|  |  C.8.6 References for decoding with Groebner bases 
 
[ABF2002]
Augot D.; Bardet M.; Faugére J.-C.: 
Efficient Decoding of (binary) Cyclic Codes beyond the correction capacity of the code using Gröbner bases.
INRIA Report (2002) 4652
[ABF2008]
Augot D.; Bardet M.; Faugére, J.-C.: 
On the decoding of cyclic codes with Newton identities.
to appear in Special Issue "Gröbner Bases Techniques in Cryptography and Coding Theory" of Journ. Symbolic Comp. (2008)
[BP2008a]
Bulygin S.; Pellikaan R.: 
Bounded distance decoding of linear error-correcting codes with Gröbner bases.
to appear in Special Issue "Gröbner Bases Techniques in Cryptography and Coding Theory" of Journ. Symbolic Comp. (2008)
[BP2008b]
Bulygin S.; Pellikaan R.: 
Decoding and finding the minimum distance with Gröbner bases: history and new insights.
to appear in "Selected topics of information and coding theory", World Scientific (2008)
[FL1998]
Fitzgerald J.; Lax R.F.: 
Decoding affine variety codes using Gröbner bases.
Designs, Codes and Cryptography (1998) 13, 147-158
[OS2005]
Orsini E.; Sala M.: 
Correcting errors and erasures via the syndrome variety.
J. Pure and Appl. Algebra (2005) 200, 191-226
[S2007]
Sala M.: 
Gröbner basis techniques to compute weight distributions of shortened cyclic codes.
J. Algebra Appl. (2007) 6, 3, 403-414
 
 
 |