|  |  D.6.11.9 displayMultsequence Procedure from libraryhnoether.lib(see  hnoether_lib).
 
Example:Usage:
displayMultsequence(INPUT); INPUT list or poly
Assume:
INPUTis a bivariate polynomial, or the output ofdevelop(f), resp. ofextdevelop(develop(f),n), or (one
entry of) the list of HN data computed byhnexpansion(f[,"ess"]),
or the output ofhnexpansion(f).
Return:
nothing
Display:
the sequence of multiplicities:
|  |  - if INPUT=develop(f)orINPUT=extdevelop(develop(f),n)orINPUT=hne[i]:a , b , c , ....... , 1- ifINPUT=forINPUT=hnexpansion(f)orINPUT=hne:[(a_1, .... , b_1 , .... , c_1)],[(a_2, ... ), ... , (... , c_2)], ........................................ ,[(a_n),(b_n), ....., (c_n)]with:a_1 , ... , a_nthe sequence of multiplicities of the 1st branch,[...]the multiplicities of the j-th transform of all branches,(...)indicating branches meeting in an infinitely near point. | 
 
Note:
The Same restrictions as in multsequenceapply for the input.In case the Hamburger-Noether expansion of the curve f is needed
for other purposes as well it is better to calculate this first
with the aid of
 hnexpansionand use it as input instead of
the polynomial itself.
 See also:
 develop;
 hnexpansion;
 multsequence;
 separateHNE.|  | LIB "hnoether.lib";
ring r=0,(x,y),dp;
// Example 1: Input = output of develop
displayMultsequence(develop(x3-y5));
==> The sequence of multiplicities is   3,2,1,1
// Example 2: Input = bivariate polynomial
displayMultsequence((x6-y10)*(x+y2-y3)*(x+y2+y3));
==> [(3,3,1,1)],
==> [(2,2,1,1)],
==> [(1,1),(1,1)],
==> [(1,1),(1),(1)],
==> [(1),(1),(1),(1)]
 | 
 
 |