|  |  D.2.4.11 locusdg Procedure from librarygrobcov.lib(see  grobcov_lib).
 
Example:Usage:
locusdg(list L)
Calling sequence:
 locusdg(locus(S)).
 
Return:
The output is the list of the "Relevant" components of the
locus in Dynamic Geometry [C1,..,C:m], where
C_i= [p_i,[p_i1,..p_is_i], "Relevant", level_i]
 The "Relevant" components are "Normal" and
 "Accumulation" components of the locus. (See help
 for locus).
 
 |  | LIB "grobcov.lib";
if(defined(R)){kill R;};
ring R=(0,a,b),(x,y),dp;
short=0;
// Concoid
ideal S96=x^2+y^2-4,(b-2)*x-a*y+2*a,(a-x)^2+(b-y)^2-1;
def L96=locus(S96);
L96;
==> [1]:
==>    [1]:
==>       _[1]=(a^4+2*a^2*b^2-9*a^2+b^4-9*b^2+4*b+12)
==>    [2]:
==>       [1]:
==>          _[1]=1
==>    [3]:
==>       [1]:
==>          1
==>       [2]:
==>          Normal
==>       [3]:
==>          _[1]=x^2+y^2-4
==> [2]:
==>    [1]:
==>       _[1]=(a^2+b^2-4*b+3)
==>    [2]:
==>       [1]:
==>          _[1]=1
==>    [3]:
==>       [1]:
==>          0
==>       [2]:
==>          Special
==>       [3]:
==>          _[1]=y^2-3*y+2
==>          _[2]=x^2+3*y-6
locusdg(L96);
==> [1]:
==>    [1]:
==>       _[1]=(a^4+2*a^2*b^2-9*a^2+b^4-9*b^2+4*b+12)
==>    [2]:
==>       [1]:
==>          _[1]=1
==>    [3]:
==>       [1]:
==>          1
==>       [2]:
==>          Relevant
==>       [3]:
==>          _[1]=x^2+y^2-4
 | 
 
 |