|  |  D.8.5.2 triMNewton Procedure from libraryntsolve.lib(see  ntsolve_lib).
 
Example:Usage:
triMNewton(G,a[,ipar]); G,a= ideals, ipar=list/intvec
Assume:
G: g1,..,gn, a triangular system of n equations in n vars, i.e.
gi=gi(var(n-i+1),..,var(n)),a: ideal of numbers, coordinates of an approximation of a common
zero of G to start with (with a[i] to be substituted in var(i)),
 ipar: control integer vector (default: ipar = [100, 10])
 |  |   ipar[1]: max. number of iterations
  ipar[2]: accuracy (we have as norm |.| absolute value ):
           accepts solution solif |G(sol)| < |G(a)|*(0.1^ipar[2]). | 
 
Return:
an ideal, coordinates of a better approximation of a zero of G
 |  | LIB "ntsolve.lib";
ring r = (real,30),(z,y,x),(lp);
ideal i = x^2-1,y^2+x4-3,z2-y4+x-1;
ideal a = 2,3,4;
intvec e = 20,10;
ideal l = triMNewton(i,a,e);
l;
==> l[1]=-2.00000000004226573888027914342
==> l[2]=1.41421356237309504880168872421
==> l[3]=1
 | 
 |