|  |  7.5.4.0. annfsParamBM Procedure from librarydmod.lib(see  dmod_lib).
 
Example:Usage:
annfsParamBM(f [,eng]); f a poly, eng an optional int
Return:
ring
Purpose:
compute the generic Ann F^s and exceptional parametric constellations
of a polynomial with parametric coefficients with the BM algorithm
 
Note:
activate the output ring with the setringcommand. In this ring,- the ideal LD is the D-module structure oa Ann F^s
 - the ideal Param contains special parameters as entries
 If eng <>0,
 stdis used for Groebner basis computations,otherwise, and by default
 slimgbis used.
Display:
If printlevel=1, progress debug messages will be printed,if
 printlevel>=2, all the debug messages will be printed.
 |  | LIB "dmod.lib";
ring r = (0,a,b),(x,y),Dp;
poly F = x^2 - (y-a)*(y-b);
printlevel = 0;
def A = annfsParamBM(F);  setring A;
LD;
==> LD[1]=2*y*Dx+2*x*Dy+(-a-b)*Dx
==> LD[2]=x^2*Dy-y^2*Dy+(a+b)*y*Dy+2*y*s+(-a*b)*Dy+(-a-b)*s
==> LD[3]=4*x^2*Dx+4*x*y*Dy+(-2*a-2*b)*x*Dy-8*x*s+(a^2-2*a*b+b^2)*Dx
Param;
==> Param[1]=(a-b)
setring r;
poly G = x2-(y-a)^2; // try the exceptional value b=a of parameters
def B = annfsParamBM(G); setring B;
LD;
==> LD[1]=y*Dx+x*Dy+(-a)*Dx
==> LD[2]=x*Dx+y*Dy+(-a)*Dy-2*s
==> LD[3]=x^2*Dy-y^2*Dy+(2*a)*y*Dy+2*y*s+(-a^2)*Dy+(-2*a)*s
Param;
==> Param[1]=0
 | 
 
 |