|  |  7.5.10.0. makeQsl2 Procedure from libraryncalg.lib(see  ncalg_lib).
 
Example:Usage:
makeQsl2([n]), n an optional int
Return:
ring
Purpose:
define the U_q(sl_2) as a factor-ring of a ring V_q(sl_2) modulo the ideal Qideal
Note:
the output consists of a ring, presenting V_q(sl_2) together with the ideal called Qidealin this ringactivate this ring with the
 setringcommandin order to create the U_q(sl_2) from the output, execute the command like
 qring Usl2q = Qideal;If n is specified, the quantum parameter q will be specialized at the n-th root of unity
 
 See also:
 makeQsl3;
 makeQso3;
 makeUsl.|  | LIB "ncalg.lib";
def A = makeQsl2(3);
setring A;
Qideal;
==> Qideal[1]=Ke*Kf-1
qring Usl2q = Qideal;
Usl2q;
==> // coefficients: QQ[q]/(q^2+q+1)
==> // number of vars : 4
==> //        block   1 : ordering dp
==> //                  : names    E F Ke Kf
==> //        block   2 : ordering C
==> // noncommutative relations:
==> //    FE=E*F+(2/3*q+1/3)*Ke+(-2/3*q-1/3)*Kf
==> //    KeE=(-q-1)*E*Ke
==> //    KfE=(q)*E*Kf
==> //    KeF=(q)*F*Ke
==> //    KfF=(-q-1)*F*Kf
==> // quotient ring from ideal
==> _[1]=Ke*Kf-1
 | 
 
 |