|  |  C.6.5 Relevant References 
 
[Big97]  Bigatti, A.M.:
   Computation of Hilbert-Poincare series.
   Journal of Pure and Applied Algebra (1997) 199, 237-253
[BLR98]  Bigatti, A.M.; La Scala, R.; Robbiano, L.:
   Computing toric ideals.
   Journal of Symbolic Computation (1999) 27, 351-366
[Coh93]  Cohen, H.:
   A Course in Computational Algebraic Number Theory.
   Springer (1997)
[CoTr91]  Conti, P.; Traverso, C.:
   Buchberger algorithm and integer programming.
   Proceedings AAECC-9 (new Orleans), Springer LNCS (1991) 539,
   130-139
[DBUr95]  Di Biase, F.; Urbanke, R.:
   An algorithm to calculate the kernel of certain polynomial ring
   homomorphisms.
   Experimental Mathematics (1995) 4, 227-234
[HoSh98]  Hosten, S.; Shapiro, J.:
   Primary decomposition of lattice basis ideals.
   Journal of Symbolic Computation (2000), 29, 625-639
[HoSt95]  Hosten, S.; Sturmfels, B.:
   GRIN: An implementation of Groebner bases for integer programming.
   in Balas, E.; Clausen, J. (editors): Integer Programming and
   Combinatorial Optimization.
   Springer LNCS (1995) 920, 267-276
[Pot94]  Pottier, L.:
   Groebner bases of toric ideals.
   Rapport de recherche 2224 (1997), INRIA Sophia Antipolis
[Stu96]  Sturmfels, B.:
   Groebner Bases and Convex Polytopes.
   University Lecture Series, Volume 8 (1996), American Mathematical
   Society
[The99]  Theis, C.:
   Der Buchberger-Algorithmus fuer torische Ideale und seine Anwendung
   in der ganzzahligen Optimierung.
   Diplomarbeit, Universitaet des Saarlandes (1999), Saarbruecken
   (Germany)
 
 
 |