| D.3.2.1 inverse |  | matrix, the inverse of A | 
| D.3.2.2 inverse_B |  | list(matrix Inv,poly p),Inv*A=p*En ( using busadj(A) ) | 
| D.3.2.3 inverse_L |  | list(matrix Inv,poly p),Inv*A=p*En ( using lift ) | 
| D.3.2.4 sym_gauss |  | symmetric gaussian algorithm | 
| D.3.2.5 orthogonalize |  | Gram-Schmidt orthogonalization | 
| D.3.2.6 diag_test |  | test whether A can be diagnolized | 
| D.3.2.7 busadj |  | coefficients of Adj(E*t-A) and coefficients of det(E*t-A) | 
| D.3.2.8 charpoly |  | characteristic polynomial of A ( using busadj(A) ) | 
| D.3.2.9 adjoint |  | adjoint of A ( using busadj(A) ) | 
| D.3.2.10 det_B |  | determinant of A ( using busadj(A) ) | 
| D.3.2.11 gaussred |  | gaussian reduction: P*A=U*S, S a row reduced form of A | 
| D.3.2.12 gaussred_pivot |  | gaussian reduction: P*A=U*S, uses row pivoting | 
| D.3.2.13 gauss_nf |  | gaussian normal form of A | 
| D.3.2.14 mat_rk |  | rank of constant matrix A | 
| D.3.2.15 U_D_O |  | P*A=U*D*O, P,D,U,O=permutation,diag,lower-,upper-triang | 
| D.3.2.16 pos_def |  | test symmetric matrix for positive definiteness | 
| D.3.2.17 hessenberg |  | Hessenberg form of M | 
| D.3.2.18 eigenvals |  | eigenvalues with multiplicities of M | 
| D.3.2.19 minipoly |  | minimal polynomial of M | 
| D.3.2.20 spnf |  | normal form of spectrum sp | 
| D.3.2.21 spprint |  | print spectrum sp | 
| D.3.2.22 jordan |  | Jordan data of M | 
| D.3.2.23 jordanbasis |  | Jordan basis and weight filtration of M | 
| D.3.2.24 jordanmatrix |  | Jordan matrix with Jordan data jd | 
| D.3.2.25 jordannf |  | Jordan normal form of M |