Bullet Collision Detection & Physics Library
|
Go to the documentation of this file.
17 #ifndef _BT_SOFT_BODY_INTERNALS_H
18 #define _BT_SOFT_BODY_INTERNALS_H
56 if (ax <= ay && ax <= az)
58 else if (ay <= ax && ay <= az)
69 if (std::abs(x43.
dot(normal)) > mrg)
78 btScalar det = a11 * a22 - a12 * a12;
81 btScalar w1 = (b1 * a22 - b2 * a12) / det;
82 btScalar w2 = (b2 * a11 - b1 * a12) / det;
86 for (
int i = 0; i < 3; ++i)
88 if (bary[i] < -delta || bary[i] > 1 + delta)
159 return p0 * s2 + p1 *
btScalar(2.0) * s * t + p2 * t2;
168 return p0 * s3 + p1 *
btScalar(3.0) * s2 * t + p2 *
btScalar(3.0) * s * t2 + p3 * t3;
230 k0 = (p0ma0).
dot(n0) * 3.0;
231 k1 = (p0ma0).
dot(n_hat) + (p1ma1).
dot(n0);
232 k2 = (p1ma1).
dot(n_hat) + (p0ma0).
dot(n1);
233 k3 = (p1ma1).
dot(n1) * 3.0;
236 static SIMD_FORCE_INLINE void polyDecomposition(
const btScalar& k0,
const btScalar& k1,
const btScalar& k2,
const btScalar& k3,
const btScalar& j0,
const btScalar& j1,
const btScalar& j2,
btScalar& u0,
btScalar& u1,
btScalar& v0,
btScalar& v1)
238 btScalar denom = 4.0 * (j1 - j2) * (j1 - j0) + (j2 - j0) * (j2 - j0);
239 u0 = (2.0 * (j1 - j2) * (3.0 * k1 - 2.0 * k0 - k3) - (j0 - j2) * (3.0 * k2 - 2.0 * k3 - k0)) / denom;
240 u1 = (2.0 * (j1 - j0) * (3.0 * k2 - 2.0 * k3 - k0) - (j2 - j0) * (3.0 * k1 - 2.0 * k0 - k3)) / denom;
251 polyDecomposition(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1);
254 btScalar Ypa = j0 * (1.0 - v0) * (1.0 - v0) + 2.0 * j1 * v0 * (1.0 - v0) + j2 * v0 * v0;
263 static SIMD_FORCE_INLINE void getJs(
const btScalar& k0,
const btScalar& k1,
const btScalar& k2,
const btScalar& k3,
const btSoftBody::Node* a,
const btSoftBody::Node* b,
const btSoftBody::Node* c,
const btSoftBody::Node* p,
const btScalar& dt,
btScalar& j0,
btScalar& j1,
btScalar& j2)
276 btVector3 n_hat = n0 + n1 - dt * dt * (vb - va).cross(vc - va);
282 btVector3 m_hat = m0 + m1 - dt * dt * (vb - vp).cross(vc - vp);
289 btScalar k1p = 0.25 * k0 + 0.75 * k1;
291 btScalar k3p = 0.75 * k2 + 0.25 * k3;
293 btScalar s0 = (l1 * k0 - l0 * k1p) * 4.0;
294 btScalar s1 = (l2 * k0 - l0 * k2p) * 2.0;
298 j0 = (s1 * k0 - s0 * k1) * 3.0;
299 j1 = (s2 * k0 - s0 * k2) * 1.5;
300 j2 = (s3 * k0 - s0 * k3);
305 btScalar Yu0 = k0 * (1.0 - u0) * (1.0 - u0) * (1.0 - u0) + 3.0 * k1 * u0 * (1.0 - u0) * (1.0 - u0) + 3.0 * k2 * u0 * u0 * (1.0 - u0) + k3 * u0 * u0 * u0;
306 btScalar Yv0 = k0 * (1.0 - v0) * (1.0 - v0) * (1.0 - v0) + 3.0 * k1 * v0 * (1.0 - v0) * (1.0 - v0) + 3.0 * k2 * v0 * v0 * (1.0 - v0) + k3 * v0 * v0 * v0;
308 btScalar sign_Ytp = (u0 > u1) ? Yu0 : -Yu0;
310 sign_Ytp = (v0 > v1) ? Yv0 : -Yv0;
315 static SIMD_FORCE_INLINE bool signDetermination2Internal(
const btScalar& k0,
const btScalar& k1,
const btScalar& k2,
const btScalar& k3,
const btScalar& j0,
const btScalar& j1,
const btScalar& j2,
const btScalar& u0,
const btScalar& u1,
const btScalar& v0,
const btScalar& v1)
317 btScalar Yu0 = k0 * (1.0 - u0) * (1.0 - u0) * (1.0 - u0) + 3.0 * k1 * u0 * (1.0 - u0) * (1.0 - u0) + 3.0 * k2 * u0 * u0 * (1.0 - u0) + k3 * u0 * u0 * u0;
318 btScalar sign_Ytp = (u0 > u1) ? Yu0 : -Yu0, L1, L2;
326 btScalar Yp_u0 = j0 * (1.0 - u0) * (1.0 - u0) + 2.0 * j1 * (1.0 - u0) * u0 + j2 * u0 * u0;
338 btScalar Yv0 = k0 * (1.0 - v0) * (1.0 - v0) * (1.0 - v0) + 3.0 * k1 * v0 * (1.0 - v0) * (1.0 - v0) + 3.0 * k2 * v0 * v0 * (1.0 - v0) + k3 * v0 * v0 * v0;
339 sign_Ytp = (v0 > v1) ? Yv0 : -Yv0;
348 btScalar Yp_v0 = j0 * (1.0 - v0) * (1.0 - v0) + 2.0 * j1 * (1.0 - v0) * v0 + j2 * v0 * v0;
365 btScalar j0, j1, j2, u0, u1, v0, v1;
367 getJs(k0, k1, k2, k3, face->
m_n[0], face->
m_n[1], face->
m_n[2], node, dt, j0, j1, j2);
371 getSigns(
true, k0, k1, k2, k3, j0, j2, lt0, lt1);
377 polyDecomposition(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1);
382 getJs(k0, k1, k2, k3, face->
m_n[1], face->
m_n[2], face->
m_n[0], node, dt, j0, j1, j2);
386 getSigns(
true, k0, k1, k2, k3, j0, j2, lt0, lt1);
392 polyDecomposition(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1);
397 getJs(k0, k1, k2, k3, face->
m_n[2], face->
m_n[0], face->
m_n[1], node, dt, j0, j1, j2);
401 getSigns(
true, k0, k1, k2, k3, j0, j2, lt0, lt1);
407 polyDecomposition(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1);
416 btScalar j0, j1, j2, u0, u1, v0, v1;
418 getJs(k0, k1, k2, k3, face->
m_n[0], face->
m_n[1], face->
m_n[2], node, dt, j0, j1, j2);
422 bool bt0 =
true, bt1 =
true;
423 getSigns(
false, k0, k1, k2, k3, j0, j2, lt0, lt1);
433 polyDecomposition(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1);
434 if (!
signDetermination2Internal(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1))
438 getJs(k0, k1, k2, k3, face->
m_n[1], face->
m_n[2], face->
m_n[0], node, dt, j0, j1, j2);
442 bool bt0 =
true, bt1 =
true;
443 getSigns(
false, k0, k1, k2, k3, j0, j2, lt0, lt1);
453 polyDecomposition(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1);
454 if (!
signDetermination2Internal(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1))
458 getJs(k0, k1, k2, k3, face->
m_n[2], face->
m_n[0], face->
m_n[1], node, dt, j0, j1, j2);
462 bool bt0 =
true, bt1 =
true;
463 getSigns(
false, k0, k1, k2, k3, j0, j2, lt0, lt1);
473 polyDecomposition(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1);
474 if (!
signDetermination2Internal(k0, k1, k2, k3, j0, j1, j2, u0, u1, v0, v1))
503 if (k0 > mrg && k1 > mrg && k2 > mrg && k3 > mrg)
505 if (k0 < -mrg && k1 < -mrg && k2 < -mrg && k3 < -mrg)
519 k10 = k0 * (1.0 - t0) + k1 * t0;
520 btScalar k11 = k1 * (1.0 - t0) + k2 * t0;
521 k12 = k2 * (1.0 - t0) + k3 * t0;
522 k20 = k10 * (1.0 - t0) + k11 * t0;
523 k21 = k11 * (1.0 - t0) + k12 * t0;
524 k30 = k20 * (1.0 - t0) + k21 * t0;
533 if (
diffSign(k2 - 2.0 * k1 + k0, k3 - 2.0 * k2 + k1))
536 btScalar t0 = (k2 - 2.0 * k1 + k0) / (k0 - 3.0 * k1 + 3.0 * k2 - k3);
537 deCasteljau(k0, k1, k2, k3, t0, k10, k20, k30, k21, k12);
538 return bernsteinVFTest(k0, k10, k20, k30, mrg, face, node, dt) ||
bernsteinVFTest(k30, k21, k12, k3, mrg, face, node, dt);
565 if (std::abs(a3) <
eps)
568 if (std::abs(a2) <
eps)
570 if (std::abs(a1) <
eps)
572 if (std::abs(a0) <
eps)
587 num_roots =
SolveP2(roots, a1 / a2, a0 / a2);
592 num_roots =
SolveP3(roots, a2 / a3, a1 / a3, a0 / a3);
597 if (roots[0] > roots[1])
598 btSwap(roots[0], roots[1]);
602 if (roots[0] > roots[2])
603 btSwap(roots[0], roots[2]);
604 if (roots[1] > roots[2])
605 btSwap(roots[1], roots[2]);
607 for (
int r = 0; r < num_roots; ++r)
609 double root = roots[r];
618 btVector3 normal = (x2 - x1).cross(x3 - x1);
637 template <
typename T>
645 store.resize((n * (n + 1)) / 2, init);
651 return ((r * (r + 1)) / 2 + c);
697 aabbMin = aabbMax = crns[0];
698 for (
int i = 1; i < 8; ++i)
771 virtual const char*
getName()
const {
return "SOFTCLUSTER"; }
788 template <
typename T>
791 memset(&value, 0,
sizeof(T));
794 template <
typename T>
795 static inline bool CompLess(
const T& a,
const T& b)
800 template <
typename T>
806 template <
typename T>
809 return (a + (b - a) * t);
812 template <
typename T>
815 return ((b + a * t - b * t) / (a * b));
823 r[0] =
Lerp(a[0], b[0], t);
824 r[1] =
Lerp(a[1], b[1], t);
825 r[2] =
Lerp(a[2], b[2], t);
832 if (sql > (maxlength * maxlength))
833 return ((v * maxlength) /
btSqrt(sql));
838 template <
typename T>
839 static inline T
Clamp(
const T& x,
const T& l,
const T& h)
841 return (x < l ? l : x > h ? h : x);
844 template <
typename T>
845 static inline T
Sq(
const T& x)
850 template <
typename T>
851 static inline T
Cube(
const T& x)
856 template <
typename T>
857 static inline T
Sign(
const T& x)
859 return ((T)(x < 0 ? -1 : +1));
862 template <
typename T>
863 static inline bool SameSign(
const T& x,
const T& y)
865 return ((x * y) > 0);
883 m[0] =
btVector3(1 - xx + xx * s, xy * s - xy, zx * s - zx);
884 m[1] =
btVector3(xy * s - xy, 1 - yy + yy * s, yz * s - yz);
885 m[2] =
btVector3(zx * s - zx, yz * s - yz, 1 - zz + zz * s);
919 for (
int i = 0; i < ndof; ++i)
920 result += a[i] * b[i];
970 for (
int i = 0; i < 3; ++i) r[i] = a[i] + b[i];
978 for (
int i = 0; i < 3; ++i) r[i] = a[i] - b[i];
986 for (
int i = 0; i < 3; ++i) r[i] = a[i] * b;
1045 return (a *
btDot(v, a));
1064 const btScalar t = Clamp<btScalar>(-
btDot(a, d) / m2, 0, 1);
1118 if (a > -0.00001 && a < 0.00001)
1125 if (u < 0.0 || u > 1.0)
1130 if (v < 0.0 || u + v > 1.0)
1156 sect = rayStart + dir * t;
1177 template <
typename T>
1183 return (a * coord.
x() + b * coord.
y() + c * coord.
z());
1194 const btScalar isum = 1 / (w[0] + w[1] + w[2]);
1195 return (
btVector3(w[1] * isum, w[2] * isum, w[0] * isum));
1203 const int maxiterations = 256)
1207 if (values[0] > values[1])
1209 btSwap(span[0], span[1]);
1210 btSwap(values[0], values[1]);
1212 if (values[0] > -accuracy)
return (-1);
1213 if (values[1] < +accuracy)
return (-1);
1214 for (
int i = 0; i < maxiterations; ++i)
1216 const btScalar t =
Lerp(span[0], span[1], values[0] / (values[0] - values[1]));
1218 if ((t <= 0) || (t >= 1))
break;
1219 if (
btFabs(v) < accuracy)
return (t);
1328 if ((a == ma) && (b == mb))
return (0);
1329 if ((a == mb) && (b == ma))
return (1);
1342 static const int maxiterations = 16;
1360 if (
btFabs(a[p][q]) > accuracy)
1362 const btScalar w = (a[q][q] - a[p][p]) / (2 * a[p][q]);
1369 mulPQ(a, c, s, p, q);
1371 mulPQ(v, c, s, p, q);
1378 }
while ((++iterations) < maxiterations);
1381 *values =
btVector3(a[0][0], a[1][1], a[2][2]);
1383 return (iterations);
1389 const btScalar m[2][3] = {{a[p][0], a[p][1], a[p][2]},
1390 {a[q][0], a[q][1], a[q][2]}};
1393 for (i = 0; i < 3; ++i) a[p][i] = c * m[0][i] - s * m[1][i];
1394 for (i = 0; i < 3; ++i) a[q][i] = c * m[1][i] + s * m[0][i];
1398 const btScalar m[2][3] = {{a[0][p], a[1][p], a[2][p]},
1399 {a[0][q], a[1][q], a[2][q]}};
1402 for (i = 0; i < 3; ++i) a[i][p] = c * m[0][i] - s * m[1][i];
1403 for (i = 0; i < 3; ++i) a[i][q] = c * m[1][i] + s * m[0][i];
1559 bool connected =
false;
1572 cla->
m_com - clb->m_com, res))
1587 static int count = 0;
1627 static const btMatrix3x3 iwiStatic(0, 0, 0, 0, 0, 0, 0, 0, 0);
1640 c.
m_c3 = fv.
length2() < (dn * fc * dn * fc) ? 0 : 1 - fc;
1694 static const btMatrix3x3 iwiStatic(0, 0, 0, 0, 0, 0, 0, 0, 0);
1705 if (multibodyLinkCol)
1796 static const btMatrix3x3 iwiStatic(0, 0, 0, 0, 0, 0, 0, 0, 0);
1807 if (multibodyLinkCol)
1813 findJacobian(multibodyLinkCol, jacobianData_normal, contact_point, normal);
1814 findJacobian(multibodyLinkCol, jacobianData_t1, contact_point, t1);
1815 findJacobian(multibodyLinkCol, jacobianData_t2, contact_point, t2);
1862 for (
int i = 0; i < 3; ++i)
1864 if (face->m_n[i] == node)
1872 face->m_n[1]->m_x - o,
1873 face->m_n[2]->m_x - o,
1882 if ((n[0]->m_im <= 0) ||
1883 (n[1]->m_im <= 0) ||
1919 if (
proximityTest(face->m_n[0]->m_x, face->m_n[1]->m_x, face->m_n[2]->m_x, node->
m_x, face->m_normal,
mrg, bary))
1925 if ((n[0]->m_im <= 0) ||
1926 (n[1]->m_im <= 0) ||
1971 #ifndef REPEL_NEIGHBOR
1972 for (
int node_id = 0; node_id < 3; ++node_id)
1975 for (
int i = 0; i < 3; ++i)
1977 if (f2->
m_n[i] == node)
1983 for (
int node_id = 0; node_id < 3; ++node_id)
1986 #ifdef REPEL_NEIGHBOR
1987 for (
int i = 0; i < 3; ++i)
1989 if (f2->
m_n[i] == node)
2057 #ifndef REPEL_NEIGHBOR
2058 for (
int node_id = 0; node_id < 3; ++node_id)
2061 for (
int i = 0; i < 3; ++i)
2063 if (f2->
m_n[i] == node)
2069 for (
int node_id = 0; node_id < 3; ++node_id)
2072 #ifdef REPEL_NEIGHBOR
2073 for (
int i = 0; i < 3; ++i)
2075 if (f2->
m_n[i] == node)
2108 #endif //_BT_SOFT_BODY_INTERNALS_H
virtual int getShapeType() const
btAlignedObjectArray< T > store
btRigidBody * m_rigidBody
btMultiBodyJacobianData jacobianData_t2
const btTransform & xform() const
btAlignedObjectArray< btVector3 > scratch_v
T & operator()(int c, int r)
static btVector3 CenterOf(const btSoftBody::Face &f)
The btRigidBody is the main class for rigid body objects.
virtual void calculateLocalInertia(btScalar mass, btVector3 &inertia) const
@ SOFTBODY_SHAPE_PROXYTYPE
DBVT_PREFIX void collideTT(const btDbvtNode *root0, const btDbvtNode *root1, DBVT_IPOLICY)
virtual void getAabb(const btTransform &t, btVector3 &aabbMin, btVector3 &aabbMax) const
getAabb's default implementation is brute force, expected derived classes to implement a fast dedicat...
static btMatrix3x3 ImpulseMatrix(btScalar dt, btScalar ima, btScalar imb, const btMatrix3x3 &iwi, const btVector3 &r)
DBVT_INLINE void Expand(const btVector3 &e)
btAlignedObjectArray< bool > m_clusterConnectivity
btScalar dot(const btQuaternion &q1, const btQuaternion &q2)
Calculate the dot product between two quaternions.
const btCollisionObjectWrapper * m_colObj1Wrap
static T Sign(const T &x)
static btMultiBodyLinkCollider * upcast(btCollisionObject *colObj)
static void mulPQ(btMatrix3x3 &a, btScalar c, btScalar s, int p, int q)
btSymMatrix(int n, const T &init=T())
btScalar length() const
Return the length of the vector.
btScalar evaluateBezier2(const btScalar &p0, const btScalar &p1, const btScalar &p2, const btScalar &t, const btScalar &s)
static btScalar Dot(const btScalar *a, const btScalar *b, int ndof)
virtual btScalar getMargin() const
The btConvexInternalShape is an internal base class, shared by most convex shape implementations.
void Process(const btDbvtNode *lnode, const btDbvtNode *lface)
btAlignedObjectArray< DeformableFaceNodeContact > m_faceNodeContacts
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
static void polyDecomposition(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btScalar &j0, const btScalar &j1, const btScalar &j2, btScalar &u0, btScalar &u1, btScalar &v0, btScalar &v1)
static void getJs(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btSoftBody::Node *a, const btSoftBody::Node *b, const btSoftBody::Node *c, const btSoftBody::Node *p, const btScalar &dt, btScalar &j0, btScalar &j1, btScalar &j2)
static void ZeroInitialize(T &value)
The btConcaveShape class provides an interface for non-moving (static) concave shapes.
const btSoftBody::Cluster * m_cluster
bool checkDeformableContact(const btCollisionObjectWrapper *colObjWrap, const btVector3 &x, btScalar margin, btSoftBody::sCti &cti, bool predict=false) const
btAlignedObjectArray< btScalar > m_jacobians
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
static int getSign(const btVector3 &n, const btVector3 &x)
int SolveP2(btScalar *x, btScalar a, btScalar b)
static btMatrix3x3 OuterProduct(const btScalar *v1, const btScalar *v2, const btScalar *v3, const btScalar *u1, const btScalar *u2, const btScalar *u3, int ndof)
const btCollisionObjectWrapper * m_colObj1Wrap
static btDbvtVolume VolumeOf(const btSoftBody::Face &f, btScalar margin)
static btVector3 ProjectOnPlane(const btVector3 &v, const btVector3 &a)
int SolveP3(btScalar *x, btScalar a, btScalar b, btScalar c)
static bool SameSign(const T &x, const T &y)
btScalar safeNorm() const
Return the norm (length) of the vector.
btScalar dot(const btVector3 &v) const
Return the dot product.
static bool rootFindingLemma(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3)
static int PolarDecompose(const btMatrix3x3 &m, btMatrix3x3 &q, btMatrix3x3 &s)
virtual const char * getName() const
btMatrix3x3 m_effectiveMass_inv
static void EvaluateMedium(const btSoftBodyWorldInfo *wfi, const btVector3 &x, btSoftBody::sMedium &medium)
btVector3 btCross(const btVector3 &v1, const btVector3 &v2)
Return the cross product of two vectors.
#define btAlignedAlloc(size, alignment)
virtual void calculateLocalInertia(btScalar, btVector3 &) const
const btTransform & getWorldTransform() const
btQuaternion inverse(const btQuaternion &q)
Return the inverse of a quaternion.
btVector3 velocity(const btVector3 &rpos) const
static void ApplyClampedForce(btSoftBody::Node &n, const btVector3 &f, btScalar dt)
static btMatrix3x3 Diagonal(btScalar x)
static btVector3 BaryCoord(const btVector3 &a, const btVector3 &b, const btVector3 &c, const btVector3 &p)
void DoNode(btSoftBody::Node &n) const
static btScalar AreaOf(const btVector3 &x0, const btVector3 &x1, const btVector3 &x2)
static btVector3 dop[KDOP_COUNT]
static bool nearZero(const btScalar &a)
static btScalar SignedDistance(const btVector3 &position, btScalar margin, const btConvexShape *shape, const btTransform &wtrs, sResults &results)
virtual void setLocalScaling(const btVector3 &)
static bool continuousCollisionDetection(const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt, const btScalar &mrg, btVector3 &bary)
static int system(btMatrix3x3 &a, btMatrix3x3 *vectors, btVector3 *values=0)
const T & btMin(const T &a, const T &b)
const btMatrix3x3 & invWorldInertia() const
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 *vectors, btVector3 *supportVerticesOut, int numVectors) const
static btScalar ClusterMetric(const btVector3 &x, const btVector3 &y)
const T & btMax(const T &a, const T &b)
static bool hasSeparatingPlane(const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt)
const btScalar & y() const
Return the y value.
bool isStaticOrKinematicObject() const
static bool signDetermination1Internal(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btScalar &u0, const btScalar &u1, const btScalar &v0, const btScalar &v1)
const btScalar & getX() const
Return the x value.
btTransform & getWorldTransform()
tSContactArray m_scontacts
btAlignedObjectArray< Node * > m_nodes
static btMatrix3x3 Mul(const btMatrix3x3 &a, btScalar b)
btAlignedObjectArray< DeformableFaceRigidContact > m_faceRigidContacts
const btCollisionObject * m_colObj
virtual btScalar getMargin() const =0
static bool sameSign(const btScalar &a, const btScalar &b)
btScalar btFabs(btScalar x)
void DoNode(btSoftBody::Face &f) const
static bool CompGreater(const T &a, const T &b)
static bool signDetermination2(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt)
btMultiBodyJacobianData jacobianData_normal
static void ProjectOrigin(const btVector3 &a, const btVector3 &b, btVector3 &prj, btScalar &sqd)
static bool getSigns(bool type_c, const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btScalar &t0, const btScalar &t1, btScalar <0, btScalar <1)
static T InvLerp(const T &a, const T &b, btScalar t)
static bool diffSign(const btScalar &a, const btScalar &b)
void activate(bool forceActivation=false) const
void calcAccelerationDeltasMultiDof(const btScalar *force, btScalar *output, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v) const
stepVelocitiesMultiDof is deprecated, use computeAccelerationsArticulatedBodyAlgorithmMultiDof instea...
void ProcessColObj(btSoftBody *ps, const btCollisionObjectWrapper *colObWrap)
const btCollisionShape * getCollisionShape() const
static btMatrix3x3 AngularImpulseMatrix(const btMatrix3x3 &iia, const btMatrix3x3 &iib)
void resize(int newsize, const T &fillData=T())
void setMax(const btVector3 &other)
Set each element to the max of the current values and the values of another btVector3.
btRigidBody * m_rigidBody
static bool conservativeCulling(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btScalar &mrg)
virtual void getAabb(const btTransform &t, btVector3 &aabbMin, btVector3 &aabbMax) const =0
getAabb returns the axis aligned bounding box in the coordinate frame of the given transform t.
static void getBernsteinCoeff(const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt, btScalar &k0, btScalar &k1, btScalar &k2, btScalar &k3)
DBVT_PREFIX void collideTV(const btDbvtNode *root, const btDbvtVolume &volume, DBVT_IPOLICY) const
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
void ProcessSoftSoft(btSoftBody *psa, btSoftBody *psb)
const T & operator()(int c, int r) const
btMatrix3x3 transpose() const
Return the transpose of the matrix.
The btTriangleCallback provides a callback for each overlapping triangle when calling processAllTrian...
static void findJacobian(const btMultiBodyLinkCollider *multibodyLinkCol, btMultiBodyJacobianData &jacobianData, const btVector3 &contact_point, const btVector3 &dir)
btSoftBody implementation by Nathanael Presson
btScalar getInvMass() const
btAlignedObjectArray< btScalar > scratch_r
void Process(const btDbvntNode *lface1, const btDbvntNode *lface2)
const btCollisionObject * getCollisionObject() const
static T Lerp(const T &a, const T &b, btScalar t)
static btVector3 generateUnitOrthogonalVector(const btVector3 &u)
btVector3 can be used to represent 3D points and vectors.
static bool coplanarAndInsideTest(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt)
static const int KDOP_COUNT
void DoNode(btSoftBody::Node &n) const
void Process(const btDbvtNode *leaf)
btVector3 getVelocityInLocalPoint(const btVector3 &rel_pos) const
static void deCasteljau(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btScalar &t0, btScalar &k10, btScalar &k20, btScalar &k30, btScalar &k21, btScalar &k12)
static btDbvtAabbMm FromMM(const btVector3 &mi, const btVector3 &mx)
static int MatchEdge(const btSoftBody::Node *a, const btSoftBody::Node *b, const btSoftBody::Node *ma, const btSoftBody::Node *mb)
void processAllTriangles(btTriangleCallback *, const btVector3 &, const btVector3 &) const
static T BaryEval(const T &a, const T &b, const T &c, const btVector3 &coord)
bool SolveContact(const btGjkEpaSolver2::sResults &res, btSoftBody::Body ba, const btSoftBody::Body bb, btSoftBody::CJoint &joint)
#define ATTRIBUTE_ALIGNED16(a)
This class is used to compute the polar decomposition of a matrix.
virtual btScalar getMargin() const
btScalar evaluateBezier(const btScalar &p0, const btScalar &p1, const btScalar &p2, const btScalar &p3, const btScalar &t, const btScalar &s)
const btScalar & getZ() const
Return the z value.
virtual void setMargin(btScalar margin)
static bool bernsteinCCD(const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt, const btScalar &mrg, btVector3 &bary)
The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods It...
const btScalar & getY() const
Return the y value.
int index(int c, int r) const
virtual btScalar Eval(const btVector3 &x)=0
tRContactArray m_rcontacts
static btMatrix3x3 Add(const btMatrix3x3 &a, const btMatrix3x3 &b)
void Repel(btSoftBody::Face *f1, btSoftBody::Face *f2)
The btConvexShape is an abstract shape interface, implemented by all convex shapes such as btBoxShape...
#define SIMD_FORCE_INLINE
static btVector3 Clamp(const btVector3 &v, btScalar maxlength)
static btDbvtAabbMm FromPoints(const btVector3 *pts, int n)
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3 &vec) const
void Process(const btDbvtNode *lnode, const btDbvtNode *lface)
void Process(const btDbvtNode *leaf)
void setMin(const btVector3 &other)
Set each element to the min of the current values and the values of another btVector3.
static btMatrix3x3 Cross(const btVector3 &v)
btScalar btDot(const btVector3 &v1, const btVector3 &v2)
Return the dot product between two vectors.
const btScalar & x() const
Return the x value.
void fillContactJacobianMultiDof(int link, const btVector3 &contact_point, const btVector3 &normal, btScalar *jac, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v, btAlignedObjectArray< btMatrix3x3 > &scratch_m) const
static bool signDetermination2Internal(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btScalar &j0, const btScalar &j1, const btScalar &j2, const btScalar &u0, const btScalar &u1, const btScalar &v0, const btScalar &v1)
The btSoftBody is an class to simulate cloth and volumetric soft bodies.
virtual const btVector3 & getLocalScaling() const
virtual const char * getName() const
bool checkContact(const btCollisionObjectWrapper *colObjWrap, const btVector3 &x, btScalar margin, btSoftBody::sCti &cti) const
void resize(int n, const T &init=T())
btAlignedObjectArray< DeformableNodeRigidContact > m_nodeRigidContacts
static bool CompLess(const T &a, const T &b)
static btMatrix3x3 ScaleAlongAxis(const btVector3 &a, btScalar s)
static btVector3 NormalizeAny(const btVector3 &v)
int getInternalType() const
reserved for Bullet internal usage
void setIdentity()
Set the matrix to the identity.
static btVector3 ProjectOnAxis(const btVector3 &v, const btVector3 &a)
const btMatrix3x3 & getInvInertiaTensorWorld() const
void Process(const btDbvtNode *leaf)
static T Cube(const T &x)
virtual void setMargin(btScalar margin)
btSoftClusterCollisionShape(const btSoftBody::Cluster *cluster)
static bool lineIntersectsTriangle(const btVector3 &rayStart, const btVector3 &rayEnd, const btVector3 &p1, const btVector3 &p2, const btVector3 &p3, btVector3 §, btVector3 &normal)
const btCollisionObjectWrapper * m_colObjWrap
static btMatrix3x3 MassMatrix(btScalar im, const btMatrix3x3 &iwi, const btVector3 &r)
static btScalar ImplicitSolve(btSoftBody::ImplicitFn *fn, const btVector3 &a, const btVector3 &b, const btScalar accuracy, const int maxiterations=256)
btMultiBody * m_multiBody
const btCollisionObjectWrapper * m_colObj1Wrap
static btMatrix3x3 Sub(const btMatrix3x3 &a, const btMatrix3x3 &b)
virtual ~btSoftBodyCollisionShape()
btScalar norm() const
Return the norm (length) of the vector.
btMultiBodyJacobianData jacobianData_t1
virtual btVector3 localGetSupportingVertex(const btVector3 &vec) const
static void Orthogonalize(btMatrix3x3 &m)
bool checkDeformableFaceContact(const btCollisionObjectWrapper *colObjWrap, Face &f, btVector3 &contact_point, btVector3 &bary, btScalar margin, btSoftBody::sCti &cti, bool predict=false) const
static bool bernsteinVFTest(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btScalar &mrg, const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt)
void push_back(const T &_Val)
void Process(const btDbvtNode *lnode, const btDbvtNode *lface)
btScalar length(const btQuaternion &q)
Return the length of a quaternion.
btScalar btSqrt(btScalar y)
void Process(const btDbvtNode *leaf)
btScalar getFriction() const
btSoftBodyCollisionShape(btSoftBody *backptr)
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
btVector3 normalized() const
Return a normalized version of this vector.
btVector3 & safeNormalize()
btAlignedObjectArray< btMatrix3x3 > scratch_m
virtual void getAabb(const btTransform &t, btVector3 &aabbMin, btVector3 &aabbMax) const
getAabb returns the axis aligned bounding box in the coordinate frame of the given transform t.
btAlignedObjectArray< btScalar > m_deltaVelocitiesUnitImpulse
static bool signDetermination1(const btScalar &k0, const btScalar &k1, const btScalar &k2, const btScalar &k3, const btSoftBody::Face *face, const btSoftBody::Node *node, const btScalar &dt)
unsigned int decompose(const btMatrix3x3 &a, btMatrix3x3 &u, btMatrix3x3 &h) const
Decomposes a matrix into orthogonal and symmetric, positive-definite parts.
void Repel(btSoftBody::Face *f1, btSoftBody::Face *f2)
const btScalar & z() const
Return the z value.
void Process(const btDbvntNode *lface1, const btDbvntNode *lface2)
static bool rayIntersectsTriangle(const btVector3 &origin, const btVector3 &dir, const btVector3 &v0, const btVector3 &v1, const btVector3 &v2, btScalar &t)
void Process(const btDbvtNode *la, const btDbvtNode *lb)
int size() const
return the number of elements in the array
static void mulTPQ(btMatrix3x3 &a, btScalar c, btScalar s, int p, int q)
static bool proximityTest(const btVector3 &x1, const btVector3 &x2, const btVector3 &x3, const btVector3 &x4, const btVector3 &normal, const btScalar &mrg, btVector3 &bary)
btScalar length2() const
Return the length of the vector squared.
const btCollisionShape * getCollisionShape() const
btRigidBody * m_rigidBody