|  |  A.1.5 Parameters 
Let us deform the ideal in  Long coefficients by
introducing a parameter t and compute over the ground field Q(t).
We compute the dimension at the generic point,
i.e.,
![$dim_{Q(t)}Q(t)[x,y]/j$](sing_396.png) .(This gives the
same result as for the deformed ideal above. Hence, the above small
deformation was "generic".) 
For almost all
 this is the same as ![$dim_Q Q[x,y]/j_0$](sing_398.png) ,where  . 
 |  |   ring Rt = (0,t),(x,y),lp;
  Rt;
==> // coefficients: QQ(t)
==> // number of vars : 2
==> //        block   1 : ordering lp
==> //                  : names    x y
==> //        block   2 : ordering C
  poly f = x5+y11+xy9+x3y9;
  ideal i = jacob(f);
  ideal j = i,i[1]*i[2]+t*x5y8;  // deformed ideal, parameter t
  vdim(std(j));
==> 40
  ring R=0,(x,y),lp;
  ideal i=imap(Rt,i);
  int a=random(1,30000);
  ideal j=i,i[1]*i[2]+a*x5y8;  // deformed ideal, fixed integer a
  vdim(std(j));
==> 40
 | 
 
 |