\*, constructor for ideal multiples 7.5-3 AffineDegree 7.4-17 ByASmallerPresentation, for modules 7.5-2 CanBeUsedToDecideZeroEffectively 5.3-1 CayleyDeterminant 12.5-2 CoefficientsOfNumeratorOfHilbertPoincareSeries 7.4-13 CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries 7.4-12 Cokernel 10.4-2 DataOfHilbertFunction 7.4-18 DefectOfExactness 10.4-6 ElementaryDivisors 7.4-8 Ext 10.4-12 ExteriorAlgebra 7.4-7 ExteriorPower 12.1-1 ExteriorPowerBaseModule 12.2-3 ExteriorPowerElementDual 12.4-2 ExteriorPowerExponent 12.2-2 FittingIdeal 7.4-9 functor_Cokernel 10.4-1 Functor_Ext 10.4-11 Functor_Hom 10.4-7 Functor_HomHom 10.4-19 functor_ImageObject 10.4-3 Functor_LHomHom 10.4-20 Functor_LTensorProduct 10.4-17 Functor_RHom 10.4-15 Functor_TensorProduct 10.4-9 Functor_Tor 10.4-13 Gcd_UsingCayleyDeterminant 12.5-3 HilbertFunction 7.4-19 HilbertPoincareSeries 7.4-16 Hom 10.4-8 HomalgFreeLeftModule, constructor for free left modules 7.2-3 HomalgFreeRightModule, constructor for free right modules 7.2-4 HomalgIdentityMap, constructor for identity maps 8.2-3 HomalgMap, constructor for maps 8.2-1 HomalgRing 8.5-1 HomalgZeroLeftModule, constructor for zero left modules 7.2-5 HomalgZeroMap, constructor for zero maps 8.2-2 HomalgZeroRightModule, constructor for zero right modules 7.2-6 ImageObject 10.4-4 IndexOfRegularity 7.4-20 IsCyclic 7.3-1 IsElementOfAModuleGivenByAMorphismRep 9.1-2 IsElementOfIntegers 9.3-1 IsExteriorPower 12.2-1 IsExteriorPowerElement 12.3-1 IsFinitelyPresentedModuleOrSubmoduleRep 7.1-2 IsFinitelyPresentedModuleRep 7.1-3 IsFinitelyPresentedSubmoduleRep 7.1-4 IsGeneratorsOfFinitelyGeneratedModuleRep 6.1-5 IsGeneratorsOfModuleRep 6.1-4 IsHolonomic 7.3-2 IsHomalgElement 9.1-1 IsHomalgGenerators 6.1-1 IsHomalgGeneratorsOfLeftModule 6.1-2 IsHomalgGeneratorsOfRightModule 6.1-3 IsHomalgMap 8.1-1 IsHomalgModule 7.1-1 IsHomalgRelations 5.1-1 IsHomalgRelationsOfLeftModule 5.1-2 IsHomalgRelationsOfRightModule 5.1-3 IsHomalgSelfMap 8.1-2 IsInjectivePresentation 5.3-2 IsMapOfFinitelyGeneratedModulesRep 8.1-3 IsPrimeIdeal 7.3-4 IsPrimeModule, for modules 7.3-5 IsReduced, for generators 6.3-1 IsRelationsOfFinitelyPresentedModuleRep 5.1-4 IsSymmetricPower 11.2-1 Kernel, for maps 10.4-5 KernelEmb, for ring maps 4.1-2 KernelSubobject, for ring maps 4.1-1 KoszulCocomplex 12.5-1 LargestMinimalNumberOfLocalGenerators 7.4-11 LeftPresentation, constructor for left modules 7.2-1 LeftSubmodule, constructor for left submodules 7.2-10 LTensorProduct 10.4-18 ModuleOfKaehlerDifferentials 7.4-4 NonFlatLocus 7.4-10 NumeratorOfHilbertPoincareSeries 7.4-15 PreInverse 8.5-2 PrimaryDecomposition 7.4-2 ProcedureToReadjustGenerators 6.4-1 RadicalDecomposition 7.4-3 RadicalSubobject 7.4-5 ResidueClassRing 7.4-1 RHom 10.4-16 RightPresentation, constructor for right modules 7.2-2 RightSubmodule, constructor for right submodules 7.2-11 SingleValueOfExteriorPowerElement 12.4-3 Subobject, constructor for submodules using a list of ring elements 7.2-9 SubobjectQuotient, for submodules 7.5-4 SymmetricAlgebra 7.4-6 SymmetricPower 11.1-1 SymmetricPowerBaseModule 11.2-3 SymmetricPowerExponent 11.2-2 TensorProduct 10.4-10 Tor 10.4-14 UnreducedNumeratorOfHilbertPoincareSeries 7.4-14 Wedge, for elements of exterior powers of free modules 12.4-1
generated by GAPDoc2HTML