|  |  7.5.10.0. makeUsp2 Procedure from libraryncalg.lib(see  ncalg_lib).
 
Example:Usage:
makeUsp2([p]); p an optional integer (field characteristic)
Return:
a ring, describing U(sp_2)
Note:
You have to activate this ring with the 'setring' command. The presentation of U(sp_2) is derived from the Chevalley representation of sp_2, positive resp. negative roots are denoted by x(i) resp. y(i); Cartan elements are denoted by h(i).
 See also:
 makeUe6;
 makeUe7;
 makeUe8;
 makeUf4;
 makeUg2;
 makeUsl;
 makeUso5;
 makeUsp1.|  | LIB "ncalg.lib";
def ncAlgebra = makeUsp2();
setring ncAlgebra;
ncAlgebra;
==> // coefficients: QQ
==> // number of vars : 10
==> //        block   1 : ordering dp
==> //                  : names    X(1) X(2) X(3) X(4) Y(1) Y(2) Y(3) Y(4) H(\
   1) H(2)
==> //        block   2 : ordering C
==> // noncommutative relations:
==> //    X(2)X(1)=X(1)*X(2)+X(3)
==> //    X(3)X(1)=X(1)*X(3)+2*X(4)
==> //    Y(1)X(1)=X(1)*Y(1)-H(1)
==> //    Y(3)X(1)=X(1)*Y(3)-2*Y(2)
==> //    Y(4)X(1)=X(1)*Y(4)-Y(3)
==> //    H(1)X(1)=X(1)*H(1)+2*X(1)
==> //    H(2)X(1)=X(1)*H(2)-X(1)
==> //    Y(2)X(2)=X(2)*Y(2)-H(2)
==> //    Y(3)X(2)=X(2)*Y(3)+Y(1)
==> //    H(1)X(2)=X(2)*H(1)-2*X(2)
==> //    H(2)X(2)=X(2)*H(2)+2*X(2)
==> //    Y(1)X(3)=X(3)*Y(1)-2*X(2)
==> //    Y(2)X(3)=X(3)*Y(2)+X(1)
==> //    Y(3)X(3)=X(3)*Y(3)-H(1)-2*H(2)
==> //    Y(4)X(3)=X(3)*Y(4)+Y(1)
==> //    H(2)X(3)=X(3)*H(2)+X(3)
==> //    Y(1)X(4)=X(4)*Y(1)-X(3)
==> //    Y(3)X(4)=X(4)*Y(3)+X(1)
==> //    Y(4)X(4)=X(4)*Y(4)-H(1)-H(2)
==> //    H(1)X(4)=X(4)*H(1)+2*X(4)
==> //    Y(2)Y(1)=Y(1)*Y(2)-Y(3)
==> //    Y(3)Y(1)=Y(1)*Y(3)-2*Y(4)
==> //    H(1)Y(1)=Y(1)*H(1)-2*Y(1)
==> //    H(2)Y(1)=Y(1)*H(2)+Y(1)
==> //    H(1)Y(2)=Y(2)*H(1)+2*Y(2)
==> //    H(2)Y(2)=Y(2)*H(2)-2*Y(2)
==> //    H(2)Y(3)=Y(3)*H(2)-Y(3)
==> //    H(1)Y(4)=Y(4)*H(1)-2*Y(4)
 | 
 
 |