|  |  D.13.4.28 solveTInitialFormPar Procedure from librarytropical.lib(see  tropical_lib).
 
Example:Usage:
solveTInitialFormPar(i); i ideal
Assume:
i is a zero-dimensional ideal in Q(t)[x_1,...,x_n] generated
by the (1,w)-homogeneous elements for some integer vector w
- i.e. by the (1,w)-initialforms of polynomials
Return:
none
Note:
the procedure just displays complex approximations
of the solution set of i
 
 |  | LIB "tropical.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
ring r=(0,t),(x,y),dp;
ideal i=t2x2+y2,x-t2;
solveTInitialFormPar(i);
==> [1]:
==>    [1]:
==> 1
==>    [2]:
==> -i
==> [2]:
==>    [1]:
==> 1
==>    [2]:
==> i
==> [1]:
==>    // coefficients: real[i](complex:8 digits, additional 8 digits)/(i^2+1\
   )
==> // number of vars : 2
==> //        block   1 : ordering lp
==> //                  : names    x y
==> //        block   2 : ordering C
 | 
 
 |