|  |  D.6.13.4 monodromyB Procedure from librarymondromy.lib(see  mondromy_lib).
 
Example:Usage:
monodromyB(f[,opt]); f poly, opt int
Assume:
The polynomial f in a series ring (local ordering) defines
an isolated hypersurface singularity.
Return:
The procedure returns a residue matrix M of the meromorphic
Gauss-Manin connection of the singularity defined by f
or an empty matrix if the assumptions are not fulfilled.
If opt=0 (default), exp(-2*pi*i*M) is a monodromy matrix of f,
else, only the characteristic polynomial of exp(-2*pi*i*M) coincides
with the characteristic polynomial of the monodromy of f.
Display:
The procedure displays more comments for higher printlevel.
 |  | LIB "mondromy.lib";
ring R=0,(x,y),ds;
poly f=x2y2+x6+y6;
matrix M=monodromyB(f);
print(M);
==> 7/6,0,  0,0,  0,  0,0,   0,-1/2,0,  0,  0,  0,   
==> 0,  7/6,0,0,  0,  0,-1/2,0,0,   0,  0,  0,  0,   
==> 0,  0,  1,0,  0,  0,0,   0,0,   0,  0,  0,  0,   
==> 0,  0,  0,4/3,0,  0,0,   0,0,   0,  0,  0,  0,   
==> 0,  0,  0,0,  4/3,0,0,   0,0,   0,  0,  0,  0,   
==> 0,  0,  0,0,  0,  1,0,   0,0,   0,  0,  0,  0,   
==> 0,  0,  0,0,  0,  0,5/6, 0,0,   0,  0,  0,  0,   
==> 0,  0,  0,0,  0,  0,0,   1,0,   0,  0,  0,  0,   
==> 0,  0,  0,0,  0,  0,0,   0,5/6, 0,  0,  0,  0,   
==> 0,  0,  0,0,  0,  0,0,   0,0,   2/3,0,  0,  0,   
==> 0,  0,  0,0,  0,  0,0,   0,0,   0,  2/3,0,  0,   
==> 0,  0,  0,0,  0,  0,0,   0,0,   0,  0,  1,  -1/3,
==> 0,  0,  0,0,  0,  0,0,   0,0,   0,  0,  3/4,0    
 | 
 
 |