|  |  D.15.13.3 multdivisor Procedure from librarydivisors.lib(see  divisors_lib).
 
Example:Usage:
multdivisor(n ,A); A*n; n = integer, A = divisor.
 
Assume:
n is an integer and A is a divisor on X.
Return:
a divisor on X
Theory:
The procedure will compute the n-th power of the numerator
and denominator ideals, respectively.
 |  | LIB "divisors.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
ring r=31991,(x,y,z),dp;
ideal I = y^2*z - x*(x-z)*(x+3*z);
qring Q = std(I);
divisor A = makeDivisor(ideal(x,z),ideal(1));
A;
==> (z,x) - (1)
==> 
divisor D = multdivisor(4,A);
D;
==> (z2,xz) - (1)
==> 
A*4;
==> (z2,xz) - (1)
==> 
 | 
 
 |