R: A Language and Environment for
Statistical Computing

Reference Index

The R Core Team

Version 4.0.5 (2021-03-31)

Copyright (©) 1999-2012 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
https://www.gnu.org/copyleft/gpl.html.

Contents

I

1

1 The base package 3
base-package 3
Jbincode 3
Device e 4
Machine 5
Platform L L 8
abbreviate L. 9
T4 () o P 11
all . . e 13
allequal L L 15
allnames L e 18
ANY . . o v e e e e e e e e e e e e e e e e 19
APETIINL . .« v v v vt e e e e e e e e e e e e e e e e e e 20
append e e e 21
apply . . e 22
ATES o v e e e e e e e e e e e e e e e e 24
Arithmetic e 25
AITAY © o v o v v e 28
as.dataframe 30
as.Date L e e 32
AS.eNVIFONMENt o ot e e e e e e e e e e 35
as.function L L 36
as.POSIX* e 37
Asls . . e e e e 40
asplit e 41
ASSIZN . . . e e e e e 42
assignOPs L e 44
attach e 45
A . . . L e e e e e 47
attributes L. L e 48
autoload L. L 50
backsolve e e e 51
basename L e e e e 52
Bessel 53

CONTENTS

bindenv e e e 57
DItwise e e e e 59
body e 60
bquote L 61
Browser e e e e e 62
browserText e e e 64
builtins L e e e 65
DY . e e e 66
C e e e e e e 67
call L e 69
callCC e e 70
CallExternal e 71
capabilities L. 73
CAL . . o e e e e e 75
chind e 76
charexpand L 80
character e 81
charmatch e 82
chartr e e e e 83
chkDots e 85
chol e 86
chol2inv e e 88
class . . .o 89
Col . . e e e 92
Colon e 93
COlSUMS e e e 94
commandArgs 96
COMMENL v v o e o e e e e e e e e e e e e e e e e 97
CompariSOn e e e e e e e e e e 97
complex 100
conditionS L L e e 102
conflicts L e 106
CONNECLIONS . .« . v v v e 107
Constants e e e e e 118
contributors L. e e 119
Control e e e 119
copyright L e e e 121
Crossprod e e e 121
Cstack_info e 122
CUMSUIML . & v v v v v v e 123
curlGetHeaders 124
CUL . . o e e e e e e e 126
cut POSIXt e e 128
data.class e e 130
dataframe 131
datamatriX e e e e e e e e e 133
date e e 135

CONTENTS iii

DateTimeClasses o v i it e e 137
def o e e e e 141
debug 143
Defunct e 145
delayedAssSign e e e e e e 146
deparse L e e e 147
deparseOpts 149
Deprecated e e e 152
det . . . e 153
detach e 154
diag . . .o 156
diff . . e e 158
difftime 159
dim ..o e e 161
dimnames e e e e e 162
do.call e e e 164
dontCheck e 166
dOts . . . e 166
double e 167
dput 169
drop . . .o 171
droplevels L e 172
dump . . . 173
duplicated 175
dyndoad e 177
aPPLY . . . e e e 180
CIZEN L e 181
encodeString 183
Encoding e 185
ENVIFONMENL v o v v ot i e e e e e e e e e e e e e e e e e e e 186
EnvVar e 189
eval ..o e 191
BXISES . . . e e e e e e e e e 194
expand.grid 196
EXPIESSION .« . . v vt e e e e e e e 197
Extract e e 198
Extract.dataframe 203
Extractfactor e e e 207
Extremes e e 208
extSoftVersion e e 210
factor e 212
file.access e e 216
file.choose 217
fileinfo 217
filepath L 219
file.show e 220
files e e 221

iv

CONTENTS
find.package e 226
findInterval e 228
force e e e e 230
forceAndCall 231
Foreign e 231
formals e e 234
format L 235
format.info L e 238
formatpval 240
formatC e e e e 241
formatDL e 246
function L L e 247
funprog L e 248
BC o e 250
GCHME e e e e e e e 252
GCLOTTUTE o o 253
BEL . o e e 254
getDLLRegisteredRoutines 256
getLoadedDLLs e e 257
getNativeSymbollnfo L 258
GELEEXE . . o e e 261
getWd . . e e e e 262
gl e 263
BIED .« v i i e e e e e e e e e 264
grepRaw L e e e 270
GrOUPGENETIC v v v et e e e e e e e e e e e e 272
SIOUPING .« © o v v v v v e e e e e e e e e e e e 275
SZCOM . o o v e i e e e e e e e e e e e 276
hexmode 277
Hyperbolic 278
ICONV . . o o o e 279
icuSetCollate L 282
identical L L e 285
identity L. 288
ifelse oo 288
INEZET . . . v v o e e e e e e e e e e e e e 290
INETACtiON v o e i e i e e e e e e e e e e e e e e e 292
INTETACHIVE o e e e e e e e e 293
Internal e 294
InternalMethods 294
nvisible L e e e e e e e 296
isfinite 297
isfunction L 299
isdanguage 299
1S.ODJECt . . o o e 300
ISR e 301
ISTECUTSIVE . . v v v v v o e e e e e e e e e e e e e e e e e e e 302

is.singleo 303

CONTENTS v

isaunsorted L. L L e e e 303
ISOdatetime e 304
ISSA L e 305
ISSymmetric e 306
JIEET © o o e e e e e e e 307
kappa e 308
kronecker L 310
1HOn_info e e 312
labels e e e 312
lapply o e 313
Lastvalue e e e 316
La_library o e e 317
La version s 317
length o L 318
lengths L L e e 319
levels e e e 321
libcurlVersion e 322
libPaths e 323
library e e 325
library.dynam 329
LICENSE e e e 331
LISt . . e e e e e 332
List.files e e 334
Lst2DE . . . e e 335
LSt2eNV L e e e e e 336
load e e 338
locales e e e 340
1og . o o e 342
Logic e e e 344
logical 346
LongVectors o o e 347
JOWertri e 348
IS . o e e e e e 349
mMakKe.names e 350
make.unique e e e 352
mapply e e e e e 353
marginSums e e e e e e 354
MALOLVEC . . . v v v v e o e e e e e e e e e e e e e e e e 355
match e e 356
match.arg 358
match.call 359
match.fun L e 360
MathFun e e e e e 362
matmult e e e 363
MAtFIX o e s e e e e e e e e e e e e e e e 364
maxCol e 366
011 o 367

vi

CONTENTS
memlimits e e e e e e e e e e e e 370
Memory e 371
Memory-limits 372
memory.profile 373
TMETEE . v v v v e 374
MESSAZE .+« v v v v v e 377
MUSSING . . o v vt e e e e e 378
mode e 379
NA . e 381
NAME . . . o v v v v e 383
2 0T 385
NATES . .« v v v v e 386
nchar L e e e 387
nlevels oL 390
NOQUOLE .« v v v o v e 391
107 3 0 0 392
normalizePath 394
NotYet o e 395
IIOW . o o v et e e e e e e e e e e e e e e e e e 396
ns-dblcolon 397
ns-hooks . . . L 398
ns-load . . .o 400
DS-TOPENV o o e e e e e e e 402
NULL . . . 403
NUIMETIC .+ v v v v vt o e e e e e e e e e e e e e e e e e e e 404
NumericConstants o o v vttt e e e e e e e e e 406
NUMETIC_VEISION v o v e e e e e e e e e e s s e 407
octmode 409
OMLEXIL & v v v v e o e e e e e e e e e e e e e e e e e e 410
Ops.Date e 411
OPLIONS v v v e e e 412
OFder o e e 423
OULET © . v v v v e 426
Paren 427
PAISE .« o o o o e e e 428
PASte . . . e e e e 431
patheexpand e 434
pere_config e 435
PlOt . o e e 435
pmatch. 437
polyrooto 438
POSHOLNV . . o o v e e e e e e e e e e e e e e 440
PIEILY . o o o e e e e 440
Primitive 442
PIINt . . o o e e e 443
print.data.frame L. 445
print.defaulto 446

PIMAriX o vt e e e e e e e e e 448

CONTENTS vii

PrOC.tiME o e e e e e e e e 449
prod . .o e 450
PIOPOTtIONS o o i i it e e e e e 451
pushBack 452
6) P 454
QR.Auxiliaries e e 457
QUIt .o o e e 458
QUOLES o o e e e e e 460
R.Version e e e 463
Random 465
Random.user 470
TANZE + v o v e 472
rank ... e e e e 473
rapply . .o 475
TAW . o e 476
rawConnection e e e e e e e e e e e 478
rawConversion e e e e e e 479
RAULtls e 480
readBin L L e e e 481
readChar e e 484
readline L e e e 486
readliines L. e e 487
readRDS e 489
readRenviron 491
Recall e 492
reg.finalizer 493
TEEEX .« v v e e e e e e e e e e e e e e 494
regmatches e e 498
TEIMOVE . v v v v v v e 500
] o 501
replace 504
Reserved e 505
TEV & v v i e e e e e e e e 505
Rhome e 506
rle . . e e e 507
Round e 508
round.POSIXt e 510
TOW o v o e e e e e e e e e e e e e e e e e 511
TOWACOINAMES v v i e e e e e e e e e e e 512
TOWNAMES & . & v v v v v v e 513
TOWSUIN . . . v bttt e e e e e e e e e e e e e e 515
S3method 516
sample L e e 517
SAVE . . i i e 519
scale . . oL L e 523
SCAM . v v v v e e e e e e e e e e e 524
search L e e 528

viii

CONTENTS
SO « + e e e e e e e e e e e e 531
seg.Date e e 533
seq.POSIXt 534
SEQUENICE . .« « v v i e e e e e e e e e e e e e e e e e e 536
serialize e 537
SELS . . i e e e e e e 538
setTimeLimit 540
showConnections e e 540
shQuote 542
SIZN . . L 544
Signals. oo 545
SINK . . . e 545
slicedndex 547
SIOtOp . . . 548
socketSelect L 549
SOLVE . . . o e e e e 550
1) 552
SOUICE & v v v v v e e e e e e e e e e e e 555
Special e e e 558
SPLit . . 562
Sprintfo 564
SQUOLE 568
srcfile . .. L L e e e 570
standardGeneric e 573
startsWith 574
SEartup . . . o e e e e e e 575
SLOD .« . o e 578
SOpIfnot L e 580
SIIPHME . . . o vt o e e e e e e e e e e e e e e 582
SIITED . . o . o e e 588
Strsplit L e e 589
SIIEOL . . v . o e e e 591
SIITIM L o e e e e e e e e e e e e e e e 592
SITUCTUTE o o e 593
SLEWIAD . . v o e e e e e e e e e 594
SUDSEt L 595
SUDbSHEULE e e e e e e e 597
SUDSLT . . . L e 599
] 10 0 600
SUIMMATY . . . v v v v v v e e et e e e e e e e e e e e e e e 602
SVA . . e 603
SWEED « v v v e 605
SWItCh e 607
Syntaxo e 609
SYS.ZEENV L e e e e 610
Sys.getpid L e e e 611
Sys.glob . . . e 612

Sys.anfoo 613

CONTENTS ix

Sys.docaleconv e e e 615
SYS.PATENL .« o v vt e e e e e e e e e e e e e e e e e e e 616
Sysaeadlinko 619
SYS.SBBNV . . o o v i e e e e 619
Sys.setFileTime e e 621
Sysssleep . . . e 621
SYS.SOUICE .+ o v v v v v e e e e e e e e e e e e e e e e 622
SYSHME . . . o v o e e e e e e e e e 624
Sys.which 625
SYSIEIM . . . v o o e e e e e e 626
system.file 629
SYSEMLUME ot e e e e e e e e e e 630
SYStEM2 . . . L L e e e e e e e e 631
b e 633
table e 634
tabulate e e 637
tapply . . . e 638
taskCallback L 640
taskCallbackManager i e e e 642
taskCallbackNames 644
tempfile L 645
textConNnection e e e 647
tilde e 649
1800 T7/0) 1 650
tOSIIING e e e e e 654
TFACE . . . o o o e e e e e e e 655
traceback e e e 660
18 8217c) 11 662
transform L. 664
Trig . . . e 665
THMWS . . o e 667
TY o o e e e 668
typeof . ..o 669
UNIQUE .« « o v v v e e e e e e e e e e e e e e e e e e e 670
unlink . . . 672
unlist . ..o e e 673
UNNAIME .+ . v v v v v e 675
UseMethod e 676
userhookS L L e 678
utf8Conversion e e 680
UTF8filepaths e 682
validUTFS 683
VECIOT . o o o i i e e e e e e e e e e e e e e 685
VECIOTIZE o o o e e e e e e e e e e e e e e 687
WAINING . . . o o vt v e e e e e e e e e e 688
WAIMINGS .« v v v v v v e 690
weekdays 692

which e 693

X CONTENTS

which.min 695
with . . e 696
withVisible 699
WIS . . o o o e e e e e e e e e e e e e e 700
writeLines e 701
XM . . e e 702
zapsmall oL e e 703
Zpackages L e e e e e 703
Zutils . . .o e 704
2 The compiler package 707
compile 707
3 The datasets package 711
datasets-package 711
ability.CoV 711
airmiles L e 712
AirPassengers 713
airquality L e 714
anscombe L. L L L e e 715
aAENU L e e e e e e 716
attitude L e 717
AUSHIES & . o v o v o e e e e e e e e e e e e e e e e 718
beavers e e e e 719
Blsales 720
BOD . . . e 721
CATS v o v e e e e e e e e e e e e 722
ChickWeight e 723
Chickwits e e 724
CO2 . e e 725
COZ . o e e e e 726
crimtab L. 727
diSCOVEIIES o e e e e e e e 729
DNase e e e 730
eSOph . . . 731
CUIO . . v v v e e e e e e e e e e e e e e e 732
eurodiSt e e 733
EuStockMarkets e 734
faithful e 734
Formaldehyde 735
freeny L 736
HairEyeColor e 737
Harman23.cor e e 738
Harman74.cor e e 739
Indometh 739
inferto e 740
InsectSprays 742
IS . . o o e e e e 742

CONTENTS xi

JohnsonJohnson 744
LakeHuron e 745
Th e 746
LifeCycleSavings 746
Loblolly e 747
longley e 748
Lynx . ..o e 749
MOTIEY e e e e e e e e e 750
MECATS . .+ . v v v v v e 751
nhtemp 752
Nile . . . e 753
NOEIM ottt e e e e e e e e e e 754
NPK . . e e 755
occupationalStatus L. 756
Orange o o e e e e e 757
OrchardSprays e 758
PlantGrowth e 759
PIECID . o o o e e e e e e e e e e 759
presidents L. e e e e 760
PIESSUIE vt i it et e e e e e e e e e e e e e e 761
Puromycin. 762
QUAKES . . . o e e e e e e e e e e e e 763
randu ... oL L e 764
TIVEIS o o v v v v v e e e e e e e e e e e e e 765
TOCK . . e 765
Sleep e e 766
stackloss 767
SEALE e e 768
sunspot.month L e e e 770
SUNSPOLYEAT « . v v v v v v v e 771
SUNSPOLS .« v v v o v v e e e e e e e e e e e e e e e e 772
SWISS . . v v v e e e 773
Theoph e 774
Titanic L 776
ToothGrowth 777
tEETING . . . o o o o o e e e e e e e e e e e e e 778
TEES © o v o o e e e e e e e e e e e e 778
UCBAdMISSIONS v v vttt e e e e e e e 779
UKDriverDeaths e 780
UKgas e e 782
UKLungDeaths 782
USAccDeaths 783
USAITEStS o o e e e 783
USJudgeRatings 785
USPersonalExpenditure 785
USPOD « v v e 786
VADeaths e 787

volcano L e 788

xii CONTENTS
warpbreaks e e e e e e e e e 788
WOIMETL .+ ot o vt e e e e et e e e e e e e e e e e 789
WorldPhones e 790
WWWusage L 791

4 The grDevices package 793
grDevices-package 793
adjustcolor. 793
as.graphicSANNOL 795
Y 1] 1) 795
axisTicks 797
boxplot.stats e e 799
bringToTop e 801
CAITO . . . o ot e e 801
cairoSymbolFont 804
check.options L e e 805
chull o e 806
CIM . b v v vt et e e e e e e e e e 807
col2rgb . . . L 807
colorRamp e 809
colors . . .o 811
contourLines L 812
convertColor L 813
densCols e 816
dev . . . e 817
dev.capabilities 819
devcapture e e 820
devflush L . e 820
devinteractive L. L 821
devisize e e e e 822
dev2 . .o e 823
dev2bitmap 825
devAskNewPage L 827
Devices e 828
embedFonts L 829
extendrangel 830
getGraphicsEvent 831
3 835
gray.colors e 836
grSoftVersion L e e 837
hel oo o e 838
Hershey o e 840
hSv . e 843
Japanese 844
make.rgb e e e 845
msgWindow L e e e e 847
N2miTowW L e e e e 848
NClass e e e 849

paletteo e 850

CONTENTS Xiii

Palettes 853
PAf . e 857
pdfioptions 862
PICEX . . o o e e e e e 863
plotmath e 865
PRE o o e 870
POSESCIIPL . . o o o o e e e e e e e 874
postscriptFonts e 881
prettyDate 884
PS-OPHONS .« . . . o vt e e 885
QUATEZ . o o o e e e e e e e e e e e 886
quartzFonts 889
recordGraphics L e e 890
recordPlot 891
54 o 892
rgb2hsv . . 894
savePlot L 896
trans3d 897
TypelFont e e 898
wWIndows L e 899
Windows.Options 904
windowsFonts 905
XLL e 906
XITFonts o o e 912
XAg e 913
XY.COOrdS e e 915
xyTable 916
Xyz.coords e 917
5 The graphics package 921
graphics-package 921
abline 922
AITOWS .+ o v v e e e e e e e e e e e e e e e e e 923
assoCplot . . . L e e e e 925
AXIS . . L e 926
AXIS © o e e e e e e e e e 927
axis.POSIXct e 931
axTicks 932
barplot L e e e e 934
DOX . . e 938
boxplot e 939
boxplotmatrix 943
DXD . 944
cdplot . . . e 947
Clip . o e e 949
COMMOUL .« o v vt v e ettt e e e e e e e e e e e e e 950
convertXY . . . oL e e e e e 953
coplot . . . oL 954

Xiv

CONTENTS
dotchart 959
filled.contour 961
fourfoldplot 964
frame 966
grid ... 966
hist. . . e 968
histPOSIXt e 971
identify 973
IMAgeo e 975
layout 978
legend 980
lines e 985
locator L e 987
matploto 988
mosSaiCPlOt e e e e e e 991
001, 994
PAITS .« . e e e e 996
panel.smooth L e 999
PAT . o o e e e e e 1000
PEISD .« o v v e e 1009
DI . . e 1013
plot.dataframe 1015
plotdefault 1016
plotdesign 1019
plot.factor e e 1021
plot.formula 1022
plothistogram 1023
plotraster e e 1025
plot.table e 1026
plot.window e e 1027
PIOLXY .« o o 1028
POINES . . . o e e e e e e e e e e 1029
polygon 1033
polypath 1036
rasterlmage 1038
TECE o o i i e e e e e e e e e 1039
TUZ o v e 1041
SCICCIL . . v v v e e i i e e e e e e e e e e e e e e 1042
SEEMENLS . v v v v v e 1044
smoothScatter L e 1045
spineplot oL 1047
SEATS . . ot e e e e e e e e 1050
SIBIM . . o v e e e e e e e 1053
stripchart L. 1054
strwidth oo 1056
sunflowerplot e 1058
symbolso e 1060

EEXE o e e e e e 1063

CONTENTS XV

title . .. 1065
UNIES . . o o o o 1067
xspline 1068
6 The grid package 1071
grid-package e 1071
absolute.Size e e 1072
AITOW . v v v e i e e e e e e e e e e e e e e e e e 1073
caleStringMetric 1073
dataViewport e 1075
depth e 1076
deviceLoc 1077
drawDetails 1079
editDetails e 1080
explode 1081
gEdit. 1081
getNAMES e e e e e e e e 1082
GPAT . . . e e e e e e e e e e e e 1083
gPath 1085
Grid 1086
Grid VIewports e 1087
gridadd 1090
gridbezier e e e e 1092
grid.cap e 1093
gridcircle 1094
grid.clip L 1095
grid.Convert e 1097
grid.COPY .+ . o e e e e e 1099
Grid.CUTVE o e e e e e e 1100
griddelay 1102
grid.display.list L 1103
grid.DLapply 1104
griddraw . . . L. 1105
gridedit 1106
gridforce L. e 1108
gridframe 1110
gridfunction. 1111
grid.get . . . oL 1113
grid.grab 1114
Srid.grep e e e e e 1116
grid.grill oL 1117
grid.grobo 1118
griddayout 1119
gridines 1121
grid.Jocator L e e e e 1123
gridlds 1124
grid.moOve.to L e e e e e e e 1127
grid.NeWPage e 1128

gridnull oL 1129

XVi

CONTENTS

grid.pack e e e 1130
gridopath L e 1132
gridiplace 1135
grid.plotand.legend 1136
grid.points e 1136
grid.polygon e e e e e e 1137
grid.prettyo e e e e e e 1139
gridraster e 1140
gridorecord L. 1142
gridreCt L e 1143
gridrefresh oL 1144
GridIeMOVE e e e e e e e e 1145
gridareorder L L e e e e e 1146
grid.SegmEntso ..o e e e e e e e e 1147
grid.Set . . .o 1149
grid.showlayout 1150
grid.Show.VIewport L e e e e e 1151
griditeXt e e e e e e 1152
grid.XaxiS 1154
grid.xspline 1156
grid.yaxiS e 1158
grobCoords e e e e e e 1160
grobName e e e e e e e 1161
grobWidth 1161
grobX . .o e e e 1162
legendGrob 1163
makeContent 1164
PlOtViewport e e e e 1165
Querying the Viewport Tree e 1166
resolveRasterSize 1167
roundreCt e 1168
showGrob 1169
ShOWVIEWDPOIt o o e e e e 1171
stringWidth L o oL 1172
UNEE .ot o e e e e e e e e e e e e e e e e 1173
UNIEC . o o v o e e e e e e e e e e e e 1175
unitlength o 1176
UNIEPMIN . . b v v e o e 1176
UNIETED + v v v v o v e 1177
unitType oL 1178
validjust L L 1179
validDetails L 1180
vpPath e e 1181
widthDetails 1182
Working with Viewports L o 1183
xDetails L 1185

xsplinePoints L 1186

CONTENTS xvii

7 The methods package 1189
methods-package 1189
BasicFunsList 1190
AS L e e e e e e e e e e 1190
BasicClasses e e e e 1192
callGeneric e e e 1193
callNextMethod e 1195
CANCOBICE v v v e o e i e e e e e e e e e e e e 1199
chind2 L 1200
Classes e e 1201
classesTOAM e 1202
Classes_Details e 1203
className e e 1207
classRepresentation-class L 1209
Documentation e 1210
dotsMethods e 1212
environment-class 1215
envRefClass-class 1215
evalSource L. e e e e 1217
findClass e 1220
findMethods 1222
fixPrel.8 e 1224
genericFunction-class oL oL 1225
GenericFunctions 1226
getClass L e e e e 1230
getMethod L 1232
getPackageName L 1235
hasArg L 1236
implicitGeneric e e e e e e e 1237
inheritedSlotNames e 1239
initialize-methods 1240
Introduction 1242
IS o e e e e e 1244
isSealedMethod 1246
language-class L 1247
LinearMethodsList-class 1248
LocalReferenceClasses e 1249
makeClassRepresentation oL 1250
method.skeleton 1251
MethodDefinition-class 1252
Methods e e 1254
MethodsList-class 1254
Methods_Details e 1255
Methods_for_Nongenerics 1260
Methods_for_S3 e 1265
MethodWithNext-class e 1267
NEW . e 1268

nonStructure-class e e 1270

Xviii

8 The parallel package
parallel-package
clusterApply
detectCores
makeCluster
mcaffinity
mcchildren

9 The splines package
splines-package
asVector oL
backSpline.
bs ...

ObjectsWithPackage-class
promptClass
promptMethods
ReferenceClasses
removeMethod

representation

S3Part
S4groupGeneric
SClassExtension-class
selectSuperClasses
SetAS ...
setClass

setClassUnion

setGeneric
setGroupGeneric
setls

slot.
StructureClasses
testInheritedMethods

TraceClasses

validObject

mclapply oL
mcparallel oL
PVEC .« o o
RNGstreams
splitindices,

NS i e e e

CONTENTS

CONTENTS Xix

periodicSpline L. e e 1375
polySpline e 1377
predict.bs 1378
predict.bSpline 1379
splineDesign 1380
splineKnots L. 1382
splineOrder e e 1382
XYVECIOT . . . o o o o e e e e e e 1383
10 The stats package 1385
stats-package L e 1385
.checkMFClasses e e e e e 1385
act . e e e 1387
acf2AR . . . e 1389
addl e e 1390
addmargins 1392
AZETEZALE i e e e e e e e e e e e e e e e e e e 1394
AlIC . e e e 1397
alias . . . oL L e e 1399
ANOVA . . v v vt e e e e e e e e e e e e 1401
anova.glmo 1402
anova.lm L L e 1403
anova.mlm. L e 1405
ansari.teSt e e e e e 1407
AOV . o e e e e e e e e e e e e e e e e e 1409
approxfun 1411
AT . L e e e e e e 1414
arolS . . . L e e e 1418
0 1 0 0 1420
ArIMASIML . . . o v v v e e e e e e e e e e e e e e e e e e 1424
arimal L e 1425
ARMAacf e 1429
ARMAOMA e e e e 1431
as.helust . . . L 1432
asOneSidedFormula 1433
AVE o v o e e e e e e e e e e e e e e e e 1433
bandwidth e 1434
bartlett.test L e e e e e e 1436
Beta e 1438
DINOMLEESt e e e e e e e e e 1441
Binomial 1443
biplot e 1445
biplot.princomp 1446
birthday 1447
Box.test e e 1449
C o e e 1450
CANCOT & & v v v v e e e e e e e e e e e e e e e e e e e 1451
case+variablenames L e 1452

Cauchy e 1453

XX

CONTENTS

Chisq.test e e e e e 1455
Chisquare e e 1458
cmdscale L. e e 1461
coef . .. 1463
COMPIELE.CASES . . . v v v v o e 1464
Confint e e e e e 1465
constrOptim e 1466
COMITASE .+ v v v o v e 1468
CONIASES v o v o e e e e e e e e e e e e e e e e e e e 1470
CONVOLVE e e 1471
cophenetic L 1473
COT + v vt e e e e e e e e e e e e e e e 1474
COLIESE . o . v o e e e e e e e e e e e e e e e e e 1477
COVLWE L vttt e e e e e e e 1480
CPETAM o v v v v v e 1482
CUITEE . . o v v v v e e e e e e e e e e e e e e e e e e e 1483
decompose e e e 1484
delete.reSponsSe e e e e e e e e e e e e 1485
dendrapply L e e 1487
dendrogram L e e 1488
densityo 1493
deriv e e e e 1497
deviance e e e e e e e e 1500
dfiresidual L e e e e e 1501
diffinv . . . e e 1502
dist. . . . e e e 1503
Distributions e e e e e e e e e e e 1506
dummy.coef 1507
ecdf . .. e 1508
effaovlist e 1511
effects L 1512
embed L e e 1513
expand.model.frame L oL 1514
Exponential 1515
extractAIC 1517
factanal 1519
factor.scope 1522
family 1523
FDist . . . o e e e 1527
. e 1530
filter e e e e e e 1531
fishertest e e 1533
fitted e 1536
fivenum L e e e 1537
flignertest 1538
formula e 1540
formulanls 1542

friedman.test e e 1543

CONTENTS XX1

ftable e e e e 1545
ftable.formula 1547
GammabDist e e e e e e 1548
GEOMELIIC v o o e e e e e e e e e e e e e 1551
getlnitial L e 1552
glm ..o e 1553
glm.control 1559
glm.summaries e e e e e e e 1560
helust . . . e e 1561
heatmap 1565
HoltWinters e e e e e e e 1568
Hypergeometric L e 1571
identify.hclusto 1573
influence.measures e e e 1574
INMEZTALE o o e e e e e e e e e e e e e e e e e 1578
interaction.plot 1581
IQR . . o e 1583
is.empty.model L. e 1584
ISOTEZ . v v o v e e e e e e e e e e e e e 1584
KalmanLike e 1586
kernapply 1588
kernel L e 1590
kmeans L e e e 1592
kruskal.test L e e e 1594
KSEeSt . . . e e e e e e e 1596
ksmooth e 1599
lag . . . e 1600
lag.plot L 1601
Line e e e 1602
Listof e 1604
Im .. e 1604
Imit. . o e e e 1608
Im.influence e 1609
IM.summaries o e e e e e e e e e e e e e e e e e 1611
loadings 1613
loess . . . e e e 1614
loess.control L 1616
Logistic 1618
logLik e e 1619
loglin 1621
Lognormal 1623
TOWESS . . . o e e e e e e e 1625
Is.diag e 1626
Is.print e 1627
Isfit . . 1628
mad . ..o e e e 1629
mahalanobis 1630

makelink 1631

xxil

CONTENTS
makepredictcall L e 1632
00 T2 100 1633
mantelhaen.test L L L e 1634
mauchly.test 1637
MCNEMALIESt o o o ottt e e e e e e e e e 1639
median. e e e e e e e e e e e e 1640
medpolish e 1641
model.extract e 1642
model.frame L 1644
model.matrixX e e e e e e e e e e 1646
model.tables 1648
monthplot e e e e e 1649
mMOoOd.teSt L. e e e e e e e e e e 1651
Multinom e e 1653
NAACHON o bt e e e 1654
NA.CONLZUOUS o ottt it bttt e e 1655
nafail e e e 1656
NAPTING . . . o v o e s e e e e e e e e e e e e e e e 1657
naresid 1657
NegBinomial 1658
XM . o o ottt e e e e e e e e e e 1661
nlm .o e 1662
nlminb e 1664
NS . . e e e e e e 1667
nls.control L. 1673
NLSStASYymMptotic« o v v ot e e e e e e e 1674
NLSstClosestX o e e e e e 1675
NLSStLfASYMPtote o o o e e 1676
NLSStRtASYMPLOte o o v o e e e e e e e e e e e e 1676
1T0] 0 1677
Normal e 1678
numericDerivo 1680
offset 1681
ONEWAY.LESL e e e e e 1682
OPLIM oot e e 1683
OPtIMIZE o o v i o e e e e e e e e e e e e e e 1689
orderdendrogram 1691
padjust . ..o e 1692
Pair . . . e 1695
PaIrwise.prop.test 1695
PAIrWISE.LIESt L 1696
pairwise.table L e e 1697
pairwise.wilcox.test L L e 1698
plotact . . . 1699
plotdensity 1700
plotHoltWinters e e 1701
plotisoreg L 1702

plotdmo 1703

CONTENTS xxiii

PIOLDDT . . o e e e e e 1706
plotprofilenls L. 1707
plotspec 1709
plotstepfun L 1710
PIOLES . o o e e e e e 1712
Poisson L 1714
POISSOMLEESt o o i e e 1716
POLY . . e e e 1717
POWET i it e e 1719
POWELANOVALESt o o Lo e e e e e e e e e e e 1720
POWEL.PIOP.LESt o o ot e e e e 1721
POWELLIESt o o e e e e e e e e 1723
PPtest 1724
PPOINLS .« . . o o e e e 1725
PDT - o o e e 1727
PICOIMD . . . o o vttt it e e e e e e 1730
predict . . .o 1733
predict. Arima e e e e e e 1735
predict.glm L e 1736
predict.HoltWinters 1738
predict.Im 1739
predictdoess e e e e 1741
predictnls 1743
predict.smooth.spline L 1745
Preplot e e e e e 1746
PriNCOMP o o oo e e e e e e e e e 1747
print.power.htest 1749
PINLES © o o o o o e e e e 1751
printCoefmat e 1752
profile Lo 1753
profile.nls 1754
PIOJ o v e e e e e 1755
PIOPAESt L e e e 1757
prop.trend.testl 1759
a1 3103 & 10 1760
quade.test e e e e e e e e 1762
quantileo e e 1764
r2dtable 1766
read.ftable 1767
recthclust oL 1770
relevel L L 1771
reorderdefaulto 1772
reorder.dendrogram L L. Lo 1773
replications L 1774
reshape L 1776
residuals L L L 1779
runmed ... L L e e e e e e e e 1780

rWishart e e 1783

XX1V

CONTENTS
scatter.smooth 1784
screeplot L e e 1785
SA 1786
SE.CONIIASE .« o o v v v v v e e e e e e e e e 1787
selfStart L e 1789
SENAMES L e e e e e 1791
shapiro.test 1792
SIZMA & v v o o e e e e e e e e e e e e e e e 1793
SignRank 1795
simulate 1797
SmMooth o e e 1799
smooth.spline L e e 1801
smoothEnds L 1806
sortedXyData 1808
SPEC.AT & v v v v e 1809
SPEC.PEIAIN . . . o o v v i e e e e e e e e e e e e 1810
SPEC.LAPET .« . v o o L e e e e e e e e e e e e 1812
SPECIIUIM .+ & v v v v e 1813
splinefun 1815
SSasymp e 1819
SSasympOff L 1820
SSasympOrig e e e e 1822
SSBIEXP . .« « o e 1824
SSD . 1825
SSfol . e 1826
SSEpl . e 1827
SSgompertz 1829
SSIogis 1830
SSmicmen e e e e 1832
SSweibull L e 1833
] o 1835
StAt.ANOVA L L e e e e e 1835
stats-deprecated Lo e 1836
]) o 1837
stepfun. 1840
StL e 1842
stimethods oL 1845
StructTS e 1845
SUMMATY.A0V .« o v v v v v e 1848
summary.glmo e 1849
summary.lm 1852
SUMMATY.MANOVA .+ & v v v v v o v v e e e e e e e e e e e e e e e e e 1854
sSUMmMAary.nlso e e e e e e e e 1855
SUMMATY.PIANCOMP . .« ¢ v v e v v e e e e e e e e e e e e e e e e e e 1857
SUPSINU . v v v v e e e e e e e e e e e e e e e 1858
072101 110 0 1859
LEESE . . o e e e e e 1861

CONTENTS XXV

termplot e e e e e e e e e 1866
TBIMIS . . o o o e e e e e e e e e 1869
terms.formula L 1870
terms.ObJeCto e e e e e e 1871
HME . . . o e e e e e e e e e 1872
toeplitz e e e e e e 1873
IS e e e 1874
ts-methods 1876
tS.plot . . oL 1877
ESLUNION o e ot s e e e e e e e e e e e e e e e e e e 1878
tsdiag e e e e 1879
ISP o e e e e e e e e 1880
tsSmooth 1881
Tukey o 1882
TukeyHSD e 1883
Uniform e 1885
UNITOOL .« . v v v v e e e e e e e e e e e e e 1886
Update e e e e e e e e e 1890
updateformula 1891
VALEESE . . ¢ o v o e e e e e e e e 1892
VANMAX . . v v v v e 1893
VOOV o v v v e e e e e e e e e e e e e e e e e e e s 1895
Weibull e 1896
weighted.mean L e e e 1898
weighted.residuals 1899
WeEIghts 1900
WIICOX.tESt o o e e e e e e e e e e 1900
Wilcoxon e e e e e e 1904
window . . .o e 1907
Xtabs . . .o e 1908
11 The stats4 package 1913
statsd-package e 1913
coef-methods 1913
confint-methods e 1914
logLik-methods 1914
mle e 1915
mle-class e 1918
plot-methods L 1919
profile-methods 1920
profilemle-class 1921
show-methods 1921
summary-methods L. L 1922
summary.mle-class L e e 1922
update-methods 1923

veov-methods L e e e 1923

XXVi

12 The tcltk package

teltk-package L
Tcllnterface
tclServiceMode
TkCommands
tkpager
tkProgressBar L L
tkStartGUIL
TkWidgetemds
TkWidgets
tk_choose.dir
tk_choosefiles
tk_messageBox
tk_selectlist

13 The tools package

tools-package
Jprint.viaformat oL oL oL
add_datalist
assertCondition,
bibstyle
buildVignette
buildVignettes
charsets e
checkFF
checkMDSsums
checkPoFiles
checkRd
checkRdaFiles
checkTnF,
checkVignettes,
check_packages_in_dir
codoC e e
compactPDF o .
CRANtools e
delimMatch
dependsOnPkgs oL
encoded_text_to_latex,
fileutils
find_gs_emd.
getVignetteInfo o oL
HTMLheader
HTMLILnks
loadRdMacros
makevars e e e e e e e e e
make_translations_pkg L.
mdSsum e
package_dependencies,

package_native_routine_registration_skeleton

CONTENTS

1925

CONTENTS XXVil

parselatex L e e e e e e e 1991
parse_Rd . . . L e 1992
pskill . . 1994
PSIICE .« « . e e e e e e 1995
QC . 1996
Remd . . . o o 1997
RAZHTML e 1998
Rd2txt_options e e 2001
RAIff 2002
Rdindex e 2003
RdTextFilter o e 2004
Rdutils o e 2005
read.00Index L 2006
showNonASCII e 2007
startDynamicHelp Lo 2008
SweaveTeXFilter e 2009
testlnstalledPackage 2010
exi2dvi ..o 2011
toHTML e 2013
tools-deprecated L. 2013
tORd . . . 2015
toTitleCase e 2015
undoC . ..o L 2016
update PACKAGES e 2017
update_pKg po e e e e e e 2019
USerdir L e e e e e e e 2021
vignetteEngine L. 2022
vignetteInfo 2023
write_ PACKAGES 2024
XEEUEXE .« v v o e e e e e e e e e e 2026
14 The utils package 2029
utils-package 2029
adist e e 2029
alarm ... e 2031
APTOPOS .+ v v e e e e e e e e e e e e e e e e e e 2032
ATEZEXEC .+« v v v v v e 2033
arrangeWindows L 2035
askYesNO e 2036
aspell . . . L e e 2037
aspell-utils oL 2039
available.packages L 2041
BATCH 2044
bibentry 2045
browseEnv. 2050
browseURL e 2051
browseVignettes 2053
bug.report L. e e e 2054

CaPLUIE.OULPUL o o v v e vt e et e e e e e e e e e e e e e 2056

XX viil

CONTENTS
changedFiles e 2057
choose.dir 2060
choose.files e e 2061
chooseBioCmirror. 2062
chooseCRANmMirror 2063
CIAtION o e e e e e e e e e e e 2064
CItE . . . o o e 2066
CitEntryo 2068
clipboard 2069
close.socket L e e e e e e 2071
combn e 2072
compareVersiont e e e e e e e e e e e e e e e e e 2073
COMPILE e 2074
contriburl L. 2075
countfields L 2076
Create.post e e e e 2077
data e e 2078
dataentry e e e e e e e e e e 2081
debugcall 2083
debugger 2084
demo 2087
DLL.Version o o o i e e e 2088
download.file 2089
download.packages 2093
edit . ..o e 2095
edit.dataframe 2096
example 2098
file.edit 2100
file_test L 2101
findLineNum e 2102
fiX . e 2104
flush.console L 2105
format e 2105
getAnywhere 2106
getFromNamespace L 2108
getParseData L 2109
getS3method L. 2111
getWindowsHandle oo 2112
getWindowsHandles 2113
glob2rx . .o e 2115
globalVariables 2116
hasName 2118
head e 2119
help . . . o e 2122
helprequest oL 2125
help.search e 2126
help.start 2129

hsearch-utils e 2130

CONTENTS XXiX

INSTALL e 2131
install.packages 2134
installed.packages 2140
isS3method 2141
isS3stdGeneric L e 2142
LINK . . e 2143
localeToCharset i 2144
ISt . e 2145
MAINAINET o vt et e e e e e e e e e e e e e e e e e 2146
make.packages.html oL 2147
make.socketo 2148
MEMOTY.S1Z€ . .« « . v v v v v e 2150
001 4L P 2151
methods 2152
mirrorAdmin Lo 2154
modifyList. 2155
DEWS & o v v v e 2156
sl . e 2158
ODJECLSIZE o v i e e e e e e e e 2159
package.skeleton 2162
packageDescription 2163
packageName e e e 2165
packageStatus 2166
PABE . o o e 2168
PEISON . . . vt i i e e e e e e e e e e e e e e 2169
PkgUtils o 2172
PIrOCESS.EVENLS v v vt e e e e e e e e e e e e e e 2173
PIOMPL .« o oot e e e e e 2174
promptData e e 2176
promptPackage 2177
QUESHON e e e 2179
TCOMPEZEIN & v v v v v v e e e e e e e e e e e e e e e e e e e 2181
read.DIF o e 2186
read.fortran 2189
read Wl . . L L L 2190
read.socket e 2192
read.table L. L e 2193
readRegistry oL 2198
TECOVET © v v v v e e e e e e e e e e e e e e e e e 2199
TeliSt . . . o e 2201
REMOVE e 2203
remove.packages e e 2204
TEMOVESOUICE . . . o o v v vttt e e ettt e e e e e e e 2204
RHOME e 2205
TOMAN © « v v v v e e e e e e e e e e e e e e e e 2206
Rprof . . . e 2207
Rprofmem 2211

Rscript o o e 2212

XXX

I

RShowDoc
RSiteSearch
TEAZS & v o e e e e e e
Rtangle,
Rweavelatex
Rwin configuration
savehistory
select.list,
sessionlnfo
setRepositories
setWindowTitle

strcapture
summaryRprof
Sweave oL
SweaveSyntConv
tar ...
toLatex
txtProgressBar Lo
type.convert
UNtAr e
UNZIP . v o o e e e e e e e e
update.packages
url.show oo
URLencode
utils-deprecated
View oo
vignetteo
warnErrList o000 oo
winDialog oo
WINEeXtras
winMenus L Lo
winProgressBar oL
writetable oL Lo

ZID .o

15 The KernSmooth package

bkde

CONTENTS

CONTENTS XXXI

dpill . . . e e 2288
locpoly . . o L e e e 2289
16 The MASS package 2293
abbey . .. L e e 2293
accdeaths L L 2293
addterm e e e 2294
Aids2 . . e 2296
Animals L. e 2297
ANOTEXIA o v v i e e e e e e e e e e e e e e e e e e 2297
anovanegbin L. e e e e e e e e 2298
T 2299
bacteria e e e e 2300
bandwidth.nrd 2301
DOV . e e e 2302
beavl e e e 2303
beav2 . . . e e e 2304
Belgian-phones 2306
biopsy 2306
birthwt e e 2307
Boston 2308
DOXCOX . . . o o e e e e 2309
cabbages e 2311
caith e e 2311
CarsO3 . . . e 2312
CAS o v i i e e e e e 2314
CEMENL v v e i e i e e e e e e e e e e e e e 2314
chem L e 2315
CON2UT & o o o o e e e e e e e e e e e e e e e e e e e 2316
confint-MASS e 2316
contr.sdif L 2318
COOP « v v v e e e e e e e e e e e e e e e e e e e 2319
COTTESP « « ¢ v e e e e e e e e e e e e e e e e e e e 2320
COV.IOD o . e e e 2321
COV.LTOD . . . o o e e e e e e e e 2323
CPUS © o v v o e i e e e e e e 2325
Crabs e 2326
Cushings e 2327
DDT . . . e 2327
deaths e 2328
denumerate e e e e e e e e e e e e 2328
dose.p 2329
drivers e 2330
dropterm e 2331
€agles e e e 2332
epil .. e 2333
eqscplot . . .o 2335
farms 2336

Xxxil

CONTENTS
fitdistr e e e e 2338
forbes e 2340
fractions e e e e e e 2340
GAGUIINe e 2341
galaxies e e e e 2342
gamma.diSpersion L. 2343
gamma.shape L 2344
gehan L e 2345
GENOLYPE o o o e e e e 2346
GEYSET . v v i i e e e e e e e e e e e e e e e 2347
gilgais L 2347
SINV . L e e e e 2349
glmconvert 2349
glmnbo 2350
glmmPQL e 2351
hills . . . o e 2353
hiSt.SCOtt e e e e e e e 2353
housing e e e e e e 2354
huber e 2356
hubers e e 2357
IMMEr oo oo e e e 2358
Insurance L e e e e 2359
iISOMDS . . . e 2360
kde2d e 2361
Ida e 2362
Idahist L e 2365
leuk . . . e e e 2366
Im.gls . . . e 2367
Imridge e 2368
loglm 2370
logtrans e 2372
IgS - & e e 2373
mammalS L e e e e e e e e 2376
10 o P 2377
meycle . ..o 2378
Melanoma e e e e e e e 2378
menarche e 2379
michelson 2380
minn38 . . oL L e e e e e e 2381
101010 2381
muscle e e e e e e 2382
MVINOTIM © o v v v v v e 2384
negative.binomial L. Lo e 2385
NEWCOMD o e e e e e e e e e e e e 2386
nlschools e 2386
NPK . o e e e e e 2387
nprl . .o 2389

CONTENTS XXXiil

0AS . v v e e e e e e e e e e 2390
OME . . . e 2391
PAINETS . . .« o vt e e e e e e e e e e 2394
pairs.ddao 2395
parcoord e e e e e e 2396
petrol . ..o 2397
Pimadtr.o 2398
plotlda e 2399
plotmea e 2400
plotprofile L 2401
POlr . e 2402
predict.glmmPQL 2405
predictdda 2406
predictgs 2407
predictmea e e e e e e 2408
predict.qda L 2409
profile.glm 2410
gda. . .o e e 2412
QUINE . o v v v e 2414
Rabbit e 2414
rational L 2415
TENUMETAE . . . v v v e e e e e e e e e e e e e e e e e e e 2416
rhm . .. e 2417
TINS.CULV « . v v vt vt e 2420
megbin L e e e e 2421
road ... e 2422
rotifer 2422
Rubber. e 2423
SAMIMON . .« ¢ ¢ v v v v v e e e et e e e e e e e e e e 2424
Ships e 2425
Shoes 2426
Shrimp e e e e e 2426
shuttle L . e 2427
Sitka 2427
Sitka89 . . . e 2428
SKye . . o o e 2429
sSnails ... oL e e 2430
SP500 2431
StATeS e e 2431
Steam . .. L. e e e 2432
stepAIC . . . e 2433
] 70) 00417 o 2435
StUAIES e e 2436
summary.loglmo 2436
summary.negbin oL 2437
summary.rlm e e e e 2438
SUIVEY . . v v v it e e e e e e e e e e 2440

Synthotr L e 2441

XXXIV CONTENTS
thetamd e e e e 2441
107 00 P 2443
Traffic e e e 2443
truehist 2444
UCV o o vt e e e e e e e e e e 2445
UScereal e e e 2446
UScrime e e e e e e 2447
VA e e 2448
Waders e e e e e e e e e e e 2449
whiteside 2450
width.ST . . e e e 2451
WIItE.MALIIX o o e o e s e e e e e e e e e e e 2452
WHOSS . . . e e 2453

17 The Matrix package 2455
abIndex-class e e e 2455
ablSeq e e 2456
all-methods oL 2457
allequal-methods 2458
atomicVector-class e e e e e 2459
band e e e 2459
bandSparse e e 2461
bdiag e e 2462
BunchKaufman-methods 2464
CACX . . e e e e 2466
cBind e e e 2467
CHMfactor-class e e e e e e e 2468
chol . . . e e 2471
chol2inv-methods e 2473
Cholesky e 2474
Cholesky-class 2476
colSums e e e 2478
compMatrix-class 2480
condest e e e e e e e e e 2481
CsparseMatrix-class L e e 2483
ddenseMatrix-class 2485
ddiMatrix-class e e e e e e 2485
denseMatrix-class e e e e e e 2486
dgCMatrix-class e 2487
dgeMatrix-class e e e e e 2488
dgRMatrix-class e e 2489
dgTMatrix-class 2490
Diagonal 2492
diagonalMatrix-class 2494
diagU2N e e e e e 2495
dMatrix-class e e e e e 2497
dpoMatrix-class 2498
dropO . . . e 2500

dsCMatrix-class e e 2501

CONTENTS XXXV

dsparseMatrix-class e e e e 2503
dsRMatrix-class e 2503
dsyMatrix-class 2505
dtCMatrix-class e 2506
dtpMatrix-class e e e e 2508
dtRMatrix-class e 2510
dtrMatrix-class e 2511
expand e e e 2512
EXPI . v v ot e e e e e e e e e e e 2513
externalFormats 2514
facmul 2516
forceSymmetric L e e e 2517
formatSparseM L 2518
generalMatrix-class L. 2519
graph-sparseMatriX e e e e e e e e e e e e 2520
Hilbert e 2522
image-methods 2522
index-class e e 2525
indMatrix-class e 2526
invPerm 2528
is.na-methods L 2529
is.null,DN e 2530
isSymmetric-methodso 2532
isTriangular L 2532
KhatriRao e 2533
KNex . . . e e e e 2535
kronecker-methods L 2536
IdenseMatrix-class 2537
IdiMatrix-class e e e e e 2538
lgeMatrix-class 2539
IsparseMatrix-classes e 2540
IsyMatrix-class e e e e 2542
IrMatrix-class e e e e e e e e 2543
2544
LU-=cclass e e e 2546
mat2triplet e e e e e e e 2547
Matrix e e e e 2548
Matrix-class e e e 2550
matrix-products L e e e e e e e e e e e 2552
MatrixClass e e e e 2555
MatrixFactorization-class 2556
ndenseMatrix-class 2557
nearPD L e 2558
ngeMatrix-class L. 2561
nMatrix-class 2562
NNZETO . . v v v e v e e e e e e e e e e e e e e e e e 2563
01075 ' [2565

XXXVi CONTENTS
nsyMatrix-class L e e e 2568
ntrMatrix-class 2569
number-class L. e 2570
pMatrix-class 2570
printSpMatrix L. e e 2572
gr-methods 2575
rankMatriX e 2577
reond ..o L e 2580
rep2ablo L 2582
replValue-class L 2583
rleDiff-class oL 2583
ISPArSeMAtIIX . . o v v v v e e e e e e e e e e e e e e 2584
RsparseMatrix-class e e e e 2585
Schur e 2586
Schur-class L 2588
solve-methods 2589
sparse.model.matrix L. 2592
sparseLU-class e e e 2594
SparseM-CONVErsions v .t e e e e e e 2596
sparseMatrix L. e e 2597
sparseMatrix-class 2600
sparseQR-class 2602
SPArSEVECIOr e e e e e 2604
sparseVector-class e e e e 2606
SPMALTIX . . . o vt o e e e e e e e e e e e e 2609
symmetricMatrix-class o L 2610
SYMIMPAT . . . v v vt bt e e e e e e e e e e e e e e e e e e e 2612
triangularMatrix-class L. 2613
TsparseMatrix-class 2614
uniqTsparse e e e e e 2615
unpack L e e 2617
Unused-classes e e 2618
UpdOWN . . . o L 2618
USCounties o v vt e e 2620
wrld_ldeg 2621
[Fmethods e 2622
[<—methods e 2623
Jo&Po-methods L. e 2624

18 The boot package 2627
abC.Cl . . . e 2627
100 1 0 2629
aids 2629
aircondit L e e 2630
AMIS . . o o e e e e e e e e e e 2631
aml ..o e 2632
beaver L e e 2633
bigeity e 2634

boOt . . e 2635

CONTENTS XXXVil

bootarray e e e e e e e 2641
boOt.Cl e e 2642
brambles e 2646
breslow e e e e 2647
calcium e e e e 2648
CANC . . o v v e e e e e e e e e e 2648
capability 2649
catsM . . . L L e e e 2650
CAV o o ot e e e e e e e e e e e e e e 2651
7 2651
cddnested e 2652
€ensboot e e e 2653
channing 2657
claridge e 2658
cloth e 2659
cotransfer e 2660
coal e 2661
control e e 2661
COIT o v v v e e e e e e e e e e e e e e e e e e 2664
CUMS . . o o e e e e 2664
ev.glm . .o 2665
darwin e e e 2667
dogs . . .o e 2668
downs.bc 2668
ducks e e 2669
EEFEprofile e 2670
empinfo 2671
enVelOPe L L 2674
eXp.tilt . . L e e 2676
0 2678
freq.array L. 2678
frets . . . e 2679
glmdiag 2680
glm.diag.plots 2681
SIAVILY . . . o o e e e e e e 2682
hirose e e e e e 2683
Imp.Estimates e 2684
imp.weights 2686
INVIOZIt e e e e e 2688
islay . .o 2688
jackafterboot 2689
K3.dinear e e e 2691
linear.approX e e e e e e e 2692
lines.saddle.distn 2694
logit 2696
MANAUS . & o v v v e e e e e e e e e e e e e e e e e 2696
melanoma e e e e 2697

0010 11) 2698

XXX Viii CONTENTS
NEUIO .« v v v e v e e e e e e e e e e e e e e e e e e 2699
nitrofen L e e 2700
nodal 2701
0 T0) ' Vo3 OO 2702
nuclear. L e e e 2704
paulsen e e e e e e 2705
Plot.boot e e 2706
POISONS . . . v o o e e e e e e e e e e e e e e 2708
polar . . . L e e e e 2709
Print.boot e e e e 2710
Print.bootCi L. e e e e 2711
print.saddle.distn L. 2712
print.simplex 2712
TEMISSION v vt v e e e e e e e e e e e e e e e 2713
saddle 2714
saddle.distn L L 2716
saddle.distn.object 2719
salinity e 2720
SIMPIEX o e 2721
SIMpleX.object e e 2723
smooth.f 2724
SUNSPOL . . v v o o e e e e e e e e e e 2726
survival ... L e 2726
LAU . . e e e e e e e e 2727
tltboot e 2728
tSDOOt e e 2731
TUNA o e e e e e e e e e e 2735
UMINE o o e e e e e e e e e e e e e 2736
varlinear L. e e 2737
WOOL . . . e e 2738

19 The class package 2739
batchSOM e e e 2739
condense e e e e 2740
knn ..o e e e 2741
knn.ev . .o e e e 2742
knnl 2744
vl . e 2745
Ivg2 . e 2746
Ivg3 . e 2747
Ivginit oL e 2748
Ivqtest o e 2749
multiedit L 2750
olvgl . . . e 2751
reduce.nn L L L e e e e 2752
SOM . . . e 2753

CONTENTS XXXIX

20 The cluster package 2757
AGNCS . v v v e 2757
agnes.object e 2761
agriculture Lo 2763
animals L e 2764
bannerplot L. e 2765
chorSub L 2766
clara L 2767
clara.object L e 2771
clusGap 2772
clusplot 2776
clusplot.default 2777
coef.hclust e 2782
daisyo 2783
diana. 2786
dissimilarity.object 2789
ellipsoidhull L 2790
fanny L e e e e 2792
fanny.object L 2794
flower 2796
lowertoupper.triinds Lo 2797
MONA .+ v v v vttt e e e e e e e 2797
mona.object 2799
PAM . . L e e e e 2800
pam.object e e e e e e 2804
partition.object L. e e e 2805
plantTraits 2806
plotagnes e 2808
plotdiana e e 2810
plotmona 2812
plotpartition 2813
PItree e e e e 2815
plutono 2817
predictellipsoid 2818
PrNLAZNES oo e e e e e e e e e 2819
print.clara e e 2820
print.diana e 2820
print.dissimilarity Lo 2821
print.fanny L e e 2822
Print.mONa e e e 2822
PriNLpAM e e 2823
TUSPINL . . . v v e 2823
silhouette e 2824
SizeDiss 2827
SUMMATY.AZNES .« « . o v v v e e e e e e e e e e e e e e e e e e 2828
summary.clara L. e e e 2829
summary.diana Lo 2830

SUMMATY.IMONA .+« . v v v v v et v et e e e e e e e e e e e e e e e e 2830

x1

SUMMArY.Pam o v v v v vttt
twins.object
volume.ellipsoid
votes.repub Lo Lo
xclara

21 The codetools package

checkUsage
codetools, .
findGlobals
showTree

22 The foreign package

lookup.xport. Lo
read.arff L oL
readdbf o
readdta L
readeepiinfoo oL
readmtp
read.octave
read.SPSS o a e e e
read.ssd L.
readsystat oL
read.Xport
S3read functions
write.arff L
write.dbfo Lo
writedta Lo
write.foreign.o

23 The lattice package

A_O1 Lattice
B_00_xyplot
B_Ol_xyplotts
B_02_barchart.table
_03_histogram
4 qqmatho

lUl
Nl
=)

B
B_
B_
B_
B_
B_
B_
B_
B_
C_
C_
C_
C_04_lattice.options
C_

ooooo~soooooo
=1
@

6_levelplot
7 cloud

loneway
1_trellis.device
2_trellis.par.get
3_simpleTheme

S_print.trellis

CONTENTS

CONTENTS xli

C_06_update.trellis e e 2936
C_O7_shingles e 2938
D_draw.colorkey 2940
D_drawkey e 2941
D level.colors e 2942
D_make.groups 2943
D_simpleKey e 2944
D_strip.default 2945
D_trellis.object L. 2948
E_ interaction e 2949
F_l_panelbarchart 2956
F_l_panelbwplot e 2957
F_l_panelcloud. e 2959
F_1_paneldensityplot. 2964
F_l_paneldotplot 2965
F_l_panelhistogram 2966
F_l_panellevelplot e 2967
F_l_panelpairs e 2970
F_1_panel.parallel 2973
F_1 panel.qgmath 2975
F_l_panelstripplot 2976
F_1_panel.xyplot e e 2977
F 2 1lines e 2980
F_2 panelfunctions. 2983
F_2 panelloess L 2986
F_2_panel.qgmathline 2988
F_2_panel.smoothScatter 2989
F_2 panel.spline e e 2990
F_2 panel.superpose 2991
F_2 panel.violin L 2994
F_3_prepanel.default 2995
F_3_prepanel.functions 2997
G_axisdefault e 2998
G_banking 3002
G_latticeParseFormula 3003
G_packet.panel.default 3005
G_panel.axis e e 3006
G_panel.number. e e e e 3008
G_ROWS e e 3009
G_utilities.3d e 3010
H_ barley e 3011
H_environmental 3012
H_ethanol e 3014
H_melanoma e 3015
H singer. e 3016
H_USMortality e 3017

LISet . . o 3019

xlii CONTENTS

24 The mgcv package 3021
ANOVAZAM .« . o o . v v e v e 3021
bam e 3023
bam.update 3029
bandchol 3031
betar e 3033
blas.thread.test 3034
DUZ.TEPOTLS.MNECV . o o o v v o v e 3035
choldrop e 3035
choose.k 3037
columb 3040
CONCUIVILY . . . o v vt i o e e e e e e e e e e e e e e e e e e 3041
COX.Ph . . e 3043
COX.pht . . . e 3047
cSplineDes e e 3049
dDeta e 3051
exclude.toofar L 3051
extract.Ime.cov 3053
family.mgev L e e 3054
FFdes e 3056
fix.familylink L 3057
fixDependence e 3058
formula.gamo 3059
formXtVIiX . . . L 3061
fSest . . . e 3063
fullscore e 3064
GAML . . . Lt e e e e e e e e e e e e 3065
gam.check L L 3075
gam.control L e e 3077
GAM.CONVETZENCE« . v o v v v v v et e et e e e e e e e e 3080
gam.fito 3081
gam.fit3 . . L L e e e e 3083
gam.fitS.post.proc 3085
gammh . ..o 3086
gammodels 3088
GAMLOULET . . o v v v v vt v e 3095
GAMLIEPATAI o v e e e e e e e e e e e e e e e e e e 3097
gam.scale 3098
gam.selection L e e e e 3098
gam.side L 3101
GAMLVCOIMP .+« o v v e v v e 3103
gam20bjective oL e 3105
gamlss.etamu e e e e e e e e e e 3106
gamlss.gHo 3108
SAMM . . . ottt e e e e e e e e e e e e 3109
gammals e e e e e e e 3116
gamObject 3117

SAMSIM e e e 3121

CONTENTS xliii

aULSS . .. e e 3122
GELVAT . . . v v i e e e e e e e e e e e e e 3123
GEVISS . . e e 3125
ginla . . .o 3127
gumbls . . . Lo e e e e 3130
identifiability 3132
ILOUEL . . L o o e e e e 3133
influence.gam L L e e 3134
ntial.sp 3135
inSide L 3136
INErPret.gam o o i e e e e e e e e e e 3137
JAZAM . . L L e e e e e e e 3138
k.check . . . o oL e 3143
IdetS 3144
IdTweedie o e 3145
linear.functional.terms 3147
loghik.gam 3151
[S.S1Z€ . . . o 3153
MAZIC .+ v v v e 3154
MAZIC.POSEPIOC .« . .« v v v o et e it e e e e e e e e e 3158
mgcv.FAQ . . . e 3160
mgev.package e e e e e e 3162
mgev.parallel 3164
MINLIOOLS v v vt e et e e e e e e 3166
missing.datao e e e e e e 3167
model.matrix.gam e e e e e e e e e e e e 3168
MONO.COM .+ v v v v v e e e e et e e e e e e e e e e e e e e e 3169
001 40 3171
multinom e e 3172
00114 1 3173
negbin 3175
NEW.NAME .« « . . o v v v et e e e e e e e e e e e e e e 3177
NOtEXp e 3178
notEXp2 3179
null.space.dimension o 3181
OCAL . . v e e e e e e e 3182
one.serule e 3184
PClS o 3185
pdldnot e 3188
pdTens 3190
pen.edf 3191
place.knots L e e 3192
plot.gam L e e e e 3194
polys.plot 3199
predict.bam L 3200
predict.gam L. e e e e 3203
Predict.matrix L e 3209

Predict.matrix.cr.smootho 3210

xliv

CONTENTS
Predict.matrix.soap.film 3212
Print.gam e e e e e e 3214
psum.chisq 3215
QQ-8AM .« L e e e e e e e e e 3217
randomeeffects 3220
residuals.gam L e 3222
TIZ o o e 3223
TINVIL . 0 e ot e e e e e e e e e e e e e e e e e 3224
Rrank o e 3225
rTweedie L 3226
S e e e e e e e 3227
SCAL . v i i 3230
sdiag e 3231
shash oL 3232
single.dndex L e e e 3235
SLinirep L e e 3236
Shrepara L e e e 3237
SLSEtUD . . . o o e e e e e e 3238
slanczos L e 3239
SMOOth.CONSIIUCE o o e e e e 3241
smooth.construct.ad.smooth.spec oL 3246
smooth.construct.bs.smooth.spec Lo 3249
smooth.construct.cr.smooth.spec 0oL oL 3252
smooth.construct.ds.smooth.spec 3254
smooth.construct.fs.smooth.spec L L . 3257
smooth.construct.gp.smooth.spec L oo 3259
smooth.construct.mrf.smooth.spec 3262
smooth.construct.ps.smooth.spec oL 3265
smooth.construct.re.Smooth.spec 3268
smooth.construct.so.smooth.spec o Lo 3270
smooth.construct.sos.smooth.spec 3276
smooth.construct.t2.smooth.spec e 3279
smooth.construct.tensor.smooth.spec oL 3280
smooth.construct.tp.smooth.spec L o 3282
smoothinfo 3285
SMOOoth.terms e 3286
smooth2randomo e 3289
smoothCon 3291
SPVCOV o v o e e e e e e e e e e e e e e e e e e e 3294
SPASML.CONSITUCE oottt 3295
SIEP.ZAIML L. e e 3296
SUMMATY.ZAM « « . . o v v v e e e et e e e e e e e e e e e e e 3297
B2 3302
B o e e e 3306
tensor.prod.model.matrix Lo 3311
totalPenaltySpace e e e 3313
trichol e e 3313

trind.generator L. e e 3314

CONTENTS xlv

Tweedie e e e e 3315
tWISS . o o e e e e 3318
uniquecombs oL 3319
VCOV.ZAMNL « & v v v v e 3321
VIS.AM . . . L Lo e e e e e 3322
XWXd . . e 3325
ZIP L e e e 3328
ZIPISS . . e e e e 3330
25 The nlme package 3333
ACF . e 3333
ACEgls e 3334
ACFIme e 3335
Alfalfa e 3337
allCoef e 3337
anova.gls . ..o L e 3338
anovaldme L. e e e 3341
aS.MAriX.COTSIIUCE ot o ot et e e e e e e e e e e 3343
as.matrix.pdMat 3344
aS.MAtriX.IeSIUCE o ot e e e e e e e e e e e e e e e 3345
asOneFormula 3346
ASSAY . . e e e e e e e e e e 3347
asTable e 3348
augPred 3349
balancedGrouped 3350
bdf . . e 3351
BodyWeight 3353
Cefamandole e 3354
Coef . . . e 3354
coef.corStruct e 3355
coef.gnls 3357
coefllme e e e 3358
coefllmList 3359
coef.modelStruct L. e 3361
coefpdMat e 3362
coefreStruct e 3363
coef.ovarFunc e 3364
collapse e 3365
collapse.groupedData L 3366
compareFits L e 3368
comparePred 3369
corARL . . . e 3370
corARMA e 3372
corCARIL e 3373
COrClasSes v v v i e e e e e e e e e 3375
corCompSymm e e e e e e e e e 3376
COtEXp e 3377
corFactor e 3379

corFactor.corStruct e 3380

x1Ivi

CONTENTS

corGaus
QOMBALS e 3381
corHin L 3383
QORI o 3384
i o 3385
COVIINBANAL 3387
COMIDLIESITUCL -+ o 3388
COMMAIAL o 3389
ol | 3390
e 3392
v ERORERE 3393
COISVIMD o 3395
COWMAE o c 3397
D TG e 3398
DIIVEET - 3399
Dimeospatal | 3400
DIMCOMPAAL - o 3401
D 3402
B 3403
oSl 3404
SRRSO 3405
PAIBUC - 3405
et 3406
e oy 3407
AUEGENISITICL . - 3408
e r 3409
QUEIMEBIILCL e 3410
BUEAIMLIS o 3411
QUETIMESITUICL. - 3412
EXEQEITEEty v 3413
e Blocked | 3414
At AR 3415
ErMUIDEMIAL 3416
ST e 3417
Gasohne”””_.”: 3418
RSSO 3419
oo 3420
ot ot 7T 3421
oo et e e 3422
e Conariacbomats 3423
oy oMM e 3424
e batags 3424
e oaime 3425
e mLice | 3426
o o 3427
o s 3428
e Croue o 3429
.......................... 3430

getGroups.gls
............................ 3431

CONTENTS xlvii

getGroups.Ime e e e 3432
getGroups.ImList L. e 3433
getGroups.varFunc Lo 3434
getGroupsFormula oL 3435
GEtRESPONSE e e e e 3436
getResponseFormula Lo o 3436
getVarCov e 3437
IS L e e 3438
glsControl 3440
glsObject 3442
glsStruct L 3443
GlUCOSE e e 3444
Glucose2 L e 3444
gnlsS . .o e 3445
gnlsControl e e 3447
gnlsObject 3449
gnlsStructo 3450
groupedData e e e 3451
GSUMMATY .« . v v o v v o v v e 3453
GUn . .o e e 3455
IGF . . e 3456
Initialize 3456
Initialize.corStruct L. e 3457
Initialize.glsStruct 3458
Initialize.ImeStruct L. 3459
Initialize.reStruct L. 3460
Initialize.varFunc L 3461
intervals Lo 3462
intervals.gls L e 3463
intervalsdme 3464
intervals.dmListo 3465
isBalanced 3466
islnitialized 3467
LDEsysMat e 3468
Ime 3469
Ime.groupedData L e 3472
ImedmList oL 3474
ImeControl 3476
ImeObject e e e 3478
ImeStruct e e 3480
ImListo 3481
ImList.groupedData 3482
logDet e e 3483
logDet.corStruct e e 3484
logDet.pdMat L 3485
logDetreStruct L e e e e 3486
loglik.corStruct 3487

loglik.glsStruct L 3488

x1lviii

CONTENTS
loglik.gnls e e e 3489
logLik.gnlsStruct 3490
loglikdme 3491
loglik.dmeStruct 3492
logLik.ImList o e e e 3493
logLlikreStruct 3494
loglik.varFunc 0 o oL 3495
Machines e 3496
MathAchieve e 3496
MathAchSchool e 3497
Matrix oo e e 3497
Matrix.pdMat e e e e e 3498
Matrix.reStruct e e e e 3499
Meat e 3500
Milk . . . e 3501
model.matrix.teStruct L L e e e e 3501
Muscle e e e e 3502
NAMeSs v v vt e 3503
Names.formula L 3504
Names.pdBlocked 3505
Names.pdMat 3506
Names.reStruct e 3507
needUpdate 3508
needUpdate.modelStruct 3508
Nitrendipene e e e e e 3509
nlme 3510
nlme.nlsList e e 3513
nlmeControl L 3515
nlmeObject e e e e e e 3517
nlmeStruct e e e 3519
nISLiSt e e e e e e 3520
nlsList.selfStart 3522
0ats . . . e e 3523
Orthodont e 3524
OVAIY . . . o o 3525
OXDOYS .« o o e e e e e 3525
Oxide e 3526
pairs.compareFits 3527
pairsdme. L. e e 3528
pairs.ImListo 3529
PBG . . . e 3531
pdBlocked e 3531
pdClasseso e e e e 3533
pdCompSymm e e 3534
pdConstruct e 3535
pdConstruct.pdBlocked 3537
pdDiag.o 3538

pdFactor 3540

CONTENTS xlix

pdFactorreStruct e e 3541
pdldent 3542
pdLogChol e 3543
pAMat . . . L e 3545
pAMatrixo e e e 3546
pdMatrix.reStruct L. e e e 3547
pdNatural 3548
pASymmo e e e e 3549
Phenobarb L 3551
phenoModel L 3552
Pixel 3553
plot ACF e 3553
plotaugPred 3554
plotcompareFits 3555
Plot.gls . . . e e 3556
plotintervals.Imlist oL 3558
plotlme 3559
plot.ImList. e e 3561
plot.nffGroupedData 3562
plotnfnGroupedData 3564
plotnmGroupedData L 3566
plotranefdme 3568
plotranefImList 3570
plot.Variogram 3571
pooledSD e e 3573
predict.gls e 3573
predict.gnls 3574
predict.lme L 3575
predictdmList e 3577
predictnlmeo 3578
print.summary.pdMat 3579
print.varFunc oL e 3580
qqnorm.gIS e 3581
gqnorm.me 3582
Quinidine 3584
quinModel e 3585
Rail . . . 3586
random.effects 3587
ranefllme L. 3588
ranefdmblist 3589
RatPupWeight 3591
recalc ..o e 3592
recalc.COrStruct L. e 3593
recalc.modelStruct 3594
recalcreStruct L 3595
recalc.varFunco oL 3596
Relaxin e 3597

Remifentanil e 3597

CONTENTS

residuals.gls L e 3599
residuals.glsStruct Lo 3600
residuals.gnlsStruct 3601
residuals.dmeo oL 3602
residuals.ImeStruct L. oL 3603
residuals.ImListo 3604
residuals.nlmeStruct 3605
TESTIUCE .« . . o v ot e e e e 3606
simulatelme oL 3608
solve.pdMat L. 3609
SOIVE.reSIruCt e 3610
Soybean e e e e 3611
splitFormula 3612
SPruce o o e 3612
SUMMATY.COTSITUCE v o v v e o e e e e e e e e e e e e e e 3613
summary.gls e e 3614
summary.lme L 3615
summary.ImList e 3616
summary.modelStruct 3618
summary.nlsList o 3619
summary.pdMat 3620
summary.varFunc oL 3621
Tetracyclinel 3622
Tetracycline2 3623
update.modelStruct e e e 3624
update.varFunc oL L 3625
varClasses e 3626
varComb 3627
varConstPower 3628
varConstProp L 3629
VarCorr o e 3632
VarEXp . . . e e e 3633
varFixed L L e 3635
varFunc . . . L L 3636
varldent 3636
Variogramo e e e e e e e e 3638
Variogram.corExp 3639
Variogram.corGaus 3640
Variogram.corLin L e e e e 3641
Variogram.corRatio L 3642
Variogram.corSpatial 3643
Variogram.corSpher L. e 3644
Variogram.default 3645
Variogram.gls L 3646
Variogram.lmeo 3649
varPower e 3651
varWeights L 3652

varWeights.glsStructo 3653

CONTENTS

varWeights.ImeStruct L
Wafer o
Wheat e e e
Wheat2 e e e
[pdMat e e e

26 The nnet package

classind e
multinom e e e e
NNEL o e e e e e e e e e e
nnetHess e
predictnnet e e
which.s.max

27 The rpart package

cartest.frame
car90 . ..
CULSUIMIMALY . . v v v v v e e e e e e e e e e e e e e e e e e e
kyphosis
labels.rpart oL e e
MEANVALIPALT o oo ot e e e e
NATPALT . . o v ottt e e e e e
patharpart
plotrpart.
PIOtCD .« o o e e
postrpart L e e e e e e e e
predictapart e e e e e e
Printrpart e e e e e e e e e
PIANICD .« o o o o e e
prune.rpart L L L e e e e e e e e
residuals.rpart L
TPAIt . .
rpart.controlo L. e e e e
TPATLEXD « « o v v v e e e e e e e e e e e e e e e e e e
rpart.object e e
ISQIPArt L e e e e e e e e e e e
SNIP.IPATt . . . o L e e e e e e e e e
solderbalance L
SLAZEC
SUMMATY.IPAT v o e et e e e e e e e e e e e e e e e
texXtrpart e e e e e e
Xpreduapart oLl L e e e e e e e e e

28 The spatial package

anova.trls L e
COTTElOZram o it e e e e e e e e e e e e e
BXPCOV &« v v v v e
Kaver e e

lii CONTENTS
Kfn . . 3706
PPEELregion e e e e e e e e e 3707
PPINIL e 3707
PPliK . . e 3708
PPregION e 3709
predict.trls 3710
PrMat . .. e e e e e e e e e 3711
Psim e 3712
SEMAL . . . L L e e e e e e e e e 3713
I 3714
STauSS . . . v v o e e e 3715
surf.gls . . L e 3716
surfls .. oL e 3717
trlsinfluence oL 3718
rmat o e e e e e e e e e 3719
VArIOZIAM . . . o v v v e e e e e e e e e e e e e e e e 3720

29 The survival package 3723
) 3723
ABQSUIV . . . o o e 3726
aggregate.surviit L. 3727
agregfit e e e e 3728
aml ..o e 3729
anova.coxph 3730
attrassig@n e 3731
basehaz 3732
bladder 3733
blogit e 3734
cCh . L L e 3736
cgd . . e 3738
cgd0 . .. e 3739
CIPOISSON v v vt i ettt e e e 3740
clogit 3741
ClUSter e 3743
colon . . .o e 3744
CONCOTAANCE o v v e it et e e e e e e e e e e e 3746
concordancefit L. 3748
cox.zph . . .o 3749
COXpPh . . e e e 3751
coxph.control e e 3756
coxphdetail 3757
coxph.object L 3759
COXPRLWEESE e 3760
COXSUrV.fit L 3761
diabetic 3762
dsurvrego e e e e 3763
finegray e 3765
fichain 3767

frailty 3768

CONTENTS liii

EDSE . e e e 3770
heart L e 3772
isratetable L. L L 3773
kidney 3774
levels.Surv e 3775
lines.survfit L 3775
logan e 3778
logLik.coxph e 3779
lung e 3780
IZUS . . v v v e 3781
MEUS2 . o ot e e e e e e e e e e 3782
model.frame.coxph L 3783
model.matrix.coxph 3784
myeloid 3785
nafld e 3786
neardate L e e e e e e 3788
NSK . . e 3789
NWECO . o o e e e e e e e e e e e e e e 3791
OVATIAN o v vt e e e e e e e e e e e 3792
PbC . L e 3793
POCSEq -« o e 3794
plotaareg e e e e e e 3796
plotcox.zph 3797
plotsurviit 3798
predict.coxph e 3801
Predict.Survreg o e e e e e e e e e e 3803
PriNtAareg o e e e e e e e 3805
print.summary.CoXph 3806
Print.SUMMATrY.SUTVEXP . « « v v v v v e e e e e e e e e e e e e e e e e 3806
print.summary.surviit Lo oL 3807
print.surviit 3808
pseudo L e e e e 3809
psplineo e 3810
PYCATS .« . o e e e e e e e 3812
quantile.survfito oL 3815
ratetable L L 3817
ratetableDate L 3818
ratetables L. 3819
TALS . . o e e e e e e e e e e e 3820
TAS2 . . L e e e e e e 3820
reliability 3821
residuals.coxph L. e 3822
residuals.survfito Lo 3824
residuals.survreg L. L 3825
retinopathy 3827
thDNase e 3828
ridgeo e 3829

rotterdam e e 3831

liv

Index

CONTENTS

TOYSTOM © v v v o e 3832
rttright o oL 3833
solder L. e 3834
stanford2 L L 3835
statefig 3836
] 0 2 2 3838
SUMMATY.AATEZ .+« . v v v v v e v v e e e e e e e e e e e e e e e e e e 3839
summary.coXph 3840
SUMMATY.PYCATS .« « « v v v v v e v v e e e e e e e e e e e e e e e e e e e 3842
SUMMATY.SUIVEXD « « v ¢ v v v e v v e e e e e e e e e e e e e e e e e e 3843
summary.surviit 3844
SUIV . o e 3846
Surv-methods 3848
SUIV2 L 3851
Surv2datao L e 3852
survcheck 3853
survdiff . ..o 3854
SUIVEXD .« v v v v v e 3856
survexp.fit . . . oL e 3859
SUIVEXP.ODJECt o L e 3860
SUrVEIL . . . L e 3861
survfit.coxph L e 3862
survfit.formulao L 3865
surviitmatrix L. 3869
surviit.object 3871
surviitD . . L L 3873
survfitcoxphfit L 3874
survival-deprecated L L e 3876
survobrieno L e 3876
SUIVIEE . o . v v vt it e e e e e e e e e e 3878
SUIVIEZ.CONLrol oL e e 3880
survreg.distributions oL 3881
SUIVIEZ.ODJECE . . o v v v v ot e e e e e e e e e e e e e e e e e e e 3883
survregDest L L e e e e e 3884
survSplit e 3885
TCUL . . o e e e e e e e 3886
190013 ¥ 3887
tobino 3890
transplant L e e e e e 3890
udca . ..o e 3892
untangle.specials Lo 3893
USPOP2 .« o v e o e e e e e e e e e e e e e e e e e 3894
VCOV.COXPh . . . o o 3895
VEIBIAN . . o . v v vt e e e e e e e e e e e e e 3895
xtfrm.Surv . . oL 3896
YaES . .. e e 3897
yates_Setup 3898
3901

Part I

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use 1ibrary (help = "base").

.bincode Bin a Numeric Vector

Description

Bin a numeric vector and return integer codes for the binning.

Usage

.bincode (x, breaks, right = TRUE, include.lowest = FALSE)

4 .Device
Arguments
X a numeric vector which is to be converted to integer codes by binning.
breaks a numeric vector of two or more cut points, sorted in increasing order.
right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.
include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included in the first (or last) bin.
Details
This is a ‘barebones’ version of cut .default (labels = FALSE) intended for use in other
functions which have checked the arguments passed. (Note the different order of the arguments
they have in common.)
Unlike cut, the breaks do not need to be unique. An input can only fall into a zero-length
interval if it is closed at both ends, so only if include.lowest = TRUE and it is the first (or last
for right = FALSE) interval.
Value
An integer vector of the same length as x indicating which bin each element falls into (the leftmost
bin being bin 1). NaN and NA elements of x are mapped to NA codes, as are values outside range
of breaks.
See Also
cut, tabulate
Examples
An example with non-unique breaks:
x <- c¢(0, 0.01, 0.5, 0.99, 1)
b <- C(Or OI 1/ 1)
.bincode (x, b, TRUE)
.bincode (x, b, FALSE)
.bincode (x, b, TRUE, TRUE)
.bincode (x, b, FALSE, TRUE)
.Device Lists of Open/Active Graphics Devices
Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the ac-
tive device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base

namespace.

.Machine 5

Value

.Device is a length-one character vector.

.Devices is apairlist of length-one character vectors. The first entry is always "null device",
and there are as many entries as the maximal number of graphics devices which have been simul-
taneously active. If a device has been removed, its entry will be "" until the device number is
reused.

Devices may add attributes to the character vector: for example devices which write to a file may
record its path in attribute "filepath".

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations
of R use 32-bit integers and use IEC 60559 floating-point (double precision) arithmetic, the
"integer" and "double" related values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur.
On a typical R platform the smallest positive double is about 5e—324.

Value
A list with components

double.eps the smallest positive floating-point number x such that 1 +x !=1.
It equals double.base "ulp.digits if either double.base is
2 or double.rounding is 0; otherwise, it is (double.base "
double.ulp.digits) / 2. Normally 2.220446e-16.

double.neg.eps

a small positive floating-point number x such that 1 -x !=1. It
equals double.base » double.neg.ulp.digits if double.base
is 2 or double.rounding is 0; otherwise, it is (double.base
~ double.neg.ulp.digits) /2. Normally 1.110223e-16. As
double.neg.ulp.digits is bounded below by - (double.digits +
3), double.neg.eps may not be the smallest number that can alter 1 by
subtraction.

double.

double.

double.
double.

double.

double.

double.

double.

double.

double

double.

.Machine

xmin the smallest non-zero normalized floating-point number, a power of the radix,
i.e.,,double.base * double.min.exp. Normally 2.225074e-308.

xmax the largest normalized floating-point number. Typically, it is equal to
(1 —double.neg.eps) * double.base ~ double.max.exp, but on
some machines it is only the second or third largest such number, being too small
by 1 or 2 units in the last digit of the significand. Normally 1.797693e+308.
Note that larger unnormalized numbers can occur.

base the radix for the floating-point representation: normally 2.
digits
the number of base digits in the floating-point significand: normally 53.
rounding
the rounding action, one of
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow.
Normally 5.

guard the number of guard digits for multiplication with truncating arithmetic. It is
1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and O otherwise.
Normally 0.
ulp.digits
the largest negative integer i such that 1 + double.base ~ i !=1, except
that it is bounded below by — (double.digits + 3). Normally -52.
neg.ulp.digits
the largest negative integer i such that 1 —double.base ~ i !=1, except
that it is bounded below by — (double.digits + 3). Normally -53.
exponent
the number of bits (decimal places if double.base is 10) reserved for the
representation of the exponent (including the bias or sign) of a floating-point
number. Normally 11.

.min.exp
the largest in magnitude negative integer i such that double.base ~ i is
positive and normalized. Normally -1022.

max.exp

the smallest positive power of double .base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 231 — 1 = 2147483647.

sizeof.long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not

Windows).

sizeof.longlong

the number of bytes in a C long long type. Will be zero if there is no such
type, otherwise usually 8.

.Machine 7

sizeof.longdouble
the number of bytes in a C 1ong double type. Will be zero if there is no such
type (or its use was disabled when R was built), otherwise possibly 12 (most
32-bit builds) or 16 (most 64-bit builds).

sizeof.pointer
the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on
64-bit builds of R.

longdouble.eps, longdouble.neg.eps, longdouble.digits, ...
when capabilities ("long.double") is true, there are 10 such
"longdouble.<kind>" values, specifying the long double property
corresponding to its "double. " counterpart, above, see also ‘Note’.

Note

In the (typical) case where capabilities ("long.double") is true, R uses the long
double C type in quite a few places internally for accumulators in e.g. sum, reading non-integer
numeric constants into (binary) double precision numbers, or arithmetic such as x $% v; also, long
double can be read by readBin.

For this reason, in that case, .Machine contains ten further components, longdouble.eps,
*.neg.eps, x.digits, *.rounding x.guard, *.ulp.digits, *.neg.ulp.digits,
*.exponent, *.min.exp, and *.max.exp, computed entirely analogously to their
double. x counterparts, see there.

sizeof.longdouble only tells you the amount of storage allocated for a long double. Often
what is stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used
on the platform — this seems to be the case for the common R platforms using ix86 and x86_64
chips.

Note that it is legal for a platform to have a 1ong double C type which is identical to the double
type — this happens on ARM cpus. In that case capabilities ("long.double") will be
false but .Machine may contain "longdouble.<kind>" elements.

Source
Uses a C translation of Fortran code in the reference, modified by the R Core Team to defeat over-
optimization in modern compilers.

References
Cody, W.J. (1988). MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14(4), 303-311. doi: 10.1145/50063.51907.

See Also

.Plat form for details of the platform.

Examples

.Machine
or for a neat printout
noquote (unlist (format (.Machine)))

https://doi.org/10.1145/50063.51907

8 .Platform
.Platform Platform Specific Variables

Description
.Platform is a list with some details of the platform under which R was built. This provides
means to write OS-portable R code.

Usage
.Platform

Value

A list with at least the following components:

OS.type

file.sep

dynlib.ext

GUI

endian

pkgType

path.sep

r_arch

character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

character string, giving the file separator used on your platform: " /" on both
Unix-alikes and on Windows (but not on the former port to Classic Mac OS).

character string, giving the file name extension of dymamically loadable
libraries, e.g., ".d11" on Windows and ".so" or ".s1" on Unix-alikes.
(Note for macOS users: these are shared objects as loaded by dyn.load and
not dylibs: see dyn.load.)

character string, giving the type of GUI in use, or "unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘~g’
command-line flag ("X11", "Tk"), "AQUA" (running under R.app on ma-
cOS), "Rgui" and "RTerm" (Windows) and perhaps others under alternative
front-ends or embedded R.

character string, "big" or "1ittle", giving the ‘endianness’ of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

character string, the preferred setting for options ("pkgType"). Values
"source", "mac.binary" and "win.binary" are currently in use.

This should not be used to identify the OS.
character string, giving the path separator, used on your platform, e.g., ": "

on Unix-alikes and "; " on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

character string, possibly "". The name of an architecture-specific directory
used in this build of R.

abbreviate 9

AQUA
.Platform$GUT is set to "AQUA" under the macOS GUI, R. app. This has a number of conse-
quences:
* ‘/usr/local/bin’ is appended to the PATH environment variable.
¢ the default graphics device is set to quartz.

* selects native (rather than Tk) widgets for the graphics = TRUE options of menu and
select.list.

HTML help is displayed in the internal browser.

* the spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was com-
piled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

capabilities and extSoftVersion (and links there) for availability of capabilities partly
external to R but used from R functions.

Examples

Note: this can be done in a system-independent way by dir.exists()
if (.Platform$0S.type == "unix") {
system.test <- function(...) system(paste("test", ...)) == 0L
dir.exists2 <- function (dir)
sapply (dir, function(d) system.test ("-d", d))

dir.exists2 (c(R.home (), "/tmp", "~", "/NO")) # > T T T F
}
abbreviate Abbreviate Strings
Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict = TRUE.

Usage

abbreviate (names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept", "both.sides"), named = TRUE)

10 abbreviate

Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.
minlength the minimum length of the abbreviations.

use.classes logical: should lowercase characters be removed first?

dot logical: should a dot (" . ") be appended?
strict logical: should minlength be observed strictly? Note that setting strict =
TRUE may return non-unique strings.
method a character string specifying the method used with default "1eft .kept", see
‘Details’ below. Partial matches allowed.
named logical: should names (with original vector) be returned.
Details

The default algorithm (method = "left .kept") used is similar to that of S. For a single string
it works as follows. First spaces at the ends of the string are stripped. Then (if necessary) any
other spaces are stripped. Next, lower case vowels are removed followed by lower case consonants.
Finally if the abbreviation is still longer than minlength upper case letters and symbols are
stripped.

Characters are always stripped from the end of the strings first. If an element of names.arg
contains more than one word (words are separated by spaces) then at least one letter from each
word will be retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space.

Value

A character vector containing abbreviations for the character strings in its first argument. Duplicates
in the original names . arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic internal
abbreviate () algorithm is applied to the characterwise reversed strings; if there are still du-
plicated abbreviations and if strict = FALSE as by default, ninlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all unique
elements of names . arg have unique abbreviations.

If names is true, the character version of names . arg is attached to the returned value as a names
attribute: no other attributes are retained.

If a input element contains non-ASCII characters, the corresponding value will be in UTF-8 and
marked as such (see Encoding).

Warning

If use.classes is true (the default), this is really only suitable for English, and prior to R 3.3.0
did not work correctly with non-ASCII characters in multibyte locales. It will warn if used with
non-ASCII characters (and required to reduce the length). It is unlikely to work well with inputs

agrep 11

not in the Unicode Basic Multilingual Plane nor on (rare) platforms where wide characters are not
encoded in Unicode.

As from R 3.3.0 the concept of ‘vowel’ is extended from English vowels by including characters
which are accented versions of lower-case English vowels (including ‘o with stroke’). Of course,
there are languages (even Western European languages such as Welsh) with other vowels.

See Also

substr.

Examples

x <— c("abcd", "efgh", "abce")
abbreviate (x, 2)
abbreviate (x, 2, strict = TRUE) # >> 1st and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
stopifnot (identical (unname (st.abb),

abbreviate (state.name, 2, named=FALSE)))
table (nchar (st.abb)) # out of 50, 3 need 4 letters
as <- abbreviate(state.name, 3, strict = TRUE)
as[which(as == "Mss")]

and without distinguishing vowels:
st.abb2 <- abbreviate (state.name, 2, FALSE)

cbind (st.abb, st.abb2) [st.abb2 != st.abb,]
method = "both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate (state.name, 2, method = "both")

table (nchar (st.ab2))
Compare the two methods:
cbind(st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within each element of the
string x (the second argument) using the generalized Levenshtein edit distance (the minimal possi-
bly weighted number of insertions, deletions and substitutions needed to transform one string into
another).

Usage

agrep (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, value = FALSE, fixed = TRUE,
useBytes = FALSE)

12

agrep

agrepl (pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, fixed = TRUE, useBytes = FALSE)

Arguments

pattern

max.distance

costs

ignore.case

value

fixed

useBytes

Details

anon-empty character string or a character string containing a regular expression
(for fixed = FALSE) to be matched. Coerced by as.character to a string
if possible.

character vector where matches are sought. Coerced by as.character toa
character vector if possible.

Maximum distance allowed for a match. Expressed either as integer, or as a

fraction of the pattern length times the maximal transformation cost (will be

replaced by the smallest integer not less than the corresponding fraction), or a

list with possible components

cost: maximum number/fraction of match cost (generalized Levenshtein dis-
tance)

all: maximal number/fraction of all transformations (insertions, deletions and
substitutions)

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If cost is not given, all defaults to 10%, and the other transformation number

bounds default to a11. The component names can be abbreviated.

a numeric vector or list with names partially matching ‘insertions’,

‘deletions’and ‘substitutions’ giving the respective costs for comput-

ing the generalized Levenshtein distance, or NULL (default) indicating using unit

cost for all three possible transformations. Coerced to integer via as . integer
if possible.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

logical. If TRUE (default), the pattern is matched literally (as is). Otherwise, it
is matched as a regular expression.

logical. in a multibyte locale, should the comparison be character-by-character
(the default) or byte-by-byte.

The Levenshtein edit distance is used as measure of approximateness: it is the (possibly cost-
weighted) total number of insertions, deletions and substitutions required to transform one string

into another.

This uses t re by Ville Laurikari (https://github.com/laurikari/tre), which supports
MBCS character matching.

https://github.com/laurikari/tre

all 13

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is forced if any
input is found which is marked as "bytes" (see Encoding).

Value

agrep returns a vector giving the indices of the elements that yielded a match, or, if value is
TRUE, the matched elements (after coercion, preserving names but no other attributes).

agrepl returns a logical vector.

Note

Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of x (just as grep does) and not whole elements. See also
adist in package utils, which optionally returns the offsets of the matched substrings.

Author(s)

Original version in R < 2.10.0 by David Meyer. Current version by Brian Ripley and Kurt Hornik.

See Also

grep, adist. A different interface to approximate string matching is provided by aregexec ().

Examples

agrep ("lasy", "1 lazy 2")

agrep("lasy", c(" 1 lazy 2", "1 lasy 2"), max = list(sub = 0))

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE)
agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

14 all

Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments . .. should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur

if na.rm=FALSE and . . . contains no FALSE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature
X, ...,0a.rm

Note

That a1l (1logical (0)) is true is a useful convention: it ensures that
all(all(x), all(y)) == all(x, Vv)

even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of all, and stopifnot (*) whichisanall (%) ‘insurance’.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

all.equal 15

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal (x,y) is a utility to compare R objects x and y testing ‘near equality’. If they are
different, comparison is still made to some extent, and a report of the differences is returned. Do
not use all.equal directly in if expressions—either use 1sTRUE (all.equal(....)) or
identical if appropriate.

Usage

all.equal (target, current, ...)

S3 method for class 'numeric'
all.equal (target, current,
tolerance = sqgrt (.Machine$double.eps), scale = NULL,
countEQ = FALSE,
formatFUN = function(err, what) format (err),
., check.attributes = TRUE)

S3 method for class 'list'
all.equal (target, current, ...,
check.attributes = TRUE, use.names = TRUE)

S3 method for class 'environment'
all.equal (target, current, all.names=TRUE, ...)

S3 method for class 'POSIXt'

all.equal (target, current, ..., tolerance = le-3, scale)

attr.all.equal (target, current, ...,
check.attributes = TRUE, check.names = TRUE)

Arguments
target R object.
current other R object, to be compared with target
further arguments for different methods, notably the following two, for numeri-
cal comparison:
tolerance numeric > 0. Differences smaller than tolerance are not reported. The

default value is close to 1. 5e—8.

scale NULL or numeric > 0, typically of length 1 or length (target). See ‘De-
tails’.

16 all.equal

countEQ logical indicating if the target == current cases should be counted when
computing the mean (absolute or relative) differences. The default, FALSE may
seem misleading in cases where target and current only differ in a few
places; see the extensive example.

formatFUN a function of two arguments, err, the relative, absolute or scaled error, and
what, a character string indicating the kind of error; maybe used, e.g., to format
relative and absolute errors differently.

check.attributes
logical indicating if the attributes of target and current (other than
the names) should be compared.

use.names logical indicating if 1ist comparison should report differing components by
name (if matching) instead of integer index. Note that this comes after . . . and
so must be specified by its full name.

all.names logical passed to 1s indicating if “hidden” objects should also be considered in
the environments.

check.names logical indicating if the names (.) of target and current should be com-
pared.

Details

all.equal is a generic function, dispatching methods on the target argument. To see the
available methods, use methods ("all.equal"), but note that the default method also does
some dispatching, e.g. using the raw method for logical targets.

Remember that arguments which follow ... must be specified by (unabbreviated) name. It is
inadvisable to pass unnamed arguments in . . . as these will match different arguments in different
methods.

Numerical comparisons for scale = NULL (the default) are typically on relative difference scale
unless the target values are close to zero: First, the mean absolute difference of the two numerical
vectors is computed. If this is smaller than tolerance or not finite, absolute differences are
used, otherwise relative differences scaled by the mean absolute target value. Note that these
comparisons are computed only for those vector elements where target is not NA and differs
from current. If countEQ is true, the equal and NA cases are counted in determining “sample”
size.

If scale is numeric (and positive), absolute comparisons are made after scaling (dividing) by
scale.

For complex target, the modulus (Mod) of the difference is used: all.equal.numeric is
called so arguments tolerance and scale are available.

The 1ist method compares components of target and current recursively, passing all other
arguments, as long as both are “list-like”, i.e., fulfill either is.vector or is.list.

The environment method works via the 1ist method, and is also used for reference classes
(unless a specific all.equal method is defined).

The methods for the date-time classes by default allow a tolerance of tolerance =0.001 sec-
onds, and ignore scale.

attr.all.equal isused for comparing attributes, returning NULL or a character vec-
tor.

all.equal 17

Value

Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the
differences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, isTRUE, ==, and all for exact equality testing.

Examples

all.equal (pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pix(1/4 + 1:10)

stopifnot (

all.equal (tan(d45), rep(l, 10))) # TRUE, but

all (tan (d45) == rep(l, 10)) # FALSE, since not exactly
() =

all.equal (tan(d45), rep(l, 10), tolerance 0) # to see difference
advanced: equality of environments
ae <- all.equal (as.environment ("package:stats"),
asNamespace ("stats"))
stopifnot (is.character (ae), length(ae) > 10,
were incorrectly "considered equal" in R <= 3.1.1

all.equal (asNamespace ("stats"), asNamespace("stats")))

A situation where 'countEQ = TRUE' makes sense:

x1l <= x2 <= (1:100)/10; =x2[2] <= 1.1%x1[2]

99 out of 100 pairs (x1[i], x2[i]) are equal:

plot (x1,x2, main = "all.equal.numeric () —-- not counting equal parts")
all.equal (x1,x2) ## "Mean relative difference: 0.1"

mtext (paste ("all.equal (x1,x2) :", all.equal(x1l,x2)), line= -2)

##' extract the 'Mean relative difference' as number:

all.egNum <- function(...) as.numeric(sub(".x:", '', all.equal(...)))
set.seed (17)

When x2 is Jjittered, typically all pairs (x1[i],x2[1i]) do differ:
summary (r <- replicate (100, all.egNum(xl, x2x (l+rnorm(xl)*le-=7))))

mtext (paste ("mean (all.equal (x1, x2% (1 + eps_k))) {100 x} Mean rel.diff.=",
signif (mean(r), 3)), line = -4, adj=0)

With argument countEQ=TRUE, get "the same" (w/o need for jittering):

mtext (paste ("all.equal (x1,x2, countEQ=TRUE) :",

signif(all.egNum(xl,x2, countEQ=TRUE), 3)), line= -6, col=2)

18 all.names

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names (expr, functions = TRUE, max.names = -1L, unique = FALSE)
all.vars (expr, functions = FALSE, max.names = —-1L, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max.names the maximum number of names to be returned. —1 indicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed
from the value.
Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names (expression (sin(x+y)))
all.names (quote (sin(x+y))) # or a call
all.vars (expression (sin (x+y)))

any 19

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any (..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments . .. should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing NAs
if requested by na . rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur
if na.rm=FALSE and . . . contains no TRUE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature

X, ...,na.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

20 aperm

See Also

all, the ‘complement’ of any.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if (any(x < 0)) cat("x contains negative values\n")
aperm Array Transposition
Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, ...)

Default S3 method:

aperm(a, perm = NULL, resize = TRUE, ...)
S3 method for class 'table'

aperm(a, perm = NULL, resize = TRUE, keep.class = TRUE, ...)
Arguments

a the array to be transposed.

perm the subscript permutation vector, usually a permutation of the integers 1:n,

where n is the number of dimensions of a. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever perm has zero length) is to reverse the order of the
dimensions.

resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (default TRUE).

keep.class logical indicating if the result should be of the same class as a.

potential further arguments of methods.

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if resize = FALSE then the returned object has the same dimensions as a, and
the dimnames are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, <J.C.Rougier@durham. ac.uk> did the faster C implementation.

append

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
X <- array(l:24, 2:4)
Xt <- aperm(x, c(2,1,3))

stopifnot (t(xt[,,2]) == x[,,2],
t(xt([,,3]) == x[,,3],
t(xtl,,4]) == x[,,4])

UCB <- aperm(UCBAdmissions, c(2,1,3))
UCB[1,,]
summary (UCB) # UCB is still a contingency table

21

Wadsworth &

append Vector Merging

Description

Add elements to a vector.

Usage

append (x, values, after = length(x))

Arguments

x the vector the values are to be appended to.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified

element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

22

apply

Examples

append (1:5, 0:1, after = 3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Usage
apply (X, MARGIN, FUN, ...)
Arguments
X an array, including a matrix.
MARGIN a vector giving the subscripts which the function will be applied over. E.g., for
a matrix 1 indicates rows, 2 indicates columns, c (1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.
FUN the function to be applied: see ‘Details’. In the case of functions like +, $+%,
etc., the function name must be backquoted or quoted.
optional arguments to FUN.
Details

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as .matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

FUN is found by a call to match. fun and typically is either a function or a symbol (e.g., a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to apply.

Arguments in . .. cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to MARGIN or FUN. In general-purpose code it is good practice
to name the first three arguments if . .. is passed through: this both avoids partial matching to
MARGIN or FUN and ensures that a sensible error message is given if arguments named X, MARGIN
or FUN are passed through

apply 23

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n,dim(X) [MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length
1 and an array of dimension dim (X) [MARGIN] otherwise. If n is 0, the result has length 0 but
not necessarily the ‘correct” dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
prod (dim (X) [MARGIN]) with dim set to MARGIN if this has length greater than one.

In all cases the result is coerced by as.vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply and there, simplify2array; tapply, and convenience functions sweep and
aggregate.

Examples

Compute row and column sums for a matrix:

x <= cbind(x1l = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind (cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot (apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

keeping named dimnames
names (dimnames (x)) <- c("row", "col")
x3 <- array(x, dim = c(dim(x),3),
dimnames = c(dimnames (x), list (C = pastel("cop.",1:3))))
identical (x, apply (x, 2, identity))
identical (x3, apply(x3, 2:3, identity))

##- function with extra args:
cave <- function(x, cl, c2) c(mean(x[cl]), mean(x[c2]))

apply(x, 1, cave, c¢cl = "x1", c2 = c("x1","x2"))
ma <- matrix(c(l:4, 1, 6:8), nrow = 2)
ma

apply (ma, 1, table) #--> a list of length 2
apply (ma, 1, stats::quantile) # 5 x n matrix with rownames

24 args

stopifnot (dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <- array(l:24, dim = 2:4)

zseq <— apply(z, 1:2, function(x) seqg_len (max(x)))
zseq ## a 2 x 3 matrix

typeof (zseq) ## list

dim(zseq) ## 2 3

zseql[l,]

apply(z, 3, function(x) seg_len(max(x)))

a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage

args (name)

Arguments
name a function (a closure or a primitive). If name is a character string then the
function with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.
Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that some primitives
do not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help; str also prints the argument list of a function.

Arithmetic 25

Examples

"regular" (non-primitive) functions "print their arguments"

(by returning another function with NULL body which you also see):
args(ls)

args (graphics::plot.default)

utils::str(ls) # (just "prints": does not show a NULL)

You can also pass a string naming a function.

args ("scan")

...but :: package specification doesn't work in this case.
tryCatch(args ("graphics::plot.default"), error = print)

As explained above, args() gives a function with empty body:
list(is.f = is.function(args(scan)), body = body(args(scan)))

Primitive functions mostly behave like non-primitive functions.
args(c)
args ("+7)

primitive functions without well-defined argument list return NULL:

args (Tif")

Arithmetic Arithmetic Operators

Description

These unary and binary operators perform arithmetic on numeric or complex vectors (or objects
which can be coerced to them).

Usage

I+
+ X X

>N F
KKK KK

KoM X X X X X
o\°
<

o° o

~
o
=

Arguments

X,V numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.

26 Arithmetic

Details

The unary and binary arithmetic operators are generic functions: methods can be written for them
individually or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1~ yandy ”~ 0are 1, always. x ~ y should also give the proper limit result when either (numeric)
argument is infinite (one of Inf or —Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For double arguments, $% can be subject to catastrophic loss of accuracy if x is much larger than
v, and a warning is given if this is detected.

%% and x $/% y can be used for non-integer v, e.g. 1 $/% 0.2, but the results are subject to
representation error and so may be platform-dependent. Because the IEC 60559 representation of
0.2 is a binary fraction slightly larger than 0.2, the answer to 1 /% 0.2 should be 4 but most
platforms give 5.

Users are sometimes surprised by the value returned, for example why (-8) ~ (1/3) is NaN. For
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the ~ operator. The relevant standards define the result in many corner cases. In
particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man pow gives details of the values in a large number of corner cases.

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Value

Unary + and unary — return a numeric or complex vector. All attributes (including class) are pre-
served if there is no coercion: logical x is coerced to integer and names, dims and dimnames are
preserved.

The binary operators return vectors containing the result of the element by element operations.
If involving a zero-length vector the result has length zero. Otherwise, the elements of shorter
vectors are recycled as necessary (with a warning when they are recycled only fractionally).
The operators are + for addition, — for subtraction, * for multiplication, / for division and ~ for
exponentiation.

%% indicates x mod y (“x modulo y”’) and % /% indicates integer division. It is guaranteed that
x==(x%%y) +y* (x%/%y) (uptorounding error)

unless y == 0 where the result of $% is NA_integer_ or NaN (depending on the typeof of the
arguments) or for some non-finite arguments, e.g., when the RHS of the identity above amounts to
Inf -Inf.

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and * is numeric and for the other operators it is integer (with overflow, which occurs at :I:(231 —1),
returned as NA_integer_ with a warning).

Arithmetic 27

The rules for determining the attributes of the result are rather complicated. Most attributes are taken
from the longer argument. Names will be copied from the first if it is the same length as the answer,
otherwise from the second if that is. If the arguments are the same length, attributes will be copied
from both, with those of the first argument taking precedence when the same attribute is present
in both arguments. For time series, these operations are allowed only if the series are compatible,
when the class and t sp attribute of whichever is a time series (the same, if both are) are used. For
arrays (and an array result) the dimensions and dimnames are taken from first argument if it is an
array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for
them individually as well as for the group generic (or the Ops group generic), with arguments
c(el,e2) (with e2 missing for a unary operator).

Implementation limits

R is dependent on OS services (and they on FPUs) for floating-point arithmetic. On all current R
platforms IEC 60559 (also known as IEEE 754) arithmetic is used, but some things in those stan-
dards are optional. In particular, the support for denormal aka subnormal numbers (those outside
the range given by .Machine) may differ between platforms and even between calculations on a
single platform.

Another potential issue is signed zeroes: on IEC 60559 platforms there are two zeroes with internal
representations differing by sign. Where possible R treats them as the same, but for example direct
output from C code often does not do so and may output ‘0.0’ (and on Windows whether it does
so or not depends on the version of Windows). One place in R where the difference might be seen
is in division by zero: 1/x is Inf or —Inf depending on the sign of zero x. Another place is
identical (0, -0, num.eq=FALSE).

Note

All logical operations involving a zero-length vector have a zero-length result.

The binary operators are sometimes called as functions as e.g. ~ &
how argument-matching is done in Ops.

(x,v): see the description of

** is translated in the parser to ~, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned
on that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in
2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi: 10.1145/103162.103163.

Also available at https://docs.oracle.com/cd/E19957-01/806-3568/ncg__
goldberg.html.

https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

28 array

For the IEC 60559 (aka IEEE 754) standard: https://www.iso.org/standard/57469.
html and https://en.wikipedia.org/wiki/IEEE_754.

See Also

sqrt for miscellaneous and Special for special mathematical functions.
Syntax for operator precedence.

% * % for matrix multiplication.

Examples
x <= -1:12
x + 1
2 x x + 3
X %% 2 #-—— 1is periodic
x %/% 5
x %% Inf # now is defined by limit (gave NaN in earlier versions of R)

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array (data = NA, dim = length(data), dimnames = NULL)
as.array(x, ...)
is.array (x)

Arguments

data a vector (including a list or expression vector) giving data to fill the array.
Non-atomic classed objects are coerced by as.vector.

dim the dim attribute for the array to be created, that is an integer vector of length
one or more giving the maximal indices in each dimension.

dimnames either NULL or the names for the dimensions. This must a list (or it will be
ignored) with one component for each dimension, either NULL or a character
vector of the length given by dim for that dimension. The list can be named,
and the list names will be used as names for the dimensions. If the list is shorter
than the number of dimensions, it is extended by NULLs to the length required.

x an R object.

additional arguments to be passed to or from methods.

https://www.iso.org/standard/57469.html
https://www.iso.org/standard/57469.html
https://en.wikipedia.org/wiki/IEEE_754

array 29

Details

An array in R can have one, two or more dimensions. It is simply a vector which is stored with
additional attributes giving the dimensions (attribute "dim") and optionally names for those di-
mensions (attribute "dimnames™").

A two-dimensional array is the same thing as amatrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames™" attribute is optional: if present it is a list with one component for each dimen-
sion, either NULL or a character vector of the length given by the element of the "dim" attribute
for that dimension.

is.array is a primitive function.

For a list array, the print methods prints entries of length not one in the form ‘integer, 7’
indicating the type and length.

Value

array returns an array with the extents specified in dim and naming information in dimnames.
The values in data are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

Unlike matrix, array does not currently remove any attributes left by as.vector from a
classed list data, so can return a list array with a class attribute.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make
it possible to access the dim [names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., hasa dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm, matrix, dim, dimnames.

30 as.data.frame

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

[,11 [,21 [,31 [,4]
#01,1 1 3 2 1
#12,] 2 1 3 2
as.data.frame Coerce to a Data Frame
Description

Functions to check if an object is a data frame, or coerce it if possible.
Usage
as.data.frame (x, row.names = NULL, optional = FALSE, ...)
S3 method for class 'character'
as.data.frame(x, ...,

stringsAsFactors = default.stringsAsFactors())

S3 method for class 'list'

as.data.frame (x, row.names = NULL, optional = FALSE, ...,
cut.names = FALSE, col.names = names(x), fix.empty.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

S3 method for class 'matrix'

as.data.frame (x, row.names = NULL, optional = FALSE,
make.names = TRUE, ...,
stringsAsFactors = default.stringsAsFactors())

is.data.frame (x)

Arguments
x any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syn-

tactic names: see make.names) is optional. Note that all of R’s base pack-
age as.data.frame () methods use optional only for column names
treatment, basically with the meaning of data. frame (*, check.names =
loptional). See also the make .names argument of the mat rix method.

additional arguments to be passed to or from methods.

as.data.frame 31

stringsAsFactors
logical: should the character vector be converted to a factor?

cut.names logical or integer; indicating if column names with more than 256 (or
cut .names if that is numeric) characters should be shortened (and the last
6 characters replaced by " ... ").

col.names (optional) character vector of column names.

fix.empty.names
logical indicating if empty column names, i.e., "" should be fixed up (in
data.frame) or not.

make.names a logical,i.e., one of FALSE, NA, TRUE, indicating what should happen if
the row names (of the matrix x) are invalid. If they are invalid, the default,
TRUE, calls make.names (*, unique=TRUE) ; make .names=NA will use
“automatic” row names and a FALSE value will signal an error for invalid row
names.

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods. For classes that act as vectors, often a copy of as.data.frame.vector will
work as the method.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method for as.data. frame: two examples are matrices of class "model .matrix" (which
are included as a single column) and list objects of class "POSIX1t" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names.
Names are removed from vector columns unless I.

Value

as.data. frame returns a data frame, normally with all row names "" if optional = TRUE.

is.data. frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

32

as.Date

See Also

data.frame, as.data.frame.table for the table method (which has additional argu-
ments if called directly).

as.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

Usage

as
##

as.

##

as.

##

as

##

.Date(x, ...)

S3 method for class 'character'

Date (x, format, tryFormats = c("%$Y-%m-%d", "$Y/%m/%d"),
optional = FALSE, ...)

S3 method for class 'numeric'

Date (x, origin, ...)

S3 method for class 'POSIXct'

.Date(x, tz = "UTIC", ...)

S3 method for class 'Date'

format (x, ...)

##

as.

S3 method for class 'Date'
character(x, ...)

Arguments

X

an object to be converted.

format character string. If not specified, it will try tryFormats one by one on

the first non-NA element, and give an error if none works. Otherwise, the pro-
cessing is via strptime () whose help page describes available conversion
specifications.

tryFormats character vector of format strings to try if format is not specified.

optional logical indicating to return NA (instead of signalling an error) if the format
guessing does not succeed.

origin a Date object, or something which can be coerced by
as.Date (origin, ...) to such an object.

tz a time zone name.

further arguments to be passed from or to other methods, including format for
as.character and as.Date methods.

as.Date 33

Details

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes
"POSIX1t" and "POSIXct". (The last is converted to days by ignoring the time after midnight
in the representation of the time in specified time zone, default UTC.) Also objects of class "date"
(from package date) and "dates" (from package chron). Character strings are processed as far
as necessary for the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is
supplied.

The format and as.character methods ignore any fractional part of the date.

Value

The format and as.character methods return a character vector representing the date. NA
dates are returned as NA_character .

The as .Date methods return an object of class "Date".

Conversion from other Systems

Most systems record dates internally as the number of days since some origin, but this is fraught
with problems, including

* Is the origin day O or day 1?7 As the ‘Examples’ show, Excel manages to use both choices for
its two date systems.

* If the origin is far enough back, the designers may show their ignorance of calendar systems.
For example, Excel’s designer thought 1900 was a leap year (claiming to copy the error from
earlier DOS spreadsheets), and Matlab’s designer chose the non-existent date of ‘January
0, 0000’ (there is no such day), not specifying the calendar. (There is such a year in the
‘Gregorian’ calendar as used in ISO 8601:2004, but that does say that it is only to be used for
years before 1582 with the agreement of the parties in information exchange.)

The only safe procedure is to check the other systems values for known dates: reports on the Internet
(including R-help) are more often wrong than right.

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

34 as.Date

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data elements
and interchange formats — Information interchange — Representation of dates and times. For links
to versions available on-line see (at the time of writing) https://www.gsl.net/glsmd/
isopdf.htm.

See Also

Date for details of the date class; 1ocales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.
Windows users will find no help page for st rptime: code based on ‘glibc’ is used (with cor-
rections), so all the format specifiers described here are supported, but with no alternative number
representation nor era available in any locale.

Examples

locale-specific version of the date
format (Sys.Date (), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <= c("1janl960", "2janl960", "31lmarl960", "30jull960")

z <- as.Date(x, "%d%bs%Y")

Sys.setlocale("LC_TIME", lct)

Z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date (dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date (32768, origin = "1900-01-01")

Excel is said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day 0 (Mac default), but this is complicated by Excel
incorrectly treating 1900 as a leap year.

So for dates (post-1901) from Windows Excel

as.Date (35981, origin = "1899-12-30") # 1998-07-05

and Mac Excel

as.Date (34519, origin = "1904-01-01") # 1998-07-05

(these values come from http://support.microsoft.com/kb/214330)

Experiment shows that Matlab's origin is 719529 days before ours,

(it takes the non-existent 0000-01-01 as day 1)

so Matlab day 734373 can be imported as

as.Date (734373, origin = "1970-01-01") - 719529 # 2010-08-23

(value from

http://www.mathworks.de/de/help/matlab/matlab_prog/represent-date—-and-times—-in-MATLAB.htn

Time zone effect

https://www.qsl.net/g1smd/isopdf.htm
https://www.qsl.net/g1smd/isopdf.htm

as.environment

35

z <— ISOdate (2010, 04, 13, c¢(0,12)) # midnight and midday UTC
as.Date(z) # in UTC
these time zone names are common

as.Date(z, tz
as.Date(z, tz

= "NZ ll)
= "HST") # Hawaii

as.environment

Coerce to an Environment Object

Description

A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

Usage

as.environment (x)

Arguments

X

Details

an R object to convert. If it is already an environment, just return it. If it is
a positive number, return the environment corresponding to that position on the
search list. If itis —1, the environment it is called from. If it is a character string,
match the string to the names on the search list.

If it is a list, the equivalent of 1ist2env (x, parent = emptyenv ()) is
returned.

If is.object(x) is true and it has a class for which an
as.environment method is found, that is used.

This is a primitive generic function: you can write methods to handle specific classes of objects, see

InternalMethods.

Value

The corresponding environment object.

Author(s)
John Chambers

See Also

environment for creation and manipulation, search; list2env.

36 as.function

Examples

as.environment (1) ## the global environment
identical (globalenv (), as.environment (1)) ## is TRUE
try(## <<- stats need not be attached
as.environment ("package:stats"))
ee <- as.environment (list(a = "A", b = pi, ch = letters[1:8]))
ls (ee) # names of objects in ee
utils::1ls.str (ee)

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
x object to convert, a list for the default method.

additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base
environment. Please use envir = globalenv () instead if this is what you want, as the special
handling of NULL may change in a future release.

Author(s)

Peter Dalgaard

as.POSIX* 37

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples
as.function(alist(a = , b = 2, a+b))
as.function(alist(a = , b = 2, a+b)) (3)
as.POSIXx* Date-time Conversion Functions
Description

Functions to manipulate objects of classes "POSIX1t" and "POSIXct" representing calendar
dates and times.

Usage
as.POSIXct(x, tz = "", ...)
as.POSIX1lt(x, tz = "", ...)

S3 method for class 'character'

as.POSIX1lt(x, tz = "", format,
tryFormats = c("%$Y-%m-%d %H:%M:%0S",
"$Y/%m/%d %$H:%$M:%0S",
"$Y-%m-%d %$H:%M",
"$Y/%m/%d $H:%M",
"$Y-%m-%d",
"$Y/%m/%d"),
optional = FALSE, ...)
Default S3 method:
as.POSIX1lt (x, tz = "",
optional = FALSE, ...)
S3 method for class 'numeric'
as.POSIX1lt(x, tz = "", origin, ...)
S3 method for class 'POSIX1t'
as.double(x, ...)
Arguments
R object to be converted.
tz time zone specification to be used for the conversion, if one is required. System-

specific (see time zones), but "" is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.

further arguments to be passed to or from other methods.

38 as.POSIX*
format character string giving a date-time format as used by st rptime.
tryFormats character vector of format strings to try if format is not specified.
optional logical indicating to return NA (instead of signalling an error) if the format

guessing does not succeed.
origin a date-time object, or something which can be coerced by as .POSIXct (tz =
"GMT") to such an object.
Details

The as .POSIX« functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert objects of the other class and of
class "Date™" to these classes. Dates without times are treated as being at midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format "14:52" or "14:52:03". (For-
mats such as "01/02/03" are ambiguous but can be converted via a format specification by
strptime.) Fractional seconds are allowed. Alternatively, format can be specified for charac-
ter vectors or factors: if it is not specified and no standard format works for all non-NA inputs an
error is thrown.

If format is specified, remember that some of the format specifications are locale-specific, and
you may need to set the LC_TIME category appropriately via Sys.setlocale. This most often
affects the use of %$b, $B (month names) and $p (AM/PM).

Logical NAs can be converted to either of the classes, but no other logical vectors can be.
If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIX1t" by strptime: numeric input is first con-
verted to "POSIXct". Any conversion that needs to go between the two date-time classes requires
a time zone: conversion from "POSIX1t" to "POSIXct" will validate times in the selected time
zone. One issue is what happens at transitions to and from DST, for example in the UK

as.POSIXct (strptime ("2011-03-27 01:30:00", "%
as.POSIXct (strptime ("2010-10-31 01:30:00", "%

are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one
should expect the first to be NA, but the second could be interpreted as either BST or GMT (and
common OSes give both possible values). Note too (see st rftime) that OS facilities may not
format invalid times correctly.

Value

as.POSIXct and as.POSIX1t return an object of the appropriate class. If tz was specified,
as.POSIX1t will give an appropriate "t zone™" attribute. Date-times known to be invalid will be
returned as NA.

as.POSIX* 39

Note

Some of the concepts used have to be extended backwards in time (the usage is said to be ‘pro-
leptic’). For example, the origin of time for the "POSIXct™" class, ‘1970-01-01 00:00.00 UTC’,
is before UTC was defined. More importantly, conversion is done assuming the Gregorian cal-
endar which was introduced in 1582 and not used universally until the 20th century. One of the
re-interpretations assumed by ISO 8601:2004 is that there was a year zero, even though current
year numbering (and zero) is a much later concept (525 AD for year numbers from 1 AD).

Conversions between "POSIX1t" and "POSIXct " of future times are speculative except in UTC.
The main uncertainty is in the use of and transitions to/from DST (most systems will assume the
continuation of current rules but these can be changed at short notice).

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class "POSIX1t" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) use the format method.

If a time zone is needed and that specified is invalid on your system, what happens is system-specific
but attempts to set it will probably be ignored.

Conversion from character needs to find a suitable format unless one is supplied (by trying common
formats in turn): this can be slow for long inputs.

See Also

DateTimeClasses for details of the classes; st rpt ime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples

(z <= Sys.time())

unclass(z)

floor (unclass (z) /86400)

(now <- as.POSIX1lt (Sys.time())
unlist (unclass (now))

nowSyear + 1900

months (now) ; weekdays (now)

the current datetime, as class "POSIXct"

a large integer

the number of days since 1970-01-01 (UTC)
the current datetime, as class "POSIX1t"
a list shown as a named vector

see ?DateTimeClasses

see 7?months

R e

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
(the origin used by SAS)

z <- 1472562988

ways to convert this

as.POSIXct (z, origin = "1960-01-01") # local
as.POSIXct (z, origin = "1960-01-01", tz = "GMT") # in UTC

SPSS dates (R-help 2006-02-16)
z <- ¢(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct (z, origin = "1582-10-14", tz = "GMTI"))

Stata date-times: milliseconds since 1960-01-01 00:00:00 GMT
format %tc excludes leap-seconds, assumed here

40 Asls
For format %tC including leap seconds, see foreign::read.dta()
z <— 1579598122120
op <- options(digits.secs = 3)
avoid rounding down: milliseconds are not exactly representable
as.POSIXct ((z+0.1) /1000, origin = "1960-01-01")
options (op)
Matlab 'serial day number' (days and fractional days)
z <= 7.343736909722223e5 # 2010-08-23 16:35:00
as.POSIXct ((z — 719529)%86400, origin = "1970-01-01", tz = "UTC")
as.POSIX1lt (Sys.time(), "GMT") # the current time in UTC
These may not be correct names on your system
as.POSIX1lt (Sys.time (), "America/New_York") # in New York
as.POSIX1lt (Sys.time (), "ESTSEDT") # alternative.
as.POSIX1lt (Sys.time (), "EST") # somewhere in Eastern Canada
as.POSIX1t (Sys.time (), "HST") # in Hawaii
as.POSIX1lt (Sys.time (), "Australia/Darwin")

AsIs Inhibit Interpretation/Conversion of Objects

Description
Change the class of an object to indicate that it should be treated ‘as is’.

Usage
I(x)

Arguments
x an object

Details

Function I has two main uses.

e In function data.frame. Protecting an object by enclosing it in I () in a call to

data.frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columns. I can also be used to
protect objects which are to be added to a data frame, or converted to a data frame via
as.data.frame.

It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" has a
few of its own methods, including for [, as.data.frame, print and format.

* In function formula. There it is used to inhibit the interpretation of operators such as "+",

"—m_mimand "~" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms . formula.

asplit 41
Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

asplit Split Array/Matrix By Its Margins

Description

Split an array or matrix by its margins.

Usage

asplit (x, MARGIN)

Arguments

X an array, including a matrix.

MARGIN a vector giving the margins to split by. E.g., for a matrix 1 indicates rows, 2
indicates columns, c (1, 2) indicates rows and columns. Where x has named
dimnames, it can be a character vector selecting dimension names.

Details

The values of the splits can also be obtained (less efficiently) by
split (x,slice.index (x,MARGIN)).

apply always simplifies common length results, so attempting to split via
apply (x,MARGIN, identity) does not work (as it simply gives x). By chaining asplit
with lapply or vapply, one can obtain variants of apply which do not auto-simplify.

Value

A “list array” with dimension dv and each element an array of dimension de and dimnames pre-
served as available, where dv and de are, respectively, the dimensions of x included and not included
in MARGIN.

42 assign

Examples

A 3-dimensional array of dimension 2 x 3 x 4:

d<-2 : 4
x <- array(seqg_len(prod(d)), d)
X

Splitting by margin 2 gives a 1-d list array of length 3
consisting of 2 x 4 arrays:

asplit (x, 2)

Spltting by margins 1 and 2 gives a 2 x 3 list array

consisting of 1-d arrays of length 4:a

asplit (x, c(1, 2))

Compare to

split(x, slice.index(x, c (1, 2)))

A 2 x 3 matrix:

(x <= matrix(1 : 6, 2, 3))

To split x by its rows, one can use
asplit(x, 1)

or less efficiently

split(x, slice.index(x, 1))

split(x, row(x))

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment (pos),
inherits = FALSE, immediate = TRUE)
Arguments
x a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.
envir the environment to use. See ‘Details’.
inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

assign 43

Details

There are no restrictions on the name given as x: it can be a non-syntactic name (see
make.names).

The pos argument can specify the environment in which to assign the object in any of several ways:
as —1 (the default), as a positive integer (the position in the search list); as the character string
name of an element in the search list; or as an environment (including using sys.frame to
access the currently active function calls). The envir argument is an alternative way to specify an
environment, but is primarily for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If noenvir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: see lockBinding: if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked (when an error is
signaled).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<—, get, the inverse of assign (), exists, environment.

Examples

for(i in 1:6) { #-- Create objects 'r.1', 'r.2', ... 'r.6' —-
nam <- paste("r", i, sep = ".")
assign (nam, 1:i)

}

ls (pattern = ""r..s$")
##-— Global assignment within a function:
myf <- function(x) {
innerf <- function(x) assign("Global.res", x"2, envir = .GlobalEnv)

innerf (x+1)

44

assignOps

myf (3)
Global.res # 16

a <- 1:4
assign("al[l]l", 2)
al[l] == 2 # FALSE
get ("a[l]") == 2 # TRUE
assignOps Assignment Operators
Description

Assign a value to a name.

Usage

x <- value
x <<- wvalue
value —-> x
value —->> x

x = value
Arguments
X a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <— and = assign into the environment in which they are evaluated. The operator
<— can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<— and —>> are normally only used in functions, and cause a search to be made
through parent environments for an existing definition of the variable being assigned. If such a
variable is found (and its binding is not locked) then its value is redefined, otherwise assignment
takes place in the global environment. Note that their semantics differ from that in the S language,
but are useful in conjunction with the scoping rules of R. See ‘The R Language Definition’ manual
for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]). A syntactic name does not need to be quoted, though it can
be (preferably by backticks).

The leftwards forms of assignment <—= <<- group right to left, the other from left to right.

attach 45

Value

value. Thus one can use a <-b <—c <—6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also
assign (and its inverse get), for “subassignment” such as x[i] <-v, see [<—; further,
environment.
attach Attach Set of R Objects to Search Path
Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage
attach (what, pos = 2L, name = deparsel (substitute (what), backtick=FALSE),
warn.conflicts = TRUE)
Arguments
what ‘database’. This can be adata.frame ora list ora R data file created with
save or NULL or an environment. See also ‘Details’.
pos integer specifying position in search () where to attach.
name name to use for the attached database. Names starting with package: are

reserved for 1ibrary.

warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object . conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

46 attach

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g., in the example
below, height rather than womenS$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason at tach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned by assign or load or
Sys.source.

Names starting "package : " are reserved for 1 ibrary and should not be used by end users. At-
tached files are by default given the name f£ile: what. The name argument given for the attached
environment will be used by search and can be used as the argument to as . environment.

There are hooks to attach user-defined table objects of class "UserDefinedDatabase", sup-
ported by the Omegahat package RObjectTables.

Value

The environment is returned invisibly with a "name™" attribute.

Good practice
attach has the side effect of altering the search path and this can easily lead to the wrong object
of a particular name being found. People do often forget to detach databases.

In interactive use, with is usually preferable to the use of attach/detach, unless what is a
save () -produced file in which case attach () is a (safety) wrapper for load ().

In programming, functions should not change the search path unless that is their purpose. Often
with can be used within a function. If not, good practice is to

* Always use a distinctive name argument, and

* To immediately follow the attach call by an on.exit call to detach using the distinctive

name.

This ensures that the search path is left unchanged even if the function is interrupted or if code after
the at tach call changes the search path.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

attr 47
See Also
library, detach, search, objects, environment, with.
Examples
require (utils)
summary (women$height) # refers to variable 'height' in the data frame
attach (women)
summary (height) # The same variable now available by name
height <- height=*2.54 # Don't do this. It creates a new variable
in the user's workspace
find ("height")
summary (height) # The new variable in the workspace
rm (height)
summary (height) # The original variable.
height <<- heightx25.4 # Change the copy in the attached environment
find("height")
summary (height) # The changed copy
detach ("women")
summary (womenS$Sheight) # unchanged
Not run: ## create an environment on the search path and populate it
sys.source ("myfuns.R", envir = attach (NULL, name = "myfuns"))
End (Not run)
attr Object Attributes
Description
Get or set specific attributes of an object.
Usage
attr(x, which, exact = FALSE)
attr(x, which) <- wvalue
Arguments
x an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?

value an object, the new value of the attribute, or NULL to remove the attribute.

48 attributes

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the attributes of x, then
(unless exact = TRUE) a unique partial match. (Setting opt ions (warnPartialMatchAttr
= TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the 1evels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

NULL objects cannot have attributes and attempting to assign one by attr gives an error.

Both are primitive functions.

Value

For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <-= 1:10
attr (x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

attributes 49

Usage

attributes (x)
attributes (x) <- value
mostattributes (x) <- wvalue

Arguments

x any R object

value an appropriate named 1ist of attributes, or NULL.
Details

Unlike at t r itis not an error to set attributes on a NULL object: it will first be coerced to an empty
list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1levels which should be set for factors via the 1evels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vec-
tor, i.e, the order of the elements of attributes () does not matter. This is also reflected
by identical ()’s behaviour with the default argument attrib.as.set = TRUE. Attributes
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remain-
ing attributes in the order given: this ensures that setting a dim attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when known to be valid whereas an attributes assignment
would give an error if any are not. It is principally intended for arrays, and should be used with care
on classed objects. For example, it does not check that row . names are assigned correctly for data
frames.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

NULL objects cannot have attributes and attempts to assign them will promote the object to an empty
list.

Both assignment and replacement forms of att ributes are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr, structure.

50 autoload

Examples

x <- cbind(a = 1:3, pi = pi) # simple matrix with dimnames
attributes (x)

strip an object's attributes:
attributes (x) <- NULL
x # now just a vector of length 6

mostattributes (x) <- list (mycomment = "really special", dim = 3:2,
dimnames = 1list (LETTERS[1:3], letters[l:5]), names = paste(l:6))
x # dim(), but not {dim}names
autoload On-demand Loading of Packages
Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if package was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload (name, package, reset = FALSE, ...)
autoloader (name, package, ...)

.AutoloadEnv
.Autoloaded
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader.

other arguments to 1ibrary.

Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign, library

backsolve 51

Examples

require (stats)
autoload("interpSpline", "splines")
search ()

1s ("Autoloads")

.Autoloaded

x <—- sort(stats::rnorm(1l2))
y <= x"2

is <- interpSpline(x, V)
search () ## now has splines
detach ("package:splines")
search ()

is2 <- interpSpline(x, y+x)
search () ## and again
detach ("package:splines")

backsolve Solve an Upper or Lower Triangular System

Description

Solves a triangular system of linear equations.

Usage

backsolve(r, x, k = ncol(r), upper.tri = TRUE,
transpose = FALSE)

forwardsolve(l, x, k = ncol(l), upper.tri = FALSE,
transpose = FALSE)

Arguments
r, 1 an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give the right-hand sides for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.
transpose logical; if TRUE, solve 7’ x y = x for y, i.e., t (r) $*% y == x.
Details

Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower
(‘left’, ‘L) triangular.

x <-backsolve (R, b) solves Rx = b, and
x <-forwardsolve (L, Db) solves Lz = b, respectively.

52 basename

The r/1 must have at least k rows and columns, and x must have at least k rows.

This is a wrapper for the level-3 BLAS routine dt rsm.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.
See Also

chol, gr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r $+x% y # == x = (8,4,2)

backsolve (r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basename removes all of the path up to and including the last path separator (if any).

dirname returns the part of the path up to but excluding the last path separator, or " . " if there
is no path separator.
Usage
basename (path)
dirname (path)
Arguments

path character vector, containing path names.

Bessel 53

Details

tilde expansion of the path is done except on Windows.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

Paths not containing any separators are taken to be in the current directory, so dirname returns

mw . ".
If an element of path is NA, so is the result.

" " is not a valid pathname, but is returned unchanged.

Behaviour on Windows

On Windows this will accept either \ or / as the path separator, but di rname will return a path
using / (except if on a network share, when the leading \ \ will be preserved). Expect these only to
be able to handle complete paths, and not for example just a network share or a drive.

UTF-8-encoded path names not valid in the current locale can be used.

Note
These are not wrappers for the POSIX system functions of the same names: in particular they do
not have the special handling of the path " /" and of returning " . " for empty strings.

See Also

file.path, path.expand.

Examples

basename (file.path ("", "pl", "p2", "p3", c("filel", "file2")))
dirname (file.path("","pl","p2","p3", "filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J,, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K.

54 Bessel

Usage
besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ (x, nu)
besselY (x, nu)
Arguments
x numeric, > 0.
nu numeric; The order (maybe fractional and negative) of the corresponding Bessel
function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.

Details

If expon.scaled = TRUE, e %], (), or e K, (z) are returned.

For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besselK which is symmetric in nu.

The current algorithms will give warnings about accuracy loss for large arguments. In some cases,
these warnings are exaggerated, and the precision is perfect. For large nu, say in the order of
millions, the current algorithms are rarely useful.

Value

Numeric vector with the (scaled, if expon.scaled = TRUE) values of the corresponding Bessel
function.

The length of the result is the maximum of the lengths of the parameters. All parameters are recycled
to that length.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaptation to R: Martin Maechler <maechler@stat.math.ethz.ch>.

Source

The C code is a translation of Fortran routines from https://www.netlib.org/specfun/
ribesl, ‘. ./rjbesl’, etc. The four source code files for bessel[IJKY] each contain a paragraph
“Acknowledgement” and “References”, a short summary of which is

bessell based on (code) by David J. Sookne, see Sookne (1973). .. Modifications. . . An earlier ver-
sion was published in Cody (1983).

bessel] as bessell

besselK based on (code) by J. B. Campbell (1980). .. Modifications. ..

besselY draws heavily on Temme’s Algol program for Y'...and on Campbell’s programs for Y,, ()
....... heavily modified.

https://www.netlib.org/specfun/ribesl
https://www.netlib.org/specfun/ribesl

Bessel 55

References

Abramowitz, M. and Stegun, 1. A. (1972). Handbook of Mathematical Functions. Dover, New
York; Chapter 9: Bessel Functions of Integer Order.

In order of “Source” citation above:

Sookne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of Re-
search of the National Bureau of Standards, TTB, 125—-132. doi: 10.6028/jres.077B.012.

Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first kind.
ACM Transactions on Mathematical Software, 9(2), 242-245. doi: 10.1145/357456.357462.

Campbell, J.B. (1980). On Temme’s algorithm for the modified Bessel function of the third kind.
ACM Transactions on Mathematical Software, 6(4), 581-586. doi: 10.1145/355921.355928.

Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument.
Computer Physics Communications, 18, 133—142. doi: 10.1016/00104655(79)900304.

Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the second
kind. Journal of Computational Physics, 21, 343-350. doi: 10.1016/00219991(76)900322.

See Also

Other special mathematical functions, such as gamma, I'(z), and beta, B(z).
Examples

require (graphics)

nus <- c(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)

plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu = nu), col = nu + 2)

legend (0, 6, legend = paste("nu=", nus), col = nus + 2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <= c(-.5, 1)

plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions J_nu(x)")
abline (h=0, v=0, lty=3)
for(nu in nus) lines(x, besselJ(x, nu = nu), col = nu + 2)

legend ("topright", legend = paste("nu=", nus), col = nus + 2, lwd = 1, bty="n")

Negative nu's ————————————————————— -
Xx <= 2:7

nu <- seq(-10, 9, length.out = 2001)

— I() —— ——— ——— ———

matplot (nu, t (outer(xx, nu, bessell)), type "1", ylim = c(-50, 200),

[nu] (x), " for fixed ", x,

main = expression(paste("Bessel ", I
", as ", f(nu))),
xlab = expression(nu))
abline(v = 0, col = "light gray", 1lty = 3)

legend (5, 200, legend = paste("x=", xx), col=seq(xx), lty=1:5)

https://doi.org/10.6028/jres.077B.012
https://doi.org/10.1145/357456.357462
https://doi.org/10.1145/355921.355928
https://doi.org/10.1016/0010-4655(79)90030-4
https://doi.org/10.1016/0021-9991(76)90032-2

56

Bessel
— J() ——— ——— ——— ———
bJ <- t (outer (xx, nu, besseld))
matplot (nu, bJ, type = "1", ylim = c(-500, 200),
xlab = quote(nu), ylab = quote(J[nu] (x)),
main = expression(paste("Bessel ", J[nu] (x), " for fixed ", x)))
abline(v = 0, col = "light gray", lty = 3)
legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)
ZOOM into right part:
matplot (nu[nu > -2], bJ[nu > -2,], type = "1",
xlab = quote(nu), ylab = quote(J[nu] (x)),
main = expression (paste("Bessel ", J[nu] (x), " for fixed ", x)))
abline (h=0, v = 0, col = "gray60", lty = 3)
legend ("topright", legend = paste("x=", xx), col=seqg(xx), lty=1:5)
- X —=> 0 =
x0 <- 2”seqg(-16, 5, length.out=256)
plot (range (x0), c(le-40, 1), log = "xy", xlab = "x", ylab = "", type = "n",
main = "Bessel Functions J_nu(x) near 0\n log - log scale")
for(nu in sort (c(nus, nus+0.5)))
lines (x0, besselJ(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%l > 0))
legend ("right", legend = paste("nu=", paste(nus, nus+0.5, sep=", ")),
col = nus + 2, lwd = 1, bty="n")
x0 <= 2”seg(-10, 8, length.out=256)
plot (range (x0), 10"c(-100, 80), log = "xy", xlab = "x", ylab = "",
main = "Bessel Functions K_nu(x) near 0\n log - log scale")
for(nu in sort (c(nus, nus+0.5)))
lines (x0, besselK(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%l > 0))

legend ("topright", legend = paste("nu=", paste(nus, nus + 0.5, sep
col = nus + 2, 1lwd = 1, bty="n")

x <- x[x > 0]

plot (x, x, ylim = c(le-18, 1lell), log = "y", ylab = "", type = "n",
main = "Bessel Functions K_nu(x)"); axis (2, at=1)

for(nu in nus) lines(x, besselK(x, nu = nu), col = nu + 2)

legend (0, le-5, legend=paste("nu=", nus), col = nus + 2, lwd = 1)

vyl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions Y _nu(x)")
for (nu in nus) {
Xxx <— X[x > .6*xnu]
lines (xx, besselY (xx, nu=nu), col = nu+2)
}
legend (25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y —-- was bogus for a long time
curve (besselY (x, -0.1), 0, 10, ylim = c(-3,1), ylab = "")
for(nu in c(seq(-0.2, -2, by = -0.1)))

curve (besselY (x, nu), add = TRUE)
title (expression (besselY (x, nu) * " "ok

axis (2,

type = "pn ,
axis (2,

bindenv 57

{nu == 1list(-0.1, -0.2, ..., -2)1}))

bindenv Binding and Environment Locking, Active Bindings

Description

These functions represent an interface for adjustments to environments and bindings within envi-
ronments. They allow for locking environments as well as individual bindings, and for linking a
variable to a function.

Usage

lockEnvironment (env, bindings = FALSE)
environmentIsLocked (env)

lockBinding (sym, env)
unlockBinding (sym, env)
bindingIsLocked (sym, env)

makeActiveBinding (sym, fun, env)
bindingIsActive (sym, env)
activeBindingFunction (sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string.
fun a function taking zero or one arguments.
Details

The function lockEnvironment locks its environment argument, which must be a normal en-
vironment (not base). (Locking the base environment and namespace may be supported later.)
Locking the environment prevents adding or removing variable bindings from the environment.
Changing the value of a variable is still possible unless the binding has been locked. The names-
pace environments of packages with namespaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installs fun in environment env so that getting the value of sym calls
fun with no arguments, and assigning to sym calls fun with one argument, the value to be as-
signed. This allows the implementation of things like C variables linked to R variables and variables
linked to databases, and is used to implement setRefClass. It may also be useful for making
thread-safe versions of some system globals. Currently active bindings are not preserved during
package installation, but they can be created in . onLoad.

58 bindenv

Value

The bindingIsLocked and environmentIsLocked return alength-one logical vector. The
remaining functions return NULL, invisibly.

Author(s)

Luke Tierney

Examples

locking environments
e <- new.env()

assign("x", 1, envir = e)

get ("x", envir = e)

lockEnvironment (e)

get ("x", envir = e)

assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <— new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockBinding ("x", e)

try(assign("x", 2, envir = e)) # error
unlockBinding ("x", e)

assign("x", 2, envir = e)

get ("x", envir = e)

active bindings
f <- local({
x <=1
function (v) {
if (missing(v))
cat ("get\n")
else {
cat ("set\n")
X <<— v

})

makeActiveBinding ("fred", f, .GlobalEnv)
bindingIsActive ("fred", .GlobalEnv)

fred

fred <- 2

fred

bitwise 59

bitwise Bitwise Logical Operations

Description

Logical operations on integer vectors with elements viewed as sets of bits.

Usage

bitwNot (a)
bitwAnd(a, b)
bitwOr (a, b)
bitwXor (a, b)

bitwShiftL (a, n)
bitwShiftR(a, n)

Arguments
a, b integer vectors; numeric vectors are coerced to integer vectors.
n non-negative integer vector of values up to 31.

Details

Each element of an integer vector has 32 bits.
Pairwise operations can result in integer NA.

Shifting is done assuming the values represent unsigned integers.

Value

An integer vector of length the longer of the arguments, or zero length if one is zero-length.

The output element is NA if an input is NA (after coercion) or an invalid shift.

See Also

The logical operators, !, &, |, xor. Notably these do work bitwise for raw arguments.

The classes "octmode" and "hexmode" whose implementation of the standard logical operators
is based on these functions.

Package bitops has similar functions for numeric vectors which differ in the way they treat integers
231 or larger.

https://CRAN.R-project.org/package=bitops

60

Examples
bitwNot (0:12) # -1 -2 ... —13
bitwAnd (15L, 7L) # 7
bitwOr (15L, 7L) # 15
bitwXor (15L, 7L) # 8
bitwXor (-1L, 1L) # -2

The "same" for 'raw' instead of integer
rrl2 <- as.raw(0:12) ; rbind(rrl2, !rrl2)
c(rl5 <- as.raw(l5), r7 <- as.raw(7)) # Of 07
rl5 & r7 # 07

rl5 | r7 # 0f

xor (rl5, r7)# 08

bitwShiftR (-1, 1:31) # shifts of 2732-1 = 4294967295

body

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body (fun = sys.function(sys.parent ()))

body (fun, envir = environment (fun)) <- value
Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an object, usually a language object: see section ‘Value’.
Details

For the first form, fun can be a character string naming the function to be manipulated, which is

searched for from the parent frame. If it is not specified, the function calling body is used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’

section for how to create such a call.

Value

body returns the body of the function specified. This is normally a language object, most often a

call to {, but it can also be an object (e.g., pi) to be the return value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (po-
tentially) resets the environment of the function. If value is of class "expression" the first

element is used as the body: any additional elements are ignored, with a warning.

bquote

See Also

alist,args, function.

Examples

body (body)
f <- function(x) x"5
body (f) <- quote (57x)

or equivalently body(f) <- expression (5"x)
£f(3) # = 125

body (f)

creating a multi-expression body

e <- expression(y <- x"2, return(y)) # or a list
body (f) <- as.call(c(as.name("{"), e))

f

£(8)

Using substitute() may be simpler than

stopifnot (identical (body (f), substitute({ y <- x"2;

61

'as.call(c(as.name("{",..)))":

return (y)

1))

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in . () are evaluated in the specified where environment. If splice = TRUE then terms wrapped

in .. () are evaluated and spliced into a call.

Usage

bguote (expr, where = parent.frame(),

Arguments

expr A language object.

where An environment.

splice

splice Logical; if TRUE splicing is enabled.

Value

A language object.

See Also

quote, substitute

FALSE)

62 browser

Examples

require (graphics)

a <- 2

bgquote (a == a)

quote (a == a)

bguote (a == . (a))

substitute(a == A, list(A = a))

plot(1:10, ax(1:10), main = bquote(a == . (a)))

to set a function default arg
default <- 1
bquote (function(x, y = . (default)) x+y)

exprs <- expression(x <- 1, y <= 2, x + V)
bquote (function() {.. (exprs)}, splice = TRUE)

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser (text = "", condition = NULL, expr = TRUE, skipCalls = 0L)
Arguments

text a text string that can be retrieved once the browser is invoked.

condition a condition that can be retrieved once the browser is invoked.

expr An expression, which if it evaluates to TRUE the debugger will invoked, other-

wise control is returned directly.

skipCalls how many previous calls to skip when reporting the calling context.

Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g., external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in

browser 63

a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr evaluates to TRUE. In most cases it is going to be more efficient
to use an i f statement in the calling program, but in some cases using this argument will be simpler.

The skipCalls argument should be used when the browser () call is nested within another
debugging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

c exit the browser and continue execution at the next statement.
cont synonym for c.

f finish execution of the current loop or function

help print this list of commands

n evaluate the next statement, stepping over function calls. For byte compiled functions interrupted
by browser calls, n is equivalent to c.

s evaluate the next statement, stepping into function calls. Again, byte compiled functions make s
equivalent to c.

where print a stack trace of all active function calls.

r invoke a "resume™" restart if one is available; interpreted as an R expression otherwise. Typi-
cally "resume" restarts are established for continuing from user interrupts.

Q exit the browser and the current evaluation and return to the top-level prompt.

Leading and trailing whitespace is ignored, except for an empty line. Handling of empty lines
depends on the "browserNLdisabled" option; if it is TRUE, empty lines are ignored. If not,
an empty line is the same as n (or s, if it was used most recently).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly, or use autoprint via (n) .

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines).

The browser prompt is of the form Browse [n]>: here var {n} indicates the ‘browser level’. The
browser can be called when browsing (and often is when debug is in use), and each recursive call
increases the number. (The actual number is the number of ‘contexts’ on the context stack: this is
usually 2 for the outer level of browsing and 1 when examining dumps in debugger.)

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

64 browserText

See Also
debug, and traceback for the stack on error. browserText for how to retrieve the text and
condition.
browserText Functions to Retrieve Values Supplied by Calls to the Browser
Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.
Usage

browserText (n = 1)
browserCondition(n = 1)
n)

browserSetDebug(n = 1
Arguments

n The number of contexts to skip over, it must be non-negative.
Details

Each call to browser can supply either a text string or a condition. The functions browserText
and browserCondition provide ways to retrieve those values. Since there can be multiple
browser contexts active at any time we also support retrieving values from the different contexts.
The innermost (most recently initiated) browser context is numbered 1: other contexts are numbered
sequentially.

browserSetDebug provides a mechanism for initiating the browser in one of the calling
functions. See sys.frame for a more complete discussion of the calling stack. To use
browserSetDebug you select some calling function, determine how far back it is in the call
stack and call browserSetDebug with n set to that value. Then, by typing c at the browser
prompt you will cause evaluation to continue, and provided there are no intervening calls to browser
or other interrupts, control will halt again once evaluation has returned to the closure specified. This
is similar to the up functionality in gdb or the "step out" functionality in other debuggers.

Value

browserText returns the text, while browserCondit ion returns the condition from the spec-
ified browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

builtins 65
Author(s)

R. Gentleman

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins (internal = FALSE)

Arguments
internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.
Details

builtins () returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to use 1s (baseenv () ,all.names =

TRUE) .
builtins (TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as . Internal (foo (args ...)) for foo in the list.

Value

A character vector.

66 by

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage
by (data, INDICES, FUN, ..., simplify = TRUE)
Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow (data).
FUN a function to be applied to (usually data-frame) subsets of data.
further arguments to FUN.
simplify logical: see tapply.
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

For the default method, an object with dimensions (e.g., a matrix) is coerced to a data frame and
the data frame method applied. Other objects are also coerced to a data frame, but FUN is applied
separately to (subsets of) each column of the data frame.

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is
false, otherwise a list or array (see tapply).

See Also

tapply, simplify2array. ave also applies a function block-wise.

Examples

require (stats)
by (warpbreaks[, 1:2], warpbreaks|[,"tension"], summary)

by (warpbreaks[, 11, warpbreaks[, -1], summary)
by (warpbreaks, warpbreaks|,"tension"],
function(x) 1lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- with (warpbreaks,
by (warpbreaks, tension,

function(x) 1lm(breaks ~ wool, data = x)))
sapply (tmp, coef)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.
Usage

S3 Generic function

c(...)

Default S3 method:
c(..., recursive = FALSE, use.names = TRUE)

Arguments

objects to be concatenated.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.
use.names logical indicating if names should be preserved.
Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < double < complex < character < list < expression. Pairlists are treated as
lists, whereas non-vector components (such names and calls) are treated as one-element lists which
cannot be unlisted even if recursive = TRUE.

Note that factors are treated only via their internal integer codes; one proposal has been to
use

c.factor <- function (..., recursive=TRUE) unlist(list(...), recursive=recursive)

if factor concatenation by c () should give a factor.

c is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note that
methods other than the default are not required to do this (and they will almost certainly preserve a
class attribute).

This is a primitive function.

68

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, . ..).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(l,7:9)
c(l:5, 10.5, "next")

uses with a single argument to drop attributes

x <- 1:4

names (x) <— letters[1l:4]
X

c(x) # has names
as.vector (x) # no names
dim(x) <= c(2,2)

X

c(x)

as.vector (x)

append to a list:

11 <= list(A =1, c = "C")

do *not* use

c(ll, d = 1:3) # which is == c (11, as.list(c(d =
but rather

c(ll, d = 1list(1:3)) # c() combining two lists

c(list (A = ¢c(B = 1)), recursive = TRUE)

c(options (), recursive = TRUE)

c(list(A = c(B =1, C =2), B=c(E = 7)), recursive

:3)))

= TRUE)

Wadsworth &

call 69

call Function Calls

Description

Create or test for objects of mode "call™" (or " (", see Details).

Usage

call (name, ...)
is.call (x)
as.call (x)

Arguments
name a non-empty character string naming the function to be called.
arguments to be part of the call.
x an arbitrary R object.
Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of the
named function applied to the given arguments (name must be a quoted string which gives
the name of a function to be called). Note that although the call is unevaluated, the arguments
. are evaluated.
call is a primitive, so the first argument is taken as name and the remaining arguments as
arguments for the constructed call: if the first argument is named the name must partially
match name.

is.call isused to determine whether x is a call (i.e., of mode "call" or " ("). Note that
* is.call (x) is strictly equivalent to typeof (x) == "language".
e is.language () is also true for calls (but also for symbols and expressions
where is.call () is false).

as.call (x): Objects of mode "1ist" can be coerced to mode "call". The first element of
the list becomes the function part of the call, so should be a function or the name of one (as a
symbol; a quoted string will not do).
If you think of using as.call (<string>), consider using str2lang (*) which is an
efficient version of parse (text=x*). Note that call () and as.call (), when applica-
ble, are much preferable to these parse () based approaches.

All three are primitive functions.

as.call is generic: you can write methods to handle specific classes of objects, see InternalMeth-
ods.

Warning

call should not be used to attempt to evade restrictions on the use of . Internal and other
non-API calls.

70

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of func-

tions; further is.language, expression, function.

Producing calls etc from character: str2lang and parse.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5

cl <- call("round", 10.5)

is.call(cl) # TRUE

cl

identical (quote (round (10.5)), # <- less functional, but the same
cl) # TRUE

such a call can also be evaluated.

eval(cl) # [1] 10

class(cl) # "call"
typeof (cl) # "language"
is.call(cl) && is.language(cl) # always TRUE for "call"s

A <- 10.5

call ("round", A) # round(10.5)
call ("round", quote(A)) # round(A)

f <- "round"

call (f, quote (A)) # round (A)

1if we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(A)) # error: first arg must be character
(g <— as.call(list(f, quote(A))))
eval (g)

alternatively but less transparently

g <- list(f, quote(A))

mode (g) <- "call"

g

eval (g)

see also the examples in the help for do.call

callcCC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

CallExternal 71

Usage

callCC (fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCcC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to
callcCC immediately returns, with the value supplied to the exit function as the value returned by
callcCCcC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC (function(k) 1)

(
callCC (function (k) k(1))
callCC (function (k) {k(1); 2})
callCC (function (k) repeat k(1))
CallExternal Modern Interfaces to C/C++ code
Description

Functions to pass R objects to compiled C/C++ code that has been loaded into R.

Usage
.Call (.NAME, ..., PACKAGE)
.External (.NAME, ..., PACKAGE)
Arguments
.NAME a character string giving the name of a C function, or an object
of class "NativeSymbolInfo", "RegisteredNativeSymbol" or

"NativeSymbol" referring to such a name.

arguments to be passed to the compiled code. Up to 65 for .Call.

72 CallExternal

PACKAGE if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘. so’, *.d11’,...).

This argument follows . . . and so its name cannot be abbreviated.

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

Details

The functions are used to call compiled code which makes use of internal R objects, passing the
arguments to the code as a sequence of R objects. They assume C calling conventions, so can
usually also be used for C++ code.

For details about how to write code to use with these functions see the chapter on ‘System and
foreign language interfaces’ in the ‘Writing R Extensions’ manual. They differ in the way the
arguments are passed to the C code: .External allows for a variable or unlimited number of
arguments.

These functions are primitive, and . NAME is always matched to the first argument supplied (which
should not be named). For clarity, avoid using names in the arguments passed to . . . that match or
partially match . NAME.

Value

An R object constructed in the compiled code.

Header files for external code
Writing code for use with these functions will need to use internal R structures defined in
‘Rinternals.h’ and/or the macros in ‘Rdefines.h’.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass . NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code:
such symbols are not part of the API and may be changed without warning.

PACKAGE = "" used to be accepted (but was undocumented): it is now an error.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load, .C, .Fortran.

The ‘Writing R Extensions’ manual.

capabilities

73

capabilities

Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities (what

Arguments

what

Xchk

Value

NULL,
Xchk = any(nas %in% c("X11", "jpeg", "png", "tiff")))

character vector or NULL, specifying required components. NULL implies that
all are required.

logical with a smart default, indicating if X11-related capabilities should
be fully checked, notably on macOS. If set to false, may avoid a warning “No
protocol specified” and e.g., the "X11" capability may be returned as NA.

A named logical vector. Current components are

Jpeg
png
tiff
tcltk

X11

aqua

http/ftp

sockets

libxml

fifo

is the jpeqg function operational?
is the png function operational?
is the t 1 £ f function operational?

is the teltk package operational? Note that to make use of Tk you will almost
always need to check that "X11" is also available.

are the X1 1 graphics device and the X11-based data editor available? This loads
the X11 module if not already loaded, and checks that the default display can be
contacted unless a X11 device has already been used.

is the quartz function operational? Only on some macOS builds, including
CRAN binary distributions of R.

Note that this is distinct from .Platform$SGUI == "AQUA", which is true
only when using the Mac R . app GUI console.

does the internal method for url and download. file support ‘http://’
and ‘ftp://’ URLs? Always TRUE as from R 3.3.0.

are make . socket and related functions available? Always TRUE as from R
3.3.0.

is there support for integrating 1ibxml with the R event loop? Always TRUE
as from R 3.3.0.

are FIFO connections supported?

74

cledit

iconv

NLS
profmem

cairo

ICU

long.double

libcurl

Note to macOS users

capabilities

is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘~—no-readline’ was not used when R
was invoked. (If ‘“——interactive’ was used, command-line editing will not
actually be available.)

is internationalization conversion via i conv supported? Always true in current

R.
is there Natural Language Support (for message translations)?
is there support for memory profiling? See t racemem.

is there support for the svg, cairo_pdf and cairo_ps devices, and for
type = "cairo" inthe X11, bmp, jpeg, png, and tiff devices?

is ICU available for collation? See the help on Comparison and
icuSetCollate: itis never used for a C locale.

does this build use a C long double type which is longer than double?
Some platforms do not have such a type, and on others its use can be suppressed
by the configure option ‘~-disable-long-double’.

Although not guaranteed, it is a reasonable assumption that if present long dou-
bles will have at least as much range and accuracy as the ISO/IEC 60559 80-bit
‘extended precision’ format.

is 1ibcurl available in this build? Used by function curlGetHeaders and
optionally by download.file and url. As from R 3.3.0 always true for
Unix-alikes, and true for CRAN Windows builds.

Capabilities " jpeg", "png" and "tiff" refer to the X11-based versions of these devices. If
capabilities ("aqua") is true, then these devices with type = "quartz" will be avail-
able, and out-of-the-box will be the default type. Thus for example the tiff device will be
available if capabilities ("aqua") || capabilities ("tiff") if the defaults are un-

changed.

See Also

.Platformand extSoftVersion (and links there) for availability of capabilities external to
R but used from R functions.

Examples

capabilities()

if (!capabilities ("ICU"))
warning ("ICU is not available")

Does not call the internal Xll-checking function:
capabilities (Xchk = FALSE)

See also the examples for 'connections'.

cat 75

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat (... , file = "", sep =" ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

R objects (see ‘Details’ for the types of objects allowed).

file A connection, or a character string naming the file to print to. If " " (the default),
cat prints to the standard output connection, the console unless redirected by
sink. Ifitis " | cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.

sep a character vector of strings to append after each element.

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by “"\n"’
are printed. Otherwise, the output is broken into lines with print width equal to
the option width if £i11 is TRUE, or the value of £111 if this is numeric.
Linefeeds are only inserted between elements, strings wider than £i11 are not
wrapped. Non-positive £111 values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignored if £i11 is FALSE.

append logical. Only used if the argument £1i1le is the name of file (and not a connec-
tion or " | cmd"). If TRUE output will be appended to £i1e; otherwise, it will
overwrite the contents of file.

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep = string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by ‘" \n"’ or if generated by filling (if argument
£i11 is TRUE or numeric).

If £ile is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt " mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print .default
which escapes non-printable characters and backslash — use encodeString if you want to
output encoded strings using cat). Other types of R object should be converted (e.g., by

76 cbind

as.character or format) before being passed to cat. That includes factors, which are output
as integer vectors.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisible NULL).

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather
than separators, an element being output after every vector element and a newline after the last.
Entries are recycled as needed.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(l, lambda = 10)
print an informative message
cat ("iteration = ", iter <- iter 4+ 1, "\n")

'fill' and label lines:
cat (paste(letters, 100% 1:26), fill = TRUE, labels = pasteO("{", 1:10, "}:"))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data-frame arguments and combine by columns or rows, re-
spectively. These are generic functions with methods for other R classes.

Usage
cbind (..., deparse.level = 1)
rbind (..., deparse.level = 1)
S3 method for class 'data.frame'
rbind (..., deparse.level = 1, make.row.names = TRUE,

stringsAsFactors = default.stringsAsFactors (), factor.exclude = TRUE)

cbind 77

Arguments

(generalized) vectors or matrices. These can be given as named argu-
ments. Other R objects may be coerced as appropriate, or S4 methods
may be used: see sections ‘Details’ and ‘Value’. (For the "data.frame"
method of cbind these can be further arguments to data.frame such as
stringsAsFactors.)

deparse.level
integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the default,
deparse.level =1 or 2 constructs labels from the argument names, see
the “Value’ section below.

make.row.names
(only for data frame method:) logical indicating if unique and valid
row.names should be constructed from the arguments.

stringsAsFactors
logical, passed to as.data.frame; only has an effect when the . .. argu-
ments contain a (non-data.frame) character.

factor.exclude
if the data frames contain factors, the default TRUE ensures that NA levels of
factors are kept, see PR#17562 and the ‘Data frame methods’. In R versions up
to 3.6.x, factor.exclude = NA has been implicitly hardcoded (R <= 3.6.0)
or the default (R =3.6.x, x >=1).

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected. If some of the arguments are of an S4 class,
i.e., 1sS4 (.) istrue, S4 methods are sought also, and the hidden cbind/ rbind functions from
package methods maybe called, which in turn build on cbind?2 or rbind2, respectively. In that
case, deparse.level is obeyed, similarly to the default method.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with a warning if they are recycled only
fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17562

78

cbind

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Matrices are restricted to less than 23! rows and columns even on 64-bit systems. So input vectors

have the same length restriction: as from R 3.2.0 input matrices with more elements (but meeting
the row and column restrictions) are allowed.

Value

For the default method, a matrix combining the . . . arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < double < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied and deparse.level > 0, by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data.frame(...,check.names =
FALSE) . This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unless stringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the level sets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Note that for result column j, factor (., exclude = X (7)) is applied, where
X(j) := if (isTRUE (factor.exclude)) {

if (INA.lev[]J]) NA # else NULL
} else factor.exclude

where NA . lev [j] is true iff any contributing data frame has had a factor in column j with an
explicit NA level.

Dispatch

The method dispatching is not done via UseMethod (), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘. . . /src/main/bind.c’) as

cbind

79

1. For each argument we get the list of possible class memberships from the class attribute.

2. We inspect each class in turn to see if there is an applicable method.

3. If we find a method, we use it. Otherwise, if there was an S4 object among the arguments, we
try S4 dispatch; otherwise, we use the default code.

(Before R 4.0.0, an applicable method found was used only if identical to any method determined

for prior arguments.)

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

c to combine vectors (and lists) as vectors, data . frame to combine vectors and matrices as a

data frame.

Examples

<- cbind(m, 8:14)[, c(1, 3, 2)]

2 3 3 3

<— cbind (1, 1:7) # the 'l' (= shorter vector)

is recycled

insert a column

cbind(1:7, diag(3)) # vector is subset -> warning

cbind (0, rbind(1l, 1:3))

cbind(I = 0, X = rbind(a =1, b = 1:
xx <- data.frame (I = rep(0,2))
cbind(xx, X = rbind(a = 1, b = 1:3))
cbind (0, matrix(l, nrow = 0, ncol =
dim(cbind (0, matrix (1, nrow = 2, ncol
deparse.level

dd <- 10

rbind(1:4, ¢ = 2, "a++" = 10, dd,
rbind(1:4, ¢ = 2, "a++" = 10, dd,
rbind(1:4, ¢ = 2, "a++" = 10, dd,

cheap row names:
b0 <- gl (3,4, labels=letters[1:3])

deparse.level
deparse.level
deparse.level

3))

4))

use some names

named differently

bf <- setNames (b0, pastelO("o", seqg_along(b0)))

df <- data.frame(a = 1, B = b0, £
df. <- data.frame(a = 1, B = bf, f
new <- data.frame(a = 8, B ="B", f
(dfl <- rbind(df , new))
(df .1 <= rbind(df., new))

gl (4,3))
gl (4,3))
"1")

#> Warning

(making sense)
=0))) #> 2 x 1

middle 2 rownames

3 rownames
4 rownames

(default)

80 char.expand

stopifnot (identical (dfl, rbind(df, new, make.row.names=FALSE)),
identical (dfl, rbind(df., new, make.row.names=FALSE)))

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))
Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value

A length-one character vector, one of the elements of target (unless nomatch is changed to be
a non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand ("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character 81

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character (length = 0)
as.character (x,)
is.character (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods. Further, for as.character the default method calls
as.vector, so dispatch is first on methods for as.character and then for methods for
as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, use format.

Value

character creates a character vector of the specified length. The elements of the vector are all
equalto "".
as.character attempts to coerce its argument to character type; like as.vector it strips at-

tributes including names. For lists and pairlists (including language objects such as calls) it deparses
the elements individually, except that it extracts the first element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type
or not.

Note

as.character breaks lines in language objects at 500 characters, and inserts newlines. Prior to
2.15.0 lines were truncated.

82 charmatch

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options: option scipen affects the conversion of numbers.

paste, substr and strsplit for character concatenation and splitting, chartr for character
translation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and
substitutions. Note that help.search (keyword = "character") gives even more links.

deparse, which is normally preferable to as . character for language objects.

Examples

form <- y ~a + b + c
as.character (form) ## length 3

deparse (form) ## like the input

a0 <— 11/999 # has a repeating decimal representation
(al <- as.character (a0))

format (a0, digits = 16) # shows one more digit

a2 <- as.numeric(al)

az — a0 # normally around -le-17

as.character (a2) # normally different from al

print (c(al0, a2), digits = 16)

charmatch Partial String Matching

Description

charmat ch seeks matches for the elements of its first argument among those of its second.

Usage
charmatch (x, table, nomatch = NA_integer_)
Arguments
X the values to be matched: converted to a character vector by as .character.
Long vectors are supported.
table the values to be matched against: converted to a character vector. Long vectors

are not supported.

nomatch the (integer) value to be returned at non-matching positions.

chartr 83

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomat ch is returned.

NA values are treated as the string constant "NA".

Value
An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

startsWith for another matching of initial parts of strings; grep or regexpr for more general
(regexp) matching of strings.

Examples
charmatch ("", "") # returns 1
charmatch ("m", c("mean", "median", "mode")) # returns 0
charmatch ("med", c("mean", "median", "mode")) # returns 2
chartr Character Translation and Casefolding
Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr (old, new, Xx)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

84 chartr

Arguments
X a character vector, or an object that can be coerced to character by
as.character.
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?.
Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and repeated
characters are not. If o1d contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefoldis a wrapper for tolower and toupper provided for compatibility with S-PLUS.

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding) if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8. The result will be in the current locale’s encoding unless the corresponding input
was in UTF-8, when it will be in UTF-8 when the system has Unicode wide characters.

See Also

sub and gsub for other substitutions in strings.

Examples

x <— "MiXeD cAsE 123"
chartr ("iXs", "why", x)
chartr("a-cX", "D-Fw", x)
tolower (x)

toupper (x)

"Mixed Case" Capitalizing - toupper(every first letter of a word)

.simpleCap <- function (x) {

s <— strsplit(x, " ")[[1]]
paste (toupper (substring(s, 1, 1)), substring(s, 2),
sep = "", collapse =" ")

}
.simpleCap ("the quick red fox jumps over the lazy brown dog")
—> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

chkDots 85

and the better, more sophisticated version:
capwords <- function(s, strict = FALSE) {

cap <- function(s) paste (toupper (substring(s, 1, 1)),

{s <- substring(s, 2); if(strict) tolower(s) else s},
sep = "", collapse = " ")

sapply (strsplit (s, split = " "), cap, USE.NAMES = !is.null (names(s)))
}
capwords (c ("using AIC for model selection"))
—-> [1] "Using AIC For Model Selection"
capwords (c ("using AIC", "for MODEL selection"), strict = TRUE)

#H —> [1] "Using Aic" "For Model Selection"
#4 ~nn nnnnn
'bad' 'good'
—— Very simple insecure crypto —-—
rot <- function(ch, k = 13) {
p0 <- function(...) paste(c(...), collapse = "")

A <- c(letters, LETTERS, " '")
I <- seqg_len(k); chartr(p0(A), pO(c(A[-I], A[I])), ch)

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now "~“decrypt''
rot (crypw, 54 - 13) # -> the original:
stopifnot (identical (pw, rot (crypw, 54 - 13)))

chkDots Warn About Extraneous Arguments in the "..." of Its Caller
Description
Warn about extraneous arguments in the . . . of its caller. A utility to be used e.g., in S3 methods
which need a formal . . . argument but do not make any use of it. This helps catching user errors

in calling the function in question (which is the caller of chkDots ()).

Usage

chkDots (..., which.call = -1, allowed = character(0))

Arguments

. “the dots”, as passed from the caller.

which.call passedto sys.call (). A caller may use -2 if the message should mention its
caller.

allowed not yet implemented: character vector of named elements in ... which are
“allowed” and hence not warned about.

86

Author(s)

chol

Martin Maechler, first version outside base, June 2012.

See Also
warning,

Examples
seq.default ## <- you will see ' chkDots(...) '
seq(l,5, foo = "bar") # gives warning via chkDots ()
warning with more than one ...-entry:
density.f <- function(x, ...) NextMethod("density")

x <- density(structure(rnorm(10), class="f"), bar=TRUE, baz=TRUE)

chol

The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol(x, ...)

Default S3 method:

chol (x, pivot

Arguments

X

pivot
LINPACK

tol

= FALSE, LINPACK = FALSE, tol = -1, ...)

an object for which a method exists. The default method applies to numeric (or
logical) symmetric, positive-definite matrices.

arguments to be based to or from methods.
Should pivoting be used?
logical. Should LINPACK be used (defunct, ignored with a warning)?

A numeric tolerance for use with pivot = TRUE.

chol 87

Details

chol is generic: the description here applies to the default method.
Note that only the upper triangular part of x is used, so that R’ R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-definite
(i.e., some zero eigenvalues) an error will also occur as a numerical tolerance is used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be computed.
The rank of x is returned as attr (Q, "rank"), subject to numerical errors. The pivot is returned
as attr (Q, "pivot"). It is no longer the case that t (Q) %$+% Q equals x. However, setting
pivot <-attr (Q, "pivot") and oo <-order (pivot), it is true that t (Q[, 00]) %$*%
Q[,o0] equals x, or, alternatively, t (Q) $+% Q equals x [pivot,pivot]. See the examples.

The value of tol is passed to LAPACK, with negative values selecting the default tolerance of
(usually) nrow (x) *» .Machine$double.neg.eps * max (diag(x)). The algorithm ter-
minates once the pivot is less than tol.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value
The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R'R = x
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by
construction.

Source

This is an interface to the LAPACK routines DPOTRF and DPSTREF,

LAPACK is from https://www.netlib.org/lapack/ and its guide is listed in the refer-
ences.

References
Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper
triangular left sides.

qr, svd for related matrix factorizations.

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lug/lapack_lug.html

88 chol2inv

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <= chol (m))

t(cm) %$*% cm #-—— = 'm'
crossprod(cm) #-— = 'm'

now for something positive semi-definite
x <—- matrix(c(l:5, (1:5)72), 5, 2)

x <= cbind(x, x[, 1] + 3*x[, 2])
colnames (x) <- letters[20:22]

m <- crossprod(x)

gr (m) Srank # is 2, as it should be

chol () may fail, depending on numerical rounding:
chol () unlike gr() does not use a tolerance.
try (chol (m))

(Q <= chol(m, pivot = TRUE))

we can use this by

pivot <- attr(Q, "pivot")

crossprod(Q[, order(pivot)]) # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3), 2, 2))

try(chol(m)) # fails
(Q <= chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m
chol2inv Inverse from Choleski (or QR) Decomposition
Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X'X)~! from the (R part) of the QR decomposition of X.

Usage

chol2inv (x, size = NCOL(x), LINPACK = FALSE)

Arguments
X a matrix. The first size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of x containing the Choleski decomposition.

LINPACK logical. Defunct and ignored (with a warning).

class 89

Value

The inverse of the matrix whose Choleski decomposition was given.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Source

This is an interface to the LAPACK routine DPOTRI. LAPACK is from https://www.
netlib.org/lapack/ and its guide is listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
athttps://www.netlib.org/lapack/lug/lapack_lug.html.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.
See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1l, 1:3, c(1,3,7)))
ma %$*% chol2inv(cma)

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class (x)

class (x) <- wvalue

unclass (x)

inherits(x, what, which = FALSE)

oldClass
oldClass
.class2(

)

(x
(x) <= wvalue
x)

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lug/lapack_lug.html

90

class

Arguments
x a R object
what, value acharacter vector naming classes. value can also be NULL.
which logical affecting return value: see ‘Details’.

Details

Here, we describe the so called “S3” classes (and methods). For “S4” classes (and methods), see
‘Formal classes’ below.

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. (Functions oldClass and oldClass<- get and set the attribute,
which can also be done directly.)

If the object does not have a class attribute, it has an implicit class, notably "matrix", "array",
"function" or "numeric" or the result of typeof (x) (which is similar to mode (x)), but
for type "language" and mode "call", where the following extra classes exist for the corre-
sponding function calls: if, while, for, =, <, (, {,call.

Note that for objects x of an implicit (or an S4) class, when a (S3) generic function foo (x) is
called, method dispatch may use more classes than are returned by class (x), e.g., for a numeric
matrix, the foo.numeric () method may apply. The exact full character vector of the classes
which UseMethod () uses, is available as . class?2 (x) since R version 4.0.0. (This also applies
to S4 objects when S3 dispatch is considered, see below.)

Beware that using .class2 () for other reasons than didactical, diagnostical or for debugging
may rather be a misuse than smart.

NULL objects (of implicit class "NULL") cannot have attributes (hence no class attribute) and
attempting to assign a class is an error.

When a generic function fun is applied to an object with class attribute
c("first", "second"), the system searches for a function called fun.first and, if
it finds it, applies it to the object. If no such function is found, a function called fun.second
is tried. If no class name produces a suitable function, the function fun.default is used (if it
exists). If there is no class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning NULL removes the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. If which is TRUE then an integer vector of the same length as what is returned.
Each element indicates the position in the class (x) matched by the element of what; zero
indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

All but inherits are primitive functions.

Formal classes

An additional mechanism of formal classes, nicknamed “S4”, is available in package methods
which is attached by default. For objects which have a formal class, its name is returned by class

class 91

as a character vector of length one and method dispatch can happen on several arguments, instead
of only the first. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits. Therefore, S3 methods can be defined
for S4 classes. See the ‘Introduction’ and ‘Methods_for_S3’ help pages for basic information on
S4 methods and for the relation between these and S3 methods.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object,value) isthe way to coerce an object to a particular class.

The analogue of inherits for formal classes is is. The two functions behave consistently with
one exception: S4 classes can have conditional inheritance, with an explicit test. In this case, is
will test the condition, but inherits ignores all conditional superclasses.

Note

Functions o1dClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some
interpolated classes: see the link) rather than o1dClass. However, group generics dispatch on the
oldClass for efficiency, and internal generics only dispatch on objects for which is.object is
true.

In older versions of R, assigning a zero-length vector with class removed the class: it is now an
error (whereas it still works for o1dClass). It is clearer to always assign NULL to remove the
class.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <- 10

class (x) # "numeric"

oldClass (x) # NULL

inherits(x, "a") #FALSE

class(x) <= c("a", "b")

inherits (x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c¢"), TRUE) # 1 2 0

class (quote (pi)) # "name"
regular calls
class(quote (sin (pi*x))) # "call"

special calls

class(quote(x <- 1)) # <"
class(quote((1 < 2))) #"("
class(quote(1if(8<3) pi)) # "if"

.class2 (pi) # "double" "numeric"
.class2 (matrix(1:6, 2,3)) # "matrix" "array" "integer" "numeric"

92 col

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

Usage
col (x, as.factor = FALSE)
.col (dim)
Arguments
X a matrix-like object, that is one with a two-dimensional dim.
dim a matrix dimension, i.e., an integer valued numeric vector of length two (with
non-negative entries).
as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

row to get rows; slice.index for a general way to get slice indices in an array.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)

ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix more slowly than diag(n = 5):
x <- matrix (0, nrow = 5, ncol = 5)

x[row(x) == col(x)] <=1

(134 <= .col(3:4))
stopifnot (identical (i34, .col(c(3,4)))) # 'dim' maybe "double"

Colon 93

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.
to (maximal) end value of the sequence.
a, b factors of the same length.

Details
The binary operator : has two meanings: for factors a : b is equivalent to interaction (a, b)
(but the levels are ordered and labelled differently).

For other arguments from: to is equivalent to seq (from, to), and generates a sequence from
fromto to in steps of 1 or —1. Value t o will be included if it differs from from by an integer up
to a numeric fuzz of about 1e—7. Non-numeric arguments are coerced internally (hence without
dispatching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.

Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-valued
and the result is representable in the R integer type, otherwise of type "double™ (aka mode
"numeric").

For factors, an unordered factor with levels labelled as 1a: 1b and ordered lexicographically (that
is, 1b varies fastest).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq (a generalization of from:to).
As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

94 colSums
Examples
1:4
pi:6 # real
6:pi # integer
fl <= gl(2, 3); f1
£2 <- gl(3, 2); £2
fl:f2 # a factor, the "cross" fl x f2
colSums Form Row and Column Sums and Means
Description
Form row and column sums and means for numeric arrays (or data frames).
Usage
colSums (x, na.rm = FALSE, dims = 1)
rowSums (X, na.rm = FALSE, dims = 1)
colMeans (x, na.rm = FALSE, dims = 1)
rowMeans (x, na.rm = FALSE, dims = 1)
.colSums (x, m, n, na.rm = FALSE)
.rowSums (X, m, n, na.rm = FALSE)
.colMeans(x, m, n, na.rm = FALSE)
. rowMeans (x, m, n, na.rm = FALSE)
Arguments
X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame. For .colSums () etc, a numeric,
integer or logical matrix (or vector of length m % n).
na.rm logical. Should missing values (including NaN) be omitted from the calcula-
tions?
dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over. For
rowx*, the sum or mean is over dimensions dims+1, . . .; for col« itis over
dimensions 1 :dims.
m, n the dimensions of the matrix x for . colSums () etc.
Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appropriate
margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties of
NaN and NA. If na. rm = FALSE and either NaN or NA appears in a sum, the result will be one of
NaN or N2, but which might be platform-dependent.

colSums 95

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of x).

The versions with an initial dot in the name (. colSums () etc) are ‘bare-bones’ versions for use
in programming: they apply only to numeric (like) matrices and do not name the result.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. For the
first four functions the dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with na . rm =
TRUE), that component of the output is set to 0 (* Sums) or NaN (xMeans), consistent with sum
and mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

rowSums (x); colSums (x)

dimnames (x) [[1]] <—- letters[1:8]

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
x[] <- as.integer (x)

rowSums (x); colSums (x)

x[] <= x < 3

rowSums (x); colSums (x)

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array
dim (UCBAdmissions)
rowSums (UCBAdmissions); rowSums (UCBAdmissions, dims

2)
colSums (UCBAdmissions); colSums (UCBAdmissions, dims = 2)

complex case

x <— cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans (x, na.rm = TRUE)

96 commandArgs

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs (trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘——args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘——args’ command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after
‘——args’.

See Also

R.home (), Startup and BATCH

Examples

commandArgs ()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste (commandArgs (), collapse = " "))

comment 97

comment Query or Set a "comment " Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data. frames or model fits.
Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment (x)
comment (x) <- value

Arguments

x any R object

value a character vector, or NULL.
See Also

attributes and attr for other attributes.

Examples

x <- matrix(1:12, 3, 4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

X

comment (x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

XXX X X X
VvV A
I

Il
Il
KK KK

98 Comparison

Arguments
X, Y atomic vectors, symbols, calls, or other objects for which methods have been
written.
Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see 1ocales. The collating sequence of locales such as ‘en_US’
is normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character — in Danish aa sorts as a single letter, after z. In Welsh
ng may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect the
locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode code-point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

Character strings can be compared with different marked encodings (see Encoding): they are
translated to UTF-8 before comparison.

Raw vectors should not really be considered to have an order, but the numeric order of the byte
representation is used.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (N2) and NaN values are regarded as non-comparable even to themselves, so com-
parisons involving them will always result in NA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(el,e2).

Comparison 99

Note

Do not use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember == and != do not allow for the finite representa-
tion of fractions, nor for rounding error. Using all.equal with identical is almost always
preferable. See the examples. (This also applies to the other comparison operators.)

These operators are sometimes called as functions as e.g. ~ <~ (x, y) : see the description of how
argument-matching is done in Ops.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see https://
en.wikipedia.org/wiki/Collating_sequence. The Unicode Collation Algorithm
(https://unicode.org/reports/trl0/) is likely to be increasingly influential. Where
available R by default makes use of ICU (http://site.icu-project.org/) for collation
(except in a C locale).

See Also

factor for the behaviour with factor arguments.
Syntax for operator precedence.

capabilities for whether ICU is available, and icuSetCollate to tune the string collation
algorithm when it is.

Examples

x <- stats::rnorm(20)
x < 1
x[x > 0]

x1l <-= 0.
x2 <= 0.
x1l == x2 # FALSE on most machines
identical (all.equal (x1, x2), TRUE) # TRUE everywhere

range of most 8-bit charsets, as well as of Latin-1 in Unicode
<- c(32:126, 160:255)

N

X <— 1f(110n_info () SMBCS) {
intToUtf8(z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple = TRUE)
by number
writelines (strwrap (paste(x, collapse=" "), width = 60))

by locale collation
writelLines (strwrap (paste (sort (x), collapse=" "), width = 60))

https://en.wikipedia.org/wiki/Collating_sequence
https://en.wikipedia.org/wiki/Collating_sequence
https://unicode.org/reports/tr10/
http://site.icu-project.org/

100 complex

complex Complex Numbers and Basic Functionality

Description

Basic functions which support complex arithmetic in R, in addition to the arithmetic operators +,

-, %, /,and ".
Usage
complex (length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex (x)

Re (
Im (

z)

z)
Mod (z
Z

(

Arg (

)
)
Conij(z

)
Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

X an object, probably of mode complex.

z an object of mode complex, or one of a class for which a methods has been
defined.

further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names. Up to R versions 3.2.x, all forms of NA and NaN were coerced to a
complex NA, i.e., the NA__complex__ constant, for which both the real and imaginary parts are NA.
Since R 3.3.0, typically only objects which are NA in parts are coerced to complex NA, but others
with NaN parts, are not. As a consequence, complex arithmetic where only NaN’s (but no NA’s) are
involved typically will not give complex NA but complex numbers with real or imaginary parts of
NaN.

complex 101

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. The modulus
and argument are also called the polar coordinates. 1f z = x + iy with real x and y, for r =
Mod(z) = v/z% 4+ y2, and ¢ = Arg(z), z = r * cos(¢) and y = r * sin(¢). They are all internal
generic primitive functions: methods can be defined for them individually or via the Complex
group generic.

In addition to the arithmetic operators (see Arithmetic) +, —, x, /, and *, the elementary trigono-
metric, logarithmic, exponential, square root and hyperbolic functions are implemented for complex
values.

Matrix multiplications ($+%, crossprod, tcrossprod) are also defined for complex matrices
(matrix), and so are solve, eigen or svd.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaN (including NA, see NA_complex_ and above) or plus or minus infinity.
S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be
set for them individually or via the group generic.
Note

Operations and functions involving complex NaN mostly rely on the C library’s handling of
‘double complex’ arithmetic, which typically returns complex (re=NaN, im=NaN) (but we
have not seen a guarantee for that). For + and —, R’s own handling works strictly “coordinate wise”.

Operations involving complex NA, i.e., NA_complex_, return NA_complex_.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic;polyroot finds all n complex roots of a polynomial of degree n.
Examples

require (graphics)

0i ~ (=3:3)

matrix (1i® (-6:5), nrow = 4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector
z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))

102 conditions

or also (less efficiently):
z2 <— 1:2 + 1i%(8:9)

The Arg(.) is an angle:
zz <— (rep(l:4, len = 9) + 1ix(9:1))/10
zz.shift <- complex (modulus = Mod(zz), argument = Arg(zz) + pi)
plot(zz, xlim = c(-1,1), ylim = c(-1,1), col = "red", asp = 1,
main = expression(paste ("Rotation by "," ", pi == 180"0)))
abline(h = 0, v = 0, col = "blue", lty = 3)
points(zz.shift, col = "orange")
showC <- function(z) noquote (sprintf("(R = %g, I = %g9)", Re(z), Im(z)))

The exact result of this *depends* on the platform, compiler, math-library:

(NpNA <- NaN + NA_complex_) ; str (NpNA) # xbehaves* as 'cplx NA'
stopifnot (is.na (NpNA), is.na (NA_complex_), is.na(Re(NA_complex_)), is.na(Im(NA_complex_)))
showC (NpNA) # but not always is {shows '(R =NaN, I = NA)' on some platforms}

and this is not TRUE everywhere:
identical (NpNA, NA_complex_)

showC (NA_complex_) # always == (R = NA, I = NA)
conditions Condition Handling and Recovery
Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.
Usage

tryCatch (expr, ..., finally)
withCallingHandlers (expr, ...)
globalCallingHandlers(...)

signalCondition (cond)

simpleCondition (message, call = NULL)

simpleError (message, call = NULL)

simpleWarning (message, call = NULL)

simpleMessage (message, call = NULL)

errorCondition (message, ..., class = NULL, call = NULL)
warningCondition (message, ..., class = NULL, call = NULL)

S3 method for class 'condition'
as.character(x, ...)

S3 method for class 'error'
as.character(x, ...)

conditions 103

S3 method for class 'condition'
print(x, ...)

S3 method for class 'restart'
print(x, ...)

conditionCall (c)

S3 method for class 'condition'
conditionCall (c)
conditionMessage (c)

S3 method for class 'condition'
conditionMessage (c)

withRestarts (expr, ...)

computeRestarts (cond = NULL)
findRestart (name, cond = NULL)
invokeRestart (r, ...)
tryInvokeRestart (r, ...)
invokeRestartInteractively (r)

isRestart (x)
restartDescription (r)
restartFormals (r)

suspendInterrupts (expr)
allowInterrupts (expr)

.signalSimpleWarning (msg, call)
.handleSimpleError (h, msg, call)
.tryResumeInterrupt ()

Arguments
c a condition object.
call call expression.
cond a condition object.
expr expression to be evaluated.
finally expression to be evaluated before returning or exiting.
h function.
message character string.
msg character string.
name character string naming a restart.
r restart object.
x object.
class character string naming a condition class.

additional arguments; see details below.

104 conditions

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are
objects inheriting from the abstract subclasses error and warning. The class simpleError
is the class used by stop and all internal error signals. Similarly, simpleWarning is used
by warning, and simpleMessage is used by message. The constructors by the same
names take a string describing the condition as argument and an optional call. The functions
conditionMessage and conditionCall are generic functions that return the message and
call of a condition.

The function errorCondition and warningCondition can be used to construct er-
ror conditions of a particular class with additional fields specified as the ... argument.
warningCondition is analogous for warnings.

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers pro-
vided in the . . . argument are available. The finally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the current t ryCatch call are
not active when the finally expression is evaluated.

Handlers provided in the . . . argument to t ryCatch are established for the duration of the eval-
uation of expr. If no condition is signaled when evaluating expr then tryCatch returns the
value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single t ryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the t ryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the
applicable handler is a calling handler, then the handler is called by signalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried, signalCondition returns NULL.

globalCallingHandlers establishes calling handlers globally. These handlers are only called
as a last resort, after the other handlers dynamically registered with withCallingHandlers
have been invoked. They are called before the error global option (which is the legacy interface
for global handling of errors). Registering the same handler multiple times moves that handler on
top of the stack, which ensures that it is called first. Global handlers are a good place to define a
general purpose logger (for instance saving the last error object in the global workspace) or a general
recovery strategy (e.g. installing missing packages via the retry_ loadNamespace restart).

Like withCallingHandlers and tryCatch, globalCallingHandlers takes named
handlers. Unlike these functions, it also has an options-like interface: you can estab-
lish handlers by passing a single list of named handlers. To unregister all global handlers,

conditions 105

supply a single ‘NULL‘. The list of deleted handlers is returned invisibly. Finally, calling
globalCallingHandlers without arguments returns the list of currently established handlers,
visibly.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump to top
level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart. The restart argument to invokeRestart can be a character string, in which
case findRestart is used to find the restart. If no restart is found, an error is thrown.

tryInvokeRestart is a variant of invokeRestart that returns silently when the restart
cannot be found with findRestart. Because a condition of a given class might be signalled
with arbitrary protocols (error, warning, etc), it is recommended to use this permissive variant
whenever you are handling conditions signalled from a foreign context. For instance, invocation
of a "muffleWarnings" restart should be optional because the warning might have been sig-
nalled by the user or from a different package with the stop or message protocols. Only use
invokeRestart when you have control of the signalling context, or when it is a logical error if
the restart is not available.

New restarts for withRestarts can be specified in several ways. The simplest is in name =
function form where the function is the handler to call when the restart is invoked. Another
simple variant is as name = st ring where the string is stored in the description field of the
restart object returned by findRestart; in this case the handler ignores its arguments and returns
NULL. The most flexible form of a restart specification is as a list that can include several fields,
including handler, description, and test. The test field should contain a function of one
argument, a condition, that returns TRUE if the restart applies to the condition and FALSE if it does
not; the default function returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the formal
arguments of the handler function.

Interrupts can be suspended while evaluating an expression using suspendInterrupts. Subex-
pression can be evaluated with interrupts enabled using allowInterrupts. These functions can
be used to make sure cleanup handlers cannot be interrupted.

.signalSimpleWarning, .handleSimpleError, and .tryResumeInterrupt are
used internally and should not be called directly.

106 conflicts

References

The t ryCatch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and t ry is essentially a simplified version of t ryCatch.
assertCondition in package tools fests that conditions are signalled and works with several
of the above handlers.

Examples

tryCatch(l, finally = print ("Hello"))
e <- simpleError ("test error")

Not run:

stop (e)

tryCatch(stop(e), finally = print("Hello"))
tryCatch (stop ("fred"), finally = print ("Hello"))

End(Not run)

tryCatch (stop(e), error = function(e) e, finally = print ("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally = print ("Hello"))
withCallingHandlers ({ warning("A"); 1+2 }, warning = function(w) {})

Not run:

{ withRestarts(stop("A"), abort = function() {}); 1 }

End (Not run)
withRestarts (invokeRestart ("foo", 1, 2), foo = function(x, y) {x + vyv})

##-—> More examples are part of

#h——> demo (error.catching)
conflicts Search for Masked Objects on the Search Path
Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts (where = search(), detail = FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the search

path.

connections 107

Value

If detail = FALSE, a character vector of masked objects. If detail = TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[l] "lm"

#
#
Spackage:base

[1] "1lm"

Remove things from your "workspace" that mask others:
remove (list = conflicts(detail = TRUE)S$.GlobalEnv)

connections Functions to Manipulate Connections (Files, URLs, ...)

Description

Functions to create, open and close connections, i.e., “generalized files”, such as possibly com-
pressed files, URLs, pipes, etc.

Usage
file(description = "", open = "", blocking = TRUE,
encoding = getOption ("encoding"), raw = FALSE,
method = getOption("url.method", "default"))
url (description, open = "", blocking = TRUE,

encoding = getOption ("encoding"),
method = getOption ("url.method", "default"),
headers = NULL)

gzfile (description, open "" encoding getOption ("encoding"),

compression = 6)

bzfile(description, open = "", encoding = getOption ("encoding"),
compression = 9)

xzfile (description, open = "", encoding = getOption ("encoding"),
compression = 6)

unz (description, filename, open = "", encoding = getOption ("encoding"))

108 connections
pipe (description, open = "", encoding = getOption ("encoding"))
fifo(description, open = "", blocking = FALSE,

encoding = getOption ("encoding"))
socketConnection (host = "localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption ("encoding"),
timeout = getOption ("timeout"))

serverSocket (port)

socketAccept (socket, blocking = FALSE, open = "at",
encoding = getOption ("encoding"),
timeout = getOption("timeout"))

open (con,

.)

S3 method for class 'connection'
open (con, open = "r", blocking = TRUE, ...)

close (con,

)

S3 method for class 'connection'

close (con,
flush (con)

isOpen (con,

rw =

type = "rw", ...)

n ")

isIncomplete (con)

socketTimeout (socket, timeout = -1)
Arguments

description character string. A description of the connection: see ‘Details’.

open character string. A description of how to open the connection (if it should be
opened initially). See section ‘Modes’ for possible values.

blocking logical. See the ‘Blocking’ section.

encoding The name of the encoding to be assumed. See the ‘Encoding’ section.

raw logical. If true, a ‘raw’ interface is used which will be more suitable for argu-
ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

method character string, partially matchedto ¢ ("default", "internal", "wininet", "libcurl"):
see ‘Details’.

headers named character vector of HTTP headers to use in HTTP requests. It is ig-

nored for non-HTTP URLs. The User-Agent header, coming from the

connections 109

HTTPUserAgent option (see opt ions) is used as the first header, automati-
cally.

compression integer in 0-9. The amount of compression to be applied when writing, from
none to maximal available. For xzfile can also be negative: see the ‘Com-
pression’ section.

timeout numeric: the timeout (in seconds) to be used for this connection. Beware that
some OSes may treat very large values as zero: however the POSIX standard
requires values up to 31 days to be supported.

filename a filename within a zip file.

host character string. Host name for the port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

socket a server socket listening for connections.

con a connection.

type character string. Currently ignored.

rw character string. Empty or "read" or "write", partial matches allowed.

arguments passed to or from other methods.

Details

The first eleven functions create connections. By default the connection is not opened (except for
a socket connection created by socketConnection or socketAccept and for server socket
connection created by serverSocket), but may be opened by setting a non-empty value of
argument open.

For f£11e the description is a path to the file to be opened or a complete URL (when it is the same as
calling url), or "" (the default) or "clipboard" (see the ‘Clipboard’ section). Use "stdin"
to refer to the C-level ‘standard input’ of the process (which need not be connected to anything in
a console or embedded version of R, and is not in RGui on Windows). See also stdin () for the
subtly different R-level concept of stdin. See nullfile () for a platform-independent way to
get filename of the null device.

For url the description is a complete URL including scheme (such as ‘http://’, ‘https://’,
‘ftp:// or ‘file://’). Method "internal™" is that available since connections were intro-
duced, method "wininet" is only available on Windows (it uses the WinINet functions of that
0S) and method "1ibcurl" (using the library of that name: https://curl.se/libcurl/)
is required on a Unix-alike but optional on Windows. Method "default" uses method
"internal" for ‘file:’ URLs and "libcurl" for ftps: URLs. On a Unix-alike it uses
"libcurl" for ‘http:’, ‘https:’ and ‘ftp:’ URLSs; on Windows "wininet" for ‘http:’,
‘ftp:’ and ‘https:’ URLs. Proxies can be specified: see download.file.

For gz file the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and those compressed by bzip2, xz or 1zma.

For bz file the description is the path to a file compressed by bzip2.

For xzfile the description is the path to a file compressed by xz (https://en.wikipedia.
org/wiki/Xz) or (for reading only) 1zma (https://en.wikipedia.org/wiki/LZMA).

https://curl.se/libcurl/
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/LZMA

110 connections

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘. zip’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEC environment variable.

For £1 fo the description is the path of the fifo. (Support for £1i fo connections is optional but they
are available on most Unix platforms and on Windows.)

The intention is that £i 1e and gz £i 1e can be used generally for text input (from files, ‘http://’
and ‘https://° URLs) and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see stdout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

If for a file or (on most platforms) a £ifo connection the description is "", the file/fifo is
immediately opened (in "w+" mode unless open = "w+b" is specified) and unlinked from the file
system. This provides a temporary file/fifo to write to and then read from.

socketConnection (server=TRUE) creates a new temporary server socket listening on the
given port. As soon as a new socket connection is accepted on that port, the server socket is automat-
ically closed. serverSocket creates a listening server socket which can be used for accepting
multiple socket connections by socketAccept. To stop listening for new connections, a server
socket needs to be closed explicitly by close.

socketTimeout sets connection timeout of a socket connection. A negative t imeout can be
given to query the old value.

Value

file, pipe, fifo, url, gzfile, bzfile, xzfile, unz, socketConnection,
socketAccept and serverSocket return a connection object which inherits from class
"connection" and has a first more specific class.

open and flush return NULL, invisibly.

close returns either NULL or an integer status, invisibly. The status is from when the connection
was last closed and is available only for some types of connections (e.g., pipes, files and fifos):
typically zero values indicate success. Negative values will result in a warning; if writing, these
may indicate write failures and should not be ignored.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns alogical value, whether the last read attempt was blocked, or for an output
text connection whether there is unflushed output.

socketTimeout returns the old timeout value of a socket connection.

connections 111

URLs

url and f£ile support URL schemes ‘file://’, ‘http://’, ‘https:// and ‘ftp:// .

method = "1libcurl" allows more schemes: exactly which schemes is platform-dependent (see
libcurlVersion), but all Unix-alike platforms will support ‘https://’ and most platforms
will support ‘ftps://’ .

Most methods do not percent-encode special characters such as spaces in ‘http://’ URLs (see
URLencode), but it seems the "wininet " method does.

A note on ‘file://’ URLs. The most general form (from RFC1738) is
‘file://host/path/to/file’, but R only accepts the form with an empty host
field referring to the local machine.

On a Unix-alike, this is then ‘file:///path/to/file’, where ‘path/to/file’ is relative
to °/°. So although the third slash is strictly part of the specification not part of the path, this can
be regarded as a way to specify the file ‘/path/to/file’. Itis not possible to specify a relative
path using a file URL.

In this form the path is relative to the root of the filesystem, not a Windows concept. The stan-
dard form on Windows is ‘file:///d:/R/repos’: for compatibility with earlier versions of
R and Unix versions, any other form is parsed as R as ‘file://’ plus path_to_file. Also,
backslashes are accepted within the path even though RFC1738 does not allow them.

No attempt is made to decode a percent-encoded ‘file:’ URL: call URLdecode if necessary.

All the methods attempt to follow redirected HTTP URLs, but the "internal" method is unable
to follow redirections to HTTPS URLs.

Server-side cached data is always accepted.

Function download. file and several contributed packages provide more comprehensive facili-
ties to download from URLs.

Modes
Possible values for the argument open are

"r"or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.

Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys.umask).

112 connections

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work
for any form of line ending). Various R operations are possible in only one of the modes: for
example pushBack is text-oriented and is only allowed on connections open for reading in text
mode, and binary operations such as readBin, 1oad and save can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open = "" is
given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode willbe "r". (gzfile,bzfile and xzfile connections are exceptions,
as the compressed file always has to be opened in binary mode and no conversion of line-endings
is done even on Windows, so the default mode is interpreted as "rb".) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the file.
Readers may or may not read beyond end of the first stream: currently R does so for gzfile,
bzfile and xzfile connections.

Compression

R supports gzip, bzip2 and xz compression (also read-only support for its precursor, 1zma
compression).

For reading, the type of compression (if any) can be determined from the first few bytes of the
file. Thus for file (raw = FALSE) connections, if openis "", "r" or "rt" the connection
can read any of the compressed file types as well as uncompressed files. (Using "rb" will allow
compressed files to be read byte-by-byte.) Similarly, gzfile connections can read any of the
forms of compression and uncompressed files in any read mode.

(The type of compression is determined when the connection is created if open is unspecified and a
file of that name exists. If the intention is to open the connection to write a file with a different form
of compression under that name, specify open = "w" when the connection is created or unlink
the file before creating the connection.)

For write-mode connections, compress specifies how hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb for
xzfile (compress = 9)). For xzfile negative values of compress correspond to adding
the xz argument ‘—e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory) usage: but if
you are using xz compression you are probably looking for high compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal
compression 30% better. The experience with R save files is similar, but on some large ‘. rda’
files xz compression is much better than the other two. With current computers decompression
times even with compress = 9 are typically modest and reading compressed files is usually faster
than uncompressed ones because of the reduction in disc activity.

connections 113

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same
way as it would be given to iconv: see that help page for how to find out what encoding names
are recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done.

When writing to a text connection, the connections code always assumes its input is in native encod-
ing, so e.g. writeLines has to convert text to native encoding. writeLines does not do the
conversion when useBytes=TRUE (for expert use only), but the connections code still behaves as
if the text was in native encoding, so any attempt to convert encoding (encoding argument other
than "" and "native.enc") in connections will produce incorrect results.

When reading from a text connection, the connections code, after re-encoding based on the
encoding argument, returns text that is assumed to be in native encoding; an encoding mark
is only added by functions that read from the connection, so e.g. readLines can be instructed to
mark the text as "UTF-8" or "latinl", but readLines does no further conversion. To allow
reading text in "UTF-8" on a system that cannot represent all such characters in native encoding
(currently only Windows), a connection can be internally configured to return the read text in UTF-
8 even though it is not the native encoding; currently readLines and scan use this feature when
given a connection that is not yet open and, when using the feature, they unconditionally mark the
textas "UTF-8".

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.,
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE" and "UTF-16LE" are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark 0xFEFF then these
are removed as some implementations of iconv do not accept BOMs. Note that whereas most
implementations will handle BOMs using encoding "UCS-2" and choose the appropriate byte
order, some (including earlier versions of glibc) will not. There is a subtle distinction between
"UTF-16" and "UCS-2" (see https://en.wikipedia.org/wiki/UTF-16): the use of
characters in the ‘Supplementary Planes’ which need surrogate pairs is very rare so "UCS-2LE"
is an appropriate first choice (as it is more widely implemented).

As from R 3.0.0 the encoding "UTF-8-BOM" is accepted for reading and will remove
a Byte Order Mark if present (which it often is for files and webpages generated by
Microsoft applications). If a BOM is required (it is not recommended) when writing
it should be written explicitly, e.g. by writeChar ("\ufeff", con,eos =NULL) or
writeBin(as.raw(c (0Oxef, Oxbb, O0xbf)),binary_con)

Encoding names "ut £8", "mac" and "macroman" are not portable, and not supported on all
current R platforms. "UTF-8" is portable and "macintosh" is the official (and most widely
supported) name for ‘Mac Roman’. (As from R 3.4.0, R maps "ut £8" to "UTF-8" internally.)

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

It may be possible to deduce the current native encoding from
Sys.getlocale ("LC_CTYPE"), but not all OSes record it.

https://en.wikipedia.org/wiki/UTF-16

114 connections

Blocking

Whether or not the connection blocks can be specified for file, url (default yes), fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options ("timeout"). Note that this is a timeout for no response, not for the whole operation.
The timeout is set at the time the connection is opened (more precisely, when the last connection of
that type — ‘http:’, ‘“ftp:’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file ().

Clipboard

file can be used with description="clipboard" in mode "r" only. This
reads the XI11 primary selection (see https://specifications.freedesktop.
org/clipboards-spec/clipboards—latest.txt), which can also be specified as
"X11_primary" and the secondary selection as "X11_secondary". On most sys-
tems the clipboard selection (that used by ‘Copy’ from an ‘Edit’ menu) can be specified as
"X11l _clipboard".

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to write to one of the X11 selections may be able to do so via xclip (https:
//sourceforge.net/projects/xclip/) or xsel (http://www.vergenet.net/
~conrad/software/xsel/), for example by pipe ("xclip —1i", "w") for the primary se-
lection.

macOS users can use pipe ("pbpaste") and pipe ("pbcopy", "w") to read from and write
to that system’s clipboard.

File paths

In most cases these are translated to the native encoding.

https://specifications.freedesktop.org/clipboards-spec/clipboards-latest.txt
https://specifications.freedesktop.org/clipboards-spec/clipboards-latest.txt
https://sourceforge.net/projects/xclip/
https://sourceforge.net/projects/xclip/
http://www.vergenet.net/~conrad/software/xsel/
http://www.vergenet.net/~conrad/software/xsel/

connections 115

The exceptions are £ile and pipe on Windows, where a description which is marked as
being in UTF-8 is passed to Windows as a ‘wide’ character string. This allows files with names not
in the native encoding to be opened on file systems which use Unicode file names (such as NTFS
but not FAT32).

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections. The default open mode in R is "r" except for socket connections. This differs from
S, where it is the equivalent of "r+", known as " ".

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 byte output limit on the length of a line for text output on £ifo, gzfile, bzfile and
xzfile connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001). “Connections.” R News, 1(1), 16-7. https://www.r-project.org/
doc/Rnews/Rnews_2001-1.pdf.

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are (text-mode) readLines, writeLines, cat,
sink, scan, parse, read.dcf, dput, dump and (binary-mode) readBin, readChar,
writeBin,writeChar, loadand save.

capabilities to see if £ifo connections are supported by this build of R.
gzcon to wrap gzip (de)compression around a connection.

options HTTPUserAgent, internet.infoand timeout are used by some of the methods
for URL connections.

memCompress for more ways to (de)compress and references on data compression.
extSoftVersion for the versions of the z1ib (for gzfile), bzip2 and xz libraries in use.

To flush output to the Windows and macOS consoles, see f1ush.console.

Examples
zzfil <- tempfile(fileext=".data")
zz <- file(zzfil, "w" # open an output file connection
cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat ("One more line\n", file = zz)

close(zz)
readLines (zzfil)
unlink (zzfil)

zzfil <- tempfile(fileext=".gz")
zz <- gzfile(zzfil, "w") # compressed file

https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

116 connections

cat ("TITLE extra line", "2 3 5 7", ™", m11 13 17", file = zz, sep = "\n")
close(zz)

readLines (zz <- gzfile(zzfil))

close(zz)

unlink (zzfil)

zz # an invalid connection

zzfil <- tempfile(fileext=".bz2")

zz <- bzfile(zzfil, "w") # bzip2-ed file

cat ("TITLE extra line", "2 3 5 7", ™", nm11 13 17", file = zz, sep = "\n")
close(zz)

zz # print () method: invalid connection

print (readLines (zz <- bzfile(zzfil)))

close(zz)

unlink (zzfil)

An example of a file open for reading and writing
Tpath <- tempfile("test")

Tfile <- file(Tpath, "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat ("abc\ndef\n", file = Tfile)

readLines (Tfile)

seek (Tfile, 0, rw = "r") # reset to beginning
readLines (Tfile)

cat ("ghi\n", file = Tfile)

readLines (Tfile)

Tfile # —> print() : "valid" connection
close (Tfile)
Tfile # -> print() : "invalid" connection

unlink (Tpath)

We can do the same thing with an anonymous file.
Tfile <— file ()

cat ("abc\ndef\n", file = Tfile)

readLines (Tfile)

close (Tfile)

Not run: ## fifo example —-- may hang even with OS support for fifos
if (capabilities("fifo")) {
zzfil <- tempfile(fileext="-fifo")
zz <— fifo(zzfil, "w+")
writeLines ("abc", zz)
print (readLines (zz))
close(zz)
unlink (zzfil)
}
End (Not run)

Unix examples of use of pipes

read listing of current directory
readLines (pipe("1ls —-1"))

connections 117

remove trailing commas. Suppose

Not run: % cat data2_

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End (Not run)

Then read this by

scan (pipe("sed -e s/,$// data2_"), sep = ",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled

zzfil <- tempfile("outfile")

zz <- pipe (paste("sed s/\\\\./,/ >", zzfil), "w")

cat (format (round (stats::rnorm(48), 4)), fill = 70, file = zz)
close(zz)

file.show(zzfil, delete.file = TRUE)

Not run:
example for a machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)
writeLines (pasteO (system("whoami", intern = TRUE), "\r"), con)
gsub (" %$", "", readLines(con))

close (con)

End (Not run)

Not run:

Two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection (port = 6011, server = TRUE)
writeLines (LETTERS, conl)

close (conl)

R process 2
con2 <- socketConnection(Sys.info () ["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines (con2)
while (isIncomplete (con2)) {
Sys.sleep (1)
z <- readLines (con2)
if(length(z)) print(z)
}

close (con2)

examples of use of encodings

write a file in UTF-8

cat (x, file = (con <- file("foo", "w", encoding = "UTF-8"))); close(con)

read a 'Windows Unicode' file

A <- read.table(con <- file("students", encoding = "UCS-2LE")); close(con)

118 Constants

End (Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

pi

Details

R has a small number of built-in constants.

The following constants are available:

* LETTERS: the 26 upper-case letters of the Roman alphabet;

* letters: the 26 lower-case letters of the Roman alphabet;

* month.abb: the three-letter abbreviations for the English month names;
* month.name: the English names for the months of the year;

* pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base namespace taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data,DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

contributors 119

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4% (4xatan(l/5) - atan(1/239))

months in English

month.name

months in your current locale
format (ISOdate (2000, 1:12, 1), "%B")
format (ISOdate (2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors ()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if (cond) expr
if (cond) cons.expr else alt.expr

for(var in seq) expr
while (cond) expr
repeat expr

break

next

120 Control

Arguments

cond A length-one logical vector that is not NA. Conditions of length greater
than one are currently accepted with a warning, but only the first ele-
ment is used. An error is signalled instead when the environment variable
_R_CHECK_LENGTH_1_CONDITION_ is setto true. Other types are coerced
to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL. A factor value will be coerced to a character vector. As from
R 4.0.0 this can be a long vector.

expr, cons.expr, alt.expr
An expression in a formal sense. This is either a simple expression or a so-called
compound expression, usually of the form { exprl ; expr2 }.

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement
outside the inner-most loop. next halts the processing of the current iteration and advances the
looping index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ . . }) around your statements, e.g., after
if(..) or for(....). In particular, you should not have a newline between } and else to
avoid a syntax error in entering a i f . . . else construct at the keyboard or via source. For that
reason, one (somewhat extreme) attitude of defensive programming is to always use braces, e.g.,
for i f clauses.

The seqgin a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seq. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there is no else).

for,while and repeat return NULL invisibly. for sets var to the last used element of seq,
or to NULL if it was of length zero.

break and next do not return a value as they transfer control within the loop.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

copyright 121

Examples

for(i in 1:5) print(l:1i)
for(n in c¢(2,5,10,20,50)) {
x <— stats::rnorm(n)
cat(n, ". n, sum(xAZ), "\H", sep = "ll)
}
f <- factor (sample(letters[1l:5], 10, replace = TRUE))

for(i in unique(f)) print (i)
copyright Copyrights of Files Used to Build R
Description

R is released under the ‘GNU Public License’: see 1icense for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see cont ributors) for the ability to use
their work.

Details
The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, return a matrix cross-product. This is formally equiv-
alent to (but usually slightly faster than) the call t (x) $+% y (crossprod) or x $*% t (y)
(tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments

X,y numeric or complex matrices (or vectors): y = NULL is taken to be the same
matrix as x. Vectors are promoted to single-column or single-row matrices,
depending on the context.

122 Cstack_info

Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are
usually not promoted to dimnames. Hence, currently, the last example has empty dimnames.

In the same situation, these matrix products (also % * %) are more flexible in promotion of vectors to
row or column matrices, such that more cases are allowed, since R 3.2.0.

The propagation of NaN/Inf values, precision, and performance of matrix products can be controlled
by options ("matprod").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%+ % and outer product $0%.

Examples
(z <— crossprod(1l:4)) # = sum(l + 272 + 372 + 472)
drop (z) # scalar
x <— 1:4; names (x) <- letters[l:4]; x
tcrossprod(as.matrix(x)) # is

identical (tcrossprod(as.matrix(x)),
crossprod (t (x)))
tcrossprod (x) # no dimnames

m <- matrix(1:6, 2,3) ; v <= 1:3; v2 <- 2:1

stopifnot (identical (tcrossprod(v, m), v %$x% t(m)),
identical (tcrossprod(v, m), crossprod(v, t(m))),
identical (crossprod(m, v2), t(m) %$x% v2))

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info ()

cumsum 123

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux (using
glibc), macOS and FreeBSD but a heuristic is used on other platforms. Because this might be
slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used on
embedded uses of R on platforms where the stack base information is not thought to be accurate.)

The ‘evaluation depth’ is the number of nested R expressions currently under evaluation: this has a
limit controlled by options ("expressions").

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.
current The estimated current usage (in bytes), possibly NA.
direction 1 (stack grows down, the usual case) or —1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

Examples

Cstack_info ()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
cummin (x)

Arguments

x a numeric or complex (not cummin or cummax) object, or an object that can
be coerced to one of these.

124 curlGetHeaders

Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with «). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods

cumsum and cumprod are S4 generic functions: methods can be defined for them individually or
via the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum(1:10)
cumprod (1:10)
cummin (c(3:1, 2:0

cummax (c(3:1, 2:0, 4:2))

curlGetHeaders Retrieve Headers from URLs

Description

Retrieve the headers for a URL for a supported protocol such as http://, ftp://, https://
and ftps://. An optional function not supported on all platforms.

Usage

curlGetHeaders (url, redirect = TRUE, verify = TRUE)

Arguments
url character string specifying the URL.
redirect logical: should redirections be followed?

verify logical: should certificates be verified as valid and applying to that host?

curlGetHeaders 125

Details

This reports what curl —I —L or curl —I would report. For a ftp:// URL the ‘headers’ are a
record of the conversation between client and server before data transfer.

Only 500 header lines will be reported: there is a limit of 20 redirections so this should suffice (and
even 20 would indicate problems).

It uses getOption ("timeout™) for the connection timeout: that defaults to 60 seconds. As
this cannot be interrupted you may want to consider a shorter value.

To see all the details of the interaction with the server(s) set options (internet.info=1).

HTTP[S] servers are allowed to refuse requests to read the headers and some do: this will result in
astatus of 405.

For possible issues with secure URLs (especially on Windows) see download.file.

There is a security risk in not verifying certificates, but as only the headers are captured it is slight.
Usually looking at the URL in a browser will reveal what the problem is (and it may well be
machine-specific).

Value

A character vector with integer attribute "status" (the last-received ‘status’ code). If redirection
occurs this will include the headers for all the URLSs visited.

For the interpretation of ‘status’ codes see https://en.wikipedia.org/wiki/List_
of HTTP_status_codes and https://en.wikipedia.org/wiki/List_of_ FTP_
server_return_codes. A successful FTP connection will usually have status 250, 257 or
350.

See Also

capabilities ("libcurl") to see if this is supported.

options HTTPUserAgent and t imeout are used.

Examples

needs Internet access, results vary

curlGetHeaders ("http://bugs.r-project.org") ## this redirects to https://
curlGetHeaders ("https://httpbin.org/status/404") ## returns status
curlGetHeaders ("ftp://cran.r-project.org")

Not run: ## a not-always-available site:
curlGetHeaders ("ftps://test.rebex.net/readme.txt")

End (Not run)

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

126

cut

cut

Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut (x,

Default S3 method:

cut (x,

breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3,

ordered_result

Arguments

X

breaks

labels

FALSE, ...)

a numeric vector which is to be converted to a factor by cutting.

either a numeric vector of two or more unique cut points or a single number
(greater than or equal to 2) giving the number of intervals into which x is to be
cut.

labels for the levels of the resulting category. By default, labels are constructed
using " (a,b]" interval notation. If labels = FALSE, simple integer codes
are returned instead of a factor.

include.lowest

right

dig.lab

logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result

Details

logical: should the result be an ordered factor?

further arguments passed to or from other methods.

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created, one of which includes the single value.)

If a 1abels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as " (b1,b2]", " (b2,b3]" etc. for right = TRUE and

cut 127

as "[bl,b2)",...if right = FALSE. In this case, dig. lab indicates the minimum number of
digits should be used in formatting the numbers b1, b2, A larger value (up to 12) will be used
if needed to distinguish between any pair of endpoints: if this fails labels such as "Range3" will
be used. Formatting is done by formatcC.

The default method will sort a numeric vector of breaks, but other methods are not required to
and labels will correspond to the intervals after sorting.

Asfrom R3.2.0, getOption ("OutDec") is consulted when labels are constructed for 1abels
= NULL.
Value

A factor isreturned, unless labels = FALSE which results in an integer vector of level codes.

Values which fall outside the range of breaks are coded as NA, as are NaN and NA values.

Note

Instead of table (cut (x,br)), hist (x,br,plot =FALSE) is more efficient and less
memory hungry. Instead of cut (%, labels = FALSE), findInterval () is more efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval.

quantile for ways of choosing breaks of roughly equal content (rather than length).

.bincode for a bare-bones version.

Examples

7 <— stats::rnorm(10000)

table (cut (Z, breaks = -6:6))
sum (table (cut (2, breaks = -6:6, labels = FALSE)))
sum (graphics::hist (Z, breaks = -6:6, plot = FALSE) $counts)

cut (rep(1,5), 4) #-- dummy

tx0 <- c¢(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <— rep(0:8, tx0)

stopifnot (table(x) == tx0)

table(cut(x, b = 8))
table(cut (x, breaks = 3x(-2:5)))
table(cut (x, breaks 3% (-2:5), right = FALSE))

##——— some values OUTSIDE the breaks
table(cx <- cut(x, breaks = 2%(0:4)))

128 cut. POSIXt

table (cxl <- cut(x, breaks = 2%(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-—- the first 9 wvalues 0
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 wvalues 8

Label construction:

y <- stats::rnorm(100)

table (cut (y, breaks = pi/3*(-3:3)))
3

table(cut (y, breaks = pi/3%x(-3:3), dig.lab = 4))
table (cut (y, breaks = 1x(-3:3), dig.lab = 4))

extra digits don't "harm" here

table (cut (y, breaks = 1x(-3:3), right = FALSE))

#—- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- ¢(1,2,3,4,5,2,3,4,5,6,7)

cut (aaa, 3)

cut (aaa, 3, dig.lab = 4, ordered = TRUE)

one way to extract the breakpoints
labs <- levels (cut (aaa, 3))

cbind (lower = as.numeric(sub ("\\((.+),.*", "\\1", labs)),
upper = as.numeric(sub("[", 1%, ([*11%)\\1", "\\1", labs)))
cut .POSIXt Convert a Date or Date-Time Object to a Factor
Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt'
cut (x, breaks, labels NULL, start.on.monday = TRUE,
right = FALSE, ...)

S3 method for class 'Date'

cut (x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)
Arguments
X an object inheriting from class "POSIXt" or "Date".
breaks a vector of cut points or number giving the number of intervals which x is to be
cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally pre-

ceded by an integer and a space, or followed by "s". (For "Date" objects

cut. POSIXt 129

only interval specifications using "day", "week", "month", "quarter"
and "year" are allowed.)

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are included for the default value
of right). If 1abels = FALSE, simple integer codes are returned instead of
a factor.

start.on.monday
logical. If breaks = "weeks™", should the week start on Mondays or Sun-
days?

right, ... arguments to be passed to or from other methods.

Details

Note that the default for right differs from the default method. Using include.lowest =
TRUE will include both ends of the range of dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals begin-
ning on January 1, April 1, July 1 or October 1 (based upon min (x)) as appropriate.

A vector of breaks will be sorted before use: 1abels should correspond to the sorted vector.

Value

A factor is returned, unless 1abels = FALSE which returns the integer level codes.

Values which fall outside the range of breaks are coded as NA, as are and NA values.

See Also

seq.POSIXt, seg.Date, cut

Examples

random dates in a 10-week period
cut (ISOdate (2001, 1, 1) + 70%x86400xstats::runif (100), "weeks")
cut (as.Date ("2001/1/1") 4+ 70xstats::runif (100), "weeks")

The standards all have midnight as the start of the day, but some

people incorrectly interpret it at the end of the previous day

tm <- seqg(as.POSIXct ("2012-06-01 06:00"), by = "6 hours", length.out = 24)
aggregate (1:24, list (day = cut (tm, "days")), mean)

and a version with midnight included in the previous day:

aggregate (1:24, list(day = cut(tm, "days", right = TRUE)), mean)

130 data.class

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class (x)

Arguments

x an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the
object’s dim attribute if this is non-NULL, or mode (x) .

Simply speaking, data.class (x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class (x) is "numeric" even when x is classed.

See Also

class

Examples

x <— LETTERS
data.class (factor (x)) has a class attribute
has a dim attribute
the same as mode (x)

the same as mode (x)

data.class (matrix(x, ncol = 13))
data.class (list (x))
data.class (x)

H o o

stopifnot (data.class (1:2) == "numeric") # compatibility "rule"

data.frame

131

data.frame

Data Frames

Description

The function data.frame () creates data frames, tightly coupled collections of variables which
share many of the properties of matrices and of lists, used as the fundamental data structure by most
of R’s modeling software.

Usage

data.frame (..

., row.names = NULL, check.rows = FALSE,

check.names = TRUE, fix.empty.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors () # << this is deprecated !

Arguments

row.names

check.rows

check.names

these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.

NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

if TRUE then the rows are checked for consistency of length and names.

logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (by make . names) so that they are.

fix.empty.names

logical indicating if arguments which are “unnamed” (in the sense of not being
formally called as someName = arg) get an automatically constructed name
or rather name "". Needs to be set to FALSE even when check.names is
false if " " names should be kept.

stringsAsFactors

Details

logical: should character vectors be converted to factors? The ‘factory-
fresh’ default has been TRUE previously but has been changed to FALSE
for R 4.0.0. Only as short time workaround, you can revert by setting
options (stringsAsFactors = TRUE) which now warns about its dep-
recation.

A data frame is a list of variables of the same number of rows with unique row names, given class

"data.frame".

If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check .names = FALSE for

132 data.frame

data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional = TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with many such
methods. Character variables passed to data.frame are converted to factor columns unless
protected by T or argument stringsAsFactors is false. If a list or data frame or matrix is
passed to data.frame it is as if each component or column had been passed as a separate
argument (except for matrices protected by I).

Objects passed to data.frame should have the same number of rows, but atomic vectors (see
is.vector), factors and character vectors protected by I will be recycled a whole number of
times if necessary (including as elements of list arguments).

If row names are not supplied in the call to data . frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as .matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

default.stringsAsFactorsisautility that takes getOption ("stringsAsFactors")
and ensures the result is TRUE or FALSE (or throws an error if the value is not NULL). This
function is deprecated now and will no longer be available in the future.

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the ba-
sic story. If the arguments are all named and simple objects (not lists, matrices of data frames) then
the argument names give the column names. For an unnamed simple argument, a deparsed version
of the argument is used as the name (with an enclosing I (...) removed). For a named ma-
trix/list/data frame argument with more than one named column, the names of the columns are the
name of the argument followed by a dot and the column name inside the argument: if the argument
is unnamed, the argument’s column names are used. For a named or unnamed matrix/list/data frame
argument that contains a single column, the column name in the result is the column name in the ar-
gument. Finally, the names are adjusted to be unique and syntactically valid unless check .names
=FALSE.

Note

In versions of R prior to 2.4.0 row . names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row . names argument.

data.matrix 133

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I,plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data.frame for subsetting methods and I (matrix (..)) examples;Math.data.frame
etc, about Group methods for data. frames; read.table, make.names, 11st2DF for cre-
ating data frames from lists of variables.

Examples

1.3 <- LETTERS[1:3]

fac <- sample (L3, 10, replace = TRUE)

(d <- data.frame(x =1, y = 1:10, fac = fac))

The "same" with automatic column names:
data.frame(l, 1:10, sample (L3, 10, replace = TRUE))

is.data.frame (d)
do not convert to factor, using I()

(dd <-= cbind(d, char = I(letters[1:10])))
rbind(class = sapply(dd, class), mode = sapply(dd, mode))

stopifnot (1:10 == row.names (d)) # {coercion}
(d0 <- d[, FALSE]) # data frame with 0 columns and 10 rows
(d.0 <- d[FALSE, 1) # <0 rows> data frame (3 named cols)
(d00 <- dO[FALSE,]) # data frame with 0 columns and 0 rows
data.matrix Convert a Data Frame to a Numeric Matrix
Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then

binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix (frame, rownames.force = NA)

134 data.matrix

Arguments

frame a data frame whose components are logical vectors, factors or numeric or char-
acter vectors.

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Character columns are first converted to
factors and then to integers. Any other column which is not numeric (according to is.numeric)
is converted by as .numeric or, for S4 objects, as (, "numeric"). If all columns are integer
(after conversion) the result is an integer matrix, otherwise a numeric (double) matrix.

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same di-
mensions as frame, with dimnames taken from the row.names (or NULL, depending on
rownames . force) and names.

Otherwise, the result of as .matrix.

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix, data.frame, matrix.

Examples

DF <- data.frame(a = 1:3, b = letters[10:12],
c = seqg(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix (DF[1:21])

data.matrix (DF)

date 135

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date ()

Value

The string has the form "Fri Aug2011:11:001999", i.e., length 24, since it relies on
POSIX’s ct ime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and
time.
Examples
(d <- date())
nchar (d) == 24

something similar in the current locale
format (Sys.time (), "%a %$b %d $H:$M:%S SY")

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

136 Dates

Usage

S3 method for class 'Date’
summary (object, digits = 12, ...)

S3 method for class 'Date'

print (x, max = NULL, ...)
Arguments
object, x a Date object to be summarized or printed.
digits number of significant digits for the computations.
max numeric or NULL, specifying the maximal number of entries to be printed. By

default, when NULL, getOption ("max.print™) used.

further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops .Date).

From the many methods, see methods (class = "Date"), a few are documented separately,
see below.

See Also

Sys.Date for the current date.
weekdays for convenience extraction functions.

Methods with extra arguments and documentation:

Ops.Date for operators on "Date" objects.
format .Date for conversion to and from character strings.
axis.Date and hist.Date for plotting.

seq.Date , cut.Date, and round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

(today <- Sys.Date())

format (today, "%d %$b %Y") # with month as a word

(tenweeks <- seqg(today, length.out=10, by="1 week")) # next ten weeks
weekdays (today)

DateTimeClasses 137

months (tenweeks)
(Dls <- as.Date(.leap.seconds))

length(<Date>) <- n now works
ls <= Dls; length(ls) <- 12
12 <= Dls; length(l2) <- 5 + length(Dls)
stopifnot (exprs = {
length(.) <- % is compatible to subsetting/indexing:
identical(ls, Dls[seqg_along(ls)])
identical (12, Dls[seqg_along(l2)1])
has filled with NA's
is.na(l2[(length(Dls)+1) :1length(12)])

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t" and "POSIXct" representing calendar dates and times.

Usage

S3 method for class 'POSIXct'
print(x, tz = "", usetz = TRUE, max = NULL, ...)

S3 method for class 'POSIXct'
summary (object, digits = 15, ...)

time + z
z + time
time - z
timel lop time2

Arguments

x, object an object to be printed or summarized from one of the date-time classes.

tz, usetz for timezone formatting, passed to format .POSIXct.

max numeric or NULL, specifying the maximal number of entries to be printed. By
default, when NULL, getOption ("max.print™) used.

digits number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.
further arguments to be passed from or to other methods.

time date-time objects

timel, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)

138 DateTimeClasses

z a numeric vector (in seconds)
lop one of ==, I=, <, <=, > or >=,
Details

There are two basic classes of date/times. Class "POSIXct " represents the (signed) number of sec-
onds since the beginning of 1970 (in the UTC time zone) as a numeric vector. Class "POSIX1t"
is a named list of vectors representing

sec 0-61: seconds.

min 0-59: minutes.

hour 0-23: hours.

mday 1-31: day of the month

mon 0-11: months after the first of the year.

year years since 1900.

wday 0-6 day of the week, starting on Sunday.

yday 0-365: day of the year (365 only in leap years).

isdst Daylight Saving Time flag. Positive if in force, zero if not, negative if unknown.

zone (Optional.) The abbreviation for the time zone in force at that time: " " if unknown (but " "
might also be used for UTC).

gmtoff (Optional.) The offset in seconds from GMT: positive values are East of the meridian.
Usually NA if unknown, but 0 could mean unknown.

(The last two components are not present for times in UTC and are platform-dependent: they are
supported on platforms based on BSD or glibc (including Linux and macOS) and those using the
tzcode implementation shipped with R (including Windows). But they are not necessarily set.).
Note that the internal list structure is somewhat hidden, as many methods (including 1ength (x),
print () and str) apply to the abstract date-time vector, as for "POSTIXct". As from R 3.5.0,
one can extract and replace single components via [indexing with two indices (see the examples).
The classes correspond to the POSIX/C99 constructs of ‘calendar time’ (the time_t data type)
and ‘local time’ (or broken-down time, the st ruct tm data type), from which they also inherit
their names. The components of "POSIX1t" are integer vectors, except sec and zone.

"POSIXct" is more convenient for including in data frames, and "POSIX1t " is closer to human-
readable forms. A virtual class "POSIXt " exists from which both of the classes inherit: it is used
to allow operations such as subtraction to mix the two classes.

Components wday and yday of "POSIX1t" are for information, and are not used in the conver-
sion to calendar time. However, i sdst is needed to distinguish times at the end of DST: typically
lam to 2am occurs twice, first in DST and then in standard time. At all other times i sdst can be
deduced from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and some arithmetic operations are available for both classes. One can add or
subtract a number of seconds from a date-time object, but not add two date-time objects. Subtraction
of two date-time objects is equivalent to using difft ime. Be aware that "POSIX1t " objects will
be interpreted as being in the current time zone for these operations unless a time zone has been
specified.

DateTimeClasses 139

"POSIX1t" objects will often have an attribute "t zone", a character vector of length 3 giving
the time zone name from the TZ environment variable and the names of the base time zone and the
alternate (daylight-saving) time zone. Sometimes this may just be of length one, giving the time
zone name.

"POSIXct" objects may also have an attribute "tzone", a character vector of length one. If
set to a non-empty value, it will determine how the object is converted to class "POSIX1t" and
in particular how it is printed. This is usually desirable, but if you want to specify an object in
a particular time zone but to be printed in the current time zone you may want to remove the
"tzone" attribute (e.g., by c (x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds (ac-
cording to this version of R’s data, 27 days have been 86401 seconds long so far, the last being
on (actually, immediately before) 2017-01-01: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. It seems
that some rare systems used to use leap seconds, but all known current platforms ignore them (as
required by POSIX). This is detected and corrected for at build time, so "POSIXct" times used
by R do not include leap seconds on any platform.

Using c on "POSIX1t" objects converts them to the current time zone, and on "POSIXct"
objects drops any "tzone™" attributes (even if they are all marked with the same time zone).

A few times have specific issues. First, the leap seconds are ignored, and real times
such as "2005-12-3123:59:60" are (probably) treated as the next second. However,
they will never be generated by R, and are unlikely to arise as input. Second, on some
OSes there is a problem in the POSIX/C99 standard with "1969-12-31 23:59:59 UTC",
which is -1 in calendar time and that value is on those OSes also used as an error code.
Thus as.POSIXct ("1969-12-3123:59:59", format ="%$Y-%m—-%d $H:3M:%S", tz
="UTC") may give NA, and hence as.POSIXct ("1969-12-3123:59:59",tz=
"UTC") will give "1969-12-3123:59:00". Other OSes (including the code used by R on
Windows) report errors separately and so are able to handle that time as valid.

The print methods respect options ("max.print™").

Sub-second Accuracy

Classes "POSIXct" and "POSIX1t" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options ("digits.secs") isset: see strftime.

Valid ranges for times

The "POSIX1t" class can represent a very wide range of times (up to billions of years), but such
times can only be interpreted with reference to a time zone.

The concept of time zones was first adopted in the nineteenth century, and the Gregorian calen-
dar was introduced in 1582 but not universally adopted until 1927. OS services almost invariably
assume the Gregorian calendar and may assume that the time zone that was first enacted for the
location was in force before that date. (The earliest legislated time zone seems to have been London
on 1847-12-01.) Some OSes assume the previous use of ‘local time’ based on the longitude of a
location within the time zone.

Most operating systems represent POSIXct times as C type long. This means that on 32-bit
OSes this covers the period 1902 to 2037. On all known 64-bit platforms and for the code we

140 DateTimeClasses

use on 32-bit Windows, the range of representable times is billions of years: however, not all can
convert correctly times before 1902 or after 2037. A few benighted OSes used a unsigned type and
so cannot represent times before 1970.

Where possible the platform limits are detected, and outside the limits we use our own C code.
This uses the offset from GMT in use either for 1902 (when there was no DST) or that predicted
for one of 2030 to 2037 (chosen so that the likely DST transition days are Sundays), and uses the
alternate (daylight-saving) time zone only if isdst is positive or (if —1) if DST was predicted to
be in operation in the 2030s on that day.

Note that there are places (e.g., Rome) whose offset from UTC varied in the years prior to 1902,
and these will be handled correctly only where there is OS support.

There is no reason to suppose that the DST rules will remain the same in the future, and indeed
the US legislated in 2005 to change its rules as from 2007, with a possible future reversion. So
conversions for times more than a year or two ahead are speculative.

Warnings

Some Unix-like systems (especially Linux ones) do not have environment variable TZ set, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ. See Sys .t imezone for valid settings.

Great care is needed when comparing objects of class "POSIX1t". Not only are components and
attributes optional; several components may have values meaning ‘not yet determined’ and the same
time represented in different time zones will look quite different.

Currently the order of the list components of "POSIX1t" objects must not be changed, as several
C-based conversion methods rely on the order for efficiency.

References

Ripley, B. D. and Hornik, K. (2001) Date-time classes. R News, 1/2, 8-11. https://www.
r-project.org/doc/Rnews/Rnews_2001-2.pdf

See Also

Dates for dates without times.

as.POSIXct and as.POSIX1t for conversion between the classes.
strptime for conversion to and from character representations.
Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut .POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays for convenience extraction functions.

Examples

(z <= Sys.time()) # the current date, as class "POSIXct"

Sys.time () - 3600 # an hour ago

https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dcf 141

as.POSIX1lt (Sys.time(), "GMT") # the current time in GMT
format (.leap.seconds) # the leap seconds in your time zone
print (.leap.seconds, tz = "PST8PDT") # and in Seattle's

look at xinternalx representation of "POSIX1t"
leapS <- as.POSIX1lt(.leap.seconds)

names (leapS) ; is.list (leapS)

str() "too smart" —--> need unclass(.):
utils::str(unclass(leapS), vec.len = 7)

Extracting xsinglex components of POSIX1lt objects:
leapS[1l : 5, "year"]

length(.) <- n now works for "POSIXct" and "POSIXI1t"
for (lpS in list(.leap.seconds, leapS)) {
ls <= 1lpS; length(ls) <- 12
12 <= 1pS; length(l2) <= 5 + length(lpS)
stopifnot (exprs = {
length(.) <- % is compatible to subsetting/indexing:
identical(ls, lpS[seqg_along(ls)])
identical (12, 1pS[seg_along(l2)])
has filled with NA's
is.na(l2[(length(lpS)+1) :length(12) 1)

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage
read.dcf (file, fields = NULL, all = FALSE, keep.white = NULL)
write.dcf(x, file = "", append = FALSE, useBytes = FALSE,
indent = 0.1 x getOption("width"),

width = 0.9 x getOption("width"),
keep.white = NULL)

Arguments

file either a character string naming a file or a connection. " " indicates output to the
console. For read . dcf this can name a compressed file (see gzfile).

fields Fields to read from the DCEF file. Default is to read all fields.

142

all

keep.white

append

useBytes

indent

width

Details

dcf

a logical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If a1l is false (default), only the last such occur-
rence is used.

a character string with the names of the fields for which whitespace should be
kept as is, or NULL (default) indicating that there are no such fields. Coerced
to character if possible. For fields where whitespace is not to be kept as is,
read.dcf removes leading and trailing whitespace, and write.dcf folds
using strwrap.

the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.

logical. If TRUE, the output is appended to the file. If FALSE, any existing file
of the name is destroyed.

logical to be passed to writeLines (), see there: “for expert use”.

a positive integer specifying the indentation for continuation lines in output en-
tries.

a positive integer giving the target column for wrapping lines in the output.

DCF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, sepa-
rated by : (only the first : counts). The value can be empty (i.e., whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a ¢.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (i.e., whitespace only) lines.

6. Individual lines may not be arbitrarily long; prior to R 3.0.2 the length limit was approximately
8191 bytes per line.

Note that read.dcf (all = FALSE) reads the file byte-by-byte. This allows a ‘DESCRIPTION’
file to be read and only its ASCII fields used, or its ‘Encoding’ field used to re-encode the re-

maining fields.

write.dcf does not write NA fields.

Value

The default read.dcf (all = FALSE) returns a character matrix with one row per record and
one column per field. Leading and trailing whitespace of field values is ignored unless a field is
listed in keep .white. If a tag name is specified in the file, but the corresponding value is empty,

debug 143

then an empty string is returned. If the tag name of a field is specified in £ields but never used
in a record, then the corresponding value is NA. If fields are repeated within a record, the last one
encountered is returned. Malformed lines lead to an error.

For read.dcf (all = TRUE) a data frame is returned, again with one row per record and one
column per field. The columns are lists of character vectors for fields with multiple occurrences,
and character vectors otherwise.

Note that an empty f£ile is a valid DCF file, and read . dcf will return a zero-row matrix or data
frame.

For write.dcf, invisible NULL.

Note

As from R 3.4.0, ‘whitespace’ in all cases includes newlines.

References

https://www.debian.org/doc/debian-policy/ch-controlfields.html.

Note that R does not require encoding in UTF-8, which is a recent Debian requirement. Nor does it
use the Debian-specific sub-format which allows comment lines starting with ‘#’.

See Also

write.table.

available.packages, which uses read.dcf to read the indices of package repositories.

Examples

Create a reduced version of the DESCRIPTION file in package 'splines'

x <- read.dcf(file = system.file ("DESCRIPTION", package = "splines"),
fields = c("Package", "Version", "Title"))

write.dcf (x)

An online DCF file with multiple records

con <- url ("https://cran.r-project.org/src/contrib/PACKAGES")
y <- read.dcf (con, all = TRUE)

close (con)

utils::str(y)

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condition arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once
the browser has been entered, and provide a mechanism to allow users to identify which breakpoint
has been activated.

https://www.debian.org/doc/debian-policy/ch-controlfields.html

144 debug

Usage
debug (fun, text = "", condition = NULL, signature = NULL)
debugonce (fun, text = "", condition = NULL, signature = NULL)

undebug (fun, signature = NULL)
isdebugged (fun, signature = NULL)
debuggingState (on = NULL)

Arguments
fun any interpreted R function.
text a text string that can be retrieved when the browser is entered.
condition a condition that can be retrieved when the browser is entered.
signature an optional method signature. If specified, the method is debugged, rather than
its generic.
on logical; a call to the support function debuggingState returns TRUE if de-
bugging is globally turned on, FALSE otherwise. An argument of one or the
other of those values sets the state. If the debugging state is FALSE, none of
the debugging actions will occur (but explicit browser calls in functions will
continue to work).
Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step
(and the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are described in the browser help topic.

To debug a function which is defined inside another function, single-step through to the end of its
definition, and then call debug on its name.

If you want to debug a function not starting at the very beginning, use trace (..., at = x) or
setBreakpoint.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce () to enter the debugger only the next time the function is invoked.

To debug an S4 method by explicit signature, use signature. When specified, signature indicates
the method of fun to be debugged. Note that debugging is implemented slightly differently for this
case, as it uses the trace machinery, rather than the debugging bit. As such, text and condition
cannot be specified in combination with a non-null signature. For methods which implement
the . local rematching mechanism, the . 1ocal closure itself is the one that will be ultimately
debugged (see i sRematched).

isdebugged returns TRUE if a) signature is NULL and the closure fun has been debugged,
or b) signature is not NULL, fun is an S4 generic, and the method of fun for that signature
has been debugged. In all other cases, it returns FALSE.

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting opt ions (deparse.max.lines).

Defunct 145

When debugging is enabled on a byte compiled function then the interpreted version of the function
will be used until debugging is disabled.

Value

debug and undebug invisibly return NULL.
isdebugged returns TRUE if the function or method is

marked for debugging, and FALSE otherwise.

See Also
debugcall for conveniently debugging methods, browser notably for its ‘commands’, trace;
traceback to see the stack after an Error: ... message; recover for another debugging
approach.

Examples

Not run:
debug (library)
library (methods)

End (Not run)

Not run:

debugonce (sample)

only the first call will be debugged
sampe (10, 1)

sample (10, 1)

End(Not run)

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

Usage

.Defunct (new, package = NULL, msqg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct

function might be listed.

msg character string: A message to be printed, if missing a default message is used.

146 delayedAssign

Details

.Defunct 1is called from defunct functions. Functions should be listed in
help ("pkg-defunct") for an appropriate pkg, including base (with the alias added
to the respective Rd file).

.Defunct signals an error of class defunctError with fields o1d, new, and package.

See Also

Deprecated.

base—-defunct and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)

functions.
Usage
delayedAssign (x, value, eval.env = parent.frame(l),
assign.env = parent.frame(l))
Arguments
x a variable name (given as a quoted string in the function call)
value an expression to be assigned to x
eval.env an environment in which to evaluate value

assign.env anenvironment in which to assign x

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is even-
tually “forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

deparse 147

See Also

substitute, to see the expression associated with a promise, if assign.env is not the
.GlobalEnv.

Examples

msg <- "old"

delayedAssign ("x", msqg)

substitute (x) # shows only 'x', as it i1s in the global env.
msg <- "new!"

x # new!

delayedAssign ("x", {
for(i in 1:3)
cat ("yippee!\n")
10
})

x"2 #- yippee
x"2 #- simple number

ne <- new.env ()

delayedAssign("x", pi + 2, assign.env = ne)

See the promise {without "forcing" (i.e. evaluating) it}:
substitute (x, ne) # 'pi + 2'

Promises in an environment [for advanced users]: —-————————————————————

e <- (function(x, y = 1, z) environment ()) (cos, "y", {cat(" HO!'\n"); pi+2})
How can we look at all promises in an env (w/o forcing them)?
gete <- function(e_)
lapply (lapply (ls(e_), as.name),
function(n) eval (substitute(substitute(X, e_), list (X=n))))

(exps <- gete(e))
sapply (exps, typeof)

(le <= as.list(e)) # evaluates ("force"s) the promises
stopifnot (identical (unname (le), lapply(exps, eval))) # and another "Ho!"

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

148 deparse

Usage
deparse (expr, width.cutoff = 60L,
backtick = mode (expr) %in% c("call", "expression", " (", "function"),
control = c("keepNA", "keepInteger", "niceNames", "showAttributes"),
nlines = -1L)
deparsel (expr, collapse = " ", width.cutoff = 500L, ...)
Arguments
expr any R expression.
width.cutoff integer in [20,500] determining the cutoff (in bytes) at which line-breaking is
tried.
backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.
control character vector (or NULL) of deparsing options. See . deparseOpts.
nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.
collapse a string, passed to paste ().

further arguments passed to deparse ().

Details

These functions turn unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode and type (typeof) "expression" used in expression)
into character strings (a kind of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a
plot which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

Using control =c ("all", "hexDigits") comes closest to making deparse () aninverse
of parse () (but we have not yet seen an example where "all", now including "digitsl7",
would not have been as good). However, not all objects are deparse-able even with these options
and a warning will be issued if the function recognizes that it is being asked to do the impossible.

Unless control contains "digitsl7" or "hexDigits", (or "all" or "exact" which
include one of these), numeric and complex vectors are converted using 15 significant digits: see
as.character for more details.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been outputande.g. arg = value expressions will not be split across
lines.

deparsel () is asimple utility added in R 4.0.0 to ensure a string result (character vector of
length one), typically used in name construction, as deparsel (substitute(.)).

deparseOpts 149

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

Deparsing internal structures may not be accurate: for example the graphics display list recorded
by recordPlot is not intended to be deparsed and . Internal calls will be shown as primitive
calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.deparseOpts for available control settings; dput () and dump () for related functions
using identical internal deparsing functionality.

substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples

require (stats); require(graphics)

deparse (args (1lm))
deparse (args (1lm), width = 500)

myplot <- function(x, y) {
plot (x, y, xlab = deparsel (substitute(x)),
ylab = deparsel (substitute(y)))

e <- quote(foo bar")
deparse (e)

deparse (e, backtick = TRUE)
e <- quote(foo bar +1)
deparse (e)

deparse (e, control = "all") # wraps it w/ quote(.)
deparseOpts Options for Expression Deparsing
Description

Process the deparsing options for deparse, dput and dump.

150 deparseOpts

Usage

.deparseOpts (control)

. .deparseOpts

Arguments

control character vector of deparsing options.

Details

. .deparseOpts is the character vector of possible deparsing options used by
.deparseOpts ().

.deparseOpts () iscalled by deparse, dput and dump to process their cont rol argument.

The control argument is a vector containing zero or more of the following strings (exactly those
in . .deparseOpts). Partial string matching is used.

"keepInteger": Either surround integer vectors by as.integer () or use suffix L, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (via NA_integer_ if there are no non-NA values in the vector, unless
"S_compatible™ is set).

"quoteExpressions": Surround unevaluated expressions, but not formulas, with
quote (), so they are not evaluated when re-parsed.

"showAttributes": If the object has attributes (other than a source attribute, see
srcref), use structure () to display them as well as the object value unless the only
such attribute is name s and the "niceNames" option is set. This ("showAttributes™")
is the default for deparse and dput.

"useSource": Ifthe object has a source attribute (srcref), display that instead of deparsing
the object. Currently only applies to function definitions.

"warnIncomplete™: Some exotic objects such as environments, external pointers, etc. can not
be deparsed properly. This option causes a warning to be issued if the deparser recognizes one
of these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

"keepNA": Integer, real and character NAs are surrounded by coercion functions where necessary
to ensure that they are parsed to the same type. Since e.g. NA_real_ can be output in R, this
is mainly used in connection with S_compatible.

"niceNames": If true, 1ists and atomic vectors with non-NA names (see names) are de-
parsed ase.g., c (A = 1) instead of structure (1, .Names = "A"), independently of the
"showAttributes" setting.

"all": An abbreviated way to specify all of the options listed above plus "digitsl17" (since R
version 4.0.0). This is the default for dump, and, without "digits17", the options used by
edit (which are fixed).

"delayPromises": Deparse promises in the form <promise: expression> rather than evaluat-
ing them. The value and the environment of the promise will not be shown and the deparsed
code cannot be sourced.

deparseOpts 151

"S_compatible": Make deparsing as far as possible compatible with S and R < 2.5.0. For
compatibility with S, integer values of double vectors are deparsed with a trailing decimal
point. Backticks are not used.

"hexNumeric": Real and finite complex numbers are output in ‘"%a"’ format as binary frac-
tions (coded as hexadecimal: see sprint f£) with maximal opportunity to be recorded exactly
to full precision. Complex numbers with one or both non-finite components are output as if
this option were not set.

(This relies on that format being correctly supported: known problems on Windows are
worked around as from R 3.1.2.)

"digits1l7": Real and finite complex numbers are output using format ‘"% .17g"’ which may
give more precision than the default (but the output will depend on the platform and there
may be loss of precision when read back). Complex numbers with one or both non-finite
components are output as if this option were not set.

"exact": An abbreviated way to specify control =c("all", "hexNumeric") which is
guaranteed to be exact for numbers, see also below.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays the
object’s value, but not its attributes. The default in deparse is to display the attributes as well, but
not to use any of the other options to make the result parseable. (dput and dump do use more de-
fault options, and printing of functions without sources uses c ("keepInteger", "keepNA").)

Using control =c("all", "hexNumeric") comes closest to making deparse () an in-
verse of parse (), as representing double and complex numbers as decimals may well not be
exact. However, not all objects are deparse-able even with this option. A warning will be issued if
the function recognizes that it is being asked to do the impossible.

Only one of "hexNumeric" and "digitsl7" can be specified.

Value

An integer value corresponding to the control options selected.

Examples

(i0Opt.all <- .deparseOpts("all")) # a four digit integer

one integer --> vector binary bits
int2bits <- function(x, base = 2L,
ndigits = 1 + floor(le-9 + log(max(x,1l), base))) {
r <- numeric(ndigits)
for (i in ndigits:1) {
rii] <- x%%base
if (1 > 1L)
X <—- x%/%base
}
rev(r) # smallest bit at left
}
int2bits (iOpt.all)
what options does "all" contain ?
depO.indiv <- setdiff(..deparseOpts, c("all", "exact"))
(oa <- depO.indiv[int2bits (iOpt.all) == 11])

152 Deprecated

stopifnot (identical (iOpt.all, .deparseOpts(oa)))

ditto for "exact" instead of "all":

int2bits (iOpt.X <- .deparseOpts ("exact"))

(0X <- depO.indiv[int2bits (iOpt.X) == 11])

diffXall <- oa != oX

stopifnot (identical (iOpt.X, .deparseOpts (oX)),
identical (oX[diffXall], "hexNumeric"),
identical (ca[diffXall], "digitsl7"))

Deprecated Marking Objects as Deprecated

Description
When an object is about to be removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated (new, package=NULL, msgqg,
old = as.character(sys.call(sys.parent())) [1L])

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
old character string specifying the function (default) or usage which is being depre-
cated.
Details

.Deprecated ("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help ("oldName—-deprecated") (note the quotes).
Functions should be listed in help ("pkg-deprecated") for an appropriate pkg, including
base.

.Deprecated signals a warning of class deprecatedWarning with fields old, new, and
package.

See Also

Defunct

base—-deprecated and so on which list the deprecated functions in the packages.

det 153

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the

determinant.
Usage
det (x, ...)
determinant (x, logarithm = TRUE, ...)
Arguments
X numeric matrix: logical matrices are coerced to numeric.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the determi-
nant.
Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will
not produce an error.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithmis FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or —1 according to whether the determinant is positive or
negative.

Examples

(x <- matrix(1:4, ncol = 2))

unlist (determinant (x))

det (x)

det (print (cbind (1, 1:3, c(2,0,1))))

154 detach

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search () path of available R objects. Usually this is
either a data. frame which has been at tached or a package which was attached by 1ibrary.

Usage

detach (name, pos = 2L, unload = FALSE, character.only = FALSE,
force = FALSE)

Arguments
name The object to detach. Defaults to search () [pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.
pos Index position in search () of the database to detach. When name is a num-
ber, pos = name is used.
unload A logical value indicating whether or not to attempt to unload the names-

pace when a package is being detached. If the package has a namespace and
unload is TRUE, then detach will attempt to unload the namespace via
unloadNamespace: if the namespace is imported by another namespace or
unload is FALSE, no unloading will occur.

character.only
a logical indicating whether name can be assumed to be a character string.

force logical: should a package be detached even though other attached packages de-
pend on it?

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload = TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs); see getLoadedDLLs and library.dynam.unload. Further, regis-
tered S3 methods from the namespace will not be removed, and because S3 methods are not tagged
to their source on registration, it is in general not possible to safely un-register the methods asso-
ciated with a given package. If you use 1ibrary on a package whose namespace is loaded, it
attaches the exports of the already loaded namespace. So detaching and re-attaching a package may
not refresh some or all components of the package, and is inadvisable. The most reliable way to
completely detach a package is to restart R.

detach 155

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Good practice

detach () without an argument removes the first item on the search path after the workspace. It
is all too easy to call it too many or too few times, or to not notice that the search path has changed
since an at tach call.

Use of attach/detach is best avoided in functions (see the help for at tach) and in interactive
use and scripts it is prudent to detach by name.

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some namespaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on some systems teltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects,unloadNamespace, library.dynam.unload.

Examples

require (splines) # package
detach (package:splines)

or also
library(splines)

pkg <- "package:splines"

detach (pkg, character.only = TRUE)

careful: do not do this unless 'splines' is not already attached.
library(splines)
detach (2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos = 2)
{
name <- deparsel (substitute (db))
attach(db, pos = pos, name = name)

156 diag

print (search () [pos])
detach (name, character.only = TRUE)
}

attach_and_detach (women, pos = 3)
diag Matrix Diagonals
Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol, names = TRUE)
diag(x) <- value

Arguments
X a matrix, vector or 1D array, or missing.
nrow, ncol optional dimensions for the result when x is not a matrix.
names (when x is a matrix) logical indicating if the resulting vector, the diagonal of x,
should inherit names from dimnames (x) if available.
value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.
Details

diag has four distinct usages:

1. x is a matrix, when it extracts the diagonal.
2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a ‘numeric’ (complex, numeric, integer, logical, or raw) vector, either of
length at least 2 or there were further arguments. This returns a matrix with the given diagonal
and zero off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

diag 157

Value

If x is a matrix then diag (x) returns the diagonal of x. The resulting vector will have names if
the matrix x has matching column and rownames.

The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as.integer (x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

Note
Using diag (x) can have unexpected effects if x is a vector that could be of length one. Use
diag (x,nrow = length (x)) for consistent behaviour.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri,matrix.

Examples

dim(diag(3))
diag (10, 3, 4) # guess what?
all(diag(1l:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

other "numeric"-like diagonal matrices

diag(c(1i,21)) # complex
diag (TRUE, 3) # logical
diag(as.raw(1:3)) # raw

(D2 <- diag(2:1, 4)); typeof(D2) # "integer"

require (stats)

diag(<var—-cov-matrix>) = variances
diag(var (M <- cbind(X = 1:5, Y = rnorm(5))))
#-> vector with names "X" and "Y"
rownames (M) <- c(colnames (M), rep("", 3))

M; diag(M) # named as well

diag (M, names = FALSE) # w/0 names

158 diff

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences =1, ...)

S3 method for class 'POSIXt'
diff(x, lag = 1, differences =1, ...)

S3 method for class 'Date'

diff(x, lag = 1, differences = 1,)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and
"Date".

NA’s propagate.

Value

If x is a vector of length n and differences =1, then the computed result is equal to the
successive differences x [(1+1ag) :n] —x[1: (n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

difftime 159

See Also

diff.ts,diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <— cumsum (cumsum(1:10))
diff (x, lag = 2)

diff (x, differences = 2)

diff (.leap.seconds)

difftime Time Intervals / Differences

Description

Time intervals creation, printing, and some arithmetic. The print () method calls these “time
differences”.

Usage

timel - time2

difftime(timel, time2, tz,
units = c("auto", "secs", "mins", "hours",
"days", "weeks"))

as.difftime (tim, format = "%$X", units = "auto", tz = "UTC")

S3 method for class 'difftime'

format (x, ...)

S3 method for class 'difftime'

units (x)

S3 replacement method for class 'difftime'
units (x) <- value

S3 method for class 'difftime'
as.double (x, units = "auto", ...)

Group methods, notably for round(), signif (), floor(),

ceiling(), trunc(), abs(); called directly, xnot*x as Math():
S3 method for class 'difftime'

Math (x, ...)

160 difftime

Arguments

timel, time2 date-time or date objects.

tz an optional time zone specification to be used for the conversion, mainly for
"POSIX1t" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of t im: see st rpt ime. The default is a locale-

specific time format.
x an object inheriting from class "difftime".

arguments to be passed to or from other methods.

Details

Function di f ft ime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. The Math group method provides round,
signif, floor, ceiling, trunc, abs, and sign methods for objects of this class, and there
are methods for the group-generic (see Ops) logical and arithmetic operations.

If units = "auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with units
= "auto". Alternatively, as.difftime () works on character-coded or numeric time intervals;
in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and
multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by
a "difftime" object implicitly converts the numeric vector to a "difftime" object with the
same units as the "difftime" object. There are methods for mean and sum (via the Summary
group generic), and diff via diff.default building on the "difftime" method for arith-
metic, notably —.

The units of a "difftime" object can be extracted by the units function, which also has a
replacement form. If the units are changed, the numerical value is scaled accordingly. The replace-
ment version keeps attributes such as names and dimensions.

Note that units = "days" means a period of 24 hours, hence takes no account of Daylight Sav-
ings Time. Differences in objects of class "Date" are computed as if in the UTC time zone.

The as . double method returns the numeric value expressed in the specified units. Using units
= "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

Note

Units such as "months" are not possible as they are not of constant length. To create intervals of
months, quarters or years use seq.Date or seq.POSIXt.

dim 161

See Also

DateTimeClasses.

Examples

(z <— Sys.time () - 3600)
Sys.time () - z # just over 3600 seconds.

time interval between release days of R 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate (2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format = "$H:%M") # 3rd gives NA
(z <— as.difftime(c(0,30,60), units = "mins"))

as.numeric(z, units = "secs")

as.numeric(z, units = "hours")

format (z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim (x)
dim(x) <- value

Arguments
x an R object, for example a matrix, array or data frame.
value For the default method, either NULL or a numeric vector, which is coerced to
integer (by truncation).
Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data . frames, which returns the lengths of the row . names attribute of x
and of x (as the numbers of rows and columns respectively).

Value
For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It
is NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

162 dimnames

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <= 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x) [2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames (x)
dimnames (x) <- value

provideDimnames (x, sep = "", base = list (LETTERS), unique = TRUE)
Arguments
X an R object, for example a matrix, array or data frame.
value a possible value for dimnames (x) : see the “Value’ section.
sep a character string, used to separate base symbols and digits in the constructed
dimnames.
base a non-empty 1ist of character vectors. The list components are used in turn

(and recycled when needed) to construct replacements for empty dimnames
components. See also the examples.

unique logical indicating that the dimnames constructed are unique within each dimen-
sion in the sense of make .unique.

dimnames 163

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for amat rix), they retrieve or set the dimnames attribute
(see attributes) of the object. A list value can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to char-
acter, but does not dispatch methods for as.character. It coerces zero-length elements to
NULL, and a zero-length list to NULL. If value is a list shorter than the number of dimensions, it
is extended with NULLs to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names
and its names. For the replacement method each component of value will be coerced by
as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.
Both are primitive functions.

provideDimnames (x) provides dimnames where “missing”, such that its result has
character dimnames for each component. If unique is true as by default, they are unique
within each component via make . unique (%, sep=sep).

Value

The dimnames of a matrix or array can be NULL (which is not stored) or a list of the same length as
dim (x). If alist, its components are either NULL or a character vector with positive length of the
appropriate dimension of x. The list can have names. It is possible that all components are NULL:
such dimnames may get converted to NULL.

For the "data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

provideDimnames (x) returns x, with “NULL - free” dimnames, i.e. each component a char-
acter vector of correct length.

Note

Setting components of the dimnames, e.g., dimnames (A) [[1]] <-value is a common
paradigm, but note that it will not work if the value assigned is NULL. Use rownames instead,
or (as it does) manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames, colnames; array,matrix, data. frame.

164

Examples

do.call

simple versions of rownames and colnames

could be de

rownames0 <- function(x) dimnames (x) [
colnames0 <- function(x) dimnames (x) [[2]]

fined as follows

(dn <- dimnames (A <- provideDimnames (N <- array(l:24, dim = 2:4))))

AQ0 <- A; dimnames (A) [2:3] <- list (NULL)

stopifnot (identical (A0, provideDimnames (A)))

strd <- function(x) utils::str (dimnames (x))

strd(provideDimnames (A, base= list (letters[-(1:9)], tail (LETTERS))))
strd(provideDimnames (N, base= list(letters[-(1:9)], tail (LETTERS)))) # recycling

strd(provideDimnames (A, base= list (c("AA","BB")))) # recycling on both levels
set "empty dimnames":
provideDimnames (rbind (1, 2:3), base = list(""), unique=FALSE)

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments

to be passed to it.

Usage

do.call (what,

Arguments

what

args

quote

envir

Details

args, quote = FALSE, envir = parent.frame())

either a function or a non-empty character string naming the function to be
called.

a list of arguments to the function call. The names attribute of args gives the
argument names.

a logical value indicating whether to quote the arguments.

an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment, not
in envir). If quote is TRUE then each argument is quoted (see quote) so that the effect of
argument evaluation is to remove the quotes — leaving the original arguments unevaluated when the

call is constructed.

The behavior of some functions, such as subst itute, will not be the same for functions evaluated
using do.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

do.call 165

Value

The result of the (evaluated) function call.

Warning

This should not be used to attempt to evade restrictions on the use of . Internal and other non-
API calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call ("complex", list(imag = 1:3))

if we already have a list (e.g., a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters([1:2], 1:3, c("+", "-"))
do.call ("paste", c(tmp, sep = ""))

do.call (paste, list(as.name("A"), as.name("B")), quote = TRUE)

examples of where objects will be found.
A <= 2

f <- function(x) print (x"2)

env <- new.env()

assign("A", 10, envir = env)

assign("f", f, envir = env)

f <- function(x) print (x)

f(A) # 2
do.call("f", list (A)) # 2
do.call("f", list(A), envir = env) # 4
do.call(£, list (A), envir = env) + 2
do.call("f", list(quote(A)), envir = env) # 100
do.call(£, list (quote(A)), envir = env) # 10
do.call("f", list(as.name("A")), envir = env) # 100
eval (call("f", A)) # 2
eval (call ("f", quote(A))) # 2
eval (call("f", A), envir = env) # 4
eval (call("f", quote(A)), envir = env) # 100

166 dots

dontCheck Identity Function to Suppress Checking

Description

The dontCheck function is the same as identity, but is interpreted by R CMD check
code analysis as a directive to suppress checking of x. Currently this is only used by
checkFF (registration = TRUE) when checking the .NAME argument of foreign function
calls.

Usage

dontCheck (x)

Arguments

x an R object.

See Also

suppressForeignCheck which explains why that and dontCheck are undesirable and
should be avoided if at all possible.

dots ..., . .1, etc used in Functions

Description

...and . .1, ..2 etc are used to refer to arguments passed down from a calling function. These
(and the following) can only be used inside a function which has . . . among it formal arguments.

...elt(n) 1is a functional way to get ..<n> and basically the same as
eval (paste0("..",n)), just more elegant and efficient. Note that switch(n, ...)

is very close, differing by returning NULL invisibly instead of an error when n is zero or too large.

...length() returns the number of expressions in This is the same as
length (list (...)) but without evaluating the expressions in ... (which happens with
list (...)).

Usage
...length{()

...elt(n)

double 167

Arguments
n a positive integer, not larger than the number of expressions in ..., which is the
same as . . . length () whichis the same as length (1ist (...)), butthe
latter evaluates all expressions in
See Also

.and . .1, ..2 are reserved words in R, see Reserved.

For more, see the ‘Introduction to R’ manual for usage of these syntactic elements, and dotsMethods
for their use in formal (S4) methods.

Examples

tst <- function(n, ...) ...elt(n)
tst(l, pi=pix0:1, 2:4) ## [1] 0.000000 3.141593
tst (2, pi=pix0:1, 2:4) ## [1] 2 3 4

try(tst(l)) # -> Error about '...' not containing an element.
tst.dl <- function(x, ...) ...length{()
tst.dl(1:10) # 0 (because the first argument is 'x')
tst.dl (4, 5) #1
tst.dl(4, 5, 6) # 2 namely '5, 6'
tst.dl(4, 5, 6, 7, sin(1:10), "foo"/"bar") # 5. Note: no evaluation!
double Double-Precision Vectors
Description

Create, coerce to or test for a double-precision vector.

Usage

double (length
as.double(x, ...)
is.double (x)

Il
o

single (length = 0)

as.single(x, ...)
Arguments
length A non-negative integer specifying the desired length. Double values will be

coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.

further arguments passed to or from other methods.

168 double

Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0. It is identical to numeric.

as.double is a generic function. It is identical to as.numeric. Methods should return an
object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as.single and single are identical to as . double and double except they set the
attribute Csingle thatis used in the .C and .Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with 0x or 0X) can be converted, as can
special values such as "NA", "NaN", "Inf" and "infinity", irrespective of case.

as.double for factors yields the codes underlying the factor levels, not the numeric representation
of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2 x 1073% to 2 x 1038, It also has special values NaN (many
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).
There are also denormal(ized) (or subnormal) numbers with absolute values above or below the
range given above but represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/TEC60559:2011 this is called ‘binary64’ format.

Note on names

It is a historical anomaly that R has two names for its floating-point vectors, double and numeric
(and formerly had real).

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

dput 169

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

https://en.wikipedia.org/wiki/IEEE_754-1985, https://en.wikipedia.
org/wiki/IEEE_754-2008, https://en.wikipedia.org/wiki/IEEE_
754-2019, https://en.wikipedia.org/wiki/Double_precision, https:
//en.wikipedia.org/wiki/Denormal_number

See Also

integer, numeric, storage.mode.

Examples

is.double (1)
all (double (3) == 0)

dput Write an Object to a File or Recreate it

Description
Writes an ASCII text representation of an R object to a file, the R console, or a connection, or uses
one to recreate the object.

Usage

dput (x, file = "",
control c ("keepNA", "keepInteger", "niceNames", "showAttributes"))

dget (file, keep.source = FALSE)

Arguments
X an object.
file either a character string naming a file or a connection. " " indicates output to the
console.
control character vector indicating deparsing options. See .deparseOpts for their
description.

keep.source logical: should the source formatting be retained when parsing functions, if
possible?

https://en.wikipedia.org/wiki/IEEE_754-1985
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/IEEE_754-2019
https://en.wikipedia.org/wiki/Double_precision
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number

170 dput

Details

dput opens £ile and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput ()
attempts to deparse in a way that is readable, but for more complex or unusual objects (see dump),
not likely to be parsed as identical to the original. Use control = "all" for the most complete
deparsing; use control = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource" in
control. R currently saves source only for function definitions. If you do not care about source
representation (e.g., for a data object), for speed set options (keep.source = FALSE) when
calling source.

Value

For dput, the first argument invisibly.
For dget, the object created.

Note

This is not a good way to transfer objects between R sessions. dump is better, but the functions
save and saveRDS are designed to be used for transporting R data, and will work with R objects
that dput does not handle correctly as well as being much faster.

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, dump, write.

Examples

fil <- tempfile()

Write an ASCII version of the 'base' function mean() to our temp file,
dput (base: :mean, fil)

... read it back into 'bar' and confirm it is the same

bar <- dget (fil)

stopifnot (all.equal (bar, base::mean))

Create a function with comments
baz <- function(x) {

drop 171

Subtract from one
1-x

}

and display it

dput (baz)
and now display the saved source
dput (baz, control = "useSource")

Numeric values:
xx <= pi”(1:3)

dput (xx)

dput (xx, control = "digitsl7")

dput (xx, control = "hexNumeric")

dput (xx, fil); dget (fil) - xx # slight rounding on all platforms
dput (xx, fil, control = "digitsl7")

dget (fil) - xx # slight rounding on some platforms

dput (xx, fil, control = "hexNumeric"); dget (fil) - xx

unlink (£i1)

xn <- setNames (xx, pastel ("pi~",1:3))

dput (xn) # nicer, now "niceNames" being part of default 'control'
dput (xn, control = "S_compat") # no names

explicitly asking for output as in R < 3.5.0:

dput (xn, control = c("keepNA", "keepInteger", "showAttributes"))

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop (x)

Arguments

X an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted
and returned with x: if the result is a vector the names are taken from the dimnames (if any). If
the result is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it is
useful to invoke drop directly.

172 droplevels

See Also

dropl which is used for dropping terms in models.

Examples

dim(drop (array(1:12, dim = ¢(1,3,1,1,2,1,2)))) # =3 2 2
drop(l:3 %$x% 2:4) # scalar product

droplevels Drop Unused Levels from Factors

Description

The function droplevels is used to drop unused levels from a factor or, more commonly,
from factors in a data frame.

Usage

S3 method for class 'factor'

droplevels (x, exclude = if (anyNA(levels(x))) NULL else NA, ...)
S3 method for class 'data.frame'

droplevels (x, except, exclude, ...)

Arguments
X an object from which to drop unused factor levels.
exclude passed to factor (); factor levels which should be excluded from the result
even if present. Note that this was implicitly NA in R <= 3.3.1 which did drop
NA levels even when present in x, contrary to the documentation. The current
default is compatible with x [, drop=TRUE].
further arguments passed to methods
except indices of columns from which rnot to drop levels
Details

The method for class "factor" is currently equivalent to factor (x, exclude=exclude).
For the data frame method, you should rarely specify exclude “globally” for all factor columns;
rather the default uses the same factor-specific exclude as the factor method itself.

The except argument follow the usual indexing rules.

Value

droplevels returns an object of the same class as x

dump 173

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array
dimensions. drop1l for dropping terms from a model. [.factor for subsetting of factors.

Examples

aqg <- transform(airquality, Month = factor (Month, labels = month.abb[5:9]))
ag <- subset (ag, Month != "Jul")

table (ag $Month)

table (droplevels (ag) SMonth)

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R session.

Usage
dump (list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character vector. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. " " indicates output to the
console.
append if TRUE and f1ile is a character string, output will be appended to £i1le; oth-
erwise, it will overwrite the contents of file.
control character vector indicating deparsing options. See .deparseOpts for their
description.
envir the environment to search for objects.

evaluate logical. Should promises be evaluated?

174 dump

Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If fileisa
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the functions save and
saveRDS are designed to be used for transporting R data, and will work with R objects that dump
does not handle. For maximal reproducibility use control = c ("all", "hexNumeric").

To produce a more readable representation of an object, use control = NULL. This will skip
attributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control =c ("keepInteger", "warnIncomplete", "keepNA"). This will lose all for-
matting and comments, but may be useful in those cases where the saved source is no longer correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the de-
fault evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate
= FALSE might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base namespace, the base package will be searched before the global
environment unless dump is called from the top level prompt or the envir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way what-
ever the value of control, and this includes not dumping their attributes (which will result in a
warning).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.deparseOpts for available control settings; dput (), dget () and deparse () for re-
lated functions using identical internal deparsing functionality.

write,write.table, etc for “dumping” data to (text) files.

duplicated 175
save and saveRDS for a more reliable way to save R objects.
Examples

x <= 1; y <= 1:10
fil <- tempfile(fileext=".Rdmped")

dump (1s (pattern = '""[xyz]'), £fil)
print (.Last.value)
unlink (£i1)
duplicated Determine Duplicate Elements
Description

duplicated () determines which elements of a vector or data frame are duplicates of elements
with smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

anyDuplicated(.) isa “generalized” more efficient shortcut for any (duplicated(.)).

Usage

duplicated(x, incomparables FALSE, ...)

Default S3 method:

duplicated(x, incomparables = FALSE,
fromLast = FALSE, nmax = NA, ...)

S3 method for class 'array'
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ...)

anyDuplicated(x, incomparables = FALSE, ...)

Default S3 method:

anyDuplicated(x, incomparables
fromLast = FALSE, ...)

S3 method for class 'array'

anyDuplicated(x, incomparables = FALSE,
MARGIN = 1, fromLast = FALSE, ...)

FALSE,

Arguments

x a vector or a data frame or an array or NULL.

incomparables
a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

176 duplicated

fromLast logical indicating if duplication should be considered from the reverse side, i.e.,
the last (or rightmost) of identical elements would correspond to duplicated
=FALSE.

nmax the maximum number of unique items expected (greater than one).

arguments for particular methods.

MARGIN the array margin to be held fixed: see apply, and note that MARGIN = 0 may
be useful.

Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for
duplicated and anyDuplicated, anyDuplicated(x, ...) is a “generalized” shortcut
for any (duplicated(x, ...)), in the sense that it returns the index i of the first duplicated
entry x [1] if there is one, and 0 otherwise. Their behaviours may be different when at least one of
duplicated and anyDuplicated has a relevant method.

duplicated (x, fromLast = TRUE) is equivalent to but faster than
rev (duplicated (rev(x))).

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast = TRUE) element (in
row-major order). This would most commonly be used to find duplicated rows (the default) or
columns (with MARGIN = 2). Note that MARGIN = O returns an array of the same dimensionality
attributes as x.

Missing values ("NA") are regarded as equal, numeric and complex ones differing from NaN; char-
acter strings will be compared in a “common encoding”; for details, see match (and unique)
which use the same concept.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

Except for factors, logical and raw vectors the default nmax = NA is equivalent to nmax =
length (x). Since a hash table of size 8 nmax bytes is allocated, setting nmax suitably can
save large amounts of memory. For factors it is automatically set to the smaller of length (x)
and the number of levels plus one (for NA). If nmax is set too small there is liable to be an error:
nmax = 1 is silently ignored.

Long vectors are supported for the default method of duplicated, but may only be usable if
nmax is supplied.

Value

duplicated(): For a vector input, a logical vector of the same length as x. For a data frame,
a logical vector with one element for each row. For a matrix or array, and when MARGIN = 0, a
logical array with the same dimensions and dimnames.

anyDuplicated (): an integer or real vector of length one with value the 1-based index of the
first duplicate if any, otherwise 0.

dyn.load 177

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it is O(n?).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <= c¢(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <—- x[!duplicated(x)])

similar, same elements but different order:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique (x) but unique (x) is more efficient
stopifnot (identical (xu, unique(x)),
identical (xu2, unique (x, fromLast = TRUE)))

duplicated(iris) [140:143]

duplicated(iris3, MARGIN = c (1, 3))
anyDuplicated (iris) ## 143

anyDuplicated (x)
anyDuplicated(x, fromLast = TRUE)

dyn.load Foreign Function Interface

Description
Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)
dyn.unload (x)

is.loaded (symbol, PACKAGE = "", type = "")

178 dyn.load

Arguments

X a character string giving the pathname to a DLL, also known as a dynamic shared
object. (See ‘Details’ for what these terms mean.)

local a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

other arguments for future expansion.
symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.s1’, *.d11’,...). This is intended
to add safety for packages, which can ensure by using this argument that no
other package can override their external symbols. This is used in the same way
asin .C, .Call, .Fortran and .External functions.

type The type of symbol to look for: can be any ("", the default), "Fortran",
"Call" or "External".

Details

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’)
on all platforms except macOS, which uses the term for a different sort of object. On Unix-alikes
they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short. (The POSIX
standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration’ manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g., Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn . load mirror the different aspects of the mode argument to the
dlopen () routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own namespace is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately.
The intended use is for library developers to call with value TRUE to check that all symbols are
actually resolved and for regular users to call with FALSE so that missing symbols can be ignored
and the available ones can be called.

dyn.load 179

The initial motivation for adding these was to avoid such termination in the _init () routines
of the Java virtual machine library. However, symbols loaded locally may not be (read probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warn to be non-zero via the opt ions function.

There is a short discussion of these additional arguments with some example code available at
http://www.stat.ucdavis.edu/~duncan/R/dynload/.

Value

The function dyn. load is used for its side effect which links the specified DLL to the executing
R image. Callsto .C, .Call, .Fortranand .External can then be used to execute compiled
C functions or Fortran subroutines contained in the library. The return value of dyn.load is an
object of class DLLInfo. See get LoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a
DLL of the same name may or may not work: on Solaris it uses the first version loaded. Note also
that some DLLs cannot be safely unloaded at all: unloading a DLL which implements C finalizers
but does not unregister them on unload causes R to crash.

is.loaded checks if the symbol name is loaded and searchable and hence available for use as
a character string value for argument .NAME in .C or .Fortranor .Call or .External. It
will succeed if any one of the four calling functions would succeed in using the entry point unless
type is specified. (See .Fortran for how Fortran symbols are mapped.) Note that symbols in
base packages are not searchable, and other packages can be so marked.

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload. This is needed for system housekeeping.

Note

is.loaded requires the name you would give to .C etc and not (as in S) that remapped by the
defunct functions symbol.C or symbol.For.

By default, the maximum number of DLLs that can be loaded is now 614 when the OS limit on the
number of open files allows or can be increased, but less otherwise (but it will be at least 100). A
specific maximum can be requested via the environment variable R_MAX_NUM_DLLS, which has to
be set (to a value between 100 and 1000 inclusive) before starting an R session. If the OS limit on the
number of open files does not allow using this maximum and cannot be increased, R will fail to start
with an error. The maximum is not allowed to be greater than 60% of the OS limit on the number
of open files (essentially unlimited on Windows, on Unix typically 1024, but 256 on macOS). The
limit can sometimes (including on macOS) be modified using command ulimit —n (sh, bash)
or limit descriptors (csh) in the shell used to launch R. Increasing R_MAX_NUM_DLLS
comes with some memory overhead.

If the OS limit on the number of open files cannot be determined, the DLL limit is 100 and cannot
be changed via R_MAX_NUM_DLLS.

http://www.stat.ucdavis.edu/~duncan/R/dynload/

180 eapply

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses
the dlopen mechanism and should work on all platforms which support it. On Windows it uses
the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s . onLoad initialization.
SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples

expect all of these to be false in R >= 3.0.0.

is.loaded("supsmu") # Fortran entry point in stats
is.loaded ("supsmu", "stats", "Fortran")
is.loaded ("PDF", type = "External") # pdf() device in grDevices
eapply Apply a Function Over Values in an Environment
Description

eapply applies FUN to the named values from an environment and returns the results as a list.
The user can request that all named objects are used (normally names that begin with a dot are not).
The output is not sorted and no enclosing environments are searched.

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
Arguments
env environment to be used.
FUN the function to be applied, found via match. fun. In the case of functions like
+, $*%, etc., the function name must be backquoted or quoted.
optional arguments to FUN.
all.names a logical indicating whether to apply the function to all values.

USE.NAMES logical indicating whether the resulting list should have names.

eigen 181

Value

A named (unless USE .NAMES = FALSE) list. Note that the order of the components is arbitrary
for hashed environments.

See Also

environment, lapply.

Examples

require (stats)

env <—- new.env (hash = FALSE) # so the order is fixed
envSa <—- 1:10

envSbeta <- exp(-3:3)

envS$logic <- ¢ (TRUE, FALSE, FALSE, TRUE)

what have we there?

utils::1ls.str (env)

compute the mean for each list element
eapply (env, mean)
unlist (eapply (env, mean, USE.NAMES = FALSE))

median and quartiles for each element (making use of "..." passing):
eapply (env, quantile, probs = 1:3/4)
eapply (env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of numeric (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments
X a numeric or complex matrix whose spectral decomposition is to be computed.
Logical matrices are coerced to numeric.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and

only its lower triangle (diagonal included) is used. If symmetric is not speci-
fied, isSymmetric (x) is used.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Defunct and ignored.

182 eigen

Details
If symmetric is unspecified, isSymmetric (x) determines if the matrix is symmetric up to
plausible numerical inaccuracies. It is surer and typically much faster to set the value yourself.
Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code (most often 1): these can only be interpreted by detailed study of the FORTRAN code.

Value

The spectral decomposition of x is returned as a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod (values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either a p X p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE. The vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

When only.values is not true, as by default, the result is of S3 class "eigen".

If r <—eigen(A),and V <-r$vectors; lam <-rS$values, then
A=VAV~!

(up to numerical fuzz), where A =diag (lam).

Source

eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV.

LAPACK is from https://www.netlib.org/lapack/ and its guide is listed in the refer-
ences.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lug/lapack_lug.html

encodeString 183

See Also

svd, a generalization of eigen; gr, and chol for related decompositions.

To compute the determinant of a matrix, the gr decomposition is much more efficient: det.

Examples

eigen (cbind(c(1,-1), c(-1,1)))
eigen (cbind(c(1,-1), c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind (1, c(1,-1)), only.values = TRUE)

eigen (cbind (- l, 2:1)) # complex values

eigen (print (cbind(c (0, 11i), c(-11i, 0)))) # Hermite ==> real Eigenvalues
3 x 3:

eigen(cbind(1, 3:1, 1:3))
eigen(cbind (-1, c(1:2,0), 0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default
does, and optionally fits the encoded strings within a field width.

Usage
encodeString(x, width = 0, quote = "", na.encode = TRUE,
Justify = c("left", "right", "centre", "none"))
Arguments
X A character vector, or an object that can be coerced to one by as . character.
width integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.
quote character: quoting character, if any.
na.encode logical: should NA strings be encoded?
justify character: partial matches are allowed. If padding to the minimum field width

is needed, how should spaces be inserted? justify == "none" is equivalent
to width = 0, for consistency with format .default.

184 encodeString

Details

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\ £’ (formfeed),
‘An’ (line feed), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well as any non-
printable characters in a single-byte locale, which are printed in octal notation (‘\xyz’ with leading
Zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32-255 as printable in a single-byte locale. See print .default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Marked UTF-8 encodings are preserved.

Note

The default for width is different from format .default, which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"

print (x)
cat (x) # interprets escapes
cat (encodeString(x), "\n", sep = "") # similar to print ()

factor (x) # makes use of this to print the levels

X <_ c("a", "ab", llabcde")
encodeString(x) # width = 0: use as little as possible

(
encodeString(x, 2) # use two or more (left justified)
encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = "'", Justify = "r")

Encoding 185

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Usage

Encoding (x)
Encoding(x) <- value

enc2native (x)
enc2utf8 (x)

Arguments

X A character vector.

value A character vector of positive length.
Details

Character strings in R can be declared to be encoded in "1atinl" or "UTF-8" or as "bytes".
These declarations can be read by Encoding, which will return a character vector of values
"latinl", "UTF-8" "bytes" or "unknown", or set, when value is recycled as needed
and other values are silently treated as "unknown". ASCII strings will never be marked with
a declared encoding, since their representation is the same in all supported encodings. Strings
marked as "bytes" are intended to be non-ASCII strings which should be manipulated as bytes,
and never converted to a character encoding (so writing them to a text file is supported only by
writelLines (useBytes = TRUE)).

enc2native and enc2ut£8 convert elements of character vectors to the native encoding or
UTF-8 respectively, taking any marked encoding into account. They are primitive functions, de-
signed to do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly set-
ting it (and these have changed as R has evolved). Functions scan, read.table, readLines,
and parse have an encoding argument that is used to declare encodings, i conv declares encod-
ings from its t o argument, and console input in suitable locales is also declared. int ToUt £8 de-
clares its output as "UTF-38", and output text connections (see text Connection) are marked if
running in a suitable locale. Under some circumstances (see its help page) source (encoding=)

will mark encodings of character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was declared on
the corresponding input. These include chartr, strsplit (useBytes = FALSE), tolower
and toupper as well as sub (useBytes = FALSE) and gsub (useBytes = FALSE) . Note
that such functions do not preserve the encoding, but if they know the input encoding and that the
string has been successfully re-encoded (to the current encoding or UTF-8), they mark the output.

186 environment

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-
8 encoding on systems with Unicode wide characters. With their fixed and perl options,
strsplit, sub and gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprint f return elements marked as bytes if any of the corresponding inputs is marked
as bytes, and otherwise marked as UTF-8 of any of the inputs is marked as UTF-8.

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the
elements are marked as UTF-8.

There is some ambiguity as to what is meant by a ‘Latin-1" locale, since some OSes (notably
Windows) make use of character positions undefined (or used for control characters) in the ISO
8859-1 character set. How such characters are interpreted is system-dependent but as from R 3.5.0
they are if possible interpreted as per Windows codepage 1252 (which Microsoft calls “Windows
Latin 1 (ANSI)’) when converting to e.g. UTF-8.

Value

A character vector.

For enc2ut £8 encodings are always marked: they are for enc2native in UTF-8 and Latin-1
locales.

Examples

x is intended to be in latinl
x <— "fa\xE7ile"

Encoding (x)

Encoding(x) <- "latinl"

X

xx <- iconv(x, "latinl", "UTF-8")
Encoding (c (%, xx))

c(x, xx)

Encoding (xx) <- "bytes"

xx # will be encoded in hex

Cat("XX = ", XX, "\n", Sep = "")
environment Environment Access
Description

Get, set, test for and create environments.

Usage

environment (fun =
environment (fun)

is.environment (x)

NULL)
<- value

environment 187

.GlobalEnv
globalenv ()
.BaseNamespaceEnv

emptyenv ()
baseenv ()

new.env (hash = TRUE, parent = parent.frame(), size = 29L)

parent.env (env)
parent.env(env) <- value

environmentName (env)

env.profile (env)

Arguments
fun a function, a formula, or NULL, which is the default.
value an environment to associate with the function
x an arbitrary R object.
hash a logical, if TRUE the environment will use a hash table.
parent an environment to be used as the enclosure of the environment created.
env an environment
size an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.
Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined (unless changed subsequently). The enclos-
ing environment is distinguished from the parent frame: the latter (returned by parent . frame)
refers to the environment of the caller of a function. Since confusion is so easy, it is best never to use
‘parent’ in connection with an environment (despite the presence of the function parent . env).

When get or exists search an environment with the default inherits = TRUE, they look for
the variable in the frame, then in the enclosing frame, and so on.

The global environment . G1obalEnv, more often known as the user’s workspace, is the first item
on the search path. It can also be accessed by globalenv (). On the search path, each item’s
enclosure is the next item.

The object .BaseNamespaceEnv is the namespace environment for the base package. The en-
vironment of the base package itself is available as baseenv ().

If one follows the chain of enclosures found by repeatedly calling parent . env from any envi-
ronment, eventually one reaches the empty environment emptyenv (), into which nothing may be
assigned.

188 environment

The replacement function parent .env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

The replacement form of environment, is.environment, baseenv, emptyenv and
globalenv are primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach (). Other environments
can be named by giving a "name" attribute, but this needs to be done with care as environments
have unusual copying semantics.

Value
If fun is a function or a formula then environment (fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is returned.
The replacement form sets the environment of the function or formula fun to the value given.
is.environment (obj) returns TRUE if and only if obj is an environment.
new.env returns a new (empty) environment with (by default) enclosure the parent frame.
parent .env returns the enclosing environment of its argument.
parent .env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or " "
if it is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported
by HASHPRI), and counts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. When env is
a non-hashed environment, NULL is returned.

See Also

For the performance implications of hashing or not, see https://en.wikipedia.org/
wiki/Hash_table.

The envir argument of eval, get, and exists.

1s may be used to view the objects in an environment, and hence 1s.str may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function"
##-— all three give the same:
environment ()

environment (f)
.GlobalEnv

ls(envir = environment (stats::approxfun(l:2, 1:2, method = "const")))

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

EnvVar 189

is.environment (.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir = el)

1s(el)

1s (e2)

exists("a", envir = e2) # this succeeds by inheritance

exists("a", envir = e2, inherits = FALSE)

exists ("+", envir = e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)

with (env.profile(eh), stopifnot(size == length(counts)))
EnvVar Environment Variables
Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted
when needed.

LC_ALL: (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale. Con-
sulted at startup.

MAKEINDEX: The path to makeindex. If unset to a value determined when R was built. Used
by the emulation mode of texi2dvi and texi2pdf.

R_BATCH: Optional — set in a batch session, that is one started by R CMD BATCH. Most often set
to " ", so test by something like ! is.na (Sys.getenv ("R_BATCH",NA)).

R_BROWSER: The path to the default browser. Used to set the default value of
options ("browser").

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by
the macOS GUI.)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be attached in every
session. See options.

R_DOC_DTIR: The location of the R ‘doc’ directory. Set by R.
R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

190 EnvVar

R_GSCMD: Optional. The path to Ghostscript, used by dev2bitmap, bitmap and
embedFonts. Consulted when those functions are invoked. Since it will be treated as if
passed to system, spaces and shell metacharacters should be escaped.

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when
the history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface. For the readline command-line interface it takes effect when the
history is saved (by savehistory or at the end of a session).

R_HOME: The top-level directory of the R installation: see R . home. Set by R.
R_INCLUDE_DIR: The location of the R ‘include’ directory. Set by R.
R_LIBS: Optional. Used for initial setting of . 1ibPaths.

R_LIBS_SITE: Optional. Used for initial setting of . 1ibPaths.
R_LIBS_USER: Optional. Used for initial setting of . LibPaths.

R_PAPERSIZE: Optional. Used to set the default for options ("papersize"), e.g. used by
pdf and postscript.

R_PCRE_JIT_STACK_MAXSIZE: Optional. Consulted when PCRE’s JIT pattern compiler is
first used. See grep.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2pdf.
R_PLATFORM: The platform — a string of the form cpu—vendor-os, see R.Version.
R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2pdf.
R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is
unset to a value determined when R was built. Consulted at startup to set the default for
options ("texi2dvi"), used by texi2dvi and texi2pdf in package tools.

R_UNZIPCMD: The path to unzip. Sets the initial value for options ("unzip") on a Unix-
alike when namespace utils is loaded.

R_ZIPCMD: The path to zip. Used by zip and by R CMD INSTALL ——build on Windows.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the ses-
sion: see tempdir. TMPDIR is also used by some of the utilities see the help for build.

TZ: Optional. The current time zone. See Sys . timezone for the system-specific formats. Con-
sulted as needed.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for
download. file: see its help for further details.
Unix-specific
Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by Xx11, Tk (in package tcltk), the data editor and various packages.

EDITOR: The path to the default editor: sets the default for options ("editor") when names-
pace utils is loaded.

eval 191

PAGER: The path to the pager with the default setting of options ("pager"). The default
value is chosen at configuration, usually as the path to less.

R_PRINTCMD: Sets the default for options ("printcmd"), which sets the default print com-
mand to be used by postscript.

R_SUPPORT_OLD_TARS logical. Sets the default for the support_old_tars argument of
untar. Should be set to TRUE if an old system tar command is used which does not
support either xz compression or automagically detecting compression type.

See Also

Sys.getenv and Sys . setenv to read and set environmental variables in an R session.

gctorture for environment variables controlling garbage collection.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval (expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))
parent.frame () else baseenv())
evalg(expr, envir, enclos)
eval.parent (expr, n = 1)
local (expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a
list, a data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted
as the base package environment, baseenv ()) or an environment.

n number of parent generations to go back

Details

eval evaluates the expr argument in the environment specified by envir and returns the com-
puted value. If envir is not specified, then the default is parent . frame () (the environment
where the call to eval was made).

192 eval

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalqgformis equivalentto eval (quote (expr), . ..). eval evaluates its first argument
in the current scope before passing it to the evaluator: evalq avoids this.

eval .parent (expr,n) is a shorthand for eval (expr, parent.frame (n)).

If envir is alist (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and
look-up goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalqg except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited namespace feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last
element.

Note
Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument
to a function, the relevant enclosure is often the caller’s environment, i.e., one needs
eval (x,data,parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval(2 ~ 2 ~ 3)

mEx <- expression(27273); mEx; 1 + eval (mEx)

eval ({ xx <- pi; xx"2}) ; xx

a <- 3 ; aa <- 4 ; evalg(evalg(atbtaa, list(a = 1)), list(b = 5)
(=

)
a <- 3 ; aa <- 4 ; evalg(evalg(atbtaa, -1), list(b

eval

ev <- function() {
el <- parent.frame ()
Evaluate a in el
aa <- eval (expression(a), el)
evaluate the expression bound to a in el
a <- expression (x+y)
list (aa = aa, eval = eval(a, el))
}
tst.ev <- function(a = 7) { x <= pi; y <= 1; ev() }
tst.ev () #-> aa 7, eval 4.14
a <- list(a = 3, b = 4)
with(a, a <= 5) # alters the copy of a from the list, discarded.
#4#
Example of evalqg()
##
N <= 3

env <—- new.env ()

assign ("N", 27, envir = env)

this version changes the visible copy of N only,

passed to eval is '4'.
eval (N <- 4, env)

N

get ("N", envir = env)

this version does the assignment in env,
evalg(N <= 5, env)

N

get ("N", envir = env)

##

Uses of local()

##

Mutually recursive.
gg gets value of last assignment,

gg <— local ({
k <- function(y) f (y)
f <- function(x) 1if(x) xxk(x-1) else 1
})
gg (10)
sapply(1:5, gg)
Nesting locals:
gg <- local ({
k <= local ({
a <- 1
function (y) {print (a <<- a+1l);f(y)}
})
f <- function(x) 1f (x)

x*xk (x-1) else 1

and changes N only there.

an anonymous version of f.

a is private storage accessible to k

since the argument

193

194 exists

})
sapply (1:5, gg)

ls(envir = environment (gg))
ls(envir = environment (get ("k", envir = environment (gg))))
exists Is an Object Defined?
Description

Look for an R object of the given name and possibly return it

Usage
exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)
get0(x, envir = pos.to.env(-1L), mode = "any", inherits = TRUE,
ifnotfound = NULL)
Arguments
x a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.
frame a frame in the calling list. Equivalent to giving where as
sys.frame (frame).
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?

ifnotfound the return value of get 0 (x,) when x does not exist.

Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys. frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

exists 195

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode = "special" will
seek any type of function.)

Value

exists () : Logical, true if and only if an object of the correct name and mode is found.

get0 () : The object—as from get (x,) —ifexists (x,) istrue, otherwise i fnot found.

Note

With get 0 (), instead of the easy to read but somewhat inefficient

if (exists (myVarName, envir = myEnvir)) {
r <- get (myVarName, envir = myEnvir)
... deal with r

you now can use the more efficient (and slightly harder to read)

if (!'is.null(r <= getO(myVarName, envir = myEnvir))) {
... deal with r

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get and hasName. For quite a different kind of “existence” checking, namely if function
arguments were specified, missing; and for yet a different kind, namely if a file exists,
file.exists.

Examples

Define a substitute function if necessary:

if ('exists ("some.fun", mode = "function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search ()
exists("1ls", 2) # true even though 1ls is in pos = 3

exists("1ls", 2, inherits = FALSE) # false

These are true (in most circumstances):
identical(ls, get0("1s"))

196 expand.grid

identical (NULL, getO(".foo.bar.")) # default ifnotfound = NULL (!)
expand.grid Create a Data Frame from All Combinations of Factor Variables
Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

vectors, factors or a list containing these.
KEEP.OUT.ATTRS

a logical indicating the "out .attrs" attribute (see below) should be com-
puted and returned.

stringsAsFactors
logical specifying if character vectors are converted to factors.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out .attrs" is a list which gives the dimension and dimnames for use by predict
methods.

Note

Conversion to a factor is done with levels in the order they occur in the character vectors (and not
alphabetically, as is most common when converting to factors).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package ut i1s) for the generation of all combinations of n elements, taken m at a time.

expression

Examples

require (utils)

expand.grid(height = seqg(60, 80, 5), weight = seq (100, 300,

sex = c("Male", "Female"))

x <- seq(0, 10, length.out = 100)

y <- seq(-1, 1, length.out = 20)

dl <- expand.grid(x = x, y = V)

d2 <- expand.grid(x = x, y = y, KEEP.OUT.ATTRS = FALSE)
object.size(dl) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

50),

197

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression (x)
as.expression(x, ...)

Arguments

expression: R objects, typically calls, symbols or constants.

as.expression: arguments to be passed to methods.

x an arbitrary R object.

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, for example as

returned by parse.

As an object of mode "expression" is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or

delete elements.

expressionand is.expression are primitive functions. expression is ‘special’: it does

not evaluate its arguments.

198 Extract

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).
is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described here. (The default method calls as.vector (type =
"expression") and so may dispatch methods for as.vector.) NULL, calls, symbols (see
as.symbol) and pairlists are returned as the element of a length-one expression vector. Atomic
vectors are placed element-by-element into an expression vector (without using any names): lists
are changed type to an expression vector (keeping all attributes). Other types are not currently
supported.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text and 1egend for plotting mathematical expressions.

Examples

length (exl <- expression(l + 0:9)) # 1
exl
eval (ex1l) # 1:10

length (ex3 <- expression(u, 2, u + 0:9)) # 3

mode (ex3 [3]) # expression

mode (ex3[[3]]) # call

but not all components are 'call's

sapply (ex3, mode) # name numeric call

sapply (ex3, typeof) # symbol double language

rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage
x[1]
x[i, 3, ... , drop = TRUE]
x[[1, exact = TRUE]]
x[[i, J, ..., exact = TRUE]]

Extract

xSname

199

getElement (object, name)

i] <- wvalue

<- value

[[1]] <- wvalue
xSname <—- value

Arguments

x, object

1, Js

name

drop

exact

value

Details

object from which to extract element(s) or in which to replace element(s).

indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

For [-indexing only: 1, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. i, j, ... can also be negative integers, indicating el-

ements/slices to leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of 1.

An index value of NULL is treated as if it were integer (0).

A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

typically an array-like R object of a similar class as x.

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [.data.frameand [. factor. The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions [<—,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects, and is only
discussed in the section below on recursive objects.

200 Extract

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed
to accept the values. For vectors, the answer will be of the higher of the types of x and value in
the hierarchy raw < logical < integer < double < complex < character < list < expression. Attributes
are preserved (although names, dim and dimnames will be adjusted suitably). Subassignment is
done sequentially, so if an index is specified more than once the latest assigned value for an index
will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g., a function).

Atomic vectors

The usual form of indexing is [. [[can be used to select a single element dropping names,
whereas [keeps them, e.g.,in ¢ (abc =123) [1].

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character (i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. And again, indexing
by factors is equivalent to indexing by the numeric codes, see ‘Atomic vectors’ above.

An empty index (a comma separated blank) indicates that all entries in that dimension are selected.
The argument drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. NA is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string (" ") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Extract 201

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow
computed indices, whereas [[does. x$name is equivalentto x [["name", exact = FALSE]].
Also, the partial matching behavior of [[can be controlled using the exact argument.

getElement (x, name) is a version of x[[name, exact = TRUE]] which for formally
classed (S4) objects returns s1ot (x, name), hence providing access to even more general list-like
objects.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p,
alist[[i]] isequivalentto alist[[1i1]]...[[ip]] providing all but the final indexing
results in a list.

Note that in all three kinds of replacement, a value of NULL deletes the corresponding item of the
list. To set entries to NULL, youneed x [1] <-1ist (NULL).

When $<- is applied to a NULL x, it first coerces x to 1ist (). This is what also happens with
[[<— where in R versions less than 4.y.z, a length one value resulted in a length one (atomic)
vector.

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no partial
matching is done. The semantics of these operations are those of get (i, env = x, inherits =
FALSE) . If no match is found then NULL is returned. The replacement versions, $<—and [[<—,
can also be used. Again, only character arguments are allowed. The semantics in this case are those
of assign (i, value,env = x,inherits = FALSE). Such an assignment will either create
a new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.)

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome). (The documented behaviour of S was that an NA replacement index ‘goes nowhere’
but uses up an element of value: Becker et al p. 359. However, that has not been true of other
implementations.)

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j=2,1 = 1] is equivalenttom[2, 1]
andnottom[1,2].

202 Extract

This may not be true for methods defined for them; for example it is not true for the data . frame
methods described in [.data.frame which warn if i or j is named and have undocumented
behaviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et al
p. 358), R never uses partial matching when extracting by [, and partial matching is not by default
used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options (warnPartialMatchDollar = TRUE).

Neither empty (" ") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all "" and so match nothing.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmat ch for partial matching.
list,array,matrix.

[.data.frame and [.factor for the behaviour when applied to data.frame and factors.
Syntax for operator precedence, and the ‘R Language Definition” manual about indexing details.

NULL for details of indexing null objects.

Examples

x <= 1:12
m <- matrix(l:6, nrow
1i <= list(pi = pi, e

2, dimnames = list (c("a", "b"), LETTERS[1:3]))
exp (1))

x[10] # the tenth element of x

X <— x[-1] # delete the 1lst element of x
m[1l,] # the first row of matrix m
m[l, , drop = FALSE] # is a l-row matrix
m[,c(TRUE, FALSE, TRUE)] # logical indexing
m[cbind(c(1,2,1),3:1)]1# matrix numeric index

Extract.data.frame 203

ci <-— Cbind(c("a", "b", "a"), C("A", vlcvv, "B"))

ml[ci] # matrix character index

m <- m[,-1] # delete the first column of m

1i[[1]] # the first element of list 1i

y <- list(1, 2, a = 4, 5)

ylc(3, 4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(1 <= 3.999999999) # "4" is printed
(1:5)[1] # 3

named atomic vectors, compare "[" and "[["
nx <- c(Abc = 123, pi = pi)
nx[1l] ; nx["pi"] # keeps names, whereas "[[" does not:

nx[[1]] ; nx[["pi"]]

recursive indexing into lists

z <- list(a = list(b = 9, ¢ = "hello"), d = 1:5)
unlist (z)

z[[c(1l, 2)]1]

z[[c(1l, 2, 1)]] # both "hello"

z[[c("a", "b")]] <= "new"

unlist (z)

check $ and [[for environments
el <- new.env ()

elsa <- 10

el[["a"]]

el[["b"]] <= 20

elsb

1s (el)

partial matching - possibly with warning
stopifnot (identical (1i$p, pi))
op <- options(warnPartialMatchDollar = TRUE)

stopifnot (identical (1i$p, pil), #-—- a warning

inherits (tryCatch (l1i$p, warning = identity), "warning"))
revert the warning option:
if (is.null(op[[1]11)) opl[[1l]] <- FALSE; options (op)

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

204

Extract.data.frame

Usage

S3 method for class 'data.frame'

x[i, j, drop = 1]

S3 replacement method for class 'data.frame'
x[1i, J] <= wvalue

S3 method for class 'data.frame'

x[[..., exact = TRUE]]

S3 replacement method for class 'data.frame'
x[[1, J11 <= value

S3 replacement method for class 'data.frame'
x$name <- value

Arguments

X data frame.

i, 3, ... elements to extract or replace. For [and [[, these are numeric or
character or, for [only, empty. Numeric values are coerced to integer as
if by as.integer. For replacement by [, a logical matrix is allowed.

name A literal character string or a name (possibly backtick quoted).

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Details

Data frames can be indexed in several modes. When [and [[are used with a single vector index
(x[1] orx[[1]1]),they index the data frame as if it were a list. In this usage a drop argument is
ignored, with a warning.

There is no data. frame method for $, so x$Sname uses the default method which treats x as a
list (with partial matching of column names if the match is unique, see Ext ract). The replacement
method (for $) checks value for the correct number of rows, and replicates it if necessary.

When [and [[are used with two indices (x[1, j] and x[[1, 7] 1) they act like indexing a
matrix: [[can only be used to select one element. Note that for each selected column, x j say,
typically (if it is not matrix-like), the resulting column will be x j [1], and hence rely on the corre-
sponding [method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names using make.unique. Similarly, if columns are selected column names will be
transformed to be unique if necessary (e.g., if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

Extract.data.frame 205

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (x [1] with a logical or a 2-column integer matrix i) using [is not recommended.
For extraction, x is first coerced to a matrix. For replacement, logical matrix indices must be of the
same dimension as x. Replacements are done one column at a time, with multiple type coercions
possibly taking place.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will if exact = FALSE (and with a warning if exact = NA). If you want
to exact matching on row names use match, as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a vector results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a *missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<-, [[<— and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data. frame and as.data.frame do) but inserted as a single column.

206 Extract.data.frame

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To
drop from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and
the behaviour differs from the description here.

See Also

subset which is often easier for extraction, data. frame, Extract.

Examples
sw <— swiss[1:5, 1:4] # select a manageable subset
sw[l:3] # select columns
sw[, 1:3] # same
sw[d4:5, 1:3] # select rows and columns
swl[l] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw([[1l]] # the same
swSFert # the same (possibly w/ warning, see ?Extract)
swll,] # a one-row data frame

sw[l,, drop = TRUE] # a list

sw["C",] # partially matches
sw[match("C", row.names(sw)),] # no exact match
try(sw[, "Ferti"]) # column names must match exactly

swiss[c(1, 1:2),] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column

sw["newl"] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[l:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

swSnewd <- 1:5

sapply (sw, class)

sw$snew # —-> NULL: no unique partial match
swSnewd4 <- NULL # delete the column
SwW

sw[6:8] <- list(letters[10:14], NULL, aa = 1:5)
update col. 6, delete 7, append

SwW

matrices in a data frame
A <- data.frame(x = 1:3, yv = I(matrix(4:9, 3, 2)),

Extract.factor

n
’

#
#
#

IIJ

Yy
Z"J

A[l:3
A[1l:3, "
A[, "y"]

stopifnot (identical (colnames (A),

iden
inhe
keeping spe
"as.data.fr
"avector"
avector <-
as.data.frame.
“[.avector® <-
r <- NextMet
mostattribut
r

d <- data.fram

str(d[2:4, -1]

207
z = I(matrix(letters[1:9], 3, 3)))

a matrix

a matrix

a matrix

C("X", lly", "Z")), ncol (A) _—— 3L’
tical (A[,"y"], A[1:3, "y"1),
rits (A[,"y"], "AsIs"))

cial attributes: use a class with a

ame" and "[" method;

vector that keeps attributes. Could provide a constructor
function(x) { class(x) <- c("avector", class(x)); x }
avector <- as.data.frame.vector

function(x, i, ...
hOd("[")
es (r) <- attributes(x)

e(i =0:7, £ =gl(2,4),
u = structure(11:18, unit = "kg", class = "avector"))
) # 'u' keeps its "unit"

Extract.factor

Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method
x[..., drop
S3 method
x[[...]1]

.1

x[..

<- value

for class 'factor'
FALSE]
for class 'factor'
S3 replacement method for class 'factor'
'factor'

S3 replacement method for class
<- value

x[[...]]

Arguments

X

drop

value

a factor
a specification of indices — see Extract.
logical. If true, unused levels are dropped.

character: a set of levels. Factor values are coerced to character.

208 Extremes

Details

When unused levels are dropped the ordering of the remaining levels is preserved.
If value isnotin levels (x), a missing value is assigned with a warning.
Any contrasts assigned to the factor are preserved unless drop = TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop = TRUE.

See Also

factor, Extract.

Examples

following example (factor)

(ff <- factor(substring("statistics”, 1:10, 1:10), levels = letters))
ff[, drop = TRUE]

factor (letters[7:10]) [2:3, drop = TRUE]

Extremes Maxima and Minima

Description

Returns the (regular or parallel) maxima and minima of the input values.

pmax~* () and pmin= () take one or more vectors as arguments, recycle them to common length
and return a single vector giving the ‘parallel’ maxima (or minima) of the argument vectors.

Usage

maxXx(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax (..., na.rm = FALSE)

pmin(..., na.rm = FALSE)

pmax.int (..., na.rm = FALSE)

pmin.int (..., na.rm = FALSE)
Arguments

numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Extremes 209

Details

max and min return the maximum or minimum of all the values present in their arguments, as
integerifallare logical or integer, as double if all are numeric, and character otherwise.

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and —Inf (in this order!) which
ensures fransitivity, e.g., min (x1,min (x2)) ==min (x1,x2). For numeric x max (x) ==
—Inf and min (x) == +Inf whenever length (x) == 0 (after removing missing values if re-
quested). However, pmax and pmin return NA if all the parallel elements are NA even for na . rm
= TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs (of
non-zero length) are recycled if necessary. Attributes (see attributes: such as names or dim)
are copied from the first argument (if applicable, e.g., not for an S4 object).

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordering.)

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments . . . should be unnamed, and
dispatch is on the first argument.

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max
of any vector containing an NA is NA even if it also contains an NaN. Note that max (NA, Inf) ==
NA even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be character NA. (One could argue that as "" is the smallest character element, the
maximum should be " ", but there is no obvious candidate for the minimum.)

Value

For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors, or length zero if one of the inputs had zero length.

The type of the result will be that of the highest of the inputs in the hierarchy integer < double <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or —Inf).
S4 methods

max and min are part of the S4 Summary group generic. Methods for them must use the signature
X, ...,0a.rm

210 extSoftVersion

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer (0).

pmax and pmin will also work on classed S3 or S4 objects with appropriate methods for compari-
son, is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require (stats); require (graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

x <— sort (rnorm(100)); cH <- 1.35

pmin (cH, quantile(x)) # no names
pmin (quantile(x), cH) # has names
plot (x, pmin(cH, pmax(-cH, x)), type = "b", main = "Huber's function")

cut0l <- function(x) pmax(pmin(x, 1), 0)

curve (X2 - 1/4, -1.4, 1.5, col = 2)

curve (cut01 (x*2 - 1/4), col = "blue", add = TRUE, n = 500)
pmax (), pmin() preserve attributes of *first* argument
D <- diag(x = (3:1)/4) ; n0 <= numeric/()

stopifnot (identical (D, cut01 (D)),
identical (n0, cut01l(n0)),
identical (n0, cutO0l (NULL)),
identical (n0, pmax(3:1, nO0, 2)),
identical (n0, pmax(n0, 4)))

extSoftVersion Report Versions of Third-Party Software

Description

Report versions of (external) third-party software used.

Usage

extSoftVersion ()

extSoftVersion 211

Details

The reports the versions of third-party software libraries in use. These are often external but might
have been compiled into R when it was installed.

With dynamic linking, these are the versions of the libraries linked to in this session: with static
linking, of those compiled in.

Value

A named character vector, currently with components

z1lib The version of z1ib in use.

bzlib The version of bz1ib (from bz ip2) in use.

XZ The version of 1iblzma (from xz) in use.

PCRE The version of PCRE in use. PCRE1 has versions < 10.00, PCRE?2 has versions
>=10.00.

ICU The version of ICU in use (if any, otherwise "").

TRE The version of 1ibtre in use.

iconv The implementation and version of the i conv library in use (if known).

readline The version of readline in use (if any, otherwise ""). If using the emulation

by libedit aka editline this will be "EditLine wrapper" preceded
by the readline version it emulates: that is most likely to be seen on macOS.

BLAS Name of the binary/executable file with the implementation of BLAS in use (if
known, otherwise "").

Note that the values for bz1ib and pcre normally contain a date as well as the version number,

and that for t re includes several items separated by spaces, the version number being the second.

For iconv this will give the implementation as well as the version, for example "GNU 1libiconv
1.14","glibc 2.18" or "win_iconv" (which has no version number).

The name of the binary/executable file for BLAS can be used as an indication of which implemen-
tation is in use. Typically, the R version of BLAS will appear as 1ibR.so (1ibR.dylib), R or
libRblas.so (1ibRblas.dylib), depending on how R was built. Note that 1ibRblas. so
(1ibRblas.dylib) may also be shown for an external BLAS implementation that had been
copied, hard-linked or renamed by the system administrator. For an external BLAS, a shared object
file will be given and its path/name may indicate the vendor/version. The detection does not work
on Windows.

See Also

libcurlVersion for the version of 1ibCurl.
La_version for the version of LAPACK in use.
La_library for binary/executable file with LAPACK in use.
grSoftVersion for third-party graphics software.
tclVersion for the version of Tcl/Tk.

pcre_config for PCRE configuration options.

212 factor

Examples
extSoftVersion ()
the PCRE version
sub (" .*", "", extSoftVersion() ["PCRE"])
factor Factors
Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

Usage
factor (x = character (), levels, labels = levels,
exclude = NA, ordered = is.ordered(x), nmax = NA)
ordered(x, ...)

is.factor (x)
is.ordered (x)

as.factor (x)
as.ordered (x)

addNA (x, ifany = FALSE)

Arguments

X a vector of data, usually taking a small number of distinct values.

levels an optional vector of the unique values (as character strings) that x might have
taken. The default is the unique set of values taken by as.character (x),
sorted into increasing order of x. Note that this set can be specified as smaller
than sort (unique (x)).

labels either an optional character vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length 1.
Duplicated values in 1abels can be used to map different values of x to the
same factor level.

exclude a vector of values to be excluded when forming the set of levels. This may be
factor with the same level set as x or should be a character.

ordered logical flag to determine if the levels should be regarded as ordered (in the order

given).

factor 213

nmax an upper bound on the number of levels; see ‘Details’.
(in ordered (.)): any of the above, apart from ordered itself.

ifany only add an NA level if it is used, i.e. if any (is.na (x)).

Details

The type of the vector x is not restricted; it only must have an as.character method and be
sortable (by order).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels. If x[1] equals levels[j], then the i-th element of the result is j. If no match is
found for x [1] in levels (which will happen for excluded values) then the i-th element of the
result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying Labels. This should either be a set of
new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor (x, exclude = NULL) applied to a factor without NAs is a no-operation unless there are
unused levels: in that case, a factor with the reduced level set is returned. If exclude is used, since
R version 3.4.0, excluding non-existing character levels is equivalent to excluding nothing, and
when exclude is a character vector, that is applied to the levels of x. Alternatively, exclude
can be factor with the same level set as x and will exclude the levels present in exclude.

The codes of a factor may contain NA. For a numeric x, set exclude = NULL to make NA an extra
level (prints as <NA>); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level)
is to use is.na on the left-hand-side of an assignment (as in is.na (f) [1] <-TRUE; indexing
inside is.na does not work). Under those circumstances missing values are currently printed as
<NA>, i.e., identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Where levels is not supplied, unique is called. Since factors typically have quite a small
number of levels, for large vectors x it is helpful to supply nmax as an upper bound on the number
of unique values.

Value

factor returns an object of class "factor" which has a set of integer codes the length
of x with a "levels" attribute of mode character and unique (!anyDuplicated(.))
entries. If argument ordered is true (or ordered() is used) the result has class
c("ordered", "factor"). Undocumentedly for a long time, factor (x) loses all
attributes (x) but "names", and resets "levels" and "class".

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also [. factor for a more transparent way to achieve this.

214 factor

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not.
Correspondingly, is.ordered returns TRUE when its argument is an ordered factor and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated (sometimes faster) form of
factor.

as.ordered (x) returns x if this is ordered, and ordered (x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables,
for instance).

.valid.factor (object) checks the validity of a factor, currently only levels (object),
and returns TRUE if it is valid, otherwise a string describing the validity problem. This function is
used for validObject (<factor>).

Warning

The interpretation of a factor depends on both the codes and the "1levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as . numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor £
to approximately its original numeric values, as.numeric (levels (f)) [f] is recommended
and slightly more efficient than as .numeric (as.character (f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use
them sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops which provide meth-
ods for the Comparison operators, and for the min, max, and range generics in Summary of
"ordered". (The rest of the groups and the Math group generate an error as they are not mean-
ingful for factors.)

Only == and ! = can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even
a small proportion of repeats. However, identical character strings now share storage, so the dif-
ference is small in most cases. (Integer values are stored in 4 bytes whereas each reference to a
character string needs a pointer of 4 or 8 bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

factor 215

See Also

[. factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))

as.integer (ff) # the internal codes

(f. <- factor (ff)) # drops the levels that do not occur
ff[, drop = TRUE] # the same, more transparently

factor (letters([1:20], labels = "letter")

class (ordered(4:1)) # "ordered", inheriting from "factor"

z <— factor (LETTERS[3:1], ordered = TRUE)
and "relational" methods work:
stopifnot (sort(z) [c(1l,3)] == range(z), min(z) < max(z))

suppose you want "NA" as a level, and to allow missing values.
(x <= factor(c(l, 2, NA), exclude = NULL))

is.na(x) [2] <- TRUE

x # [1] 1 <NA> <NA>

is.na (x)

[1] FALSE TRUE FALSE

More rational, since R 3.4.0

factor(c(l:2, NA), exclude = "") # keeps <NA> , as
factor(c(l:2, NA), exclude = NULL) # always did

exclude = <character>

z # ordered levels 'A < B < C'

factor(z, exclude = "C") # does exclude

factor(z, exclude = "B") # ditto

Now, labels maybe duplicated:

factor() with duplicated labels allowing to "merge levels"

x <— c("Man", "Male", "Man", "Lady", "Female")

Map from 4 different values to only two levels:

(xf <- factor(x, levels = c("Male", "Man" , "Lady", "Female"),
labels = c("Male", "Male", "Female", "Female")))

#> [1] Male Male Male Female Female

#> Levels: Male Female

Using addNA ()

Month <- airquality$Month

table (addNA (Month))

table (addNA (Month, ifany = TRUE))

216 file.access

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage
file.access (names, mode = 0)
Arguments
names character vector containing file names. Tilde-expansion will be done: see
path.expand.
mode integer specifying access mode required: see ‘Details’.
Details

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access () and the time you try to open the file. It is better to wrap file open attempts
intry.

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmod to change permissions, and try for a
‘test it and see’ approach.

file_test for shell-style file tests.

file.choose 217

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose (new = FALSE)

Arguments
new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.
Value

A character vector of length one giving the file path.

See Also

list.files for non-interactive selection.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage
file.info (..., extra_cols = TRUE)
file.mode(...)

file.mtime(...)
file.size(...)

218 file.info

Arguments
character vectors containing file paths. Tilde-expansion is done: see
path.expand.

extra_cols Logical: return all cols rather than just the first six.

Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names
must not include a trailing backslash or slash on Windows.) See also the section in the help for
file.exists on case-insensitive file systems.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

See files for how file paths with marked encodings are interpreted.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

For £ile. info, data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime
integer of class "POSIXct": file modification, ‘last status change’ and last
access times.

uid integer: the user ID of the file’s owner.

gid integer: the group ID of the file’s group.
uname character: uid interpreted as a user name.
grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

If extra_cols is false, only the first six columns are returned: as these can all be found from
a single C system call this can be faster. (However, properly configured systems will use a ‘name
service cache daemon’ to speed up the name lookups.)

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix-alike system, and will not be on Windows.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ct ime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’ and hence the ‘last access time’ is system-dependent.

The times are reported to an accuracy of seconds, and perhaps more on some systems. However,
many file systems only record times in seconds, and some (e.g., modification time on FAT systems)
are recorded in increments of 2 or more seconds.

file.path 219

file.mode, file.mtime and file. size are convenience wrappers returning just one of the
columns.

Note

Some systems allow files of more than 2Gb to be created but not accessed by the stat system
call. Such files will show up as non-readable (and very likely not be readable by any of R’s input
functions) — fortunately such file systems are becoming rare.

See Also
Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys.chmod to change permissions.

Examples

ncol (finf <- file.info(dir())) # at least six

finf # the whole list

Those that are more than 100 days old

finf <- file.info(dir (), extra_cols = FALSE)

finf[difftime (Sys.time (), finf[,"mtime"], units = "days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage
file.path(..., fsep = .Platform$file.sep)
Arguments
character vectors. Long vectors are not supported.
fsep the path separator to use (assumed to be ASCII).
Details

The implementation is designed to be fast (faster than paste) as this function is used extensively
in R itself.

It can also be used for environment paths such as PATH and R_LIBS with fsep =
.PlatformS$Spath.sep.

Trailing path separators are invalid for Windows file paths apart from ‘/” and ‘d: /’ (although some
functions/utilities do accept them), so a trailing / or \ is removed there.

220 file.show

Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

An element of the result will be marked (see Encoding) as UTF-8 if run in a UTF-8 locale (when
marked inputs are converted to UTF-8) or if a component of the result is marked as UTF-8, or as
Latin-1 in a non-Latin-1 locale.

Note

The components are by default separated by / (not \) on Windows.

See Also

basename, normalizePath, path.expand.

file.show Display One or More Text Files

Description

Display one or more (plain) text files, in a platform specific way, typically via a ‘pager’.

Usage
file.show(..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption ("pager"),
encoding = "")
Arguments
one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.
header character vector (of the same length as the number of files specified in . . .)
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,

title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used: not used on all platforms

encoding character string giving the encoding to be assumed for the file(s).

files 221

Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command (a full path or a command found on the PATH) to run on the set of files. The ‘factory-
fresh’ default is to use ‘R_HOME /bin/pager’, which is a shell script running the command-line
specified by the environment variable PAGER whose default is set at configuration, usually to less.
On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave
it up while R continues running. The selection of such pagers could either be done us-
ing special pager names being intercepted by lower-level code (such as "internal" and
"console" on Windows), or by letting pager be an R function which will be called with ar-
guments (files, header,title,delete.file) corresponding to the first four arguments
of file.show and take care of interfacing to the GUIL.

The R. app GUI on macOS uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file. In particular, using an external pager on
Windows does not, as there is no way to know when the external application has finished with the
file.

Author(s)

Ross Thaka, Brian Ripley.

See Also

files, list.files, help; RShowDoc call file.show () for type = "text". Consider
getOption ("pdfviewer") ande.g., system for displaying pdf files.

file.edit.

Examples

file.show(file.path (R.home ("doc"), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

222 files
Usage
file.create (..., showWarnings = TRUE)
file.exists(...)
file.remove(...)
file.rename (from, to)
file.append(filel, file2)
file.copy(from, to, overwrite = recursive, recursive = FALSE,
copy.mode = TRUE, copy.date = FALSE)
file.symlink (from, to)
file.link (from, to)
Arguments
., filel, file2
character vectors, containing file names or paths.
from, to character vectors, containing file names or paths. For file.copy and
file.symlink to can alternatively be the path to a single existing directory.
overwrite logical; should existing destination files be overwritten?
showWarnings logical; should the warnings on failure be shown?
recursive logical. If to is a directory, should directories in from be copied (and their
contents)? (Like cp —R on POSIX OSes.)
copy .mode logical: should file permission bits be copied where possible?
copy.date logical: should file dates be preserved where possible? See
Sys.setFileTime.
Details
The . .. arguments are concatenated to form one character string: you can specify the files sepa-

rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if
you have the permissions needed by stat. Existence can also be checked by file.access,
which might use different permissions and so obtain a different result. Note that the existence of
a file does not imply that it is readable: for that use file.access.) What constitutes a ‘file’ is
system-dependent, but should include directories. (However, directory names must not include a
trailing backslash or slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the
result indicates if the link points to an actual file, not just if the link exists. Lastly, note the different
function exi st s which checks for existence of R objects.

file.remove attempts to remove the files named in its argument. On most Unix platforms ‘file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and £ rom and t o must be of the same length). Where file
permissions allow this will overwrite an existing element of to. This is subject to the limitations

files 223

of the OS’s corresponding system call (see something like man 2 rename on a Unix-alike): in
particular in the interpretation of ‘file’: most platforms will not rename files from one file system to
another. NB: This means that renaming a file from a temporary directory to the user’s filespace or
during package installation will often fail. (On Windows, £ile . rename can rename files but not
directories across volumes.) On platforms which allow directories to be renamed, typically neither
or both of from and to must a directory, and if t o exists it must be an empty directory.

file.append attempts to append the files named by its second argument to those named by its
first. The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to £ile.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The to
argument can specify a single existing directory. If copy.mode = TRUE file read/write/execute
permissions are copied where possible, restricted by ‘umask’. (On Windows this applies only to
files.) Other security attributes such as ACLs are not copied. On a POSIX filesystem the targets of
symbolic links will be copied rather than the links themselves, and hard links are copied separately.
Using copy .date = TRUE may or may not copy the timestamp exactly (for example, fractional
seconds may be omitted), but is more likely to do so as from R 3.4.0.

file.symlink and file.link make symbolic and hard links on those file systems which
support them. For file.symlink the t o argument can specify a single existing directory. (Unix
and macOS native filesystems support both. Windows has hard links to files on NTFS file systems
and concepts related to symbolic links on recent versions: see the section below on the Windows
version of this help page. What happens on a FAT or SMB-mounted file system is OS-specific.)

File arguments with a marked encoding (see Encoding are if possible translated to the native
encoding, except on Windows where Unicode file operations are used (so marking as UTF-8 can be
used to access file paths not in the native encoding on suitable file systems).

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Case-insensitive file systems

Case-insensitive file systems are the norm on Windows and macOS, but can be found on all OSes
(for example a FAT-formatted USB drive is probably case-insensitive).

These functions will most likely match existing files regardless of case on such file systems: how-
ever this is an OS function and it is possible that file names might be mapped to upper or lower
case.

Warning

Always check the return value of these functions when used in package code. This is especially im-
portant for £ile.rename, which has OS-specific restrictions (and note that the session temporary
directory is commonly on a different file system from the working directory): it is only portable to
use file.rename to change file name(s) within a single directory.

224 files2

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink,
basename, path.expand.

dir.create.
Sys.glob to expand wildcards in file specifications.
file_test, Sys.readlink (for ‘symlink’s).

https://en.wikipedia.org/wiki/Hard_link and https://en.wikipedia.
org/wiki/Symbolic_1link for the concepts of links and their limitations.

Examples

cat ("file A\n", file = "A")

cat ("file B\n", file "B")

file.append ("A", "B")

file.create ("A") # (trashing previous)

file.append ("A", rep("B", 10))

if (interactive()) file.show("A") # -> the 10 lines from 'B'
file.copy ("A", "C")

dir.create("tmp")

file.copy(c("A", "B"), "tmp")

list.files ("tmp") # -> "A" and "B"

setwd ("tmp")
file.remove ("A") # the tmp/A file
file.symlink (file.path("..", c("A", "B")), ".")
|-—> (TRUE,FALSE) : ok for A but not B as it exists already
setwd ("..")
unlink ("tmp", recursive = TRUE)

file.remove ("A", "B", "C")

files?2 Manipulation of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage
dir.exists (paths)
dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "0777")
Sys.chmod (paths, mode = "0777", use_umask = TRUE)

Sys.umask (mode = NA)

https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Symbolic_link

files2 225

Arguments
path a character vector containing a single path name. Tilde expansion (see
path.expand) is done.
paths character vectors containing file or directory paths. Tilde expansion (see

path.expand) is done.
showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir —p.

mode the mode to be used on Unix-alikes: it will be coerced by as.octmode. For
Sys .chmod it is recycled along paths.

use_umask logical: should the mode be restricted by the umask setting?

Details

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path
separators are discarded. The mode will be modified by the umask setting in the same way as for
the system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume
that more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir, e.g. man 2 mkdir (and not that on the command-line utility of that name).

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create ("G.S.") creates ‘"G.S"’. This
is undocumented, and what are the precise circumstances is unknown (and might depend on the
version of Windows). Also avoid directory names with a trailing space.

Sys.chmod sets the file permissions of one or more files. It may not be supported on a system
(when a warning is issued). See the comments for dir.create for how modes are interpreted.
Changing mode on a symbolic link is unlikely to work (nor be necessary). For more details see your
OS’s documentation on the system call chmod, e.g. man 2 chmod (and not that on the command-
line utility of that name). Whether this changes the permission of a symbolic link or its target is
OS-dependent (although to change the target is more common, and POSIX does not support modes
for symbolic links: BSD-based Unixes do, though).

Sys.umask sets the umask and returns the previous value: as a special case mode = NA just
returns the current value. It may not be supported (when a warning is issued and "0" is returned).
For more details see your OS’s documentation on the system call umask, e.g. man 2 umask.

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

See files for how file paths with marked encodings are interpreted.

Value

dir.exists returns alogical vector of TRUE or FALSE values (without names).

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation suc-
ceeded for each of the files attempted. Using a missing value for a path name will always
be regarded as a failure. dir.create indicates failure if the directory already exists. If

226 find.package

showWarnings = TRUE, dir.create will give a warning for an unexpected failure (e.g., not
for a missing value nor for an already existing component for recursive = TRUE).

Sys .umask returns the previous value of the uma sk, as a length-one object of class "octmode":
the visibility flag is off unless mode is NA.

See also the section in the help for file.exists on case-insensitive file systems for the inter-
pretation of path and paths.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.exists, file.path, 1list.files, unlink, basename,
path.expand.

Examples
Not run:
Fix up maximal allowed permissions in a file tree
Sys.chmod (list.dirs("."), "777")
f <- list.files(".", all.files = TRUE, full.names = TRUE, recursive = TRUE)

"664"))

Sys.chmod (f, (file.info (f) $mode

End (Not run)

find.package Find Packages

Description

Find the paths to one or more packages.

Usage

find.package (package, lib.loc = NULL, quiet = FALSE,
verbose = getOption ("verbose"))

path.package (package, quiet = FALSE)

packageNotFoundError (package, lib.loc, call = NULL)

find.package 227

Arguments
package character vector: the names of packages.
lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to checking the loaded names-
pace, then all libraries currently known in . LibPaths ().
quiet logical. Should this not give warnings or an error if the package is not found?
verbose a logical. If TRUE, additional diagnostics are printed, notably when a package
is found more than once.
call call expression.
Details

find.package returns path to the locations where the given packages are found. If 1ib.loc
is NULL, then loaded namespaces are searched before the libraries. If a package is found more
than once, the first match is used. Unless quiet = TRUE a warning will be given about the named
packages which are not found, and an error if none are. If verbose is true, warnings about
packages found more than once are given. For a package to be returned it must contain a either a
‘Meta’ subdirectory or a ‘DESCRIPTION’ file containing a valid version field, but it need not
be installed (it could be a source package if 1ib.loc was set suitably).

find.package is not usually the right tool to find out if a package is available for use: the only
way to do that is to use require to try to load it. It need not be installed for the correct platform, it
might have a version requirement not met by the running version of R, there might be dependencies
which are not available,

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUE it will warn if some of the
packages named are not attached, and given an error if none are.

packageNotFoundError creates an error condition object of class
packageNotFoundError for signaling errors. The condition object contains the fields
packageand 1ib.loc.

Value

A character vector of paths of package directories.

See Also

path.expand and normalizePath for path standardization.

Examples

try (find.package ("knitr"))
will not give an error, maybe a warning about xallx locations it is found:
find.package ("kitty", quiet=TRUE, verbose=TRUE)

Find all .libPaths () entries a package is found:
findPkgAll <- function (pkg)
unlist (lapply (.libPaths (), function(lib)

228 findInterval
find.package (pkg, 1lib, quiet=TRUE, verbose=FALSE)))
findPkgAll ("MASS")
findPkgAll ("knitr")
findInterval Find Interval Numbers or Indices
Description

Given a vector of non-decreasing breakpoints in vec, find the interval containing each element of
x;i.e.,if 1 <-findInterval (x, V), for eachindex jin x Vi; S x5 < V41 where v := —o0,
UN+1 := 400, and N <-length (v). At the two boundaries, the returned index may differ by 1,
depending on the optional arguments rightmost.closedand all.inside.

Usage

findInterval (x, vec, rightmost.closed = FALSE, all.inside = FALSE,
left.open = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.

rightmost.closed
logical; if true, the rightmost interval, vec [N-1] .. vec[N] is treated as
closed, see below.

all.inside logical; if true, the returned indices are coerced into 1, ...,N-1, i.e., O is
mapped to 1 and N to N-1.

left.open logical; if true all the intervals are open at left and closed at right; in
the formulas below, < should be swapped with < (and > with >), and
rightmost.closed means ‘leftmost is closed’. This may be useful, e.g.,
in survival analysis computations.

Details

The function findInterval finds the index of one vector x in another, vec, where
the latter must be non-decreasing. Where this is trivial, equivalent to apply (
outer (x,vec, ">="), 1, sum), as a matter of fact, the internal algorithm uses interval search
ensuring O(nlog N) complexity where n <—length (x) (and N <-length (vec)). For (al-
most) sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval (t, sort (X)) is identical to nF,(t; X1,...,X,) where F, is the empirical
distribution function of X1, ..., X,,.

When rightmost.closed = TRUE, the result for x [j] = vec [N] (= maxwvec), is N -1 as
for all other values in the last interval.

findInterval 229

left.open = TRUE is occasionally useful, e.g., for survival data. For (anti-)symmetry reasons, it
is equivalent to using “mirrored” data, i.e., the following is always true:

identical (
findInterval (x, v, left.open= TRUE, ...) ,
N - findInterval(-x, -v[N:1], left.open=FALSE, ...))

where N <-length (vec) as above.

Value

vector of length length (x) with values in 0 : N (and NA) where N <-length (vec), or values
coerced to 1: (N-1) if and only if all.inside = TRUE (equivalently coercing all x values
inside the intervals). Note that NAs are propagated from x, and Inf values are allowed in both x
and vec.

Author(s)

Martin Maechler

See Also

approx (x,method = "constant") which is a generalization of findInterval (), ecdf
for computing the empirical distribution function which is (up to a factor of n) also basically the
same as findInterval (.).

Examples

X <- 2:18
v <- c(5, 10, 15) # create two bins [5,10) and [10,15)
cbind (x, findInterval (x, Vv))

N <- 100

X <- sort (round(stats::rt (N, df = 2), 2))

tt <- ¢ (=100, segq(-2, 2, len = 201), +100)

it <- findInterval (tt, X)

tt[it < 1 | it >= N] # only first and last are outside range (X)

'left.open = TRUE' means "mirroring"
N <- length (v)
stopifnot (identical (
findInterval(x, v, left.open=TRUE) ,
N - findInterval (-x, -vI[N:1])))

230 force

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force (x)

Arguments

x a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() vy

1f <- vector("list", 5)

for (i in seqg_along(lf)) 1f[[1i]] <- £(1)
1£f[[111() # returns 5

g <— function(y) { force(y); function() y }
lg <- vector("list", 5)

for (i in seg_along(lg)) 1g[[i]] <- g(i)
1g[[1]1]1() # returns 1

This is identical to
g <- function(y) { y; function() vy }

forceAndCall 231

forceAndCall Call a function with Some Arguments Forced

Description

Call a function with a specified number of leading arguments forced before the call if the function
is a closure.

Usage
forceAndCall (n, FUN, ...)
Arguments
n number of leading arguments to force.
FUN function to call.
arguments to FUN.
Details
forceAndCall calls the function FUN with arguments specified in If the value of FUN

is a closure then the first n arguments to the function are evaluated (i.e. their delayed evaluation
promises are forced) before executing the function body. If the value of FUN is a primitive then the
call FUN (. . .) is evaluated in the usual way.

forceAndCall is intended to help defining higher order functions like apply to behave more
reasonably when the result returned by the function applied is a closure that captured its arguments.

See Also

force,promise, closure.

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(.NAME, ..., NAOK FALSE, DUP TRUE, PACKAGE, ENCODING)

232

Arguments

.NAME

NAOK

PACKAGE

DUP, ENCODING

Details

Foreign

a character string giving the name of a C function or Fortran subroutine, or an
object of class "NativeSymbolInfo", "RegisteredNativeSymbol"
or "NativeSymbol" referring to such a name.

arguments to be passed to the foreign function. Up to 65.

if TRUE then any NA or NaN or Inf values in the arguments are passed on to
the foreign function. If FALSE, the presence of NA or NaN or Inf values is
regarded as an error.

if supplied, confine the search for a character string . NAME to the DLL given by
this argument (plus the conventional extension, ‘. so’, *.d11’,...).

This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

For back-compatibility, accepted but ignored.

These functions can be used to make calls to compiled C and Fortran 77 code. Later interfaces are
.Call and .External which are more flexible and have better performance.

These functions are primitive, and . NAME is always matched to the first argument supplied (which

should not be named). The other named arguments follow . . . and so cannot be abbreviated. For
clarity, should avoid using names in the arguments passed to . .. that match or partially match
.NAME.

Value

A list similar to the . .

. list of arguments passed in (including any names given to the arguments),

but reflecting any changes made by the C or Fortran code.

Argument types

The mapping of the types of R arguments to C or Fortran arguments is

Note: The C types

R C Fortran

integer int * integer

numeric double * double precision
—or— float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed
other SEXP not allowed

corresponding to integer and logical are int, not long as in S. This

Foreign 233

difference matters on most 64-bit platforms, where int is 32-bit and 1ong is 64-bit (but not on
64-bit Windows).

Note: The Fortran type corresponding to 1logical is integer, not logical: the difference
matters on some Fortran compilers.

Numeric vectors in R will be passed as type double * to C (and as double precision to
Fortran) unless the argument has attribute Csingle set to TRUE (use as.single or single).
This mechanism is only intended to be used to facilitate the interfacing of existing C and Fortran
code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double i; }. It may or may not be equivalent to the C99 double complex type, depending
on the compiler used.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN=-2147483648 (NA, but only if
NAOK = TRUE), and the compiled code should return one of these three values: however non-zero
values other than INT_MIN are mapped to TRUE.

Missing (N2) string values are passed to . C as the string "NA". As the C char type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA". If this distinction is important use .Call.

Using a character string with . Fortran is deprecated and will give a warning. It passes the first
(only) character string of a character vector as a C character array to Fortran: that may be usable
as character*255 if its true length is passed separately. Only up to 255 characters of the string
are passed back. (How well this works, and even if it works at all, depends on the C and Fortran
compilers and the platform.)

Lists, functions or other R objects can (for historical reasons) be passed to .C, but the .Call
interface is much preferred. All inputs apart from atomic vectors should be regarded as read-only,
and all apart from vectors (including lists), functions and environments are now deprecated.

Fortran symbol names

All Fortran compilers known to be usable to compile R map symbol names to lower case, and so
does .Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to names
not containing underscores. Such names will often work with .Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

Use . Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran 77 compiler used when configuring R, especially if the subroutine
name is not lower-case or includes an underscore. It is possible to use .C and do any necessary
symbol-name translation yourself.

Copying of arguments

Character vectors are copied before calling the compiled code and to collect the results. For other
atomic vectors the argument is copied before calling the compiled code if it is otherwise used in the
calling code.

Non-atomic-vector objects are read-only to the C code and are never copied.

234 formals

This behaviour can be changed by setting opt ions (CBoundsCheck = TRUE) . In that case raw,
logical, integer, double and complex vector arguments are copied both before and after calling the
compiled code. The first copy made is extended at each end by guard bytes, and on return it is
checked that these are unaltered. For . C, each element of a character vector uses guard bytes.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass . NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code:
such symbols are not part of the API and may be changed without warning.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
dyn.load, .Call.

The ‘Writing R Extensions’ manual.

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage
formals (fun = sys.function(sys.parent()), envir = parent.frame())
formals (fun, envir = environment (fun)) <- value
Arguments
fun a function, or see ‘Details’.
envir environment in which the function should be defined (or found via get ()
in the first case and when fun a character string).
value alist (orpairlist)of R expressions.
Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for in envir, by default from the parent frame. If it is not specified, the function calling
formals is used.

Only closures have formals, not primitive functions.

format 235

Value

formals returns the formal argument list of the function specified, as a pairlist, or NULL for
a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

formalArgs (from methods), a shortcut for names (formals (.)). args for a human-
readable version, alist, body, function.

Examples

require (stats)
formals (1m)

If you just want the names of the arguments, use formalArgs instead.
names (formals (1m))
methods:: formalArgs (lm) # same

formals returns a pairlist. Arguments with no default have type symbol (aka name) .
str(formals (1m))

formals returns NULL for primitive functions. Use it in combination with
args for this case.

is.primitive (T+7)

formals (“+7)

formals (args (T+7))

You can overwrite the formal arguments of a function (though this is
advanced, dangerous coding).
f <- function(x) a + b

formals (f) <- alist(a =, b = 3)
f # function(a, b = 3) a + b
£f(2) # result =5
format Encode in a Common Format

Description

Format an R object for pretty printing.

Usage

format (x, ...)

Default S3 method:

236 format

format (x, trim = FALSE, digits = NULL, nsmall = 0L,
Justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,

big.mark = """, big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"),

zero.print = NULL, dropOtrailing = FALSE, ...)

S3 method for class 'data.frame'
format (x, ..., justify = "none")

S3 method for class 'factor'
format (x, ...)

S3 method for class 'AsIs'

format (x, width = 12, ...)
Arguments
x any R object (conceptually); typically numeric.
trim logical; if FALSE, logical, numeric and complex values are right-justified to a

common width: if TRUE the leading blanks for justification are suppressed.

digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption ("digits™"). This is a suggestion: enough
decimal places will be used so that the smallest (in magnitude) number has this
many significant digits, and also to satisfy nsmall. (For the interpretation for
complex numbers see signif.)

nsmall the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are 0 <=
nsmall <=20.

justify should a character vector be left-justified (the default), right-justified, centred
or left alone. Can be abbreviated.

width default method: the minimum field width or NULL or O for no restriction.

AsIs method: the maximum field width for non-character objects. NULL cor-
responds to the default 12.

na.encode logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical, complex nor logical NAs, which are always
encoded as "NA".

scientific Either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options ("scipen™)). Missing values correspond to the current default
penalty.
further arguments passed to or from other methods.
big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, dropOtra

used for prettying (longish) numerical and complex sequences. Passed to
prettyNum: that help page explains the details.

format 237

Details

format is a generic function. Apart from the methods described here there are methods for
dates (see format .Date), date-times (see format.POSIXct) and for other classes such as
format .octmode and format .dist.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column. Methods for columns are often similar to as.character
but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given class "AsIs™".

format . factor converts the factor to a character vector and then calls the default method (and
so justify applies).

format .AsIs deals with columns of complicated objects that have been extracted from a data
frame. Character objects and (atomic) matrices are passed to the default method (and so width
does not apply). Otherwise it calls toSt ring to convert the object to character (if a vector or list,
element by element) and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods)
is done on display width (see nchar), taking double-width characters and the rendering of spe-
cial characters (as escape sequences, including escaping backslash but not double quote: see
print.default) into account. Thus the width is as displayed by print (quote = FALSE)
and not as displayed by cat. Character strings are padded with blanks to the display width of the
widest. (If na.encode = FALSE missing character strings are not included in the width compu-
tations and are not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least the digits significant digits. However, if all the elements then have trailing
zeroes, the number of decimal places is reduced until nsmall is reached or at least one element
has a non-zero final digit; see also the argument documentation for big. *, small. etc, above.
See the note in print ..default aboutdigits >= 16.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.
format.default (x) now provides a “minimal” string when isS4 (x) is true.

The internal code respects the option getOption ("OutDec") for the ‘decimal mark’, so if this
is set to something other than " . " then it takes precedence over argument decimal .mark.

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format .default (x, ...) to
each element of the list (after un1isting elements which are themselves lists), and then collapsing
the result for each element with paste (collapse =", "). The defaults in this case are t rim
= TRUE, justify = "none" since one does not usually want alignment in the collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

238 format.info

See Also

format .info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString,
encodeString.

Examples

format (1:10)
format (1:10, trim = TRUE)

zz <- data.frame (" (row names)"= c("aaaaa", "b"), check.names = FALSE)
format (zz)
format (zz, justify = "left")

use of nsmall

format (13.7)

format (13.7, nsmall = 3)

format (c (6.0, 13.1), digits = 2)

format (c (6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format (2731-1)
format (2731-1, scientific = TRUE)

a list

z <- list(a = letters[l:3], b = (-pi+0i)"((-2:2)/2), ¢ = ¢(1,10,100,1000),
d = c("a", "longer", "character", "string"),
a quote(a + b), e = expression(l+x))

can you find the "2" small differences?

(fl <- format (z, digits = 2))

(f2 <- format (z, digits = 2, justify = "left", trim = FALSE))
fl == f2 ## 2 FALSE, 4 TRUE
A "minimal" format () for S4 objects without their own format () method:
cc <- methods::getClassDef ("standardGeneric")
format (cc) ## "<S4 class >n
format.info format(.) Information
Description

Information is returned on how format (x,digits, nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = 0)

format.info 239

Arguments
X an atomic vector; a potential argument of format (x, ...).
digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption ("digits").
nsmall (see format (...,nsmall)).
Value

An integer vector of length 1, 3 or 6, say r.

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL.

For numeric vectors:

r(l] width (in characters) used by format (x)

r[2] number of digits after decimal point.

r[3] in 0:2; if >1, exponential representation would be used, with exponent length
of r[3]1+1.

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

See Also

format (notably about digits >=16), formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following
format.info (123) + 3
format.info (pi) # 8
format.info (1le8) # 5

(# 6

0

0

1 - exponential "le+08"
format.info (1e222) 2

- exponential "le+222"

O O o O

x <- pi*x10%c(-10,-2,0:2,8,20)

names (x) <- formatC(x, width = 1, digits = 3, format = "g")
cbind (sapply (x, format))

t (sapply(x, format.info))

using at least 8 digits right of "."
t (sapply(x, format.info, nsmall = 8))

Reset old options:
options (dd)

240 format.pval

format.pval Format P Values

Description

format .pval is intended for formatting p-values.

Usage

format.pval (pv, digits = max(l, getOption("digits") - 2),

eps = .Machine$double.eps, na.form = "NA", ...)

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation of NAs.

further arguments to be passed to format such as nsmall.

Details

format .pval is mainly an auxiliary function for print . summary. lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps]" (where ‘[eps] stands for format (eps, digits)).

Value

A character vector.

Examples

format.pval (c(stats::runif (5), pi~-100, NA))
format.pval(c (0.1, 0.0001, le-27))

formatC 241

formatC Formatting Using C-style Formats

Description

formatC () formats numbers individually and flexibly using C style format specifications.

prettyNum() is wused for “prettifying” (possibly formatted) numbers, also in
format.default.

.format.zeros (x), an auxiliary function of prettyNum (), re-formats the zeros in a vector
x of formatted numbers.

Usage
formatC (x, digits = NULL, width = NULL,
format NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"),
preserve.width = "individual",
zero.print = NULL, replace.zero = TRUE,
dropOtrailing = FALSE)
prettyNum(x, big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = getOption ("OutDec"), input.d.mark = decimal.mark,
preserve.width = c("common", "individual", "none"),

zero.print = NULL, replace.zero = FALSE,
dropOtrailing = FALSE, is.cmplx = NA,
-)

.format.zeros (x, zero.print, nx = suppressWarnings (as.numeric(x)),
replace = FALSE, warn.non.fitting = TRUE)

Arguments
x an atomic numerical or character object, possibly complex only for
prettyNum (), typically a vector of real numbers. Any class is discarded,
with a warning.
digits the desired number of digits after the decimal point (format = "£") or signif-

icant digits (format = "g",="e" or="£fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6
digits is used. If specified as more than 50, 50 will be used with a warning
unless format = "£" where it is limited to typically 324. (Not more than 15—
21 digits need be accurate, depending on the OS and compiler used. This limit
is just a precaution against segfaults in the underlying C runtime.)

242

width

format

flag

mode

big.mark

big.interval

small.mark

formatC

the total field width; if both digits and width are unspecified, width de-
faults to 1, otherwise to digits + 1. width = 0 willuse width = digits,
width < 0 means left justify the number in this field (equivalent to flag =
"—"). If necessary, the result will have more characters than width. For char-
acter data this is interpreted in characters (not bytes nor display width).

equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x [1] into
scientific format only if it saves space to do so and drop trailing zeros and
decimal point - unless flag contains "#" which keeps trailing zeros for the
"g", "G" formats.

"fg" (our own hybrid format) uses fixed format as "£", but digits as the
minimum number of significant digits. This can lead to quite long result strings,
see examples below. Note that unlike signif this prints large numbers with
more significant digits than digits. Trailing zeros are dropped in this format,
unless £ lag contains " #".

for formatC, a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243) or the C+99 standard.

"0" pads leading zeros;

"—" does left adjustment,

"+" ensures a sign in all cases, i.e., "+" for positive numbers ,

" " if the first character is not a sign, the space character " " will be used
instead.

"#" specifies “an alternative output form”, specifically depending on format.

"/ " on some platform—locale combination, activates “thousands’ grouping” for
decimal conversion,

"I" in some versions of ‘glibc’ allow for integer conversion to use the lo-
cale’s alternative output digits, if any.

There can be more than one of these flags, in any order. Other characters used
to have no effect for character formatting, but signal an error since R 3.4.0.

"double" (or "real"), "integer" or "character". Default: Deter-
mined from the storage mode of x.

character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

see big.mark above; defaults to 3.

character; if not empty used as mark between every small.interval deci-
mals after (hence small) the decimal point.

small.interval

see small.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.

input.d.mark

if x is character, the character known to have been used as the numeric
decimal point in x.

formatC 243

preserve.width
string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common", the
default, corresponds to format-like behavior whereas "individual™" is the
default in formatC (). Value can be abbreviated.

zero.print logical, character string or NULL specifying if and how zeros should be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

replace.zero, replace
logical; if zero.print is a character string, indicates if the exact zero entries
in x should be simply replaced by zero.print. Otherwise, depending on
the widths of the respective strings, the (formatted) zeroes are partly replaced
by zero.print and then padded with " " to the right were applicable. In
that case (false replace([.zero]), if the zero.print string does not fit, a
warning is produced (if warn.non. fitting is true).
This works via prettyNum (), which calls
.format.zeros (x, replace=replace.zero) three times in this
case, see the ‘Details’.

warn.non.fitting
logical; if it is true, replace[.zero] is false and the zero.print string
does not fit, a warning is signalled.

dropOtrailing
logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats. This is simply passed to
prettyNum (), see the ‘Details’.

is.cmplx optional logical, to be used when x is "character" to indicate if it stems
from complex vector or not. By default (NA), x is checked to ‘look like’
complex.

arguments passed to format.

nx numeric vector of the same length as x, typically the numbers of which the
character vector x is the pre-format.

Details

For numbers, formatC() calls prettyNum() when needed which itself calls
.format.zeros (x, replace=replace.zero). (“when needed”: when zero.print is
not NULL, dropOtrailingis true, or one of big.mark, small.mark, or decimal .mark
is not at default.)

If you set format it overrides the setting of mode, so formatC(123.45,mode =
"double", format = "d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so
formatC(c(6.11,13.1),digits =2, format ="£fg") gives c("6.1","13M).
If you want common formatting for several numbers, use format.

prettyNum is the utility function for prettifying x. x can be complex (or
format (<complex>)), here. If x is not a character, format (x[i],...) is applied

244 formatC

to each element, and then it is left unchanged if all the other arguments are at their defaults. Use the
input.d.mark argument for prettyNum (x) when x is a character vector not resulting
from something like format (<number>) with a period as decimal mark.

Because gsub is used to insert the big.mark and small.mark, special characters need escap-
ing. In particular, to insert a single backslash, use "\\\\".

The C doubles used for R numerical vectors have signed zeros, which formatC may output as —0,
-0.000....

There is a warning if big.mark and decimal.mark are the same: that would be confusing to
those reading the output.

Value

A character object of same size and attributes as x (after discarding any class), in the current locale’s
encoding.

Unlike format, each number is formatted individually. Looping over each element of x, the C
function sprintf (...) is called for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Note

The default for decimal.mark in formatC () was changed in R 3.2.0: for use within
print methods in packages which might be used with earlier versions: use decimal .mark
= getOption ("OutDec") explicitly.

Author(s)

formatC was originally written by Bill Dunlap for S-PLUS, later much improved by Martin
Maechler.

It was first adapted for R by Friedrich Leisch and since much improved by the R Core team.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

See Also

format.

sprintf for more general C-like formatting.

Examples

xx <= pi x 10" (-5:4)

cbind (format (xx, digits = 4), formatC(xx))

cbind (formatC (xx, width = 9, flag = "-"))

cbind (formatC(xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind (format (xx, digits = 4), formatC(xx, digits = 4, format = "fg"))

formatC 245

f <= (=2:4); f <= fx1le6"f

Default ("g") format:

formatC (pixf)

Fixed ("f") format, more than one flag ('width' partly "enlarged"):
cbind (formatC(pixf, digits = 3, width=9, format = "f", flag = "0+"))

formatC (c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width = 8, digits = 1)

note that some of the results here depend on the implementation
of long-double arithmetic, which is platform-specific.
xx <= c(le-12,-3.98765e-10,1.45645e-69,1e-70,pix1le37,3.44e4)

1 2 3 4 5 6

formatC (xx)

formatC(xx, format = "fg") # special "fixed" format.
formatC(xx[1:4], format = "f", digits = 75) #>> even longer strings
formatC(c(3.24, 2.3e-6), format = "f", digits = 11)

formatC(c(3.24, 2.3e-6), format = "f", digits = 11, dropOtrailing = TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:
prettyNum(r, big.mark
Some Europeans:
prettyNum(r, big.mark = "'", decimal.mark = ",")

ll,")

(dd <- sapply(1:10, function(i) paste((9:0)[1:i], collapse = "")))
prettyNum(dd, big_mark = mimy

examples of 'small.mark'

PN <- stats::pnorm(l:7, lower.tail = FALSE)

cbind (format (pN, small.mark = " ", digits 15))

cbind (formatC (pN, small.mark " ", digits = 17, format = "f"))

cbind (ff <- format (1.2345 + 107(0:5), width = 11, big.mark = "'"))
all with same width (one more than the specified minimum)

individual formatting to common width:

fc <- formatC(1.234 + 107(0:8), format = "fg", width = 11, big.mark = "'")
cbind (fc)

Powers of two, stored exactly, formatted individually:

pow.2 <- formatC(2"-(1:32), digits = 24, width = 1, format = "fg")

nicely printed (the last line showing 5732 exactly):
noquote (cbind (pow.2))

complex numbers:
r <- 10.0000001; rv <— (r/10)"(1:10)
(zv <= (rv + li*rv))
op <- options(digits = 7) ## (system default)
(pnv <— prettyNum(zv))
stopifnot (pnv == "1+1i", pnv == format (zv),
pnv == prettyNum(zv, dropOtrailing = TRUE))
more digits change the picture:

246 formatDL

options (digits = 8)

head (fv <- format (zv), 3)

prettyNum (fv)

prettyNum (fv, dropOtrailing = TRUE) # a bit nicer
options (op)

The ' flag
doLC <- FALSE # <= R warns, so change to TRUE manually if you want see the effect
if (doLC) |

0ldLC <- Sys.getlocale ("LC_NUMERIC")
Sys.setlocale ("LC_NUMERIC", "de_CH.UTF-8") 1}
formatC(1.234 + 10~(0:4), format = "fg", width = 11, flag = "'")
#H -——> ... " 1r'oo1m " 10'001" on supported platforms
if (doLC) ## revert, typically to "C"
Sys.setlocale ("LC_NUMERIC", 0ldLC)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL (x, vy, style = c("table", "list"),
width = 0.9 » getOption("width"), indent = NULL)

Arguments
X a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.
y a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.
style a character string specifying the rendering style of the description information.
Can be abbreviated. If "table", a two-column table with items and descrip-
tions as columns is produced (similar to Texinfo’s @table environment). If
"list", a LaTeX-style tagged description list is obtained.
width a positive integer giving the target column for wrapping lines in the output.
indent a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/ 9 for list style.
Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent -3 characters are displayed on a line of their own.

function

Value

a character vector with the formatted entries.

Examples

Provide a nice summary of the numerical characteristics of the

machine R is running on:

writelLines (formatDL (unlist (.Machine)))

Inspect Sys.getenv () results in "list" style (by default, these are
printed in "table" style):

247

writeLines (formatDL (Sys.getenv (), style = "list"))
function Function Definition
Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return (value)

Arguments
arglist Empty or one or more name or name=expression terms.
expr An expression.
value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote”’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned. (The expression is evaluated as soon as return is called, in the evaluation
frame of the function and before any on . exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

Technical details

This type of function is not the only type in R: they are called closures (a name with origins in
LISP) to distinguish them from primitive functions.

A closure has three components, its formals (its argument list), its body (expr in the ‘Usage’
section) and its environment which provides the enclosure of the evaluation frame when the
closure is used.

There is an optional further component if the closure has been byte-compiled. This is not normally
user-visible, but is indicated when functions are printed.

248 funprog

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args.
formals, body and environment for accessing the component parts of a function.

debug for debugging; using invisible inside return (.) for returning invisibly.

Examples

norm <- function (x) sqgrt (x%$*%$x)
norm(1:4)

An anonymous function:

(function(x, y){ z <- x*"2 + y"2; x+ty+tz }) (0:7, 1)
funprog Common Higher-Order Functions in Functional Programming Lan-
guages
Description

Reduce uses a binary function to successively combine the elements of a given vector and a pos-
sibly given initial value. Filter extracts the elements of a vector for which a predicate (logical)
function gives true. Find and Position give the first or last such element and its position in
the vector, respectively. Map applies a function to the corresponding elements of given vectors.
Negate creates the negation of a given function.

Usage

Reduce (f, x, init, right = FALSE, accumulate = FALSE)
Filter (f, x)

Find(f, x, right = FALSE, nomatch = NULL)

Map (£, ...)

Negate (f)

Position(f, x, right = FALSE, nomatch = NA_integer_)

Arguments
£ a function of the appropriate arity (binary for Reduce, unary for Filter,
Find and Position, k-ary for Map if this is called with k& arguments). An
arbitrary predicate function for Negate.
X a vector.

init an R object of the same kind as the elements of x.

funprog 249

right a logical indicating whether to proceed from left to right (default) or from right
to left.

accumulate a logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

vectors.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. Le., a left reduce
computes [y = f(v1,v2), la = f(l1,v3), etc., and returns {,,_; = f(l,—2,v,), and a right reduce
does -1 = f(vp—1,Vn), Tn—2 = f(vUp_2,7,—1) and returns , = f(v1,7r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that f is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell’s scan functions.

Filter applies the unary predicate function £ to each element of x, coercing to logical if neces-
sary, and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds
to filter in Haskell or remove-1if-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if and position-if, re-
spectively. If there is an element for which the predicate function gives true, then the first or last
such element or its position is returned depending on whether right is false (default) or true, re-
spectively. If there is no such element, the value specified by nomatch is returned. The current
implementation is not optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to
Common Lisp’s mapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function £, it creates
a function which returns the logical negation of what f returns.

See Also
Function clusterMap and mcmapply (not Windows) in package parallel provide parallel ver-
sions of Map.

Examples

A general-purpose adder:
add <- function(x) Reduce("+", x)
add(list (1, 2, 3))

250 gc

Like sum(), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.

More generally, many generics meant to work on arbitrarily many

arguments can be defined via reduction:

FOO <- function(...) Reduce (F0O02, list(...))

FOO2 <- function(x, y) UseMethod ("FOO2")

FOO() methods can then be provided via FOO02 () methods.

A general-purpose cumulative adder:
cadd <- function (x) Reduce("+", x, accumulate = TRUE)
cadd (seq_len (7))

A simple function to compute continued fractions:

cfrac <- function(x) Reduce (function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:

cfrac(c(3, 7, 15, 1, 292))

Continued fraction approximation for Euler's number (e):

cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log(exp (acos(cos(0))))
Reduce (Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)
function (x) Reduce (Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate (function(x) 1 + 1 / x, 30) (1)
which is the same as
cfrac(rep.int (1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (¢t + x / t) / 2, as a function of the initial value:
asqgrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqrt (2, 30) (10) # Starting from a positive value => +sqrt (2)
asqgrt (2, 30) (-1) # Starting from a negative value => -sqgrt (2)

A list of all functions in the base environment:

funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:

names (Filter (function(f) length(formals(f)) > 10, funs))

Number of functions in base with a '...' argument:
length (Filter (function (f)
any (names (formals (f)) %in% "..."),
funs))

Find all objects in the base environment which are *notx functions:
Filter (Negate (is.function), sapply (ls (baseenv()), get, baseenv()))

gc Garbage Collection

gC

251

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic
collection is either silent (verbose = FALSE) or prints memory usage statistics (verbose =
TRUE).

Usage

gc (verbose = getOption ("verbose"), reset = FALSE, full = TRUE)
gcinfo (verbose)

Arguments
verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUE the values for maximum space used are reset to the current
values.
full logical; if TRUE a full collection is performed; otherwise only more recently
allocated objects may be collected.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.
For an accurate report full = TRUE should be used.

It can be useful to call gc after a large object has been removed, as this may prompt R to return
memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells", a relic of an
earlier allocator (that used a vector heap).

When gcinfo (TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0)
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger", each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells™", a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

252 gc.time

The final two columns show the maximum space used since the last call to gc (reset = TRUE)
(or since R started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.
Memory on R’s memory management, and gctorture if you are an R developer.

reg.finalizer for actions to happen at garbage collection.

Examples

gc() #- do it now

gcinfo (TRUE) #-- in the future, show when R does it
X <- integer (100000); for(i in 1:18) x <- c(x, 1)
gcinfo (verbose = FALSE) #-- don't show it anymore

gc (TRUE)

gc (reset = TRUE)

gc.time Report Time Spent in Garbage Collection

Description
This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time (on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Details

Due to timer resolution this may be under-estimate.

This is a primitive.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA.

gctorture 253

See Also

gc, proc.time for the timings for the session.

Examples

gc.time ()

gctorture Torture Garbage Collector

Description
Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture (on = TRUE)
gctorture? (step, wait = step, inhibit_release = FALSE)

Arguments
on logical; turning it on/off.
step integer; run GC every step allocations; step = 0 turns the GC torture off.
wait integer; number of allocations to wait before starting GC torture.

inhibit_release
logical; do not release free objects for re-use: use with caution.

Details

Calling gctorture (TRUE) instructs the memory manager to force a full GC on every allocation.
gctorture? provides a more refined interface that allows the start of the GC torture to be deferred
and also gives the option of running a GC only every step allocations.

The third argument to gct orture? is only used if R has been configured with a strict write barrier
enabled. When this is the case all garbage collections are full collections, and the memory manager
marks free nodes and enables checks in many situations that signal an error when a free node is
used. This can help greatly in isolating unprotected values in C code. It does not detect the case
where a node becomes free and is reallocated. The inhibit_release argument can be used to
prevent such reallocation. This will cause memory to grow and should be used with caution and in
conjunction with operating system facilities to monitor and limit process memory use.

gctorture2 can also be invoked via environment variables at the start of the R session.
R_GCTORTURE corresponds to the step argument, R_GCTORTURE_WAIT to wait, and
R_GCTORTURE_INHIBIT_RELEASE to inhibit_release.

Value

Previous value of first argument.

254 get

Author(s)

Peter Dalgaard and Luke Tierney

get Return the Value of a Named Object

Description

Search by name for an object (get) or zero or more objects (mget).

Usage

get (x, pos = -1, envir = as.environment (pos), mode = "any",
inherits = TRUE)

mget (x, envir as.environment (-1), mode = "any", ifnotfound,
inherits = FALSE)

dynGet (x, ifnotfound = , minframe = 1L, inherits = FALSE)

Arguments
x For get, an object name (given as a character string).
For mget, a character vector of object names.
pos, envir where to look for the object (see ‘Details’); if omitted search as if the name of
the object appeared unquoted in an expression.
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?

ifnotfound Formget, a 11ist of values to be used if the item is not found: it will be coerced
to a list if necessary.
For dynGet any R object, e.g., acall to stop ().

minframe integer specifying the minimal frame number to look into.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as a positive integer (the position in the search list); as the character string name of an
element in the search list; or as an environment (including using sys.frame to access the
currently active function calls). The default of —1 indicates the current environment of the call to
get. The envir argument is an alternative way to specify an environment.

These functions look to see if each of the name(s) x have a value bound to it in the specified environ-
ment. If inheritsis TRUE and a value is not found for x in the specified environment, the enclos-
ing frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

get 255

If mode is specified then only objects of that type are sought. mode here is a mixture of the mean-
ings of typeof andmode: "function™" covers primitive functions and operators, "numeric",
"integer" and "double" all refer to any numeric type, "symbol" and "name" are equiva-
lent but "1anguage" must be used (and not "call" or " (").

For mget, the values of mode and ifnotfound can be either the same length as x or of length
1. The argument ifnotfound must be a list containing either the value to use if the requested
item is not found or a function of one argument which will be called if the item is not found, with
argument the name of the item being requested.

dynGet () is somewhat experimental and to be used inside another function. It looks for an object
in the callers, i.e., the sys. frame () s of the function. Use with caution.

Value

For get, the object found. If no object is found an error results.

For mget, a named list of objects (found or specified via 1 fnot found).

Note

The reverse (or “inverse”) of a <-get (nam) is assign (nam, a), assigning a to name nam.

inherits = TRUE is the default for get in R but not for S where it had a different meaning.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

exists for checking whether an object exists; get 0 for an efficient way of both checking exis-
tence and getting an object.

assign, the inverse of get (), see above.

Use getAnywhere for searching for an object anywhere, including in other namespaces, and
getFromNamespace to find an object in a specific namespace.

Examples
get ("%o%")

test mget
el <- new.env ()
mget (letters, el, ifnotfound = as.list (LETTERS))

256

getDLLRegisteredRoutines

getDLLRegisteredRoutines

Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortranand .External.

Usage

getDLLRegisteredRoutines (dll, addNames = TRUE)

Arguments

dll

addNames

Details

a character string or DLLInfo object. The character string specifies the
file name of the DLL of interest, and is given without the file name ex-
tension (e.g., the ‘.d11’ or ‘.so’) and with no directory/path informa-
tion. So a file ‘MyPackage/libs/MyPackage.so’ would be specified as
‘MyPackage’.

The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by
DLL file name).

The DLLInfo approach avoids any ambiguities related to two DLLSs having the
same name but corresponding to files in different directories.

a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information.

There is print methods for the class, which prints only the types which have registered routines.

Value

A list of class "DLLRegisteredRoutines" with four elements corresponding to the routines
registered for the .C, .Call, .Fortran and .External interfaces. Each is a list (of class
"NativeRoutineList™) with as many elements as there were routines registered for that in-

terface.

getLoadedDLLs 257

Each element identifies a routine and is an object of class "NativeSymbolInfo". An object of
this class has the following fields:

name the registered name of the routine (not necessarily the name in the C code).

address the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

dll an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters

the number of arguments the native routine is to be called with.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

‘Writing R Extensions’ manual for symbol registration.

Duncan Temple Lang (2001). “In Search of C/C++ & FORTRAN Routines”. R News, 1(3), 20-23.
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf.

See Also

getLoadedDLLs, getNativeSymbolInfo for information on the entry points listed.

Examples

dlls <- getLoadedDLLs ()
getDLLRegisteredRoutines (dlls[["base"]])

getDLLRegisteredRoutines ("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description
This function provides a way to get a list of all the DLLs (see dyn . 1oad) that are currently loaded
in the R session.

Usage

getLoadedDLLs ()

Details

This queries the internal table that manages the DLLs.

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

258 getNativeSymbollnfo

Value

Anobject of class "DLLInfoList" whichisa 1ist with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class "DLLInfo" which has
the following entries.

name the abbreviated name.
path the fully qualified name of the loaded DLL.
dynamicLookup

a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has a method for $ which can be used to resolve native symbols
within that DLL. Therefore, one must access the R-level elements described above using [[,
eg x[["name"]] orx[["handle"]].

Note
We are starting to use the handle elements in the DLL object to resolve symbols more directly in

R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

Examples

getLoadedDLLs ()

utils::tail (getLoadedDLLs (), 2) # the last 2 loaded ones, still a DLLInfolist

getNativeSymbolInfo
Obtain a Description of one or more Native (C/Fortran) Symbols

getNativeSymbollnfo 259

Description

This finds and returns a description of one or more dynamically loaded or ‘exported’ built-in native
symbols. For each name, it returns information about the name of the symbol, the library in which
it is located and, if available, the number of arguments it expects and by which interface it should
be called (i.e .Call, .C, .Fortran,or .External). Additionally, it returns the address of the
symbol and this can be passed to other C routines. Specifically, this provides a way to explicitly
share symbols between different dynamically loaded package libraries. Also, it provides a way to
query where symbols were resolved, and aids diagnosing strange behavior associated with dynamic
resolution.

Usage

getNativeSymbolInfo (name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments
name the name(s) of the native symbol(s).
PACKAGE an optional argument that specifies to which DLL to restrict the search for this
symbol. If this is "base", we search in the R executable itself.
unlist a logical value which controls how the result is returned if the function is called

with the name of a single symbol. If unlist is TRUE and the number of sym-
bol names in name is one, then the NativeSymbolInfo object is returned.
If it is FALSE, then a list of NativeSymbolInfo objects is returned. This
is ignored if the number of symbols passed in name is more than one. To be
compatible with earlier versions of this function, this defaults to TRUE.
withRegistrationInfo

a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return just the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (. Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the ele-
ments of name in the call. Each NativeSymbolInfo object is a list containing the following

elements:
name the name of the symbol, as given by the name argument.
address if withRegistrationInfo is FALSE, this is the native memory address

of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of

260

getNativeSymbollnfo

class NativeSymbol. If withRegistrationInfo is TRUE and regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
usedincallsto .Call, .C, .Fortranand .External.

dll a list containing 3 elements:
name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.
path the fully qualified name of the DLL.

dynamicLookup a logical value indicating whether dynamic resolution is used
when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field

numParameters
the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

If any of the symbols is not found, an error is raised.

If name contains only one symbol name and unlist is TRUE, then the single
NativeSymbolInfo is returned rather than the list containing that one element.

Note

The third element of the NativeSymbolInfo objects was renamed from package to d11 in
R version 3.6.0, for consistency with the names of the NativeSymbolInfo objects returned by
getDLLRegisteredRoutines ().

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., n1s). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R-News, volume 1, number 3, 2001, p20-23 (https://www.r—-project.org/doc/
Rnews/Rnews_2001-3.pdf).

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

gettext 261

See Also
getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call,
dyn.load.
gettext Translate Text Messages
Description

If Native Language Support was enabled in this build of R, attempt to translate character vectors or
set where the translations are to be found.

Usage
gettext (..., domain = NULL)
ngettext (n, msgl, msg2, domain = NULL)
bindtextdomain (domain, dirname = NULL)
Arguments
One or more character vectors.
domain The ‘domain’ for the translation.
n a non-negative integer.
msgl the message to be used in English for n = 1.
msg2 the message to be used in English forn=0,2,3,
dirname The directory in which to find translated message catalogs for the domain.
Details

IfdomainisNULL or "",and gettext or ngettext is called from a function in the namespace
of package pkg the domain is set to "R-pkg". Otherwise there is no default domain.

If a suitable domain is found, each character string is offered for translation, and replaced by its
translation into the current language if one is found. The value (logical) NA suppresses any transla-
tion.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg".

For gettext, leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of $d to be used in sprintf. If English is used, msgl is
returned if n == 1 and msg2 in all other cases.

bindtextdomain is a wrapper for the C function of the same name: your system may have a
man page for it. With a non-NULL dirname it specifies where to look for message catalogues:
with domain = NULL it returns the current location.

262 getwd

Value

For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it
failed.

See Also

stop and warning make use of gettext to translate messages.

xgettext for extracting translatable strings from R source files.

Examples

bindtextdomain ("R") # non-null if and only if NLS is enabled

for(n in 0:3)
print (sprintf (ngettext (n, "%d variable has missing values",
"$d variables have missing values"),

n))

Not run:

for translation, those strings should appear in R-pkg.pot as
msgid "$d variable has missing values"

msgid_plural "%d variables have missing values"

msgstr[0] ""
msgstr[1l] ""

End (Not run)

miss <- c("one", "or", "another")
cat (ngettext (length(miss), "variable", "variables"),
paste (sQuote (miss), collapse =", "),
ngettext (length (miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat (sprintf (ngettext (length (miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n"),
paste (sQuote (miss), collapse =", ")))

getwd Get or Set Working Directory

Description

getwd returns an absolute filepath representing the current working directory of the R process;
setwd (dir) isused to set the working directory to dir.

gl 263

Usage
getwd ()
setwd (dir)
Arguments

dir A character string: tilde expansion will be done.

Details

See files for how file paths with marked encodings are interpreted.

Value

getwd returns a character string or NULL if the working directory is not available. On Windows
the path returned will use / as the path separator and be encoded in UTF-8. The path will not have
a trailing / unless it is the root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly and with the same conventions as
getwd. It will give an error if it does not succeed (including if it is not implemented).

Note

Note that the return value is said to be an absolute filepath: there can be more than one repre-
sentation of the path to a directory and on some OSes the value returned can differ after changing
directories and changing back to the same directory (for example if symbolic links have been tra-
versed).

See Also

list.files for the contents of a directory.

normalizePath for a ‘canonical’ path name.

Examples

(WD <- getwd())
if (!is.null (WD)) setwd (WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = nxk, labels = seqg_len(n), ordered = FALSE)

264 grep

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total
length of 1ength.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor ().

Examples

First control, then treatment:

gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s

gl(2, 1, 20)

alternating pairs of 1s and 2s

gl(2, 2, 20)

grep Pattern Matching and Replacement

Description

grep, grepl, regexpr, gregexpr and regexec search for matches to argument pattern
within each element of a character vector: they differ in the format of and amount of detail in the
results.

sub and gsub perform replacement of the first and all matches respectively.

Usage

grep (pattern, x, ignore.case FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)

grepl (pattern, x, ignore.case FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

sub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

&rep

gsub (pattern, replacement, x, ignore.case = FALSE, perl =
fixed = FALSE, useBytes = FALSE)
regexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)
gregexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)
regexec (pattern, text, ignore.case = FALSE, perl = FALSE,

265

FALSE,

fixed =

Arguments

pattern

x, text

ignore.case

perl

value

fixed

useBytes

invert

replacement

Details

FALSE, useBytes = FALSE)

character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to acharacter string if possible. If a character vector of length
2 or more is supplied, the first element is used with a warning. Missing values
are allowed except for regexpr, gregexpr and regexec.

a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector. Long vectors are supported.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

logical. Should Perl-compatible regexps be used?

if FALSE, a vector containing the (integer) indices of the matches deter-
mined by grep is returned, and if TRUE, a vector containing the matching ele-
ments themselves is returned.

logical. If TRUE, pattern is a string to be matched as is. Overrides all con-
flicting arguments.

logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

logical. If TRUE return indices or values for elements that do not match.

a replacement for matched pattern in sub and gsub. Coerced to character if
possible. For £ixed = FALSE this can include backreferences "\1" to "\ 9"
to parenthesized subexpressions of pattern. For perl = TRUE only, it can
also contain "\U" or "\L" to convert the rest of the replacement to upper or
lower case and "\E" to end case conversion. If a character vector of length 2 or
more is supplied, the first element is used with a warning. If NA, all elements in
the result corresponding to matches will be set to NA.

Arguments which should be character strings or character vectors are coerced to character if possi-

ble.

Each of these functions operates in one of three modes:

266 grep

1. fixed = TRUE: use exact matching.
2. perl = TRUE: use Perl-style regular expressions.

3. fixed =FALSE, perl = FALSE: use POSIX 1003.2 extended regular expressions (the de-
fault).

See the help pages on regular expression for details of the different types of regular expressions.

The two = sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences. If replacement contains backreferences which are not
defined in pattern the result is undefined (but most often the backreference is taken to be "").

For regexpr, gregexpr and regexec it is an error for pattern to be NA, otherwise NA is
permitted and gives an NA match.

Both grep and grepl take missing values in x as not matching a non-missing pattern.

The main effect of useBytes = TRUE is to avoid errors/warnings about invalid inputs and spurious
matches in multibyte locales, but for regexpr it changes the interpretation of the output. It inhibits
the conversion of inputs with marked encodings, and is forced if any input is found which is marked
as "bytes" (see Encoding).

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE.

regexpr and gregexpr with perl = TRUE allow Python-style named captures, but not for long
vector inputs.

Invalid inputs in the current locale are warned about up to 5 times.

Caseless matching with perl = TRUE for non-ASCII characters depends on the PCRE library
being compiled with ‘Unicode property support’, which PCRE2 is by default.

Value

grep (value = FALSE) returns a vector of the indices of the elements of x that yielded a match
(or not, for invert = TRUE). This will be an integer vector unless the input is a long vector, when
it will be a double vector.

grep (value = TRUE) returns a character vector containing the selected elements of x (after
coercion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of x).

sub and gsub return a character vector of the same length and with the same attributes as x (after
possible coercion to character). Elements of character vectors x which are not substituted will
be returned unchanged (including any declared encoding). If useBytes = FALSE a non-ASCII
substituted result will often be in UTF-8 with a marked encoding (e.g., if there is a UTF-8 input, and
in a multibyte locale unless fixed = TRUE). Such strings can be re-encoded by enc2native.

regexpr returns an integer vector of the same length as text giving the starting position of
the first match or —1 if there is none, with attribute "match.length", an integer vector giv-
ing the length of the matched text (or —1 for no match). The match positions and lengths are
in characters unless useBytes = TRUE is used, when they are in bytes (as they are for ASCII-
only matching: in either case an attribute useBytes with value TRUE is set on the result). If
named capture is used there are further attributes "capture.start", "capture.length"
and "capture.names".

grep 267

gregexpr returns a list of the same length as text each element of which is of the same form as
the return value for regexpr, except that the starting positions of every (disjoint) match are given.

regexec returns a list of the same length as text each element of which is either —1 if there
is no match, or a sequence of integers with the starting positions of the match and all substrings
corresponding to parenthesized subexpressions of pattern, with attribute "match.length" a
vector giving the lengths of the matches (or —1 for no match). The interpretation of positions and
length and the attributes follows regexpr.

Where matching failed because of resource limits (especially for per1 = TRUE) this is regarded as
a non-match, usually with a warning.

Warning

The POSIX 1003.2 mode of gsub and gregexpr does not work correctly with repeated word-
boundaries (e.g., pattern = "\b"). Use perl = TRUE for such matches (but that may not work
as expected with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will
want to consider the options used. Generally per1 = TRUE will be faster than the default regular
expression engine, and fixed = TRUE faster still (especially when each pattern is matched only a
few times).

If you are working in a single-byte locale and have marked UTF-8 strings that are representable
in that locale, convert them first as just one UTF-8 string will force all the matching to be done in
Unicode, which attracts a penalty of around 3 x for the default POSIX 1003.2 mode.

If you can make use of useBytes = TRUE, the strings will not be checked before matching, and
the actual matching will be faster. Often byte-based matching suffices in a UTF-8 locale since byte
patterns of one character never match part of another.

PCRE-based matching by default used to put additional effort into ‘studying’ the compiled pat-
tern when x/text has length 10 or more. That study may use the PCRE JIT compiler on plat-
forms where it is available (see pcre_config). As from PCRE2 (PCRE version >= 10.00
as reported by ext SoftVersion), there is no study phase, but the patterns are optimized au-
tomatically when possible, and PCRE JIT is used when enabled. The details are controlled by
options PCRE_study and PCRE_use_JIT. (Some timing comparisons can be seen by run-
ning file ‘tests/PCRE.R’ in the R sources (and perhaps installed).) People working with PCRE
and very long strings can adjust the maximum size of the JIT stack by setting environment vari-
able R_PCRE_JIT_STACK_MAXSIZE before JIT is used to a value between 1 and 1000 in MB:
the default is 64. When JIT is not used with PCRE version < 10.30 (that is with PCRE1 and old
versions of PCRE2), it might also be wise to set the option PCRE_1imit_recursion.

Note

Aspects will be platform-dependent as well as local-dependent: for example the implementation of
character classes (except [:digit:] and [:xdigit:]). One can expect results to be consis-
tent for ASCII inputs and when working in UTF-8 mode (when most platforms will use Unicode
character tables, although those are updated frequently and subject to some degree of interpretation
—is a circled capital letter alphabetic or a symbol?). However, results in 8-bit encodings can differ
considerably between platforms, modes and from the UTF-8 versions.

268 grep

Source

The C code for POSIX-style regular expression matching has changed over the years. As from R
2.10.0 (Oct 2009) the TRE library of Ville Laurikari (https://github.com/laurikari/
tre) is used. The POSIX standard does give some room for interpretation, especially in the han-
dling of invalid regular expressions and the collation of character ranges, so the results will have
changed slightly over the years.

For Perl-style matching PCRE2 or PCRE (https://www.pcre.orqg)is used: again the results
may depend (slightly) on the version of PCRE in use.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression (aka regexp) for the details of the pattern specification.

regmatches for extracting matched substrings based on the results of regexpr, gregexpr
and regexec.

glob2rx to turn wildcard matches into regular expressions.
agrep for approximate matching.

charmatch, pmatch for partial matching, mat ch for matching to whole strings, startsWith
for matching of initial parts of strings.

tolower, toupper and chartr for character translations.

apropos uses regexps and has more examples.

grepRaw for matching raw vectors.

Options PCRE_1imit_recursion, PCRE_study and PCRE_use_JIT.

extSoftVersion for the versions of regex and PCRE libraries in use, pcre_config for more
details for PCRE.

Examples

grep ("[a-z]", letters)

txt <= c("arm","foot","lefroo", "bafoobar")
if (length (i <- grep("foo", txt)))

cat ("'foo' appears at least once in\n\t", txt, "\n")
i # 2 and 4
txt[1]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub(" ([ab}) u’ "\\1_\\1_"’ "sbe and ABC")

txt <- ¢ ("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
lltoll, Ilsharell’ lland"’ "Change", llit."’
wr, "By", "contrast,", "the", "GNU", "General", "Public", "License",

https://github.com/laurikari/tre
https://github.com/laurikari/tre
https://www.pcre.org

grep 269

"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"tOH, "make"’ "Sure", "the", "SOftWare", "j_S",
"free", "for", "all", "itS", "usersll)
(i <- grep("[gul", txt)) # indices
stopifnot (txt[i] == grep("[gul", txt, value = TRUE))

Note that for some implementations character ranges are

locale-dependent (but not currently). Then [b-e] in locales such as
en_US may include B as the collation order is aAbBcCdDe

(ot <= sub("[b-e]l",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

In caseless matching, ranges include both cases:

a <- grep("[b-el", txt, value = TRUE)

b <- grep("[b-e]", txt, ignore.case = TRUE, value = TRUE)

setdiff (b, a)

txt [gsub("g","#", txt) !=
gsub ("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr ("en", txt)
gregexpr ("e", txt)
Using grepl () for filtering

Find functions with argument names matching "warn":
findArgs <- function (env, pattern) {

nms <- ls(envir = as.environment (env))
nms <- nms[is.na(match(nms, c("F","T")))] # <-- work around "checking hack"
aa <- sapply(nms, function(.) { o <- get(.)

if (is.function (o)) names (formals (o)) })
iw <- sapply(aa, function(a) any(grepl (pattern, a, ignore.case=TRUE)))
aaliw]
}

findArgs ("package:base", "warn")

trim trailing white space

str <- "Now is the time "

sub (" +$", "", str) ## spaces only

what 1s considered 'white space' depends on the locale.
sub (" [[:space:]]+$", "", str) ## white space, POSIX-style

what PCRE considered white space changed in version 8.34: see ?regex
sub ("\\s+$", "", str, perl = TRUE) ## PCRE-style white space

capitalizing

txt <- "a test of capitalizing"
gsub (" (\\w) (\\w=*)", "\\U\\I\\L\\2", txt, perl=TRUE)
gsub ("\\b (\\w) ", "NAUNN\L", txt, perl=TRUE)

txt2 <- "useRs may fly into JFK or laGuardia"
gsub (" (\\w) (\\wx) (\\w) ", "\\UN\I\\E\\2\\U\\3", txt2, perl=TRUE)
sub (" (\\w) (\\wx) (\\w) ", "\\NUN\IN\EA\2\\U\\3", txt2, perl=TRUE)

270 grepRaw

named capture

notables <- ¢ (" Ben Franklin and Jefferson Davis",
"\tMillard Fillmore")

name groups 'first' and 'last'

name.rex <- " (?<first>[[:upper:]][[:lower:]]+) (?<last>[[:upper:]][[:lower:]]+)"
(parsed <- regexpr (name.rex, notables, perl = TRUE))
gregexpr (name.rex, notables, perl = TRUE) [[2]]

parse.one <- function(res, result) {
m <- do.call(rbind, lapply(seq_along(res), function(i) {

if (result[i] == -1) return("")
st <- attr(result, "capture.start")[i,]
substring(res[i], st, st + attr(result, "capture.length")[i,] - 1)

1))
colnames (m) <- attr(result, "capture.names")
m

}

parse.one (notables, parsed)

Decompose a URL into its components.

Example by LT (http://www.cs.uiowa.edu/~luke/R/regexp.html) .

x <— "http://stat.umn.edu:80/xyz"

m <- regexec ("M (([":1+)://)2([":/1+) (: ([0=-9]1+))2(/.%)", x)

m

regmatches (x, m)

Element 3 is the protocol, 4 is the host, 6 is the port, and 7

is the path. We can use this to make a function for extracting the
parts of a URL:

URL_parts <- function (x) {

m <- regexec ("M (([":]14)://)2([":/1+) (: ([0-9]1+))2(/.*)", X)
parts <- do.call (rbind,
lapply (regmatches(x, m), ~[°, c(3L, 4L, 6L, 7L)))
colnames (parts) <- c("protocol","host", "port", "path")
parts

}
URL_parts (x)

There i1s no gregexec() yet, but one can emulate it by running
regexec() on the regmatches obtained via gregexpr (). E.g.:
pattern <- " ([[:alpha:]]1+) ([[:digit:]]1+)"
s <— "Test: Al BC23 DEF456"
lapply (regmatches (s, gregexpr (pattern, s)),

function(e) regmatches (e, regexec(pattern, e)))

grepRaw Pattern Matching for Raw Vectors

Description

grepRaw searches for substring pattern matches within a raw vector x.

grepRaw 271

Usage

grepRaw (pattern, x, offset = 1L, ignore.case = FALSE,
value = FALSE, fixed = FALSE, all = FALSE, invert = FALSE)

Arguments
pattern raw vector containing a regular expression (or fixed pattern for £ ixed = TRUE)
to be matched in the given raw vector. Coerced by charToRaw to a character
string if possible.
X a raw vector where matches are sought, or an object which can be coerced by

charToRaw to a raw vector. Long vectors are not supported.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

offset An integer specifying the offset from which the search should start. Must be
positive. The beginning of line is defined to be at that offset so "~ " will match
there.

value logical. Determines the return value: see ‘Value’.

fixed logical. If TRUE, pattern is a pattern to be matched as is.

all logical. If TRUE all matches are returned, otherwise just the first one.

invert logical. If TRUE return indices or values for elements that do not match. Ignored

(with a warning) unless value = TRUE.

Details

Unlike grep, seeks matching patterns within the raw vector x . This has implications especially
in the all = TRUE case, e.g., patterns matching empty strings are inherently infinite and thus may
lead to unexpected results.

The argument invert is interpreted as asking to return the complement of the match, which is
only meaningful for value = TRUE. Argument of fset determines the start of the search, not of
the complement. Note that invert = TRUE with all = TRUE will split x into pieces delimited by
the pattern including leading and trailing empty strings (consequently the use of regular expressions
with "~ " or "$" in that case may lead to less intuitive results).

Some combinations of arguments such as fixed = TRUE with value = TRUE are supported but
are less meaningful.

Value

grepRaw (value = FALSE) returns an integer vector of the offsets at which matches have oc-
curred. If a1l = FALSE then it will be either of length zero (no match) or length one (first matching
position).

grepRaw (value = TRUE, all = FALSE) returns a raw vector which is either empty (no match)
or the matched part of x.

grepRaw (value = TRUE, all = TRUE) returns a (potentially empty) list of raw vectors corre-
sponding to the matched parts.

272 groupGeneric

Source

The TRE library of Ville Laurikari (https://github.com/laurikari/tre/) is used ex-
cept for fixed = TRUE.

See Also

regular expression (aka regexp) for the details of the pattern specification.

grep for matching character vectors.

Examples
grepRaw ("no match", "textText") # integer (0): no match
grepRaw ("adf", "adadfadfdfadadf") # 3 - the first match
grepRaw ("adf", "adadfadfdfadadf", all=TRUE, fixed=TRUE)
[1] 3 6 13 —-- three matches
groupGeneric 83 Group Generic Functions
Description

Group generic methods can be defined for four pre-specified groups of functions, Math, Ops,
Summary and Complex. (There are no objects of these names in base R, but there are in the
methods package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)

Ops (el, e2)

Complex (z)

Summary (..., na.rm = FALSE)

Arguments
X, z, el, e2 objects.
further arguments passed to methods.

na.rm logical: should missing values be removed?

https://github.com/laurikari/tre/

groupGeneric 273

Details

There are four groups for which S3 methods can be written, namely the "Math", "Ops",
"Summary" and "Complex" groups. These are not R objects in base R, but methods can be
supplied for them and base R contains factor, data.frame and dif ftime methods for the
first three groups. (There is also a ordered method for Ops, POSIXt and Date methods for
Math and Ops, package_version methods for Ops and Summary, as well as a t s method
for Ops in package stats.)

1. Group "Math":

* abs, sign, sqgrt,
floor,ceiling, trunc,
round, signif

* exp, log, expml, loglp,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

¢ lgamma, gamma, digamma, trigamma

e cumsum, cumprod, cummax, cummin

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and t runc accepts one or more.

2. Group "Ops™":

AL " n n " " n n nAmn noomn nmo on
o MM m_m e wm , "%, "%/%
o " n n mwpw
& 9 I b -
o MM W [W Wl Wl W1 N
b M b < b < b > b >

This group contains both binary and unary operators (+, — and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

Note that the data . frame methods for the comparison ("Compare": ==, <, ...) and
logic ("Logic™": & | and !) operators return a logical mat rix instead of a data frame, for
convenience and back compatibility.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary":
e all, any
* sum, prod
* min, max

* range

groupGeneric

Members of this group dispatch on the first argument supplied.
4. Group "Complex":
e Arg, Conij, Im, Mod, Re
Members of this group dispatch on z.
Note that a method will be used for one of these groups or one of its members only if it corresponds

toa "class" attribute, as the internal code dispatches on o1dClass and not on class. This is
for efficiency: having to dispatch on, say, Ops . integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.
The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

* For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is " ".)

* Object . Group records the group used for dispatch (if a specific method is used this is " ").

Note

Package methods does contain objects with these names, which it has re-used in confusing similar
(but different) ways. See the help for that package.

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

methods for methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

Examples

require (utils)

d.fr <- data.frame(x = 1:9, y = stats::rnorm(9))
class(l + d.fr) == "data.frame" ##-- add to d.f.
methods ("Math")

methods ("Ops")

methods ("Summary")

methods ("Complex") # none in base R

grouping 275

grouping Grouping Permutation

Description

grouping returns a permutation which rearranges its first argument such that identical values are
adjacent to each other. Also returned as attributes are the group-wise partitioning and the maximum

group size.
Usage
grouping(...)
Arguments
a sequence of numeric, character or logical vectors, all of the same length, or a
classed R object.
Details

The function partially sorts the elements so that identical values are adjacent. NA values come last.
This is guaranteed to be stable, so ties are preserved, and if the data are already grouped/sorted, the
grouping is unchanged. This is useful for aggregation and is particularly fast for character vectors.

Under the covers, the "radix" method of order is used, and the same caveats apply, including
restrictions on character encodings and lack of support for long vectors (those with 23! or more
elements). Real-valued numbers are slightly rounded to account for numerical imprecision.

Like order, for a classed R object the grouping is based on the result of xt frm.

Value

An object of class "grouping", the representation of which should be considered experimental
and subject to change. It is an integer vector with two attributes:

ends subscripts in the result corresponding to the last member of each group
maxgrpn the maximum group size
See Also

order, xtfrm.

Examples

(ii <= grouping(x <- c(1, 1, 3:1, 1:4, 3), v <= c(9, 9:1), z <= c(2, 1:9)))
6 5 2 1 7 410 8 3 9
rbind(x, vy, z)[, ii]

276 gzcon

gzcon (De)compress 1/0O Through Connections

Description

gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon (con, level = 6, allowNonCompressed = TRUE, text = FALSE)

Arguments
con a connection.
level integer between 0 and 9, the compression level when writing.

allowNonCompressed
logical. When reading, should non-compressed input be allowed?

text logical. Should the connection be text-oriented? This is distinct from the mode
of the connection (must always be binary). If TRUE, pushBack works on the
connection, otherwise readBin and friends apply.

Details

If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open = "w". Use a writable rawConnection to compress
data into a variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection. For this reason, the new connection needs to be closed explicitly.

Value

An object inheriting from class "connection™. This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

See Also

gzfile

hexmode 277

Examples

Uncompress a data file from a URL

z <- gzcon(url ("https://www.stats.ox.ac.uk/pub/datasets/csb/chl2.dat.gz"))
read.table can only read from a text-mode connection.

raw <- textConnection (readLines (z))

close (z)

dat <- read.table(raw)

close (raw)

dat[1l:4,]

gzfile and gzcon can inter-work.

Of course here one would use gzfile, but file() can be replaced by

any other connection generator.

zzfil <- tempfile(fileext = ".gz")

zz <- gzfile(zzfil, "w")

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readlLines (zz <- gzcon(file(zzfil, "rb")))
close(zz)

unlink (zzfil)

zz£fil2 <- tempfile(fileext = ".gz")
zz <— gzcon(file(zzfil2, "wb"))
cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readLines (zz <- gzfile(zzfil2))
close(zz)

unlink (zz£fil2)

hexmode Display Numbers in Hexadecimal

Description
Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

as.hexmode (x)

S3 method for class 'hexmode'
as.character(x, ...)

S3 method for class 'hexmode'
format (x, width = NULL, upper.case = FALSE, ...)

278 Hyperbolic

S3 method for class 'hexmode'

print(x, ...)
Arguments
X An object, for the methods inheriting from class "hexmode".
width NULL or a positive integer specifying the minimum field width to be used, with

padding by leading zeroes.

upper.case a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).

further arguments passed to or from other methods.

Details

Class "hexmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in hex.

If width = NULL (the default), the output is padded with leading zeroes to the smallest width
needed for all the non-missing elements.

as.hexmode can convert integers (of type "integer" or "double") and character vectors
whose elements contain only 0—-9, a—f, A-F (or are NA) to class "hexmode".

There is a ! method and methods for | and &:

these recycle their arguments to the length of the longer and then apply the operators bitwise to each
element.

See Also

octmode, sprintf for other options in converting integers to hex, strtoi to convert hex
strings to integers.

Examples

i <- as.hexmode ("7fffffff")
i; class (i)
identical (as.integer (i), .Machine$integer.max)

hm <- as.hexmode(c(NA, 1)); hm
as.integer (hm)

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

iconv 279

Usage

cosh (
sinh (
tanh (
acosh
asinh
atanh

)
)

x)
X)
x)
(x)
(x
(x

Arguments

X a numeric or complex vector

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic.

Branch cuts are consistent with the inverse trigonometric functions asin et seq, and agree with
those defined in Abramowitz and Stegun, figure 4.7, page 86. The behaviour actually on the cuts fol-
lows the C99 standard which requires continuity coming round the endpoint in a counter-clockwise
direction.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh () for numeric x.

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-
ternationalization’.

280 iconv

Usage

iconv(x, from = "", to = "", sub = NA, mark = TRUE, toRaw = FALSE)

iconvlist ()

Arguments
X A character vector, or an object to be converted to a character vector by
as.character, or a list with NULL and raw elements as returned by
iconv (toRaw = TRUE).
from A character string describing the current encoding.
to A character string describing the target encoding.
sub character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte",
the indication is "<xx>" with the hex code of the byte. If "Unicode" and
converting from UTF-8, the Unicode point in the form " <U+xxxx>".
mark logical, for expert use. Should encodings be marked?
toRaw logical. Should a list of raw vectors be returned rather than a character vector?
Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support "" (for the encoding of the current locale), "latinl" and "UTF-8". Generally case is
ignored when specifying an encoding.

On most platforms iconvlist provides an alphabetical list of the supported encodings. On oth-
ers, the information is on the man page for iconv (5) or elsewhere in the man pages (but beware
that the system command i conv may not support the same set of encodings as the C functions R
calls). Unfortunately, the names are rarely supported across all platforms.

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA unless sub is specified.

Most versions of 1 conv will allow transliteration by appending ‘//TRANSLIT’ to the to encod-
ing: see the examples.

Encoding "ASCII" isaccepted, and on most systems "C" and "POSIX" are synonyms for ASCII.

Any encoding bits (see Encoding) on elements of x are ignored: they will always be translated
as if from encoding from even if declared otherwise. enc2native and enc2utf8 provide
alternatives which do take declared encodings into account.

Note that implementations of iconv typically do not do much validity checking and will often
mis-convert inputs which are invalid in encoding from.

If sub = "Unicode" is used for a non-UTF-8 input it is the same as sub = "byte".

Value

If toRaw = FALSE (the default), the value is a character vector of the same length and the same
attributes as x (after conversion to a character vector).

iconv 281

If mark = TRUE (the default) the elements of the result have a declared encoding if to is
"latinl" or "UTF-8", or if to ="" and the current locale’s encoding is detected as Latin-
1 (or its superset CP1252 on Windows) or UTF-8.

If toRaw = TRUE, the value is a list of the same length and the same attributes as x whose elements
are either NULL (if conversion fails) or a raw vector.

For iconvlist (), a character vector (typically of a few hundred elements) of known encoding
names.

Implementation Details

There are three main implementations of iconv in use. Linux’s C runtime ‘glibc’ contains
one. Several platforms supply GNU ‘libiconv’, including macOS, FreeBSD and Cygwin, in
some cases with additional encodings. On Windows we use a version of Yukihiro Nakadaira’s
‘win_iconv’, which is based on Windows’ codepages. (We have added many encoding names
for compatibility with other systems.) All three have iconv1ist, ignore case in encoding names
and support ‘//TRANSLIT’ (but with different results, and for ‘win_iconv’ currently a ‘best fit’
strategy is used except for to = "ASCII").

Most commercial Unixes contain an implementation of i conv but none we have encountered have
supported the encoding names we need: the ‘R Installation and Administration’ manual recom-
mends installing GNU ‘1ibiconv’ on Solaris and AIX, for example.

There are other implementations, e.g. NetBSD has used one from the Citrus project (which does
not support ‘//TRANSLIT’) and there is an older FreeBSD port (‘1ibiconv’ is usually used
there): it has not been reported whether or not these work with R.

Note that you cannot rely on invalid inputs being detected, especially for to = "ASCII" where
some implementations allow 8-bit characters and pass them through unchanged or with translitera-
tion.

Some of the implementations have interesting extra encodings: for example GNU ‘libiconv’
allows to = "C99" to use ‘\uxxxx’ escapes for non-ASCII characters.

Byte Order Marks

most commonly known as ‘BOMs’.

Encodings using character units which are more than one byte in size can be written on a file in
either big-endian or little-endian order: this applies most commonly to UCS-2, UTF-16 and UTF-
32/UCS-4 encodings. Some systems will write the Unicode character U+FEFF at the beginning of
a file in these encodings and perhaps also in UTF-8. In that usage the character is known as a BOM,
and should be handled during input (see the ‘Encodings’ section under connection: re-encoded
connections have some special handling of BOMs). The rest of this section applies when this has
not been done so x starts with a BOM.

Implementations will generally interpret a BOM for from given as one of "UCS—-2", "UTF-16"
and "UTF-32". Implementations differ in how they treat BOMs in x in other from encodings:
they may be discarded, returned as character U+FEFF or regarded as invalid.

Note

The only reasonably portable name for the ISO 8859-15 encoding, commonly known as ‘Latin 9°,
is "latin—-9": some platforms support "1latin9" but GNU ‘1libiconv’ does not.

282

icuSetCollate

Encoding names "utf8", "mac" and "macroman" are not portable. "utf8" is con-
verted to "UTF-8" for from and to by iconv, but not for e.g. fileEncoding arguments.
"macintosh" is the official (and most widely supported) name for ‘Mac Roman’ (https:

//en.wikipedia.org/wiki/Mac_0OS_Roman).

See Also

localeToCharset, file.

Examples

In principle, as not all systems have iconvlist
try(utils::head(iconvlist (), n = 50))

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.

iconv(x, "ISO_8859-2", "UTF-8")
iconv(x, "LATIN2", "UTF-8")

End (Not run)

Both x below are in latinl and will only display correctly in a

locale that can represent and display latinl.
X <— "fa\xE7ile"

Encoding(x) <- "latinl"

X

charToRaw (xx <- iconv(x, "latinl", "UTF-8"))

XX

iconv(x, "latinl", "ASCII") # NA

iconv(x, "latinl", "ASCII", "2") # "fazile"

iconv(x, "latinl", "ASCII", "") # "faile"

iconv(x, "latinl", "ASCII", "byte") # "fa<e7>ile"

iconv (xx, "UTF-8", "ASCII", "Unicode") # "fa<U+00E7>ile"

Extracts from old R help files (they are nowadays in UTF-8)
x <— c("Ekstr\xf8m", "J\xf6reskog", "bi\xdfchen Z\xfcrcher")

Encoding(x) <- "latinl"

X

try(iconv(x, "latinl", "ASCII//TRANSLIT")) # platform-dependent
iconv(x, "latinl", "ASCII", sub = "byte")

and for Windows' 'Unicode'
str(xx <- iconv(x, "latinl", "UTF-16LE", toRaw = TRUE))
iconv(xx, "UTF-16LE", "UTF-8")

icuSetCollate Setup Collation by ICU

Description

Controls the way collation is done by ICU (an optional part of the R build).

https://en.wikipedia.org/wiki/Mac_OS_Roman
https://en.wikipedia.org/wiki/Mac_OS_Roman

icuSetCollate 283

Usage

icuSetCollate(...)

icuGetCollate (type = c("actual", "valid"))

Arguments
Named arguments, see ‘Details’.
type character string: can be abbreviated. Either the actual locale in use for collation
or the most specific locale which would be valid.
Details

Optionally, R can be built to collate character strings by ICU (http://site.icu-project.
org). For such systems, icuSetCollate can be used to tune the way collation is done. On
other builds calling this function does nothing, with a warning.

Possible arguments are
locale: A character string such as "da_DK" giving the language and country whose collation
rules are to be used. If present, this should be the first argument.

case_first: "upper", "lower" or "default", asking for upper- or lower-case characters
to be sorted first. The default is usually lower-case first, but not in all languages (not under the
default settings for Danish, for example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable" (primary strength) and "shifted"
(quaternary strength).

strength: Which components should be used? Possible values "primary", "secondary",
"tertiary" (default), "quaternary" and "identical".

french_collation: In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default".

normalization: Should strings be normalized? Possible values are "on" and "off" (de-
fault). This affects the collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on" and "of£" (default).

hiragana_gquaternary: Possible values "on" (sort Hiragana first at quaternary level) and
n o) f f " .

Only the first three are likely to be of interest except to those with a detailed understanding of

collation and specialized requirements.

Some special values are accepted for locale:

"none": ICU is not used for collation: the OS’s collation services are used instead.

"ASCII": ICU is not used for collation: the C function st rcmp is used instead, which should
sort byte-by-byte in (unsigned) numerical order.

http://site.icu-project.org
http://site.icu-project.org

284 icuSetCollate

"default": obtains the locale from the OS as is done at the start of the session. If environment
variable R_ICU_LOCALE is set to a non-empty value, its value is used rather than consulting
the OS, unless environment variable LC_ALL is set to ’C’ (or unset but LC_COLLATE is set
to’C).

"o "root": the ‘root’ collation: see https://www.unicode.org/reports/tr35/
tr35-collation.html#Root_Collation.

For the specifications of ‘real’ ICU locales, see http://userguide.icu-project.org/
locale. Note that ICU does not report that a locale is not supported, but falls back to its idea
of ‘best fit’ (which could be rather different and is reported by icuGetCollate ("actual"),
often "root"). Most English locales fall back to "root" as although e.g. "en_GB" is a valid
locale (at least on some platforms), it contains no special rules for collation. Note that "C" is not a
supported ICU locale and hence R_ICU_LOCALE should never be set to "C".

Some examples are case_level = "on", strength = "primary" to ignore accent differ-
ences and alternate_handling = "shifted" toignore space and punctuation characters.

Initially ICU will not be used for collation if the OS is set to use the C locale for collation and
R_ICU_LOCALE is not set. Once this function is called with a value for Locale, ICU will be used
until it is called again with locale = "none". ICU will not be used once Sys.setlocale is
called witha "C" value for LC_ALL or LC_COLLATE, evenif R_ICU_LOCALE is set. ICU will be
used again honoring R_ICU_LOCALE once Sys.setlocale is called to set a different collation
order. Environment variables LC_ALL (or LC_COLLATE) take precedence over R_ICU_LOCALE
if and only if they are set to *’C’. Due to the interaction with other ways of setting the collation order,
R_ICU_LOCALE should be used with care and only when needed.

All customizations are reset to the default for the locale if 1ocale is specified: the collation engine
is reset if the OS collation locate category is changed by Sys.setlocale.

Value

For icuGetCollate, acharacter string describing the ICU locale in use (which may be reported
as "ICU not in use™"). The ‘actual’ locale may be simpler than the requested locale: for example
"da" rather than "da_DK": English locales are likely to report "root".

Note
ICU is used by default wherever it is available: this include macOS, Solaris and many Linux instal-
lations. As it works internally in UTF-8, it will be most efficient in UTF-8 locales.

It is optional on Windows: if R has been built against ICU, it will only be used if environment
variable R_ICU_LOCALE is set or once icuSetCollate is called to select the locale (as ICU
and Windows differ in their idea of locale names). Note that icuSetCollate (locale =
"default") should work reasonably well for R >= 3.2.0 and Windows Vista/Server 2008 and
later (but finds the system default ignoring environment variables such as LC_COLLATE).

See Also

Comparison, sort.
capabilities for whether ICU is available; ext SoftVersion for its version.

The ICU user guide chapter on collation (http://userguide.icu-project.org/
collation).

https://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
https://www.unicode.org/reports/tr35/tr35-collation.html#Root_Collation
http://userguide.icu-project.org/locale
http://userguide.icu-project.org/locale
http://userguide.icu-project.org/collation
http://userguide.icu-project.org/collation

identical 285

Examples

These examples depend on having ICU available, and on the locale.
As we don't know the current settings, we can only reset to the default.
if (capabilities ("ICU")) withAutoprint ({

icuGetCollate ()

icuGetCollate ("valid")

x <- c("Aarhus", "aarhus", "safe", "test", "Zoo")

sort (x)
icuSetCollate (case_first = "upper"); sort(x)
icuSetCollate (case_first = "lower"); sort (x)

Danish collates upper-case-first and with 'aa' as a single letter
icuSetCollate (locale = "da_DK", case_first = "default"); sort (x)

Estonian collates Z between S and T

icuSetCollate (locale "et_EE"); sort (x)

icuSetCollate (locale = "default"); icuGetCollate("valid")
)
identical Test Objects for Exact Equality
Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

Usage
identical(x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE,
ignore.bytecode = TRUE, ignore.environment = FALSE,
ignore.srcref = TRUE)
Arguments
X, ¥ any R objects.
num.eq logical indicating if (double and complex non-NA) numbers should be com-
pared using == (‘equal’), or by bitwise comparison. The latter (non-default)
differentiates between —0 and +0.
single.NA logical indicating if there is conceptually just one numeric NA and one NaN;

single.NA = FALSE differentiates bit patterns.
attrib.as.set
logical indicating if attributes of x and y should be treated as unordered
tagged pairlists (“sets”); this currently also applies to slots of S4 objects. It
may well be too strictto set attrib.as.set = FALSE.
ignore.bytecode
logical indicating if byte code should be ignored when comparing closures.

286 identical

ignore.environment
logical indicating if their environments should be ignored when comparing clo-
sures.

ignore.srcref
logical indicating if their "srcref" attributes should be ignored when com-
paring closures.

Details

A call to identical is the way to test exact equality in i f and while statements, as well as in
logical expressions that use && or | |. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or ! =, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them was not, you will not
get a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case,
the expression 1 f (x ==y) won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NAis true, as by default, ident ical sees NaN as different from NA_real_, but all
NaNs are equal (and all NA of the same type are equal).

Character strings are regarded as identical if they are in different marked encodings but would agree
when translated to UTF-8.

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

If ignore.bytecode is true (the default), the compiled bytecode of a function (see cmpfun)
will be ignored in the comparison. If it is false, functions will compare equal only if they are copies
of the same compiled object (or both are uncompiled). To check whether two different compiles are
equal, you should compare the results of disassemble ().

You almost never want to use identical on datetimes of class "POSIX1t": not only can differ-
ent times in the different time zones represent the same time and time zones have multiple names,
but several of the components are optional.

Note that identical (x,y,FALSE, FALSE, FALSE, FALSE) pickily tests for exact equality.

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)
John Chambers and R Core

identical 287

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate
elementwise comparisons. 1 sTRUE is a simple wrapper based on identical.

Examples
identical (1, NULL) ## FALSE —-- don't try this with ==
identical (1, 1.) ## TRUE in R (both are stored as doubles)

identical (1, as.integer(l)) ## FALSE, stored as different types

x <— 1.0; y <— 0.99999999999

how to test for object equality allowing for numeric fuzz

(E <- all.equal (x, y))

isTRUE (E) # which is simply defined to just use

identical (TRUE, E)

If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects
identical (.GlobalEnv, environment ())

#HE ——————— Pickyness Flags : —————————————————————————————

the infamous example:

identical (0., -0.) # TRUE, i.e. not differentiated
identical (0., -0., num.eq = FALSE)

similar:

identical (NaN, -NaN) # TRUE

identical (NaN, -NaN, single.NA = FALSE) # differ on bit-level

For functions ("closure"s): ————————————————————————————
#HE s

f <- function(x) x

f

g <- compiler::cmpfun (f)

g

identical (£, g) # TRUE, as bytecode is ignored by default

identical (f, g, ignore.bytecode=FALSE) # FALSE: bytecode differs

GLM families contain several functions, some of which share an environment:
pl <- poisson() ; p2 <- poisson()

identical (pl, p2) # FALSE

identical (pl, p2, ignore.environment=TRUE) # TRUE

in interactive use, the 'keep.source' option is typically true:

op <- options (keep.source = TRUE) # and so, these have differing "srcref"
f1l <- function() {}

f2 <—- function () {}

288 ifelse

identical (fl, f2)# ignore.srcref= TRUE : TRUE
identical (f1,f2, ignore.srcref=FALSE)# FALSE
options (op) # revert to previous state

identity Identity Function

Description

A trivial identity function returning its argument.

Usage

identity (x)

Arguments

x an R object.

See Also

diag creates diagonal matrices, including identity ones.

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements of test.

no return values for false elements of test.

ifelse 289

Details
If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class") as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see o1dClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as
(tmp <- yes; tmp['!test] <- no[!test]; tmp)

, possibly extended to handle missing values in test.

Further note that if (test) yes else no is much more efficient and often much prefer-
able to ifelse (test,yes,no) whenever test is a simple true/false result, i.e., when
length (test) ==

The srcref attribute of functions is handled specially: if test is a simple true result and yes
evaluates to a function with srcref attribute, i felse returns yes including its attribute (the
same applies to a false test and no argument). This functionality is only for backwards compati-
bility, the form i f (test) yes else no should be used whenever yes and no are functions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
if.

Examples

X <= c(6:-4)
sqrt (x) #- gives warning
sgrt (ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqgrt(x), NA)

ifelse() strips attributes

290 integer

This is important when working with Dates and factors

x <- seqg(as.Date("2000-02-29"), as.Date("2004-10-04"), by = "1 month")

has many "yyyy-mm-29", but a few "yyyy-03-01" in the non-leap years

y <- ifelse(as.POSIX1lt (x)Smday == 29, x, NA)

head(y) # not what you expected ... ==> need restore the class attribute:
class (y) <- class(x)

Y

This is a (not atypical) case where it is better xnotx to use ifelse(),
but rather the more efficient and still clear:

y2 <- x
y2[as.POSIX1lt (x) $Smday != 29] <- NA
which gives the same as ifelse()+class () hack:

stopifnot (identical (y2, vy))

example of different return modes (and 'test' alone determining length):
yes <—- 1:3

no <- pi~(1l:4)

utils::str(ifelse (NA, yes, no)) # logical, length 1
utils::str(ifelse(TRUE, yes, no)) # integer, length 1
utils::str(ifelse (FALSE, yes, no)) # double, length 1

integer Integer Vectors

Description

Creates or tests for objects of type "integer™".

Usage

integer (length = 0)
as.integer (x,)
is.integer (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
X object to be coerced or tested.
ce further arguments passed to or from other methods.
Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about +2 x 10°: doubles can hold much larger integers
exactly.

integer 291

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to O.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.e., as.integer (x) equals trunc (x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing optional whitespace
followed by either a decimal representation or a hexadecimal representation (starting with 0x or
0X) can be converted, as well as any allowed by the platform for real numbers. Like as.vector
it strips attributes including names. (To ensure that an object x is of integer type without stripping
attributes, use storage .mode (x) <-"integer".)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not, unless it is a factor when it returns FALSE.

Note

is.integer (x) does not test if x contains integer numbers! For that, use round, as in the
function is.wholenumber (x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and f1loor on that help page) to convert to integral values.

Examples

as.integer () truncates:
X <= pi x c(-1:1, 10)
as.integer (x)

is.integer(l) # is FALSE !

is.wholenumber <-
function(x, tol = .MachineS$double.eps”0.5) abs(x - round(x)) < tol
is.wholenumber (1) # is TRUE
(x <- seq(l, 5, by = 0.5))
is.wholenumber(x) #-—-> TRUE FALSE TRUE

292 interaction

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.

Usage
interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)
Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRUE, unused factor levels are dropped from the result. The default
is to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when 1lex . order = FALSE, the levels are ordered so the level of the first factor varies
fastest, then the second and so on. This is the reverse of lexicographic ordering (which you can get
by lex.order = TRUE), and differs from :. (It is done this way for compatibility with S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor; : where £ :gissimilarto interaction (f, g, sep=":") when f and g are factors.
Examples

a <- gl(2, 4, 8)

b <- gl(2, 2, 8, labels = c("ctrl", "treat"))

s <- gl(2, 1, 8, labels = c("M", "F"))

interaction(a, b)

interaction(a, b, s, sep = ":")
stopifnot (identical(a:s,
interaction(a, s, sep = ":", lex.order = TRUE)),

interactive 293

identical(a:s:b,
interaction(a, s, b, sep = ":", lex.order = TRUE)))

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive ()

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a terminal
(via Rterm.exe on Windows), it assumes that it is interactive if ‘stdin’ is connected to a
(pseudo-)terminal and not if ‘stdin’ is redirected to a file or pipe. Command-line options
‘——interactive’ (Unix) and ‘—-ess’ (Windows, Rterm. exe) override the default assump-
tion. (On a Unix-alike, whether the readline command-line editor is used is not overridden by
‘——interactive’.)

Embedded uses of R can set a session to be interactive or not.
Internally, whether a session is interactive determines
e how some errors are handled and reported, eg. see stop and
options ("showWarnCalls").

» whether one of ‘--save’, ‘——no-save’ or ‘-—vanilla’ is required, and if R ever asks
whether to save the workspace.

* the choice of default graphics device launched when needed and by dev.new: see
options ("device")

» whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive (): for example help, debugger and
install.packages do.

Note

This is a primitive function.

See Also

source, .First

294 InternalMethods

Examples
.First <- function() if (interactive()) =x11()
Internal Call an Internal Function
Description

.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal (call)

Arguments

call a call expression

See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:

$<_3
length,
length<-,

InternalMethods 295

lengths,
dimnames,
dimnames<-,
dim,

dim<-—,

names,

names<-,
levels<—,

@<-,

c,

unlist, cbind, rbind,
as.character,
as.complex,
as.double,
as.integer,
as.logical,
as.raw,
as.vector,
as.call,
as.environment
is.array,
is.matrix,
is.na,

anyNA,

is.nan,
is.finite
is.infinite
is.numeric,
nchar

rep,

rep.int
rep_len
seq.int (which dispatches methods for "seq"),
is.unsorted and
xtfrm

In addition, is.name is a synonym for is.symbol and dispatches methods for the latter. Simi-
larly, as.numeric is a synonym for as.double and dispatches methods for the latter, i.e., S3
methods are for as . double, whereas S4 methods are to be written for as .numeric.

296 invisible

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic
and not group generic. Currently as.vector, cbind, rbind and unlist are the internal
non-primitive functions which are internally generic.

For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible (x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

Examples

These functions both return their argument
fl <- function(x) x

f2 <- function(x) 1invisible (x)

f1(1) # prints

f2(1) # does not

is.finite 297

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which ele-
ments are finite (not infinite and not missing) or infinite.

Inf and —Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) Inf and NaN are reserved words in the R language.

Usage

is.finite (x)
is.infinite (x)
is.nan (x)

Inf
NaN

Arguments

X R object to be tested: the default methods handle atomic vectors.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x []
is finite (i.e., it is not one of the values NA, NaN, Inf or —Inf) and FALSE otherwise. Complex
numbers are finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if x []
is infinite (i.e., equal to one of Inf or —Inf) and FALSE otherwise. This will be false unless x is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. One of these is used for the numeric
missing value NA, and is.nan is false for that value. A complex number is regarded as NaN if
either the real or imaginary part is NaN but not NA. All elements of logical, integer and raw vectors
are considered not to be NaN.

All three functions accept NULL as input and return a length zero result. The default methods accept
character and raw vectors, and return FALSE for all entries. Prior to R version 2.14.0 they accepted
all input, returning FALSE for most non-numeric values; cases which are not atomic vectors are
now signalled as errors.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

298 is.finite

Value

A logical vector of the same length as x: dim, dimnames and names attributes are preserved.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/-Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

Computations involving NaN will return NaN or perhaps NA: which of those two is not guaranteed
and may depend on the R platform (since compilers may re-order computations).

References
The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.
https://en.wikipedia.org/wiki/NaN.

D. Goldberg (1991). What Every Computer Scientist Should Know about Floating-Point Arith-
metic. ACM Computing Surveys, 23(1), 5-48. doi: 10.1145/103162.103163.

Also available at https://docs.oracle.com/cd/E19957-01/806-3568/ncg_
goldberg.html.

The C99 function isfiniteisused for is.finite.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric and complex.

Arithmetic, double.

Examples

pi / O ## = Inf a non-zero number divided by zero creates infinity
0/ 0 ## = NaN

1/0 + 1/0 # Inf
1/0 - 1/0 # NaN

stopifnot (
1/0 == Inf,
1/Inf == 0
)
sin (Inf)
cos (Inf)

tan (Inf)

https://en.wikipedia.org/wiki/NaN
https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

is.function 299

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage
is.function (x)
is.primitive (x)

Arguments

x an R object.

Details
is.primitive (x) tests if x is a primitive function, i.e, if typeof (x) is either "builtin"
or "special".

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

Examples

is.function (1) # FALSE

is.function (is.primitive) # TRUE: it is a function, but

is.primitive(is.primitive) # FALSE: it's not a primitive one, whereas
(

is.primitive (is.function) # TRUE: that one xisx
is.language Is an Object a Language Object?
Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language (x)

Arguments

X object to be tested.

300 is.object

Note

A name is also known as ‘symbol’, from its type (t ypeof), see is.symbol.

If typeof (x) == "language", then is.language (x) is always true, but the reverse does
not hold as expressions or names y also fulfill is.language (y), see the examples.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

11 <= list(a = expression(x”2 - 2xx + 1), b = as.name("Jim"),
c = as.expression(exp(l)), d = call("sin", pi))

sapply (11, typeof)

sapply (11, mode)

stopifnot (sapply(ll, is.language))

is.object Is an Object ‘internally classed’?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT bit set,
and FALSE otherwise. The OBJECT bit is set when a "class" attribute is added and removed
when that attribute is removed, so this is a very efficient way to check if an object has a class
attribute. (S4 objects always should.)

Usage

is.object (x)

Arguments

X object to be tested.

Note

This is a primitive function.

See Also

class, and methods.

isS4.

is.R 301

Examples

is.object (1) # FALSE
is.object (as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order
for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R or use it as

if (exists ("is.R") && is.function(is.R) && is.R()) {

R-specific code

} else {

S-version of code

}

Value

is.Rreturns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- stats::runif (20); small <- x < 0.4

In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seqg(along = small) [small]

302

is.recursive

is.recursive

Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is of an atomic type (or NULL) and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic (x)

is.recursive (x)

Arguments
X object to be tested.
Details
is.atomic is true for the atomic types ("logical", "integer", "numeric",

"complex", "character" and "raw") and NULL.

Most types of objects are regarded as recursive. Exceptions are the atomic types, NULL, symbols (as
given by as.name), S4 objects with slots, external pointers, and—rarely visible from R—weak
references and byte code, see typeof.

It is common to call the atomic types ‘atomic vectors’, but note that i s .vector imposes further
restrictions: an object can be atomic but not a vector (in that sense).

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list, is.language, etc, and the demo ("is.things™").

Examples

require (stats)

is.a.r <- function (x)

is.
is.
is.
is.

a
a.
a
a

He o o

c(is.atomic(x), is.recursive (x))

TRUE FALSE
FALSE TRUE - a list is a list
FALSE TRUE
FALSE TRUE

is.single 303

is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1l)) # FALSE TRUE
is.a.r (quote (exp)) # FALSE FALSE
is.single Is an Object of Single Precision Type?
Description

is.single reports an error. There are no single precision values in R.

Usage

is.single (x)

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted (in increasing order), without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments
X an R object with a class or a numeric, complex, character, logical or raw vector.
na.rm logical. Should missing values be removed before checking?
strictly logical indicating if the check should be for strictly increasing values.

Details

is.unsorted is generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods.

304 ISOdatetime

Value

A length-one logical value. All objects of length 0 or 1 are sorted. Otherwise, the result will be
NA except for atomic vectors and objects with an S3 class (where the >= or > method is used to
compare x [1] with x[i-1] for 1 in 2:1length (x)) or with an S4 class where you have to
provide a method for is.unsorted ().

Note

This function is designed for objects with one-dimensional indices, as described above. Data
frames, matrices and other arrays may give surprising results.

See Also

sort, order.

ISOdatetime Date-time Conversion Functions from Numeric Representations

Description

Convenience wrappers to create date-times from numeric representations.

Usage

ISOdatetime (year, month, day, hour, min, sec, tz = "")

ISOdate (year, month, day, hour = 12, min = 0, sec = 0, tz = "GMI")
Arguments

year, month, day
numerical values to specify a day.

hour, min, sec
numerical values for a time within a day. Fractional seconds are allowed.

tz A time zone specification to be used for the conversion. "" is the current time
zone and "GMT" is UTC. Invalid values are most commonly treated as UTC, on
some platforms with a warning.

Details

ISOdatetime and ISOdate are convenience wrappers for st rpt ime that differ only in their
defaults and that ISOdate sets UTC as the time zone. For dates without times it would normally
be better to use the "Date" class.

The main arguments will be recycled using the usual recycling rules.

Because these make use of st rpt ime, only years in the range 0: 9999 are accepted.

sS4 305

Value

An object of class "POSIXct".

See Also
DateTimeClasses for details of the date-time classes; st rpt ime for conversions from character
strings.
isS4 Test for an S4 object
Description

Tests whether the object is an instance of an S4 class.

Usage

isS4 (object)

asS4 (object, flag TRUE, complete TRUE)
asS3 (object, flag = TRUE, complete = TRUE)

Arguments
object Any R object.
flag Optional, logical: indicate direction of conversion.
complete Optional, logical: whether conversion to S3 is completed. Not usually needed,
but see the details section.
Details

Note that isS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package.

asS3 uses the value of complete to control whether an attempt is made to transform object
into a valid object of the implied S3 class. If complete is TRUE, then an object from an S4 class
extending an S3 class will be transformed into an S3 object with the corresponding S3 class (see
S3Part). This includes classes extending the pseudo-classes array and matrix: such objects
will have their class attribute set to NULL.

isS4 is primitive.

Value

isS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 and asS3 will turn this flag on or off, and asS3 will set the class from the objects
.S3Class slot if one exists. Note that asS3 will not turn the object into an S3 object unless
there is a valid conversion; that is, an object of type other than "S4" for which the S4 object is an
extension, unless argument complete is FALSE.

306 isSymmetric

See Also

is.object for a more general test; Introduction for general information on S4; Classes_Details
for more on S4 class definitions.

Examples

isS4 (pi) # FALSE

isS4 (getClass ("MethodDefinition")) # TRUE
isSymmetric Test if a Matrix or other Object is Symmetric (Hermitian)
Description

Generic function to test if object is symmetric or not. Currently only a matrix method is imple-
mented, where a complex matrix Z must be “Hermitian” for i sSymmetric (Z) to be true.

Usage

isSymmetric (object, ...)
S3 method for class 'matrix'
isSymmetric(object, tol = 100 x .MachineS$double.eps,

toll = 8 % tol, ...)
Arguments
object any R object; a mat rix for the matrix method.
tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric.
toll numeric scalar >= 0. isSymmetric.matrix () ‘pre-tests’ the first and last
few rows for fast detection of ‘obviously’ asymmetric cases with this tolerance.
Setting it to length zero will skip the pre-tests.
further arguments passed to methods; the matrix method passes these to
all.equal. If the row and column names of object are allowed to differ
for the symmetry check do use check.attributes = FALSE!
Details

The mat rix method is used inside eigen by default to test symmetry of matrices up fo rounding
error, using all.equal. It might not be appropriate in all situations.

Note that a matrix m is only symmetric if its rownames and colnames are identical. Consider
using unname (m) .

Value

logical indicating if object is symmetric or not.

Jjitter 307

See Also

eigen which calls i sSymmetric when its symmet ric argument is missing.

Examples

isSymmetric (D3 <- diag(3)) # -> TRUE

D3[2, 1] <- 1le-100

D3

isSymmetric (D3) # TRUE

isSymmetric (D3, tol = 0) # FALSE for zero-tolerance

Complex Matrices - Hermitian or not

7 <— sqgrt (matrix(-1:2 + 0i, 2)); Z <- t(Conj(Z)) %*% Z

Z

isSymmetric (Z) # TRUE

isSymmetric(Z + 1) # TRUE

isSymmetric(Z + 1i) # FALSE -- a Hermitian matrix has a xrealx diagonal

colnames (D3) <- c("X", "y",6 "z")
isSymmetric (D3) # FALSE (as row and column names differ)
isSymmetric (D3, check.attributes=FALSE) # TRUE (as names are not checked)

jitter Jitter’ (Add Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter (x, factor = 1, amount = NULL)

Arguments
b numeric vector to which jitter should be added.
factor numeric.
amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default is

factor x z/50.

Default (NULL): factor » d/5 where d is about the smallest difference be-
tween x values.

308 kappa

Details

The result, say r, is r <-x + runif (n, —a, a) where n <-length (x) and a is the amount
argument (if specified).

Let z <-max (x) —min (x) (assuming the usual case). The amount a to be added is either pro-
vided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <—factor * z/50 (same as S).

If amount is NULL (default), we set a <—factor = d/5 where d is the smallest difference be-
tween adjacent unique (apart from fuzz) x values.

Value
jitter (x, ...) returns a numeric of the same length as x, but with an amount of noise added
in order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round (jitter (c(rep(l, 3), rep(l.2, 4), rep(3, 3))), 3)
These two 'fail' with S-plus 3.x:

jitter (rep (0, 7))

jitter (rep (10000, 5))

kappa Compute or Estimate the Condition Number of a Matrix

Description
The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa () computes by default (an estimate of) the 2-norm condition number of a matrix or of the
R matrix of a QR decomposition, perhaps of a linear fit. The 2-norm condition number can be
shown to be the ratio of the largest to the smallest non-zero singular value of the matrix.

rcond () computes an approximation of the reciprocal condition number, see the details.

kappa 309

Usage

kappa(z, ...)
Default S3 method:
kappa(z, exact = FALSE,
norm = NULL, method = c("gr", "direct"), ...)
S3 method for class 'lm'

kappa(z, ...)
S3 method for class 'qr'
kappa(z, ...)

.kappa_tri(z, exact = FALSE, LINPACK = TRUE, norm = NULL, ...)

rcond(x, norm = c("Oo","1I","1"), triangular = FALSE, ...)
Arguments
z, X A matrix or a the result of gr or a fit from a class inheriting from "1m".
exact logical. Should the result be exact?
norm character string, specifying the matrix norm with respect to which the condition

number is to be computed, see also norm. For rcond, the default is "O",
meaning the One- or 1-norm. The (currently only) other possible value is "I"
for the infinity norm.

method a partially matched character string specifying the method to be used; "gr" is
the default for back-compatibility, mainly.

triangular logical. If true, the matrix used is just the lower triangular part of z.

LINPACK logical. If true and z is not complex, the LINPACK routine dtrco () is called;
otherwise the relevant LAPACK routine is.

further arguments passed to or from other methods; for kappa. * (), notably
LINPACK when normisnot "2".

Details

For kappa (), if exact = FALSE (the default) the 2-norm condition number is estimated by a
cheap approximation. However, the exact calculation (via svd) is also likely to be quick enough.

Note that the 1- and Inf-norm condition numbers are much faster to calculate, and rcond () com-
putes these reciprocal condition numbers, also for complex matrices, using standard LAPACK rou-
tines.

kappa and rcond are different interfaces to partly identical functionality.
.kappa_tri is an internal function called by kappa . qr and kappa.default.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The condition number, kappa, or an approximation if exact = FALSE.

310 kronecker

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

Source

The LAPACK routines DTRCON and ZTRCON and the LINPACK routine DTRCO.

LAPACK and LINPACK are from https://www.netlib.org/lapack/ and https://
www.netlib.org/linpack/ and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

norm; svd for the singular value decomposition and gr for the QR one.

Examples

kappa (x1 <= cbind (1, 1:10)) # 15.71
kappa (x1, exact = TRUE) # 13.68
kappa (x2 <- cbind(x1l, 2:11)) # high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa (h9) # pretty high!

kappa (h9, exact = TRUE) == max(sv9) / min(sv9)

kappa (h9, exact = TRUE) / kappa (h9) # 0.677 (i.e., rel.error = 32%)

kronecker Kronecker Products on Arrays

Description

Computes the generalised kronecker product of two arrays, X and Y.

Usage

kronecker (X, Y, FUN = "x", make.dimnames = FALSE, ...)
X %$x% Y

https://www.netlib.org/lapack/
https://www.netlib.org/linpack/
https://www.netlib.org/linpack/
https://www.netlib.org/lapack/lug/lapack_lug.html

kronecker 311

Arguments
X A vector or array.
Y A vector or array.
FUN a function; it may be a quoted string.

make.dimnames
Provide dimnames that are the product of the dimnames of X and Y.

optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by taking X one term at a time
and expanding that term as FUN (x, Y, . ..).

%$x% is an alias for kronecker (where FUN is hardwired to "+ ").

Value

An array A with dimensions dim (X) = dim(Y).

Author(s)

Jonathan Rougier

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and %% for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(l:6, ncol = 2))
kronecker (4, M)

Block diagonal matrix:
kronecker (diag(1l, 3), M)

ask for dimnames
fred <- matrix(1:12, 3, 4, dimnames = 1list (LETTERS[1:3], LETTERS[4:7]))

bill <- c("happy" = 100, "sad" = 1000)
kronecker (fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat" = 3, "dog" = 4))
kronecker (fred, bill, make.dimnames = TRUE)

312 labels

110n_info Localization Information

Description

Report on localization information.

Usage

110n_info ()

Value

A list with three logical components:

MBCS If a multi-byte character set in use?
UTF-8 Is this a UTF-8 locale?
Latin-1 Is this a Latin-1 locale?

See Also

Sys.getlocale, localeconv

Examples

110n_info ()

labels Find Labels from Object

Description
Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels (object, ...)

Arguments

object Any R object: the function is generic.

further arguments passed to or from other methods.

lapply 313

Value

A character vector or list of such vectors. For a vector the results is the names or seq_along (x)
and for a data frame or array it is the dimnames (with NULL expanded to seq_len (d[i])).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

lapply Apply a Function over a List or Vector

Description
lapply returns a list of the same length as X, each element of which is the result of applying FUN
to the corresponding element of X.

sapply is a user-friendly version and wrapper of lapply by default returning a vector, ma-
trix or, if simplify = "array", an array if appropriate, by applying simplify2array ().
sapply (x, £, simplify = FALSE, USE.NAMES = FALSE) is the same as lapply (x, f).

vapply is similar to sapply, but has a pre-specified type of return value, so it can be safer (and
sometimes faster) to use.

replicate is a wrapper for the common use of sapply for repeated evaluation of an expression
(which will usually involve random number generation).

simplify2array () is the utility called from sapply () when simplify is not false and is
similarly called from mapply ().

Usage

lapply (X, FUN, ...)

sapply (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
vapply (X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
replicate(n, expr, simplify = "array")

simplify2array(x, higher = TRUE)

Arguments
X a vector (atomic or list) or an expression object. Other objects (including
classed objects) will be coerced by base: :as.list.
FUN the function to be applied to each element of X: see ‘Details’. In the case of

functions like +, %+ %, the function name must be backquoted or quoted.

optional arguments to FUN.

314 lapply

simplify logical or character string; should the result be simplified to a vector, matrix or
higher dimensional array if possible? For sapply it must be named and not
abbreviated. The default value, TRUE, returns a vector or matrix if appropri-
ate, whereas if simplify = "array" the result may be an array of “rank”
(=length (dim(.))) one higher than the result of FUN (X[[1]]).

USE .NAMES logical; if TRUE and if X is character, use X as names for the result unless it had
names already. Since this argument follows . . . its name cannot be abbreviated.

FUN.VALUE a (generalized) vector; a template for the return value from FUN. See ‘Details’.

n integer: the number of replications.

expr the expression (a language object, usually a call) to evaluate repeatedly.

X a list, typically returned from lapply ().

higher logical; if true, simplify2array () will produce a (‘“higher rank”) array

when appropriate, whereas higher = FALSE would return a matrix (or vector)
only. These two cases correspond to sapply (*, simplify = "array") or
simplify = TRUE, respectively.

Details

FUN is found by a call to match. fun and typically is specified as a function or a symbol (e.g., a
backquoted name) or a character string specifying a function to be searched for from the environ-
ment of the call to Lapply.

Function FUN must be able to accept as input any of the elements of X. If the latter is an atomic
vector, FUN will always be passed a length-one vector of the same type as X.

Arguments in . .. cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to FUN. In general-purpose code it is good practice to name the
first two arguments X and FUN if . . . is passed through: this both avoids partial matching to FUN
and ensures that a sensible error message is given if arguments named X or FUN are passed through

Simplification in sapply is only attempted if X has length greater than zero and if the return values
from all elements of X are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each element of X.

Simplification is always done in vapply. This function checks that all values of FUN are compati-
ble with the FUN . VALUE, in that they must have the same length and type. (Types may be promoted
to a higher type within the ordering logical < integer < double < complex, but not demoted.)

Users of S4 classes should pass a list to lapply and vapply: the internal coercion is done by the
as.list in the base namespace and not one defined by a user (e.g., by setting S4 methods on the
base function).

Value
For lapply, sapply (simplify = FALSE) and replicate (simplify = FALSE), a list.

For sapply (simplify = TRUE) and replicate (simplify = TRUE) : if X has length zero
or n = 0, an empty list. Otherwise an atomic vector or matrix or list of the same length as X (of
length n for replicate). If simplification occurs, the output type is determined from the highest

lapply 315

type of the return values in the hierarchy NULL < raw < logical < integer < double < complex <
character < list < expression, after coercion of pairlists to lists.

vapply returns a vector or array of type matching the FUN.VALUE. If length (FUN.VALUE)
== 1 a vector of the same length as X is returned, otherwise an array. If FUN.VALUE is not
an array, the result is a matrix with length (FUN.VALUE) rows and length (X) columns,
otherwise an array a with dim (a) == ¢ (dim (FUN.VALUE), length (X)).

The (Dim)names of the array value are taken from the FUN . VALUE if it is named, otherwise from
the result of the first function call. Column names of the matrix or more generally the names of the
last dimension of the array value or names of the vector value are set from X as in sapply.

Note

sapply (*, simplify = FALSE, USE.NAMES = FALSE) is equivalent to lapply ().

For historical reasons, the calls created by lapply are unevaluated, and code has been writ-
ten (e.g., bquote) that relies on this. This means that the recorded call is always of the form
FUN(X[[1]],...), with i replaced by the current (integer or double) index. This is not nor-
mally a problem, but it can be if FUN uses sys.call or match.call or if it is a primitive
function that makes use of the call. This means that it is often safer to call primitive functions with
a wrapper, so that e.g. lapply (11, function (x) is.numeric (x)) is required to ensure
that method dispatch for is.numeric occurs correctly.

If expr is a function call, be aware of assumptions about where it is evaluated, and in particular
what . . . might refer to. You can pass additional named arguments to a function call as additional
named arguments to replicate: see ‘Examples’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply, tapply, mapply for applying a function to multiple arguments, and rapply for
a recursive version of lapply (), eapply for applying a function to each entry in an
environment.

Examples

require (stats); require (graphics)

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE, TRUE))
compute the list mean for each list element
lapply (x, mean)
median and quartiles for each list element
lapply (x, quantile, probs = 1:3/4)
sapply (x, quantile)
139 <- sapply(3:9, seq) # list of vectors
sapply (i39, fivenum)
vapply (139, fivenum,
c(Min. = 0, "l1st Qu." = 0, Median = 0, "3rd Qu." = 0, Max. = 0))

316 Last.value

sapply(*, "array") -- artificial example

(v <—= structure(10x(5:8), names = LETTERS[1:4]))

f2 <- function(x, y) outer(rep(x, length.out = 3), vy)
(a2 <- sapply(v, f2, y = 2%(1:5), simplify = "array"))
a.z2 <- vapply(v, £f2, outer(l:3, 1:5), yv = 2x(1:5))
stopifnot (dim(a2) == c(3,5,4), all.equal (a2, a.2),

identical (dimnames (a2), list (NULL,NULL,LETTERS[1:4]1)))
hist (replicate (100, mean (rexp(10))))

use of replicate() with parameters:

foo <- function(x =1, y = 2) c(x, Vy)

does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) replicate(n, foo(x = x))

bar (5, x = 3)

Last.value Value of Last Evaluated Expression

Description
The value of the internal evaluation of a top-level R expression is always assigned to
.Last .value (in package :base) before further processing (e.g., printing).

Usage

.Last.value

Details

The value of a top-level assignment is putin . Last .value, unlike S.

Do not assign to . Last . value in the workspace, because this will always mask the object of the
same name in package :base.

See Also

eval

Examples

These will not work correctly from example(),

but they will in make check or if pasted in,

as example () does not run them at the top level

gamma (1:15) # think of some intensive calculation...
facl4d <- .Last.value # keep them

library("splines") # returns invisibly
.Last.value # shows what library(.) above returned

La_library 317

La_library LAPACK Library

Description

Report the name of the shared object file with LAPACK implementation in use.

Usage

La_library ()

Value

A character vector of length one ("" when the name is not known). The value can be used as an
indication of which LAPACK implementation is in use. Typically, the R version of LAPACK will
appear as 1ibRlapack.so (1ibRlapack.dylib), depending on how R was built. Note that
libRlapack.so (1ibRlapack.dylib) may also be shown for an external LAPACK imple-
mentation that had been copied, hard-linked or renamed by the system administrator. Otherwise, the
shared object file will be given and its path/name may indicate the vendor/version. The detection
does not work on Windows.

See Also

extSoftVersion for versions of other third-party software including BLAS.

La_version for the version of LAPACK in use.

Examples

La_library ()

La_version LAPACK Version

Description

Report the version of LAPACK in use.

Usage

La_version ()

Value

A character vector of length one.

318 length

See Also

extSoftVersion for versions of other third-party software.

La_library for binary/executable file with LAPACK in use.

Examples

La_version ()

length Length of an Object

Description
Get or set the length of vectors (including lists) and factors, and of any other R object for which a
method has been defined.

Usage

length (x)
length (x) <- value

Arguments

X an R object. For replacement, a vector or factor.

value a non-negative integer or double (which will be rounded down).
Details

Both functions are generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods. length<—hasa "factor" method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new length with NAs
(nul for raw vectors).

Both are primitive functions.

Value

The default method for 1ength currently returns a non-negative integer of length 1, except for
vectors of more than 23! — 1 elements, when it returns a double.

For vectors (including lists) and factors the length is the number of elements. For an environment it
is the number of objects in the environment, and NULL has length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributes of x except its names, which are adjusted (and if
necessary extended by "").

lengths

Warning

Package authors have written methods that return a result of length other than one (Formula) and
that return a vector of type double (Matrix), even with non-integer values (earlier versions of
sets). Where a single double value is returned that can be represented as an integer it is returned as

a length-one integer vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors, lengths for getting the length

of every element in a list.

Examples

length(diag(4)) #

16 (4 x 4)

length (options()) # 12 or more
+

(
(

length(y ~ x1 + x2
(

x3) # 3

length (expression(x, {y <- x"2; y+2}, x"y)) # 3

from example (warpbreaks)
require (stats)

fml <- Ilm(breaks ~ wool x tension, data = warpbreaks)

length (fmlS$call) # 3, 1lm() and two arguments.
length (formula (fml)) # 3, ~ lhs rhs
lengths Lengths of List or Vector Elements

Description

Get the length of each element of a 1ist or atomic vector (is.atomic) as an integer or numeric

vector.

Usage

lengths (x,

Arguments

X

use.names

use.names = TRUE)

a 1ist, list-like such as an expression or an atomic vector (for which the

result is trivial).

logical indicating if the result should inherit the names from x.

https://CRAN.R-project.org/package=Formula
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=sets

320 lengths

Details

This function loops over x and returns a compatible vector containing the length of each element in
x. Effectively, length (x [[1]]) is called for all i, so any methods on 1ength are considered.

lengths is generic: you can write methods to handle specific classes of objects, see InternalMeth-
ods.

Value

A non-negative integer of length length (x), except when any element has a length of more
than 23! — 1 elements, when it returns a double vector. When use . names is true, the names are
taken from the names on x, if any.

Note

One raison d’étre of Llengths (x) is its use as a more efficient version of sapply (x, length)
and similar xapply calls to length. This is the reason why x may be an atomic vector, even
though lengths (x) is trivial in that case.

See Also

length for getting the length of any R object.

Examples

require (stats)

summarize by month

1 <- split(airquality$0Ozone, airqualityS$Month)

avgOz <- lapply(l, mean, na.rm=TRUE)

merge result

airquality$avgOz <- rep(unlist (avgOz, use.names=FALSE), lengths(l))
but this is safer and cleaner, but can be slower
airquality$avgOz <- unsplit (avgOz, airquality$Month)

should always be true, except when a length does not fit in 32 bits
stopifnot (identical (lengths (1), vapply(l, length, integer(1lL))))

empty lists are not a problem
x <— list ()
stopifnot (identical (lengths(x), integer()))

nor are "list-like" expressions:
lengths (expression(u, v, 1+ 0:9))

and we should dispatch to length methods

f <- c(rep(l, 3), rep(2, 6), 3)

dates <- split (as.POSIX1lt (Sys.time() + 1:10), f)

stopifnot (identical (lengths (dates), vapply(dates, length, integer (1L))))

levels 321

levels Levels Attributes

Description
levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

Usage

levels (x)
levels (x) <- value

Arguments
X an object, for example a factor.
value A valid value for levels (x). For the default method, NULL or a character
vector. For the factor method, a vector of character strings with length at
least the number of levels of x, or a named list specifying how to rename the
levels.
Details

Both the extractor and replacement forms are generic and new methods can be written for them.
The most important method for the replacement function is that for factors.

For the factor replacement method, a NA in value causes that level to be removed from the levels
and the elements formerly with that level to be replaced by NA.

Note that for a factor, replacing the levels via levels (x) <-value is not the same as (and is
preferred to) attr (x, "levels") <-value.

The replacement function is primitive.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nlevels, relevel, reorder.

Examples

assign individual levels
x <- gl(2, 4, 8)

levels (x) [1] <= "low"
levels (x) [2] <= "high"

X

322 libcurl Version

or as a group

vy <- gl(2, 4, 8)

levels(y) <= c("low", "high")
Yy

combine some levels

z <- gl(3, 2, 12, labels = c("apple", "salad", "orange"))
z

levels(z) <- c("fruit", "veg", "fruit")

Z

same, using a named list
z <- gl(3, 2, 12, labels = c("apple", "salad", "orange"))
z
levels(z) <- list("fruit" = c("apple", "orange"),
llvegll _ llsaladll)

we can add levels this way:
f <- factor(c("a","b"))
levels(f) <— C(llcll’ llaH’ Hbll)
f

f <- factor(c("a","b"))

levels (f) <- 1list(C = "C", A = "a", B = "b")
£
libcurlVersion Report Version of libcurl
Description

Report version of 1ibcurl in use.

Usage

libcurlVersion ()

Value

A character string, with value the 1ibcurl version in use or "" if none is. If 1ibcurl is
available, has attributes

ssl_version A character string naming the SSL/TLS implementation and version, possi-
bly "none". It is intended for the version of OpenSSL used, but not all
implementations of 1ibcurl use OpenSSL — for example macOS reports
"SecureTranspart", its wrapper for SSL/TLS.

libPaths 323

libssh_version
A character string naming the 1ibssh version, which may or may not be avail-
able (it is used for e.g. scp and sftp protocols). Where present, something
like "1ibssh2/1.5.0".

protocols A character vector of the names of supported protocols, also known as ‘schemes’
when part of a URL.

Warning

In late 2017 a libcurl installation was seen divided into two libraries, 1ibcurl and
libcurl-feature, and the first had been updated but not the second. As the compiled function
recording the version was in the latter, the version reported by 1ibcurlVersion was misleading.

See Also

extSoftVersion for versions of other third-party software.
curlGetHeaders, download.file and url for functions which (optionally) use 1ibcurl.

https://curl.se/docs/sslcerts.html and https://curl.se/docs/
ssl-compared.html for more details on SSL versions (the current standard being known as
TLS). Normally 1ibcurl used with R uses SecureTransport on macOS, OpenSSL on Windows
and GnuTLS, NSS or OpenSSL on Unix-alikes. (At the time of writing Debian-based Linuxen use
GnuTLS and RedHat-based ones use NSS, but it has been announced that Fedora 27 will switch to
OpenSSL.)

Examples

libcurlVersion ()

libPaths Search Paths for Packages

Description

.libPaths gets/sets the library trees within which packages are looked for.

Usage

.libPaths (new)

.Library
.Library.site

Arguments

new a character vector with the locations of R library trees. Tilde expansion
(path.expand) is done, and if any element contains one of *? [, globbing
is done where supported by the platform: see Sys.glob.

https://curl.se/docs/sslcerts.html
https://curl.se/docs/ssl-compared.html
https://curl.se/docs/ssl-compared.html

324 libPaths

Details

.Library is a character string giving the location of the default library, the ‘1ibrary’ subdirec-
tory of R_HOME.

.Library.site is a (possibly empty) character vector giving the locations of the site libraries,
by default the ‘site-1library’ subdirectory of R_HOME (which may not exist).

.libPaths is used for getting or setting the library trees that R knows about (and hence uses
when looking for packages). If called with argument new, the library search path is set to the
existing directories in unique (c (new, .Library.site, .Library)) and this is returned.
If given no argument, a character vector with the currently active library trees is returned.

How paths new with a trailing slash are treated is OS-dependent. On a POSIX filesystem existing
directories can usually be specified with a trailing slash: on Windows filepaths with a trailing slash
(or backslash) are invalid and so will never be added to the library search path.

The library search path is initialized at startup from the environment variable R_LIBS (which
should be a colon-separated list of directories at which R library trees are rooted) followed by those
in environment variable R_LIBS_USER. Only directories which exist at the time will be included.

By default R_LIBS is unset, and R_LIBS_USER is set to directory
‘R/R.version$platform-1ibrary/x.y’ of the home directory (or ‘Library/R/x.y/library’
for CRAN macOS builds), for R x.y.z.

.Library.site can be set via the environment variable R_LIBS_SITE (as a non-empty colon-
separated list of library trees).

Both R_L.IBS_USER and R_LIBS_SITE feature possible expansion of specifiers for R version
specific information as part of the startup process. The possible conversion specifiers all start with a
‘%’ and are followed by a single letter (use ‘%%’ to obtain ‘%’), with currently available conversion
specifications as follows:

‘v’ R version number including the patchlevel (e.g., ‘2.5.07).

3 9

$v” R version number excluding the patchlevel (e.g., ‘2. 5").

3 9

o\

p’ the platform for which R was built, the value of R.version$platform.
b

‘%0’ the underlying operating system, the value of R. version$os.

o\

‘%a’ the architecture (CPU) R was built on/for, the value of R.versionS$Sarch.

(See version for details on R version information.)

Function .1ibPaths always uses the values of .Library and .Library.site in the base
namespace. .Library.site can be set by the site in ‘Rprofile.site’, which should be
followed by acallto . 1ibPaths (.1ibPaths ()) to make use of the updated value.

For consistency, the paths are always normalized by normalizePath (winslash="/").

Value

A character vector of file paths.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

library 325

See Also

library

Examples

.libPaths () # all library trees R knows about

library Loading/Attaching and Listing of Packages

Description

library and require load and attach add-on packages.

Usage

library (package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.conflicts, quietly = FALSE,
verbose = getOption ("verbose"),
mask.ok, exclude, include.only,
attach.required = missing(include.only))

require (package, lib.loc = NULL, quietly = FALSE,
warn.conflicts,
character.only = FALSE,
mask.ok, exclude, include.only,
attach.required = missing(include.only))

conflictRules (pkg, mask.ok = NULL, exclude = NULL)

Arguments

package, help
the name of a package, given as a name or literal character string, or a character
string, depending on whether character.only is FALSE (default) or TRUE.

pos the position on the search list at which to attach the loaded namespace. Can also
be the name of a position on the current search list as given by search ().

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known
to . 1libPaths (). Non-existent library trees are silently ignored.

character.only
a logical indicating whether package or help can be assumed to be character
strings.

326 library

logical.return
logical. If it is TRUE, FALSE or TRUE is returned to indicate success.
warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
new package. A conflict is a function masking a function, or a non-function
masking a non-function. The default is TRUE unless specified as FALSE in the
conflicts.policy option.

verbose alogical. If TRUE, additional diagnostics are printed.

quietly a logical. If TRUE, no message confirming package attaching is printed, and
most often, no errors/warnings are printed if package attaching fails.

pkg character string naming a package.

mask.ok character vector of names of objects that can mask objects on the search path

without signaling an error when strict conflict checking is enabled
exclude, include.only
character vector of names of objects to exclude or include in the attached frame.
Only one of these arguments may be used inacall to library or require.
attach.required
logical specifying whether required packages listed in the Depends clause of
the DESCRIPTION file should be attached automatically.

Details

library (package) and require (package) both load the namespace of the package with
name package and attach it on the search list. require is designed for use inside other functions;
it returns FALSE and gives a warning (rather than an error as 1ibrary () does by default) if the
package does not exist. Both functions check and update the list of currently attached packages
and do not reload a namespace which is already loaded. (If you want to reload such a package,
call detach (unload = TRUE) or unloadNamespace first.) If you want to load a package
without attaching it on the search list, see requireNamespace.

To suppress messages during the loading of packages use
suppressPackageStartupMessages: this will suppress all messages from R itself
but not necessarily all those from package authors.

If library is called with no package or help argument, it lists all available pack-
ages in the libraries specified by 1ib.loc, and returns the corresponding information in an
object of class "libraryIQR". (The structure of this class may change in future ver-
sions.) Use .packages (all = TRUE) to obtain just the names of all available packages, and
installed.packages () for even more information.

library (help = somename) computes basic information about the package somename, and
returns this in an object of class "packageInfo". (The structure of this class may change in
future versions.) When used with the default value (NULL) for 1ib. loc, the attached packages
are searched before the libraries.

Value

Normally library returns (invisibly) the list of attached packages, but TRUE or FALSE
if logical.return is TRUE. When called as library () it returns an object of class
"libraryIQR", and for library (help=), one of class "packageInfo".

library 327
require returns (invisibly) a logical indicating whether the required package is available.

Conflicts

Handling of conflicts depends on the setting of the conflicts.policy option. If this op-
tion is not set, then conflicts result in warning messages if the argument warn.conflicts is
TRUE. If the option is set to the character string "strict™", then all unresolved conflicts signal
errors. Conflicts can be resolved using the mask .ok, exclude, and include.only argu-
ments to library and require. Defaults for mask .ok and exclude can be specified using
conflictRules.

If the conflicts.policy option is set to the string "depends.ok" then conflicts resulting
from attaching declared dependencies will not produce errors, but other conflicts will. This is likely
to be the best setting for most users wanting some additional protection against unexpected conflicts.

The policy can be tuned further by specifying the conflicts.policy option as a named list
with the following fields:

error: logical; if TRUE treat unresolved conflicts as errors.
warn: logical; unless FALSE issue a warning message when conflicts are found.

generics.ok: logical; if TRUE ignore conflicts created by defining S4 generics for functions on
the search path.

depends. ok: logical; if TRUE do not treat conflicts with required packages as errors.

can.mask: character vector of names of packages that are allowed to be masked. These would
typically be base packages attached by default.

Licenses

Some packages have restrictive licenses, and there is a mechanism to allow users to be aware of
such licenses. If getOption ("checkPackageLicense") == TRUE, then at first use of a
package with a not-known-to-be-FOSS (see below) license the user is asked to view and accept the
license: a list of accepted licenses is stored in file ‘~/ .R/1icensed’. In a non-interactive session
it is an error to use such a package whose license has not already been recorded as accepted.

As from R 3.4.0 the license check is done when the namespace is loaded.

Free or Open Source Software (FOSS, e.g. https://en.wikipedia.org/wiki/FOSS)
packages are determined by the same filters used by available.packages but applied to just
the current package, not its dependencies.

There can also be a site-wide file ‘R_HOME/etc/licensed.site’ of packages (one per line).

Formal methods

library takes some further actions when package methods is attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably
base) to be generic, and this information is cached whenever such a namespace is loaded after meth-
ods and re-defined functions (implicit generics) are excluded from the list of conflicts. The caching
and check for conflicts require looking for a pattern of objects; the search may be avoided by defin-
ing an object .noGenerics (with any value) in the namespace. Naturally, if the package does
have any such methods, this will prevent them from being used.

https://en.wikipedia.org/wiki/FOSS

328 library

Note

library and require can only load/attach an installed package, and this is detected by having
a ‘DESCRIPTION’ file containing a ‘Built:’ field.

Under Unix-alikes, the code checks that the package was installed under a similar operating sys-
tem as given by R.versionS$platform (the canonical name of the platform under which R
was compiled), provided it contains compiled code. Packages which do not contain compiled
code can be shared between Unix-alikes, but not to other OSes because of potential problems
with line endings and OS-specific help files. If sub-architectures are used, the OS similarity is
not checked since the OS used to build may differ (e.g. 1386—pc-1inux—gnu code can be built
on an x86_64-unknown—-1inux—gnu OS).

The package name given to library and require must match the name given in the pack-
age’s ‘DESCRIPTION’ file exactly, even on case-insensitive file systems such as are common on
Windows and macOS.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.libPaths, .packages.

attach, detach, search, objects, autoload, requireNamespace,
library.dynam, data, install.packages and installed.packages; INSTALL,
REMOVE.
The initial set of packages attached is set by options (defaultPackages=): see also
Startup.

Examples
library () # list all available packages
library(lib.loc = .Library) # list all packages in the default library
library (help = splines) # documentation on package 'splines'
library(splines) # attach package 'splines'
require (splines) # the same
search () # "splines", too

detach ("package:splines")

if the package name is in a character vector, use
pkg <- "splines"
library (pkg, character.only = TRUE)

detach (pos = match (paste ("package", pkg, sep = ":"), search()))
require (pkg, character.only = TRUE)
detach (pos = match (paste ("package", pkg, sep = ":"), search()))

require (nonexistent) # FALSE
Not run:
if you want to mask as little as possible, use

library.dynam 329

library (mypkg, pos = "package:base")

End (Not run)

library.dynam Loading DLLs from Packages

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage
library.dynam(chname, package, lib.loc,
verbose = getOption ("verbose"),
file.ext = .Platform$Sdynlib.ext, ...)

library.dynam.unload (chname, libpath,

verbose = getOption ("verbose"),
file.ext = .PlatformSdynlib.ext)
.dynLibs (new)
Arguments
chname a character string naming a DLL (also known as a dynamic shared object or
library) to load.
package a character vector with the name of package.
lib.loc a character vector describing the location of R library trees to search through.
libpath the path to the loaded package whose DLL is to be unloaded.
verbose a logical value indicating whether an announcement is printed on the console
before loading the DLL. The default value is taken from the verbose entry in the
system options.
file.ext the extension (including ‘.’ if used) to append to the file name to specify the
library to be loaded. This defaults to the appropriate value for the operating
system.
additional arguments needed by some libraries that are passed to the call to
dyn. load to control how the library and its dependencies are loaded.
new a list of "DLLInfo" objects corresponding to the DLLs loaded by packages.

Can be missing.

330 library.dynam

Details

See dyn . load for what sort of objects these functions handle.

library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used inside . onLoad. The system-specific extension for DLLs (e.g., ‘. so’
or ‘. s1’ on Unix-alike systems, ‘. d11’ on Windows) should not be added.

library.dynam.unload is designed for use in . onUnload: it unloads the DLL and updates
the value of . dynLibs ()

.dynLibs is used for getting (with no argument) or setting the DLLs which are currently loaded
by packages (using 1ibrary.dynam).

Value

If chname is not specified, 1ibrary.dynam returns an object of class "DLLInfoList" cor-
responding to the DLLs loaded by packages.

If chname is specified, an object of class "DLLInfo" that identifies the DLL and which can be
used in future calls is returned invisibly. Note that the class "DLLInfo" has a method for $ which
can be used to resolve native symbols within that DLL.

library.dynam.unload invisibly returns an object of class "DLLInfo" identifying the DLL
successfully unloaded.

.dynLibs returns an object of class "DLLInfoList" corresponding corresponding to its cur-
rent value.

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload to ensure that .dynLibs gets updated. Otherwise a subse-
quent call to library.dynam will be told the object is already loaded.

Note that whether or not it is possible to unload a DLL and then reload a revised version of the same
file is OS-dependent: see the ‘Value’ section of the help for dyn.unload.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

getLoadedDLLs for information on "DLLInfo" and "DLLInfoList" objects.
.onLoad, library,dyn.load, .packages, .1libPaths
SHLIB for how to create suitable DLLs.

Examples

Which DLLs were dynamically loaded by packages?
library.dynam()

license 331

More on library.dynam.unload ()

require (nlme)

nlme:::.onUnload # shows library.dynam.unload() call
detach ("package:nlme") # by default, unload=FALSE , so,
tail (library.dynam(), 2)# nlme still there

How to unload the DLL 2

Best 1s to unload the namespace, unloadNamespace ("nlme")

If we need to do it separately which should be exceptional:
pd.file <- attr (packageDescription("nlme"), "file")
library.dynam.unload ("nlme", libpath = sub("/Meta.*", '', pd.file))
tail (library.dynam(), 2)# 'nlme' is gone now

unloadNamespace ("nlme") # now gives warning
license The R License Terms
Description

The license terms under which R is distributed.

Usage

license ()
licence ()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE, either Version 2, June
1991 or Version 3, June 2007. A copy of the version 2 license is in file ‘R_HOME/doc/COPYING’
and can be viewed by RShowDoc ("COPYING"). Version 3 of the license can be displayed by
RShowDoc ("GPL-3").

A small number of files (some of the API header files) are distributed under the
LESSER GNU GENERAL PUBLIC LICENSE, version 2.1 or later. A copy of
this license is in file ‘SR_SHARE_DIR/licenses/LGPL-2.1" and can be viewed
by RShowDoc ("LGPL-2.1"). Version 3 of the license can be displayed by
RShowDoc ("LGPL-3").

332

list

list

Lists — Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage
list(...)
pairlist(...)
as.list(x, ...)
S3 method for class 'environment'
as.list(x, all.names = FALSE, sorted = FALSE,
as.pairlist (x)
is.list (x)
is.pairlist (x)
alist(...)
Arguments
objects, possibly named.
X object to be coerced or tested.

all.names

sorted

Details

names do not begin with a dot.

a logical indicating whether to copy all values or (default) only those whose

a logical indicating whether the names of the resulting list should be sorted (in-

creasingly). Note that this is somewhat costly, but may be useful for comparison

of environments.

Almost all lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in LISP)

remain available but rarely seen by users (except as formals of functions).

The arguments to 1ist or pairlist are of the form value or tag = value. The functions
return a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whereas 11 st simply ignores them. alist
is most often used in conjunction with formals.

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements
isreturned. as . list is generic, and as the default method calls as . vector (mode = "1ist")

Iist 333

for a non-list, methods for as.vector may be invoked. as.list turns a factor into a list of
one-element factors. Attributes may be dropped unless the argument already is a list or expression.
(This is inconsistent with functions such as as.character which always drop attributes, and is
for efficiency since lists can be expensive to copy.)

is.list returns TRUE if and only if its argument is a 1ist or apairlist of length > 0.
is.pairlist returns TRUE if and only if the argument is a pairlist or NULL (see below).

The "environment" method for as.list copies the name-value pairs (for names not begin-
ning with a dot) from an environment to a named list. The user can request that all named objects
are copied. Unless sorted = TRUE, the list is in no particular order (the order depends on the
order of creation of objects and whether the environment is hashed). No enclosing environments
are searched. (Objects copied are duplicated so this can be an expensive operation.) Note that there
is an inverse operation, the as .environment () method for list objects.

An empty pairlist, pairlist () is the same as NULL. This is different from 1ist (): some but
not all operations will promote an empty pairlist to an empty list.

as.pairlist is implemented as as.vector (x, "pairlist"), and hence will dispatch
methods for the generic function as.vector. Lists are copied element-by-element into a pairlist
and the names of the list used as tags for the pairlist: the return value for other types of argument is
undocumented.

list,is.list and is.pairlist are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
vector ("list", length) for creation of a list with empty components; c, for concatenation;
formals. unlist is an approximate inverse to as.list ().

‘plotmath’ for the use of 1ist in plot annotation.

Examples

require (graphics)

create a plotting structure
pts <- list(x = cars(,1l], v = carsl[,2])
plot (pts)

is.pairlist (.Options) # a user-level pairlist

"pre-allocate" an empty list of length 5
vector ("list", 5)

Argument lists

f <- function() x

Note the specification of a "..." argument:
formals (f) <- al <- alist(x =, y = 243, ... =)
f

334

al

list.files

environment->list coercion

el <- new.env()

el$Sa <- 10
elSb <- 20
as.list (el)

list.files

List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files or directories in the named direc-

tory.
Usage
list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
list.dirs(path = ".", full.names = TRUE, recursive = TRUE)
Arguments
path a character vector of full path names; the default corresponds to the working di-
rectory, getwd () . Tilde expansion (see path.expand) is performed. Miss-
ing values will be ignored. Elements with a marked encoding will be converted
to the native encoding (and if that fails, considered non-existent).
pattern an optional regular expression. Only file names which match the regular expres-
sion will be returned.
all.files alogical value. If FALSE, only the names of visible files are returned (following

full.names

recursive
ignore.case

include.dirs

no..

Unix-style visibility, that is files whose name does not start with a dot). If TRUE,
all file names will be returned.

alogical value. If TRUE, the directory path is prepended to the file names to give
a relative file path. If FALSE, the file names (rather than paths) are returned.

logical. Should the listing recurse into directories?

logical. Should pattern-matching be case-insensitive?

logical. Should subdirectory names be included in recursive listings? (They
always are in non-recursive ones).

logical. Should both ". " and " . ." be excluded also from non-recursive list-
ings?

list2DF 335

Value
A character vector containing the names of the files in the specified directories (empty if there were
no files). If a path does not exist or is not a directory or is unreadable it is skipped.
The files are sorted in alphabetical order, on the full path if full.names = TRUE.

list.dirs implicitly has all.files = TRUE, and if recursive = TRUE, the answer in-
cludes path itself (provided it is a readable directory).

dirisanaliasfor 1ist.files.

Note
File naming conventions are platform dependent. The pattern matching works with the case of file
names as returned by the OS.

On a POSIX filesystem recursive listings will follow symbolic links to directories.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access and files for many more file handling functions and
file.choose for interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.

Sys.glob for wildcard expansion on file paths. basename and dirname, useful for splitting
paths into non-directory (aka ‘filename’) and directory parts.

Examples

list.files (R.home())

Only files starting with a-1 or r

Note that a-1 is locale-dependent, but using case-insensitive

matching makes it unambiguous in English locales

dir("../..", pattern = ""[a-1lr]", full.names = TRUE, ignore.case = TRUE)

list.dirs (R.home ("doc"))
list.dirs (R.home ("doc"), full.names = FALSE)

1ist2DF Create Data Frame From List

Description

Create a data frame from a list of variables.

Usage

1list2DF (x = list (), nrow = NULL)

336 list2env

Arguments
X A list of variables for the data frame.
nrow An integer giving the desired number of rows for the data frame, or NULL (de-
fault), in which case the maximal length of the elements of the list will be used.
If necessary, list elements will be replicated to the same length given by the
number of rows.
Details

Note that all list elements are taken “as is” (apart from possibly replicating to the same length).

Value

A data frame with the given variables.

See Also

data.frame

Examples

Create a data frame holding a list of character vectors and the
corresponding lengths:

x <- list (character(), "A", c("B", "C"))

n <- lengths (x)

1ist2DF (list(x = x, n = n))

Create data frames with no variables and the desired number of rows:
1ist2DF ()
1ist2DF (nrow = 3L)

list2env From A List, Build or Add To an Environment

Description

From a named 1ist x, create an environment containing all list components as objects, or
“multi-assign” from x into a pre-existing environment.

Usage

list2env(x, envir = NULL, parent = parent.frame(),
hash = (length(x) > 100), size = max(29L, length(x)))

list2env 337

Arguments
X a list, where names (x) must not contain empty (" ") elements.
envir an environment or NULL.
parent (for the case envir = NULL): a parent frame aka enclosing environment, see
new.env.
hash (for the case envir = NULL): logical indicating if the created environment
should use hashing, see new.env.
size (in the case envir = NULL, hash = TRUE): hash size, see new.env.
Details

This will be very slow for large inputs unless hashing is used on the environment.

Environments must have uniquely named entries, but named lists need not: where the list has du-
plicate names it is the /ast element with the name that is used. Empty names throw an error.
Value

An environment, either newly created (as by new.env) if the envir argument was NULL,
otherwise the updated environment envir. Since environments are never duplicated, the argument
envir is also changed.

Author(s)

Martin Maechler

See Also

environment, new.env, as.environment; further, assign.

The (semantical) “inverse”: as.list.environment.

Examples

L <- list(a =1, b = 2:4, p = pi, ff = gl (3, 4, labels = LETTERS[1:3]))
e <—- list2env (L)
1s (e)
stopifnot (1s(e) == sort (names (L)),
identical (Lb, eb)) # "$" working for environments as for lists

consistency, when we do the inverse:

11 <- as.list (e) # —-> dispatching to the as.list.environment () method
rbind (names (L), names(l1l)) # not in the same order, typically,
but the same content:
stopifnot (identical (L [sort.list (names(L))],
1l[sort.list (names (11))]))
now add to e —— can be seen as a fast "multi-assign":
list2env(list (abc = LETTERS, note = "just an example",

df = data.frame(x = rnorm(20), y = rbinom(20, 1, pr = 0.2))),
envir = e)

338 load

utils::1ls.str(e)

load Reload Saved Datasets

Description

Reload datasets written with the function save.

Usage

load(file, envir = parent.frame (), verbose = FALSE)

Arguments
file a (readable binary-mode) connection or a character string giving the name of the
file to load (when tilde expansion is done).
envir the environment where the data should be loaded.
verbose should item names be printed during loading?
Details

load can load R objects saved in the current or any earlier format. It can read a compressed file
(see save) directly from a file or from a suitable connection (including a call to ur1l).

A not-open connection will be opened in mode "rb" and closed after use. Any connection other
than a gzfile or gzcon connection will be wrapped in gzcon to allow compressed saves to be
handled: note that this leaves the connection in an altered state (in particular, binary-only), and that
it needs to be closed explicitly (it will not be garbage-collected).

Only R objects saved in the current format (used since R 1.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format
will result in a error.

Loading from an earlier version will give a warning about the ‘magic number’: magic numbers
1971:1977 are from R <0.99.0, and RD [ABX] 1 from R 0.99.0 to R 1.3.1. These are all obsolete,
and you are strongly recommended to re-save such files in a current format.

The verbose argument is mainly intended for debugging. If it is TRUE, then as objects from the
file are loaded, their names will be printed to the console. If verbose is set to an integer value
greater than one, additional names corresponding to attributes and other parts of individual objects
will also be printed. Larger values will print names to a greater depth.

Objects can be saved with references to namespaces, usually as part of the environment of a function
or formula. Such objects can be loaded even if the namespace is not available: it is replaced by a
reference to the global environment with a warning. The warning identifies the first object with
such a reference (but there may be more than one).

Value

A character vector of the names of objects created, invisibly.

load 339

Warning

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers. 1oad tries to detect such a conversion and
gives an informative error message.

load (<file>) replaces all existing objects with the same names in the current environment
(typically your workspace, .GlobalEnv) and hence potentially overwrites important data. It is
considerably safer to use envir = to load into a different environment, or to attach (file)
which 1oad () s into a new entry in the search path.

See Also

save, download. file; further attach as wrapper for 1oad ().

For other interfaces to the underlying serialization format, see unserialize and readRDS.

Examples

save all data

xx <- pl # to ensure there is some data

save (list = ls(all.names = TRUE), file= "all.rda")
rm(xx)

restore the saved values to the current environment
local ({

load("all.rda")

1s ()
})

xx <— exp(l:3)

restore the saved values to the user's workspace

load("all.rda") ## which is here xequivalent* to

load("all.rda", .GlobalEnv)

This however annihilates all objects in .GlobalEnv with the same names !
xx # no longer exp(l:3)

rm(xx)
attach("all.rda") # safer and will warn about masked objects w/ same name in .GlobalEnv
ls(pos = 2)

also typically need to cleanup the search path:
detach ("file:all.rda")

clean up (the example):
unlink ("all.rda")

Not run:

con <— url ("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.
print (load(con))

close(con) # url() always opens the connection

End (Not run)

340 locales

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage
Sys.getlocale (category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")
Arguments
category character string. The following categories should always be sup-
ported: "LC_ALL", "LC_COLLATE", "LC_CTYPE", "LC_MONETARY",
"LC_NUMERIC" and "LC_TIME". Some systems (not Windows) will also
support "LC_MESSAGES", "LC_PAPER" and "LC_MEASUREMENT".
locale character string. A valid locale name on the system in use. Normally "" (the
default) will pick up the default locale for the system.
Details

The locale describes aspects of the internationalization of a program. Initially most aspects of the
locale of R are set to "C" (which is the default for the C language and reflects North-American
usage — also known as "POSIX"). R sets "LC_CTYPE" and "LC_COLLATE", which allow the
use of a different character set and alphabetic comparisons in that character set (including the use
of sort), "LC_MONETARY" (for use by Sys.localeconv) and "LC_TIME" may affect the
behaviour of as.POSIX1t and strpt ime and functions which use them (but not date).

The first seven categories described here are those specified by POSIX. "LC_MESSAGES" will be
"C" on systems that do not support message translation, and is not supported on Windows. Trying
to use an unsupported category is an error for Sys.setlocale.

Note that setting category "LC_ALL" sets only categories "LC_COLLATE", "LC_CTYPE",
"LC_MONETARY" and "LC_TIME".

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
OS.

Attempts to change the character set (by Sys.setlocale ("LC_CTYPE",), if that implies a
different character set) during a session may not work and are likely to lead to some confusion.

Note that the LANGUAGE environment variable has precedence over "LC_MESSAGES" in selecting
the language for message translation on most R platforms.

On platforms where ICU is used for collation the locale used for collation can be reset by
icuSetCollate. Except on Windows, the initial setting is taken from the "LC_COLLATE"
category, and it is reset when this is changed by a call to Sys.setlocale.

locales 341

Value

A character string of length one describing the locale in use (after setting for Sys.setlocale),
or an empty character string if the current locale settings are invalid or NULL if locale information
is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a single
locale name or a set of locale names separated by " /" (Solaris, macOS) or "; " (Windows, Linux).
For portability, it is best to query categories individually: it is not necessarily the case that the
result of foo <-Sys.getlocale () canbe usedin Sys.setlocale ("LC_ALL", locale
= foo).

Available locales

On most Unix-alikes the POSIX shell command 1ocale —a will list the ‘available public’ locales.
What that means is platform-dependent. On recent Linuxen this may mean ‘available to be installed’
as on some RPM-based systems the locale data is in separate RPMs. On Debian/Ubuntu the set of
available locales is managed by OS-specific facilities such as 1ocale—gen and locale —a lists
those currently enabled.

For Windows, Microsoft moves its documentation frequently so a Web search is the best way to
find current information.

Warning

Setting "LC_NUMERIC" to any value other than "C" may cause R to function anomalously, so
gives a warning. Input conversions in R itself are unaffected, but the reading and writing of ASCII
save files will be, as may packages which do their own input/output.

Setting it temporarily on a Unix-alike to produce graphical or text output may work well enough,
but options (OutDec) is often preferable.

Almost all the output routines used by R itself under Windows ignore the setting of
"LC_NUMERIC" since they make use of the Trio library which is not internationalized.

Note

Changing the values of locale categories whilst R is running ought to be noticed by the OS services,
and usually is but exceptions have been seen (usually in collation services).

See Also

strptime for uses of category = "LC_TIME". Sys.localeconv for details of numerical
and monetary representations.

110n_info gives some summary facts about the locale and its encoding.

The ‘R Installation and Administration’ manual for background on locales and how to find out
locale names on your system.

342

Examples

Sys.getlocale ()
Sys.getlocale ("LC_TIME")
Not run:

Sys.setlocale ("LC_TIME", "de") # Solaris: details are OS-dependent
Sys.setlocale ("LC_TIME", "de_DE") # Many Unix-alikes
Sys.setlocale ("LC_TIME", "de_DE.UTF-8") # Linux,

Sys.setlocale ("LC_TIME", "German") # Windows

End(Not run)

Sys.getlocale ("LC_PAPER") # may or may not be set

Not run:

Sys.setlocale ("LC_COLLATE", "C") # turn off locale-specific sorting,
usually (but not on all platforms)

End(Not run)

log

other Unix-alikes
Sys.setlocale ("LC_TIME", "de_DE.utf8") # some Linux versions

log Logarithms and Exponentials

Description

log computes logarithms, by default natural logarithms, 10g10 computes common (i.e., base 10)
logarithms, and 10g2 computes binary (i.e., base 2) logarithms. The general form 1og (x, base)

computes logarithms with base base.
loglp (x) computes log(1 + x) accurately also for |z| < 1.
exp computes the exponential function.

expml (x) computes exp(z) — 1 accurately also for |z| < 1.

Usage

log(x, base = exp/(
logb (x, base = exp
1logl0 (x)
log2 (x)

loglp (x)

exp (x)
expml (x)

Arguments

X a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are

computed. Defaults to e=exp (1) .

log 343

Details

All except 1ogb are generic functions: methods can be defined for them individually or via the
Math group generic.

logl0 and log2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed
via 1og or the wrappers) will be computed more efficiently and accurately where supported by the
OS. Methods can be set for them individually (and otherwise methods for 1og will be used).

logb is a wrapper for 1og for compatibility with S. If (S3 or S4) methods are set for 1 og they will
be dispatched. Do not set S4 methods on 1ogb itself.

All except 1og are primitive functions.

Value

A vector of the same length as x containing the transformed values. 1og (0) gives —Inf, and
log (x) for negative values of x is NaN. exp (-Inf) is O.

For complex inputs to the log functions, the value is a complex number with imaginary part in the
range [—m, 7]: which end of the range is used might be platform-specific.

S4 methods

exp, expml, 1log, 1ogl0, 1log2 and loglp are S4 generic and are members of the Math group
generic.

Note that this means that the S4 generic for 1og has a signature with only one argument, x, but that
base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for the Math group generic then base argument of 1og will be ignored for
your class.

Source

loglp and expml may be taken from the operating system, but if not available there then they
are based on the Fortran subroutine d1lnrel by W. Fullerton of Los Alamos Scientific Laboratory
(see https://www.netlib.org/slatec/fnlib/dlnrel. f) and (for small x) a single
Newton step for the solution of 1oglp (y) = x respectively.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (for 1og, 10g10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for 1ogb.)

See Also

Trig, sqrt, Arithmetic.

https://www.netlib.org/slatec/fnlib/dlnrel.f

344 Logic

Examples

log(exp(3))
loglO(1le7) # = 7

X <= 10"—=(1+2%1:9)
cbind(x, log(l+x), loglp(x), exp(x)-1, expml (x))

Logic Logical Operators

Description

These operators act on raw, logical and number-like vectors.

Usage

I x

&y
&& Y
Iy

Iy
xX0r (X, V)

XXX X

isTRUE (x)
isFALSE (x)

Arguments
X,y raw, logical or ‘number-like’ vectors (i.e., of types double (class
numeric), integer and complex), or objects for which methods have been
written.
Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and | | indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form evaluates
left to right examining only the first element of each vector. Evaluation proceeds only until the
result is determined. The longer form is appropriate for programming control-flow and typically
preferred in 1 f clauses.

xor indicates elementwise exclusive OR.

1sTRUE (x) is the same as { is.logical (x) && length(x) ==1&& !is.na(x) && X
}; isFALSE () is defined analogously. Consequently, i f (1sTRUE (cond)) may be preferable
to i f (cond) because of NAs.

In earlier R versions, 1 sTRUE <—function (x) identical (x, TRUE), had the drawback to
be false e.g., for x <-c (val = TRUE).

Logic 345

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercion for !, &, | and xor, with
these operators being applied bitwise (so ! is the 1s-complement).

The operators !, & and | are generic functions: methods can be written for them individually or
via the Ops (or S4 Logic, see below) group generic function. (See Ops for how dispatch is
computed.)

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if the outcome
is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE evaluates to FALSE.
See the examples below.

See Syntax for the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators have higher prece-
dence than the OR operators).

Value

For !, a logical or raw vector(for raw x) of the same length as x: names, dims and dimnames are
copied from x, and all other attributes (including class) if no coercion is done.

For |, & and xor a logical or raw vector. If involving a zero-length vector the result has length
zero. Otherwise, the elements of shorter vectors are recycled as necessary (with a warning when
they are recycled only fractionally). The rules for determining the attributes of the result are rather
complicated. Most attributes are taken from the longer argument, the first if they are of the same
length. Names will be copied from the first if it is the same length as the answer, otherwise from
the second if that is. For time series, these operations are allowed only if the series are compatible,
when the class and t sp attribute of whichever is a time series (the same, if both are) are used. For
arrays (and an array result) the dimensions and dimnames are taken from first argument if it is an
array, otherwise the second.

For | |, && and 1 sTRUE, a length-one logical vector.

S4 methods
!, & and | are S4 generics, the latter two part of the Logic group generic (and hence methods
need argument names e1, e2).

Note
The elementwise operators are sometimes called as functions ase.g. ~ &~ (x, y) : see the description
of how argument-matching is done in Ops.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

TRUE or logical.

any and all for OR and AND on many scalar arguments.

346 logical

Syntax for operator precedence.

bitwAnd for bitwise versions for integer vectors.

Examples

y <= 1 + (x <- stats::rpois (50, lambda = 1.5) / 4 - 1)
x[(x > 0) & (x < 1)] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables
x <- c(NA, FALSE, TRUE)

names (x) <- as.character (x)
outer (x, x, "&") ## AND table

outer (x, x, "|") ## OR table
logical Logical Vectors
Description

Create or test for objects of type "1logical™, and the basic logical constants.

Usage

TRUE
FALSE
T, F

logical (length = 0)
as.logical (x,)
is.logical (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
x object to be coerced or tested.
further arguments passed to or from other methods.
Details

TRUE and FALSE are reserved words denoting logical constants in the R language, whereas T and
F are global variables whose initial values set to these. All four are 1ogical (1) vectors.

Logical vectors are coerced to integer vectors in contexts where a numerical value is required, with
TRUE being mapped to 11, FALSE to 0L and NA to NA_integer_.

LongVectors 347

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to

FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors,
this uses the levels (labels). Like as.vector it strips attributes including
names. Character strings c("T", "TRUE", "True", "true") are regarded as true,

c("F","FALSE", "False", "false") as false, and all others as NA.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

NA, the other logical constant.

LongVectors Long Vectors

Description

Vectors of 23! or more elements were added in R 3.0.0.

Details

231

Prior to R 3.0.0, all vectors in R were restricted to at most — 1 elements and could be indexed

by integer vectors.

Currently all atomic (raw, logical, integer, numeric, complex, character) vectors, lists and expres-
sions can be much longer on 64-bit platforms: such vectors are referred to as ‘long vectors’ and
have a slightly different internal structure. In theory they can contain up to 252 elements, but ad-
dress space limits of current CPUs and OSes will be much smaller. Such objects will have a length
that is expressed as a double, and can be indexed by double vectors.

Arrays (including matrices) can be based on long vectors provided each of their dimensions is at
most 231 — 1: thus there are no 1-dimensional long arrays.

R code typically only needs minor changes to work with long vectors, maybe only checking that
as.integer is not used unnecessarily for e.g. lengths. However, compiled code typically needs
quite extensive changes. Note that the . C and . Fortran interfaces do not accept long vectors, so
.Call (or similar) has to be used.

Because of the storage requirements (a minimum of 64 bytes per character string), character vectors
are only going to be usable if they have a small number of distinct elements, and even then factors
will be more efficient (4 bytes per element rather than 8). So it is expected that most of the usage of
long vectors will be integer vectors (including factors) and numeric vectors.

348 lower.tri

Matrix algebra

It is now possible to use m x n matrices with more than 2 billion elements. Whether matrix algebra
(including $+%, crossprod, svd, gr, solve and eigen) will actually work is somewhat im-
plementation dependent, including the Fortran compiler used and if an external BLAS or LAPACK
is used.

An efficient parallel BLAS implementation will often be important to obtain usable performance.
For example on one particular platform chol on a 47,000 square matrix took about 5 hours with
the internal BLAS, 21 minutes using an optimized BLAS on one core, and 2 minutes using an
optimized BLAS on 16 cores.

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower or upper

triangle.
Usage
lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)
Arguments
X a matrix or other R object with length (dim(x)) == 2. For back compati-
bility reasons, when the above is not fulfilled, as.matrix (x) is called first.
diag logical. Should the diagonal be included?
See Also

diag, matrix; further row and col on which lower.tri () and upper.tri () are built.

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri (m2)
m2[lower.tri(m2)] <- NA
m2

Is 349

1ls List Objects

Description

1s and object s return a vector of character strings giving the names of the objects in the specified
environment. When invoked with no argument at the top level prompt, 1s shows what data sets and
functions a user has defined. When invoked with no argument inside a function, 1s returns the
names of the function’s local variables: this is useful in conjunction with browser.

Usage
ls(name, pos = -1L, envir = as.environment (pos),
all.names = FALSE, pattern, sorted = TRUE)
objects (name, pos= -1L, envir = as.environment (pos),
all.names = FALSE, pattern, sorted = TRUE)
Arguments
name which environment to use in listing the available objects. Defaults to the cur-
rent environment. Although called name for back compatibility, in fact this
argument can specify the environment in any form; see the ‘Details’ section.
pos an alternative argument to name for specifying the environment as a position in
the search list. Mostly there for back compatibility.
envir an alternative argument to name for specifying the environment. Mostly there
for back compatibility.
all.names a logical value. If TRUE, all object names are returned. If FALSE, names which
begin with a ‘.’ are omitted.
pattern an optional regular expression. Only names matching pattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.
sorted logical indicating if the resulting character should be sorted alphabetically.
Note that this is part of 1s () may take most of the time.
Details

The name argument can specify the environment from which object names are taken in one of
several forms: as an integer (the position in the search list); as the character string name of an
element in the search list; or as an explicit environment (including using sys . f rame to access
the currently active function calls). By default, the environment of the call to 1s or objects is
used. The pos and envir arguments are an alternative way to specify an environment, but are
primarily there for back compatibility.

Note that the order of strings for sorted = TRUE is locale dependent, see Sys.getlocale.
If sorted = FALSE the order is arbitrary, depending if the environment is hashed, the order of
insertion of objects,

350 make.names

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

glob2rx for converting wildcard patterns to regular expressions.

1s.str for a long listing based on str. apropos (or £ind) for finding objects in the whole
search path; grep for more details on ‘regular expressions’; class, methods, etc., for object-
oriented programming.

Examples

.0b <=1
ls(pattern = "O")
ls (pattern= "O", all.names = TRUE) # also shows ".[foo]l"

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {1ls()}
myfunc ()

define a local variable inside myfunc

myfunc <- function() {y <- 1; 1ls{()}
myfunc () # shows "y"
make.names Make Syntactically Valid Names
Description

Make syntactically valid names out of character vectors.

Usage
make.names (names, unique = FALSE, allow_ = TRUE)
Arguments
names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.
unique logical; if TRUE, the resulting elements are unique. This may be desired for,

e.g., column names.

allow_ logical. For compatibility with R prior to 1.9.0.

make.names 351

Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and
starts with a letter or the dot not followed by a number. Names such as " . 2way" are not valid, and
neither are the reserved words.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.

The character "X" is prepended if necessary. All invalid characters are translated to ".". A
missing value is translated to "NA". Names which match R keywords have a dot appended to them.
Duplicated values are altered by make . unique.

Value
A character vector of same length as name s with each changed to a syntactically valid name, in the
current locale’s encoding.

Warning

Some OSes, notably FreeBSD, report extremely incorrect information about which characters are
alphabetic in some locales (typically, all multi-byte locales including UTF-8 locales). However, R
provides substitutes on Windows, macOS and AIX.

Note

Prior to R version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Use allow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not allow
underline in names (for example, S-PLUS and some DBMSes).

See Also

make.unique, names, character, data.frame.

Examples

make.names (c ("a and b", "a-and-b"), unique = TRUE)
"a.and.b" "a.and.b.l"
make.names (c("a and b", "a_and_b"), unique = TRUE)

"a.and.b" "a_and_b"

make.names (c ("a and b", "a_and_b"), unique = TRUE, allow_ = FALSE)
"a.and.b" "a.and.b.l"

make.names (c("", "X"), unique = TRUE)

"X.1" "X" currently; R up to 3.0.2 gave "X" "X.1"

state.name [make.names (state.name) != state.name] # those 10 with a space

352 make.unique

make.unique Make Character Strings Unique

Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unique (names, sep = ".")

Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.
Details

The algorithm used by make.unique has the property that make.unique (c (A,B)) ==
make.unique (c (make.unique (A),B)).

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applying make . unique to all of the strings at once.

If character vector A is already unique, then make .unique (c (A, B)) preserves A.

Value
A character vector of same length as name s with duplicates changed, in the current locale’s encod-
ing.

Author(s)
Thomas P. Minka

See Also

make.names

Examples

make.unique (c("a", "a", "a"))
make.unique (c (make.unique (c("a", "a")), "a"))

make.unique (c("a", "a", "a.2", "a"))
make.unique (c (make.unique (c("a", "a")), "a.z2", "a"))

Now show a bit where this is used
trace (make.unique)
Applied in data.frame() constructions:

mapply 353

(dl <- data.frame(x =1, x = 2, x = 3)) # direct

d2 <- data.frame(data.frame(x = 1, x = 2), x = 3) # pairwise
stopifnot (identical (d1, d2),
colnames (dl) == ("x", "x.1", "x.2™))

untrace (make.unique)

mapply Apply a Function to Multiple List or Vector Arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each
...argument, the second elements, the third elements, and so on. Arguments are recycled if neces-

sary.

Usage
mapply (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)
Arguments
FUN function to apply, found viamatch. fun.
arguments to vectorize over (vectors or lists of strictly positive length, or all of
zero length). See also ‘Details’.
MoreArgs a list of other arguments to FUN.
SIMPLIFY logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of sapply.
USE .NAMES logical; use names if the first . . . argument has names, or if it is a character vector,
use that character vector as the names.
Details
mapply calls FUN for the values of . .. (re-cycled to the length of the longest, unless any have
length zero), followed by the arguments given in MoreArgs. The arguments in the call will be
named if . . . or MoreArgs are named.
Arguments with classes in . . . will be accepted, and their subsetting and 1ength methods will be
used.
Value

A list, or for SIMPLIFY = TRUE, a vector, array or list.

See Also

sapply, after which mapply () is modelled.

outer, which applies a vectorized function to all combinations of two arguments.

354 marginSums

Examples
mapply (rep, 1:4, 4:1)
mapply (rep, times = 1:4, x = 4:1)
mapply (rep, times = 1:4, MoreArgs = list(x = 42))
mapply (function(x, y) seq_len(x) + vy,
ca= 1, b =2, ¢ = 3), # names from first

c(A =10, B =20, C = -10))

word <- function(C, k) paste(rep.int(C, k), collapse = "")
utils::str (mapply (word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

marginSums Compute table margins

Description
For a contingency table in array form, compute the sum of table entries for a given margin or set of
margins.

Usage

marginSums (x, margin = NULL)
margin.table(x, margin = NULL)

Arguments
X an array
margin a vector giving the margins to compute sums for. E.g., for a matrix 1 indicates
rows, 2 indicates columns, ¢ (1, 2) indicates rows and columns. When x has
named dimnames, it can be a character vector selecting dimension names.
Value

The relevant marginal table, or just the sum of all entries if margin has length zero. The class of
x is copied to the output table if margin is non-NULL.

Note

margin.table is an earlier name, retained for back-compatibility.

Author(s)

Peter Dalgaard

mat.or.vec 355

See Also

proportions and addmargins.

Examples

m <- matrix(1:4,
marginSums (m, 1)
marginSums (m, 2)

DF <- as.data.frame (UCBAdmissions)
tbl <- xtabs(Freq ~ Gender + Admit, DF)

marginSums (tbl, "Gender")
proportions (tbl, "Gender")

mat .or.vec Create a Matrix or a Vector

Description

mat .or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of length
nr if nc equals 1.

Usage

mat.or.vec (nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec (3, 1)
mat.or.vec (3, 2)

356 match

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%$1n% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match (x, table, nomatch = NA_integer_, incomparables = NULL)

Arguments
x vector or NULL: the values to be matched. Long vectors are supported.
table vector or NULL: the values to be matched against. Long vectors are not sup-
ported.
nomatch the value to be returned in the case when no match is found. Note that it is
coerced to integer.
incomparables
a vector of values that cannot be matched. Any value in x matching a value in
this vector is assigned the nomatch value. For historical reasons, FALSE is
equivalent to NULL.
Details

%$1n% is currently defined as
"$in%" <—-function(x,table) match (x, table, nomatch=0) >0

Factors, raw vectors and lists are converted to character vectors, and then x and t able are coerced
to a common type (the later of the two types in R’s ordering, logical < integer < numeric < complex
< character) before matching. If incomparables has positive length it is coerced to the common
type.

Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all types, NA matches NA
and no other value. For real and complex values, NaN values are regarded as matching any other
NaN value, but not matching NA, where for complex x, real and imaginary parts must match both
(unless containing at least one NA).

Character strings will be compared as byte sequences if any input is marked as "bytes", and
otherwise are regarded as equal if they are in different encodings but would agree when translated
to UTF-8 (see Encoding).

That $in% never returns NA makes it particularly useful in i f conditions.

match 357

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match,
otherwise nomatch.

If x[i] is found to equal table[]j] then the value returned in the i-th position of the return
value is j, for the smallest possible j. If no match is found, the value is nomat ch.

%$in%: A logical vector, indicating if a match was located for each element of x: thus the values are
TRUE or FALSE and never NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

pmatch and charmatch for (partial) string matching, match . arg, etc for function argument
matching. findInterval similarly returns a vector of positions, but finds numbers within inter-
vals, rather than exact matches.

is.element for an S-compatible equivalent of $in%.

unique (and duplicated) are using the same definitions of “match” or “equality” asmatch (),
and these are less strict than ==, e.g., for NA and NaN in numeric or complex vectors, or for strings
with different encodings, see also above.

Examples

The intersection of two sets can be defined via match{():
Simple version:

intersect <- function(x, y) yl[match(x, y, nomatch = 0)]
intersect # the R function in base is slightly more careful
intersect (1:10, 7:20)

1:10 %$in% c(1,3,5,9)
SStr <7 C("C","ab","B","bba","C",NA, ll@","bla",llall,"Ba","%")
sstr[sstr %in% c(letters, LETTERS)]

"$w/o%" <- function(x, y) x[!x %$in% y] #-—- x without y

(1:10) %w/0% c(3,7,12)

Note that setdiff () is very similar and typically makes more sense:
c(l:6,7:2) %$w/0% c(3,7,12) # —> keeps duplicates

setdiff(c(l:6,7:2), c(3,7,12)) # —> unique values

Illuminating example about NA matching

r <- c(l1, NA, NaN)

zN <- c(complex(real = NA , imaginary = 1r), complex(real = «r , imaginary
complex(real = r , imaginary = NaN), complex(real = NaN, imaginary

zM <- cbind(Re=Re (zN), Im=Im(zN), match = match (zN, zN))

rownames (zM) <- format (zN)

zM ##--> many "NA's" (= 1) and the four non-NA's (3 different ones, at 7,9,10)

= NA

-~

358 match.arg

length (zN) # 12
unique (zN) # the "NA" and the 3 different non-NA NaN's
stopifnot (identical (unique (zN), zN[c (1, 7,9,10)1))

very strict equality would have 4 duplicates (of 12):

symnum (outer (zN, zN, Vectorize(identical,c("x","y")),
FALSE, FALSE, FALSE, FALSE))

removing " (very strictly) duplicates",

i <= ¢(5,8,11,12) # we get 8 pairwise non-identicals

Ixy <- outer(zN[-i], zN[-1], Vectorize(identical,c("x","y")),
FALSE,FALSE, FALSE, FALSE)

stopifnot (identical (Ixy, diag(8) == 1))

match.arg Argument Verification Using Partial Matching

Description
match.arg matches arg against a table of candidate values as specified by choices, where
NULL means to take the first one.

Usage

match.arg(arg, choices, several.ok = FALSE)

Arguments
arg a character vector (of length one unless several . ok is TRUE) or NULL.
choices a character vector of candidate values

several.ok logical specifying if arg should be allowed to have more than one element.

Details

In the one-argument form match.arg (arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called. (Since default
argument matching will set arg to choices, this is allowed as an exception to the ‘length one
unless several. ok is TRUE’ rule, and returns the first element.)

Matching is done using pmatch, so arg may be abbreviated.

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error is
signalled if several. ok is false, as per default. When several .ok is true and more than one
element of arg has a match, all unabbreviated versions of matches are returned.

See Also

pmatch, match. fun,match.call.

match.call 359

Examples

require (stats)

Extends the example for 'switch'

center <- function(x, type = c("mean", "median", "trimmed")) {
type <- match.arg(type)
switch (type,

mean = mean (x),
median = median (x),
trimmed = mean(x, trim = .1))

}

x <— rcauchy (10)

center(x, "t") # Works
center (x, "med") # Works
try(center(x, "m")) # Error
stopifnot (identical (center (x), center (x, "mean")),

identical (center (x, NULL), center(x, "mean")))

Allowing more than one match:

match.arg(c ("gauss", "rect", "ep"),
c("gaussian", "epanechnikov", "rectangular", "triangular"),
several.ok = TRUE)

match.call Argument Matching

Description

match.call returns a call in which all of the specified arguments are specified by their full

names.
Usage
match.call (definition = sys.function(sys.parent ()),
call = sys.call(sys.parent()),
expand.dots = TRUE,
envir = parent.frame (2L))
Arguments

definition a function, by default the function from which match.call is called. See

details.

call an unevaluated call to the function specified by definition, as generated by
call.

expand.dots logical. Should arguments matching . . . in the call be included or leftasa . . .
argument?

envir an environment, from which the . . . in call are retrieved, if any.

360 match.fun

Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’):
match.call does not support primitive functions (where argument matching is normally po-
sitional).

match.call is most commonly used in two circumstances:

* To record the call for later re-use: for example most model-fitting functions record the call as
element call of the list they return. Here the default expand.dots = TRUE is appropriate.

* To pass most of the call to another function, often model . frame. Here the common idiom is
that expand.dots = FALSE is used, and the . . . element of the matched call is removed.
An alternative is to explicitly select the arguments to be passed on, as is done in 1m.

Calling match.call outside a function without specifying definition is an error.
Value

An object of class call.
References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

sys.call () is similar, but does not expand the argument names; call, pmatch, match.arg,
match. fun.

Examples
match.call (get, call("get", "abc", i = FALSE, p = 3))
—> get (x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {
structure ((x - lower) / (upper - lower), CALL = match.call())

}
fun(4 x atan(l), u = pi)

match. fun Extract a Function Specified by Name

Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match. fun (FUN, descend = TRUE)

match.fun 361

Arguments
FUN item to match as function: a function, symbol or character string. See ‘Details’.
descend logical; control whether to search past non-function objects.

Details

match. fun is not intended to be used at the top level since it will perform matching in the parent
of the caller.

If FUN is a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up using get in the environment of the parent of
the caller. If it is of any other mode, it is attempted first to get the argument to the caller as a symbol
(using substitute twice), and if that fails, an error is declared.

If descend = TRUE, match. fun will look past non-function objects with the given name; oth-
erwise if FUN points to a non-function object then an error is generated.

This is used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs
The descend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

It is impossible to fully foolproof this. If one at t aches a list or data frame containing a length-one
character vector with the same name as a function, it may be used (although namespaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

Examples

Same as get ("x"):

match.fun ("*")

Overwrite outer with a vector

outer <- 1:5

try (match.fun (outer, descend = FALSE)) #-> Error: not a function
match.fun (outer) # finds it anyway

is.function (match.fun ("outer")) # as well

362 MathFun

MathFun Miscellaneous Mathematical Functions

Description

abs (x) computes the absolute value of X, sgrt (x) computes the (principal) square root of X,
V.

The naming follows the standard for computer languages such as C or Fortran.

Usage
abs (x)
sgrt (x)
Arguments

x a numeric or complex vector or array.

Details

These are internal generic primitive functions: methods can be defined for them individually or
via the Math group generic. For complex arguments (and the default method), z, abs (z) ==
Mod (z) and sqrt (z) ==z"0.5.

abs (x) returns an integer vector when x is integer or logical.

S4 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic for simple, Log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

‘plotmath’ for the use of sgrt in plot annotation.

Examples

require (stats) # for spline

require (graphics)

xx <— —-9:9

plot (xx, sqgrt (abs(xx)), col = "red")

lines (spline (xx, sqgrt (abs(xx)), n=101), col = "pink")

matmult 363

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors of the
same length, it will return the inner product (as a matrix).

Usage

X

o

*

o
=

Arguments

X,y numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix.

Promotion of a vector to a 1-row or 1-column matrix happens when one of the two choices allows
x and y to get conformable dimensions.

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments named x and y.
Value

A double or complex matrix product. Use drop to remove dimensions which have only one level.

Note
The propagation of NaN/Inf values, precision, and performance of matrix products can be controlled
by options ("matprod").

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

For matrix crossproducts, crossprod() and tcrossprod() are typically preferable.
matrix, Arithmetic,diag.

364 matrix

Examples
x <- 1:4
(z <= X %*% X) # scalar ("inner") product (1 x 1 matrix)
drop (z) # as scalar
y <- diag(x)
z <- matrix(1l:12, ncol = 3, nrow = 4)
y %%% z
Yy %% %
X %*% z
matrix Matrices
Description

matrix creates a matrix from the given set of values.
as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

Usage

matrix (data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

as.matrix(x, ...)
S3 method for class 'data.frame'
as.matrix (x, rownames.force = NA, ...)

is.matrix (x)

Arguments

data an optional data vector (including a list or expression vector). Non-atomic
classed R objects are coerced by as.vector and all attributes discarded.

nrow the desired number of rows.

ncol the desired number of columns.

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames A dimnames attribute for the matrix: NULL or a 1ist of length 2 giving the
row and column names respectively. An empty list is treated as NULL, and a list
of length one as row names. The list can be named, and the list names will be
used as names for the dimensions.

x an R object.

additional arguments to be passed to or from methods.

matrix 365

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details
If one of nrow or ncol is not given, an attempt is made to infer it from the length of data and
the other parameter. If neither is given, a one-column matrix is returned.

If there are too few elements in data to fill the matrix, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

is.matrix returns TRUE if x is a vector and has a "dim" attribute of length 2 and FALSE
otherwise. Note that a data . frame is not a matrix by this test. The function is generic: you can
write methods to handle specific classes of objects, see InternalMethods.

as.matrix is a generic function. The method for data frames will return a character ma-
trix if there is only atomic columns and any non-(numeric/logical/complex) column, applying
as.vector to factors and format to other non-character columns. Otherwise, the usual co-
ercion hierarchy (logical < integer < double < complex) will be used, e.g., all-logical data frames
will be coerced to a logical matrix, mixed logical-integer will give a integer matrix, etc.

The default method for as.matrix calls as.vector (x), and hence e.g. coerces factors to
character vectors.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

is.matrix is a primitive function.
The print method for a matrix gives a rectangular layout with dimnames or indices. For a list
matrix, the entries of length not one are printed in the form ‘integer, 7’ indicating the type and
length.

Note

If you just want to convert a vector to a matrix, something like

dim(x) <- c(nx, ny)
dimnames (x) <—- list (row_names, col_names)

will avoid duplicating x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data.matrix, which attempts to convert to a numeric matrix.

A matrix is the special case of a two-dimensional array. Since R 4.0.0,
inherits (m, "array") istrue foramatrix m.

366 maxCol

Examples

is.matrix(as.matrix (1:10))

lis.matrix (warpbreaks) # data.frame, NOT matrix!
warpbreaks[1:10,]
as.matrix (warpbreaks([1:10,]) # using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol = 3, byrow = TRUE,
dimnames = list (c("rowl", "row2"),
c("c.1i", "c.2", "C.3")))
mdat

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col (m, ties.method = c¢("random", "first", "last"))

Arguments

m numerical matrix

ties.method a character string specifying how ties are handled, "random" by default; can
be abbreviated; see ‘Details’.

Details

When ties.method = "random", as per default, ties are broken at random. In this case, the
determination of a tie assumes that the entries are probabilities: there is a relative tolerance of 1072,
relative to the largest (in magnitude, omitting infinity) entry in the row.

Ifties.method="first", max.col returns the column number of the first of several max-
ima in every row, the same as unname (apply (m, 1, which.max)).
Correspondingly, ties .method = "last" returns the last of possibly several indices.

Value

index of a maximal value for each row, an integer vector of length nrow (m) .

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

mean 367

See Also

which.max for vectors.

Examples

table (mc <- max.col (swiss)) # mostly "1" and "5", 5 x "2" and once "4"
swiss[unique (print (mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

set.seed (1) # reproducible example:

(mm <- rbind(x = round(2*stats::runif (12)),
y = round(5xstats::runif(12)),

round (8+stats::runif (12))))

N
Il

Not run:

,11 ,21 (,3) [,41 [,5) [,e) [,71 [,81 [,9] [,10] [,11] [,12]
X 1 1 1 2 0 2 2 1 1 0 0 0
y 3 2 4 2 4 5 2 4 5 1 3 1
z 2 3 0 3 7 3 4 5 4 1 7 5

End (Not run)

column indices of all row maxima

utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm[i,]))))
max.col (mm) ; max.col (mm) # "random"

max.col (mm, "first") # -> 4 6 5

max.col (mm, "last") # -> 7 9 11

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean (X, ...)

Default S3 method:

mean (x, trim = 0, na.rm = FALSE, ...)
Arguments
x An R object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects. Complex vectors are allowed for trim =
0, only.
trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before

the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

368 memCompress

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

further arguments passed to or from other methods.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)
or complex, NA_real_ isreturned, with a warning.

If t rimis non-zero, a symmetrically trimmed mean is computed with a fraction of t r im observa-
tions deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

weighted.mean, mean.POSIXct, colMeans for row and column means.

Examples

x <-= c¢(0:10, 50)
xm <— mean (x)

c(xm, mean(x, trim = 0.10))
memCompress In-memory Compression and Decompression
Description

In-memory compression or decompression for raw vectors.

Usage

memCompress (from, type = c("gzip", "bzip2", "xz", "none"))
memDecompress (from,
type = c("unknown", "gzip", "bzip2", "xz", "none"),
asChar = FALSE)

memCompress 369

Arguments
from A raw vector. For memCompress a character vector will be converted to a raw
vector with character strings separated by "\n". Types "gzip" and "xz"
support long raw vectors as from R 4.0.0.
type character string, the type of compression. May be abbreviated to a single letter,
defaults to the first of the alternatives.
asChar logical: should the result be converted to a character string? NB: character
strings have a limit of 23! — 1 bytes, so raw vectors should be used for large
inputs.
Details

type = "none" passes the input through unchanged, but may be useful if t ype is a variable.

type = "unknown" attempts to detect the type of compression applied (if any): this will always
succeed for bzip2 compression, and will succeed for other forms if there is a suitable header. It
will auto-detect the ‘magic’ header ("\x1£\x8b") added to files by the gzip program (and to
files written by gzfile), but memCompress does not add such a header. (It supports RFC 1950
format, sometimes known as ‘zlib’ format, for compression and decompression and RFC 1952 for
decompression only.)

gz ip compression uses whatever is the default compression level of the underlying library (usually
6).

bzip2 compression always adds a header ("BZh"). The underlying library only supports in-
memory (de)compression of up to 23! — 1 elements. Compression is equivalent to bzip2 —9 (the
default).

Compressing with type = "xz" is equivalent to compressing a file with xz —9e (including adding
the ‘magic’ header): decompression should cope with the contents of any file compressed by xz
version 4.999 and later, as well as by some versions of 1zma. There are other versions, in particular
‘raw’ streams, that are not currently handled.

All the types of compression can expand the input: for "gzip" and "bzip2" the maximum
expansion is known and so memCompress can always allocate sufficient space. For "xz" it is
possible (but extremely unlikely) that compression will fail if the output would have been too large.

Value

A raw vector or a character string (if asChar = TRUE).

See Also

connections.
extSoftVersion for the versions of the z11ib, bzip2 and xz libraries in use.

https://en.wikipedia.org/wiki/Data_compression for background on data com-
pression, https://zlib.net/,https://en.wikipedia.org/wiki/Gzip, http://
www.bzip.org/, https://en.wikipedia.org/wiki/Bzip2, https://tukaani.
org/xz/ and https://en.wikipedia.org/wiki/Xz for references about the particular
schemes used.

https://en.wikipedia.org/wiki/Data_compression
https://zlib.net/
https://en.wikipedia.org/wiki/Gzip
http://www.bzip.org/
http://www.bzip.org/
https://en.wikipedia.org/wiki/Bzip2
https://tukaani.org/xz/
https://tukaani.org/xz/
https://en.wikipedia.org/wiki/Xz

370 memlimits

Examples

txt <- readLines (file.path (R.home ("doc"), "COPYING"))

sum (nchar (txt))

txt.gz <- memCompress (txt, "g")

length (txt.gz)

txt2 <- strsplit (memDecompress (txt.gz, "g", asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt2))

txt.bz2 <- memCompress (txt, "b")

length (txt.bz2)

can auto-detect bzip2:

txt3 <- strsplit (memDecompress (txt.bz2, asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt3))

xz compression is only worthwhile for large objects

txt.xz <- memCompress (txt, "x")

length (txt.xz)

txt3 <- strsplit (memDecompress (txt.xz, asChar = TRUE), "\n")[[1]]
stopifnot (identical (txt, txt3))

memlimits Query and Set Heap Size Limits

Description

Query and set the maximal size of the vector heap and the maximal number of heap nodes for the
current R process.

Usage
mem.maxVSize (vsize = 0)
mem.maxNSize (nsize = 0)
Arguments
vsize numeric; new size limit in Mb.
nsize numeric; new maximal node number.
Details

New Limits lower than current usage are ignored. Specifying a size of Inf sets the limit to the
maximal possible value for the platform.

The default maximal values are unlimited on most platforms, but can be adjusted using environment
variables as described in Memory. On macOS a lower default vector heap limit is used to protect
against the R process being killed when macOS over-commits memory.

Adjusting the maximal number of nodes is rarely necessary. Adjusting the vector heap size limit
can be useful on macOS in particular but should be done with caution.

Memory 371

Value

The current or new value, in Mb for mem.maxVSize. Inf is returned if the current value is
unlimited.

See Also

Memory.

Memory Memory Available for Data Storage

Description

How R manages its workspace.

Details

R has a variable-sized workspace. There are (rarely-used) command-line options to control its
minimum size, but no longer any to control the maximum size.

R maintains separate areas for fixed and variable sized objects. The first of these is allocated as an
array of cons cells (Lisp programmers will know what they are, others may think of them as the
building blocks of the language itself, parse trees, etc.), and the second are thrown on a heap of
“Veells’ of 8 bytes each. Each cons cell occupies 28 bytes on a 32-bit build of R, (usually) 56 bytes
on a 64-bit build.

The default values are (currently) an initial setting of 350k cons cells and 6Mb of vector heap. Note
that the areas are not actually allocated initially: rather these values are the sizes for triggering
garbage collection. These values can be set by the command line options ‘~-min-nsize’ and
‘——min-vsize’ (or if they are not used, the environment variables R_NSIZE and R_VSIZE)
when R is started. Thereafter R will grow or shrink the areas depending on usage, never decreasing
below the initial values. The maximal vector heap size can be set with the environment variable
R_MAX_VSIZE.

How much time R spends in the garbage collector will depend on these initial settings and on the
trade-off the memory manager makes, when memory fills up, between collecting garbage to free up
unused memory and growing these areas. The strategy used for growth can be specified by setting
the environment variable R_GC_MEM_GROW to an integer value between 0 and 3. This variable is
read at start-up. Higher values grow the heap more aggressively, thus reducing garbage collection
time but using more memory.

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typing gc () at the R prompt. Note that following gcinfo (TRUE), automatic
garbage collection always prints memory use statistics.

The command-line option ‘——max-ppsize’ controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be done. Note that parts of the garbage collection process goes through the full
reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

372 Memory-limits

See Also

An Introduction to R for more command-line options.
Memory-1limits for the design limitations.

gc for information on the garbage collector and total memory usage, object.size (a) for the
(approximate) size of R object a. memory .profile for profiling the usage of cons cells.

Memory-limits Memory Limits in R

Description

R holds objects it is using in virtual memory. This help file documents the current design limitations
on large objects: these differ between 32-bit and 64-bit builds of R.

Details

Currently R runs on 32- and 64-bit operating systems, and most 64-bit OSes (including Linux,
Solaris, Windows and macOS) can run either 32- or 64-bit builds of R. The memory limits depends
mainly on the build, but for a 32-bit build of R on Windows they also depend on the underlying OS
version.

R holds all objects in virtual memory, and there are limits based on the amount of memory that can
be used by all objects:

* There may be limits on the size of the heap and the number of cons cells allowed — see
Memory — but these are usually not imposed.

* There is a limit on the (user) address space of a single process such as the R executable. This
is system-specific, and can depend on the executable.

* The environment may impose limitations on the resources available to a single process: Win-
dows’ versions of R do so directly.

Error messages beginning cannot allocate vector of size indicate a failure to obtain
memory, either because the size exceeded the address-space limit for a process or, more likely,
because the system was unable to provide the memory. Note that on a 32-bit build there may well
be enough free memory available, but not a large enough contiguous block of address space into
which to map it.

There are also limits on individual objects. The storage space cannot exceed the address limit, and if
you try to exceed that limit, the error message begins cannot allocate vector of length.
The number of bytes in a character string is limited to 23! — 1 ~ 210, which is also the limit on
each dimension of an array.

memory.profile 373

Unix

The address-space limit is system-specific: 32-bit OSes imposes a limit of no more than 4Gb: it is
often 3Gb. Running 32-bit executables on a 64-bit OS will have similar limits: 64-bit executables
will have an essentially infinite system-specific limit (e.g., 128Tb for Linux on x86_64 cpus).

See the OS/shell’s help on commands such as 1imit or ulimit for how to impose limitations on
the resources available to a single process. For example a bash user could use

ulimit -t 600 -v 4000000
whereas a csh user might use

limit cputime 10m
limit vmemoryuse 4096m

to limit a process to 10 minutes of CPU time and (around) 4Gb of virtual memory. (There are other
options to set the RAM in use, but they are not generally honoured.)

Windows

The address-space limit is 2Gb under 32-bit Windows unless the OS’s default has been
changed to allow more (up to 3Gb). See https://docs.microsoft.com/en-gb/
windows/desktop/Memory/physical-address—extension and https://docs.
microsoft.com/en-gb/windows/desktop/Memory/4-gigabyte—tuning. Under
most 64-bit versions of Windows the limit for a 32-bit build of R is 4Gb: for the oldest ones it is
2Gb. The limit for a 64-bit build of R (imposed by the OS) is 8Tb.

It is not normally possible to allocate as much as 2Gb to a single vector in a 32-bit build of R even
on 64-bit Windows because of preallocations by Windows in the middle of the address space.

Under Windows, R imposes limits on the total memory allocation available to a single session as
the OS provides no way to do so: see memory.size and memory.limit.

See Also

object.size (a) for the (approximate) size of R object a.

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile ()

https://docs.microsoft.com/en-gb/windows/desktop/Memory/physical-address-extension
https://docs.microsoft.com/en-gb/windows/desktop/Memory/physical-address-extension
https://docs.microsoft.com/en-gb/windows/desktop/Memory/4-gigabyte-tuning
https://docs.microsoft.com/en-gb/windows/desktop/Memory/4-gigabyte-tuning

374 merge

Details

The current types and their uses are listed in the include file ‘Rinternals.h’.

Value

A vector of counts, named by the types. See t ypeof for an explanation of types.

See Also

gc for the overall usage of cons cells. Rprofmem and tracemem allow memory profiling of
specific code or objects, but need to be enabled at compile time.

Examples

memory.profile ()

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database join
operations.

Usage
merge (X, Y, ...)

Default S3 method:
merge (X, y, ...)

S3 method for class 'data.frame'

merge (x, y, by = intersect (names(x), names(y)),
by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"), no.dups = TRUE,
incomparables = NULL, ...)

Arguments

X, ¥ data frames, or objects to be coerced to one.
by, by.x, by.y
specifications of the columns used for merging. See ‘Details’.

all logical; a11 = Lis shorthand forall.x = Land all.y = L, where L is either
TRUE or FALSE.

merge 375

all.x logical; if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. These rows will have NAs in those columns
that are usually filled with values from y. The default is FALSE, so that only
rows with data from both x and y are included in the output.

all.y logical; analogous to all. x.
sort logical. Should the result be sorted on the by columns?
suffixes a character vector of length 2 specifying the suffixes to be used for making

unique the names of columns in the result which are not used for merging (ap-
pearing in by etc).

no.dups logical indicating that suffixes are appended in more cases to avoid dupli-
cated column names in the result. This was implicitly false before R version
3.5.0.

incomparables

values which cannot be matched. See match. This is intended to be used for
merging on one column, so these are incomparable values of that column.

arguments to be passed to or from methods.

Details

merge is a generic function whose principal method is for data frames: the default method coerces
its arguments to data frames and calls the "data . frame" method.

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be given by by .x and by .y. The rows in the two data frames
that match on the specified columns are extracted, and joined together. If there is more than one
match, all possible matches contribute one row each. For the precise meaning of ‘match’, see
match.

Columns to merge on can be specified by name, number or by a logical vector: the name
"row.names" or the number O specifies the row names. If specified by name it must correspond
uniquely to a named column in the input.

If by or both by .x and by .y are of length 0 (a length zero vector or NULL), the result, r, is the
Cartesian product of x and y, i.e., dim (r) = ¢ (nrow (x) *nrow (y) ,ncol (x) +ncol (y)).

If all.x is true, all the non matching cases of x are appended to the result as well, with NA filled
in the corresponding columns of y; analogously for all.y.

If the columns in the data frames not used in merging have any common names, these have
suffixes (".x" and ".y" by default) appended to try to make the names of the result unique.
If this is not possible, an error is thrown.

If a by . x column name matches one of y, and if no.dups is true (as by default), the y version
gets suffixed as well, avoiding duplicate column names in the result.

The complexity of the algorithm used is proportional to the length of the answer.

In SQL database terminology, the default value of a11 = FALSE gives a natural join, a special case
of an inner join. Specifying all . x = TRUE gives a left (outer) join, all .y = TRUE a right (outer)
Jjoin, and both (all = TRUE) a (full) outer join. DBMSes do not match NULL records, equivalent
to incomparables =NAinR.

376 merge

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by
the remaining columns in x and then those in y. If the matching involved row names, an extra
character column called Row . names is added at the left, and in all cases the result has ‘automatic’
row names.

Note

This is intended to work with data frames with vector-like columns: some aspects work with data
frames containing matrices, but not all.

Currently long vectors are not accepted for inputs, which are thus restricted to less than 2731 rows.
That restriction also applies to the result for 32-bit platforms.
See Also

data.frame, by, cbind.

dendrogram for a class which has a merge method.

Examples
authors <- data.frame(
I(x) : use character columns of names to get sensible sort order
surname = I (c("Tukey", "Venables", "Tierney", "Ripley", "McNeil")),
nationality = c("US", "Australia", "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))

authorN <- within (authors, { name <- surname; rm(surname) })
books <- data.frame (
name = I(c("Tukey", "Venables", "Tierney",
"Ripley", "Ripley", "McNeil", "R Core")),
title = c("Exploratory Data Analysis",
"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),
other.author = c(NA, "Ripley", NA, NA, NA, NA,
"Venables & Smith"))

(m0 <- merge (authorN, books))

(
(

(ml <- merge (authors, books, by.x = "surname", by.y = "name"))
m2 <- merge (books, authors, by.x = "name", by.y = "surname")
stopifnot (exprs = {

identical (mO, m2[, names (m0)])

as.character(ml[, 1]) == as.character(m2[, 1])

all.equal(ml[, -1], m2[, -1][names(ml)[-1] 1)

identical (dim(merge (ml, m2, by = NULL)),
c(nrow (ml) *nrow (m2), ncol (ml)+ncol (m2)))

message 377

"R core" is missing from authors and appears only here
merge (authors, books, by.x = "surname", by.y = "name", all = TRUE)

example of using 'incomparables'

x <- data.frame(kl = c(NA,NA,3,4,5), k2 = ¢c(1,NA,NA,4,5), data = 1:5)
y <- data.frame(kl = c(NA,2,NA,4,5), k2 = c(NA,NA,3,4,5), data = 1:5)
merge (x, y, by = c("k1","k2")) # NA's match

merge (x, y, by "k1") # NA's match, so 6 rows

merge (x, y, by "k2", incomparables = NA) # 2 rows

message Diagnostic Messages

Description

Generate a diagnostic message from its arguments.

Usage
message (..., domain = NULL, appendLF = TRUE)
suppressMessages (expr, classes = "message")

packageStartupMessage (..., domain = NULL, appendLF = TRUE)
suppressPackageStartupMessages (expr)

.makeMessage (..., domain = NULL, appendLF = FALSE)

Arguments
zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (for message only) a single condition object.
domain see gettext. If NA, messages will not be translated, see also the note in st op.
appendLF logical: should messages given as a character string have a newline appended?
expr expression to evaluate.
classes character, indicating which classes of messages should be suppressed.
Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor
errors, but nevertheless represented as conditions. Unlike warnings and errors, a final newline is
regarded as part of the message, and is optional. The default handler sends the message to the
stderr () connection.

If a condition object is supplied to me ssage it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processed, a muf fleMessage restart is available.

378 missing

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic
messages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages. (They are still messages, so can be suppressed by
suppressMessages.)

.makeMessage is a utility used by message, warning and stop to generate a text message
from the . . . arguments by possible translation (see gettext) and concatenation (with no sepa-
rator).

See Also

warning and stop for generating warnings and errors; conditions for condition handling
and recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message ("ABC", "DEF")
suppressMessages (message ("ABC"))

testit <- function() {
message ("testing package startup messages")
packageStartupMessage ("initializing ...", appendLF = FALSE)

Sys.sleep (1)
packageStartupMessage (" done")

testit ()
suppressPackageStartupMessages (testit ())
suppressMessages (testit ())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing (x)

Arguments

X a formal argument.

mode 379

Details

missing (x) is only reliable if x has not been altered since entering the function: in particular it
will always be false after x <-match.arg (x).

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indices.

Currently mi ssing can only be used in the immediate body of the function that defines the argu-
ment, not in the body of a nested function or a 1ocal call. This may change in the future.

This is a ‘special’ primitive function: it must not evaluate its argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for missing values in data.

Examples

myplot <- function(x, y) {
if (missing (y)) |
y <- x
x <— l:length(y)
}
plot (x, V)

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode (x)

mode (x) <- value
storage.mode (x)
storage.mode (x) <- value

380 mode

Arguments

X any R object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.
Details

Both mode and storage .mode return a character string giving the (storage) mode of the object
— often the same — both relying on the output of t ypeof (x), see the example below.

mode (x) <-"newmode" changes the mode of object x to newmode. This is only sup-
ported if there is an appropriate as . newmode function, for example "1logical™", "integer",
"double", "complex", "raw", "character", "list", "expression", "name",
"symbol" and "function". Attributes are preserved (but see below).

storage.mode (x) <-"newmode" is a more efficient primitive version of mode<-, which
works for "newmode™" which is one of the internal types (see typeof), but not for "single™".
Attributes are preserved.

As storage mode "single™" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr (object, "Csingle") to examine this. However, node<- can be
used to set the mode to "single", which sets the real mode to "double" and the "Csingle"
attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode " (" which is S compatible.

Mode names
Modes have the same set of names as types (see t ypeof) except that

* types "integer" and "double" are returned as "numeric".
* types "special™ and "builtin" are returned as "function".
* type "symbol" is called mode "name".

* type "language" isreturned as " (" or "call".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

typeof for the R-internal ‘mode’, type.convert, attributes.
Examples

require (stats)

sapply (options (), mode)

cex3 <- c¢("nurLp", "1", "1:1", "14i", "list(l)", "data.frame(x = 1)",
"pairlist (pi)", "c", "1m", "formals(lm)[[1]]", "formals (Im) [[2]]",

NA 381

"y ~ x","expression((1))[[1]11", "(y ~ x)[[1]]",
"expression(x <- pi) [[1]][[1]]")
lex3 <- sapply(cex3, function(x) eval(str2lang(x)))
mex3 <- t (sapply(lex3,
function(x) c(typeof(x), storage.mode(x), mode(x))))
dimnames (mex3) <- list (cex3, c("typeof(.)","storage.mode(.)",""mode(.)"))
mex3

This also makes a local copy of 'pi':

storage.mode (pi) <- "complex"
storage.mode (pi)
rm(pi)
NA ‘Not Available’ / Missing Values
Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be co-
erced to any other vector type except raw. There are also constants NA_integer_, NA_real_,
NA_complex_ and NA_character_ of the other atomic vector types which support missing
values: all of these are reserved words in the R language.

The generic function is.na indicates which elements are missing.
The generic function is.na<- sets elements to NA.

The generic function anyNA implements any (is.na (x)) in a possibly faster way (especially
for atomic vectors).

Usage

NA
is.na (x)
anyNA (x, recursive = FALSE)

S3 method for class 'data.frame'
is.na (x)

is.na(x) <- value

Arguments
X an R object to be tested: the default method for is.na and anyNA handle
atomic vectors, lists, pairlists, and NULL.
recursive logical: should anyNA be applied recursively to lists and pairlists?

value a suitable index vector for use with x.

382 NA

Details

The NA of character type is distinct from the string "NA". Programmers who need to specify an
explicit missing string should use NA_character_ (rather than "NA") or set elements to NA
using is.na<-.
is.na and anyNA are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

Function is.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Numerical computations using NA will normally result in NA: a possible exception is where NaN is
also involved, in which case either might result (which may depend on the R platform). However,
this is not guaranteed and future CPUs and/or compilers may behave differently.

Logical computations treat NA as a missing TRUE/FALSE value, and so may return TRUE or
FALSE if the expression does not depend on the NA operand.

The default method for anyNA handles atomic vectors without a class and NULL. It calls
any (is.na (x)) on objects with classes and for recursive = FALSE, on lists and pairlists.

Value

The default method for is.na applied to an atomic vector returns a logical vector of the same
length as its argument x, containing TRUE for those elements marked NA or, for numeric or complex
vectors, NaN, and FALSE otherwise. (A complex value is regarded as NA if either its real or
imaginary part is NA or NaN.) dim, dimnames and names attributes are copied to the result.

The default methods also work for lists and pairlists:

For is.na, elementwise the result is false unless that element is a length-one atomic vector and
the single element of that vector is regarded as NA or NaN (note that any is.na method for the
class of the element is ignored).

anyNA (recursive = FALSE) works the same way as is.na; anyNA (recursive =
TRUE) applies anyNA (with method dispatch) to each element.

The data frame method for is.na returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

anyNA (NULL) is false; is.na (NULL) is logical (0) (no longer warning since R version
3.5.0).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

name 383

Examples

is.na(c(l, NA)) #> FALSE TRUE
is.na(paste(c(l, NA))) #> FALSE FALSE

(xx <= c(0:4))

is.na(xx) <- c (2, 4)

XX #> 0 NA 2 NA 4
anyNA (xx) # TRUE

Some logical operations do not return NA
c (TRUE, FALSE) & NA
c(TRUE, FALSE) | NA

Measure speed difference in a favourable case:
the difference depends on the platform, on most ca 3x.
X <= 1:10000; x[5000] <- NaN # coerces x to be double

if (require ("microbenchmark")) { # does not work reliably on all platforms
print (microbenchmark (any (is.na(x)), anyNA(x)))

} else {
nSim <- 2713

print (rbind(is.na = system.time (replicate (nSim, any(is.na(x)))),
anyNA = system.time (replicate (nSim, anyNA(x)))))

anyNA () can work recursively with list()s:

LL <- list(l:5, c(NA, 5:8), c("A","NA"), c("a", NA_character_))
L2 <- LL[c(1,3)]

sapply (LL, anyNA); c(anyNA(LL), anyNA(LL, TRUE))

sapply (L2, anyNA); c(anyNA(L2), anyNA (L2, TRUE))

... lists, and hence data frames, too:
dN <- dd <- USJudgeRatings; dN[3,6] <- NA
anyNA (dd) # FALSE
anyNA (dN) # TRUE

name Names and Symbols

Description

A ‘name’ (also known as a ‘symbol’) is a way to refer to R objects by name (rather than the value
of the object, if any, bound to that name).

as.name and as. symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identical is.name return TRUE or FALSE depending on whether the argu-
ment is a name or not.

384 name

Usage
as.symbol (x)

is.symbol (x)

as.name (x)
is.name (xX)

Arguments

X object to be coerced or tested.

Details

Names are limited to 10,000 bytes (and were to 256 bytes in versions of R before 2.13.0).

as.name first coerces its argument internally to a character vector (so methods for
as.character are not used). It then takes the first element and provided it is not " ", returns a
symbol of that name (and if the element is NA_character_, the name is "NA™).

as.name is implemented as as . vector (x, "symbol"), and hence will dispatch methods for
the generic function as . vector.

is.name and is.symbol are primitive functions.

Value

For as.name and as.symbol, an R object of type "symbol™" (see typeof).

For is.name and is.symbol, alength-one logical vector with value TRUE or FALSE.

Note

The term ‘symbol’ is from the LISP background of R, whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, is.language. For the internal object mode, t ypeof.

plotmath for another use of ‘symbol’.

Examples

an <- as.name ("arrg")
is.name (an) # TRUE
mode (an) # name
typeof (an) # symbol

names 385

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names (x)
names (x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.
Details

names is a generic accessor function, and name s <- is a generic replacement function. The default
methods get and set the "names" attribute of a vector (including a list) or pairlist.

For an environment env, names(env) gives the names of the -corresponding
list, i.e., names(as.list(env,all.names=TRUE)) which are also given by
ls(env,all.names = TRUE, sorted = FALSE). If the environment is used as a hash
table, names (env) are its “keys”.

If value is shorter than x, it is extended by character NAs to the length of x.

It is possible to update just part of the names attribute via the general rules:
see the examples. This works because the expression there is evaluated as z
<="names<-"(z, " [<=" (names (z),3,"c2")).

The name " " is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting by "" will match nothing (not even elements which have
no name).

A name can be character NA, but such a name will never be matched and is likely to lead to confu-
sion.

Both are primitive functions.

Value

For names, NULL or a character vector of the same length as x. (NULL is given if the object has
no names, including for objects of types which cannot have names.) For an environment, the length
is the number of objects in the environment but the order of the names is arbitrary.

For names<-, the updated object. (Note that the value of names (x) <-value is that of the
assignment, value, not the return value from the left-hand side.)

386 nargs

Note

For vectors, the names are one of the attributes with restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array the names attribute really is dimnames [[1]].

Formally classed aka “S4” objects typically have slotNames () (and no names ()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

slotNames, dimnames.

Examples

print the names attribute of the islands data set
names (islands)

remove the names attribute

names (islands) <- NULL

islands

rm(islands) # remove the copy made

z <- list(a =1, b = "c", c = 1:3)

names (z)

change just the name of the third element.
names (z) [3] <= "c2"

z

z <— 1:3

names (z)

assign just one name
names (z) [2] <= "b"

z

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that func-
tion, including positional arguments left blank.

nchar 387

Usage

nargs ()

Details

The count includes empty (missing) arguments, so that foo (x, , z) will be considered to have
three arguments (see ‘Examples’). This can occur in rather indirect ways, so for example x []
might dispatch a call to * [. some_method™ (x,) which is considered to have two arguments.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args, formals and sys.call.

Examples
tst <- function(a, b = 3, ...) {nargs{()}
tst() # O

tst (clicketyclack

) # 1 (even non-existing)
tst(cl, a2, rr3) # 3

foo <- function(x, vy, z, w) {

cat ("call was ", deparse (match.call()), "\n", sep = "")
nargs ()

}

foo () # 0

foo(, , 3) # 3

foo(z = 3) # 1, even though this is the same call

nargs () # not really meaningful

nchar Count the Number of Characters (or Bytes or Width)
Description

nchar takes a character vector as an argument and returns a vector whose elements contain the
sizes of the corresponding elements of x. Internally, it is a generic, for which methods can be
defined (see InternalMethods).

nzchar is a fast way to find out if elements of a character vector are non-empty strings.

388

nchar

Usage

nchar (x, type = "chars", allowNA = FALSE, keepNA = NA)

nzchar (x, keepNA = FALSE)

Arguments
X character vector, or a vector to be coerced to a character vector. Giving a factor
is an error.
type character string: partial matching to one of
c("bytes", "chars", "width"). See ‘Details’.
allowNA logical: should NA be returned for invalid multibyte strings or "bytes"-
encoded strings (rather than throwing an error)?
keepNA logical: should NA be returned when x is NA? If false, nchar () returns 2, as
that is the number of printing characters used when strings are written to output,
and nzchar () is TRUE. The default for nchar (), NA, means to use keepNA
= TRUE unless type is "width".
Details

The ‘size’ of a character string can be measured in one of three ways (corresponding to the t ype
argument):

bytes The number of bytes needed to store the string (plus in C a final terminator which is not
counted).

chars The number of characters.

width The number of columns cat will use to print the string in a monospaced font. The same
as chars if this cannot be calculated.

These will often be the same, and almost always will be in single-byte locales (but note how t ype
determines the default for keepNA). There will be differences between the first two with multibyte
character sequences, e.g. in UTF-8 locales.

The internal equivalent of the default method of as.character is performed on x (so there is
no method dispatch). If you want to operate on non-vector objects passing them through deparse
first will be required.

Value

For nchar, an integer vector giving the sizes of each element. For missing values (i.e., NA, i.e.,
NA_character_), nchar () returns NA_integer_ if keepNA is true, and 2, the number of
printing characters, if false.

type = "width" gives (an approximation to) the number of columns used in printing each ele-
ment in a terminal font, taking into account double-width, zero-width and ‘composing’ characters.

If allowNA = TRUE and an element is detected as invalid in a multi-byte character set such as
UTF-8, its number of characters and the width will be NA. Otherwise the number of characters will
be non-negative, so ! is.na (nchar (x, "chars", TRUE)) is a test of validity.

nchar 389

A character string marked with "bytes" encoding (see Encoding) has a number of bytes, but
neither a known number of characters nor a width, so the latter two types are NA if allowNA =
TRUE, otherwise an error.

Names, dims and dimnames are copied from the input.

For nzchar, a logical vector of the same length as x, true if and only if the element has non-
zero length; if the element is NA, nzchar () is true when keepNA is false (the default) and NA
otherwise.

Note

This does not by default give the number of characters that will be used to print () the string. Use
encodeString to find that. Where character strings have been marked as UTF-8, the number of
characters and widths will be computed in UTF-8, even though printing may use escapes such as
‘<U+2642>" in a non-UTF-8 locale.

The concept of ‘width’ is a slippery one even in a monospaced font. Some human languages have
the concept of combining characters, in which two or more characters are rendered together: an ex-
ample would be "y\u306", which is two characters of width one: combining characters are given
width zero, and there are other zero-width characters such as the zero-width space "\u200b".

Some East Asian languages have ‘wide’ characters, ideographs which are conventionally printed
across two columns when mixed with ASCII and other ‘narrow’ characters in those languages. The
problem is that whether a computer prints wide characters over two or one columns depends on
the font, with it not being uncommon to use two columns in a font intended for East Asian users
and a single column in a ‘Western’ font. Unicode has encodings for ‘fullwidth’ versions of ASCII
characters and ‘halfwidth’ versions of Katakana (Japanese) and Hangul (Korean) characters. Then
there is the ‘East Asian Ambiguous class’ (Greek, Cyrillic, signs, some accented Latin chars, etc),
for which the historical practice was to use two columns in East Asia and one elsewhere. The width
quoted by nchar for characters in that class (and some others) depends on the locale, being one
except in some East Asian locales on some OSes (notably Windows).

Control characters are given width zero in multi-byte locales, but are usually given width one in
single-byte ones (as their positions are often undefined and maybe re-used as in CP1252 vs Latin-

1.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Unicode Standard Annex #11: East Asian Width. https://www.unicode.org/reports/
trll/
See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

Examples

x <- c("asfef", "gqwerty", "yuiop[", "b", "stuff.blah.yech")
nchar (x)
#5 6 6 115

https://www.unicode.org/reports/tr11/
https://www.unicode.org/reports/tr11/

390 nlevels

nchar (deparse (mean))
18 17 <-- unless mean differs from base::mean

x[3] <- NA; x

nchar (x, keepNA= TRUE) # 5 6 NA 1 15

nchar (x, keepNA=FALSE) # 5 6 2 1 15

stopifnot (identical (nchar (x), nchar (x, keepNA= TRUE)),
identical (nchar(x, "w"), nchar(x, keepNA=FALSE)),
identical (is.na(x), is.na(nchar(x))))

##' nchar() for all three types
nchars <- function(x, ...)
vapply (c ("chars", "bytes", "width"),

function(tp) nchar(x, tp, ...), integer(length(x)))
nchars ("\u200b") # in R versions (>= 2015-09-xx):
chars bytes width
#4 1 3 0
data.frame (x, nchars(x)) ## all three types : same unless for NA
force the same by forcing 'keepNA':
(ncT <- nchars(x, keepNA = TRUE)) ## NA NA NA
(ncF <- nchars(x, keepNA = FALSE))## 2 2 2
stopifnot (apply (ncT, 1, function(.) length(unique(.))) == 1,
apply (ncF, 1, function(.) length(unique(.))) == 1)
nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels (x)

Arguments

X an object, usually a factor.

Details

This is usually applied to a factor, but other objects can have levels.

The actual factor levels (if they exist) can be obtained with the 1evels function.

Value

The length of levels (x), which is zero if x has no levels.

noquote 391

See Also

levels, factor.

Examples

nlevels(gl(3, 7)) # = 3

noquote Class for ‘no quote’ Printing of Character Strings

Description

Print character strings without quotes.

Usage

noquote (obj, right = FALSE)

S3 method for class 'noquote'
print (x, quote = FALSE, right = FALSE, ...)

S3 method for class 'noquote'

c(..., recursive = FALSE)
Arguments
obj any R object, typically a vector of character strings.
right optional logical eventually to be passed to print (), used by
print.default (), indicating whether or not strings should be right aligned.
x an object of class "noquote™".
quote, ... further options passed to next methods, such as print.
recursive for compatibility with the generic ¢ function.
Details

noquote returns its argument as an object of class "noquote". There is a method for c () and
subscript method (" [. noquote™) which ensures that the class is not lost by subsetting. The print
method (print .noquote) prints character strings without quotes (" .. .").

If right is specified in a call print (x, right=%), it takes precedence over a possible right
setting of x, e.g., created by x <-noquote (%, right=TRUE).

These functions exist both as utilities and as an example of using (S3) c1lass and object orientation.

Author(s)

Martin Maechler <maechler@stat .math.ethz.ch>

392 norm

See Also

methods, class, print.

Examples

letters

ngl <- noquote(letters)
ngl

nglf[l:4] <- "oh"
nglfl:12]

cmp.logical <- function(log.v)
{
Purpose: compact printing of logicals
log.v <= as.logical (log.v)
noquote (1f (length(log.v) == 0)" ()" else c(".","|")[1 + log.v])
}
cmp.logical (stats::runif (20) > 0.8)

chmat <- as.matrix(format (stackloss)) # a "typical" character matrix
noquote (x, right=TRUE) so it prints exactly like a data frame
chmat <- noquote (chmat, right = TRUE)

chmat

norm Compute the Norm of a Matrix

Description

Computes a matrix norm of x using LAPACK. The norm can be the one ("O") norm, the infinity
("I")norm, the Frobenius ("F") norm, the maximum modulus ("M") among elements of a matrix,
or the “spectral” or "2 "-norm, as determined by the value of type.

Usage

nO]fm(X, type = C("O", "I", "F", "M", "2"))

Arguments
X numeric matrix; note that packages such as Matrix define more norm () meth-
ods.
type character string, specifying the fype of matrix norm to be computed. A character

indicating the type of norm desired.

"O","o" or "1" specifies the one norm, (maximum absolute column sum);
"I"or "i" specifies the infinity norm (maximum absolute row sum);

"F"or "f" specifies the Frobenius norm (the Euclidean norm of x treated as
if it were a vector);

https://CRAN.R-project.org/package=Matrix

norm 393

"M" or "m" specifies the maximum modulus of all the elements in x; and

"2" specifies the “spectral” or 2-norm, which is the largest singular value
(svd) of x.

The default is "O". Only the first character of type [1] is used.

Details
The base method of norm () calls the LAPACK function dlange.

Note that the 1-, Inf- and "M" norm is faster to calculate than the Frobenius one.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The matrix norm, a non-negative number.

Source

Except for norm = "2", the LAPACK routine DLANGE.

LAPACK is from https://www.netlib.org/lapack/.

References

Anderson, E., et al (1994). LAPACK User’s Guide, 2nd edition, SIAM, Philadelphia.

See Also

rcond for the (reciprocal) condition number.

Examples

(x1 <= cbind(1, 1:10))

norm (x1)

norm(x1l, "I")

norm(x1l, "M")

stopifnot (all.equal (norm(x1l, "F"),
sgrt (sum(x1°2))))

hilbert <- function(n) { i <- 1l:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert (9)

all 5 types of norm:

(nTyp <- eval (formals (base::norm) $type))

sapply (nTyp, norm, x = h9)

https://www.netlib.org/lapack/

394 normalizePath

normalizePath Express File Paths in Canonical Form

Description

Convert file paths to canonical form for the platform, to display them in a user-understandable form
and so that relative and absolute paths can be compared.

Usage
normalizePath (path, winslash = "\\", mustWork = NA)
Arguments
path character vector of file paths.
winslash the separator to be used on Windows — ignored elsewhere. Must be one of
c("/", "\\").
mustWork logical: if TRUE then an error is given if the result cannot be determined; if NA
then a warning.
Details

Tilde-expansion (see path.expand) is first done on paths.

Where the Unix-alike platform supports it attempts to turn paths into absolute paths in their canon-
ical form (no . /’, ‘. ./’ nor symbolic links). It relies on the POSIX system function realpath:
if the platform does not have that (we know of no current example) then the result will be an abso-
lute path but might not be canonical. Even where realpath is used the canonical path need not
be unique, for example via hard links or multiple mounts.

On Windows it converts relative paths to absolute paths, resolves symbolic links, converts
short names for path elements to long names and ensures the separator is that specified by
winslash. It will match each path element case-insensitively or case-sensitively as dur-
ing the usual name lookup and return the canonical case. It relies on Windows API func-
tion GetFinalPathNameByHandle and in case of an error (such as insufficient per-
missions) it currently falls back to the R 3.6 (and older) implementation, which relies on
GetFullPathName and GetLongPathName with limitations described in the Notes section.
An attempt is made not to introduce UNC paths in presence of mapped drives or symbolic links: if
GetFinalPathNameByHandle returns a UNC path, but Get LongPathName returns a path
starting with a drive letter, R falls back to the R 3.6 (and older) implementation. UTF-8-encoded
paths not valid in the current locale can be used.

mustWork = FALSE is useful for expressing paths for use in messages.

Value

A character vector.

NotYet 395

If an input is not a real path the result is system-dependent (unless mustWork = TRUE, when this
should be an error). It will be either the corresponding input element or a transformation of it into
an absolute path.

Converting to an absolute file path can fail for a large number of reasons. The most common are

* One of more components of the file path does not exist.

* A component before the last is not a directory, or there is insufficient permission to read the
directory.

* For a relative path, the current directory cannot be determined.
* A symbolic link points to a non-existent place or links form a loop.

* The canonicalized path would be exceed the maximum supported length of a file path.

Note

The canonical form of paths may not be what you expect. For example, on macOS absolute paths
such as ‘/tmp’ and ‘/var’ are symbolic links. On Linux, a path produced by bash process sub-
stitution is a symbolic link (such as ‘/proc/£d/63’) to a pipe and there is no canonical form of
such path. In R 3.6 and older on Windows, symlinks will not be resolved and the long names for
path elements will be returned with the case in which they are in path, which may not be canonical
in case-insensitive folders.

Examples

random tempdir

cat (normalizePath(c(R.home (), tempdir())), sep = "\n")
NotYet Not Yet Implemented Functions and Unused Arguments
Description

In order to pinpoint missing functionality, the R core team uses these functions for missing R func-
tions and not yet used arguments of existing R functions (which are typically there for compatibility
purposes).

You are very welcome to contribute your code . ..

Usage
.NotYetImplemented ()
.NotYetUsed (arg, error = TRUE)
Arguments

arg an argument of a function that is not yet used.

error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.

396 nrow

See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

require (graphics)
barplot (1:5, inside = TRUE) # 'inside' is not yet used

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the same
treating a vector as 1-column matrix, even a 0-length vector, compatibly with as.matrix () or
cbind (), see the example.

Usage

Nnrow (x)
ncol (x)
NCOL (x)
NROW (x)
Arguments

X a vector, array, data frame, or NULL.

Value

an integer of length 1 or NULL, the latter only for ncol and nrow.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (ncol and nrow.)

See Also

dim which returns all dimensions; array, matrix.

ns-dblcolon 397

Examples

ma <- matrix(l:12, 3, 4)
nrow (ma) # 3
ncol (ma) # 4

ncol (array(1:24, dim = 2:4)) # 3, the second dimension
NCOL (1:12) # 1
NROW (1:12) # 12

as.matrix () produces l-column matrices from O-length vectors,
and so does cbind()

dim(as.matrix (numeric())) # 0 1
dim (cbind (numeric())) # ditto
consequently, NCOL(.) gives 1, too
NCOL (numeric()) # 1 and hence
NCOL (NULL) # 1
ns—dblcolon Double Colon and Triple Colon Operators
Description

Accessing exported and internal variables, i.e. R objects (including lazy loaded data sets) in a
namespace.

Usage

pkg: :name
pkg: : :name

Arguments

pkg package name: symbol or literal character string.

name variable name: symbol or literal character string.

Details

For a package pkg, pkg: : name returns the value of the exported variable name in namespace
pkg, whereas pkg: : : name returns the value of the internal variable name. The package names-
pace will be loaded if it was not loaded before the call, but the package will not be attached to the
search path.

Specifying a variable or package that does not exist is an error.

Note that pkg : : name does not access the objects in the environment package : pkg (which does
not exist until the package’s namespace is attached): the latter may contain objects not exported
from the namespace. It can access datasets made available by lazy-loading.

398 ns-hooks

Note

It is typically a design mistake to use : : : in your code since the corresponding object has probably
been kept internal for a good reason. Consider contacting the package maintainer if you feel
the need to access the object for anything but mere inspection.

See Also

get to access an object masked by another of the same name. 1oadNamespace, asNamespace
for more about namespaces.

Examples
base::log
base::"+"
Beware —— wuse ':::' at your own risk! (see "Details")

stats:::coef.default

ns—hooks Hooks for Namespace Events

Description

Packages can supply functions to be called when loaded, attached, detached or unloaded.

Usage

.onLoad (libname, pkgname)
.onAttach (libname, pkgname)
.onUnload (libpath)
.onDetach (libpath)
.Last.lib (libpath)

Arguments
libname a character string giving the library directory where the package defining the
namespace was found.
pkgname a character string giving the name of the package.
libpath a character string giving the complete path to the package.
Details

After loading, 1oadNamespace looks for a hook function named .onLoad and calls it (with
two unnamed arguments) before sealing the namespace and processing exports.

When the package is attached (via library or attachNamespace), the hook function
.onAttach is looked for and if found is called (with two unnamed arguments) before the package
environment is sealed.

ns-hooks 399

If a function . onDetach is in the namespace or . Last . 1ib is exported from the package, it will
be called (with a single argument) when the package is detached. Beware that it might be called
if . onAttach has failed, so it should be written defensively. (It is called within tryCatch, so
errors will not stop the package being detached.)

If a namespace is unloaded (via unloadNamespace), a hook function . onUnload is run (with
a single argument) before final unloading.

Note that the code in .onLoad and . onUnload should not assume any package except the base
package is on the search path. Objects in the current package will be visible (unless this is circum-
vented), but objects from other packages should be imported or the double colon operator should
be used.

.onLoad, .onUnload, .onAttach and .onDetach are looked for as internal objects in the
namespace and should not be exported (whereas . Last . 1ib should be).

Note that packages are not detached nor namespaces unloaded at the end of an R session unless the
user arranges to do so (e.g., via . Last).

Anything needed for the functioning of the namespace should be handled at load/unload times
by the .onLoad and .onUnload hooks. For example, DLLs can be loaded (unless done by
a useDynLib directive in the ‘NAMESPACE’ file) and initialized in .onLoad and unloaded in
.onUnload. Use .onAttach only for actions that are needed only when the package becomes
visible to the user (for example a start-up message) or need to be run after the package environment
has been created.

Good practice

Loading a namespace should where possible be silent, with startup messages given by
.onAttach. These messages (and any essential ones from .onLoad) should use
packageStartupMessage so they can be silenced where they would be a distraction.

There should be no calls to 1ibrary nor require in these hooks. The way for a package to
load other packages is via the ‘Depends’ field in the ‘DESCRIPTION’ file: this ensures that the
dependence is documented and packages are loaded in the correct order. Loading a namespace
should not change the search path, so rather than attach a package, dependence of a namespace on
another package should be achieved by (selectively) importing from the other package’s namespace.

Uses of library with argument help to display basic information about the pack-
age should use format on the computed package information object and pass this to
packageStartupMessage.

There should be no calls to installed.packages in startup code: it is potentially very slow
and may fail in versions of R before 2.14.2 if package installation is going on in parallel. See its
help page for alternatives.

Compiled code should be loaded (e.g., via library.dynam) in .onLoad or a useDynLib
directive in the ‘NAMESPACE’ file, and not in . onAttach. Similarly, compiled code should not
be unloaded (e.g., via library.dynam.unload) in .Last.lib nor .onDetach, only in
.onUnload.

See Also

setHook shows how users can set hooks on the same events, and lists the sequence of events
involving all of the hooks.

400 ns-load

reg.finalizer for hooks to be run at the end of a session.

loadNamespace for more about namespaces.

ns—load Loading and Unloading Name Spaces

Description

Functions to load and unload name spaces.

Usage
attachNamespace (ns, pos = 2L, depends = NULL, exclude, include.only)
loadNamespace (package, lib.loc = NULL,
keep.source = getOption ("keep.source.pkgs"),
partial = FALSE, versionCheck = NULL,
keep.parse.data = getOption ("keep.parse.data.pkgs"))
requireNamespace (package, ..., quietly = FALSE)
loadedNamespaces ()

unloadNamespace (ns)
isNamespaceLoaded (name)

Arguments
ns string or name space object.
pos integer specifying position to attach.
depends NULL or a character vector of dependencies to be recorded in object . Depends
in the package.
package string naming the package/name space to load.
lib.loc character vector specifying library search path.

keep.source Now ignored except during package installation.

keep.parse.data
Ignored except during package installation.

partial logical; if true, stop just after loading code.
versionCheck NULL or a version specification (a list with components op and version).
quietly logical: should progress and error messages be suppressed?

name string or ‘name’, see as . symbol, of a package, e.g., "stats".

exclude, include.only
character vectors; see 1library.

further arguments to be passed to loadNamespace.

ns-load 401

Details

The functions loadNamespace and attachNamespace are usually called implicitly when
library is used to load a name space and any imports needed. However it may be useful at times
to call these functions directly.

loadNamespace loads the specified name space and registers it in an internal data base. A request
to load a name space when one of that name is already loaded has no effect. The arguments have the
same meaning as the corresponding arguments to 1 ibrary, whose help page explains the details
of how a particular installed package comes to be chosen. After loading, loadNamespace looks
for a hook function named .onLoad as an internal variable in the name space (it should not be
exported). Partial loading is used to support installation with lazy-loading.

Optionally the package licence is checked during loading: see section ‘Licenses’ in the help for
library.

loadNamespace does not attach the name space it loads to the search path.
attachNamespace can be used to attach a frame containing the exported values of a
name space to the search path (but this is almost always done via 1ibrary). The hook function
.onAttach is run after the name space exports are attached.

requireNamespace is a wrapper for LoadNamespace analogous to require that returns a
logical value.

loadedNamespaces returns a character vector of the names of the loaded name spaces.

isNamespaceLoaded (pkg) 1is equivalent to but more efficient than pkg $in%
loadedNamespaces ().

unloadNamespace can be used to attempt to force a name space to be unloaded. If the name
space is attached, it is first detached, thereby running a .onDetach or .Last.lib function
in the name space if one is exported. An error is signaled and the name space is not unloaded if the
name space is imported by other loaded name spaces. If defined, a hook function . onUnload is
run before removing the name space from the internal registry.

See the comments in the help for det ach about some issues with unloading and reloading name
spaces.
Value

attachNamespace returns invisibly the package environment it adds to the search path.

loadNamespace returns the name space environment, either one already loaded or the one the
function causes to be loaded.

requireNamespace returns TRUE if it succeeds or FALSE.
loadedNamespaces returns a character vector.

unloadNamespace returns NULL, invisibly.

Author(s)

Luke Tierney and R-core

References

The ‘Writing R Extensions’ manual, section “Package namespaces”.

402 ns-topenv

See Also

getNamespace, asNamespace, topenv, .onLoad (etc); further environment.

Examples

(Ins <- loadedNamespaces())
statlL <- isNamespaceLoaded ("stats")
stopifnot (identical (statL, "stats" %in% lns))

The string "foo" and the symbol 'foo' can be used interchangably here:
stopifnot (identical (isNamespaceLoaded("foo"), FALSE),

identical (isNamespaceLoaded (quote (foo)), FALSE),

identical (isNamespaceLoaded (quote (stats)), statl))

hasS <- isNamespaceloaded("splines") # (to restore if needed)
Sns <- asNamespace ("splines") # loads it if not already
stopifnot (isNamespaceLoaded ("splines"))
unloadNamespace (Sns) # unloading the NS 'object'
stopifnot (! isNamespaceLoaded("splines"))
if (hasS) loadNamespace ("splines") # (restoring previous state)
ns—-topenv Top Level Environment
Description

Finding the top level environment from an environment envir and its enclosing environments.

Usage
topenv (envir = parent.frame(),
matchThisEnv = getOption ("topLevelEnvironment"))
Arguments
envir environment.

matchThisEnv return this environment, if it matches before any other criterion is satisfied.
The default, the option ‘topLevelEnvironment’, is set by sys.source,
which treats a specific environment as the top level environment. Supplying the
argument as NULL or emptyenv () means it will never match.

Details

topenv returns the first top level environment found when searching envir and its enclosing
environments. If no top level environment is found, . GlobalEnv is returned. An environment is
considered top level if it is the internal environment of a namespace, a package environment in the
search path, or .GlobalEnv .

NULL 403

See Also

environment, notably parent .env () on “enclosing environments”; loadNamespace for
more on namespaces.

Examples
topenv (.GlobalEnv)
topenv (new.env()) # also global env
topenv (environment (1s))# namespace:base
topenv (environment (1m)) # namespace:stats
NULL The Null Object
Description

NULL represents the null object in R: it is a reserved word. NULL is often returned by expressions
and functions whose value is undefined.

Usage

NULL
as.null(x, ...)
is.null (x)

Arguments
x an object to be tested or coerced.
ignored.
Details

NULL can be indexed (see Extract) in just about any syntactically legal way: whether it makes
sense or not, the result is always NULL. Objects with value NULL can be changed by replacement
operators and will be coerced to the type of the right-hand side.

NULL is also used as the empty pairlist: see the examples. Because pairlists are often promoted to
lists, you may encounter NULL being promoted to an empty list.

Objects with value NULL cannot have attributes as there is only one null object: attempts to as-
sign them are either an error (attr) or promote the object to an empty list with attribute(s)
(attributes and structure).

Value

as.null ignores its argument and returns NULL.

is.null returns TRUE if its argument’s value is NULL and FALSE otherwise.

404 numeric

Note

is.null is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples
is.null (list()) # FALSE (on purpose!)
is.null (pairlist()) # TRUE
is.null (integer (0)) # FALSE
is.null(logical(0)) # FALSE
as.null(list(a =1, b "))
numeric Numeric Vectors
Description

Creates or coerces objects of type "numeric". is.numeric is a more general test of an object
being interpretable as numbers.

Usage

numeric (length = 0)
as.numeric(x,)
is.numeric (x)

Arguments
length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.
x object to be coerced or tested.
further arguments passed to or from other methods.
Details

numeric is identical to double (and real). It creates a double-precision vector of the specified
length with each element equal to 0.

as.numeric is a generic function, but S3 methods must be written for as . double. It is identi-
cal to as.double.

is.numeric is an internal generic primitive function: you can write methods to handle spe-
cific classes of objects, see InternalMethods. It is not the same as i s . double. Factors are handled
by the default method, and there are methods for classes "Date", "POSIXt" and "difftime"
(all of which return false). Methods for is.numeric should only return true if the base type of the
class is double or integer and values can reasonably be regarded as numeric (e.g., arithmetic
on them makes sense, and comparison should be done via the base type).

numeric 405

Value

for numeric and as.numeric see double.

The default method for is.numeric returns TRUE if its argument is of mode
"numeric" (type "double" or type "integer") and not a factor, and FALSE other-
wise. That is, is.integer (x) || is.double (x), or (mode (x) == "numeric") &&
'is.factor (x).

Warning

If xisa factor, as.numeric will return the underlying numeric (integer) representation, which
is often meaningless as it may not correspond to the factor levels, see the “Warning’ section
in factor (and the 2nd example below).

S4 methods
as.numeric and is.numeric are internally S4 generic and so methods can be set for them via
setMethod.

To ensure that as.numeric and as.double remain identical, S4 methods can only be set for
as.numeric.

Note on names
It is a historical anomaly that R has two names for its floating-point vectors, double and numeric
(and formerly had real).

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

double, integer, storage.mode.

Examples

Conversion does trim whitespace; non-numeric strings give NA + warning
as.numeric(c("-.1"," 2.7 ","B"))

Numeric values are sometimes accidentally converted to factors.

Converting them back to numeric is trickier than you'd expect.

f <- factor(5:10)

as.numeric(f) # not what you might expect, probably not what you want
what you typically meant and want:

406 NumericConstants

as.numeric (as.character (f))
the same, considerably more efficient (for long vectors):
as.numeric (levels (f)) [f]

NumericConstants Numeric Constants

Description

How R parses numeric constants.

Details

R parses numeric constants in its input in a very similar way to C99 floating-point constants.

Inf and NaN are numeric constants (with typeof (.) "double™"). In text input (e.g., in scan
and as.double), these are recognized ignoring case as is infinity as an alternative to Inf.
NA_real_and NA_integer_ are constants of types "double" and "integer" representing
missing values. All other numeric constants start with a digit or period and are either a decimal or
hexadecimal constant optionally followed by L.

Hexadecimal constants start with 0x or 0X followed by a nonempty sequence from 0-9 a—f A-F
. which is interpreted as a hexadecimal number, optionally followed by a binary exponent. A binary
exponent consists of a P or p followed by an optional plus or minus sign followed by a non-empty
sequence of (decimal) digits, and indicates multiplication by a power of two. Thus 0x123p456 is
291 x 2456,

Decimal constants consist of a nonempty sequence of digits possibly containing a period (the dec-
imal point), optionally followed by a decimal exponent. A decimal exponent consists of an E or
e followed by an optional plus or minus sign followed by a non-empty sequence of digits, and
indicates multiplication by a power of ten.

Values which are too large or too small to be representable will overflow to Inf or underflow to
0.0.

A numeric constant immediately followed by i is regarded as an imaginary complex number.

An numeric constant immediately followed by L is regarded as an i nt eger number when possible
(and with a warning if it containsa " . ").

Only the ASCII digits 0-9 are recognized as digits, even in languages which have other representa-
tions of digits. The ‘decimal separator’ is always a period and never a comma.

Note that a leading plus or minus is not regarded by the parser as part of a numeric constant but as
a unary operator applied to the constant.

Note

When a string is parsed to input a numeric constant, the number may or may not be representable
exactly in the C double type used. If not one of the nearest representable numbers will be returned.

R’s own C code is used to convert constants to binary numbers, so the effect can be expected to
be the same on all platforms implementing full IEC 600559 arithmetic (the most likely area of
difference being the handling of numbers less than .Machine$double.xmin). The same code
is used by scan.

numeric_version

See Also

407

Syntax. For complex numbers, see complex. Quotes for the parsing of character constants,

Reserved for the “reserved words” in R.

Examples

You can create numbers using fixed or scientific formatting.
2.1

2.1el0

-2.1E-10

The resulting objects have class numeric and type double.
class (2.1)
typeof (2.1)

This holds even if what you typed looked like an integer.
class (2)
typeof (2)

If you actually wanted integers, use an "L" suffix.
class (2L)
typeof (2L)

These are equal but not identical
2 == 2L
identical (2, 2L)

You can write numbers between 0 and 1 without a leading "O"
(but typically this makes code harder to read)
.1234

sqgrt (11) # remember elementary math?
utils::str (0xAQ)
identical (1L, as.integer (1))

You can combine the "Ox" prefix with the "L" suffix
identical (0xFL, as.integer(15))

numeric_version Numeric Versions

Description

A simple S3 class for representing numeric versions including package versions, and associated

methods.

408

numeric_version

Usage
numeric_version (x, strict = TRUE)
package_version(x, strict = TRUE)
R_system_version(x, strict = TRUE)

getRversion ()

Arguments

X

strict

Details

a character vector with suitable numeric version strings (see ‘Details’);
for package_version, alternatively an R version object as obtained by
R.version.

a logical indicating whether invalid numeric versions should results in an error
(default) or not.

Numeric versions are sequences of one or more non-negative integers, usually (e.g., in package
‘DESCRIPTION’ files) represented as character strings with the elements of the sequence concate-
nated and separated by single ‘.’ or ‘—’ characters. R package versions consist of at least two such
integers, an R system version of exactly three (major, minor and patchlevel).

Functions numeric_version, package_version and R_system_version create a rep-
resentation from such strings (if suitable) which allows for coercion and testing, combination, com-
parison, summaries (min/max), inclusion in data frames, subscripting, and printing. The classes can
hold a vector of such representations.

getRversion returns the version of the running R as an R system version object.

The [[operator extracts or replaces a single version. To access the integers of a version use two
indices: see the examples.

See Also

compareVersion; packageVersion for the version of a specific R package. R.version
etc for the version of R (and the information underlying getRversion ()).

Examples

x <- package_v
x < "1.4-2.3"
c(min(x), max(
x[2, 2]
x$major
xSminor

if (getRversion
cat ("Your ve
", 1s ou

"Now try

x[lc(l, 3)]]

ersion(c("1.2-4", "1.2-3", "2.1"))

x))

() <= "2.5.0") { ## work around missing feature
rsion of R, ", as.character (getRversion()),
tdated.\n",

ing to work around that ...\n", sep = "")

'4' as a numeric vector, same as x[1, 3]

octmode 409

x[1, 3] # 4 as an integer

x[[2, 31] <= O # zero the patchlevel

x[[c(2, 3)]1] <= 0 # same

X

x[[3]] <= "2.2.3"; x

x <- c(x, package_version("0.0"))

is.na(x) [4] <- TRUE

stopifnot (identical (is.na(x), c(rep(FALSE,3), TRUE)),
anyNA (x))

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the largest,
using leading zeroes as necessary.

Usage
as.octmode (x)

S3 method for class 'octmode'
as.character(x, ...)

S3 method for class 'octmode'
format (x, width = NULL, ...)

S3 method for class 'octmode'

print (x, ...)
Arguments
X An object, for the methods inheriting from class "octmode".
width NULL or a positive integer specifying the minimum field width to be used, with

padding by leading zeroes.

further arguments passed to or from other methods.

Details

Class "octmode™" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in octal notation, specifically for Unix-like file permissions such as 755. Subsetting
([) works too.

If width =NULL (the default), the output is padded with leading zeroes to the smallest width
needed for all the non-missing elements.

as.octmode can convert integers (of type "integer" or "double") and character vectors
whose elements contain only digits 0—7 (or are NA) to class "octmode".

410 on.exit

There is a ! method and methods for | and &:

these recycle their arguments to the length of the longer and then apply the operators bitwise to each
element.

See Also

These are auxiliary functions for file.info.

hexmode, sprintf for other options in converting integers to octal, strtoi to convert octal
strings to integers.

Examples
(on <- as.octmode(c(l6, 32, 127:129))) # "020"™ "040" "177"™ "200" "201"
unclass(on[3:4]) # subsetting

manipulate file modes
fmode <- as.octmode("170")
(fmode | "644") & "755"

umask <- Sys.umask (NA) # depends on platform
c (fmode, "666", "755") & !umask

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the current
function exits (either naturally or as the result of an error). This is useful for resetting graphical
parameters or performing other cleanup actions.

If no expression is provided, i.e., the call is on.exit (), then the current on.exit code is re-
moved.

Usage

on.exit (expr = NULL, add = FALSE, after = TRUE)

Arguments
expr an expression to be executed.
add if TRUE, add expr to be executed after any previously set expressions (or be-

fore if after is FALSE); otherwise (the default) expr will overwrite any pre-
viously set expressions.

after if add is TRUE and after is FALSE, then expr will be added on top of the
expressions that were already registered. The resulting last in first out order is
useful for freeing or closing resources in reverse order.

Ops.Date 411

Details

The expr argument passed to on.exit is recorded without evaluation. If it is not subsequently
removed/replaced by another on.exit call in the same function, it is evaluated in the evaluation
frame of the function when it exits (including during standard error handling). Thus any functions
or variables in the expression will be looked for in the function and its environment at the time of
exit: to capture the current value in expr use substitute or similar.

If multiple on . exit expressions are set using add = TRUE then all expressions will be run even
if one signals an error.

This is a ‘special’ primitive function: it only evaluates the arguments add and after.

Value

Invisible NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sys.on.exit which returns the expression stored for use by on.exit () in the function in
which sys.on.exit () is evaluated.

Examples
require (graphics)

opar <- par(mai = c(1,1,1,1))
on.exit (par (opar))

Ops.Date Operators on the Date Class

Description

Operators for the "Date" class.

There is an Ops method and specific methods for + and - for the Date class.

Usage

date + x
x + date
date - x
datel lop date2

412

Arguments

date
datel, date2

lop

Details

options

date objects

date objects or character vectors. (Character vectors are converted by
as.Date.)

a numeric vector (in days) or an object of class "difftime", rounded to the
nearest whole day.

One of ==, ! =, <, <=, > or >=.

x does not need to be integer if specified as a numeric vector, but see the comments about fractional
days in the help for Dates.

Examples

(z <— Sys.Date())

z + 10

z < c("2009-06-01", "2010-01-01", "2015-01-01")

options

Options Settings

Description

Allow the user to set and examine a variety of global options which affect the way in which R
computes and displays its results.

Usage

options(...)
getOption (x,

.Options

Arguments

X

default

default = NULL)

any options can be defined, using name = value. However, only the ones
below are used in base R.

Options can also be passed by giving a single unnamed argument which is a
named list.

a character string holding an option name.

if the specified option is not set in the options list, this value is returned. This
facilitates retrieving an option and checking whether it is set and setting it sepa-
rately if not.

options 413

Details

Invoking options () with no arguments returns a list with the current values of the options. Note
that not all options listed below are set initially. To access the value of a single option, one should
use, e.g., getOption ("width") rather than options ("width") which is a list of length
one.

Value

For getOption, the current value set for option x, or default (which defaults to NULL) if the
option is unset.

For options (), a list of all set options sorted by name. For options (name), a list of length
one containing the set value, or NULL if it is unset. For uses setting one or more options, a list with
the previous values of the options changed (returned invisibly).

Options used in base R

add. smooth: typically logical, defaulting to TRUE. Could also be set to an integer for specifying
how many (simulated) smooths should be added. This is currently only used by plot . 1m.

askYesNo: afunction (typically set by a front-end) to ask the user binary response functions in a
consistent way, or a vector of strings used by askYesNo to use as default responses for such
questions.

browserNLdisabled: logical: whether newline is disabled as a synonym for "n" in the
browser.

checkPackageLicense: logical, not set by default. If true, LoadNamespace asks a user to
accept any non-standard license at first load of the package.

check.bounds: logical, defaulting to FALSE. If true, a warning is produced whenever a vector
(atomic or 1ist) is extended, by something like x <-1:3; x[5] <-6.

CBoundsCheck: logical, controlling whether . C and . Fort ran make copies to check for array
over-runs on the atomic vector arguments.

Initially set from value of the environment variable R_C_BOUNDS_CHECK (set to yes to
enable).

conflicts.policy: character string or list controlling handling of conflicts found in calls to
libraryor require. See 1ibrary for details.

continue: anon-empty string setting the prompt used for lines which continue over one line.

defaultPackages: the packages that are attached by default when R starts up. Initially
set from value of the environment variable R_DEFAULT_PACKAGES, or if that is unset to
c("datasets","utils", "grDevices", "graphics", "stats", "methods").
(Set R_DEFAULT_PACKAGES to NULL or a comma-separated list of package names.) It
will not work to set this in a ‘*.Rprofile’ file, as its value is consulted before that file is
read.

deparse.cutoff: integer value controlling the printing of language constructs which are
deparsed. Default 60.

deparse.max.lines: controls the number of lines used when deparsing in browser, upon
entry to a function whose debugging flag is set, and if option traceback.max.lines is
unset, of traceback () . Initially unset, and only used if set to a positive integer.

414 options

traceback.max.lines: controls the number of lines used when deparsing in t raceback,
if set. Initially unset, and only used if set to a positive integer.

digits: controls the number of significant (see signif) digits to print when printing numeric
values. It is a suggestion only. Valid values are 1...22 with default 7. See the note in
print.default about values greater than 15.

digits.secs: controls the maximum number of digits to print when formatting time values in
seconds. Valid values are 0...6 with default 0. See st rftime.

download.file.extra: Extra command-line argument(s) for non-default methods: see
download.file.

download.file.method: Method to be used for download.file. Currently down-
load methods "internal", "wininet" (Windows only), "libcurl", "wget" and
"curl" are available. If not set, method = "auto" is chosen: see download.file.

echo: logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line option ‘——no—echo’ sets this to FALSE, but otherwise it starts the session as
TRUE.

encoding: The name of an encoding, default "native.enc". See connections.

error: either a function or an expression governing the handling of non-catastrophic errors such
as those generated by stop as well as by signals and internally detected errors. If the op-
tion is a function, a call to that function, with no arguments, is generated as the expression.
By default the option is not set: see stop for the behaviour in that case. The functions
dump . frames and recover provide alternatives that allow post-mortem debugging. Note
that these need to specified as e.g. options (error =utils: :recover) in startup files
such as ‘.Rprofile’.

expressions: sets a limit on the number of nested expressions that will be evaluated. Valid
values are 25...500000 with default 5000. If you increase it, you may also want to start R
with a larger protection stack; see ‘——max-ppsize’ in Memory. Note too that you may
cause a segfault from overflow of the C stack, and on OSes where it is possible you may
want to increase that. Once the limit is reached an error is thrown. The current number under
evaluation can be found by calling Cstack_info.

interrupt: a function taking no arguments to be called on a user interrupt if the interrupt con-
dition is not otherwise handled.

keep.parse.data: When internally storing source code (keep . source is TRUE), also store
parse data. Parse data can then be retrieved with getParseData () and used e.g. for spell
checking of string constants or syntax highlighting. The value has effect only when internally
storing source code (see keep . source). The default is TRUE.

keep.parse.data.pkgs: As for keep.parse.data, used only when packages are in-
stalled. Defaults to FALSE unless the environment variable R_KEEP_PKG_PARSE_DATA is
set to yes. The space overhead of parse data can be substantial even after compression and it
causes performance overhead when loading packages.

keep.source: When TRUE, the source code for functions (newly defined or loaded) is stored
internally allowing comments to be kept in the right places. Retrieve the source by printing or
using deparse (fn, control = "useSource").

The defaultis interactive (), i.e., TRUE for interactive use.

keep.source.pkgs: Asfor keep. source, used only when packages are installed. Defaults
to FALSE unless the environment variable R_KEEP_PKG_SOURCE is set to yes.

options 415

matprod: a string selecting the implementation of the matrix products $+%, crossprod, and
tcrossprod for double and complex vectors:

"internal" uses an unoptimized 3-loop algorithm which correctly propagates NaN and
Inf values and is consistent in precision with other summation algorithms inside R like
sum or colSums (which now means that it uses a 1ong double accumulator for sum-
mation if available and enabled, see capabilities).

"default" uses BLAS to speed up computation, but to ensure correct propagation of NaN
and Inf values it uses an unoptimized 3-loop algorithm for inputs that may contain NaN
or Inf values. When deemed beneficial for performance, "default" may call the 3-
loop algorithm unconditionally, i.e., without checking the input for NaN/Inf values. The
3-loop algorithm uses (only) a double accumulator for summation, which is consistent
with the reference BLAS implementation.

"blas" uses BLAS unconditionally without any checks and should be used with extreme
caution. BLAS libraries do not propagate NaN or Inf values correctly and for inputs
with NaN/Inf values the results may be undefined.

"default.simd" is experimental and will likely be removed in future versions of R. It
provides the same behavior as "default", but the check whether the input contains
NaN/Inf values is faster on some SIMD hardware. On older systems it will run correctly,
but may be much slower than "default".

max.print: integer, defaulting to 99999. print or show methods can make use of this option,
to limit the amount of information that is printed, to something in the order of (and typically
slightly less than) max . print entries.

OutDec: character string containing a single character. The preferred character to be used
as the decimal point in output conversions, that is in printing, plotting, format and
as.character but not when deparsing nor by sprintf nor formatC (which are some-
times used prior to printing.)

pager: the command used for displaying text files by file.show, details depending on the
platform:

On a unix-alike defaults to ‘R_HOME/bin/pager’, which is a shell script running the
command-line specified by the environment variable PAGER whose default is set at con-
figuration, usually to less.

On Windows defaults to "internal", which uses a pager similar to the GUI console.
Another possibility is "console" to use the console itself.

Can be a character string or an R function, in which case it needs to accept the arguments
(files,header,title,delete.file) corresponding to the first four arguments of
file.show.
papersize: the default paper format used by postscript; set by environment variable
R_PAPERSIZE when R is started: if that is unset or invalid it defaults platform dependently
on a unix-alike to a value derived from the locale category LC_PAPER, or if that is unavail-
able to a default set when R was built.
on Windows to "a4",or "letter" in US and Canadian locales.
PCRE_limit_recursion: Logical: should grep (perl = TRUE) and similar limit the max-
imal recursion allowed when matching? Only relevant for PCRE1 and PCRE2 <= 10.23.

PCRE can be built not to use a recursion stack (see pcre_config), but it uses recursion by
default with a recursion limit of 10000000 which potentially needs a very large C stack: see the

416 options

discussionat https://www.pcre.org/original/doc/html/pcrestack.html.
If true, the limit is reduced using R’s estimate of the C stack size available (if known), other-
wise 10000. If NA, the limit is imposed only if any input string has 1000 or more bytes. The
limit has no effect when PCRE’s Just-in-Time compiler is used.

PCRE_study: Logical or integer: should grep (perl = TRUE) and similar ‘study’ the pat-
terns? Either logical or a numerical threshold for the minimum number of strings to be
matched for the pattern to be studied (the default is 10)). Missing values and negative num-
bers are treated as false. This option is ignored with PCRE2 (PCRE version >= 10.00) which
does not have a separate study phase and patterns are automatically optimized when possible.

PCRE_use_JIT: Logical: should grep (perl = TRUE), strsplit (perl =TRUE) and
similar make use of PCRE’s Just-In-Time compiler if available? (This applies only to studied
patterns with PCRE1.) Default: true. Missing values are treated as false.

pdfviewer: default PDF viewer. The default is set from the environment variable
R_PDFVIEWER, the default value of which

on a unix-alike is set when R is configured, and
on Windows is the full path to open . exe, a utility supplied with R.

printcmd: the command used by postscript for printing; set by environment variable
R_PRINTCMD when R is started. This should be a command that expects either input to
be piped to ‘stdin’ or to be given a single filename argument. Usually set to "1pr" on a
Unix-alike.

prompt: anon-empty string to be used for R’s prompt; should usually end in a blank (" ").

rl_word_breaks: (Unix only:) Used for the readline-based terminal interface. Default value "
NEADN"NN T T><=%; [{ () 1"
This is the set of characters use to break the input line into tokens for object- and file-name
completion. Those who do not use spaces around operators may prefer
"AENDN"NN TS <= 4%, (& () 1"

save.defaults, save.image.defaults: see save.

scipen: integer. A penalty to be applied when deciding to print numeric values in fixed or expo-
nential notation. Positive values bias towards fixed and negative towards scientific notation:
fixed notation will be preferred unless it is more than scipen digits wider.

setWidthOnResize: alogical. If set and TRUE, R run in a terminal using a recent readline
library will set the width option when the terminal is resized.

showWarnCalls, showErrorCalls: alogical. Should warning and error messages show a
summary of the call stack? By default error calls are shown in non-interactive sessions.

showNCalls: integer. Controls how long the sequence of calls must be (in bytes) before ellipses
are used. Defaults to 40 and should be at least 30 and no more than 500.

show.error.locations: Should source locations of errors be printed? If set to TRUE or
"top", the source location that is highest on the stack (the most recent call) will be printed.
"bottom" will print the location of the earliest call found on the stack.
Integer values can select other entries. The value 0 corresponds to "top" and positive values
count down the stack from there. The value —1 corresponds to "bottom" and negative
values count up from there.

show.error.messages: alogical. Should error messages be printed? Intended for use with
try or a user-installed error handler.

https://www.pcre.org/original/doc/html/pcrestack.html

options 417

stringsAsFactors: The default setting for arguments of data.frame and read.table.
texi2dvi: used by functions texi2dvi and texi2pdf in package tools.

unix-alike only: Set at startup from the environment variable R_TEXI2DVICMD, which de-
faults first to the value of environment variable TEXI2DVI, and then to a value set when
R was installed (the full path to a texi2dvi script if one was found). If necessary, that
environment variable can be set to "emulation".

timeout: positive integer. The timeout for some Internet operations, in seconds. Default 60
(seconds) but can be set from environment variable R_DEFAULT_INTERNET_TIMEOUT.
(Invalid values of the option or the variable are silently ignored: non-integer numeric values
will be truncated.) See download.file and connections.

topLevelEnvironment: see topenv and sys.source.

url.method: character string: the default method for url. Normally unset, which is equivalent
to "default", whichis "internal" except on Windows.

useFancyQuotes: controls the use of directional quotes in sQuote, dQuote and in rendering
text help (see Rd2txt in package tools). Can be TRUE, FALSE, "TeX" or "UTF-8".

verbose: logical. Should R report extra information on progress? Set to TRUE by the command-
line option ‘~-verbose’.

warn: integer value to set the handling of warning messages. If warn is negative all warnings are
ignored. If warn is zero (the default) warnings are stored until the top—level function returns.
If 10 or fewer warnings were signalled they will be printed otherwise a message saying how
many were signalled. An object called 1ast .warning is created and can be printed through
the function warnings. If warn is one, warnings are printed as they occur. If warn is two
(or larger, coercible to integer), all warnings are turned into errors.

warnPartialMatchArgs: logical. If true, warns if partial matching is used in argument
matching.

warnPartialMatchAttr: logical. If true, warns if partial matching is used in extracting at-
tributes via attr.

warnPartialMatchDollar: logical. If true, warns if partial matching is used for extraction
by $.

warning.expression: an R code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of option warn.

warning.length: sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100. .. 8170, default 1000.

nwarnings: the limit for the number of warnings kept when warn = 0, default 50. This will
discard messages if called whilst they are being collected. If you increase this limit, be aware
that the current implementation pre-allocates the equivalent of a named list for them, i.e., do
not increase it to more than say a million.

width: controls the maximum number of columns on a line used in printing vectors, matrices and
arrays, and when filling by cat.
Columns are normally the same as characters except in East Asian languages.
You may want to change this if you re-size the window that R is running in. Valid values are
10...10000 with default normally 80. (The limits on valid values are in file ‘Print .h’ and
can be changed by re-compiling R.) Some R consoles automatically change the value when
they are resized.

options

See the examples on Startup for one way to set this automatically from the terminal width

when R is started.

The ‘factory-fresh’ default settings of some of these options are

add.smooth TRUE
check.bounds FALSE
continue "+

digits 7

echo TRUE
encoding "native.enc"
error NULL
expressions 5000
keep.source interactive ()
keep.source.pkgs FALSE
max.print 99999
OutDec "

prompt ">n

scipen 0
show.error.messages TRUE

timeout 60

verbose FALSE

warn 0
warning.length 1000

width 80

Others are set from environment variables or are platform-dependent.

Options set in package grDevices
These will be set when package grDevices (or its namespace) is loaded if not already set.

bitmapType: (Unix only, incl. macOS) character. The default type for the bitmap devices such
as png. Defaults to "cairo" on systems where that is available, or to "quartz" on macOS
where that is available.

device: a character string giving the name of a function, or the function object itself, which
when called creates a new graphics device of the default type for that session. The value of
this option defaults to the normal screen device (e.g., X11, windows or quartz) for an
interactive session, and pdf in batch use or if a screen is not available. If set to the name
of a device, the device is looked for first from the global environment (that is down the usual
search path) and then in the grDevices namespace.
The default values in interactive and non-interactive sessions are configurable via environment
variables R_INTERACTIVE_DEVICE and R_DEFAULT_DEVICE respectively.
The search logic for ‘the normal screen device’ is that this is windows on Windows, and
quartz if available on macOS (running at the console, and compiled into the build). Other-
wise X11 is used if environment variable DISPLAY is set.

device.ask.default: logical. The default for devAskNewPage ("ask") when a device
is opened.

options 419

locatorBell: logical. Should selection in locator and identify be confirmed by a bell?
Default TRUE. Honoured at least on X11 and windows devices.

windowsTimeout: (Windows-only) integer vector of length 2 representing two times in mil-
liseconds. These control the double-buffering of windows devices when that is enabled:
the first is the delay after plotting finishes (default 100) and the second is the update interval
during continuous plotting (default 500). The values at the time the device is opened are used.

Other options used by package graphics

max.contour.segments: positive integer, defaulting to 25000 if not set. A limit on the
number of segments in a single contour line in contour or contourLines.

Options set in package stats

These will be set when package stats (or its namespace) is loaded if not already set.

contrasts: the default contrasts used in model fitting such as with aov or 1m. A charac-
ter vector of length two, the first giving the function to be used with unordered factors and
the second the function to be used with ordered factors. By default the elements are named
c ("unordered", "ordered"), but the names are unused.

na.action: the name of a function for treating missing values (NA’s) for certain situations, see
na.actionand na.pass.

show.coef.Pvalues: logical, affecting whether P values are printed in summary tables of
coefficients. See printCoefmat.

show.nls.convergence: logical, should nls convergence messages be printed for success-
ful fits?

show.signif.stars: logical, should stars be printed on summary tables of coefficients? See
printCoefmat.

ts.eps: the relative tolerance for certain time series (t s) computations. Default 1e-05.

ts.S.compat: logical. Used to select S compatibility for plotting time-series spectra. See the
description of argument log in plot . spec.

Options set (or used) in package utils

These will be set (apart from Ncpus) when package utils (or its namespace) is loaded if not already
set.

BioC_mirror: The URL of a Bioconductor mirror for use by setRepositories,
e.g. the default ‘"https://bioconductor.org"’ or the European mirror
‘"https://bioconductor.statistik.tu-dortmund.de"’. Can be set by
chooseBioCmirror.

browser: The HTML browser to be used by browseURL. This sets the default browser on UNIX
or a non-default browser on Windows. Alternatively, an R function that is called with a URL
as its argument. See browseURL for further details.

ccaddress: default Cc: address used by create.post (and hencebug.report and
help.request). Canbe FALSE or "".

420 options

citation.bibtex.max: default 1; the maximal number of bibentries (bibentry) in a
citation for which the bibtex version is printed in addition to the text one.

de.cellwidth: integer: the cell widths (number of characters) to be used in the data editor
dataentry. If this is unset (the default), 0, negative or NA, variable cell widths are used.

demo.ask: default for the ask argument of demo.

editor: anon-empty character string or an R function that sets the default text editor, e.g., for
edit and file.edit. Set from the environment variable EDITOR on UNIX, or if unset
VISUAL or vi. As a string it should specify the name of or path to an external command.

example.ask: default for the ask argument of example.
help.ports: optional integer vector for setting ports of the internal HTTP server, see
startDynamicHelp.

help.search.types: default types of documentation to be searched by help.search and
7.

help.try.all.packages: default for an argument of help.
help_type: default for an argument of he 1p, used also as the help type by 2.

HTTPUserAgent: string used as the ‘user agent’ in HTTP(S) requests by download.file,
url and curlGetHeaders, or NULL when requests will be made without a user
agent header. The default is R (<version> <platform> <arch> <os>) except when
‘libcurl’isused whenitis 1ibcurl/7.<xx>.<y> for the ‘1ibcurl’ version in use.

install.lock: logical: should per-directory package locking be used by
install.packages? Most useful for binary installs on macOS and Windows, but
can be used in a startup file for source installs via R CMD INSTALL. For binary installs, can
also be the character string "pkglock™".

internet.info: The minimum level of information to be printed on URL downloads etc, using
the "internal” and "libcurl" methods. Default is 2, for failure causes. Setto 1 or O
to get more detailed information (for the "internal" method O provides more information
than 1).

install.packages.check.source: Used by install.packages (and indirectly
update.packages) on platforms which support binary packages. Possible values "yes"
and "no", with unset being equivalent to "yes".

install.packages.compile.from.source: Used by install.packages (type =
"both") (and indirectly update.packages) on platforms which support binary pack-
ages. Possible values are "never", "interactive" (which means ask in interactive use
and "never" in batch use) and "always". The default is taken from environment variable
R_COMPILE_AND_INSTALI_PACKAGES, with default "interactive" if unset. How-
ever, install.packages uses "never" unless a make program is found, consulting the
environment variable MAKE.

mailer: default emailing method used by create.post and hence bug.report and
help.request.

menu.graphics: Logical: should graphical menus be used if available?. Defaults to TRUE.
Currently applies to select.list, chooseCRANmirror, setRepositories and to
select from multiple (text) help files in help.

Ncpus: anintegern > 1,usedin install.packages as default for the number of cpus to use
in a potentially parallel installation, as Ncpus = getOption ("Ncpus", 1L), i.e., when
unset is equivalent to a setting of 1.

options 421

pkgType: The default type of packages to be downloaded and installed — see
install.packages. Possible values are platform dependently

on Windows "win.binary", "source" and "both" (the default).

on Unix-alikes "source" (the default except under a CRAN macOS
build), "mac.binary" and "both" (the default for CRAN macOS
builds). ("mac.binary.el-capitan", "mac.binary.mavericks",
"mac.binary.leopard" and "mac.binary.universal" are no longer
in use.)

Value "binary" is a synonym for the native binary type (if there is one); "both" is used
by install.packages to choose between source and binary installs.

repos: URLs of the repositories for use by update.packages. Defaults to
c (CRAN="QCRANQ@"), a value that causes some utilities to prompt for a CRAN
mirror. To avoid this do set the CRAN mirror, by something like local ({r
<—-getOption ("repos"); r["CRAN"] <-"http://my.local.cran";
options (repos=r)}).
Note that you can add more repositories (Bioconductor, R-Forge, Rforge.net ...) using
setRepositories.

SweaveHooks, SweaveSyntax: see Sweave.

unzip: a character string used by unzip: the path of the external program unzip or
"internal". Defaults (platform dependently)
on unix-alikes to the value of R_UNZIPCMD, which is setin ‘et c/Renviron’ to the path

of the unz ip command found during configuration and otherwise to " ".

on Windows to "internal" when the internal unzip code is used.

Options set in package parallel
These will be set when package parallel (or its namespace) is loaded if not already set.

mc.cores: a integer giving the maximum allowed number of additional R processes allowed to
be run in parallel to the current R process. Defaults to the setting of the environment variable
MC_CORES if set. Most applications which use this assume a limit of 2 if it is unset.

Options used on Unix only
dvipscmd: character string giving a command to be used in the (deprecated) off-line printing of
help pages via PostScript. Defaults to "dvips".
Options used on Windows only
warn.FPU: logical, by default undefined. If true, a warning is produced whenever dyn.load re-
pairs the control word damaged by a buggy DLL.

Note

For compatibility with S there is a visible object . Options whose value is a pairlist containing
the current options () (in no particular order). Assigning to it will make a local copy and not
change the original. (Using it however is faster than calling options ()).

An option set to NULL is indistinguishable from a non existing option.

422 options

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

op <- options(); utils::str(op) # op is a named list

getOption ("width") == options()S$width # the latter needs more memory
options (digits = 15)
pi

set the editor, and save previous value

old.o <- options(editor = "nedit")
old.o
options (check.bounds = TRUE, warn = 1)

x <- NULL; x[4] <- "yes" # gives a warning

options (digits = 5)
print (1eb)
options (scipen

3); print (leb)

options (op) # reset (all) initial options
options ("digits")

Not run: ## set contrast handling to be like S
options (contrasts = c("contr.helmert", "contr.poly"))

End (Not run)

Not run: ## on error, terminate the R session with error status 66
options (error = quote(g("no", status = 66, runlLast = FALSE)))

stop ("test it")

End (Not run)

Not run: ## Set error actions for debugging:
enter browser on error, see ?recover:

options (error = recover)
allows to call debugger () afterwards, see ?debugger:
options (error = dump.frames)

A possible setting for non-interactive sessions
options (error = quote ({dump.frames(to.file = TRUE); qg()}))

End (Not run)

Compare the two ways to get an option and use it

acconting for the possibility it might not be set.
if(as.logical (getOption ("performCleanp", TRUE)))

cat ("do cleanup\n")

order

Not run:

423

a clumsier way of expressing the above w/o the default.
tmp <- getOption ("performCleanup")
if(is.null (tmp))

tmp <— TRUE
if (tmp)

cat ("do cleanup\n")

End (Not run)

order

Ordering Permutation

Description

order returns a permutation which rearranges its first argument into ascending or descending
order, breaking ties by further arguments. sort . 1list does the same, using only one argument.
See the examples for how to use these functions to sort data frames, etc.

Usage

order (..., na.last = TRUE, decreasing = FALSE,
method = c("auto", "shell", "radix"))

sort.list (x,

partial = NULL, na.last = TRUE, decreasing = FALSE,

method = c("auto", "shell", "quick", "radix"))

Arguments

partial

decreasing

na.last

method

a sequence of numeric, complex, character or logical vectors, all of the same
length, or a classed R object.

an atomic vector for methods "shell" and "quick". When x is a non-
atomic R object, the default "auto" and "radix" methods may work if
order (x, ..) does.

vector of indices for partial sorting. (Non-NULL values are not implemented.)

logical. Should the sort order be increasing or decreasing? For the "radix"
method, this can be a vector of length equal to the number of arguments in
For the other methods, it must be length one.

for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed (see ‘Note’.)

the method to be used: partial matches are allowed. The default ("auto")
implies "radix" for short numeric vectors, integer vectors, logical vectors
and factors. Otherwise, it implies "shel1". For details of methods "shell",
"quick",and "radix", see the help for sort.

424 order

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the values
are still tied, values in the later arguments are used to break the tie (see the first example). The sort
used is stable (except for method = "quick"), so any unresolved ties will be left in their original
ordering.

Complex values are sorted first by the real part, then the imaginary part.

Except for method "radix", the sort order for character vectors will depend on the collating
sequence of the locale in use: see Comparison.

The "shell" method is generally the safest bet and is the default method, except for short fac-
tors, numeric vectors, integer vectors and logical vectors, where "radix" is assumed. Method
"radix" stably sorts logical, numeric and character vectors in linear time. It outperforms the
other methods, although there are caveats (see sort). Method "quick" for sort .1list isonly
supported for numeric x with na.last = NA, is not stable, and is slower than "radix".

partial = NULL is supported for compatibility with other implementations of S, but no other
values are accepted and ordering is always complete.

For a classed R object, the sort order is taken from xt frm: as its help page notes, this can be slow
unless a suitable method has been defined or is.numeric (x) is true. For factors, this sorts on
the internal codes, which is particularly appropriate for ordered factors.

Value

An integer vector unless any of the inputs has 23! or more elements, when it is a double vector.

Warning

In programmatic use it is unsafe to name the . . . arguments, as the names could match current or
future control arguments such as decreasing. A sometimes-encountered unsafe practice is to
call do.call ('order',df_obj) where df_obj might be a data frame: copy df_obj and
remove any names, for example using unname.

Note

sort.list can get called by mistake as a method for sort with a list argument: it gives a
suitable error message for list x.

There is a historical difference in behaviour for na.last = NA: sort.list removes the NAs
and then computes the order amongst the remaining elements: order computes the order amongst
the non-NA elements of the original vector. Thus

x[order (x, na.last = NA)]
zz <— x['is.na(x)]; zz[sort.list(x, na.last = NA)]

both sort the non-NA values of x.

Prior to R 3.3.0 method = "radix" was only supported for integers of range less than 100,000.

order 425

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching. 2nd ed.
Addison-Wesley.

See Also

sort, rank, xt frm.

Examples

require (stats)

(ii <= order(x <- c¢(1,1,3:1,1:4,3), v <= ¢c(9,9:1), z <= c(2,1:9)))
6 5 2 1 7 410 8 3 9
rbind(x, y, z)[,1ii] # shows the reordering (ties via 2nd & 3rd argqg)

Suppose we wanted descending order on y.

A simple solution for numeric 'y

rbind(x, vy, z)[, order(x, -y, z)]

More generally we can make use of xtfrm

cy <—- as.character (y)

rbind(x, vy, z)[, order(x, —-xtfrm(cy), z)]

The radix sort supports multiple 'decreasing' values:

rbind(x, vy, z)[, order(x, cy, z, decreasing = c(FALSE, TRUE, FALSE),
method="radix")]

is

Sorting data frames:
dd <- transform(data.frame(x, vy, 2z),
z = factor(z, labels = LETTERS[9:1]))

Either as above {for factor 'z' : using internal coding}:
dd[order(x, -y, z), |
or along lst column, ties along 2nd, ... *arbitrary* no.{columns}:

dd[do.call (order, dd),]

set.seed (1) # reproducible example:

d4 <- data.frame(x = round/(rnorm(100)), vy = round(1l0*xrunif (100)),
z = round(8xrnorm(100)), u = round(50xrunif (100)))

(dds <- d4[do.call (order, d4), 1)

(i <-= which(diff(d4s[, 3]) == 0))

in 2 places, needed 3 cols to break ties:

d4s[rbind(i, i+1),]

rearrange matched vectors so that the first is in ascending order
x <—= c(5:1, 6:8, 12:9)

y <- (x = 5)"2

o <- order (x)

rbind(x[o], vI[o])

tests of na.last

426 outer
a <- c(4, 3, 2, NA, 1)
b <- c(4, NA, 2, 7, 1)
z <— cbind(a, b)
(o0 <-= order(a, b)); zlo, 1
(o0 <= order(a, b, na.last = FALSE)); z[o,]
(o0 <- order(a, b, na.last = NA)); z[o,]
speed examples on an average laptop for long vectors:
factor/small-valued integers:
x <- factor (sample(letters, le7, replace = TRUE))
system.time (o <- sort.list (x, method = "quick", na.last = NA)) # 0.1 sec
stopifnot (!is.unsorted (x[0]))
system.time (o <- sort.list(x, method = "radix")) # 0.05 sec, 2X faster
stopifnot (!is.unsorted (x[0]))
large-valued integers:
xx <— sample (1:200000, le7, replace = TRUE)
system.time (0o <- sort.list (xx, method = "quick", na.last = NA)) # 0.3 sec
system.time (0 <- sort.list (xx, method = "radix")) # 0.2 sec
character vectors:
xx <- sample (state.name, le6, replace = TRUE)
system.time (0 <- sort.list (xx, method = "shell")) # 2 sec
system.time (o <- sort.list (xx, method = "radix")) # 0.007 sec, 300X faster
double vectors:
xx <— rnorm(le6)
system.time (o <- sort.list (xx, method = "shell")) # 0.4 sec
system.time (o <- sort.list (xx, method = "quick", na.last = NA)) # 0.1 sec
system.time (o0 <- sort.list (xx, method = "radix")) # 0.05 sec, 2X faster

outer Outer Product of Arrays

Description
The outer product of the arrays X and Y is the array A with dimension
c(dim(X),dim(Y)) where element A[c(arrayindex.x,arrayindex.y)] =

FUN (X[arrayindex.x],Y[arrayindex.y]l,...).

Usage
outer (X, Y, FUN = "x", ...)
X %0% Y
Arguments
X, Y First and second arguments for function FUN. Typically a vector or array.
FUN a function to use on the outer products, found via mat ch. fun (except for the

special case "+ ").

optional arguments to be passed to FUN.

Paren 427

Details
X and Y must be suitable arguments for FUN. Each will be extended by rep to length the products
of the lengths of X and Y before FUN is called.

FUN is called with these two extended vectors as arguments (plus any arguments in . . .). It must
be a vectorized function (or the name of one) expecting at least two arguments and returning a value
with the same length as the first (and the second).

Where they exist, the [dim]names of X and Y will be copied to the answer, and a dimension assigned
which is the concatenation of the dimensions of X and Y (or lengths if dimensions do not exist).

FUN = "*" is handled as a special case via as.vector (X) $*% t (as.vector (Y)), and is
intended only for numeric vectors and arrays.

%$0% is binary operator providing a wrapper for outer (x,y, "+").

Author(s)

Jonathan Rougier

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%$+% for usual (inner) matrix vector multiplication; kronecker which is based on outer;
Vectorize for vectorizing a non-vectorized function.

Examples
x <= 1:9; names (x) <- x
Multiplication & Power Tables
X %$0% X
y <= 2:8; names(y) <- paste(y,":", sep = "")

outer(y, x, "™")
outer (month.abb, 1999:2003, FUN = "paste")

three way multiplication table:
X %0% x %0% y[1l:3]

Paren Parentheses and Braces

Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.

Effectively, (is semantically equivalent to the identity function (x) x, whereas { is slightly
more interesting, see examples.

428 parse

Value

For (, the result of evaluating the argument. This has visibility set, so will auto-print if used at
top-level.

For {, the result of the last expression evaluated. This has the visibility of the last evaluation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

if, return, etc for other objects used in the R language itself.

Syntax for operator precedence.

Examples

f <- get("(")
e <- expression(3 + 2 x 4)
identical (f(e), e)

do <- get("{")
do(x <- 3, y <- 2%x-3, 6-x-y); X; Yy

note the differences
(2+3)

{2+3; 4+5}

(invisible (2+3))
{invisible (24+3)}

parse Parse R Expressions

Description

parse () returns the parsed but unevaluated expressions in an expression, a “list” of calls.

str2expression (s) and str2lang(s) return special versions of
parse (text=s, keep.source=FALSE) and can therefore be regarded as transforming
character strings s to expressions, calls, etc.

parse 429
Usage
parse(file = "", n = NULL, text = NULL, prompt = "?2",
keep.source = getOption("keep.source"), srcfile,
encoding = "unknown")

str2lang(s)
str2expression (text)

Arguments

file a connection, or a character string giving the name of a file or a URL to read the
expressions from. If file is "" and text is missing or NULL then input is
taken from the console.

n integer (or coerced to integer). The maximum number of expressions to parse.
If n is NULL or negative or NA the input is parsed in its entirety.

text character vector. The text to parse. Elements are treated as if they were lines of
a file. Other R objects will be coerced to character if possible.

prompt the prompt to print when parsing from the keyboard. NULL means to use R’s

prompt, getOption ("prompt").

keep.source alogical value; if TRUE, keep source reference information.

srcfile NULL, a character vector, or a srcfile object. See the ‘Details’ section.

encoding encoding to be assumed for input strings. If the value is "latinl" or

"UTF-8" itis used to mark character strings as known to be in Latin-1 or UTF-
8: it is not used to re-encode the input. To do the latter, specify the encoding as
part of the connection con or via options (encoding=): see the example
under file. Argument encoding = "latinl" is ignored with a warning
when running in a MBCS locale.

s a character vector of length 1, i.e., a “string”.
Details
parse (....): If text has length greater than zero (after coercion) it is used in preference to

file.

All versions of R accept input from a connection with end of line marked by LF (as used on
Unix), CRLF (as used on DOS/Windows) or CR (as used on classic Mac OS). The final line
can be incomplete, that is missing the final EOL marker.

When input is taken from the console, n = NULL is equivalent to n = 1, and n < 0 will read
until an EOF character is read. (The EOF character is Ctrl-Z for the Windows front-ends.)
The line-length limit is 4095 bytes when reading from the console (which may impose a
lower limit: see ‘An Introduction to R’).

The default for srcfile is set as follows. If keep.source is not TRUE, srcfile
defaults to a character string, either "<text>" or one derived from file. When
keep.source is TRUE, if text is used, srcfile will be setto a srcfilecopy con-
taining the text. If a character string is used for file, a srcfile object referring to that file
will be used.

430 parse

When srcfile is a character string, error messages will include the name, but source ref-
erence information will not be added to the result. When srcfile isa srcfile object,
source reference information will be retained.

str2expression(s): for a character vector s, str2expression (s) corresponds
to parse (text = s, keep.source=FALSE), which is always of type (typeof) and
class expression.

str2lang(s): for a character string s, str2lang(s) corresponds to parse (text =
s, keep.source=FALSE) [[1]] (plus a check that both s and the parse (*) result are
of length one) which is typically a call but may also be a symbol aka name, NULL or an
atomic constant such as 2, 1L, or TRUE. Put differently, the value of str2lang(.) isacall
or one of its parts, in short “a call or simpler”.

Currently, encoding is not handled in str2lang () and str2expression ().

Value

parse () and str2expression () return an object of type "expression", for parse ()
with up to n elements if specified as a non-negative integer.

str2lang(s), s astring, returns “a call or simpler”, see the ‘Details:” section.

When srcfile is non-NULL, a "srcref" attribute will be attached to the result containing a
list of srcref records corresponding to each element, a "srcfile" attribute will be attached
containing a copy of srcfile, and a "wholeSrcref" attribute will be attached containing a
srcref record corresponding to all of the parsed text. Detailed parse information will be stored in
the "srcfile" attribute, to be retrieved by getParseData.

A syntax error (including an incomplete expression) will throw an error.

Character strings in the result will have a declared encoding if encoding is "latinl" or
"UTF-8", or if text is supplied with every element of known encoding in a Latin-1 or UTF-
8 locale.

Partial parsing

When a syntax error occurs during parsing, parse signals an error. The partial parse data will be
stored in the srcfile argument if it is a srcfile object and the text argument was used to
supply the text. In other cases it will be lost when the error is triggered.

The partial parse data can be retrieved using getParseData applied to the srcfile object.
Because parsing was incomplete, it will typically include references to "parent™ entries that are
not present.

Note
Using parse (text = x, . .) or its simplified and hence more efficient versions str2lang ()
or str2expression () is at least an order of magnitude less efficient than call(..) or

as.call().

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

paste

Murdoch, D. (2010). Source References. The R Journal 2/2, 16-19.

See Also

scan, source, eval, deparse

431

The source reference information can be used for debugging (see e.g. setBreakpoint) and
profiling (see Rprof). It can be examined by get Srcref and related functions. More detailed

information is available through getParseData.

Examples

fil <- tempfile(fileext = ".Rdmped")

cat ("x <- ¢(1, 4)\n x ~ 3 -10 ; outer(l:7, 5:9)\n", file

parse 3 statements from our temp file

parse(file = fil, n = 3)

unlink (£i1l)

str2lang(<string>) || str2expression (<character>)

stopifnot (exprs = {
identical(str2lang("x[3] <- 1+4"), quote(x[3] <- 1+4))
identical(str2lang("log(y)"), quote (log(y)))
identical (str2lang("abc"), quote (abc) -> ga)
is.symbol (ga) & !'is.call (ga) # a symbol/name,
identical(str2lang("1.375"), 1.375) # just a number,

})

A partial parse with a syntax error
txt <= "

x <=1

an error

n

sf <- srcfile("txt")

try (parse (text = txt, srcfile = sf))
getParseData (sf)

= fil)

not a call
not a call

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage

paste (..., sep =" ", collapse = NULL,
pastel (..., collapse NULL,

recycleO
recycleO

FALSE)
FALSE)

https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Murdoch.pdf

432 paste

Arguments
one or more R objects, to be converted to character vectors.
sep a character string to separate the terms. Not NA_character_.
collapse an optional character string to separate the results. Not NA_character_.
recycleO logical indicating if zero-length character arguments should lead to the
zero-length character (0) after the sep-phase (which turns into " " in the
collapse-phase,i.e., when collapse is not NULL).
Details

paste converts its arguments (via as.character) to character strings, and concatenates them
(separating them by the string given by sep). If the arguments are vectors, they are concatenated
term-by-term to give a character vector result. Vector arguments are recycled as needed, with zero-
length arguments being recycled to " " only if recycle0 is not true or collapse is not NULL.

Note that paste () coerces NA_character_, the character missing value, to "NA" which may
seem undesirable, e.g., when pasting two character vectors, or very desirable, e.g. in paste ("the
valueofpis",p).

paste0(...,collapse) is equivalent to paste(...,sep="",collapse), slightly
more efficiently.

If a value is specified for collapse, the values in the result are then concatenated into a single
string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values. This will be of length zero if all the objects are,
unless collapse is non-NULL, in which case it is " " (a single empty string).

If any input into an element of the result is in UTF-8 (and none are declared with encoding
"bytes", see Encoding), that element will be in UTF-8, otherwise in the current encoding
in which case the encoding of the element is declared if the current locale is either Latin-1 or UTF-
8, at least one of the corresponding inputs (including separators) had a declared encoding and all
inputs were either ASCII or declared.

If an input into an element is declared with encoding "bytes", no translation will be done of any
of the elements and the resulting element will have encoding "bytes". If collapse is non-
NULL, this applies also to the second, collapsing, phase, but some translation may have been done
in pasting object together in the first phase.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

toString typically calls paste (x,collapse=","). String manipulation with
as.character, substr, nchar, strsplit; further, cat which concatenates and
writes to a file, and sprint £ for C like string construction.

‘plotmath’ for the use of paste in plot annotation.

paste 433

Examples

When passing a single vector, pasteO and paste work like as.character.
pastel(1:12)

paste(1:12) # same

as.character (1:12) # same

If you pass several vectors to paste0O, they are concatenated in a
vectorized way.
(nth <- pasteO0(1:12, c("st", "nd", "rd", rep("th", 9))))

paste works the same, but separates each input with a space.

Notice that the recycling rules make every input as long as the longest input.
paste (month.abb, "is the", nth, "month of the year.")

paste (month.abb, letters)

You can change the separator by passing a sep argument
which can be multiple characters.
paste (month.abb, "is the", nth, "month of the year.", sep = "_x_")

To collapse the output into a single string, pass a collapse argument.
pastel (nth, collapse =", ")

For inputs of length 1, use the sep argument rather than collapse
paste("1st", "2nd", "3rd", collapse = ", ") # probably not what you wanted
paste("lstH’ ll2ndll’ ll3rd"’ Sep —_ ", ")

You can combine the sep and collapse arguments together.

paste (month.abb, nth, sep = ": ", collapse = "; ")

Using paste() in combination with strwrap() can be useful
for dealing with long strings.
(title <- paste(strwrap (
"Stopping distance of cars (ft) vs. speed (mph) from Ezekiel (1930)",

width = 30), collapse = "\n"))
plot (dist ~ speed, cars, main = title)
'recycle0 = TRUE' allows more vectorized behaviour, i.e. zero-length recycling

valid <- FALSE
val <- pi

paste ("The value is", vallvalid], "-- not so good!")

paste ("The value is", val[valid], "-- good: empty!", recycleO=TRUE) # -> character (0)
When 'collapse = <string>', the result is a length-1 string

paste ("foo", {}, "bar", collapse="|") # |-——> "foo Dbar"
paste("foo", {}, "bar", collapse="|", recycle0 = TRUE) # [--> ""

all empty args

paste (collapse="1|") # |-—> "" as do all these:

paste (collapse="|", recycle0 = TRUE)

paste({}, collapse="|")

paste({}, collapse="|", recycleO = TRUE)

434 path.expand

path.expand Expand File Paths

Description

Expand a path name, for example by replacing a leading tilde by the user’s home directory (if
defined on that platform).

Usage

path.expand (path)

Arguments

path character vector containing one or more path names.

Details

On Unix - alikes: On most builds of R a leading ~user will expand to the home directory
of user, but not on builds without readline installed. (In an interactive session
capabilities ("cledit") will report if readline is available.)

There are possibly different concepts of ‘home directory’: that usually used is the setting of
the environment variable HOME.

The ‘path names’ need not exist nor be valid path names but they do need to be representable
in the session encoding.

On Windows: The definition of the ‘home’ directory is in the ‘rw—-FAQ’ Q2.14: it is taken from
the R_USER environment variable when path .expand is first called in a session.

The ‘path names’ need not exist nor be valid path names.

Value

A character vector of possibly expanded path names: where the home directory is unknown or none
is specified the path is returned unchanged.

See Also

basename, normalizePath, file.path.

Examples

path.expand ("~/foo")

pcre_config 435

pcre_config Report Configuration Options for PCRE

Description

Report some of the configuration options of the version of PCRE in use in this R session.

Usage

pcre_config()

Value
A named logical vector, currently with elements

UTF-8 Support for UTF-8 inputs. Required.

Unicode properties
Support for ‘\p{xx}’ and ‘\P{xx}’ in regular expressions. Desirable and
used by some CRAN packages. As of PCRE2, always present with support for

UTE-8.

JIT Support for just-in-time compilation. Desirable for speed (but only available as
a compile-time option on certain architectures).

stack Does match recursion use a stack (TRUE, the default for PCRE1 and PCRE2

older than 10.30) or a heap? See the discussion at https://www.pcre.
org/original/doc/html/pcrestack.html (Added in R 3.4.0.). No
longer relevant and always FALSE in PCRE2 since version 10.30 which no
longer uses function recursion to remember backtracking positions.

See Also

extSoftVersion for the PCRE version.

Examples

pcre_config ()

plot Generic X-Y Plotting

Description

Generic function for plotting of R objects.

For simple scatter plots, plot.default will be used. However, there are plot meth-
ods for many R objects, including functions, data.frames, density objects, etc. Use
methods (plot) and the documentation for these. Most of these methods are implemented us-
ing traditional graphics (the graphics package), but this is not mandatory.

For more details about graphical parameter arguments used by traditional graphics, see par.

https://www.pcre.org/original/doc/html/pcrestack.html
https://www.pcre.org/original/doc/html/pcrestack.html

436

Usage

plot (x,

Arguments

X

Details

Yr

plot

the coordinates of points in the plot. Alternatively, a single plotting structure,
function or any R object with a plot method can be provided.

the y coordinates of points in the plot, optional if x is an appropriate structure.

Arguments to be passed to methods, such as graphical parameters (see par).
Many methods will accept the following arguments:
type what type of plot should be drawn. Possible types are

e "p" for points,

e "1™ for lines,

e "b" for both,

e "c" for the lines part alone of "b",

e "o" for both ‘overplotted’,

e "h" for ‘histogram’ like (or ‘high-density’) vertical lines,

e "s" for stair steps,

e "S" for other steps, see ‘Details’ below,

e "n" for no plotting.

All other types give a warning or an error; using, e.g., type =

"punkte" being equivalent to type = "p" for S compatibility. Note
that some methods, e.g. plot . factor, do not accept this.

main an overall title for the plot: see title.
sub a sub title for the plot: see title.

xlab atitle for the x axis: see title.

ylab atitle for the y axis: see title.

asp the y/x aspect ratio, see plot . window.

The two step types differ in their x-y preference: Going from (z1,y1) to (22,y2) with z1 <
2, type = "s" moves first horizontal, then vertical, whereas t ype = "S" moves the other way

around.

Note

The plot generic was moved from the graphics package to the base package in R 4.0.0. It is
currently re-exported from the graphics namespace to allow packages importing it from there to
continue working, but this may change in future versions of R.

See Also

plot.default, plot.formula and other methods; points, 1ines, par. For thousands of
points, consider using smoothScatter () instead of plot ().

For X-Y-Z plotting see contour, persp and image.

pmatch 437

Examples

require (stats) # for lowess, rpois, rnorm
require (graphics) # for plot methods

plot (cars)

lines (lowess (cars))

plot (sin, -pi, 2xpi) # see ?plot.function
Discrete Distribution Plot:
plot (table (rpois (100, 5)), type = "h", col = "red", lwd = 10,

main = "rpois (100, lambda = 5)")

Simple quantiles/ECDF, see ecdf() {library(stats)} for a better one:

plot (x <- sort (rnorm(47)), type = "s", main = "plot(x, type = \"s\")")
points(x, cex = .5, col = "dark red")
pmatch Partial String Matching
Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch (x, table, nomatch = NA_integer_, duplicates.ok = FALSE)

Arguments
x the values to be matched: converted to a character vector by as.character.
Long vectors are supported.
table the values to be matched against: converted to a character vector. Long vectors
are not supported.
nomatch the value to be returned at non-matching or multiply partially matching posi-

tions. Note that it is coerced to integer.
duplicates.ok
should elements be in table be used more than once?

Details

The behaviour differs by the value of duplicates. ok. Consider first the case if this is true. First
exact matches are considered, and the positions of the first exact matches are recorded. Then unique
partial matches are considered, and if found recorded. (A partial match occurs if the whole of the
element of x matches the beginning of the element of table.) Finally, all remaining elements of x
are regarded as unmatched. In addition, an empty string can match nothing, not even an exact match
to an empty string. This is the appropriate behaviour for partial matching of character indices, for
example.

438

polyroot

If duplicates.ok is FALSE, values of table once matched are excluded from the search
for subsequent matches. This behaviour is equivalent to the R algorithm for argument matching,
except for the consideration of empty strings (which in argument matching are matched after exact

and partial matching to any remaining arguments).

charmatch is similar to pmatch with duplicates. ok true, the differences being that it dif-
ferentiates between no match and an ambiguous partial match, it does match empty strings, and it

does not allow multiple exact matches.

NA values are treated as if they were the string constant "NA".

Value

An integer vector (possibly including NA if nomatch = NA) of the same length as x, giving the

indices of the elements in t able which matched, or nomatch.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

match, charmatch and match.arg, match. fun, match.call, for function argument
matching etc., startsWith for particular checking of initial matches; grep etc for more general

(regexp) matching of strings.

Examples
pmatch("", "") # returns NA
pmatch ("m", c("mean", "median", "mode")) # returns NA
pmatch ("med", c("mean", "median", "mode")) # returns 2

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup = FALSE)

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup = TRUE)
compare
charmatch(c("", "ab", "ab"), c("abc", "ab"))
polyroot Find Zeros of a Real or Complex Polynomial
Description

Find zeros of a real or complex polynomial.

Usage

polyroot (z)

polyroot 439

Arguments

z the vector of polynomial coefficients in increasing order.

Details
A polynomial of degree n — 1,

p(r) =21 + 2w+ + 22"

is given by its coefficient vector z [1:n]. polyroot returns the n — 1 complex zeros of p(x)
using the Jenkins-Traub algorithm.

If the coefficient vector z has zeroes for the highest powers, these are discarded.

There is no maximum degree, but numerical stability may be an issue for all but low-degree poly-
nomials.
Value

A complex vector of length n — 1, where n is the position of the largest non-zero element of z.

Source

C translation by Ross Thaka of Fortran code in the reference, with modifications by the R Core
Team.

References

Jenkins, M. A. and Traub, J. F. (1972). Algorithm 419: zeros of a complex polynomial. Communi-
cations of the ACM, 15(2), 97-99. doi: 10.1145/361254.361262.

See Also

uniroot for numerical root finding of arbitrary functions; complex and the zero example in
the demos directory.

Examples

polyroot (c (1, 2, 1))

round (polyroot (choose (8, 0:8)), 11) # guess what!
for (nl in 1:4) print (polyroot(l:nl), digits = 4)
polyroot(c(l, 2, 1, 0, 0)) # same as the first

https://doi.org/10.1145/361254.361262

440 pretty

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env (x)

Arguments
X an integer between 1 and length (search ()), the length of the search path,
or —1.
Details

Several R functions for manipulating objects in environments (such as get and 1s) allow specify-
ing environments via corresponding positions in the search path. pos.to.env is a convenience
function for programmers which converts these positions to corresponding environments; users will
typically have no need for it. It is primitive.

-1 is interpreted as the environment the function is called from.

This is a primitive function.

Examples

pos.to.env(l) # R_GlobalEnv
the next returns the base environment
pos.to.env (length(search()))

pretty Pretty Breakpoints

Description

Compute a sequence of about n+1 equally spaced ‘round’ values which cover the range of the
values in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, ...)

Default S3 method:

pretty(x, n =5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, uS5.bias = .5 + 1.5xhigh.u.bias,

0, .)

eps.correct =

pretty

Arguments

X

n

min.n

shrink.sml

high.u.bias

uS5.bias

eps.correct

Details

441

an object coercible to numeric by as.numeric.

integer giving the desired number of intervals. Non-integer values are rounded
down.

nonnegative integer giving the minimal number of intervals. If min.n == 0,
pretty (.) may return a single value.

positive number, a factor (smaller than one) by which a default scale is shrunk
in the case when range (x) is very small (usually 0).

non-negative numeric, typically > 1. The interval unit is determined as
{1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger
units.

non-negative numeric multiplier favoring factor 5 over 2. Default and ‘optimal’:
ubS.bias=.5+1.5xhigh.u.bias.

integer code, one of {0,1,2}. If non-0, an epsilon correction is made at the
boundaries such that the result boundaries will be outside range (x) ; in the
small case, the correction is only done if eps.correct >= 2.

further arguments for methods.

pretty ignores non-finite values in x.

Let d <-max (x) —min (x) > 0. If d is not (very close) to 0, we let ¢ <—d/n, otherwise more or
less ¢ <-max (abs (range (x))) *shrink.sml / min.n. Then, the /0 base b is 10Llog10(c)]
such that b < ¢ < 106b.

Now determine the basic unit u as one of {1,2,5,10}b, depending on ¢/b € [1,10) and the two
‘bias’ coefficients, h =high.u.bias and f =u5.bias.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

axTicks for the computation of pretty axis tick locations in plots, particularly on the log scale.

Examples
pretty(1:15)
pretty (1:15,
pretty(1:15,
pretty(1:15
pretty (1:20)
pretty(1:20,
pretty(1:20,

#0 2 4 6 8 10 12 14 16
= 2) # 0 5 10 15
= 4) # 0 5 10 15
2) # 0 5 10 15 20 25 30
0 5 10 15 20
= 2) # 0 10 20
=10) # 0 2 4 ... 20

442 Primitive

for(k in 5:11) {

cat ("k=", k, ": "); print (diff (range (pretty (100 + c(0, pix10"-k)))))}
##—— more bizarre, when min(x) == max(x):
pretty (pi)

add.names <- function(v) { names(v) <- paste(v); v}
utils::str(lapply(add.names (-10:20), pretty))
utils::str(lapply (add.names (0:20), pretty, min.n = 0))
sapply (add.names (0:20), pretty, min.n = 4)

pretty(1.234e100)
pretty (1001.1001)
pretty (1001.1001, shrink = 0.2)
for(k in -7:3)
cat ("shrink=", formatC(2"k, width = 9),":",
formatC (pretty (1001.1001, shrink.sml = 27k), width = 6),"\n")

Primitive Look Up a Primitive Function

Description

.Primitive looks up by name a ‘primitive’ (internally implemented) function.

Usage

.Primitive (name)

Arguments

name name of the R function.

Details

The advantage of .Primitive over . Internal functions is the potential efficiency of argument
passing, and that positional matching can be used where desirable, e.g. in switch. For more
details, see the ‘R Internals’ manual.

All primitive functions are in the base namespace.

This function is almost never used: “name” or, more carefully, get (name,envir =
baseenv ()) work equally well and do not depend on knowing which functions are primitive
(which does change as R evolves).

See Also

is.primitive showing that primitive functions come in two types (typeof), . Internal.

print 443

Examples

mysqgrt <- .Primitive ("sqgrt")

c

.Internal # this one *mustx be primitive!
“if" # need backticks

print Print Values

Description

print prints its argument and returns it invisibly (via invisible (x)). Itis a generic function
which means that new printing methods can be easily added for new classes.

Usage
print(x, ...)
S3 method for class 'factor'

print (x, quote = FALSE, max.levels = NULL,
width = getOption ("width"), ...)

S3 method for class 'table'
print (x, digits = getOption("digits"), quote = FALSE,

na.print = "", zero.print = "0",
right = is.numeric(x) || is.complex(x),
justify = "none", ...)

S3 method for class 'function'

print (x, useSource = TRUE, ...)
Arguments
X an object used to select a method.

further arguments passed to or from other methods.

quote logical, indicating whether or not strings should be printed with surrounding
quotes.

max.levels integer, indicating how many levels should be printed for a factor; if 0, no
extra "Levels" line will be printed. The default, NULL, entails choosing
max . levels such that the levels print on one line of width width.

width only used when max.levels is NULL, see above.
digits minimal number of significant digits, see print .default.
na.print character string (or NULL) indicating NA values in printed output, see

print.default.

444 print

zero.print character specifying how zeros (0) should be printed; for sparse tables, using
" . " can produce more readable results, similar to printing sparse matrices in

Matrix.

right logical, indicating whether or not strings should be right aligned.

justify character indicating if strings should left- or right-justified or left alone, passed
to format.

useSource logical indicating if internally stored source should be used for printing when

present, e.g., if options (keep.source = TRUE) has been in use.

Details
The default method, print .default has its own help page. Use methods ("print") to get
all the methods for the print generic.
print.factor allows some customization and is used for printing ordered factors as well.

print.table for printing tables allows other customization. As of R 3.0.0, it only prints a
description in case of a table with 0-extents (this can happen if a classifier has no valid data).

See noquote as an example of a class whose main purpose is a specific print method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

The default method print.default, and help for the methods above; further options,
noquote.

For more customizable (but cumbersome) printing, see cat, format or also write. For a simple
prototypical print method, see .print.via.format in package tools.

Examples

require (stats)

ts(1:20) #-— print is the "Default function" --> print.ts(.) is called
for(i in 1:3) print(l:1i)

Printing of factors
attenu$Sstation ## 117 levels -> 'max.levels' depending on width

ordered factors: levels "11 < 12 < .."
esophS$Sagegp[1:12]
esophS$alcgp[l:12]

Printing of sparse (contingency) tables
set.seed (521)

tl <- round(abs(rt (200, df
t2 <- round(abs (rt (200, df =
table(tl, t2) # simple

print (table(tl, t2), zero.print = ".") # nicer to read

([
— o
INgyel

https://CRAN.R-project.org/package=Matrix

print.data.frame 445

same for non-integer "table":

T <- table(t2,tl)

T <- T * (l+round(rlnorm(length(T)))/4)

print (T, zero.print = ".") # quite nicer,

print.table(T[,2:8] % 1le9, digits=3, zero.print = ".")

still slightly inferior to Matrix::Matrix(T) for larger T

Corner cases with empty extents:
table (1, NA) # < table of extent 1 x 0 >

print.data.frame Printing Data Frames

Description

Print a data frame.

Usage

S3 method for class 'data.frame'
print(x, ..., digits = NULL,
quote = FALSE, right = TRUE, row.names = TRUE, max = NULL)

Arguments
X object of class data . frame.
optional arguments to print methods.
digits the minimum number of significant digits to be used: see print .default.
quote logical, indicating whether or not entries should be printed with surrounding
quotes.
right logical, indicating whether or not strings should be right-aligned. The default is
right-alignment.
row.names logical (or character vector), indicating whether (or what) row names should be
printed.
max numeric or NULL, specifying the maximal number of entries to be printed. By
default, when NULL, getOption ("max.print") used.
Details

This calls format which formats the data frame column-by-column, then converts to a character
matrix and dispatches to the print method for matrices.

When quote = TRUE only the entries are quoted not the row names nor the column names.

See Also

data.frame.

446

Examples

print.default

(dd <- data.frame(x = 1:8, £ = gl(2,4), ch = I(letters[1:8])))
print () with defaults

print (dd, quote = TRUE, row.names = FALSE)
suppresses row.names and quotes all entries

print.default

Default Printing

Description

print.default is the default method of the generic print function which prints its argument.

Usage

Default S3 method:

print (x,

digits = NULL, quote = TRUE,

na.print = NULL, print.gap = NULL, right = FALSE,

max

Arguments

X

digits

quote
na.print
print.gap
right

max

width

useSource

NULL, width = NULL, useSource = TRUE, ...)

the object to be printed.

anon-null value for digits specifies the minimum number of significant digits
to be printed in values. The default, NULL, uses getOption ("digits").
(For the interpretation for complex numbers see signif.) Non-integer values
will be rounded down, and only values greater than or equal to 1 and no greater
than 22 are accepted.

logical, indicating whether or not strings (characters) should be printed with
surrounding quotes.

a character string which is used to indicate NA values in printed output, or NULL
(see ‘Details’).

a non-negative integer < 1024, or NULL (meaning 1), giving the spacing be-
tween adjacent columns in printed vectors, matrices and arrays.

logical, indicating whether or not strings should be right aligned. The default is
left alignment.

a non-null value for max specifies the approximate maximum number of entries
to be printed. The default, NULL, uses getOption ("max.print"): see
that help page for more details.

controls the maximum number of columns on a line used in printing vectors,
matrices, etc. The default, NULL, uses getOption ("width"): see that help
page for more details including allowed values.

logical, indicating whether to use source references or copies rather than depars-
ing language objects. The default is to use the original source if it is available.

further arguments to be passed to or from other methods. They are ignored in
this function.

print.default 447

Details

The default for printing NAs is to print NA (without quotes) unless this is a character NA and quote
= FALSE, when ‘<NA>’ is printed.

The same number of decimal places is used throughout a vector. This means that digit s specifies
the minimum number of significant digits to be used, and that at least one entry will be encoded
with that minimum number. However, if all the encoded elements then have trailing zeroes, the
number of decimal places is reduced until at least one element has a non-zero final digit. Decimal
points are only included if at least one decimal place is selected.

Attributes are printed respecting their class(es), using the values of digits toprint.default,
but using the default values (for the methods called) of the other arguments.

Option width controls the printing of vectors, matrices and arrays, and option
deparse.cutoff controls the printing of language objects such as calls and formulae.

When the methods package is attached, print will call show for R objects with formal classes
(‘S4’) if called with no optional arguments.

Large number of digits

Note that for large values of digits, currently for digits >= 16, the calculation of the num-
ber of significant digits will depend on the platform’s internal (C library) implementation of
‘sprintf ()’ functionality.

Single-byte locales

If a non-printable character is encountered during output, it is represented as one of the ANSI
escape sequences (‘\a’, ‘\b’, ‘\£’, ‘\n’, ‘\r’, ‘\t’, ‘\v’, “\\” and ‘\0’: see Quotes), or failing
that as a 3-digit octal code: for example the UK currency pound sign in the C locale (if implemented
correctly) is printed as ‘\ 24 3’. Which characters are non-printable depends on the locale. (Because
some versions of Windows get this wrong, all bytes with the upper bit set are regarded as printable
on Windows in a single-byte locale.)

Unicode and other multi-byte locales

In all locales, the characters in the ASCII range (‘0x00’ to ‘0x7£’) are printed in the same way,
as-is if printable, otherwise via ANSI escape sequences or 3-digit octal escapes as described for
single-byte locales. Whether a character is printable depends on the current locale and the operating
system (C library).

Multi-byte non-printing characters are printed as an escape sequence of the form ‘\uxxxx’ or
‘“A\Uxxxxxxxx’ (in hexadecimal). This is the internal code for the wide-character representation
of the character. If this is not known to be Unicode code points, a warning is issued. The only known
exceptions are certain Japanese ISO 2022 locales on commercial Unixes, which use a concatenation
of the bytes: it is unlikely that R compiles on such a system.

It is possible to have a character string in a character vector that is not valid in the current locale. If
a byte is encountered that is not part of a valid character it is printed in hex in the form ‘\xab’ and
this is repeated until the start of a valid character. (This will rapidly recover from minor errors in
UTF-8.)

448

See Also

prmatrix

The generic print, options. The "noquote" class and print method.

encodeString,

Examples

pi

print (pi, digi
LETTERS[1:16]
print (LETTERS,

M <- cbind (I

utils: :head (M)
print (M, max

which encodes a character vector the way it would be printed.

ts = 16)
quote = FALSE)
1, matrix(1:10000, ncol = 10,
dimnames = list (NULL, LETTERS[1:10]1)))
makes more sense than
1000) # prints 90 rows and a message about omitting 910

prmatrix

Print Matrices, Old-style

Description

An earlier method for printing matrices, provided for S compatibility.

Usage

prmatrix (x,

Arguments

X

rowlab =,
quote

collab
right

=

= TRUE, = FALSE, na.print = NULL, 2)

numeric or character matrix.

rowlab, collab

quote

right

na.print

Details

(optional) character vectors giving row or column names respectively. By de-
fault, these are taken from dimnames (x).

logical; if TRUE and x is of mode "character", quotes (‘") are used.

if TRUE and x is of mode "character", the output columns are right-
justified.

how NAs are printed. If this is non-null, its value is used to represent NA.

arguments for print methods.

prmatrixisanearlier form of print .matrix, and is very similar to the S function of the same

name.

proc.time 449

Value

Invisibly returns its argument, x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print.default, and other print methods.

Examples
prmatrix (m6 <- diag(6), rowlab = rep("", 6), collab = rep("", 6))
chm <- matrix(scan(system.file("help", "AnIndex", package = "splines"),

what = ""), , 2, byrow = TRUE)
chm # uses print.matrix/()
prmatrix (chm, collab = paste("Column", 1:3), right = TRUE, quote = FALSE)

proc.time Running Time of R

Description

proc.time determines how much real and CPU time (in seconds) the currently running R process
has already taken.

Usage

proc.time ()

Details

proc.time returns five elements for backwards compatibility, but its print method prints a
named vector of length 3. The first two entries are the total user and system CPU times of the
current R process and any child processes on which it has waited, and the third entry is the ‘real’
elapsed time since the process was started.

Value

An object of class "proc_time" which is a numeric vector of length 5, containing the user,
system, and total elapsed times for the currently running R process, and the cumulative sum of user
and system times of any child processes spawned by it on which it has waited. (The print method
uses the summary method to combine the child times with those of the main process.)

The definition of ‘user’ and ‘system’ times is from your OS. Typically it is something like

450 prod

The ‘user time’ is the CPU time charged for the execution of user instructions of the calling process.
The ‘system time’ is the CPU time charged for execution by the system on behalf of the calling
process.

Times of child processes are not available on Windows and will always be given as NA.

The resolution of the times will be system-specific and on Unix-alikes times are rounded down to
milliseconds. On modern systems they will be that accurate, but on older systems they might be
accurate to 1/100 or 1/60 sec. They are typically available to 10ms on Windows.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
system.time for timing an R expression, gc.time for how much of the time was spent in
garbage collection.

setTimeLimit to limit the CPU or elapsed time for the session or an expression.

Examples

a way to time an R expression: system.time is preferred
ptm <- proc.time ()

for (i in 1:50) mad(stats::runif (500))

proc.time () - ptm

prod Product of Vector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments

numeric or complex or logical vectors.

na.rm logical. Should missing values be removed?

proportions 451

Details

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Logical true values are regarded as one, false values as zero. For historical reasons, NULL is ac-
cepted and treated as if it were numeric (0).

Value

The product, a numeric (of type "double") or complex vector of length one. NB: the product of
an empty set is one, by definition.

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature
Xy ...,0a.rm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sum, cumprod, cumsum.

‘plotmath’ for the use of prod in plot annotation.

Examples
print (prod(l:7)) == print (gamma (8))
proportions Express Table Entries as Fraction of Marginal Table
Description

Returns conditional proportions given margins, i.e. entries of x, divided by the appropriate
marginal sums.
Usage

proportions (x, margin = NULL)
prop.table (x, margin = NULL)

452 pushBack

Arguments
x table
margin a vector giving the margins to split by. E.g., for a matrix 1 indicates rows, 2
indicates columns, c (1, 2) indicates rows and columns. When x has named
dimnames, it can be a character vector selecting dimension names.
Value

Table like x expressed relative to margin

Note

prop.table is an earlier name, retained for back-compatibility.

Author(s)

Peter Dalgaard

See Also
marginSums. apply, sweep are a more general mechanism for sweeping out marginal statis-
tics.

Examples

m <- matrix(1:4, 2)
m
proportions (m, 1)

DF <- as.data.frame (UCBAdmissions)
tbl <- xtabs(Freq ~ Gender + Admit, DF)

proportions (tbl, "Gender")

pushBack Push Text Back on to a Connection

Description

Functions to push back text lines onto a connection, and to enquire how many lines are currently
pushed back.

Usage

pushBack (data, connection, newLine = TRUE,
encoding = c("", "bytes", "UTF-8"))

pushBackLength (connection)

clearPushBack (connection)

pushBack 453

Arguments

data a character vector.

connection A connection.

newLine logical. If true, a newline is appended to each string pushed back.
encoding character string, partially matched. See details.
Details

Several character strings can be pushed back on one or more occasions. The occasions form a stack,
so the first line to be retrieved will be the first string from the last call to pushBack. Lines which
are pushed back are read prior to the normal input from the connection, by the normal text-reading
functions such as readLines and scan.

Pushback is only allowed for readable connections in text mode.

Not all uses of connections respect pushbacks, in particular the input connection is still wired di-
rectly, so for example parsing commands from the console and scan ("") ignore pushbacks on
stdin.

When character strings with a marked encoding (see Encoding) are pushed back they are con-
verted to the current encoding if encoding = "". This may involve representing characters as
‘<U+xxxx>’ if they cannot be converted. They will be converted to UTF-8 if encoding =
"UTF-8" or left as-is if encoding = "bytes".

Value

pushBack and clearPushBack () return nothing, invisibly.

pushBackLength returns the number of lines currently pushed back.

See Also

connections, readLines.

Examples

zz <— textConnection (LETTERS)
readLines (zz, 2)
pushBack (c ("aa", "bb"), zz)
pushBackLength (zz)

readLines (zz, 1)
pushBackLength (zz)

readLines (zz, 1)

readLines (zz, 1)

close(zz)

454 qr

qr The QR Decomposition of a Matrix

Description

gr computes the QR decomposition of a matrix.

Usage

ar(x, ...)
Default S3 method:
gr(x, tol = le-07 , LAPACK = FALSE, ...)

gr.coef (gqr, vy)

gr.qy (gr, y)

qr.qty(qr, y)

gr.resid(qgr, vy)

gr.fitted(gqr, y, k = gr$rank)
gr.solve(a, b, tol = le-7)

S3 method for class 'qgr'

solve(a, b, ...)

is.qgr (x)

as.qr (x)

Arguments

X a numeric or complex matrix whose QR decomposition is to be computed. Log-
ical matrices are coerced to numeric.

tol the tolerance for detecting linear dependencies in the columns of x. Only used
if LAPACK is false and x is real.

qr a QR decomposition of the type computed by gr.

v, b a vector or matrix of right-hand sides of equations.

a a QR decomposition or (gr . solve only) a rectangular matrix.

k effective rank.

LAPACK logical. For real x, if true use LAPACK otherwise use LINPACK (the default).

further arguments passed to or from other methods

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equation Ax = b for given matrix A, and vector b. It is useful for computing
regression coefficients and in applying the Newton-Raphson algorithm.

The functions gr . coef, gr.resid, and gr. fitted return the coefficients, residuals and fitted
values obtained when fitting v to the matrix with QR decomposition gr. (If pivoting is used, some

qr 455

of the coefficients will be NA.) gr.qy and gqr.gty return Q $*% y and t (Q) %*% y, where Q is
the (complete) (matrix.

All the above functions keep dimnames (and names) of x and vy if there are any.

solve.qgr is the method for solve for gr objects. gr.solve solves systems of equations
via the QR decomposition: if a is a QR decomposition it is the same as solve.qr, but if a is
a rectangular matrix the QR decomposition is computed first. Either will handle over- and under-
determined systems, providing a least-squares fit if appropriate.

is.qgrreturns TRUE if xisa 1ist and inherits from "qr".

It is not possible to coerce objects to mode "qgr". Objects either are QR decompositions or they
are not.

The LINPACK interface is restricted to matrices x with less than 23! elements.
gqr.fittedand gr.resid only support the LINPACK interface.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The QR decomposition of the matrix as computed by LINPACK(*) or LAPACK. The components
in the returned value correspond directly to the values returned by DQRDC(2)/DGEQP3/ZGEQP3.

qr a matrix with the same dimensions as x. The upper triangle contains the R of
the decomposition and the lower triangle contains information on the @ of the
decomposition (stored in compact form). Note that the storage used by DQRDC
and DGEQP3 differs.

graux a vector of length ncol (x) which contains additional information on Q.

rank the rank of x as computed by the decomposition(*): always full rank in the
LAPACK case.

pivot information on the pivoting strategy used during the decomposition.

Non-complex QR objects computed by LAPACK have the attribute "useLAPACK" with value
TRUE.

x) dgrdc?2 instead of LINPACK’s DQRDC

In the (default) LINPACK case (LAPACK = FALSE), gr () uses a modified version of LINPACK’s
DQRDC, called ‘dgrdc2’. It differs by using the tolerance tol for a pivoting strategy which
moves columns with near-zero 2-norm to the right-hand edge of the x matrix. This strategy means
that sequential one degree-of-freedom effects can be computed in a natural way.

Note

To compute the determinant of a matrix (do you really need it?), the QR decomposition is much
more efficient than using Eigen values (eigen). See det.

Using LAPACK (including in the complex case) uses column pivoting and does not attempt to
detect rank-deficient matrices.

456 qr

Source

For gr, the LINPACK routine DQRDC (but modified to dgrdc2(*)) and the LAPACK routines
DGEQP 3 and ZGEQP 3. Further LINPACK and LAPACK routines are used for gr.coef, gr.qy
and gr.aty.

LAPACK and LINPACK are from https://www.netlib.org/lapack/ and https://
www.netlib.org/linpack/ and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at https://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.
See Also

gr.Q, gr.R, gr.X for reconstruction of the matrices. 1m.fit, 1sfit, eigen, svd.

det (using gr) to compute the determinant of a matrix.

Examples
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9); h9
r (h9) Srank #-—> only 7
grh9 <- gr (h9, tol = 1le-10)
grh9$rank #-—> 9
##-— Solve linear equation system H %$%% x =y

y <-= 1:9/10
x <= gr.solve(h9, y, tol = le-10) # or equivalently

x <- gr.coef(gqrh9, y) #-- is == but much better than
#—— solve (h9) %$*% vy
h9 %*% x # =y

overdetermined system

A <- matrix(runif (12), 4)

b <- 1:4

gr.solve (A, b) # or solve(gr(A), b)

solve (gr (A, LAPACK = TRUE), b)

this is a least-squares solution, cf. 1lm(b ~ 0 + A)

underdetermined system

A <- matrix(runif (12), 3)

b <- 1:3

gr.solve (A, b)

solve (qr (A, LAPACK = TRUE), Db)

solutions will have one zero, not necessarily the same one

https://www.netlib.org/lapack/
https://www.netlib.org/linpack/
https://www.netlib.org/linpack/
https://www.netlib.org/lapack/lug/lapack_lug.html

QR.Auxiliaries 457

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object

Description
Returns the original matrix from which the object was constructed or the components of the decom-
position.

Usage

gr.X(gr, complete = FALSE, ncol =)
gr.Q(gr, complete FALSE, Dvec =)

gr.R(gr, complete = FALSE)
Arguments
qr object representing a QR decomposition. This will typically have come from a
previous call to gr or 1sfit.
complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the @ or X matrices is to be made, or whether the R matrix is to be
completed by binding zero-value rows beneath the square upper triangle.
ncol integer in the range 1:nrow (gqr$qr). The number of columns to be in
the reconstructed X. The default when complete is FALSE is the first
min (ncol (X),nrow (X)) columns of the original X from which the gr ob-
ject was constructed. The default when complete is TRUE is a square matrix
with the original X in the first ncol (X) columns and an arbitrary orthogonal
completion (unitary completion in the complex case) in the remaining columns.
Dvec vector (not matrix) of diagonal values. Each column of the returned @ will be
multiplied by the corresponding diagonal value. Defaults to all 1s.
Value

gr . X returns X, the original matrix from which the qr object was constructed, provided ncol (X)
<=nrow (X).If complete is TRUE or the argument ncol is greater than ncol (X), additional
columns from an arbitrary orthogonal (unitary) completion of X are returned.

gr . Q returns part or all of Q, the order-nrow(X) orthogonal (unitary) transformation represented by
gr. If complete is TRUE, Q has nrow (X) columns. If complete is FALSE, Q has ncol (X)
columns. When Dvec is specified, each column of Q is multiplied by the corresponding value in
Dvec.

Note that gr.Q (gr, ») is a special case of gqr.qy (qr,y) (with a “diagonal” y), and
gr.X (gr,) is basically gr. gy (qr, R) (apart from pivoting and dimnames setting).

gr . Rreturns R. This may be pivoted, e.g., if a <—gr (x) then x [, a$pivot] = QR. The number
of rows of R is either nrow (X) or ncol (X) (and may depend on whether complete is TRUE
or FALSE).

458 quit

See Also

qr, qr.qy.

Examples

p <- ncol(x <- LifeCycleSavings[, -1]) # not the 'sr'
grstr <- gr(x) # dim(x) == c(n,p)
grstr $ rank # = 4 = p

Q <= gr.Q(grstr) # dim(Q) == dim(x)

R <= gr.R(grstr) # dim(R) == ncol (x)

X <- gr.X(grstr) # X == x

range (X - as.matrix(x)) # ~ < 6e-12

X == Q %x% R if there has been no pivoting, as here:

all.equal (unname (X),
unname (Q %$*% R))

example of pivoting
x <-= cbind(int = 1,
bl rep(1:0, each = 3), b2 = rep(0:1, each = 3),
cl = rep(c(1,0,0), 2), c2 = rep(c(0,1,0), 2), c3 = rep(c(0,0,1),2))
x # 1s singular, columns "b2" and "c3" are "extra"
a <- gr(x)
zapsmall (gr.R(a)) # columns are int bl cl c2 b2 c3

as$pivot

pivI <- sort.list (a$pivot) # the inverse permutation

all.equal (x, gr.Q(a) %*% gqr.R(a)) # no, no

stopifnot (

all.equal(x[, aS$pivot], gr.Q(a) %*% gr.R(a)), # TRUE
all.equal (x , gr.Q(a) %*% gr.R(a)[, pivI])) # TRUE too!

quit Terminate an R Session
Description

The function quit or its alias g terminate the current R session.

Usage
quit (save = "default", status = 0, runLast = TRUE)
g(save = "default", status = 0, runlLast = TRUE)
Arguments
save a character string indicating whether the environment (workspace) should be
saved, one of "no", "yes", "ask" or "default".
status the (numerical) error status to be returned to the operating system, where rele-

vant. Conventionally 0 indicates successful completion.

runlLast should .Last () be executed?

quit 459

Details

save must be one of "no", "yes", "ask" or "default". In the first case the workspace is
not saved, in the second it is saved and in the third the user is prompted and can also decide not
to quit. The default is to ask in interactive use but may be overridden by command-line arguments
(which must be supplied in non-interactive use).

Immediately before normal termination, .Last () is executed if the function . Last exists and
runLast is true. If in interactive use there are errors in the .ILast function, control will be
returned to the command prompt, so do test the function thoroughly. There is a system analogue,
.Last.sys (), which is run after . Last () if runLast is true.

Exactly what happens at termination of an R session depends on the platform and GUI interface in
use. A typical sequenceistorun .Last () and .Last.sys () (unless runLast is false), to save
the workspace if requested (and in most cases also to save the session history: see savehistory),
then run any finalizers (see reg.finalizer) that have been set to be run on exit, close all open
graphics devices, remove the session temporary directory and print any remaining warnings (e.g.,
from .Last () and device closure).

Some error status values are used by R itself. The default error handler for non-interactive use effec-
tively calls g ("no", 1, FALSE) and returns error status 1. Error status 2 is used for R ‘suicide’,
that is a catastrophic failure, and other small numbers are used by specific ports for initialization
failures. It is recommended that users choose statuses of 10 or more.

Valid values of status are system-dependent, but 0:255 are normally valid. (Many OSes will
report the last byte of the value, that is report the value modulo 256. But not all.)
Warning

The value of . Last is for the end user to control: as it can be replaced later in the session, it cannot
safely be used programmatically, e.g. by a package. The other way to set code to be run at the end
of the session is to use a finalizer: see reg.finalizer.

Note
The R. app GUI on macOS has its own version of these functions with slightly different behaviour
for the save argument (the GUI’s ‘Startup’ preferences for this action are taken into account).
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.First for setting things on startup.

Examples

Not run: ## Unix-flavour example

.Last <- function () {
graphics.off () # close devices before printing
cat ("Now sending PDF graphics to the printer:\n")

Quotes

460
system("lpr Rplots.pdf")
cat ("bye bye...\n")
}
quit ("yes")

End(Not run)

Quotes Quotes

Description

Descriptions of the various uses of quoting in R.

Details

Three types of quotes are part of the syntax of R: single and double quotation marks and the backtick

“~

(or back quote,
constants.

Character constants

). In addition, backslash is used to escape the following character inside character

Single and double quotes delimit character constants. They can be used interchangeably but double
quotes are preferred (and character constants are printed using double quotes), so single quotes are
normally only used to delimit character constants containing double quotes.

Backslash is used to start an escape sequence inside character constants. Escaping a character not
in the following table is an error.

Single quotes need to be escaped by backslash in single-quoted strings, and double quotes in double-

quoted strings.

A’
o

at

A\’

A’

o £

Ay

Qo

N

NE

o v

‘Annn’

‘Axnn’
‘\unnnn’
‘\Unnnnnnnn’

newline

carriage return

tab

backspace

alert (bell)

form feed

vertical tab

backslash ‘\’

ASCII apostrophe ‘"’

ASCII quotation mark ‘"’

ASCII grave accent (backtick) ‘*’

character with given octal code (1, 2 or 3 digits)
character with given hex code (1 or 2 hex digits)
Unicode character with given code (1-4 hex digits)
Unicode character with given code (1-8 hex digits)

Alternative forms for the last two are ‘\u{nnnn}’ and ‘\U{nnnnnnnn}’. All except the Unicode

Quotes 461

escape sequences are also supported when reading character strings by scan and read.table
if allowEscapes = TRUE. Unicode escapes can be used to enter Unicode characters not in the
current locale’s charset (when the string will be stored internally in UTF-8).

The parser does not allow the use of both octal/hex and Unicode escapes in a single string.

These forms will also be used by print .default when outputting non-printable characters
(including backslash).

Embedded nuls are not allowed in character strings, so using escapes (such as ‘\0”) for a nul will
result in the string being truncated at that point (usually with a warning).

Raw character constants are also available using a syntax similar to the one used in C++:
r" (...)" with . .. any character sequence, except that it must not contain the closing sequence
‘) "’. The delimiter pairs [] and {} can also be used, and R can be used in place of r. For
additional flexibility, a number of dashes can be placed between the opening quote and the open-
ing delimiter, as long as the same number of dashes appear between the closing delimiter and the
closing quote.

Names and Identifiers

Identifiers consist of a sequence of letters, digits, the period (.) and the underscore. They must not
start with a digit nor underscore, nor with a period followed by a digit. Reserved words are not valid
identifiers.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.

Such identifiers are also known as syntactic names and may be used directly in R code. Almost
always, other names can be used provided they are quoted. The preferred quote is the backtick
(‘7), and deparse will normally use it, but under many circumstances single or double quotes

can be used (as a character constant will often be converted to a name). One place where backticks
may be essential is to delimit variable names in formulae: see formula.

Note

Handling of UTF-16 surrogate pairs in ‘\unnnn\uoooo’ form is platform-dependent: these are
better specified by ‘\U’, for example ‘\U1D11E’ rather than ‘\uD834\uDD1E’. The handling
of unpaired values in the surrogate range such as in the string "abc\uD834de" is even more
platform-dependent and may become an error.

See Also

Syntax for other aspects of the syntax.
sQuote for quoting English text.
shQuote for quoting OS commands.

The ‘R Language Definition’ manual.

Examples

'single quotes can be used more-or-less interchangeably'
"with double quotes to create character vectors"

462 Quotes

Single quotes inside single-quoted strings need backslash-escaping.
Ditto double quotes inside double-quoted strings.
##
identical ('""It\'s alive!", he screamed.',
"\"It's alive!\", he screamed.") # same

Backslashes need doubling, or they have a special meaning.
x <— "In ALGOL, you could do logical AND with /\\."

print (x) # shows it as above ("input-like")
writeLines (x) # shows it as you like it ;-)

Single backslashes followed by a letter are used to denote
special characters like tab (ulator)s and newlines:

x <- "long\tlines can be\nbroken with newlines"

writeLines (x) # see also ?strwrap

Backticks are used for non-standard variable names.

(See make.names and ?Reserved for what counts as

non-standard.)

"x yT <= 1:5

%y

d <- data.frame("1lst column® = rchisqg(5, 2), check.names = FALSE)
d$ 1lst column”

Backslashes followed by up to three numbers are interpreted as
octal notation for ASCII characters.
"\N110\145\154\154\157\40\127\157\162\154\144\41"

\x followed by up to two numbers is interpreted as
hexadecimal notation for ASCII characters.
(hwl <— "\x48\x65\x6c\x6c\x6f\x20\x57\x6f\x72\x6c\x64\x21")

Mixing octal and hexadecimal in the same string is OK
(hw2 <- "\110\x65\154\x6c\157\x20\127\x6£\162\x6c\144\x21")

\u is also hexadecimal, but supports up to 4 digits,

using Unicode specification. In the previous example,
you can simply replace \x with \u.

(hw3 <= "\u48\u65\ubc\ucc\u6f\u20\us57\u6f\u72\ubc\u6d\u2l")

The last three are all identical to
hw <- "Hello World!"
stopifnot (identical (hw, hwl), identical (hwl, hw2), identical (hw2, hw3))

Using Unicode makes more sense for non-latin characters.
(nn <= "\u0126\u0119\ull14\u022d\u2001\u03e2\u0954\u0£f3f\ul3d3\uld7b\u203c")

Mixing \x and \u throws a _parse_ error (which is not catchable!)
Not run:
"\x48\u65\x6c\ubc\x6f\u20\x57\u6cf\x72\ubc\x64\u2l"

End (Not run)
—-=> Error: mixing Unicode and octal/hex escapes

R.Version 463

\U works like \u, but supports up to six hex digits.

So we can replace \u with \U in the previous example.

n2 <- "\U0126\U0119\U1114\U022d\U2001\U03e2\U0954\U0£3£\U13d3\U147b\U203c"
stopifnot (identical (nn, n2))

Under systems supporting multi-byte locales (and not Windows),

\U also supports the rarer characters outside the usual 1674 range.

See the R language manual,

https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Literal-constants
and bug 16098 https://bugs.r-project.org/bugzilla3/show_bug.cgi?id=16098

This character may or not be printable (the platform decides)

and if it is, may not have a glyph in the font used.

"\Uld4d7" # On Windows this gives the incorrect value of "\Ud4d7"

nul characters (for terminating strings in C) are not allowed (parse errors)
Not run:

"foo\Obar" # Error: nul character not allowed (line 1)

"foo\u0000bar" # same error

End (Not run)

A Windows path written as a raw string constant:
r" (c:\Program files\R)"

More raw strings:

r"{ (\1\2) }"
r" (us