|  |  D.6.16.3 matrixT1 Procedure from libraryspcurve.lib(see  spcurve_lib).
 
Example:Usage:
matrixT1(M,n); M matrix, n integer
Assume:
M is a presentation matrix of an ideal i, CM of codimension 2;
consider i as a family of ideals in a ring in the first n
variables where the remaining variables are considered as
parameters
Return:
list consisting of the k x (k+1) matrix M and a module K_M such that
T1=Mat(k,k+1;R)/K_M is the space of first order deformations of i
 |  | LIB "spcurve.lib";
ring r=32003,(x(1),x(2),x(3)),ds;
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
matrix M=isCMcod2(curve);
matrixT1(M,3);
==> [1]:
==>    _[1,1]=0
==>    _[1,2]=-x(3)
==>    _[2,1]=-x(2)
==>    _[2,2]=x(2)
==>    _[3,1]=x(1)
==>    _[3,2]=0
==> [2]:
==>    _[1]=gen(5)
==>    _[2]=gen(4)-gen(3)
==>    _[3]=-gen(2)
==>    _[4]=x(1)*gen(5)-x(2)*gen(3)
==>    _[5]=x(1)*gen(6)-x(2)*gen(4)
==>    _[6]=x(2)*gen(3)-x(3)*gen(1)
==>    _[7]=x(2)*gen(4)-x(3)*gen(2)
==>    _[8]=-x(3)*gen(2)
==>    _[9]=x(2)*gen(2)-x(2)*gen(1)
==>    _[10]=x(1)*gen(1)
==>    _[11]=-x(3)*gen(4)
==>    _[12]=x(2)*gen(4)-x(2)*gen(3)
==>    _[13]=x(1)*gen(3)
==>    _[14]=-x(3)*gen(6)
==>    _[15]=x(2)*gen(6)-x(2)*gen(5)
==>    _[16]=x(1)*gen(5)
 | 
 
 |