|  |  D.12.4.8 semidiv Procedure from libraryhyperel.lib(see  hyperel_lib).
 
Example:Usage:
semidiv(D,h,f);
Return:
list P
Note:
important: Divisor D has to be semireduced!
Computes semireduced divisor P[1][3]*(P[1][1], P[1][2]) +...+ P[size(P)][3]*
*(P[size(P)][1], P[size(P)][2]) - (*)infty=div(D[1],D[2])
 Curve C:y^2+h(x)y=f(x) is defined over basering.
 
 |  | LIB "hyperel.lib";
ring R=7,x,dp;
// hyperelliptic curve y^2 + h*y = f
poly h=x;
poly f=x5+5x4+6x2+x+3;
// Divisor
list D=x2-1,2x-1;
semidiv(D,h,f);
==> [1]:
==>    [1]:
==>       -1
==>    [2]:
==>       -3
==>    [3]:
==>       1
==> [2]:
==>    [1]:
==>       1
==>    [2]:
==>       1
==>    [3]:
==>       1
 | 
 
 |