Bullet Collision Detection & Physics Library
btDeformableBackwardEulerObjective.cpp
Go to the documentation of this file.
1 /*
2  Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
3 
4  Bullet Continuous Collision Detection and Physics Library
5  Copyright (c) 2019 Google Inc. http://bulletphysics.org
6  This software is provided 'as-is', without any express or implied warranty.
7  In no event will the authors be held liable for any damages arising from the use of this software.
8  Permission is granted to anyone to use this software for any purpose,
9  including commercial applications, and to alter it and redistribute it freely,
10  subject to the following restrictions:
11  1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12  2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13  3. This notice may not be removed or altered from any source distribution.
14  */
15 
17 #include "btPreconditioner.h"
18 #include "LinearMath/btQuickprof.h"
19 
21  : m_softBodies(softBodies), m_projection(softBodies), m_backupVelocity(backup_v), m_implicit(false)
22 {
26 }
27 
29 {
30  delete m_KKTPreconditioner;
31  delete m_massPreconditioner;
32 }
33 
35 {
36  BT_PROFILE("reinitialize");
37  if (dt > 0)
38  {
39  setDt(dt);
40  }
41  if (nodeUpdated)
42  {
43  updateId();
44  }
45  for (int i = 0; i < m_lf.size(); ++i)
46  {
47  m_lf[i]->reinitialize(nodeUpdated);
48  }
49  btMatrix3x3 I;
50  I.setIdentity();
51  for (int i = 0; i < m_softBodies.size(); ++i)
52  {
53  btSoftBody* psb = m_softBodies[i];
54  for (int j = 0; j < psb->m_nodes.size(); ++j)
55  {
56  if (psb->m_nodes[j].m_im > 0)
57  psb->m_nodes[j].m_effectiveMass = I * (1.0 / psb->m_nodes[j].m_im);
58  }
59  }
60  m_projection.reinitialize(nodeUpdated);
61  // m_preconditioner->reinitialize(nodeUpdated);
62 }
63 
65 {
66  m_dt = dt;
67 }
68 
70 {
71  BT_PROFILE("multiply");
72  // add in the mass term
73  size_t counter = 0;
74  for (int i = 0; i < m_softBodies.size(); ++i)
75  {
76  btSoftBody* psb = m_softBodies[i];
77  for (int j = 0; j < psb->m_nodes.size(); ++j)
78  {
79  const btSoftBody::Node& node = psb->m_nodes[j];
80  b[counter] = (node.m_im == 0) ? btVector3(0, 0, 0) : x[counter] / node.m_im;
81  ++counter;
82  }
83  }
84 
85  for (int i = 0; i < m_lf.size(); ++i)
86  {
87  // add damping matrix
88  m_lf[i]->addScaledDampingForceDifferential(-m_dt, x, b);
89  // Always integrate picking force implicitly for stability.
90  if (m_implicit || m_lf[i]->getForceType() == BT_MOUSE_PICKING_FORCE)
91  {
92  m_lf[i]->addScaledElasticForceDifferential(-m_dt * m_dt, x, b);
93  }
94  }
95  int offset = m_nodes.size();
96  for (int i = offset; i < b.size(); ++i)
97  {
98  b[i].setZero();
99  }
100  // add in the lagrange multiplier terms
101 
102  for (int c = 0; c < m_projection.m_lagrangeMultipliers.size(); ++c)
103  {
104  // C^T * lambda
106  for (int i = 0; i < lm.m_num_nodes; ++i)
107  {
108  for (int j = 0; j < lm.m_num_constraints; ++j)
109  {
110  b[lm.m_indices[i]] += x[offset + c][j] * lm.m_weights[i] * lm.m_dirs[j];
111  }
112  }
113  // C * x
114  for (int d = 0; d < lm.m_num_constraints; ++d)
115  {
116  for (int i = 0; i < lm.m_num_nodes; ++i)
117  {
118  b[offset + c][d] += lm.m_weights[i] * x[lm.m_indices[i]].dot(lm.m_dirs[d]);
119  }
120  }
121  }
122 }
123 
125 {
126  for (int i = 0; i < m_softBodies.size(); ++i)
127  {
128  btSoftBody* psb = m_softBodies[i];
129  for (int j = 0; j < psb->m_nodes.size(); ++j)
130  {
131  btSoftBody::Node& node = psb->m_nodes[j];
132  node.m_v = m_backupVelocity[node.index] + dv[node.index];
133  }
134  }
135 }
136 
138 {
139  size_t counter = 0;
140  for (int i = 0; i < m_softBodies.size(); ++i)
141  {
142  btSoftBody* psb = m_softBodies[i];
143  if (!psb->isActive())
144  {
145  counter += psb->m_nodes.size();
146  continue;
147  }
148  if (m_implicit)
149  {
150  for (int j = 0; j < psb->m_nodes.size(); ++j)
151  {
152  if (psb->m_nodes[j].m_im != 0)
153  {
154  psb->m_nodes[j].m_v += psb->m_nodes[j].m_effectiveMass_inv * force[counter++];
155  }
156  }
157  }
158  else
159  {
160  for (int j = 0; j < psb->m_nodes.size(); ++j)
161  {
162  btScalar one_over_mass = (psb->m_nodes[j].m_im == 0) ? 0 : psb->m_nodes[j].m_im;
163  psb->m_nodes[j].m_v += one_over_mass * force[counter++];
164  }
165  }
166  }
167  if (setZero)
168  {
169  for (int i = 0; i < force.size(); ++i)
170  force[i].setZero();
171  }
172 }
173 
175 {
176  BT_PROFILE("computeResidual");
177  // add implicit force
178  for (int i = 0; i < m_lf.size(); ++i)
179  {
180  // Always integrate picking force implicitly for stability.
181  if (m_implicit || m_lf[i]->getForceType() == BT_MOUSE_PICKING_FORCE)
182  {
183  m_lf[i]->addScaledForces(dt, residual);
184  }
185  else
186  {
187  m_lf[i]->addScaledDampingForce(dt, residual);
188  }
189  }
190  // m_projection.project(residual);
191 }
192 
194 {
195  btScalar mag = 0;
196  for (int i = 0; i < residual.size(); ++i)
197  {
198  mag += residual[i].length2();
199  }
200  return std::sqrt(mag);
201 }
202 
204 {
205  btScalar e = 0;
206  for (int i = 0; i < m_lf.size(); ++i)
207  {
208  e += m_lf[i]->totalEnergy(dt);
209  }
210  return e;
211 }
212 
214 {
215  for (int i = 0; i < m_softBodies.size(); ++i)
216  {
217  m_softBodies[i]->advanceDeformation();
218  }
219  if (m_implicit)
220  {
221  // apply forces except gravity force
222  btVector3 gravity;
223  for (int i = 0; i < m_lf.size(); ++i)
224  {
225  if (m_lf[i]->getForceType() == BT_GRAVITY_FORCE)
226  {
227  gravity = static_cast<btDeformableGravityForce*>(m_lf[i])->m_gravity;
228  }
229  else
230  {
231  m_lf[i]->addScaledForces(m_dt, force);
232  }
233  }
234  for (int i = 0; i < m_lf.size(); ++i)
235  {
236  m_lf[i]->addScaledHessian(m_dt);
237  }
238  for (int i = 0; i < m_softBodies.size(); ++i)
239  {
240  btSoftBody* psb = m_softBodies[i];
241  if (psb->isActive())
242  {
243  for (int j = 0; j < psb->m_nodes.size(); ++j)
244  {
245  // add gravity explicitly
246  psb->m_nodes[j].m_v += m_dt * psb->m_gravityFactor * gravity;
247  }
248  }
249  }
250  }
251  else
252  {
253  for (int i = 0; i < m_lf.size(); ++i)
254  {
255  m_lf[i]->addScaledExplicitForce(m_dt, force);
256  }
257  }
258  // calculate inverse mass matrix for all nodes
259  for (int i = 0; i < m_softBodies.size(); ++i)
260  {
261  btSoftBody* psb = m_softBodies[i];
262  if (psb->isActive())
263  {
264  for (int j = 0; j < psb->m_nodes.size(); ++j)
265  {
266  if (psb->m_nodes[j].m_im > 0)
267  {
268  psb->m_nodes[j].m_effectiveMass_inv = psb->m_nodes[j].m_effectiveMass.inverse();
269  }
270  }
271  }
272  }
273  applyForce(force, true);
274 }
275 
277 {
278  size_t counter = 0;
279  for (int i = 0; i < m_softBodies.size(); ++i)
280  {
281  btSoftBody* psb = m_softBodies[i];
282  for (int j = 0; j < psb->m_nodes.size(); ++j)
283  {
284  dv[counter] = psb->m_nodes[j].m_im * residual[counter];
285  ++counter;
286  }
287  }
288 }
289 
290 //set constraints as projections
292 {
293  m_projection.setConstraints(infoGlobal);
294 }
295 
297 {
299 }
LagrangeMultiplier::m_num_constraints
int m_num_constraints
Definition: btDeformableContactProjection.h:30
btDeformableBackwardEulerObjective::m_lf
btAlignedObjectArray< btDeformableLagrangianForce * > m_lf
Definition: btDeformableBackwardEulerObjective.h:36
btDeformableContactProjection::reinitialize
virtual void reinitialize(bool nodeUpdated)
Definition: btDeformableContactProjection.cpp:614
btSoftBody::m_gravityFactor
btScalar m_gravityFactor
Definition: btSoftBody.h:842
btContactSolverInfo
Definition: btContactSolverInfo.h:76
btScalar
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
BT_GRAVITY_FORCE
@ BT_GRAVITY_FORCE
Definition: btDeformableLagrangianForce.h:25
btDeformableBackwardEulerObjective::setDt
void setDt(btScalar dt)
Definition: btDeformableBackwardEulerObjective.cpp:64
btDeformableBackwardEulerObjective::applyForce
void applyForce(TVStack &force, bool setZero)
Definition: btDeformableBackwardEulerObjective.cpp:137
btDeformableBackwardEulerObjective::m_implicit
bool m_implicit
Definition: btDeformableBackwardEulerObjective.h:42
btDeformableBackwardEulerObjective::m_projection
btDeformableContactProjection m_projection
Definition: btDeformableBackwardEulerObjective.h:39
btDeformableBackwardEulerObjective::btDeformableBackwardEulerObjective
btDeformableBackwardEulerObjective(btAlignedObjectArray< btSoftBody * > &softBodies, const TVStack &backup_v)
Definition: btDeformableBackwardEulerObjective.cpp:20
LagrangeMultiplier::m_dirs
btVector3 m_dirs[3]
Definition: btDeformableContactProjection.h:33
btDeformableContactProjection::applyDynamicFriction
virtual void applyDynamicFriction(TVStack &f)
Definition: btDeformableContactProjection.cpp:563
btDeformableBackwardEulerObjective::m_dt
btScalar m_dt
Definition: btDeformableBackwardEulerObjective.h:35
btDeformableBackwardEulerObjective::reinitialize
void reinitialize(bool nodeUpdated, btScalar dt)
Definition: btDeformableBackwardEulerObjective.cpp:34
btDeformableBackwardEulerObjective::m_preconditioner
Preconditioner * m_preconditioner
Definition: btDeformableBackwardEulerObjective.h:38
btDeformableBackwardEulerObjective::setConstraints
void setConstraints(const btContactSolverInfo &infoGlobal)
Definition: btDeformableBackwardEulerObjective.cpp:291
btSoftBody::Node
Definition: btSoftBody.h:268
BT_MOUSE_PICKING_FORCE
@ BT_MOUSE_PICKING_FORCE
Definition: btDeformableLagrangianForce.h:30
btDeformableBackwardEulerObjective::applyDynamicFriction
void applyDynamicFriction(TVStack &r)
Definition: btDeformableBackwardEulerObjective.cpp:296
btDeformableBackwardEulerObjective::updateId
virtual void updateId()
Definition: btDeformableBackwardEulerObjective.h:101
btDeformableContactProjection::m_lagrangeMultipliers
btAlignedObjectArray< LagrangeMultiplier > m_lagrangeMultipliers
Definition: btDeformableContactProjection.h:52
btDeformableBackwardEulerObjective::m_KKTPreconditioner
KKTPreconditioner * m_KKTPreconditioner
Definition: btDeformableBackwardEulerObjective.h:44
btDeformableBackwardEulerObjective::updateVelocity
void updateVelocity(const TVStack &dv)
Definition: btDeformableBackwardEulerObjective.cpp:124
btDeformableBackwardEulerObjective::computeResidual
void computeResidual(btScalar dt, TVStack &residual)
Definition: btDeformableBackwardEulerObjective.cpp:174
LagrangeMultiplier::m_num_nodes
int m_num_nodes
Definition: btDeformableContactProjection.h:31
btDeformableBackwardEulerObjective::m_softBodies
btAlignedObjectArray< btSoftBody * > & m_softBodies
Definition: btDeformableBackwardEulerObjective.h:37
btMatrix3x3
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
Definition: btMatrix3x3.h:50
btDeformableBackwardEulerObjective::computeNorm
btScalar computeNorm(const TVStack &residual) const
Definition: btDeformableBackwardEulerObjective.cpp:193
btDeformableBackwardEulerObjective::m_massPreconditioner
MassPreconditioner * m_massPreconditioner
Definition: btDeformableBackwardEulerObjective.h:43
btVector3
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
btSoftBody::Node::index
int index
Definition: btSoftBody.h:280
btDeformableBackwardEulerObjective::initialGuess
void initialGuess(TVStack &dv, const TVStack &residual)
Definition: btDeformableBackwardEulerObjective.cpp:276
btAlignedObjectArray< btSoftBody * >
LagrangeMultiplier::m_indices
int m_indices[3]
Definition: btDeformableContactProjection.h:34
KKTPreconditioner
Definition: btPreconditioner.h:85
btDeformableBackwardEulerObjective::~btDeformableBackwardEulerObjective
virtual ~btDeformableBackwardEulerObjective()
Definition: btDeformableBackwardEulerObjective.cpp:28
btDeformableGravityForce
Definition: btDeformableGravityForce.h:22
btDeformableBackwardEulerObjective::multiply
void multiply(const TVStack &x, TVStack &b) const
Definition: btDeformableBackwardEulerObjective.cpp:69
btSoftBody
The btSoftBody is an class to simulate cloth and volumetric soft bodies.
Definition: btSoftBody.h:75
btDeformableBackwardEulerObjective::totalEnergy
btScalar totalEnergy(btScalar dt)
Definition: btDeformableBackwardEulerObjective.cpp:203
btDeformableBackwardEulerObjective::m_backupVelocity
const TVStack & m_backupVelocity
Definition: btDeformableBackwardEulerObjective.h:40
btQuickprof.h
btCollisionObject::isActive
bool isActive() const
Definition: btCollisionObject.h:304
btMatrix3x3::setIdentity
void setIdentity()
Set the matrix to the identity.
Definition: btMatrix3x3.h:323
btDeformableBackwardEulerObjective::applyExplicitForce
void applyExplicitForce(TVStack &force)
Definition: btDeformableBackwardEulerObjective.cpp:213
LagrangeMultiplier::m_weights
btScalar m_weights[3]
Definition: btDeformableContactProjection.h:32
btDeformableBackwardEulerObjective::m_nodes
btAlignedObjectArray< btSoftBody::Node * > m_nodes
Definition: btDeformableBackwardEulerObjective.h:41
MassPreconditioner
Definition: btPreconditioner.h:45
LagrangeMultiplier
Definition: btDeformableContactProjection.h:29
btSoftBody::Node::m_im
btScalar m_im
Definition: btSoftBody.h:275
btSoftBody::Node::m_v
btVector3 m_v
Definition: btSoftBody.h:271
btPreconditioner.h
BT_PROFILE
#define BT_PROFILE(name)
Definition: btQuickprof.h:198
btDeformableBackwardEulerObjective.h
btDeformableContactProjection::setConstraints
virtual void setConstraints(const btContactSolverInfo &infoGlobal)
Definition: btDeformableContactProjection.cpp:90
btAlignedObjectArray::size
int size() const
return the number of elements in the array
Definition: btAlignedObjectArray.h:142
btSoftBody::m_nodes
tNodeArray m_nodes
Definition: btSoftBody.h:812