|  |  7.5.2.0. pIntersect Procedure from librarybfun.lib(see  bfun_lib).
 
Example:Usage:
pIntersect(f, I [,s]); f a poly, I an ideal, s an optional int
Return:
vector, coefficient vector of the monic polynomial
Purpose:
compute the intersection of ideal I with the subalgebra K[f]
Assume:
I is given as Groebner basis, basering is not a qring.
Note:
If the intersection is zero, this proc might not terminate.
If s>0 is given, it is searched for the generator of the intersection
 only up to degree s. Otherwise (and by default), no bound is assumed.
 
Display:
If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
 
 |  | LIB "bfun.lib";
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
def D = initialMalgrange(f);
setring D;
inF;
==> inF[1]=x*Dt
==> inF[2]=2*x*y*Dx+3*y^2*Dx-y^2*Dy-2*x*Dy
==> inF[3]=2*x^2*Dx+x*y*Dx+x*y*Dy+18*t*Dt+9*x*Dx-x*Dy+6*y*Dy+4*x+18
==> inF[4]=18*t*Dt^2+6*y*Dt*Dy-y*Dt+27*Dt
==> inF[5]=y^2*Dt
==> inF[6]=2*t*y*Dt+2*x*y*Dx+2*y^2*Dx-6*t*Dt-3*x*Dx-x*Dy-2*y*Dy+2*y-6
==> inF[7]=x*y^2+y^3+x^2
==> inF[8]=2*y^3*Dx-2*y^3*Dy-3*y^2*Dx-2*x*y*Dy+y^2*Dy-4*y^2+36*t*Dt+18*x*Dx+1\
   2*y*Dy+36
pIntersect(t*Dt,inF);
==> gen(4)-1/36*gen(2)
pIntersect(t*Dt,inF,1);
==> // Try a bound of at least 2
==> 0
 | 
 
 |