|  |  7.10.2.23 dyckGroup1 Procedure from libraryfpalgebras.lib(see  fpalgebras_lib).
 
Example:Usage:
dyckGroup1(n,d,P); n an integer, d an integer, P an intvec
Return:
ring
Note:
- the ring contains the ideal I, which contains the required relations
- The Dyck group with the following presentation
< x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 >
- negative exponents are allowed
 - representation in the form x_i^p_i - x_(i+1)^p_(i+1)
 - d gives the degreebound for the Letterplace ring
 - varying n and P produces a family of examples
 
 |  | LIB "fpalgebras.lib";
intvec P = 1,2,3;
def R = dyckGroup1(3,5,P); setring R;
I;
==> I[1]=x(2)*x(2)+x(1)
==> I[2]=x(3)*x(3)*x(3)+x(2)*x(2)
==> I[3]=x(1)*x(2)*x(3)+x(3)*x(3)*x(3)
==> I[4]=x(1)*x(2)*x(3)+1
 | 
 
 |