned is -1 times
the total number of parameters. For attributes, 1 is returned.

71

GAP - Reference Manual 72

Example
gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);
11
gap> NumberArgumentsFunction(Size);
1
gap> NumberArgumentsFunction(IsCollsCollsElms) ;
3
gap> NumberArgumentsFunction(Sum) ;
-1
gap> NumberArgumentsFunction(function(a, x...) return 1; end);
-2

5.1.3 NamesLocalVariablesFunction

> NamesLocalVariablesFunction(func) (operation)

returns a mutable list of strings; the first entries are the names of the arguments of the function
func, in the same order as they were entered in the definition of func, and the remaining ones are the
local variables as given in the local statement in func. (The number of arguments can be computed
with NumberArgumentsFunction (5.1.2).)
Example
gap> NamesLocalVariablesFunction(function(a, b) local c; return 1; end);
[Ilall’ llbll, "C"]
gap> NamesLocalVariablesFunction(function(arg) local a; return 1; end);
[Ilargll s llall]
gap> NamesLocalVariablesFunction(Size);
fail

5.1.4 FilenameFunc
> FilenameFunc(func) (function)
For a function func, FilenameFunc returns either fail or the absolute path of the file from which

func has been read. The return value fail occurs if func is a compiled function or an operation. For
functions that have been entered interactively, the string "*stdin*" is returned, see Section 9.5.

Example
gap> FilenameFunc(LEN_LIST); # a kernel function
fail
gap> FilenameFunc(Size); # an operation
fail
gap> FilenameFunc(x -> x72); # an interactively entered function
"*stdin*"
gap> meth:= ApplicableMethod(Size, [Group(()) 1);;
gap> FilenameFunc(meth);
"... some path .../grpperm.gi"

5.1.5 StartlineFunc

> StartlineFunc (func) (function)
> EndlineFunc(func) (function)

GAP - Reference Manual 73

Let func be a function. If FilenameFunc (5.1.4) returns fail for func then also
StartlineFunc returns fail. If FilenameFunc (5.1.4) returns a filename for func then
StartlineFunc returns the line number in this file where the definition of func starts.

EndlineFunc behaves similarly and returns the line number in this file where the definition of
func ends.

Example
gap> meth:= ApplicableMethod(Size, [Group(O) 1);;
gap> FilenameFunc(meth);
"... some path ... gap4r5/lib/grpperm.gi"
gap> StartlineFunc(meth);
487
gap> EndlineFunc(meth);
487

5.1.6 LocationFunc
> LocationFunc (func) (function)
Let func be a function. Returns a string describing the location of func, or an empty string if

the information cannot be found. This uses the information provided by FilenameFunc (5.1.4) and
StartlineFunc (5.1.5)

Example

gap> LocationFunc(Intersection);

"... some path ... gap/lib/coll.gi:2467"

String is an attribute, so no information is stored
gap> LocationFunc(String);

5.1.7 PageSource

> PageSource(func/[, nr]) (function)

This shows the file containing the source code of the function or method func in a pager (see
Pager (2.4.1)). The display starts at a line shortly before the code of func.

For operations func the function shows the source code of the declaration of func. Operations
can have several declarations, use the optional second argument to specify which one should be shown
(in the order the declarations were read); the default is to show the first.

For kernel functions the function tries to show the C source code.

If GAP cannot find a file containing the source code this will be indicated.

Usage examples:
met := ApplicableMethod(\~, [(1,2),2743527]); PageSource(met);

PageSource (Combinations) ;

PageSource (SORT_LIST) ;

PageSource(Size, 2);

ct := CharacterTable(Group((1,2,3)));

met := ApplicableMethod(Size, [ct]); PageSource(met);

GAP - Reference Manual 74

5.2 Calling a function with a list argument that is interpreted as several
arguments

5.2.1 CallFuncList

> CallFuncList(func, args) (operation)
> CallFuncListWrap(func, args) (operation)

returns the result, when calling function func with the arguments given in the list args, i.e. args
is “unwrapped” so that args appears as several arguments to func.
Example

gap> CallFuncList(\+, [6, 71);
13

gap> #is equivalent to:

gap> \+(6, 7);

13

A more useful application of CallFuncList is for a function g that is called in the body of a
function f with (a sublist of) the arguments of £, where £ has been defined with a single formal
argument arg (see 4.23), as in the following code fragment.

Example

f := function (arg)
CallFunclist(g, arg);

end;

In the body of £ the several arguments passed to £ become a list arg. If g were called instead via
g(arg) then g would see a single list argument, so that g would, in general, have to “unwrap” the
passed list. The following (not particularly useful) example demonstrates both described possibilities

for the call to g.

Example
gap> PrintNumberFromDigits := function (arg)
> CallFuncList(Print, arg);
> Print("\n");
> end;
function(arg...) ... end
gap> PrintNumberFromDigits(1, 9, 7, 3, 2);
19732
gap> PrintDigits := function (arg)
> Print(arg);
> Print("\n");
> end;
function(arg...) ... end
gap> PrintDigits(1, 9, 7, 3, 2);
[1,9,7,3,2]

CallFuncListWrap differs only in that the result is a list. This returned list is empty if the called
function returned no value, else it contains the returned value as it’s single member. This allows
wrapping functions which may, or may not return a value.

GAP - Reference Manual 75

Example
gap> CallFuncListWrap(x -> x, [1]);
[1]
gap> CallFuncListWrap(function(x) end, [1]);
]

5.3 Wrapping a function, so the values produced are cached

5.3.1 MemoizePosIntFunction

> MemoizePosIntFunction(function[, options]) (function)

MemoizePosIntFunction returns a function which behaves the same as function, except it
caches the results; if the new function is called with the same input, then any call after the first will
return the cached value, instead of recomputing it. The cache is flushed by calling FlushCaches
(79.18.18).

The returned function will only accept positive integers.

This function does not promise to never call function more than once for any input — values may
be removed if the cache gets too large, or GAP chooses to flush all caches, or if multiple threads try to
calculate the same value simultaneously.

The optional second argument is a record which provides a number of configuration options. The
following options are supported.

defaults (default an empty list)
Used to initalise the cache, both initially and after each flush.

flush (default true)
If this is true, the cache is emptied whenever FlushCaches (79.18.18) is called.

errorHandler (defaults to Error (6.6.1))
A function to be called when an input which is not a positive integer is passed to the cache. If
this function returns a value, that value is returned by the cache.

Example

gap> f := MemoizePosIntFunction(

> function(i) Print("Check: ",i,"\n"); return i*i; end,
> rec(defaults := [,,50], errorHandler := x -> "Bad"));;
gap> £(2);

Check: 2

4

gap> £(2);

4

gap> f(3);

50

gap> £(-3);

"Bad"

gap> FlushCaches();

gap> £(2);

Check: 2

4

GAP - Reference Manual 76

gap> £(3);
50

5.4 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places
when the syntax requires a function, but actually no functionality is required. So ReturnTrue (5.4.1)
is often used as family predicate in InstallMethod (78.2.1).

5.4.1 ReturnTrue

> ReturnTrue(...) (function)

This function takes any number of arguments, and always returns true.

Example

gap> f:=ReturnTrue;
function(arg...) ... end
gap> £();

true

gap> f(42);

true

5.4.2 ReturnFalse

> ReturnFalse(...) (function)

This function takes any number of arguments, and always returns false.

Example

gap> f:=ReturnFalse;
function(arg...) ... end
gap> £();

false

gap> f("any_string");
false

5.4.3 ReturnFail

> ReturnFail(...) (function)

This function takes any number of arguments, and always returns fail.

Example
gap> oops:=ReturnFail;
function(arg...) ... end
gap> oops();
fail

gap> oops(-42);
fail

GAP - Reference Manual 77

5.4.4 ReturnNothing

> ReturnNothing(...) (function)

This function takes any number of arguments, and always returns nothing.

Example
gap> n:=ReturnNothing;

function(object...) ... end

gap> nQ);

gap> n(-42);

5.4.5 ReturnFirst

> ReturnFirst(...) (function)

This function takes one or more arguments, and always returns the first argument. IdFunc (5.4.6)
behaves similarly, but only accepts a single argument.

Example
gap> f:=ReturnFirst;
function(object...) ... end
gap> £(1);
1
gap> £(2,3,4);
2
gap> £QO;
Error, RETURN_FIRST requires one or more arguments

5.4.6 IdFunc

> IdFunc (Obj) (function)

returns obj. ReturnFirst (5.4.5) is similar, but accepts one or more arguments, returning only
the first.
Example

gap> id:=IdFunc;

function(object) ... end

gap> id(42);

42

gap> f:=id(SymmetricGroup(3));

SymC [1 ..31)

gap> s:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 31))

gap> f=s;

false

5.5 Function Types

Functions are GAP objects and thus have categories and a family.

GAP - Reference Manual 78

5.5.1 IsFunction

> IsFunction(obj) (Category)

is the category of functions.

Example
gap> IsFunction(x->x"2);

true

gap> IsFunction(Factorial);

true

gap> f:=0ne (AutomorphismGroup (SymmetricGroup(3)));
IdentityMapping(Sym([1 .. 31))

gap> IsFunction(f);

false

5.5.2 IsOperation

> IsOperation(obj) (Category)

is the category of operations. Every operation is a function, but not vice versa.

Example

gap> MinimalPolynomial;

<Operation "MinimalPolynomial">
gap> IsOperation(MinimalPolynomial);
true

gap> IsFunction(MinimalPolynomial);
true

gap> Factorial;

function(n) ... end

gap> IsOperation(Factorial);

false

5.5.3 FunctionsFamily

> FunctionsFamily (family)

is the family of all functions.

5.6 Naming Conventions

The way functions are named in GAP might help to memorize or even guess names of library func-
tions.

If a variable name consists of several words then the first letter of each word is capitalized.

If the first part of the name of a function is a verb then the function may moditfy its argument(s) but
does not return anything, for example Append (21.4.5) appends the list given as second argument to the
list given as first argument. Otherwise the function returns an object without changing the arguments,
for example Concatenation (21.20.1) returns the concatenation of the lists given as arguments.

GAP - Reference Manual 79

If the name of a function contains the word “0f” then the return value is thought of as informa-
tion deduced from the arguments. Usually such functions are attributes (see 13.5). Examples are
Generators0fGroup (39.2.4), which returns a list of generators for the group entered as argument,
or DiagonalOfMat (24.12.1).

For the setter and tester functions of an attribute Attr the names SetAttr resp. HasAttr are
available (see 13.5).

If the name of a function contains the word “By” then the return value is thought of as
built in a certain way from the parts given as arguments. For example, creating a group
as a factor group of a given group by a normal subgroup can be done by taking the image
of NaturalHomomorphismByNormalSubgroup (39.18.1). Other examples of “By” functions are
GroupHomomorphismByImages (40.1.1) and LaurentPolynomialByCoefficients (66.13.1).

Often such functions construct an algebraic structure given by its generators (for exam-
ple, RingByGenerators (56.1.4)). In some cases, “By” may be replaced by “With” (like e.g.
GroupWithGenerators (39.2.3)) or even both versions of the name may be used. The difference
between StructByGenerators and StructWithGenerators is that the latter guarantees that the
GeneratorsOfStruct value of the result is equal to the given set of generators (see 31.3).

If the name of a function has the form “AsSomething” then the return value is an object (usually
a collection which has the same family of elements), which may, for example:

* know more about its own structure (and so support more operations) than its input (e.g. if the
elements of the collection form a group, then this group can be constructed using AsGroup
(39.2.5));

* discard its additional structure (e.g. AsList (30.3.8) applied to a group will return a list of its
elements);

* contain all elements of the original object without duplicates (like e.g. AsSet (30.3.10) does if
its argument is a list of elements from the same family);

* remain unchanged (like e.g. AsSemigroup (51.1.6) does if its argument is a group).

If Something and the argument of AsSomething are domains, some further rules apply as explained
in Tutorial: Changing the Structure.

If the name of a function fun1 ends with “NC” then there is another function fun2 with the same
name except that the NC is missing. NC stands for “no check”. When fun2 is called then it checks
whether its arguments are valid, and if so then it calls fun1. The functions SubgroupNC (39.3.1) and
Subgroup (39.3.1) are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure
that they are unnecessary. For example, if an algorithm produces generators of the derived subgroup
of a group then it is guaranteed that they lie in the original group; Subgroup (39.3.1) would check
this, and SubgroupNC (39.3.1) omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero
(31.10.3) instead of two operations ZeroOfElement and ZeroOfAdditiveGroup.

Chapter 6

Main Loop and Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you use

GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that you
type an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print
may be confusing since there is a GAP function called Print (6.3.4) (see 6.3) which is in fact not
used in the read-eval-print loop, but traditions are hard to break. In the following, whenever we want
to express that GAP places some characters on the standard output, we will say that GAP shows
something.

The exact sequence in the read-eval-print loop is as follows.

To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this,
you know that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter RETURN (i.e.,
strike the RETURN key) before GAP starts to read and evaluate your input. (The RETURN key may
actually be marked with the word ENTER and a returning arrow on your terminal.) Because GAP
does not do anything until you enter RETURN, you can edit your input to fix typos and only when
everything is correct enter RETURN and have GAP take a look at it (see 6.8). It is also possible to
enter several statements as input on a single line. Of course each statement must be terminated by a
semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered
the beginning of a statement, but the statement is not yet complete, and you enter RETURN, GAP
will show the partial prompt >. When you see this, you know that GAP is waiting for the rest of the
statement. This happens also when you forget the semicolon ; that terminates every GAP statement.
Note that when RETURN has been entered and the current statement is not yet complete, GAP will
already evaluate those parts of the input that are complete, for example function calls that appear as
arguments in another function call which needs several input lines. So it may happen that one has to
wait some time for the partial prompt.

When you enter RETURN, GAP first checks your input to see if it is syntactically correct (see
Chapter 4 for the definition of syntactically correct). If it is not, GAP prints an error message of the
following form

80

GAP - Reference Manual 81

Example

gap> 1 * ;
Syntax error: Expression expected
1 *x

The first line tells you what is wrong about the input, in this case the * operator takes two ex-
pressions as operands, so obviously the right one is missing. If the input came from a file (see Read
(9.7.1)), this line will also contain the filename and the line number. The second line is a copy of the
input. And the third line contains a caret pointing to the place in the previous line where GAP realized
that something is wrong. This need not be the exact place where the error is, but it is usually quite
close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically
incorrect. This is because GAP is so confused by your input, that it thinks that there is still something
to follow. In this case you should enter ; RETURN repeatedly, ignoring further error messages, until
you see the full prompt again. When you see the full prompt, you know that GAP forgave you and is
now ready to accept your next —hopefully correct— input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required
computations (see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you
can type ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP
has completed the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed.
Note that not all statements produce a value, for example, if you enter a for loop, nothing will be
printed, because the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and
now want to assign the result to a variable, you probably do not want to see the value again. You can
terminate statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show the
first one, then read, evaluate, and show the second one, and so on. This means that the second statement
will not even be checked for syntactical correctness until GAP has completed the first computation.

After the result has been shown GAP will display another prompt, and wait for your next input.
And the whole process starts all over again. Note that if you have entered several statements on a
single line, a new prompt will only be printed after GAP has read, evaluated, and shown the last
statement.

In each statement that you enter, the result of the previous statement that produced a value is
available in the variable 1ast. The next to previous result is available in 1ast2 and the result produced

before that is available in 1last3.
Example

gap> 1;2;3;

1

2

3

gap> last3 + last2 * last;
7

Also in each statement the time spent by the last statement, whether it produced a value or not,
is available in the variable time (7.6.4). This is an integer that holds the number of milliseconds.

GAP - Reference Manual 82

Similarly the amount of memory allocated during that statement (in bytes) is stored in the variable
memory_allocated (7.7.2).

6.2 Special Rules for Input Lines

The input for some GAP objects may not fit on one line, in particular big integers, long strings or
long identifiers. In these cases you can still type or paste them in long single lines. For nicer display
you can also specify the input on several lines. This is achieved by ending a line by a backslash or
by a backslash and a carriage return character, then continue the input on the beginning of the next
line. When reading this GAP will ignore such continuation backslashes, carriage return characters
and newline characters. GAP also prints long strings and integers this way.

Example

gap> n := 1234\

> 567890;

1234567890

gap> "This is a very long string that does not fit on a line \

> and is therefore continued on the next line.";

"This is a very long string that does not fit on a line and is therefo)\
re continued on the next line."

gap> bla\

> bla := 5;; blabla;

5

There is a special rule about GAP prompts in input lines: In line editing mode (usual user input
and GAP started without -n) in lines starting with whitespace following gap> , > or brk> this
beginning part is removed. This rule is very convenient because it allows to cut and paste input from
other GAP sessions or manual examples easily into your current session.

6.3 View and Print

GARP has three different operations to display or print objects: Display (6.3.6), ViewObj (6.3.5) and
Print0Obj (6.3.5), and these three have different purposes as follows. The first, Display (6.3.6),
should print the object to the standard output in a human-readable relatively complete and verbose
form. The second, ViewObj (6.3.5), should print the object to the standard output in a short and concise
form, it is used in the main read-eval-print loop to display the resulting object of a computation. The
third, Print0bj (6.3.5), should print the object to the standard output in a complete form which is
GAP-readable if at all possible, such that reading the output into GAP produces an object which is
equal to the original one.

All three operations have corresponding operations which do not print anything to standard out-
put but return the output as a string. These are DisplayString (27.7.1), ViewString (27.7.3) and
PrintString (27.7.5) (corresponding to PrintQ0bj (6.3.5)). Additionally, there is String (27.7.6)
which is very similar to PrintString (27.7.5) but does not insert control characters for line breaks.

For implementation convenience it is allowed that some of these operations have methods which
delegate to some other of these operations. However, the rules for this are that a method may only
delegate to another operation which appears further down in the following table:

GAP - Reference Manual 83

Display (6.3.6)
ViewObj (6.3.5)
Print0bj (6.3.5)
DisplayString (27.7.1)
ViewString (27.7.3)
PrintString (27.7.5)
String (27.7.6)

This is to avoid circular delegations.

Note in particular that none of the methods of the string producing operations may delegate to
the corresponding printing operations. Note also that the above mentioned purposes of the different
operations suggest that delegations between different operations will be sub-optimal in most scenarios.

6.3.1 Default delegations in the library

The library contains the following low ranked default methods:

* A method for DisplayString (27.7.1) which returns the constant value of the global variable
DEFAULTDISPLAYSTRING (27.7.2).

* A method for ViewString (27.7.3) which returns the constant value of the global variable
DEFAULTVIEWSTRING (27.7.4).

* A method for Display (6.3.6) which first calls DisplayString (27.7.1) and prints the result, if
it is a different object than DEFAULTDISPLAYSTRING (27.7.2). Otherwise the method delegates
to Print0bj (6.3.5).

* A method for ViewObj (6.3.5) which first calls ViewString (27.7.3) and prints the result, if
it is a different object than DEFAULTVIEWSTRING (27.7.4). Otherwise the method delegates to
Print0bj (6.3.5).

A method for Print0bj (6.3.5) which prints the result of PrintString (27.7.5).

* A method for PrintString (27.7.5) which returns the result of String (27.7.6)

6.3.2 Recommendations for the implementation

This subsection describes what methods for printing and viewing one should implement for new GAP
objects.

One should at the very least install a String (27.7.6) method to allow printing. Using the standard
delegations this enables a limited form of viewing, displaying and printing.

If, for larger objects, nicer line breaks are needed, one should install a separate PrintString
(27.7.5) method which puts in positions for good line breaks using the control characters \< (ASCII
1) and \> (ASCII 2).

If, for even larger objects, output performance and memory usage matters, one should install a
separate PrintObj (6.3.5) method.

One should usually install a ViewString (27.7.3) method, unless the above String (27.7.6)
method is good enough for ViewObj (6.3.5) purposes. Performance and memory should never matter
here, so it is usually unnecessary to install a separate ViewQObj (6.3.5) method.

GAP - Reference Manual 84

If the type of object calls for it one should install a DisplayString (27.7.1) method. This is the
case if a human readable verbose form is required.

If the performance and memory usage for Display (6.3.6) matters, one should install a separate
Display (6.3.6) method.

Note that if only a String (27.7.6) method is installed, then ViewObj (6.3.5) works and
ViewString (27.7.3) returns DEFAULTVIEWSTRING (27.7.4). Likewise, Display (6.3.6) works and
DisplayString (27.7.1) returns DEFAULTDISPLAYSTRING (27.7.2). If you want to avoid this then
install methods for these operations as well.

6.3.3 View

> VieW(Objl, obj2..) (function)

View shows the objects obj1, obj2... etc. in a short form on the standard output by calling the
ViewObj (6.3.5) operation on each of them. View is called in the read-eval-print loop, thus the output
looks exactly like the representation of the objects shown by the main loop. Note that no space or
newline is printed between the objects.

6.3.4 Print
> Print(objl, obj2, ...) (function)

Also Print shows the objects obj1, obj2... etc. on the standard output. The difference compared
to View (6.3.3) is in general that the shown form is not required to be short, and that in many cases the
form shown by Print is GAP readable.

Example
gap> z:= Z(2);

Z(2)-0

gap> v:= [z, z, z, z, z, 2z, z];

[Z(2)°0, 2(2)°0, Z(2)0, Z(2)"0, Z(2)~0, Z(2)"0, Z(2)"0 1]
gap> ConvertToVectorRep(v);; v;

<a GF2 vector of length 7>

gap> Print(v, "\n");

[Z(2)°0, Z(2)-0, Z(2)~0, Z(2)"0, Z(2)~0, Z(2)"0, Z(2)"0 1]

Another difference is that Print shows strings without the enclosing quotes, so Print can be used
to produce formatted text on the standard output (see also chapter 27). Some characters preceded by a
backslash, such as \n, are processed specially (see chapter 27.2). PrintTo (9.7.3) can be used to print
to a file.

Example
gap> for i in [1..5] do
> Print(i, " ", i~2, " ", i~3, "\n");
> od;
111
248
3927
4 16 64
5 25 125

gap> g:= SmallGroup(12,5);

GAP - Reference Manual 85

<pc group of size 12 with 3 generators>
gap> Print(g, "\n");

Group([f1, £2, £3])

gap> View(g); Print("\n");

<pc group of size 12 with 3 generators>

6.3.5 ViewObj

> ViewObj (Obj) (operation)
> Print Obj (Obj) (operation)

The functions View (6.3.3) and Print (6.3.4) actually call the operations ViewObj and Print0Obj,
respectively, for each argument. By installing special methods for these operations, it is possible to
achieve special printing behavior for certain objects (see chapter 78). The only exceptions are strings
(see Chapter 27), for which the default PrintObj and ViewObj methods as well as the function View
(6.3.3) print also the enclosing doublequotes, whereas Print (6.3.4) strips the doublequotes.

The default method for ViewOb]j is to call Print0bj. Soitis sufficient to have a Print0bj method
for an object in order to View (6.3.3) it. If one wants to supply a “short form” for View (6.3.3), one
can install additionally a method for ViewObj.

6.3.6 Display
> Display (obj) (operation)

Displays the object obj in a nice, formatted way which is easy to read (but might be difficult for
machines to understand). The actual format used for this depends on the type of obj. Each method
should print a newline character as last character.

Example
gap> Display([[1, 2, 31, [4, 5, 611 x Z(5));
241
3.2

One can assign a string to an object that Print (6.3.4) will use instead of the default used by
Print (6.3.4), via SetName (12.8.1). Also, Name (12.8.2) returns the string previously assigned to the
object for printing, via SetName (12.8.1). The following is an example in the context of domains.
Example

gap> g:= Group((1,2,3,4));
Group([(1,2,3,4) 1)

gap> SetName(g, "C4"); g;
C4

gap> Name(g);

I|C4||

When setting up examples, in particular if for beginning users, it sometimes can be convenient
to hide the structure behind a printing name. For many objects, such as groups, this can be done
using SetName (12.8.1). If the objects however is represented internally, for example permutations
representing group elements, this function is not applicable. Instead the function SetNameObject
(6.3.7) can be used to interface with the display routines on a lower level.

GAP - Reference Manual 86

6.3.7 SetNameObject

> SetNameObject(o, s) (function)

SetNameObject sets the string s as display name for object o in an interactive session. When
applying View (6.3.3) to object o, for example in the system’s main loop, GAP will print the string s.
Calling SetNameObject for the same object o with s set to fail deletes the special viewing setup.
since use of this features potentially slows down the whole print process, this function should be used
sparingly.

Example

gap> SetNameObject(3,"three");
gap> Filtered([1..10],IsPrimelnt);
[2, three, 5, 7 1]

gap> SetNameObject(3,fail);

gap> Filtered([1..10],IsPrimelnt);
[2, 3,5, 7]

6.4 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting CTRL-C) GAP enters a
break loop, that is in most respects like the main read eval print loop (see 6.1). That is, you can enter
statements, GAP reads them, evaluates them, and shows the result if any. However those evaluations
happen within the context in which the error occurred. So you can look at the arguments and local
variables of the functions that were active when the error happened and even change them. The prompt
is changed from gap> to brk> to indicate that you are in a break loop.

Example

gap> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is
indicated by a number appended to brk:

Example

brk> 1/0;

Rational operations: <divisor> must not be zero

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <divisor> via ’return <divisor>;’ to continue
brk_02>

There are two ways to leave a break loop, see 6.4.1 and 6.4.2.

GAP - Reference Manual 87

6.4.1 (quit from a break loop

The first way to leave a break loop is to quit the break loop. To do this you enter quit; or type the eof
(end of file) character, which is usually CTRL-D except when using the -e option (see Section 3.1).
Note that GAP code between quit; and the end of the input line is ignored.

Example

brk_02> quit;
brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So
iterated break loops must be left iteratively. Note also that if you type quit; from a gap> prompt,
GAP will exit (see 6.7).

Note: If you leave a break loop with quit without completing a command it is possible (though
not very likely) that data structures will be corrupted or incomplete data have been stored in objects.
Therefore no guarantee can be given that calculations afterwards will return correct results! If you
have been using options quitting a break loop generally leaves the options stack with options you no
longer want. The function ResetOptionsStack (8.1.3) removes all options on the options stack, and
this is the sole intended purpose of this function.

6.4.2 return from a break loop

The other way to leave a break loop is to return from a break loop. To do this you type return; or
return obj;. If the break loop was entered because you interrupted GAP, then you can continue
by typing return;. If the break loop was entered due to an error, you may have to modify the value
of a variable before typing return; (see the example for IsDenseList (21.1.2)) or you may have to
return an object obj (by typing: return obj ;) to continue the computation; in any case, the message
printed on entering the break loop will tell you which of these alternatives is possible. For example, if
the break loop was entered because a variable had no assigned value, the value to be returned is often
a value that this variable should have to continue the computation.

Example
brk> return 9; # we had tried to enter the divisor 9 but typed O ...

1/9
gap>

6.4.3 OnBreak

> OnBreak() (function)

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands cur-
rently being executed. This behaviour can be configured by changing the value of the global variable
OnBreak. When a break loop is entered, the value of OnBreak is checked. If it is a function, then it is
called with no arguments. By default, the value of OnBreak is Where (6.4.5).

Example
gap> OnBreak := function() Print("Hello\n"); end;
function() ... end

GAP - Reference Manual 88

Example

gap> Error("!\n");

Error, !

Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chap-
ter 8), a quit; will also cause the options stack to be reset and an Info-ed warning stating this is
emitted at InfoWarning (7.4.7) level 1 (see Chapter 7.4).

Note that for break loops entered by a call to Error (6.6.1), the lines after “Entering break
read-eval-print loop ” and before the brk> prompt can also be customised, namely by re-
defining OnBreakMessage (6.4.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above,
the default value of OnBreak is Where (6.4.5). Thus, a call to Error (6.6.1) generally gives a trace
back up to five levels of calling functions. Conceivably, we might like to have a function like Error
(6.6.1) that does not trace back without globally changing OnBreak. Such a function we might call
ErrorNoTraceBack and here is how we might define it. (Note ErrorNoTraceBack is not a GAP
function.)

Example
gap> ErrorNoTraceBack := function(arg) # arg is special variable that GAP

> # knows to treat as list of arg’s
> local SavedOnBreak, ENTBOnBreak;

> SavedOnBreak := OnBreak; # save current value of OnBreak
>

> ENTBOnBreak := function() # our ‘local’ OnBreak

> local s;

> for s in arg do

> Print(s);

> od;

> OnBreak := SavedOnBreak; # restore OnBreak afterwards

> end;

>

> OnBreak := ENTBOnBreak;

> Error();

> end;

function(arg...) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.
Example
gap> ErrorNoTraceBack("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

Now we call Error (6.6.1) with the same arguments to show the difference.

GAP - Reference Manual 89

Example
gap> Error("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Hello

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However,
we had changed OnBreak from its default value; to restore OnBreak to its default value, we should do
the following.

Example

gap> OnBreak := Where;;

6.44 OnBreakMessage

> OnBreakMessage () (function)

When a break loop is entered by a call to Error (6.6.1) the message after the “Entering break
read-eval-print loop ...” line is produced by the function OnBreakMessage, which just like
OnBreak (6.4.3) is a user-configurable global variable that is a function with no arguments.

Example
gap> OnBreakMessage(); # By default, OnBreakMessage prints the following
you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded.
In this case, you might wish to do the following (the first line just makes it easy to restore the default
value later).

Example
gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value
gap> OnBreakMessage := function() end; # do-nothing function
function() ... end
gap> OnBreakMessage();
gap> OnBreakMessage := NormalOnBreakMessage;; # reset

With OnBreak (6.4.3) still set away from its default value, calling Error (6.6.1) as we did above,
now produces:

Example

gap> Error("!'\n");

Error, !

Hello

Entering break read-eval-print loop ...
brk> quit; # to get back to outer loop

GAP - Reference Manual 90

However, suppose you are writing a function which detects an error condition and
OnBreakMessage needs to be changed only locally, i.e., the instructions on how to recover from
the break loop need to be specific to that function. The same idea used to define ErrorNoTraceBack
(see OnBreak (6.4.3)) can be adapted to achieve this. The function CosetTableFromGensAndRels
(47.6.5) is an example in the GAP code where the idea is actually used.

6.4.5 Where

> Where (nr) (function)

shows the last nr commands on the execution stack during whose execution the error occurred. If
not given, nr defaults to 5. (Assume, for the following example, that after the last example OnBreak

(6.4.3) has been set back to its default value.)
Example
gap> StabChain(SymmetricGroup(100)); # After this we typed ~C
user interrupt at
bpt := S.orbit[1];
called from

SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S, GeneratorsOfGroup(G), options); called from
StabChainOp(G, rec(

)) called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where(2);
called from
SiftedPermutation(S, (g * rep) ~ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from

Note that the variables displayed even in the first line of the Where list (after the called from
line) may be already one environment level higher and DownEnv (6.5.1) may be necessary to access
them.

At the moment this backtrace does not work from within compiled code (this includes the method
selection which by default is compiled into the kernel). If this creates problems for debugging, call
GAP with the -M option (see 3.1) to avoid loading compiled code.

(Function calls to Info (7.4.5) and methods installed for binary operations are handled in a special
way. In rare circumstances it is possible therefore that they do not show up in a Where log but the log
refers to the last proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing
purposes and for special applications. If this option is given then errors simply cause GAP to return
to the main loop.

GAP - Reference Manual 91

6.5 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the
same variable name is used for different objects or if a function calls itself recursively, of course only
the variable at the lowest level can be accessed.

6.5.1 DownEnv and UpEnv

> DownEnv (ar) (function)
> UpEnv(ar) (function)

DownEnv moves down nr steps in the environment and allows one to inspect variables on this
level; if nr is negative it steps up in the environment again; nr defaults to 1 if not given. UpEnv
acts similarly to DownEnv but in the reverse direction (the mnemonic rule to remember the difference
between DownEnv and UpEnv is the order in which commands on the execution stack are displayed by
Where (6.4.5)).

Example
gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop
gap> test:= function(n)
> if n > 3 then Error("!'\n"); fi; test(n+1); end;;
gap> test(1);
Error, !

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> n;
4
brk> DownEnv () ;
brk> n;
3
brk> Where();
called from
test(n + 1); called from
test(n+ 1); called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);
brk> n;
1
brk> Where();
called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);
brk> n;
3

GAP - Reference Manual 92

brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the
break loop. If you use return to continue a calculation GAP automatically jumps to the right envi-
ronment level again.

Note also that search for variables looks first in the chain of outer functions which enclosed the
definition of a currently executing function, before it looks at the chain of calling functions which led
to the current invocation of the function.

Example
gap> foo := function()
> local x; x := 1;
> return function() local y; y := x*x; Error("!!\n"); end;
> end;
function() ... end
gap> bar := foo();
function() ... end
gap> fun := function() local x; x := 3; bar(); end;
function() ... end
gap> fun();
Error, !!

called from
bar(); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> x;
1
brk> DownEnv(1);
brk> x;
3

Here the x of foo which contained the definition of bar is found before that of fun which caused
its execution. Using DownEnv we can access the x from fun.

6.6 Error and ErrorCount

6.6.1 Error

> Error(messages, ...) (function)

Error signals an error from within a function. First the messages messages are printed, this
is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. You can leave
this break loop with return; to continue execution with the statement following the call to Error.
ErrorNoReturn (6.6.2) operates identically to Error, except it does not allow using return; to
continue execution.

GAP - Reference Manual 93

6.6.2 ErrorNoReturn

> ErrorNoReturn(messages, ...) (function)

ErrorNoReturn signals an error from within a function. First the messages messages are printed,
this is done exactly as if Print (6.3.4) (see 6.3) were called with these arguments. Then a break loop
(see 6.4) is entered, unless the standard error output is not connected to a terminal. This break loop
can only be exited with quit;. The function differs from Error (6.6.1) by not allowing execution to
continue.

6.6.3 ErrorCount
> ErrorCount () (function)
ErrorCount returns a count of the number of errors (including user interruptions) which have

occurred in the GAP session so far. The count is incremented by each error, even if GAP was started
with the -T option to disable the break loop.

6.7 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an end-
of-file character (usually CTRL-D) at the gap> prompt in the main read eval print loop.

6.7.1 QUIT

> QUIT (global variable)

An emergency way to leave GAP is to enter QUIT at any gap> or brk> or brk_nn> prompt.

6.7.2 GAP_EXIT_CODE

> GAP_EXIT_CODE(ret) (function)

A GAP_EXIT_CODE sets the return value which will be used when GAP exits. This may be an
integer, or a boolean (where true is interpreted as 0, and false is interpreted as 1.

6.7.3 QUIT_GAP

> QUIT_GAP ([ret]) (function)

A QUIT_GAP acts similarly to the keyword quit. It exits GAP cleanly, calling any function in-
stalled using InstallAtExit. The optional argument will be passed to GAP_EXIT_CODE.

6.7.4 FORCE_QUIT_GAP

> FORCE_QUIT_GAP ([ret]) (function)

GAP - Reference Manual 94

A FORCE_QUIT_GAP is similar to QUIT_GAP, except it ignores any functions installed with
InstallAtExit, or any other functions normally run at GAP exit, and exits GAP immediately. The
optional argument will be passed to GAP_EXIT_CODE.

6.7.5 InstallAtExit

> InstallAtExit (func) (function)
> QUITTING (global variable)

Before actually terminating, GAP will call (with no arguments) all of the functions that have been
installed using InstallAtExit. These typically perform tasks such as cleaning up temporary files
created during the session, and closing open files. If an error occurs during the execution of one of
these functions, that function is simply abandoned, no break loop is entered.

Example
gap> InstallAtExit(function() Print("bye\n"); end);
gap> quit;
bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is
exiting because the user typed QUIT and false otherwise. Since QUIT is considered as an emergency
measure, different action may be appropriate.

6.7.6 SaveOnkKExitFile

> SaveOnExitFile (global variable)

If, when GAP is exiting due to a quit or end-of-file (i.e. not due to a QUIT) the variable
SaveOnExitFile is bound to a string value, then the system will try to save the workspace to that
file.

6.8 Line Editing

In most installations GAP will be compiled to use the Gnu readline library (see the line Libs used:
on GAP startup). In that case skip to the next section 6.9. (The line editing commands described in
the rest of this section were available in previous versions of GAP, they will work almost the same in
the standard configuration of the Gnu readline library.)

GAP allows one you to edit the current input line with a number of editing commands. Those
commands are accessible either as control keys or as escape keys. You enter a control key by pressing
the CTRL key, and, while still holding the CTRL key down, hitting another key key. You enter an
escape key by hitting ESC and then hitting another key key. Below we denote control keys by CTRL-
key and escape keys by ESC-key. The case of key does not matter, i.e., CTRL-A and CTRL-A are
equivalent.

Normally, line editing will be enabled if the input is connected to a terminal. Line editing can be
enabled or disabled using the command line options -f and -n respectively (see 3.1), however this is
a machine dependent feature of GAP.

Typing CTRL-KEY or ESC-KEY for characters not mentioned below always inserts CTRL-key
resp. ESC-key at the current cursor position.

GAP - Reference Manual 95

The first few commands allow you to move the cursor on the current line.

CTRL-A
move the cursor to the beginning of the line.

Esc-B
move the cursor to the beginning of the previous word.

CTRL-B
move the cursor backward one character.

CTRL-F
move the cursor forward one character.

Esc-F
move the cursor to the end of the next word.

CTRL-E
move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different
position, with the “yank” command CTRL-Y.

CTRL-H or del
delete the character left of the cursor.

CTRL-D
delete the character under the cursor.

CTRL-K
kill up to the end of the line.

Esc-D
kill forward to the end of the next word.

ESC-DEL
kill backward to the beginning of the last word.

CTRL-X
kill entire input line, and discard all pending input.

CTRL-Y
insert (yank) a just killed text.

The next commands allow you to change the input.

CTRL-T
exchange (twiddle) current and previous character.

Esc-U
uppercase next word.

GAP - Reference Manual 96

Esc-L
lowercase next word.

Esc-C
capitalize next word.

The TAB character, which is in fact the control key CTRL-I, looks at the characters before the
cursor, interprets them as the beginning of an identifier and tries to complete this identifier. If there is
more than one possible completion, it completes to the longest common prefix of all those completions.
If the characters to the left of the cursor are already the longest common prefix of all completions
hitting TAB a second time will display all possible completions.

TAB complete the identifier before the cursor.
The next commands allow you to fetch previous lines, e.g., to correct typos, etc.

CTRL-L
insert last input line before current character.

CTRL-P
redisplay the last input line, another CTRL-P will redisplay the line before that, etc. If the cursor
is not in the first column only the lines starting with the string to the left of the cursor are taken.

CTRL-N
Like CTRL-P but goes the other way round through the history.

Esc-<
goes to the beginning of the history.

Esc->
goes to the end of the history.

CTRL-O
accepts this line and perform a CTRL-N.

Finally there are a few miscellaneous commands.

CTRL-V
enter next character literally, i.e., enter it even if it is one of the control keys.

CTRL-U
execute the next line editing command 4 times.

ESC-num
execute the next line editing command num times.

Esc-CTRL-L
redisplay input line.

The four arrow keys (cursor keys) can be used instead of CTRL-B, CTRL-F, CTRL-P, and CTRL-
N, respectively.

GAP - Reference Manual 97

6.9 Editing using the readline library

The descriptions in this section are valid only if your GAP installation uses the readline library for
command line editing. You can check by IsBound (GAPInfo.UseReadline) ; if this is the case.

You can wuse all the features of readline, as for example explained in
http://tiswww.case.edu/php/chet/readline/rluserman.html. Therefore the command
line editing in GAP is similar to the bash shell and many other programs. On a Unix/Linux system
you may also have a manpage, try man readline.

Compared to the command line editing which was used in GAP up to version 4.4 (or compared to
not using the readline library) using readline has several advantages:

* Most keys still do the same as explained in 6.8 (in the default configuration).

* There are many additional commands, e.g. undoing (CTRL-_, keyboard macros (CTRL-X(,
CTRL-X) and CTRL-XE), file name completion (hit ESC two or four times), showing matching
parentheses, vi-style key bindings, deleting and yanking text, ...

* Lines which are longer than a physical terminal row can be edited more conveniently.
 Arbitrary unicode characters can be typed into string literals.

* The key bindings can be configured, either via your ~/.inputrc file or by GAP commands,
see 6.9.1.

* The command line history can be saved to and read from a file, see 6.9.2.
* Adventurous users can even implement completely new command line editing functions on
GAP level, see 6.9.4.
6.9.1 Readline customization

You can use your readline init file (by default /. inputrc on Unix/Linux) to customize key bindings.
If you want settings be used only within GAP you can write them between lines containing $if GAP
and $endif. For a detailed documentation of the available settings and functions see here.

From readline init file

$if GAP
set blink-matching-paren on
"\C-n": dump-functions
"\ep": kill-region

$endif

Alternatively, from within GAP the command ReadlineInitLine(line) ; can be used, where 1ine
is a string containing a line as in the init file.

Note that after pressing CTRL-V the next special character is input verbatim. This is very
useful to bind keys or key sequences. For example, binding the function key F3 to the com-
mand kill-whole-line by using the sequence CTRL-V F3 looks on many terminals like this:
ReadlineInitLine("\"~[OR\":kill-whole-line");. (You can get the line back later with
CTRL-Y.)

The CTRL-G key can be used to type any unicode character by its code point. The number of the
character can either be given as a count, or if the count is one the input characters before the cursor

http://tiswww.case.edu/php/chet/readline/rluserman.html
http://tiswww.case.edu/php/chet/readline/rluserman.html

GAP - Reference Manual 98

are taken (as decimal number or as hex number which starts with 0x. For example, the double stroke
character Z can be input by any of the three key sequences ESC 8484 CTRL-G, 8484 CTRL-G or
0x2124 CTRL-G.

Some terminals bind the CTRL-S and CTRL-Q keys to stop and restart terminal output. Further-
more, sometimes CTRL-\ quits a program. To disable this behaviour (and maybe use these keys for
command line editing) you can use Exec("stty stop undef; stty start undef; stty quit
undef") ; in your GAP session or your gaprc file (see 3.2).

6.9.2 The command line history

GAP can save your input lines for later reuse. The keys CTRL-P (or UP), CTRL-N (or DOWN), ESC<
and ESC> work as documented in 6.8, that is they scroll backward and forward in the history or go
to its beginning or end. Also, CTRL-O works as documented, it is useful for repeating a sequence of
previous lines. (But CTRL-L clears the screen as in other programs.)

The command line history can be used across several instances of GAP via the following two
commands.

6.9.3 SaveCommandLineHistory

> SaveCommandLineHistory([fname, J][app]) (function)
Returns: fail or number of saved lines
> ReadCommandLineHistory([fname]) (function)

Returns: fail or number of added lines

The first command saves the lines in the command line history to the file given by the string
fname. The default for fname is history in the user’s GAP root path GAPInfo.UserGapRoot or
"~/ .gap_hist" if this directory does not exist. If the optional argument app is true then the lines
are appended to that file otherwise the file is overwritten.

The second command is the converse, it reads the lines from file fname and prepends them to the
current command line history.

By default, the command line history stores up to 1000 input lines. command line history. This
number may be restricted or enlarged via via SetUserPreference ("HistoryMaxLines", num);
which may be set to a non negative number num to store up to num input lines or to infinity to
store arbitrarily many lines. An automatic storing and restoring of the command line history can be
configured via SetUserPreference ("SaveAndRestoreHistory", true);.

Note that these functions are only available if your GAP is configured to use the readline library.

6.9.4 Writing your own command line editing functions

It is possible to write new command line editing functions in GAP as follows.

The functions have one argument 1 which is a list with five entries of the form [count, key,
line, cursorpos, markpos] where count and key are the last pressed key and its count (these
are not so useful here because users probably do not want to overwrite the binding of a single key),
then line is a string containing the line typed so far, cursorpos is the current position of the cursor
(point), and markpos the current position of the mark.

The result of such a function must be a list which can have various forms:

[str]
with a string str. In this case the text str is inserted at the cursor position.

GAP - Reference Manual 99

[kill, begin, end]
where kill is true or false and begin and end are positions on the input line. This removes
the text from the lower position to before the higher position. If kill is true the text is killed,
i.e. put in the kill ring for later yanking.

[begin, end, str]
where begin and end are positions on the input line and str is a string. Then the text from
position begin to before end is substituted by str.

[1, lstr]
where 1str is a list of strings. Then these strings are displayed like a list of possible comple-
tions. The input line is not changed.

[2, chars]
where chars is a string. The characters from chars are used as the next characters from the
input. (At most 512 characters are possible.)

[100]
This rings the bell as configured in the terminal.

In the first three cases the result list can contain a position as a further entry, this becomes the new
cursor position. Or it can contain two positions as further entries, these become the new cursor position
and the new position of the mark.

Such a function can be installed as a macro for readline via InstallReadlineMacro (name,
fun) ; where name is a string used as name of the macro and fun is a function as above. This macro
can be called by a key sequence which is returned by InvocationReadlineMacro (name) ;.

As an example we define a function which puts double quotes around the word under or before
the cursor position. The space character, the characters in " (,)", and the beginning and end of the
line are considered as word boundaries. The function is then installed as a macro and bound to the key
sequence Esc Q.

Example
gap> EditAddQuotes := function(l)
> local str, pos, i, j, new;
> str := 1[3];
> pos := 1[4];
> i := pos;
> while i > 1 and (not str[i-1] in ",(") do
> i:=1i-1;
> od;
> j := pos;
> while IsBound(str[jl) and not str[j] in ",) " do
> J o=+
> od;
> new := "\"";
> Append(new, str{[i..j-11});
> Append(new, "\"");
> return [i, j, new];
> end;;
gap> InstallReadlineMacro("addquotes", EditAddQuotes);
gap> invl := InvocationReadlineMacro("addquotes");;
gap> ReadlineInitLine(Concatenation("\"\\eQ\":\"",invl,"\""));;

GAP - Reference Manual 100

6.10 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an
editor, and to read in the result via Read (9.7.1). Note that Read (9.7.1) by default reads from the
directory in which GAP was started (respectively under Windows the directory containing the GAP
binary), so you might have to give an absolute path to the file.

If you cannot create several windows, the Edit (6.10.1) command may be used to leave GAP,
start an editor, and read in the edited file automatically.

6.10.1 Edit

> Edit(filename) (function)

Edit starts an editor with the file whose filename is given by the string filename, and reads the
file back into GAP when you exit the editor again.

GAP will call your preferred editor if you call SetUserPreference ("Editor", path); where
path is the path to your editor, e.g., /usr/bin/vim. On Windows you can use edit . com.

Under Mac OS X, you should use SetUserPreference("Editor", "open");, this will open
the file in the default editor. If you call SetUserPreference("EditorOptions", ["-t"]);, the
file will open in TextEdit, and SetUserPreference("EditorOptions", ["-a", "<appl>"l);
will open the file using the application <appl>.

This can for example be done in your gap. ini file, see Section 3.2.1.

6.11 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editors vim and
emacs/xemacs.

vim is a powerful editor that understands the basic vi commands but provides much more func-
tionality. You can find more information about it (and download it) from http://www.vim.org.

To get support for GAP syntax in vim, create in your home directory a directory .vim with subdi-
rectories .vim/syntax and .vim/indent (If you are not using Unix, refer to the vim documentation
on where to place syntax files). Then copy the file etc/vim/gap.vimto .vim/syntax/gap.vim and
the file etc/vim/gap_indent.vimto .vim/indent/gap.vim.

Then edit the . vimrc file in your home directory. Add lines as in the following example:
Example

if has("syntax")
syntax on " Default to no syntax highlightning
endif

" For GAP files
augroup gap
" Remove all gap autocommands
au!
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\

" I’m using the external program ‘par’ for formating comment lines starting
" with ‘## . Include these lines only when you have par installed.
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"

\ ,e:##\ \ b:#

http://www.vim.org

GAP - Reference Manual 101

autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"
augroup END

See the headers of the two mentioned files for additional comments and adjust details according to
your personal taste. Send comments and suggestions to support@gap-system.org. Setup files for
emacs/xemacs are contained in the etc/emacs subdirectory.

6.12 Changing the Screen Size

6.12.1 SizeScreen

> SizeScreen([sz]) (function)

Called with no arguments, SizeScreen returns the size of the screen as a list with two entries.
The first is the length of each line, the second is the number of lines.

Called with one argument that is a list sz, SizeScreen sets the size of the screen; The first entry
of sz, if bound, is the length of each line, and the second entry of sz, if bound, is the number of lines.
The values for unbound entries of sz are left unaffected. The function returns the new values.

Note that those parameters can also be set with the command line options -x for the line length
and -y for the number of lines (see Section 3.1).

To check/change whether line breaking occurs for files and streams see PrintFormattingStatus
(10.4.8) and SetPrintFormattingStatus (10.4.8).

The line length must be between 20 and 4096 characters (inclusive) and the number of lines must
be at least 10. Values outside this range will be adjusted to the nearest endpoint of the range.

6.13 Teaching Mode

When using GAP in the context of (undergraduate) teaching it is often desirable to simplify some of
the system output and functionality defaults (potentially at the cost of making the printing of objects
more expensive). This can be achieved by turning on a teaching mode:

6.13.1 TeachingMode

> TeachingMode ([switch]) (function)

When called with a boolean argument switch, this function will turn teaching mode respectively

on or off.
Example

gap> a:=Z(11)"3;

Z(11)-~3

gap> TeachingMode (true) ;

#I Teaching mode is turned ON
gap> a;

ZmodnZ0bj(8,11)

gap> TeachingMode(false);

#I Teaching mode is turned OFF
gap> a;

z(11)"3

mailto://support@gap-system.org

GAP - Reference Manual 102

At the moment, teaching mode changes the following things

Prime Field Elements
Elements of fields of prime order are printed as ZmodnZ0bj (14.5.3) instead as power of a
primitive root.

Quadratic Irrationalities
Elements of a quadratic extension of the rationals are printed using the square root ER (18.4.2)
instead of using roots of unity.

Creation of some small groups
The group creator functions CyclicGroup (50.1.2), AbelianGroup (50.1.3),
ElementaryAbelianGroup (50.1.4), and DihedralGroup (50.1.6) create by default (if
no other representation is specified) not a pc group, but a finitely presented group, which makes
the generators easier to interpret.

Chapter 7

Debugging and Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.

Probably the most important debugging tool in GAP is the break loop (see Section 6.4) which
can be entered by putting an Error (6.6.1) statement into your code or by hitting Control-C. In the
break loop one can inspect variables, stack traces and issue commands as usual in an interactive GAP
session. See also the DownEnv (6.5.1), UpEnv (6.5.1) and Where (6.4.5) functions.

Sections 7.2 and 7.3 show how to get information about the methods chosen by the method selec-
tion mechanism (see chapter 78).

The final sections describe functions for collecting statistics about computations (see Runtime
(7.6.2), 7.8).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following
example occurs and a break loop is entered:
Example

gap> IsNormal(2,2);

Error, no method found! For debugging hints type 7Recovery from NoMethodFound

Error, no 1st choice method found for ‘IsNormal’ on 2 arguments at GAPROOT/lib/methsel2.g:250 cal
<function "HANDLE_METHOD_NOT_FOUND">(<arguments>)
called from read-eval loop at *stdin*:1

type ’quit;’ to quit to outer loop

brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments
and failed. In this situation it is crucial to find out, why this happened. Therefore there are a few
functions which can display further information. Note that you can leave the break loop by the quit
command (see 6.4.1) and that the information about the incident is no longer accessible afterwards.

7.1.1 ShowArguments

> ShowArguments O (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
as a list the arguments of the operation call for which no method was found.

103

GAP - Reference Manual 104

7.1.2 ShowArgument

> ShowArgument (ar) (function)

This function is only available within a break loop caused by a “No Method Found’-error. It
prints the nr-th arguments of the operation call for which no method was found. ShowArgument
needs exactly one argument which is an integer between 0 and the number of arguments the operation
was called with.

7.1.3 ShowDetails

> ShowDetails() (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints the details of this error: The operation, the number of arguments, a flag which indicates whether
the operation is being traced, a flag which indicates whether the operation is a constructor method,
and the number of methods that refused to apply by calling TryNextMethod (78.4.1). The last num-
ber is called Choice and is printed as an ordinal. So if exactly k& methods were found but called
TryNextMethod (78.4.1) and there were no more methods it says Choice: kth.

7.1.4 ShowMethods

> ShowMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It
prints an overview about the installed methods for those arguments the operation was called with
(using 7.2. The verbosity can be controlled by the optional integer parameter verbosity. The default
is 2, which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of
installed methods and the methods matching, which can only be those that were already called but
refused to work by calling TryNextMethod (78.4.1). With verbosity 3 not only all installed methods
but also the reasons why they do not match are displayed.

7.1.5 ShowOtherMethods

> ShowOtherMethods([verbosity]) (function)

This function is only available within a break loop caused by a “No Method Found”-error. It prints
an overview about the installed methods for a different number of arguments than the number of ar-
guments the operation was called with (using 7.2. The verbosity can be controlled by the optional
integer parameter verbosity. The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons,
why they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will nor-
mally not make any sense, because the different numbers of arguments are simulated by supplying the
corresponding number of ones, for which normally no reasonable methods will be installed.

GAP - Reference Manual 105

7.2 Inspecting Applicable Methods

7.2.1 ApplicableMethod

> ApplicableMethod(opr, args[, printlevell[, nr]]) (function)
> ApplicableMethodTypes(opr, args[, printlevel[, nrl]) (function)

Called with two arguments, ApplicableMethod returns the method of highest rank that is appli-
cable for the operation opr with the arguments in the list args. The default printlevel is 0. If no
method is applicable then fail is returned.

If a positive integer is given as the fourth argument nr then ApplicableMethod returns the nr-th
applicable method for the operation opr with the arguments in the list args, where the methods are
ordered according to descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument nr is the string "all" then ApplicableMethod returns a list of all appli-
cable methods for opr with arguments args, ordered according to descending rank.

Depending on the integer value printlevel, additional information is printed. Admissible values
and their meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,
4 also for each not applicable method all reasons why it is not applicable.

6 also the function body of the selected method(s)

When a method returned by ApplicableMethod is called then it returns either the desired result
or the string "TRY_NEXT_METHOD", which corresponds to a call to TryNextMethod (78.4.1) in the
method and means that the method selection would call the next applicable method.

Note: The GAP kernel provides special treatment for the infix operations \+, \-, *, \/, \~, \mod
and \in. For some kernel objects (notably cyclotomic numbers, finite field elements and row vectors
thereof) it calls kernel methods circumventing the method selection mechanism. Therefore for these
operations ApplicableMethod may return a method which is not the kernel method actually used.

The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if
only filters are given of course family predicates cannot be tested).

7.3 Tracing Methods

7.3.1 TraceMethods (for operations)

> TraceMethods(oprl, opr2, ...) (function)
> TraceMethods (oprs) (function)

After the call of TraceMethods, whenever a method of one of the operations opri1, opr2, ... is
called, the information string used in the installation of the method is printed. The second form has
the same effect for each operation from the list oprs of operations.

GAP - Reference Manual 106

7.3.2 TraceAllMethods

> TraceAllMethods() (function)

Invokes TraceMethods for all operations.

7.3.3 UntraceMethods (for operations)

> UntraceMethods(oprl, opr2, ...) (function)
> UntraceMethods (oprs) (function)

turns the tracing off for all operations opr1, opr2, ... or in the second form, for all operations in
the list oprs.
Example

gap> TraceMethods([Size]);

gap> g:= Group((1,2,3), (1,2));;

gap> Size(g);

#I Size: for a permutation group at /gap5/lib/grpperm.gi:487
#I Setter(Size): system setter

#I Size: system getter

#I Size: system getter

6

gap> UntraceMethods([Size]);

7.3.4 UntraceAllMethods

> UntraceAllMethods () (function)

Equivalent to calling UntraceMethods for all operations.

7.3.5 TraceImmediateMethods

> TraceImmediateMethods([flag]) (function)
> UntraceImmediateMethods () (function)

TraceImmediateMethods enables tracing for all immediate methods if flag is either true, or
not present. UntraceImmediateMethods, or TraceImmediateMethods with flag equal false
turns tracing off. (There is no facility to trace specific immediate methods.)

Example

gap> TraceImmediateMethods();
gap> g:= Group((1,2,3), (1,2));;
#I RunImmediateMethods

#I immediate: Size

#I immediate: IsCyclic

#I immediate: IsCommutative
#I immediate: IsTrivial

gap> Size(g);

#I immediate: IsPerfectGroup
#I immediate: IsNonTrivial

#I immediate: Size

GAP - Reference Manual 107

#I immediate: IsFreeAbelian

#I immediate: IsTorsionFree

#I immediate: IsNonTrivial

#I immediate: IsPerfectGroup
#I immediate: GeneralizedPcgs
#I immediate: IsEmpty

6

gap> UntraceImmediateMethods();
gap> UntraceMethods([Size]);

This example gives an explanation for the two calls of the “system getter” for Size (30.4.6).
Namely, there are immediate methods that access the known size of the group. Note that the group
g was known to be finitely generated already before the size was computed, the calls of the imme-
diate method for IsFinitelyGeneratedGroup (39.15.17) after the call of Size (30.4.6) have other
arguments than g.

7.4 Info Functions

The Info (7.4.5) mechanism permits operations to display intermediate results or information about
the progress of the algorithms. Information is always given according to one or more info classes.
Each of the info classes defined in the GAP library usually covers a certain range of algorithms, so for
example InfoLattice covers all the cyclic extension algorithms for the computation of a subgroup
lattice.

Note that not all info classes defined in the GAP library are currently documented. Many GAP
packages define additional info classes, which are typically documented in the corresponding package
documentation.

The amount of information to be displayed by each info class can be separately specified by the
user. This is done by selecting a non-negative integer level for the info class: no information will be
displayed at level 0, and the higher the level, the more information that will be displayed. At creation,
an info class has level 0. By default, all built-in GAP info classes have level 0, except for the following
info classes, which have level 1:

* InfoWarning (7.4.7),

* InfoPackageLoading (76.2.5),
* InfoDebug,

e InfoPerformance,

* InfoTempDirectories,

e InfoPrimelInt, and

e InfoSLP.

7.4.1 NewlnfoClass

> NewInfoClass (name) (operation)

creates a new info class with name name.

GAP - Reference Manual 108

7.4.2 DeclareInfoClass

> DeclareInfoClass (name) (function)

creates a new info class with name name and binds it to the global variable name. The variable
must previously be writable, and is made readonly by this function.

7.4.3 SetInfolevel

> SetInfolevel (infoclass, level) (operation)
Sets the info level for infoclass to the non-negative integer level.

7.4.4 InfoLevel

> InfoLevel (infoclass) (operation)

returns the info level of infoclass.

7.4.5 Info

> Info(infoclass, level, info[, moreinfo, ...]) (function)

If the info level of infoclass is atleast 1evel, then the remaining arguments, info, and possibly
moreinfo and so on, are evaluated. (Technically, Info is a keyword and not a function.)

By default, the results of these evaluations are viewed, preceded by the string "#I " and followed
by a newline.

If the info level of infoclass is strictly less than 1evel, then the third and subsequent arguments
are not evaluated. (The latter can save substantial time when displaying difficult results.)

The behaviour can be customized with SetInfoHandler (7.4.6).

Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
gap> SetInfolevel (InfoExample,1);

gap> Info(InfoExample,1,"one") ;Info(InfoExample,2,"two");
#I one

gap> SetInfolevel (InfoExample,?2);

gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");

#I one

#I two

gap> InfoLevel (InfoExample) ;
2

gap> Info(InfoExample,3,Length(Combinations([1..9999]1)));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample
causes Info to ignore the last argument, which prevents Length (Combinations ([1..9999])) from
being evaluated; note that an evaluation would be impossible due to memory restrictions.

A set of info classes (called an info selector) may be passed to a single Info statement. As a
shorthand, info classes and selectors may be combined with + rather than Union (30.5.3). In this case,
the message is triggered if the level of any of the classes is high enough.

GAP - Reference Manual 109

Example
gap> InfoExample:=NewInfoClass("InfoExample");;

gap> SetInfolevel (InfoExample,0);

gap> Info(InfoExample + InfoWarning, 1, "hello");
#I hello

gap> Info(InfoExample + InfoWarning, 2, "hello");
gap> SetInfolLevel (InfoExample,2);

gap> Info(InfoExample + InfoWarning, 2, "hello");

#I hello
gap> InfolLevel(InfoWarning);
1

7.4.6 Customizing Info (7.4.5) statements

> SetInfoHandler (infoclass, handler) (function)
> SetInfoOutput(infoclass, out) (function)
> UnbindInfoOutput(infoclass) (function)
> InfoOutput(infoclass) (function)
> SetDefaultInfolOutput (out) (function)
Returns: nothing
This allows one to customize what happens in an Info(infoclass, level, ...) statement.

In the first function, handler must be a function with three arguments infoclass, level, list.
Here 1ist is the list containing the third argument and any subsequent optional arguments of the Info
(7.4.5) call.

The default handler is the function DefaultInfoHandler. It prints "#I ", then the third and
further arguments of the info statement, and finally a "\n".

If the first argument of an Info (7.4.5) statement is a sum of Info classes, the handler of the first
summand is used.

The file or stream to which Info (7.4.5) statements for individual Info (7.4.5) classes print
can be overriden with SetInfoOutput, retrieved with InfoOutput and reset to the default with
UnbindInfoOutput. The initial default for all Info (7.4.5) classes is the string "*Print*" which
means the current output file. The default can be changed with SetDefaultInfoOutput. The ar-
gument out can be a filename or an open stream, the special names "*Print*", "*errout* and
"xstdout* are also recognized.

For example, SetDefaultInfoQutput ("*errout*"); would send Info (7.4.5) output to stan-
dard error, which can be interesting if GAPs output is redirected.

7.4.7 InfoWarning

> InfoWarning (info class)

is an info class to which general warnings are sent at level 1, which is its default level. More
specialised warnings are shown via calls of Info (7.4.5) at InfoWarning level 2, e.g. information
about the autoloading of GAP packages and the initial line matched when displaying an on-line help
topic.

GAP - Reference Manual 110

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to
required conditions and issue an error if not.

7.5.1 SetAssertionLevel

> SetAssertionLevel(lev) (function)

assigns the global assertion level to 1ev. By default it is zero.

7.5.2 AssertionLevel

> AssertionLevel() (function)

returns the current assertion level.

7.5.3 Assert

> Assert(lev, cond[, message]) (function)

With two arguments, if the global assertion level is at least Iev, condition cond is tested and if it
does not return true an error is raised. Thus Assert (lev, cond) is equivalent to the code

Example
if AssertionlLevel() >= lev and not <cond> then

Error("Assertion failure");
fi;

With the message argument form of the Assert statement, if the global assertion level is at least
lev, condition cond is tested and if it does not return true then message is evaluated and printed.

Assertions are used at various places in the library. Thus turning assertions on can slow code
execution significantly.

7.6 Timing
7.6.1 Runtimes
> Runtimes() (function)

Runtimes returns a record with components bound to integers or fail. Each integer is the cpu
time (processor time) in milliseconds spent by GAP in a certain status:

user_time
cpu time spent with GAP functions (without child processes).

system_time
cpu time spent in system calls, e.g., file access (fail if not available).

GAP - Reference Manual 111

user_time_children
cpu time spent in child processes (fail if not available).

system_time_children
cpu time spent in system calls by child processes (fail if not available).

Note that this function is not fully supported on all systems. Only the user_time component is
(and may on some systems include the system time).
The following example demonstrates tasks which contribute to the different time components:

Example

gap> Runtimes(); # after startup

rec(user_time := 3980, system_time := 60, user_time_children := O,
system_time_children := 0)

gap> Exec("cat /usr/bin/*||wc"); # child process with a lot of file access

893799 7551659 200928302

gap> Runtimes();

rec(user_time := 3990, system_time := 60, user_time_children := 1590,
system_time_children := 600)

gap> a:=0;;for i in [1..100000000] do a:=a+l; od; # GAP user time

gap> Runtimes();

rec(user_time := 12980, system_time := 70, user_time_children := 1590,
system_time_children := 600)

gap> 7blabla # first call of help, a lot of file access

Help: no matching entry found

gap> Runtimes();

rec(user_time := 13500, system_time := 440, user_time_children := 1590,
system_time_children := 600)

7.6.2 Runtime

> Runtime () (function)

Runtime returns the time spent by GAP in milliseconds as an integer. It is the same as the value
of the user_time component given by Runtimes (7.6.1), as explained above.
See StringTime (27.10.9) for a translation from milliseconds into hour/minute format.

7.6.3 NanosecondsSinceEpoch

> NanosecondsSinceEpoch () (function)
> NanosecondsSinceEpochInfo() (function)

NanosecondsSinceEpoch returns the time in nanoseconds that has passed since some fixed, but
unspecified time in the past. This function is appropriate for doing wallclock time measurements. The
actual resolution depends on the system that GAP is run on. Information about the used timers can
be obtained by calling NanosecondsSinceEpochInfo, which returns a record containing members
Method, Monotonic, Reliable and Resolution.

Method is a string describing the method used to obtain timer values. This will usually contain the
name of the syscall used.

GAP - Reference Manual 112

Monotonic is a boolean. If it is true, then the values returned by NanosecondsSinceEpoch are
guaranteed to be strictly monotonically increasing between two calls, if it is false then there is no
such guarantee.

Resolution is an integer reflecting the resolution of the timer used in nanoseconds.

Reliable is a boolean. If it is true then the value Resolution is deemed reliable in the sense
that it was obtained by querying the operating system, otherwise Resolution should be treated as an
estimate.

7.6.4 time

> time (global variable)

In the read-eval-print loop, time stores the number of milliseconds the last command took (see
also memory_allocated (7.7.2) for the number of bytes of memory it allocated).

7.6.5 Sleep

> Sleep(time) (function)
> NanoSleep(time) (function)

These functions make GAP stop execution for a given period of time. The time to stop is given to
Sleep in seconds and NanoSleep in nanoseconds.

7.7 Tracking Memory Usage
7.7.1 TotalMemoryAllocated
> TotalMemoryAllocated() (function)

TotalMemoryAllocated returns the total amount of memory in bytes allocated by the GAP mem-
ory manager since GAP started.

7.7.2 memory_allocated

> memory_allocated (global variable)

In the read-eval-print loop, memory_allocated (7.7.2) stores the number of bytes of memory
allocated by the last completed statement (see also time (7.6.4) for the number of milliseconds it
took).

7.8 Profiling

Profiling of code can be used to determine in which parts of a program how much time has been
spent and how much memory has been allocated during runtime. GAP has two different methods of
profiling. GAP can either profile by function, or line-by-line. Line by line profiling is currently only
used for code coverage, while function profiling tracks memory and time usage.

GAP - Reference Manual 113

7.8.1 Function Profiling

This section describes how to profiling at the function level. The idea is that

* first one switches on profiling for those GAP functions the performance of which one wants to
check,

* then one runs some GAP computations,
* then one looks at the profile information collected during these computations,

e then one runs more computations (perhaps clearing all profile information before, see
ClearProfile (7.8.10)),

* and finally one switches off profiling.

For switching on and off profiling, GAP supports entering a list of functions (see
ProfileFunctions (7.8.5), UnprofileFunctions (7.8.6)) or a list of operations whose methods
shall be (un)profiled (ProfileMethods (7.8.7), UnprofileMethods (7.8.8)), and DisplayProfile
(7.8.9) can be used to show profile information about functions in a given list.

Besides these functions, ProfileGlobalFunctions (7.8.2), ProfileOperations (7.8.3), and
ProfileOperationsAndMethods (7.8.4) can be used for switching on or off profiling for all global
functions, operations, and operations together with all their methods, respectively, and for showing
profile information about these functions.

Note that GAP will perform more slowly when profiling than when not.

7.8.2 ProfileGlobalFunctions

> ProfileGlobalFunctions([bool]) (function)

Called with argument true, ProfileGlobalFunctions starts profiling of all functions that have
been declared via DeclareGlobalFunction (79.18.14). Old profile information for all these func-
tions is cleared. A function call with the argument false stops profiling of all these functions.
Recorded information is still kept, so you can display it even after turning the profiling off.

When ProfileGlobalFunctions is called without argument, profile information for all global
functions is displayed, see DisplayProfile (7.8.9).

7.8.3 ProfileOperations

> ProfileOperations([bool]) (function)

Called with argument true, ProfileOperations starts profiling of all operations. Old profile
information for all operations is cleared. A function call with the argument false stops profiling of
all operations. Recorded information is still kept, so you can display it even after turning the profiling
off.

When ProfileOperations is called without argument, profile information for all operations is
displayed (see DisplayProfile (7.8.9)).

GAP - Reference Manual 114

7.8.4 ProfileOperationsAndMethods

> ProfileOperationsAndMethods([bool]) (function)

Called with argument true, ProfileOperationsAndMethods starts profiling of all operations
and their methods. Old profile information for these functions is cleared. A function call with the
argument false stops profiling of all operations and their methods. Recorded information is still
kept, so you can display it even after turning the profiling off.

When ProfileOperationsAndMethods is called without argument, profile information for all
operations and their methods is displayed, see DisplayProfile (7.8.9).

7.8.5 ProfileFunctions

> ProfileFunctions (funcs) (function)

starts profiling for all function in the list funcs. You can use ProfileGlobalFunctions (7.8.2)
to turn profiling on for all globally declared functions simultaneously.

7.8.6 UnprofileFunctions

> UnprofileFunctions(funcs) (function)

stops profiling for all function in the list funcs. Recorded information is still kept, so you can
display it even after turning the profiling off.

7.8.7 ProfileMethods

> ProfileMethods (ops) (function)

starts profiling of the methods for all operations in the list ops.

7.8.8 UnprofileMethods

> UnprofileMethods (ops) (function)

stops profiling of the methods for all operations in the list ops. Recorded information is still kept,
so you can display it even after turning the profiling off.

7.8.9 DisplayProfile

> DisplayProfile([functions,][mincount, mintime]) (function)
> GAPInfo.ProfileThreshold (global variable)

Called without arguments, DisplayProfile displays the profile information for profiled opera-
tions, methods and functions. If an argument functions is given, only profile information for the
functions in the list functions is shown. If two integer values mincount, mintime are given as ar-
guments then the output is restricted to those functions that were called at least mincount times or for

GAP - Reference Manual 115

which the total time spent (see below) was at least mintime milliseconds. The defaults for mincount
and mintime are the entries of the list stored in the global variable GAPInfo.ProfileThreshold.

The default value of GAPInfo.ProfileThresholdis [10000, 30].

Profile information is displayed in a list of lines for all functions (including operations and meth-
ods) which are profiled. For each function, “count” gives the number of times the function has been
called. “self/ms” gives the time (in milliseconds) spent in the function itself, “‘chld/ms” the time (in
milliseconds) spent in profiled functions called from within this function, “stor/kb” the amount of
storage (in kilobytes) allocated by the function itself, “chld/kb” the amount of storage (in kilobytes)
allocated by profiled functions called from within this function, and “package” the name of the GAP
package to which the function belongs; the entry “GAP” in this column means that the function be-
longs to the GAP library, the entry “(oprt.)” means that the function is an operation (which may
belong to several packages), and an empty entry means that FilenameFunc (5.1.4) cannot determine
in which file the function is defined.

The list is sorted according to the total time spent in the functions, that is the sum of the values in
the columns “self/ms” and “chld/ms”.

At the end of the list, two lines are printed that show the total time used and the total memory
allocated by the profiled functions not shown in the list (label 0THER) and by all profiled functions
(label TOTAL), respectively.

An interactive variant of DisplayProfile is the function BrowseProfile (Browse: Browse-
Profile) that is provided by the GAP package Browse.

7.8.10 ClearProfile

> ClearProfile() (function)

clears all stored profile information.

7.8.11 An Example of Function Profiling

Let us suppose we want to get information about the computation of the conjugacy classes of a certain
permutation group. For that, first we create the group, then we start profiling for all global functions
and for all operations and their methods, then we compute the conjugacy classes, and then we stop
profiling.

Example

gap> g:= PrimitiveGroup(24, 1);;

gap> ProfileGlobalFunctions(true);

gap> ProfileOperationsAndMethods(true);
gap> ConjugacyClasses(g);;

gap> ProfileGlobalFunctions(false);

gap> ProfileOperationsAndMethods(false);

Now the profile information is available. We can list the information for all profiled functions with
DisplayProfile (7.8.9).

Example
gap> DisplayProfile();
count self/ms chld/ms stor/kb chld/kb package function
17647 0 0 275 0 GAP BasePoint
10230 0 0 226 0 (oprt.) ShallowCopy

GAP - Reference Manual

10139 0 0 0
10001 0 0 688
10001 8 0 28
14751 12 0 0
10830 8 4 182
2700 20 12 313
2444 28 4 3924
4368 0 32 7
2174 32 4 1030
585 4 32 45
1632 32 8 194
1221 8 32 349
185309 28 12 0
336 4 40 95
4 28 20 488
2798 0 52 54
560 4 48 83
432 16 40 259
185553 48 8 915
26 0 64 0

26 0 64 0

26 0 64 0
152 4 64 0
1605 0 68 0
26 0 68 0
382 0 96 69
5130 4 96 309
7980 24 116 330
12076 12 136 351
192 0 148 4
2208 4 148 3
217 0 160 0
217 12 148 60
216 36 464 334
1479 12 668 566
1453 12 684 56
126 0 728 13

1 0 736 0

2 0 736 2

1 0 736 0
13400 1164 0 0
484 12052

2048 23319

688

276

55
317
714
116
742

56
420

817
454
944
628
461
94
2023
2023
2023
2024
2032
2024
1922
3165
6434
6478
3029
3083
3177
3117
12546
18474
18460
19233
19671
19678
19675

(oprt.)

GAP
GAP
GAP
(oprt.)
GAP
GAP
GAP
GAP
(oprt.)
GAP
(oprt.)
GAP
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
GAP
GAP
GAP
GAP
(oprt.)
(oprt.)
GAP
GAP
GAP
GAP
GAP
GAP
(oprt.)
GAP
(oprt.)

PositionSortedOp: for*
UniteSet: for two intx*
UniteSet

=: for two families: =*
Concatenation
AddRefinement
ConjugateStabChain
Size

List

RRefine
AddGeneratorsExtendSc*
Partition

Length
ExtendSeriesPermGroup
Sortex
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
Add

CentralizerQOp
CentralizerOp: perm g*
Centralizer: try to ex*
Centralizer
StabilizerOfExternalS*
Meth(StabilizerOfExtex
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
StabChainMutable: calx*
StabChainMutable
StabChainOp
StabChainOp: group an*
PartitionBacktrack
RepOpElmTuplesPermGrox*
in: perm class rep
ConjugacyClassesTry
ConjugacyClassesByRanx*
ConjugacyClasses
ConjugacyClasses: perx*
Position

OTHER

TOTAL

116

We can restrict the list to global functions with ProfileGlobalFunctions (7.8.2).

gap> ProfileGlobalFunctions();
count self/ms chld/ms stor/kb

17647 0 0 275
10830 8 4 182
2700 20 12 313
2444 28 4 3924

Example

chld/kb
0

276

55

317

package
GAP
GAP
GAP
GAP

function

BasePoint
Concatenation
AddRefinement
ConjugateStabChain

GAP - Reference Manual

2174 32 4 1030 116
585 4 32 45 742
1532 32 8 194 56
1221 8 32 349 420
336 4 40 95 817
2798 0 52 54 944
560 4 48 83 628
432 16 40 259 461
382 0 96 69 1922
5130 4 96 309 3165
7980 24 116 330 6434
12076 12 136 351 6478
216 36 464 334 12546
1479 12 668 566 18474
126 0 728 13 19233
1 0 736 0 19671

1804 14536

2048 23319

GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP
GAP

117

List

RRefine
AddGeneratorsExtendScx*
Partition
ExtendSeriesPermGroup
StabChainForcePoint
StabChainSwap
SubmagmaWithInversesNC
TryPcgsPermGroup
ForAll

ChangeStabChain
ProcessFixpoint
PartitionBacktrack
RepOpElmTuplesPermGrox*
ConjugacyClassesTry
ConjugacyClassesByRanx*
OTHER

TOTAL

We can restrict the list to operations with ProfileOperations (7.8.3).

Example
gap> ProfileOperations();
count self/ms chld/ms stor/kb chld/kb

10230 0 0 226 0
10001 8 0 28 688
4368 0 32 7 714
185309 28 12 0 0
4 28 20 488 454
185553 48 8 915 94
26 0 64 0 2023
152 4 64 0 2024
1605 0 68 0 2032
2208 4 148 3 3083
217 0 160 0 3177
2 0 736 2 19678
13400 1164 0 0 0
764 21646
2048 23319

package
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.
(oprt.

NN N N N A S P S

function
ShallowCopy
UniteSet

Size

Length

Sortex

Add
CentralizerQOp
Centralizer
StabilizerOfExternalSx*
StabChainMutable
StabChainOp
ConjugacyClasses
Position

OTHER

TOTAL

We can restrict the list to operations and their methods with ProfileOperationsAndMethods

(7.8.4).
Example

gap> ProfileOperationsAndMethods() ;
count self/ms chld/ms stor/kb chld/kb

10230 0 0 226 0
10139 0 0 0 0
10001 0 0 688 0
10001 8 0 28 688
14751 12 0 0 0

4368 0 32 7 714
185309 28 12 0 0

package
(oprt.)
(oprt.)

(oprt.)
(oprt.)

function

ShallowCopy
PositionSortedOp: forx*
UniteSet: for two intx*
UniteSet

=: for two families: *
Size

Length

GAP - Reference Manual

4 28 20 488 454 (oprt.) Sortex
185553 48 8 915 94 (oprt.) Add
26 0 64 0 2023 (oprt.) CentralizerOp
26 0 64 0 2023 GAP CentralizerOp: perm g*
26 0 64 0 2023 GAP Centralizer: try to ex
152 4 64 0 2024 (oprt.) Centralizer
1605 0 68 0 2032 (oprt.) StabilizerOfExternalS*
26 0 68 0 2024 GAP Meth(StabilizerOfExtex
192 0 148 4 3029 GAP StabChainMutable: calx*
2208 4 148 3 3083 (oprt.) StabChainMutable
217 0 160 0 3177 (oprt.) StabChainOp
217 12 148 60 3117 GAP StabChainOp: group an*
1453 12 684 56 18460 GAP in: perm class rep
2 0 736 2 19678 (oprt.) ConjugacyClasses
1 0 736 0 19675 GAP ConjugacyClasses: per*
13400 1164 0 0 0 (oprt.) Position
728 20834 OTHER
2048 23319 TOTAL

118

Finally, we can restrict the list to explicitly given functions with DisplayProfile (7.8.9), by
entering the list of functions as an argument.

Example

gap> DisplayProfile([StabChainOp, Centralizer]);

count self/ms chld/ms stor/kb chld/kb package function
152 4 64 0 2024 (oprt.) Centralizer
217 0 160 0 3177 (oprt.) StabChainOp
2044 23319 OTHER
2048 23319 TOTAL

7.8.12 Line By Line Profiling

Line By Line profiling tracks which lines have been executed in a piece of GAP code. Built into
GAP are the methods necessary to generate profiles, the resulting profiles can be displayed with the
’profiling” package.

7.8.13 Line by Line profiling example

There are two kinds of profiles GAP can build:

* Coverage : This records which lines of code are executed
* Timing : This records how much time is spend executing each line of code

A timing profile provides more information, but will take longer to generate and parse. A timing
profile is generated using the functions ProfileLineByLine (7.8.14) and UnprofileLineByLine

(7.8.16), as follows:
Example

gap> ProfileLineByLine("output.gz");
gap> Size(AlternatingGroup(10)); ; # Execute some GAP code you want to profile
gap> UnprofileLineByLine();

GAP - Reference Manual 119

For code coverage, use instead the functions CoverageLineByLine (7.8.15) and
UncoverageLineByLine (7.8.17). The profiler will only record lines which are read and ex-
ecuted while the profiler is running. If you want to perform code coverage or profile GAP’s
library, then you can use the GAP command line option ’—cover filename.gz’, which executes
CoverageLineByLine (7.8.15) before GAP starts. Similarly the option "—prof filename.gz’ executes
ProfileLineByLine (7.8.14) before GAP starts. The profiler is designed for high performance,
because of this, there are some limitations which users should be aware of:

* By default the profiler records the wall-clock time which has passed, rather than the CPU time
taken (because it is lower overhead), so any time taken writing commands will be charged to the
last GAP statement which was executed. Therefore it is better to write a function which starts
profiling, executes your code, and then stops profiling.

* If you end the filename with ".gz", the resulting file will automatically be compressed. This is
highly recommended!

* The profiler can only track GAP code which occurs in a function — this is most obvious when
looking at code coverage examples, which will appear to miss lines of code in files not in a
function.

Profiles are transformed into a human-readable form with ’profiling’ package, for example with the
’OutputAnnotatedCodeCoverageFiles’ function.

7.8.14 ProfileLineByLine

> ProfilelLineByLine(filename[, options]) (function)

ProfileLineByLine begins GAP recording profiling data to the file filename. This file will
get *very* large very quickly. This file is compressed using gzip to reduce its size. options is an
optional dictionary, which sets various configuration options. These are

coverage
Boolean (defaults to false). If this is enabled, only information about which lines are read and
executed is stored. Enabling this is the same as calling CoverageLineByLine (7.8.15). Using
this ignores all other options.

wallTime
Boolean (defaults to true). Sets if time should be measured using wall-clock time (true) or CPU
time (false). (measuring CPU-time has a higher overhead).

recordMem
Boolean (defaults to false). Instead of recording the CPU time taken by statements, record the
total size of all new objects created by each line.

resolution
Integer (defaults to 0). By default profiling will record a trace of all executed code. When
resolution non-zero, GAP instead samples which piece of code is being executed every
resolution nanoseconds. Increasing this improves performance and produces smaller traces,
at the cost of accuracy. GAP will still accurately record which statements are executed at least
once.

GAP - Reference Manual 120

7.8.15 CoverageLineByLine

> CoverageLineByLine(filename) (function)

CoverageLineByLine begins GAP recording code coverage to the file filename. This is equiv-
alent to calling ProfileLineByLine (7.8.14) with coverage=true.

7.8.16 UnprofileLineByLine

> UnprofileLineByLine() (function)

Stops profiling which was previously started with ProfilelLineByLine (7.8.14) or
CoverageLineByLine (7.8.15).

7.8.17 UncoverageLineByLine

> UncoveragelLineByLine () (function)

Stops profiling which was previously started with ProfileLineByLine (7.8.14) or
CoverageLineByLine (7.8.15).

7.8.18 ActivateProfileColour

> ActivateProfileColour () (function)
Called with argument true, ActivateProfileColour makes GAP colour functions when print-

ing them to show which lines have been executed while profiling was active via ProfileLineByLine
(7.8.14) at any time during this GAP session. Passing false disables this behaviour.

7.8.19 IsLineByLineProfileActive

> IsLineByLineProfileActive() (function)

IsLineByLineProfileActive returns if line-by-line profiling is currently activated.

7.8.20 DisplayCacheStats

> DisplayCacheStats() (function)

displays statistics about the different caches used by the method selection.

7.8.21 ClearCacheStats

> ClearCacheStats() (function)

clears all statistics about the different caches used by the method selection.

GAP - Reference Manual 121

7.9 Information about the version used

The global variable GAPInfo.Version (see GAPInfo (3.5.1)) contains the version number of the
version of GAP. Its value can be checked other version number using CompareVersionNumbers
(76.3.9).

To produce sample citations for the used version of GAP or for a package available in this GAP
installation, use Cite (76.3.17).

If you wish to report a problem to GAP Support or GAP Forum, it may be useful to not only report
the version used, but also to include the GAP banner displays the information about the architecture
for which the GAP binary is built, used libraries and loaded packages.

7.10 Test Files

Test files are used to check that GAP produces correct results in certain computations. A selection of
test files for the library can be found in the tst directory of the GAP distribution.

7.10.1 Starting and stopping test

> START_TEST (i d) (function)
> STOP_TEST(file) (function)

START_TEST (7.10.1) and STOP_TEST (7.10.1) may be optionally used in files that are read via
Test (7.10.2). If used, START_TEST (7.10.1) reinitialize the caches and the global random number
generator, in order to be independent of the reading order of several test files. Furthermore, the asser-
tion level (see Assert (7.5.3)) is set to 2 (if it was lower before) by START_TEST (7.10.1) and set back
to the previous value in the subsequent STOP_TEST (7.10.1) call.

To use these options, a test file should be started with a line

Example
gap> START_TEST("arbitrary identifier string");

(Note that the gap> prompt is part of the line!)
and should be finished with a line
Example

gap> STOP_TEST("filename");

Here the string "filename" should give the name of the test file.

Note that the functions in tst/testutil.g temporarily replace STOP_TEST (7.10.1) before they
call Test (7.10.2).

If you want to run a quick test of your GAP installation (though this is not required), you can read
in a test script that exercises some GAP’s capabilities.

Example

gap> Read(Filename(DirectoriesLibrary("tst"), "testinstall.g"));
Example

test file time (msec)

testing:, /gap4rb/tst/zlattice.tst

zlattice.tst 0

GAP - Reference Manual 122

testing: /gap4r5/tst/gaussian.tst
gaussian.tst 10
[further lines deleted]

If you want to run a more advanced check (this is not required and make take up to an hour), you can
read teststandard.g which is an extended test script performing all tests from the tst directory.

Example
gap> Read(Filename(DirectoriesLibrary("tst"), "teststandard.g"));

7.10.2 Test

> Test(fname[, optrec]) (function)

Returns: true or false.

The argument fname must be the name of a file or an open input stream. The content of this file
or stream should contain GAP input and output. The function Test runs the input lines, compares
the actual output with the output stored in fname and reports differences. With an optional record as
argument optrec details of this process can be adjusted.

More precisely, the content of fname must have the following format.

Lines starting with "gap> " are considered as GAP input, they can be followed by lines starting with
"> " if the input is continued over several lines.

To allow for comments in fname the following lines are ignored by default: lines at the beginning of
fname that start with "#" or are empty, and one empty line together with one or more lines starting
with "#".

All other lines are considered as GAP output from the preceding GAP input.

By default the actual GAP output is compared exactly with the stored output, and if these are
different some information about the differences is printed.

If any differences are found then Test returns false, otherwise true.

If the optional argument optrec is given it must be a record. The following components of
optrec are recognized and can change the default behaviour of Test:

ignoreComments
If set to false then no lines in fname are ignored as explained above (default is true).

width
The screen width used for the new output (default is 80).

compareFunction
This must be a function that gets two strings as input, the newly generated and the stored output
of some GAP input. The function must return true or false, indicating if the strings should
be considered equivalent or not. By default \= (31.11.1) is used.
Two strings are recognized as abbreviations in this component: "uptowhitespace" checks if
the two strings become equal after removing all white space. And "uptonl" compares the
string up to trailing newline characters.

reportDiff
A function that gets six arguments and reports a difference in the output: the GAP input, the
expected GAP output, the newly generated output, the name of tested file, the line number of
the input, the time to run the input. (The default is demonstrated in the example below.)

GAP - Reference Manual 123

rewriteToFile
If this is bound to a string it is considered as a file name and that file is written with the same
input and comment lines as fname but the output substituted by the newly generated version; if
it is bound to true, then this is treated as if it was bound to fname (default is false).

writeTimings
If this is bound to a string it is considered as a file name, that file is written and contains timing
information for each input in fname.

compareTimings
If this is bound to a string it is considered as name of a file to which timing information was
stored via writeTimings in a previous call. The new timings are compared to the stored ones.
By default only commands which take more than a threshold of 100 milliseconds are consid-
ered, and only differences of more than 20% are considered significant. These defaults can be
overwritten by assigning a list [timingfile, threshold, percentage] to this component.
(The default of compareTimings is false.)

reportTimeDiff
This component can be used to overwrite the default function to display timing differences. It
must be a function with 5 arguments: GAP input, name of test file, line number, stored time,
new time.

ignoreSTOP_TEST

By default set to true, in that case the output of GAP input starting with "STOP_TEST" is not
checked.

showProgress
If this is true then GAP prints position information and the input line before it is processed;
if set to "some", then GAP shows the current line number of the test being processed; if set to
false, no progress updates are displayed (default is "some" if GAP’s output goes to a terminal,
otherwise false).

subsWindowsLineBreaks
If this is true then GAP substitutes DOS/Windows style line breaks "\r\n" by UNIX style line
breaks "\n" after reading the test file. (default is true).

returnNumFailures
If this is true then GAP returns the number of input lines of the test file which had differences
in their output, instead of returning true or false.

Example
gap> tnam := Filename(DirectoriesLibrary(), "../doc/ref/demo.tst");;
gap> mask := function(str) return Concatenation("| ",
> JoinStringsWithSeparator(SplitString(str, "\n", ""), "\nl "),

> "\n"); end;;

gap> Print(mask(StringFile(tnam)));

| # this is a demo file for the ’Test’ function
| #

| gap> g := Group((1,2), (1,2,3));

| Group([(1,2), (1,2,3) 1)

|

GAP - Reference Manual 124

| # another comment following an empty line
| # the following fails:

| gap> a := 13+29;

| 41

gap> ss := InputTextString(StringFile(tnam));;
gap> Test(ss);

########> Diff in test stream, line 8:

Input is:

a := 13+29;

Expected output:

41

But found:

42

HH#HHAH

false

gap> RewindStream(ss) ;

true

gap> dtmp := DirectoryTemporary();;

gap> ftmp := Filename(dtmp,"demo.tst");;

gap> Test(ss, rec(reportDiff := Ignore, rewriteToFile := ftmp));
false

gap> Test(ftmp);

true

gap> Print (mask(StringFile(ftmp)));

| # this is a demo file for the ’Test’ function
#
gap> g := Group((1,2), (1,2,3));
Group([(1,2), (1,2,3) 1)

the following fails:
gap> a := 13+29;

I
I
I
I
| # another comment following an empty line
I
I
| 42

7.10.3 TestDirectory

> TestDirectory(inlist[, optrec]) (function)

Returns: true or false.

The argument inlist must be either a single filename or directory name, or a list of filenames
and directories. The function TestDirectory will take create a list of files to be tested by taking any
files in inlist, and recursively searching any directories in inlist for files ending in .tst. Each
of these files is then run through Test (7.10.2), and the results printed, and true returned if all tests
passed.

If the optional argument optrec is given it must be a record. The following components of
optrec are recognized and can change the default behaviour of TestDirectory:

testOptions
A record which will be passed on as the second argument of Test (7.10.2) if present.

earlyStop
If true, stop as soon as any Test (7.10.2) fails (defaults to false).

GAP - Reference Manual 125

showProgress
Print information about how tests are progressing (defaults to "some" if GAP’s output goes to a
terminal, otherwise false).

suppressStatusMessage
suppress displaying status messages #I Errors detected while testing and #I No
errors detected while testing after the test (defaults to false).

rewriteToFile
If true, then rewrite each test file to disc, with the output substituted by the results of running
the test (defaults to false).

exclude
A list of file and directory names which will be excluded from testing (defaults to [1).

exitGAP
Rather than returning true or false, exit GAP with the return value of GAP set to success or
fail, depending on if all tests passed (defaults to false).

See also TestPackage (76.3.5) for the information on running standard tests for GAP packages.

7.11 Debugging Recursion

The GAP interpreter monitors the level of nesting of GAP functions during execution. By default,
whenever this nesting reaches a multiple of 5000, GAP enters a break loop (6.4) allowing you to
terminate the calculation, or enter RETURN ; to continue it.
Example
gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> dive(100);
gap> OnBreak:= function() Where(l); end; # shorter traceback
function() ... end
gap> dive(6000) ;
recursion depth trap (5000)

at
dive(depth - 1);

called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
gap> dive(11000) ;
recursion depth trap (5000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...

GAP - Reference Manual 126

you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (10000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

brk> return;

gap>

This behaviour can be controlled using the following procedures.

7.11.1 SetRecursionTrapInterval

> SetRecursionTrapInterval (interval) (function)
> GetRecursionDepth () (function)

GetRecursionDepth returns the nesting level of the GAP interpreter. This is reset to O every time
the break loop is entered. SetRecursionTrapInterval sets the depth of the stack at which GAP
will enter the Break loop. interval must be a non-negative small integer (between 0 and 2%%). An
interval of 0 suppresses the monitoring of recursion altogether. In this case excessive recursion may
cause GAP to crash.

Example
gap> GetRecursionDepth();
0
gap> dive := function(depth)
> if depth>1 then
> dive(depth-1);
> else
> Print ("Depth ", GetRecursionDepth());
> fi;
> end;;

gap> SetRecursionTrapInterval(1000) ;
gap> dive(100);
Depth 100
gap> dive(2500);
recursion depth trap (1000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

brk> return;

GAP - Reference Manual 127

recursion depth trap (2000)
at
dive(depth - 1);
called from
dive(depth - 1); called from

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you may ’return;’ to continue

brk> GetRecursionDepth();

0

brk> return;

gap> SetRecursionTrapInterval(-1);

SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
1 integer

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can replace <interval> via ’return <interval>;’ to continue
brk> return 0;

gap> dive(20000) ;

Depth 20000

gap> dive(2000000) ;

Segmentation fault

7.12 Global Memory Information

The GAP environment provides automatic memory management, so that the programmer does not
need to concern themselves with allocating space for objects, or recovering space when objects are
no longer needed. The component of the kernel which provides this is called GASMAN (GAP Storage
MANager). Messages reporting garbage collections performed by GASMAN can be switched on by the
-g command line option (see section 3.1). There are also some facilities to access information from
GASMAN from GAP programs.

7.12.1 GasmanStatistics

> GasmanStatistics() (function)

GasmanStatistics returns a record containing some information from the garbage collection
mechanism. The record may contain up to four components: full, partial, npartial, and nfull.

The full component will be present if a full garbage collection has taken place since GAP started.
It contains information about the most recent full garbage collection. It is a record, with eight compo-
nents: livebags contains the number of bags which survived the garbage collection; 1ivekb contains
the total number of kilobytes occupied by those bags; deadbags contains the total number of bags
which were reclaimed by that garbage collection and all the partial garbage collections preceding it,
since the previous full garbage collection; deadkb contains the total number of kilobytes occupied by
those bags; freekb reports the total number of kilobytes available in the GAP workspace for new
objects; totalkb reports the actual size of the workspace; time reports the CPU time in milliseconds

GAP - Reference Manual 128

spent on the last garbage collection and cumulative the total CPU time in milliseconds spent on that
type of garbage collection since GAP started.

These figures should be viewed with some caution. They are stored internally in fixed length
integer formats, and deadkb and deadbags are liable to overflow if there are many partial collections
before a full collection. Also, note that 1ivekb and freekb will not usually add up to totalkb. The
difference is essentially the space overhead of the memory management system.

The partial component will be present if there has been a partial garbage collection since the
last full one. It is also a record with the same six components as full. In this case deadbags and
deadkb refer only to the number and total size of the garbage bags reclaimed in this partial garbage
collection and 1ivebagsand 1ivekb only to the numbers and total size of the young bags that were
considered for garbage collection, and survived.

The npartial and nfull components will contain the number of full and partial garbage collec-
tions performed since GAP started.

7.12.2 GasmanMessageStatus

> GasmanMessageStatus () (function)
> SetGasmanMessageStatus(stat) (function)

GasmanMessageStatus returns one of the strings "none", "full", or "all", depending on
whether the garbage collector is currently set to print messages on no collections, full collections
only, or all collections, respectively.

Calling SetGasmanMessageStatus with the argument stat, which should be one of the three
strings mentioned above, sets the garbage collector messaging level.

7.12.3 GasmanLimits

> GasmanLimits() (function)

GasmanLimits returns a record with three components: min is the minimum workspace size as
set by the -m command line option in kilobytes. The workspace size will never be reduced below this
by the garbage collector. max is the maximum workspace size, as set by the *-0’ command line option,
also in kilobytes. If the workspace would need to grow past this point, GAP will enter a break loop to
warn the user. A value of 0 indicates no limit. kill is the absolute maximum, set by the -K command
line option. The workspace will never be allowed to grow past this limit.

Chapter 8

Options Stack

GAP supports a global options system. This is intended as a way for the user to provide guidance to
various algorithms that might be used in a computation. Such guidance should not change mathemati-
cally the specification of the computation to be performed, although it may change the algorithm used.
A typical example is the selection of a strategy for the Todd-Coxeter coset enumeration procedure. An
example of something not suited to the options mechanism is the imposition of exponent laws in the
p-Quotient algorithm.

The basis of this system is a global stack of records. All the entries of each record are thought of
as options settings, and the effective setting of an option is given by the topmost record in which the
relevant field is bound.

The reason for the choice of a stack is the intended pattern of use:

PushOptions(rec(stuff));

DoSomething(args) ;

PopOptions();

This can be abbreviated, to DoSomething(args : stuff); with a small additional abbre-
viation of stuff permitted. See 4.11.2 for details. The full form can be used where the same options
are to run across several calls, or where the DoSomething procedure is actually an infix operator, or
other function with special syntax.

An alternative to this system is the use of additional optional arguments in procedure calls. This is
not felt to be sufficient because many procedure calls might cause, for example, a coset enumeration
and each would need to make provision for the possibility of extra arguments. In this system the
options are pushed when the user-level procedure is called, and remain in effect (unless altered) for all
procedures called by it.

Note that in some places in the system optional records containing options which are valid only
for the immediate function or method call are in fact used.

8.1 Functions Dealing with the Options Stack

8.1.1 PushOptions

> PushOptions(options, record) (function)

This function pushes a record of options onto the global option stack. Note that PushOptions (
rec(opt:= fail)) has the effect of resetting the option opt, since an option that has never been

129

GAP - Reference Manual 130

set has the value fail returned by ValueOption (8.1.5).
Note that there is no check for misspelt or undefined options.

8.1.2 PopOptions

> PopOptions() (function)

This function removes the top-most options record from the options stack if there is one.

8.1.3 ResetOptionsStack

> ResetOpt ionsStack() (function)

unbinds (i.e. removes) all the options records from the options stack.

Note: ResetOptionsStack should not be used within a function. Its intended use is to clean
up the options stack in the event that the user has quit from a break loop, so leaving a stack of
no-longer-needed options (see 6.4.1).

8.1.4 OnQuit

> OnQuit () (function)

called when a user selects to quit; a break loop entered via execution of Error (6.6.1). As GAP
starts up, OnQuit is defined to do nothing, in case an error is encountered during GAP start-up. Later
in the loading process we redefine OnQuit to do a variant of ResetOptionsStack (8.1.3) to ensure
the options stack is empty after a user quits an Error (6.6.1)-induced break loop. (OnQuit differs
from ResetOptionsStack (8.1.3) in that it warns when it does something rather than the other way
round.) Currently, OnQuit is not advertised, since exception handling may make it obsolete.

8.1.5 ValueOption
> ValueOption(opt) (function)
This function is a method for accessing the options stack without changing it; opt should be the

name of an option, i.e. a string. A function which makes decisions that might be affected by options
should examine the result of ValueOption. If opt is currently not set then fail is returned.

8.1.6 DisplayOptionsStack

> DisplayOptionsStack() (function)

This function prints a human-readable display of the complete options stack.

8.1.7 InfoOptions

> InfoOptions (info class)

GAP - Reference Manual 131

This info class can be used to enable messages about options being changed (level 1) or accessed
(level 2).

8.2 Options Stack — an Example

The example below shows simple manipulation of the Options Stack, first using PushOptions (8.1.1)
and PopOptions (8.1.2) and then using the special function calling syntax.

Example
gap> foo := function()
> Print ("myoptl = ", ValueOption("myoptl"),
> " myopt2 = ",ValueOption("myopt2"),"\n");
> end;
function() ... end
gap> foo();

myoptl = fail myopt2 = fail
gap> PushOptions(rec(myoptl := 17));
gap> foo();
myoptl = 17 myopt2 = fail
gap> DisplayOptionsStack();
[rec(
myoptl := 17)]
gap> PopOptions();
gap> foo();
myoptl = fail myopt2 = fail
gap> foo(: myoptl, myopt2 := [Z(3),"aardvark"]);
myoptl = true myopt2 = [Z(3), "aardvark"]
gap> DisplayOptionsStack();
L1
gap>

Chapter 9

Files and Filenames

Files are identified by filenames, which are represented in GAP as strings. Filenames can be created
directly by the user or a program, but of course this is operating system dependent.

Filenames for some files can be constructed in a system independent way using the following
functions. This is done by first getting a directory object for the directory the file shall reside in, and
then constructing the filename. However, it is sometimes necessary to construct filenames of files in
subdirectories relative to a given directory object. In this case the directory separator is always / even
under DOS or MacOS.

Section 9.3 describes how to construct directory objects for the common GAP and system direc-
tories. Using the command Filename (9.4.1) it is possible to construct a filename pointing to a file in
these directories. There are also functions to test for accessibility of files, see 9.6.

9.1 Portability

For portability filenames and directory names should be restricted to at most 8 alphanumerical charac-
ters optionally followed by a dot . and between 1 and 3 alphanumerical characters. Upper case letters
should be avoided because some operating systems do not make any distinction between case, so that
NaMe, Name and name all refer to the same file whereas some operating systems are case sensitive. To
avoid problems only lower case characters should be used.

Another function which is system-dependent is LastSystemError (9.1.1).

9.1.1 LastSystemError
> LastSystemError () (function)
LastSystemError returns a record describing the last system error that has occurred. This record

contains at least the component message which is a string. This message is, however, highly operating
system dependent and should only be used as an informational message for the user.

9.2 GAP Root Directories

When GAP is started it determines a list of directories which we call the GAP root directories. In a
running GAP session this list can be found in GAPInfo.RootPaths.

132

GAP - Reference Manual 133

The core part of GAP knows which files to read relative to its root directories. For exam-
ple when GAP wants to read its library file 1ib/group.gd, it appends this path to each path in
GAPInfo.RootPaths until it finds the path of an existing file. The first file found this way is read.

Furthermore, GAP looks for available packages by examining the subdirectories pkg/ in each of
the directories in GAPInfo.RootPaths.

The root directories are specified via one or several of the -1 paths command line options, see
3.1. Furthermore, by default GAP automatically prepends a user specific GAP root directory to the
list; this can be avoided by calling GAP with the -r option. The name of this user specific directory
depends on your operating system, it can be found in GAPInfo.UserGapRoot. This directory can be
used to tell GAP about personal preferences, to always load some additional code, to install additional
packages, or to overwrite some GAP files. See 3.2 for more information how to do this.

9.3 Directories

9.3.1 IsDirectory

> IsDirectory(obj) (Category)

IsDirectory is a category of directories.

9.3.2 Directory

> Directory (string) (operation)

returns a directory object for the string string. Directory understands "." for “current direc-
tory”, that is, the directory in which GAP was started. It also understands absolute paths.

If the variable GAPInfo.UserHome is defined (this may depend on the operating system) then
Directory understands a string with a leading ~ (tilde) character for a path relative to the user’s
home directory (but a string beginning with "~other_user" is not interpreted as a path relative to
other_user’s home directory, as in a UNIX shell).

Paths are otherwise taken relative to the current directory.

9.3.3 DirectoryTemporary

> DirectoryTemporary () (function)

returns a directory object in the category IsDirectory (9.3.1) for a new temporary directory. This
is guaranteed to be newly created and empty immediately after the call to DirectoryTemporary.
GAP will make a reasonable effort to remove this directory upon termination of the GAP job that
created the directory.

If DirectoryTemporary is unable to create a new directory, fail is returned. In this case
LastSystemError (9.1.1) can be used to get information about the error.

A warning message is given if more than 1000 temporary directories are created in any GAP
session.

GAP - Reference Manual 134

9.3.4 DirectoryCurrent

> DirectoryCurrent () (function)

returns the directory object for the current directory.

9.3.5 DirectoriesLibrary

> DirectoriesLibrary([name]) (function)

DirectoriesLibrary returns the directory objects for the GAP library name as a list. name must
be one of "1ib" (the default), "doc", "tst", and so on.

The string "" is also legal and with this argument DirectoriesLibrary returns the list of GAP
root directories. The return value of this call differs from GAPInfo.RootPaths in that the former is a
list of directory objects and the latter a list of strings.

The directory name must exist in at least one of the root directories, otherwise fail is returned.

As the files in the GAP root directories (see 9.2) can be distributed into different directories in the
filespace a list of directories is returned. In order to find an existing file in a GAP root directory you
should pass that list to Filename (9.4.1) as the first argument. In order to create a filename for a new
file inside a GAP root directory you should pass the first entry of that list. However, creating files
inside the GAP root directory is not recommended, you should use DirectoryTemporary (9.3.3)
instead.

9.3.6 DirectoriesSystemPrograms

> DirectoriesSystemPrograms O (function)

DirectoriesSystemPrograms returns the directory objects for the list of directories where the
system programs reside, as a list. Under UNIX this would usually represent $PATH.

9.3.7 DirectoryContents

> DirectoryContents(dir) (function)

This function returns a list of filenames/directory names that reside in the directory dir. The
argument dir can either be given as a string indicating the name of the directory or as a directory
object (see IsDirectory (9.3.1)). It is an error, if such a directory does not exist.

The ordering of the list entries can depend on the operating system.

An interactive way to show the contents of a directory is provided by the function
BrowseDirectory (Browse: BrowseDirectory) from the GAP package Browse.

9.3.8 DirectoryDesktop
> DirectoryDesktop() (function)
returns a directory object for the users desktop directory as defined on many modern operating

systems. The function is intended to provide a cross-platform interface to a directory that is easily
accessible by the user. Under Unix systems (including Mac OS X) this will be the Desktop directory

GAP - Reference Manual 135

in the users home directory if it exists, and the users home directory otherwise. Under Windows it will
the users Desktop folder (or the appropriate name under different languages).

9.3.9 DirectoryHome

> DirectoryHome () (function)

returns a directory object for the users home directory, defined as a directory in which the user
will typically have full read and write access. The function is intended to provide a cross-platform
interface to a directory that is easily accessible by the user. Under Unix systems (including Mac OS
X) this will be the usual user home directory. Under Windows it will the users My Documents folder
(or the appropriate name under different languages).

9.4 File Names

9.4.1 Filename

> Filename(dir, name) (operation)
> Filename(list-of-dirs, name) (operation)

If the first argument is a directory object dir, Filename returns the (system dependent) filename
as a string for the file with name name in the directory dir. Filename returns the filename regardless
of whether the directory contains a file with name name or not.

If the first argument is a list 1ist-of-dirs (possibly of length 1) of directory objects, then
Filename searches the directories in order, and returns the filename for the file name in the first
directory which contains a file name or fail if no directory contains a file name.

For example, in order to locate the system program date use DirectoriesSystemPrograms
(9.3.6) together with the second form of Filename.

Example
gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

In order to locate the library file files.gd use DirectoriesLibrary (9.3.5) together with the
second form of Filename.

Example
gap> path := DirectoriesLibrary();;

gap> Filename(path, "files.gd");
"./lib/files.gd"

In order to construct filenames for new files in a temporary directory use DirectoryTemporary
(9.3.3) together with the first form of Filename.
Example
gap> tmpdir := DirectoryTemporary();;
gap> Filename([tmpdir], "file.new");
fail
gap> Filename(tmpdir, "file.new");
"/var/tmp/tmp.0.021738.0001/file.new"

GAP - Reference Manual 136

9.5 Special Filenames

The special filename "*stdin*" denotes the standard input, i.e., the stream through which the user
enters commands to GAP. The exact behaviour of reading from "*stdin*" is operating system de-
pendent, but usually the following happens. If GAP was started with no input redirection, statements
are read from the terminal stream until the user enters the end of file character, which is usually CTRL-
D. Note that terminal streams are special, in that they may yield ordinary input after an end of file.
Thus when control returns to the main read-eval-print loop the user can continue with GAP. If GAP
was started with an input redirection, statements are read from the current position in the input file up
to the end of the file. When control returns to the main read eval view loop the input stream will still
return end of file, and GAP will terminate.

The special filename "*errinx*" denotes the stream connected to the UNIX stderr output. This
stream is usually connected to the terminal, even if the standard input was redirected, unless the
standard error stream was also redirected, in which case opening of "*errin*" fails.

The special filename "*stdout*" can be used to print to the standard output.

The special filename "*errout*" can be used to print to the standard error output file, which is
usually connected to the terminal, even if the standard output was redirected.

9.6 File Access

When the following functions return false one can use LastSystemError (9.1.1) to find out the
reason (as provided by the operating system), see the examples.

9.6.1 IsExistingFile

> IsExistingFile(filename) (function)

IsExistingFile returns true if a file with the filename filename exists and can be seen by the
GAP process. Otherwise false is returned.

Example
gap> IsExistingFile("/bin/date"); # file ‘/bin/date’ exists
true
gap> IsExistingFile("/bin/date.new"); # non existing ‘/bin/date.new’
false

gap> IsExistingFile("/bin/date/new"); # ‘/bin/date’ is not a directory
false

gap> LastSystemError() .message;

"Not a directory"

9.6.2 IsReadableFile

> IsReadableFile(filename) (function)

IsReadableFile returns true if a file with the filename filename exists and the GAP process
has read permissions for the file, or false if this is not the case.

Example
gap> IsReadableFile("/bin/date"); # file ‘/bin/date’ is readable
true

GAP - Reference Manual 137

gap> IsReadableFile("/bin/date.new"); # non-existing ¢/bin/date.new’
false

gap> LastSystemError() .message;

"No such file or directory"

9.6.3 IsWritableFile

> IsWritableFile(filename) (function)

IsWritableFile returns true if a file with the filename filename exists and the GAP process
has write permissions for the file, or false if this is not the case.

Example
gap> IsWritableFile("/bin/date"); # file ‘/bin/date’ is not writable
false

9.6.4 IsExecutableFile

> IsExecutableFile(filename) (function)

IsExecutableFile returns true if a file with the filename filename exists and the GAP process
has execute permissions for the file, or false if this is not the case. Note that execute permissions do
not imply that it is possible to execute the file, e.g., it may only be executable on a different machine.

Example
gap> IsExecutableFile("/bin/date"); # ... but executable
true
9.6.5 IsDirectoryPath
> IsDirectoryPath(filename) (function)

IsDirectoryPath returns true if the file with the filename filename exists and is a direc-
tory, and false otherwise. Note that this function does not check if the GAP process actually
has write or execute permissions for the directory. You can use IsWritableFile (9.6.3), resp.
IsExecutableFile (9.6.4) to check such permissions.

9.7 File Operations

9.7.1 Read

> Read(filename) (operation)

reads the input from the file with the filename filename, which must be given as a string.

Read first opens the file filename. If the file does not exist, or if GAP cannot open it, e.g.,
because of access restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The reading
and evaluations happens exactly as described for the main loop (see 6.1).

GAP - Reference Manual 138

If a statement in the file causes an error a break loop is entered (see 6.4). The input for this break
loop is not taken from the file, but from the input connected to the stderr output of GAP. If stderr
is not connected to a terminal, no break loop is entered. If this break loop is left with quit (or CTRL-
D), GAP exits from the Read command, and from all enclosing Read commands, so that control is
normally returned to an interactive prompt. The QUIT statement (see 6.7) can also be used in the break
loop to exit GAP immediately.

Note that a statement must not begin in one file and end in another. lL.e., eof (end-of-file) is not
treated as whitespace, but as a special symbol that must not appear inside any statement.

Note that one file may very well contain a read statement causing another file to be read, before
input is again taken from the first file. There is an upper limit of 15 on the number of files that may be
open simultaneously.

9.7.2 ReadAsFunction

> ReadAsFunction(filename) (operation)

reads the file with filename filename as a function and returns this function.

Example

Suppose that the file /tmp/example.g contains the following
Example

local a;

a := 10;

return ax*x10;

Reading the file as a function will not affect a global variable a.

Example

gap> a := 1;

1

gap> ReadAsFunction("/tmp/example.g") ();

100

gap> a;

1
9.7.3 PrintTo and AppendTo
> PrintTo(filename[, obj1l, ...]) (function)
> AppendTo(filename[, objl, ...1) (function)

PrintTo works like Print (6.3.4), except that the arguments obj1, ... (if present) are printed to
the file with the name filename instead of the standard output. This file must of course be writable
by GAP. Otherwise an error is signalled. Note that PrintTo will overwrite the previous contents of
this file if it already existed; in particular, PrintTo with just the filename argument empties that file.

AppendTo works like PrintTo, except that the output does not overwrite the previous contents of
the file, but is appended to the file.

There is an upper limit of 15 on the number of output files that may be open simultaneously.

Note that one should be careful not to write to a logfile (see LogTo (9.7.4)) with PrintTo or
AppendTo.

GAP - Reference Manual 139

9.74 LogTo

> LogTo(filename) (operation)
> LogTo O (operation)

Calling LogTo with a string filename causes the subsequent interaction to be logged to the file
with the name filename, i.e., everything you see on your terminal will also appear in this file. (LogTo
(10.4.5) may also be used to log to a stream.) This file must of course be writable by GAP, otherwise
an error is signalled. Note that LogTo will overwrite the previous contents of this file if it already
existed.

Called without arguments, LogTo stops logging to a file or stream.

9.7.5 InputLogTo

> InputLogTo(filename) (operation)
> InputLogTo O (operation)

Calling InputLogTo with a string filename causes the subsequent input to be logged to the
file with the name filename, i.e., everything you type on your terminal will also appear in this file.
Note that InputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo and
OutputLogTo (9.7.6) can. Note that InputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, InputLogTo stops logging to a file or stream.

9.7.6 OutputLogTo

> OutputLogTo (filename) (operation)
> UutputLogTo O (operation)

Calling OutputLogTo with a string filename causes the subsequent output to be logged to the
file with the name filename, i.e., everything GAP prints on your terminal will also appear in this file.
Note that OutputLogTo and LogTo (9.7.4) cannot be used at the same time while InputLogTo (9.7.5)
and OutputLogTo can. Note that QutputLogTo will overwrite the previous contents of this file if it
already existed.

Called without arguments, QutputLogTo stops logging to a file or stream.

9.7.7 CrcFile

> CrcFile(filename) (function)

CRC (cyclic redundancy check) numbers provide a certain method of doing checksums. They are
used by GAP to check whether files have changed.

CrcFile computes a checksum value for the file with filename filename and returns this value as
an integer. The function returns fail if a system error occurred, say, for example, if filename does
not exist. In this case the function LastSystemError (9.1.1) can be used to get information about the
error.

GAP - Reference Manual 140

Example

gap> CrcFile("lib/morpheus.gi");
2705743645

9.7.8 RemoveFile

> RemoveFile(filename) (function)

will remove the file with filename filename and returns true in case of success. The function
returns fail if a system error occurred, for example, if your permissions do not allow the removal of
filename. In this case the function LastSystemError (9.1.1) can be used to get information about
the error.

9.7.9 UserHomeExpand

> UserHomeExpand (str) (function)

If the string str starts with a >~ character this function returns a new string with the leading >~
substituted by the users home directory as stored in GAPInfo.UserHome. Otherwise str is returned
unchanged.

9.7.10 Reread

> Reread(filename) (function)
> REREADING (global variable)

In general, it is not possible to read the same GAP library file twice, or to read a compiled version
after reading a GAP version, because crucial global variables are made read-only (see 4.9) and filters
and methods are added to global tables.

A partial solution to this problem is provided by the function Reread (and related functions
RereadLib etc.). Reread(filename) sets the global variable REREADING to true, reads the file
named by filename and then resets REREADING. Various system functions behave differently when
REREADING is set to true. In particular, assignment to read-only global variables is permitted, calls
to NewRepresentation (79.2.1) and NewInfoClass (7.4.1) with parameters identical to those of
an existing representation or info class will return the existing object, and methods installed with
InstallMethod (78.2.1) may sometimes displace existing methods.

This function may not entirely produce the intended results, especially if what has changed is the
super-representation of a representation or the requirements of a method. In these cases, it is necessary
to restart GAP to read the modified file.

An additional use of Reread is to load the compiled version of a file for which the GAP language
version had previously been read (or perhaps was included in a saved workspace). See 76.3.11 and
3.3 for more information.

It is not advisable to use Reread programmatically. For example, if a file that contains calls to
Reread is read with Reread then REREADING may be reset too early.

Chapter 10

Streams

Streams provide flexible access to GAP’s input and output processing. An input stream takes charac-
ters from some source and delivers them to GAP which reads them from the stream. When an input
stream has delivered all characters it is at end-of -stream. An output stream receives characters from
GAP which writes them to the stream, and delivers them to some destination.

A major use of streams is to provide efficient and flexible access to files. Files can be read and
written using Read (9.7.1) and AppendTo (9.7.3), however the former only allows a complete file to
be read as GAP input and the latter imposes a high time penalty if many small pieces of output are
written to a large file. Streams allow input files in other formats to be read and processed, and files to
be built up efficiently from small pieces of output. Streams may also be used for other purposes, for
example to read from and print to GAP strings, or to read input directly from the user.

Any stream is either a text stream, which translates the end-of-1ine character (\n) to or from the
system’s representation of end-of-line (e.g., new-line under UNIX and carriage-return-new-line
under DOS), or a binary stream, which does not translate the end-of -1ine character. The processing
of other unprintable characters by text streams is undefined. Binary streams pass them unchanged.

Whereas it is cheap to append to a stream, streams do consume system resources, and only a
limited number can be open at any time, therefore it is necessary to close a stream as soon as possible
using CloseStream (10.2.1). If creating a stream failed then LastSystemError (9.1.1) can be used
to get information about the failure.

10.1 Categories for Streams and the StreamsFamily

10.1.1 IsStream

> IsStream(obj) (Category)

Streams are GAP objects and all open streams, input, output, text and binary, lie in this category.

10.1.2 IsClosedStream

> IsClosedStream(obj) (Category)

When a stream is closed, its type changes to lie in IsClosedStream. This category is used to
install methods that trap accesses to closed streams.

141

GAP - Reference Manual 142

10.1.3 IsInputStream

> IsInputStream(obj) (Category)

All input streams lie in this category, and support input operations such as ReadByte (10.3.3) (see
10.3)

10.1.4 IsInputTextStream

> IsInputTextStream(obj) (Category)

All text input streams lie in this category. They translate new-line characters read.

10.1.5 IsInputTextNone

> IsInputTextNone (obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.6 IsOutputStream

> IsOutputStream(obj) (Category)

All output streams lie in this category and support basic operations such as WriteByte (10.4.1)
(see Section 10.4).

10.1.7 IsOutputTextStream

> IsOutputTextStream(obj) (Category)

All text output streams lie in this category and translate new-line characters on output.

10.1.8 IsOutputTextNone

> IsOutputTextNone(obj) (Category)

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other
distinctions are usually made using representations

10.1.9 StreamsFamily

> StreamsFamily (family)

All streams lie in the StreamsFamily.

GAP - Reference Manual 143

10.2 Operations applicable to All Streams

10.2.1 CloseStream

> CloseStream(stream) (operation)

In order to preserve system resources and to flush output streams every stream should be closed as
soon as it is no longer used using CloseStream.

It is an error to try to read characters from or write characters to a closed stream. Closing a stream
tells the GAP kernel and/or the operating system kernel that the file is no longer needed. This may
be necessary because the GAP kernel and/or the operating system may impose a limit on how many
streams may be open simultaneously.

10.2.2 FileDescriptorOfStream

> FileDescriptorOfStream(stream) (operation)

returns the UNIX file descriptor of the underlying file. This is mainly useful for the UNIXSelect
(10.2.3) function call. This is as of now only available on UNIX-like operating systems and only for
streams to local processes and local files.

10.2.3 UNIXSelect

> UNIXSelect(inlist, outlist, exclist, timeoutsec, timeoutusec) (function)

makes the UNIX C-library function select accessible from GAP for streams. The functionality
is as described in the man page (see UNIX file descriptors (integers) for streams. They can be obtained
via FileDescriptorOfStream (10.2.2) for streams to local processes and to local files. The argu-
ment timeoutsec is a timeout in seconds as in the struct timeval on the C level. The argument
timeoutusec is analogously in microseconds. The total timeout is the sum of both. If one of those
timeout arguments is not a small integer then no timeout is applicable (fail is allowed for the timeout
arguments).

The return value is the number of streams that are ready, this may be 0 if a timeout was specified.
All file descriptors in the three lists that are not yet ready are replaced by fail in this function. So the
lists are changed!

This function is only available if your operating system has select, which is detected during
compilation of GAP.

10.3 Operations for Input Streams

Two operations normally used to read files: Read (9.7.1) and ReadAsFunction (9.7.2) can also be
used to read GAP input from a stream. The input is immediately parsed and executed. When reading
from a stream str, the GAP kernel generates calls to ReadLine (str) to supply text to the parser.

Three further operations: ReadByte (10.3.3), ReadLine (10.3.4) and ReadA1l (10.3.5), support
reading characters from an input stream without parsing them. This can be used to read data in any
format and process it in GAP.

GAP - Reference Manual 144

Additional operations for input streams support detection of end of stream, and (for those streams
for which it is appropriate) random access to the data.

10.3.1 Read (for streams)
> Read(input-text-stream) (operation)
reads the input-text-stream as input until end-of -stream occurs. See 9.7 for details.

10.3.2 ReadAsFunction (for streams)

> ReadAsFunction(input-text-stream) (operation)

reads the input-text-stream as function and returns this function. See 9.7 for details.
Example
a’ does not change the global one

gap> # a function with local ¢

gap> a := 1;;

gap> i := InputTextString("local a; a := 10; return a*10;");;
gap> ReadAsFunction(i) O);

100

gap> a;

1

gap> # reading it via ‘Read’ does

gap> i := InputTextString("a := 10;");;
gap> Read(i);

gap> a;

10

10.3.3 ReadByte

> ReadByte (input-stream) (operation)

ReadByte returns one character (returned as integer) from the input stream input-stream.
ReadByte returns fail if there is no character available, in particular if it is at the end of a file.

If input-stream is the input stream of a input/output process, ReadByte may also return fail
if no byte is currently available.

ReadByte is the basic operation for input streams. If a ReadByte method is installed for a user-
defined type of stream which does not block, then all the other input stream operations will work
(although possibly not at peak efficiency).

ReadByte will wait (block) until a byte is available. For instance if the stream is a connection to
another process, it will wait for the process to output a byte.

10.3.4 ReadLine
> ReadLine(input-stream) (operation)
ReadLine returns one line (returned as string with the newline) from the input stream

input-stream. ReadLine reads in the input until a newline is read or the end-of-stream is en-
countered.

GAP - Reference Manual 145

If input-stream is the input stream of a input/output process, ReadLine may also return fail or
return an incomplete line if the other process has not yet written any more. It will always wait (block)
for at least one byte to be available, but will then return as much input as is available, up to a limit of
one line

A default method is supplied for ReadLine which simply calls ReadByte (10.3.3) repeatedly. This
is only safe for streams that cannot block. The kernel uses calls to ReadLine to supply input to the
parser when reading from a stream.

10.3.5 ReadAll

> ReadAll(input-stream[, 1imit]) (operation)

ReadAll returns all characters as string from the input stream stream-in. It waits (blocks) until
at least one character is available from the stream, or until there is evidence that no characters will
ever be available again. This last indicates that the stream is at end-of-stream. Otherwise, it reads
as much input as it can from the stream without blocking further and returns it to the user. If the
stream is already at end of file, so that no bytes are available, fail is returned. In the case of a file
stream connected to a normal file (not a pseudo-tty or named pipe or similar), all the bytes should be
immediately available and this function will read the remainder of the file.

With a second argument, at most 1imit bytes will be returned. Depending on the stream a
bounded number of additional bytes may have been read into an internal buffer.

A default method is supplied for ReadA11 which simply calls ReadLine (10.3.4) repeatedly. This
is only really safe for streams which cannot block. Other streams should install a method for ReadAll
Example
gap> i := InputTextString("1Hallo\nYou\ni");;
gap> ReadByte(i);

49

gap> CHAR_INT(last);
) 1 b

gap> ReadLine(i);
"Hallo\n"

gap> ReadLine(i);
"You\n"

gap> ReadLine(i);
n 1 n

gap> ReadLine(i);
fail

gap> ReadAl1l(i);

gap> RewindStream(i);;
gap> ReadAl1(i);
"1Hallo\nYou\ni"

10.3.6 IsEndOfStream

> IsEndOfStream(input—stream) (operation)

IsEndOfStream returns true if the input stream is at end-of-stream, and false otherwise. Note
that IsEndOfStream might return false even if the next ReadByte (10.3.3) fails.

GAP - Reference Manual 146

10.3.7 PositionStream

> PositionStream(input-stream) (operation)
Some input streams, such as string streams and file streams attached to disk files, support a form

of random access by way of the operations PositionStream, SeekPositionStream (10.3.9) and

RewindStream (10.3.8). PositionStream returns a non-negative integer denoting the current posi-

tion in the stream (usually the number of characters before the next one to be read.

If this is not possible, for example for an input stream attached to standard input (normally the
keyboard), then fail is returned

10.3.8 RewindStream
> RewindStream(input-stream) (operation)
RewindStream attempts to return an input stream to its starting condition, so that all the same
characters can be read again. It returns true if the rewind succeeds and fail otherwise
A default method implements RewindStream using SeekPositionStream (10.3.9).
10.3.9 SeekPositionStream
> SeekPositionStream(input-stream, pos) (operation)

SeekPositionStream attempts to rewind or wind forward an input stream to the specified posi-
tion. This is not possible for all streams. It returns true if the seek is successful and fail otherwise.

10.4 Operations for QOutput Streams

10.4.1 WriteByte

> WriteByte(output-stream, byte) (operation)

writes the next character (given as integer) to the output stream output-stream. The function
returns true if the write succeeds and fail otherwise.

WriteByte is the basic operation for output streams. If a WriteByte method is installed for a
user-defined type of stream, then all the other output stream operations will work (although possibly
not at peak efficiency).

10.4.2 WriteLine

> WIiteLine(output—stream, string) (operation)

appends string to output-stream. A final newline is written. The function returns true if the
write succeeds and fail otherwise.

A default method is installed which implements WriteLine by repeated calls to WriteByte
(10.4.1).

GAP - Reference Manual 147

10.4.3 WriteAll

> WriteAll(output-stream, string) (operation)

appends string to output-stream. No final newline is written. The function returns true if
the write succeeds and fail otherwise. It will block as long as necessary for the write operation to
complete (for example for a child process to clear its input buffer)

A default method is installed which implements WriteAll by repeated calls to WriteByte
(10.4.1).

When printing or appending to a stream (using PrintTo (9.7.3), or AppendTo (9.7.3) or when
logging to a stream), the kernel generates a call to WriteAll for each line output.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> WriteByte(a,INT_CHAR(’H’));
true
gap> WriteLine(a,"allo");
true
gap> WriteAll(a,"You\n");
true

gap> CloseStream(a);
gap> Print(str);
Hallo

You

10.4.4 PrintTo and AppendTo (for streams)

> PrintTo(output-stream, argl, ...) (function)
> AppendTo(output-stream, argl, ...) (function)

These functions work like Print (6.3.4), except that the output is appended to the output stream
output-stream.

Example
gap> str := "";; a := OutputTextString(str,true);;
gap> AppendTo(a, (1,2,3), ":", Z(3));
gap> CloseStream(a);
gap> Print(str, "\n");
(1,2,3):2(3)
10.4.5 LogTo (for streams)
> LogTo(stream) (operation)

causes the subsequent interaction to be logged to the output stream stream. It works in precisely
the same way as it does for files (see LogTo (9.7.4)).

10.4.6 InputLogTo (for streams)

> InputLogTo(stream) (operation)

GAP - Reference Manual 148

causes the subsequent input to be logged to the output stream stream. It works just like it does
for files (see InputLogTo (9.7.5)).

10.4.7 OutputLogTo (for streams)

> OutputLogTo(stream) (operation)

causes the subsequent output to be logged to the output stream stream. It works just like it does
for files (see OutputLogTo (9.7.6)).

10.4.8 SetPrintFormattingStatus

> SetPrintFormattingStatus(stream, newstatus) (operation)
> PrintFormattingStatus(stream) (operation)

When text is being sent to an output text stream via PrintTo (9.7.3), AppendTo (9.7.3), LogTo
(10.4.5), etc., it is by default formatted just as it would be were it being printed to the screen. Thus,
it is broken into lines of reasonable length at (where possible) sensible places, lines containing el-
ements of lists or records are indented, and so forth. This is appropriate if the output is eventually
to be viewed by a human, and harmless if it to passed as input to GAP, but may be unhelpful if
the output is to be passed as input to another program. It is possible to turn off this behaviour for
a stream using the SetPrintFormattingStatus operation, and to test whether it is on or off using
PrintFormattingStatus.

SetPrintFormattingStatus sets whether output sent to the output stream stream via PrintTo
(9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation. If the second
argument newstatus is true then output will be so formatted, and if false then it will not. If the
stream is not a text stream, only false is allowed.

PrintFormattingStatus returns true if output sent to the output text stream stream via
PrintTo (9.7.3), AppendTo (9.7.3), etc. will be formatted with line breaks and indentation, and false
otherwise. For non-text streams, it returns false. If as argument stream the string "*stdout*" is
given, these functions refer to the formatting status of the standard output (so usually the users terminal
screen).

These functions do not influence the behaviour of the low level functions WriteByte (10.4.1),
WriteLine (10.4.2) or WriteAll (10.4.3) which always write without formatting.

Example
gap> s := "";; str := QutputTextString(s,false);;
gap> PrintTo(str,Primes{[1..30]});
gap> s;

"2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");

(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

gap> SetPrintFormattingStatus(str, false);

gap> PrintTo(str,Primes{[1..30]1});

gap> s;

"[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,\
\n 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 [2, 3, 5, 7\

, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, \

GAP - Reference Manual 149

79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");

(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 I1[2, 3, 5, 7, 1\

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,\
83, 89, 97, 101, 103, 107, 109, 113]

10.5 File Streams

File streams are streams associated with files. An input file stream reads the characters it delivers from
a file, an output file stream prints the characters it receives to a file. The following functions can be
used to create such streams. They return fail if an error occurred, in this case LastSystemError
(9.1.1) can be used to get information about the error.

10.5.1 InputTextFile

> InputTextFile (filename) (operation)

InputTextFile(filename) returns an input stream in the category IsInputTextStream
(10.1.4) that delivers the characters from the file filename. If filename ends in .gz and the file
is a valid gzipped file, then the file will be transparently uncompressed.

10.5.2 OutputTextFile

> OutputTextFile(filename, append) (operation)

OutputTextFile(filename, append) returns an output stream in the category
IsOutputTextFile that writes received characters to the file filename. If append is false,
then the file is emptied first, otherwise received characters are added at the end of the file. If
filename ends in .gz then the file will be written with gzip compression.

Example
gap> # use a temporary directory
gap> name := Filename(DirectoryTemporary(), "test");;
gap> # create an output stream, append output, and close again
gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "Hallo\n", "You\n");
gap> CloseStream(output) ;
gap> # create an input, print complete contents of file, and close

gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));

Hallo

You

gap> CloseStream(input);

gap> # append a single line

gap> output := OutputTextFile(name, true);;

gap> AppendTo(output, "AppendLine\n");

gap> # close output stream to flush the output

gap> CloseStream(output) ;

gap> # create an input, print complete contents of file, and close

GAP - Reference Manual 150

gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));

Hallo

You

AppendLine

gap> CloseStream(input);

10.6 User Streams

The commands described in this section create streams which accept characters from, or deliver char-
acters to, the user, via the keyboard or the GAP session display.

10.6.1 InputTextUser

> InputTextUser () (function)

returns an input text stream which delivers characters typed by the user (or from the standard input
device if it has been redirected). In normal circumstances, characters are delivered one by one as they
are typed, without waiting until the end of a line. No prompts are printed.

10.6.2 OutputTextUser

> OutputTextUser () (function)

returns an output stream which delivers characters to the user’s display (or the standard output
device if it has been redirected). Each character is delivered immediately it is written, without waiting
for a full line of output. Text written in this way is not written to the session log (see LogTo (9.7.4)).

10.6.3 InputFromUser

> InputFromUser (arg) (function)

prints the arg as a prompt, then waits until a text is typed by the user (or from the standard input
device if it has been redirected). This text must be a single expression, followed by one enter. This is
evaluated (see EvalString (27.9.5)) and the result is returned.

10.7 String Streams

String streams are streams associated with strings. An input string stream reads the characters it
delivers from a string, an output string stream appends the characters it receives to a string. The
following functions can be used to create such streams.

10.7.1 InputTextString

> InputTextString(string) (operation)

GAP - Reference Manual 151

InputTextString(string) returns an input stream that delivers the characters from the string
string. The string is not changed when reading characters from it and changing the string after
the call to InputTextString has no influence on the input stream.

10.7.2 OutputTextString

> OutputTextString(list, append) (operation)

returns an output stream that puts all received characters into the list 1ist. If append is false,
then the list is emptied first, otherwise received characters are added at the end of the list.

Example

gap> # read input from a string

gap> input := InputTextString("Hallo\nYou\n");;
gap> ReadLine(input);

"Hallo\n"

gap> ReadLine(input);

"You\n"

gap> # print to a string

gap> str := "";;

gap> out := OutputTextString(str, true);;

gap> PrintTo(out, 1, "\n", (1,2,3,4)(5,6), "\n");
gap> CloseStream(out) ;

gap> Print(str);

1

(1,2,3,4) (5,6)

10.8 Input-Output Streams

Input-output streams capture bidirectional communications between GAP and another process, either
locally or (@as yet unimplemented @) remotely.

Such streams support the basic operations of both input and output streams. They should provide
some buffering, allowing output data to be written to the stream, even when input data is waiting to
be read, but the amount of this buffering is operating system dependent, and the user should take care
not to get too far ahead in writing, or behind in reading, or deadlock may occur.

At present the only type of Input-Output streams that are implemented provide communication
with a local child process, using a pseudo-tty.

Like other streams, write operations are blocking, read operations will block to get the first char-
acter, but not thereafter.

As far as possible, no translation is done on characters written to, or read from the stream, and no
control characters have special effects, but the details of particular pseudo-tty implementations may
effect this.

10.8.1 IsInputOutputStream

> IsInputOutputStream(obj) (Category)

IsInputOutputStream is the Category of Input-Output Streams; it returns true if the obj is an
input-output stream and false otherwise.

GAP - Reference Manual 152

10.8.2 InputOutputLocalProcess

> InputOutputLocalProcess(dir, executable, args) (function)

starts up a slave process, whose executable file is executable, with “command line” ar-
guments args in the directory dir. (Suitable choices for dir are DirectoryCurrent ()
or DirectoryTemporary() (see Section 9.3); DirectoryTemporary() may be a good
choice when executable generates output files that it doesn’t itself remove afterwards.)
InputOutputLocalProcess returns an InputOutputStream object. Bytes written to this stream are
received by the slave process as if typed at a terminal on standard input. Bytes written to standard
output by the slave process can be read from the stream.

When the stream is closed, the signal SIGTERM is delivered to the child process, which is ex-
pected to exit.

Example
gap> d := DirectoryCurrent();
dir("./")
gap> f := Filename(DirectoriesSystemPrograms(), "rev");
"/usr/bin/rev"

gap> s := InputOutputLocalProcess(d,f,[]);
< input/output stream to rev >

gap> WriteLine(s,"The cat sat on the mat");
true

gap> Print (ReadLine(s));

tam eht no tas tac ehT

gap> x := ListWithIdenticalEntries(10000,°x’);;
gap> ConvertToStringRep(x);

gap> WriteLine(s,x);

true

gap> WriteByte(s,INT_CHAR(’\n’));

true

gap> y := ReadAll(s);;

gap> Length(y);

4095

gap> CloseStream(s);

gap> s;

< closed input/output stream to rev >

10.8.3 ReadAllLine

> ReadAllLine(iostream[, nofail][, IsAllLine]) (operation)

For an input/output stream iostream ReadAllLine reads until a newline character if any input
is found or returns fail if no input is found, i.e. if any input is found ReadA11Line is non-blocking.

If the argument nofail (which must be false or true) is provided and it is set to true then
ReadAllLine will wait, if necessary, for input and never return fail.

If the argument IsA11Line (which must be a function that takes a string argument and returns
either true or false) then it is used to determine what constitutes a whole line. The default behaviour
is equivalent to passing the function

Example
line -> O < Length(line) and line[Length(line)] = ’\n’

GAP - Reference Manual 153

for the IsA11Line argument. The purpose of the IsAl11Line argument is to cater for the case
where the input being read is from an external process that writes a “prompt” for data that does not
terminate with a newline.

If the first argument is an input stream but not an input/output stream then ReadA11Line behaves
as if ReadLine (10.3.4) was called with just the first argument and any additional arguments are
ignored.

10.9 Dummy Streams

The following two commands create dummy streams which will consume all characters and never
deliver one.

10.9.1 InputTextNone

> InputTextNone() (function)

returns a dummy input text stream, which delivers no characters, i.e., it is always at end of stream.
Its main use is for calls to Process (11.1.1) when the started program does not read anything.

10.9.2 OutputTextNone

> OutputTextNone () (function)

returns a dummy output stream, which discards all received characters. Its main use is for calls to
Process (11.1.1) when the started program does not write anything.

10.10 Handling of Streams in the Background

This section describes a feature of the GAP kernel that can be used to handle pending streams some-
how “in the background”. This is only available on operating systems that have select.

Right before GAP reads a keypress from the keyboard it calls a little subroutine that can handle
streams that are ready to be read or ready to be written. This means that GAP can handle these streams
during user input on the command line. Note that this does not work when GAP is in the middle of
some calculation.

This feature is used in the following way. One can install handler functions for reading
or writing streams via InstallCharReadHookFunc (10.10.1). Handlers can be removed via
UnInstallCharReadHookFunc (10.10.2)

Note that handler functions must not return anything and get one integer argument, which refers
to an index in one of the following arrays (according to whether the function was installed for input,
output or exceptions on the stream). Handler functions usually should not output anything on the
standard output because this ruins the command line during command line editing.

10.10.1 InstallCharReadHookFunc

> InstallCharReadHookFunc(stream, mode, func) (function)

GAP - Reference Manual 154

installs the function func as a handler function for the stream stream. The argument mode
decides, for what operations on the stream this function is installed. mode must be a string, in which a
letter r means “read”, w means “write” and x means “exception”, according to the select function call
in the UNIX C-library (see man select and UNIXSelect (10.2.3)). More than one letter is allowed
in mode. As described above the function is called in a situation when GAP is reading a character
from the keyboard. Handler functions should not use much time to complete.

This functionality only works if the operating system has a select function.

10.10.2 UnlnstallCharReadHookFunc

> UnInstallCharReadHookFunc(stream, func) (function)

uninstalls the function func as a handler function for the stream stream. All instances are dein-
stalled, regardless of the mode of operation (read, write, exception).
This functionality only works if the operating system has a select function.

10.11 Comma separated files

In some situations it can be desirable to process data given in the form of a spreadsheet (such as Excel).
GAP can do this using the CSV (comma separated values) format, which spreadsheet programs can
usually read in or write out.

The first line of the spreadsheet is used as labels of record components, each subsequent line then
corresponds to a record. Entries enclosed in double quotes are considered as strings and are permitted
to contain the separation character (usually a comma).

10.11.1 ReadCSV

> ReadCSV(filename[, nohead] [, separator]) (function)

This function reads in a spreadsheet, saved in CSV format (comma separated values) and returns
its entries as a list of records. The entries of the first line of the spreadsheet are used to denote the
names of the record components. Blanks will be translated into underscore characters. If the parameter
nohead is given as true, instead the record components will be called fieldn. Each subsequent line
will create one record. If given, separator is the character used to separate fields. Otherwise it
defaults to a comma.

10.11.2 PrintCSV

> PrintCSV(filename, list[, fields]) (function)

This function prints a list of records as a spreadsheet in CSV format (which can be read in for
example into Excel). The names of the record components will be printed as entries in the first line. If
the argument fields is given only the record fields listed in this list will be printed and they will be
printed in the same arrangement as given in this list. If the option noheader is set to true the line with
the record field names will not be printed.

Chapter 11

Processes

GAP can call other programs, such programs are called processes. There are two kinds of processes:
first there are processes that are started, run and return a result, while GAP is suspended until the
process terminates. Then there are processes that will run in parallel to GAP as subprocesses and
GAP can communicate and control the processes using streams (see InputOutputLocalProcess
(10.8.2)).

11.1 Process and Exec

11.1.1 Process

> Process(dir, prg, stream-in, stream-out, options) (operation)

Process runs a new process and returns when the process terminates. It returns the return value
of the process if the operating system supports such a concept.

The first argument dir is a directory object (see 9.3) which will be the current directory (in the
usual UNIX or MSDOS sense) when the program is run. This will only matter if the program accesses
files (including running other programs) via relative path names. In particular, it has nothing to do
with finding the binary to run.

In general the directory will either be the current directory, which is returned by
DirectoryCurrent (9.3.4) —this was the behaviour of GAP 3- or a temporary directory returned
by DirectoryTemporary (9.3.3). If one expects that the process creates temporary or log files the
latter should be used because GAP will attempt to remove these directories together with all the files
in them when quitting.

If a program of a GAP package which does not only consist of GAP code needs to be launched
in a directory relative to certain data libraries, then the first entry of DirectoriesPackageLibrary
(76.3.7) should be used. The argument of DirectoriesPackageLibrary (76.3.7) should be the path
to the data library relative to the package directory.

If a program calls other programs and needs to be launched in a directory containing the executa-
bles for such a GAP package then the first entry of DirectoriesPackagePrograms (76.3.8) should
be used.

The latter two alternatives should only be used if absolutely necessary because otherwise one risks
accumulating log or core files in the package directory.

155

GAP - Reference Manual 156

Example
gap> path := DirectoriesSystemPrograms();;
gap> 1ls := Filename(path, "1s");;

gap> stdin := InputTextUser();;

gap> stdout := OutputTextUser();;

gap> Process(path[1], 1ls, stdin, stdout, ["-c"]);;

awk 1s mkdir

gap> # current directory, here the root directory

gap> Process(DirectoryCurrent(), 1s, stdin, stdout, ["-c"]);;
bin 1ib trans tst CVs grp prim thr two
src dev etc tbl doc pkg small tom

gap> # create a temporary directory

gap> tmpdir := DirectoryTemporary();;

gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;

gap> PrintTo(Filename(tmpdir, "emil"));

gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;

emil

prg is the filename of the program to launch, for portability it