1.0.0[−][src]Struct std::net::Ipv6Addr  
An IPv6 address.
IPv6 addresses are defined as 128-bit integers in IETF RFC 4291. They are usually represented as eight 16-bit segments.
See IpAddr for a type encompassing both IPv4 and IPv6 addresses.
The size of an Ipv6Addr struct may vary depending on the target operating
system.
Textual representation
Ipv6Addr provides a FromStr implementation. There are many ways to represent
an IPv6 address in text, but in general, each segments is written in hexadecimal
notation, and segments are separated by :. For more information, see
IETF RFC 5952.
Examples
use std::net::Ipv6Addr; let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); assert_eq!("::1".parse(), Ok(localhost)); assert_eq!(localhost.is_loopback(), true);Run
Methods
impl Ipv6Addr[src] 
impl Ipv6Addrpub const fn new(
    a: u16, 
    b: u16, 
    c: u16, 
    d: u16, 
    e: u16, 
    f: u16, 
    g: u16, 
    h: u16
) -> Ipv6Addr[src] 
pub const fn new(
    a: u16, 
    b: u16, 
    c: u16, 
    d: u16, 
    e: u16, 
    f: u16, 
    g: u16, 
    h: u16
) -> Ipv6AddrCreates a new IPv6 address from eight 16-bit segments.
The result will represent the IP address a:b:c:d:e:f:g:h.
Examples
use std::net::Ipv6Addr; let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);Run
pub const LOCALHOST: Self[src]
An IPv6 address representing localhost: ::1.
Examples
use std::net::Ipv6Addr; let addr = Ipv6Addr::LOCALHOST; assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));Run
pub const UNSPECIFIED: Self[src]
An IPv6 address representing the unspecified address: ::
Examples
use std::net::Ipv6Addr; let addr = Ipv6Addr::UNSPECIFIED; assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));Run
pub fn segments(&self) -> [u16; 8][src] 
pub fn segments(&self) -> [u16; 8]Returns the eight 16-bit segments that make up this address.
Examples
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(), [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);Run
pub fn is_unspecified(&self) -> bool1.7.0[src] 
pub fn is_unspecified(&self) -> boolReturns true for the special 'unspecified' address (::).
This property is defined in IETF RFC 4291.
Examples
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);Run
pub fn is_loopback(&self) -> bool1.7.0[src] 
pub fn is_loopback(&self) -> boolReturns true if this is a loopback address (::1).
This property is defined in IETF RFC 4291.
Examples
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);Run
pub fn is_global(&self) -> bool[src] 
pub fn is_global(&self) -> bool🔬 This is a nightly-only experimental API.  (ip #27709)
extra functionality has not been scrutinized to the level that it should be to be stable
Returns true if the address appears to be globally routable.
The following return false:
- the loopback address
- link-local, site-local, and unique local unicast addresses
- interface-, link-, realm-, admin- and site-local multicast addresses
Examples
#![feature(ip)] use std::net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false); assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true); }Run
pub fn is_unique_local(&self) -> bool[src] 
pub fn is_unique_local(&self) -> bool🔬 This is a nightly-only experimental API.  (ip #27709)
extra functionality has not been scrutinized to the level that it should be to be stable
Returns true if this is a unique local address (fc00::/7).
This property is defined in IETF RFC 4193.
Examples
#![feature(ip)] use std::net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false); assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true); }Run
pub fn is_unicast_link_local(&self) -> bool[src] 
pub fn is_unicast_link_local(&self) -> bool🔬 This is a nightly-only experimental API.  (ip #27709)
extra functionality has not been scrutinized to the level that it should be to be stable
Returns true if the address is unicast and link-local (fe80::/10).
This property is defined in IETF RFC 4291.
Examples
#![feature(ip)] use std::net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_link_local(), false); assert_eq!(Ipv6Addr::new(0xfe8a, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true); }Run
pub fn is_unicast_site_local(&self) -> bool[src] 
pub fn is_unicast_site_local(&self) -> bool🔬 This is a nightly-only experimental API.  (ip #27709)
extra functionality has not been scrutinized to the level that it should be to be stable
Returns true if this is a deprecated unicast site-local address
(fec0::/10).
Examples
#![feature(ip)] use std::net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(), false); assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true); }Run
pub fn is_documentation(&self) -> bool[src] 
pub fn is_documentation(&self) -> bool🔬 This is a nightly-only experimental API.  (ip #27709)
extra functionality has not been scrutinized to the level that it should be to be stable
Returns true if this is an address reserved for documentation
(2001:db8::/32).
This property is defined in IETF RFC 3849.
Examples
#![feature(ip)] use std::net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false); assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true); }Run
pub fn is_unicast_global(&self) -> bool[src] 
pub fn is_unicast_global(&self) -> bool🔬 This is a nightly-only experimental API.  (ip #27709)
extra functionality has not been scrutinized to the level that it should be to be stable
Returns true if the address is a globally routable unicast address.
The following return false:
- the loopback address
- the link-local addresses
- the (deprecated) site-local addresses
- unique local addresses
- the unspecified address
- the address range reserved for documentation
Examples
#![feature(ip)] use std::net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true); }Run
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope>[src] 
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope>🔬 This is a nightly-only experimental API.  (ip #27709)
extra functionality has not been scrutinized to the level that it should be to be stable
Returns the address's multicast scope if the address is multicast.
Examples
#![feature(ip)] use std::net::{Ipv6Addr, Ipv6MulticastScope}; fn main() { assert_eq!(Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(), Some(Ipv6MulticastScope::Global)); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None); }Run
pub fn is_multicast(&self) -> bool1.7.0[src] 
pub fn is_multicast(&self) -> boolReturns true if this is a multicast address (ff00::/8).
This property is defined by IETF RFC 4291.
Examples
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);Run
pub fn to_ipv4(&self) -> Option<Ipv4Addr>[src] 
pub fn to_ipv4(&self) -> Option<Ipv4Addr>Converts this address to an IPv4 address. Returns None if this address is
neither IPv4-compatible or IPv4-mapped.
::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
Examples
use std::net::{Ipv4Addr, Ipv6Addr}; assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(), Some(Ipv4Addr::new(192, 10, 2, 255))); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(), Some(Ipv4Addr::new(0, 0, 0, 1)));Run
pub fn octets(&self) -> [u8; 16]1.12.0[src] 
pub fn octets(&self) -> [u8; 16]Returns the sixteen eight-bit integers the IPv6 address consists of.
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(), [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);Run
Trait Implementations
impl Copy for Ipv6Addr[src] 
impl Copy for Ipv6Addrimpl From<Ipv6Addr> for IpAddr1.16.0[src] 
impl From<Ipv6Addr> for IpAddrimpl Display for Ipv6Addr[src] 
impl Display for Ipv6Addrfn fmt(&self, fmt: &mut Formatter) -> Result[src] 
fn fmt(&self, fmt: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Debug for Ipv6Addr[src] 
impl Debug for Ipv6Addrfn fmt(&self, fmt: &mut Formatter) -> Result[src] 
fn fmt(&self, fmt: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Clone for Ipv6Addr[src] 
impl Clone for Ipv6Addrfn clone(&self) -> Ipv6Addr[src] 
fn clone(&self) -> Ipv6AddrReturns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)[src] 
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl PartialEq for Ipv6Addr[src] 
impl PartialEq for Ipv6Addrfn eq(&self, other: &Ipv6Addr) -> bool[src] 
fn eq(&self, other: &Ipv6Addr) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
#[must_use]
fn ne(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<IpAddr> for Ipv6Addr1.16.0[src] 
impl PartialEq<IpAddr> for Ipv6Addrfn eq(&self, other: &IpAddr) -> bool[src] 
fn eq(&self, other: &IpAddr) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
#[must_use]
fn ne(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<Ipv6Addr> for IpAddr1.16.0[src] 
impl PartialEq<Ipv6Addr> for IpAddrfn eq(&self, other: &Ipv6Addr) -> bool[src] 
fn eq(&self, other: &Ipv6Addr) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
#[must_use]
fn ne(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl Eq for Ipv6Addr[src] 
impl Eq for Ipv6Addrimpl Hash for Ipv6Addr[src] 
impl Hash for Ipv6Addrfn hash<H: Hasher>(&self, s: &mut H)[src] 
fn hash<H: Hasher>(&self, s: &mut H)Feeds this value into the given [Hasher]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher, 1.3.0[src] 
fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher, Feeds a slice of this type into the given [Hasher]. Read more
impl PartialOrd for Ipv6Addr[src] 
impl PartialOrd for Ipv6Addrfn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>[src] 
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
#[must_use]
fn lt(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<Ipv6Addr> for IpAddr1.16.0[src] 
impl PartialOrd<Ipv6Addr> for IpAddrfn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>[src] 
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
#[must_use]
fn lt(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialOrd<IpAddr> for Ipv6Addr1.16.0[src] 
impl PartialOrd<IpAddr> for Ipv6Addrfn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>[src] 
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
#[must_use]
fn lt(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool[src] 
#[must_use]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl Ord for Ipv6Addr[src] 
impl Ord for Ipv6Addrfn cmp(&self, other: &Ipv6Addr) -> Ordering[src] 
fn cmp(&self, other: &Ipv6Addr) -> OrderingThis method returns an Ordering between self and other. Read more
fn max(self, other: Self) -> Self1.21.0[src] 
fn max(self, other: Self) -> SelfCompares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self1.21.0[src] 
fn min(self, other: Self) -> SelfCompares and returns the minimum of two values. Read more
impl From<Ipv6Addr> for u1281.26.0[src] 
impl From<Ipv6Addr> for u128impl From<u128> for Ipv6Addr1.26.0[src] 
impl From<u128> for Ipv6Addrimpl From<[u8; 16]> for Ipv6Addr1.9.0[src] 
impl From<[u8; 16]> for Ipv6Addrimpl From<[u16; 8]> for Ipv6Addr1.16.0[src] 
impl From<[u16; 8]> for Ipv6Addrimpl FromStr for Ipv6Addr[src] 
impl FromStr for Ipv6Addrtype Err = AddrParseError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError>[src] 
fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError>Parses a string s to return a value of this type. Read more
Auto Trait Implementations
Blanket Implementations
impl<T> From for T[src] 
impl<T> From for Timpl<T, U> TryFrom for T where
    T: From<U>, [src] 
impl<T, U> TryFrom for T where
    T: From<U>, type Error = !
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src] 
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>Performs the conversion.
impl<T, U> TryInto for T where
    U: TryFrom<T>, [src] 
impl<T, U> TryInto for T where
    U: TryFrom<T>, type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src] 
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>Performs the conversion.
impl<T, U> Into for T where
    U: From<T>, [src] 
impl<T, U> Into for T where
    U: From<T>, impl<T> Borrow for T where
    T: ?Sized, [src] 
impl<T> Borrow for T where
    T: ?Sized, ⓘImportant traits for &'a mut Ifn borrow(&self) -> &T[src] 
fn borrow(&self) -> &TImmutably borrows from an owned value. Read more
impl<T> BorrowMut for T where
    T: ?Sized, [src] 
impl<T> BorrowMut for T where
    T: ?Sized, ⓘImportant traits for &'a mut Ifn borrow_mut(&mut self) -> &mut T[src] 
fn borrow_mut(&mut self) -> &mut TMutably borrows from an owned value. Read more
impl<T> Any for T where
    T: 'static + ?Sized, [src] 
impl<T> Any for T where
    T: 'static + ?Sized, fn get_type_id(&self) -> TypeId[src] 
fn get_type_id(&self) -> TypeId🔬 This is a nightly-only experimental API.  (get_type_id #27745)
this method will likely be replaced by an associated static
Gets the TypeId of self. Read more
impl<T> ToOwned for T where
    T: Clone, [src] 
impl<T> ToOwned for T where
    T: Clone, type Owned = T
fn to_owned(&self) -> T[src] 
fn to_owned(&self) -> TCreates owned data from borrowed data, usually by cloning. Read more
fn clone_into(&self, target: &mut T)[src] 
fn clone_into(&self, target: &mut T)🔬 This is a nightly-only experimental API.  (toowned_clone_into #41263)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more
impl<T> ToString for T where
    T: Display + ?Sized, [src] 
impl<T> ToString for T where
    T: Display + ?Sized,