[ VIGRA Homepage | Function Index | Class Index | Namespaces | File List | Main Page ]
|   | LeastAngleRegressionOptions Class Reference |  | 
Pass options to leastAngleRegression(). More...
#include <vigra/regression.hxx>
| Public Member Functions | |
| LeastAngleRegressionOptions & | lars () | 
| LeastAngleRegressionOptions & | lasso () | 
| LeastAngleRegressionOptions () | |
| LeastAngleRegressionOptions & | leastSquaresSolutions (bool select=true) | 
| LeastAngleRegressionOptions & | maxSolutionCount (unsigned int n) | 
| LeastAngleRegressionOptions & | nnlasso () | 
| LeastAngleRegressionOptions & | setMode (std::string mode) | 
Pass options to leastAngleRegression().
#include <vigra/regression.hxx>
 Namespaces: vigra and vigra::linalg 
Initialize all options with default values.
| LeastAngleRegressionOptions& maxSolutionCount | ( | unsigned int | n | ) | 
Maximum number of solutions to be computed.
If n is 0 (the default), the number of solutions is determined by the length of the solution array. Otherwise, the minimum of maxSolutionCount() and that length is taken.
 Default: 0 (use length of solution array) 
| LeastAngleRegressionOptions& setMode | ( | std::string | mode | ) | 
Set the mode of the algorithm.
Mode must be one of "lars", "lasso", "nnlasso". The function just calls the member function of the corresponding name to set the mode.
Default: "lasso"
| LeastAngleRegressionOptions& lars | ( | ) | 
Use the plain LARS algorithm.
Default: inactive
| LeastAngleRegressionOptions& lasso | ( | ) | 
Use the LASSO modification of the LARS algorithm.
This allows features to be removed from the active set under certain conditions.
 Default: active 
| LeastAngleRegressionOptions& nnlasso | ( | ) | 
Use the non-negative LASSO modification of the LARS algorithm.
This enforces all non-zero entries in the solution to be positive.
 Default: inactive 
| LeastAngleRegressionOptions& leastSquaresSolutions | ( | bool | select = true | ) | 
Compute least squares solutions.
Use least angle regression to determine active sets, but return least squares solutions for the features in each active set, instead of constrained solutions.
 Default: true 
| 
© Ullrich Köthe     (ullrich.koethe@iwr.uni-heidelberg.de)  | 
html generated using doxygen and Python
 |