
R Internals
Version 4.0.5 (2021-03-31)

R Core Team



This manual is for R, version 4.0.5 (2021-03-31).

Copyright c© 1999–2021 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.



i

Table of Contents

1 R Internal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 SEXPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 SEXPTYPEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Rest of header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 The ‘data’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Allocation classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Environments and variable lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Search paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Argument evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Missingness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Dot-dot-dot arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Autoprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 The write barrier and the garbage collector . . . . . . . . . . . . . . . . . . . . 14
1.8 Serialization Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.9 Encodings for CHARSXPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.10 The CHARSXP cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.11 Warnings and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.12 S4 objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.12.1 Representation of S4 objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.12.2 S4 classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.12.3 S4 methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.12.4 Mechanics of S4 dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.13 Memory allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.13.1 Internals of R alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.14 Internal use of global and base environments . . . . . . . . . . . . . . . . . . 22
1.14.1 Base environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.14.2 Global environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.15 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.16 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.16.1 Hiding C entry points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.16.2 Variables in Windows DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.17 Lazy loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 .Internal vs .Primitive . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1 Special primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Special internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Prototypes for primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Adding a primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



ii

3 Internationalization in the R sources . . . . . . . . . 31
3.1 R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Main C code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Windows-GUI-specific code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 macOS GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Structure of an Installed Package . . . . . . . . . . . . . 33
4.1 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1 Graphics Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Device structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Device capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.3 Handling text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.4 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.5 ‘Mode’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.6 Graphics events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.7 Specific devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.7.1 X11() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.7.2 windows() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Base graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.1 Arguments and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Grid graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 GUI consoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1 R.app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 R coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10 Testing R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11 Use of TeX dialects . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12 Current and future directions . . . . . . . . . . . . . . . . 67
12.1 Long vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
12.2 64-bit types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
12.3 Large matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



iii

Function and variable index . . . . . . . . . . . . . . . . . . . . . . . 70

Concept index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



1

1 R Internal Structures

This chapter is the beginnings of documentation about R internal structures. It is written
for the core team and others studying the code in the src/main directory.

It is a work-in-progress and should be checked against the current version of the source
code. Versions for R 2.x.y contain historical comments about when features were introduced:
this version is for the 3.x.y series.

1.1 SEXPs

What R users think of as variables or objects are symbols which are bound to a value.
The value can be thought of as either a SEXP (a pointer), or the structure it points to,
a SEXPREC (and there are alternative forms used for vectors, namely VECSXP pointing to
VECTOR_SEXPREC structures). So the basic building blocks of R objects are often called
nodes, meaning SEXPRECs or VECTOR_SEXPRECs.

Note that the internal structure of the SEXPREC is not made available to R Extensions:
rather SEXP is an opaque pointer, and the internals can only be accessed by the functions
provided.

Both types of node structure have as their first three fields a 64-bit sxpinfo header and
then three pointers (to the attributes and the previous and next node in a doubly-linked
list), and then some further fields. On a 32-bit platform a node1 occupies 32 bytes: on a
64-bit platform typically 56 bytes (depending on alignment constraints).

The first five bits of the sxpinfo header specify one of up to 32 SEXPTYPEs.

1.1.1 SEXPTYPEs

Currently SEXPTYPEs 0:10 and 13:25 are in use. Values 11 and 12 were used for internal fac-
tors and ordered factors and have since been withdrawn. Note that the SEXPTYPE numbers
are stored in saved objects and that the ordering of the types is used, so the gap cannot
easily be reused.

no SEXPTYPE Description
0 NILSXP NULL

1 SYMSXP symbols
2 LISTSXP pairlists
3 CLOSXP closures
4 ENVSXP environments
5 PROMSXP promises
6 LANGSXP language objects
7 SPECIALSXP special functions
8 BUILTINSXP builtin functions
9 CHARSXP internal character strings
10 LGLSXP logical vectors
13 INTSXP integer vectors
14 REALSXP numeric vectors

1 strictly, a SEXPREC node; VECTOR_SEXPREC nodes are slightly smaller but followed by data in the node.



Chapter 1: R Internal Structures 2

15 CPLXSXP complex vectors
16 STRSXP character vectors
17 DOTSXP dot-dot-dot object
18 ANYSXP make “any” args work
19 VECSXP list (generic vector)
20 EXPRSXP expression vector
21 BCODESXP byte code
22 EXTPTRSXP external pointer
23 WEAKREFSXP weak reference
24 RAWSXP raw vector
25 S4SXP S4 classes not of simple type

Many of these will be familiar from R level: the atomic vector types are LGLSXP, INTSXP,
REALSXP, CPLXSP, STRSXP and RAWSXP. Lists are VECSXP and names (also known as symbols)
are SYMSXP. Pairlists (LISTSXP, the name going back to the origins of R as a Scheme-like
language) are rarely seen at R level, but are for example used for argument lists. Character
vectors are effectively lists all of whose elements are CHARSXP, a type that is rarely visible
at R level.

Language objects (LANGSXP) are calls (including formulae and so on). Internally they are
pairlists with first element a reference2 to the function to be called with remaining elements
the actual arguments for the call (and with the tags if present giving the specified argument
names). Although this is not enforced, many places in the code assume that the pairlist is
of length one or more, often without checking.

Expressions are of type EXPRSXP: they are a vector of (usually language) objects most
often seen as the result of parse().

The functions are of types CLOSXP, SPECIALSXP and BUILTINSXP: where SEXPTYPEs are
stored in an integer these are sometimes lumped into a pseudo-type FUNSXP with code 99.
Functions defined via function are of type CLOSXP and have formals, body and environment.

The SEXPTYPE S4SXP is for S4 objects which do not consist solely of a simple type such
as an atomic vector or function.

1.1.2 Rest of header

Note that the size and structure of the header changed in R 3.5.0: see earlier editions of
this manual for the previous layout.

The sxpinfo header is defined as a 64-bit C structure by

#define NAMED_BITS 16

struct sxpinfo_struct {

SEXPTYPE type : 5; /* discussed above */

unsigned int scalar: 1; /* is this a numeric vector of length 1?
unsigned int obj : 1; /* is this an object with a class attribute? */

unsigned int alt : 1; /* is this an ALTREP object? */

unsigned int gp : 16; /* general purpose, see below */

unsigned int mark : 1; /* mark object as ‘in use’ in GC */

unsigned int debug : 1;

2 a pointer to a function or a symbol to look up the function by name, or a language object to be evaluated
to give a function.



Chapter 1: R Internal Structures 3

unsigned int trace : 1;

unsigned int spare : 1; /* debug once and with reference counting */

unsigned int gcgen : 1; /* generation for GC */

unsigned int gccls : 3; /* class of node for GC */

unsigned int named : NAMED_BITS; /* used to control copying */

unsigned int extra : 32 - NAMED_BITS;

}; /* Tot: 64 */

The debug bit is used for closures and environments. For closures it is set by debug()

and unset by undebug(), and indicates that evaluations of the function should be run under
the browser. For environments it indicates whether the browsing is in single-step mode.

The trace bit is used for functions for trace() and for other objects when tracing
duplications (see tracemem).

The spare bit is used for closures to mark them for one-time debugging.

The named field is set and accessed by the SET_NAMED and NAMED macros, and take values
0, 1 and 2, or possibly higher if NAMEDMAX is set to a higher value. R has a ‘call by value’
illusion, so an assignment like

b <- a

[The NAMED mechanism has been replaced by reference counting.]

appears to make a copy of a and refer to it as b. However, if neither a nor b are subsequently
altered there is no need to copy. What really happens is that a new symbol b is bound to
the same value as a and the named field on the value object is set (in this case to 2). When
an object is about to be altered, the named field is consulted. A value of 2 or more means
that the object must be duplicated before being changed. (Note that this does not say that
it is necessary to duplicate, only that it should be duplicated whether necessary or not.) A
value of 0 means that it is known that no other SEXP shares data with this object, and so
it may safely be altered. A value of 1 is used for situations like

dim(a) <- c(7, 2)

where in principle two copies of a exist for the duration of the computation as (in principle)

a <- ‘dim<-‘(a, c(7, 2))

but for no longer, and so some primitive functions can be optimized to avoid a copy in this
case. [This mechanism is scheduled to be replaced in R 4.0.0.]

The gp bits are by definition ‘general purpose’. We label these from 0 to 15. Bits 0–5 and
bits 14–15 have been used as described below (mainly from detective work on the sources).

The bits can be accessed and set by the LEVELS and SETLEVELS macros, which names
appear to date back to the internal factor and ordered types and are now used in only a
few places in the code. The gp field is serialized/unserialized for the SEXPTYPEs other than
NILSXP, SYMSXP and ENVSXP.

Bits 14 and 15 of gp are used for ‘fancy bindings’. Bit 14 is used to lock a binding or
an environment, and bit 15 is used to indicate an active binding. (For the definition of an
‘active binding’ see the header comments in file src/main/envir.c.) Bit 15 is used for an
environment to indicate if it participates in the global cache.

The macros ARGUSED and SET_ARGUSED are used when matching actual and formal func-
tion arguments, and take the values 0, 1 and 2.



Chapter 1: R Internal Structures 4

The macros MISSING and SET_MISSING are used for pairlists of arguments. Four bits are
reserved, but only two are used (and exactly what for is not explained). It seems that bit
0 is used by matchArgs_NR to mark missingness on the returned argument list, and bit 1 is
used to mark the use of a default value for an argument copied to the evaluation frame of
a closure.

Bit 0 is used by macros DDVAL and SET_DDVAL. This indicates that a SYMSXP is one of
the symbols ..n which are implicitly created when ... is processed, and so indicates that
it may need to be looked up in a DOTSXP.

Bit 0 is used for PRSEEN, a flag to indicate if a promise has already been seen during the
evaluation of the promise (and so to avoid recursive loops).

Bit 0 is used for HASHASH, on the PRINTNAME of the TAG of the frame of an environment.
(This bit is not serialized for CHARSXP objects.)

Bits 0 and 1 are used for weak references (to indicate ‘ready to finalize’, ‘finalize on
exit’).

Bit 0 is used by the condition handling system (on a VECSXP) to indicate a calling handler.

Bit 4 is turned on to mark S4 objects.

Bits 1, 2, 3, 5 and 6 are used for a CHARSXP to denote its encoding. Bit 1 indicates that
the CHARSXP should be treated as a set of bytes, not necessarily representing a character in
any known encoding. Bits 2, 3 and 6 are used to indicate that it is known to be in Latin-1,
UTF-8 or ASCII respectively.

Bit 5 for a CHARSXP indicates that it is hashed by its address, that is NA_STRING or is in
the CHARSXP cache (this is not serialized). Only exceptionally is a CHARSXP not hashed, and
this should never happen in end-user code.

1.1.3 The ‘data’

A SEXPREC is a C structure containing the 32-bit header as described above, three pointers
(to the attributes, previous and next node) and the node data, a union

union {

struct primsxp_struct primsxp;

struct symsxp_struct symsxp;

struct listsxp_struct listsxp;

struct envsxp_struct envsxp;

struct closxp_struct closxp;

struct promsxp_struct promsxp;

} u;

All of these alternatives apart from the first (an int) are three pointers, so the union
occupies three words.

The vector types are RAWSXP, CHARSXP, LGLSXP, INTSXP, REALSXP, CPLXSXP, STRSXP,
VECSXP, EXPRSXP and WEAKREFSXP. Remember that such types are a VECTOR_SEXPREC,
which again consists of the header and the same three pointers, but followed by two integers
giving the length and ‘true length’3 of the vector, and then followed by the data (aligned as
required: on most 32-bit systems with a 24-byte VECTOR_SEXPREC node the data can follow

3 The only current use is for hash tables of environments (VECSXPs), where length is the size of the
table and truelength is the number of primary slots in use, for the reference hash tables in serializa-



Chapter 1: R Internal Structures 5

immediately after the node). The data are a block of memory of the appropriate length to
store ‘true length’ elements (rounded up to a multiple of 8 bytes, with the 8-byte blocks
being the ‘Vcells’ referred in the documentation for gc()).

The ‘data’ for the various types are given in the table below. A lot of this is interpreta-
tion, i.e. the types are not checked.

NILSXP There is only one object of type NILSXP, R_NilValue, with no data.

SYMSXP Pointers to three nodes, the name, value and internal, accessed by PRINTNAME

(a CHARSXP), SYMVALUE and INTERNAL. (If the symbol’s value is a .Internal

function, the last is a pointer to the appropriate SEXPREC.) Many symbols have
SYMVALUE R_UnboundValue.

LISTSXP Pointers to the CAR, CDR (usually a LISTSXP or NULL) and TAG (a SYMSXP

or NULL).

CLOSXP Pointers to the formals (a pairlist), the body and the environment.

ENVSXP Pointers to the frame, enclosing environment and hash table (NULL or a VECSXP).
A frame is a tagged pairlist with tag the symbol and CAR the bound value.

PROMSXP Pointers to the value, expression and environment (in which to evaluate the
expression). Once an promise has been evaluated, the environment is set to
NULL.

LANGSXP A special type of LISTSXP used for function calls. (The CAR references the
function (perhaps via a symbol or language object), and the CDR the argu-
ment list with tags for named arguments.) R-level documentation references
to ‘expressions’ / ‘language objects’ are mainly LANGSXPs, but can be symbols
(SYMSXPs) or expression vectors (EXPRSXPs).

SPECIALSXP

BUILTINSXP

An integer giving the offset into the table of primitives/.Internals.

CHARSXP length, truelength followed by a block of bytes (allowing for the nul termi-
nator).

LGLSXP

INTSXP length, truelength followed by a block of C ints (which are 32 bits on all R
platforms).

REALSXP length, truelength followed by a block of C doubles.

CPLXSXP length, truelength followed by a block of C99 double complexs.

STRSXP length, truelength followed by a block of pointers (SEXPs pointing to
CHARSXPs).

DOTSXP A special type of LISTSXP for the value bound to a ... symbol: a pairlist of
promises.

tion (VECSXPs), and for ‘growable’ vectors (atomic vectors, VECSXPs and EXPRSXPs) which are created by
slightly over-committing when enlarging a vector during subassignment, so that some number of the fol-
lowing enlargements during subassignment can be performed in place), where truelength is the number
of slots in use.



Chapter 1: R Internal Structures 6

ANYSXP This is used as a place holder for any type: there are no actual objects of this
type.

VECSXP

EXPRSXP length, truelength followed by a block of pointers. These are internally iden-
tical (and identical to STRSXP) but differ in the interpretations placed on the
elements.

BCODESXP For the ‘byte-code’ objects generated by the compiler.

EXTPTRSXP

Has three pointers, to the pointer, the protection value (an R object which if
alive protects this object) and a tag (a SYMSXP?).

WEAKREFSXP

A WEAKREFSXP is a special VECSXP of length 4, with elements ‘key’, ‘value’,
‘finalizer’ and ‘next’. The ‘key’ is NULL, an environment or an external
pointer, and the ‘finalizer’ is a function or NULL.

RAWSXP length, truelength followed by a block of bytes.

S4SXP two unused pointers and a tag.

1.1.4 Allocation classes

As we have seen, the field gccls in the header is three bits to label up to 8 classes of nodes.
Non-vector nodes are of class 0, and ‘small’ vector nodes are of classes 1 to 5, with a class
for custom allocator vector nodes 6 and ‘large’ vector nodes being of class 7. The ‘small’
vector nodes are able to store vector data of up to 8, 16, 32, 64 and 128 bytes: larger vectors
are malloc-ed individually whereas the ‘small’ nodes are allocated from pages of about 2000
bytes. Vector nodes allocated using custom allocators (via allocVector3) are not counted
in the gc memory usage statistics since their memory semantics is not under R’s control
and may be non-standard (e.g., memory could be partially shared across nodes).

1.2 Environments and variable lookup

What users think of as ‘variables’ are symbols which are bound to objects in ‘environments’.
The word ‘environment’ is used ambiguously in R to mean either the frame of an ENVSXP

(a pairlist of symbol-value pairs) or an ENVSXP, a frame plus an enclosure.

There are additional places that ‘variables’ can be looked up, called ‘user databases’ in
comments in the code. These seem undocumented in the R sources, but apparently refer
to the RObjectTable package at http://www.omegahat.net/RObjectTables/.

The base environment is special. There is an ENVSXP environment with enclosure the
empty environment R_EmptyEnv, but the frame of that environment is not used. Rather
its bindings are part of the global symbol table, being those symbols in the global symbol
table whose values are not R_UnboundValue. When R is started the internal functions
are installed (by C code) in the symbol table, with primitive functions having values and
.Internal functions having what would be their values in the field accessed by the INTERNAL
macro. Then .Platform and .Machine are computed and the base package is loaded into
the base environment followed by the system profile.

http://www.omegahat.net/RObjectTables/


Chapter 1: R Internal Structures 7

The frames of environments (and the symbol table) are normally hashed for faster access
(including insertion and deletion).

By default R maintains a (hashed) global cache of ‘variables’ (that is symbols and their
bindings) which have been found, and this refers only to environments which have been
marked to participate, which consists of the global environment (aka the user workspace),
the base environment plus environments4 which have been attached. When an environment
is either attached or detached, the names of its symbols are flushed from the cache. The
cache is used whenever searching for variables from the global environment (possibly as part
of a recursive search).

1.2.1 Search paths

S has the notion of a ‘search path’: the lookup for a ‘variable’ leads (possibly through a
series of frames) to the ‘session frame’ the ‘working directory’ and then along the search
path. The search path is a series of databases (as returned by search()) which contain the
system functions (but not necessarily at the end of the path, as by default the equivalent
of packages are added at the end).

R has a variant on the S model. There is a search path (also returned by search())
which consists of the global environment (aka user workspace) followed by environments
which have been attached and finally the base environment. Note that unlike S it is not
possible to attach environments before the workspace nor after the base environment.

However, the notion of variable lookup is more general in R, hence the plural in the title
of this subsection. Since environments have enclosures, from any environment there is a
search path found by looking in the frame, then the frame of its enclosure and so on. Since
loops are not allowed, this process will eventually terminate: it can terminate at either the
base environment or the empty environment. (It can be conceptually simpler to think of
the search always terminating at the empty environment, but with an optimization to stop
at the base environment.) So the ‘search path’ describes the chain of environments which
is traversed once the search reaches the global environment.

1.2.2 Namespaces

Namespaces are environments associated with packages (and once again the base package
is special and will be considered separately). A package pkg defines two environments
namespace:pkg and package:pkg: it is package:pkg that can be attached and form part
of the search path.

The objects defined by the R code in the package are symbols with bindings in the
namespace:pkg environment. The package:pkg environment is populated by selected sym-
bols from the namespace:pkg environment (the exports). The enclosure of this environment
is an environment populated with the explicit imports from other namespaces, and the en-
closure of that environment is the base namespace. (So the illusion of the imports being in
the namespace environment is created via the environment tree.) The enclosure of the base
namespace is the global environment, so the search from a package namespace goes via the
(explicit and implicit) imports to the standard ‘search path’.

4 Remember that attaching a list or a saved image actually creates and populates an environment and
attaches that.



Chapter 1: R Internal Structures 8

The base namespace environment R_BaseNamespace is another ENVSXP that is special-
cased. It is effectively the same thing as the base environment R_BaseEnv except that its
enclosure is the global environment rather than the empty environment: the internal code
diverts lookups in its frame to the global symbol table.

1.2.3 Hash table

Environments in R usually have a hash table, and nowadays that is the default in new.env().
It is stored as a VECSXP where length is used for the allocated size of the table and
truelength is the number of primary slots in use—the pointer to the VECSXP is part of
the header of a SEXP of type ENVSXP, and this points to R_NilValue if the environment is
not hashed.

For the pros and cons of hashing, see a basic text on Computer Science.

The code to implement hashed environments is in src/main/envir.c. Unless set oth-
erwise (e.g. by the size argument of new.env()) the initial table size is 29. The table will
be resized by a factor of 1.2 once the load factor (the proportion of primary slots in use)
reaches 85%.

The hash chains are stored as pairlist elements of the VECSXP: items are inserted at
the front of the pairlist. Hashing is principally designed for fast searching of environments,
which are from time to time added to but rarely deleted from, so items are not actually
deleted but have their value set to R_UnboundValue.

1.3 Attributes

As we have seen, every SEXPREC has a pointer to the attributes of the node (default R_

NilValue). The attributes can be accessed/set by the macros/functions ATTRIB and SET_

ATTRIB, but such direct access is normally only used to check if the attributes are NULL or to
reset them. Otherwise access goes through the functions getAttrib and setAttrib which
impose restrictions on the attributes. One thing to watch is that if you copy attributes
from one object to another you may (un)set the "class" attribute and so need to copy the
object and S4 bits as well. There is a macro/function DUPLICATE_ATTRIB to automate this.

Note that the ‘attributes’ of a CHARSXP are used as part of the management of the
CHARSXP cache: of course CHARSXP’s are not user-visible but C-level code might look at
their attributes.

The code assumes that the attributes of a node are either R_NilValue or a pairlist
of non-zero length (and this is checked by SET_ATTRIB). The attributes are named (via
tags on the pairlist). The replacement function attributes<- ensures that "dim" precedes
"dimnames" in the pairlist. Attribute "dim" is one of several that is treated specially: the
values are checked, and any "names" and "dimnames" attributes are removed. Similarly,
you cannot set "dimnames" without having set "dim", and the value assigned must be a list
of the correct length and with elements of the correct lengths (and all zero-length elements
are replaced by NULL).

The other attributes which are given special treatment are "names", "class", "tsp",
"comment" and "row.names". For pairlist-like objects the names are not stored as an
attribute but (as symbols) as the tags: however the R interface makes them look like
conventional attributes, and for one-dimensional arrays they are stored as the first element
of the "dimnames" attribute. The C code ensures that the "tsp" attribute is an REALSXP,



Chapter 1: R Internal Structures 9

the frequency is positive and the implied length agrees with the number of rows of the
object being assigned to. Classes and comments are restricted to character vectors, and
assigning a zero-length comment or class removes the attribute. Setting or removing a
"class" attribute sets the object bit appropriately. Integer row names are converted to
and from the internal compact representation.

Care needs to be taken when adding attributes to objects of the types with non-standard
copying semantics. There is only one object of type NILSXP, R_NilValue, and that should
never have attributes (and this is enforced in installAttrib). For environments, external
pointers and weak references, the attributes should be relevant to all uses of the object: it
is for example reasonable to have a name for an environment, and also a "path" attribute
for those environments populated from R code in a package.

When should attributes be preserved under operations on an object? Becker, Chambers
& Wilks (1988, pp. 144–6) give some guidance. Scalar functions (those which operate
element-by-element on a vector and whose output is similar to the input) should preserve
attributes (except perhaps class, and if they do preserve class they need to preserve the
OBJECT and S4 bits). Binary operations normally call copyMostAttrib to copy most at-
tributes from the longer argument (and if they are of the same length from both, preferring
the values on the first). Here ‘most’ means all except the names, dim and dimnames which
are set appropriately by the code for the operator.

Subsetting (other than by an empty index) generally drops all attributes except names,
dim and dimnames which are reset as appropriate. On the other hand, subassignment gen-
erally preserves such attributes even if the length is changed. Coercion drops all attributes.
For example:

> x <- structure(1:8, names=letters[1:8], comm="a comment")

> x[]

a b c d e f g h

1 2 3 4 5 6 7 8

attr(,"comm")

[1] "a comment"

> x[1:3]

a b c

1 2 3

> x[3] <- 3

> x

a b c d e f g h

1 2 3 4 5 6 7 8

attr(,"comm")

[1] "a comment"

> x[9] <- 9

> x

a b c d e f g h

1 2 3 4 5 6 7 8 9

attr(,"comm")

[1] "a comment"



Chapter 1: R Internal Structures 10

1.4 Contexts

Contexts are the internal mechanism used to keep track of where a computation has got
to (and from where), so that control-flow constructs can work and reasonable information
can be produced on error conditions (such as via traceback), and otherwise (the sys.xxx

functions).

Execution contexts are a stack of C structs:

typedef struct RCNTXT {

struct RCNTXT *nextcontext; /* The next context up the chain */

int callflag; /* The context ‘type’ */

JMP_BUF cjmpbuf; /* C stack and register information */

int cstacktop; /* Top of the pointer protection stack */

int evaldepth; /* Evaluation depth at inception */

SEXP promargs; /* Promises supplied to closure */

SEXP callfun; /* The closure called */

SEXP sysparent; /* Environment the closure was called from */

SEXP call; /* The call that effected this context */

SEXP cloenv; /* The environment */

SEXP conexit; /* Interpreted on.exit code */

void (*cend)(void *); /* C on.exit thunk */

void *cenddata; /* Data for C on.exit thunk */

char *vmax; /* Top of the R_alloc stack */

int intsusp; /* Interrupts are suspended */

SEXP handlerstack; /* Condition handler stack */

SEXP restartstack; /* Stack of available restarts */

struct RPRSTACK *prstack; /* Stack of pending promises */

} RCNTXT, *context;

plus additional fields for the byte-code compiler. The ‘types’ are from

enum {

CTXT_TOPLEVEL = 0, /* toplevel context */

CTXT_NEXT = 1, /* target for next */

CTXT_BREAK = 2, /* target for break */

CTXT_LOOP = 3, /* break or next target */

CTXT_FUNCTION = 4, /* function closure */

CTXT_CCODE = 8, /* other functions that need error cleanup */

CTXT_RETURN = 12, /* return() from a closure */

CTXT_BROWSER = 16, /* return target on exit from browser */

CTXT_GENERIC = 20, /* rather, running an S3 method */

CTXT_RESTART = 32, /* a call to restart was made from a closure */

CTXT_BUILTIN = 64 /* builtin internal function */

};

where the CTXT_FUNCTION bit is on wherever function closures are involved.

Contexts are created by a call to begincontext and ended by a call to endcontext:
code can search up the stack for a particular type of context via findcontext (and jump
there) or jump to a specific context via R_JumpToContext. R_ToplevelContext is the ‘idle’
state (normally the command prompt), and R_GlobalContext is the top of the stack.



Chapter 1: R Internal Structures 11

Note that whilst calls to closures set a context, internal functions never do and primitive
builtins only set it when profiling or when they are interfaces to foreign functions.

The byte-code compiler generates a map of instructions to source references and ex-
pressions at compile time, which allows to produce information on error conditions. As an
optimization, the byte-code interpreter then does not set a context in some cases, such as
in simple loops or when inlining simple builtins or wrappers for internal functions.

Dispatching from a S3 generic (via UseMethod or its internal equivalent) or calling
NextMethod sets the context type to CTXT_GENERIC. This is used to set the sysparent

of the method call to that of the generic, so the method appears to have been called in
place of the generic rather than from the generic.

The R sys.frame and sys.call functions work by counting calls to closures (type
CTXT_FUNCTION) from either end of the context stack.

Note that the sysparent element of the structure is not the same thing as sys.parent().
Element sysparent is primarily used in managing changes of the function being evaluated,
i.e. by Recall and method dispatch.

CTXT_CCODE contexts are currently used in cat(), load(), scan() and write.table()

(to close the connection on error), by PROTECT, serialization (to recover from errors, e.g.
free buffers) and within the error handling code (to raise the C stack limit and reset some
variables).

1.5 Argument evaluation

As we have seen, functions in R come in three types, closures (SEXPTYPE CLOSXP), specials
(SPECIALSXP) and builtins (BUILTINSXP). In this section we consider when (and if) the
actual arguments of function calls are evaluated. The rules are different for the internal
(special/builtin) and R-level functions (closures).

For a call to a closure, the actual and formal arguments are matched and a matched
call (another LANGSXP) is constructed. This process first replaces the actual argument list
by a list of promises to the values supplied. It then constructs a new environment which
contains the names of the formal parameters matched to actual or default values: all the
matched values are promises, the defaults as promises to be evaluated in the environment
just created. That environment is then used for the evaluation of the body of the function,
and promises will be forced (and hence actual or default arguments evaluated) when they are
encountered. (Evaluating a promise sets NAMED = NAMEDMAX on its value, so if the argument
was a symbol its binding is regarded as having multiple references during the evaluation of
the closure call.) [The NAMED mechanism has been replaced by reference counting.]

If the closure is an S3 generic (that is, contains a call to UseMethod) the evaluation
process is the same until the UseMethod call is encountered. At that point the argument
on which to do dispatch (normally the first) will be evaluated if it has not been already.
If a method has been found which is a closure, a new evaluation environment is created
for it containing the matched arguments of the method plus any new variables defined so
far during the evaluation of the body of the generic. (Note that this means changes to the
values of the formal arguments in the body of the generic are discarded when calling the
method, but actual argument promises which have been forced retain the values found when
they were forced. On the other hand, missing arguments have values which are promises to
use the default supplied by the method and not by the generic.) If the method found is a



Chapter 1: R Internal Structures 12

primitive it is called with the matched argument list of promises (possibly already forced)
used for the generic.

The essential difference5 between special and builtin functions is that the arguments of
specials are not evaluated before the C code is called, and those of builtins are. Note that
being a special/builtin is separate from being primitive or .Internal: quote is a special
primitive, + is a builtin primitive, cbind is a special .Internal and grep is a builtin
.Internal.

Many of the internal functions are internal generics, which for specials means that they do
not evaluate their arguments on call, but the C code starts with a call to DispatchOrEval.
The latter evaluates the first argument, and looks for a method based on its class. (If S4
dispatch is on, S4 methods are looked for first, even for S3 classes.) If it finds a method,
it dispatches to that method with a call based on promises to evaluate the remaining
arguments. If no method is found, the remaining arguments are evaluated before return to
the internal generic.

The other way that internal functions can be generic is to be group generic. Most
such functions are builtins (so immediately evaluate all their arguments), and all contain a
call to the C function DispatchGeneric. There are some peculiarities over the number of
arguments for the "Math" group generic, with some members allowing only one argument,
some having two (with a default for the second) and trunc allows one or more but the
default method only accepts one.

1.5.1 Missingness

Actual arguments to (non-internal) R functions can be fewer than are required to match
the formal arguments of the function. Having unmatched formal arguments will not matter
if the argument is never used (by lazy evaluation), but when the argument is evaluated,
either its default value is evaluated (within the evaluation environment of the function) or
an error is thrown with a message along the lines of

argument "foobar" is missing, with no default

Internally missingness is handled by two mechanisms. The object R_MissingArg is used
to indicate that a formal argument has no (default) value. When matching the actual
arguments to the formal arguments, a new argument list is constructed from the formals
all of whose values are R_MissingArg with the first MISSING bit set. Then whenever a
formal argument is matched to an actual argument, the corresponding member of the new
argument list has its value set to that of the matched actual argument, and if that is not
R_MissingArg the missing bit is unset.

This new argument list is used to form the evaluation frame for the function, and if named
arguments are subsequently given a new value (before they are evaluated) the missing bit
is cleared.

Missingness of arguments can be interrogated via the missing() function. An argument
is clearly missing if its missing bit is set or if the value is R_MissingArg. However, missing-
ness can be passed on from function to function, for using a formal argument as an actual
argument in a function call does not count as evaluation. So missing() has to examine

5 There is currently one other difference: when profiling builtin functions are counted as function calls but
specials are not.



Chapter 1: R Internal Structures 13

the value (a promise) of a non-yet-evaluated formal argument to see if it might be missing,
which might involve investigating a promise and so on . . . .

Special primitives also need to handle missing arguments, and in some case (e.g. log)
that is why they are special and not builtin. This is usually done by testing if an argument’s
value is R_MissingArg.

1.5.2 Dot-dot-dot arguments

Dot-dot-dot arguments are convenient when writing functions, but complicate the internal
code for argument evaluation.

The formals of a function with a ... argument represent that as a single argument like
any other argument, with tag the symbol R_DotsSymbol. When the actual arguments are
matched to the formals, the value of the ... argument is of SEXPTYPE DOTSXP, a pairlist of
promises (as used for matched arguments) but distinguished by the SEXPTYPE.

Recall that the evaluation frame for a function initially contains the name=value pairs
from the matched call, and hence this will be true for ... as well. The value of ... is a
(special) pairlist whose elements are referred to by the special symbols ..1, ..2, . . . which
have the DDVAL bit set: when one of these is encountered it is looked up (via ddfindVar)
in the value of the ... symbol in the evaluation frame.

Values of arguments matched to a ... argument can be missing.

Special primitives may need to handle ... arguments: see for example the internal code
of switch in file src/main/builtin.c.

1.6 Autoprinting

Whether the returned value of a top-level R expression is printed is controlled by the global
boolean variable R_Visible. This is set (to true or false) on entry to all primitive and
internal functions based on the eval column of the table in file src/main/names.c: the
appropriate setting can be extracted by the macro PRIMPRINT.

The R primitive function invisiblemakes use of this mechanism: it just sets R_Visible
= FALSE before entry and returns its argument.

For most functions the intention will be that the setting of R_Visible when they are en-
tered is the setting used when they return, but there need to be exceptions. The R functions
identify, options, system and writeBin determine whether the result should be visible
from the arguments or user action. Other functions themselves dispatch functions which
may change the visibility flag: examples6 are .Internal, do.call, eval, withVisible, if,
NextMethod, Recall, recordGraphics, standardGeneric, switch and UseMethod.

‘Special’ primitive and internal functions evaluate their arguments internally after R_

Visible has been set, and evaluation of the arguments (e.g. an assignment as in PR#9263)
can change the value of the flag.

The R_Visible flag can also get altered during the evaluation of a function, with
comments in the code about warning, writeChar and graphics functions calling GText

(PR#7397). (Since the C-level function eval sets R_Visible, this could apply to any func-
tion calling it. Since it is called when evaluating promises, even object lookup can change

6 the other current example is left brace, which is implemented as a primitive.



Chapter 1: R Internal Structures 14

R_Visible.) Internal and primitive functions force the documented setting of R_Visible
on return, unless the C code is allowed to change it (the exceptions above are indicated by
PRIMPRINT having value 2).

The actual autoprinting is done by PrintValueEnv in file print.c. If the object to be
printed has the S4 bit set and S4 methods dispatch is on, show is called to print the object.
Otherwise, if the object bit is set (so the object has a "class" attribute), print is called to
dispatch methods: for objects without a class the internal code of print.default is called.

1.7 The write barrier and the garbage collector

R has long had a generational garbage collector, and bit gcgen in the sxpinfo header is
used in the implementation of this. This is used in conjunction with the mark bit to identify
two previous generations.

There are three levels of collections. Level 0 collects only the youngest generation, level
1 collects the two youngest generations and level 2 collects all generations. After 20 level-0
collections the next collection is at level 1, and after 5 level-1 collections at level 2. Further,
if a level-n collection fails to provide 20% free space (for each of nodes and the vector heap),
the next collection will be at level n+1. (The R-level function gc() performs a level-2
collection.)

A generational collector needs to efficiently ‘age’ the objects, especially list-like objects
(including STRSXPs). This is done by ensuring that the elements of a list are regarded
as at least as old as the list when they are assigned. This is handled by the functions
SET_VECTOR_ELT and SET_STRING_ELT, which is why they are functions and not macros.
Ensuring the integrity of such operations is termed the write barrier and is done by making
the SEXP opaque and only providing access via functions (which cannot be used as lvalues
in assignments in C).

All code in R extensions is by default behind the write barrier. The only way to obtain
direct access to the internals of the SEXPRECs is to define ‘USE_RINTERNALS’ before including
header file Rinternals.h, which is normally defined in Defn.h. To enable a check on the
way that the access is used, R can be compiled with flag --enable-strict-barrier which
ensures that header Defn.h does not define ‘USE_RINTERNALS’ and hence that SEXP is opaque
in most of R itself. (There are some necessary exceptions: foremost in file memory.c where
the accessor functions are defined and also in file size.c which needs access to the sizes of
the internal structures.)

For background papers see https://homepage.stat.uiowa.edu/~luke/R/barrier.

html and https://homepage.stat.uiowa.edu/~luke/R/gengcnotes.html.

1.8 Serialization Formats

Serialized versions of R objects are used by load/save and also at a slightly lower
level by saveRDS/readRDS (and their earlier ‘internal’ dot-name versions) and
serialize/unserialize. These differ in what they serialize to (a file, a connection, a
raw vector) and whether they are intended to serialize a single object or a collection of
objects (typically the workspace). save writes a header at the beginning of the file (a
single LF-terminated line) which the lower-level versions do not.

save and saveRDS allow various forms of compression, and gzip compression is the
default (except for ASCII saves). Compression is applied to the whole file stream, including

https://homepage.stat.uiowa.edu/~luke/R/barrier.html
https://homepage.stat.uiowa.edu/~luke/R/barrier.html
https://homepage.stat.uiowa.edu/~luke/R/gengcnotes.html


Chapter 1: R Internal Structures 15

the headers, so serialized files can be uncompressed or re-compressed by external programs.
Both load and readRDS can read gzip, bzip2 and xz forms of compression when reading
from a file, and gzip compression when reading from a connection.

R has used the same serialization format called ‘version 2’ from R 1.4.0 in December
2001 until R 3.5.3 in March 2019. It has been expanded in back-compatible ways since its
inception, for example to support additional SEXPTYPEs. Earlier formats are still supported
via load and save but such formats are not described here. The current default serialization
format is called ‘version 3’, and has been introduced in R 3.5.0.

save works by writing a single-line header (typically RDX2\n for a binary save: the
only other current value is RDA2\n for save(files=TRUE)), then creating a tagged pairlist
of the objects to be saved and serializing that single object. load reads the header line,
unserializes a single object (a pairlist or a vector list) and assigns the elements of the object
in the specified environment. The header line serves two purposes in R: it identifies the
serialization format so load can switch to the appropriate reader code, and the newline
\n allows the detection of files which have been subjected to a non-binary transfer which
re-mapped line endings. It can also be thought of as a ‘magic number’ in the sense used by
the file program (although R save files are not yet by default known to that program).

Serialization in R needs to take into account that objects may contain references to
environments, which then have enclosing environments and so on. (Environments recognized
as package or name space environments are saved by name.) There are ‘reference objects’
which are not duplicated on copy and should remain shared on unserialization. These
are weak references, external pointers and environments other than those associated with
packages, namespaces and the global environment. These are handled via a hash table, and
references after the first are written out as a reference marker indexed by the table entry.

Version-2 serialization first writes a header indicating the format (normally ‘X\n’ for an
XDR format binary save, but ‘A\n’, ASCII, and ‘B\n’, native word-order binary, can also
occur) and then three integers giving the version of the format and two R versions (packed
by the R_Version macro from Rversion.h). (Unserialization interprets the two versions as
the version of R which wrote the file followed by the minimal version of R needed to read
the format.) Serialization then writes out the object recursively using function WriteItem

in file src/main/serialize.c.

Some objects are written as if they were SEXPTYPEs: such pseudo-SEXPTYPEs cover R_

NilValue, R_EmptyEnv, R_BaseEnv, R_GlobalEnv, R_UnboundValue, R_MissingArg and
R_BaseNamespace.

For all SEXPTYPEs except NILSXP, SYMSXP and ENVSXP serialization starts with an integer
with the SEXPTYPE in bits 0:77 followed by the object bit, two bits indicating if there are
any attributes and if there is a tag (for the pairlist types), an unused bit and then the gp

field8 in bits 12:27. Pairlist-like objects write their attributes (if any), tag (if any), CAR
and then CDR (using tail recursion): other objects write their attributes after themselves.
Atomic vector objects write their length followed by the data: generic vector-list objects
write their length followed by a call to WriteItem for each element. The code for CHARSXPs
special-cases NA_STRING and writes it as length -1 with no data. Lengths no more than

7 only bits 0:4 are currently used for SEXPTYPEs but values 241:255 are used for pseudo-SEXPTYPEs.
8 Currently the only relevant bits are 0:1, 4, 14:15.



Chapter 1: R Internal Structures 16

2^31 - 1 are written in that way and larger lengths (which only occur on 64-bit systems)
as -1 followed by the upper and lower 32-bits as integers (regarded as unsigned).

Environments are treated in several ways: as we have seen, some are written as spe-
cific pseudo-SEXPTYPEs. Package and namespace environments are written with pseudo-
SEXPTYPEs followed by the name. ‘Normal’ environments are written out as ENVSXPs with
an integer indicating if the environment is locked followed by the enclosure, frame, ‘tag’
(the hash table) and attributes.

In the ‘XDR’ format integers and doubles are written in bigendian order: however the
format is not fully XDR (as defined in RFC 1832) as byte quantities (such as the contents
of CHARSXP and RAWSXP types) are written as-is and not padded to a multiple of four bytes.

The ‘ASCII’ format writes 7-bit characters. Integers are formatted with %d (except that
NA_integer_ is written as NA), doubles formatted with %.16g (plus NA, Inf and -Inf)
and bytes with %02x. Strings are written using standard escapes (e.g. \t and \013) for
non-printing and non-ASCII bytes.

Version-3 serialization extends version-2 by support for custom serialization of ALTREP
framework objects. It also stores the current native encoding at serialization time, so
that unflagged strings can be converted if unserialized in R running under different native
encoding.

1.9 Encodings for CHARSXPs

Character data in R are stored in the sexptype CHARSXP.

There is support for encodings other than that of the current locale, in particular UTF-
8 and the multi-byte encodings used on Windows for CJK languages. A limited means
to indicate the encoding of a CHARSXP is via two of the ‘general purpose’ bits which are
used to declare the encoding to be either Latin-1 or UTF-8. (Note that it is possible for
a character vector to contain elements in different encodings.) Both printing and plotting
notice the declaration and convert the string to the current locale (possibly using <xx> to
display in hexadecimal bytes that are not valid in the current locale). Many (but not all) of
the character manipulation functions will either preserve the declaration or re-encode the
character string.

Strings that refer to the OS such as file names need to be passed through a wide-character
interface on some OSes (e.g. Windows).

When are character strings declared to be of known encoding? One way is to do so
directly via Encoding. The parser declares the encoding if this is known, either via the
encoding argument to parse or from the locale within which parsing is being done at the
R command line. (Other ways are recorded on the help page for Encoding.)

It is not necessary to declare the encoding of ASCII strings as they will work in any
locale. ASCII strings should never have a marked encoding, as any encoding will be ignored
when entering such strings into the CHARSXP cache.

The rationale behind considering only UTF-8 and Latin-1 was that most systems are
capable of producing UTF-8 strings and this is the nearest we have to a universal format.
For those that do not (for example those lacking a powerful enough iconv), it is likely that
they work in Latin-1, the old R assumption. Then the parser can return a UTF-8-encoded
string if it encounters a ‘\uxxxx’ escape for a Unicode point that cannot be represented in



Chapter 1: R Internal Structures 17

the current charset. (This needs MBCS support, and was only enabled9 on Windows.) This
is enabled for all platforms, and a ‘\uxxxx’ or ‘\Uxxxxxxxx’ escape ensures that the parsed
string will be marked as UTF-8.

Most of the character manipulation functions now preserve UTF-8 encodings:
there are some notes as to which at the top of file src/main/character.c and in file
src/library/base/man/Encoding.Rd.

Graphics devices are offered the possibility of handing UTF-8-encoded strings without
re-encoding to the native character set, by setting hasTextUTF8 to be ‘TRUE’ and supplying
functions textUTF8 and strWidthUTF8 that expect UTF-8-encoded inputs. Normally the
symbol font is encoded in Adobe Symbol encoding, but that can be re-encoded to UTF-8
by setting wantSymbolUTF8 to ‘TRUE’. The Windows’ port of cairographics has a rather
peculiar assumption: it wants the symbol font to be encoded in UTF-8 as if it were encoded
in Latin-1 rather than Adobe Symbol: this is selected by wantSymbolUTF8 = NA_LOGICAL.

Windows has no UTF-8 locales, but rather expects to work with UCS-210 strings. R
(being written in standard C) would not work internally with UCS-2 without extensive
changes. The Rgui console11 uses UCS-2 internally, but communicates with the R engine
in the native encoding. To allow UTF-8 strings to be printed in UTF-8 in Rgui.exe, an
escape convention is used (see header file rgui_UTF8.h) by cat, print and autoprinting.

‘Unicode’ (UCS-2LE) files are common in the Windows world, and readLines and scan

will read them into UTF-8 strings on Windows if the encoding is declared explicitly on an
unopened connection passed to those functions.

1.10 The CHARSXP cache

There is a global cache for CHARSXPs created by mkChar — the cache ensures that most
CHARSXPs with the same contents share storage (‘contents’ including any declared encoding).
Not all CHARSXPs are part of the cache – notably ‘NA_STRING’ is not. CHARSXPs reloaded
from the save formats of R prior to 0.99.0 are not cached (since the code used is frozen and
very few examples still exist).

The cache records the encoding of the string as well as the bytes: all requests to create
a CHARSXP should be via a call to mkCharLenCE. Any encoding given in mkCharLenCE call
will be ignored if the string’s bytes are all ASCII characters.

1.11 Warnings and errors

Each of warning and stop have two C-level equivalents, warning, warningcall, error and
errorcall. The relationship between the pairs is similar: warning tries to fathom out a
suitable call, and then calls warningcall with that call as the first argument if it succeeds,
and with call = R_NilValue if it does not. When warningcall is called, it includes the
deparsed call in its printout unless call = R_NilValue.

warning and error look at the context stack. If the topmost context is not of type
CTXT_BUILTIN, it is used to provide the call, otherwise the next context provides the call.

9 See define USE_UTF8_IF_POSSIBLE in file src/main/gram.c.
10 or UTF-16 if support for surrogates is enabled in the OS, which it used not to be when encoding support

was added to R.
11 but not the GraphApp toolkit.



Chapter 1: R Internal Structures 18

This means that when these functions are called from a primitive or .Internal, the imputed
call will not be to primitive/.Internal but to the function calling the primitive/.Internal
. This is exactly what one wants for a .Internal, as this will give the call to the closure
wrapper. (Further, for a .Internal, the call is the argument to .Internal, and so may not
correspond to any R function.) However, it is unlikely to be what is needed for a primitive.

The upshot is that that warningcall and errorcall should normally be used for code
called from a primitive, and warning and error should be used for code called from a
.Internal (and necessarily from .Call, .C and so on, where the call is not passed down).
However, there are two complications. One is that code might be called from either a
primitive or a .Internal, in which case probably warningcall is more appropriate. The
other involves replacement functions, where the call was once of the form

> length(x) <- y ~ x

Error in "length<-"(‘*tmp*‘, value = y ~ x) : invalid value

which is unpalatable to the end user. For replacement functions there will be a suitable
context at the top of the stack, so warning should be used. (The results for .Internal

replacement functions such as substr<- are not ideal.)

1.12 S4 objects

[This section is currently a preliminary draft and should not be taken as definitive. The
description assumes that R_NO_METHODS_TABLES has not been set.]

1.12.1 Representation of S4 objects

S4 objects can be of any SEXPTYPE. They are either an object of a simple type (such as an
atomic vector or function) with S4 class information or of type S4SXP. In all cases, the ‘S4
bit’ (bit 4 of the ‘general purpose’ field) is set, and can be tested by the macro/function
IS_S4_OBJECT.

S4 objects are created via new()12 and thence via the C function R_do_new_object.
This duplicates the prototype of the class, adds a class attribute and sets the S4 bit. All
S4 class attributes should be character vectors of length one with an attribute giving (as a
character string) the name of the package (or .GlobalEnv) containing the class definition.
Since S4 objects have a class attribute, the OBJECT bit is set.

It is currently unclear what should happen if the class attribute is removed from an S4
object, or if this should be allowed.

1.12.2 S4 classes

S4 classes are stored as R objects in the environment in which they are created, with names
.__C__classname: as such they are not listed by default by ls.

The objects are S4 objects of class "classRepresentation" which is defined in the
methods package.

Since these are just objects, they are subject to the normal scoping rules and
can be imported and exported from namespaces like other objects. The directives
importClassesFrom and exportClasses are merely convenient ways to refer to class

12 This can also create non-S4 objects, as in new("integer").



Chapter 1: R Internal Structures 19

objects without needing to know their internal ‘metaname’ (although exportClasses does
a little sanity checking via isClass).

1.12.3 S4 methods

Details of the methods are stored in environments (typically hidden in the respective name-
space) with a non-syntactic name of the form .__T__generic:package containing objects
of class MethodDefinition for all methods defined in the current environment for the named
generic derived from a specific package (which might be .GlobalEnv). This is sometimes
referred to as a ‘methods table’.

For example,

length(nM <- asNamespace("Matrix") ) # 941 for Matrix 1.2-6

length(meth <- grep("^[.]__T__", names(nM), value=TRUE))# 107 generics with methods

length(meth.Ops <- nM$‘.__T__Ops:base‘) # 71 methods for the ’Ops’ (group)generic

head(sort(names(meth.Ops))) ## "abIndex#abIndex" ... "ANY#ddiMatrix" "ANY#ldiMatrix" "ANY#Matrix"

During an R session there is an environment associated with each non-primitive generic
containing objects .AllMTable, .Generic, .Methods, .MTable, .SigArgs and .SigLength.
.MTable and AllMTable are merged methods tables containing all the methods defined
directly and via inheritance respectively. .Methods is a merged methods list.

Exporting methods from a namespace is more complicated than exporting a class. Note
first that you do not export a method, but rather the directive exportMethods will export all
the methods defined in the namespace for a specified generic: the code also adds to the list
of generics any that are exported directly. For generics which are listed via exportMethods

or exported themselves, the corresponding environment is exported and so will appear (as
hidden object) in the package environment.

Methods for primitives which are internally S4 generic (see below) are always exported,
whether mentioned in the NAMESPACE file or not.

Methods can be imported either via the directive importMethodsFrom or via import-
ing a namespace by import. Also, if a generic is imported via importFrom, its methods
are also imported. In all cases the generic will be imported if it is in the namespace, so
importMethodsFrom is most appropriate for methods defined on generics in other packages.
Since methods for a generic could be imported from several different packages, the methods
tables are merged.

When a package is attached methods:::cacheMetaData is called to update the internal
tables: only the visible methods will be cached.

1.12.4 Mechanics of S4 dispatch

This subsection does not discuss how S4 methods are chosen: see https://developer.

r-project.org/howMethodsWork.pdf.

For all but primitive functions, setting a method on an existing function that is
not itself S4 generic creates a new object in the current environment which is a call to
standardGeneric with the old definition as the default method. Such S4 generics can
also be created via a call to setGeneric13 and are standard closures in the R language,
with environment the environment within which they are created. With the advent of

13 although this is not recommended as it is less future-proof.

https://developer.r-project.org/howMethodsWork.pdf
https://developer.r-project.org/howMethodsWork.pdf


Chapter 1: R Internal Structures 20

namespaces this is somewhat problematic: if myfn was previously in a package with a
name space there will be two functions called myfn on the search paths, and which will be
called depends on which search path is in use. This is starkest for functions in the base
namespace, where the original will be found ahead of the newly created function from any
other package.

Primitive functions are treated quite differently, for efficiency reasons: this results in
different semantics. setGeneric is disallowed for primitive functions. The methods name-
space contains a list .BasicFunsList named by primitive functions: the entries are either
FALSE or a standard S4 generic showing the effective definition. When setMethod (or
setReplaceMethod) is called, it either fails (if the list entry is FALSE) or a method is set on
the effective generic given in the list.

Actual dispatch of S4 methods for almost all primitives piggy-backs on the S3 dispatch
mechanism, so S4 methods can only be dispatched for primitives which are internally S3
generic. When a primitive that is internally S3 generic is called with a first argument
which is an S4 object and S4 dispatch is on (that is, the methods namespace is loaded),
DispatchOrEval calls R_possible_dispatch (defined in file src/main/objects.c).
(Members of the S3 group generics, which includes all the generic operators, are treated
slightly differently: the first two arguments are checked and DispatchGroup is called.)
R_possible_dispatch first checks an internal table to see if any S4 methods are set for
that generic (and S4 dispatch is currently enabled for that generic), and if so proceeds to
S4 dispatch using methods stored in another internal table. All primitives are in the base
namespace, and this mechanism means that S4 methods can be set for (some) primitives
and will always be used, in contrast to setting methods on non-primitives.

The exception is %*%, which is S4 generic but not S3 generic as its C code contains a
direct call to R_possible_dispatch.

The primitive as.double is special, as as.numeric and as.real are copies of it. The
methods package code partly refers to generics by name and partly by function, and maps
as.double and as.real to as.numeric (since that is the name used by packages exporting
methods for it).

Some elements of the language are implemented as primitives, for example }. This in-
cludes the subset and subassignment ‘functions’ and they are S4 generic, again piggybacking
on S3 dispatch.

.BasicFunsList is generated whenmethods is installed, by computing all primitives, ini-
tially disallowing methods on all and then setting generics for members of .GenericArgsEnv,
the S4 group generics and a short exceptions list in file BasicFunsList.R: this currently
contains the subsetting and subassignment operators and an override for c.

1.13 Memory allocators

R’s memory allocation is almost all done via routines in file src/main/memory.c. It is
important to keep track of where memory is allocated, as the Windows port (by default)
makes use of a memory allocator that differs from malloc etc as provided by MinGW.
Specifically, there are entry points Rm_malloc, Rm_free, Rm_calloc and Rm_free provided
by file src/gnuwin32/malloc.c. This was done for two reasons. The primary motivation
was performance: the allocator provided by MSVCRT via MinGW was far too slow at
handling the many small allocations that the allocation system for SEXPRECs uses. As



Chapter 1: R Internal Structures 21

a side benefit, we can set a limit on the amount of allocated memory: this is useful as
whereas Windows does provide virtual memory it is relatively far slower than many other R
platforms and so limiting R’s use of swapping is highly advantageous. The high-performance
allocator is only called from src/main/memory.c, src/main/regex.c, src/extra/pcre and
src/extra/xdr: note that this means that it is not used in packages.

The rest of R should where possible make use of the allocators made available by file
src/main/memory.c, which are also the methods recommended in Section “Memory allo-
cation” in Writing R Extensions for use in R packages, namely the use of R_alloc, Calloc,
Realloc and Free. Memory allocated by R_alloc is freed by the garbage collector once the
‘watermark’ has been reset by calling vmaxset. This is done automatically by the wrapper
code calling primitives and .Internal functions (and also by the wrapper code to .Call

and .External), but vmaxget and vmaxset can be used to reset the watermark from within
internal code if the memory is only required for a short time.

All of the methods of memory allocation mentioned so far are relatively expensive. All
R platforms support alloca, and in almost all cases14 this is managed by the compiler,
allocates memory on the C stack and is very efficient.

There are two disadvantages in using alloca. First, it is fragile and care is needed to
avoid writing (or even reading) outside the bounds of the allocation block returned. Second,
it increases the danger of overflowing the C stack. It is suggested that it is only used for
smallish allocations (up to tens of thousands of bytes), and that

R_CheckStack();

is called immediately after the allocation (as R’s stack checking mechanism will warn far
enough from the stack limit to allow for modest use of alloca). (do_makeunique in file
src/main/unique.c provides an example of both points.)

There is an alternative check,

R_CheckStack2(size_t extra);

to be called immediately before trying an allocation of extra bytes.

An alternative strategy has been used for various functions which require intermediate
blocks of storage of varying but usually small size, and this has been consolidated into the
routines in the header file src/main/RBufferUtils.h. This uses a structure which contains
a buffer, the current size and the default size. A call to

R_AllocStringBuffer(size_t blen, R_StringBuffer *buf);

sets buf->data to a memory area of at least blen+1 bytes. At least the default size is
used, which means that for small allocations the same buffer can be reused. A call to R_

FreeStringBufferL releases memory if more than the default has been allocated whereas
a call to R_FreeStringBuffer frees any memory allocated.

The R_StringBuffer structure needs to be initialized, for example by

static R_StringBuffer ex_buff = {NULL, 0, MAXELTSIZE};

which uses a default size of MAXELTSIZE = 8192 bytes. Most current uses have a static
R_StringBuffer structure, which allows the (default-sized) buffer to be shared between

14 but apparently not on Windows.



Chapter 1: R Internal Structures 22

calls to e.g. grep and even between functions: this will need to be changed if R ever allows
concurrent evaluation threads. So the idiom is

static R_StringBuffer ex_buff = {NULL, 0, MAXELTSIZE};

...

char *buf;

for(i = 0; i < n; i++) {

compute len

buf = R_AllocStringBuffer(len, &ex_buff);

use buf

}

/* free allocation if larger than the default, but leave

default allocated for future use */

R_FreeStringBufferL(&ex_buff);

1.13.1 Internals of R alloc

The memory used by R_alloc is allocated as R vectors, of type RAWSXP. Thus the allocation
is in units of 8 bytes, and is rounded up. A request for zero bytes currently returns NULL
(but this should not be relied on). For historical reasons, in all other cases 1 byte is added
before rounding up so the allocation is always 1–8 bytes more than was asked for: again
this should not be relied on.

The vectors allocated are protected via the setting of R_VStack, as the garbage collector
marks everything that can be reached from that location. When a vector is R_allocated, its
ATTRIB pointer is set to the current R_VStack, and R_VStack is set to the latest allocation.
Thus R_VStack is a single-linked chain of the vectors currently allocated via R_alloc.
Function vmaxset resets the location R_VStack, and should be to a value that has previously
be obtained via vmaxget: allocations after the value was obtained will no longer be protected
and hence available for garbage collection.

1.14 Internal use of global and base environments

This section notes known use by the system of these environments: the intention is to
minimize or eliminate such uses.

1.14.1 Base environment

The graphics devices system maintains two variables .Device and .Devices in the base
environment: both are always set. The variable .Devices gives a list of character vectors
of the names of open devices, and .Device is the element corresponding to the currently
active device. The null device will always be open.

There appears to be a variable .Options, a pairlist giving the current options settings.
But in fact this is just a symbol with a value assigned, and so shows up as a base variable.

Similarly, the evaluator creates a symbol .Last.value which appears as a variable in
the base environment.

Errors can give rise to objects .Traceback and last.warning in the base environment.



Chapter 1: R Internal Structures 23

1.14.2 Global environment

The seed for the random number generator is stored in object .Random.seed in the global
environment.

Some error handlers may give rise to objects in the global environment: for example
dump.frames by default produces last.dump.

The windows() device makes use of a variable .SavedPlots to store display lists of saved
plots for later display. This is regarded as a variable created by the user.

1.15 Modules

R makes use of a number of shared objects/DLLs stored in the modules directory. These
are parts of the code which have been chosen to be loaded ‘on demand’ rather than linked
as dynamic libraries or incorporated into the main executable/dynamic library.

For the remaining modules the motivation has been the amount of (often optional) code
they will bring in via libraries to which they are linked.

internet The internal HTTP and FTP clients and socket support, which link to system-
specific support libraries. This may load libcurl and on Windows will load
wininet.dll and ws2_32.dll.

lapack The code which makes use of the LAPACK library, and is linked to libRlapack
or an external LAPACK library.

X11 (Unix-alikes only.) The X11(), jpeg(), png() and tiff() devices. These are
optional, and links to some or all of the X11, pango, cairo, jpeg, libpng and
libtiff libraries.

1.16 Visibility

1.16.1 Hiding C entry points

We make use of the visibility mechanisms discussed in Section “Controlling visibility” in
Writing R Extensions, C entry points not needed outside the main R executable/dynamic
library (and in particular in no package nor module) should be prefixed by attribute_

hidden. Minimizing the visibility of symbols in the R dynamic library will speed up linking
to it (which packages will do) and reduce the possibility of linking to the wrong entry
points of the same name. In addition, on some platforms reducing the number of entry
points allows more efficient versions of PIC to be used: somewhat over half the entry points
are hidden. A convenient way to hide variables (as distinct from functions) is to declare
them extern0 in header file Defn.h.

The visibility mechanism used is only available with some compilers and platforms, and
in particular not on Windows, where an alternative mechanism is used. Entry points will
not be made available in R.dll if they are listed in the file src/gnuwin32/Rdll.hide.
Entries in that file start with a space and must be strictly in alphabetic order in the C
locale (use sort on the file to ensure this if you change it). It is possible to hide Fortran
as well as C entry points via this file: the former are lower-cased and have an underline as
suffix, and the suffixed name should be included in the file. Some entry points exist only



Chapter 1: R Internal Structures 24

on Windows or need to be visible only on Windows, and some notes on these are provided
in file src/gnuwin32/Maintainters.notes.

Because of the advantages of reducing the number of visible entry points, they should be
declared attribute_hidden where possible. Note that this only has an effect on a shared-
R-library build, and so care is needed not to hide entry points that are legitimately used
by packages. So it is best if the decision on visibility is made when a new entry point is
created, including the decision if it should be included in header file Rinternals.h. A list
of the visible entry points on shared-R-library build on a reasonably standard Unix-alike
can be made by something like

nm -g libR.so | grep ’ [BCDT] ’ | cut -b20-

1.16.2 Variables in Windows DLLs

Windows is unique in that it conventionally treats importing variables differently from
functions: variables that are imported from a DLL need to be specified by a prefix (often
‘_imp_’) when being linked to (‘imported’) but not when being linked from (‘exported’).
The details depend on the compiler system, and have changed for MinGW during the
lifetime of that port. They are in the main hidden behind some macros defined in header
file R_ext/libextern.h.

A (non-function) variable in the main R sources that needs to be referred to outside
R.dll (in a package, module or another DLL such as Rgraphapp.dll) should be declared
with prefix LibExtern. The main use is in Rinternals.h, but it needs to be considered for
any public header and also Defn.h.

It would nowadays be possible to make use of the ‘auto-import’ feature of the MinGW
port of ld to fix up imports from DLLs (and if R is built for the Cygwin platform this is what
happens). However, this was not possible when the MinGW build of R was first constructed
in ca 1998, allows less control of visibility and would not work for other Windows compiler
suites.

It is only possible to check if this has been handled correctly by compiling the R sources
on Windows.

1.17 Lazy loading

Lazy loading is always used for code in packages but is optional (selected by the package
maintainer) for datasets in packages. When a package/namespace which uses it is loaded,
the package/namespace environment is populated with promises for all the named objects:
when these promises are evaluated they load the actual code from a database.

There are separate databases for code and data, stored in the R and data subdirectories.
The database consists of two files, name.rdb and name.rdx. The .rdb file is a concatenation
of serialized objects, and the .rdx file contains an index. The objects are stored in (usually)
a gzip-compressed format with a 4-byte header giving the uncompressed serialized length (in
XDR, that is big-endian, byte order) and read by a call to the primitive lazyLoadDBfetch.
(Note that this makes lazy-loading unsuitable for really large objects: the unserialized length
of an R object can exceed 4GB.)

The index or ‘map’ file name.rdx is a compressed serialized R object to be read by
readRDS. It is a list with three elements variables, references and compressed. The



Chapter 1: R Internal Structures 25

first two are named lists of integer vectors of length 2 giving the offset and length of the
serialized object in the name.rdb file. Element variables has an entry for each named
object: references serializes a temporary environment used when named environments
are added to the database. compressed is a logical indicating if the serialized objects were
compressed: compression is always used nowadays. We later added the values compressed
= 2 and 3 for bzip2 and xz compression (with the possibility of future expansion to other
methods): these formats add a fifth byte to the header for the type of compression, and
store serialized objects uncompressed if compression expands them.

Source references are treated specially for performance reasons: bindings lines and
parseData from srcfile environments are loaded lazily. This uses a mechanism that
allows loading selected bindings from an environment lazily. The key for such environment
is a list with two elements: eagerKey gives the length-two integer key for the bindings
loaded eagerly and lazyKeys gives a vector of length-two integer keys, one for each lazily
loaded binding.

The loader for a lazy-load database of code or data is function lazyLoad in the base pack-
age, but note that there is a separate copy to load base itself in file R_HOME/base/R/base.

Lazy-load databases are created by the code in src/library/tools/R/makeLazyLoad.R:
the main tool is the unexported function makeLazyLoadDB and the insertion of database
entries is done by calls to .Call("R_lazyLoadDBinsertValue", ...).

Lazy-load databases of less than 10MB are cached in memory at first use: this was
found necessary when using file systems with high latency (removable devices and network-
mounted file systems on Windows).

Lazy-load databases are loaded into the exports for a package, but not into the namespace
environment itself. Thus they are visible when the package is attached, and also via the ::
operator. This was a deliberate design decision, as packages mostly make datasets available
for use by the end user (or other packages), and they should not be found preferentially
from functions in the package, surprising users who expected the normal search path to
be used. (There is an alternative mechanism, sysdata.rda, for ‘system datasets’ that are
intended primarily to be used within the package.)

The same database mechanism is used to store parsed Rd files. One or all of the parsed
objects is fetched by a call to tools:::fetchRdDB.



26

2 .Internal vs .Primitive

C code compiled into R at build time can be called directly in what are termed primitives
or via the .Internal interface, which is very similar to the .External interface except
in syntax. More precisely, R maintains a table of R function names and corresponding C
functions to call, which by convention all start with ‘do_’ and return a SEXP. This table
(R_FunTab in file src/main/names.c) also specifies how many arguments to a function are
required or allowed, whether or not the arguments are to be evaluated before calling, and
whether the function is ‘internal’ in the sense that it must be accessed via the .Internal

interface, or directly accessible in which case it is printed in R as .Primitive.

Functions using .Internal() wrapped in a closure are in general preferred as this ensures
standard handling of named and default arguments. For example, grep is defined as

grep <-

function (pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,

fixed = FALSE, useBytes = FALSE, invert = FALSE)

{

if (!is.character(x)) x <- structure(as.character(x), names = names(x))

.Internal(grep(as.character(pattern), x, ignore.case, value,

perl, fixed, useBytes, invert))

}

and the use of as.character allows methods to be dispatched (for example, for factors).

However, for reasons of convenience and also efficiency (as there is some overhead in
using the .Internal interface wrapped in a function closure), the primitive functions are
exceptions that can be accessed directly. And of course, primitive functions are needed for
basic operations—for example .Internal is itself a primitive. Note that primitive functions
make no use of R code, and hence are very different from the usual interpreted functions.
In particular, formals and body return NULL for such objects, and argument matching
can be handled differently. For some primitives (including call, switch, .C and .subset)
positional matching is important to avoid partial matching of the first argument.

The list of primitive functions is subject to change; currently, it includes the following.

1. “Special functions” which really are language elements, but implemented as primitive
functions:

{ ( if for while repeat break next

return function quote switch

2. Language elements and basic operators (i.e., functions usually not called as foo(a, b,

...)) for subsetting, assignment, arithmetic, comparison and logic:

[ [[ $ @

<- <<- = [<- [[<- $<- @<-

+ - * / ^ %% %*% %/%

< <= == != >= >

| || & && !

When the arithmetic, comparison and logical operators are called as functions, any
argument names are discarded so positional matching is used.



Chapter 2: .Internal vs .Primitive 27

3. “Low level” 0– and 1–argument functions which belong to one of the following groups
of functions:

a. Basic mathematical functions with a single argument, i.e.,

abs sign sqrt

floor ceiling

exp expm1

log2 log10 log1p

cos sin tan

acos asin atan

cosh sinh tanh

acosh asinh atanh

cospi sinpi tanpi

gamma lgamma digamma trigamma

cumsum cumprod cummax cummin

Im Re Arg Conj Mod

log is a primitive function of one or two arguments with named argument match-
ing.

trunc is a difficult case: it is a primitive that can have one or more arguments:
the default method handled in the primitive has only one.

b. Functions rarely used outside of “programming” (i.e., mostly used inside other
functions), such as

nargs missing on.exit interactive

as.call as.character as.complex as.double

as.environment as.integer as.logical as.raw

is.array is.atomic is.call is.character

is.complex is.double is.environment is.expression

is.finite is.function is.infinite is.integer

is.language is.list is.logical is.matrix

is.na is.name is.nan is.null

is.numeric is.object is.pairlist is.raw

is.real is.recursive is.single is.symbol

baseenv emptyenv globalenv pos.to.env

unclass invisible seq_along seq_len

c. The programming and session management utilities

browser proc.time gc.time tracemem retracemem untracemem

4. The following basic replacement and extractor functions



Chapter 2: .Internal vs .Primitive 28

length length<-

class class<-

oldClass oldClass<-

attr attr<-

attributes attributes<-

names names<-

dim dim<-

dimnames dimnames<-

environment<-

levels<-

storage.mode<-

Note that optimizing NAMED = 1 is only effective within a primitive (as the closure
wrapper of a .Internal will set NAMED = NAMEDMAX when the promise to the argument
is evaluated) and hence replacement functions should where possible be primitive to
avoid copying (at least in their default methods). [The NAMED mechanism has been
replaced by reference counting.]

5. The following functions are primitive for efficiency reasons:

: ~ c list

call expression substitute

UseMethod standardGeneric

.C .Fortran .Call .External

round signif rep seq.int

as well as the following internal-use-only functions

.Primitive .Internal

.Call.graphics .External.graphics

.subset .subset2

.primTrace .primUntrace

lazyLoadDBfetch

The multi-argument primitives

call switch

.C .Fortran .Call .External

intentionally use positional matching, and need to do so to avoid partial matching to their
first argument. They do check that the first argument is unnamed or for the first two,
partially matches the formal argument name. On the other hand,

attr attr<- browser rememtrace substitute UseMethod

log round signif rep seq.int

manage their own argument matching and do work in the standard way.

All the one-argument primitives check that if they are called with a named argument
that this (partially) matches the name given in the documentation: this is also done for
replacement functions with one argument plus value.

The net effect is that argument matching for primitives intended for end-user use as
functions is done in the same way as for interpreted functions except for the six exceptions
where positional matching is required.



Chapter 2: .Internal vs .Primitive 29

2.1 Special primitives

A small number of primitives are specials rather than builtins, that is they are entered
with unevaluated arguments. This is clearly necessary for the language constructs and the
assignment operators, as well as for && and || which conditionally evaluate their second
argument, and ~, .Internal, call, expression, missing, on.exit, quote and substitute

which do not evaluate some of their arguments.

rep and seq.int are special as they evaluate some of their arguments conditional on
which are non-missing.

log, round and signif are special to allow default values to be given to missing argu-
ments.

The subsetting, subassignment and @ operators are all special. (For both extraction and
replacement forms, $ and @ take a symbol argument, and [ and [[ allow missing arguments.)

UseMethod is special to avoid the additional contexts added to calls to builtins.

2.2 Special internals

There are also special .Internal functions: NextMethod, Recall, withVisible, cbind,
rbind (to allow for the deparse.level argument), eapply, lapply and vapply.

2.3 Prototypes for primitives

Prototypes are available for the primitive functions and operators, and these are used for
printing, args and package checking (e.g. by tools::checkS3methods and by package
codetools (https://CRAN.R-project.org/package=codetools)). There are two environ-
ments in the base package (and namespace), ‘.GenericArgsEnv’ for those primitives which
are internal S3 generics, and ‘.ArgsEnv’ for the rest. Those environments contain closures
with the same names as the primitives, formal arguments derived (manually) from the help
pages, a body which is a suitable call to UseMethod or NULL and environment the base
namespace.

The C code for print.default and args uses the closures in these environments in
preference to the definitions in base (as primitives).

The QC function undoc checks that all the functions prototyped in these environments
are currently primitive, and that the primitives not included are better thought of as lan-
guage elements (at the time of writing

$ $<- && ( : @ @<- [ [[ [[<- [<- { || ~ <- <<- =

break for function if next repeat return while

). One could argue about ~, but it is known to the parser and has semantics quite unlike a
normal function. And : is documented with different argument names in its two meanings.

The QC functions codoc and checkS3methods also make use of these environments
(effectively placing them in front of base in the search path), and hence the formals of the
functions they contain are checked against the help pages by codoc. However, there are two
problems with the generic primitives. The first is that many of the operators are part of the
S3 group generic Ops and that defines their arguments to be e1 and e2: although it would be
very unusual, an operator could be called as e.g. "+"(e1=a, e2=b) and if method dispatch
occurred to a closure, there would be an argument name mismatch. So the definitions in

https://CRAN.R-project.org/package=codetools


Chapter 2: .Internal vs .Primitive 30

environment .GenericArgsEnv have to use argument names e1 and e2 even though the
traditional documentation is in terms of x and y: codoc makes the appropriate adjustment
via tools:::.make_S3_primitive_generic_env. The second discrepancy is with the Math
group generics, where the group generic is defined with argument list (x, ...), but most
of the members only allow one argument when used as the default method (and round and
signif allow two as default methods): again fix-ups are used.

Those primitives which are in .GenericArgsEnv are checked (via tests/primitives.R)
to be generic via defining methods for them, and a check is made that the remaining
primitives are probably not generic, by setting a method and checking it is not dispatched
to (but this can fail for other reasons). However, there is no certain way to know that
if other .Internal or primitive functions are not internally generic except by reading the
source code.

2.4 Adding a primitive

[For R-core use: reverse this procedure to remove a primitive. Most commonly this is done
by changing a .Internal to a primitive or vice versa.]

Primitives are listed in the table R_FunTab in src/main/names.c: primitives have ‘Y =

0’ in the ‘eval’ field.

There needs to be an ‘\alias’ entry in a help file in the base package, and the primitive
needs to be added to one of the lists at the start of this section.

Some primitives are regarded as language elements (the current ones are listed
above). These need to be added to two lists of exceptions, langElts in undoc() (in file
src/library/tools/R/QC.R) and lang_elements in tests/primitives.R.

All other primitives are regarded as functions and should be listed in one of the en-
vironments defined in src/library/base/R/zzz.R, either .ArgsEnv or .GenericArgsEnv:
internal generics also need to be listed in the character vector .S3PrimitiveGenerics. Note
too the discussion about argument matching above: if you add a primitive function with
more than one argument by converting a .Internal you need to add argument matching
to the C code, and for those with a single argument, add argument-name checking.

Do ensure that make check-devel has been run: that tests most of these requirements.



31

3 Internationalization in the R sources

The process of marking messages (errors, warnings etc) for translation in an R package is
described in Section “Internationalization” in Writing R Extensions, and the standard pack-
ages included with R have (with an exception in grDevices for the menus of the windows()
device) been internationalized in the same way as other packages.

3.1 R code

Internationalization for R code is done in exactly the same way as for extension packages.
As all standard packages which have R code also have a namespace, it is never necessary
to specify domain, but for efficiency calls to message, warning and stop should include
domain = NA when the message is constructed via gettextf, gettext or ngettext.

For each package, the extracted messages and translation sources are stored under pack-
age directory po in the source package, and compiled translations under inst/po for in-
stallation to package directory po in the installed package. This also applies to C code in
packages.

3.2 Main C code

The main C code (e.g. that in files src/*/*.c and in the modules) is where R is closest
to the sort of application for which ‘gettext’ was written. Messages in the main C code
are in domain R and stored in the top-level directory po with compiled translations under
share/locale.

The list of files covered by the R domain is specified in file po/POTFILES.in.

The normal way to mark messages for translation is via _("msg") just as for packages.
However, sometimes one needs to mark passages for translation without wanting them
translated at the time, for example when declaring string constants. This is the purpose of
the N_ macro, for example

{ ERROR_ARGTYPE, N_("invalid argument type")},

from file src/main/errors.c.

The P_ macro

#ifdef ENABLE_NLS

#define P_(StringS, StringP, N) ngettext (StringS, StringP, N)

#else

#define P_(StringS, StringP, N) (N > 1 ? StringP: StringS)

#endif

may be used as a wrapper for ngettext: however in some cases the preferred approach has
been to conditionalize (on ENABLE_NLS) code using ngettext.

The macro _("msg") can safely be used in directory src/appl; the header for standalone
‘nmath’ skips possible translation. (This does not apply to N_ or P_).



Chapter 3: Internationalization in the R sources 32

3.3 Windows-GUI-specific code

Messages for the Windows GUI are in a separate domain ‘RGui’. This was done for two
reasons:

• The translators for the Windows version of R might be separate from those for the rest
of R (familiarity with the GUI helps), and

• Messages for Windows are most naturally handled in the native charset for the lan-
guage, and in the case of CJK languages the charset is Windows-specific. (It transpires
that as the iconv we ported works well under Windows, this is less important than
anticipated.)

Messages for the ‘RGui’ domain are marked by G_("msg"), a macro that is defined
in header file src/gnuwin32/win-nls.h. The list of files that are considered is hard-
coded in the RGui.pot-update target of file po/Makefile.in.in: note that this includes
devWindows.c as the menus on the windows device are considered to be part of the GUI.
(There is also GN_("msg"), the analogue of N_("msg").)

The template and message catalogs for the ‘RGui’ domain are in the top-level po directory.

3.4 macOS GUI

This is handled separately: see https://developer.r-project.org/Translations30.

html.

3.5 Updating

See file po/README for how to update the message templates and catalogs.

https://developer.r-project.org/Translations30.html
https://developer.r-project.org/Translations30.html


33

4 Structure of an Installed Package

The structure of a source packages is described in Section “Creating R packages” in Writing
R Extensions: this chapter is concerned with the structure of installed packages.

An installed package has a top-level file DESCRIPTION, a copy of the file of that name
in the package sources with a ‘Built’ field appended, and file INDEX, usually describing
the objects on which help is available, a file NAMESPACE if the package has a name space,
optional files such as CITATION, LICENCE and NEWS, and any other files copied in from inst.
It will have directories Meta, help and html (even if the package has no help pages), almost
always has a directory R and often has a directory libs to contain compiled code. Other
directories with known meaning to R are data, demo, doc and po.

Function library looks for a namespace and if one is found passes control to
loadNamespace. Then library or loadNamespace looks for file R/pkgname, warns if
it is not found and otherwise sources the code (using sys.source) into the package’s
environment, then lazy-loads a database R/sysdata if present. So how R code gets loaded
depends on the contents of R/pkgname: a standard template to load lazy-load databases
are provided in share/R/nspackloader.R.

Compiled code is usually loaded when the package’s namespace is loaded by a useDynlib
directive in a NAMESPACE file or by the package’s .onLoad function. Conventionally compiled
code is loaded by a call to library.dynam and this looks in directory libs (and in an
appropriate sub-directory if sub-architectures are in use) for a shared object (Unix-alike)
or DLL (Windows).

Subdirectory data serves two purposes. In a package using lazy-loading of data, it
contains a lazy-load database Rdata, plus a file Rdata.rds which contain a named character
vector used by data() in the (unusual) event that it is used for such a package. Otherwise
it is a copy of the data directory in the sources, with saved images re-compressed if R CMD

INSTALL --resave-data was used.

Subdirectory demo supports the demo function, and is copied from the sources.

Subdirectory po contains (in subdirectories) compiled message catalogs.

4.1 Metadata

Directory Meta contains several files in .rds format, that is serialized R objects written
by saveRDS. All packages have files Rd.rds, hsearch.rds, links.rds, features.rds, and
package.rds. Packages with namespaces have a file nsInfo.rds, and those with data,
demos or vignettes have data.rds, demo.rds or vignette.rds files.

The structure of these files (and their existence and names) is private to R, so the
description here is for those trying to follow the R sources: there should be no reference to
these files in non-base packages.

File package.rds is a dump of information extracted from the DESCRIPTION file. It is a
list of several components. The first, ‘DESCRIPTION’, is a character vector, the DESCRIPTION
file as read by read.dcf. Further elements ‘Depends’, ‘Suggests’, ‘Imports’, ‘Rdepends’
and ‘Rdepends2’ record the ‘Depends’, ‘Suggests’ and ‘Imports’ fields. These are all lists,
and can be empty. The first three have an entry for each package named, each entry being
a list of length 1 or 3, which element ‘name’ (the package name) and optional elements



Chapter 4: Structure of an Installed Package 34

‘op’ (a character string) and ‘version’ (an object of class ‘"package_version"’). Element
‘Rdepends’ is used for the first version dependency on R, and ‘Rdepends2’ is a list of zero
or more R version dependencies—each is a three-element list of the form described for
packages. Element ‘Rdepends’ is no longer used, but it is still potentially needed so R <

2.7.0 can detect that the package was not installed for it.

File nsInfo.rds records a list, a parsed version of the NAMESPACE file.

File Rd.rds records a data frame with one row for each help file. The columns are
‘File’ (the file name with extension), ‘Name’ (the ‘\name’ section), ‘Type’ (from the op-
tional ‘\docType’ section), ‘Title’, ‘Encoding’, ‘Aliases’, ‘Concepts’ and ‘Keywords’. All
columns are character vectors apart from ‘Aliases’, which is a list of character vectors.

File hsearch.rds records the information to be used by ‘help.search’. This is a list
of four unnamed elements which are character matrices for help files, aliases, keywords and
concepts. All the matrices have columns ‘ID’ and ‘Package’ which are used to tie the aliases,
keywords and concepts (the remaining column of the last three elements) to a particular
help file. The first element has further columns ‘LibPath’ (stored as "" and filled in what
the file is loaded), ‘name’, ‘title’, ‘topic’ (the first alias, used when presenting the results
as ‘pkgname::topic’) and ‘Encoding’.

File links.rds records a named character vector, the names being aliases and the values
character strings of the form

"../../pkgname/html/filename.html"

File data.rds records a two-column character matrix with columns of dataset names and
titles from the corresponding help file. File demo.rds has the same structure for package
demos.

File vignette.rds records a data frame with one row for each ‘vignette’ (.[RS]nw file
in inst/doc) and with columns ‘File’ (the full file path in the sources), ‘Title’, ‘PDF’ (the
pathless file name of the installed PDF version, if present), ‘Depends’, ‘Keywords’ and ‘R’
(the pathless file name of the installed R code, if present).

4.2 Help

All installed packages, whether they had any .Rd files or not, have help and html directories.
The latter normally only contains the single file 00Index.html, the package index which
has hyperlinks to the help topics (if any).

Directory help contains files AnIndex, paths.rds and pkgname.rd[bx]. The latter two
files are a lazy-load database of parsed .Rd files, accessed by tools:::fetchRdDB. File
paths.rds is a saved character vector of the original path names of the .Rd files, used when
updating the database.

File AnIndex is a two-column tab-delimited file: the first column contains the aliases
defined in the help files and the second the basename (without the .Rd or .rd extension)
of the file containing that alias. It is read by utils:::index.search to search for files
matching a topic (alias), and read by scan in utils:::matchAvailableTopics, part of the
completion system.

File aliases.rds is the same information as AnIndex as a named character vector
(names the topics, values the file basename), for faster access.



35

5 Files

R provides many functions to work with files and directories: many of these have been
added relatively recently to facilitate scripting in R and in particular the replacement of
Perl scripts by R scripts in the management of R itself.

These functions are implemented by standard C/POSIX library calls, except on Win-
dows. That means that filenames must be encoded in the current locale as the OS provides
no other means to access the file system: increasingly filenames are stored in UTF-8 and
the OS will translate filenames to UTF-8 in other locales. So using a UTF-8 locale gives
transparent access to the whole file system.

Windows is another story. There the internal view of filenames is in UTF-16LE (so-called
‘Unicode’), and standard C library calls can only access files whose names can be expressed
in the current codepage. To circumvent that restriction, there is a parallel set of Windows-
specific calls which take wide-character arguments for filepaths. Much of the file-handling
in R has been moved over to using these functions, so filenames can be manipulated in R
as UTF-8 encoded character strings, converted to wide characters (which on Windows are
UTF-16LE) and passed to the OS. The utilities RC_fopen and filenameToWchar help this
process. Currently file.copy to a directory, list.files, list.dirs and path.expand

work only with filepaths encoded in the current codepage.

All these functions do tilde expansion, in the same way as path.expand, with the delib-
erate exception of Sys.glob.

File names may be case sensitive or not: the latter is the norm on Windows and macOS,
the former on other Unix-alikes. Note that this is a property of both the OS and the file
system: it is often possible to map names to upper or lower case when mounting the file
system. This can affect the matching of patterns in list.files and Sys.glob.

File names commonly contain spaces on Windows and macOS but not elsewhere. As file
names are handled as character strings by R, spaces are not usually a concern unless file
names are passed to other process, e.g. by a system call.

Windows has another couple of peculiarities. Whereas a POSIX file system has a single
root directory (and other physical file systems are mounted onto logical directories under
that root), Windows has separate roots for each physical or logical file system (‘volume’),
organized under drives (with file paths starting D: for an ASCII letter, case-insensitively)
and network shares (with paths like \netname\topdir\myfiles\a file). There is a current
drive, and path names without a drive part are relative to the current drive. Further, each
drive has a current directory, and relative paths are relative to that current directory, on a
particular drive if one is specified. So D:dir\file and D: are valid path specifications (the
last being the current directory on drive D:).



36

6 Graphics

R’s graphics internals were re-designed to enable multiple graphics systems to be installed
on top on the graphics ‘engine’ – currently there are two such systems, one supporting
‘base’ graphics (based on that in S and whose R code1 is in package graphics) and one
implemented in package grid.

Some notes on the historical changes can be found at https://www.stat.auckland.

ac.nz/~paul/R/basegraph.html and https://www.stat.auckland.ac.nz/~paul/R/

graphicsChanges.html.

At the lowest level is a graphics device, which manages a plotting surface (a screen
window or a representation to be written to a file). This implements a set of graphics
primitives, to ‘draw’

• a circle, optionally filled

• a rectangle, optionally filled

• a line

• a set of connected lines

• a polygon, optionally filled

• a paths, optionally filled using a winding rule

• text

• a raster image (optional)

• and to set a clipping rectangle

as well as requests for information such as

• the width of a string if plotted

• the metrics (width, ascent, descent) of a single character

• the current size of the plotting surface

and requests/opportunities to take action such as

• start a new ‘page’, possibly after responding to a request to ask the user for confirma-
tion.

• return the position of the device pointer (if any).

• when a device become the current device or stops being the current device (this is
usually used to change the window title on a screen device).

• when drawing starts or finishes (e.g. used to flush graphics to the screen when drawing
stops).

• wait for an event, for example a mouse click or keypress.

• an ‘onexit’ action, to clean up if plotting is interrupted (by an error or by the user).

• capture the current contents of the device as a raster image.

• close the device.

1 The C code is in files base.c, graphics.c, par.c, plot.c and plot3d.c in directory src/main.

https://www.stat.auckland.ac.nz/~paul/R/basegraph.html
https://www.stat.auckland.ac.nz/~paul/R/basegraph.html
https://www.stat.auckland.ac.nz/~paul/R/graphicsChanges.html
https://www.stat.auckland.ac.nz/~paul/R/graphicsChanges.html


Chapter 6: Graphics 37

The device also sets a number of variables, mainly Boolean flags indicating its capabil-
ities. Devices work entirely in ‘device units’ which are up to its developer: they can be in
pixels, big points (1/72 inch), twips, . . . , and can differ2 in the ‘x’ and ‘y’ directions.

The next layer up is the graphics ‘engine’ that is the main interface to the device (al-
though the graphics subsystems do talk directly to devices). This is responsible for clipping
lines, rectangles and polygons, converting the pch values 0...26 to sets of lines/circles,
centring (and otherwise adjusting) text, rendering mathematical expressions (‘plotmath’)
and mapping colour descriptions such as names to the internal representation.

Another function of the engine is to manage display lists and snapshots. Some but not
all instances of graphics devices maintain display lists, a ‘list’ of operations that have been
performed on the device to produce the current plot (since the device was opened or the
plot was last cleared, e.g. by plot.new). Screen devices generally maintain a display list to
handle repaint and resize events whereas file-based formats do not—display lists are also
used to implement dev.copy() and friends. The display list is a pairlist of .Internal
(base graphics) or .Call.graphics (grid graphics) calls, which means that the C code
implementing a graphics operation will be re-called when the display list is replayed: apart
from the part which records the operation if successful.

Snapshots of the current graphics state are taken by GEcreateSnapshot and replayed
later in the session by GEplaySnapshot. These are used by recordPlot(), replayPlot()
and the GUI menus of the windows() device. The ‘state’ includes the display list.

The top layer comprises the graphics subsystems. Although there is provision for
24 subsystems since about 2001, currently still only two exist, ‘base’ and ‘grid’. The
base subsystem is registered with the engine when R is initialized, and unregistered (via
KillAllDevices) when an R session is shut down. The grid subsystem is registered in
its .onLoad function and unregistered in the .onUnload function. The graphics subsystem
may also have ‘state’ information saved in a snapshot (currently base does and grid does
not).

Package grDevices was originally created to contain the basic graphics devices (although
X11 is in a separate load-on-demand module because of the volume of external libraries it
brings in). Since then it has been used for other functionality that was thought desirable
for use with grid, and hence has been transferred from package graphics to grDevices. This
is principally concerned with the handling of colours and recording and replaying plots.

6.1 Graphics Devices

R ships with several graphics devices, and there is support for third-party packages to
provide additional devices—several packages now do. This section describes the device
internals from the viewpoint of a would-be writer of a graphics device.

6.1.1 Device structures

There are two types used internally which are pointers to structures related to graphics
devices.

2 although that needs to be handled carefully, as for example the circle callback is given a radius (and
that should be interpreted as in the x units).



Chapter 6: Graphics 38

The DevDesc type is a structure defined in the header file R_ext/GraphicsDevice.h

(which is included by R_ext/GraphicsEngine.h). This describes the physical characteris-
tics of a device, the capabilities of the device driver and contains a set of callback functions
that will be used by the graphics engine to obtain information about the device and initiate
actions (e.g. a new page, plotting a line or some text). Type pDevDesc is a pointer to this
type.

The following callbacks can be omitted (or set to the null pointer, their default value)
when appropriate default behaviour will be taken by the graphics engine: activate, cap,
deactivate, locator, holdflush (API version 9), mode, newFrameConfirm, path, raster
and size.

The relationship of device units to physical dimensions is set by the element ipr of the
DevDesc structure: a ‘double’ array of length 2.

The GEDevDesc type is a structure defined in R_ext/GraphicsEngine.h (with comments
in the file) as

typedef struct _GEDevDesc GEDevDesc;

struct _GEDevDesc {

pDevDesc dev;

Rboolean displayListOn;

SEXP displayList;

SEXP DLlastElt;

SEXP savedSnapshot;

Rboolean dirty;

Rboolean recordGraphics;

GESystemDesc *gesd[MAX_GRAPHICS_SYSTEMS];

Rboolean ask;

}

So this is essentially a device structure plus information about the device maintained by the
graphics engine and normally3 visible to the engine and not to the device. Type pGEDevDesc
is a pointer to this type.

The graphics engine maintains an array of devices, as pointers to GEDevDesc structures.
The array is of size 64 but the first element is always occupied by the "null device" and
the final element is kept as NULL as a sentinel.4 This array is reflected in the R variable
‘.Devices’. Once a device is killed its element becomes available for reallocation (and its
name will appear as "" in ‘.Devices’). Exactly one of the devices is ‘active’: this is the the
null device if no other device has been opened and not killed.

Each instance of a graphics device needs to set up a GEDevDesc structure by code very
similar to

pGEDevDesc gdd;

R_GE_checkVersionOrDie(R_GE_version);

R_CheckDeviceAvailable();

3 It is possible for the device to find the GEDevDesc which points to its DevDesc, and this is done often
enough that there is a convenience function desc2GEDesc to do so.

4 Calling R_CheckDeviceAvailable() ensures there is a free slot or throws an error.



Chapter 6: Graphics 39

BEGIN_SUSPEND_INTERRUPTS {

pDevDesc dev;

/* Allocate and initialize the device driver data */

if (!(dev = (pDevDesc) calloc(1, sizeof(DevDesc))))

return 0; /* or error() */

/* set up device driver or free ’dev’ and error() */

gdd = GEcreateDevDesc(dev);

GEaddDevice2(gdd, "dev_name");

} END_SUSPEND_INTERRUPTS;

The DevDesc structure contains a void * pointer ‘deviceSpecific’ which is used to
store data specific to the device. Setting up the device driver includes initializing all the
non-zero elements of the DevDesc structure.

Note that the device structure is zeroed when allocated: this provides some protection
against future expansion of the structure since the graphics engine can add elements that
need to be non-NULL/non-zero to be ‘on’ (and the structure ends with 64 reserved bytes
which will be zeroed and allow for future expansion).

Rather more protection is provided by the version number of the engine/device API,
R_GE_version defined in R_ext/GraphicsEngine.h together with access functions

int R_GE_getVersion(void);

void R_GE_checkVersionOrDie(int version);

If a graphics device calls R_GE_checkVersionOrDie(R_GE_version) it can ensure it will
only be used in versions of R which provide the API it was designed for and compiled
against.

6.1.2 Device capabilities

The following ‘capabilities’ can be defined for the device’s DevDesc structure.

• canChangeGamma – Rboolean: can the display gamma be adjusted? This is now ignored,
as gamma support has been removed.

• canHadj – integer: can the device do horizontal adjustment of text via the text

callback, and if so, how precisely? 0 = no adjustment, 1 = {0, 0.5, 1} (left, centre, right
justification) or 2 = continuously variable (in [0,1]) between left and right justification.

• canGenMouseDown – Rboolean: can the device handle mouse down events? This flag
and the next three are not currently used by R, but are maintained for back compati-
bility.

• canGenMouseMove – Rboolean: ditto for mouse move events.

• canGenMouseUp – Rboolean: ditto for mouse up events.

• canGenKeybd – Rboolean: ditto for keyboard events.

• hasTextUTF8 – Rboolean: should non-symbol text be sent (in UTF-8) to the textUTF8
and strWidthUTF8 callbacks, and sent as Unicode points (negative values) to the
metricInfo callback?

• wantSymbolUTF8 – Rboolean: should symbol text be handled in UTF-8 in the same
way as other text? Requires textUTF8 = TRUE.

• haveTransparency: does the device support semi-transparent colours?



Chapter 6: Graphics 40

• haveTransparentBg: can the background be fully or semi-transparent?

• haveRaster: is there support for rendering raster images?

• haveCapture: is there support for grid::grid.cap?

• haveLocator: is there an interactive locator?

The last three can often be deduced to be false from the presence of NULL entries instead
of the corresponding functions.

6.1.3 Handling text

Handling text is probably the hardest task for a graphics device, and the design allows for
the device to optionally indicate that it has additional capabilities. (If the device does not,
these will if possible be handled in the graphics engine.)

The three callbacks for handling text that must be in all graphics devices are text,
strWidth and metricInfo with declarations

void text(double x, double y, const char *str, double rot, double hadj,

pGgcontext gc, pDevDesc dd);

double strWidth(const char *str, pGEcontext gc, pDevDesc dd);

void metricInfo(int c, pGEcontext gc,

double* ascent, double* descent, double* width,

pDevDesc dd);

The ‘gc’ parameter provides the graphics context, most importantly the current font and
fontsize, and ‘dd’ is a pointer to the active device’s structure.

The text callback should plot ‘str’ at ‘(x, y)’5 with an anti-clockwise rotation of ‘rot’
degrees. (For ‘hadj’ see below.) The interpretation for horizontal text is that the baseline
is at y and the start is a x, so any left bearing for the first character will start at x.

The strWidth callback computes the width of the string which it would occupy if plotted
horizontally in the current font. (Width here is expected to include both (preferably) or
neither of left and right bearings.)

The metricInfo callback computes the size of a single character: ascent is the distance
it extends above the baseline and descent how far it extends below the baseline. width

is the amount by which the cursor should be advanced when the character is placed. For
ascent and descent this is intended to be the bounding box of the ‘ink’ put down by the
glyph and not the box which might be used when assembling a line of conventional text (it
needs to be for e.g. hat(beta) to work correctly). However, the width is used in plotmath
to advance to the next character, and so needs to include left and right bearings.

The interpretation of ‘c’ depends on the locale. In a single-byte locale values 32...255
indicate the corresponding character in the locale (if present). For the symbol font (as
used by ‘graphics::par(font=5)’, ‘grid::gpar(fontface=5’) and by ‘plotmath’), values
32...126, 161...239, 241...254 indicate glyphs in the Adobe Symbol encoding. In a
multibyte locale, c represents a Unicode point (except in the symbol font). So the function
needs to include code like

Rboolean Unicode = mbcslocale && (gc->fontface != 5);

5 in device coordinates



Chapter 6: Graphics 41

if (c < 0) { Unicode = TRUE; c = -c; }

if(Unicode) UniCharMetric(c, ...); else CharMetric(c, ...);

In addition, if device capability hasTextUTF8 (see below) is true, Unicode points will be
passed as negative values: the code snippet above shows how to handle this. (This applies
to the symbol font only if device capability wantSymbolUTF8 is true.)

If possible, the graphics device should handle clipping of text. It indicates this by the
structure element canClip which if true will result in calls to the callback clip to set the
clipping region. If this is not done, the engine will clip very crudely (by omitting any text
that does not appear to be wholly inside the clipping region).

The device structure has an integer element canHadj, which indicates if the device can
do horizontal alignment of text. If this is one, argument ‘hadj’ to text will be called as 0
,0.5, 1 to indicate left-, centre- and right-alignment at the indicated position. If it is two,
continuous values in the range [0, 1] are assumed to be supported.

Capability hasTextUTF8 if true, it has two consequences. First, there are callbacks
textUTF8 and strWidthUTF8 that should behave identically to text and strWidth except
that ‘str’ is assumed to be in UTF-8 rather than the current locale’s encoding. The graphics
engine will call these for all text except in the symbol font. Second, Unicode points will be
passed to the metricInfo callback as negative integers. If your device would prefer to have
UTF-8-encoded symbols, define wantSymbolUTF8 as well as hasTextUTF8. In that case text
in the symbol font is sent to textUTF8 and strWidthUTF8.

Some devices can produce high-quality rotated text, but those based on bitmaps often
cannot. Those which can should set useRotatedTextInContour to be true from graphics
API version 4.

Several other elements relate to the precise placement of text by the graphics engine:

double xCharOffset;

double yCharOffset;

double yLineBias;

double cra[2];

These are more than a little mysterious. Element cra provides an indication of the character
size, par("cra") in base graphics, in device units. The mystery is what is meant by
‘character size’: which character, which font at which size? Some help can be obtained by
looking at what this is used for. The first element, ‘width’, is not used by R except to set
the graphical parameters. The second, ‘height’, is use to set the line spacing, that is the
relationship between par("mai") and par("mai") and so on. It is suggested that a good
choice is

dd->cra[0] = 0.9 * fnsize;

dd->cra[1] = 1.2 * fnsize;

where ‘fnsize’ is the ‘size’ of the standard font (cex=1) on the device, in device units. So
for a 12-point font (the usual default for graphics devices), ‘fnsize’ should be 12 points in
device units.

The remaining elements are yet more mysterious. The postscript() device says

/* Character Addressing Offsets */

/* These offsets should center a single */

/* plotting character over the plotting point. */



Chapter 6: Graphics 42

/* Pure guesswork and eyeballing ... */

dd->xCharOffset = 0.4900;

dd->yCharOffset = 0.3333;

dd->yLineBias = 0.2;

It seems that xCharOffset is not currently used, and yCharOffset is used by the
base graphics system to set vertical alignment in text() when pos is specified, and in
identify(). It is occasionally used by the graphic engine when attempting exact centring
of text, such as character string values of pch in points() or grid.points()—however,
it is only used when precise character metric information is not available or for multi-line
strings.

yLineBias is used in the base graphics system in axis() and mtext() to provide a
default for their ‘padj’ argument.

6.1.4 Conventions

The aim is to make the (default) output from graphics devices as similar as possible. Gen-
erally people follow the model of the postscript and pdf devices (which share most of
their internal code).

The following conventions have become established:

• The default size of a device should be 7 inches square.

• There should be a ‘pointsize’ argument which defaults to 12, and it should give the
pointsize in big points (1/72 inch). How exactly this is interpreted is font-specific, but
it should use a font which works with lines packed 1/6 inch apart, and looks good with
lines 1/5 inch apart (that is with 2pt leading).

• The default font family should be a sans serif font, e.g Helvetica or similar (e.g. Arial
on Windows).

• lwd = 1 should correspond to a line width of 1/96 inch. This will be a problem with
pixel-based devices, and generally there is a minimum line width of 1 pixel (although
this may not be appropriate where anti-aliasing of lines is used, and cairo prefers a
minimum of 2 pixels).

• Even very small circles should be visible, e.g. by using a minimum radius of 1 pixel or
replacing very small circles by a single filled pixel.

• How RGB colour values will be interpreted should be documented, and preferably be
sRGB.

• The help page should describe its policy on these conventions.

These conventions are less clear-cut for bitmap devices, especially where the bitmap
format does not have a design resolution.

The interpretation of the line texture (par("lty") is described in the header
GraphicsEngine.h and in the help for par: note that the ‘scale’ of the pattern should be
proportional to the line width (at least for widths above the default).

6.1.5 ‘Mode’

One of the device callbacks is a function mode, documented in the header as

* device_Mode is called whenever the graphics engine



Chapter 6: Graphics 43

* starts drawing (mode=1) or stops drawing (mode=0)

* GMode (in graphics.c) also says that

* mode = 2 (graphical input on) exists.

* The device is not required to do anything

Since mode = 2 has only recently been documented at device level. It could be used to
change the graphics cursor, but devices currently do that in the locator callback. (In base
graphics the mode is set for the duration of a locator call, but if type != "n" is switched
back for each point whilst annotation is being done.)

Many devices do indeed do nothing on this call, but some screen devices ensure that
drawing is flushed to the screen when called with mode = 0. It is tempting to use it for some
sort of buffering, but note that ‘drawing’ is interpreted at quite a low level and a typical
single figure will stop and start drawing many times. The buffering introduced in the X11()
device makes use of mode = 0 to indicate activity: it updates the screen after ca 100ms of
inactivity.

This callback need not be supplied if it does nothing.

6.1.6 Graphics events

Graphics devices may be designed to handle user interaction: not all are.

Users may use grDevices::setGraphicsEventEnv to set the eventEnv en-
vironment in the device driver to hold event handlers. When the user calls
grDevices::getGraphicsEvent, R will take three steps. First, it sets the device driver
member gettingEvent to true for each device with a non-NULL eventEnv entry, and calls
initEvent(dd, true) if the callback is defined. It then enters an event loop. Each time
through the loop R will process events once, then check whether any device has set the
result member of eventEnv to a non-NULL value, and will save the first such value found
to be returned. C functions doMouseEvent and doKeybd are provided to call the R event
handlers onMouseDown, onMouseMove, onMouseUp, and onKeybd and set eventEnv$result
during this step. Finally, initEvent is called again with init=false to inform the devices
that the loop is done, and the result is returned to the user.

6.1.7 Specific devices

Specific devices are mostly documented by comments in their sources, although for devices
of many years’ standing those comments can be in need of updating. This subsection is a
repository of notes on design decisions.

6.1.7.1 X11()

The X11(type="Xlib") device dates back to the mid 1990’s and was written then in Xlib,
the most basic X11 toolkit. It has since optionally made use of a few features from other
toolkits: libXt is used to read X11 resources, and libXmu is used in the handling of clipboard
selections.

Using basic Xlib code makes drawing fast, but is limiting. There is no support of
translucent colours (that came in the Xrender toolkit of 2000) nor for rotated text (which
R implements by rendering text to a bitmap and rotating the latter).

The hinting for the X11 window asks for backing store to be used, and some windows
managers may use it to handle repaints, but it seems that most repainting is done by
replaying the display list (and here the fast drawing is very helpful).



Chapter 6: Graphics 44

There are perennial problems with finding fonts. Many users fail to realize that fonts
are a function of the X server and not of the machine that R is running on. After many
difficulties, R tries first to find the nearest size match in the sizes provided for Adobe fonts
in the standard 75dpi and 100dpi X11 font packages—even that will fail to work when users
of near-100dpi screens have only the 75dpi set installed. The 75dpi set allows sizes down
to 6 points on a 100dpi screen, but some users do try to use smaller sizes and even 6 and 8
point bitmapped fonts do not look good.

Introduction of UTF-8 locales has caused another wave of difficulties. X11 has very
few genuine UTF-8 fonts, and produces composite fontsets for the iso10646-1 encoding.
Unfortunately these seem to have low coverage apart from a few monospaced fonts in a few
sizes (which are not suitable for graph annotation), and where glyphs are missing what is
plotted is often quite unsatisfactory.

The current approach is to make use of more modern toolkits, namely cairo for rendering
and Pango for font management—because these are associated with Gtk+2 they are widely
available. Cairo supports translucent colours and alpha-blending (via Xrender), and anti-
aliasing for the display of lines and text. Pango’s font management is based on fontconfig

and somewhat mysterious, but it seems mainly to use Type 1 and TrueType fonts on the
machine running R and send grayscale bitmaps to cairo.

6.1.7.2 windows()

The windows() device is a family of devices: it supports plotting to Windows (enhanced)
metafiles, BMP, JPEG, PNG and TIFF files as well as to Windows printers.

In most of these cases the primary plotting is to a bitmap: this is used for the (default)
buffering of the screen device, which also enables the current plot to be saved to BMP,
JPEG, PNG or TIFF (it is the internal bitmap which is copied to the file in the appropriate
format).

The device units are pixels (logical ones on a metafile device).

The code was originally written by Guido Masarotto with extensive use of macros, which
can make it hard to disentangle.

For a screen device, xd->gawin is the canvas of the screen, and xd->bm is the off-screen
bitmap. So macro DRAW arranges to plot to xd->bm, and if buffering is off, also to xd->gawin.
For all other device, xd->gawin is the canvas, a bitmap for the jpeg() and png() device, and
an internal representation of a Windows metafile for the win.metafile() and win.print

device. Since ‘plotting’ is done by Windows GDI calls to the appropriate canvas, its precise
nature is hidden by the GDI system.

Buffering on the screen device is achieved by running a timer, which when it fires copies
the internal bitmap to the screen. This is set to fire every 500ms (by default) and is reset
to 100ms after plotting activity.

Repaint events are handled by copying the internal bitmap to the screen canvas (and then
reinitializing the timer), unless there has been a resize. Resizes are handled by replaying
the display list: this might not be necessary if a fixed canvas with scrollbars is being used,
but that is the least popular of the three forms of resizing.

Text on the device has moved to ‘Unicode’ (UCS-2) in recent years. UTF-8 is requested
(hasTextUTF8 = TRUE) for standard text, and converted to UCS-2 in the plotting functions



Chapter 6: Graphics 45

in file src/extra/graphapp/gdraw.c. However, GDI has no support for Unicode symbol
fonts, and symbols are handled in Adobe Symbol encoding.

There is support for translucent colours (with alpha channel between 0 and 255) was
introduced on the screen device and bitmap devices.6 This is done by drawing on a further
internal bitmap, xd->bm2, in the opaque version of the colour then alpha-blending that
bitmap to xd->bm. The alpha-blending routine is in a separate DLL, msimg32.dll, which
is loaded on first use. As small a rectangular region as reasonably possible is alpha-blended
(this is rectangle r in the code), but things like mitre joins make estimation of a tight
bounding box too much work for lines and polygonal boundaries. Translucent-coloured
lines are not common, and the performance seems acceptable.

The support for a transparent background in png() predates full alpha-channel support
in libpng (let alone in PNG viewers), so makes use of the limited transparency support
in earlier versions of PNG. Where 24-bit colour is used, this is done by marking a single
colour to be rendered as transparent. R chose ‘#fdfefd’, and uses this as the background
colour (in GA_NewPage if the specified background colour is transparent (and all non-opaque
background colours are treated as transparent). So this works by marking that colour in the
PNG file, and viewers without transparency support see a slightly-off-white background, as
if there were a near-white canvas. Where a palette is used in the PNG file (if less than 256
colours were used) then this colour is recorded with full transparency and the remaining
colours as opaque. If 32-bit colour were available then we could add a full alpha channel,
but this is dependent on the graphics hardware and undocumented properties of GDI.

6.2 Colours

Devices receive colours as a typedef rcolor (an unsigned int) defined in the header R_
ext/GraphicsEngine.h). The 4 bytes are R ,G, B and alpha from least to most significant.
So each of RGB has 256 levels of luminosity from 0 to 255. The alpha byte represents
opacity, so value 255 is fully opaque and 0 fully transparent: many but not all devices
handle semi-transparent colours.

Colors can be created in C via the macro R_RGBA, and a set of macros are defined in
R_ext/GraphicsDevice.h to extract the various components.

Colours in the base graphics system were originally adopted from S (and before that
the GRZ library from Bell Labs), with the concept of a (variable-sized) palette of colours
referenced by numbers ‘1...N’ plus ‘0’ (the background colour of the current device). R
introduced the idea of referring to colours by character strings, either in the forms ‘#RRGGBB’
or ‘#RRGGBBAA’ (representing the bytes in hex) as given by function rgb() or via names: the
657 known names are given in the character vector colors and in a table in file colors.c

in package grDevices. Note that semi-transparent colours are not ‘premultiplied’, so 50%
transparent white is ‘#ffffff80’.

Integer or character NA colours are mapped internally to transparent white, as is the
character string "NA".

Negative colour numbers are an error. Colours greater than ‘N’ are wrapped around, so
that for example with the default palette of size 8, colour ‘10’ is colour ‘2’ in the palette.

6 It is technically possible to use alpha-blending on metafile devices such as printers, but it seems few
drivers have support for this.



Chapter 6: Graphics 46

Integer colours have been used more widely than the base graphics sub-system, as
they are supported by package grid and hence by lattice (https://CRAN.R-project.
org/package=lattice) and ggplot2 (https://CRAN.R-project.org/package=ggplot2).
(They are also used by package rgl (https://CRAN.R-project.org/package=rgl).) grid
did re-define colour ‘0’ to be transparent white, but rgl (https://CRAN.R-project.org/
package=rgl) used col2rgb and hence the background colour of base graphics.

Note that positive integer colours refer to the current palette and colour ‘0’ to the current
device (and a device is opened if needs be). These are mapped to type rcolor at the time of
use: this matters when re-playing the display list, e.g. when a device is resized or dev.copy
is used. The palette should be thought of as per-session: it is stored in package grDevices.

The convention is that devices use the colorspace ‘sRGB’. This is an industry standard:
it is used by Web browsers and JPEGs from all but high-end digital cameras. The inter-
pretation is a matter for graphics devices and for code that manipulates colours, but not
for the graphics engine or subsystems.

R uses a painting model similar to PostScript and PDF. This means that where shapes
(circles, rectangles and polygons) can both be filled and have a stroked border, the fill should
be painted first and then the border (or otherwise only half the border will be visible). Where
both the fill and the border are semi-transparent there is some room for interpretation of
the intention. Most devices first paint the fill and then the border, alpha-blending at each
step. However, PDF does some automatic grouping of objects, and when the fill and the
border have the same alpha, they are painted onto the same layer and then alpha-blended
in one step. (See p. 569 of the PDF Reference Sixth Edition, version 1.7. Unfortunately,
although this is what the PDF standard says should happen, it is not correctly implemented
by some viewers.)

The mapping from colour numbers to type rcolor is primarily done by function RGBpar3:
this is exported from the R binary but linked to code in package grDevices. The first
argument is a SEXP pointing to a character, integer or double vector, and the second is the
rcolor value for colour 0 (or "0"). C entry point RGBpar is a wrapper that takes 0 to be
transparent white: it is often used to set colour defaults for devices. The R-level wrapper
is col2rgb.

There is also R_GE_str2col which takes a C string and converts to type rcolor: "0’ is
converted to transparent white.

There is a R-level conversion of colours to ‘##RRGGBBAA’ by image.default(useRaster

= TRUE).

The other color-conversion entry point in the API is name2col which takes a colour
name (a C string) and returns a value of type rcolor. This handles "NA", "transparent"
and the 657 colours known to the R function colors().

6.3 Base graphics

The base graphics system was migrated to package graphics in R 3.0.0: it was previously
implemented in files in src/main.

For historical reasons it is largely implemented in two layers. Files plot.c, plot3d.c
and par.c contain the code for the around 30 .External calls that implement the basic
graphics operations. This code then calls functions with names starting with G and declared

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl


Chapter 6: Graphics 47

in header Rgraphics.h in file graphics.c, which in turn call the graphics engine (whose
functions almost all have names starting with GE).

A large part of the infrastructure of the base graphics subsystem are the graphics param-
eters (as set/read by par()). These are stored in a GPar structure declared in the private
header Graphics.h. This structure has two variables (state and valid) tracking the state
of the base subsystem on the device, and many variables recording the graphics parameters
and functions of them.

The base system state is contained in baseSystemState structure defined in
R_ext/GraphicsBase.h. This contains three GPar structures and a Boolean variable used
to record if plot.new() (or persp) has been used successfully on the device.

The three copies of the GPar structure are used to store the current parameters (accessed
via gpptr), the ‘device copy’ (accessed via dpptr) and space for a saved copy of the ‘device
copy’ parameters. The current parameters are, clearly, those currently in use and are copied
from the ‘device copy’ whenever plot.new() is called (whether or not that advances to the
next ‘page’). The saved copy keeps the state when the device was last completely cleared
(e.g. when plot.new() was called with par(new=TRUE)), and is used to replay the display
list.

The separation is not completely clean: the ‘device copy’ is altered if a plot with log
scale(s) is set up via plot.window().

There is yet another copy of most of the graphics parameters in static variables in
graphics.c which are used to preserve the current parameters across the processing of
inline parameters in high-level graphics calls (handled by ProcessInlinePars).

Snapshots of the base subsystem record the ‘saved device copy’ of the GPar structure.

6.3.1 Arguments and parameters

There is an unfortunate confusion between some of the graphical parameters (as set by par)
and arguments to base graphic functions of the same name. This description may help set
the record straight.

Most of the high-level plotting functions accept graphical parameters as additional argu-
ments, which are then often passed to lower-level functions if not already named arguments
(which is the main source of confusion).

Graphical parameter bg is the background colour of the plot. Argument bg refers to the
fill colour for the filled symbols 21 to 25. It is an argument to the function plot.xy, but
normally passed by the default method of points, often from a plot method.

Graphics parameters cex, col, lty, lwd and pch also appear as arguments of plot.xy
and so are often passed as arguments from higher-level plot functions such as lines, points
and plotmethods. They appear as arguments of legend, col, lty and lwd are arguments of
arrows and segments. When used as arguments they can be vectors, recycled to control the
various lines, points and segments. When set a graphical parameters they set the default
rendering: in addition par(cex=) sets the overall character expansion which subsequent
calls (as arguments or on-line graphical parameters) multiply.

The handling of missing values differs in the two classes of uses. Generally these are
errors when used in par but cause the corresponding element of the plot to be omitted
when used as an element of a vector argument. Originally the interpretation of arguments



Chapter 6: Graphics 48

was mainly left to the device, but nowadays some of this is pre-empted in the graphics engine
(but for example the handling of lwd = 0 remains device-specific, with some interpreting it
as a ‘thinnest possible’ line).

6.4 Grid graphics

[At least pointers to documentation.]



49

7 GUI consoles

The standard R front-ends are programs which run in a terminal, but there are several ways
to provide a GUI console.

This can be done by a package which is loaded from terminal-based R and launches
a console as part of its startup code or by the user running a specific function: package
Rcmdr (https://CRAN.R-project.org/package=Rcmdr) is a well-known example with a
Tk-based GUI.

There used to be a Gtk-based console invoked by R --gui=GNOME: this relied on special-
casing in the front-end shell script to launch a different executable. There still is R --gui=Tk,
which starts terminal-based R and runs tcltk::tkStartGui() as part of the modified
startup sequence.

However, the main way to run a GUI console is to launch a separate program which runs
embedded R: this is done by Rgui.exe on Windows and R.app on macOS. The first is an
integral part of R and the code for the console is currently in R.dll.

7.1 R.app

R.app is a macOS application which provides a console. Its sources are a separate project1,
and its binaries link to an R installation which it runs as a dynamic library libR.dylib. The
standard CRAN distribution of R for macOS bundles the GUI and R itself, but installing
the GUI is optional and either component can be updated separately.

R.app relies on libR.dylib being in a specific place, and hence on R
having been built and installed as a Mac macOS ‘framework’. Specifically,
it uses /Library/Frameworks/R.framework/R. This is a symbolic link,
as frameworks can contain multiple versions of R. It eventually resolves to
/Library/Frameworks/R.framework/Versions/Current/Resources/lib/libR.dylib,
which is (in the CRAN distribution) a ‘fat’ binary containing multiple sub-architectures.

macOS applications are directory trees: each R.app contains a front-end written in
Objective-C for one sub-architecture: in the standard distribution there are separate appli-
cations for 32- and 64-bit Intel architectures.

Originally the R sources contained quite a lot of code used only by the macOS GUI, but
this was migrated to the R.app sources.

R.app starts R as an embedded application with a command-line which includes
--gui=aqua (see below). It uses most of the interface pointers defined in the header
Rinterface.h, plus a private interface pointer in file src/main/sysutils.c. It adds
an environment it names tools:RGUI to the second position in the search path. This
contains a number of utility functions used to support the menu items, for example
package.manager(), plus functions q() and quit() which mask those in package
base—the custom versions save the history in a way specific to R.app.

There is a configure option --with-aqua for R which customizes the way R is built: this
is distinct from the --enable-R-framework option which causes make install to install R
as the framework needed for use with R.app. (The option --with-aqua is the default on

1 an Xcode project, in SVN at https://svn.r-project.org/R-packages/trunk/Mac-GUI/.

https://CRAN.R-project.org/package=Rcmdr
https://svn.r-project.org/R-packages/trunk/Mac-GUI/


Chapter 7: GUI consoles 50

macOS.) It sets the macro HAVE_AQUA in config.h and the make variable BUILD_AQUA_TRUE.
These have several consequences:

• The quartz() device is built (other than as a stub) in package grDevices: this needs
an Objective-C compiler. Then quartz() can be used with terminal R provided the
latter has access to the macOS screen.

• File src/unix/aqua.c is compiled. This now only contains an interface pointer for the
quartz() device(s).

• capabilities("aqua") is set to TRUE.

• The default path for a personal library directory is set as ~/Library/R/x.y/library.

• There is support for setting a ‘busy’ indicator whilst waiting for system() to return.

• R_ProcessEvents is inhibited in a forked child from package parallel. The associated
callback in R.app does things which should not be done in a child, and forking forks
the whole process including the console.

• There is support for starting the embedded R with the option --gui=aqua: when this
is done the global C variable useaqua is set to a true value. This has consequences:

• The R session is asserted to be interactive via R_Interactive.

• .Platform$GUI is set to "AQUA". That has consequences:

• The environment variable DISPLAY is set to ‘:0’ if not already set.

• /usr/local/bin is appended to PATH since that is where gfortran is installed.

• The default HTML browser is switched to the one in R.app.

• Various widgets are switched to the versions provided in R.app: these include
graphical menus, the data editor (but not the data viewer used by View())
and the workspace browser invoked by browseEnv().

• The grDevices package when loaded knows that it is being run under R.app
and so informs any quartz devices that a Quartz event loop is already running.

• The use of the OS’s system function (including by system() and system2(), and
to launch editors and pagers) is replaced by a version in R.app (which by default
just calls the OS’s system with various signal handlers reset).

• If either R was started by --gui=aqua or R is running in a terminal which is not of
type ‘dumb’, the standard output to files stdout and stderr is directed through the C
function Rstd_WriteConsoleEx. This uses ANSI terminal escapes to render lines sent
to stderr as bold on stdout.

• For historical reasons the startup option -psn is allowed but ignored. (It seems that
in 2003, ‘r27492’, this was added by Finder.)



51

8 Tools

The behavior of R CMD check can be controlled through a variety of command line arguments
and environment variables.

There is an internal --install=value command line argument not shown by R CMD

check --help, with possible values

check:file

Assume that installation was already performed with stdout/stderr to file, the
contents of which need to be checked (without repeating the installation). This
is useful for checks applied by repository maintainers: it reduces the check time
by the installation time given that the package has already been installed. In
this case, one also needs to specify where the package was installed to using
command line option --library.

fake Fake installation, and turn off the run-time tests.

skip Skip installation, e.g., when testing recommended packages bundled with R.

no The same as --no-install : turns off installation and the tests which require
the package to be installed.

The following environment variables can be used to customize the operation of check: a
convenient place to set these is the check environment file (default, ~/.R/check.Renviron).

_R_CHECK_ALL_NON_ISO_C_

If true, do not ignore compiler (typically GCC) warnings about non ISO C code
in system headers. Note that this may also show additional ISO C++ warnings.
Default: false.

_R_CHECK_FORCE_SUGGESTS_

If true, give an error if suggested packages are not available. Default: true (but
false for CRAN submission checks).

_R_CHECK_RD_CONTENTS_

If true, check Rd files for auto-generated content which needs editing, and miss-
ing argument documentation. Default: true.

_R_CHECK_RD_LINE_WIDTHS_

If true, check Rd line widths in usage and examples sections. Default: false (but
true for CRAN submission checks).

_R_CHECK_RD_STYLE_

If true, check whether Rd usage entries for S3 methods use the full function
name rather than the appropriate \method markup. Default: true.

_R_CHECK_RD_XREFS_

If true, check the cross-references in .Rd files. Default: true.

_R_CHECK_SUBDIRS_NOCASE_

If true, check the case of directories such as R and man. Default: true.

_R_CHECK_SUBDIRS_STRICT_

Initial setting for --check-subdirs. Default: ‘default’ (which checks only
tarballs, and checks in the src only if there is no configure file).



Chapter 8: Tools 52

_R_CHECK_USE_CODETOOLS_

If true, make use of the codetools (https://CRAN.R-project.org/
package=codetools) package, which provides a detailed analysis of visibility
of objects (but may give false positives). Default: true (if recommended
packages are installed).

_R_CHECK_USE_INSTALL_LOG_

If true, record the output from installing a package as part of its check to a
log file (00install.out by default), even when running interactively. Default:
true.

_R_CHECK_VIGNETTES_NLINES_

Maximum number of lines to show from the bottom of the output when report-
ing errors in running or re-building vignettes. ( Value 0 means all lines will be
shown.) Default: 10 for running, 25 for re-building.

_R_CHECK_CODOC_S4_METHODS_

Control whether codoc() testing is also performed on S4 methods. Default:
true.

_R_CHECK_DOT_INTERNAL_

Control whether the package code is scanned for .Internal calls, which should
only be used by base (and occasionally by recommended) packages. Default:
true.

_R_CHECK_EXECUTABLES_

Control checking for executable (binary) files. Default: true.

_R_CHECK_EXECUTABLES_EXCLUSIONS_

Control whether checking for executable (binary) files ignores files listed in the
package’s BinaryFiles file. Default: true (but false for CRAN submission
checks). However, most likely this package-level override mechanism will be
removed eventually.

_R_CHECK_PERMISSIONS_

Control whether permissions of files should be checked. Default: true iff
.Platform$OS.type == "unix".

_R_CHECK_FF_CALLS_

Allows turning off checkFF() testing. If set to ‘registration’, checks
the registration information (number of arguments, correct choice of
.C/.Fortran/.Call/.External) for such calls provided the package is
installed. Default: true.

_R_CHECK_FF_DUP_

Controls checkFF(check_DUP) Default: true (and forced to be true for CRAN
submission checks).

_R_CHECK_LICENSE_

Control whether/how license checks are performed. A possible value is ‘maybe’
(warn in case of problems, but not about standardizable non-standard license
specs). Default: true.

https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=codetools


Chapter 8: Tools 53

_R_CHECK_RD_EXAMPLES_T_AND_F_

Control whether check_T_and_F() also looks for “bad” (global) ‘T’/‘F’ uses in
examples. Off by default because this can result in false positives.

_R_CHECK_RD_CHECKRD_MINLEVEL_

Controls the minimum level for reporting warnings from checkRd. Default: -1.

_R_CHECK_XREFS_REPOSITORIES_

If set to a non-empty value, a space-separated list of repositories to use to
determine known packages. Default: empty, when the CRAN and Bioconductor
repositories known to R is used.

_R_CHECK_SRC_MINUS_W_IMPLICIT_

Control whether installation output is checked for compilation warnings about
implicit function declarations (as spotted by GCC with command line option
-Wimplicit-function-declaration, which is implied by -Wall). Default:
false.

_R_CHECK_SRC_MINUS_W_UNUSED_

Control whether installation output is checked for compilation warnings about
unused code constituents (as spotted by GCC with command line option
-Wunused, which is implied by -Wall). Default: true.

_R_CHECK_WALL_FORTRAN_

Control whether gfortran 4.0 or later -Wall warnings are used in the analysis
of installation output. Default: false, even though the warnings are justifiable.

_R_CHECK_ASCII_CODE_

If true, check R code for non-ascii characters. Default: true.

_R_CHECK_ASCII_DATA_

If true, check data for non-ascii characters. En route, checks that all the datasets
can be loaded and that their components can be accessed. Default: true.

_R_CHECK_COMPACT_DATA_

If true, check data for ascii and uncompressed saves, and also check if using
bzip2 or xz compression would be significantly better. Default: true.

_R_CHECK_SKIP_ARCH_

Comma-separated list of architectures that will be omitted from checking in a
multi-arch setup. Default: none.

_R_CHECK_SKIP_TESTS_ARCH_

Comma-separated list of architectures that will be omitted from running tests
in a multi-arch setup. Default: none.

_R_CHECK_SKIP_EXAMPLES_ARCH_

Comma-separated list of architectures that will be omitted from running exam-
ples in a multi-arch setup. Default: none.

_R_CHECK_VC_DIRS_

Should the unpacked package directory be checked for version-control directories
(CVS, .svn . . . )? Default: true for tarballs.



Chapter 8: Tools 54

_R_CHECK_PKG_SIZES_

Should du be used to find the installed sizes of packages? R CMD check does
check for the availability of du. but this option allows the check to be overruled
if an unsuitable command is found (including one that does not respect the
-k flag to report in units of 1Kb, or reports in a different format – the GNU,
macOS and Solaris du commands have been tested). Default: true if du is
found.

_R_CHECK_PKG_SIZES_THRESHOLD_

Threshold used for _R_CHECK_PKG_SIZES_ (in Mb). Default: 5

_R_CHECK_DOC_SIZES_

Should qpdf be used to check the installed sizes of PDFs? Default: true if qpdf
is found.

_R_CHECK_DOC_SIZES2_

Should gs be used to check the installed sizes of PDFs? This is slower than
(and in addition to) the previous check, but does detect figures with excessive
detail (often hidden by over-plotting) or bitmap figures with too high a resolu-
tion. Requires that R_GSCMD is set to a valid program, or gs (or on Windows,
gswin32.exe or gswin64c.exe) is on the path. Default: false (but true for
CRAN submission checks).

_R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_

By default the output from running the R code in the vignettes is kept only if
there is an error. This also applies to the build_vignettes.log log from the
re-building of vignettes. Default: false.

_R_CHECK_CLEAN_VIGN_TEST_

Should the vign_test directory be removed if the test is successful? Default:
true.

_R_CHECK_REPLACING_IMPORTS_

Should warnings about replacing imports be reported? These sometimes come
from auto-generated NAMESPACE files in other packages, but most often from
importing the whole of a namespace rather than using importFrom. Default:
true.

_R_CHECK_UNSAFE_CALLS_

Check for calls that appear to tamper with (or allow tampering with) already
loaded code not from the current package: such calls may well contravene CRAN
policies. Default: true.

_R_CHECK_TIMINGS_

Optionally report timings for installation, examples, tests and running/re-
building vignettes as part of the check log. The format is ‘[as/bs]’ for the
total CPU time (including child processes) ‘a’ and elapsed time ‘b’, except on
Windows, when it is ‘[bs]’. In most cases timings are only given for ‘OK’ checks.
Times with an elapsed component over 10 mins are reported in minutes (with
abbreviation ‘m’). The value is the smallest numerical value in elapsed seconds
that should be reported: non-numerical values indicate that no report is re-



Chapter 8: Tools 55

quired, a value of ‘0’ that a report is always required. Default: "". (10 for
CRAN checks.)

_R_CHECK_EXAMPLE_TIMING_THRESHOLD_

If timings are being recorded, set the threshold in seconds for reporting long-
running examples (either user+system CPU time or elapsed time). Default:
"5".

_R_CHECK_EXAMPLE_TIMING_CPU_TO_ELAPSED_THRESHOLD_

For checks with timings enabled, report examples where the ratio of CPU time
to elapsed time exceeds this threshold (and the CPU time is at least one second).
This can help detect the simultaneous use of multiple CPU cores. Default: NA.

_R_CHECK_TEST_TIMING_CPU_TO_ELAPSED_THRESHOLD_

Report for running an individual test if the ratio of CPU time to elapsed time
exceeds this threshold (and the CPU time is at least one second). Not supported
on Windows. Default: NA.

_R_CHECK_VIGNETTE_TIMING_CPU_TO_ELAPSED_THRESHOLD_

Report if when running/re-building vignettes (individually or in aggregate) the
ratio of CPU time to elapsed time exceeds this threshold (and the CPU time is
at least one second). Not supported on Windows. Default: NA.

_R_CHECK_INSTALL_DEPENDS_

If set to a true value and a test installation is to be done, this is done with
.libPaths() containing just a temporary library directory and .Library. The
temporary library is populated by symbolic links1 to the installed copies of all
the Depends/Imports/LinkingTo packages which are not in .Library. Default:
false (but true for CRAN submission checks).

Note that this is actually implemented in R CMD INSTALL, so it is available to
those who first install recording to a log, then call R CMD check.

_R_CHECK_DEPENDS_ONLY_

_R_CHECK_SUGGESTS_ONLY_

If set to a true value, running examples, tests and vignettes is done with
.libPaths() containing just a temporary library directory and .Library. The
temporary library is populated by symbolic links2 to the installed copies of all
the Depends/Imports and (for the second only) Suggests packages which are
not in .Library. (As exceptions, packages in a ‘VignetteBuilder’ field and
test-suite managers in ‘Suggests’ are always made available.) Default: false
(but _R_CHECK_SUGGESTS_ONLY_ is true for CRAN submission checks: some of
the regular checks use true and some use false).

_R_CHECK_DEPENDS_ONLY_DATA_

Apply _R_CHECK_DEPENDS_ONLY_ only to the check of loading from the data

directory, so checks if any dataset depends on packages which are in Suggests
or undeclared. Default: false (but true for CRAN submission checks)

1 under Windows, junction points, or copies if environment variable R_WIN_NO_JUNCTIONS has a non-empty
value.

2 see the previous footnote.



Chapter 8: Tools 56

_R_CHECK_NO_RECOMMENDED_

If set to a true value, augment the previous checks to make recommended pack-
ages unavailable unless declared. Default: false (but true for CRAN submission
checks).

This may give false positives on code which uses grDevices::densCols and
stats:::asSparse as these invoke KernSmooth (https://CRAN.R-project.
org/package=KernSmooth) and Matrix (https://CRAN.R-project.org/
package=Matrix) respectively.

_R_CHECK_CODETOOLS_PROFILE_

A string with comma-separated name=value pairs (with value a
logical constant) giving additional arguments for the codetools
(https://CRAN.R-project.org/package=codetools) functions used
for analyzing package code. E.g., use _R_CHECK_CODETOOLS_PROFILE_

="suppressLocalUnused=FALSE" to turn off suppressing warnings about
unused local variables. Default: no additional arguments, corresponding
to using skipWith = TRUE, suppressPartialMatchArgs = FALSE and
suppressLocalUnused = TRUE.

_R_CHECK_CRAN_INCOMING_

Check whether package is suitable for publication on CRAN. Default: false,
except for CRAN submission checks.

_R_CHECK_CRAN_INCOMING_REMOTE_

Include checks that require remote access among the above. Default: same as
_R_CHECK_CRAN_INCOMING_

_R_CHECK_XREFS_USE_ALIASES_FROM_CRAN_

When checking anchored Rd xrefs, use Rd aliases from the CRAN package web
areas in addition to those in the packages installed locally. Default: false.

_R_SHLIB_BUILD_OBJECTS_SYMBOL_TABLES_

Make the checks of compiled code more accurate by recording the symbol tables
for objects (.o files) at installation in a file symbols.rds. (Only currently
supported on Linux, Solaris, macOS, Windows and FreeBSD.) Default: true.

_R_CHECK_CODE_ASSIGN_TO_GLOBALENV_

Should the package code be checked for assignments to the global environment?
Default: false (but true for CRAN submission checks).

_R_CHECK_CODE_ATTACH_

Should the package code be checked for calls to attach()? Default: false (but
true for CRAN submission checks).

_R_CHECK_CODE_DATA_INTO_GLOBALENV_

Should the package code be checked for calls to data() which load into the
global environment? Default: false (but true for CRAN submission checks).

_R_CHECK_DOT_FIRSTLIB_

Should the package code be checked for the presence of the obsolete function
.First.lib()? Default: false (but true for CRAN submission checks).

https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=codetools


Chapter 8: Tools 57

_R_CHECK_DEPRECATED_DEFUNCT_

Should the package code be checked for the presence of recently deprecated or
defunct functions (including completely removed functions). Also for platform-
specific graphics devices. Default: false (but true for CRAN submission checks).

_R_CHECK_SCREEN_DEVICE_

If set to ‘warn’, give a warning if examples etc open a screen device. If set to
‘stop’, give an error. Default: empty (but ‘stop’ for CRAN submission checks).

_R_CHECK_WINDOWS_DEVICE_

If set to ‘stop’, give an error if a Windows-only device is used in example etc.
This is only useful on Windows: the devices do not exist elsewhere. Default:
empty (but ‘stop’ for CRAN submission checks on Windows).

_R_CHECK_TOPLEVEL_FILES_

Report on top-level files in the package sources that are not described in ‘Writing
R Extensions’ nor are commonly understood (like ChangeLog). Variations on
standard names (e.g. COPYRIGHT) are also reported. Default: false (but true for
CRAN submission checks).

_R_CHECK_GCT_N_

Should the --use-gct use gctorture2(n) rather than gctorture(TRUE)? Use
a positive integer to enable this. Default: 0.

_R_CHECK_LIMIT_CORES_

If set, check the usage of too many cores in package parallel. If set to ‘warn’
gives a warning, to ‘false’ or ‘FALSE’ the check is skipped, and any other non-
empty value gives an error when more than 2 children are spawned. Default:
unset (but ‘TRUE’ for CRAN submission checks).

_R_CHECK_CODE_USAGE_VIA_NAMESPACES_

If set, check code usage (via codetools (https://CRAN.R-project.org/
package=codetools)) directly on the package namespace without loading and
attaching the package and its suggests and enhances. Default: true (and true
for CRAN submission checks).

_R_CHECK_CODE_USAGE_WITH_ONLY_BASE_ATTACHED_

If set, check code usage (via codetools (https://CRAN.R-project.org/
package=codetools)) with only the base package attached. Default: true.

_R_CHECK_EXIT_ON_FIRST_ERROR_

If set to a true value, the check will exit on the first error. Default: false.

_R_CHECK_S3_METHODS_NOT_REGISTERED_

If set to a true value, report (apparent) S3 methods exported but not registered.
Default: true.

_R_CHECK_OVERWRITE_REGISTERED_S3_METHODS_

If set to a true value, report already registered S3 methods in
base/recommended packages which are overwritten when this package’s
namespace is loaded. Default: false (but true for CRAN submission checks).

https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=codetools
https://CRAN.R-project.org/package=codetools


Chapter 8: Tools 58

_R_CHECK_TESTS_NLINES_

Number of trailing lines of test output to reproduce in the log. If 0 all lines
except the R preamble are reproduced. Default: 13.

_R_CHECK_NATIVE_ROUTINE_REGISTRATION_

If set to a true value, report if the entry points to register native routines and to
suppress dynamic search are not found in a package’s DLL. (NB: this requires
system command nm to be on the PATH. On Windows, objdump.exe is first
searched for in compiler toolchain specified via Makeconf (can be customized
by environment variable BINPREF). If not found there, it must be on the PATH.
On Unix this would be normal when using a package with compiled code (which
are the only ones this checks), but Windows’ users should check.) Default: false
(but true for CRAN submission checks).

_R_CHECK_NO_STOP_ON_TEST_ERROR_

If set to a true value, do not stop running tests after first error (as if command
line option --no-stop-on-test-error had been given). Default: false (but
true for CRAN submission checks).

_R_CHECK_PRAGMAS_

Run additional checks on the pragmas in C/C++ source code and headers.
Default: false (but true for CRAN submission checks).

_R_CHECK_COMPILATION_FLAGS_

If the package is installed and has C/C++/Fortran code, check the install
log for non-portable flags (for example those added to src/Makevars during
configuration). Currently -W flags are reported, except -Wall, -Wextra and
-Weverything, and flags which appear to be attempts to suppress warnings are
highlighted. See Section “Writing portable packages” in Writing R Extensions
for the rationale of this check (and why even -Werror is unsafe). Environment
variable _R_CHECK_COMPILATION_FLAGS_KNOWN_ can be set to a space-separated
set of flags which come from the R build used for testing (flags such as -Wall
and -Wextra are already known). For example, for CRAN build of R >= 4.0.0
on macOS one could use

_R_CHECK_COMPILATION_FLAGS_KNOWN_="-mmacosx-version-min=10.13"

Default: false (but true for CRAN submission checks).

_R_CHECK_R_DEPENDS_

Check that any dependence on R is not on a recent patch-level version such as
R (>= 3.3.3) since blocking installation of a package will also block its reverse
dependencies. Possible values ‘"note"’, ‘"warn"’ and logical values (where cur-
rently true values are equivalent to ‘"note"’). Default: false (but ‘"warn"’ for
--as-cran).

_R_CHECK_SERIALIZATION_

Check that serialized R objects in the package sources were serialized with
version 2 and there is no dependence on ‘R >= 3.5.0’. (Version 3 is in use as
from R 3.5.0 but should only be used when necessary.) Default: false (but true
for CRAN submission checks).



Chapter 8: Tools 59

_R_CHECK_R_ON_PATH_

This checks if the package attempts to use R or Rscript from the path rather
than that under test. It does so by putting scripts at the head of the path
which print a message and fail. Default: false (but true for CRAN submission
checks).

_R_CHECK_PACKAGES_USED_IN_TESTS_USE_SUBDIRS_

If set to a true value, also check the R code in common unit test subdirectories
of tests for undeclared package dependencies. Default: false (but true for
CRAN submission checks).

_R_CHECK_SHLIB_OPENMP_FLAGS_

Check correct and portable use of SHLIB_OPENMP_*FLAGS in src/Makevars (and
similar). Default: false (but true for CRAN submission checks).

_R_CHECK_CONNECTIONS_LEFT_OPEN_

When checking examples, check for each example if connections are left open:
if any are found, this is reported with a fatal error. NB: ‘connections’ in-
cludes most use of files and any parallel clusters which have not be stopped by
stopCluster(). Default: false (but true for CRAN submission checks).

_R_CHECK_FUTURE_FILE_TIMESTAMPS_

Check if any of the input files has a timestamp in the future (and to do so,
checks that the system clock is correct to within 5 minutes). Default: false (but
true for CRAN submission checks).

_R_CHECK_LENGTH_1_CONDITION_

Optionally check if the condition in if and while statements has length
greater than one. For a true value (‘T’, ‘True’, ‘TRUE’ or ‘true’), give an error.
For a false value (‘F’, ‘False’, ‘FALSE’ or ‘false’) or when unset, print a
warning. Any other non-true non-empty value needs to be a list of commands
separated by comma: ‘abort’ causes R to terminate unconditionally
instead of signalling an error, ‘verbose’ prints very detailed diagnostic
message, ‘package:pkg’ restricts the check to if/while statements executing
in the namespace of package ‘pkg’, ‘package:_R_CHECK_PACKAGE_NAME_’
restricts the check to if/while statements executing in the package that
is currently being checked by R CMD check, ‘warn’ causes R to report a
warning instead of signalling an error. Default: unset (warning is reported,
but ‘package:_R_CHECK_PACKAGE_NAME_,[abort,]verbose’ for the CRAN
submission checks).

_R_CHECK_LENGTH_1_LOGIC2_

Optionally check if an argument of the binary operators && and || has length
greater than one, checked only if it is used. The format is the same as for
‘_R_CHECK_LENGTH_1_CONDITION_’. Default: unset (nothing is reported,
but ‘package:_R_CHECK_PACKAGE_NAME_,[abort,]verbose’ for the CRAN
submission checks).

_R_CHECK_BUILD_VIGNETTES_SEPARATELY_

Prior to R 3.6.0, re-building the vignette outputs was done in a single R session
which allowed accidental reliance of one vignette on another (for example, in



Chapter 8: Tools 60

the loading of packages). The current default is to use a separate session for
each vignette; this option allows testing the older behaviour, Default: true

_R_CHECK_SYSTEM_CLOCK_

As part of the ‘checking for future file timestamps’ enabled by --as-cran, check
the system clock against an external clock to catch errors such as the wrong
day or even year. Not necessary on systems doing repeated checks. Default:
true (but false for CRAN checking)

_R_CHECK_AUTOCONF_

For packages with a configure file generated by GNU autoconf and either
configure.ac or configure,.in, check that autoreconf can, if available, be
run in a copy of the sources (this will detect missing source files and report
autoconf warnings). Default: false (but true for CRAN submission checks).

_R_CHECK_DATALIST_

Check whether file data/datalist is out-of-date. Default: false (but true for
CRAN submission checks).

_R_CHECK_THINGS_IN_CHECK_DIR_

Check and report at the end of the check run if files have been left in the check
directory. Default: false (but true for CRAN submission checks).

_R_CHECK_THINGS_IN_TEMP_DIR_

Check and report at the end of tthe check run if files would have been left
in the temporary directory (usually /tmp on a Unix-alike). It does this by
setting the environment variable TEMPDIR to a subdirectory of the R session
directory for the check process: if any files or directories are left there they are
removed. Since some of these might be out of the user’s control, environment
variable _R_CHECK_THINGS_IN_TEMP_DIR_EXCLUDE_ can specify an (extended
regex) pattern of file names not to be reported – CRAN uses ‘^ompi.’ for
directories left behind by OpenMPI. There are rare instances where TEMPDIR is
not respected and so files are left in /tmp (and not reported): one example is
/tmp/boost_interprocess on some OSes. Default: false (but true for CRAN
submission checks).

_R_CHECK_BASHISMS_

Check the top-level scripts configure (unless generated by autoconf) and
cleanup for non-Bourne-shell code, using the Perl script checkbashisms

if available. This includes reporting scripts using the non-portable #!

/bin/bash. (Script checkbashisms is available in most Linux distributions
in a package named either ‘devscripts’ or ‘devscripts-checkbashisms’ and
from https://sourceforge.net/projects/checkbaskisms/files.) Default:
false (but true for CRAN submission checks except on Windows).

_R_CHECK_ORPHANED_

Check if dependencies are orphaned packages. Default: false (but true for
CRAN submission checks)

_R_CHECK_EXCESSIVE_IMPORTS_

A positive integer. If set, give a NOTE if the number of imports from non-
base packages exceed this threshold. Large numbers of imports make a package

https://sourceforge.net/projects/checkbaskisms/files


Chapter 8: Tools 61

vulnerable to any of them becoming unavailable. Default: unset (but 20 for
CRAN submission checks)

_R_CHECK_DONTTEST_EXAMPLES_

If true and examples are found with \donttest sections, the tests are run in
one pass with these commented out and then in a second pass including the
\donttest sections, (for the main architecture only). Only for the first pass are
the results compared to any .Rout.save file and timings analysed. Overridden
by --run-donttest. Default: false unless -as-cran is specified (which can be
overridden by setting ‘_R_CHECK_DONTTEST_EXAMPLES_=false’).

CRAN’s submission checks use something like

_R_CHECK_CRAN_INCOMING_=TRUE

_R_CHECK_CRAN_INCOMING_REMOTE_=TRUE

_R_CHECK_VC_DIRS_=TRUE

_R_CHECK_TIMINGS_=10

_R_CHECK_INSTALL_DEPENDS_=TRUE

_R_CHECK_SUGGESTS_ONLY_=TRUE

_R_CHECK_NO_RECOMMENDED_=TRUE

_R_CHECK_EXECUTABLES_EXCLUSIONS_=FALSE

_R_CHECK_DOC_SIZES2_=TRUE

_R_CHECK_CODE_ASSIGN_TO_GLOBALENV_=TRUE

_R_CHECK_CODE_ATTACH_=TRUE

_R_CHECK_CODE_DATA_INTO_GLOBALENV_=TRUE

_R_CHECK_CODE_USAGE_VIA_NAMESPACES_=TRUE

_R_CHECK_DOT_FIRSTLIB_=TRUE

_R_CHECK_DEPRECATED_DEFUNCT_=TRUE

_R_CHECK_REPLACING_IMPORTS_=TRUE

_R_CHECK_SCREEN_DEVICE_=stop

_R_CHECK_TOPLEVEL_FILES_=TRUE

_R_CHECK_S3_METHODS_NOT_REGISTERED_=TRUE

_R_CHECK_OVERWRITE_REGISTERED_S3_METHODS_=TRUE

_R_CHECK_PRAGMAS_=TRUE

_R_CHECK_COMPILATION_FLAGS_=TRUE

_R_CHECK_R_DEPENDS_=warn

_R_CHECK_SERIALIZATION_=TRUE

_R_CHECK_R_ON_PATH_=TRUE

_R_CHECK_PACKAGES_USED_IN_TESTS_USE_SUBDIRS_=TRUE

_R_CHECK_SHLIB_OPENMP_FLAGS_=TRUE

_R_CHECK_CONNECTIONS_LEFT_OPEN_=TRUE

_R_CHECK_FUTURE_FILE_TIMESTAMPS_=TRUE

_R_CHECK_LENGTH_1_CONDITION_=package:_R_CHECK_PACKAGE_NAME_,abort,verbose

_R_CHECK_LENGTH_1_LOGIC2_=package:_R_CHECK_PACKAGE_NAME_,abort,verbose

_R_CHECK_AUTOCONF_=true

_R_CHECK_DATALIST_=true

_R_CHECK_THINGS_IN_CHECK_DIR_=true

_R_CHECK_THINGS_IN_TEMP_DIR_=true

_R_CHECK_BASHISMS_=true



Chapter 8: Tools 62

_R_CLASS_MATRIX_ARRARY_=true

_R_CHECK_ORPHANED_=true

These are turned on by R CMD check --as-cran: the incoming checks also use

_R_CHECK_FORCE_SUGGESTS_=FALSE

since some packages do suggest other packages not available on CRAN or other commonly-
used repositories.

Several environment variables can be used to set ‘timeouts’: limits for the elapsed time
taken by the sub-processes used for parts of the checks. A value of 0 indicates no limit,
and is the default. Character strings ending in ‘s’, ‘m’ or ‘h’ indicate a number of seconds,
minutes or hours respectively: other values are interpreted as a whole number of seconds
(with invalid inputs being treated as no limit).

_R_CHECK_ELAPSED_TIMEOUT_

The default timeout for sub-processes not otherwise mentioned, and the default
value for all except _R_CHECK_ONE_TEST_ELAPSED_TIMEOUT_. (This is also used
by tools::check_packages_in_dir.)

_R_CHECK_INSTALL_ELAPSED_TIMEOUT_

Limit for when R CMD INSTALL is run by check.

_R_CHECK_EXAMPLES_ELAPSED_TIMEOUT_

Limit for running all the examples for one sub-architecture.

_R_CHECK_ONE_TEST_ELAPSED_TIMEOUT_

Limit for running one test for one sub-architecture. Default _R_CHECK_TESTS_
ELAPSED_TIMEOUT_.

_R_CHECK_TESTS_ELAPSED_TIMEOUT_

Limit for running all the tests for one sub-architecture (and the default limit
for running one test).

_R_CHECK_ONE_VIGNETTE_ELAPSED_TIMEOUT_

Limit for running the R code in one vignette, including for re-building each
vignette separately.

_R_CHECK_BUILD_VIGNETTES_ELAPSED_TIMEOUT_

Limit for re-building all vignettes.

_R_CHECK_PKGMAN_ELAPSED_TIMEOUT_

Limit for each attempt at building the PDF package manual.

Another variable which enables stricter checks is to set R_CHECK_CONSTANTS to 5. This
checks that nothing3 changes the values of ‘constants’4 in R code. This is best used in
conjunction with setting R_JIT_STRATEGY to 3, which checks code on first use (by default
most code is only checked after byte-compilation on second use). Unfortunately these checks
slow down checking of examples, tests and vignettes, typically two-fold but in the worst cases
at least a hundred-fold.

3 The usual culprits are calls to compiled code via .Call or .External which alter their arguments.
4 things which the byte compiler assumes do not change, e.g. function bodies.



63

9 R coding standards

R is meant to run on a wide variety of platforms, including Linux and most variants of
Unix as well as Windows and macOS. Therefore, when extending R by either adding to
the R base distribution or by providing an add-on package, one should not rely on features
specific to only a few supported platforms, if this can be avoided. In particular, although
most R developers use GNU tools, they should not employ the GNU extensions to standard
tools. Whereas some other software packages explicitly rely on e.g. GNU make or the GNU

C++ compiler, R does not. Nevertheless, R is a GNU project, and the spirit of the GNU

Coding Standards should be followed if possible.

The following tools can “safely be assumed” for R extensions.

• An ISO C99 C compiler. Note that extensions such as POSIX 1003.1 must be tested
for, typically using Autoconf unless you are sure they are supported on all mainstream
R platforms (including Windows and macOS).

• A fixed-form Fortran compiler.

• A simple make, considering the features of make in 4.2 BSD systems as a baseline.

GNU or other extensions, including pattern rules using ‘%’, the automatic variable ‘$^’,
the ‘+=’ syntax to append to the value of a variable, the (“safe”) inclusion of makefiles
with no error, conditional execution, and many more, must not be used (see Chapter
“Features” in the GNU Make Manual for more information). On the other hand,
building R in a separate directory (not containing the sources) should work provided
that make supports the VPATH mechanism.

Windows-specific makefiles can assume GNU make 3.79 or later, as no other make is
viable on that platform.

• A Bourne shell and the “traditional” Unix programming tools, including grep, sed,
and awk.

There are POSIX standards for these tools, but these may not be fully supported.
Baseline features could be determined from a book such as The UNIX Programming
Environment by Brian W. Kernighan & Rob Pike. Note in particular that ‘|’ in a
regexp is an extended regexp, and is not supported by all versions of grep or sed. The
Open Group Base Specifications, Issue 7, which are technically identical to IEEE Std
1003.1 (POSIX), 2008, are available at https://pubs.opengroup.org/onlinepubs/

9699919799/mindex.html.

Under Windows, most users will not have these tools installed, and you should not require
their presence for the operation of your package. However, users who install your package
from source will have them, as they can be assumed to have followed the instructions in “the
Windows toolset” appendix of the “R Installation and Administration” manual to obtain
them. Redirection cannot be assumed to be available via system as this does not use a
standard shell (let alone a Bourne shell).

In addition, the following tools are needed for certain tasks.

• Perl version 5 is only needed for the maintainer-only script tools/help2man.pl.

• Makeinfo version 4.7 or later is needed to build the Info files for the R manuals written
in the GNU Texinfo system.

https://pubs.opengroup.org/onlinepubs/9699919799/mindex.html
https://pubs.opengroup.org/onlinepubs/9699919799/mindex.html


Chapter 9: R coding standards 64

It is also important that code is written in a way that allows others to understand it. This
is particularly helpful for fixing problems, and includes using self-descriptive variable names,
commenting the code, and also formatting it properly. The R Core Team recommends
to use a basic indentation of 4 for R and C (and most likely also Perl) code, and 2 for
documentation in Rd format. Emacs (21 or later) users can implement this indentation
style by putting the following in one of their startup files, and using customization to set
the c-default-style to "bsd" and c-basic-offset to 4.)

;;; ESS

(add-hook ’ess-mode-hook

(lambda ()

(ess-set-style ’C++ ’quiet)

;; Because

;; DEF GNU BSD K&R C++

;; ess-indent-level 2 2 8 5 4

;; ess-continued-statement-offset 2 2 8 5 4

;; ess-brace-offset 0 0 -8 -5 -4

;; ess-arg-function-offset 2 4 0 0 0

;; ess-expression-offset 4 2 8 5 4

;; ess-else-offset 0 0 0 0 0

;; ess-close-brace-offset 0 0 0 0 0

(add-hook ’local-write-file-hooks

(lambda ()

(ess-nuke-trailing-whitespace)))))

(setq ess-nuke-trailing-whitespace-p ’ask)

;; or even

;; (setq ess-nuke-trailing-whitespace-p t)

;;; Perl

(add-hook ’perl-mode-hook

(lambda () (setq perl-indent-level 4)))

(The ‘GNU’ styles for Emacs’ C and R modes use a basic indentation of 2, which has been
determined not to display the structure clearly enough when using narrow fonts.)



65

10 Testing R code

When you (as R developer) add new functions to the R base (all the packages distributed
with R), be careful to check if make test-Specific or particularly, cd tests; make no-

segfault.Rout still works (without interactive user intervention, and on a standalone com-
puter). If the new function, for example, accesses the Internet, or requires GUI interaction,
please add its name to the “stop list” in tests/no-segfault.Rin.

[To be revised: use make check-devel, check the write barrier if you change internal
structures.]



66

11 Use of TeX dialects

Various dialects of TeX are used for different purposes in R. The policy is that manuals be
written in ‘texinfo’, and for convenience the main and Windows FAQs are also. This has
the advantage that is is easy to produce HTML and plain text versions as well as typeset
manuals.

LATEX is not used directly, but rather as an intermediate format for typeset help docu-
ments and for vignettes.

Care needs to be taken about the assumptions made about the R user’s system: it may
not have either ‘texinfo’ or a TeX system installed. We have attempted to abstract out
the cross-platform differences, and almost all the setting of typeset documents is done by
tools::texi2dvi. This is used for offline printing of help documents, preparing vignettes
and for package manuals via R CMD Rd2pdf. It is not currently used for the R manuals
created in directory doc/manual.

tools::texi2dvi makes use of a system command texi2dvi where available. On a
Unix-alike this is usually part of ‘texinfo’, whereas on Windows if it exists at all it would
be an executable, part of MiKTeX. If none is available, the R code runs a sequence of
(pdf)latex, bibtex and makeindex commands.

This process has been rather vulnerable to the versions of the external software used:
particular issues have been texi2dvi and texinfo.tex updates, mismatches between the
two1, versions of the LATEX package ‘hyperref’ and quirks in index production. The licenses
used for LATEX and latterly ‘texinfo’ prohibit us from including ‘known good’ versions in
the R distribution.

On a Unix-alike configure looks for the executables for TeX and friends and if found
records the absolute paths in the system Renviron file. This used to record ‘false’ if no
command was found, but it nowadays records the name for looking up on the path at run
time. The latter can be important for binary distributions: one does not want to be tied
to, for example, TeX Live 2007.

1 Linux distributions tend to unbundle texinfo.tex from ‘texinfo’.



67

12 Current and future directions

This chapter is for notes about possible in-progress and future changes to R: there is no
commitment to release such changes, let alone to a timescale.

12.1 Long vectors

Vectors in R 2.x.y were limited to a length of 2^31 - 1 elements (about 2 billion), as the
length is stored in the SEXPREC as a C int, and that type is used extensively to record
lengths and element numbers, including in packages.

Note that longer vectors are effectively impossible under 32-bit platforms because of their
address limit, so this section applies only on 64-bit platforms. The internals are unchanged
on a 32-bit build of R.

A single object with 2^31 or more elements will take up at least 8GB of memory if
integer or logical and 16GB if numeric or character, so routine use of such objects is still
some way off.

There is now some support for long vectors. This applies to raw, logical, integer, numeric
and character vectors, and lists and expression vectors. (Elements of character vectors
(CHARSXPs) remain limited to 2^31 - 1 bytes.) Some considerations:

• This has been implemented by recording the length (and true length) as -1 and record-
ing the actual length as a 64-bit field at the beginning of the header. Because a fair
amount of code in R uses a signed type for the length, the ‘long length’ is recorded
using the signed C99 type ptrdiff_t, which is typedef-ed to R_xlen_t.

• These can in theory have 63-bit lengths, but note that current 64-bit OSes do not even
theoretically offer 64-bit address spaces and there is currently a 52-bit limit (which
exceeds the theoretical limit of current OSes and ensures that such lengths can be
stored exactly in doubles).

• The serialization format has been changed to accommodate longer lengths, but vectors
of lengths up to 2^31-1 are stored in the same way as before. Longer vectors have
their length field set to -1 and followed by two 32-bit fields giving the upper and lower
32-bits of the actual length. There is currently a sanity check which limits lengths to
2^48 on unserialization.

• The type R_xlen_t is made available to packages in C header Rinternals.h: this
should be fine in C code since C99 is required. People do try to use R internals in C++,
but C++98 compilers are not required to support these types.

• Indexing can be done via the use of doubles. The internal indexing code used to work
with positive integer indices (and negative, logical and matrix indices were all converted
to positive integers): it now works with either INTSXP or REALSXP indices.

• The R function length returns a double value if the length exceeds 2^31-1. Code
calling as.integer(length(x)) before passing to .C/.Fortran should checks for an
NA result.



Chapter 12: Current and future directions 68

12.2 64-bit types

There is also some desire to be able to store larger integers in R, although the possibility of
storing these as double is often overlooked (and e.g. file pointers as returned by seek are
already stored as double).

Different routes have been proposed:

• Add a new type to R and use that for lengths and indices—most likely this would be
a 64-bit signed type, say longint. R’s usual implicit coercion rules would ensure that
supplying an integer vector for indexing or length<- would work.

• A more radical alternative is to change the existing integer type to be 64-bit on
64-bit platforms (which was the approach taken by S-PLUS for DEC/Compaq Alpha
systems). Or even on all platforms.

• Allow either integer or double values for lengths and indices, and return double only
when necessary.

The third has the advantages of minimal disruption to existing code and not increasing
memory requirements. In the first and third scenarios both R’s own code and user code
would have to be adapted for lengths that were not of type integer, and in the third code
branches for long vectors would be tested rarely.

Most users of the .C and .Fortran interfaces use as.integer for lengths and element
numbers, but a few omit these in the knowledge that these were of type integer. It may
be reasonable to assume that these are never intended to be used with long vectors.

The remaining interfaces will need to cope with the changed VECTOR_SEXPREC types. It
seems likely that in most cases lengths are accessed by the length and LENGTH functions1

The current approach is to keep these returning 32-bit lengths and introduce ‘long’ versions
xlength and XLENGTH which return R_xlen_t values.

See also https://homepage.cs.uiowa.edu/~luke/talks/useR10.pdf.

12.3 Large matrices

Matrices are stored as vectors and so were also limited to 2^31-1 elements. Now longer
vectors are allowed on 64-bit platforms, matrices with more elements are supported provided
that each of the dimensions is no more than 2^31-1. However, not all applications can be
supported.

The main problem is linear algebra done by Fortran code compiled with 32-bit INTEGER.
Although not guaranteed, it seems that all the compilers currently used with R on a 64-bit
platform allow matrices each of whose dimensions is less than 2^31 but with more than
2^31 elements, and index them correctly, and a substantial part of the support software
(such as BLAS and LAPACK) also work.

There are exceptions: for example some complex LAPACK auxiliary routines do use a
single INTEGER index and hence overflow silently and segfault or give incorrect results. One
example is svd() on a complex matrix.

Since this is implementation-dependent, it is possible that optimized BLAS and LAPACK

may have further restrictions, although none have yet been encountered. For matrix alge-

1 but LENGTH is a macro under some internal uses.

https://homepage.cs.uiowa.edu/~luke/talks/useR10.pdf


Chapter 12: Current and future directions 69

bra on large matrices one almost certainly wants a machine with a lot of RAM (100s of
gigabytes), many cores and a multi-threaded BLAS.



70

Function and variable index

.

.Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

.Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

.Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

.Last.value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

.Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

.Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

.Random.seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

.SavedPlots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

.Traceback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

_R_CHECK_ALL_NON_ISO_C_ . . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ . . . . . . 54
_R_CHECK_ASCII_CODE_ . . . . . . . . . . . . . . . . . . . . . . . . 53
_R_CHECK_ASCII_DATA_ . . . . . . . . . . . . . . . . . . . . . . . . 53
_R_CHECK_AUTOCONF_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
_R_CHECK_BASHISMS_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
_R_CHECK_BUILD_VIGNETTES_

ELAPSED_TIMEOUT_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
_R_CHECK_BUILD_VIGNETTES_SEPARATELY_ . . . . . . 59
_R_CHECK_CLEAN_VIGN_TEST_ . . . . . . . . . . . . . . . . . . . 54
_R_CHECK_CODE_ASSIGN_TO_GLOBALENV_ . . . . . . . . 56
_R_CHECK_CODE_ATTACH_ . . . . . . . . . . . . . . . . . . . . . . . 56
_R_CHECK_CODE_DATA_INTO_GLOBALENV_ . . . . . . . . 56
_R_CHECK_CODE_USAGE_VIA_NAMESPACES_ . . . . . . . 57
_R_CHECK_CODE_USAGE_WITH_ONLY_

BASE_ATTACHED_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
_R_CHECK_CODETOOLS_PROFILE_ . . . . . . . . . . . . . . . . 56
_R_CHECK_CODOC_S4_METHODS_ . . . . . . . . . . . . . . . . . . 52
_R_CHECK_COMPACT_DATA_ . . . . . . . . . . . . . . . . . . . . . . 53
_R_CHECK_COMPILATION_FLAGS_ . . . . . . . . . . . . . . . . 58
_R_CHECK_CONNECTIONS_LEFT_OPEN_ . . . . . . . . . . . . 59
_R_CHECK_CRAN_INCOMING_ . . . . . . . . . . . . . . . . . . . . . 56
_R_CHECK_CRAN_INCOMING_REMOTE_ . . . . . . . . . . . . . 56
_R_CHECK_DATALIST_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
_R_CHECK_DEPENDS_ONLY_ . . . . . . . . . . . . . . . . . . . . . . 55
_R_CHECK_DEPENDS_ONLY_DATA_ . . . . . . . . . . . . . . . . 55
_R_CHECK_DEPRECATED_DEFUNCT_ . . . . . . . . . . . . . . . 57
_R_CHECK_DOC_SIZES_ . . . . . . . . . . . . . . . . . . . . . . . . . . 54
_R_CHECK_DOC_SIZES2_ . . . . . . . . . . . . . . . . . . . . . . . . 54
_R_CHECK_DONTTEST_EXAMPLES_ . . . . . . . . . . . . . . . . 61
_R_CHECK_DOT_FIRSTLIB_ . . . . . . . . . . . . . . . . . . . . . . 56
_R_CHECK_DOT_INTERNAL_ . . . . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_ELAPSED_TIMEOUT_ . . . . . . . . . . . . . . . . . . . 62
_R_CHECK_EXAMPLE_TIMING_CPU_TO_

ELAPSED_THRESHOLD_ . . . . . . . . . . . . . . . . . . . . . . . . 55
_R_CHECK_EXAMPLE_TIMING_THRESHOLD_ . . . . . . . . 55
_R_CHECK_EXAMPLES_ELAPSED_TIMEOUT_ . . . . . . . . 62
_R_CHECK_EXCESSIVE_IMPORTS_ . . . . . . . . . . . . . . . . 60
_R_CHECK_EXECUTABLES_ . . . . . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_EXECUTABLES_EXCLUSIONS_ . . . . . . . . . . . 52
_R_CHECK_EXIT_ON_FIRST_ERROR_ . . . . . . . . . . . . . . 57

_R_CHECK_FF_CALLS_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_FF_DUP_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_FORCE_SUGGESTS_ . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_FUTURE_FILE_TIMESTAMPS_ . . . . . . . . . . . 59
_R_CHECK_GCT_N_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
_R_CHECK_INSTALL_DEPENDS_ . . . . . . . . . . . . . . . . . . . 55
_R_CHECK_INSTALL_ELAPSED_TIMEOUT_ . . . . . . . . . 62
_R_CHECK_LENGTH_1_CONDITION_ . . . . . . . . . . . . . . . 59
_R_CHECK_LENGTH_1_LOGIC2_ . . . . . . . . . . . . . . . . . . . 59
_R_CHECK_LICENSE_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_LIMIT_CORES_ . . . . . . . . . . . . . . . . . . . . . . . 57
_R_CHECK_NATIVE_ROUTINE_REGISTRATION_ . . . . . 58
_R_CHECK_NO_RECOMMENDED_ . . . . . . . . . . . . . . . . . . . . 56
_R_CHECK_NO_STOP_ON_TEST_ERROR_ . . . . . . . . . . . . 58
_R_CHECK_ONE_TEST_ELAPSED_TIMEOUT_ . . . . . . . . 62
_R_CHECK_ONE_VIGNETTE_ELAPSED_TIMEOUT_ . . . . 62
_R_CHECK_ORPHANED_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
_R_CHECK_OVERWRITE_

REGISTERED_S3_METHODS_ . . . . . . . . . . . . . . . . . . . . 57
_R_CHECK_PACKAGES_USED_IN_

TESTS_USE_SUBDIRS_ . . . . . . . . . . . . . . . . . . . . . . . . 59
_R_CHECK_PERMISSIONS_ . . . . . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_PKG_SIZES_ . . . . . . . . . . . . . . . . . . . . . . . . . . 54
_R_CHECK_PKG_SIZES_THRESHOLD_ . . . . . . . . . . . . . . 54
_R_CHECK_PKGMAN_ELAPSED_TIMEOUT_ . . . . . . . . . . . 62
_R_CHECK_PRAGMAS_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
_R_CHECK_R_DEPENDS_ . . . . . . . . . . . . . . . . . . . . . . . . . . 58
_R_CHECK_R_ON_PATH_ . . . . . . . . . . . . . . . . . . . . . . . . . . 59
_R_CHECK_RD_CHECKRD_MINLEVEL_ . . . . . . . . . . . . . . 53
_R_CHECK_RD_CONTENTS_ . . . . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_RD_EXAMPLES_T_AND_F_ . . . . . . . . . . . . . . 53
_R_CHECK_RD_LINE_WIDTHS_ . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_RD_STYLE_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_RD_XREFS_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_REPLACING_IMPORTS_ . . . . . . . . . . . . . . . . 54
_R_CHECK_S3_METHODS_NOT_REGISTERED_ . . . . . . . 57
_R_CHECK_SCREEN_DEVICE_ . . . . . . . . . . . . . . . . . . . . . 57
_R_CHECK_SERIALIZATION_ . . . . . . . . . . . . . . . . . . . . . 58
_R_CHECK_SHLIB_OPENMP_FLAGS_ . . . . . . . . . . . . . . . 59
_R_CHECK_SKIP_ARCH_ . . . . . . . . . . . . . . . . . . . . . . . . . . 53
_R_CHECK_SKIP_EXAMPLES_ARCH_ . . . . . . . . . . . . . . . 53
_R_CHECK_SKIP_TESTS_ARCH_ . . . . . . . . . . . . . . . . . . . 53
_R_CHECK_SRC_MINUS_W_IMPLICIT_ . . . . . . . . . . . . . 53
_R_CHECK_SRC_MINUS_W_UNUSED_ . . . . . . . . . . . . . . . 53
_R_CHECK_SUBDIRS_NOCASE_ . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_SUBDIRS_STRICT_ . . . . . . . . . . . . . . . . . . . . 51
_R_CHECK_SUGGESTS_ONLY_ . . . . . . . . . . . . . . . . . . . . . 55
_R_CHECK_SYSTEM_CLOCK_ . . . . . . . . . . . . . . . . . . . . . . 60
_R_CHECK_TEST_TIMING_CPU_TO_

ELAPSED_THRESHOLD_ . . . . . . . . . . . . . . . . . . . . . . . . 55
_R_CHECK_TESTS_ELAPSED_TIMEOUT_ . . . . . . . . . . . . 62
_R_CHECK_TESTS_NLINES_ . . . . . . . . . . . . . . . . . . . . . . 58
_R_CHECK_THINGS_IN_CHECK_DIR_ . . . . . . . . . . . . . . 60
_R_CHECK_THINGS_IN_TEMP_DIR_ . . . . . . . . . . . . . . . 60
_R_CHECK_TIMINGS_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Function and variable index 71

_R_CHECK_TOPLEVEL_FILES_ . . . . . . . . . . . . . . . . . . . . 57
_R_CHECK_UNSAFE_CALLS_ . . . . . . . . . . . . . . . . . . . . . . 54
_R_CHECK_USE_CODETOOLS_ . . . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_USE_INSTALL_LOG_ . . . . . . . . . . . . . . . . . . . 52
_R_CHECK_VC_DIRS_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
_R_CHECK_VIGNETTE_TIMING_CPU_TO_

ELAPSED_THRESHOLD_ . . . . . . . . . . . . . . . . . . . . . . . . 55
_R_CHECK_VIGNETTES_NLINES_ . . . . . . . . . . . . . . . . . . 52
_R_CHECK_WALL_FORTRAN_ . . . . . . . . . . . . . . . . . . . . . . 53
_R_CHECK_WINDOWS_DEVICE_ . . . . . . . . . . . . . . . . . . . . 57
_R_CHECK_XREFS_REPOSITORIES_ . . . . . . . . . . . . . . . 53
_R_CHECK_XREFS_USE_ALIASES_FROM_CRAN_ . . . . . 56
_R_SHLIB_BUILD_OBJECTS_SYMBOL_TABLES_ . . . . . 56

A
alloca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ARGSUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
attribute_hidden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ATTRIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C
Calloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
copyMostAttrib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

D
DDVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
debug bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
DispatchGeneric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DispatchOrEval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dump.frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DUPLICATE_ATTRIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

E
emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
errorcall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

F
Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

G
gp bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I
invisible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

L
last.warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

M
make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
makeinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
MISSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 12
mkChar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
mkCharLenCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

N
named bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
NAMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 11, 28

P
Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
PRIMPRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PRSEEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

R
R_alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
R_AllocStringBuffer . . . . . . . . . . . . . . . . . . . . . . . . . . 21
R_BaseNamespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
R_CheckStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
R_CheckStack2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
R_FreeStringBuffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
R_FreeStringBufferL . . . . . . . . . . . . . . . . . . . . . . . . . . 21
R_MissingArg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
R_Visible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Rdll.hide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Realloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

S
SET_ARGUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
SET_ATTRIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SET_DDVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SET_MISSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
SET_NAMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
SETLEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
spare bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

T
trace bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

U
UseMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

V
vmaxget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
vmaxset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Function and variable index 72

W
warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
warningcall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



73

Concept index

.

... argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 13

.Internal function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A
allocation classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
argument evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
argument list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
atomic vector type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
attributes, preserving . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
autoprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B
base environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 22
base namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
builtin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C
coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
copying semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 9

E
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
environment, base . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 22
environment, global . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

F
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

G
garbage collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
generic, generic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
generic, internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
global environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

L
language object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

M
method dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
missingness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

N
namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
namespace, base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

P
preserving attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
primitive function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
promise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

S
S4 type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
search path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SEXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SEXPRREC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SEXPTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SEXPTYPE table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
special function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

U
user databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

V
variable lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
vector type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

W
write barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14


	1 R Internal Structures
	SEXPs
	SEXPTYPEs
	Rest of header
	The `data'
	Allocation classes

	Environments and variable lookup
	Search paths
	Namespaces
	Hash table

	Attributes
	Contexts
	Argument evaluation
	Missingness
	Dot-dot-dot arguments

	Autoprinting
	The write barrier and the garbage collector
	Serialization Formats
	Encodings for CHARSXPs
	The CHARSXP cache
	Warnings and errors
	S4 objects
	Representation of S4 objects
	S4 classes
	S4 methods
	Mechanics of S4 dispatch

	Memory allocators
	Internals of R_alloc

	Internal use of global and base environments
	Base environment
	Global environment

	Modules
	Visibility
	Hiding C entry points
	Variables in Windows DLLs

	Lazy loading

	2 .Internal vs .Primitive
	Special primitives
	Special internals
	Prototypes for primitives
	Adding a primitive

	3 Internationalization in the R sources
	R code
	Main C code
	Windows-GUI-specific code
	macOS GUI
	Updating

	4 Structure of an Installed Package
	Metadata
	Help

	5 Files
	6 Graphics
	Graphics Devices
	Device structures
	Device capabilities
	Handling text
	Conventions
	`Mode'
	Graphics events
	Specific devices
	X11()
	windows()


	Colours
	Base graphics
	Arguments and parameters

	Grid graphics

	7 GUI consoles
	R.app

	8 Tools
	9 R coding standards
	10 Testing R code
	11 Use of TeX dialects
	12 Current and future directions
	Long vectors
	64-bit types
	Large matrices

	Function and variable index
	Concept index

