|  |  7.5.5.0. initialMalgrange Procedure from librarydmodapp.lib(see  dmodapp_lib).
 
Example:Usage:
initialMalgrange(f,[,a,b,v]); f poly, a,b optional ints, v opt. intvec
Return:
ring, Weyl algebra induced by basering, extended by two new vars t,Dt
Purpose:
computes the initial Malgrange ideal of a given polynomial w.r.t. the
weight vector (-1,0...,0,1,0,...,0) such that the weight of t is -1
 and the weight of Dt is 1.
 
Assume:
The basering is commutative and over a field of characteristic 0.
Note:
Activate the output ring with the setringcommand.The returned ring contains the ideal 'inF', being the initial ideal
 of the Malgrange ideal of f.
 Varnames of the basering should not include t and Dt.
 If a<>0,
 stdis used for Groebner basis computations,otherwise, and by default,
 slimgbis used.If b<>0, a matrix ordering is used for Groebner basis computations,
 otherwise, and by default, a block ordering is used.
 If a positive weight vector v is given, the weight
 (d,v[1],...,v[n],1,d+1-v[1],...,d+1-v[n]) is used for homogenization
 computations, where d denotes the weighted degree of f.
 Otherwise and by default, v is set to (1,...,1). See Noro (2002).
 
Display:
If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
 
 |  | LIB "dmodapp.lib";
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
def D = initialMalgrange(f);
setring D;
inF;
==> inF[1]=x*Dt
==> inF[2]=2*x*y*Dx+3*y^2*Dx-y^2*Dy-2*x*Dy
==> inF[3]=2*x^2*Dx+x*y*Dx+x*y*Dy+18*t*Dt+9*x*Dx-x*Dy+6*y*Dy+4*x+18
==> inF[4]=18*t*Dt^2+6*y*Dt*Dy-y*Dt+27*Dt
==> inF[5]=y^2*Dt
==> inF[6]=2*t*y*Dt+2*x*y*Dx+2*y^2*Dx-6*t*Dt-3*x*Dx-x*Dy-2*y*Dy+2*y-6
==> inF[7]=x*y^2+y^3+x^2
==> inF[8]=2*y^3*Dx-2*y^3*Dy-3*y^2*Dx-2*x*y*Dy+y^2*Dy-4*y^2+36*t*Dt+18*x*Dx+1\
   2*y*Dy+36
setring r;
intvec v = 3,2;
def D2 = initialMalgrange(f,1,1,v);
setring D2;
inF;
==> inF[1]=x*Dt
==> inF[2]=2*x*y*Dx+3*y^2*Dx-y^2*Dy-2*x*Dy
==> inF[3]=4*x^2*Dx-3*y^2*Dx+2*x*y*Dy+y^2*Dy+36*t*Dt+18*x*Dx+12*y*Dy+8*x+36
==> inF[4]=18*t*Dt^2+6*y*Dt*Dy-y*Dt+27*Dt
==> inF[5]=y^2*Dt
==> inF[6]=2*t*y*Dt-y^2*Dx+y^2*Dy-6*t*Dt-3*x*Dx+x*Dy-2*y*Dy+2*y-6
==> inF[7]=x*y^2+y^3+x^2
==> inF[8]=2*y^3*Dx-2*y^3*Dy-3*y^2*Dx-2*x*y*Dy+y^2*Dy-4*y^2+36*t*Dt+18*x*Dx+1\
   2*y*Dy+36
 | 
 
 |