|  |  D.15.25.38 equalMultiDeg Procedure from librarymultigrading.lib(see  multigrading_lib).
 
Example:Usage:
equalMultiDeg(exp1, exp2[, V]); intvec exp1, exp2, intmat V
Purpose:
Tests if the exponent vectors of two monomials (given by exp1 and exp2)
represent the same multidegree.
Note:
the integer matrix V encodes multidegrees of module components,
if module component is present in exp1 and exp2
 |  | LIB "multigrading.lib";
printlevel=3;
ring r = 0,(x,y,z),dp;
intmat g[2][3]=
1,0,1,
0,1,1;
intmat t[2][1]=
-2,
1;
setBaseMultigrading(g,t);
poly a = x10yz;
poly b = x8y2z;
poly c = x4z2;
poly d = y5;
poly e = x2y2;
poly f = z2;
equalMultiDeg(leadexp(a), leadexp(b));
==> 1
equalMultiDeg(leadexp(a), leadexp(c));
==> 0
equalMultiDeg(leadexp(a), leadexp(d));
==> 0
equalMultiDeg(leadexp(a), leadexp(e));
==> 0
equalMultiDeg(leadexp(a), leadexp(f));
==> 0
equalMultiDeg(leadexp(b), leadexp(c));
==> 0
equalMultiDeg(leadexp(b), leadexp(d));
==> 0
equalMultiDeg(leadexp(b), leadexp(e));
==> 0
equalMultiDeg(leadexp(b), leadexp(f));
==> 0
equalMultiDeg(leadexp(c), leadexp(d));
==> 1
equalMultiDeg(leadexp(c), leadexp(e));
==> 0
equalMultiDeg(leadexp(c), leadexp(f));
==> 0
equalMultiDeg(leadexp(d), leadexp(e));
==> 0
equalMultiDeg(leadexp(d), leadexp(f));
==> 0
equalMultiDeg(leadexp(e), leadexp(f));
==> 1
 | 
 
 |