|  |  D.15.13.18 evaluatePDivisor Procedure from librarydivisors.lib(see  divisors_lib).
 
Example:Usage:
evaluatePDivisor(D,v); D = pdivisor, v = intvec.
 
Assume:
D is a polyhedral divisor on X and v is a point in the dual of the
tailcone of the coefficients.
Return:
a formal divisor on X
Theory:
Will evaluate the polyhedral sum to an integer formal sum.
 |  | LIB "divisors.lib";
==> Welcome to polymake version
==> Copyright (c) 1997-2015
==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt)
==> http://www.polymake.org
LIB("polymake.so");
ring r=31991,(x,y,z),dp;
ideal I = y^2*z - x*(x-z)*(x+3*z);
qring Q = std(I);
divisor A = makeDivisor(ideal(x,z),ideal(1));
divisor B = makeDivisor(ideal(x,y),ideal(1));
intmat M[4][4]= 1,4,0,0,
1,0,3,0,
0,0,0,2,
1,1,1,1;
polytope PP = polytopeViaPoints(M);
pdivisor pD = makePDivisor(list(list(PP,A),list(PP,B)));
intvec v=1,1,1;
evaluatePDivisor(pD,v);
==> polymake: used package ppl
==>   The Parma Polyhedra Library (PPL): A C++ library for convex polyhedra
==>   and other numerical abstractions.
==>   http://www.cs.unipr.it/ppl/
==> 
==> 3*( (z,x) - (1) )
==> +3*( (y,x) - (1) )
==> 
 | 
 
 |