| D.2.11.1 changechar |  | make a copy of basering [ring r] with new char c | 
| D.2.11.2 changeord |  | make a copy of basering [ring r] with new ord o | 
| D.2.11.3 changevar |  | make a copy of basering [ring r] with new vars v | 
| D.2.11.4 defring |  | define a ring R in specified char c, n vars v, ord o | 
| D.2.11.5 defrings |  | define ring Sn in n vars, char 32003 [p], ord ds | 
| D.2.11.6 defringp |  | define ring Pn in n vars, char 32003 [p], ord dp | 
| D.2.11.7 extendring |  | extend given ring by n vars v, ord o and name it R | 
| D.2.11.8 fetchall |  | fetch all objects of ring R to basering | 
| D.2.11.9 imapall |  | imap all objects of ring R to basering | 
| D.2.11.10 mapall |  | map all objects of ring R via ideal i to basering | 
| D.2.11.11 ord_test |  | test whether ordering of R is global, local or mixed | 
| D.2.11.12 ringtensor |  | create ring, tensor product of rings s,t,... | 
| D.2.11.13 ringweights |  | intvec of weights of ring variables of ring r | 
| D.2.11.14 preimageLoc |  | computes preimage for non-global orderings | 
| D.2.11.15 rootofUnity |  | the minimal polynomial for the n-th primitive root of unity (parameters in square brackets [] are optional) | 
| D.2.11.16 optionIsSet |  | check if as a string given option is set or not. hasFieldCoefficient check if the coefficient ring is considered a field hasGFCoefficient check if the coefficient ring is GF(p,k) hasZpCoefficient check if the coefficient ring is ZZ/p hasZp_aCoefficient check if the coefficient ring is an elag. ext. of ZZ/p hasQQCoefficient check if the coefficient ring is QQ | 
| D.2.11.17 hasNumericCoeffs |  | check for use of floating point numbers | 
| D.2.11.18 hasCommutativeVars |  | non-commutative or commutative polynomial ring | 
| D.2.11.19 hasGlobalOrdering |  | global versus mixed/local monomial ordering | 
| D.2.11.20 hasMixedOrdering |  | mixed versus global/local ordering | 
| D.2.11.21 hasAlgExtensionCoefficient |  | coefficients are an algebraic extension | 
| D.2.11.22 hasTransExtensionCoefficient |  | coefficients are rational functions | 
| D.2.11.23 isQuotientRing |  | ring is a qotient ring | 
| D.2.11.24 isSubModule |  | check if I is in J as submodule | 
| D.2.11.25 changeordTo |  | change the ordering of a ring to a simple one | 
| D.2.11.26 addvarsTo |  | add variables to a ring | 
| D.2.11.27 addNvarsTo |  | add N variables to a ring |