|  |  D.2.4.18 WLemma Procedure from librarygrobcov.lib(see  grobcov_lib).
 
Example:Usage:
WLemma(F,A[,options]);
The first argument ideal F in Q[x_1,..,x_n][u_1,..,u_m];
The second argument ideal A in Q[x_1,..,x_n].
 Calling sequence:
 ring R=(0,x_1,..,x_n),(u_1,..,u_m),lp;
 ideal F=f_1(x_1,..,x_n,u_1,..,u_m),..,
 f_s(x_1,..,x_n,u_1,..,u_m);
 ideal A=g_1(u_1,..u_m),..,g_s(u_1,..u_m);
 list # : Options
 Calling sequence:
 WLemma(F,A[,options]);
 
Given the ideal F and ideal A
it returns the list (lpp,B,S) were B is the
 reduced Groebner basis of the specialized F over
 the segment S, subset of V(A) with top A,
 determined by Wibmer's Lemma.
 S is determined in P-representation
 (or optionally in C-representation). The basis is
 given by I-regular functions.
 
Options:
either ("rep", 0) or ("rep",1) the representation of
the resulting segment, by default is
0 =P-representation, (default) but can be set to
 1=C-representation.
 
Return:
list of [lpp,B,S] =
[leading power product, basis,segment],
 being B the reduced Groebner Basis given by
 I-regular functions in full representation, of
 the specialized ideal F on the segment S,
 subset of V(A) with top A.
 given in P- or C-representation.
 It is the result of Wibmer's Lemma. See
 A. Montes , M. Wibmer, "Groebner Bases for
 Polynomial Systems with parameters".
 JSC 45 (2010) 1391-1425.)
 or the book
 A. Montes. "The Groebner Cover" (Discussing
 Parametric Polynomial Systems).
 
Note:
The basering R, must be of the form Q[a][x]
(a=parameters, x=variables).
 
 |  | LIB "grobcov.lib";
if(defined(RE)){kill RE;}
ring RE=(0,a,b,c,d,e,f),(x,y),lp;
ideal F=a*x^2+b*x*y+c*y^2,d*x^2+e*x*y+f*y^2;
ideal A=a*e-b*d;
WLemma(F,A);
==> [1]:
==>    _[1]=y2
==>    _[2]=x2
==> [2]:
==>    [1]:
==>       _[1]=y2
==>    [2]:
==>       _[1]=(d)*x2+(e)*xy+(f)*y2
==>       _[2]=(a)*x2+(b)*xy+(c)*y2
==> [3]:
==>    [1]:
==>       [1]:
==>          _[1]=(ae-bd)
==>       [2]:
==>          [1]:
==>             _[1]=(bf-ce)
==>             _[2]=(af-cd)
==>             _[3]=(ae-bd)
==>          [2]:
==>             _[1]=(d)
==>             _[2]=(a)
WLemma(F,A,"rep",1);
==> [1]:
==>    _[1]=y2
==>    _[2]=x2
==> [2]:
==>    [1]:
==>       _[1]=y2
==>    [2]:
==>       _[1]=(d)*x2+(e)*xy+(f)*y2
==>       _[2]=(a)*x2+(b)*xy+(c)*y2
==> [3]:
==>    [1]:
==>       _[1]=(ae-bd)
==>    [2]:
==>       _[1]=(bdf-cde)
==>       _[2]=(af-cd)
==>       _[3]=(ae-bd)
 | 
 
 |