|  |  D.4.15.15 irreddecMon Procedure from librarymonomialideal.lib(see  monomialideal_lib).
 
Example:Usage:
irreddecMon (I[,alg]); I ideal, alg string.
Return:
list, the irreducible components of the monomial ideal I.
(returns -1 if I is not a monomial ideal).
Assume:
I is a monomial ideal of the basering k[x(1)..x(n)].
Note:
This procesure returns the irreducible decomposition of I.
One may call the procedure with different algorithms using
the optional argument 'alg':
- the direct method following Vasconcelos' book (alg=vas)
- via the Alexander dual and using doble dual (alg=add),
- via the Alexander dual and quotients following E. Miller
(alg=ad),
 - the formula of irreducible components (alg=for),
 - via the Scarf complex following Milowski (alg=mil),
 - using the label algorithm of Roune (alg=lr),
 - using the algorithm of Gao-Zhu (alg=gz).
 - using the slice algorithm of Roune (alg=sr).
 
 |  | LIB "monomialideal.lib";
ring R = 0,(w,x,y,z),Dp;
ideal I = w^3*x*y,w*x*y*z,x^2*y^2*z^2,x^2*z^4,y^3*z;
// Vasconcelos
irreddecMon (I,"vas");
==> [1]:
==>    _[1]=y
==>    _[2]=x2
==> [2]:
==>    _[1]=w
==>    _[2]=z2
==>    _[3]=y3
==> [3]:
==>    _[1]=y
==>    _[2]=z4
==> [4]:
==>    _[1]=w
==>    _[2]=x2
==>    _[3]=y3
==> [5]:
==>    _[1]=w
==>    _[2]=y2
==>    _[3]=z4
==> [6]:
==>    _[1]=z
==>    _[2]=w3
==> [7]:
==>    _[1]=z
==>    _[2]=x
==> [8]:
==>    _[1]=x
==>    _[2]=y3
// Alexander Dual
irreddecMon (I,"ad");
==> [1]:
==>    _[1]=w
==>    _[2]=y3
==>    _[3]=z2
==> [2]:
==>    _[1]=w
==>    _[2]=y2
==>    _[3]=z4
==> [3]:
==>    _[1]=x
==>    _[2]=z
==> [4]:
==>    _[1]=w
==>    _[2]=x2
==>    _[3]=y3
==> [5]:
==>    _[1]=w3
==>    _[2]=z
==> [6]:
==>    _[1]=x2
==>    _[2]=y
==> [7]:
==>    _[1]=y
==>    _[2]=z4
==> [8]:
==>    _[1]=x
==>    _[2]=y3
// Scarf Complex
irreddecMon (I,"mil");
==> [1]:
==>    _[1]=y
==>    _[2]=z4
==> [2]:
==>    _[1]=w3
==>    _[2]=z
==> [3]:
==>    _[1]=w
==>    _[2]=y3
==>    _[3]=z2
==> [4]:
==>    _[1]=w
==>    _[2]=y2
==>    _[3]=z4
==> [5]:
==>    _[1]=w
==>    _[2]=x2
==>    _[3]=y3
==> [6]:
==>    _[1]=x
==>    _[2]=y3
==> [7]:
==>    _[1]=x2
==>    _[2]=y
==> [8]:
==>    _[1]=x
==>    _[2]=z
// slice algorithm
irreddecMon(I,"sr");
==> [1]:
==>    _[1]=y
==>    _[2]=z4
==> [2]:
==>    _[1]=x2
==>    _[2]=y
==> [3]:
==>    _[1]=x
==>    _[2]=z
==> [4]:
==>    _[1]=x
==>    _[2]=y3
==> [5]:
==>    _[1]=w3
==>    _[2]=z
==> [6]:
==>    _[1]=w
==>    _[2]=y3
==>    _[3]=z2
==> [7]:
==>    _[1]=w
==>    _[2]=y2
==>    _[3]=z4
==> [8]:
==>    _[1]=w
==>    _[2]=x2
==>    _[3]=y3
 | 
 
 |