|  |  5.1.8 chinrem 
 
See
 modstd_lib.Syntax:chinrem (list, intvec)
 chinrem (list, list)
 chinrem (intvec, intvec)Type:the same type as the elements of the first argument
If the elements of the first argument are lists again, chinrem is applied recursively.
Purpose:applies chinese remainder theorem to the first argument w.r.t. the moduli given in the second.
The elements in the first list must be of same type which can be bigint/int,poly,ideal,moduleormatrix.
The moduli, if given by a list, must be of typebigintorint.If data depending on a ring are involved, the coeffcient field must be
 Q.Example:|  |   chinrem(intvec(2,-3),intvec(7,11));
==> 30
  chinrem(list(2,-3),list(7,11));
==> 30
  ring r=0,(x,y),dp;
  ideal i1=5x+2y,x2+3y2+xy;
  ideal i2=2x-3y,2x2+4y2+5xy;
  chinrem(list(i1,i2),intvec(7,11));
==> _[1]=-9x+30y
==> _[2]=-20x2-6xy-18y2
  chinrem(list(i1,i2),list(bigint(7),bigint(11)));
==> _[1]=-9x+30y
==> _[2]=-20x2-6xy-18y2
  chinrem(list(list(i1,i2),list(i1,i2)),list(bigint(7),bigint(11)));
==> [1]:
==>    _[1]=-9x+30y
==>    _[2]=-20x2-6xy-18y2
==> [2]:
==>    _[1]=-9x+30y
==>    _[2]=-20x2-6xy-18y2
 | 
 |