|  |  D.4.15.11 isirreducibleMon Procedure from librarymonomialideal.lib(see  monomialideal_lib).
 
Example:Usage:
isirreducibleMon(I); I ideal
Return:
1, if I is irreducible; 0, otherwise.
(return -1 if I is not a monomial ideal)
 
Assume:
I is a monomial ideal of the basering.
 |  | LIB "monomialideal.lib";
ring R = 0,(w,x,y,z,t),lp;
ideal I = w^4,x^3,z^2,t^5;
isirreducibleMon (I);
==> 1
ideal J = w^4*x,x^3,z^2,t^5;
isirreducibleMon (J);
==> 0
 | 
 
 |