* (for bipartitions) 3.4 * (for PBRs) 4.4 * (for matrices over a semiring) 5.2 * (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-6 < (for bipartitions) 3.4 < (for PBRs) 4.4 < (for matrices over a semiring) 5.2 < (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-6 = (for bipartitions) 3.4 = (for PBRs) 4.4 = (for matrices over a semiring) 5.2 = (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-6 \<, for Green's classes 13.3-1 \^, for a matrix over finite field group and matrix over finite field 5.7-8 \in 5.3-3 ^ (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-6 AnnularJonesMonoid 8.3-5 AntiIsomorphismDualSemigroup 6.5-4 ApsisMonoid 8.3-11 AsBipartition 3.3-1 AsBlockBijection 3.3-2 AsBooleanMat 5.3-2 AsInverseSemigroupCongruenceByKernelTrace 17.7-3 AsList 5.1-10 AsListCanonical 14.1-1 AsMatrix, for a filter and a matrix 5.1-6 AsMatrixGroup 5.7-10 AsMonoid 6.6-4 AsMutableList 5.1-10 AsPartialPerm, for a bipartition 3.3-4 AsPBR 4.3-1 AsPermutation, for a bipartition 3.3-5 AsRMSCongruenceByLinkedTriple 17.6-8 AsRZMSCongruenceByLinkedTriple 17.6-8 AsSemigroup 6.6-3 AsSemigroupCongruenceByGeneratingPairs 17.6-7 AsTransformation, for a bipartition 3.3-3 BaseDomain, for a matrix over finite field 5.4-7 Bipartition 3.2-1 BipartitionByIntRep 3.2-2 BlistNumber 5.3-7 BlocksNC 3.6-2 BooleanMat 5.3-1 BooleanMatNumber 5.3-6 BrandtSemigroup 9.1-6 BrauerMonoid 8.3-2 CanonicalBlocks 3.5-18 CanonicalBooleanMat 5.3-8 CanonicalForm, for a free inverse semigroup element 10.3-1 CanonicalRepresentative 17.6-6 CanonicalTransformation 14.12-9 CatalanMonoid 8.1-1 CharacterTableOfInverseSemigroup 16.1-10 ClosureInverseMonoid 6.4-1 ClosureInverseSemigroup 6.4-1 ClosureMonoid 6.4-1 ClosureSemigroup 6.4-1 CodomainOfBipartition 3.5-11 ComponentRepsOfPartialPermSemigroup 14.13-1 ComponentRepsOfTransformationSemigroup 14.12-1 ComponentsOfPartialPermSemigroup 14.13-2 ComponentsOfTransformationSemigroup 14.12-2 CompositionMapping2, for IsRMSIsoByTriple 18.2-4 CongruenceClasses 17.3-5 CongruenceClassOfElement 17.3-4 CongruencesOfPoset 17.4-7 CongruencesOfSemigroup, for a semigroup 17.4-1 ContentOfFreeBandElement 10.4-7 ContentOfFreeBandElementCollection 10.4-7 CrossedApsisMonoid 8.3-11 CyclesOfPartialPerm 14.13-3 CyclesOfPartialPermSemigroup 14.13-4 CyclesOfTransformationSemigroup 14.12-3 DClass 13.1-2 DClasses 13.1-4 DClassNC 13.1-3 DClassOfHClass 13.1-1 DClassOfLClass 13.1-1 DClassOfRClass 13.1-1 DClassReps 13.1-5 DegreeOfBipartition 3.5-1 DegreeOfBipartitionCollection 3.5-1 DegreeOfBipartitionSemigroup 3.8-5 DegreeOfBlocks 3.6-5 DegreeOfPBR 4.5-2 DegreeOfPBRCollection 4.5-2 DegreeOfPBRSemigroup 4.6-2 DigraphOfActionOnPairs, for a transformation semigroup 14.12-4 DigraphOfActionOnPoints, for a transformation semigroup 14.12-5 DimensionOfMatrixOverSemiring 5.1-3 DimensionOfMatrixOverSemiringCollection 5.1-4 DirectProduct 6.4-4 DirectProductOp 6.4-4 DomainOfBipartition 3.5-10 DotLeftCayleyDigraph 19.1-4 DotRightCayleyDigraph 19.1-4 DotSemilatticeOfIdempotents 19.1-3 DotString 19.1-1 DualSemigroup 6.5-1 DualSymmetricInverseMonoid 8.3-7 DualSymmetricInverseSemigroup 8.3-7 ELM_LIST (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-6 ELM_LIST, for IsRMSIsoByTriple 18.2-3 EmptyPBR 4.2-3 EndomorphismMonoid, for a digraph 6.8-1 EndomorphismsPartition 8.1-2 Enumerate 14.1-3 EnumeratorCanonical 14.1-1 EquivalenceRelationCanonicalLookup 17.3-11 EquivalenceRelationCanonicalPartition 17.3-12 EquivalenceRelationLookup 17.3-10 EUnitaryInverseCover 16.1-11 EvaluateWord 14.5-1 ExtRepOfObj, for a bipartition 3.5-3 FactorisableDualSymmetricInverseMonoid 8.3-8 Factorization 14.5-2 FixedPointsOfTransformationSemigroup, for a transformation semigroup 14.12-6 FreeBand, for a given rank 10.4-1 FreeInverseSemigroup, for a given rank 10.1-1 FullBooleanMatMonoid 8.6-1 FullMatrixMonoid 8.5-1 FullPBRMonoid 8.4-1 FullTropicalMaxPlusMonoid 8.7-1 FullTropicalMinPlusMonoid 8.7-2 GeneralLinearMonoid 8.5-1 GeneratingPairsOfLeftSemigroupCongruence 17.2-4 GeneratingPairsOfRightSemigroupCongruence 17.2-4 GeneratingPairsOfSemigroupCongruence 17.2-4 Generators 14.6-1 GeneratorsOfSemigroupIdeal 7.2-1 GeneratorsSmallest, for a semigroup 14.6-5 GLM 8.5-1 GossipMonoid 8.6-5 GraphInverseSemigroup 11.1-1 GraphOfGraphInverseSemigroup 11.1-5 GreensDClasses 13.1-4 GreensDClassOfElement 13.1-2 GreensDClassOfElementNC 13.1-3 GreensHClasses 13.1-4 GreensHClassOfElement 13.1-2 GreensHClassOfElementNC 13.1-3 GreensJClasses 13.1-4 GreensLClasses 13.1-4 GreensLClassOfElement 13.1-2 GreensLClassOfElementNC 13.1-3 GreensRClasses 13.1-4 GreensRClassOfElement 13.1-2 GreensRClassOfElementNC 13.1-3 GroupHClass 13.4-1 GroupOfUnits 14.8-1 HallMonoid 8.6-4 HClass 13.1-2 HClasses 13.1-4 HClassNC 13.1-3 HClassReps 13.1-5 Ideals, for a semigroup 7.1-2 IdempotentGeneratedSubsemigroup 14.9-3 Idempotents 14.9-1 IdentityBipartition 3.2-3 IdentityMatrixOverFiniteField, for a finite field and a pos int 5.4-2 IdentityPBR 4.2-4 ImagesElm, for IsRMSIsoByTriple 18.2-5 ImagesRepresentative, for IsRMSIsoByTriple 18.2-5 IndecomposableElements 14.6-6 IndexPeriodOfSemigroupElement 14.4-1 InfoSemigroups 2.6-1 InjectionNormalizedPrincipalFactor 13.4-7 InjectionPrincipalFactor 13.4-7 IntRepOfBipartition 3.5-4 InverseMonoidByGenerators 6.2-1 InverseOp 5.6-1 InverseSemigroupByGenerators 6.2-1 InverseSemigroupCongruenceByKernelTrace 17.7-2 InverseSubsemigroupByProperty 6.4-3 IrredundantGeneratingSubset 14.6-3 IsActingSemigroup 6.1-3 IsAntiSymmetricBooleanMat 5.3-13 IsAperiodicSemigroup 15.1-19 IsBand 15.1-1 IsBipartition 3.1-1 IsBipartitionCollColl 3.1-2 IsBipartitionCollection 3.1-2 IsBipartitionMonoid 3.8-1 IsBipartitionPBR 4.5-8 IsBipartitionSemigroup 3.8-1 IsBlockBijection 3.5-16 IsBlockBijectionMonoid 3.8-2 IsBlockBijectionPBR 4.5-8 IsBlockBijectionSemigroup 3.8-2 IsBlockGroup 15.1-2 IsBlocks 3.6-1 IsBooleanMat 5.1-8 IsBooleanMatCollColl 5.1-9 IsBooleanMatCollection 5.1-9 IsBooleanMatMonoid 5.7-2 IsBooleanMatSemigroup 5.7-1 IsBrandtSemigroup 16.2-2 IsCliffordSemigroup 16.2-1 IsColTrimBooleanMat 5.3-9 IsCombinatorialSemigroup 15.1-19 IsCommutativeSemigroup 15.1-3 IsCompletelyRegularSemigroup 15.1-4 IsCompletelySimpleSemigroup 15.1-22 IsCongruenceClass 17.3-1 IsCongruenceFreeSemigroup 15.1-5 IsCongruencePoset 17.4-4 IsConnectedTransformationSemigroup, for a transformation semigroup 14.12-10 IsDTrivial 15.1-19 IsDualSemigroupElement 6.5-3 IsDualSemigroupRep 6.5-2 IsDualTransBipartition 3.5-13 IsDualTransformationPBR 4.5-10 IsEmptyPBR 4.5-5 IsEnumerableSemigroupRep 6.1-4 IsEquivalenceBooleanMat 5.3-16 IsEUnitaryInverseSemigroup 16.2-3 IsFactorisableInverseMonoid 16.2-6 IsFinite 5.7-3 IsFInverseMonoid 16.2-5 IsFInverseSemigroup 16.2-4 IsFreeBand, for a given semigroup 10.4-3 IsFreeBandCategory 10.4-2 IsFreeBandElement 10.4-4 IsFreeBandElementCollection 10.4-5 IsFreeBandSubsemigroup 10.4-6 IsFreeInverseSemigroup 10.1-3 IsFreeInverseSemigroupCategory 10.1-2 IsFreeInverseSemigroupElement 10.1-4 IsFreeInverseSemigroupElementCollection 10.1-5 IsFullMatrixMonoid 8.5-3 IsFullyEnumerated 14.1-4 IsGeneralLinearMonoid 8.5-3 IsGraphInverseSemigroup 11.1-4 IsGraphInverseSemigroupElement 11.1-4 IsGraphInverseSemigroupElementCollection 11.1-6 IsGraphInverseSubsemigroup 11.1-7 IsGreensClassNC 13.3-3 IsGreensDGreaterThanFunc 13.1-12 IsGroupAsSemigroup 15.1-7 IsHTrivial 15.1-19 IsIdempotentGenerated 15.1-8 IsIdentityPBR 4.5-6 IsIntegerMatrix 5.1-8 IsIntegerMatrixCollColl 5.1-9 IsIntegerMatrixCollection 5.1-9 IsIntegerMatrixMonoid 5.7-2 IsIntegerMatrixSemigroup 5.7-1 IsInverseSemigroupCongruenceByKernelTrace 17.7-1 IsInverseSemigroupCongruenceClassByKernelTrace 17.7-6 IsIsomorphicSemigroup 18.1-1 IsJoinIrreducible 16.2-7 IsLeftCongruenceClass 17.3-2 IsLeftSemigroupCongruence 17.1-2 IsLeftSimple 15.1-9 IsLeftZeroSemigroup 15.1-10 IsLinkedTriple 17.6-5 IsLTrivial 15.1-19 IsMajorantlyClosed 16.2-8 IsMatrixOverFiniteField 5.1-8 IsMatrixOverFiniteFieldCollColl 5.1-9 IsMatrixOverFiniteFieldCollection 5.1-9 IsMatrixOverFiniteFieldGroup 5.7-7 IsMatrixOverFiniteFieldMonoid 5.7-2 IsMatrixOverFiniteFieldSemigroup 5.7-1 IsMatrixOverSemiring 5.1-1 IsMatrixOverSemiringCollColl 5.1-2 IsMatrixOverSemiringCollection 5.1-2 IsMatrixOverSemiringMonoid 5.7-2 IsMatrixOverSemiringSemigroup 5.7-1 IsMaximalSubsemigroup 14.10-3 IsMaxPlusMatrix 5.1-8 IsMaxPlusMatrixCollColl 5.1-9 IsMaxPlusMatrixCollection 5.1-9 IsMaxPlusMatrixMonoid 5.7-2 IsMaxPlusMatrixSemigroup 5.7-1 IsMcAlisterTripleSemigroup 12.1-1 IsMcAlisterTripleSemigroupElement 12.1-7 IsMinPlusMatrix 5.1-8 IsMinPlusMatrixCollColl 5.1-9 IsMinPlusMatrixCollection 5.1-9 IsMinPlusMatrixMonoid 5.7-2 IsMinPlusMatrixSemigroup 5.7-1 IsMonogenicInverseMonoid 16.2-10 IsMonogenicInverseSemigroup 16.2-9 IsMonogenicMonoid 15.1-12 IsMonogenicSemigroup 15.1-11 IsMonoidAsSemigroup 15.1-13 IsMTSE 12.1-7 IsNTPMatrix 5.1-8 IsNTPMatrixCollColl 5.1-9 IsNTPMatrixCollection 5.1-9 IsNTPMatrixMonoid 5.7-2 IsNTPMatrixSemigroup 5.7-1 IsomorphismMatrixGroup 5.7-9 IsomorphismMonoid 6.6-2 IsomorphismPermGroup 6.6-5 IsomorphismReesMatrixSemigroup, for a D-class 13.4-7 IsomorphismReesMatrixSemigroupOverPermGroup 14.15-1 IsomorphismReesZeroMatrixSemigroup 14.15-1 IsomorphismReesZeroMatrixSemigroupOverPermGroup 14.15-1 IsomorphismSemigroup 6.6-1 IsomorphismSemigroups 18.1-3 IsOntoBooleanMat 5.3-14 IsOrthodoxSemigroup 15.1-14 IsPartialOrderBooleanMat 5.3-15 IsPartialPermBipartition 3.5-15 IsPartialPermBipartitionMonoid 3.8-3 IsPartialPermBipartitionSemigroup 3.8-3 IsPartialPermPBR 4.5-11 IsPBR 4.1-1 IsPBRCollColl 4.1-2 IsPBRCollection 4.1-2 IsPBRMonoid 4.6-1 IsPBRSemigroup 4.6-1 IsPermBipartition 3.5-14 IsPermBipartitionGroup 3.8-4 IsPermPBR 4.5-12 IsRectangularBand 15.1-15 IsRectangularGroup 15.1-16 IsReesCongruenceClass 17.8-2 IsReflexiveBooleanMat 5.3-11 IsRegularGreensClass 13.3-2 IsRegularSemigroup 15.1-17 IsRightCongruenceClass 17.3-3 IsRightSemigroupCongruence 17.1-3 IsRightSimple 15.1-9 IsRightZeroSemigroup 15.1-18 IsRMSCongruenceByLinkedTriple 17.6-1 IsRMSCongruenceClassByLinkedTriple 17.6-3 IsRMSIsoByTriple 18.2-1 IsRowTrimBooleanMat 5.3-9 IsRTrivial 15.1-19 IsRZMSCongruenceByLinkedTriple 17.6-1 IsRZMSCongruenceClassByLinkedTriple 17.6-3 IsRZMSIsoByTriple 18.2-1 IsSemiband 15.1-8 IsSemigroupCongruence 17.1-1 IsSemigroupWithAdjoinedZero 15.1-20 IsSemilattice 15.1-21 IsSimpleSemigroup 15.1-22 IsSubrelation 17.5-1 IsSuperrelation 17.5-2 IsSurjectiveSemigroup 15.1-6 IsSymmetricBooleanMat 5.3-10 IsSynchronizingSemigroup, for a transformation semigroup 15.1-23 IsTorsion 5.7-4 IsTotalBooleanMat 5.3-14 IsTransBipartition 3.5-12 IsTransformationPBR 4.5-9 IsTransitive, for a transformation
semigroup and a pos int 14.12-7 IsTransitiveBooleanMat 5.3-12 IsTrimBooleanMat 5.3-9 IsTropicalMatrix 5.1-8 IsTropicalMatrixCollection 5.1-9 IsTropicalMatrixMonoid 5.7-2 IsTropicalMatrixSemigroup 5.7-1 IsTropicalMaxPlusMatrix 5.1-8 IsTropicalMaxPlusMatrixCollColl 5.1-9 IsTropicalMaxPlusMatrixCollection 5.1-9 IsTropicalMaxPlusMatrixMonoid 5.7-2 IsTropicalMaxPlusMatrixSemigroup 5.7-1 IsTropicalMinPlusMatrix 5.1-8 IsTropicalMinPlusMatrixCollColl 5.1-9 IsTropicalMinPlusMatrixCollection 5.1-9 IsTropicalMinPlusMatrixMonoid 5.7-2 IsTropicalMinPlusMatrixSemigroup 5.7-1 IsUniformBlockBijection 3.5-17 IsUnitRegularMonoid 15.1-24 IsUniversalPBR 4.5-7 IsUniversalSemigroupCongruence 17.9-1 IsUniversalSemigroupCongruenceClass 17.9-2 IsVertex, for a graph inverse semigroup element 11.1-3 IsZeroGroup 15.1-25 IsZeroRectangularBand 15.1-26 IsZeroSemigroup 15.1-27 IsZeroSimpleSemigroup 15.1-28 IteratorCanonical 14.1-1 IteratorFromGeneratorsFile 20.1-3 IteratorFromMultiplicationTableFile 20.2-3 IteratorOfDClasses 13.2-2 IteratorOfDClassReps 13.2-1 IteratorOfHClasses 13.2-2 IteratorOfHClassReps 13.2-1 IteratorOfLClasses 13.2-2 IteratorOfLClassReps 13.2-1 IteratorOfRClasses 13.2-2 IteratorOfRClassReps 13.2-1 JClasses 13.1-4 JoinIrreducibleDClasses 16.1-2 JoinLeftSemigroupCongruences 17.5-4 JoinRightSemigroupCongruences 17.5-4 JoinSemigroupCongruences 17.5-4 JoinSemilatticeOfCongruences, for a congruence poset and a function 17.4-10 JonesMonoid 8.3-3 KernelOfSemigroupCongruence 17.7-4 LargestElementSemigroup 14.12-8 LatticeOfCongruences, for a semigroup 17.4-5 LatticeOfLeftCongruences, for a semigroup 17.4-5 LatticeOfRightCongruences, for a semigroup 17.4-5 LClass 13.1-2 LClasses 13.1-4 LClassNC 13.1-3 LClassOfHClass 13.1-1 LClassReps 13.1-5 LeftBlocks 3.5-6 LeftCayleyDigraph 14.2-1 LeftCongruenceClasses 17.3-5 LeftCongruenceClassOfElement 17.3-4 LeftCongruencesOfSemigroup, for a semigroup 17.4-1 LeftInverse, for a matrix over finite field 5.4-6 LeftOne, for a bipartition 3.2-4 LeftProjection 3.2-4 LeftSemigroupCongruence 17.2-2 LeftZeroSemigroup 9.1-5 LengthOfLongestDClassChain 13.1-11 MajorantClosure 16.1-3 Matrix, for a filter and a matrix 5.1-5 MaximalDClasses 13.1-7 MaximalSubsemigroups, for a finite semigroup 14.10-1 McAlisterTripleSemigroup 12.1-2 McAlisterTripleSemigroupAction 12.1-6 McAlisterTripleSemigroupElement 12.1-8 McAlisterTripleSemigroupGroup 12.1-3 McAlisterTripleSemigroupPartialOrder 12.1-4 McAlisterTripleSemigroupSemilattice 12.1-5 MeetSemigroupCongruences 17.5-3 MinimalCongruences, for a congruence poset 17.4-11 MinimalCongruencesOfSemigroup, for a semigroup 17.4-2 MinimalDClass 13.1-6 MinimalFactorization 14.5-3 MinimalIdeal 14.7-1 MinimalIdealGeneratingSet 7.2-2 MinimalLeftCongruencesOfSemigroup, for a semigroup 17.4-2 MinimalMonoidGeneratingSet 14.6-4 MinimalRightCongruencesOfSemigroup, for a semigroup 17.4-2 MinimalSemigroupGeneratingSet 14.6-4 MinimalWord, for free inverse semigroup element 10.3-2 MinimumGroupCongruence 17.7-7 Minorants 16.1-4 ModularPartitionMonoid 8.3-10 MonogenicSemigroup 9.1-2 MotzkinMonoid 8.3-6 MTSE 12.1-8 MultiplicativeNeutralElement, for an H-class 13.4-5 MultiplicativeZero 14.7-3 MunnSemigroup 8.2-1 NambooripadLeqRegularSemigroup 14.16-1 NambooripadPartialOrder 14.16-2 NaturalLeqBlockBijection 3.4-3 NaturalLeqInverseSemigroup 16.1-1 NaturalLeqPartialPermBipartition 3.4-2 NewIdentityMatrixOverFiniteField 5.4-3 NewMatrixOverFiniteField, for a filter, a field, an integer, and a list 5.4-1 NewZeroMatrixOverFiniteField 5.4-3 NonTrivialCongruenceClasses 17.3-7 NonTrivialEquivalenceClasses 17.3-6 NonTrivialFactorization 14.5-4 NonTrivialLeftCongruenceClasses 17.3-7 NonTrivialRightCongruenceClasses 17.3-7 NormalizedPrincipalFactor 13.4-8 Normalizer, for a perm group, semigroup, record 14.11-1 NormalizeSemigroup 5.7-5 NrBlocks, for a bipartition 3.5-9 NrCongruenceClasses 17.3-9 NrDClasses 13.1-9 NrEquivalenceClasses 17.3-8 NrHClasses 13.1-9 NrIdempotents 14.9-2 NrLClasses 13.1-9 NrLeftBlocks 3.5-7 NrLeftCongruenceClasses 17.3-9 NrMaximalSubsemigroups 14.10-2 NrRClasses 13.1-9 NrRegularDClasses 13.1-8 NrRightBlocks 3.5-8 NrRightCongruenceClasses 17.3-9 NrTransverseBlocks, for a bipartition 3.5-2 NumberBlist 5.3-7 NumberBooleanMat 5.3-6 NumberPBR 4.5-4 OnBlist 5.3-4 OnLeftBlocks 3.7-2 OnLeftCongruenceClasses 17.3-13 OnRightBlocks 3.7-1 OnRightCongruenceClasses 17.3-14 Order 5.5-3 OrderAntiEndomorphisms 8.1-5 OrderEndomorphisms, monoid of order preserving transformations 8.1-5 PartialBrauerMonoid 8.3-2 PartialDualSymmetricInverseMonoid 8.3-7 PartialJonesMonoid 8.3-4 PartialOrderAntiEndomorphisms 8.1-5 PartialOrderEndomorphisms 8.1-5 PartialOrderOfDClasses 13.1-10 PartialPermLeqBipartition 3.4-1 PartialTransformationMonoid 8.1-3 PartialUniformBlockBijectionMonoid 8.3-8 PartitionMonoid 8.3-1 PBR 4.2-1 PBRNumber 4.5-4 PeriodNTPMatrix 5.1-12 PermLeftQuoBipartition 3.4-4 PlanarModularPartitionMonoid 8.3-10 PlanarPartitionMonoid 8.3-9 PlanarUniformBlockBijectionMonoid 8.3-8 PODI, monoid of order preserving or reversing partial perms 8.2-3 POI, monoid of order preserving partial perms 8.2-3 POPI, monoid of orientation preserving partial perms 8.2-3 PORI, monoid of orientation preserving or reversing partial perms 8.2-3 PosetOfCongruences 17.4-9 PosetOfPrincipalCongruences, for a semigroup 17.4-6 PosetOfPrincipalLeftCongruences, for a semigroup 17.4-6 PosetOfPrincipalRightCongruences, for a semigroup 17.4-6 PositionCanonical 14.1-2 PrimitiveIdempotents 16.1-5 PrincipalCongruencesOfSemigroup, for a semigroup 17.4-3 PrincipalFactor 13.4-8 PrincipalLeftCongruencesOfSemigroup, for a semigroup 17.4-3 PrincipalRightCongruencesOfSemigroup, for a semigroup 17.4-3 ProjectionFromBlocks 3.6-6 RadialEigenvector 5.6-2 Random, for a semigroup 14.3-1 RandomBipartition 3.2-7 RandomBlockBijection 3.2-7 RandomInverseMonoid 6.7-1 RandomInverseSemigroup 6.7-1 RandomMatrix, for a filter and a matrix 5.1-7 RandomMonoid 6.7-1 RandomPBR 4.2-2 RandomSemigroup 6.7-1 Range, for a graph inverse semigroup element 11.1-2 RankOfBipartition 3.5-2 RankOfBlocks 3.6-4 RClass 13.1-2 RClasses 13.1-4 RClassNC 13.1-3 RClassOfHClass 13.1-1 RClassReps 13.1-5 ReadGenerators 20.1-1 ReadMultiplicationTable 20.2-1 RectangularBand 9.1-3 ReflexiveBooleanMatMonoid 8.6-3 RegularBooleanMatMonoid 8.6-2 RegularDClasses 13.1-8 RepresentativeOfMinimalDClass 14.7-2 RepresentativeOfMinimalIdeal 14.7-2 RightBlocks 3.5-5 RightCayleyDigraph 14.2-1 RightCongruenceClasses 17.3-5 RightCongruenceClassOfElement 17.3-4 RightCongruencesOfSemigroup, for a semigroup 17.4-1 RightCosetsOfInverseSemigroup 16.1-6 RightInverse, for a matrix over finite field 5.4-6 RightOne, for a bipartition 3.2-5 RightProjection 3.2-5 RightSemigroupCongruence 17.2-3 RightZeroSemigroup 9.1-5 RMSCongruenceByLinkedTriple 17.6-2 RMSCongruenceClassByLinkedTriple 17.6-4 RMSIsoByTriple 18.2-2 RMSNormalization 6.6-7 RookMonoid 8.2-2 RookPartitionMonoid 8.3-1 RowRank, for a matrix over finite field 5.4-5 RowSpaceBasis, for a matrix over finite field 5.4-4 RowSpaceTransformation, for a matrix over finite field 5.4-4 RowSpaceTransformationInv, for a matrix over finite field 5.4-4 RZMSCongruenceByLinkedTriple 17.6-2 RZMSCongruenceClassByLinkedTriple 17.6-4 RZMSConnectedComponents 14.14-2 RZMSDigraph 14.14-1 RZMSIsoByTriple 18.2-2 RZMSNormalization 6.6-6 SameMinorantsSubgroup 16.1-7 SchutzenbergerGroup 13.4-2 SemigroupCongruence 17.2-1 SemigroupIdeal 7.1-1 SemigroupIdealOfReesCongruence 17.8-1 SEMIGROUPS.DefaultOptionsRec 6.3-1 SemigroupsMakeDoc 2.4-1 SemigroupsTestAll 2.5-4 SemigroupsTestExtreme 2.5-3 SemigroupsTestInstall 2.5-1 SemigroupsTestStandard 2.5-2 SingularApsisMonoid 8.3-11 SingularBrauerMonoid 8.3-2 SingularCrossedApsisMonoid 8.3-11 SingularDualSymmetricInverseMonoid 8.3-7 SingularFactorisableDualSymmetricInverseMonoid 8.3-8 SingularJonesMonoid 8.3-3 SingularModularPartitionMonoid 8.3-10 SingularOrderEndomorphisms 8.1-5 SingularPartitionMonoid 8.3-1 SingularPlanarModularPartitionMonoid 8.3-10 SingularPlanarPartitionMonoid 8.3-9 SingularPlanarUniformBlockBijectionMonoid 8.3-8 SingularTransformationMonoid 8.1-4 SingularTransformationSemigroup 8.1-4 SingularUniformBlockBijectionMonoid 8.3-8 SLM 8.5-2 SmallerDegreePartialPermRepresentation 16.1-8 SmallestElementSemigroup 14.12-8 SmallestIdempotentPower 14.4-2 SmallestMultiplicationTable 18.1-2 SmallGeneratingSet 14.6-2 SmallInverseMonoidGeneratingSet 14.6-2 SmallInverseSemigroupGeneratingSet 14.6-2 SmallMonoidGeneratingSet 14.6-2 SmallSemigroupGeneratingSet 14.6-2 Source, for a graph inverse semigroup element 11.1-2 SpecialLinearMonoid 8.5-2 SpectralRadius 5.6-3 Star, for a bipartition 3.2-6 StarOp, for a bipartition 3.2-6 StructureDescription, for an H-class 13.4-6 StructureDescriptionMaximalSubgroups 13.4-4 StructureDescriptionSchutzenbergerGroups 13.4-3 SubsemigroupByProperty, for a semigroup and function 6.4-2 Successors 5.3-5 SupersemigroupOfIdeal 7.2-3 TemperleyLiebMonoid 8.3-3 TexString 19.2-1 ThresholdNTPMatrix 5.1-12 ThresholdTropicalMatrix 5.1-11 TikzLeftCayleyDigraph 19.3-2 TikzRightCayleyDigraph 19.3-2 TikzString 19.3-1 TraceOfSemigroupCongruence 17.7-5 TransposedMatImmutable, for a matrix over finite field 5.4-8 TriangularBooleanMatMonoid 8.6-6 TrivialSemigroup 9.1-1 UnderlyingSemigroupOfCongruencePoset 17.4-8 UnderlyingSemigroupOfSemigroupWithAdjoinedZero 14.7-4 UniformBlockBijectionMonoid 8.3-8 UnitriangularBooleanMatMonoid 8.6-6 UniversalPBR 4.2-5 UniversalSemigroupCongruence 17.9-3 UnweightedPrecedenceDigraph 5.6-4 VagnerPrestonRepresentation 16.1-9 WreathProduct 6.4-5 WriteGenerators 20.1-2 WriteMultiplicationTable 20.2-2 ZeroSemigroup 9.1-4
generated by GAPDoc2HTML